xref: /openbmc/linux/mm/hugetlb.c (revision 4e1a33b1)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56 
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62 
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 
77 	spin_unlock(&spool->lock);
78 
79 	/* If no pages are used, and no other handles to the subpool
80 	 * remain, give up any reservations mased on minimum size and
81 	 * free the subpool */
82 	if (free) {
83 		if (spool->min_hpages != -1)
84 			hugetlb_acct_memory(spool->hstate,
85 						-spool->min_hpages);
86 		kfree(spool);
87 	}
88 }
89 
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 						long min_hpages)
92 {
93 	struct hugepage_subpool *spool;
94 
95 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 	if (!spool)
97 		return NULL;
98 
99 	spin_lock_init(&spool->lock);
100 	spool->count = 1;
101 	spool->max_hpages = max_hpages;
102 	spool->hstate = h;
103 	spool->min_hpages = min_hpages;
104 
105 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 		kfree(spool);
107 		return NULL;
108 	}
109 	spool->rsv_hpages = min_hpages;
110 
111 	return spool;
112 }
113 
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116 	spin_lock(&spool->lock);
117 	BUG_ON(!spool->count);
118 	spool->count--;
119 	unlock_or_release_subpool(spool);
120 }
121 
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 				      long delta)
132 {
133 	long ret = delta;
134 
135 	if (!spool)
136 		return ret;
137 
138 	spin_lock(&spool->lock);
139 
140 	if (spool->max_hpages != -1) {		/* maximum size accounting */
141 		if ((spool->used_hpages + delta) <= spool->max_hpages)
142 			spool->used_hpages += delta;
143 		else {
144 			ret = -ENOMEM;
145 			goto unlock_ret;
146 		}
147 	}
148 
149 	/* minimum size accounting */
150 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 		if (delta > spool->rsv_hpages) {
152 			/*
153 			 * Asking for more reserves than those already taken on
154 			 * behalf of subpool.  Return difference.
155 			 */
156 			ret = delta - spool->rsv_hpages;
157 			spool->rsv_hpages = 0;
158 		} else {
159 			ret = 0;	/* reserves already accounted for */
160 			spool->rsv_hpages -= delta;
161 		}
162 	}
163 
164 unlock_ret:
165 	spin_unlock(&spool->lock);
166 	return ret;
167 }
168 
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 				       long delta)
177 {
178 	long ret = delta;
179 
180 	if (!spool)
181 		return delta;
182 
183 	spin_lock(&spool->lock);
184 
185 	if (spool->max_hpages != -1)		/* maximum size accounting */
186 		spool->used_hpages -= delta;
187 
188 	 /* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 		if (spool->rsv_hpages + delta <= spool->min_hpages)
191 			ret = 0;
192 		else
193 			ret = spool->rsv_hpages + delta - spool->min_hpages;
194 
195 		spool->rsv_hpages += delta;
196 		if (spool->rsv_hpages > spool->min_hpages)
197 			spool->rsv_hpages = spool->min_hpages;
198 	}
199 
200 	/*
201 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 	 * quota reference, free it now.
203 	 */
204 	unlock_or_release_subpool(spool);
205 
206 	return ret;
207 }
208 
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211 	return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213 
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216 	return subpool_inode(file_inode(vma->vm_file));
217 }
218 
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239 	struct list_head link;
240 	long from;
241 	long to;
242 };
243 
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260 	struct list_head *head = &resv->regions;
261 	struct file_region *rg, *nrg, *trg;
262 	long add = 0;
263 
264 	spin_lock(&resv->lock);
265 	/* Locate the region we are either in or before. */
266 	list_for_each_entry(rg, head, link)
267 		if (f <= rg->to)
268 			break;
269 
270 	/*
271 	 * If no region exists which can be expanded to include the
272 	 * specified range, the list must have been modified by an
273 	 * interleving call to region_del().  Pull a region descriptor
274 	 * from the cache and use it for this range.
275 	 */
276 	if (&rg->link == head || t < rg->from) {
277 		VM_BUG_ON(resv->region_cache_count <= 0);
278 
279 		resv->region_cache_count--;
280 		nrg = list_first_entry(&resv->region_cache, struct file_region,
281 					link);
282 		list_del(&nrg->link);
283 
284 		nrg->from = f;
285 		nrg->to = t;
286 		list_add(&nrg->link, rg->link.prev);
287 
288 		add += t - f;
289 		goto out_locked;
290 	}
291 
292 	/* Round our left edge to the current segment if it encloses us. */
293 	if (f > rg->from)
294 		f = rg->from;
295 
296 	/* Check for and consume any regions we now overlap with. */
297 	nrg = rg;
298 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 		if (&rg->link == head)
300 			break;
301 		if (rg->from > t)
302 			break;
303 
304 		/* If this area reaches higher then extend our area to
305 		 * include it completely.  If this is not the first area
306 		 * which we intend to reuse, free it. */
307 		if (rg->to > t)
308 			t = rg->to;
309 		if (rg != nrg) {
310 			/* Decrement return value by the deleted range.
311 			 * Another range will span this area so that by
312 			 * end of routine add will be >= zero
313 			 */
314 			add -= (rg->to - rg->from);
315 			list_del(&rg->link);
316 			kfree(rg);
317 		}
318 	}
319 
320 	add += (nrg->from - f);		/* Added to beginning of region */
321 	nrg->from = f;
322 	add += t - nrg->to;		/* Added to end of region */
323 	nrg->to = t;
324 
325 out_locked:
326 	resv->adds_in_progress--;
327 	spin_unlock(&resv->lock);
328 	VM_BUG_ON(add < 0);
329 	return add;
330 }
331 
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356 	struct list_head *head = &resv->regions;
357 	struct file_region *rg, *nrg = NULL;
358 	long chg = 0;
359 
360 retry:
361 	spin_lock(&resv->lock);
362 retry_locked:
363 	resv->adds_in_progress++;
364 
365 	/*
366 	 * Check for sufficient descriptors in the cache to accommodate
367 	 * the number of in progress add operations.
368 	 */
369 	if (resv->adds_in_progress > resv->region_cache_count) {
370 		struct file_region *trg;
371 
372 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 		/* Must drop lock to allocate a new descriptor. */
374 		resv->adds_in_progress--;
375 		spin_unlock(&resv->lock);
376 
377 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 		if (!trg) {
379 			kfree(nrg);
380 			return -ENOMEM;
381 		}
382 
383 		spin_lock(&resv->lock);
384 		list_add(&trg->link, &resv->region_cache);
385 		resv->region_cache_count++;
386 		goto retry_locked;
387 	}
388 
389 	/* Locate the region we are before or in. */
390 	list_for_each_entry(rg, head, link)
391 		if (f <= rg->to)
392 			break;
393 
394 	/* If we are below the current region then a new region is required.
395 	 * Subtle, allocate a new region at the position but make it zero
396 	 * size such that we can guarantee to record the reservation. */
397 	if (&rg->link == head || t < rg->from) {
398 		if (!nrg) {
399 			resv->adds_in_progress--;
400 			spin_unlock(&resv->lock);
401 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 			if (!nrg)
403 				return -ENOMEM;
404 
405 			nrg->from = f;
406 			nrg->to   = f;
407 			INIT_LIST_HEAD(&nrg->link);
408 			goto retry;
409 		}
410 
411 		list_add(&nrg->link, rg->link.prev);
412 		chg = t - f;
413 		goto out_nrg;
414 	}
415 
416 	/* Round our left edge to the current segment if it encloses us. */
417 	if (f > rg->from)
418 		f = rg->from;
419 	chg = t - f;
420 
421 	/* Check for and consume any regions we now overlap with. */
422 	list_for_each_entry(rg, rg->link.prev, link) {
423 		if (&rg->link == head)
424 			break;
425 		if (rg->from > t)
426 			goto out;
427 
428 		/* We overlap with this area, if it extends further than
429 		 * us then we must extend ourselves.  Account for its
430 		 * existing reservation. */
431 		if (rg->to > t) {
432 			chg += rg->to - t;
433 			t = rg->to;
434 		}
435 		chg -= rg->to - rg->from;
436 	}
437 
438 out:
439 	spin_unlock(&resv->lock);
440 	/*  We already know we raced and no longer need the new region */
441 	kfree(nrg);
442 	return chg;
443 out_nrg:
444 	spin_unlock(&resv->lock);
445 	return chg;
446 }
447 
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461 	spin_lock(&resv->lock);
462 	VM_BUG_ON(!resv->region_cache_count);
463 	resv->adds_in_progress--;
464 	spin_unlock(&resv->lock);
465 }
466 
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483 	struct list_head *head = &resv->regions;
484 	struct file_region *rg, *trg;
485 	struct file_region *nrg = NULL;
486 	long del = 0;
487 
488 retry:
489 	spin_lock(&resv->lock);
490 	list_for_each_entry_safe(rg, trg, head, link) {
491 		/*
492 		 * Skip regions before the range to be deleted.  file_region
493 		 * ranges are normally of the form [from, to).  However, there
494 		 * may be a "placeholder" entry in the map which is of the form
495 		 * (from, to) with from == to.  Check for placeholder entries
496 		 * at the beginning of the range to be deleted.
497 		 */
498 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499 			continue;
500 
501 		if (rg->from >= t)
502 			break;
503 
504 		if (f > rg->from && t < rg->to) { /* Must split region */
505 			/*
506 			 * Check for an entry in the cache before dropping
507 			 * lock and attempting allocation.
508 			 */
509 			if (!nrg &&
510 			    resv->region_cache_count > resv->adds_in_progress) {
511 				nrg = list_first_entry(&resv->region_cache,
512 							struct file_region,
513 							link);
514 				list_del(&nrg->link);
515 				resv->region_cache_count--;
516 			}
517 
518 			if (!nrg) {
519 				spin_unlock(&resv->lock);
520 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 				if (!nrg)
522 					return -ENOMEM;
523 				goto retry;
524 			}
525 
526 			del += t - f;
527 
528 			/* New entry for end of split region */
529 			nrg->from = t;
530 			nrg->to = rg->to;
531 			INIT_LIST_HEAD(&nrg->link);
532 
533 			/* Original entry is trimmed */
534 			rg->to = f;
535 
536 			list_add(&nrg->link, &rg->link);
537 			nrg = NULL;
538 			break;
539 		}
540 
541 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 			del += rg->to - rg->from;
543 			list_del(&rg->link);
544 			kfree(rg);
545 			continue;
546 		}
547 
548 		if (f <= rg->from) {	/* Trim beginning of region */
549 			del += t - rg->from;
550 			rg->from = t;
551 		} else {		/* Trim end of region */
552 			del += rg->to - f;
553 			rg->to = f;
554 		}
555 	}
556 
557 	spin_unlock(&resv->lock);
558 	kfree(nrg);
559 	return del;
560 }
561 
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573 	struct hugepage_subpool *spool = subpool_inode(inode);
574 	long rsv_adjust;
575 
576 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 	if (rsv_adjust) {
578 		struct hstate *h = hstate_inode(inode);
579 
580 		hugetlb_acct_memory(h, 1);
581 	}
582 }
583 
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590 	struct list_head *head = &resv->regions;
591 	struct file_region *rg;
592 	long chg = 0;
593 
594 	spin_lock(&resv->lock);
595 	/* Locate each segment we overlap with, and count that overlap. */
596 	list_for_each_entry(rg, head, link) {
597 		long seg_from;
598 		long seg_to;
599 
600 		if (rg->to <= f)
601 			continue;
602 		if (rg->from >= t)
603 			break;
604 
605 		seg_from = max(rg->from, f);
606 		seg_to = min(rg->to, t);
607 
608 		chg += seg_to - seg_from;
609 	}
610 	spin_unlock(&resv->lock);
611 
612 	return chg;
613 }
614 
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 			struct vm_area_struct *vma, unsigned long address)
621 {
622 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 			(vma->vm_pgoff >> huge_page_order(h));
624 }
625 
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 				     unsigned long address)
628 {
629 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632 
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639 	struct hstate *hstate;
640 
641 	if (!is_vm_hugetlb_page(vma))
642 		return PAGE_SIZE;
643 
644 	hstate = hstate_vma(vma);
645 
646 	return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649 
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659 	return vma_kernel_pagesize(vma);
660 }
661 #endif
662 
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671 
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693 	return (unsigned long)vma->vm_private_data;
694 }
695 
696 static void set_vma_private_data(struct vm_area_struct *vma,
697 							unsigned long value)
698 {
699 	vma->vm_private_data = (void *)value;
700 }
701 
702 struct resv_map *resv_map_alloc(void)
703 {
704 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 
707 	if (!resv_map || !rg) {
708 		kfree(resv_map);
709 		kfree(rg);
710 		return NULL;
711 	}
712 
713 	kref_init(&resv_map->refs);
714 	spin_lock_init(&resv_map->lock);
715 	INIT_LIST_HEAD(&resv_map->regions);
716 
717 	resv_map->adds_in_progress = 0;
718 
719 	INIT_LIST_HEAD(&resv_map->region_cache);
720 	list_add(&rg->link, &resv_map->region_cache);
721 	resv_map->region_cache_count = 1;
722 
723 	return resv_map;
724 }
725 
726 void resv_map_release(struct kref *ref)
727 {
728 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 	struct list_head *head = &resv_map->region_cache;
730 	struct file_region *rg, *trg;
731 
732 	/* Clear out any active regions before we release the map. */
733 	region_del(resv_map, 0, LONG_MAX);
734 
735 	/* ... and any entries left in the cache */
736 	list_for_each_entry_safe(rg, trg, head, link) {
737 		list_del(&rg->link);
738 		kfree(rg);
739 	}
740 
741 	VM_BUG_ON(resv_map->adds_in_progress);
742 
743 	kfree(resv_map);
744 }
745 
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748 	return inode->i_mapping->private_data;
749 }
750 
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 	if (vma->vm_flags & VM_MAYSHARE) {
755 		struct address_space *mapping = vma->vm_file->f_mapping;
756 		struct inode *inode = mapping->host;
757 
758 		return inode_resv_map(inode);
759 
760 	} else {
761 		return (struct resv_map *)(get_vma_private_data(vma) &
762 							~HPAGE_RESV_MASK);
763 	}
764 }
765 
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 
771 	set_vma_private_data(vma, (get_vma_private_data(vma) &
772 				HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774 
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 
780 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782 
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 
787 	return (get_vma_private_data(vma) & flag) != 0;
788 }
789 
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 	if (!(vma->vm_flags & VM_MAYSHARE))
795 		vma->vm_private_data = (void *)0;
796 }
797 
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801 	if (vma->vm_flags & VM_NORESERVE) {
802 		/*
803 		 * This address is already reserved by other process(chg == 0),
804 		 * so, we should decrement reserved count. Without decrementing,
805 		 * reserve count remains after releasing inode, because this
806 		 * allocated page will go into page cache and is regarded as
807 		 * coming from reserved pool in releasing step.  Currently, we
808 		 * don't have any other solution to deal with this situation
809 		 * properly, so add work-around here.
810 		 */
811 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812 			return true;
813 		else
814 			return false;
815 	}
816 
817 	/* Shared mappings always use reserves */
818 	if (vma->vm_flags & VM_MAYSHARE) {
819 		/*
820 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821 		 * be a region map for all pages.  The only situation where
822 		 * there is no region map is if a hole was punched via
823 		 * fallocate.  In this case, there really are no reverves to
824 		 * use.  This situation is indicated if chg != 0.
825 		 */
826 		if (chg)
827 			return false;
828 		else
829 			return true;
830 	}
831 
832 	/*
833 	 * Only the process that called mmap() has reserves for
834 	 * private mappings.
835 	 */
836 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 		/*
838 		 * Like the shared case above, a hole punch or truncate
839 		 * could have been performed on the private mapping.
840 		 * Examine the value of chg to determine if reserves
841 		 * actually exist or were previously consumed.
842 		 * Very Subtle - The value of chg comes from a previous
843 		 * call to vma_needs_reserves().  The reserve map for
844 		 * private mappings has different (opposite) semantics
845 		 * than that of shared mappings.  vma_needs_reserves()
846 		 * has already taken this difference in semantics into
847 		 * account.  Therefore, the meaning of chg is the same
848 		 * as in the shared case above.  Code could easily be
849 		 * combined, but keeping it separate draws attention to
850 		 * subtle differences.
851 		 */
852 		if (chg)
853 			return false;
854 		else
855 			return true;
856 	}
857 
858 	return false;
859 }
860 
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863 	int nid = page_to_nid(page);
864 	list_move(&page->lru, &h->hugepage_freelists[nid]);
865 	h->free_huge_pages++;
866 	h->free_huge_pages_node[nid]++;
867 }
868 
869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 {
871 	struct page *page;
872 
873 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 		if (!is_migrate_isolate_page(page))
875 			break;
876 	/*
877 	 * if 'non-isolated free hugepage' not found on the list,
878 	 * the allocation fails.
879 	 */
880 	if (&h->hugepage_freelists[nid] == &page->lru)
881 		return NULL;
882 	list_move(&page->lru, &h->hugepage_activelist);
883 	set_page_refcounted(page);
884 	h->free_huge_pages--;
885 	h->free_huge_pages_node[nid]--;
886 	return page;
887 }
888 
889 /* Movability of hugepages depends on migration support. */
890 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 {
892 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893 		return GFP_HIGHUSER_MOVABLE;
894 	else
895 		return GFP_HIGHUSER;
896 }
897 
898 static struct page *dequeue_huge_page_vma(struct hstate *h,
899 				struct vm_area_struct *vma,
900 				unsigned long address, int avoid_reserve,
901 				long chg)
902 {
903 	struct page *page = NULL;
904 	struct mempolicy *mpol;
905 	nodemask_t *nodemask;
906 	struct zonelist *zonelist;
907 	struct zone *zone;
908 	struct zoneref *z;
909 	unsigned int cpuset_mems_cookie;
910 
911 	/*
912 	 * A child process with MAP_PRIVATE mappings created by their parent
913 	 * have no page reserves. This check ensures that reservations are
914 	 * not "stolen". The child may still get SIGKILLed
915 	 */
916 	if (!vma_has_reserves(vma, chg) &&
917 			h->free_huge_pages - h->resv_huge_pages == 0)
918 		goto err;
919 
920 	/* If reserves cannot be used, ensure enough pages are in the pool */
921 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
922 		goto err;
923 
924 retry_cpuset:
925 	cpuset_mems_cookie = read_mems_allowed_begin();
926 	zonelist = huge_zonelist(vma, address,
927 					htlb_alloc_mask(h), &mpol, &nodemask);
928 
929 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
930 						MAX_NR_ZONES - 1, nodemask) {
931 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
933 			if (page) {
934 				if (avoid_reserve)
935 					break;
936 				if (!vma_has_reserves(vma, chg))
937 					break;
938 
939 				SetPagePrivate(page);
940 				h->resv_huge_pages--;
941 				break;
942 			}
943 		}
944 	}
945 
946 	mpol_cond_put(mpol);
947 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
948 		goto retry_cpuset;
949 	return page;
950 
951 err:
952 	return NULL;
953 }
954 
955 /*
956  * common helper functions for hstate_next_node_to_{alloc|free}.
957  * We may have allocated or freed a huge page based on a different
958  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959  * be outside of *nodes_allowed.  Ensure that we use an allowed
960  * node for alloc or free.
961  */
962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 {
964 	nid = next_node_in(nid, *nodes_allowed);
965 	VM_BUG_ON(nid >= MAX_NUMNODES);
966 
967 	return nid;
968 }
969 
970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 {
972 	if (!node_isset(nid, *nodes_allowed))
973 		nid = next_node_allowed(nid, nodes_allowed);
974 	return nid;
975 }
976 
977 /*
978  * returns the previously saved node ["this node"] from which to
979  * allocate a persistent huge page for the pool and advance the
980  * next node from which to allocate, handling wrap at end of node
981  * mask.
982  */
983 static int hstate_next_node_to_alloc(struct hstate *h,
984 					nodemask_t *nodes_allowed)
985 {
986 	int nid;
987 
988 	VM_BUG_ON(!nodes_allowed);
989 
990 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992 
993 	return nid;
994 }
995 
996 /*
997  * helper for free_pool_huge_page() - return the previously saved
998  * node ["this node"] from which to free a huge page.  Advance the
999  * next node id whether or not we find a free huge page to free so
1000  * that the next attempt to free addresses the next node.
1001  */
1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004 	int nid;
1005 
1006 	VM_BUG_ON(!nodes_allowed);
1007 
1008 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010 
1011 	return nid;
1012 }
1013 
1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1015 	for (nr_nodes = nodes_weight(*mask);				\
1016 		nr_nodes > 0 &&						\
1017 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1018 		nr_nodes--)
1019 
1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1021 	for (nr_nodes = nodes_weight(*mask);				\
1022 		nr_nodes > 0 &&						\
1023 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1024 		nr_nodes--)
1025 
1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027 	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028 	defined(CONFIG_CMA))
1029 static void destroy_compound_gigantic_page(struct page *page,
1030 					unsigned int order)
1031 {
1032 	int i;
1033 	int nr_pages = 1 << order;
1034 	struct page *p = page + 1;
1035 
1036 	atomic_set(compound_mapcount_ptr(page), 0);
1037 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038 		clear_compound_head(p);
1039 		set_page_refcounted(p);
1040 	}
1041 
1042 	set_compound_order(page, 0);
1043 	__ClearPageHead(page);
1044 }
1045 
1046 static void free_gigantic_page(struct page *page, unsigned int order)
1047 {
1048 	free_contig_range(page_to_pfn(page), 1 << order);
1049 }
1050 
1051 static int __alloc_gigantic_page(unsigned long start_pfn,
1052 				unsigned long nr_pages)
1053 {
1054 	unsigned long end_pfn = start_pfn + nr_pages;
1055 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1056 				  GFP_KERNEL);
1057 }
1058 
1059 static bool pfn_range_valid_gigantic(struct zone *z,
1060 			unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062 	unsigned long i, end_pfn = start_pfn + nr_pages;
1063 	struct page *page;
1064 
1065 	for (i = start_pfn; i < end_pfn; i++) {
1066 		if (!pfn_valid(i))
1067 			return false;
1068 
1069 		page = pfn_to_page(i);
1070 
1071 		if (page_zone(page) != z)
1072 			return false;
1073 
1074 		if (PageReserved(page))
1075 			return false;
1076 
1077 		if (page_count(page) > 0)
1078 			return false;
1079 
1080 		if (PageHuge(page))
1081 			return false;
1082 	}
1083 
1084 	return true;
1085 }
1086 
1087 static bool zone_spans_last_pfn(const struct zone *zone,
1088 			unsigned long start_pfn, unsigned long nr_pages)
1089 {
1090 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1091 	return zone_spans_pfn(zone, last_pfn);
1092 }
1093 
1094 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1095 {
1096 	unsigned long nr_pages = 1 << order;
1097 	unsigned long ret, pfn, flags;
1098 	struct zone *z;
1099 
1100 	z = NODE_DATA(nid)->node_zones;
1101 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1102 		spin_lock_irqsave(&z->lock, flags);
1103 
1104 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1105 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1106 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1107 				/*
1108 				 * We release the zone lock here because
1109 				 * alloc_contig_range() will also lock the zone
1110 				 * at some point. If there's an allocation
1111 				 * spinning on this lock, it may win the race
1112 				 * and cause alloc_contig_range() to fail...
1113 				 */
1114 				spin_unlock_irqrestore(&z->lock, flags);
1115 				ret = __alloc_gigantic_page(pfn, nr_pages);
1116 				if (!ret)
1117 					return pfn_to_page(pfn);
1118 				spin_lock_irqsave(&z->lock, flags);
1119 			}
1120 			pfn += nr_pages;
1121 		}
1122 
1123 		spin_unlock_irqrestore(&z->lock, flags);
1124 	}
1125 
1126 	return NULL;
1127 }
1128 
1129 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1130 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1131 
1132 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1133 {
1134 	struct page *page;
1135 
1136 	page = alloc_gigantic_page(nid, huge_page_order(h));
1137 	if (page) {
1138 		prep_compound_gigantic_page(page, huge_page_order(h));
1139 		prep_new_huge_page(h, page, nid);
1140 	}
1141 
1142 	return page;
1143 }
1144 
1145 static int alloc_fresh_gigantic_page(struct hstate *h,
1146 				nodemask_t *nodes_allowed)
1147 {
1148 	struct page *page = NULL;
1149 	int nr_nodes, node;
1150 
1151 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1152 		page = alloc_fresh_gigantic_page_node(h, node);
1153 		if (page)
1154 			return 1;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static inline bool gigantic_page_supported(void) { return true; }
1161 #else
1162 static inline bool gigantic_page_supported(void) { return false; }
1163 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1164 static inline void destroy_compound_gigantic_page(struct page *page,
1165 						unsigned int order) { }
1166 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1167 					nodemask_t *nodes_allowed) { return 0; }
1168 #endif
1169 
1170 static void update_and_free_page(struct hstate *h, struct page *page)
1171 {
1172 	int i;
1173 
1174 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1175 		return;
1176 
1177 	h->nr_huge_pages--;
1178 	h->nr_huge_pages_node[page_to_nid(page)]--;
1179 	for (i = 0; i < pages_per_huge_page(h); i++) {
1180 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1181 				1 << PG_referenced | 1 << PG_dirty |
1182 				1 << PG_active | 1 << PG_private |
1183 				1 << PG_writeback);
1184 	}
1185 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1186 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1187 	set_page_refcounted(page);
1188 	if (hstate_is_gigantic(h)) {
1189 		destroy_compound_gigantic_page(page, huge_page_order(h));
1190 		free_gigantic_page(page, huge_page_order(h));
1191 	} else {
1192 		__free_pages(page, huge_page_order(h));
1193 	}
1194 }
1195 
1196 struct hstate *size_to_hstate(unsigned long size)
1197 {
1198 	struct hstate *h;
1199 
1200 	for_each_hstate(h) {
1201 		if (huge_page_size(h) == size)
1202 			return h;
1203 	}
1204 	return NULL;
1205 }
1206 
1207 /*
1208  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1209  * to hstate->hugepage_activelist.)
1210  *
1211  * This function can be called for tail pages, but never returns true for them.
1212  */
1213 bool page_huge_active(struct page *page)
1214 {
1215 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1216 	return PageHead(page) && PagePrivate(&page[1]);
1217 }
1218 
1219 /* never called for tail page */
1220 static void set_page_huge_active(struct page *page)
1221 {
1222 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1223 	SetPagePrivate(&page[1]);
1224 }
1225 
1226 static void clear_page_huge_active(struct page *page)
1227 {
1228 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1229 	ClearPagePrivate(&page[1]);
1230 }
1231 
1232 void free_huge_page(struct page *page)
1233 {
1234 	/*
1235 	 * Can't pass hstate in here because it is called from the
1236 	 * compound page destructor.
1237 	 */
1238 	struct hstate *h = page_hstate(page);
1239 	int nid = page_to_nid(page);
1240 	struct hugepage_subpool *spool =
1241 		(struct hugepage_subpool *)page_private(page);
1242 	bool restore_reserve;
1243 
1244 	set_page_private(page, 0);
1245 	page->mapping = NULL;
1246 	VM_BUG_ON_PAGE(page_count(page), page);
1247 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1248 	restore_reserve = PagePrivate(page);
1249 	ClearPagePrivate(page);
1250 
1251 	/*
1252 	 * A return code of zero implies that the subpool will be under its
1253 	 * minimum size if the reservation is not restored after page is free.
1254 	 * Therefore, force restore_reserve operation.
1255 	 */
1256 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1257 		restore_reserve = true;
1258 
1259 	spin_lock(&hugetlb_lock);
1260 	clear_page_huge_active(page);
1261 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1262 				     pages_per_huge_page(h), page);
1263 	if (restore_reserve)
1264 		h->resv_huge_pages++;
1265 
1266 	if (h->surplus_huge_pages_node[nid]) {
1267 		/* remove the page from active list */
1268 		list_del(&page->lru);
1269 		update_and_free_page(h, page);
1270 		h->surplus_huge_pages--;
1271 		h->surplus_huge_pages_node[nid]--;
1272 	} else {
1273 		arch_clear_hugepage_flags(page);
1274 		enqueue_huge_page(h, page);
1275 	}
1276 	spin_unlock(&hugetlb_lock);
1277 }
1278 
1279 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1280 {
1281 	INIT_LIST_HEAD(&page->lru);
1282 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1283 	spin_lock(&hugetlb_lock);
1284 	set_hugetlb_cgroup(page, NULL);
1285 	h->nr_huge_pages++;
1286 	h->nr_huge_pages_node[nid]++;
1287 	spin_unlock(&hugetlb_lock);
1288 	put_page(page); /* free it into the hugepage allocator */
1289 }
1290 
1291 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1292 {
1293 	int i;
1294 	int nr_pages = 1 << order;
1295 	struct page *p = page + 1;
1296 
1297 	/* we rely on prep_new_huge_page to set the destructor */
1298 	set_compound_order(page, order);
1299 	__ClearPageReserved(page);
1300 	__SetPageHead(page);
1301 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1302 		/*
1303 		 * For gigantic hugepages allocated through bootmem at
1304 		 * boot, it's safer to be consistent with the not-gigantic
1305 		 * hugepages and clear the PG_reserved bit from all tail pages
1306 		 * too.  Otherwse drivers using get_user_pages() to access tail
1307 		 * pages may get the reference counting wrong if they see
1308 		 * PG_reserved set on a tail page (despite the head page not
1309 		 * having PG_reserved set).  Enforcing this consistency between
1310 		 * head and tail pages allows drivers to optimize away a check
1311 		 * on the head page when they need know if put_page() is needed
1312 		 * after get_user_pages().
1313 		 */
1314 		__ClearPageReserved(p);
1315 		set_page_count(p, 0);
1316 		set_compound_head(p, page);
1317 	}
1318 	atomic_set(compound_mapcount_ptr(page), -1);
1319 }
1320 
1321 /*
1322  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1323  * transparent huge pages.  See the PageTransHuge() documentation for more
1324  * details.
1325  */
1326 int PageHuge(struct page *page)
1327 {
1328 	if (!PageCompound(page))
1329 		return 0;
1330 
1331 	page = compound_head(page);
1332 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1333 }
1334 EXPORT_SYMBOL_GPL(PageHuge);
1335 
1336 /*
1337  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1338  * normal or transparent huge pages.
1339  */
1340 int PageHeadHuge(struct page *page_head)
1341 {
1342 	if (!PageHead(page_head))
1343 		return 0;
1344 
1345 	return get_compound_page_dtor(page_head) == free_huge_page;
1346 }
1347 
1348 pgoff_t __basepage_index(struct page *page)
1349 {
1350 	struct page *page_head = compound_head(page);
1351 	pgoff_t index = page_index(page_head);
1352 	unsigned long compound_idx;
1353 
1354 	if (!PageHuge(page_head))
1355 		return page_index(page);
1356 
1357 	if (compound_order(page_head) >= MAX_ORDER)
1358 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1359 	else
1360 		compound_idx = page - page_head;
1361 
1362 	return (index << compound_order(page_head)) + compound_idx;
1363 }
1364 
1365 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1366 {
1367 	struct page *page;
1368 
1369 	page = __alloc_pages_node(nid,
1370 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1371 						__GFP_REPEAT|__GFP_NOWARN,
1372 		huge_page_order(h));
1373 	if (page) {
1374 		prep_new_huge_page(h, page, nid);
1375 	}
1376 
1377 	return page;
1378 }
1379 
1380 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1381 {
1382 	struct page *page;
1383 	int nr_nodes, node;
1384 	int ret = 0;
1385 
1386 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1387 		page = alloc_fresh_huge_page_node(h, node);
1388 		if (page) {
1389 			ret = 1;
1390 			break;
1391 		}
1392 	}
1393 
1394 	if (ret)
1395 		count_vm_event(HTLB_BUDDY_PGALLOC);
1396 	else
1397 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1398 
1399 	return ret;
1400 }
1401 
1402 /*
1403  * Free huge page from pool from next node to free.
1404  * Attempt to keep persistent huge pages more or less
1405  * balanced over allowed nodes.
1406  * Called with hugetlb_lock locked.
1407  */
1408 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1409 							 bool acct_surplus)
1410 {
1411 	int nr_nodes, node;
1412 	int ret = 0;
1413 
1414 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1415 		/*
1416 		 * If we're returning unused surplus pages, only examine
1417 		 * nodes with surplus pages.
1418 		 */
1419 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1420 		    !list_empty(&h->hugepage_freelists[node])) {
1421 			struct page *page =
1422 				list_entry(h->hugepage_freelists[node].next,
1423 					  struct page, lru);
1424 			list_del(&page->lru);
1425 			h->free_huge_pages--;
1426 			h->free_huge_pages_node[node]--;
1427 			if (acct_surplus) {
1428 				h->surplus_huge_pages--;
1429 				h->surplus_huge_pages_node[node]--;
1430 			}
1431 			update_and_free_page(h, page);
1432 			ret = 1;
1433 			break;
1434 		}
1435 	}
1436 
1437 	return ret;
1438 }
1439 
1440 /*
1441  * Dissolve a given free hugepage into free buddy pages. This function does
1442  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1443  * number of free hugepages would be reduced below the number of reserved
1444  * hugepages.
1445  */
1446 static int dissolve_free_huge_page(struct page *page)
1447 {
1448 	int rc = 0;
1449 
1450 	spin_lock(&hugetlb_lock);
1451 	if (PageHuge(page) && !page_count(page)) {
1452 		struct page *head = compound_head(page);
1453 		struct hstate *h = page_hstate(head);
1454 		int nid = page_to_nid(head);
1455 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1456 			rc = -EBUSY;
1457 			goto out;
1458 		}
1459 		list_del(&head->lru);
1460 		h->free_huge_pages--;
1461 		h->free_huge_pages_node[nid]--;
1462 		h->max_huge_pages--;
1463 		update_and_free_page(h, head);
1464 	}
1465 out:
1466 	spin_unlock(&hugetlb_lock);
1467 	return rc;
1468 }
1469 
1470 /*
1471  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1472  * make specified memory blocks removable from the system.
1473  * Note that this will dissolve a free gigantic hugepage completely, if any
1474  * part of it lies within the given range.
1475  * Also note that if dissolve_free_huge_page() returns with an error, all
1476  * free hugepages that were dissolved before that error are lost.
1477  */
1478 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1479 {
1480 	unsigned long pfn;
1481 	struct page *page;
1482 	int rc = 0;
1483 
1484 	if (!hugepages_supported())
1485 		return rc;
1486 
1487 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1488 		page = pfn_to_page(pfn);
1489 		if (PageHuge(page) && !page_count(page)) {
1490 			rc = dissolve_free_huge_page(page);
1491 			if (rc)
1492 				break;
1493 		}
1494 	}
1495 
1496 	return rc;
1497 }
1498 
1499 /*
1500  * There are 3 ways this can get called:
1501  * 1. With vma+addr: we use the VMA's memory policy
1502  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1503  *    page from any node, and let the buddy allocator itself figure
1504  *    it out.
1505  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1506  *    strictly from 'nid'
1507  */
1508 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1509 		struct vm_area_struct *vma, unsigned long addr, int nid)
1510 {
1511 	int order = huge_page_order(h);
1512 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1513 	unsigned int cpuset_mems_cookie;
1514 
1515 	/*
1516 	 * We need a VMA to get a memory policy.  If we do not
1517 	 * have one, we use the 'nid' argument.
1518 	 *
1519 	 * The mempolicy stuff below has some non-inlined bits
1520 	 * and calls ->vm_ops.  That makes it hard to optimize at
1521 	 * compile-time, even when NUMA is off and it does
1522 	 * nothing.  This helps the compiler optimize it out.
1523 	 */
1524 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1525 		/*
1526 		 * If a specific node is requested, make sure to
1527 		 * get memory from there, but only when a node
1528 		 * is explicitly specified.
1529 		 */
1530 		if (nid != NUMA_NO_NODE)
1531 			gfp |= __GFP_THISNODE;
1532 		/*
1533 		 * Make sure to call something that can handle
1534 		 * nid=NUMA_NO_NODE
1535 		 */
1536 		return alloc_pages_node(nid, gfp, order);
1537 	}
1538 
1539 	/*
1540 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1541 	 * allocate a huge page with it.  We will only reach this
1542 	 * when CONFIG_NUMA=y.
1543 	 */
1544 	do {
1545 		struct page *page;
1546 		struct mempolicy *mpol;
1547 		struct zonelist *zl;
1548 		nodemask_t *nodemask;
1549 
1550 		cpuset_mems_cookie = read_mems_allowed_begin();
1551 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1552 		mpol_cond_put(mpol);
1553 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554 		if (page)
1555 			return page;
1556 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1557 
1558 	return NULL;
1559 }
1560 
1561 /*
1562  * There are two ways to allocate a huge page:
1563  * 1. When you have a VMA and an address (like a fault)
1564  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1565  *
1566  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1567  * this case which signifies that the allocation should be done with
1568  * respect for the VMA's memory policy.
1569  *
1570  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1571  * implies that memory policies will not be taken in to account.
1572  */
1573 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1574 		struct vm_area_struct *vma, unsigned long addr, int nid)
1575 {
1576 	struct page *page;
1577 	unsigned int r_nid;
1578 
1579 	if (hstate_is_gigantic(h))
1580 		return NULL;
1581 
1582 	/*
1583 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1584 	 * This makes sure the caller is picking _one_ of the modes with which
1585 	 * we can call this function, not both.
1586 	 */
1587 	if (vma || (addr != -1)) {
1588 		VM_WARN_ON_ONCE(addr == -1);
1589 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1590 	}
1591 	/*
1592 	 * Assume we will successfully allocate the surplus page to
1593 	 * prevent racing processes from causing the surplus to exceed
1594 	 * overcommit
1595 	 *
1596 	 * This however introduces a different race, where a process B
1597 	 * tries to grow the static hugepage pool while alloc_pages() is
1598 	 * called by process A. B will only examine the per-node
1599 	 * counters in determining if surplus huge pages can be
1600 	 * converted to normal huge pages in adjust_pool_surplus(). A
1601 	 * won't be able to increment the per-node counter, until the
1602 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1603 	 * no more huge pages can be converted from surplus to normal
1604 	 * state (and doesn't try to convert again). Thus, we have a
1605 	 * case where a surplus huge page exists, the pool is grown, and
1606 	 * the surplus huge page still exists after, even though it
1607 	 * should just have been converted to a normal huge page. This
1608 	 * does not leak memory, though, as the hugepage will be freed
1609 	 * once it is out of use. It also does not allow the counters to
1610 	 * go out of whack in adjust_pool_surplus() as we don't modify
1611 	 * the node values until we've gotten the hugepage and only the
1612 	 * per-node value is checked there.
1613 	 */
1614 	spin_lock(&hugetlb_lock);
1615 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1616 		spin_unlock(&hugetlb_lock);
1617 		return NULL;
1618 	} else {
1619 		h->nr_huge_pages++;
1620 		h->surplus_huge_pages++;
1621 	}
1622 	spin_unlock(&hugetlb_lock);
1623 
1624 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1625 
1626 	spin_lock(&hugetlb_lock);
1627 	if (page) {
1628 		INIT_LIST_HEAD(&page->lru);
1629 		r_nid = page_to_nid(page);
1630 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1631 		set_hugetlb_cgroup(page, NULL);
1632 		/*
1633 		 * We incremented the global counters already
1634 		 */
1635 		h->nr_huge_pages_node[r_nid]++;
1636 		h->surplus_huge_pages_node[r_nid]++;
1637 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1638 	} else {
1639 		h->nr_huge_pages--;
1640 		h->surplus_huge_pages--;
1641 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1642 	}
1643 	spin_unlock(&hugetlb_lock);
1644 
1645 	return page;
1646 }
1647 
1648 /*
1649  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1650  * NUMA_NO_NODE, which means that it may be allocated
1651  * anywhere.
1652  */
1653 static
1654 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1655 {
1656 	unsigned long addr = -1;
1657 
1658 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1659 }
1660 
1661 /*
1662  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663  */
1664 static
1665 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1666 		struct vm_area_struct *vma, unsigned long addr)
1667 {
1668 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1669 }
1670 
1671 /*
1672  * This allocation function is useful in the context where vma is irrelevant.
1673  * E.g. soft-offlining uses this function because it only cares physical
1674  * address of error page.
1675  */
1676 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1677 {
1678 	struct page *page = NULL;
1679 
1680 	spin_lock(&hugetlb_lock);
1681 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1682 		page = dequeue_huge_page_node(h, nid);
1683 	spin_unlock(&hugetlb_lock);
1684 
1685 	if (!page)
1686 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1687 
1688 	return page;
1689 }
1690 
1691 /*
1692  * Increase the hugetlb pool such that it can accommodate a reservation
1693  * of size 'delta'.
1694  */
1695 static int gather_surplus_pages(struct hstate *h, int delta)
1696 {
1697 	struct list_head surplus_list;
1698 	struct page *page, *tmp;
1699 	int ret, i;
1700 	int needed, allocated;
1701 	bool alloc_ok = true;
1702 
1703 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1704 	if (needed <= 0) {
1705 		h->resv_huge_pages += delta;
1706 		return 0;
1707 	}
1708 
1709 	allocated = 0;
1710 	INIT_LIST_HEAD(&surplus_list);
1711 
1712 	ret = -ENOMEM;
1713 retry:
1714 	spin_unlock(&hugetlb_lock);
1715 	for (i = 0; i < needed; i++) {
1716 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1717 		if (!page) {
1718 			alloc_ok = false;
1719 			break;
1720 		}
1721 		list_add(&page->lru, &surplus_list);
1722 	}
1723 	allocated += i;
1724 
1725 	/*
1726 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 	 * because either resv_huge_pages or free_huge_pages may have changed.
1728 	 */
1729 	spin_lock(&hugetlb_lock);
1730 	needed = (h->resv_huge_pages + delta) -
1731 			(h->free_huge_pages + allocated);
1732 	if (needed > 0) {
1733 		if (alloc_ok)
1734 			goto retry;
1735 		/*
1736 		 * We were not able to allocate enough pages to
1737 		 * satisfy the entire reservation so we free what
1738 		 * we've allocated so far.
1739 		 */
1740 		goto free;
1741 	}
1742 	/*
1743 	 * The surplus_list now contains _at_least_ the number of extra pages
1744 	 * needed to accommodate the reservation.  Add the appropriate number
1745 	 * of pages to the hugetlb pool and free the extras back to the buddy
1746 	 * allocator.  Commit the entire reservation here to prevent another
1747 	 * process from stealing the pages as they are added to the pool but
1748 	 * before they are reserved.
1749 	 */
1750 	needed += allocated;
1751 	h->resv_huge_pages += delta;
1752 	ret = 0;
1753 
1754 	/* Free the needed pages to the hugetlb pool */
1755 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 		if ((--needed) < 0)
1757 			break;
1758 		/*
1759 		 * This page is now managed by the hugetlb allocator and has
1760 		 * no users -- drop the buddy allocator's reference.
1761 		 */
1762 		put_page_testzero(page);
1763 		VM_BUG_ON_PAGE(page_count(page), page);
1764 		enqueue_huge_page(h, page);
1765 	}
1766 free:
1767 	spin_unlock(&hugetlb_lock);
1768 
1769 	/* Free unnecessary surplus pages to the buddy allocator */
1770 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 		put_page(page);
1772 	spin_lock(&hugetlb_lock);
1773 
1774 	return ret;
1775 }
1776 
1777 /*
1778  * This routine has two main purposes:
1779  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781  *    to the associated reservation map.
1782  * 2) Free any unused surplus pages that may have been allocated to satisfy
1783  *    the reservation.  As many as unused_resv_pages may be freed.
1784  *
1785  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787  * we must make sure nobody else can claim pages we are in the process of
1788  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789  * number of huge pages we plan to free when dropping the lock.
1790  */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 					unsigned long unused_resv_pages)
1793 {
1794 	unsigned long nr_pages;
1795 
1796 	/* Cannot return gigantic pages currently */
1797 	if (hstate_is_gigantic(h))
1798 		goto out;
1799 
1800 	/*
1801 	 * Part (or even all) of the reservation could have been backed
1802 	 * by pre-allocated pages. Only free surplus pages.
1803 	 */
1804 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805 
1806 	/*
1807 	 * We want to release as many surplus pages as possible, spread
1808 	 * evenly across all nodes with memory. Iterate across these nodes
1809 	 * until we can no longer free unreserved surplus pages. This occurs
1810 	 * when the nodes with surplus pages have no free pages.
1811 	 * free_pool_huge_page() will balance the the freed pages across the
1812 	 * on-line nodes with memory and will handle the hstate accounting.
1813 	 *
1814 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1815 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 	 * to cover subsequent pages we may free.
1817 	 */
1818 	while (nr_pages--) {
1819 		h->resv_huge_pages--;
1820 		unused_resv_pages--;
1821 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 			goto out;
1823 		cond_resched_lock(&hugetlb_lock);
1824 	}
1825 
1826 out:
1827 	/* Fully uncommit the reservation */
1828 	h->resv_huge_pages -= unused_resv_pages;
1829 }
1830 
1831 
1832 /*
1833  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834  * are used by the huge page allocation routines to manage reservations.
1835  *
1836  * vma_needs_reservation is called to determine if the huge page at addr
1837  * within the vma has an associated reservation.  If a reservation is
1838  * needed, the value 1 is returned.  The caller is then responsible for
1839  * managing the global reservation and subpool usage counts.  After
1840  * the huge page has been allocated, vma_commit_reservation is called
1841  * to add the page to the reservation map.  If the page allocation fails,
1842  * the reservation must be ended instead of committed.  vma_end_reservation
1843  * is called in such cases.
1844  *
1845  * In the normal case, vma_commit_reservation returns the same value
1846  * as the preceding vma_needs_reservation call.  The only time this
1847  * is not the case is if a reserve map was changed between calls.  It
1848  * is the responsibility of the caller to notice the difference and
1849  * take appropriate action.
1850  *
1851  * vma_add_reservation is used in error paths where a reservation must
1852  * be restored when a newly allocated huge page must be freed.  It is
1853  * to be called after calling vma_needs_reservation to determine if a
1854  * reservation exists.
1855  */
1856 enum vma_resv_mode {
1857 	VMA_NEEDS_RESV,
1858 	VMA_COMMIT_RESV,
1859 	VMA_END_RESV,
1860 	VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863 				struct vm_area_struct *vma, unsigned long addr,
1864 				enum vma_resv_mode mode)
1865 {
1866 	struct resv_map *resv;
1867 	pgoff_t idx;
1868 	long ret;
1869 
1870 	resv = vma_resv_map(vma);
1871 	if (!resv)
1872 		return 1;
1873 
1874 	idx = vma_hugecache_offset(h, vma, addr);
1875 	switch (mode) {
1876 	case VMA_NEEDS_RESV:
1877 		ret = region_chg(resv, idx, idx + 1);
1878 		break;
1879 	case VMA_COMMIT_RESV:
1880 		ret = region_add(resv, idx, idx + 1);
1881 		break;
1882 	case VMA_END_RESV:
1883 		region_abort(resv, idx, idx + 1);
1884 		ret = 0;
1885 		break;
1886 	case VMA_ADD_RESV:
1887 		if (vma->vm_flags & VM_MAYSHARE)
1888 			ret = region_add(resv, idx, idx + 1);
1889 		else {
1890 			region_abort(resv, idx, idx + 1);
1891 			ret = region_del(resv, idx, idx + 1);
1892 		}
1893 		break;
1894 	default:
1895 		BUG();
1896 	}
1897 
1898 	if (vma->vm_flags & VM_MAYSHARE)
1899 		return ret;
1900 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 		/*
1902 		 * In most cases, reserves always exist for private mappings.
1903 		 * However, a file associated with mapping could have been
1904 		 * hole punched or truncated after reserves were consumed.
1905 		 * As subsequent fault on such a range will not use reserves.
1906 		 * Subtle - The reserve map for private mappings has the
1907 		 * opposite meaning than that of shared mappings.  If NO
1908 		 * entry is in the reserve map, it means a reservation exists.
1909 		 * If an entry exists in the reserve map, it means the
1910 		 * reservation has already been consumed.  As a result, the
1911 		 * return value of this routine is the opposite of the
1912 		 * value returned from reserve map manipulation routines above.
1913 		 */
1914 		if (ret)
1915 			return 0;
1916 		else
1917 			return 1;
1918 	}
1919 	else
1920 		return ret < 0 ? ret : 0;
1921 }
1922 
1923 static long vma_needs_reservation(struct hstate *h,
1924 			struct vm_area_struct *vma, unsigned long addr)
1925 {
1926 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928 
1929 static long vma_commit_reservation(struct hstate *h,
1930 			struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934 
1935 static void vma_end_reservation(struct hstate *h,
1936 			struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940 
1941 static long vma_add_reservation(struct hstate *h,
1942 			struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946 
1947 /*
1948  * This routine is called to restore a reservation on error paths.  In the
1949  * specific error paths, a huge page was allocated (via alloc_huge_page)
1950  * and is about to be freed.  If a reservation for the page existed,
1951  * alloc_huge_page would have consumed the reservation and set PagePrivate
1952  * in the newly allocated page.  When the page is freed via free_huge_page,
1953  * the global reservation count will be incremented if PagePrivate is set.
1954  * However, free_huge_page can not adjust the reserve map.  Adjust the
1955  * reserve map here to be consistent with global reserve count adjustments
1956  * to be made by free_huge_page.
1957  */
1958 static void restore_reserve_on_error(struct hstate *h,
1959 			struct vm_area_struct *vma, unsigned long address,
1960 			struct page *page)
1961 {
1962 	if (unlikely(PagePrivate(page))) {
1963 		long rc = vma_needs_reservation(h, vma, address);
1964 
1965 		if (unlikely(rc < 0)) {
1966 			/*
1967 			 * Rare out of memory condition in reserve map
1968 			 * manipulation.  Clear PagePrivate so that
1969 			 * global reserve count will not be incremented
1970 			 * by free_huge_page.  This will make it appear
1971 			 * as though the reservation for this page was
1972 			 * consumed.  This may prevent the task from
1973 			 * faulting in the page at a later time.  This
1974 			 * is better than inconsistent global huge page
1975 			 * accounting of reserve counts.
1976 			 */
1977 			ClearPagePrivate(page);
1978 		} else if (rc) {
1979 			rc = vma_add_reservation(h, vma, address);
1980 			if (unlikely(rc < 0))
1981 				/*
1982 				 * See above comment about rare out of
1983 				 * memory condition.
1984 				 */
1985 				ClearPagePrivate(page);
1986 		} else
1987 			vma_end_reservation(h, vma, address);
1988 	}
1989 }
1990 
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 				    unsigned long addr, int avoid_reserve)
1993 {
1994 	struct hugepage_subpool *spool = subpool_vma(vma);
1995 	struct hstate *h = hstate_vma(vma);
1996 	struct page *page;
1997 	long map_chg, map_commit;
1998 	long gbl_chg;
1999 	int ret, idx;
2000 	struct hugetlb_cgroup *h_cg;
2001 
2002 	idx = hstate_index(h);
2003 	/*
2004 	 * Examine the region/reserve map to determine if the process
2005 	 * has a reservation for the page to be allocated.  A return
2006 	 * code of zero indicates a reservation exists (no change).
2007 	 */
2008 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 	if (map_chg < 0)
2010 		return ERR_PTR(-ENOMEM);
2011 
2012 	/*
2013 	 * Processes that did not create the mapping will have no
2014 	 * reserves as indicated by the region/reserve map. Check
2015 	 * that the allocation will not exceed the subpool limit.
2016 	 * Allocations for MAP_NORESERVE mappings also need to be
2017 	 * checked against any subpool limit.
2018 	 */
2019 	if (map_chg || avoid_reserve) {
2020 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 		if (gbl_chg < 0) {
2022 			vma_end_reservation(h, vma, addr);
2023 			return ERR_PTR(-ENOSPC);
2024 		}
2025 
2026 		/*
2027 		 * Even though there was no reservation in the region/reserve
2028 		 * map, there could be reservations associated with the
2029 		 * subpool that can be used.  This would be indicated if the
2030 		 * return value of hugepage_subpool_get_pages() is zero.
2031 		 * However, if avoid_reserve is specified we still avoid even
2032 		 * the subpool reservations.
2033 		 */
2034 		if (avoid_reserve)
2035 			gbl_chg = 1;
2036 	}
2037 
2038 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 	if (ret)
2040 		goto out_subpool_put;
2041 
2042 	spin_lock(&hugetlb_lock);
2043 	/*
2044 	 * glb_chg is passed to indicate whether or not a page must be taken
2045 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2046 	 * a reservation exists for the allocation.
2047 	 */
2048 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 	if (!page) {
2050 		spin_unlock(&hugetlb_lock);
2051 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 		if (!page)
2053 			goto out_uncharge_cgroup;
2054 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 			SetPagePrivate(page);
2056 			h->resv_huge_pages--;
2057 		}
2058 		spin_lock(&hugetlb_lock);
2059 		list_move(&page->lru, &h->hugepage_activelist);
2060 		/* Fall through */
2061 	}
2062 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 	spin_unlock(&hugetlb_lock);
2064 
2065 	set_page_private(page, (unsigned long)spool);
2066 
2067 	map_commit = vma_commit_reservation(h, vma, addr);
2068 	if (unlikely(map_chg > map_commit)) {
2069 		/*
2070 		 * The page was added to the reservation map between
2071 		 * vma_needs_reservation and vma_commit_reservation.
2072 		 * This indicates a race with hugetlb_reserve_pages.
2073 		 * Adjust for the subpool count incremented above AND
2074 		 * in hugetlb_reserve_pages for the same page.  Also,
2075 		 * the reservation count added in hugetlb_reserve_pages
2076 		 * no longer applies.
2077 		 */
2078 		long rsv_adjust;
2079 
2080 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 		hugetlb_acct_memory(h, -rsv_adjust);
2082 	}
2083 	return page;
2084 
2085 out_uncharge_cgroup:
2086 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088 	if (map_chg || avoid_reserve)
2089 		hugepage_subpool_put_pages(spool, 1);
2090 	vma_end_reservation(h, vma, addr);
2091 	return ERR_PTR(-ENOSPC);
2092 }
2093 
2094 /*
2095  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2096  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2097  * where no ERR_VALUE is expected to be returned.
2098  */
2099 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2100 				unsigned long addr, int avoid_reserve)
2101 {
2102 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2103 	if (IS_ERR(page))
2104 		page = NULL;
2105 	return page;
2106 }
2107 
2108 int __weak alloc_bootmem_huge_page(struct hstate *h)
2109 {
2110 	struct huge_bootmem_page *m;
2111 	int nr_nodes, node;
2112 
2113 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114 		void *addr;
2115 
2116 		addr = memblock_virt_alloc_try_nid_nopanic(
2117 				huge_page_size(h), huge_page_size(h),
2118 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2119 		if (addr) {
2120 			/*
2121 			 * Use the beginning of the huge page to store the
2122 			 * huge_bootmem_page struct (until gather_bootmem
2123 			 * puts them into the mem_map).
2124 			 */
2125 			m = addr;
2126 			goto found;
2127 		}
2128 	}
2129 	return 0;
2130 
2131 found:
2132 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133 	/* Put them into a private list first because mem_map is not up yet */
2134 	list_add(&m->list, &huge_boot_pages);
2135 	m->hstate = h;
2136 	return 1;
2137 }
2138 
2139 static void __init prep_compound_huge_page(struct page *page,
2140 		unsigned int order)
2141 {
2142 	if (unlikely(order > (MAX_ORDER - 1)))
2143 		prep_compound_gigantic_page(page, order);
2144 	else
2145 		prep_compound_page(page, order);
2146 }
2147 
2148 /* Put bootmem huge pages into the standard lists after mem_map is up */
2149 static void __init gather_bootmem_prealloc(void)
2150 {
2151 	struct huge_bootmem_page *m;
2152 
2153 	list_for_each_entry(m, &huge_boot_pages, list) {
2154 		struct hstate *h = m->hstate;
2155 		struct page *page;
2156 
2157 #ifdef CONFIG_HIGHMEM
2158 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2159 		memblock_free_late(__pa(m),
2160 				   sizeof(struct huge_bootmem_page));
2161 #else
2162 		page = virt_to_page(m);
2163 #endif
2164 		WARN_ON(page_count(page) != 1);
2165 		prep_compound_huge_page(page, h->order);
2166 		WARN_ON(PageReserved(page));
2167 		prep_new_huge_page(h, page, page_to_nid(page));
2168 		/*
2169 		 * If we had gigantic hugepages allocated at boot time, we need
2170 		 * to restore the 'stolen' pages to totalram_pages in order to
2171 		 * fix confusing memory reports from free(1) and another
2172 		 * side-effects, like CommitLimit going negative.
2173 		 */
2174 		if (hstate_is_gigantic(h))
2175 			adjust_managed_page_count(page, 1 << h->order);
2176 	}
2177 }
2178 
2179 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2180 {
2181 	unsigned long i;
2182 
2183 	for (i = 0; i < h->max_huge_pages; ++i) {
2184 		if (hstate_is_gigantic(h)) {
2185 			if (!alloc_bootmem_huge_page(h))
2186 				break;
2187 		} else if (!alloc_fresh_huge_page(h,
2188 					 &node_states[N_MEMORY]))
2189 			break;
2190 	}
2191 	h->max_huge_pages = i;
2192 }
2193 
2194 static void __init hugetlb_init_hstates(void)
2195 {
2196 	struct hstate *h;
2197 
2198 	for_each_hstate(h) {
2199 		if (minimum_order > huge_page_order(h))
2200 			minimum_order = huge_page_order(h);
2201 
2202 		/* oversize hugepages were init'ed in early boot */
2203 		if (!hstate_is_gigantic(h))
2204 			hugetlb_hstate_alloc_pages(h);
2205 	}
2206 	VM_BUG_ON(minimum_order == UINT_MAX);
2207 }
2208 
2209 static char * __init memfmt(char *buf, unsigned long n)
2210 {
2211 	if (n >= (1UL << 30))
2212 		sprintf(buf, "%lu GB", n >> 30);
2213 	else if (n >= (1UL << 20))
2214 		sprintf(buf, "%lu MB", n >> 20);
2215 	else
2216 		sprintf(buf, "%lu KB", n >> 10);
2217 	return buf;
2218 }
2219 
2220 static void __init report_hugepages(void)
2221 {
2222 	struct hstate *h;
2223 
2224 	for_each_hstate(h) {
2225 		char buf[32];
2226 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2227 			memfmt(buf, huge_page_size(h)),
2228 			h->free_huge_pages);
2229 	}
2230 }
2231 
2232 #ifdef CONFIG_HIGHMEM
2233 static void try_to_free_low(struct hstate *h, unsigned long count,
2234 						nodemask_t *nodes_allowed)
2235 {
2236 	int i;
2237 
2238 	if (hstate_is_gigantic(h))
2239 		return;
2240 
2241 	for_each_node_mask(i, *nodes_allowed) {
2242 		struct page *page, *next;
2243 		struct list_head *freel = &h->hugepage_freelists[i];
2244 		list_for_each_entry_safe(page, next, freel, lru) {
2245 			if (count >= h->nr_huge_pages)
2246 				return;
2247 			if (PageHighMem(page))
2248 				continue;
2249 			list_del(&page->lru);
2250 			update_and_free_page(h, page);
2251 			h->free_huge_pages--;
2252 			h->free_huge_pages_node[page_to_nid(page)]--;
2253 		}
2254 	}
2255 }
2256 #else
2257 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2258 						nodemask_t *nodes_allowed)
2259 {
2260 }
2261 #endif
2262 
2263 /*
2264  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2265  * balanced by operating on them in a round-robin fashion.
2266  * Returns 1 if an adjustment was made.
2267  */
2268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2269 				int delta)
2270 {
2271 	int nr_nodes, node;
2272 
2273 	VM_BUG_ON(delta != -1 && delta != 1);
2274 
2275 	if (delta < 0) {
2276 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2277 			if (h->surplus_huge_pages_node[node])
2278 				goto found;
2279 		}
2280 	} else {
2281 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2282 			if (h->surplus_huge_pages_node[node] <
2283 					h->nr_huge_pages_node[node])
2284 				goto found;
2285 		}
2286 	}
2287 	return 0;
2288 
2289 found:
2290 	h->surplus_huge_pages += delta;
2291 	h->surplus_huge_pages_node[node] += delta;
2292 	return 1;
2293 }
2294 
2295 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2296 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2297 						nodemask_t *nodes_allowed)
2298 {
2299 	unsigned long min_count, ret;
2300 
2301 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2302 		return h->max_huge_pages;
2303 
2304 	/*
2305 	 * Increase the pool size
2306 	 * First take pages out of surplus state.  Then make up the
2307 	 * remaining difference by allocating fresh huge pages.
2308 	 *
2309 	 * We might race with __alloc_buddy_huge_page() here and be unable
2310 	 * to convert a surplus huge page to a normal huge page. That is
2311 	 * not critical, though, it just means the overall size of the
2312 	 * pool might be one hugepage larger than it needs to be, but
2313 	 * within all the constraints specified by the sysctls.
2314 	 */
2315 	spin_lock(&hugetlb_lock);
2316 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2317 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2318 			break;
2319 	}
2320 
2321 	while (count > persistent_huge_pages(h)) {
2322 		/*
2323 		 * If this allocation races such that we no longer need the
2324 		 * page, free_huge_page will handle it by freeing the page
2325 		 * and reducing the surplus.
2326 		 */
2327 		spin_unlock(&hugetlb_lock);
2328 
2329 		/* yield cpu to avoid soft lockup */
2330 		cond_resched();
2331 
2332 		if (hstate_is_gigantic(h))
2333 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2334 		else
2335 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2336 		spin_lock(&hugetlb_lock);
2337 		if (!ret)
2338 			goto out;
2339 
2340 		/* Bail for signals. Probably ctrl-c from user */
2341 		if (signal_pending(current))
2342 			goto out;
2343 	}
2344 
2345 	/*
2346 	 * Decrease the pool size
2347 	 * First return free pages to the buddy allocator (being careful
2348 	 * to keep enough around to satisfy reservations).  Then place
2349 	 * pages into surplus state as needed so the pool will shrink
2350 	 * to the desired size as pages become free.
2351 	 *
2352 	 * By placing pages into the surplus state independent of the
2353 	 * overcommit value, we are allowing the surplus pool size to
2354 	 * exceed overcommit. There are few sane options here. Since
2355 	 * __alloc_buddy_huge_page() is checking the global counter,
2356 	 * though, we'll note that we're not allowed to exceed surplus
2357 	 * and won't grow the pool anywhere else. Not until one of the
2358 	 * sysctls are changed, or the surplus pages go out of use.
2359 	 */
2360 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2361 	min_count = max(count, min_count);
2362 	try_to_free_low(h, min_count, nodes_allowed);
2363 	while (min_count < persistent_huge_pages(h)) {
2364 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2365 			break;
2366 		cond_resched_lock(&hugetlb_lock);
2367 	}
2368 	while (count < persistent_huge_pages(h)) {
2369 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2370 			break;
2371 	}
2372 out:
2373 	ret = persistent_huge_pages(h);
2374 	spin_unlock(&hugetlb_lock);
2375 	return ret;
2376 }
2377 
2378 #define HSTATE_ATTR_RO(_name) \
2379 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2380 
2381 #define HSTATE_ATTR(_name) \
2382 	static struct kobj_attribute _name##_attr = \
2383 		__ATTR(_name, 0644, _name##_show, _name##_store)
2384 
2385 static struct kobject *hugepages_kobj;
2386 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2387 
2388 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2389 
2390 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2391 {
2392 	int i;
2393 
2394 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2395 		if (hstate_kobjs[i] == kobj) {
2396 			if (nidp)
2397 				*nidp = NUMA_NO_NODE;
2398 			return &hstates[i];
2399 		}
2400 
2401 	return kobj_to_node_hstate(kobj, nidp);
2402 }
2403 
2404 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2405 					struct kobj_attribute *attr, char *buf)
2406 {
2407 	struct hstate *h;
2408 	unsigned long nr_huge_pages;
2409 	int nid;
2410 
2411 	h = kobj_to_hstate(kobj, &nid);
2412 	if (nid == NUMA_NO_NODE)
2413 		nr_huge_pages = h->nr_huge_pages;
2414 	else
2415 		nr_huge_pages = h->nr_huge_pages_node[nid];
2416 
2417 	return sprintf(buf, "%lu\n", nr_huge_pages);
2418 }
2419 
2420 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2421 					   struct hstate *h, int nid,
2422 					   unsigned long count, size_t len)
2423 {
2424 	int err;
2425 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2426 
2427 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2428 		err = -EINVAL;
2429 		goto out;
2430 	}
2431 
2432 	if (nid == NUMA_NO_NODE) {
2433 		/*
2434 		 * global hstate attribute
2435 		 */
2436 		if (!(obey_mempolicy &&
2437 				init_nodemask_of_mempolicy(nodes_allowed))) {
2438 			NODEMASK_FREE(nodes_allowed);
2439 			nodes_allowed = &node_states[N_MEMORY];
2440 		}
2441 	} else if (nodes_allowed) {
2442 		/*
2443 		 * per node hstate attribute: adjust count to global,
2444 		 * but restrict alloc/free to the specified node.
2445 		 */
2446 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2447 		init_nodemask_of_node(nodes_allowed, nid);
2448 	} else
2449 		nodes_allowed = &node_states[N_MEMORY];
2450 
2451 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2452 
2453 	if (nodes_allowed != &node_states[N_MEMORY])
2454 		NODEMASK_FREE(nodes_allowed);
2455 
2456 	return len;
2457 out:
2458 	NODEMASK_FREE(nodes_allowed);
2459 	return err;
2460 }
2461 
2462 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2463 					 struct kobject *kobj, const char *buf,
2464 					 size_t len)
2465 {
2466 	struct hstate *h;
2467 	unsigned long count;
2468 	int nid;
2469 	int err;
2470 
2471 	err = kstrtoul(buf, 10, &count);
2472 	if (err)
2473 		return err;
2474 
2475 	h = kobj_to_hstate(kobj, &nid);
2476 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2477 }
2478 
2479 static ssize_t nr_hugepages_show(struct kobject *kobj,
2480 				       struct kobj_attribute *attr, char *buf)
2481 {
2482 	return nr_hugepages_show_common(kobj, attr, buf);
2483 }
2484 
2485 static ssize_t nr_hugepages_store(struct kobject *kobj,
2486 	       struct kobj_attribute *attr, const char *buf, size_t len)
2487 {
2488 	return nr_hugepages_store_common(false, kobj, buf, len);
2489 }
2490 HSTATE_ATTR(nr_hugepages);
2491 
2492 #ifdef CONFIG_NUMA
2493 
2494 /*
2495  * hstate attribute for optionally mempolicy-based constraint on persistent
2496  * huge page alloc/free.
2497  */
2498 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2499 				       struct kobj_attribute *attr, char *buf)
2500 {
2501 	return nr_hugepages_show_common(kobj, attr, buf);
2502 }
2503 
2504 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2505 	       struct kobj_attribute *attr, const char *buf, size_t len)
2506 {
2507 	return nr_hugepages_store_common(true, kobj, buf, len);
2508 }
2509 HSTATE_ATTR(nr_hugepages_mempolicy);
2510 #endif
2511 
2512 
2513 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2514 					struct kobj_attribute *attr, char *buf)
2515 {
2516 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2517 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2518 }
2519 
2520 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2521 		struct kobj_attribute *attr, const char *buf, size_t count)
2522 {
2523 	int err;
2524 	unsigned long input;
2525 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2526 
2527 	if (hstate_is_gigantic(h))
2528 		return -EINVAL;
2529 
2530 	err = kstrtoul(buf, 10, &input);
2531 	if (err)
2532 		return err;
2533 
2534 	spin_lock(&hugetlb_lock);
2535 	h->nr_overcommit_huge_pages = input;
2536 	spin_unlock(&hugetlb_lock);
2537 
2538 	return count;
2539 }
2540 HSTATE_ATTR(nr_overcommit_hugepages);
2541 
2542 static ssize_t free_hugepages_show(struct kobject *kobj,
2543 					struct kobj_attribute *attr, char *buf)
2544 {
2545 	struct hstate *h;
2546 	unsigned long free_huge_pages;
2547 	int nid;
2548 
2549 	h = kobj_to_hstate(kobj, &nid);
2550 	if (nid == NUMA_NO_NODE)
2551 		free_huge_pages = h->free_huge_pages;
2552 	else
2553 		free_huge_pages = h->free_huge_pages_node[nid];
2554 
2555 	return sprintf(buf, "%lu\n", free_huge_pages);
2556 }
2557 HSTATE_ATTR_RO(free_hugepages);
2558 
2559 static ssize_t resv_hugepages_show(struct kobject *kobj,
2560 					struct kobj_attribute *attr, char *buf)
2561 {
2562 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2563 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2564 }
2565 HSTATE_ATTR_RO(resv_hugepages);
2566 
2567 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2568 					struct kobj_attribute *attr, char *buf)
2569 {
2570 	struct hstate *h;
2571 	unsigned long surplus_huge_pages;
2572 	int nid;
2573 
2574 	h = kobj_to_hstate(kobj, &nid);
2575 	if (nid == NUMA_NO_NODE)
2576 		surplus_huge_pages = h->surplus_huge_pages;
2577 	else
2578 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2579 
2580 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2581 }
2582 HSTATE_ATTR_RO(surplus_hugepages);
2583 
2584 static struct attribute *hstate_attrs[] = {
2585 	&nr_hugepages_attr.attr,
2586 	&nr_overcommit_hugepages_attr.attr,
2587 	&free_hugepages_attr.attr,
2588 	&resv_hugepages_attr.attr,
2589 	&surplus_hugepages_attr.attr,
2590 #ifdef CONFIG_NUMA
2591 	&nr_hugepages_mempolicy_attr.attr,
2592 #endif
2593 	NULL,
2594 };
2595 
2596 static struct attribute_group hstate_attr_group = {
2597 	.attrs = hstate_attrs,
2598 };
2599 
2600 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2601 				    struct kobject **hstate_kobjs,
2602 				    struct attribute_group *hstate_attr_group)
2603 {
2604 	int retval;
2605 	int hi = hstate_index(h);
2606 
2607 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2608 	if (!hstate_kobjs[hi])
2609 		return -ENOMEM;
2610 
2611 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2612 	if (retval)
2613 		kobject_put(hstate_kobjs[hi]);
2614 
2615 	return retval;
2616 }
2617 
2618 static void __init hugetlb_sysfs_init(void)
2619 {
2620 	struct hstate *h;
2621 	int err;
2622 
2623 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2624 	if (!hugepages_kobj)
2625 		return;
2626 
2627 	for_each_hstate(h) {
2628 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2629 					 hstate_kobjs, &hstate_attr_group);
2630 		if (err)
2631 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2632 	}
2633 }
2634 
2635 #ifdef CONFIG_NUMA
2636 
2637 /*
2638  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2639  * with node devices in node_devices[] using a parallel array.  The array
2640  * index of a node device or _hstate == node id.
2641  * This is here to avoid any static dependency of the node device driver, in
2642  * the base kernel, on the hugetlb module.
2643  */
2644 struct node_hstate {
2645 	struct kobject		*hugepages_kobj;
2646 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2647 };
2648 static struct node_hstate node_hstates[MAX_NUMNODES];
2649 
2650 /*
2651  * A subset of global hstate attributes for node devices
2652  */
2653 static struct attribute *per_node_hstate_attrs[] = {
2654 	&nr_hugepages_attr.attr,
2655 	&free_hugepages_attr.attr,
2656 	&surplus_hugepages_attr.attr,
2657 	NULL,
2658 };
2659 
2660 static struct attribute_group per_node_hstate_attr_group = {
2661 	.attrs = per_node_hstate_attrs,
2662 };
2663 
2664 /*
2665  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2666  * Returns node id via non-NULL nidp.
2667  */
2668 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2669 {
2670 	int nid;
2671 
2672 	for (nid = 0; nid < nr_node_ids; nid++) {
2673 		struct node_hstate *nhs = &node_hstates[nid];
2674 		int i;
2675 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2676 			if (nhs->hstate_kobjs[i] == kobj) {
2677 				if (nidp)
2678 					*nidp = nid;
2679 				return &hstates[i];
2680 			}
2681 	}
2682 
2683 	BUG();
2684 	return NULL;
2685 }
2686 
2687 /*
2688  * Unregister hstate attributes from a single node device.
2689  * No-op if no hstate attributes attached.
2690  */
2691 static void hugetlb_unregister_node(struct node *node)
2692 {
2693 	struct hstate *h;
2694 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2695 
2696 	if (!nhs->hugepages_kobj)
2697 		return;		/* no hstate attributes */
2698 
2699 	for_each_hstate(h) {
2700 		int idx = hstate_index(h);
2701 		if (nhs->hstate_kobjs[idx]) {
2702 			kobject_put(nhs->hstate_kobjs[idx]);
2703 			nhs->hstate_kobjs[idx] = NULL;
2704 		}
2705 	}
2706 
2707 	kobject_put(nhs->hugepages_kobj);
2708 	nhs->hugepages_kobj = NULL;
2709 }
2710 
2711 
2712 /*
2713  * Register hstate attributes for a single node device.
2714  * No-op if attributes already registered.
2715  */
2716 static void hugetlb_register_node(struct node *node)
2717 {
2718 	struct hstate *h;
2719 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2720 	int err;
2721 
2722 	if (nhs->hugepages_kobj)
2723 		return;		/* already allocated */
2724 
2725 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2726 							&node->dev.kobj);
2727 	if (!nhs->hugepages_kobj)
2728 		return;
2729 
2730 	for_each_hstate(h) {
2731 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2732 						nhs->hstate_kobjs,
2733 						&per_node_hstate_attr_group);
2734 		if (err) {
2735 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2736 				h->name, node->dev.id);
2737 			hugetlb_unregister_node(node);
2738 			break;
2739 		}
2740 	}
2741 }
2742 
2743 /*
2744  * hugetlb init time:  register hstate attributes for all registered node
2745  * devices of nodes that have memory.  All on-line nodes should have
2746  * registered their associated device by this time.
2747  */
2748 static void __init hugetlb_register_all_nodes(void)
2749 {
2750 	int nid;
2751 
2752 	for_each_node_state(nid, N_MEMORY) {
2753 		struct node *node = node_devices[nid];
2754 		if (node->dev.id == nid)
2755 			hugetlb_register_node(node);
2756 	}
2757 
2758 	/*
2759 	 * Let the node device driver know we're here so it can
2760 	 * [un]register hstate attributes on node hotplug.
2761 	 */
2762 	register_hugetlbfs_with_node(hugetlb_register_node,
2763 				     hugetlb_unregister_node);
2764 }
2765 #else	/* !CONFIG_NUMA */
2766 
2767 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2768 {
2769 	BUG();
2770 	if (nidp)
2771 		*nidp = -1;
2772 	return NULL;
2773 }
2774 
2775 static void hugetlb_register_all_nodes(void) { }
2776 
2777 #endif
2778 
2779 static int __init hugetlb_init(void)
2780 {
2781 	int i;
2782 
2783 	if (!hugepages_supported())
2784 		return 0;
2785 
2786 	if (!size_to_hstate(default_hstate_size)) {
2787 		default_hstate_size = HPAGE_SIZE;
2788 		if (!size_to_hstate(default_hstate_size))
2789 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2790 	}
2791 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2792 	if (default_hstate_max_huge_pages) {
2793 		if (!default_hstate.max_huge_pages)
2794 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795 	}
2796 
2797 	hugetlb_init_hstates();
2798 	gather_bootmem_prealloc();
2799 	report_hugepages();
2800 
2801 	hugetlb_sysfs_init();
2802 	hugetlb_register_all_nodes();
2803 	hugetlb_cgroup_file_init();
2804 
2805 #ifdef CONFIG_SMP
2806 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 #else
2808 	num_fault_mutexes = 1;
2809 #endif
2810 	hugetlb_fault_mutex_table =
2811 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2812 	BUG_ON(!hugetlb_fault_mutex_table);
2813 
2814 	for (i = 0; i < num_fault_mutexes; i++)
2815 		mutex_init(&hugetlb_fault_mutex_table[i]);
2816 	return 0;
2817 }
2818 subsys_initcall(hugetlb_init);
2819 
2820 /* Should be called on processing a hugepagesz=... option */
2821 void __init hugetlb_bad_size(void)
2822 {
2823 	parsed_valid_hugepagesz = false;
2824 }
2825 
2826 void __init hugetlb_add_hstate(unsigned int order)
2827 {
2828 	struct hstate *h;
2829 	unsigned long i;
2830 
2831 	if (size_to_hstate(PAGE_SIZE << order)) {
2832 		pr_warn("hugepagesz= specified twice, ignoring\n");
2833 		return;
2834 	}
2835 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836 	BUG_ON(order == 0);
2837 	h = &hstates[hugetlb_max_hstate++];
2838 	h->order = order;
2839 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2840 	h->nr_huge_pages = 0;
2841 	h->free_huge_pages = 0;
2842 	for (i = 0; i < MAX_NUMNODES; ++i)
2843 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2844 	INIT_LIST_HEAD(&h->hugepage_activelist);
2845 	h->next_nid_to_alloc = first_memory_node;
2846 	h->next_nid_to_free = first_memory_node;
2847 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 					huge_page_size(h)/1024);
2849 
2850 	parsed_hstate = h;
2851 }
2852 
2853 static int __init hugetlb_nrpages_setup(char *s)
2854 {
2855 	unsigned long *mhp;
2856 	static unsigned long *last_mhp;
2857 
2858 	if (!parsed_valid_hugepagesz) {
2859 		pr_warn("hugepages = %s preceded by "
2860 			"an unsupported hugepagesz, ignoring\n", s);
2861 		parsed_valid_hugepagesz = true;
2862 		return 1;
2863 	}
2864 	/*
2865 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2866 	 * so this hugepages= parameter goes to the "default hstate".
2867 	 */
2868 	else if (!hugetlb_max_hstate)
2869 		mhp = &default_hstate_max_huge_pages;
2870 	else
2871 		mhp = &parsed_hstate->max_huge_pages;
2872 
2873 	if (mhp == last_mhp) {
2874 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2875 		return 1;
2876 	}
2877 
2878 	if (sscanf(s, "%lu", mhp) <= 0)
2879 		*mhp = 0;
2880 
2881 	/*
2882 	 * Global state is always initialized later in hugetlb_init.
2883 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 	 * use the bootmem allocator.
2885 	 */
2886 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2887 		hugetlb_hstate_alloc_pages(parsed_hstate);
2888 
2889 	last_mhp = mhp;
2890 
2891 	return 1;
2892 }
2893 __setup("hugepages=", hugetlb_nrpages_setup);
2894 
2895 static int __init hugetlb_default_setup(char *s)
2896 {
2897 	default_hstate_size = memparse(s, &s);
2898 	return 1;
2899 }
2900 __setup("default_hugepagesz=", hugetlb_default_setup);
2901 
2902 static unsigned int cpuset_mems_nr(unsigned int *array)
2903 {
2904 	int node;
2905 	unsigned int nr = 0;
2906 
2907 	for_each_node_mask(node, cpuset_current_mems_allowed)
2908 		nr += array[node];
2909 
2910 	return nr;
2911 }
2912 
2913 #ifdef CONFIG_SYSCTL
2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 			 struct ctl_table *table, int write,
2916 			 void __user *buffer, size_t *length, loff_t *ppos)
2917 {
2918 	struct hstate *h = &default_hstate;
2919 	unsigned long tmp = h->max_huge_pages;
2920 	int ret;
2921 
2922 	if (!hugepages_supported())
2923 		return -EOPNOTSUPP;
2924 
2925 	table->data = &tmp;
2926 	table->maxlen = sizeof(unsigned long);
2927 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 	if (ret)
2929 		goto out;
2930 
2931 	if (write)
2932 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 						  NUMA_NO_NODE, tmp, *length);
2934 out:
2935 	return ret;
2936 }
2937 
2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 			  void __user *buffer, size_t *length, loff_t *ppos)
2940 {
2941 
2942 	return hugetlb_sysctl_handler_common(false, table, write,
2943 							buffer, length, ppos);
2944 }
2945 
2946 #ifdef CONFIG_NUMA
2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 			  void __user *buffer, size_t *length, loff_t *ppos)
2949 {
2950 	return hugetlb_sysctl_handler_common(true, table, write,
2951 							buffer, length, ppos);
2952 }
2953 #endif /* CONFIG_NUMA */
2954 
2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2956 			void __user *buffer,
2957 			size_t *length, loff_t *ppos)
2958 {
2959 	struct hstate *h = &default_hstate;
2960 	unsigned long tmp;
2961 	int ret;
2962 
2963 	if (!hugepages_supported())
2964 		return -EOPNOTSUPP;
2965 
2966 	tmp = h->nr_overcommit_huge_pages;
2967 
2968 	if (write && hstate_is_gigantic(h))
2969 		return -EINVAL;
2970 
2971 	table->data = &tmp;
2972 	table->maxlen = sizeof(unsigned long);
2973 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 	if (ret)
2975 		goto out;
2976 
2977 	if (write) {
2978 		spin_lock(&hugetlb_lock);
2979 		h->nr_overcommit_huge_pages = tmp;
2980 		spin_unlock(&hugetlb_lock);
2981 	}
2982 out:
2983 	return ret;
2984 }
2985 
2986 #endif /* CONFIG_SYSCTL */
2987 
2988 void hugetlb_report_meminfo(struct seq_file *m)
2989 {
2990 	struct hstate *h = &default_hstate;
2991 	if (!hugepages_supported())
2992 		return;
2993 	seq_printf(m,
2994 			"HugePages_Total:   %5lu\n"
2995 			"HugePages_Free:    %5lu\n"
2996 			"HugePages_Rsvd:    %5lu\n"
2997 			"HugePages_Surp:    %5lu\n"
2998 			"Hugepagesize:   %8lu kB\n",
2999 			h->nr_huge_pages,
3000 			h->free_huge_pages,
3001 			h->resv_huge_pages,
3002 			h->surplus_huge_pages,
3003 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3004 }
3005 
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 {
3008 	struct hstate *h = &default_hstate;
3009 	if (!hugepages_supported())
3010 		return 0;
3011 	return sprintf(buf,
3012 		"Node %d HugePages_Total: %5u\n"
3013 		"Node %d HugePages_Free:  %5u\n"
3014 		"Node %d HugePages_Surp:  %5u\n",
3015 		nid, h->nr_huge_pages_node[nid],
3016 		nid, h->free_huge_pages_node[nid],
3017 		nid, h->surplus_huge_pages_node[nid]);
3018 }
3019 
3020 void hugetlb_show_meminfo(void)
3021 {
3022 	struct hstate *h;
3023 	int nid;
3024 
3025 	if (!hugepages_supported())
3026 		return;
3027 
3028 	for_each_node_state(nid, N_MEMORY)
3029 		for_each_hstate(h)
3030 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 				nid,
3032 				h->nr_huge_pages_node[nid],
3033 				h->free_huge_pages_node[nid],
3034 				h->surplus_huge_pages_node[nid],
3035 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 }
3037 
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 {
3040 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 }
3043 
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3046 {
3047 	struct hstate *h;
3048 	unsigned long nr_total_pages = 0;
3049 
3050 	for_each_hstate(h)
3051 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 	return nr_total_pages;
3053 }
3054 
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 {
3057 	int ret = -ENOMEM;
3058 
3059 	spin_lock(&hugetlb_lock);
3060 	/*
3061 	 * When cpuset is configured, it breaks the strict hugetlb page
3062 	 * reservation as the accounting is done on a global variable. Such
3063 	 * reservation is completely rubbish in the presence of cpuset because
3064 	 * the reservation is not checked against page availability for the
3065 	 * current cpuset. Application can still potentially OOM'ed by kernel
3066 	 * with lack of free htlb page in cpuset that the task is in.
3067 	 * Attempt to enforce strict accounting with cpuset is almost
3068 	 * impossible (or too ugly) because cpuset is too fluid that
3069 	 * task or memory node can be dynamically moved between cpusets.
3070 	 *
3071 	 * The change of semantics for shared hugetlb mapping with cpuset is
3072 	 * undesirable. However, in order to preserve some of the semantics,
3073 	 * we fall back to check against current free page availability as
3074 	 * a best attempt and hopefully to minimize the impact of changing
3075 	 * semantics that cpuset has.
3076 	 */
3077 	if (delta > 0) {
3078 		if (gather_surplus_pages(h, delta) < 0)
3079 			goto out;
3080 
3081 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 			return_unused_surplus_pages(h, delta);
3083 			goto out;
3084 		}
3085 	}
3086 
3087 	ret = 0;
3088 	if (delta < 0)
3089 		return_unused_surplus_pages(h, (unsigned long) -delta);
3090 
3091 out:
3092 	spin_unlock(&hugetlb_lock);
3093 	return ret;
3094 }
3095 
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 {
3098 	struct resv_map *resv = vma_resv_map(vma);
3099 
3100 	/*
3101 	 * This new VMA should share its siblings reservation map if present.
3102 	 * The VMA will only ever have a valid reservation map pointer where
3103 	 * it is being copied for another still existing VMA.  As that VMA
3104 	 * has a reference to the reservation map it cannot disappear until
3105 	 * after this open call completes.  It is therefore safe to take a
3106 	 * new reference here without additional locking.
3107 	 */
3108 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 		kref_get(&resv->refs);
3110 }
3111 
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 {
3114 	struct hstate *h = hstate_vma(vma);
3115 	struct resv_map *resv = vma_resv_map(vma);
3116 	struct hugepage_subpool *spool = subpool_vma(vma);
3117 	unsigned long reserve, start, end;
3118 	long gbl_reserve;
3119 
3120 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 		return;
3122 
3123 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3125 
3126 	reserve = (end - start) - region_count(resv, start, end);
3127 
3128 	kref_put(&resv->refs, resv_map_release);
3129 
3130 	if (reserve) {
3131 		/*
3132 		 * Decrement reserve counts.  The global reserve count may be
3133 		 * adjusted if the subpool has a minimum size.
3134 		 */
3135 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 		hugetlb_acct_memory(h, -gbl_reserve);
3137 	}
3138 }
3139 
3140 /*
3141  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3142  * handle_mm_fault() to try to instantiate regular-sized pages in the
3143  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3144  * this far.
3145  */
3146 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3147 {
3148 	BUG();
3149 	return 0;
3150 }
3151 
3152 const struct vm_operations_struct hugetlb_vm_ops = {
3153 	.fault = hugetlb_vm_op_fault,
3154 	.open = hugetlb_vm_op_open,
3155 	.close = hugetlb_vm_op_close,
3156 };
3157 
3158 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3159 				int writable)
3160 {
3161 	pte_t entry;
3162 
3163 	if (writable) {
3164 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3165 					 vma->vm_page_prot)));
3166 	} else {
3167 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3168 					   vma->vm_page_prot));
3169 	}
3170 	entry = pte_mkyoung(entry);
3171 	entry = pte_mkhuge(entry);
3172 	entry = arch_make_huge_pte(entry, vma, page, writable);
3173 
3174 	return entry;
3175 }
3176 
3177 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3178 				   unsigned long address, pte_t *ptep)
3179 {
3180 	pte_t entry;
3181 
3182 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3183 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3184 		update_mmu_cache(vma, address, ptep);
3185 }
3186 
3187 static int is_hugetlb_entry_migration(pte_t pte)
3188 {
3189 	swp_entry_t swp;
3190 
3191 	if (huge_pte_none(pte) || pte_present(pte))
3192 		return 0;
3193 	swp = pte_to_swp_entry(pte);
3194 	if (non_swap_entry(swp) && is_migration_entry(swp))
3195 		return 1;
3196 	else
3197 		return 0;
3198 }
3199 
3200 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3201 {
3202 	swp_entry_t swp;
3203 
3204 	if (huge_pte_none(pte) || pte_present(pte))
3205 		return 0;
3206 	swp = pte_to_swp_entry(pte);
3207 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3208 		return 1;
3209 	else
3210 		return 0;
3211 }
3212 
3213 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3214 			    struct vm_area_struct *vma)
3215 {
3216 	pte_t *src_pte, *dst_pte, entry;
3217 	struct page *ptepage;
3218 	unsigned long addr;
3219 	int cow;
3220 	struct hstate *h = hstate_vma(vma);
3221 	unsigned long sz = huge_page_size(h);
3222 	unsigned long mmun_start;	/* For mmu_notifiers */
3223 	unsigned long mmun_end;		/* For mmu_notifiers */
3224 	int ret = 0;
3225 
3226 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3227 
3228 	mmun_start = vma->vm_start;
3229 	mmun_end = vma->vm_end;
3230 	if (cow)
3231 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3232 
3233 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3234 		spinlock_t *src_ptl, *dst_ptl;
3235 		src_pte = huge_pte_offset(src, addr);
3236 		if (!src_pte)
3237 			continue;
3238 		dst_pte = huge_pte_alloc(dst, addr, sz);
3239 		if (!dst_pte) {
3240 			ret = -ENOMEM;
3241 			break;
3242 		}
3243 
3244 		/* If the pagetables are shared don't copy or take references */
3245 		if (dst_pte == src_pte)
3246 			continue;
3247 
3248 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3249 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3250 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3251 		entry = huge_ptep_get(src_pte);
3252 		if (huge_pte_none(entry)) { /* skip none entry */
3253 			;
3254 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3255 				    is_hugetlb_entry_hwpoisoned(entry))) {
3256 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3257 
3258 			if (is_write_migration_entry(swp_entry) && cow) {
3259 				/*
3260 				 * COW mappings require pages in both
3261 				 * parent and child to be set to read.
3262 				 */
3263 				make_migration_entry_read(&swp_entry);
3264 				entry = swp_entry_to_pte(swp_entry);
3265 				set_huge_pte_at(src, addr, src_pte, entry);
3266 			}
3267 			set_huge_pte_at(dst, addr, dst_pte, entry);
3268 		} else {
3269 			if (cow) {
3270 				huge_ptep_set_wrprotect(src, addr, src_pte);
3271 				mmu_notifier_invalidate_range(src, mmun_start,
3272 								   mmun_end);
3273 			}
3274 			entry = huge_ptep_get(src_pte);
3275 			ptepage = pte_page(entry);
3276 			get_page(ptepage);
3277 			page_dup_rmap(ptepage, true);
3278 			set_huge_pte_at(dst, addr, dst_pte, entry);
3279 			hugetlb_count_add(pages_per_huge_page(h), dst);
3280 		}
3281 		spin_unlock(src_ptl);
3282 		spin_unlock(dst_ptl);
3283 	}
3284 
3285 	if (cow)
3286 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3287 
3288 	return ret;
3289 }
3290 
3291 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3292 			    unsigned long start, unsigned long end,
3293 			    struct page *ref_page)
3294 {
3295 	struct mm_struct *mm = vma->vm_mm;
3296 	unsigned long address;
3297 	pte_t *ptep;
3298 	pte_t pte;
3299 	spinlock_t *ptl;
3300 	struct page *page;
3301 	struct hstate *h = hstate_vma(vma);
3302 	unsigned long sz = huge_page_size(h);
3303 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3304 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3305 
3306 	WARN_ON(!is_vm_hugetlb_page(vma));
3307 	BUG_ON(start & ~huge_page_mask(h));
3308 	BUG_ON(end & ~huge_page_mask(h));
3309 
3310 	/*
3311 	 * This is a hugetlb vma, all the pte entries should point
3312 	 * to huge page.
3313 	 */
3314 	tlb_remove_check_page_size_change(tlb, sz);
3315 	tlb_start_vma(tlb, vma);
3316 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3317 	address = start;
3318 	for (; address < end; address += sz) {
3319 		ptep = huge_pte_offset(mm, address);
3320 		if (!ptep)
3321 			continue;
3322 
3323 		ptl = huge_pte_lock(h, mm, ptep);
3324 		if (huge_pmd_unshare(mm, &address, ptep)) {
3325 			spin_unlock(ptl);
3326 			continue;
3327 		}
3328 
3329 		pte = huge_ptep_get(ptep);
3330 		if (huge_pte_none(pte)) {
3331 			spin_unlock(ptl);
3332 			continue;
3333 		}
3334 
3335 		/*
3336 		 * Migrating hugepage or HWPoisoned hugepage is already
3337 		 * unmapped and its refcount is dropped, so just clear pte here.
3338 		 */
3339 		if (unlikely(!pte_present(pte))) {
3340 			huge_pte_clear(mm, address, ptep);
3341 			spin_unlock(ptl);
3342 			continue;
3343 		}
3344 
3345 		page = pte_page(pte);
3346 		/*
3347 		 * If a reference page is supplied, it is because a specific
3348 		 * page is being unmapped, not a range. Ensure the page we
3349 		 * are about to unmap is the actual page of interest.
3350 		 */
3351 		if (ref_page) {
3352 			if (page != ref_page) {
3353 				spin_unlock(ptl);
3354 				continue;
3355 			}
3356 			/*
3357 			 * Mark the VMA as having unmapped its page so that
3358 			 * future faults in this VMA will fail rather than
3359 			 * looking like data was lost
3360 			 */
3361 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3362 		}
3363 
3364 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3365 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3366 		if (huge_pte_dirty(pte))
3367 			set_page_dirty(page);
3368 
3369 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3370 		page_remove_rmap(page, true);
3371 
3372 		spin_unlock(ptl);
3373 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3374 		/*
3375 		 * Bail out after unmapping reference page if supplied
3376 		 */
3377 		if (ref_page)
3378 			break;
3379 	}
3380 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3381 	tlb_end_vma(tlb, vma);
3382 }
3383 
3384 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3385 			  struct vm_area_struct *vma, unsigned long start,
3386 			  unsigned long end, struct page *ref_page)
3387 {
3388 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3389 
3390 	/*
3391 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3392 	 * test will fail on a vma being torn down, and not grab a page table
3393 	 * on its way out.  We're lucky that the flag has such an appropriate
3394 	 * name, and can in fact be safely cleared here. We could clear it
3395 	 * before the __unmap_hugepage_range above, but all that's necessary
3396 	 * is to clear it before releasing the i_mmap_rwsem. This works
3397 	 * because in the context this is called, the VMA is about to be
3398 	 * destroyed and the i_mmap_rwsem is held.
3399 	 */
3400 	vma->vm_flags &= ~VM_MAYSHARE;
3401 }
3402 
3403 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3404 			  unsigned long end, struct page *ref_page)
3405 {
3406 	struct mm_struct *mm;
3407 	struct mmu_gather tlb;
3408 
3409 	mm = vma->vm_mm;
3410 
3411 	tlb_gather_mmu(&tlb, mm, start, end);
3412 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3413 	tlb_finish_mmu(&tlb, start, end);
3414 }
3415 
3416 /*
3417  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3418  * mappping it owns the reserve page for. The intention is to unmap the page
3419  * from other VMAs and let the children be SIGKILLed if they are faulting the
3420  * same region.
3421  */
3422 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3423 			      struct page *page, unsigned long address)
3424 {
3425 	struct hstate *h = hstate_vma(vma);
3426 	struct vm_area_struct *iter_vma;
3427 	struct address_space *mapping;
3428 	pgoff_t pgoff;
3429 
3430 	/*
3431 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3432 	 * from page cache lookup which is in HPAGE_SIZE units.
3433 	 */
3434 	address = address & huge_page_mask(h);
3435 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3436 			vma->vm_pgoff;
3437 	mapping = vma->vm_file->f_mapping;
3438 
3439 	/*
3440 	 * Take the mapping lock for the duration of the table walk. As
3441 	 * this mapping should be shared between all the VMAs,
3442 	 * __unmap_hugepage_range() is called as the lock is already held
3443 	 */
3444 	i_mmap_lock_write(mapping);
3445 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3446 		/* Do not unmap the current VMA */
3447 		if (iter_vma == vma)
3448 			continue;
3449 
3450 		/*
3451 		 * Shared VMAs have their own reserves and do not affect
3452 		 * MAP_PRIVATE accounting but it is possible that a shared
3453 		 * VMA is using the same page so check and skip such VMAs.
3454 		 */
3455 		if (iter_vma->vm_flags & VM_MAYSHARE)
3456 			continue;
3457 
3458 		/*
3459 		 * Unmap the page from other VMAs without their own reserves.
3460 		 * They get marked to be SIGKILLed if they fault in these
3461 		 * areas. This is because a future no-page fault on this VMA
3462 		 * could insert a zeroed page instead of the data existing
3463 		 * from the time of fork. This would look like data corruption
3464 		 */
3465 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3466 			unmap_hugepage_range(iter_vma, address,
3467 					     address + huge_page_size(h), page);
3468 	}
3469 	i_mmap_unlock_write(mapping);
3470 }
3471 
3472 /*
3473  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3474  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3475  * cannot race with other handlers or page migration.
3476  * Keep the pte_same checks anyway to make transition from the mutex easier.
3477  */
3478 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3479 		       unsigned long address, pte_t *ptep,
3480 		       struct page *pagecache_page, spinlock_t *ptl)
3481 {
3482 	pte_t pte;
3483 	struct hstate *h = hstate_vma(vma);
3484 	struct page *old_page, *new_page;
3485 	int ret = 0, outside_reserve = 0;
3486 	unsigned long mmun_start;	/* For mmu_notifiers */
3487 	unsigned long mmun_end;		/* For mmu_notifiers */
3488 
3489 	pte = huge_ptep_get(ptep);
3490 	old_page = pte_page(pte);
3491 
3492 retry_avoidcopy:
3493 	/* If no-one else is actually using this page, avoid the copy
3494 	 * and just make the page writable */
3495 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3496 		page_move_anon_rmap(old_page, vma);
3497 		set_huge_ptep_writable(vma, address, ptep);
3498 		return 0;
3499 	}
3500 
3501 	/*
3502 	 * If the process that created a MAP_PRIVATE mapping is about to
3503 	 * perform a COW due to a shared page count, attempt to satisfy
3504 	 * the allocation without using the existing reserves. The pagecache
3505 	 * page is used to determine if the reserve at this address was
3506 	 * consumed or not. If reserves were used, a partial faulted mapping
3507 	 * at the time of fork() could consume its reserves on COW instead
3508 	 * of the full address range.
3509 	 */
3510 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3511 			old_page != pagecache_page)
3512 		outside_reserve = 1;
3513 
3514 	get_page(old_page);
3515 
3516 	/*
3517 	 * Drop page table lock as buddy allocator may be called. It will
3518 	 * be acquired again before returning to the caller, as expected.
3519 	 */
3520 	spin_unlock(ptl);
3521 	new_page = alloc_huge_page(vma, address, outside_reserve);
3522 
3523 	if (IS_ERR(new_page)) {
3524 		/*
3525 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3526 		 * it is due to references held by a child and an insufficient
3527 		 * huge page pool. To guarantee the original mappers
3528 		 * reliability, unmap the page from child processes. The child
3529 		 * may get SIGKILLed if it later faults.
3530 		 */
3531 		if (outside_reserve) {
3532 			put_page(old_page);
3533 			BUG_ON(huge_pte_none(pte));
3534 			unmap_ref_private(mm, vma, old_page, address);
3535 			BUG_ON(huge_pte_none(pte));
3536 			spin_lock(ptl);
3537 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3538 			if (likely(ptep &&
3539 				   pte_same(huge_ptep_get(ptep), pte)))
3540 				goto retry_avoidcopy;
3541 			/*
3542 			 * race occurs while re-acquiring page table
3543 			 * lock, and our job is done.
3544 			 */
3545 			return 0;
3546 		}
3547 
3548 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3549 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3550 		goto out_release_old;
3551 	}
3552 
3553 	/*
3554 	 * When the original hugepage is shared one, it does not have
3555 	 * anon_vma prepared.
3556 	 */
3557 	if (unlikely(anon_vma_prepare(vma))) {
3558 		ret = VM_FAULT_OOM;
3559 		goto out_release_all;
3560 	}
3561 
3562 	copy_user_huge_page(new_page, old_page, address, vma,
3563 			    pages_per_huge_page(h));
3564 	__SetPageUptodate(new_page);
3565 	set_page_huge_active(new_page);
3566 
3567 	mmun_start = address & huge_page_mask(h);
3568 	mmun_end = mmun_start + huge_page_size(h);
3569 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3570 
3571 	/*
3572 	 * Retake the page table lock to check for racing updates
3573 	 * before the page tables are altered
3574 	 */
3575 	spin_lock(ptl);
3576 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3577 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3578 		ClearPagePrivate(new_page);
3579 
3580 		/* Break COW */
3581 		huge_ptep_clear_flush(vma, address, ptep);
3582 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3583 		set_huge_pte_at(mm, address, ptep,
3584 				make_huge_pte(vma, new_page, 1));
3585 		page_remove_rmap(old_page, true);
3586 		hugepage_add_new_anon_rmap(new_page, vma, address);
3587 		/* Make the old page be freed below */
3588 		new_page = old_page;
3589 	}
3590 	spin_unlock(ptl);
3591 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3592 out_release_all:
3593 	restore_reserve_on_error(h, vma, address, new_page);
3594 	put_page(new_page);
3595 out_release_old:
3596 	put_page(old_page);
3597 
3598 	spin_lock(ptl); /* Caller expects lock to be held */
3599 	return ret;
3600 }
3601 
3602 /* Return the pagecache page at a given address within a VMA */
3603 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3604 			struct vm_area_struct *vma, unsigned long address)
3605 {
3606 	struct address_space *mapping;
3607 	pgoff_t idx;
3608 
3609 	mapping = vma->vm_file->f_mapping;
3610 	idx = vma_hugecache_offset(h, vma, address);
3611 
3612 	return find_lock_page(mapping, idx);
3613 }
3614 
3615 /*
3616  * Return whether there is a pagecache page to back given address within VMA.
3617  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3618  */
3619 static bool hugetlbfs_pagecache_present(struct hstate *h,
3620 			struct vm_area_struct *vma, unsigned long address)
3621 {
3622 	struct address_space *mapping;
3623 	pgoff_t idx;
3624 	struct page *page;
3625 
3626 	mapping = vma->vm_file->f_mapping;
3627 	idx = vma_hugecache_offset(h, vma, address);
3628 
3629 	page = find_get_page(mapping, idx);
3630 	if (page)
3631 		put_page(page);
3632 	return page != NULL;
3633 }
3634 
3635 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3636 			   pgoff_t idx)
3637 {
3638 	struct inode *inode = mapping->host;
3639 	struct hstate *h = hstate_inode(inode);
3640 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3641 
3642 	if (err)
3643 		return err;
3644 	ClearPagePrivate(page);
3645 
3646 	spin_lock(&inode->i_lock);
3647 	inode->i_blocks += blocks_per_huge_page(h);
3648 	spin_unlock(&inode->i_lock);
3649 	return 0;
3650 }
3651 
3652 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3653 			   struct address_space *mapping, pgoff_t idx,
3654 			   unsigned long address, pte_t *ptep, unsigned int flags)
3655 {
3656 	struct hstate *h = hstate_vma(vma);
3657 	int ret = VM_FAULT_SIGBUS;
3658 	int anon_rmap = 0;
3659 	unsigned long size;
3660 	struct page *page;
3661 	pte_t new_pte;
3662 	spinlock_t *ptl;
3663 
3664 	/*
3665 	 * Currently, we are forced to kill the process in the event the
3666 	 * original mapper has unmapped pages from the child due to a failed
3667 	 * COW. Warn that such a situation has occurred as it may not be obvious
3668 	 */
3669 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3670 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3671 			   current->pid);
3672 		return ret;
3673 	}
3674 
3675 	/*
3676 	 * Use page lock to guard against racing truncation
3677 	 * before we get page_table_lock.
3678 	 */
3679 retry:
3680 	page = find_lock_page(mapping, idx);
3681 	if (!page) {
3682 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3683 		if (idx >= size)
3684 			goto out;
3685 
3686 		/*
3687 		 * Check for page in userfault range
3688 		 */
3689 		if (userfaultfd_missing(vma)) {
3690 			u32 hash;
3691 			struct vm_fault vmf = {
3692 				.vma = vma,
3693 				.address = address,
3694 				.flags = flags,
3695 				/*
3696 				 * Hard to debug if it ends up being
3697 				 * used by a callee that assumes
3698 				 * something about the other
3699 				 * uninitialized fields... same as in
3700 				 * memory.c
3701 				 */
3702 			};
3703 
3704 			/*
3705 			 * hugetlb_fault_mutex must be dropped before
3706 			 * handling userfault.  Reacquire after handling
3707 			 * fault to make calling code simpler.
3708 			 */
3709 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3710 							idx, address);
3711 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3712 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3713 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3714 			goto out;
3715 		}
3716 
3717 		page = alloc_huge_page(vma, address, 0);
3718 		if (IS_ERR(page)) {
3719 			ret = PTR_ERR(page);
3720 			if (ret == -ENOMEM)
3721 				ret = VM_FAULT_OOM;
3722 			else
3723 				ret = VM_FAULT_SIGBUS;
3724 			goto out;
3725 		}
3726 		clear_huge_page(page, address, pages_per_huge_page(h));
3727 		__SetPageUptodate(page);
3728 		set_page_huge_active(page);
3729 
3730 		if (vma->vm_flags & VM_MAYSHARE) {
3731 			int err = huge_add_to_page_cache(page, mapping, idx);
3732 			if (err) {
3733 				put_page(page);
3734 				if (err == -EEXIST)
3735 					goto retry;
3736 				goto out;
3737 			}
3738 		} else {
3739 			lock_page(page);
3740 			if (unlikely(anon_vma_prepare(vma))) {
3741 				ret = VM_FAULT_OOM;
3742 				goto backout_unlocked;
3743 			}
3744 			anon_rmap = 1;
3745 		}
3746 	} else {
3747 		/*
3748 		 * If memory error occurs between mmap() and fault, some process
3749 		 * don't have hwpoisoned swap entry for errored virtual address.
3750 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3751 		 */
3752 		if (unlikely(PageHWPoison(page))) {
3753 			ret = VM_FAULT_HWPOISON |
3754 				VM_FAULT_SET_HINDEX(hstate_index(h));
3755 			goto backout_unlocked;
3756 		}
3757 	}
3758 
3759 	/*
3760 	 * If we are going to COW a private mapping later, we examine the
3761 	 * pending reservations for this page now. This will ensure that
3762 	 * any allocations necessary to record that reservation occur outside
3763 	 * the spinlock.
3764 	 */
3765 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3766 		if (vma_needs_reservation(h, vma, address) < 0) {
3767 			ret = VM_FAULT_OOM;
3768 			goto backout_unlocked;
3769 		}
3770 		/* Just decrements count, does not deallocate */
3771 		vma_end_reservation(h, vma, address);
3772 	}
3773 
3774 	ptl = huge_pte_lock(h, mm, ptep);
3775 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3776 	if (idx >= size)
3777 		goto backout;
3778 
3779 	ret = 0;
3780 	if (!huge_pte_none(huge_ptep_get(ptep)))
3781 		goto backout;
3782 
3783 	if (anon_rmap) {
3784 		ClearPagePrivate(page);
3785 		hugepage_add_new_anon_rmap(page, vma, address);
3786 	} else
3787 		page_dup_rmap(page, true);
3788 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3789 				&& (vma->vm_flags & VM_SHARED)));
3790 	set_huge_pte_at(mm, address, ptep, new_pte);
3791 
3792 	hugetlb_count_add(pages_per_huge_page(h), mm);
3793 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3794 		/* Optimization, do the COW without a second fault */
3795 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3796 	}
3797 
3798 	spin_unlock(ptl);
3799 	unlock_page(page);
3800 out:
3801 	return ret;
3802 
3803 backout:
3804 	spin_unlock(ptl);
3805 backout_unlocked:
3806 	unlock_page(page);
3807 	restore_reserve_on_error(h, vma, address, page);
3808 	put_page(page);
3809 	goto out;
3810 }
3811 
3812 #ifdef CONFIG_SMP
3813 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3814 			    struct vm_area_struct *vma,
3815 			    struct address_space *mapping,
3816 			    pgoff_t idx, unsigned long address)
3817 {
3818 	unsigned long key[2];
3819 	u32 hash;
3820 
3821 	if (vma->vm_flags & VM_SHARED) {
3822 		key[0] = (unsigned long) mapping;
3823 		key[1] = idx;
3824 	} else {
3825 		key[0] = (unsigned long) mm;
3826 		key[1] = address >> huge_page_shift(h);
3827 	}
3828 
3829 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3830 
3831 	return hash & (num_fault_mutexes - 1);
3832 }
3833 #else
3834 /*
3835  * For uniprocesor systems we always use a single mutex, so just
3836  * return 0 and avoid the hashing overhead.
3837  */
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 			    struct vm_area_struct *vma,
3840 			    struct address_space *mapping,
3841 			    pgoff_t idx, unsigned long address)
3842 {
3843 	return 0;
3844 }
3845 #endif
3846 
3847 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3848 			unsigned long address, unsigned int flags)
3849 {
3850 	pte_t *ptep, entry;
3851 	spinlock_t *ptl;
3852 	int ret;
3853 	u32 hash;
3854 	pgoff_t idx;
3855 	struct page *page = NULL;
3856 	struct page *pagecache_page = NULL;
3857 	struct hstate *h = hstate_vma(vma);
3858 	struct address_space *mapping;
3859 	int need_wait_lock = 0;
3860 
3861 	address &= huge_page_mask(h);
3862 
3863 	ptep = huge_pte_offset(mm, address);
3864 	if (ptep) {
3865 		entry = huge_ptep_get(ptep);
3866 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3867 			migration_entry_wait_huge(vma, mm, ptep);
3868 			return 0;
3869 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3870 			return VM_FAULT_HWPOISON_LARGE |
3871 				VM_FAULT_SET_HINDEX(hstate_index(h));
3872 	} else {
3873 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3874 		if (!ptep)
3875 			return VM_FAULT_OOM;
3876 	}
3877 
3878 	mapping = vma->vm_file->f_mapping;
3879 	idx = vma_hugecache_offset(h, vma, address);
3880 
3881 	/*
3882 	 * Serialize hugepage allocation and instantiation, so that we don't
3883 	 * get spurious allocation failures if two CPUs race to instantiate
3884 	 * the same page in the page cache.
3885 	 */
3886 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3887 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3888 
3889 	entry = huge_ptep_get(ptep);
3890 	if (huge_pte_none(entry)) {
3891 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3892 		goto out_mutex;
3893 	}
3894 
3895 	ret = 0;
3896 
3897 	/*
3898 	 * entry could be a migration/hwpoison entry at this point, so this
3899 	 * check prevents the kernel from going below assuming that we have
3900 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3901 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3902 	 * handle it.
3903 	 */
3904 	if (!pte_present(entry))
3905 		goto out_mutex;
3906 
3907 	/*
3908 	 * If we are going to COW the mapping later, we examine the pending
3909 	 * reservations for this page now. This will ensure that any
3910 	 * allocations necessary to record that reservation occur outside the
3911 	 * spinlock. For private mappings, we also lookup the pagecache
3912 	 * page now as it is used to determine if a reservation has been
3913 	 * consumed.
3914 	 */
3915 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3916 		if (vma_needs_reservation(h, vma, address) < 0) {
3917 			ret = VM_FAULT_OOM;
3918 			goto out_mutex;
3919 		}
3920 		/* Just decrements count, does not deallocate */
3921 		vma_end_reservation(h, vma, address);
3922 
3923 		if (!(vma->vm_flags & VM_MAYSHARE))
3924 			pagecache_page = hugetlbfs_pagecache_page(h,
3925 								vma, address);
3926 	}
3927 
3928 	ptl = huge_pte_lock(h, mm, ptep);
3929 
3930 	/* Check for a racing update before calling hugetlb_cow */
3931 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3932 		goto out_ptl;
3933 
3934 	/*
3935 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3936 	 * pagecache_page, so here we need take the former one
3937 	 * when page != pagecache_page or !pagecache_page.
3938 	 */
3939 	page = pte_page(entry);
3940 	if (page != pagecache_page)
3941 		if (!trylock_page(page)) {
3942 			need_wait_lock = 1;
3943 			goto out_ptl;
3944 		}
3945 
3946 	get_page(page);
3947 
3948 	if (flags & FAULT_FLAG_WRITE) {
3949 		if (!huge_pte_write(entry)) {
3950 			ret = hugetlb_cow(mm, vma, address, ptep,
3951 					  pagecache_page, ptl);
3952 			goto out_put_page;
3953 		}
3954 		entry = huge_pte_mkdirty(entry);
3955 	}
3956 	entry = pte_mkyoung(entry);
3957 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3958 						flags & FAULT_FLAG_WRITE))
3959 		update_mmu_cache(vma, address, ptep);
3960 out_put_page:
3961 	if (page != pagecache_page)
3962 		unlock_page(page);
3963 	put_page(page);
3964 out_ptl:
3965 	spin_unlock(ptl);
3966 
3967 	if (pagecache_page) {
3968 		unlock_page(pagecache_page);
3969 		put_page(pagecache_page);
3970 	}
3971 out_mutex:
3972 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3973 	/*
3974 	 * Generally it's safe to hold refcount during waiting page lock. But
3975 	 * here we just wait to defer the next page fault to avoid busy loop and
3976 	 * the page is not used after unlocked before returning from the current
3977 	 * page fault. So we are safe from accessing freed page, even if we wait
3978 	 * here without taking refcount.
3979 	 */
3980 	if (need_wait_lock)
3981 		wait_on_page_locked(page);
3982 	return ret;
3983 }
3984 
3985 /*
3986  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3987  * modifications for huge pages.
3988  */
3989 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3990 			    pte_t *dst_pte,
3991 			    struct vm_area_struct *dst_vma,
3992 			    unsigned long dst_addr,
3993 			    unsigned long src_addr,
3994 			    struct page **pagep)
3995 {
3996 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3997 	struct hstate *h = hstate_vma(dst_vma);
3998 	pte_t _dst_pte;
3999 	spinlock_t *ptl;
4000 	int ret;
4001 	struct page *page;
4002 
4003 	if (!*pagep) {
4004 		ret = -ENOMEM;
4005 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4006 		if (IS_ERR(page))
4007 			goto out;
4008 
4009 		ret = copy_huge_page_from_user(page,
4010 						(const void __user *) src_addr,
4011 						pages_per_huge_page(h), false);
4012 
4013 		/* fallback to copy_from_user outside mmap_sem */
4014 		if (unlikely(ret)) {
4015 			ret = -EFAULT;
4016 			*pagep = page;
4017 			/* don't free the page */
4018 			goto out;
4019 		}
4020 	} else {
4021 		page = *pagep;
4022 		*pagep = NULL;
4023 	}
4024 
4025 	/*
4026 	 * The memory barrier inside __SetPageUptodate makes sure that
4027 	 * preceding stores to the page contents become visible before
4028 	 * the set_pte_at() write.
4029 	 */
4030 	__SetPageUptodate(page);
4031 	set_page_huge_active(page);
4032 
4033 	/*
4034 	 * If shared, add to page cache
4035 	 */
4036 	if (vm_shared) {
4037 		struct address_space *mapping = dst_vma->vm_file->f_mapping;
4038 		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4039 
4040 		ret = huge_add_to_page_cache(page, mapping, idx);
4041 		if (ret)
4042 			goto out_release_nounlock;
4043 	}
4044 
4045 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4046 	spin_lock(ptl);
4047 
4048 	ret = -EEXIST;
4049 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4050 		goto out_release_unlock;
4051 
4052 	if (vm_shared) {
4053 		page_dup_rmap(page, true);
4054 	} else {
4055 		ClearPagePrivate(page);
4056 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4057 	}
4058 
4059 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4060 	if (dst_vma->vm_flags & VM_WRITE)
4061 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4062 	_dst_pte = pte_mkyoung(_dst_pte);
4063 
4064 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4065 
4066 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4067 					dst_vma->vm_flags & VM_WRITE);
4068 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4069 
4070 	/* No need to invalidate - it was non-present before */
4071 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4072 
4073 	spin_unlock(ptl);
4074 	if (vm_shared)
4075 		unlock_page(page);
4076 	ret = 0;
4077 out:
4078 	return ret;
4079 out_release_unlock:
4080 	spin_unlock(ptl);
4081 out_release_nounlock:
4082 	if (vm_shared)
4083 		unlock_page(page);
4084 	put_page(page);
4085 	goto out;
4086 }
4087 
4088 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4089 			 struct page **pages, struct vm_area_struct **vmas,
4090 			 unsigned long *position, unsigned long *nr_pages,
4091 			 long i, unsigned int flags, int *nonblocking)
4092 {
4093 	unsigned long pfn_offset;
4094 	unsigned long vaddr = *position;
4095 	unsigned long remainder = *nr_pages;
4096 	struct hstate *h = hstate_vma(vma);
4097 
4098 	while (vaddr < vma->vm_end && remainder) {
4099 		pte_t *pte;
4100 		spinlock_t *ptl = NULL;
4101 		int absent;
4102 		struct page *page;
4103 
4104 		/*
4105 		 * If we have a pending SIGKILL, don't keep faulting pages and
4106 		 * potentially allocating memory.
4107 		 */
4108 		if (unlikely(fatal_signal_pending(current))) {
4109 			remainder = 0;
4110 			break;
4111 		}
4112 
4113 		/*
4114 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4115 		 * each hugepage.  We have to make sure we get the
4116 		 * first, for the page indexing below to work.
4117 		 *
4118 		 * Note that page table lock is not held when pte is null.
4119 		 */
4120 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4121 		if (pte)
4122 			ptl = huge_pte_lock(h, mm, pte);
4123 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4124 
4125 		/*
4126 		 * When coredumping, it suits get_dump_page if we just return
4127 		 * an error where there's an empty slot with no huge pagecache
4128 		 * to back it.  This way, we avoid allocating a hugepage, and
4129 		 * the sparse dumpfile avoids allocating disk blocks, but its
4130 		 * huge holes still show up with zeroes where they need to be.
4131 		 */
4132 		if (absent && (flags & FOLL_DUMP) &&
4133 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4134 			if (pte)
4135 				spin_unlock(ptl);
4136 			remainder = 0;
4137 			break;
4138 		}
4139 
4140 		/*
4141 		 * We need call hugetlb_fault for both hugepages under migration
4142 		 * (in which case hugetlb_fault waits for the migration,) and
4143 		 * hwpoisoned hugepages (in which case we need to prevent the
4144 		 * caller from accessing to them.) In order to do this, we use
4145 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4146 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4147 		 * both cases, and because we can't follow correct pages
4148 		 * directly from any kind of swap entries.
4149 		 */
4150 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4151 		    ((flags & FOLL_WRITE) &&
4152 		      !huge_pte_write(huge_ptep_get(pte)))) {
4153 			int ret;
4154 			unsigned int fault_flags = 0;
4155 
4156 			if (pte)
4157 				spin_unlock(ptl);
4158 			if (flags & FOLL_WRITE)
4159 				fault_flags |= FAULT_FLAG_WRITE;
4160 			if (nonblocking)
4161 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4162 			if (flags & FOLL_NOWAIT)
4163 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4164 					FAULT_FLAG_RETRY_NOWAIT;
4165 			if (flags & FOLL_TRIED) {
4166 				VM_WARN_ON_ONCE(fault_flags &
4167 						FAULT_FLAG_ALLOW_RETRY);
4168 				fault_flags |= FAULT_FLAG_TRIED;
4169 			}
4170 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4171 			if (ret & VM_FAULT_ERROR) {
4172 				remainder = 0;
4173 				break;
4174 			}
4175 			if (ret & VM_FAULT_RETRY) {
4176 				if (nonblocking)
4177 					*nonblocking = 0;
4178 				*nr_pages = 0;
4179 				/*
4180 				 * VM_FAULT_RETRY must not return an
4181 				 * error, it will return zero
4182 				 * instead.
4183 				 *
4184 				 * No need to update "position" as the
4185 				 * caller will not check it after
4186 				 * *nr_pages is set to 0.
4187 				 */
4188 				return i;
4189 			}
4190 			continue;
4191 		}
4192 
4193 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4194 		page = pte_page(huge_ptep_get(pte));
4195 same_page:
4196 		if (pages) {
4197 			pages[i] = mem_map_offset(page, pfn_offset);
4198 			get_page(pages[i]);
4199 		}
4200 
4201 		if (vmas)
4202 			vmas[i] = vma;
4203 
4204 		vaddr += PAGE_SIZE;
4205 		++pfn_offset;
4206 		--remainder;
4207 		++i;
4208 		if (vaddr < vma->vm_end && remainder &&
4209 				pfn_offset < pages_per_huge_page(h)) {
4210 			/*
4211 			 * We use pfn_offset to avoid touching the pageframes
4212 			 * of this compound page.
4213 			 */
4214 			goto same_page;
4215 		}
4216 		spin_unlock(ptl);
4217 	}
4218 	*nr_pages = remainder;
4219 	/*
4220 	 * setting position is actually required only if remainder is
4221 	 * not zero but it's faster not to add a "if (remainder)"
4222 	 * branch.
4223 	 */
4224 	*position = vaddr;
4225 
4226 	return i ? i : -EFAULT;
4227 }
4228 
4229 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4230 /*
4231  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4232  * implement this.
4233  */
4234 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4235 #endif
4236 
4237 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4238 		unsigned long address, unsigned long end, pgprot_t newprot)
4239 {
4240 	struct mm_struct *mm = vma->vm_mm;
4241 	unsigned long start = address;
4242 	pte_t *ptep;
4243 	pte_t pte;
4244 	struct hstate *h = hstate_vma(vma);
4245 	unsigned long pages = 0;
4246 
4247 	BUG_ON(address >= end);
4248 	flush_cache_range(vma, address, end);
4249 
4250 	mmu_notifier_invalidate_range_start(mm, start, end);
4251 	i_mmap_lock_write(vma->vm_file->f_mapping);
4252 	for (; address < end; address += huge_page_size(h)) {
4253 		spinlock_t *ptl;
4254 		ptep = huge_pte_offset(mm, address);
4255 		if (!ptep)
4256 			continue;
4257 		ptl = huge_pte_lock(h, mm, ptep);
4258 		if (huge_pmd_unshare(mm, &address, ptep)) {
4259 			pages++;
4260 			spin_unlock(ptl);
4261 			continue;
4262 		}
4263 		pte = huge_ptep_get(ptep);
4264 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4265 			spin_unlock(ptl);
4266 			continue;
4267 		}
4268 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4269 			swp_entry_t entry = pte_to_swp_entry(pte);
4270 
4271 			if (is_write_migration_entry(entry)) {
4272 				pte_t newpte;
4273 
4274 				make_migration_entry_read(&entry);
4275 				newpte = swp_entry_to_pte(entry);
4276 				set_huge_pte_at(mm, address, ptep, newpte);
4277 				pages++;
4278 			}
4279 			spin_unlock(ptl);
4280 			continue;
4281 		}
4282 		if (!huge_pte_none(pte)) {
4283 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4284 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4285 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4286 			set_huge_pte_at(mm, address, ptep, pte);
4287 			pages++;
4288 		}
4289 		spin_unlock(ptl);
4290 	}
4291 	/*
4292 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4293 	 * may have cleared our pud entry and done put_page on the page table:
4294 	 * once we release i_mmap_rwsem, another task can do the final put_page
4295 	 * and that page table be reused and filled with junk.
4296 	 */
4297 	flush_hugetlb_tlb_range(vma, start, end);
4298 	mmu_notifier_invalidate_range(mm, start, end);
4299 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4300 	mmu_notifier_invalidate_range_end(mm, start, end);
4301 
4302 	return pages << h->order;
4303 }
4304 
4305 int hugetlb_reserve_pages(struct inode *inode,
4306 					long from, long to,
4307 					struct vm_area_struct *vma,
4308 					vm_flags_t vm_flags)
4309 {
4310 	long ret, chg;
4311 	struct hstate *h = hstate_inode(inode);
4312 	struct hugepage_subpool *spool = subpool_inode(inode);
4313 	struct resv_map *resv_map;
4314 	long gbl_reserve;
4315 
4316 	/*
4317 	 * Only apply hugepage reservation if asked. At fault time, an
4318 	 * attempt will be made for VM_NORESERVE to allocate a page
4319 	 * without using reserves
4320 	 */
4321 	if (vm_flags & VM_NORESERVE)
4322 		return 0;
4323 
4324 	/*
4325 	 * Shared mappings base their reservation on the number of pages that
4326 	 * are already allocated on behalf of the file. Private mappings need
4327 	 * to reserve the full area even if read-only as mprotect() may be
4328 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4329 	 */
4330 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4331 		resv_map = inode_resv_map(inode);
4332 
4333 		chg = region_chg(resv_map, from, to);
4334 
4335 	} else {
4336 		resv_map = resv_map_alloc();
4337 		if (!resv_map)
4338 			return -ENOMEM;
4339 
4340 		chg = to - from;
4341 
4342 		set_vma_resv_map(vma, resv_map);
4343 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4344 	}
4345 
4346 	if (chg < 0) {
4347 		ret = chg;
4348 		goto out_err;
4349 	}
4350 
4351 	/*
4352 	 * There must be enough pages in the subpool for the mapping. If
4353 	 * the subpool has a minimum size, there may be some global
4354 	 * reservations already in place (gbl_reserve).
4355 	 */
4356 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4357 	if (gbl_reserve < 0) {
4358 		ret = -ENOSPC;
4359 		goto out_err;
4360 	}
4361 
4362 	/*
4363 	 * Check enough hugepages are available for the reservation.
4364 	 * Hand the pages back to the subpool if there are not
4365 	 */
4366 	ret = hugetlb_acct_memory(h, gbl_reserve);
4367 	if (ret < 0) {
4368 		/* put back original number of pages, chg */
4369 		(void)hugepage_subpool_put_pages(spool, chg);
4370 		goto out_err;
4371 	}
4372 
4373 	/*
4374 	 * Account for the reservations made. Shared mappings record regions
4375 	 * that have reservations as they are shared by multiple VMAs.
4376 	 * When the last VMA disappears, the region map says how much
4377 	 * the reservation was and the page cache tells how much of
4378 	 * the reservation was consumed. Private mappings are per-VMA and
4379 	 * only the consumed reservations are tracked. When the VMA
4380 	 * disappears, the original reservation is the VMA size and the
4381 	 * consumed reservations are stored in the map. Hence, nothing
4382 	 * else has to be done for private mappings here
4383 	 */
4384 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4385 		long add = region_add(resv_map, from, to);
4386 
4387 		if (unlikely(chg > add)) {
4388 			/*
4389 			 * pages in this range were added to the reserve
4390 			 * map between region_chg and region_add.  This
4391 			 * indicates a race with alloc_huge_page.  Adjust
4392 			 * the subpool and reserve counts modified above
4393 			 * based on the difference.
4394 			 */
4395 			long rsv_adjust;
4396 
4397 			rsv_adjust = hugepage_subpool_put_pages(spool,
4398 								chg - add);
4399 			hugetlb_acct_memory(h, -rsv_adjust);
4400 		}
4401 	}
4402 	return 0;
4403 out_err:
4404 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4405 		region_abort(resv_map, from, to);
4406 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4407 		kref_put(&resv_map->refs, resv_map_release);
4408 	return ret;
4409 }
4410 
4411 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4412 								long freed)
4413 {
4414 	struct hstate *h = hstate_inode(inode);
4415 	struct resv_map *resv_map = inode_resv_map(inode);
4416 	long chg = 0;
4417 	struct hugepage_subpool *spool = subpool_inode(inode);
4418 	long gbl_reserve;
4419 
4420 	if (resv_map) {
4421 		chg = region_del(resv_map, start, end);
4422 		/*
4423 		 * region_del() can fail in the rare case where a region
4424 		 * must be split and another region descriptor can not be
4425 		 * allocated.  If end == LONG_MAX, it will not fail.
4426 		 */
4427 		if (chg < 0)
4428 			return chg;
4429 	}
4430 
4431 	spin_lock(&inode->i_lock);
4432 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4433 	spin_unlock(&inode->i_lock);
4434 
4435 	/*
4436 	 * If the subpool has a minimum size, the number of global
4437 	 * reservations to be released may be adjusted.
4438 	 */
4439 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4440 	hugetlb_acct_memory(h, -gbl_reserve);
4441 
4442 	return 0;
4443 }
4444 
4445 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4446 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4447 				struct vm_area_struct *vma,
4448 				unsigned long addr, pgoff_t idx)
4449 {
4450 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4451 				svma->vm_start;
4452 	unsigned long sbase = saddr & PUD_MASK;
4453 	unsigned long s_end = sbase + PUD_SIZE;
4454 
4455 	/* Allow segments to share if only one is marked locked */
4456 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4457 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4458 
4459 	/*
4460 	 * match the virtual addresses, permission and the alignment of the
4461 	 * page table page.
4462 	 */
4463 	if (pmd_index(addr) != pmd_index(saddr) ||
4464 	    vm_flags != svm_flags ||
4465 	    sbase < svma->vm_start || svma->vm_end < s_end)
4466 		return 0;
4467 
4468 	return saddr;
4469 }
4470 
4471 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4472 {
4473 	unsigned long base = addr & PUD_MASK;
4474 	unsigned long end = base + PUD_SIZE;
4475 
4476 	/*
4477 	 * check on proper vm_flags and page table alignment
4478 	 */
4479 	if (vma->vm_flags & VM_MAYSHARE &&
4480 	    vma->vm_start <= base && end <= vma->vm_end)
4481 		return true;
4482 	return false;
4483 }
4484 
4485 /*
4486  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4487  * and returns the corresponding pte. While this is not necessary for the
4488  * !shared pmd case because we can allocate the pmd later as well, it makes the
4489  * code much cleaner. pmd allocation is essential for the shared case because
4490  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4491  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4492  * bad pmd for sharing.
4493  */
4494 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4495 {
4496 	struct vm_area_struct *vma = find_vma(mm, addr);
4497 	struct address_space *mapping = vma->vm_file->f_mapping;
4498 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4499 			vma->vm_pgoff;
4500 	struct vm_area_struct *svma;
4501 	unsigned long saddr;
4502 	pte_t *spte = NULL;
4503 	pte_t *pte;
4504 	spinlock_t *ptl;
4505 
4506 	if (!vma_shareable(vma, addr))
4507 		return (pte_t *)pmd_alloc(mm, pud, addr);
4508 
4509 	i_mmap_lock_write(mapping);
4510 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4511 		if (svma == vma)
4512 			continue;
4513 
4514 		saddr = page_table_shareable(svma, vma, addr, idx);
4515 		if (saddr) {
4516 			spte = huge_pte_offset(svma->vm_mm, saddr);
4517 			if (spte) {
4518 				get_page(virt_to_page(spte));
4519 				break;
4520 			}
4521 		}
4522 	}
4523 
4524 	if (!spte)
4525 		goto out;
4526 
4527 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4528 	if (pud_none(*pud)) {
4529 		pud_populate(mm, pud,
4530 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4531 		mm_inc_nr_pmds(mm);
4532 	} else {
4533 		put_page(virt_to_page(spte));
4534 	}
4535 	spin_unlock(ptl);
4536 out:
4537 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4538 	i_mmap_unlock_write(mapping);
4539 	return pte;
4540 }
4541 
4542 /*
4543  * unmap huge page backed by shared pte.
4544  *
4545  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4546  * indicated by page_count > 1, unmap is achieved by clearing pud and
4547  * decrementing the ref count. If count == 1, the pte page is not shared.
4548  *
4549  * called with page table lock held.
4550  *
4551  * returns: 1 successfully unmapped a shared pte page
4552  *	    0 the underlying pte page is not shared, or it is the last user
4553  */
4554 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4555 {
4556 	pgd_t *pgd = pgd_offset(mm, *addr);
4557 	pud_t *pud = pud_offset(pgd, *addr);
4558 
4559 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4560 	if (page_count(virt_to_page(ptep)) == 1)
4561 		return 0;
4562 
4563 	pud_clear(pud);
4564 	put_page(virt_to_page(ptep));
4565 	mm_dec_nr_pmds(mm);
4566 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4567 	return 1;
4568 }
4569 #define want_pmd_share()	(1)
4570 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4571 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4572 {
4573 	return NULL;
4574 }
4575 
4576 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4577 {
4578 	return 0;
4579 }
4580 #define want_pmd_share()	(0)
4581 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4582 
4583 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4584 pte_t *huge_pte_alloc(struct mm_struct *mm,
4585 			unsigned long addr, unsigned long sz)
4586 {
4587 	pgd_t *pgd;
4588 	pud_t *pud;
4589 	pte_t *pte = NULL;
4590 
4591 	pgd = pgd_offset(mm, addr);
4592 	pud = pud_alloc(mm, pgd, addr);
4593 	if (pud) {
4594 		if (sz == PUD_SIZE) {
4595 			pte = (pte_t *)pud;
4596 		} else {
4597 			BUG_ON(sz != PMD_SIZE);
4598 			if (want_pmd_share() && pud_none(*pud))
4599 				pte = huge_pmd_share(mm, addr, pud);
4600 			else
4601 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602 		}
4603 	}
4604 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4605 
4606 	return pte;
4607 }
4608 
4609 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4610 {
4611 	pgd_t *pgd;
4612 	pud_t *pud;
4613 	pmd_t *pmd = NULL;
4614 
4615 	pgd = pgd_offset(mm, addr);
4616 	if (pgd_present(*pgd)) {
4617 		pud = pud_offset(pgd, addr);
4618 		if (pud_present(*pud)) {
4619 			if (pud_huge(*pud))
4620 				return (pte_t *)pud;
4621 			pmd = pmd_offset(pud, addr);
4622 		}
4623 	}
4624 	return (pte_t *) pmd;
4625 }
4626 
4627 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4628 
4629 /*
4630  * These functions are overwritable if your architecture needs its own
4631  * behavior.
4632  */
4633 struct page * __weak
4634 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4635 			      int write)
4636 {
4637 	return ERR_PTR(-EINVAL);
4638 }
4639 
4640 struct page * __weak
4641 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4642 		pmd_t *pmd, int flags)
4643 {
4644 	struct page *page = NULL;
4645 	spinlock_t *ptl;
4646 retry:
4647 	ptl = pmd_lockptr(mm, pmd);
4648 	spin_lock(ptl);
4649 	/*
4650 	 * make sure that the address range covered by this pmd is not
4651 	 * unmapped from other threads.
4652 	 */
4653 	if (!pmd_huge(*pmd))
4654 		goto out;
4655 	if (pmd_present(*pmd)) {
4656 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4657 		if (flags & FOLL_GET)
4658 			get_page(page);
4659 	} else {
4660 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4661 			spin_unlock(ptl);
4662 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4663 			goto retry;
4664 		}
4665 		/*
4666 		 * hwpoisoned entry is treated as no_page_table in
4667 		 * follow_page_mask().
4668 		 */
4669 	}
4670 out:
4671 	spin_unlock(ptl);
4672 	return page;
4673 }
4674 
4675 struct page * __weak
4676 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4677 		pud_t *pud, int flags)
4678 {
4679 	if (flags & FOLL_GET)
4680 		return NULL;
4681 
4682 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4683 }
4684 
4685 #ifdef CONFIG_MEMORY_FAILURE
4686 
4687 /*
4688  * This function is called from memory failure code.
4689  */
4690 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4691 {
4692 	struct hstate *h = page_hstate(hpage);
4693 	int nid = page_to_nid(hpage);
4694 	int ret = -EBUSY;
4695 
4696 	spin_lock(&hugetlb_lock);
4697 	/*
4698 	 * Just checking !page_huge_active is not enough, because that could be
4699 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4700 	 */
4701 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4702 		/*
4703 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4704 		 * but dangling hpage->lru can trigger list-debug warnings
4705 		 * (this happens when we call unpoison_memory() on it),
4706 		 * so let it point to itself with list_del_init().
4707 		 */
4708 		list_del_init(&hpage->lru);
4709 		set_page_refcounted(hpage);
4710 		h->free_huge_pages--;
4711 		h->free_huge_pages_node[nid]--;
4712 		ret = 0;
4713 	}
4714 	spin_unlock(&hugetlb_lock);
4715 	return ret;
4716 }
4717 #endif
4718 
4719 bool isolate_huge_page(struct page *page, struct list_head *list)
4720 {
4721 	bool ret = true;
4722 
4723 	VM_BUG_ON_PAGE(!PageHead(page), page);
4724 	spin_lock(&hugetlb_lock);
4725 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4726 		ret = false;
4727 		goto unlock;
4728 	}
4729 	clear_page_huge_active(page);
4730 	list_move_tail(&page->lru, list);
4731 unlock:
4732 	spin_unlock(&hugetlb_lock);
4733 	return ret;
4734 }
4735 
4736 void putback_active_hugepage(struct page *page)
4737 {
4738 	VM_BUG_ON_PAGE(!PageHead(page), page);
4739 	spin_lock(&hugetlb_lock);
4740 	set_page_huge_active(page);
4741 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4742 	spin_unlock(&hugetlb_lock);
4743 	put_page(page);
4744 }
4745