1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include <linux/userfaultfd_k.h> 36 #include "internal.h" 37 38 int hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 /* 44 * Minimum page order among possible hugepage sizes, set to a proper value 45 * at boot time. 46 */ 47 static unsigned int minimum_order __read_mostly = UINT_MAX; 48 49 __initdata LIST_HEAD(huge_boot_pages); 50 51 /* for command line parsing */ 52 static struct hstate * __initdata parsed_hstate; 53 static unsigned long __initdata default_hstate_max_huge_pages; 54 static unsigned long __initdata default_hstate_size; 55 static bool __initdata parsed_valid_hugepagesz = true; 56 57 /* 58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 59 * free_huge_pages, and surplus_huge_pages. 60 */ 61 DEFINE_SPINLOCK(hugetlb_lock); 62 63 /* 64 * Serializes faults on the same logical page. This is used to 65 * prevent spurious OOMs when the hugepage pool is fully utilized. 66 */ 67 static int num_fault_mutexes; 68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 69 70 /* Forward declaration */ 71 static int hugetlb_acct_memory(struct hstate *h, long delta); 72 73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 74 { 75 bool free = (spool->count == 0) && (spool->used_hpages == 0); 76 77 spin_unlock(&spool->lock); 78 79 /* If no pages are used, and no other handles to the subpool 80 * remain, give up any reservations mased on minimum size and 81 * free the subpool */ 82 if (free) { 83 if (spool->min_hpages != -1) 84 hugetlb_acct_memory(spool->hstate, 85 -spool->min_hpages); 86 kfree(spool); 87 } 88 } 89 90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 91 long min_hpages) 92 { 93 struct hugepage_subpool *spool; 94 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 96 if (!spool) 97 return NULL; 98 99 spin_lock_init(&spool->lock); 100 spool->count = 1; 101 spool->max_hpages = max_hpages; 102 spool->hstate = h; 103 spool->min_hpages = min_hpages; 104 105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 106 kfree(spool); 107 return NULL; 108 } 109 spool->rsv_hpages = min_hpages; 110 111 return spool; 112 } 113 114 void hugepage_put_subpool(struct hugepage_subpool *spool) 115 { 116 spin_lock(&spool->lock); 117 BUG_ON(!spool->count); 118 spool->count--; 119 unlock_or_release_subpool(spool); 120 } 121 122 /* 123 * Subpool accounting for allocating and reserving pages. 124 * Return -ENOMEM if there are not enough resources to satisfy the 125 * the request. Otherwise, return the number of pages by which the 126 * global pools must be adjusted (upward). The returned value may 127 * only be different than the passed value (delta) in the case where 128 * a subpool minimum size must be manitained. 129 */ 130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 131 long delta) 132 { 133 long ret = delta; 134 135 if (!spool) 136 return ret; 137 138 spin_lock(&spool->lock); 139 140 if (spool->max_hpages != -1) { /* maximum size accounting */ 141 if ((spool->used_hpages + delta) <= spool->max_hpages) 142 spool->used_hpages += delta; 143 else { 144 ret = -ENOMEM; 145 goto unlock_ret; 146 } 147 } 148 149 /* minimum size accounting */ 150 if (spool->min_hpages != -1 && spool->rsv_hpages) { 151 if (delta > spool->rsv_hpages) { 152 /* 153 * Asking for more reserves than those already taken on 154 * behalf of subpool. Return difference. 155 */ 156 ret = delta - spool->rsv_hpages; 157 spool->rsv_hpages = 0; 158 } else { 159 ret = 0; /* reserves already accounted for */ 160 spool->rsv_hpages -= delta; 161 } 162 } 163 164 unlock_ret: 165 spin_unlock(&spool->lock); 166 return ret; 167 } 168 169 /* 170 * Subpool accounting for freeing and unreserving pages. 171 * Return the number of global page reservations that must be dropped. 172 * The return value may only be different than the passed value (delta) 173 * in the case where a subpool minimum size must be maintained. 174 */ 175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 176 long delta) 177 { 178 long ret = delta; 179 180 if (!spool) 181 return delta; 182 183 spin_lock(&spool->lock); 184 185 if (spool->max_hpages != -1) /* maximum size accounting */ 186 spool->used_hpages -= delta; 187 188 /* minimum size accounting */ 189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 190 if (spool->rsv_hpages + delta <= spool->min_hpages) 191 ret = 0; 192 else 193 ret = spool->rsv_hpages + delta - spool->min_hpages; 194 195 spool->rsv_hpages += delta; 196 if (spool->rsv_hpages > spool->min_hpages) 197 spool->rsv_hpages = spool->min_hpages; 198 } 199 200 /* 201 * If hugetlbfs_put_super couldn't free spool due to an outstanding 202 * quota reference, free it now. 203 */ 204 unlock_or_release_subpool(spool); 205 206 return ret; 207 } 208 209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 210 { 211 return HUGETLBFS_SB(inode->i_sb)->spool; 212 } 213 214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 215 { 216 return subpool_inode(file_inode(vma->vm_file)); 217 } 218 219 /* 220 * Region tracking -- allows tracking of reservations and instantiated pages 221 * across the pages in a mapping. 222 * 223 * The region data structures are embedded into a resv_map and protected 224 * by a resv_map's lock. The set of regions within the resv_map represent 225 * reservations for huge pages, or huge pages that have already been 226 * instantiated within the map. The from and to elements are huge page 227 * indicies into the associated mapping. from indicates the starting index 228 * of the region. to represents the first index past the end of the region. 229 * 230 * For example, a file region structure with from == 0 and to == 4 represents 231 * four huge pages in a mapping. It is important to note that the to element 232 * represents the first element past the end of the region. This is used in 233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 234 * 235 * Interval notation of the form [from, to) will be used to indicate that 236 * the endpoint from is inclusive and to is exclusive. 237 */ 238 struct file_region { 239 struct list_head link; 240 long from; 241 long to; 242 }; 243 244 /* 245 * Add the huge page range represented by [f, t) to the reserve 246 * map. In the normal case, existing regions will be expanded 247 * to accommodate the specified range. Sufficient regions should 248 * exist for expansion due to the previous call to region_chg 249 * with the same range. However, it is possible that region_del 250 * could have been called after region_chg and modifed the map 251 * in such a way that no region exists to be expanded. In this 252 * case, pull a region descriptor from the cache associated with 253 * the map and use that for the new range. 254 * 255 * Return the number of new huge pages added to the map. This 256 * number is greater than or equal to zero. 257 */ 258 static long region_add(struct resv_map *resv, long f, long t) 259 { 260 struct list_head *head = &resv->regions; 261 struct file_region *rg, *nrg, *trg; 262 long add = 0; 263 264 spin_lock(&resv->lock); 265 /* Locate the region we are either in or before. */ 266 list_for_each_entry(rg, head, link) 267 if (f <= rg->to) 268 break; 269 270 /* 271 * If no region exists which can be expanded to include the 272 * specified range, the list must have been modified by an 273 * interleving call to region_del(). Pull a region descriptor 274 * from the cache and use it for this range. 275 */ 276 if (&rg->link == head || t < rg->from) { 277 VM_BUG_ON(resv->region_cache_count <= 0); 278 279 resv->region_cache_count--; 280 nrg = list_first_entry(&resv->region_cache, struct file_region, 281 link); 282 list_del(&nrg->link); 283 284 nrg->from = f; 285 nrg->to = t; 286 list_add(&nrg->link, rg->link.prev); 287 288 add += t - f; 289 goto out_locked; 290 } 291 292 /* Round our left edge to the current segment if it encloses us. */ 293 if (f > rg->from) 294 f = rg->from; 295 296 /* Check for and consume any regions we now overlap with. */ 297 nrg = rg; 298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 299 if (&rg->link == head) 300 break; 301 if (rg->from > t) 302 break; 303 304 /* If this area reaches higher then extend our area to 305 * include it completely. If this is not the first area 306 * which we intend to reuse, free it. */ 307 if (rg->to > t) 308 t = rg->to; 309 if (rg != nrg) { 310 /* Decrement return value by the deleted range. 311 * Another range will span this area so that by 312 * end of routine add will be >= zero 313 */ 314 add -= (rg->to - rg->from); 315 list_del(&rg->link); 316 kfree(rg); 317 } 318 } 319 320 add += (nrg->from - f); /* Added to beginning of region */ 321 nrg->from = f; 322 add += t - nrg->to; /* Added to end of region */ 323 nrg->to = t; 324 325 out_locked: 326 resv->adds_in_progress--; 327 spin_unlock(&resv->lock); 328 VM_BUG_ON(add < 0); 329 return add; 330 } 331 332 /* 333 * Examine the existing reserve map and determine how many 334 * huge pages in the specified range [f, t) are NOT currently 335 * represented. This routine is called before a subsequent 336 * call to region_add that will actually modify the reserve 337 * map to add the specified range [f, t). region_chg does 338 * not change the number of huge pages represented by the 339 * map. However, if the existing regions in the map can not 340 * be expanded to represent the new range, a new file_region 341 * structure is added to the map as a placeholder. This is 342 * so that the subsequent region_add call will have all the 343 * regions it needs and will not fail. 344 * 345 * Upon entry, region_chg will also examine the cache of region descriptors 346 * associated with the map. If there are not enough descriptors cached, one 347 * will be allocated for the in progress add operation. 348 * 349 * Returns the number of huge pages that need to be added to the existing 350 * reservation map for the range [f, t). This number is greater or equal to 351 * zero. -ENOMEM is returned if a new file_region structure or cache entry 352 * is needed and can not be allocated. 353 */ 354 static long region_chg(struct resv_map *resv, long f, long t) 355 { 356 struct list_head *head = &resv->regions; 357 struct file_region *rg, *nrg = NULL; 358 long chg = 0; 359 360 retry: 361 spin_lock(&resv->lock); 362 retry_locked: 363 resv->adds_in_progress++; 364 365 /* 366 * Check for sufficient descriptors in the cache to accommodate 367 * the number of in progress add operations. 368 */ 369 if (resv->adds_in_progress > resv->region_cache_count) { 370 struct file_region *trg; 371 372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 373 /* Must drop lock to allocate a new descriptor. */ 374 resv->adds_in_progress--; 375 spin_unlock(&resv->lock); 376 377 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 378 if (!trg) { 379 kfree(nrg); 380 return -ENOMEM; 381 } 382 383 spin_lock(&resv->lock); 384 list_add(&trg->link, &resv->region_cache); 385 resv->region_cache_count++; 386 goto retry_locked; 387 } 388 389 /* Locate the region we are before or in. */ 390 list_for_each_entry(rg, head, link) 391 if (f <= rg->to) 392 break; 393 394 /* If we are below the current region then a new region is required. 395 * Subtle, allocate a new region at the position but make it zero 396 * size such that we can guarantee to record the reservation. */ 397 if (&rg->link == head || t < rg->from) { 398 if (!nrg) { 399 resv->adds_in_progress--; 400 spin_unlock(&resv->lock); 401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 402 if (!nrg) 403 return -ENOMEM; 404 405 nrg->from = f; 406 nrg->to = f; 407 INIT_LIST_HEAD(&nrg->link); 408 goto retry; 409 } 410 411 list_add(&nrg->link, rg->link.prev); 412 chg = t - f; 413 goto out_nrg; 414 } 415 416 /* Round our left edge to the current segment if it encloses us. */ 417 if (f > rg->from) 418 f = rg->from; 419 chg = t - f; 420 421 /* Check for and consume any regions we now overlap with. */ 422 list_for_each_entry(rg, rg->link.prev, link) { 423 if (&rg->link == head) 424 break; 425 if (rg->from > t) 426 goto out; 427 428 /* We overlap with this area, if it extends further than 429 * us then we must extend ourselves. Account for its 430 * existing reservation. */ 431 if (rg->to > t) { 432 chg += rg->to - t; 433 t = rg->to; 434 } 435 chg -= rg->to - rg->from; 436 } 437 438 out: 439 spin_unlock(&resv->lock); 440 /* We already know we raced and no longer need the new region */ 441 kfree(nrg); 442 return chg; 443 out_nrg: 444 spin_unlock(&resv->lock); 445 return chg; 446 } 447 448 /* 449 * Abort the in progress add operation. The adds_in_progress field 450 * of the resv_map keeps track of the operations in progress between 451 * calls to region_chg and region_add. Operations are sometimes 452 * aborted after the call to region_chg. In such cases, region_abort 453 * is called to decrement the adds_in_progress counter. 454 * 455 * NOTE: The range arguments [f, t) are not needed or used in this 456 * routine. They are kept to make reading the calling code easier as 457 * arguments will match the associated region_chg call. 458 */ 459 static void region_abort(struct resv_map *resv, long f, long t) 460 { 461 spin_lock(&resv->lock); 462 VM_BUG_ON(!resv->region_cache_count); 463 resv->adds_in_progress--; 464 spin_unlock(&resv->lock); 465 } 466 467 /* 468 * Delete the specified range [f, t) from the reserve map. If the 469 * t parameter is LONG_MAX, this indicates that ALL regions after f 470 * should be deleted. Locate the regions which intersect [f, t) 471 * and either trim, delete or split the existing regions. 472 * 473 * Returns the number of huge pages deleted from the reserve map. 474 * In the normal case, the return value is zero or more. In the 475 * case where a region must be split, a new region descriptor must 476 * be allocated. If the allocation fails, -ENOMEM will be returned. 477 * NOTE: If the parameter t == LONG_MAX, then we will never split 478 * a region and possibly return -ENOMEM. Callers specifying 479 * t == LONG_MAX do not need to check for -ENOMEM error. 480 */ 481 static long region_del(struct resv_map *resv, long f, long t) 482 { 483 struct list_head *head = &resv->regions; 484 struct file_region *rg, *trg; 485 struct file_region *nrg = NULL; 486 long del = 0; 487 488 retry: 489 spin_lock(&resv->lock); 490 list_for_each_entry_safe(rg, trg, head, link) { 491 /* 492 * Skip regions before the range to be deleted. file_region 493 * ranges are normally of the form [from, to). However, there 494 * may be a "placeholder" entry in the map which is of the form 495 * (from, to) with from == to. Check for placeholder entries 496 * at the beginning of the range to be deleted. 497 */ 498 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 499 continue; 500 501 if (rg->from >= t) 502 break; 503 504 if (f > rg->from && t < rg->to) { /* Must split region */ 505 /* 506 * Check for an entry in the cache before dropping 507 * lock and attempting allocation. 508 */ 509 if (!nrg && 510 resv->region_cache_count > resv->adds_in_progress) { 511 nrg = list_first_entry(&resv->region_cache, 512 struct file_region, 513 link); 514 list_del(&nrg->link); 515 resv->region_cache_count--; 516 } 517 518 if (!nrg) { 519 spin_unlock(&resv->lock); 520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 521 if (!nrg) 522 return -ENOMEM; 523 goto retry; 524 } 525 526 del += t - f; 527 528 /* New entry for end of split region */ 529 nrg->from = t; 530 nrg->to = rg->to; 531 INIT_LIST_HEAD(&nrg->link); 532 533 /* Original entry is trimmed */ 534 rg->to = f; 535 536 list_add(&nrg->link, &rg->link); 537 nrg = NULL; 538 break; 539 } 540 541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 542 del += rg->to - rg->from; 543 list_del(&rg->link); 544 kfree(rg); 545 continue; 546 } 547 548 if (f <= rg->from) { /* Trim beginning of region */ 549 del += t - rg->from; 550 rg->from = t; 551 } else { /* Trim end of region */ 552 del += rg->to - f; 553 rg->to = f; 554 } 555 } 556 557 spin_unlock(&resv->lock); 558 kfree(nrg); 559 return del; 560 } 561 562 /* 563 * A rare out of memory error was encountered which prevented removal of 564 * the reserve map region for a page. The huge page itself was free'ed 565 * and removed from the page cache. This routine will adjust the subpool 566 * usage count, and the global reserve count if needed. By incrementing 567 * these counts, the reserve map entry which could not be deleted will 568 * appear as a "reserved" entry instead of simply dangling with incorrect 569 * counts. 570 */ 571 void hugetlb_fix_reserve_counts(struct inode *inode) 572 { 573 struct hugepage_subpool *spool = subpool_inode(inode); 574 long rsv_adjust; 575 576 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 577 if (rsv_adjust) { 578 struct hstate *h = hstate_inode(inode); 579 580 hugetlb_acct_memory(h, 1); 581 } 582 } 583 584 /* 585 * Count and return the number of huge pages in the reserve map 586 * that intersect with the range [f, t). 587 */ 588 static long region_count(struct resv_map *resv, long f, long t) 589 { 590 struct list_head *head = &resv->regions; 591 struct file_region *rg; 592 long chg = 0; 593 594 spin_lock(&resv->lock); 595 /* Locate each segment we overlap with, and count that overlap. */ 596 list_for_each_entry(rg, head, link) { 597 long seg_from; 598 long seg_to; 599 600 if (rg->to <= f) 601 continue; 602 if (rg->from >= t) 603 break; 604 605 seg_from = max(rg->from, f); 606 seg_to = min(rg->to, t); 607 608 chg += seg_to - seg_from; 609 } 610 spin_unlock(&resv->lock); 611 612 return chg; 613 } 614 615 /* 616 * Convert the address within this vma to the page offset within 617 * the mapping, in pagecache page units; huge pages here. 618 */ 619 static pgoff_t vma_hugecache_offset(struct hstate *h, 620 struct vm_area_struct *vma, unsigned long address) 621 { 622 return ((address - vma->vm_start) >> huge_page_shift(h)) + 623 (vma->vm_pgoff >> huge_page_order(h)); 624 } 625 626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 627 unsigned long address) 628 { 629 return vma_hugecache_offset(hstate_vma(vma), vma, address); 630 } 631 EXPORT_SYMBOL_GPL(linear_hugepage_index); 632 633 /* 634 * Return the size of the pages allocated when backing a VMA. In the majority 635 * cases this will be same size as used by the page table entries. 636 */ 637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 638 { 639 struct hstate *hstate; 640 641 if (!is_vm_hugetlb_page(vma)) 642 return PAGE_SIZE; 643 644 hstate = hstate_vma(vma); 645 646 return 1UL << huge_page_shift(hstate); 647 } 648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 649 650 /* 651 * Return the page size being used by the MMU to back a VMA. In the majority 652 * of cases, the page size used by the kernel matches the MMU size. On 653 * architectures where it differs, an architecture-specific version of this 654 * function is required. 655 */ 656 #ifndef vma_mmu_pagesize 657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 658 { 659 return vma_kernel_pagesize(vma); 660 } 661 #endif 662 663 /* 664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 665 * bits of the reservation map pointer, which are always clear due to 666 * alignment. 667 */ 668 #define HPAGE_RESV_OWNER (1UL << 0) 669 #define HPAGE_RESV_UNMAPPED (1UL << 1) 670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 671 672 /* 673 * These helpers are used to track how many pages are reserved for 674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 675 * is guaranteed to have their future faults succeed. 676 * 677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 678 * the reserve counters are updated with the hugetlb_lock held. It is safe 679 * to reset the VMA at fork() time as it is not in use yet and there is no 680 * chance of the global counters getting corrupted as a result of the values. 681 * 682 * The private mapping reservation is represented in a subtly different 683 * manner to a shared mapping. A shared mapping has a region map associated 684 * with the underlying file, this region map represents the backing file 685 * pages which have ever had a reservation assigned which this persists even 686 * after the page is instantiated. A private mapping has a region map 687 * associated with the original mmap which is attached to all VMAs which 688 * reference it, this region map represents those offsets which have consumed 689 * reservation ie. where pages have been instantiated. 690 */ 691 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 692 { 693 return (unsigned long)vma->vm_private_data; 694 } 695 696 static void set_vma_private_data(struct vm_area_struct *vma, 697 unsigned long value) 698 { 699 vma->vm_private_data = (void *)value; 700 } 701 702 struct resv_map *resv_map_alloc(void) 703 { 704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 706 707 if (!resv_map || !rg) { 708 kfree(resv_map); 709 kfree(rg); 710 return NULL; 711 } 712 713 kref_init(&resv_map->refs); 714 spin_lock_init(&resv_map->lock); 715 INIT_LIST_HEAD(&resv_map->regions); 716 717 resv_map->adds_in_progress = 0; 718 719 INIT_LIST_HEAD(&resv_map->region_cache); 720 list_add(&rg->link, &resv_map->region_cache); 721 resv_map->region_cache_count = 1; 722 723 return resv_map; 724 } 725 726 void resv_map_release(struct kref *ref) 727 { 728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 729 struct list_head *head = &resv_map->region_cache; 730 struct file_region *rg, *trg; 731 732 /* Clear out any active regions before we release the map. */ 733 region_del(resv_map, 0, LONG_MAX); 734 735 /* ... and any entries left in the cache */ 736 list_for_each_entry_safe(rg, trg, head, link) { 737 list_del(&rg->link); 738 kfree(rg); 739 } 740 741 VM_BUG_ON(resv_map->adds_in_progress); 742 743 kfree(resv_map); 744 } 745 746 static inline struct resv_map *inode_resv_map(struct inode *inode) 747 { 748 return inode->i_mapping->private_data; 749 } 750 751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 752 { 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 754 if (vma->vm_flags & VM_MAYSHARE) { 755 struct address_space *mapping = vma->vm_file->f_mapping; 756 struct inode *inode = mapping->host; 757 758 return inode_resv_map(inode); 759 760 } else { 761 return (struct resv_map *)(get_vma_private_data(vma) & 762 ~HPAGE_RESV_MASK); 763 } 764 } 765 766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 767 { 768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 770 771 set_vma_private_data(vma, (get_vma_private_data(vma) & 772 HPAGE_RESV_MASK) | (unsigned long)map); 773 } 774 775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 776 { 777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 779 780 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 781 } 782 783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 784 { 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 786 787 return (get_vma_private_data(vma) & flag) != 0; 788 } 789 790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 792 { 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 794 if (!(vma->vm_flags & VM_MAYSHARE)) 795 vma->vm_private_data = (void *)0; 796 } 797 798 /* Returns true if the VMA has associated reserve pages */ 799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 800 { 801 if (vma->vm_flags & VM_NORESERVE) { 802 /* 803 * This address is already reserved by other process(chg == 0), 804 * so, we should decrement reserved count. Without decrementing, 805 * reserve count remains after releasing inode, because this 806 * allocated page will go into page cache and is regarded as 807 * coming from reserved pool in releasing step. Currently, we 808 * don't have any other solution to deal with this situation 809 * properly, so add work-around here. 810 */ 811 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 812 return true; 813 else 814 return false; 815 } 816 817 /* Shared mappings always use reserves */ 818 if (vma->vm_flags & VM_MAYSHARE) { 819 /* 820 * We know VM_NORESERVE is not set. Therefore, there SHOULD 821 * be a region map for all pages. The only situation where 822 * there is no region map is if a hole was punched via 823 * fallocate. In this case, there really are no reverves to 824 * use. This situation is indicated if chg != 0. 825 */ 826 if (chg) 827 return false; 828 else 829 return true; 830 } 831 832 /* 833 * Only the process that called mmap() has reserves for 834 * private mappings. 835 */ 836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 837 /* 838 * Like the shared case above, a hole punch or truncate 839 * could have been performed on the private mapping. 840 * Examine the value of chg to determine if reserves 841 * actually exist or were previously consumed. 842 * Very Subtle - The value of chg comes from a previous 843 * call to vma_needs_reserves(). The reserve map for 844 * private mappings has different (opposite) semantics 845 * than that of shared mappings. vma_needs_reserves() 846 * has already taken this difference in semantics into 847 * account. Therefore, the meaning of chg is the same 848 * as in the shared case above. Code could easily be 849 * combined, but keeping it separate draws attention to 850 * subtle differences. 851 */ 852 if (chg) 853 return false; 854 else 855 return true; 856 } 857 858 return false; 859 } 860 861 static void enqueue_huge_page(struct hstate *h, struct page *page) 862 { 863 int nid = page_to_nid(page); 864 list_move(&page->lru, &h->hugepage_freelists[nid]); 865 h->free_huge_pages++; 866 h->free_huge_pages_node[nid]++; 867 } 868 869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 870 { 871 struct page *page; 872 873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 874 if (!is_migrate_isolate_page(page)) 875 break; 876 /* 877 * if 'non-isolated free hugepage' not found on the list, 878 * the allocation fails. 879 */ 880 if (&h->hugepage_freelists[nid] == &page->lru) 881 return NULL; 882 list_move(&page->lru, &h->hugepage_activelist); 883 set_page_refcounted(page); 884 h->free_huge_pages--; 885 h->free_huge_pages_node[nid]--; 886 return page; 887 } 888 889 /* Movability of hugepages depends on migration support. */ 890 static inline gfp_t htlb_alloc_mask(struct hstate *h) 891 { 892 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 893 return GFP_HIGHUSER_MOVABLE; 894 else 895 return GFP_HIGHUSER; 896 } 897 898 static struct page *dequeue_huge_page_vma(struct hstate *h, 899 struct vm_area_struct *vma, 900 unsigned long address, int avoid_reserve, 901 long chg) 902 { 903 struct page *page = NULL; 904 struct mempolicy *mpol; 905 nodemask_t *nodemask; 906 struct zonelist *zonelist; 907 struct zone *zone; 908 struct zoneref *z; 909 unsigned int cpuset_mems_cookie; 910 911 /* 912 * A child process with MAP_PRIVATE mappings created by their parent 913 * have no page reserves. This check ensures that reservations are 914 * not "stolen". The child may still get SIGKILLed 915 */ 916 if (!vma_has_reserves(vma, chg) && 917 h->free_huge_pages - h->resv_huge_pages == 0) 918 goto err; 919 920 /* If reserves cannot be used, ensure enough pages are in the pool */ 921 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 922 goto err; 923 924 retry_cpuset: 925 cpuset_mems_cookie = read_mems_allowed_begin(); 926 zonelist = huge_zonelist(vma, address, 927 htlb_alloc_mask(h), &mpol, &nodemask); 928 929 for_each_zone_zonelist_nodemask(zone, z, zonelist, 930 MAX_NR_ZONES - 1, nodemask) { 931 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 932 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 933 if (page) { 934 if (avoid_reserve) 935 break; 936 if (!vma_has_reserves(vma, chg)) 937 break; 938 939 SetPagePrivate(page); 940 h->resv_huge_pages--; 941 break; 942 } 943 } 944 } 945 946 mpol_cond_put(mpol); 947 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 948 goto retry_cpuset; 949 return page; 950 951 err: 952 return NULL; 953 } 954 955 /* 956 * common helper functions for hstate_next_node_to_{alloc|free}. 957 * We may have allocated or freed a huge page based on a different 958 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 959 * be outside of *nodes_allowed. Ensure that we use an allowed 960 * node for alloc or free. 961 */ 962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 963 { 964 nid = next_node_in(nid, *nodes_allowed); 965 VM_BUG_ON(nid >= MAX_NUMNODES); 966 967 return nid; 968 } 969 970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 971 { 972 if (!node_isset(nid, *nodes_allowed)) 973 nid = next_node_allowed(nid, nodes_allowed); 974 return nid; 975 } 976 977 /* 978 * returns the previously saved node ["this node"] from which to 979 * allocate a persistent huge page for the pool and advance the 980 * next node from which to allocate, handling wrap at end of node 981 * mask. 982 */ 983 static int hstate_next_node_to_alloc(struct hstate *h, 984 nodemask_t *nodes_allowed) 985 { 986 int nid; 987 988 VM_BUG_ON(!nodes_allowed); 989 990 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 991 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 992 993 return nid; 994 } 995 996 /* 997 * helper for free_pool_huge_page() - return the previously saved 998 * node ["this node"] from which to free a huge page. Advance the 999 * next node id whether or not we find a free huge page to free so 1000 * that the next attempt to free addresses the next node. 1001 */ 1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1003 { 1004 int nid; 1005 1006 VM_BUG_ON(!nodes_allowed); 1007 1008 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1009 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1010 1011 return nid; 1012 } 1013 1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1015 for (nr_nodes = nodes_weight(*mask); \ 1016 nr_nodes > 0 && \ 1017 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1018 nr_nodes--) 1019 1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1021 for (nr_nodes = nodes_weight(*mask); \ 1022 nr_nodes > 0 && \ 1023 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1024 nr_nodes--) 1025 1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \ 1027 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \ 1028 defined(CONFIG_CMA)) 1029 static void destroy_compound_gigantic_page(struct page *page, 1030 unsigned int order) 1031 { 1032 int i; 1033 int nr_pages = 1 << order; 1034 struct page *p = page + 1; 1035 1036 atomic_set(compound_mapcount_ptr(page), 0); 1037 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1038 clear_compound_head(p); 1039 set_page_refcounted(p); 1040 } 1041 1042 set_compound_order(page, 0); 1043 __ClearPageHead(page); 1044 } 1045 1046 static void free_gigantic_page(struct page *page, unsigned int order) 1047 { 1048 free_contig_range(page_to_pfn(page), 1 << order); 1049 } 1050 1051 static int __alloc_gigantic_page(unsigned long start_pfn, 1052 unsigned long nr_pages) 1053 { 1054 unsigned long end_pfn = start_pfn + nr_pages; 1055 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1056 GFP_KERNEL); 1057 } 1058 1059 static bool pfn_range_valid_gigantic(struct zone *z, 1060 unsigned long start_pfn, unsigned long nr_pages) 1061 { 1062 unsigned long i, end_pfn = start_pfn + nr_pages; 1063 struct page *page; 1064 1065 for (i = start_pfn; i < end_pfn; i++) { 1066 if (!pfn_valid(i)) 1067 return false; 1068 1069 page = pfn_to_page(i); 1070 1071 if (page_zone(page) != z) 1072 return false; 1073 1074 if (PageReserved(page)) 1075 return false; 1076 1077 if (page_count(page) > 0) 1078 return false; 1079 1080 if (PageHuge(page)) 1081 return false; 1082 } 1083 1084 return true; 1085 } 1086 1087 static bool zone_spans_last_pfn(const struct zone *zone, 1088 unsigned long start_pfn, unsigned long nr_pages) 1089 { 1090 unsigned long last_pfn = start_pfn + nr_pages - 1; 1091 return zone_spans_pfn(zone, last_pfn); 1092 } 1093 1094 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1095 { 1096 unsigned long nr_pages = 1 << order; 1097 unsigned long ret, pfn, flags; 1098 struct zone *z; 1099 1100 z = NODE_DATA(nid)->node_zones; 1101 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1102 spin_lock_irqsave(&z->lock, flags); 1103 1104 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1105 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1106 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1107 /* 1108 * We release the zone lock here because 1109 * alloc_contig_range() will also lock the zone 1110 * at some point. If there's an allocation 1111 * spinning on this lock, it may win the race 1112 * and cause alloc_contig_range() to fail... 1113 */ 1114 spin_unlock_irqrestore(&z->lock, flags); 1115 ret = __alloc_gigantic_page(pfn, nr_pages); 1116 if (!ret) 1117 return pfn_to_page(pfn); 1118 spin_lock_irqsave(&z->lock, flags); 1119 } 1120 pfn += nr_pages; 1121 } 1122 1123 spin_unlock_irqrestore(&z->lock, flags); 1124 } 1125 1126 return NULL; 1127 } 1128 1129 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1130 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1131 1132 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1133 { 1134 struct page *page; 1135 1136 page = alloc_gigantic_page(nid, huge_page_order(h)); 1137 if (page) { 1138 prep_compound_gigantic_page(page, huge_page_order(h)); 1139 prep_new_huge_page(h, page, nid); 1140 } 1141 1142 return page; 1143 } 1144 1145 static int alloc_fresh_gigantic_page(struct hstate *h, 1146 nodemask_t *nodes_allowed) 1147 { 1148 struct page *page = NULL; 1149 int nr_nodes, node; 1150 1151 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1152 page = alloc_fresh_gigantic_page_node(h, node); 1153 if (page) 1154 return 1; 1155 } 1156 1157 return 0; 1158 } 1159 1160 static inline bool gigantic_page_supported(void) { return true; } 1161 #else 1162 static inline bool gigantic_page_supported(void) { return false; } 1163 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1164 static inline void destroy_compound_gigantic_page(struct page *page, 1165 unsigned int order) { } 1166 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1167 nodemask_t *nodes_allowed) { return 0; } 1168 #endif 1169 1170 static void update_and_free_page(struct hstate *h, struct page *page) 1171 { 1172 int i; 1173 1174 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1175 return; 1176 1177 h->nr_huge_pages--; 1178 h->nr_huge_pages_node[page_to_nid(page)]--; 1179 for (i = 0; i < pages_per_huge_page(h); i++) { 1180 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1181 1 << PG_referenced | 1 << PG_dirty | 1182 1 << PG_active | 1 << PG_private | 1183 1 << PG_writeback); 1184 } 1185 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1186 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1187 set_page_refcounted(page); 1188 if (hstate_is_gigantic(h)) { 1189 destroy_compound_gigantic_page(page, huge_page_order(h)); 1190 free_gigantic_page(page, huge_page_order(h)); 1191 } else { 1192 __free_pages(page, huge_page_order(h)); 1193 } 1194 } 1195 1196 struct hstate *size_to_hstate(unsigned long size) 1197 { 1198 struct hstate *h; 1199 1200 for_each_hstate(h) { 1201 if (huge_page_size(h) == size) 1202 return h; 1203 } 1204 return NULL; 1205 } 1206 1207 /* 1208 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1209 * to hstate->hugepage_activelist.) 1210 * 1211 * This function can be called for tail pages, but never returns true for them. 1212 */ 1213 bool page_huge_active(struct page *page) 1214 { 1215 VM_BUG_ON_PAGE(!PageHuge(page), page); 1216 return PageHead(page) && PagePrivate(&page[1]); 1217 } 1218 1219 /* never called for tail page */ 1220 static void set_page_huge_active(struct page *page) 1221 { 1222 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1223 SetPagePrivate(&page[1]); 1224 } 1225 1226 static void clear_page_huge_active(struct page *page) 1227 { 1228 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1229 ClearPagePrivate(&page[1]); 1230 } 1231 1232 void free_huge_page(struct page *page) 1233 { 1234 /* 1235 * Can't pass hstate in here because it is called from the 1236 * compound page destructor. 1237 */ 1238 struct hstate *h = page_hstate(page); 1239 int nid = page_to_nid(page); 1240 struct hugepage_subpool *spool = 1241 (struct hugepage_subpool *)page_private(page); 1242 bool restore_reserve; 1243 1244 set_page_private(page, 0); 1245 page->mapping = NULL; 1246 VM_BUG_ON_PAGE(page_count(page), page); 1247 VM_BUG_ON_PAGE(page_mapcount(page), page); 1248 restore_reserve = PagePrivate(page); 1249 ClearPagePrivate(page); 1250 1251 /* 1252 * A return code of zero implies that the subpool will be under its 1253 * minimum size if the reservation is not restored after page is free. 1254 * Therefore, force restore_reserve operation. 1255 */ 1256 if (hugepage_subpool_put_pages(spool, 1) == 0) 1257 restore_reserve = true; 1258 1259 spin_lock(&hugetlb_lock); 1260 clear_page_huge_active(page); 1261 hugetlb_cgroup_uncharge_page(hstate_index(h), 1262 pages_per_huge_page(h), page); 1263 if (restore_reserve) 1264 h->resv_huge_pages++; 1265 1266 if (h->surplus_huge_pages_node[nid]) { 1267 /* remove the page from active list */ 1268 list_del(&page->lru); 1269 update_and_free_page(h, page); 1270 h->surplus_huge_pages--; 1271 h->surplus_huge_pages_node[nid]--; 1272 } else { 1273 arch_clear_hugepage_flags(page); 1274 enqueue_huge_page(h, page); 1275 } 1276 spin_unlock(&hugetlb_lock); 1277 } 1278 1279 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1280 { 1281 INIT_LIST_HEAD(&page->lru); 1282 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1283 spin_lock(&hugetlb_lock); 1284 set_hugetlb_cgroup(page, NULL); 1285 h->nr_huge_pages++; 1286 h->nr_huge_pages_node[nid]++; 1287 spin_unlock(&hugetlb_lock); 1288 put_page(page); /* free it into the hugepage allocator */ 1289 } 1290 1291 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1292 { 1293 int i; 1294 int nr_pages = 1 << order; 1295 struct page *p = page + 1; 1296 1297 /* we rely on prep_new_huge_page to set the destructor */ 1298 set_compound_order(page, order); 1299 __ClearPageReserved(page); 1300 __SetPageHead(page); 1301 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1302 /* 1303 * For gigantic hugepages allocated through bootmem at 1304 * boot, it's safer to be consistent with the not-gigantic 1305 * hugepages and clear the PG_reserved bit from all tail pages 1306 * too. Otherwse drivers using get_user_pages() to access tail 1307 * pages may get the reference counting wrong if they see 1308 * PG_reserved set on a tail page (despite the head page not 1309 * having PG_reserved set). Enforcing this consistency between 1310 * head and tail pages allows drivers to optimize away a check 1311 * on the head page when they need know if put_page() is needed 1312 * after get_user_pages(). 1313 */ 1314 __ClearPageReserved(p); 1315 set_page_count(p, 0); 1316 set_compound_head(p, page); 1317 } 1318 atomic_set(compound_mapcount_ptr(page), -1); 1319 } 1320 1321 /* 1322 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1323 * transparent huge pages. See the PageTransHuge() documentation for more 1324 * details. 1325 */ 1326 int PageHuge(struct page *page) 1327 { 1328 if (!PageCompound(page)) 1329 return 0; 1330 1331 page = compound_head(page); 1332 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1333 } 1334 EXPORT_SYMBOL_GPL(PageHuge); 1335 1336 /* 1337 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1338 * normal or transparent huge pages. 1339 */ 1340 int PageHeadHuge(struct page *page_head) 1341 { 1342 if (!PageHead(page_head)) 1343 return 0; 1344 1345 return get_compound_page_dtor(page_head) == free_huge_page; 1346 } 1347 1348 pgoff_t __basepage_index(struct page *page) 1349 { 1350 struct page *page_head = compound_head(page); 1351 pgoff_t index = page_index(page_head); 1352 unsigned long compound_idx; 1353 1354 if (!PageHuge(page_head)) 1355 return page_index(page); 1356 1357 if (compound_order(page_head) >= MAX_ORDER) 1358 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1359 else 1360 compound_idx = page - page_head; 1361 1362 return (index << compound_order(page_head)) + compound_idx; 1363 } 1364 1365 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1366 { 1367 struct page *page; 1368 1369 page = __alloc_pages_node(nid, 1370 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1371 __GFP_REPEAT|__GFP_NOWARN, 1372 huge_page_order(h)); 1373 if (page) { 1374 prep_new_huge_page(h, page, nid); 1375 } 1376 1377 return page; 1378 } 1379 1380 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1381 { 1382 struct page *page; 1383 int nr_nodes, node; 1384 int ret = 0; 1385 1386 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1387 page = alloc_fresh_huge_page_node(h, node); 1388 if (page) { 1389 ret = 1; 1390 break; 1391 } 1392 } 1393 1394 if (ret) 1395 count_vm_event(HTLB_BUDDY_PGALLOC); 1396 else 1397 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1398 1399 return ret; 1400 } 1401 1402 /* 1403 * Free huge page from pool from next node to free. 1404 * Attempt to keep persistent huge pages more or less 1405 * balanced over allowed nodes. 1406 * Called with hugetlb_lock locked. 1407 */ 1408 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1409 bool acct_surplus) 1410 { 1411 int nr_nodes, node; 1412 int ret = 0; 1413 1414 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1415 /* 1416 * If we're returning unused surplus pages, only examine 1417 * nodes with surplus pages. 1418 */ 1419 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1420 !list_empty(&h->hugepage_freelists[node])) { 1421 struct page *page = 1422 list_entry(h->hugepage_freelists[node].next, 1423 struct page, lru); 1424 list_del(&page->lru); 1425 h->free_huge_pages--; 1426 h->free_huge_pages_node[node]--; 1427 if (acct_surplus) { 1428 h->surplus_huge_pages--; 1429 h->surplus_huge_pages_node[node]--; 1430 } 1431 update_and_free_page(h, page); 1432 ret = 1; 1433 break; 1434 } 1435 } 1436 1437 return ret; 1438 } 1439 1440 /* 1441 * Dissolve a given free hugepage into free buddy pages. This function does 1442 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1443 * number of free hugepages would be reduced below the number of reserved 1444 * hugepages. 1445 */ 1446 static int dissolve_free_huge_page(struct page *page) 1447 { 1448 int rc = 0; 1449 1450 spin_lock(&hugetlb_lock); 1451 if (PageHuge(page) && !page_count(page)) { 1452 struct page *head = compound_head(page); 1453 struct hstate *h = page_hstate(head); 1454 int nid = page_to_nid(head); 1455 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1456 rc = -EBUSY; 1457 goto out; 1458 } 1459 list_del(&head->lru); 1460 h->free_huge_pages--; 1461 h->free_huge_pages_node[nid]--; 1462 h->max_huge_pages--; 1463 update_and_free_page(h, head); 1464 } 1465 out: 1466 spin_unlock(&hugetlb_lock); 1467 return rc; 1468 } 1469 1470 /* 1471 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1472 * make specified memory blocks removable from the system. 1473 * Note that this will dissolve a free gigantic hugepage completely, if any 1474 * part of it lies within the given range. 1475 * Also note that if dissolve_free_huge_page() returns with an error, all 1476 * free hugepages that were dissolved before that error are lost. 1477 */ 1478 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1479 { 1480 unsigned long pfn; 1481 struct page *page; 1482 int rc = 0; 1483 1484 if (!hugepages_supported()) 1485 return rc; 1486 1487 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1488 page = pfn_to_page(pfn); 1489 if (PageHuge(page) && !page_count(page)) { 1490 rc = dissolve_free_huge_page(page); 1491 if (rc) 1492 break; 1493 } 1494 } 1495 1496 return rc; 1497 } 1498 1499 /* 1500 * There are 3 ways this can get called: 1501 * 1. With vma+addr: we use the VMA's memory policy 1502 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1503 * page from any node, and let the buddy allocator itself figure 1504 * it out. 1505 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1506 * strictly from 'nid' 1507 */ 1508 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1509 struct vm_area_struct *vma, unsigned long addr, int nid) 1510 { 1511 int order = huge_page_order(h); 1512 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1513 unsigned int cpuset_mems_cookie; 1514 1515 /* 1516 * We need a VMA to get a memory policy. If we do not 1517 * have one, we use the 'nid' argument. 1518 * 1519 * The mempolicy stuff below has some non-inlined bits 1520 * and calls ->vm_ops. That makes it hard to optimize at 1521 * compile-time, even when NUMA is off and it does 1522 * nothing. This helps the compiler optimize it out. 1523 */ 1524 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1525 /* 1526 * If a specific node is requested, make sure to 1527 * get memory from there, but only when a node 1528 * is explicitly specified. 1529 */ 1530 if (nid != NUMA_NO_NODE) 1531 gfp |= __GFP_THISNODE; 1532 /* 1533 * Make sure to call something that can handle 1534 * nid=NUMA_NO_NODE 1535 */ 1536 return alloc_pages_node(nid, gfp, order); 1537 } 1538 1539 /* 1540 * OK, so we have a VMA. Fetch the mempolicy and try to 1541 * allocate a huge page with it. We will only reach this 1542 * when CONFIG_NUMA=y. 1543 */ 1544 do { 1545 struct page *page; 1546 struct mempolicy *mpol; 1547 struct zonelist *zl; 1548 nodemask_t *nodemask; 1549 1550 cpuset_mems_cookie = read_mems_allowed_begin(); 1551 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1552 mpol_cond_put(mpol); 1553 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1554 if (page) 1555 return page; 1556 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1557 1558 return NULL; 1559 } 1560 1561 /* 1562 * There are two ways to allocate a huge page: 1563 * 1. When you have a VMA and an address (like a fault) 1564 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1565 * 1566 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1567 * this case which signifies that the allocation should be done with 1568 * respect for the VMA's memory policy. 1569 * 1570 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1571 * implies that memory policies will not be taken in to account. 1572 */ 1573 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1574 struct vm_area_struct *vma, unsigned long addr, int nid) 1575 { 1576 struct page *page; 1577 unsigned int r_nid; 1578 1579 if (hstate_is_gigantic(h)) 1580 return NULL; 1581 1582 /* 1583 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1584 * This makes sure the caller is picking _one_ of the modes with which 1585 * we can call this function, not both. 1586 */ 1587 if (vma || (addr != -1)) { 1588 VM_WARN_ON_ONCE(addr == -1); 1589 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1590 } 1591 /* 1592 * Assume we will successfully allocate the surplus page to 1593 * prevent racing processes from causing the surplus to exceed 1594 * overcommit 1595 * 1596 * This however introduces a different race, where a process B 1597 * tries to grow the static hugepage pool while alloc_pages() is 1598 * called by process A. B will only examine the per-node 1599 * counters in determining if surplus huge pages can be 1600 * converted to normal huge pages in adjust_pool_surplus(). A 1601 * won't be able to increment the per-node counter, until the 1602 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1603 * no more huge pages can be converted from surplus to normal 1604 * state (and doesn't try to convert again). Thus, we have a 1605 * case where a surplus huge page exists, the pool is grown, and 1606 * the surplus huge page still exists after, even though it 1607 * should just have been converted to a normal huge page. This 1608 * does not leak memory, though, as the hugepage will be freed 1609 * once it is out of use. It also does not allow the counters to 1610 * go out of whack in adjust_pool_surplus() as we don't modify 1611 * the node values until we've gotten the hugepage and only the 1612 * per-node value is checked there. 1613 */ 1614 spin_lock(&hugetlb_lock); 1615 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1616 spin_unlock(&hugetlb_lock); 1617 return NULL; 1618 } else { 1619 h->nr_huge_pages++; 1620 h->surplus_huge_pages++; 1621 } 1622 spin_unlock(&hugetlb_lock); 1623 1624 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1625 1626 spin_lock(&hugetlb_lock); 1627 if (page) { 1628 INIT_LIST_HEAD(&page->lru); 1629 r_nid = page_to_nid(page); 1630 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1631 set_hugetlb_cgroup(page, NULL); 1632 /* 1633 * We incremented the global counters already 1634 */ 1635 h->nr_huge_pages_node[r_nid]++; 1636 h->surplus_huge_pages_node[r_nid]++; 1637 __count_vm_event(HTLB_BUDDY_PGALLOC); 1638 } else { 1639 h->nr_huge_pages--; 1640 h->surplus_huge_pages--; 1641 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1642 } 1643 spin_unlock(&hugetlb_lock); 1644 1645 return page; 1646 } 1647 1648 /* 1649 * Allocate a huge page from 'nid'. Note, 'nid' may be 1650 * NUMA_NO_NODE, which means that it may be allocated 1651 * anywhere. 1652 */ 1653 static 1654 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1655 { 1656 unsigned long addr = -1; 1657 1658 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1659 } 1660 1661 /* 1662 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1663 */ 1664 static 1665 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1666 struct vm_area_struct *vma, unsigned long addr) 1667 { 1668 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1669 } 1670 1671 /* 1672 * This allocation function is useful in the context where vma is irrelevant. 1673 * E.g. soft-offlining uses this function because it only cares physical 1674 * address of error page. 1675 */ 1676 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1677 { 1678 struct page *page = NULL; 1679 1680 spin_lock(&hugetlb_lock); 1681 if (h->free_huge_pages - h->resv_huge_pages > 0) 1682 page = dequeue_huge_page_node(h, nid); 1683 spin_unlock(&hugetlb_lock); 1684 1685 if (!page) 1686 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1687 1688 return page; 1689 } 1690 1691 /* 1692 * Increase the hugetlb pool such that it can accommodate a reservation 1693 * of size 'delta'. 1694 */ 1695 static int gather_surplus_pages(struct hstate *h, int delta) 1696 { 1697 struct list_head surplus_list; 1698 struct page *page, *tmp; 1699 int ret, i; 1700 int needed, allocated; 1701 bool alloc_ok = true; 1702 1703 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1704 if (needed <= 0) { 1705 h->resv_huge_pages += delta; 1706 return 0; 1707 } 1708 1709 allocated = 0; 1710 INIT_LIST_HEAD(&surplus_list); 1711 1712 ret = -ENOMEM; 1713 retry: 1714 spin_unlock(&hugetlb_lock); 1715 for (i = 0; i < needed; i++) { 1716 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1717 if (!page) { 1718 alloc_ok = false; 1719 break; 1720 } 1721 list_add(&page->lru, &surplus_list); 1722 } 1723 allocated += i; 1724 1725 /* 1726 * After retaking hugetlb_lock, we need to recalculate 'needed' 1727 * because either resv_huge_pages or free_huge_pages may have changed. 1728 */ 1729 spin_lock(&hugetlb_lock); 1730 needed = (h->resv_huge_pages + delta) - 1731 (h->free_huge_pages + allocated); 1732 if (needed > 0) { 1733 if (alloc_ok) 1734 goto retry; 1735 /* 1736 * We were not able to allocate enough pages to 1737 * satisfy the entire reservation so we free what 1738 * we've allocated so far. 1739 */ 1740 goto free; 1741 } 1742 /* 1743 * The surplus_list now contains _at_least_ the number of extra pages 1744 * needed to accommodate the reservation. Add the appropriate number 1745 * of pages to the hugetlb pool and free the extras back to the buddy 1746 * allocator. Commit the entire reservation here to prevent another 1747 * process from stealing the pages as they are added to the pool but 1748 * before they are reserved. 1749 */ 1750 needed += allocated; 1751 h->resv_huge_pages += delta; 1752 ret = 0; 1753 1754 /* Free the needed pages to the hugetlb pool */ 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1756 if ((--needed) < 0) 1757 break; 1758 /* 1759 * This page is now managed by the hugetlb allocator and has 1760 * no users -- drop the buddy allocator's reference. 1761 */ 1762 put_page_testzero(page); 1763 VM_BUG_ON_PAGE(page_count(page), page); 1764 enqueue_huge_page(h, page); 1765 } 1766 free: 1767 spin_unlock(&hugetlb_lock); 1768 1769 /* Free unnecessary surplus pages to the buddy allocator */ 1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1771 put_page(page); 1772 spin_lock(&hugetlb_lock); 1773 1774 return ret; 1775 } 1776 1777 /* 1778 * This routine has two main purposes: 1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1780 * in unused_resv_pages. This corresponds to the prior adjustments made 1781 * to the associated reservation map. 1782 * 2) Free any unused surplus pages that may have been allocated to satisfy 1783 * the reservation. As many as unused_resv_pages may be freed. 1784 * 1785 * Called with hugetlb_lock held. However, the lock could be dropped (and 1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1787 * we must make sure nobody else can claim pages we are in the process of 1788 * freeing. Do this by ensuring resv_huge_page always is greater than the 1789 * number of huge pages we plan to free when dropping the lock. 1790 */ 1791 static void return_unused_surplus_pages(struct hstate *h, 1792 unsigned long unused_resv_pages) 1793 { 1794 unsigned long nr_pages; 1795 1796 /* Cannot return gigantic pages currently */ 1797 if (hstate_is_gigantic(h)) 1798 goto out; 1799 1800 /* 1801 * Part (or even all) of the reservation could have been backed 1802 * by pre-allocated pages. Only free surplus pages. 1803 */ 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1805 1806 /* 1807 * We want to release as many surplus pages as possible, spread 1808 * evenly across all nodes with memory. Iterate across these nodes 1809 * until we can no longer free unreserved surplus pages. This occurs 1810 * when the nodes with surplus pages have no free pages. 1811 * free_pool_huge_page() will balance the the freed pages across the 1812 * on-line nodes with memory and will handle the hstate accounting. 1813 * 1814 * Note that we decrement resv_huge_pages as we free the pages. If 1815 * we drop the lock, resv_huge_pages will still be sufficiently large 1816 * to cover subsequent pages we may free. 1817 */ 1818 while (nr_pages--) { 1819 h->resv_huge_pages--; 1820 unused_resv_pages--; 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1822 goto out; 1823 cond_resched_lock(&hugetlb_lock); 1824 } 1825 1826 out: 1827 /* Fully uncommit the reservation */ 1828 h->resv_huge_pages -= unused_resv_pages; 1829 } 1830 1831 1832 /* 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1834 * are used by the huge page allocation routines to manage reservations. 1835 * 1836 * vma_needs_reservation is called to determine if the huge page at addr 1837 * within the vma has an associated reservation. If a reservation is 1838 * needed, the value 1 is returned. The caller is then responsible for 1839 * managing the global reservation and subpool usage counts. After 1840 * the huge page has been allocated, vma_commit_reservation is called 1841 * to add the page to the reservation map. If the page allocation fails, 1842 * the reservation must be ended instead of committed. vma_end_reservation 1843 * is called in such cases. 1844 * 1845 * In the normal case, vma_commit_reservation returns the same value 1846 * as the preceding vma_needs_reservation call. The only time this 1847 * is not the case is if a reserve map was changed between calls. It 1848 * is the responsibility of the caller to notice the difference and 1849 * take appropriate action. 1850 * 1851 * vma_add_reservation is used in error paths where a reservation must 1852 * be restored when a newly allocated huge page must be freed. It is 1853 * to be called after calling vma_needs_reservation to determine if a 1854 * reservation exists. 1855 */ 1856 enum vma_resv_mode { 1857 VMA_NEEDS_RESV, 1858 VMA_COMMIT_RESV, 1859 VMA_END_RESV, 1860 VMA_ADD_RESV, 1861 }; 1862 static long __vma_reservation_common(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr, 1864 enum vma_resv_mode mode) 1865 { 1866 struct resv_map *resv; 1867 pgoff_t idx; 1868 long ret; 1869 1870 resv = vma_resv_map(vma); 1871 if (!resv) 1872 return 1; 1873 1874 idx = vma_hugecache_offset(h, vma, addr); 1875 switch (mode) { 1876 case VMA_NEEDS_RESV: 1877 ret = region_chg(resv, idx, idx + 1); 1878 break; 1879 case VMA_COMMIT_RESV: 1880 ret = region_add(resv, idx, idx + 1); 1881 break; 1882 case VMA_END_RESV: 1883 region_abort(resv, idx, idx + 1); 1884 ret = 0; 1885 break; 1886 case VMA_ADD_RESV: 1887 if (vma->vm_flags & VM_MAYSHARE) 1888 ret = region_add(resv, idx, idx + 1); 1889 else { 1890 region_abort(resv, idx, idx + 1); 1891 ret = region_del(resv, idx, idx + 1); 1892 } 1893 break; 1894 default: 1895 BUG(); 1896 } 1897 1898 if (vma->vm_flags & VM_MAYSHARE) 1899 return ret; 1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1901 /* 1902 * In most cases, reserves always exist for private mappings. 1903 * However, a file associated with mapping could have been 1904 * hole punched or truncated after reserves were consumed. 1905 * As subsequent fault on such a range will not use reserves. 1906 * Subtle - The reserve map for private mappings has the 1907 * opposite meaning than that of shared mappings. If NO 1908 * entry is in the reserve map, it means a reservation exists. 1909 * If an entry exists in the reserve map, it means the 1910 * reservation has already been consumed. As a result, the 1911 * return value of this routine is the opposite of the 1912 * value returned from reserve map manipulation routines above. 1913 */ 1914 if (ret) 1915 return 0; 1916 else 1917 return 1; 1918 } 1919 else 1920 return ret < 0 ? ret : 0; 1921 } 1922 1923 static long vma_needs_reservation(struct hstate *h, 1924 struct vm_area_struct *vma, unsigned long addr) 1925 { 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1927 } 1928 1929 static long vma_commit_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931 { 1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1933 } 1934 1935 static void vma_end_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937 { 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1939 } 1940 1941 static long vma_add_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943 { 1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1945 } 1946 1947 /* 1948 * This routine is called to restore a reservation on error paths. In the 1949 * specific error paths, a huge page was allocated (via alloc_huge_page) 1950 * and is about to be freed. If a reservation for the page existed, 1951 * alloc_huge_page would have consumed the reservation and set PagePrivate 1952 * in the newly allocated page. When the page is freed via free_huge_page, 1953 * the global reservation count will be incremented if PagePrivate is set. 1954 * However, free_huge_page can not adjust the reserve map. Adjust the 1955 * reserve map here to be consistent with global reserve count adjustments 1956 * to be made by free_huge_page. 1957 */ 1958 static void restore_reserve_on_error(struct hstate *h, 1959 struct vm_area_struct *vma, unsigned long address, 1960 struct page *page) 1961 { 1962 if (unlikely(PagePrivate(page))) { 1963 long rc = vma_needs_reservation(h, vma, address); 1964 1965 if (unlikely(rc < 0)) { 1966 /* 1967 * Rare out of memory condition in reserve map 1968 * manipulation. Clear PagePrivate so that 1969 * global reserve count will not be incremented 1970 * by free_huge_page. This will make it appear 1971 * as though the reservation for this page was 1972 * consumed. This may prevent the task from 1973 * faulting in the page at a later time. This 1974 * is better than inconsistent global huge page 1975 * accounting of reserve counts. 1976 */ 1977 ClearPagePrivate(page); 1978 } else if (rc) { 1979 rc = vma_add_reservation(h, vma, address); 1980 if (unlikely(rc < 0)) 1981 /* 1982 * See above comment about rare out of 1983 * memory condition. 1984 */ 1985 ClearPagePrivate(page); 1986 } else 1987 vma_end_reservation(h, vma, address); 1988 } 1989 } 1990 1991 struct page *alloc_huge_page(struct vm_area_struct *vma, 1992 unsigned long addr, int avoid_reserve) 1993 { 1994 struct hugepage_subpool *spool = subpool_vma(vma); 1995 struct hstate *h = hstate_vma(vma); 1996 struct page *page; 1997 long map_chg, map_commit; 1998 long gbl_chg; 1999 int ret, idx; 2000 struct hugetlb_cgroup *h_cg; 2001 2002 idx = hstate_index(h); 2003 /* 2004 * Examine the region/reserve map to determine if the process 2005 * has a reservation for the page to be allocated. A return 2006 * code of zero indicates a reservation exists (no change). 2007 */ 2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2009 if (map_chg < 0) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* 2013 * Processes that did not create the mapping will have no 2014 * reserves as indicated by the region/reserve map. Check 2015 * that the allocation will not exceed the subpool limit. 2016 * Allocations for MAP_NORESERVE mappings also need to be 2017 * checked against any subpool limit. 2018 */ 2019 if (map_chg || avoid_reserve) { 2020 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2021 if (gbl_chg < 0) { 2022 vma_end_reservation(h, vma, addr); 2023 return ERR_PTR(-ENOSPC); 2024 } 2025 2026 /* 2027 * Even though there was no reservation in the region/reserve 2028 * map, there could be reservations associated with the 2029 * subpool that can be used. This would be indicated if the 2030 * return value of hugepage_subpool_get_pages() is zero. 2031 * However, if avoid_reserve is specified we still avoid even 2032 * the subpool reservations. 2033 */ 2034 if (avoid_reserve) 2035 gbl_chg = 1; 2036 } 2037 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2039 if (ret) 2040 goto out_subpool_put; 2041 2042 spin_lock(&hugetlb_lock); 2043 /* 2044 * glb_chg is passed to indicate whether or not a page must be taken 2045 * from the global free pool (global change). gbl_chg == 0 indicates 2046 * a reservation exists for the allocation. 2047 */ 2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2049 if (!page) { 2050 spin_unlock(&hugetlb_lock); 2051 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 2052 if (!page) 2053 goto out_uncharge_cgroup; 2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2055 SetPagePrivate(page); 2056 h->resv_huge_pages--; 2057 } 2058 spin_lock(&hugetlb_lock); 2059 list_move(&page->lru, &h->hugepage_activelist); 2060 /* Fall through */ 2061 } 2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2063 spin_unlock(&hugetlb_lock); 2064 2065 set_page_private(page, (unsigned long)spool); 2066 2067 map_commit = vma_commit_reservation(h, vma, addr); 2068 if (unlikely(map_chg > map_commit)) { 2069 /* 2070 * The page was added to the reservation map between 2071 * vma_needs_reservation and vma_commit_reservation. 2072 * This indicates a race with hugetlb_reserve_pages. 2073 * Adjust for the subpool count incremented above AND 2074 * in hugetlb_reserve_pages for the same page. Also, 2075 * the reservation count added in hugetlb_reserve_pages 2076 * no longer applies. 2077 */ 2078 long rsv_adjust; 2079 2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2081 hugetlb_acct_memory(h, -rsv_adjust); 2082 } 2083 return page; 2084 2085 out_uncharge_cgroup: 2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2087 out_subpool_put: 2088 if (map_chg || avoid_reserve) 2089 hugepage_subpool_put_pages(spool, 1); 2090 vma_end_reservation(h, vma, addr); 2091 return ERR_PTR(-ENOSPC); 2092 } 2093 2094 /* 2095 * alloc_huge_page()'s wrapper which simply returns the page if allocation 2096 * succeeds, otherwise NULL. This function is called from new_vma_page(), 2097 * where no ERR_VALUE is expected to be returned. 2098 */ 2099 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 2100 unsigned long addr, int avoid_reserve) 2101 { 2102 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 2103 if (IS_ERR(page)) 2104 page = NULL; 2105 return page; 2106 } 2107 2108 int __weak alloc_bootmem_huge_page(struct hstate *h) 2109 { 2110 struct huge_bootmem_page *m; 2111 int nr_nodes, node; 2112 2113 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2114 void *addr; 2115 2116 addr = memblock_virt_alloc_try_nid_nopanic( 2117 huge_page_size(h), huge_page_size(h), 2118 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2119 if (addr) { 2120 /* 2121 * Use the beginning of the huge page to store the 2122 * huge_bootmem_page struct (until gather_bootmem 2123 * puts them into the mem_map). 2124 */ 2125 m = addr; 2126 goto found; 2127 } 2128 } 2129 return 0; 2130 2131 found: 2132 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2133 /* Put them into a private list first because mem_map is not up yet */ 2134 list_add(&m->list, &huge_boot_pages); 2135 m->hstate = h; 2136 return 1; 2137 } 2138 2139 static void __init prep_compound_huge_page(struct page *page, 2140 unsigned int order) 2141 { 2142 if (unlikely(order > (MAX_ORDER - 1))) 2143 prep_compound_gigantic_page(page, order); 2144 else 2145 prep_compound_page(page, order); 2146 } 2147 2148 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2149 static void __init gather_bootmem_prealloc(void) 2150 { 2151 struct huge_bootmem_page *m; 2152 2153 list_for_each_entry(m, &huge_boot_pages, list) { 2154 struct hstate *h = m->hstate; 2155 struct page *page; 2156 2157 #ifdef CONFIG_HIGHMEM 2158 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2159 memblock_free_late(__pa(m), 2160 sizeof(struct huge_bootmem_page)); 2161 #else 2162 page = virt_to_page(m); 2163 #endif 2164 WARN_ON(page_count(page) != 1); 2165 prep_compound_huge_page(page, h->order); 2166 WARN_ON(PageReserved(page)); 2167 prep_new_huge_page(h, page, page_to_nid(page)); 2168 /* 2169 * If we had gigantic hugepages allocated at boot time, we need 2170 * to restore the 'stolen' pages to totalram_pages in order to 2171 * fix confusing memory reports from free(1) and another 2172 * side-effects, like CommitLimit going negative. 2173 */ 2174 if (hstate_is_gigantic(h)) 2175 adjust_managed_page_count(page, 1 << h->order); 2176 } 2177 } 2178 2179 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2180 { 2181 unsigned long i; 2182 2183 for (i = 0; i < h->max_huge_pages; ++i) { 2184 if (hstate_is_gigantic(h)) { 2185 if (!alloc_bootmem_huge_page(h)) 2186 break; 2187 } else if (!alloc_fresh_huge_page(h, 2188 &node_states[N_MEMORY])) 2189 break; 2190 } 2191 h->max_huge_pages = i; 2192 } 2193 2194 static void __init hugetlb_init_hstates(void) 2195 { 2196 struct hstate *h; 2197 2198 for_each_hstate(h) { 2199 if (minimum_order > huge_page_order(h)) 2200 minimum_order = huge_page_order(h); 2201 2202 /* oversize hugepages were init'ed in early boot */ 2203 if (!hstate_is_gigantic(h)) 2204 hugetlb_hstate_alloc_pages(h); 2205 } 2206 VM_BUG_ON(minimum_order == UINT_MAX); 2207 } 2208 2209 static char * __init memfmt(char *buf, unsigned long n) 2210 { 2211 if (n >= (1UL << 30)) 2212 sprintf(buf, "%lu GB", n >> 30); 2213 else if (n >= (1UL << 20)) 2214 sprintf(buf, "%lu MB", n >> 20); 2215 else 2216 sprintf(buf, "%lu KB", n >> 10); 2217 return buf; 2218 } 2219 2220 static void __init report_hugepages(void) 2221 { 2222 struct hstate *h; 2223 2224 for_each_hstate(h) { 2225 char buf[32]; 2226 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2227 memfmt(buf, huge_page_size(h)), 2228 h->free_huge_pages); 2229 } 2230 } 2231 2232 #ifdef CONFIG_HIGHMEM 2233 static void try_to_free_low(struct hstate *h, unsigned long count, 2234 nodemask_t *nodes_allowed) 2235 { 2236 int i; 2237 2238 if (hstate_is_gigantic(h)) 2239 return; 2240 2241 for_each_node_mask(i, *nodes_allowed) { 2242 struct page *page, *next; 2243 struct list_head *freel = &h->hugepage_freelists[i]; 2244 list_for_each_entry_safe(page, next, freel, lru) { 2245 if (count >= h->nr_huge_pages) 2246 return; 2247 if (PageHighMem(page)) 2248 continue; 2249 list_del(&page->lru); 2250 update_and_free_page(h, page); 2251 h->free_huge_pages--; 2252 h->free_huge_pages_node[page_to_nid(page)]--; 2253 } 2254 } 2255 } 2256 #else 2257 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2258 nodemask_t *nodes_allowed) 2259 { 2260 } 2261 #endif 2262 2263 /* 2264 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2265 * balanced by operating on them in a round-robin fashion. 2266 * Returns 1 if an adjustment was made. 2267 */ 2268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2269 int delta) 2270 { 2271 int nr_nodes, node; 2272 2273 VM_BUG_ON(delta != -1 && delta != 1); 2274 2275 if (delta < 0) { 2276 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2277 if (h->surplus_huge_pages_node[node]) 2278 goto found; 2279 } 2280 } else { 2281 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2282 if (h->surplus_huge_pages_node[node] < 2283 h->nr_huge_pages_node[node]) 2284 goto found; 2285 } 2286 } 2287 return 0; 2288 2289 found: 2290 h->surplus_huge_pages += delta; 2291 h->surplus_huge_pages_node[node] += delta; 2292 return 1; 2293 } 2294 2295 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2296 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2297 nodemask_t *nodes_allowed) 2298 { 2299 unsigned long min_count, ret; 2300 2301 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2302 return h->max_huge_pages; 2303 2304 /* 2305 * Increase the pool size 2306 * First take pages out of surplus state. Then make up the 2307 * remaining difference by allocating fresh huge pages. 2308 * 2309 * We might race with __alloc_buddy_huge_page() here and be unable 2310 * to convert a surplus huge page to a normal huge page. That is 2311 * not critical, though, it just means the overall size of the 2312 * pool might be one hugepage larger than it needs to be, but 2313 * within all the constraints specified by the sysctls. 2314 */ 2315 spin_lock(&hugetlb_lock); 2316 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2317 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2318 break; 2319 } 2320 2321 while (count > persistent_huge_pages(h)) { 2322 /* 2323 * If this allocation races such that we no longer need the 2324 * page, free_huge_page will handle it by freeing the page 2325 * and reducing the surplus. 2326 */ 2327 spin_unlock(&hugetlb_lock); 2328 2329 /* yield cpu to avoid soft lockup */ 2330 cond_resched(); 2331 2332 if (hstate_is_gigantic(h)) 2333 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2334 else 2335 ret = alloc_fresh_huge_page(h, nodes_allowed); 2336 spin_lock(&hugetlb_lock); 2337 if (!ret) 2338 goto out; 2339 2340 /* Bail for signals. Probably ctrl-c from user */ 2341 if (signal_pending(current)) 2342 goto out; 2343 } 2344 2345 /* 2346 * Decrease the pool size 2347 * First return free pages to the buddy allocator (being careful 2348 * to keep enough around to satisfy reservations). Then place 2349 * pages into surplus state as needed so the pool will shrink 2350 * to the desired size as pages become free. 2351 * 2352 * By placing pages into the surplus state independent of the 2353 * overcommit value, we are allowing the surplus pool size to 2354 * exceed overcommit. There are few sane options here. Since 2355 * __alloc_buddy_huge_page() is checking the global counter, 2356 * though, we'll note that we're not allowed to exceed surplus 2357 * and won't grow the pool anywhere else. Not until one of the 2358 * sysctls are changed, or the surplus pages go out of use. 2359 */ 2360 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2361 min_count = max(count, min_count); 2362 try_to_free_low(h, min_count, nodes_allowed); 2363 while (min_count < persistent_huge_pages(h)) { 2364 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2365 break; 2366 cond_resched_lock(&hugetlb_lock); 2367 } 2368 while (count < persistent_huge_pages(h)) { 2369 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2370 break; 2371 } 2372 out: 2373 ret = persistent_huge_pages(h); 2374 spin_unlock(&hugetlb_lock); 2375 return ret; 2376 } 2377 2378 #define HSTATE_ATTR_RO(_name) \ 2379 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2380 2381 #define HSTATE_ATTR(_name) \ 2382 static struct kobj_attribute _name##_attr = \ 2383 __ATTR(_name, 0644, _name##_show, _name##_store) 2384 2385 static struct kobject *hugepages_kobj; 2386 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2387 2388 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2389 2390 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2391 { 2392 int i; 2393 2394 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2395 if (hstate_kobjs[i] == kobj) { 2396 if (nidp) 2397 *nidp = NUMA_NO_NODE; 2398 return &hstates[i]; 2399 } 2400 2401 return kobj_to_node_hstate(kobj, nidp); 2402 } 2403 2404 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2405 struct kobj_attribute *attr, char *buf) 2406 { 2407 struct hstate *h; 2408 unsigned long nr_huge_pages; 2409 int nid; 2410 2411 h = kobj_to_hstate(kobj, &nid); 2412 if (nid == NUMA_NO_NODE) 2413 nr_huge_pages = h->nr_huge_pages; 2414 else 2415 nr_huge_pages = h->nr_huge_pages_node[nid]; 2416 2417 return sprintf(buf, "%lu\n", nr_huge_pages); 2418 } 2419 2420 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2421 struct hstate *h, int nid, 2422 unsigned long count, size_t len) 2423 { 2424 int err; 2425 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2426 2427 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2428 err = -EINVAL; 2429 goto out; 2430 } 2431 2432 if (nid == NUMA_NO_NODE) { 2433 /* 2434 * global hstate attribute 2435 */ 2436 if (!(obey_mempolicy && 2437 init_nodemask_of_mempolicy(nodes_allowed))) { 2438 NODEMASK_FREE(nodes_allowed); 2439 nodes_allowed = &node_states[N_MEMORY]; 2440 } 2441 } else if (nodes_allowed) { 2442 /* 2443 * per node hstate attribute: adjust count to global, 2444 * but restrict alloc/free to the specified node. 2445 */ 2446 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2447 init_nodemask_of_node(nodes_allowed, nid); 2448 } else 2449 nodes_allowed = &node_states[N_MEMORY]; 2450 2451 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2452 2453 if (nodes_allowed != &node_states[N_MEMORY]) 2454 NODEMASK_FREE(nodes_allowed); 2455 2456 return len; 2457 out: 2458 NODEMASK_FREE(nodes_allowed); 2459 return err; 2460 } 2461 2462 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2463 struct kobject *kobj, const char *buf, 2464 size_t len) 2465 { 2466 struct hstate *h; 2467 unsigned long count; 2468 int nid; 2469 int err; 2470 2471 err = kstrtoul(buf, 10, &count); 2472 if (err) 2473 return err; 2474 2475 h = kobj_to_hstate(kobj, &nid); 2476 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2477 } 2478 2479 static ssize_t nr_hugepages_show(struct kobject *kobj, 2480 struct kobj_attribute *attr, char *buf) 2481 { 2482 return nr_hugepages_show_common(kobj, attr, buf); 2483 } 2484 2485 static ssize_t nr_hugepages_store(struct kobject *kobj, 2486 struct kobj_attribute *attr, const char *buf, size_t len) 2487 { 2488 return nr_hugepages_store_common(false, kobj, buf, len); 2489 } 2490 HSTATE_ATTR(nr_hugepages); 2491 2492 #ifdef CONFIG_NUMA 2493 2494 /* 2495 * hstate attribute for optionally mempolicy-based constraint on persistent 2496 * huge page alloc/free. 2497 */ 2498 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2499 struct kobj_attribute *attr, char *buf) 2500 { 2501 return nr_hugepages_show_common(kobj, attr, buf); 2502 } 2503 2504 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2505 struct kobj_attribute *attr, const char *buf, size_t len) 2506 { 2507 return nr_hugepages_store_common(true, kobj, buf, len); 2508 } 2509 HSTATE_ATTR(nr_hugepages_mempolicy); 2510 #endif 2511 2512 2513 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2514 struct kobj_attribute *attr, char *buf) 2515 { 2516 struct hstate *h = kobj_to_hstate(kobj, NULL); 2517 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2518 } 2519 2520 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2521 struct kobj_attribute *attr, const char *buf, size_t count) 2522 { 2523 int err; 2524 unsigned long input; 2525 struct hstate *h = kobj_to_hstate(kobj, NULL); 2526 2527 if (hstate_is_gigantic(h)) 2528 return -EINVAL; 2529 2530 err = kstrtoul(buf, 10, &input); 2531 if (err) 2532 return err; 2533 2534 spin_lock(&hugetlb_lock); 2535 h->nr_overcommit_huge_pages = input; 2536 spin_unlock(&hugetlb_lock); 2537 2538 return count; 2539 } 2540 HSTATE_ATTR(nr_overcommit_hugepages); 2541 2542 static ssize_t free_hugepages_show(struct kobject *kobj, 2543 struct kobj_attribute *attr, char *buf) 2544 { 2545 struct hstate *h; 2546 unsigned long free_huge_pages; 2547 int nid; 2548 2549 h = kobj_to_hstate(kobj, &nid); 2550 if (nid == NUMA_NO_NODE) 2551 free_huge_pages = h->free_huge_pages; 2552 else 2553 free_huge_pages = h->free_huge_pages_node[nid]; 2554 2555 return sprintf(buf, "%lu\n", free_huge_pages); 2556 } 2557 HSTATE_ATTR_RO(free_hugepages); 2558 2559 static ssize_t resv_hugepages_show(struct kobject *kobj, 2560 struct kobj_attribute *attr, char *buf) 2561 { 2562 struct hstate *h = kobj_to_hstate(kobj, NULL); 2563 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2564 } 2565 HSTATE_ATTR_RO(resv_hugepages); 2566 2567 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2568 struct kobj_attribute *attr, char *buf) 2569 { 2570 struct hstate *h; 2571 unsigned long surplus_huge_pages; 2572 int nid; 2573 2574 h = kobj_to_hstate(kobj, &nid); 2575 if (nid == NUMA_NO_NODE) 2576 surplus_huge_pages = h->surplus_huge_pages; 2577 else 2578 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2579 2580 return sprintf(buf, "%lu\n", surplus_huge_pages); 2581 } 2582 HSTATE_ATTR_RO(surplus_hugepages); 2583 2584 static struct attribute *hstate_attrs[] = { 2585 &nr_hugepages_attr.attr, 2586 &nr_overcommit_hugepages_attr.attr, 2587 &free_hugepages_attr.attr, 2588 &resv_hugepages_attr.attr, 2589 &surplus_hugepages_attr.attr, 2590 #ifdef CONFIG_NUMA 2591 &nr_hugepages_mempolicy_attr.attr, 2592 #endif 2593 NULL, 2594 }; 2595 2596 static struct attribute_group hstate_attr_group = { 2597 .attrs = hstate_attrs, 2598 }; 2599 2600 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2601 struct kobject **hstate_kobjs, 2602 struct attribute_group *hstate_attr_group) 2603 { 2604 int retval; 2605 int hi = hstate_index(h); 2606 2607 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2608 if (!hstate_kobjs[hi]) 2609 return -ENOMEM; 2610 2611 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2612 if (retval) 2613 kobject_put(hstate_kobjs[hi]); 2614 2615 return retval; 2616 } 2617 2618 static void __init hugetlb_sysfs_init(void) 2619 { 2620 struct hstate *h; 2621 int err; 2622 2623 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2624 if (!hugepages_kobj) 2625 return; 2626 2627 for_each_hstate(h) { 2628 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2629 hstate_kobjs, &hstate_attr_group); 2630 if (err) 2631 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2632 } 2633 } 2634 2635 #ifdef CONFIG_NUMA 2636 2637 /* 2638 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2639 * with node devices in node_devices[] using a parallel array. The array 2640 * index of a node device or _hstate == node id. 2641 * This is here to avoid any static dependency of the node device driver, in 2642 * the base kernel, on the hugetlb module. 2643 */ 2644 struct node_hstate { 2645 struct kobject *hugepages_kobj; 2646 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2647 }; 2648 static struct node_hstate node_hstates[MAX_NUMNODES]; 2649 2650 /* 2651 * A subset of global hstate attributes for node devices 2652 */ 2653 static struct attribute *per_node_hstate_attrs[] = { 2654 &nr_hugepages_attr.attr, 2655 &free_hugepages_attr.attr, 2656 &surplus_hugepages_attr.attr, 2657 NULL, 2658 }; 2659 2660 static struct attribute_group per_node_hstate_attr_group = { 2661 .attrs = per_node_hstate_attrs, 2662 }; 2663 2664 /* 2665 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2666 * Returns node id via non-NULL nidp. 2667 */ 2668 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2669 { 2670 int nid; 2671 2672 for (nid = 0; nid < nr_node_ids; nid++) { 2673 struct node_hstate *nhs = &node_hstates[nid]; 2674 int i; 2675 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2676 if (nhs->hstate_kobjs[i] == kobj) { 2677 if (nidp) 2678 *nidp = nid; 2679 return &hstates[i]; 2680 } 2681 } 2682 2683 BUG(); 2684 return NULL; 2685 } 2686 2687 /* 2688 * Unregister hstate attributes from a single node device. 2689 * No-op if no hstate attributes attached. 2690 */ 2691 static void hugetlb_unregister_node(struct node *node) 2692 { 2693 struct hstate *h; 2694 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2695 2696 if (!nhs->hugepages_kobj) 2697 return; /* no hstate attributes */ 2698 2699 for_each_hstate(h) { 2700 int idx = hstate_index(h); 2701 if (nhs->hstate_kobjs[idx]) { 2702 kobject_put(nhs->hstate_kobjs[idx]); 2703 nhs->hstate_kobjs[idx] = NULL; 2704 } 2705 } 2706 2707 kobject_put(nhs->hugepages_kobj); 2708 nhs->hugepages_kobj = NULL; 2709 } 2710 2711 2712 /* 2713 * Register hstate attributes for a single node device. 2714 * No-op if attributes already registered. 2715 */ 2716 static void hugetlb_register_node(struct node *node) 2717 { 2718 struct hstate *h; 2719 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2720 int err; 2721 2722 if (nhs->hugepages_kobj) 2723 return; /* already allocated */ 2724 2725 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2726 &node->dev.kobj); 2727 if (!nhs->hugepages_kobj) 2728 return; 2729 2730 for_each_hstate(h) { 2731 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2732 nhs->hstate_kobjs, 2733 &per_node_hstate_attr_group); 2734 if (err) { 2735 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2736 h->name, node->dev.id); 2737 hugetlb_unregister_node(node); 2738 break; 2739 } 2740 } 2741 } 2742 2743 /* 2744 * hugetlb init time: register hstate attributes for all registered node 2745 * devices of nodes that have memory. All on-line nodes should have 2746 * registered their associated device by this time. 2747 */ 2748 static void __init hugetlb_register_all_nodes(void) 2749 { 2750 int nid; 2751 2752 for_each_node_state(nid, N_MEMORY) { 2753 struct node *node = node_devices[nid]; 2754 if (node->dev.id == nid) 2755 hugetlb_register_node(node); 2756 } 2757 2758 /* 2759 * Let the node device driver know we're here so it can 2760 * [un]register hstate attributes on node hotplug. 2761 */ 2762 register_hugetlbfs_with_node(hugetlb_register_node, 2763 hugetlb_unregister_node); 2764 } 2765 #else /* !CONFIG_NUMA */ 2766 2767 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2768 { 2769 BUG(); 2770 if (nidp) 2771 *nidp = -1; 2772 return NULL; 2773 } 2774 2775 static void hugetlb_register_all_nodes(void) { } 2776 2777 #endif 2778 2779 static int __init hugetlb_init(void) 2780 { 2781 int i; 2782 2783 if (!hugepages_supported()) 2784 return 0; 2785 2786 if (!size_to_hstate(default_hstate_size)) { 2787 default_hstate_size = HPAGE_SIZE; 2788 if (!size_to_hstate(default_hstate_size)) 2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2790 } 2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2792 if (default_hstate_max_huge_pages) { 2793 if (!default_hstate.max_huge_pages) 2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2795 } 2796 2797 hugetlb_init_hstates(); 2798 gather_bootmem_prealloc(); 2799 report_hugepages(); 2800 2801 hugetlb_sysfs_init(); 2802 hugetlb_register_all_nodes(); 2803 hugetlb_cgroup_file_init(); 2804 2805 #ifdef CONFIG_SMP 2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2807 #else 2808 num_fault_mutexes = 1; 2809 #endif 2810 hugetlb_fault_mutex_table = 2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2812 BUG_ON(!hugetlb_fault_mutex_table); 2813 2814 for (i = 0; i < num_fault_mutexes; i++) 2815 mutex_init(&hugetlb_fault_mutex_table[i]); 2816 return 0; 2817 } 2818 subsys_initcall(hugetlb_init); 2819 2820 /* Should be called on processing a hugepagesz=... option */ 2821 void __init hugetlb_bad_size(void) 2822 { 2823 parsed_valid_hugepagesz = false; 2824 } 2825 2826 void __init hugetlb_add_hstate(unsigned int order) 2827 { 2828 struct hstate *h; 2829 unsigned long i; 2830 2831 if (size_to_hstate(PAGE_SIZE << order)) { 2832 pr_warn("hugepagesz= specified twice, ignoring\n"); 2833 return; 2834 } 2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2836 BUG_ON(order == 0); 2837 h = &hstates[hugetlb_max_hstate++]; 2838 h->order = order; 2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2840 h->nr_huge_pages = 0; 2841 h->free_huge_pages = 0; 2842 for (i = 0; i < MAX_NUMNODES; ++i) 2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2844 INIT_LIST_HEAD(&h->hugepage_activelist); 2845 h->next_nid_to_alloc = first_memory_node; 2846 h->next_nid_to_free = first_memory_node; 2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2848 huge_page_size(h)/1024); 2849 2850 parsed_hstate = h; 2851 } 2852 2853 static int __init hugetlb_nrpages_setup(char *s) 2854 { 2855 unsigned long *mhp; 2856 static unsigned long *last_mhp; 2857 2858 if (!parsed_valid_hugepagesz) { 2859 pr_warn("hugepages = %s preceded by " 2860 "an unsupported hugepagesz, ignoring\n", s); 2861 parsed_valid_hugepagesz = true; 2862 return 1; 2863 } 2864 /* 2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2866 * so this hugepages= parameter goes to the "default hstate". 2867 */ 2868 else if (!hugetlb_max_hstate) 2869 mhp = &default_hstate_max_huge_pages; 2870 else 2871 mhp = &parsed_hstate->max_huge_pages; 2872 2873 if (mhp == last_mhp) { 2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2875 return 1; 2876 } 2877 2878 if (sscanf(s, "%lu", mhp) <= 0) 2879 *mhp = 0; 2880 2881 /* 2882 * Global state is always initialized later in hugetlb_init. 2883 * But we need to allocate >= MAX_ORDER hstates here early to still 2884 * use the bootmem allocator. 2885 */ 2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2887 hugetlb_hstate_alloc_pages(parsed_hstate); 2888 2889 last_mhp = mhp; 2890 2891 return 1; 2892 } 2893 __setup("hugepages=", hugetlb_nrpages_setup); 2894 2895 static int __init hugetlb_default_setup(char *s) 2896 { 2897 default_hstate_size = memparse(s, &s); 2898 return 1; 2899 } 2900 __setup("default_hugepagesz=", hugetlb_default_setup); 2901 2902 static unsigned int cpuset_mems_nr(unsigned int *array) 2903 { 2904 int node; 2905 unsigned int nr = 0; 2906 2907 for_each_node_mask(node, cpuset_current_mems_allowed) 2908 nr += array[node]; 2909 2910 return nr; 2911 } 2912 2913 #ifdef CONFIG_SYSCTL 2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2915 struct ctl_table *table, int write, 2916 void __user *buffer, size_t *length, loff_t *ppos) 2917 { 2918 struct hstate *h = &default_hstate; 2919 unsigned long tmp = h->max_huge_pages; 2920 int ret; 2921 2922 if (!hugepages_supported()) 2923 return -EOPNOTSUPP; 2924 2925 table->data = &tmp; 2926 table->maxlen = sizeof(unsigned long); 2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2928 if (ret) 2929 goto out; 2930 2931 if (write) 2932 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2933 NUMA_NO_NODE, tmp, *length); 2934 out: 2935 return ret; 2936 } 2937 2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2939 void __user *buffer, size_t *length, loff_t *ppos) 2940 { 2941 2942 return hugetlb_sysctl_handler_common(false, table, write, 2943 buffer, length, ppos); 2944 } 2945 2946 #ifdef CONFIG_NUMA 2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2948 void __user *buffer, size_t *length, loff_t *ppos) 2949 { 2950 return hugetlb_sysctl_handler_common(true, table, write, 2951 buffer, length, ppos); 2952 } 2953 #endif /* CONFIG_NUMA */ 2954 2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2956 void __user *buffer, 2957 size_t *length, loff_t *ppos) 2958 { 2959 struct hstate *h = &default_hstate; 2960 unsigned long tmp; 2961 int ret; 2962 2963 if (!hugepages_supported()) 2964 return -EOPNOTSUPP; 2965 2966 tmp = h->nr_overcommit_huge_pages; 2967 2968 if (write && hstate_is_gigantic(h)) 2969 return -EINVAL; 2970 2971 table->data = &tmp; 2972 table->maxlen = sizeof(unsigned long); 2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2974 if (ret) 2975 goto out; 2976 2977 if (write) { 2978 spin_lock(&hugetlb_lock); 2979 h->nr_overcommit_huge_pages = tmp; 2980 spin_unlock(&hugetlb_lock); 2981 } 2982 out: 2983 return ret; 2984 } 2985 2986 #endif /* CONFIG_SYSCTL */ 2987 2988 void hugetlb_report_meminfo(struct seq_file *m) 2989 { 2990 struct hstate *h = &default_hstate; 2991 if (!hugepages_supported()) 2992 return; 2993 seq_printf(m, 2994 "HugePages_Total: %5lu\n" 2995 "HugePages_Free: %5lu\n" 2996 "HugePages_Rsvd: %5lu\n" 2997 "HugePages_Surp: %5lu\n" 2998 "Hugepagesize: %8lu kB\n", 2999 h->nr_huge_pages, 3000 h->free_huge_pages, 3001 h->resv_huge_pages, 3002 h->surplus_huge_pages, 3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3004 } 3005 3006 int hugetlb_report_node_meminfo(int nid, char *buf) 3007 { 3008 struct hstate *h = &default_hstate; 3009 if (!hugepages_supported()) 3010 return 0; 3011 return sprintf(buf, 3012 "Node %d HugePages_Total: %5u\n" 3013 "Node %d HugePages_Free: %5u\n" 3014 "Node %d HugePages_Surp: %5u\n", 3015 nid, h->nr_huge_pages_node[nid], 3016 nid, h->free_huge_pages_node[nid], 3017 nid, h->surplus_huge_pages_node[nid]); 3018 } 3019 3020 void hugetlb_show_meminfo(void) 3021 { 3022 struct hstate *h; 3023 int nid; 3024 3025 if (!hugepages_supported()) 3026 return; 3027 3028 for_each_node_state(nid, N_MEMORY) 3029 for_each_hstate(h) 3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3031 nid, 3032 h->nr_huge_pages_node[nid], 3033 h->free_huge_pages_node[nid], 3034 h->surplus_huge_pages_node[nid], 3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3036 } 3037 3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3039 { 3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3042 } 3043 3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3045 unsigned long hugetlb_total_pages(void) 3046 { 3047 struct hstate *h; 3048 unsigned long nr_total_pages = 0; 3049 3050 for_each_hstate(h) 3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3052 return nr_total_pages; 3053 } 3054 3055 static int hugetlb_acct_memory(struct hstate *h, long delta) 3056 { 3057 int ret = -ENOMEM; 3058 3059 spin_lock(&hugetlb_lock); 3060 /* 3061 * When cpuset is configured, it breaks the strict hugetlb page 3062 * reservation as the accounting is done on a global variable. Such 3063 * reservation is completely rubbish in the presence of cpuset because 3064 * the reservation is not checked against page availability for the 3065 * current cpuset. Application can still potentially OOM'ed by kernel 3066 * with lack of free htlb page in cpuset that the task is in. 3067 * Attempt to enforce strict accounting with cpuset is almost 3068 * impossible (or too ugly) because cpuset is too fluid that 3069 * task or memory node can be dynamically moved between cpusets. 3070 * 3071 * The change of semantics for shared hugetlb mapping with cpuset is 3072 * undesirable. However, in order to preserve some of the semantics, 3073 * we fall back to check against current free page availability as 3074 * a best attempt and hopefully to minimize the impact of changing 3075 * semantics that cpuset has. 3076 */ 3077 if (delta > 0) { 3078 if (gather_surplus_pages(h, delta) < 0) 3079 goto out; 3080 3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3082 return_unused_surplus_pages(h, delta); 3083 goto out; 3084 } 3085 } 3086 3087 ret = 0; 3088 if (delta < 0) 3089 return_unused_surplus_pages(h, (unsigned long) -delta); 3090 3091 out: 3092 spin_unlock(&hugetlb_lock); 3093 return ret; 3094 } 3095 3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3097 { 3098 struct resv_map *resv = vma_resv_map(vma); 3099 3100 /* 3101 * This new VMA should share its siblings reservation map if present. 3102 * The VMA will only ever have a valid reservation map pointer where 3103 * it is being copied for another still existing VMA. As that VMA 3104 * has a reference to the reservation map it cannot disappear until 3105 * after this open call completes. It is therefore safe to take a 3106 * new reference here without additional locking. 3107 */ 3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3109 kref_get(&resv->refs); 3110 } 3111 3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3113 { 3114 struct hstate *h = hstate_vma(vma); 3115 struct resv_map *resv = vma_resv_map(vma); 3116 struct hugepage_subpool *spool = subpool_vma(vma); 3117 unsigned long reserve, start, end; 3118 long gbl_reserve; 3119 3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3121 return; 3122 3123 start = vma_hugecache_offset(h, vma, vma->vm_start); 3124 end = vma_hugecache_offset(h, vma, vma->vm_end); 3125 3126 reserve = (end - start) - region_count(resv, start, end); 3127 3128 kref_put(&resv->refs, resv_map_release); 3129 3130 if (reserve) { 3131 /* 3132 * Decrement reserve counts. The global reserve count may be 3133 * adjusted if the subpool has a minimum size. 3134 */ 3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3136 hugetlb_acct_memory(h, -gbl_reserve); 3137 } 3138 } 3139 3140 /* 3141 * We cannot handle pagefaults against hugetlb pages at all. They cause 3142 * handle_mm_fault() to try to instantiate regular-sized pages in the 3143 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3144 * this far. 3145 */ 3146 static int hugetlb_vm_op_fault(struct vm_fault *vmf) 3147 { 3148 BUG(); 3149 return 0; 3150 } 3151 3152 const struct vm_operations_struct hugetlb_vm_ops = { 3153 .fault = hugetlb_vm_op_fault, 3154 .open = hugetlb_vm_op_open, 3155 .close = hugetlb_vm_op_close, 3156 }; 3157 3158 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3159 int writable) 3160 { 3161 pte_t entry; 3162 3163 if (writable) { 3164 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3165 vma->vm_page_prot))); 3166 } else { 3167 entry = huge_pte_wrprotect(mk_huge_pte(page, 3168 vma->vm_page_prot)); 3169 } 3170 entry = pte_mkyoung(entry); 3171 entry = pte_mkhuge(entry); 3172 entry = arch_make_huge_pte(entry, vma, page, writable); 3173 3174 return entry; 3175 } 3176 3177 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3178 unsigned long address, pte_t *ptep) 3179 { 3180 pte_t entry; 3181 3182 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3183 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3184 update_mmu_cache(vma, address, ptep); 3185 } 3186 3187 static int is_hugetlb_entry_migration(pte_t pte) 3188 { 3189 swp_entry_t swp; 3190 3191 if (huge_pte_none(pte) || pte_present(pte)) 3192 return 0; 3193 swp = pte_to_swp_entry(pte); 3194 if (non_swap_entry(swp) && is_migration_entry(swp)) 3195 return 1; 3196 else 3197 return 0; 3198 } 3199 3200 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3201 { 3202 swp_entry_t swp; 3203 3204 if (huge_pte_none(pte) || pte_present(pte)) 3205 return 0; 3206 swp = pte_to_swp_entry(pte); 3207 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3208 return 1; 3209 else 3210 return 0; 3211 } 3212 3213 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3214 struct vm_area_struct *vma) 3215 { 3216 pte_t *src_pte, *dst_pte, entry; 3217 struct page *ptepage; 3218 unsigned long addr; 3219 int cow; 3220 struct hstate *h = hstate_vma(vma); 3221 unsigned long sz = huge_page_size(h); 3222 unsigned long mmun_start; /* For mmu_notifiers */ 3223 unsigned long mmun_end; /* For mmu_notifiers */ 3224 int ret = 0; 3225 3226 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3227 3228 mmun_start = vma->vm_start; 3229 mmun_end = vma->vm_end; 3230 if (cow) 3231 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3232 3233 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3234 spinlock_t *src_ptl, *dst_ptl; 3235 src_pte = huge_pte_offset(src, addr); 3236 if (!src_pte) 3237 continue; 3238 dst_pte = huge_pte_alloc(dst, addr, sz); 3239 if (!dst_pte) { 3240 ret = -ENOMEM; 3241 break; 3242 } 3243 3244 /* If the pagetables are shared don't copy or take references */ 3245 if (dst_pte == src_pte) 3246 continue; 3247 3248 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3249 src_ptl = huge_pte_lockptr(h, src, src_pte); 3250 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3251 entry = huge_ptep_get(src_pte); 3252 if (huge_pte_none(entry)) { /* skip none entry */ 3253 ; 3254 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3255 is_hugetlb_entry_hwpoisoned(entry))) { 3256 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3257 3258 if (is_write_migration_entry(swp_entry) && cow) { 3259 /* 3260 * COW mappings require pages in both 3261 * parent and child to be set to read. 3262 */ 3263 make_migration_entry_read(&swp_entry); 3264 entry = swp_entry_to_pte(swp_entry); 3265 set_huge_pte_at(src, addr, src_pte, entry); 3266 } 3267 set_huge_pte_at(dst, addr, dst_pte, entry); 3268 } else { 3269 if (cow) { 3270 huge_ptep_set_wrprotect(src, addr, src_pte); 3271 mmu_notifier_invalidate_range(src, mmun_start, 3272 mmun_end); 3273 } 3274 entry = huge_ptep_get(src_pte); 3275 ptepage = pte_page(entry); 3276 get_page(ptepage); 3277 page_dup_rmap(ptepage, true); 3278 set_huge_pte_at(dst, addr, dst_pte, entry); 3279 hugetlb_count_add(pages_per_huge_page(h), dst); 3280 } 3281 spin_unlock(src_ptl); 3282 spin_unlock(dst_ptl); 3283 } 3284 3285 if (cow) 3286 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3287 3288 return ret; 3289 } 3290 3291 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3292 unsigned long start, unsigned long end, 3293 struct page *ref_page) 3294 { 3295 struct mm_struct *mm = vma->vm_mm; 3296 unsigned long address; 3297 pte_t *ptep; 3298 pte_t pte; 3299 spinlock_t *ptl; 3300 struct page *page; 3301 struct hstate *h = hstate_vma(vma); 3302 unsigned long sz = huge_page_size(h); 3303 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3304 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3305 3306 WARN_ON(!is_vm_hugetlb_page(vma)); 3307 BUG_ON(start & ~huge_page_mask(h)); 3308 BUG_ON(end & ~huge_page_mask(h)); 3309 3310 /* 3311 * This is a hugetlb vma, all the pte entries should point 3312 * to huge page. 3313 */ 3314 tlb_remove_check_page_size_change(tlb, sz); 3315 tlb_start_vma(tlb, vma); 3316 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3317 address = start; 3318 for (; address < end; address += sz) { 3319 ptep = huge_pte_offset(mm, address); 3320 if (!ptep) 3321 continue; 3322 3323 ptl = huge_pte_lock(h, mm, ptep); 3324 if (huge_pmd_unshare(mm, &address, ptep)) { 3325 spin_unlock(ptl); 3326 continue; 3327 } 3328 3329 pte = huge_ptep_get(ptep); 3330 if (huge_pte_none(pte)) { 3331 spin_unlock(ptl); 3332 continue; 3333 } 3334 3335 /* 3336 * Migrating hugepage or HWPoisoned hugepage is already 3337 * unmapped and its refcount is dropped, so just clear pte here. 3338 */ 3339 if (unlikely(!pte_present(pte))) { 3340 huge_pte_clear(mm, address, ptep); 3341 spin_unlock(ptl); 3342 continue; 3343 } 3344 3345 page = pte_page(pte); 3346 /* 3347 * If a reference page is supplied, it is because a specific 3348 * page is being unmapped, not a range. Ensure the page we 3349 * are about to unmap is the actual page of interest. 3350 */ 3351 if (ref_page) { 3352 if (page != ref_page) { 3353 spin_unlock(ptl); 3354 continue; 3355 } 3356 /* 3357 * Mark the VMA as having unmapped its page so that 3358 * future faults in this VMA will fail rather than 3359 * looking like data was lost 3360 */ 3361 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3362 } 3363 3364 pte = huge_ptep_get_and_clear(mm, address, ptep); 3365 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3366 if (huge_pte_dirty(pte)) 3367 set_page_dirty(page); 3368 3369 hugetlb_count_sub(pages_per_huge_page(h), mm); 3370 page_remove_rmap(page, true); 3371 3372 spin_unlock(ptl); 3373 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3374 /* 3375 * Bail out after unmapping reference page if supplied 3376 */ 3377 if (ref_page) 3378 break; 3379 } 3380 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3381 tlb_end_vma(tlb, vma); 3382 } 3383 3384 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3385 struct vm_area_struct *vma, unsigned long start, 3386 unsigned long end, struct page *ref_page) 3387 { 3388 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3389 3390 /* 3391 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3392 * test will fail on a vma being torn down, and not grab a page table 3393 * on its way out. We're lucky that the flag has such an appropriate 3394 * name, and can in fact be safely cleared here. We could clear it 3395 * before the __unmap_hugepage_range above, but all that's necessary 3396 * is to clear it before releasing the i_mmap_rwsem. This works 3397 * because in the context this is called, the VMA is about to be 3398 * destroyed and the i_mmap_rwsem is held. 3399 */ 3400 vma->vm_flags &= ~VM_MAYSHARE; 3401 } 3402 3403 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3404 unsigned long end, struct page *ref_page) 3405 { 3406 struct mm_struct *mm; 3407 struct mmu_gather tlb; 3408 3409 mm = vma->vm_mm; 3410 3411 tlb_gather_mmu(&tlb, mm, start, end); 3412 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3413 tlb_finish_mmu(&tlb, start, end); 3414 } 3415 3416 /* 3417 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3418 * mappping it owns the reserve page for. The intention is to unmap the page 3419 * from other VMAs and let the children be SIGKILLed if they are faulting the 3420 * same region. 3421 */ 3422 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3423 struct page *page, unsigned long address) 3424 { 3425 struct hstate *h = hstate_vma(vma); 3426 struct vm_area_struct *iter_vma; 3427 struct address_space *mapping; 3428 pgoff_t pgoff; 3429 3430 /* 3431 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3432 * from page cache lookup which is in HPAGE_SIZE units. 3433 */ 3434 address = address & huge_page_mask(h); 3435 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3436 vma->vm_pgoff; 3437 mapping = vma->vm_file->f_mapping; 3438 3439 /* 3440 * Take the mapping lock for the duration of the table walk. As 3441 * this mapping should be shared between all the VMAs, 3442 * __unmap_hugepage_range() is called as the lock is already held 3443 */ 3444 i_mmap_lock_write(mapping); 3445 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3446 /* Do not unmap the current VMA */ 3447 if (iter_vma == vma) 3448 continue; 3449 3450 /* 3451 * Shared VMAs have their own reserves and do not affect 3452 * MAP_PRIVATE accounting but it is possible that a shared 3453 * VMA is using the same page so check and skip such VMAs. 3454 */ 3455 if (iter_vma->vm_flags & VM_MAYSHARE) 3456 continue; 3457 3458 /* 3459 * Unmap the page from other VMAs without their own reserves. 3460 * They get marked to be SIGKILLed if they fault in these 3461 * areas. This is because a future no-page fault on this VMA 3462 * could insert a zeroed page instead of the data existing 3463 * from the time of fork. This would look like data corruption 3464 */ 3465 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3466 unmap_hugepage_range(iter_vma, address, 3467 address + huge_page_size(h), page); 3468 } 3469 i_mmap_unlock_write(mapping); 3470 } 3471 3472 /* 3473 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3474 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3475 * cannot race with other handlers or page migration. 3476 * Keep the pte_same checks anyway to make transition from the mutex easier. 3477 */ 3478 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3479 unsigned long address, pte_t *ptep, 3480 struct page *pagecache_page, spinlock_t *ptl) 3481 { 3482 pte_t pte; 3483 struct hstate *h = hstate_vma(vma); 3484 struct page *old_page, *new_page; 3485 int ret = 0, outside_reserve = 0; 3486 unsigned long mmun_start; /* For mmu_notifiers */ 3487 unsigned long mmun_end; /* For mmu_notifiers */ 3488 3489 pte = huge_ptep_get(ptep); 3490 old_page = pte_page(pte); 3491 3492 retry_avoidcopy: 3493 /* If no-one else is actually using this page, avoid the copy 3494 * and just make the page writable */ 3495 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3496 page_move_anon_rmap(old_page, vma); 3497 set_huge_ptep_writable(vma, address, ptep); 3498 return 0; 3499 } 3500 3501 /* 3502 * If the process that created a MAP_PRIVATE mapping is about to 3503 * perform a COW due to a shared page count, attempt to satisfy 3504 * the allocation without using the existing reserves. The pagecache 3505 * page is used to determine if the reserve at this address was 3506 * consumed or not. If reserves were used, a partial faulted mapping 3507 * at the time of fork() could consume its reserves on COW instead 3508 * of the full address range. 3509 */ 3510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3511 old_page != pagecache_page) 3512 outside_reserve = 1; 3513 3514 get_page(old_page); 3515 3516 /* 3517 * Drop page table lock as buddy allocator may be called. It will 3518 * be acquired again before returning to the caller, as expected. 3519 */ 3520 spin_unlock(ptl); 3521 new_page = alloc_huge_page(vma, address, outside_reserve); 3522 3523 if (IS_ERR(new_page)) { 3524 /* 3525 * If a process owning a MAP_PRIVATE mapping fails to COW, 3526 * it is due to references held by a child and an insufficient 3527 * huge page pool. To guarantee the original mappers 3528 * reliability, unmap the page from child processes. The child 3529 * may get SIGKILLed if it later faults. 3530 */ 3531 if (outside_reserve) { 3532 put_page(old_page); 3533 BUG_ON(huge_pte_none(pte)); 3534 unmap_ref_private(mm, vma, old_page, address); 3535 BUG_ON(huge_pte_none(pte)); 3536 spin_lock(ptl); 3537 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3538 if (likely(ptep && 3539 pte_same(huge_ptep_get(ptep), pte))) 3540 goto retry_avoidcopy; 3541 /* 3542 * race occurs while re-acquiring page table 3543 * lock, and our job is done. 3544 */ 3545 return 0; 3546 } 3547 3548 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3549 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3550 goto out_release_old; 3551 } 3552 3553 /* 3554 * When the original hugepage is shared one, it does not have 3555 * anon_vma prepared. 3556 */ 3557 if (unlikely(anon_vma_prepare(vma))) { 3558 ret = VM_FAULT_OOM; 3559 goto out_release_all; 3560 } 3561 3562 copy_user_huge_page(new_page, old_page, address, vma, 3563 pages_per_huge_page(h)); 3564 __SetPageUptodate(new_page); 3565 set_page_huge_active(new_page); 3566 3567 mmun_start = address & huge_page_mask(h); 3568 mmun_end = mmun_start + huge_page_size(h); 3569 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3570 3571 /* 3572 * Retake the page table lock to check for racing updates 3573 * before the page tables are altered 3574 */ 3575 spin_lock(ptl); 3576 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3577 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3578 ClearPagePrivate(new_page); 3579 3580 /* Break COW */ 3581 huge_ptep_clear_flush(vma, address, ptep); 3582 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3583 set_huge_pte_at(mm, address, ptep, 3584 make_huge_pte(vma, new_page, 1)); 3585 page_remove_rmap(old_page, true); 3586 hugepage_add_new_anon_rmap(new_page, vma, address); 3587 /* Make the old page be freed below */ 3588 new_page = old_page; 3589 } 3590 spin_unlock(ptl); 3591 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3592 out_release_all: 3593 restore_reserve_on_error(h, vma, address, new_page); 3594 put_page(new_page); 3595 out_release_old: 3596 put_page(old_page); 3597 3598 spin_lock(ptl); /* Caller expects lock to be held */ 3599 return ret; 3600 } 3601 3602 /* Return the pagecache page at a given address within a VMA */ 3603 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3604 struct vm_area_struct *vma, unsigned long address) 3605 { 3606 struct address_space *mapping; 3607 pgoff_t idx; 3608 3609 mapping = vma->vm_file->f_mapping; 3610 idx = vma_hugecache_offset(h, vma, address); 3611 3612 return find_lock_page(mapping, idx); 3613 } 3614 3615 /* 3616 * Return whether there is a pagecache page to back given address within VMA. 3617 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3618 */ 3619 static bool hugetlbfs_pagecache_present(struct hstate *h, 3620 struct vm_area_struct *vma, unsigned long address) 3621 { 3622 struct address_space *mapping; 3623 pgoff_t idx; 3624 struct page *page; 3625 3626 mapping = vma->vm_file->f_mapping; 3627 idx = vma_hugecache_offset(h, vma, address); 3628 3629 page = find_get_page(mapping, idx); 3630 if (page) 3631 put_page(page); 3632 return page != NULL; 3633 } 3634 3635 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3636 pgoff_t idx) 3637 { 3638 struct inode *inode = mapping->host; 3639 struct hstate *h = hstate_inode(inode); 3640 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3641 3642 if (err) 3643 return err; 3644 ClearPagePrivate(page); 3645 3646 spin_lock(&inode->i_lock); 3647 inode->i_blocks += blocks_per_huge_page(h); 3648 spin_unlock(&inode->i_lock); 3649 return 0; 3650 } 3651 3652 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3653 struct address_space *mapping, pgoff_t idx, 3654 unsigned long address, pte_t *ptep, unsigned int flags) 3655 { 3656 struct hstate *h = hstate_vma(vma); 3657 int ret = VM_FAULT_SIGBUS; 3658 int anon_rmap = 0; 3659 unsigned long size; 3660 struct page *page; 3661 pte_t new_pte; 3662 spinlock_t *ptl; 3663 3664 /* 3665 * Currently, we are forced to kill the process in the event the 3666 * original mapper has unmapped pages from the child due to a failed 3667 * COW. Warn that such a situation has occurred as it may not be obvious 3668 */ 3669 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3670 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3671 current->pid); 3672 return ret; 3673 } 3674 3675 /* 3676 * Use page lock to guard against racing truncation 3677 * before we get page_table_lock. 3678 */ 3679 retry: 3680 page = find_lock_page(mapping, idx); 3681 if (!page) { 3682 size = i_size_read(mapping->host) >> huge_page_shift(h); 3683 if (idx >= size) 3684 goto out; 3685 3686 /* 3687 * Check for page in userfault range 3688 */ 3689 if (userfaultfd_missing(vma)) { 3690 u32 hash; 3691 struct vm_fault vmf = { 3692 .vma = vma, 3693 .address = address, 3694 .flags = flags, 3695 /* 3696 * Hard to debug if it ends up being 3697 * used by a callee that assumes 3698 * something about the other 3699 * uninitialized fields... same as in 3700 * memory.c 3701 */ 3702 }; 3703 3704 /* 3705 * hugetlb_fault_mutex must be dropped before 3706 * handling userfault. Reacquire after handling 3707 * fault to make calling code simpler. 3708 */ 3709 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3710 idx, address); 3711 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3712 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3713 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3714 goto out; 3715 } 3716 3717 page = alloc_huge_page(vma, address, 0); 3718 if (IS_ERR(page)) { 3719 ret = PTR_ERR(page); 3720 if (ret == -ENOMEM) 3721 ret = VM_FAULT_OOM; 3722 else 3723 ret = VM_FAULT_SIGBUS; 3724 goto out; 3725 } 3726 clear_huge_page(page, address, pages_per_huge_page(h)); 3727 __SetPageUptodate(page); 3728 set_page_huge_active(page); 3729 3730 if (vma->vm_flags & VM_MAYSHARE) { 3731 int err = huge_add_to_page_cache(page, mapping, idx); 3732 if (err) { 3733 put_page(page); 3734 if (err == -EEXIST) 3735 goto retry; 3736 goto out; 3737 } 3738 } else { 3739 lock_page(page); 3740 if (unlikely(anon_vma_prepare(vma))) { 3741 ret = VM_FAULT_OOM; 3742 goto backout_unlocked; 3743 } 3744 anon_rmap = 1; 3745 } 3746 } else { 3747 /* 3748 * If memory error occurs between mmap() and fault, some process 3749 * don't have hwpoisoned swap entry for errored virtual address. 3750 * So we need to block hugepage fault by PG_hwpoison bit check. 3751 */ 3752 if (unlikely(PageHWPoison(page))) { 3753 ret = VM_FAULT_HWPOISON | 3754 VM_FAULT_SET_HINDEX(hstate_index(h)); 3755 goto backout_unlocked; 3756 } 3757 } 3758 3759 /* 3760 * If we are going to COW a private mapping later, we examine the 3761 * pending reservations for this page now. This will ensure that 3762 * any allocations necessary to record that reservation occur outside 3763 * the spinlock. 3764 */ 3765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3766 if (vma_needs_reservation(h, vma, address) < 0) { 3767 ret = VM_FAULT_OOM; 3768 goto backout_unlocked; 3769 } 3770 /* Just decrements count, does not deallocate */ 3771 vma_end_reservation(h, vma, address); 3772 } 3773 3774 ptl = huge_pte_lock(h, mm, ptep); 3775 size = i_size_read(mapping->host) >> huge_page_shift(h); 3776 if (idx >= size) 3777 goto backout; 3778 3779 ret = 0; 3780 if (!huge_pte_none(huge_ptep_get(ptep))) 3781 goto backout; 3782 3783 if (anon_rmap) { 3784 ClearPagePrivate(page); 3785 hugepage_add_new_anon_rmap(page, vma, address); 3786 } else 3787 page_dup_rmap(page, true); 3788 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3789 && (vma->vm_flags & VM_SHARED))); 3790 set_huge_pte_at(mm, address, ptep, new_pte); 3791 3792 hugetlb_count_add(pages_per_huge_page(h), mm); 3793 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3794 /* Optimization, do the COW without a second fault */ 3795 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3796 } 3797 3798 spin_unlock(ptl); 3799 unlock_page(page); 3800 out: 3801 return ret; 3802 3803 backout: 3804 spin_unlock(ptl); 3805 backout_unlocked: 3806 unlock_page(page); 3807 restore_reserve_on_error(h, vma, address, page); 3808 put_page(page); 3809 goto out; 3810 } 3811 3812 #ifdef CONFIG_SMP 3813 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3814 struct vm_area_struct *vma, 3815 struct address_space *mapping, 3816 pgoff_t idx, unsigned long address) 3817 { 3818 unsigned long key[2]; 3819 u32 hash; 3820 3821 if (vma->vm_flags & VM_SHARED) { 3822 key[0] = (unsigned long) mapping; 3823 key[1] = idx; 3824 } else { 3825 key[0] = (unsigned long) mm; 3826 key[1] = address >> huge_page_shift(h); 3827 } 3828 3829 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3830 3831 return hash & (num_fault_mutexes - 1); 3832 } 3833 #else 3834 /* 3835 * For uniprocesor systems we always use a single mutex, so just 3836 * return 0 and avoid the hashing overhead. 3837 */ 3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3839 struct vm_area_struct *vma, 3840 struct address_space *mapping, 3841 pgoff_t idx, unsigned long address) 3842 { 3843 return 0; 3844 } 3845 #endif 3846 3847 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3848 unsigned long address, unsigned int flags) 3849 { 3850 pte_t *ptep, entry; 3851 spinlock_t *ptl; 3852 int ret; 3853 u32 hash; 3854 pgoff_t idx; 3855 struct page *page = NULL; 3856 struct page *pagecache_page = NULL; 3857 struct hstate *h = hstate_vma(vma); 3858 struct address_space *mapping; 3859 int need_wait_lock = 0; 3860 3861 address &= huge_page_mask(h); 3862 3863 ptep = huge_pte_offset(mm, address); 3864 if (ptep) { 3865 entry = huge_ptep_get(ptep); 3866 if (unlikely(is_hugetlb_entry_migration(entry))) { 3867 migration_entry_wait_huge(vma, mm, ptep); 3868 return 0; 3869 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3870 return VM_FAULT_HWPOISON_LARGE | 3871 VM_FAULT_SET_HINDEX(hstate_index(h)); 3872 } else { 3873 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3874 if (!ptep) 3875 return VM_FAULT_OOM; 3876 } 3877 3878 mapping = vma->vm_file->f_mapping; 3879 idx = vma_hugecache_offset(h, vma, address); 3880 3881 /* 3882 * Serialize hugepage allocation and instantiation, so that we don't 3883 * get spurious allocation failures if two CPUs race to instantiate 3884 * the same page in the page cache. 3885 */ 3886 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3887 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3888 3889 entry = huge_ptep_get(ptep); 3890 if (huge_pte_none(entry)) { 3891 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3892 goto out_mutex; 3893 } 3894 3895 ret = 0; 3896 3897 /* 3898 * entry could be a migration/hwpoison entry at this point, so this 3899 * check prevents the kernel from going below assuming that we have 3900 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3901 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3902 * handle it. 3903 */ 3904 if (!pte_present(entry)) 3905 goto out_mutex; 3906 3907 /* 3908 * If we are going to COW the mapping later, we examine the pending 3909 * reservations for this page now. This will ensure that any 3910 * allocations necessary to record that reservation occur outside the 3911 * spinlock. For private mappings, we also lookup the pagecache 3912 * page now as it is used to determine if a reservation has been 3913 * consumed. 3914 */ 3915 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3916 if (vma_needs_reservation(h, vma, address) < 0) { 3917 ret = VM_FAULT_OOM; 3918 goto out_mutex; 3919 } 3920 /* Just decrements count, does not deallocate */ 3921 vma_end_reservation(h, vma, address); 3922 3923 if (!(vma->vm_flags & VM_MAYSHARE)) 3924 pagecache_page = hugetlbfs_pagecache_page(h, 3925 vma, address); 3926 } 3927 3928 ptl = huge_pte_lock(h, mm, ptep); 3929 3930 /* Check for a racing update before calling hugetlb_cow */ 3931 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3932 goto out_ptl; 3933 3934 /* 3935 * hugetlb_cow() requires page locks of pte_page(entry) and 3936 * pagecache_page, so here we need take the former one 3937 * when page != pagecache_page or !pagecache_page. 3938 */ 3939 page = pte_page(entry); 3940 if (page != pagecache_page) 3941 if (!trylock_page(page)) { 3942 need_wait_lock = 1; 3943 goto out_ptl; 3944 } 3945 3946 get_page(page); 3947 3948 if (flags & FAULT_FLAG_WRITE) { 3949 if (!huge_pte_write(entry)) { 3950 ret = hugetlb_cow(mm, vma, address, ptep, 3951 pagecache_page, ptl); 3952 goto out_put_page; 3953 } 3954 entry = huge_pte_mkdirty(entry); 3955 } 3956 entry = pte_mkyoung(entry); 3957 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3958 flags & FAULT_FLAG_WRITE)) 3959 update_mmu_cache(vma, address, ptep); 3960 out_put_page: 3961 if (page != pagecache_page) 3962 unlock_page(page); 3963 put_page(page); 3964 out_ptl: 3965 spin_unlock(ptl); 3966 3967 if (pagecache_page) { 3968 unlock_page(pagecache_page); 3969 put_page(pagecache_page); 3970 } 3971 out_mutex: 3972 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3973 /* 3974 * Generally it's safe to hold refcount during waiting page lock. But 3975 * here we just wait to defer the next page fault to avoid busy loop and 3976 * the page is not used after unlocked before returning from the current 3977 * page fault. So we are safe from accessing freed page, even if we wait 3978 * here without taking refcount. 3979 */ 3980 if (need_wait_lock) 3981 wait_on_page_locked(page); 3982 return ret; 3983 } 3984 3985 /* 3986 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 3987 * modifications for huge pages. 3988 */ 3989 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 3990 pte_t *dst_pte, 3991 struct vm_area_struct *dst_vma, 3992 unsigned long dst_addr, 3993 unsigned long src_addr, 3994 struct page **pagep) 3995 { 3996 int vm_shared = dst_vma->vm_flags & VM_SHARED; 3997 struct hstate *h = hstate_vma(dst_vma); 3998 pte_t _dst_pte; 3999 spinlock_t *ptl; 4000 int ret; 4001 struct page *page; 4002 4003 if (!*pagep) { 4004 ret = -ENOMEM; 4005 page = alloc_huge_page(dst_vma, dst_addr, 0); 4006 if (IS_ERR(page)) 4007 goto out; 4008 4009 ret = copy_huge_page_from_user(page, 4010 (const void __user *) src_addr, 4011 pages_per_huge_page(h), false); 4012 4013 /* fallback to copy_from_user outside mmap_sem */ 4014 if (unlikely(ret)) { 4015 ret = -EFAULT; 4016 *pagep = page; 4017 /* don't free the page */ 4018 goto out; 4019 } 4020 } else { 4021 page = *pagep; 4022 *pagep = NULL; 4023 } 4024 4025 /* 4026 * The memory barrier inside __SetPageUptodate makes sure that 4027 * preceding stores to the page contents become visible before 4028 * the set_pte_at() write. 4029 */ 4030 __SetPageUptodate(page); 4031 set_page_huge_active(page); 4032 4033 /* 4034 * If shared, add to page cache 4035 */ 4036 if (vm_shared) { 4037 struct address_space *mapping = dst_vma->vm_file->f_mapping; 4038 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4039 4040 ret = huge_add_to_page_cache(page, mapping, idx); 4041 if (ret) 4042 goto out_release_nounlock; 4043 } 4044 4045 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4046 spin_lock(ptl); 4047 4048 ret = -EEXIST; 4049 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4050 goto out_release_unlock; 4051 4052 if (vm_shared) { 4053 page_dup_rmap(page, true); 4054 } else { 4055 ClearPagePrivate(page); 4056 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4057 } 4058 4059 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4060 if (dst_vma->vm_flags & VM_WRITE) 4061 _dst_pte = huge_pte_mkdirty(_dst_pte); 4062 _dst_pte = pte_mkyoung(_dst_pte); 4063 4064 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4065 4066 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4067 dst_vma->vm_flags & VM_WRITE); 4068 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4069 4070 /* No need to invalidate - it was non-present before */ 4071 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4072 4073 spin_unlock(ptl); 4074 if (vm_shared) 4075 unlock_page(page); 4076 ret = 0; 4077 out: 4078 return ret; 4079 out_release_unlock: 4080 spin_unlock(ptl); 4081 out_release_nounlock: 4082 if (vm_shared) 4083 unlock_page(page); 4084 put_page(page); 4085 goto out; 4086 } 4087 4088 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4089 struct page **pages, struct vm_area_struct **vmas, 4090 unsigned long *position, unsigned long *nr_pages, 4091 long i, unsigned int flags, int *nonblocking) 4092 { 4093 unsigned long pfn_offset; 4094 unsigned long vaddr = *position; 4095 unsigned long remainder = *nr_pages; 4096 struct hstate *h = hstate_vma(vma); 4097 4098 while (vaddr < vma->vm_end && remainder) { 4099 pte_t *pte; 4100 spinlock_t *ptl = NULL; 4101 int absent; 4102 struct page *page; 4103 4104 /* 4105 * If we have a pending SIGKILL, don't keep faulting pages and 4106 * potentially allocating memory. 4107 */ 4108 if (unlikely(fatal_signal_pending(current))) { 4109 remainder = 0; 4110 break; 4111 } 4112 4113 /* 4114 * Some archs (sparc64, sh*) have multiple pte_ts to 4115 * each hugepage. We have to make sure we get the 4116 * first, for the page indexing below to work. 4117 * 4118 * Note that page table lock is not held when pte is null. 4119 */ 4120 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 4121 if (pte) 4122 ptl = huge_pte_lock(h, mm, pte); 4123 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4124 4125 /* 4126 * When coredumping, it suits get_dump_page if we just return 4127 * an error where there's an empty slot with no huge pagecache 4128 * to back it. This way, we avoid allocating a hugepage, and 4129 * the sparse dumpfile avoids allocating disk blocks, but its 4130 * huge holes still show up with zeroes where they need to be. 4131 */ 4132 if (absent && (flags & FOLL_DUMP) && 4133 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4134 if (pte) 4135 spin_unlock(ptl); 4136 remainder = 0; 4137 break; 4138 } 4139 4140 /* 4141 * We need call hugetlb_fault for both hugepages under migration 4142 * (in which case hugetlb_fault waits for the migration,) and 4143 * hwpoisoned hugepages (in which case we need to prevent the 4144 * caller from accessing to them.) In order to do this, we use 4145 * here is_swap_pte instead of is_hugetlb_entry_migration and 4146 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4147 * both cases, and because we can't follow correct pages 4148 * directly from any kind of swap entries. 4149 */ 4150 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4151 ((flags & FOLL_WRITE) && 4152 !huge_pte_write(huge_ptep_get(pte)))) { 4153 int ret; 4154 unsigned int fault_flags = 0; 4155 4156 if (pte) 4157 spin_unlock(ptl); 4158 if (flags & FOLL_WRITE) 4159 fault_flags |= FAULT_FLAG_WRITE; 4160 if (nonblocking) 4161 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4162 if (flags & FOLL_NOWAIT) 4163 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4164 FAULT_FLAG_RETRY_NOWAIT; 4165 if (flags & FOLL_TRIED) { 4166 VM_WARN_ON_ONCE(fault_flags & 4167 FAULT_FLAG_ALLOW_RETRY); 4168 fault_flags |= FAULT_FLAG_TRIED; 4169 } 4170 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4171 if (ret & VM_FAULT_ERROR) { 4172 remainder = 0; 4173 break; 4174 } 4175 if (ret & VM_FAULT_RETRY) { 4176 if (nonblocking) 4177 *nonblocking = 0; 4178 *nr_pages = 0; 4179 /* 4180 * VM_FAULT_RETRY must not return an 4181 * error, it will return zero 4182 * instead. 4183 * 4184 * No need to update "position" as the 4185 * caller will not check it after 4186 * *nr_pages is set to 0. 4187 */ 4188 return i; 4189 } 4190 continue; 4191 } 4192 4193 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4194 page = pte_page(huge_ptep_get(pte)); 4195 same_page: 4196 if (pages) { 4197 pages[i] = mem_map_offset(page, pfn_offset); 4198 get_page(pages[i]); 4199 } 4200 4201 if (vmas) 4202 vmas[i] = vma; 4203 4204 vaddr += PAGE_SIZE; 4205 ++pfn_offset; 4206 --remainder; 4207 ++i; 4208 if (vaddr < vma->vm_end && remainder && 4209 pfn_offset < pages_per_huge_page(h)) { 4210 /* 4211 * We use pfn_offset to avoid touching the pageframes 4212 * of this compound page. 4213 */ 4214 goto same_page; 4215 } 4216 spin_unlock(ptl); 4217 } 4218 *nr_pages = remainder; 4219 /* 4220 * setting position is actually required only if remainder is 4221 * not zero but it's faster not to add a "if (remainder)" 4222 * branch. 4223 */ 4224 *position = vaddr; 4225 4226 return i ? i : -EFAULT; 4227 } 4228 4229 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4230 /* 4231 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4232 * implement this. 4233 */ 4234 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4235 #endif 4236 4237 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4238 unsigned long address, unsigned long end, pgprot_t newprot) 4239 { 4240 struct mm_struct *mm = vma->vm_mm; 4241 unsigned long start = address; 4242 pte_t *ptep; 4243 pte_t pte; 4244 struct hstate *h = hstate_vma(vma); 4245 unsigned long pages = 0; 4246 4247 BUG_ON(address >= end); 4248 flush_cache_range(vma, address, end); 4249 4250 mmu_notifier_invalidate_range_start(mm, start, end); 4251 i_mmap_lock_write(vma->vm_file->f_mapping); 4252 for (; address < end; address += huge_page_size(h)) { 4253 spinlock_t *ptl; 4254 ptep = huge_pte_offset(mm, address); 4255 if (!ptep) 4256 continue; 4257 ptl = huge_pte_lock(h, mm, ptep); 4258 if (huge_pmd_unshare(mm, &address, ptep)) { 4259 pages++; 4260 spin_unlock(ptl); 4261 continue; 4262 } 4263 pte = huge_ptep_get(ptep); 4264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4265 spin_unlock(ptl); 4266 continue; 4267 } 4268 if (unlikely(is_hugetlb_entry_migration(pte))) { 4269 swp_entry_t entry = pte_to_swp_entry(pte); 4270 4271 if (is_write_migration_entry(entry)) { 4272 pte_t newpte; 4273 4274 make_migration_entry_read(&entry); 4275 newpte = swp_entry_to_pte(entry); 4276 set_huge_pte_at(mm, address, ptep, newpte); 4277 pages++; 4278 } 4279 spin_unlock(ptl); 4280 continue; 4281 } 4282 if (!huge_pte_none(pte)) { 4283 pte = huge_ptep_get_and_clear(mm, address, ptep); 4284 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4285 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4286 set_huge_pte_at(mm, address, ptep, pte); 4287 pages++; 4288 } 4289 spin_unlock(ptl); 4290 } 4291 /* 4292 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4293 * may have cleared our pud entry and done put_page on the page table: 4294 * once we release i_mmap_rwsem, another task can do the final put_page 4295 * and that page table be reused and filled with junk. 4296 */ 4297 flush_hugetlb_tlb_range(vma, start, end); 4298 mmu_notifier_invalidate_range(mm, start, end); 4299 i_mmap_unlock_write(vma->vm_file->f_mapping); 4300 mmu_notifier_invalidate_range_end(mm, start, end); 4301 4302 return pages << h->order; 4303 } 4304 4305 int hugetlb_reserve_pages(struct inode *inode, 4306 long from, long to, 4307 struct vm_area_struct *vma, 4308 vm_flags_t vm_flags) 4309 { 4310 long ret, chg; 4311 struct hstate *h = hstate_inode(inode); 4312 struct hugepage_subpool *spool = subpool_inode(inode); 4313 struct resv_map *resv_map; 4314 long gbl_reserve; 4315 4316 /* 4317 * Only apply hugepage reservation if asked. At fault time, an 4318 * attempt will be made for VM_NORESERVE to allocate a page 4319 * without using reserves 4320 */ 4321 if (vm_flags & VM_NORESERVE) 4322 return 0; 4323 4324 /* 4325 * Shared mappings base their reservation on the number of pages that 4326 * are already allocated on behalf of the file. Private mappings need 4327 * to reserve the full area even if read-only as mprotect() may be 4328 * called to make the mapping read-write. Assume !vma is a shm mapping 4329 */ 4330 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4331 resv_map = inode_resv_map(inode); 4332 4333 chg = region_chg(resv_map, from, to); 4334 4335 } else { 4336 resv_map = resv_map_alloc(); 4337 if (!resv_map) 4338 return -ENOMEM; 4339 4340 chg = to - from; 4341 4342 set_vma_resv_map(vma, resv_map); 4343 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4344 } 4345 4346 if (chg < 0) { 4347 ret = chg; 4348 goto out_err; 4349 } 4350 4351 /* 4352 * There must be enough pages in the subpool for the mapping. If 4353 * the subpool has a minimum size, there may be some global 4354 * reservations already in place (gbl_reserve). 4355 */ 4356 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4357 if (gbl_reserve < 0) { 4358 ret = -ENOSPC; 4359 goto out_err; 4360 } 4361 4362 /* 4363 * Check enough hugepages are available for the reservation. 4364 * Hand the pages back to the subpool if there are not 4365 */ 4366 ret = hugetlb_acct_memory(h, gbl_reserve); 4367 if (ret < 0) { 4368 /* put back original number of pages, chg */ 4369 (void)hugepage_subpool_put_pages(spool, chg); 4370 goto out_err; 4371 } 4372 4373 /* 4374 * Account for the reservations made. Shared mappings record regions 4375 * that have reservations as they are shared by multiple VMAs. 4376 * When the last VMA disappears, the region map says how much 4377 * the reservation was and the page cache tells how much of 4378 * the reservation was consumed. Private mappings are per-VMA and 4379 * only the consumed reservations are tracked. When the VMA 4380 * disappears, the original reservation is the VMA size and the 4381 * consumed reservations are stored in the map. Hence, nothing 4382 * else has to be done for private mappings here 4383 */ 4384 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4385 long add = region_add(resv_map, from, to); 4386 4387 if (unlikely(chg > add)) { 4388 /* 4389 * pages in this range were added to the reserve 4390 * map between region_chg and region_add. This 4391 * indicates a race with alloc_huge_page. Adjust 4392 * the subpool and reserve counts modified above 4393 * based on the difference. 4394 */ 4395 long rsv_adjust; 4396 4397 rsv_adjust = hugepage_subpool_put_pages(spool, 4398 chg - add); 4399 hugetlb_acct_memory(h, -rsv_adjust); 4400 } 4401 } 4402 return 0; 4403 out_err: 4404 if (!vma || vma->vm_flags & VM_MAYSHARE) 4405 region_abort(resv_map, from, to); 4406 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4407 kref_put(&resv_map->refs, resv_map_release); 4408 return ret; 4409 } 4410 4411 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4412 long freed) 4413 { 4414 struct hstate *h = hstate_inode(inode); 4415 struct resv_map *resv_map = inode_resv_map(inode); 4416 long chg = 0; 4417 struct hugepage_subpool *spool = subpool_inode(inode); 4418 long gbl_reserve; 4419 4420 if (resv_map) { 4421 chg = region_del(resv_map, start, end); 4422 /* 4423 * region_del() can fail in the rare case where a region 4424 * must be split and another region descriptor can not be 4425 * allocated. If end == LONG_MAX, it will not fail. 4426 */ 4427 if (chg < 0) 4428 return chg; 4429 } 4430 4431 spin_lock(&inode->i_lock); 4432 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4433 spin_unlock(&inode->i_lock); 4434 4435 /* 4436 * If the subpool has a minimum size, the number of global 4437 * reservations to be released may be adjusted. 4438 */ 4439 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4440 hugetlb_acct_memory(h, -gbl_reserve); 4441 4442 return 0; 4443 } 4444 4445 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4446 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4447 struct vm_area_struct *vma, 4448 unsigned long addr, pgoff_t idx) 4449 { 4450 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4451 svma->vm_start; 4452 unsigned long sbase = saddr & PUD_MASK; 4453 unsigned long s_end = sbase + PUD_SIZE; 4454 4455 /* Allow segments to share if only one is marked locked */ 4456 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4457 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4458 4459 /* 4460 * match the virtual addresses, permission and the alignment of the 4461 * page table page. 4462 */ 4463 if (pmd_index(addr) != pmd_index(saddr) || 4464 vm_flags != svm_flags || 4465 sbase < svma->vm_start || svma->vm_end < s_end) 4466 return 0; 4467 4468 return saddr; 4469 } 4470 4471 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4472 { 4473 unsigned long base = addr & PUD_MASK; 4474 unsigned long end = base + PUD_SIZE; 4475 4476 /* 4477 * check on proper vm_flags and page table alignment 4478 */ 4479 if (vma->vm_flags & VM_MAYSHARE && 4480 vma->vm_start <= base && end <= vma->vm_end) 4481 return true; 4482 return false; 4483 } 4484 4485 /* 4486 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4487 * and returns the corresponding pte. While this is not necessary for the 4488 * !shared pmd case because we can allocate the pmd later as well, it makes the 4489 * code much cleaner. pmd allocation is essential for the shared case because 4490 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4491 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4492 * bad pmd for sharing. 4493 */ 4494 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4495 { 4496 struct vm_area_struct *vma = find_vma(mm, addr); 4497 struct address_space *mapping = vma->vm_file->f_mapping; 4498 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4499 vma->vm_pgoff; 4500 struct vm_area_struct *svma; 4501 unsigned long saddr; 4502 pte_t *spte = NULL; 4503 pte_t *pte; 4504 spinlock_t *ptl; 4505 4506 if (!vma_shareable(vma, addr)) 4507 return (pte_t *)pmd_alloc(mm, pud, addr); 4508 4509 i_mmap_lock_write(mapping); 4510 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4511 if (svma == vma) 4512 continue; 4513 4514 saddr = page_table_shareable(svma, vma, addr, idx); 4515 if (saddr) { 4516 spte = huge_pte_offset(svma->vm_mm, saddr); 4517 if (spte) { 4518 get_page(virt_to_page(spte)); 4519 break; 4520 } 4521 } 4522 } 4523 4524 if (!spte) 4525 goto out; 4526 4527 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4528 if (pud_none(*pud)) { 4529 pud_populate(mm, pud, 4530 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4531 mm_inc_nr_pmds(mm); 4532 } else { 4533 put_page(virt_to_page(spte)); 4534 } 4535 spin_unlock(ptl); 4536 out: 4537 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4538 i_mmap_unlock_write(mapping); 4539 return pte; 4540 } 4541 4542 /* 4543 * unmap huge page backed by shared pte. 4544 * 4545 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4546 * indicated by page_count > 1, unmap is achieved by clearing pud and 4547 * decrementing the ref count. If count == 1, the pte page is not shared. 4548 * 4549 * called with page table lock held. 4550 * 4551 * returns: 1 successfully unmapped a shared pte page 4552 * 0 the underlying pte page is not shared, or it is the last user 4553 */ 4554 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4555 { 4556 pgd_t *pgd = pgd_offset(mm, *addr); 4557 pud_t *pud = pud_offset(pgd, *addr); 4558 4559 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4560 if (page_count(virt_to_page(ptep)) == 1) 4561 return 0; 4562 4563 pud_clear(pud); 4564 put_page(virt_to_page(ptep)); 4565 mm_dec_nr_pmds(mm); 4566 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4567 return 1; 4568 } 4569 #define want_pmd_share() (1) 4570 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4571 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4572 { 4573 return NULL; 4574 } 4575 4576 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4577 { 4578 return 0; 4579 } 4580 #define want_pmd_share() (0) 4581 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4582 4583 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4584 pte_t *huge_pte_alloc(struct mm_struct *mm, 4585 unsigned long addr, unsigned long sz) 4586 { 4587 pgd_t *pgd; 4588 pud_t *pud; 4589 pte_t *pte = NULL; 4590 4591 pgd = pgd_offset(mm, addr); 4592 pud = pud_alloc(mm, pgd, addr); 4593 if (pud) { 4594 if (sz == PUD_SIZE) { 4595 pte = (pte_t *)pud; 4596 } else { 4597 BUG_ON(sz != PMD_SIZE); 4598 if (want_pmd_share() && pud_none(*pud)) 4599 pte = huge_pmd_share(mm, addr, pud); 4600 else 4601 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4602 } 4603 } 4604 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4605 4606 return pte; 4607 } 4608 4609 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4610 { 4611 pgd_t *pgd; 4612 pud_t *pud; 4613 pmd_t *pmd = NULL; 4614 4615 pgd = pgd_offset(mm, addr); 4616 if (pgd_present(*pgd)) { 4617 pud = pud_offset(pgd, addr); 4618 if (pud_present(*pud)) { 4619 if (pud_huge(*pud)) 4620 return (pte_t *)pud; 4621 pmd = pmd_offset(pud, addr); 4622 } 4623 } 4624 return (pte_t *) pmd; 4625 } 4626 4627 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4628 4629 /* 4630 * These functions are overwritable if your architecture needs its own 4631 * behavior. 4632 */ 4633 struct page * __weak 4634 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4635 int write) 4636 { 4637 return ERR_PTR(-EINVAL); 4638 } 4639 4640 struct page * __weak 4641 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4642 pmd_t *pmd, int flags) 4643 { 4644 struct page *page = NULL; 4645 spinlock_t *ptl; 4646 retry: 4647 ptl = pmd_lockptr(mm, pmd); 4648 spin_lock(ptl); 4649 /* 4650 * make sure that the address range covered by this pmd is not 4651 * unmapped from other threads. 4652 */ 4653 if (!pmd_huge(*pmd)) 4654 goto out; 4655 if (pmd_present(*pmd)) { 4656 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4657 if (flags & FOLL_GET) 4658 get_page(page); 4659 } else { 4660 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4661 spin_unlock(ptl); 4662 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4663 goto retry; 4664 } 4665 /* 4666 * hwpoisoned entry is treated as no_page_table in 4667 * follow_page_mask(). 4668 */ 4669 } 4670 out: 4671 spin_unlock(ptl); 4672 return page; 4673 } 4674 4675 struct page * __weak 4676 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4677 pud_t *pud, int flags) 4678 { 4679 if (flags & FOLL_GET) 4680 return NULL; 4681 4682 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4683 } 4684 4685 #ifdef CONFIG_MEMORY_FAILURE 4686 4687 /* 4688 * This function is called from memory failure code. 4689 */ 4690 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4691 { 4692 struct hstate *h = page_hstate(hpage); 4693 int nid = page_to_nid(hpage); 4694 int ret = -EBUSY; 4695 4696 spin_lock(&hugetlb_lock); 4697 /* 4698 * Just checking !page_huge_active is not enough, because that could be 4699 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4700 */ 4701 if (!page_huge_active(hpage) && !page_count(hpage)) { 4702 /* 4703 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4704 * but dangling hpage->lru can trigger list-debug warnings 4705 * (this happens when we call unpoison_memory() on it), 4706 * so let it point to itself with list_del_init(). 4707 */ 4708 list_del_init(&hpage->lru); 4709 set_page_refcounted(hpage); 4710 h->free_huge_pages--; 4711 h->free_huge_pages_node[nid]--; 4712 ret = 0; 4713 } 4714 spin_unlock(&hugetlb_lock); 4715 return ret; 4716 } 4717 #endif 4718 4719 bool isolate_huge_page(struct page *page, struct list_head *list) 4720 { 4721 bool ret = true; 4722 4723 VM_BUG_ON_PAGE(!PageHead(page), page); 4724 spin_lock(&hugetlb_lock); 4725 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4726 ret = false; 4727 goto unlock; 4728 } 4729 clear_page_huge_active(page); 4730 list_move_tail(&page->lru, list); 4731 unlock: 4732 spin_unlock(&hugetlb_lock); 4733 return ret; 4734 } 4735 4736 void putback_active_hugepage(struct page *page) 4737 { 4738 VM_BUG_ON_PAGE(!PageHead(page), page); 4739 spin_lock(&hugetlb_lock); 4740 set_page_huge_active(page); 4741 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4742 spin_unlock(&hugetlb_lock); 4743 put_page(page); 4744 } 4745