1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 98 unsigned long start, unsigned long end); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* 261 * hugetlb vma_lock helper routines 262 */ 263 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 264 { 265 if (__vma_shareable_lock(vma)) { 266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 267 268 down_read(&vma_lock->rw_sema); 269 } 270 } 271 272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 273 { 274 if (__vma_shareable_lock(vma)) { 275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 276 277 up_read(&vma_lock->rw_sema); 278 } 279 } 280 281 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 282 { 283 if (__vma_shareable_lock(vma)) { 284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 285 286 down_write(&vma_lock->rw_sema); 287 } 288 } 289 290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 291 { 292 if (__vma_shareable_lock(vma)) { 293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 294 295 up_write(&vma_lock->rw_sema); 296 } 297 } 298 299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 300 { 301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 302 303 if (!__vma_shareable_lock(vma)) 304 return 1; 305 306 return down_write_trylock(&vma_lock->rw_sema); 307 } 308 309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 lockdep_assert_held(&vma_lock->rw_sema); 315 } 316 } 317 318 void hugetlb_vma_lock_release(struct kref *kref) 319 { 320 struct hugetlb_vma_lock *vma_lock = container_of(kref, 321 struct hugetlb_vma_lock, refs); 322 323 kfree(vma_lock); 324 } 325 326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 327 { 328 struct vm_area_struct *vma = vma_lock->vma; 329 330 /* 331 * vma_lock structure may or not be released as a result of put, 332 * it certainly will no longer be attached to vma so clear pointer. 333 * Semaphore synchronizes access to vma_lock->vma field. 334 */ 335 vma_lock->vma = NULL; 336 vma->vm_private_data = NULL; 337 up_write(&vma_lock->rw_sema); 338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 339 } 340 341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 342 { 343 if (__vma_shareable_lock(vma)) { 344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 345 346 __hugetlb_vma_unlock_write_put(vma_lock); 347 } 348 } 349 350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 351 { 352 /* 353 * Only present in sharable vmas. 354 */ 355 if (!vma || !__vma_shareable_lock(vma)) 356 return; 357 358 if (vma->vm_private_data) { 359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 360 361 down_write(&vma_lock->rw_sema); 362 __hugetlb_vma_unlock_write_put(vma_lock); 363 } 364 } 365 366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 367 { 368 struct hugetlb_vma_lock *vma_lock; 369 370 /* Only establish in (flags) sharable vmas */ 371 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 372 return; 373 374 /* Should never get here with non-NULL vm_private_data */ 375 if (vma->vm_private_data) 376 return; 377 378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 379 if (!vma_lock) { 380 /* 381 * If we can not allocate structure, then vma can not 382 * participate in pmd sharing. This is only a possible 383 * performance enhancement and memory saving issue. 384 * However, the lock is also used to synchronize page 385 * faults with truncation. If the lock is not present, 386 * unlikely races could leave pages in a file past i_size 387 * until the file is removed. Warn in the unlikely case of 388 * allocation failure. 389 */ 390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 391 return; 392 } 393 394 kref_init(&vma_lock->refs); 395 init_rwsem(&vma_lock->rw_sema); 396 vma_lock->vma = vma; 397 vma->vm_private_data = vma_lock; 398 } 399 400 /* Helper that removes a struct file_region from the resv_map cache and returns 401 * it for use. 402 */ 403 static struct file_region * 404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 405 { 406 struct file_region *nrg; 407 408 VM_BUG_ON(resv->region_cache_count <= 0); 409 410 resv->region_cache_count--; 411 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 412 list_del(&nrg->link); 413 414 nrg->from = from; 415 nrg->to = to; 416 417 return nrg; 418 } 419 420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 421 struct file_region *rg) 422 { 423 #ifdef CONFIG_CGROUP_HUGETLB 424 nrg->reservation_counter = rg->reservation_counter; 425 nrg->css = rg->css; 426 if (rg->css) 427 css_get(rg->css); 428 #endif 429 } 430 431 /* Helper that records hugetlb_cgroup uncharge info. */ 432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 433 struct hstate *h, 434 struct resv_map *resv, 435 struct file_region *nrg) 436 { 437 #ifdef CONFIG_CGROUP_HUGETLB 438 if (h_cg) { 439 nrg->reservation_counter = 440 &h_cg->rsvd_hugepage[hstate_index(h)]; 441 nrg->css = &h_cg->css; 442 /* 443 * The caller will hold exactly one h_cg->css reference for the 444 * whole contiguous reservation region. But this area might be 445 * scattered when there are already some file_regions reside in 446 * it. As a result, many file_regions may share only one css 447 * reference. In order to ensure that one file_region must hold 448 * exactly one h_cg->css reference, we should do css_get for 449 * each file_region and leave the reference held by caller 450 * untouched. 451 */ 452 css_get(&h_cg->css); 453 if (!resv->pages_per_hpage) 454 resv->pages_per_hpage = pages_per_huge_page(h); 455 /* pages_per_hpage should be the same for all entries in 456 * a resv_map. 457 */ 458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 459 } else { 460 nrg->reservation_counter = NULL; 461 nrg->css = NULL; 462 } 463 #endif 464 } 465 466 static void put_uncharge_info(struct file_region *rg) 467 { 468 #ifdef CONFIG_CGROUP_HUGETLB 469 if (rg->css) 470 css_put(rg->css); 471 #endif 472 } 473 474 static bool has_same_uncharge_info(struct file_region *rg, 475 struct file_region *org) 476 { 477 #ifdef CONFIG_CGROUP_HUGETLB 478 return rg->reservation_counter == org->reservation_counter && 479 rg->css == org->css; 480 481 #else 482 return true; 483 #endif 484 } 485 486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 487 { 488 struct file_region *nrg, *prg; 489 490 prg = list_prev_entry(rg, link); 491 if (&prg->link != &resv->regions && prg->to == rg->from && 492 has_same_uncharge_info(prg, rg)) { 493 prg->to = rg->to; 494 495 list_del(&rg->link); 496 put_uncharge_info(rg); 497 kfree(rg); 498 499 rg = prg; 500 } 501 502 nrg = list_next_entry(rg, link); 503 if (&nrg->link != &resv->regions && nrg->from == rg->to && 504 has_same_uncharge_info(nrg, rg)) { 505 nrg->from = rg->from; 506 507 list_del(&rg->link); 508 put_uncharge_info(rg); 509 kfree(rg); 510 } 511 } 512 513 static inline long 514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 515 long to, struct hstate *h, struct hugetlb_cgroup *cg, 516 long *regions_needed) 517 { 518 struct file_region *nrg; 519 520 if (!regions_needed) { 521 nrg = get_file_region_entry_from_cache(map, from, to); 522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 523 list_add(&nrg->link, rg); 524 coalesce_file_region(map, nrg); 525 } else 526 *regions_needed += 1; 527 528 return to - from; 529 } 530 531 /* 532 * Must be called with resv->lock held. 533 * 534 * Calling this with regions_needed != NULL will count the number of pages 535 * to be added but will not modify the linked list. And regions_needed will 536 * indicate the number of file_regions needed in the cache to carry out to add 537 * the regions for this range. 538 */ 539 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 540 struct hugetlb_cgroup *h_cg, 541 struct hstate *h, long *regions_needed) 542 { 543 long add = 0; 544 struct list_head *head = &resv->regions; 545 long last_accounted_offset = f; 546 struct file_region *iter, *trg = NULL; 547 struct list_head *rg = NULL; 548 549 if (regions_needed) 550 *regions_needed = 0; 551 552 /* In this loop, we essentially handle an entry for the range 553 * [last_accounted_offset, iter->from), at every iteration, with some 554 * bounds checking. 555 */ 556 list_for_each_entry_safe(iter, trg, head, link) { 557 /* Skip irrelevant regions that start before our range. */ 558 if (iter->from < f) { 559 /* If this region ends after the last accounted offset, 560 * then we need to update last_accounted_offset. 561 */ 562 if (iter->to > last_accounted_offset) 563 last_accounted_offset = iter->to; 564 continue; 565 } 566 567 /* When we find a region that starts beyond our range, we've 568 * finished. 569 */ 570 if (iter->from >= t) { 571 rg = iter->link.prev; 572 break; 573 } 574 575 /* Add an entry for last_accounted_offset -> iter->from, and 576 * update last_accounted_offset. 577 */ 578 if (iter->from > last_accounted_offset) 579 add += hugetlb_resv_map_add(resv, iter->link.prev, 580 last_accounted_offset, 581 iter->from, h, h_cg, 582 regions_needed); 583 584 last_accounted_offset = iter->to; 585 } 586 587 /* Handle the case where our range extends beyond 588 * last_accounted_offset. 589 */ 590 if (!rg) 591 rg = head->prev; 592 if (last_accounted_offset < t) 593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 594 t, h, h_cg, regions_needed); 595 596 return add; 597 } 598 599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 600 */ 601 static int allocate_file_region_entries(struct resv_map *resv, 602 int regions_needed) 603 __must_hold(&resv->lock) 604 { 605 LIST_HEAD(allocated_regions); 606 int to_allocate = 0, i = 0; 607 struct file_region *trg = NULL, *rg = NULL; 608 609 VM_BUG_ON(regions_needed < 0); 610 611 /* 612 * Check for sufficient descriptors in the cache to accommodate 613 * the number of in progress add operations plus regions_needed. 614 * 615 * This is a while loop because when we drop the lock, some other call 616 * to region_add or region_del may have consumed some region_entries, 617 * so we keep looping here until we finally have enough entries for 618 * (adds_in_progress + regions_needed). 619 */ 620 while (resv->region_cache_count < 621 (resv->adds_in_progress + regions_needed)) { 622 to_allocate = resv->adds_in_progress + regions_needed - 623 resv->region_cache_count; 624 625 /* At this point, we should have enough entries in the cache 626 * for all the existing adds_in_progress. We should only be 627 * needing to allocate for regions_needed. 628 */ 629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 630 631 spin_unlock(&resv->lock); 632 for (i = 0; i < to_allocate; i++) { 633 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 634 if (!trg) 635 goto out_of_memory; 636 list_add(&trg->link, &allocated_regions); 637 } 638 639 spin_lock(&resv->lock); 640 641 list_splice(&allocated_regions, &resv->region_cache); 642 resv->region_cache_count += to_allocate; 643 } 644 645 return 0; 646 647 out_of_memory: 648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 649 list_del(&rg->link); 650 kfree(rg); 651 } 652 return -ENOMEM; 653 } 654 655 /* 656 * Add the huge page range represented by [f, t) to the reserve 657 * map. Regions will be taken from the cache to fill in this range. 658 * Sufficient regions should exist in the cache due to the previous 659 * call to region_chg with the same range, but in some cases the cache will not 660 * have sufficient entries due to races with other code doing region_add or 661 * region_del. The extra needed entries will be allocated. 662 * 663 * regions_needed is the out value provided by a previous call to region_chg. 664 * 665 * Return the number of new huge pages added to the map. This number is greater 666 * than or equal to zero. If file_region entries needed to be allocated for 667 * this operation and we were not able to allocate, it returns -ENOMEM. 668 * region_add of regions of length 1 never allocate file_regions and cannot 669 * fail; region_chg will always allocate at least 1 entry and a region_add for 670 * 1 page will only require at most 1 entry. 671 */ 672 static long region_add(struct resv_map *resv, long f, long t, 673 long in_regions_needed, struct hstate *h, 674 struct hugetlb_cgroup *h_cg) 675 { 676 long add = 0, actual_regions_needed = 0; 677 678 spin_lock(&resv->lock); 679 retry: 680 681 /* Count how many regions are actually needed to execute this add. */ 682 add_reservation_in_range(resv, f, t, NULL, NULL, 683 &actual_regions_needed); 684 685 /* 686 * Check for sufficient descriptors in the cache to accommodate 687 * this add operation. Note that actual_regions_needed may be greater 688 * than in_regions_needed, as the resv_map may have been modified since 689 * the region_chg call. In this case, we need to make sure that we 690 * allocate extra entries, such that we have enough for all the 691 * existing adds_in_progress, plus the excess needed for this 692 * operation. 693 */ 694 if (actual_regions_needed > in_regions_needed && 695 resv->region_cache_count < 696 resv->adds_in_progress + 697 (actual_regions_needed - in_regions_needed)) { 698 /* region_add operation of range 1 should never need to 699 * allocate file_region entries. 700 */ 701 VM_BUG_ON(t - f <= 1); 702 703 if (allocate_file_region_entries( 704 resv, actual_regions_needed - in_regions_needed)) { 705 return -ENOMEM; 706 } 707 708 goto retry; 709 } 710 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 712 713 resv->adds_in_progress -= in_regions_needed; 714 715 spin_unlock(&resv->lock); 716 return add; 717 } 718 719 /* 720 * Examine the existing reserve map and determine how many 721 * huge pages in the specified range [f, t) are NOT currently 722 * represented. This routine is called before a subsequent 723 * call to region_add that will actually modify the reserve 724 * map to add the specified range [f, t). region_chg does 725 * not change the number of huge pages represented by the 726 * map. A number of new file_region structures is added to the cache as a 727 * placeholder, for the subsequent region_add call to use. At least 1 728 * file_region structure is added. 729 * 730 * out_regions_needed is the number of regions added to the 731 * resv->adds_in_progress. This value needs to be provided to a follow up call 732 * to region_add or region_abort for proper accounting. 733 * 734 * Returns the number of huge pages that need to be added to the existing 735 * reservation map for the range [f, t). This number is greater or equal to 736 * zero. -ENOMEM is returned if a new file_region structure or cache entry 737 * is needed and can not be allocated. 738 */ 739 static long region_chg(struct resv_map *resv, long f, long t, 740 long *out_regions_needed) 741 { 742 long chg = 0; 743 744 spin_lock(&resv->lock); 745 746 /* Count how many hugepages in this range are NOT represented. */ 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 748 out_regions_needed); 749 750 if (*out_regions_needed == 0) 751 *out_regions_needed = 1; 752 753 if (allocate_file_region_entries(resv, *out_regions_needed)) 754 return -ENOMEM; 755 756 resv->adds_in_progress += *out_regions_needed; 757 758 spin_unlock(&resv->lock); 759 return chg; 760 } 761 762 /* 763 * Abort the in progress add operation. The adds_in_progress field 764 * of the resv_map keeps track of the operations in progress between 765 * calls to region_chg and region_add. Operations are sometimes 766 * aborted after the call to region_chg. In such cases, region_abort 767 * is called to decrement the adds_in_progress counter. regions_needed 768 * is the value returned by the region_chg call, it is used to decrement 769 * the adds_in_progress counter. 770 * 771 * NOTE: The range arguments [f, t) are not needed or used in this 772 * routine. They are kept to make reading the calling code easier as 773 * arguments will match the associated region_chg call. 774 */ 775 static void region_abort(struct resv_map *resv, long f, long t, 776 long regions_needed) 777 { 778 spin_lock(&resv->lock); 779 VM_BUG_ON(!resv->region_cache_count); 780 resv->adds_in_progress -= regions_needed; 781 spin_unlock(&resv->lock); 782 } 783 784 /* 785 * Delete the specified range [f, t) from the reserve map. If the 786 * t parameter is LONG_MAX, this indicates that ALL regions after f 787 * should be deleted. Locate the regions which intersect [f, t) 788 * and either trim, delete or split the existing regions. 789 * 790 * Returns the number of huge pages deleted from the reserve map. 791 * In the normal case, the return value is zero or more. In the 792 * case where a region must be split, a new region descriptor must 793 * be allocated. If the allocation fails, -ENOMEM will be returned. 794 * NOTE: If the parameter t == LONG_MAX, then we will never split 795 * a region and possibly return -ENOMEM. Callers specifying 796 * t == LONG_MAX do not need to check for -ENOMEM error. 797 */ 798 static long region_del(struct resv_map *resv, long f, long t) 799 { 800 struct list_head *head = &resv->regions; 801 struct file_region *rg, *trg; 802 struct file_region *nrg = NULL; 803 long del = 0; 804 805 retry: 806 spin_lock(&resv->lock); 807 list_for_each_entry_safe(rg, trg, head, link) { 808 /* 809 * Skip regions before the range to be deleted. file_region 810 * ranges are normally of the form [from, to). However, there 811 * may be a "placeholder" entry in the map which is of the form 812 * (from, to) with from == to. Check for placeholder entries 813 * at the beginning of the range to be deleted. 814 */ 815 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 816 continue; 817 818 if (rg->from >= t) 819 break; 820 821 if (f > rg->from && t < rg->to) { /* Must split region */ 822 /* 823 * Check for an entry in the cache before dropping 824 * lock and attempting allocation. 825 */ 826 if (!nrg && 827 resv->region_cache_count > resv->adds_in_progress) { 828 nrg = list_first_entry(&resv->region_cache, 829 struct file_region, 830 link); 831 list_del(&nrg->link); 832 resv->region_cache_count--; 833 } 834 835 if (!nrg) { 836 spin_unlock(&resv->lock); 837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 838 if (!nrg) 839 return -ENOMEM; 840 goto retry; 841 } 842 843 del += t - f; 844 hugetlb_cgroup_uncharge_file_region( 845 resv, rg, t - f, false); 846 847 /* New entry for end of split region */ 848 nrg->from = t; 849 nrg->to = rg->to; 850 851 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 852 853 INIT_LIST_HEAD(&nrg->link); 854 855 /* Original entry is trimmed */ 856 rg->to = f; 857 858 list_add(&nrg->link, &rg->link); 859 nrg = NULL; 860 break; 861 } 862 863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 864 del += rg->to - rg->from; 865 hugetlb_cgroup_uncharge_file_region(resv, rg, 866 rg->to - rg->from, true); 867 list_del(&rg->link); 868 kfree(rg); 869 continue; 870 } 871 872 if (f <= rg->from) { /* Trim beginning of region */ 873 hugetlb_cgroup_uncharge_file_region(resv, rg, 874 t - rg->from, false); 875 876 del += t - rg->from; 877 rg->from = t; 878 } else { /* Trim end of region */ 879 hugetlb_cgroup_uncharge_file_region(resv, rg, 880 rg->to - f, false); 881 882 del += rg->to - f; 883 rg->to = f; 884 } 885 } 886 887 spin_unlock(&resv->lock); 888 kfree(nrg); 889 return del; 890 } 891 892 /* 893 * A rare out of memory error was encountered which prevented removal of 894 * the reserve map region for a page. The huge page itself was free'ed 895 * and removed from the page cache. This routine will adjust the subpool 896 * usage count, and the global reserve count if needed. By incrementing 897 * these counts, the reserve map entry which could not be deleted will 898 * appear as a "reserved" entry instead of simply dangling with incorrect 899 * counts. 900 */ 901 void hugetlb_fix_reserve_counts(struct inode *inode) 902 { 903 struct hugepage_subpool *spool = subpool_inode(inode); 904 long rsv_adjust; 905 bool reserved = false; 906 907 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 908 if (rsv_adjust > 0) { 909 struct hstate *h = hstate_inode(inode); 910 911 if (!hugetlb_acct_memory(h, 1)) 912 reserved = true; 913 } else if (!rsv_adjust) { 914 reserved = true; 915 } 916 917 if (!reserved) 918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 919 } 920 921 /* 922 * Count and return the number of huge pages in the reserve map 923 * that intersect with the range [f, t). 924 */ 925 static long region_count(struct resv_map *resv, long f, long t) 926 { 927 struct list_head *head = &resv->regions; 928 struct file_region *rg; 929 long chg = 0; 930 931 spin_lock(&resv->lock); 932 /* Locate each segment we overlap with, and count that overlap. */ 933 list_for_each_entry(rg, head, link) { 934 long seg_from; 935 long seg_to; 936 937 if (rg->to <= f) 938 continue; 939 if (rg->from >= t) 940 break; 941 942 seg_from = max(rg->from, f); 943 seg_to = min(rg->to, t); 944 945 chg += seg_to - seg_from; 946 } 947 spin_unlock(&resv->lock); 948 949 return chg; 950 } 951 952 /* 953 * Convert the address within this vma to the page offset within 954 * the mapping, in pagecache page units; huge pages here. 955 */ 956 static pgoff_t vma_hugecache_offset(struct hstate *h, 957 struct vm_area_struct *vma, unsigned long address) 958 { 959 return ((address - vma->vm_start) >> huge_page_shift(h)) + 960 (vma->vm_pgoff >> huge_page_order(h)); 961 } 962 963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 964 unsigned long address) 965 { 966 return vma_hugecache_offset(hstate_vma(vma), vma, address); 967 } 968 EXPORT_SYMBOL_GPL(linear_hugepage_index); 969 970 /* 971 * Return the size of the pages allocated when backing a VMA. In the majority 972 * cases this will be same size as used by the page table entries. 973 */ 974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 975 { 976 if (vma->vm_ops && vma->vm_ops->pagesize) 977 return vma->vm_ops->pagesize(vma); 978 return PAGE_SIZE; 979 } 980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 981 982 /* 983 * Return the page size being used by the MMU to back a VMA. In the majority 984 * of cases, the page size used by the kernel matches the MMU size. On 985 * architectures where it differs, an architecture-specific 'strong' 986 * version of this symbol is required. 987 */ 988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 989 { 990 return vma_kernel_pagesize(vma); 991 } 992 993 /* 994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 995 * bits of the reservation map pointer, which are always clear due to 996 * alignment. 997 */ 998 #define HPAGE_RESV_OWNER (1UL << 0) 999 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1001 1002 /* 1003 * These helpers are used to track how many pages are reserved for 1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1005 * is guaranteed to have their future faults succeed. 1006 * 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1008 * the reserve counters are updated with the hugetlb_lock held. It is safe 1009 * to reset the VMA at fork() time as it is not in use yet and there is no 1010 * chance of the global counters getting corrupted as a result of the values. 1011 * 1012 * The private mapping reservation is represented in a subtly different 1013 * manner to a shared mapping. A shared mapping has a region map associated 1014 * with the underlying file, this region map represents the backing file 1015 * pages which have ever had a reservation assigned which this persists even 1016 * after the page is instantiated. A private mapping has a region map 1017 * associated with the original mmap which is attached to all VMAs which 1018 * reference it, this region map represents those offsets which have consumed 1019 * reservation ie. where pages have been instantiated. 1020 */ 1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1022 { 1023 return (unsigned long)vma->vm_private_data; 1024 } 1025 1026 static void set_vma_private_data(struct vm_area_struct *vma, 1027 unsigned long value) 1028 { 1029 vma->vm_private_data = (void *)value; 1030 } 1031 1032 static void 1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1034 struct hugetlb_cgroup *h_cg, 1035 struct hstate *h) 1036 { 1037 #ifdef CONFIG_CGROUP_HUGETLB 1038 if (!h_cg || !h) { 1039 resv_map->reservation_counter = NULL; 1040 resv_map->pages_per_hpage = 0; 1041 resv_map->css = NULL; 1042 } else { 1043 resv_map->reservation_counter = 1044 &h_cg->rsvd_hugepage[hstate_index(h)]; 1045 resv_map->pages_per_hpage = pages_per_huge_page(h); 1046 resv_map->css = &h_cg->css; 1047 } 1048 #endif 1049 } 1050 1051 struct resv_map *resv_map_alloc(void) 1052 { 1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1055 1056 if (!resv_map || !rg) { 1057 kfree(resv_map); 1058 kfree(rg); 1059 return NULL; 1060 } 1061 1062 kref_init(&resv_map->refs); 1063 spin_lock_init(&resv_map->lock); 1064 INIT_LIST_HEAD(&resv_map->regions); 1065 1066 resv_map->adds_in_progress = 0; 1067 /* 1068 * Initialize these to 0. On shared mappings, 0's here indicate these 1069 * fields don't do cgroup accounting. On private mappings, these will be 1070 * re-initialized to the proper values, to indicate that hugetlb cgroup 1071 * reservations are to be un-charged from here. 1072 */ 1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1074 1075 INIT_LIST_HEAD(&resv_map->region_cache); 1076 list_add(&rg->link, &resv_map->region_cache); 1077 resv_map->region_cache_count = 1; 1078 1079 return resv_map; 1080 } 1081 1082 void resv_map_release(struct kref *ref) 1083 { 1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1085 struct list_head *head = &resv_map->region_cache; 1086 struct file_region *rg, *trg; 1087 1088 /* Clear out any active regions before we release the map. */ 1089 region_del(resv_map, 0, LONG_MAX); 1090 1091 /* ... and any entries left in the cache */ 1092 list_for_each_entry_safe(rg, trg, head, link) { 1093 list_del(&rg->link); 1094 kfree(rg); 1095 } 1096 1097 VM_BUG_ON(resv_map->adds_in_progress); 1098 1099 kfree(resv_map); 1100 } 1101 1102 static inline struct resv_map *inode_resv_map(struct inode *inode) 1103 { 1104 /* 1105 * At inode evict time, i_mapping may not point to the original 1106 * address space within the inode. This original address space 1107 * contains the pointer to the resv_map. So, always use the 1108 * address space embedded within the inode. 1109 * The VERY common case is inode->mapping == &inode->i_data but, 1110 * this may not be true for device special inodes. 1111 */ 1112 return (struct resv_map *)(&inode->i_data)->private_data; 1113 } 1114 1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1116 { 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1118 if (vma->vm_flags & VM_MAYSHARE) { 1119 struct address_space *mapping = vma->vm_file->f_mapping; 1120 struct inode *inode = mapping->host; 1121 1122 return inode_resv_map(inode); 1123 1124 } else { 1125 return (struct resv_map *)(get_vma_private_data(vma) & 1126 ~HPAGE_RESV_MASK); 1127 } 1128 } 1129 1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1131 { 1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1134 1135 set_vma_private_data(vma, (get_vma_private_data(vma) & 1136 HPAGE_RESV_MASK) | (unsigned long)map); 1137 } 1138 1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1140 { 1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1143 1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1145 } 1146 1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 1151 return (get_vma_private_data(vma) & flag) != 0; 1152 } 1153 1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 /* 1158 * Clear vm_private_data 1159 * - For shared mappings this is a per-vma semaphore that may be 1160 * allocated in a subsequent call to hugetlb_vm_op_open. 1161 * Before clearing, make sure pointer is not associated with vma 1162 * as this will leak the structure. This is the case when called 1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1164 * been called to allocate a new structure. 1165 * - For MAP_PRIVATE mappings, this is the reserve map which does 1166 * not apply to children. Faults generated by the children are 1167 * not guaranteed to succeed, even if read-only. 1168 */ 1169 if (vma->vm_flags & VM_MAYSHARE) { 1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1171 1172 if (vma_lock && vma_lock->vma != vma) 1173 vma->vm_private_data = NULL; 1174 } else 1175 vma->vm_private_data = NULL; 1176 } 1177 1178 /* 1179 * Reset and decrement one ref on hugepage private reservation. 1180 * Called with mm->mmap_lock writer semaphore held. 1181 * This function should be only used by move_vma() and operate on 1182 * same sized vma. It should never come here with last ref on the 1183 * reservation. 1184 */ 1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1186 { 1187 /* 1188 * Clear the old hugetlb private page reservation. 1189 * It has already been transferred to new_vma. 1190 * 1191 * During a mremap() operation of a hugetlb vma we call move_vma() 1192 * which copies vma into new_vma and unmaps vma. After the copy 1193 * operation both new_vma and vma share a reference to the resv_map 1194 * struct, and at that point vma is about to be unmapped. We don't 1195 * want to return the reservation to the pool at unmap of vma because 1196 * the reservation still lives on in new_vma, so simply decrement the 1197 * ref here and remove the resv_map reference from this vma. 1198 */ 1199 struct resv_map *reservations = vma_resv_map(vma); 1200 1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1203 kref_put(&reservations->refs, resv_map_release); 1204 } 1205 1206 hugetlb_dup_vma_private(vma); 1207 } 1208 1209 /* Returns true if the VMA has associated reserve pages */ 1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1211 { 1212 if (vma->vm_flags & VM_NORESERVE) { 1213 /* 1214 * This address is already reserved by other process(chg == 0), 1215 * so, we should decrement reserved count. Without decrementing, 1216 * reserve count remains after releasing inode, because this 1217 * allocated page will go into page cache and is regarded as 1218 * coming from reserved pool in releasing step. Currently, we 1219 * don't have any other solution to deal with this situation 1220 * properly, so add work-around here. 1221 */ 1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1223 return true; 1224 else 1225 return false; 1226 } 1227 1228 /* Shared mappings always use reserves */ 1229 if (vma->vm_flags & VM_MAYSHARE) { 1230 /* 1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1232 * be a region map for all pages. The only situation where 1233 * there is no region map is if a hole was punched via 1234 * fallocate. In this case, there really are no reserves to 1235 * use. This situation is indicated if chg != 0. 1236 */ 1237 if (chg) 1238 return false; 1239 else 1240 return true; 1241 } 1242 1243 /* 1244 * Only the process that called mmap() has reserves for 1245 * private mappings. 1246 */ 1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1248 /* 1249 * Like the shared case above, a hole punch or truncate 1250 * could have been performed on the private mapping. 1251 * Examine the value of chg to determine if reserves 1252 * actually exist or were previously consumed. 1253 * Very Subtle - The value of chg comes from a previous 1254 * call to vma_needs_reserves(). The reserve map for 1255 * private mappings has different (opposite) semantics 1256 * than that of shared mappings. vma_needs_reserves() 1257 * has already taken this difference in semantics into 1258 * account. Therefore, the meaning of chg is the same 1259 * as in the shared case above. Code could easily be 1260 * combined, but keeping it separate draws attention to 1261 * subtle differences. 1262 */ 1263 if (chg) 1264 return false; 1265 else 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1273 { 1274 int nid = folio_nid(folio); 1275 1276 lockdep_assert_held(&hugetlb_lock); 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1278 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1280 h->free_huge_pages++; 1281 h->free_huge_pages_node[nid]++; 1282 folio_set_hugetlb_freed(folio); 1283 } 1284 1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1286 int nid) 1287 { 1288 struct folio *folio; 1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1290 1291 lockdep_assert_held(&hugetlb_lock); 1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1293 if (pin && !folio_is_longterm_pinnable(folio)) 1294 continue; 1295 1296 if (folio_test_hwpoison(folio)) 1297 continue; 1298 1299 list_move(&folio->lru, &h->hugepage_activelist); 1300 folio_ref_unfreeze(folio, 1); 1301 folio_clear_hugetlb_freed(folio); 1302 h->free_huge_pages--; 1303 h->free_huge_pages_node[nid]--; 1304 return folio; 1305 } 1306 1307 return NULL; 1308 } 1309 1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1311 int nid, nodemask_t *nmask) 1312 { 1313 unsigned int cpuset_mems_cookie; 1314 struct zonelist *zonelist; 1315 struct zone *zone; 1316 struct zoneref *z; 1317 int node = NUMA_NO_NODE; 1318 1319 zonelist = node_zonelist(nid, gfp_mask); 1320 1321 retry_cpuset: 1322 cpuset_mems_cookie = read_mems_allowed_begin(); 1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1324 struct folio *folio; 1325 1326 if (!cpuset_zone_allowed(zone, gfp_mask)) 1327 continue; 1328 /* 1329 * no need to ask again on the same node. Pool is node rather than 1330 * zone aware 1331 */ 1332 if (zone_to_nid(zone) == node) 1333 continue; 1334 node = zone_to_nid(zone); 1335 1336 folio = dequeue_hugetlb_folio_node_exact(h, node); 1337 if (folio) 1338 return folio; 1339 } 1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1341 goto retry_cpuset; 1342 1343 return NULL; 1344 } 1345 1346 static unsigned long available_huge_pages(struct hstate *h) 1347 { 1348 return h->free_huge_pages - h->resv_huge_pages; 1349 } 1350 1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1352 struct vm_area_struct *vma, 1353 unsigned long address, int avoid_reserve, 1354 long chg) 1355 { 1356 struct folio *folio = NULL; 1357 struct mempolicy *mpol; 1358 gfp_t gfp_mask; 1359 nodemask_t *nodemask; 1360 int nid; 1361 1362 /* 1363 * A child process with MAP_PRIVATE mappings created by their parent 1364 * have no page reserves. This check ensures that reservations are 1365 * not "stolen". The child may still get SIGKILLed 1366 */ 1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1368 goto err; 1369 1370 /* If reserves cannot be used, ensure enough pages are in the pool */ 1371 if (avoid_reserve && !available_huge_pages(h)) 1372 goto err; 1373 1374 gfp_mask = htlb_alloc_mask(h); 1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1376 1377 if (mpol_is_preferred_many(mpol)) { 1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1379 nid, nodemask); 1380 1381 /* Fallback to all nodes if page==NULL */ 1382 nodemask = NULL; 1383 } 1384 1385 if (!folio) 1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1387 nid, nodemask); 1388 1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1390 folio_set_hugetlb_restore_reserve(folio); 1391 h->resv_huge_pages--; 1392 } 1393 1394 mpol_cond_put(mpol); 1395 return folio; 1396 1397 err: 1398 return NULL; 1399 } 1400 1401 /* 1402 * common helper functions for hstate_next_node_to_{alloc|free}. 1403 * We may have allocated or freed a huge page based on a different 1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1405 * be outside of *nodes_allowed. Ensure that we use an allowed 1406 * node for alloc or free. 1407 */ 1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1409 { 1410 nid = next_node_in(nid, *nodes_allowed); 1411 VM_BUG_ON(nid >= MAX_NUMNODES); 1412 1413 return nid; 1414 } 1415 1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1417 { 1418 if (!node_isset(nid, *nodes_allowed)) 1419 nid = next_node_allowed(nid, nodes_allowed); 1420 return nid; 1421 } 1422 1423 /* 1424 * returns the previously saved node ["this node"] from which to 1425 * allocate a persistent huge page for the pool and advance the 1426 * next node from which to allocate, handling wrap at end of node 1427 * mask. 1428 */ 1429 static int hstate_next_node_to_alloc(struct hstate *h, 1430 nodemask_t *nodes_allowed) 1431 { 1432 int nid; 1433 1434 VM_BUG_ON(!nodes_allowed); 1435 1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1438 1439 return nid; 1440 } 1441 1442 /* 1443 * helper for remove_pool_huge_page() - return the previously saved 1444 * node ["this node"] from which to free a huge page. Advance the 1445 * next node id whether or not we find a free huge page to free so 1446 * that the next attempt to free addresses the next node. 1447 */ 1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1449 { 1450 int nid; 1451 1452 VM_BUG_ON(!nodes_allowed); 1453 1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1456 1457 return nid; 1458 } 1459 1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1461 for (nr_nodes = nodes_weight(*mask); \ 1462 nr_nodes > 0 && \ 1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1464 nr_nodes--) 1465 1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1467 for (nr_nodes = nodes_weight(*mask); \ 1468 nr_nodes > 0 && \ 1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1470 nr_nodes--) 1471 1472 /* used to demote non-gigantic_huge pages as well */ 1473 static void __destroy_compound_gigantic_folio(struct folio *folio, 1474 unsigned int order, bool demote) 1475 { 1476 int i; 1477 int nr_pages = 1 << order; 1478 struct page *p; 1479 1480 atomic_set(&folio->_entire_mapcount, 0); 1481 atomic_set(&folio->_nr_pages_mapped, 0); 1482 atomic_set(&folio->_pincount, 0); 1483 1484 for (i = 1; i < nr_pages; i++) { 1485 p = folio_page(folio, i); 1486 p->mapping = NULL; 1487 clear_compound_head(p); 1488 if (!demote) 1489 set_page_refcounted(p); 1490 } 1491 1492 __folio_clear_head(folio); 1493 } 1494 1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1496 unsigned int order) 1497 { 1498 __destroy_compound_gigantic_folio(folio, order, true); 1499 } 1500 1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1502 static void destroy_compound_gigantic_folio(struct folio *folio, 1503 unsigned int order) 1504 { 1505 __destroy_compound_gigantic_folio(folio, order, false); 1506 } 1507 1508 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1509 { 1510 /* 1511 * If the page isn't allocated using the cma allocator, 1512 * cma_release() returns false. 1513 */ 1514 #ifdef CONFIG_CMA 1515 int nid = folio_nid(folio); 1516 1517 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1518 return; 1519 #endif 1520 1521 free_contig_range(folio_pfn(folio), 1 << order); 1522 } 1523 1524 #ifdef CONFIG_CONTIG_ALLOC 1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1526 int nid, nodemask_t *nodemask) 1527 { 1528 struct page *page; 1529 unsigned long nr_pages = pages_per_huge_page(h); 1530 if (nid == NUMA_NO_NODE) 1531 nid = numa_mem_id(); 1532 1533 #ifdef CONFIG_CMA 1534 { 1535 int node; 1536 1537 if (hugetlb_cma[nid]) { 1538 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1539 huge_page_order(h), true); 1540 if (page) 1541 return page_folio(page); 1542 } 1543 1544 if (!(gfp_mask & __GFP_THISNODE)) { 1545 for_each_node_mask(node, *nodemask) { 1546 if (node == nid || !hugetlb_cma[node]) 1547 continue; 1548 1549 page = cma_alloc(hugetlb_cma[node], nr_pages, 1550 huge_page_order(h), true); 1551 if (page) 1552 return page_folio(page); 1553 } 1554 } 1555 } 1556 #endif 1557 1558 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1559 return page ? page_folio(page) : NULL; 1560 } 1561 1562 #else /* !CONFIG_CONTIG_ALLOC */ 1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1564 int nid, nodemask_t *nodemask) 1565 { 1566 return NULL; 1567 } 1568 #endif /* CONFIG_CONTIG_ALLOC */ 1569 1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 return NULL; 1575 } 1576 static inline void free_gigantic_folio(struct folio *folio, 1577 unsigned int order) { } 1578 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1579 unsigned int order) { } 1580 #endif 1581 1582 static inline void __clear_hugetlb_destructor(struct hstate *h, 1583 struct folio *folio) 1584 { 1585 lockdep_assert_held(&hugetlb_lock); 1586 1587 /* 1588 * Very subtle 1589 * 1590 * For non-gigantic pages set the destructor to the normal compound 1591 * page dtor. This is needed in case someone takes an additional 1592 * temporary ref to the page, and freeing is delayed until they drop 1593 * their reference. 1594 * 1595 * For gigantic pages set the destructor to the null dtor. This 1596 * destructor will never be called. Before freeing the gigantic 1597 * page destroy_compound_gigantic_folio will turn the folio into a 1598 * simple group of pages. After this the destructor does not 1599 * apply. 1600 * 1601 */ 1602 if (hstate_is_gigantic(h)) 1603 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1604 else 1605 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1606 } 1607 1608 /* 1609 * Remove hugetlb folio from lists. 1610 * If vmemmap exists for the folio, update dtor so that the folio appears 1611 * as just a compound page. Otherwise, wait until after allocating vmemmap 1612 * to update dtor. 1613 * 1614 * A reference is held on the folio, except in the case of demote. 1615 * 1616 * Must be called with hugetlb lock held. 1617 */ 1618 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1619 bool adjust_surplus, 1620 bool demote) 1621 { 1622 int nid = folio_nid(folio); 1623 1624 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1625 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1626 1627 lockdep_assert_held(&hugetlb_lock); 1628 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1629 return; 1630 1631 list_del(&folio->lru); 1632 1633 if (folio_test_hugetlb_freed(folio)) { 1634 h->free_huge_pages--; 1635 h->free_huge_pages_node[nid]--; 1636 } 1637 if (adjust_surplus) { 1638 h->surplus_huge_pages--; 1639 h->surplus_huge_pages_node[nid]--; 1640 } 1641 1642 /* 1643 * We can only clear the hugetlb destructor after allocating vmemmap 1644 * pages. Otherwise, someone (memory error handling) may try to write 1645 * to tail struct pages. 1646 */ 1647 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1648 __clear_hugetlb_destructor(h, folio); 1649 1650 /* 1651 * In the case of demote we do not ref count the page as it will soon 1652 * be turned into a page of smaller size. 1653 */ 1654 if (!demote) 1655 folio_ref_unfreeze(folio, 1); 1656 1657 h->nr_huge_pages--; 1658 h->nr_huge_pages_node[nid]--; 1659 } 1660 1661 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1662 bool adjust_surplus) 1663 { 1664 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1665 } 1666 1667 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1668 bool adjust_surplus) 1669 { 1670 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1671 } 1672 1673 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1674 bool adjust_surplus) 1675 { 1676 int zeroed; 1677 int nid = folio_nid(folio); 1678 1679 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1680 1681 lockdep_assert_held(&hugetlb_lock); 1682 1683 INIT_LIST_HEAD(&folio->lru); 1684 h->nr_huge_pages++; 1685 h->nr_huge_pages_node[nid]++; 1686 1687 if (adjust_surplus) { 1688 h->surplus_huge_pages++; 1689 h->surplus_huge_pages_node[nid]++; 1690 } 1691 1692 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1693 folio_change_private(folio, NULL); 1694 /* 1695 * We have to set hugetlb_vmemmap_optimized again as above 1696 * folio_change_private(folio, NULL) cleared it. 1697 */ 1698 folio_set_hugetlb_vmemmap_optimized(folio); 1699 1700 /* 1701 * This folio is about to be managed by the hugetlb allocator and 1702 * should have no users. Drop our reference, and check for others 1703 * just in case. 1704 */ 1705 zeroed = folio_put_testzero(folio); 1706 if (unlikely(!zeroed)) 1707 /* 1708 * It is VERY unlikely soneone else has taken a ref on 1709 * the page. In this case, we simply return as the 1710 * hugetlb destructor (free_huge_page) will be called 1711 * when this other ref is dropped. 1712 */ 1713 return; 1714 1715 arch_clear_hugepage_flags(&folio->page); 1716 enqueue_hugetlb_folio(h, folio); 1717 } 1718 1719 static void __update_and_free_hugetlb_folio(struct hstate *h, 1720 struct folio *folio) 1721 { 1722 int i; 1723 struct page *subpage; 1724 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1725 1726 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1727 return; 1728 1729 /* 1730 * If we don't know which subpages are hwpoisoned, we can't free 1731 * the hugepage, so it's leaked intentionally. 1732 */ 1733 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1734 return; 1735 1736 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1737 spin_lock_irq(&hugetlb_lock); 1738 /* 1739 * If we cannot allocate vmemmap pages, just refuse to free the 1740 * page and put the page back on the hugetlb free list and treat 1741 * as a surplus page. 1742 */ 1743 add_hugetlb_folio(h, folio, true); 1744 spin_unlock_irq(&hugetlb_lock); 1745 return; 1746 } 1747 1748 /* 1749 * Move PageHWPoison flag from head page to the raw error pages, 1750 * which makes any healthy subpages reusable. 1751 */ 1752 if (unlikely(folio_test_hwpoison(folio))) 1753 folio_clear_hugetlb_hwpoison(folio); 1754 1755 /* 1756 * If vmemmap pages were allocated above, then we need to clear the 1757 * hugetlb destructor under the hugetlb lock. 1758 */ 1759 if (clear_dtor) { 1760 spin_lock_irq(&hugetlb_lock); 1761 __clear_hugetlb_destructor(h, folio); 1762 spin_unlock_irq(&hugetlb_lock); 1763 } 1764 1765 for (i = 0; i < pages_per_huge_page(h); i++) { 1766 subpage = folio_page(folio, i); 1767 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1768 1 << PG_referenced | 1 << PG_dirty | 1769 1 << PG_active | 1 << PG_private | 1770 1 << PG_writeback); 1771 } 1772 1773 /* 1774 * Non-gigantic pages demoted from CMA allocated gigantic pages 1775 * need to be given back to CMA in free_gigantic_folio. 1776 */ 1777 if (hstate_is_gigantic(h) || 1778 hugetlb_cma_folio(folio, huge_page_order(h))) { 1779 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1780 free_gigantic_folio(folio, huge_page_order(h)); 1781 } else { 1782 __free_pages(&folio->page, huge_page_order(h)); 1783 } 1784 } 1785 1786 /* 1787 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1788 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1789 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1790 * the vmemmap pages. 1791 * 1792 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1793 * freed and frees them one-by-one. As the page->mapping pointer is going 1794 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1795 * structure of a lockless linked list of huge pages to be freed. 1796 */ 1797 static LLIST_HEAD(hpage_freelist); 1798 1799 static void free_hpage_workfn(struct work_struct *work) 1800 { 1801 struct llist_node *node; 1802 1803 node = llist_del_all(&hpage_freelist); 1804 1805 while (node) { 1806 struct page *page; 1807 struct hstate *h; 1808 1809 page = container_of((struct address_space **)node, 1810 struct page, mapping); 1811 node = node->next; 1812 page->mapping = NULL; 1813 /* 1814 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1815 * is going to trigger because a previous call to 1816 * remove_hugetlb_folio() will call folio_set_compound_dtor 1817 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1818 * directly. 1819 */ 1820 h = size_to_hstate(page_size(page)); 1821 1822 __update_and_free_hugetlb_folio(h, page_folio(page)); 1823 1824 cond_resched(); 1825 } 1826 } 1827 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1828 1829 static inline void flush_free_hpage_work(struct hstate *h) 1830 { 1831 if (hugetlb_vmemmap_optimizable(h)) 1832 flush_work(&free_hpage_work); 1833 } 1834 1835 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1836 bool atomic) 1837 { 1838 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1839 __update_and_free_hugetlb_folio(h, folio); 1840 return; 1841 } 1842 1843 /* 1844 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1845 * 1846 * Only call schedule_work() if hpage_freelist is previously 1847 * empty. Otherwise, schedule_work() had been called but the workfn 1848 * hasn't retrieved the list yet. 1849 */ 1850 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1851 schedule_work(&free_hpage_work); 1852 } 1853 1854 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1855 { 1856 struct page *page, *t_page; 1857 struct folio *folio; 1858 1859 list_for_each_entry_safe(page, t_page, list, lru) { 1860 folio = page_folio(page); 1861 update_and_free_hugetlb_folio(h, folio, false); 1862 cond_resched(); 1863 } 1864 } 1865 1866 struct hstate *size_to_hstate(unsigned long size) 1867 { 1868 struct hstate *h; 1869 1870 for_each_hstate(h) { 1871 if (huge_page_size(h) == size) 1872 return h; 1873 } 1874 return NULL; 1875 } 1876 1877 void free_huge_page(struct page *page) 1878 { 1879 /* 1880 * Can't pass hstate in here because it is called from the 1881 * compound page destructor. 1882 */ 1883 struct folio *folio = page_folio(page); 1884 struct hstate *h = folio_hstate(folio); 1885 int nid = folio_nid(folio); 1886 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1887 bool restore_reserve; 1888 unsigned long flags; 1889 1890 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1891 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1892 1893 hugetlb_set_folio_subpool(folio, NULL); 1894 if (folio_test_anon(folio)) 1895 __ClearPageAnonExclusive(&folio->page); 1896 folio->mapping = NULL; 1897 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1898 folio_clear_hugetlb_restore_reserve(folio); 1899 1900 /* 1901 * If HPageRestoreReserve was set on page, page allocation consumed a 1902 * reservation. If the page was associated with a subpool, there 1903 * would have been a page reserved in the subpool before allocation 1904 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1905 * reservation, do not call hugepage_subpool_put_pages() as this will 1906 * remove the reserved page from the subpool. 1907 */ 1908 if (!restore_reserve) { 1909 /* 1910 * A return code of zero implies that the subpool will be 1911 * under its minimum size if the reservation is not restored 1912 * after page is free. Therefore, force restore_reserve 1913 * operation. 1914 */ 1915 if (hugepage_subpool_put_pages(spool, 1) == 0) 1916 restore_reserve = true; 1917 } 1918 1919 spin_lock_irqsave(&hugetlb_lock, flags); 1920 folio_clear_hugetlb_migratable(folio); 1921 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1922 pages_per_huge_page(h), folio); 1923 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1924 pages_per_huge_page(h), folio); 1925 if (restore_reserve) 1926 h->resv_huge_pages++; 1927 1928 if (folio_test_hugetlb_temporary(folio)) { 1929 remove_hugetlb_folio(h, folio, false); 1930 spin_unlock_irqrestore(&hugetlb_lock, flags); 1931 update_and_free_hugetlb_folio(h, folio, true); 1932 } else if (h->surplus_huge_pages_node[nid]) { 1933 /* remove the page from active list */ 1934 remove_hugetlb_folio(h, folio, true); 1935 spin_unlock_irqrestore(&hugetlb_lock, flags); 1936 update_and_free_hugetlb_folio(h, folio, true); 1937 } else { 1938 arch_clear_hugepage_flags(page); 1939 enqueue_hugetlb_folio(h, folio); 1940 spin_unlock_irqrestore(&hugetlb_lock, flags); 1941 } 1942 } 1943 1944 /* 1945 * Must be called with the hugetlb lock held 1946 */ 1947 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1948 { 1949 lockdep_assert_held(&hugetlb_lock); 1950 h->nr_huge_pages++; 1951 h->nr_huge_pages_node[nid]++; 1952 } 1953 1954 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1955 { 1956 hugetlb_vmemmap_optimize(h, &folio->page); 1957 INIT_LIST_HEAD(&folio->lru); 1958 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1959 hugetlb_set_folio_subpool(folio, NULL); 1960 set_hugetlb_cgroup(folio, NULL); 1961 set_hugetlb_cgroup_rsvd(folio, NULL); 1962 } 1963 1964 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1965 { 1966 __prep_new_hugetlb_folio(h, folio); 1967 spin_lock_irq(&hugetlb_lock); 1968 __prep_account_new_huge_page(h, nid); 1969 spin_unlock_irq(&hugetlb_lock); 1970 } 1971 1972 static bool __prep_compound_gigantic_folio(struct folio *folio, 1973 unsigned int order, bool demote) 1974 { 1975 int i, j; 1976 int nr_pages = 1 << order; 1977 struct page *p; 1978 1979 __folio_clear_reserved(folio); 1980 for (i = 0; i < nr_pages; i++) { 1981 p = folio_page(folio, i); 1982 1983 /* 1984 * For gigantic hugepages allocated through bootmem at 1985 * boot, it's safer to be consistent with the not-gigantic 1986 * hugepages and clear the PG_reserved bit from all tail pages 1987 * too. Otherwise drivers using get_user_pages() to access tail 1988 * pages may get the reference counting wrong if they see 1989 * PG_reserved set on a tail page (despite the head page not 1990 * having PG_reserved set). Enforcing this consistency between 1991 * head and tail pages allows drivers to optimize away a check 1992 * on the head page when they need know if put_page() is needed 1993 * after get_user_pages(). 1994 */ 1995 if (i != 0) /* head page cleared above */ 1996 __ClearPageReserved(p); 1997 /* 1998 * Subtle and very unlikely 1999 * 2000 * Gigantic 'page allocators' such as memblock or cma will 2001 * return a set of pages with each page ref counted. We need 2002 * to turn this set of pages into a compound page with tail 2003 * page ref counts set to zero. Code such as speculative page 2004 * cache adding could take a ref on a 'to be' tail page. 2005 * We need to respect any increased ref count, and only set 2006 * the ref count to zero if count is currently 1. If count 2007 * is not 1, we return an error. An error return indicates 2008 * the set of pages can not be converted to a gigantic page. 2009 * The caller who allocated the pages should then discard the 2010 * pages using the appropriate free interface. 2011 * 2012 * In the case of demote, the ref count will be zero. 2013 */ 2014 if (!demote) { 2015 if (!page_ref_freeze(p, 1)) { 2016 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2017 goto out_error; 2018 } 2019 } else { 2020 VM_BUG_ON_PAGE(page_count(p), p); 2021 } 2022 if (i != 0) 2023 set_compound_head(p, &folio->page); 2024 } 2025 __folio_set_head(folio); 2026 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2027 folio_set_order(folio, order); 2028 atomic_set(&folio->_entire_mapcount, -1); 2029 atomic_set(&folio->_nr_pages_mapped, 0); 2030 atomic_set(&folio->_pincount, 0); 2031 return true; 2032 2033 out_error: 2034 /* undo page modifications made above */ 2035 for (j = 0; j < i; j++) { 2036 p = folio_page(folio, j); 2037 if (j != 0) 2038 clear_compound_head(p); 2039 set_page_refcounted(p); 2040 } 2041 /* need to clear PG_reserved on remaining tail pages */ 2042 for (; j < nr_pages; j++) { 2043 p = folio_page(folio, j); 2044 __ClearPageReserved(p); 2045 } 2046 return false; 2047 } 2048 2049 static bool prep_compound_gigantic_folio(struct folio *folio, 2050 unsigned int order) 2051 { 2052 return __prep_compound_gigantic_folio(folio, order, false); 2053 } 2054 2055 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2056 unsigned int order) 2057 { 2058 return __prep_compound_gigantic_folio(folio, order, true); 2059 } 2060 2061 /* 2062 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2063 * transparent huge pages. See the PageTransHuge() documentation for more 2064 * details. 2065 */ 2066 int PageHuge(struct page *page) 2067 { 2068 struct folio *folio; 2069 2070 if (!PageCompound(page)) 2071 return 0; 2072 folio = page_folio(page); 2073 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2074 } 2075 EXPORT_SYMBOL_GPL(PageHuge); 2076 2077 /** 2078 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs 2079 * @folio: The folio to test. 2080 * 2081 * Context: Any context. Caller should have a reference on the folio to 2082 * prevent it from being turned into a tail page. 2083 * Return: True for hugetlbfs folios, false for anon folios or folios 2084 * belonging to other filesystems. 2085 */ 2086 bool folio_test_hugetlb(struct folio *folio) 2087 { 2088 if (!folio_test_large(folio)) 2089 return false; 2090 2091 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2092 } 2093 EXPORT_SYMBOL_GPL(folio_test_hugetlb); 2094 2095 /* 2096 * Find and lock address space (mapping) in write mode. 2097 * 2098 * Upon entry, the page is locked which means that page_mapping() is 2099 * stable. Due to locking order, we can only trylock_write. If we can 2100 * not get the lock, simply return NULL to caller. 2101 */ 2102 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2103 { 2104 struct address_space *mapping = page_mapping(hpage); 2105 2106 if (!mapping) 2107 return mapping; 2108 2109 if (i_mmap_trylock_write(mapping)) 2110 return mapping; 2111 2112 return NULL; 2113 } 2114 2115 pgoff_t hugetlb_basepage_index(struct page *page) 2116 { 2117 struct page *page_head = compound_head(page); 2118 pgoff_t index = page_index(page_head); 2119 unsigned long compound_idx; 2120 2121 if (compound_order(page_head) > MAX_ORDER) 2122 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2123 else 2124 compound_idx = page - page_head; 2125 2126 return (index << compound_order(page_head)) + compound_idx; 2127 } 2128 2129 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2130 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2131 nodemask_t *node_alloc_noretry) 2132 { 2133 int order = huge_page_order(h); 2134 struct page *page; 2135 bool alloc_try_hard = true; 2136 bool retry = true; 2137 2138 /* 2139 * By default we always try hard to allocate the page with 2140 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2141 * a loop (to adjust global huge page counts) and previous allocation 2142 * failed, do not continue to try hard on the same node. Use the 2143 * node_alloc_noretry bitmap to manage this state information. 2144 */ 2145 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2146 alloc_try_hard = false; 2147 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2148 if (alloc_try_hard) 2149 gfp_mask |= __GFP_RETRY_MAYFAIL; 2150 if (nid == NUMA_NO_NODE) 2151 nid = numa_mem_id(); 2152 retry: 2153 page = __alloc_pages(gfp_mask, order, nid, nmask); 2154 2155 /* Freeze head page */ 2156 if (page && !page_ref_freeze(page, 1)) { 2157 __free_pages(page, order); 2158 if (retry) { /* retry once */ 2159 retry = false; 2160 goto retry; 2161 } 2162 /* WOW! twice in a row. */ 2163 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2164 page = NULL; 2165 } 2166 2167 /* 2168 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2169 * indicates an overall state change. Clear bit so that we resume 2170 * normal 'try hard' allocations. 2171 */ 2172 if (node_alloc_noretry && page && !alloc_try_hard) 2173 node_clear(nid, *node_alloc_noretry); 2174 2175 /* 2176 * If we tried hard to get a page but failed, set bit so that 2177 * subsequent attempts will not try as hard until there is an 2178 * overall state change. 2179 */ 2180 if (node_alloc_noretry && !page && alloc_try_hard) 2181 node_set(nid, *node_alloc_noretry); 2182 2183 if (!page) { 2184 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2185 return NULL; 2186 } 2187 2188 __count_vm_event(HTLB_BUDDY_PGALLOC); 2189 return page_folio(page); 2190 } 2191 2192 /* 2193 * Common helper to allocate a fresh hugetlb page. All specific allocators 2194 * should use this function to get new hugetlb pages 2195 * 2196 * Note that returned page is 'frozen': ref count of head page and all tail 2197 * pages is zero. 2198 */ 2199 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2200 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2201 nodemask_t *node_alloc_noretry) 2202 { 2203 struct folio *folio; 2204 bool retry = false; 2205 2206 retry: 2207 if (hstate_is_gigantic(h)) 2208 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2209 else 2210 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2211 nid, nmask, node_alloc_noretry); 2212 if (!folio) 2213 return NULL; 2214 if (hstate_is_gigantic(h)) { 2215 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2216 /* 2217 * Rare failure to convert pages to compound page. 2218 * Free pages and try again - ONCE! 2219 */ 2220 free_gigantic_folio(folio, huge_page_order(h)); 2221 if (!retry) { 2222 retry = true; 2223 goto retry; 2224 } 2225 return NULL; 2226 } 2227 } 2228 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2229 2230 return folio; 2231 } 2232 2233 /* 2234 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2235 * manner. 2236 */ 2237 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2238 nodemask_t *node_alloc_noretry) 2239 { 2240 struct folio *folio; 2241 int nr_nodes, node; 2242 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2243 2244 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2245 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2246 nodes_allowed, node_alloc_noretry); 2247 if (folio) { 2248 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2249 return 1; 2250 } 2251 } 2252 2253 return 0; 2254 } 2255 2256 /* 2257 * Remove huge page from pool from next node to free. Attempt to keep 2258 * persistent huge pages more or less balanced over allowed nodes. 2259 * This routine only 'removes' the hugetlb page. The caller must make 2260 * an additional call to free the page to low level allocators. 2261 * Called with hugetlb_lock locked. 2262 */ 2263 static struct page *remove_pool_huge_page(struct hstate *h, 2264 nodemask_t *nodes_allowed, 2265 bool acct_surplus) 2266 { 2267 int nr_nodes, node; 2268 struct page *page = NULL; 2269 struct folio *folio; 2270 2271 lockdep_assert_held(&hugetlb_lock); 2272 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2273 /* 2274 * If we're returning unused surplus pages, only examine 2275 * nodes with surplus pages. 2276 */ 2277 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2278 !list_empty(&h->hugepage_freelists[node])) { 2279 page = list_entry(h->hugepage_freelists[node].next, 2280 struct page, lru); 2281 folio = page_folio(page); 2282 remove_hugetlb_folio(h, folio, acct_surplus); 2283 break; 2284 } 2285 } 2286 2287 return page; 2288 } 2289 2290 /* 2291 * Dissolve a given free hugepage into free buddy pages. This function does 2292 * nothing for in-use hugepages and non-hugepages. 2293 * This function returns values like below: 2294 * 2295 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2296 * when the system is under memory pressure and the feature of 2297 * freeing unused vmemmap pages associated with each hugetlb page 2298 * is enabled. 2299 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2300 * (allocated or reserved.) 2301 * 0: successfully dissolved free hugepages or the page is not a 2302 * hugepage (considered as already dissolved) 2303 */ 2304 int dissolve_free_huge_page(struct page *page) 2305 { 2306 int rc = -EBUSY; 2307 struct folio *folio = page_folio(page); 2308 2309 retry: 2310 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2311 if (!folio_test_hugetlb(folio)) 2312 return 0; 2313 2314 spin_lock_irq(&hugetlb_lock); 2315 if (!folio_test_hugetlb(folio)) { 2316 rc = 0; 2317 goto out; 2318 } 2319 2320 if (!folio_ref_count(folio)) { 2321 struct hstate *h = folio_hstate(folio); 2322 if (!available_huge_pages(h)) 2323 goto out; 2324 2325 /* 2326 * We should make sure that the page is already on the free list 2327 * when it is dissolved. 2328 */ 2329 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2330 spin_unlock_irq(&hugetlb_lock); 2331 cond_resched(); 2332 2333 /* 2334 * Theoretically, we should return -EBUSY when we 2335 * encounter this race. In fact, we have a chance 2336 * to successfully dissolve the page if we do a 2337 * retry. Because the race window is quite small. 2338 * If we seize this opportunity, it is an optimization 2339 * for increasing the success rate of dissolving page. 2340 */ 2341 goto retry; 2342 } 2343 2344 remove_hugetlb_folio(h, folio, false); 2345 h->max_huge_pages--; 2346 spin_unlock_irq(&hugetlb_lock); 2347 2348 /* 2349 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2350 * before freeing the page. update_and_free_hugtlb_folio will fail to 2351 * free the page if it can not allocate required vmemmap. We 2352 * need to adjust max_huge_pages if the page is not freed. 2353 * Attempt to allocate vmemmmap here so that we can take 2354 * appropriate action on failure. 2355 */ 2356 rc = hugetlb_vmemmap_restore(h, &folio->page); 2357 if (!rc) { 2358 update_and_free_hugetlb_folio(h, folio, false); 2359 } else { 2360 spin_lock_irq(&hugetlb_lock); 2361 add_hugetlb_folio(h, folio, false); 2362 h->max_huge_pages++; 2363 spin_unlock_irq(&hugetlb_lock); 2364 } 2365 2366 return rc; 2367 } 2368 out: 2369 spin_unlock_irq(&hugetlb_lock); 2370 return rc; 2371 } 2372 2373 /* 2374 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2375 * make specified memory blocks removable from the system. 2376 * Note that this will dissolve a free gigantic hugepage completely, if any 2377 * part of it lies within the given range. 2378 * Also note that if dissolve_free_huge_page() returns with an error, all 2379 * free hugepages that were dissolved before that error are lost. 2380 */ 2381 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2382 { 2383 unsigned long pfn; 2384 struct page *page; 2385 int rc = 0; 2386 unsigned int order; 2387 struct hstate *h; 2388 2389 if (!hugepages_supported()) 2390 return rc; 2391 2392 order = huge_page_order(&default_hstate); 2393 for_each_hstate(h) 2394 order = min(order, huge_page_order(h)); 2395 2396 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2397 page = pfn_to_page(pfn); 2398 rc = dissolve_free_huge_page(page); 2399 if (rc) 2400 break; 2401 } 2402 2403 return rc; 2404 } 2405 2406 /* 2407 * Allocates a fresh surplus page from the page allocator. 2408 */ 2409 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2410 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2411 { 2412 struct folio *folio = NULL; 2413 2414 if (hstate_is_gigantic(h)) 2415 return NULL; 2416 2417 spin_lock_irq(&hugetlb_lock); 2418 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2419 goto out_unlock; 2420 spin_unlock_irq(&hugetlb_lock); 2421 2422 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2423 if (!folio) 2424 return NULL; 2425 2426 spin_lock_irq(&hugetlb_lock); 2427 /* 2428 * We could have raced with the pool size change. 2429 * Double check that and simply deallocate the new page 2430 * if we would end up overcommiting the surpluses. Abuse 2431 * temporary page to workaround the nasty free_huge_page 2432 * codeflow 2433 */ 2434 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2435 folio_set_hugetlb_temporary(folio); 2436 spin_unlock_irq(&hugetlb_lock); 2437 free_huge_page(&folio->page); 2438 return NULL; 2439 } 2440 2441 h->surplus_huge_pages++; 2442 h->surplus_huge_pages_node[folio_nid(folio)]++; 2443 2444 out_unlock: 2445 spin_unlock_irq(&hugetlb_lock); 2446 2447 return folio; 2448 } 2449 2450 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2451 int nid, nodemask_t *nmask) 2452 { 2453 struct folio *folio; 2454 2455 if (hstate_is_gigantic(h)) 2456 return NULL; 2457 2458 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2459 if (!folio) 2460 return NULL; 2461 2462 /* fresh huge pages are frozen */ 2463 folio_ref_unfreeze(folio, 1); 2464 /* 2465 * We do not account these pages as surplus because they are only 2466 * temporary and will be released properly on the last reference 2467 */ 2468 folio_set_hugetlb_temporary(folio); 2469 2470 return folio; 2471 } 2472 2473 /* 2474 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2475 */ 2476 static 2477 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2478 struct vm_area_struct *vma, unsigned long addr) 2479 { 2480 struct folio *folio = NULL; 2481 struct mempolicy *mpol; 2482 gfp_t gfp_mask = htlb_alloc_mask(h); 2483 int nid; 2484 nodemask_t *nodemask; 2485 2486 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2487 if (mpol_is_preferred_many(mpol)) { 2488 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2489 2490 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2491 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2492 2493 /* Fallback to all nodes if page==NULL */ 2494 nodemask = NULL; 2495 } 2496 2497 if (!folio) 2498 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2499 mpol_cond_put(mpol); 2500 return folio; 2501 } 2502 2503 /* folio migration callback function */ 2504 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2505 nodemask_t *nmask, gfp_t gfp_mask) 2506 { 2507 spin_lock_irq(&hugetlb_lock); 2508 if (available_huge_pages(h)) { 2509 struct folio *folio; 2510 2511 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2512 preferred_nid, nmask); 2513 if (folio) { 2514 spin_unlock_irq(&hugetlb_lock); 2515 return folio; 2516 } 2517 } 2518 spin_unlock_irq(&hugetlb_lock); 2519 2520 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2521 } 2522 2523 /* mempolicy aware migration callback */ 2524 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2525 unsigned long address) 2526 { 2527 struct mempolicy *mpol; 2528 nodemask_t *nodemask; 2529 struct folio *folio; 2530 gfp_t gfp_mask; 2531 int node; 2532 2533 gfp_mask = htlb_alloc_mask(h); 2534 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2535 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2536 mpol_cond_put(mpol); 2537 2538 return folio; 2539 } 2540 2541 /* 2542 * Increase the hugetlb pool such that it can accommodate a reservation 2543 * of size 'delta'. 2544 */ 2545 static int gather_surplus_pages(struct hstate *h, long delta) 2546 __must_hold(&hugetlb_lock) 2547 { 2548 LIST_HEAD(surplus_list); 2549 struct folio *folio; 2550 struct page *page, *tmp; 2551 int ret; 2552 long i; 2553 long needed, allocated; 2554 bool alloc_ok = true; 2555 2556 lockdep_assert_held(&hugetlb_lock); 2557 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2558 if (needed <= 0) { 2559 h->resv_huge_pages += delta; 2560 return 0; 2561 } 2562 2563 allocated = 0; 2564 2565 ret = -ENOMEM; 2566 retry: 2567 spin_unlock_irq(&hugetlb_lock); 2568 for (i = 0; i < needed; i++) { 2569 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2570 NUMA_NO_NODE, NULL); 2571 if (!folio) { 2572 alloc_ok = false; 2573 break; 2574 } 2575 list_add(&folio->lru, &surplus_list); 2576 cond_resched(); 2577 } 2578 allocated += i; 2579 2580 /* 2581 * After retaking hugetlb_lock, we need to recalculate 'needed' 2582 * because either resv_huge_pages or free_huge_pages may have changed. 2583 */ 2584 spin_lock_irq(&hugetlb_lock); 2585 needed = (h->resv_huge_pages + delta) - 2586 (h->free_huge_pages + allocated); 2587 if (needed > 0) { 2588 if (alloc_ok) 2589 goto retry; 2590 /* 2591 * We were not able to allocate enough pages to 2592 * satisfy the entire reservation so we free what 2593 * we've allocated so far. 2594 */ 2595 goto free; 2596 } 2597 /* 2598 * The surplus_list now contains _at_least_ the number of extra pages 2599 * needed to accommodate the reservation. Add the appropriate number 2600 * of pages to the hugetlb pool and free the extras back to the buddy 2601 * allocator. Commit the entire reservation here to prevent another 2602 * process from stealing the pages as they are added to the pool but 2603 * before they are reserved. 2604 */ 2605 needed += allocated; 2606 h->resv_huge_pages += delta; 2607 ret = 0; 2608 2609 /* Free the needed pages to the hugetlb pool */ 2610 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2611 if ((--needed) < 0) 2612 break; 2613 /* Add the page to the hugetlb allocator */ 2614 enqueue_hugetlb_folio(h, page_folio(page)); 2615 } 2616 free: 2617 spin_unlock_irq(&hugetlb_lock); 2618 2619 /* 2620 * Free unnecessary surplus pages to the buddy allocator. 2621 * Pages have no ref count, call free_huge_page directly. 2622 */ 2623 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2624 free_huge_page(page); 2625 spin_lock_irq(&hugetlb_lock); 2626 2627 return ret; 2628 } 2629 2630 /* 2631 * This routine has two main purposes: 2632 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2633 * in unused_resv_pages. This corresponds to the prior adjustments made 2634 * to the associated reservation map. 2635 * 2) Free any unused surplus pages that may have been allocated to satisfy 2636 * the reservation. As many as unused_resv_pages may be freed. 2637 */ 2638 static void return_unused_surplus_pages(struct hstate *h, 2639 unsigned long unused_resv_pages) 2640 { 2641 unsigned long nr_pages; 2642 struct page *page; 2643 LIST_HEAD(page_list); 2644 2645 lockdep_assert_held(&hugetlb_lock); 2646 /* Uncommit the reservation */ 2647 h->resv_huge_pages -= unused_resv_pages; 2648 2649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2650 goto out; 2651 2652 /* 2653 * Part (or even all) of the reservation could have been backed 2654 * by pre-allocated pages. Only free surplus pages. 2655 */ 2656 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2657 2658 /* 2659 * We want to release as many surplus pages as possible, spread 2660 * evenly across all nodes with memory. Iterate across these nodes 2661 * until we can no longer free unreserved surplus pages. This occurs 2662 * when the nodes with surplus pages have no free pages. 2663 * remove_pool_huge_page() will balance the freed pages across the 2664 * on-line nodes with memory and will handle the hstate accounting. 2665 */ 2666 while (nr_pages--) { 2667 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2668 if (!page) 2669 goto out; 2670 2671 list_add(&page->lru, &page_list); 2672 } 2673 2674 out: 2675 spin_unlock_irq(&hugetlb_lock); 2676 update_and_free_pages_bulk(h, &page_list); 2677 spin_lock_irq(&hugetlb_lock); 2678 } 2679 2680 2681 /* 2682 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2683 * are used by the huge page allocation routines to manage reservations. 2684 * 2685 * vma_needs_reservation is called to determine if the huge page at addr 2686 * within the vma has an associated reservation. If a reservation is 2687 * needed, the value 1 is returned. The caller is then responsible for 2688 * managing the global reservation and subpool usage counts. After 2689 * the huge page has been allocated, vma_commit_reservation is called 2690 * to add the page to the reservation map. If the page allocation fails, 2691 * the reservation must be ended instead of committed. vma_end_reservation 2692 * is called in such cases. 2693 * 2694 * In the normal case, vma_commit_reservation returns the same value 2695 * as the preceding vma_needs_reservation call. The only time this 2696 * is not the case is if a reserve map was changed between calls. It 2697 * is the responsibility of the caller to notice the difference and 2698 * take appropriate action. 2699 * 2700 * vma_add_reservation is used in error paths where a reservation must 2701 * be restored when a newly allocated huge page must be freed. It is 2702 * to be called after calling vma_needs_reservation to determine if a 2703 * reservation exists. 2704 * 2705 * vma_del_reservation is used in error paths where an entry in the reserve 2706 * map was created during huge page allocation and must be removed. It is to 2707 * be called after calling vma_needs_reservation to determine if a reservation 2708 * exists. 2709 */ 2710 enum vma_resv_mode { 2711 VMA_NEEDS_RESV, 2712 VMA_COMMIT_RESV, 2713 VMA_END_RESV, 2714 VMA_ADD_RESV, 2715 VMA_DEL_RESV, 2716 }; 2717 static long __vma_reservation_common(struct hstate *h, 2718 struct vm_area_struct *vma, unsigned long addr, 2719 enum vma_resv_mode mode) 2720 { 2721 struct resv_map *resv; 2722 pgoff_t idx; 2723 long ret; 2724 long dummy_out_regions_needed; 2725 2726 resv = vma_resv_map(vma); 2727 if (!resv) 2728 return 1; 2729 2730 idx = vma_hugecache_offset(h, vma, addr); 2731 switch (mode) { 2732 case VMA_NEEDS_RESV: 2733 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2734 /* We assume that vma_reservation_* routines always operate on 2735 * 1 page, and that adding to resv map a 1 page entry can only 2736 * ever require 1 region. 2737 */ 2738 VM_BUG_ON(dummy_out_regions_needed != 1); 2739 break; 2740 case VMA_COMMIT_RESV: 2741 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2742 /* region_add calls of range 1 should never fail. */ 2743 VM_BUG_ON(ret < 0); 2744 break; 2745 case VMA_END_RESV: 2746 region_abort(resv, idx, idx + 1, 1); 2747 ret = 0; 2748 break; 2749 case VMA_ADD_RESV: 2750 if (vma->vm_flags & VM_MAYSHARE) { 2751 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2752 /* region_add calls of range 1 should never fail. */ 2753 VM_BUG_ON(ret < 0); 2754 } else { 2755 region_abort(resv, idx, idx + 1, 1); 2756 ret = region_del(resv, idx, idx + 1); 2757 } 2758 break; 2759 case VMA_DEL_RESV: 2760 if (vma->vm_flags & VM_MAYSHARE) { 2761 region_abort(resv, idx, idx + 1, 1); 2762 ret = region_del(resv, idx, idx + 1); 2763 } else { 2764 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2765 /* region_add calls of range 1 should never fail. */ 2766 VM_BUG_ON(ret < 0); 2767 } 2768 break; 2769 default: 2770 BUG(); 2771 } 2772 2773 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2774 return ret; 2775 /* 2776 * We know private mapping must have HPAGE_RESV_OWNER set. 2777 * 2778 * In most cases, reserves always exist for private mappings. 2779 * However, a file associated with mapping could have been 2780 * hole punched or truncated after reserves were consumed. 2781 * As subsequent fault on such a range will not use reserves. 2782 * Subtle - The reserve map for private mappings has the 2783 * opposite meaning than that of shared mappings. If NO 2784 * entry is in the reserve map, it means a reservation exists. 2785 * If an entry exists in the reserve map, it means the 2786 * reservation has already been consumed. As a result, the 2787 * return value of this routine is the opposite of the 2788 * value returned from reserve map manipulation routines above. 2789 */ 2790 if (ret > 0) 2791 return 0; 2792 if (ret == 0) 2793 return 1; 2794 return ret; 2795 } 2796 2797 static long vma_needs_reservation(struct hstate *h, 2798 struct vm_area_struct *vma, unsigned long addr) 2799 { 2800 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2801 } 2802 2803 static long vma_commit_reservation(struct hstate *h, 2804 struct vm_area_struct *vma, unsigned long addr) 2805 { 2806 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2807 } 2808 2809 static void vma_end_reservation(struct hstate *h, 2810 struct vm_area_struct *vma, unsigned long addr) 2811 { 2812 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2813 } 2814 2815 static long vma_add_reservation(struct hstate *h, 2816 struct vm_area_struct *vma, unsigned long addr) 2817 { 2818 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2819 } 2820 2821 static long vma_del_reservation(struct hstate *h, 2822 struct vm_area_struct *vma, unsigned long addr) 2823 { 2824 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2825 } 2826 2827 /* 2828 * This routine is called to restore reservation information on error paths. 2829 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2830 * and the hugetlb mutex should remain held when calling this routine. 2831 * 2832 * It handles two specific cases: 2833 * 1) A reservation was in place and the folio consumed the reservation. 2834 * hugetlb_restore_reserve is set in the folio. 2835 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2836 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2837 * 2838 * In case 1, free_huge_page later in the error path will increment the 2839 * global reserve count. But, free_huge_page does not have enough context 2840 * to adjust the reservation map. This case deals primarily with private 2841 * mappings. Adjust the reserve map here to be consistent with global 2842 * reserve count adjustments to be made by free_huge_page. Make sure the 2843 * reserve map indicates there is a reservation present. 2844 * 2845 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2846 */ 2847 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2848 unsigned long address, struct folio *folio) 2849 { 2850 long rc = vma_needs_reservation(h, vma, address); 2851 2852 if (folio_test_hugetlb_restore_reserve(folio)) { 2853 if (unlikely(rc < 0)) 2854 /* 2855 * Rare out of memory condition in reserve map 2856 * manipulation. Clear hugetlb_restore_reserve so 2857 * that global reserve count will not be incremented 2858 * by free_huge_page. This will make it appear 2859 * as though the reservation for this folio was 2860 * consumed. This may prevent the task from 2861 * faulting in the folio at a later time. This 2862 * is better than inconsistent global huge page 2863 * accounting of reserve counts. 2864 */ 2865 folio_clear_hugetlb_restore_reserve(folio); 2866 else if (rc) 2867 (void)vma_add_reservation(h, vma, address); 2868 else 2869 vma_end_reservation(h, vma, address); 2870 } else { 2871 if (!rc) { 2872 /* 2873 * This indicates there is an entry in the reserve map 2874 * not added by alloc_hugetlb_folio. We know it was added 2875 * before the alloc_hugetlb_folio call, otherwise 2876 * hugetlb_restore_reserve would be set on the folio. 2877 * Remove the entry so that a subsequent allocation 2878 * does not consume a reservation. 2879 */ 2880 rc = vma_del_reservation(h, vma, address); 2881 if (rc < 0) 2882 /* 2883 * VERY rare out of memory condition. Since 2884 * we can not delete the entry, set 2885 * hugetlb_restore_reserve so that the reserve 2886 * count will be incremented when the folio 2887 * is freed. This reserve will be consumed 2888 * on a subsequent allocation. 2889 */ 2890 folio_set_hugetlb_restore_reserve(folio); 2891 } else if (rc < 0) { 2892 /* 2893 * Rare out of memory condition from 2894 * vma_needs_reservation call. Memory allocation is 2895 * only attempted if a new entry is needed. Therefore, 2896 * this implies there is not an entry in the 2897 * reserve map. 2898 * 2899 * For shared mappings, no entry in the map indicates 2900 * no reservation. We are done. 2901 */ 2902 if (!(vma->vm_flags & VM_MAYSHARE)) 2903 /* 2904 * For private mappings, no entry indicates 2905 * a reservation is present. Since we can 2906 * not add an entry, set hugetlb_restore_reserve 2907 * on the folio so reserve count will be 2908 * incremented when freed. This reserve will 2909 * be consumed on a subsequent allocation. 2910 */ 2911 folio_set_hugetlb_restore_reserve(folio); 2912 } else 2913 /* 2914 * No reservation present, do nothing 2915 */ 2916 vma_end_reservation(h, vma, address); 2917 } 2918 } 2919 2920 /* 2921 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2922 * the old one 2923 * @h: struct hstate old page belongs to 2924 * @old_folio: Old folio to dissolve 2925 * @list: List to isolate the page in case we need to 2926 * Returns 0 on success, otherwise negated error. 2927 */ 2928 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2929 struct folio *old_folio, struct list_head *list) 2930 { 2931 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2932 int nid = folio_nid(old_folio); 2933 struct folio *new_folio; 2934 int ret = 0; 2935 2936 /* 2937 * Before dissolving the folio, we need to allocate a new one for the 2938 * pool to remain stable. Here, we allocate the folio and 'prep' it 2939 * by doing everything but actually updating counters and adding to 2940 * the pool. This simplifies and let us do most of the processing 2941 * under the lock. 2942 */ 2943 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2944 if (!new_folio) 2945 return -ENOMEM; 2946 __prep_new_hugetlb_folio(h, new_folio); 2947 2948 retry: 2949 spin_lock_irq(&hugetlb_lock); 2950 if (!folio_test_hugetlb(old_folio)) { 2951 /* 2952 * Freed from under us. Drop new_folio too. 2953 */ 2954 goto free_new; 2955 } else if (folio_ref_count(old_folio)) { 2956 bool isolated; 2957 2958 /* 2959 * Someone has grabbed the folio, try to isolate it here. 2960 * Fail with -EBUSY if not possible. 2961 */ 2962 spin_unlock_irq(&hugetlb_lock); 2963 isolated = isolate_hugetlb(old_folio, list); 2964 ret = isolated ? 0 : -EBUSY; 2965 spin_lock_irq(&hugetlb_lock); 2966 goto free_new; 2967 } else if (!folio_test_hugetlb_freed(old_folio)) { 2968 /* 2969 * Folio's refcount is 0 but it has not been enqueued in the 2970 * freelist yet. Race window is small, so we can succeed here if 2971 * we retry. 2972 */ 2973 spin_unlock_irq(&hugetlb_lock); 2974 cond_resched(); 2975 goto retry; 2976 } else { 2977 /* 2978 * Ok, old_folio is still a genuine free hugepage. Remove it from 2979 * the freelist and decrease the counters. These will be 2980 * incremented again when calling __prep_account_new_huge_page() 2981 * and enqueue_hugetlb_folio() for new_folio. The counters will 2982 * remain stable since this happens under the lock. 2983 */ 2984 remove_hugetlb_folio(h, old_folio, false); 2985 2986 /* 2987 * Ref count on new_folio is already zero as it was dropped 2988 * earlier. It can be directly added to the pool free list. 2989 */ 2990 __prep_account_new_huge_page(h, nid); 2991 enqueue_hugetlb_folio(h, new_folio); 2992 2993 /* 2994 * Folio has been replaced, we can safely free the old one. 2995 */ 2996 spin_unlock_irq(&hugetlb_lock); 2997 update_and_free_hugetlb_folio(h, old_folio, false); 2998 } 2999 3000 return ret; 3001 3002 free_new: 3003 spin_unlock_irq(&hugetlb_lock); 3004 /* Folio has a zero ref count, but needs a ref to be freed */ 3005 folio_ref_unfreeze(new_folio, 1); 3006 update_and_free_hugetlb_folio(h, new_folio, false); 3007 3008 return ret; 3009 } 3010 3011 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3012 { 3013 struct hstate *h; 3014 struct folio *folio = page_folio(page); 3015 int ret = -EBUSY; 3016 3017 /* 3018 * The page might have been dissolved from under our feet, so make sure 3019 * to carefully check the state under the lock. 3020 * Return success when racing as if we dissolved the page ourselves. 3021 */ 3022 spin_lock_irq(&hugetlb_lock); 3023 if (folio_test_hugetlb(folio)) { 3024 h = folio_hstate(folio); 3025 } else { 3026 spin_unlock_irq(&hugetlb_lock); 3027 return 0; 3028 } 3029 spin_unlock_irq(&hugetlb_lock); 3030 3031 /* 3032 * Fence off gigantic pages as there is a cyclic dependency between 3033 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3034 * of bailing out right away without further retrying. 3035 */ 3036 if (hstate_is_gigantic(h)) 3037 return -ENOMEM; 3038 3039 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3040 ret = 0; 3041 else if (!folio_ref_count(folio)) 3042 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3043 3044 return ret; 3045 } 3046 3047 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3048 unsigned long addr, int avoid_reserve) 3049 { 3050 struct hugepage_subpool *spool = subpool_vma(vma); 3051 struct hstate *h = hstate_vma(vma); 3052 struct folio *folio; 3053 long map_chg, map_commit; 3054 long gbl_chg; 3055 int ret, idx; 3056 struct hugetlb_cgroup *h_cg = NULL; 3057 bool deferred_reserve; 3058 3059 idx = hstate_index(h); 3060 /* 3061 * Examine the region/reserve map to determine if the process 3062 * has a reservation for the page to be allocated. A return 3063 * code of zero indicates a reservation exists (no change). 3064 */ 3065 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3066 if (map_chg < 0) 3067 return ERR_PTR(-ENOMEM); 3068 3069 /* 3070 * Processes that did not create the mapping will have no 3071 * reserves as indicated by the region/reserve map. Check 3072 * that the allocation will not exceed the subpool limit. 3073 * Allocations for MAP_NORESERVE mappings also need to be 3074 * checked against any subpool limit. 3075 */ 3076 if (map_chg || avoid_reserve) { 3077 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3078 if (gbl_chg < 0) { 3079 vma_end_reservation(h, vma, addr); 3080 return ERR_PTR(-ENOSPC); 3081 } 3082 3083 /* 3084 * Even though there was no reservation in the region/reserve 3085 * map, there could be reservations associated with the 3086 * subpool that can be used. This would be indicated if the 3087 * return value of hugepage_subpool_get_pages() is zero. 3088 * However, if avoid_reserve is specified we still avoid even 3089 * the subpool reservations. 3090 */ 3091 if (avoid_reserve) 3092 gbl_chg = 1; 3093 } 3094 3095 /* If this allocation is not consuming a reservation, charge it now. 3096 */ 3097 deferred_reserve = map_chg || avoid_reserve; 3098 if (deferred_reserve) { 3099 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3100 idx, pages_per_huge_page(h), &h_cg); 3101 if (ret) 3102 goto out_subpool_put; 3103 } 3104 3105 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3106 if (ret) 3107 goto out_uncharge_cgroup_reservation; 3108 3109 spin_lock_irq(&hugetlb_lock); 3110 /* 3111 * glb_chg is passed to indicate whether or not a page must be taken 3112 * from the global free pool (global change). gbl_chg == 0 indicates 3113 * a reservation exists for the allocation. 3114 */ 3115 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3116 if (!folio) { 3117 spin_unlock_irq(&hugetlb_lock); 3118 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3119 if (!folio) 3120 goto out_uncharge_cgroup; 3121 spin_lock_irq(&hugetlb_lock); 3122 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3123 folio_set_hugetlb_restore_reserve(folio); 3124 h->resv_huge_pages--; 3125 } 3126 list_add(&folio->lru, &h->hugepage_activelist); 3127 folio_ref_unfreeze(folio, 1); 3128 /* Fall through */ 3129 } 3130 3131 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3132 /* If allocation is not consuming a reservation, also store the 3133 * hugetlb_cgroup pointer on the page. 3134 */ 3135 if (deferred_reserve) { 3136 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3137 h_cg, folio); 3138 } 3139 3140 spin_unlock_irq(&hugetlb_lock); 3141 3142 hugetlb_set_folio_subpool(folio, spool); 3143 3144 map_commit = vma_commit_reservation(h, vma, addr); 3145 if (unlikely(map_chg > map_commit)) { 3146 /* 3147 * The page was added to the reservation map between 3148 * vma_needs_reservation and vma_commit_reservation. 3149 * This indicates a race with hugetlb_reserve_pages. 3150 * Adjust for the subpool count incremented above AND 3151 * in hugetlb_reserve_pages for the same page. Also, 3152 * the reservation count added in hugetlb_reserve_pages 3153 * no longer applies. 3154 */ 3155 long rsv_adjust; 3156 3157 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3158 hugetlb_acct_memory(h, -rsv_adjust); 3159 if (deferred_reserve) 3160 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3161 pages_per_huge_page(h), folio); 3162 } 3163 return folio; 3164 3165 out_uncharge_cgroup: 3166 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3167 out_uncharge_cgroup_reservation: 3168 if (deferred_reserve) 3169 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3170 h_cg); 3171 out_subpool_put: 3172 if (map_chg || avoid_reserve) 3173 hugepage_subpool_put_pages(spool, 1); 3174 vma_end_reservation(h, vma, addr); 3175 return ERR_PTR(-ENOSPC); 3176 } 3177 3178 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3179 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3180 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3181 { 3182 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3183 int nr_nodes, node; 3184 3185 /* do node specific alloc */ 3186 if (nid != NUMA_NO_NODE) { 3187 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3188 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3189 if (!m) 3190 return 0; 3191 goto found; 3192 } 3193 /* allocate from next node when distributing huge pages */ 3194 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3195 m = memblock_alloc_try_nid_raw( 3196 huge_page_size(h), huge_page_size(h), 3197 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3198 /* 3199 * Use the beginning of the huge page to store the 3200 * huge_bootmem_page struct (until gather_bootmem 3201 * puts them into the mem_map). 3202 */ 3203 if (!m) 3204 return 0; 3205 goto found; 3206 } 3207 3208 found: 3209 /* Put them into a private list first because mem_map is not up yet */ 3210 INIT_LIST_HEAD(&m->list); 3211 list_add(&m->list, &huge_boot_pages); 3212 m->hstate = h; 3213 return 1; 3214 } 3215 3216 /* 3217 * Put bootmem huge pages into the standard lists after mem_map is up. 3218 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3219 */ 3220 static void __init gather_bootmem_prealloc(void) 3221 { 3222 struct huge_bootmem_page *m; 3223 3224 list_for_each_entry(m, &huge_boot_pages, list) { 3225 struct page *page = virt_to_page(m); 3226 struct folio *folio = page_folio(page); 3227 struct hstate *h = m->hstate; 3228 3229 VM_BUG_ON(!hstate_is_gigantic(h)); 3230 WARN_ON(folio_ref_count(folio) != 1); 3231 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3232 WARN_ON(folio_test_reserved(folio)); 3233 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3234 free_huge_page(page); /* add to the hugepage allocator */ 3235 } else { 3236 /* VERY unlikely inflated ref count on a tail page */ 3237 free_gigantic_folio(folio, huge_page_order(h)); 3238 } 3239 3240 /* 3241 * We need to restore the 'stolen' pages to totalram_pages 3242 * in order to fix confusing memory reports from free(1) and 3243 * other side-effects, like CommitLimit going negative. 3244 */ 3245 adjust_managed_page_count(page, pages_per_huge_page(h)); 3246 cond_resched(); 3247 } 3248 } 3249 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3250 { 3251 unsigned long i; 3252 char buf[32]; 3253 3254 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3255 if (hstate_is_gigantic(h)) { 3256 if (!alloc_bootmem_huge_page(h, nid)) 3257 break; 3258 } else { 3259 struct folio *folio; 3260 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3261 3262 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3263 &node_states[N_MEMORY], NULL); 3264 if (!folio) 3265 break; 3266 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3267 } 3268 cond_resched(); 3269 } 3270 if (i == h->max_huge_pages_node[nid]) 3271 return; 3272 3273 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3274 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3275 h->max_huge_pages_node[nid], buf, nid, i); 3276 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3277 h->max_huge_pages_node[nid] = i; 3278 } 3279 3280 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3281 { 3282 unsigned long i; 3283 nodemask_t *node_alloc_noretry; 3284 bool node_specific_alloc = false; 3285 3286 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3287 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3288 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3289 return; 3290 } 3291 3292 /* do node specific alloc */ 3293 for_each_online_node(i) { 3294 if (h->max_huge_pages_node[i] > 0) { 3295 hugetlb_hstate_alloc_pages_onenode(h, i); 3296 node_specific_alloc = true; 3297 } 3298 } 3299 3300 if (node_specific_alloc) 3301 return; 3302 3303 /* below will do all node balanced alloc */ 3304 if (!hstate_is_gigantic(h)) { 3305 /* 3306 * Bit mask controlling how hard we retry per-node allocations. 3307 * Ignore errors as lower level routines can deal with 3308 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3309 * time, we are likely in bigger trouble. 3310 */ 3311 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3312 GFP_KERNEL); 3313 } else { 3314 /* allocations done at boot time */ 3315 node_alloc_noretry = NULL; 3316 } 3317 3318 /* bit mask controlling how hard we retry per-node allocations */ 3319 if (node_alloc_noretry) 3320 nodes_clear(*node_alloc_noretry); 3321 3322 for (i = 0; i < h->max_huge_pages; ++i) { 3323 if (hstate_is_gigantic(h)) { 3324 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3325 break; 3326 } else if (!alloc_pool_huge_page(h, 3327 &node_states[N_MEMORY], 3328 node_alloc_noretry)) 3329 break; 3330 cond_resched(); 3331 } 3332 if (i < h->max_huge_pages) { 3333 char buf[32]; 3334 3335 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3336 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3337 h->max_huge_pages, buf, i); 3338 h->max_huge_pages = i; 3339 } 3340 kfree(node_alloc_noretry); 3341 } 3342 3343 static void __init hugetlb_init_hstates(void) 3344 { 3345 struct hstate *h, *h2; 3346 3347 for_each_hstate(h) { 3348 /* oversize hugepages were init'ed in early boot */ 3349 if (!hstate_is_gigantic(h)) 3350 hugetlb_hstate_alloc_pages(h); 3351 3352 /* 3353 * Set demote order for each hstate. Note that 3354 * h->demote_order is initially 0. 3355 * - We can not demote gigantic pages if runtime freeing 3356 * is not supported, so skip this. 3357 * - If CMA allocation is possible, we can not demote 3358 * HUGETLB_PAGE_ORDER or smaller size pages. 3359 */ 3360 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3361 continue; 3362 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3363 continue; 3364 for_each_hstate(h2) { 3365 if (h2 == h) 3366 continue; 3367 if (h2->order < h->order && 3368 h2->order > h->demote_order) 3369 h->demote_order = h2->order; 3370 } 3371 } 3372 } 3373 3374 static void __init report_hugepages(void) 3375 { 3376 struct hstate *h; 3377 3378 for_each_hstate(h) { 3379 char buf[32]; 3380 3381 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3382 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3383 buf, h->free_huge_pages); 3384 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3385 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3386 } 3387 } 3388 3389 #ifdef CONFIG_HIGHMEM 3390 static void try_to_free_low(struct hstate *h, unsigned long count, 3391 nodemask_t *nodes_allowed) 3392 { 3393 int i; 3394 LIST_HEAD(page_list); 3395 3396 lockdep_assert_held(&hugetlb_lock); 3397 if (hstate_is_gigantic(h)) 3398 return; 3399 3400 /* 3401 * Collect pages to be freed on a list, and free after dropping lock 3402 */ 3403 for_each_node_mask(i, *nodes_allowed) { 3404 struct page *page, *next; 3405 struct list_head *freel = &h->hugepage_freelists[i]; 3406 list_for_each_entry_safe(page, next, freel, lru) { 3407 if (count >= h->nr_huge_pages) 3408 goto out; 3409 if (PageHighMem(page)) 3410 continue; 3411 remove_hugetlb_folio(h, page_folio(page), false); 3412 list_add(&page->lru, &page_list); 3413 } 3414 } 3415 3416 out: 3417 spin_unlock_irq(&hugetlb_lock); 3418 update_and_free_pages_bulk(h, &page_list); 3419 spin_lock_irq(&hugetlb_lock); 3420 } 3421 #else 3422 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3423 nodemask_t *nodes_allowed) 3424 { 3425 } 3426 #endif 3427 3428 /* 3429 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3430 * balanced by operating on them in a round-robin fashion. 3431 * Returns 1 if an adjustment was made. 3432 */ 3433 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3434 int delta) 3435 { 3436 int nr_nodes, node; 3437 3438 lockdep_assert_held(&hugetlb_lock); 3439 VM_BUG_ON(delta != -1 && delta != 1); 3440 3441 if (delta < 0) { 3442 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3443 if (h->surplus_huge_pages_node[node]) 3444 goto found; 3445 } 3446 } else { 3447 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3448 if (h->surplus_huge_pages_node[node] < 3449 h->nr_huge_pages_node[node]) 3450 goto found; 3451 } 3452 } 3453 return 0; 3454 3455 found: 3456 h->surplus_huge_pages += delta; 3457 h->surplus_huge_pages_node[node] += delta; 3458 return 1; 3459 } 3460 3461 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3462 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3463 nodemask_t *nodes_allowed) 3464 { 3465 unsigned long min_count, ret; 3466 struct page *page; 3467 LIST_HEAD(page_list); 3468 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3469 3470 /* 3471 * Bit mask controlling how hard we retry per-node allocations. 3472 * If we can not allocate the bit mask, do not attempt to allocate 3473 * the requested huge pages. 3474 */ 3475 if (node_alloc_noretry) 3476 nodes_clear(*node_alloc_noretry); 3477 else 3478 return -ENOMEM; 3479 3480 /* 3481 * resize_lock mutex prevents concurrent adjustments to number of 3482 * pages in hstate via the proc/sysfs interfaces. 3483 */ 3484 mutex_lock(&h->resize_lock); 3485 flush_free_hpage_work(h); 3486 spin_lock_irq(&hugetlb_lock); 3487 3488 /* 3489 * Check for a node specific request. 3490 * Changing node specific huge page count may require a corresponding 3491 * change to the global count. In any case, the passed node mask 3492 * (nodes_allowed) will restrict alloc/free to the specified node. 3493 */ 3494 if (nid != NUMA_NO_NODE) { 3495 unsigned long old_count = count; 3496 3497 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3498 /* 3499 * User may have specified a large count value which caused the 3500 * above calculation to overflow. In this case, they wanted 3501 * to allocate as many huge pages as possible. Set count to 3502 * largest possible value to align with their intention. 3503 */ 3504 if (count < old_count) 3505 count = ULONG_MAX; 3506 } 3507 3508 /* 3509 * Gigantic pages runtime allocation depend on the capability for large 3510 * page range allocation. 3511 * If the system does not provide this feature, return an error when 3512 * the user tries to allocate gigantic pages but let the user free the 3513 * boottime allocated gigantic pages. 3514 */ 3515 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3516 if (count > persistent_huge_pages(h)) { 3517 spin_unlock_irq(&hugetlb_lock); 3518 mutex_unlock(&h->resize_lock); 3519 NODEMASK_FREE(node_alloc_noretry); 3520 return -EINVAL; 3521 } 3522 /* Fall through to decrease pool */ 3523 } 3524 3525 /* 3526 * Increase the pool size 3527 * First take pages out of surplus state. Then make up the 3528 * remaining difference by allocating fresh huge pages. 3529 * 3530 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3531 * to convert a surplus huge page to a normal huge page. That is 3532 * not critical, though, it just means the overall size of the 3533 * pool might be one hugepage larger than it needs to be, but 3534 * within all the constraints specified by the sysctls. 3535 */ 3536 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3537 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3538 break; 3539 } 3540 3541 while (count > persistent_huge_pages(h)) { 3542 /* 3543 * If this allocation races such that we no longer need the 3544 * page, free_huge_page will handle it by freeing the page 3545 * and reducing the surplus. 3546 */ 3547 spin_unlock_irq(&hugetlb_lock); 3548 3549 /* yield cpu to avoid soft lockup */ 3550 cond_resched(); 3551 3552 ret = alloc_pool_huge_page(h, nodes_allowed, 3553 node_alloc_noretry); 3554 spin_lock_irq(&hugetlb_lock); 3555 if (!ret) 3556 goto out; 3557 3558 /* Bail for signals. Probably ctrl-c from user */ 3559 if (signal_pending(current)) 3560 goto out; 3561 } 3562 3563 /* 3564 * Decrease the pool size 3565 * First return free pages to the buddy allocator (being careful 3566 * to keep enough around to satisfy reservations). Then place 3567 * pages into surplus state as needed so the pool will shrink 3568 * to the desired size as pages become free. 3569 * 3570 * By placing pages into the surplus state independent of the 3571 * overcommit value, we are allowing the surplus pool size to 3572 * exceed overcommit. There are few sane options here. Since 3573 * alloc_surplus_hugetlb_folio() is checking the global counter, 3574 * though, we'll note that we're not allowed to exceed surplus 3575 * and won't grow the pool anywhere else. Not until one of the 3576 * sysctls are changed, or the surplus pages go out of use. 3577 */ 3578 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3579 min_count = max(count, min_count); 3580 try_to_free_low(h, min_count, nodes_allowed); 3581 3582 /* 3583 * Collect pages to be removed on list without dropping lock 3584 */ 3585 while (min_count < persistent_huge_pages(h)) { 3586 page = remove_pool_huge_page(h, nodes_allowed, 0); 3587 if (!page) 3588 break; 3589 3590 list_add(&page->lru, &page_list); 3591 } 3592 /* free the pages after dropping lock */ 3593 spin_unlock_irq(&hugetlb_lock); 3594 update_and_free_pages_bulk(h, &page_list); 3595 flush_free_hpage_work(h); 3596 spin_lock_irq(&hugetlb_lock); 3597 3598 while (count < persistent_huge_pages(h)) { 3599 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3600 break; 3601 } 3602 out: 3603 h->max_huge_pages = persistent_huge_pages(h); 3604 spin_unlock_irq(&hugetlb_lock); 3605 mutex_unlock(&h->resize_lock); 3606 3607 NODEMASK_FREE(node_alloc_noretry); 3608 3609 return 0; 3610 } 3611 3612 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3613 { 3614 int i, nid = folio_nid(folio); 3615 struct hstate *target_hstate; 3616 struct page *subpage; 3617 struct folio *inner_folio; 3618 int rc = 0; 3619 3620 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3621 3622 remove_hugetlb_folio_for_demote(h, folio, false); 3623 spin_unlock_irq(&hugetlb_lock); 3624 3625 rc = hugetlb_vmemmap_restore(h, &folio->page); 3626 if (rc) { 3627 /* Allocation of vmemmmap failed, we can not demote folio */ 3628 spin_lock_irq(&hugetlb_lock); 3629 folio_ref_unfreeze(folio, 1); 3630 add_hugetlb_folio(h, folio, false); 3631 return rc; 3632 } 3633 3634 /* 3635 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3636 * sizes as it will not ref count folios. 3637 */ 3638 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3639 3640 /* 3641 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3642 * Without the mutex, pages added to target hstate could be marked 3643 * as surplus. 3644 * 3645 * Note that we already hold h->resize_lock. To prevent deadlock, 3646 * use the convention of always taking larger size hstate mutex first. 3647 */ 3648 mutex_lock(&target_hstate->resize_lock); 3649 for (i = 0; i < pages_per_huge_page(h); 3650 i += pages_per_huge_page(target_hstate)) { 3651 subpage = folio_page(folio, i); 3652 inner_folio = page_folio(subpage); 3653 if (hstate_is_gigantic(target_hstate)) 3654 prep_compound_gigantic_folio_for_demote(inner_folio, 3655 target_hstate->order); 3656 else 3657 prep_compound_page(subpage, target_hstate->order); 3658 folio_change_private(inner_folio, NULL); 3659 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3660 free_huge_page(subpage); 3661 } 3662 mutex_unlock(&target_hstate->resize_lock); 3663 3664 spin_lock_irq(&hugetlb_lock); 3665 3666 /* 3667 * Not absolutely necessary, but for consistency update max_huge_pages 3668 * based on pool changes for the demoted page. 3669 */ 3670 h->max_huge_pages--; 3671 target_hstate->max_huge_pages += 3672 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3673 3674 return rc; 3675 } 3676 3677 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3678 __must_hold(&hugetlb_lock) 3679 { 3680 int nr_nodes, node; 3681 struct folio *folio; 3682 3683 lockdep_assert_held(&hugetlb_lock); 3684 3685 /* We should never get here if no demote order */ 3686 if (!h->demote_order) { 3687 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3688 return -EINVAL; /* internal error */ 3689 } 3690 3691 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3692 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3693 if (folio_test_hwpoison(folio)) 3694 continue; 3695 return demote_free_hugetlb_folio(h, folio); 3696 } 3697 } 3698 3699 /* 3700 * Only way to get here is if all pages on free lists are poisoned. 3701 * Return -EBUSY so that caller will not retry. 3702 */ 3703 return -EBUSY; 3704 } 3705 3706 #define HSTATE_ATTR_RO(_name) \ 3707 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3708 3709 #define HSTATE_ATTR_WO(_name) \ 3710 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3711 3712 #define HSTATE_ATTR(_name) \ 3713 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3714 3715 static struct kobject *hugepages_kobj; 3716 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3717 3718 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3719 3720 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3721 { 3722 int i; 3723 3724 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3725 if (hstate_kobjs[i] == kobj) { 3726 if (nidp) 3727 *nidp = NUMA_NO_NODE; 3728 return &hstates[i]; 3729 } 3730 3731 return kobj_to_node_hstate(kobj, nidp); 3732 } 3733 3734 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3735 struct kobj_attribute *attr, char *buf) 3736 { 3737 struct hstate *h; 3738 unsigned long nr_huge_pages; 3739 int nid; 3740 3741 h = kobj_to_hstate(kobj, &nid); 3742 if (nid == NUMA_NO_NODE) 3743 nr_huge_pages = h->nr_huge_pages; 3744 else 3745 nr_huge_pages = h->nr_huge_pages_node[nid]; 3746 3747 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3748 } 3749 3750 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3751 struct hstate *h, int nid, 3752 unsigned long count, size_t len) 3753 { 3754 int err; 3755 nodemask_t nodes_allowed, *n_mask; 3756 3757 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3758 return -EINVAL; 3759 3760 if (nid == NUMA_NO_NODE) { 3761 /* 3762 * global hstate attribute 3763 */ 3764 if (!(obey_mempolicy && 3765 init_nodemask_of_mempolicy(&nodes_allowed))) 3766 n_mask = &node_states[N_MEMORY]; 3767 else 3768 n_mask = &nodes_allowed; 3769 } else { 3770 /* 3771 * Node specific request. count adjustment happens in 3772 * set_max_huge_pages() after acquiring hugetlb_lock. 3773 */ 3774 init_nodemask_of_node(&nodes_allowed, nid); 3775 n_mask = &nodes_allowed; 3776 } 3777 3778 err = set_max_huge_pages(h, count, nid, n_mask); 3779 3780 return err ? err : len; 3781 } 3782 3783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3784 struct kobject *kobj, const char *buf, 3785 size_t len) 3786 { 3787 struct hstate *h; 3788 unsigned long count; 3789 int nid; 3790 int err; 3791 3792 err = kstrtoul(buf, 10, &count); 3793 if (err) 3794 return err; 3795 3796 h = kobj_to_hstate(kobj, &nid); 3797 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3798 } 3799 3800 static ssize_t nr_hugepages_show(struct kobject *kobj, 3801 struct kobj_attribute *attr, char *buf) 3802 { 3803 return nr_hugepages_show_common(kobj, attr, buf); 3804 } 3805 3806 static ssize_t nr_hugepages_store(struct kobject *kobj, 3807 struct kobj_attribute *attr, const char *buf, size_t len) 3808 { 3809 return nr_hugepages_store_common(false, kobj, buf, len); 3810 } 3811 HSTATE_ATTR(nr_hugepages); 3812 3813 #ifdef CONFIG_NUMA 3814 3815 /* 3816 * hstate attribute for optionally mempolicy-based constraint on persistent 3817 * huge page alloc/free. 3818 */ 3819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3820 struct kobj_attribute *attr, 3821 char *buf) 3822 { 3823 return nr_hugepages_show_common(kobj, attr, buf); 3824 } 3825 3826 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3827 struct kobj_attribute *attr, const char *buf, size_t len) 3828 { 3829 return nr_hugepages_store_common(true, kobj, buf, len); 3830 } 3831 HSTATE_ATTR(nr_hugepages_mempolicy); 3832 #endif 3833 3834 3835 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3836 struct kobj_attribute *attr, char *buf) 3837 { 3838 struct hstate *h = kobj_to_hstate(kobj, NULL); 3839 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3840 } 3841 3842 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3843 struct kobj_attribute *attr, const char *buf, size_t count) 3844 { 3845 int err; 3846 unsigned long input; 3847 struct hstate *h = kobj_to_hstate(kobj, NULL); 3848 3849 if (hstate_is_gigantic(h)) 3850 return -EINVAL; 3851 3852 err = kstrtoul(buf, 10, &input); 3853 if (err) 3854 return err; 3855 3856 spin_lock_irq(&hugetlb_lock); 3857 h->nr_overcommit_huge_pages = input; 3858 spin_unlock_irq(&hugetlb_lock); 3859 3860 return count; 3861 } 3862 HSTATE_ATTR(nr_overcommit_hugepages); 3863 3864 static ssize_t free_hugepages_show(struct kobject *kobj, 3865 struct kobj_attribute *attr, char *buf) 3866 { 3867 struct hstate *h; 3868 unsigned long free_huge_pages; 3869 int nid; 3870 3871 h = kobj_to_hstate(kobj, &nid); 3872 if (nid == NUMA_NO_NODE) 3873 free_huge_pages = h->free_huge_pages; 3874 else 3875 free_huge_pages = h->free_huge_pages_node[nid]; 3876 3877 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3878 } 3879 HSTATE_ATTR_RO(free_hugepages); 3880 3881 static ssize_t resv_hugepages_show(struct kobject *kobj, 3882 struct kobj_attribute *attr, char *buf) 3883 { 3884 struct hstate *h = kobj_to_hstate(kobj, NULL); 3885 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3886 } 3887 HSTATE_ATTR_RO(resv_hugepages); 3888 3889 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3890 struct kobj_attribute *attr, char *buf) 3891 { 3892 struct hstate *h; 3893 unsigned long surplus_huge_pages; 3894 int nid; 3895 3896 h = kobj_to_hstate(kobj, &nid); 3897 if (nid == NUMA_NO_NODE) 3898 surplus_huge_pages = h->surplus_huge_pages; 3899 else 3900 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3901 3902 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3903 } 3904 HSTATE_ATTR_RO(surplus_hugepages); 3905 3906 static ssize_t demote_store(struct kobject *kobj, 3907 struct kobj_attribute *attr, const char *buf, size_t len) 3908 { 3909 unsigned long nr_demote; 3910 unsigned long nr_available; 3911 nodemask_t nodes_allowed, *n_mask; 3912 struct hstate *h; 3913 int err; 3914 int nid; 3915 3916 err = kstrtoul(buf, 10, &nr_demote); 3917 if (err) 3918 return err; 3919 h = kobj_to_hstate(kobj, &nid); 3920 3921 if (nid != NUMA_NO_NODE) { 3922 init_nodemask_of_node(&nodes_allowed, nid); 3923 n_mask = &nodes_allowed; 3924 } else { 3925 n_mask = &node_states[N_MEMORY]; 3926 } 3927 3928 /* Synchronize with other sysfs operations modifying huge pages */ 3929 mutex_lock(&h->resize_lock); 3930 spin_lock_irq(&hugetlb_lock); 3931 3932 while (nr_demote) { 3933 /* 3934 * Check for available pages to demote each time thorough the 3935 * loop as demote_pool_huge_page will drop hugetlb_lock. 3936 */ 3937 if (nid != NUMA_NO_NODE) 3938 nr_available = h->free_huge_pages_node[nid]; 3939 else 3940 nr_available = h->free_huge_pages; 3941 nr_available -= h->resv_huge_pages; 3942 if (!nr_available) 3943 break; 3944 3945 err = demote_pool_huge_page(h, n_mask); 3946 if (err) 3947 break; 3948 3949 nr_demote--; 3950 } 3951 3952 spin_unlock_irq(&hugetlb_lock); 3953 mutex_unlock(&h->resize_lock); 3954 3955 if (err) 3956 return err; 3957 return len; 3958 } 3959 HSTATE_ATTR_WO(demote); 3960 3961 static ssize_t demote_size_show(struct kobject *kobj, 3962 struct kobj_attribute *attr, char *buf) 3963 { 3964 struct hstate *h = kobj_to_hstate(kobj, NULL); 3965 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3966 3967 return sysfs_emit(buf, "%lukB\n", demote_size); 3968 } 3969 3970 static ssize_t demote_size_store(struct kobject *kobj, 3971 struct kobj_attribute *attr, 3972 const char *buf, size_t count) 3973 { 3974 struct hstate *h, *demote_hstate; 3975 unsigned long demote_size; 3976 unsigned int demote_order; 3977 3978 demote_size = (unsigned long)memparse(buf, NULL); 3979 3980 demote_hstate = size_to_hstate(demote_size); 3981 if (!demote_hstate) 3982 return -EINVAL; 3983 demote_order = demote_hstate->order; 3984 if (demote_order < HUGETLB_PAGE_ORDER) 3985 return -EINVAL; 3986 3987 /* demote order must be smaller than hstate order */ 3988 h = kobj_to_hstate(kobj, NULL); 3989 if (demote_order >= h->order) 3990 return -EINVAL; 3991 3992 /* resize_lock synchronizes access to demote size and writes */ 3993 mutex_lock(&h->resize_lock); 3994 h->demote_order = demote_order; 3995 mutex_unlock(&h->resize_lock); 3996 3997 return count; 3998 } 3999 HSTATE_ATTR(demote_size); 4000 4001 static struct attribute *hstate_attrs[] = { 4002 &nr_hugepages_attr.attr, 4003 &nr_overcommit_hugepages_attr.attr, 4004 &free_hugepages_attr.attr, 4005 &resv_hugepages_attr.attr, 4006 &surplus_hugepages_attr.attr, 4007 #ifdef CONFIG_NUMA 4008 &nr_hugepages_mempolicy_attr.attr, 4009 #endif 4010 NULL, 4011 }; 4012 4013 static const struct attribute_group hstate_attr_group = { 4014 .attrs = hstate_attrs, 4015 }; 4016 4017 static struct attribute *hstate_demote_attrs[] = { 4018 &demote_size_attr.attr, 4019 &demote_attr.attr, 4020 NULL, 4021 }; 4022 4023 static const struct attribute_group hstate_demote_attr_group = { 4024 .attrs = hstate_demote_attrs, 4025 }; 4026 4027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4028 struct kobject **hstate_kobjs, 4029 const struct attribute_group *hstate_attr_group) 4030 { 4031 int retval; 4032 int hi = hstate_index(h); 4033 4034 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4035 if (!hstate_kobjs[hi]) 4036 return -ENOMEM; 4037 4038 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4039 if (retval) { 4040 kobject_put(hstate_kobjs[hi]); 4041 hstate_kobjs[hi] = NULL; 4042 return retval; 4043 } 4044 4045 if (h->demote_order) { 4046 retval = sysfs_create_group(hstate_kobjs[hi], 4047 &hstate_demote_attr_group); 4048 if (retval) { 4049 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4050 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4051 kobject_put(hstate_kobjs[hi]); 4052 hstate_kobjs[hi] = NULL; 4053 return retval; 4054 } 4055 } 4056 4057 return 0; 4058 } 4059 4060 #ifdef CONFIG_NUMA 4061 static bool hugetlb_sysfs_initialized __ro_after_init; 4062 4063 /* 4064 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4065 * with node devices in node_devices[] using a parallel array. The array 4066 * index of a node device or _hstate == node id. 4067 * This is here to avoid any static dependency of the node device driver, in 4068 * the base kernel, on the hugetlb module. 4069 */ 4070 struct node_hstate { 4071 struct kobject *hugepages_kobj; 4072 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4073 }; 4074 static struct node_hstate node_hstates[MAX_NUMNODES]; 4075 4076 /* 4077 * A subset of global hstate attributes for node devices 4078 */ 4079 static struct attribute *per_node_hstate_attrs[] = { 4080 &nr_hugepages_attr.attr, 4081 &free_hugepages_attr.attr, 4082 &surplus_hugepages_attr.attr, 4083 NULL, 4084 }; 4085 4086 static const struct attribute_group per_node_hstate_attr_group = { 4087 .attrs = per_node_hstate_attrs, 4088 }; 4089 4090 /* 4091 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4092 * Returns node id via non-NULL nidp. 4093 */ 4094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4095 { 4096 int nid; 4097 4098 for (nid = 0; nid < nr_node_ids; nid++) { 4099 struct node_hstate *nhs = &node_hstates[nid]; 4100 int i; 4101 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4102 if (nhs->hstate_kobjs[i] == kobj) { 4103 if (nidp) 4104 *nidp = nid; 4105 return &hstates[i]; 4106 } 4107 } 4108 4109 BUG(); 4110 return NULL; 4111 } 4112 4113 /* 4114 * Unregister hstate attributes from a single node device. 4115 * No-op if no hstate attributes attached. 4116 */ 4117 void hugetlb_unregister_node(struct node *node) 4118 { 4119 struct hstate *h; 4120 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4121 4122 if (!nhs->hugepages_kobj) 4123 return; /* no hstate attributes */ 4124 4125 for_each_hstate(h) { 4126 int idx = hstate_index(h); 4127 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4128 4129 if (!hstate_kobj) 4130 continue; 4131 if (h->demote_order) 4132 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4133 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4134 kobject_put(hstate_kobj); 4135 nhs->hstate_kobjs[idx] = NULL; 4136 } 4137 4138 kobject_put(nhs->hugepages_kobj); 4139 nhs->hugepages_kobj = NULL; 4140 } 4141 4142 4143 /* 4144 * Register hstate attributes for a single node device. 4145 * No-op if attributes already registered. 4146 */ 4147 void hugetlb_register_node(struct node *node) 4148 { 4149 struct hstate *h; 4150 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4151 int err; 4152 4153 if (!hugetlb_sysfs_initialized) 4154 return; 4155 4156 if (nhs->hugepages_kobj) 4157 return; /* already allocated */ 4158 4159 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4160 &node->dev.kobj); 4161 if (!nhs->hugepages_kobj) 4162 return; 4163 4164 for_each_hstate(h) { 4165 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4166 nhs->hstate_kobjs, 4167 &per_node_hstate_attr_group); 4168 if (err) { 4169 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4170 h->name, node->dev.id); 4171 hugetlb_unregister_node(node); 4172 break; 4173 } 4174 } 4175 } 4176 4177 /* 4178 * hugetlb init time: register hstate attributes for all registered node 4179 * devices of nodes that have memory. All on-line nodes should have 4180 * registered their associated device by this time. 4181 */ 4182 static void __init hugetlb_register_all_nodes(void) 4183 { 4184 int nid; 4185 4186 for_each_online_node(nid) 4187 hugetlb_register_node(node_devices[nid]); 4188 } 4189 #else /* !CONFIG_NUMA */ 4190 4191 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4192 { 4193 BUG(); 4194 if (nidp) 4195 *nidp = -1; 4196 return NULL; 4197 } 4198 4199 static void hugetlb_register_all_nodes(void) { } 4200 4201 #endif 4202 4203 #ifdef CONFIG_CMA 4204 static void __init hugetlb_cma_check(void); 4205 #else 4206 static inline __init void hugetlb_cma_check(void) 4207 { 4208 } 4209 #endif 4210 4211 static void __init hugetlb_sysfs_init(void) 4212 { 4213 struct hstate *h; 4214 int err; 4215 4216 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4217 if (!hugepages_kobj) 4218 return; 4219 4220 for_each_hstate(h) { 4221 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4222 hstate_kobjs, &hstate_attr_group); 4223 if (err) 4224 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4225 } 4226 4227 #ifdef CONFIG_NUMA 4228 hugetlb_sysfs_initialized = true; 4229 #endif 4230 hugetlb_register_all_nodes(); 4231 } 4232 4233 #ifdef CONFIG_SYSCTL 4234 static void hugetlb_sysctl_init(void); 4235 #else 4236 static inline void hugetlb_sysctl_init(void) { } 4237 #endif 4238 4239 static int __init hugetlb_init(void) 4240 { 4241 int i; 4242 4243 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4244 __NR_HPAGEFLAGS); 4245 4246 if (!hugepages_supported()) { 4247 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4248 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4249 return 0; 4250 } 4251 4252 /* 4253 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4254 * architectures depend on setup being done here. 4255 */ 4256 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4257 if (!parsed_default_hugepagesz) { 4258 /* 4259 * If we did not parse a default huge page size, set 4260 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4261 * number of huge pages for this default size was implicitly 4262 * specified, set that here as well. 4263 * Note that the implicit setting will overwrite an explicit 4264 * setting. A warning will be printed in this case. 4265 */ 4266 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4267 if (default_hstate_max_huge_pages) { 4268 if (default_hstate.max_huge_pages) { 4269 char buf[32]; 4270 4271 string_get_size(huge_page_size(&default_hstate), 4272 1, STRING_UNITS_2, buf, 32); 4273 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4274 default_hstate.max_huge_pages, buf); 4275 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4276 default_hstate_max_huge_pages); 4277 } 4278 default_hstate.max_huge_pages = 4279 default_hstate_max_huge_pages; 4280 4281 for_each_online_node(i) 4282 default_hstate.max_huge_pages_node[i] = 4283 default_hugepages_in_node[i]; 4284 } 4285 } 4286 4287 hugetlb_cma_check(); 4288 hugetlb_init_hstates(); 4289 gather_bootmem_prealloc(); 4290 report_hugepages(); 4291 4292 hugetlb_sysfs_init(); 4293 hugetlb_cgroup_file_init(); 4294 hugetlb_sysctl_init(); 4295 4296 #ifdef CONFIG_SMP 4297 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4298 #else 4299 num_fault_mutexes = 1; 4300 #endif 4301 hugetlb_fault_mutex_table = 4302 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4303 GFP_KERNEL); 4304 BUG_ON(!hugetlb_fault_mutex_table); 4305 4306 for (i = 0; i < num_fault_mutexes; i++) 4307 mutex_init(&hugetlb_fault_mutex_table[i]); 4308 return 0; 4309 } 4310 subsys_initcall(hugetlb_init); 4311 4312 /* Overwritten by architectures with more huge page sizes */ 4313 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4314 { 4315 return size == HPAGE_SIZE; 4316 } 4317 4318 void __init hugetlb_add_hstate(unsigned int order) 4319 { 4320 struct hstate *h; 4321 unsigned long i; 4322 4323 if (size_to_hstate(PAGE_SIZE << order)) { 4324 return; 4325 } 4326 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4327 BUG_ON(order == 0); 4328 h = &hstates[hugetlb_max_hstate++]; 4329 mutex_init(&h->resize_lock); 4330 h->order = order; 4331 h->mask = ~(huge_page_size(h) - 1); 4332 for (i = 0; i < MAX_NUMNODES; ++i) 4333 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4334 INIT_LIST_HEAD(&h->hugepage_activelist); 4335 h->next_nid_to_alloc = first_memory_node; 4336 h->next_nid_to_free = first_memory_node; 4337 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4338 huge_page_size(h)/SZ_1K); 4339 4340 parsed_hstate = h; 4341 } 4342 4343 bool __init __weak hugetlb_node_alloc_supported(void) 4344 { 4345 return true; 4346 } 4347 4348 static void __init hugepages_clear_pages_in_node(void) 4349 { 4350 if (!hugetlb_max_hstate) { 4351 default_hstate_max_huge_pages = 0; 4352 memset(default_hugepages_in_node, 0, 4353 sizeof(default_hugepages_in_node)); 4354 } else { 4355 parsed_hstate->max_huge_pages = 0; 4356 memset(parsed_hstate->max_huge_pages_node, 0, 4357 sizeof(parsed_hstate->max_huge_pages_node)); 4358 } 4359 } 4360 4361 /* 4362 * hugepages command line processing 4363 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4364 * specification. If not, ignore the hugepages value. hugepages can also 4365 * be the first huge page command line option in which case it implicitly 4366 * specifies the number of huge pages for the default size. 4367 */ 4368 static int __init hugepages_setup(char *s) 4369 { 4370 unsigned long *mhp; 4371 static unsigned long *last_mhp; 4372 int node = NUMA_NO_NODE; 4373 int count; 4374 unsigned long tmp; 4375 char *p = s; 4376 4377 if (!parsed_valid_hugepagesz) { 4378 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4379 parsed_valid_hugepagesz = true; 4380 return 1; 4381 } 4382 4383 /* 4384 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4385 * yet, so this hugepages= parameter goes to the "default hstate". 4386 * Otherwise, it goes with the previously parsed hugepagesz or 4387 * default_hugepagesz. 4388 */ 4389 else if (!hugetlb_max_hstate) 4390 mhp = &default_hstate_max_huge_pages; 4391 else 4392 mhp = &parsed_hstate->max_huge_pages; 4393 4394 if (mhp == last_mhp) { 4395 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4396 return 1; 4397 } 4398 4399 while (*p) { 4400 count = 0; 4401 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4402 goto invalid; 4403 /* Parameter is node format */ 4404 if (p[count] == ':') { 4405 if (!hugetlb_node_alloc_supported()) { 4406 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4407 return 1; 4408 } 4409 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4410 goto invalid; 4411 node = array_index_nospec(tmp, MAX_NUMNODES); 4412 p += count + 1; 4413 /* Parse hugepages */ 4414 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4415 goto invalid; 4416 if (!hugetlb_max_hstate) 4417 default_hugepages_in_node[node] = tmp; 4418 else 4419 parsed_hstate->max_huge_pages_node[node] = tmp; 4420 *mhp += tmp; 4421 /* Go to parse next node*/ 4422 if (p[count] == ',') 4423 p += count + 1; 4424 else 4425 break; 4426 } else { 4427 if (p != s) 4428 goto invalid; 4429 *mhp = tmp; 4430 break; 4431 } 4432 } 4433 4434 /* 4435 * Global state is always initialized later in hugetlb_init. 4436 * But we need to allocate gigantic hstates here early to still 4437 * use the bootmem allocator. 4438 */ 4439 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4440 hugetlb_hstate_alloc_pages(parsed_hstate); 4441 4442 last_mhp = mhp; 4443 4444 return 1; 4445 4446 invalid: 4447 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4448 hugepages_clear_pages_in_node(); 4449 return 1; 4450 } 4451 __setup("hugepages=", hugepages_setup); 4452 4453 /* 4454 * hugepagesz command line processing 4455 * A specific huge page size can only be specified once with hugepagesz. 4456 * hugepagesz is followed by hugepages on the command line. The global 4457 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4458 * hugepagesz argument was valid. 4459 */ 4460 static int __init hugepagesz_setup(char *s) 4461 { 4462 unsigned long size; 4463 struct hstate *h; 4464 4465 parsed_valid_hugepagesz = false; 4466 size = (unsigned long)memparse(s, NULL); 4467 4468 if (!arch_hugetlb_valid_size(size)) { 4469 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4470 return 1; 4471 } 4472 4473 h = size_to_hstate(size); 4474 if (h) { 4475 /* 4476 * hstate for this size already exists. This is normally 4477 * an error, but is allowed if the existing hstate is the 4478 * default hstate. More specifically, it is only allowed if 4479 * the number of huge pages for the default hstate was not 4480 * previously specified. 4481 */ 4482 if (!parsed_default_hugepagesz || h != &default_hstate || 4483 default_hstate.max_huge_pages) { 4484 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4485 return 1; 4486 } 4487 4488 /* 4489 * No need to call hugetlb_add_hstate() as hstate already 4490 * exists. But, do set parsed_hstate so that a following 4491 * hugepages= parameter will be applied to this hstate. 4492 */ 4493 parsed_hstate = h; 4494 parsed_valid_hugepagesz = true; 4495 return 1; 4496 } 4497 4498 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4499 parsed_valid_hugepagesz = true; 4500 return 1; 4501 } 4502 __setup("hugepagesz=", hugepagesz_setup); 4503 4504 /* 4505 * default_hugepagesz command line input 4506 * Only one instance of default_hugepagesz allowed on command line. 4507 */ 4508 static int __init default_hugepagesz_setup(char *s) 4509 { 4510 unsigned long size; 4511 int i; 4512 4513 parsed_valid_hugepagesz = false; 4514 if (parsed_default_hugepagesz) { 4515 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4516 return 1; 4517 } 4518 4519 size = (unsigned long)memparse(s, NULL); 4520 4521 if (!arch_hugetlb_valid_size(size)) { 4522 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4523 return 1; 4524 } 4525 4526 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4527 parsed_valid_hugepagesz = true; 4528 parsed_default_hugepagesz = true; 4529 default_hstate_idx = hstate_index(size_to_hstate(size)); 4530 4531 /* 4532 * The number of default huge pages (for this size) could have been 4533 * specified as the first hugetlb parameter: hugepages=X. If so, 4534 * then default_hstate_max_huge_pages is set. If the default huge 4535 * page size is gigantic (> MAX_ORDER), then the pages must be 4536 * allocated here from bootmem allocator. 4537 */ 4538 if (default_hstate_max_huge_pages) { 4539 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4540 for_each_online_node(i) 4541 default_hstate.max_huge_pages_node[i] = 4542 default_hugepages_in_node[i]; 4543 if (hstate_is_gigantic(&default_hstate)) 4544 hugetlb_hstate_alloc_pages(&default_hstate); 4545 default_hstate_max_huge_pages = 0; 4546 } 4547 4548 return 1; 4549 } 4550 __setup("default_hugepagesz=", default_hugepagesz_setup); 4551 4552 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4553 { 4554 #ifdef CONFIG_NUMA 4555 struct mempolicy *mpol = get_task_policy(current); 4556 4557 /* 4558 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4559 * (from policy_nodemask) specifically for hugetlb case 4560 */ 4561 if (mpol->mode == MPOL_BIND && 4562 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4563 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4564 return &mpol->nodes; 4565 #endif 4566 return NULL; 4567 } 4568 4569 static unsigned int allowed_mems_nr(struct hstate *h) 4570 { 4571 int node; 4572 unsigned int nr = 0; 4573 nodemask_t *mbind_nodemask; 4574 unsigned int *array = h->free_huge_pages_node; 4575 gfp_t gfp_mask = htlb_alloc_mask(h); 4576 4577 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4578 for_each_node_mask(node, cpuset_current_mems_allowed) { 4579 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4580 nr += array[node]; 4581 } 4582 4583 return nr; 4584 } 4585 4586 #ifdef CONFIG_SYSCTL 4587 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4588 void *buffer, size_t *length, 4589 loff_t *ppos, unsigned long *out) 4590 { 4591 struct ctl_table dup_table; 4592 4593 /* 4594 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4595 * can duplicate the @table and alter the duplicate of it. 4596 */ 4597 dup_table = *table; 4598 dup_table.data = out; 4599 4600 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4601 } 4602 4603 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4604 struct ctl_table *table, int write, 4605 void *buffer, size_t *length, loff_t *ppos) 4606 { 4607 struct hstate *h = &default_hstate; 4608 unsigned long tmp = h->max_huge_pages; 4609 int ret; 4610 4611 if (!hugepages_supported()) 4612 return -EOPNOTSUPP; 4613 4614 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4615 &tmp); 4616 if (ret) 4617 goto out; 4618 4619 if (write) 4620 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4621 NUMA_NO_NODE, tmp, *length); 4622 out: 4623 return ret; 4624 } 4625 4626 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4627 void *buffer, size_t *length, loff_t *ppos) 4628 { 4629 4630 return hugetlb_sysctl_handler_common(false, table, write, 4631 buffer, length, ppos); 4632 } 4633 4634 #ifdef CONFIG_NUMA 4635 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4636 void *buffer, size_t *length, loff_t *ppos) 4637 { 4638 return hugetlb_sysctl_handler_common(true, table, write, 4639 buffer, length, ppos); 4640 } 4641 #endif /* CONFIG_NUMA */ 4642 4643 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4644 void *buffer, size_t *length, loff_t *ppos) 4645 { 4646 struct hstate *h = &default_hstate; 4647 unsigned long tmp; 4648 int ret; 4649 4650 if (!hugepages_supported()) 4651 return -EOPNOTSUPP; 4652 4653 tmp = h->nr_overcommit_huge_pages; 4654 4655 if (write && hstate_is_gigantic(h)) 4656 return -EINVAL; 4657 4658 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4659 &tmp); 4660 if (ret) 4661 goto out; 4662 4663 if (write) { 4664 spin_lock_irq(&hugetlb_lock); 4665 h->nr_overcommit_huge_pages = tmp; 4666 spin_unlock_irq(&hugetlb_lock); 4667 } 4668 out: 4669 return ret; 4670 } 4671 4672 static struct ctl_table hugetlb_table[] = { 4673 { 4674 .procname = "nr_hugepages", 4675 .data = NULL, 4676 .maxlen = sizeof(unsigned long), 4677 .mode = 0644, 4678 .proc_handler = hugetlb_sysctl_handler, 4679 }, 4680 #ifdef CONFIG_NUMA 4681 { 4682 .procname = "nr_hugepages_mempolicy", 4683 .data = NULL, 4684 .maxlen = sizeof(unsigned long), 4685 .mode = 0644, 4686 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4687 }, 4688 #endif 4689 { 4690 .procname = "hugetlb_shm_group", 4691 .data = &sysctl_hugetlb_shm_group, 4692 .maxlen = sizeof(gid_t), 4693 .mode = 0644, 4694 .proc_handler = proc_dointvec, 4695 }, 4696 { 4697 .procname = "nr_overcommit_hugepages", 4698 .data = NULL, 4699 .maxlen = sizeof(unsigned long), 4700 .mode = 0644, 4701 .proc_handler = hugetlb_overcommit_handler, 4702 }, 4703 { } 4704 }; 4705 4706 static void hugetlb_sysctl_init(void) 4707 { 4708 register_sysctl_init("vm", hugetlb_table); 4709 } 4710 #endif /* CONFIG_SYSCTL */ 4711 4712 void hugetlb_report_meminfo(struct seq_file *m) 4713 { 4714 struct hstate *h; 4715 unsigned long total = 0; 4716 4717 if (!hugepages_supported()) 4718 return; 4719 4720 for_each_hstate(h) { 4721 unsigned long count = h->nr_huge_pages; 4722 4723 total += huge_page_size(h) * count; 4724 4725 if (h == &default_hstate) 4726 seq_printf(m, 4727 "HugePages_Total: %5lu\n" 4728 "HugePages_Free: %5lu\n" 4729 "HugePages_Rsvd: %5lu\n" 4730 "HugePages_Surp: %5lu\n" 4731 "Hugepagesize: %8lu kB\n", 4732 count, 4733 h->free_huge_pages, 4734 h->resv_huge_pages, 4735 h->surplus_huge_pages, 4736 huge_page_size(h) / SZ_1K); 4737 } 4738 4739 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4740 } 4741 4742 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4743 { 4744 struct hstate *h = &default_hstate; 4745 4746 if (!hugepages_supported()) 4747 return 0; 4748 4749 return sysfs_emit_at(buf, len, 4750 "Node %d HugePages_Total: %5u\n" 4751 "Node %d HugePages_Free: %5u\n" 4752 "Node %d HugePages_Surp: %5u\n", 4753 nid, h->nr_huge_pages_node[nid], 4754 nid, h->free_huge_pages_node[nid], 4755 nid, h->surplus_huge_pages_node[nid]); 4756 } 4757 4758 void hugetlb_show_meminfo_node(int nid) 4759 { 4760 struct hstate *h; 4761 4762 if (!hugepages_supported()) 4763 return; 4764 4765 for_each_hstate(h) 4766 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4767 nid, 4768 h->nr_huge_pages_node[nid], 4769 h->free_huge_pages_node[nid], 4770 h->surplus_huge_pages_node[nid], 4771 huge_page_size(h) / SZ_1K); 4772 } 4773 4774 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4775 { 4776 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4777 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4778 } 4779 4780 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4781 unsigned long hugetlb_total_pages(void) 4782 { 4783 struct hstate *h; 4784 unsigned long nr_total_pages = 0; 4785 4786 for_each_hstate(h) 4787 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4788 return nr_total_pages; 4789 } 4790 4791 static int hugetlb_acct_memory(struct hstate *h, long delta) 4792 { 4793 int ret = -ENOMEM; 4794 4795 if (!delta) 4796 return 0; 4797 4798 spin_lock_irq(&hugetlb_lock); 4799 /* 4800 * When cpuset is configured, it breaks the strict hugetlb page 4801 * reservation as the accounting is done on a global variable. Such 4802 * reservation is completely rubbish in the presence of cpuset because 4803 * the reservation is not checked against page availability for the 4804 * current cpuset. Application can still potentially OOM'ed by kernel 4805 * with lack of free htlb page in cpuset that the task is in. 4806 * Attempt to enforce strict accounting with cpuset is almost 4807 * impossible (or too ugly) because cpuset is too fluid that 4808 * task or memory node can be dynamically moved between cpusets. 4809 * 4810 * The change of semantics for shared hugetlb mapping with cpuset is 4811 * undesirable. However, in order to preserve some of the semantics, 4812 * we fall back to check against current free page availability as 4813 * a best attempt and hopefully to minimize the impact of changing 4814 * semantics that cpuset has. 4815 * 4816 * Apart from cpuset, we also have memory policy mechanism that 4817 * also determines from which node the kernel will allocate memory 4818 * in a NUMA system. So similar to cpuset, we also should consider 4819 * the memory policy of the current task. Similar to the description 4820 * above. 4821 */ 4822 if (delta > 0) { 4823 if (gather_surplus_pages(h, delta) < 0) 4824 goto out; 4825 4826 if (delta > allowed_mems_nr(h)) { 4827 return_unused_surplus_pages(h, delta); 4828 goto out; 4829 } 4830 } 4831 4832 ret = 0; 4833 if (delta < 0) 4834 return_unused_surplus_pages(h, (unsigned long) -delta); 4835 4836 out: 4837 spin_unlock_irq(&hugetlb_lock); 4838 return ret; 4839 } 4840 4841 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4842 { 4843 struct resv_map *resv = vma_resv_map(vma); 4844 4845 /* 4846 * HPAGE_RESV_OWNER indicates a private mapping. 4847 * This new VMA should share its siblings reservation map if present. 4848 * The VMA will only ever have a valid reservation map pointer where 4849 * it is being copied for another still existing VMA. As that VMA 4850 * has a reference to the reservation map it cannot disappear until 4851 * after this open call completes. It is therefore safe to take a 4852 * new reference here without additional locking. 4853 */ 4854 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4855 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4856 kref_get(&resv->refs); 4857 } 4858 4859 /* 4860 * vma_lock structure for sharable mappings is vma specific. 4861 * Clear old pointer (if copied via vm_area_dup) and allocate 4862 * new structure. Before clearing, make sure vma_lock is not 4863 * for this vma. 4864 */ 4865 if (vma->vm_flags & VM_MAYSHARE) { 4866 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4867 4868 if (vma_lock) { 4869 if (vma_lock->vma != vma) { 4870 vma->vm_private_data = NULL; 4871 hugetlb_vma_lock_alloc(vma); 4872 } else 4873 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4874 } else 4875 hugetlb_vma_lock_alloc(vma); 4876 } 4877 } 4878 4879 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4880 { 4881 struct hstate *h = hstate_vma(vma); 4882 struct resv_map *resv; 4883 struct hugepage_subpool *spool = subpool_vma(vma); 4884 unsigned long reserve, start, end; 4885 long gbl_reserve; 4886 4887 hugetlb_vma_lock_free(vma); 4888 4889 resv = vma_resv_map(vma); 4890 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4891 return; 4892 4893 start = vma_hugecache_offset(h, vma, vma->vm_start); 4894 end = vma_hugecache_offset(h, vma, vma->vm_end); 4895 4896 reserve = (end - start) - region_count(resv, start, end); 4897 hugetlb_cgroup_uncharge_counter(resv, start, end); 4898 if (reserve) { 4899 /* 4900 * Decrement reserve counts. The global reserve count may be 4901 * adjusted if the subpool has a minimum size. 4902 */ 4903 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4904 hugetlb_acct_memory(h, -gbl_reserve); 4905 } 4906 4907 kref_put(&resv->refs, resv_map_release); 4908 } 4909 4910 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4911 { 4912 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4913 return -EINVAL; 4914 4915 /* 4916 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4917 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4918 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4919 */ 4920 if (addr & ~PUD_MASK) { 4921 /* 4922 * hugetlb_vm_op_split is called right before we attempt to 4923 * split the VMA. We will need to unshare PMDs in the old and 4924 * new VMAs, so let's unshare before we split. 4925 */ 4926 unsigned long floor = addr & PUD_MASK; 4927 unsigned long ceil = floor + PUD_SIZE; 4928 4929 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4930 hugetlb_unshare_pmds(vma, floor, ceil); 4931 } 4932 4933 return 0; 4934 } 4935 4936 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4937 { 4938 return huge_page_size(hstate_vma(vma)); 4939 } 4940 4941 /* 4942 * We cannot handle pagefaults against hugetlb pages at all. They cause 4943 * handle_mm_fault() to try to instantiate regular-sized pages in the 4944 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4945 * this far. 4946 */ 4947 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4948 { 4949 BUG(); 4950 return 0; 4951 } 4952 4953 /* 4954 * When a new function is introduced to vm_operations_struct and added 4955 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4956 * This is because under System V memory model, mappings created via 4957 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4958 * their original vm_ops are overwritten with shm_vm_ops. 4959 */ 4960 const struct vm_operations_struct hugetlb_vm_ops = { 4961 .fault = hugetlb_vm_op_fault, 4962 .open = hugetlb_vm_op_open, 4963 .close = hugetlb_vm_op_close, 4964 .may_split = hugetlb_vm_op_split, 4965 .pagesize = hugetlb_vm_op_pagesize, 4966 }; 4967 4968 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4969 int writable) 4970 { 4971 pte_t entry; 4972 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4973 4974 if (writable) { 4975 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4976 vma->vm_page_prot))); 4977 } else { 4978 entry = huge_pte_wrprotect(mk_huge_pte(page, 4979 vma->vm_page_prot)); 4980 } 4981 entry = pte_mkyoung(entry); 4982 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4983 4984 return entry; 4985 } 4986 4987 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4988 unsigned long address, pte_t *ptep) 4989 { 4990 pte_t entry; 4991 4992 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4993 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4994 update_mmu_cache(vma, address, ptep); 4995 } 4996 4997 bool is_hugetlb_entry_migration(pte_t pte) 4998 { 4999 swp_entry_t swp; 5000 5001 if (huge_pte_none(pte) || pte_present(pte)) 5002 return false; 5003 swp = pte_to_swp_entry(pte); 5004 if (is_migration_entry(swp)) 5005 return true; 5006 else 5007 return false; 5008 } 5009 5010 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5011 { 5012 swp_entry_t swp; 5013 5014 if (huge_pte_none(pte) || pte_present(pte)) 5015 return false; 5016 swp = pte_to_swp_entry(pte); 5017 if (is_hwpoison_entry(swp)) 5018 return true; 5019 else 5020 return false; 5021 } 5022 5023 static void 5024 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5025 struct folio *new_folio, pte_t old) 5026 { 5027 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5028 5029 __folio_mark_uptodate(new_folio); 5030 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5031 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5032 newpte = huge_pte_mkuffd_wp(newpte); 5033 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte); 5034 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5035 folio_set_hugetlb_migratable(new_folio); 5036 } 5037 5038 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5039 struct vm_area_struct *dst_vma, 5040 struct vm_area_struct *src_vma) 5041 { 5042 pte_t *src_pte, *dst_pte, entry; 5043 struct folio *pte_folio; 5044 unsigned long addr; 5045 bool cow = is_cow_mapping(src_vma->vm_flags); 5046 struct hstate *h = hstate_vma(src_vma); 5047 unsigned long sz = huge_page_size(h); 5048 unsigned long npages = pages_per_huge_page(h); 5049 struct mmu_notifier_range range; 5050 unsigned long last_addr_mask; 5051 int ret = 0; 5052 5053 if (cow) { 5054 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5055 src_vma->vm_start, 5056 src_vma->vm_end); 5057 mmu_notifier_invalidate_range_start(&range); 5058 mmap_assert_write_locked(src); 5059 raw_write_seqcount_begin(&src->write_protect_seq); 5060 } else { 5061 /* 5062 * For shared mappings the vma lock must be held before 5063 * calling hugetlb_walk() in the src vma. Otherwise, the 5064 * returned ptep could go away if part of a shared pmd and 5065 * another thread calls huge_pmd_unshare. 5066 */ 5067 hugetlb_vma_lock_read(src_vma); 5068 } 5069 5070 last_addr_mask = hugetlb_mask_last_page(h); 5071 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5072 spinlock_t *src_ptl, *dst_ptl; 5073 src_pte = hugetlb_walk(src_vma, addr, sz); 5074 if (!src_pte) { 5075 addr |= last_addr_mask; 5076 continue; 5077 } 5078 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5079 if (!dst_pte) { 5080 ret = -ENOMEM; 5081 break; 5082 } 5083 5084 /* 5085 * If the pagetables are shared don't copy or take references. 5086 * 5087 * dst_pte == src_pte is the common case of src/dest sharing. 5088 * However, src could have 'unshared' and dst shares with 5089 * another vma. So page_count of ptep page is checked instead 5090 * to reliably determine whether pte is shared. 5091 */ 5092 if (page_count(virt_to_page(dst_pte)) > 1) { 5093 addr |= last_addr_mask; 5094 continue; 5095 } 5096 5097 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5098 src_ptl = huge_pte_lockptr(h, src, src_pte); 5099 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5100 entry = huge_ptep_get(src_pte); 5101 again: 5102 if (huge_pte_none(entry)) { 5103 /* 5104 * Skip if src entry none. 5105 */ 5106 ; 5107 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5108 if (!userfaultfd_wp(dst_vma)) 5109 entry = huge_pte_clear_uffd_wp(entry); 5110 set_huge_pte_at(dst, addr, dst_pte, entry); 5111 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5112 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5113 bool uffd_wp = pte_swp_uffd_wp(entry); 5114 5115 if (!is_readable_migration_entry(swp_entry) && cow) { 5116 /* 5117 * COW mappings require pages in both 5118 * parent and child to be set to read. 5119 */ 5120 swp_entry = make_readable_migration_entry( 5121 swp_offset(swp_entry)); 5122 entry = swp_entry_to_pte(swp_entry); 5123 if (userfaultfd_wp(src_vma) && uffd_wp) 5124 entry = pte_swp_mkuffd_wp(entry); 5125 set_huge_pte_at(src, addr, src_pte, entry); 5126 } 5127 if (!userfaultfd_wp(dst_vma)) 5128 entry = huge_pte_clear_uffd_wp(entry); 5129 set_huge_pte_at(dst, addr, dst_pte, entry); 5130 } else if (unlikely(is_pte_marker(entry))) { 5131 /* No swap on hugetlb */ 5132 WARN_ON_ONCE( 5133 is_swapin_error_entry(pte_to_swp_entry(entry))); 5134 /* 5135 * We copy the pte marker only if the dst vma has 5136 * uffd-wp enabled. 5137 */ 5138 if (userfaultfd_wp(dst_vma)) 5139 set_huge_pte_at(dst, addr, dst_pte, entry); 5140 } else { 5141 entry = huge_ptep_get(src_pte); 5142 pte_folio = page_folio(pte_page(entry)); 5143 folio_get(pte_folio); 5144 5145 /* 5146 * Failing to duplicate the anon rmap is a rare case 5147 * where we see pinned hugetlb pages while they're 5148 * prone to COW. We need to do the COW earlier during 5149 * fork. 5150 * 5151 * When pre-allocating the page or copying data, we 5152 * need to be without the pgtable locks since we could 5153 * sleep during the process. 5154 */ 5155 if (!folio_test_anon(pte_folio)) { 5156 page_dup_file_rmap(&pte_folio->page, true); 5157 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5158 true, src_vma)) { 5159 pte_t src_pte_old = entry; 5160 struct folio *new_folio; 5161 5162 spin_unlock(src_ptl); 5163 spin_unlock(dst_ptl); 5164 /* Do not use reserve as it's private owned */ 5165 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5166 if (IS_ERR(new_folio)) { 5167 folio_put(pte_folio); 5168 ret = PTR_ERR(new_folio); 5169 break; 5170 } 5171 ret = copy_user_large_folio(new_folio, 5172 pte_folio, 5173 addr, dst_vma); 5174 folio_put(pte_folio); 5175 if (ret) { 5176 folio_put(new_folio); 5177 break; 5178 } 5179 5180 /* Install the new hugetlb folio if src pte stable */ 5181 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5182 src_ptl = huge_pte_lockptr(h, src, src_pte); 5183 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5184 entry = huge_ptep_get(src_pte); 5185 if (!pte_same(src_pte_old, entry)) { 5186 restore_reserve_on_error(h, dst_vma, addr, 5187 new_folio); 5188 folio_put(new_folio); 5189 /* huge_ptep of dst_pte won't change as in child */ 5190 goto again; 5191 } 5192 hugetlb_install_folio(dst_vma, dst_pte, addr, 5193 new_folio, src_pte_old); 5194 spin_unlock(src_ptl); 5195 spin_unlock(dst_ptl); 5196 continue; 5197 } 5198 5199 if (cow) { 5200 /* 5201 * No need to notify as we are downgrading page 5202 * table protection not changing it to point 5203 * to a new page. 5204 * 5205 * See Documentation/mm/mmu_notifier.rst 5206 */ 5207 huge_ptep_set_wrprotect(src, addr, src_pte); 5208 entry = huge_pte_wrprotect(entry); 5209 } 5210 5211 if (!userfaultfd_wp(dst_vma)) 5212 entry = huge_pte_clear_uffd_wp(entry); 5213 5214 set_huge_pte_at(dst, addr, dst_pte, entry); 5215 hugetlb_count_add(npages, dst); 5216 } 5217 spin_unlock(src_ptl); 5218 spin_unlock(dst_ptl); 5219 } 5220 5221 if (cow) { 5222 raw_write_seqcount_end(&src->write_protect_seq); 5223 mmu_notifier_invalidate_range_end(&range); 5224 } else { 5225 hugetlb_vma_unlock_read(src_vma); 5226 } 5227 5228 return ret; 5229 } 5230 5231 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5232 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5233 { 5234 struct hstate *h = hstate_vma(vma); 5235 struct mm_struct *mm = vma->vm_mm; 5236 spinlock_t *src_ptl, *dst_ptl; 5237 pte_t pte; 5238 5239 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5240 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5241 5242 /* 5243 * We don't have to worry about the ordering of src and dst ptlocks 5244 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5245 */ 5246 if (src_ptl != dst_ptl) 5247 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5248 5249 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5250 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5251 5252 if (src_ptl != dst_ptl) 5253 spin_unlock(src_ptl); 5254 spin_unlock(dst_ptl); 5255 } 5256 5257 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5258 struct vm_area_struct *new_vma, 5259 unsigned long old_addr, unsigned long new_addr, 5260 unsigned long len) 5261 { 5262 struct hstate *h = hstate_vma(vma); 5263 struct address_space *mapping = vma->vm_file->f_mapping; 5264 unsigned long sz = huge_page_size(h); 5265 struct mm_struct *mm = vma->vm_mm; 5266 unsigned long old_end = old_addr + len; 5267 unsigned long last_addr_mask; 5268 pte_t *src_pte, *dst_pte; 5269 struct mmu_notifier_range range; 5270 bool shared_pmd = false; 5271 5272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5273 old_end); 5274 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5275 /* 5276 * In case of shared PMDs, we should cover the maximum possible 5277 * range. 5278 */ 5279 flush_cache_range(vma, range.start, range.end); 5280 5281 mmu_notifier_invalidate_range_start(&range); 5282 last_addr_mask = hugetlb_mask_last_page(h); 5283 /* Prevent race with file truncation */ 5284 hugetlb_vma_lock_write(vma); 5285 i_mmap_lock_write(mapping); 5286 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5287 src_pte = hugetlb_walk(vma, old_addr, sz); 5288 if (!src_pte) { 5289 old_addr |= last_addr_mask; 5290 new_addr |= last_addr_mask; 5291 continue; 5292 } 5293 if (huge_pte_none(huge_ptep_get(src_pte))) 5294 continue; 5295 5296 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5297 shared_pmd = true; 5298 old_addr |= last_addr_mask; 5299 new_addr |= last_addr_mask; 5300 continue; 5301 } 5302 5303 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5304 if (!dst_pte) 5305 break; 5306 5307 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5308 } 5309 5310 if (shared_pmd) 5311 flush_tlb_range(vma, range.start, range.end); 5312 else 5313 flush_tlb_range(vma, old_end - len, old_end); 5314 mmu_notifier_invalidate_range_end(&range); 5315 i_mmap_unlock_write(mapping); 5316 hugetlb_vma_unlock_write(vma); 5317 5318 return len + old_addr - old_end; 5319 } 5320 5321 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5322 unsigned long start, unsigned long end, 5323 struct page *ref_page, zap_flags_t zap_flags) 5324 { 5325 struct mm_struct *mm = vma->vm_mm; 5326 unsigned long address; 5327 pte_t *ptep; 5328 pte_t pte; 5329 spinlock_t *ptl; 5330 struct page *page; 5331 struct hstate *h = hstate_vma(vma); 5332 unsigned long sz = huge_page_size(h); 5333 unsigned long last_addr_mask; 5334 bool force_flush = false; 5335 5336 WARN_ON(!is_vm_hugetlb_page(vma)); 5337 BUG_ON(start & ~huge_page_mask(h)); 5338 BUG_ON(end & ~huge_page_mask(h)); 5339 5340 /* 5341 * This is a hugetlb vma, all the pte entries should point 5342 * to huge page. 5343 */ 5344 tlb_change_page_size(tlb, sz); 5345 tlb_start_vma(tlb, vma); 5346 5347 last_addr_mask = hugetlb_mask_last_page(h); 5348 address = start; 5349 for (; address < end; address += sz) { 5350 ptep = hugetlb_walk(vma, address, sz); 5351 if (!ptep) { 5352 address |= last_addr_mask; 5353 continue; 5354 } 5355 5356 ptl = huge_pte_lock(h, mm, ptep); 5357 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5358 spin_unlock(ptl); 5359 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5360 force_flush = true; 5361 address |= last_addr_mask; 5362 continue; 5363 } 5364 5365 pte = huge_ptep_get(ptep); 5366 if (huge_pte_none(pte)) { 5367 spin_unlock(ptl); 5368 continue; 5369 } 5370 5371 /* 5372 * Migrating hugepage or HWPoisoned hugepage is already 5373 * unmapped and its refcount is dropped, so just clear pte here. 5374 */ 5375 if (unlikely(!pte_present(pte))) { 5376 /* 5377 * If the pte was wr-protected by uffd-wp in any of the 5378 * swap forms, meanwhile the caller does not want to 5379 * drop the uffd-wp bit in this zap, then replace the 5380 * pte with a marker. 5381 */ 5382 if (pte_swp_uffd_wp_any(pte) && 5383 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5384 set_huge_pte_at(mm, address, ptep, 5385 make_pte_marker(PTE_MARKER_UFFD_WP)); 5386 else 5387 huge_pte_clear(mm, address, ptep, sz); 5388 spin_unlock(ptl); 5389 continue; 5390 } 5391 5392 page = pte_page(pte); 5393 /* 5394 * If a reference page is supplied, it is because a specific 5395 * page is being unmapped, not a range. Ensure the page we 5396 * are about to unmap is the actual page of interest. 5397 */ 5398 if (ref_page) { 5399 if (page != ref_page) { 5400 spin_unlock(ptl); 5401 continue; 5402 } 5403 /* 5404 * Mark the VMA as having unmapped its page so that 5405 * future faults in this VMA will fail rather than 5406 * looking like data was lost 5407 */ 5408 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5409 } 5410 5411 pte = huge_ptep_get_and_clear(mm, address, ptep); 5412 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5413 if (huge_pte_dirty(pte)) 5414 set_page_dirty(page); 5415 /* Leave a uffd-wp pte marker if needed */ 5416 if (huge_pte_uffd_wp(pte) && 5417 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5418 set_huge_pte_at(mm, address, ptep, 5419 make_pte_marker(PTE_MARKER_UFFD_WP)); 5420 hugetlb_count_sub(pages_per_huge_page(h), mm); 5421 page_remove_rmap(page, vma, true); 5422 5423 spin_unlock(ptl); 5424 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5425 /* 5426 * Bail out after unmapping reference page if supplied 5427 */ 5428 if (ref_page) 5429 break; 5430 } 5431 tlb_end_vma(tlb, vma); 5432 5433 /* 5434 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5435 * could defer the flush until now, since by holding i_mmap_rwsem we 5436 * guaranteed that the last refernece would not be dropped. But we must 5437 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5438 * dropped and the last reference to the shared PMDs page might be 5439 * dropped as well. 5440 * 5441 * In theory we could defer the freeing of the PMD pages as well, but 5442 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5443 * detect sharing, so we cannot defer the release of the page either. 5444 * Instead, do flush now. 5445 */ 5446 if (force_flush) 5447 tlb_flush_mmu_tlbonly(tlb); 5448 } 5449 5450 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5451 struct vm_area_struct *vma, unsigned long start, 5452 unsigned long end, struct page *ref_page, 5453 zap_flags_t zap_flags) 5454 { 5455 hugetlb_vma_lock_write(vma); 5456 i_mmap_lock_write(vma->vm_file->f_mapping); 5457 5458 /* mmu notification performed in caller */ 5459 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5460 5461 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5462 /* 5463 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5464 * When the vma_lock is freed, this makes the vma ineligible 5465 * for pmd sharing. And, i_mmap_rwsem is required to set up 5466 * pmd sharing. This is important as page tables for this 5467 * unmapped range will be asynchrously deleted. If the page 5468 * tables are shared, there will be issues when accessed by 5469 * someone else. 5470 */ 5471 __hugetlb_vma_unlock_write_free(vma); 5472 i_mmap_unlock_write(vma->vm_file->f_mapping); 5473 } else { 5474 i_mmap_unlock_write(vma->vm_file->f_mapping); 5475 hugetlb_vma_unlock_write(vma); 5476 } 5477 } 5478 5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5480 unsigned long end, struct page *ref_page, 5481 zap_flags_t zap_flags) 5482 { 5483 struct mmu_notifier_range range; 5484 struct mmu_gather tlb; 5485 5486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5487 start, end); 5488 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5489 mmu_notifier_invalidate_range_start(&range); 5490 tlb_gather_mmu(&tlb, vma->vm_mm); 5491 5492 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5493 5494 mmu_notifier_invalidate_range_end(&range); 5495 tlb_finish_mmu(&tlb); 5496 } 5497 5498 /* 5499 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5500 * mapping it owns the reserve page for. The intention is to unmap the page 5501 * from other VMAs and let the children be SIGKILLed if they are faulting the 5502 * same region. 5503 */ 5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5505 struct page *page, unsigned long address) 5506 { 5507 struct hstate *h = hstate_vma(vma); 5508 struct vm_area_struct *iter_vma; 5509 struct address_space *mapping; 5510 pgoff_t pgoff; 5511 5512 /* 5513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5514 * from page cache lookup which is in HPAGE_SIZE units. 5515 */ 5516 address = address & huge_page_mask(h); 5517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5518 vma->vm_pgoff; 5519 mapping = vma->vm_file->f_mapping; 5520 5521 /* 5522 * Take the mapping lock for the duration of the table walk. As 5523 * this mapping should be shared between all the VMAs, 5524 * __unmap_hugepage_range() is called as the lock is already held 5525 */ 5526 i_mmap_lock_write(mapping); 5527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5528 /* Do not unmap the current VMA */ 5529 if (iter_vma == vma) 5530 continue; 5531 5532 /* 5533 * Shared VMAs have their own reserves and do not affect 5534 * MAP_PRIVATE accounting but it is possible that a shared 5535 * VMA is using the same page so check and skip such VMAs. 5536 */ 5537 if (iter_vma->vm_flags & VM_MAYSHARE) 5538 continue; 5539 5540 /* 5541 * Unmap the page from other VMAs without their own reserves. 5542 * They get marked to be SIGKILLed if they fault in these 5543 * areas. This is because a future no-page fault on this VMA 5544 * could insert a zeroed page instead of the data existing 5545 * from the time of fork. This would look like data corruption 5546 */ 5547 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5548 unmap_hugepage_range(iter_vma, address, 5549 address + huge_page_size(h), page, 0); 5550 } 5551 i_mmap_unlock_write(mapping); 5552 } 5553 5554 /* 5555 * hugetlb_wp() should be called with page lock of the original hugepage held. 5556 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5557 * cannot race with other handlers or page migration. 5558 * Keep the pte_same checks anyway to make transition from the mutex easier. 5559 */ 5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5561 unsigned long address, pte_t *ptep, unsigned int flags, 5562 struct folio *pagecache_folio, spinlock_t *ptl) 5563 { 5564 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5565 pte_t pte = huge_ptep_get(ptep); 5566 struct hstate *h = hstate_vma(vma); 5567 struct folio *old_folio; 5568 struct folio *new_folio; 5569 int outside_reserve = 0; 5570 vm_fault_t ret = 0; 5571 unsigned long haddr = address & huge_page_mask(h); 5572 struct mmu_notifier_range range; 5573 5574 /* 5575 * Never handle CoW for uffd-wp protected pages. It should be only 5576 * handled when the uffd-wp protection is removed. 5577 * 5578 * Note that only the CoW optimization path (in hugetlb_no_page()) 5579 * can trigger this, because hugetlb_fault() will always resolve 5580 * uffd-wp bit first. 5581 */ 5582 if (!unshare && huge_pte_uffd_wp(pte)) 5583 return 0; 5584 5585 /* 5586 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5587 * PTE mapped R/O such as maybe_mkwrite() would do. 5588 */ 5589 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5590 return VM_FAULT_SIGSEGV; 5591 5592 /* Let's take out MAP_SHARED mappings first. */ 5593 if (vma->vm_flags & VM_MAYSHARE) { 5594 set_huge_ptep_writable(vma, haddr, ptep); 5595 return 0; 5596 } 5597 5598 old_folio = page_folio(pte_page(pte)); 5599 5600 delayacct_wpcopy_start(); 5601 5602 retry_avoidcopy: 5603 /* 5604 * If no-one else is actually using this page, we're the exclusive 5605 * owner and can reuse this page. 5606 */ 5607 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5608 if (!PageAnonExclusive(&old_folio->page)) 5609 page_move_anon_rmap(&old_folio->page, vma); 5610 if (likely(!unshare)) 5611 set_huge_ptep_writable(vma, haddr, ptep); 5612 5613 delayacct_wpcopy_end(); 5614 return 0; 5615 } 5616 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5617 PageAnonExclusive(&old_folio->page), &old_folio->page); 5618 5619 /* 5620 * If the process that created a MAP_PRIVATE mapping is about to 5621 * perform a COW due to a shared page count, attempt to satisfy 5622 * the allocation without using the existing reserves. The pagecache 5623 * page is used to determine if the reserve at this address was 5624 * consumed or not. If reserves were used, a partial faulted mapping 5625 * at the time of fork() could consume its reserves on COW instead 5626 * of the full address range. 5627 */ 5628 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5629 old_folio != pagecache_folio) 5630 outside_reserve = 1; 5631 5632 folio_get(old_folio); 5633 5634 /* 5635 * Drop page table lock as buddy allocator may be called. It will 5636 * be acquired again before returning to the caller, as expected. 5637 */ 5638 spin_unlock(ptl); 5639 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5640 5641 if (IS_ERR(new_folio)) { 5642 /* 5643 * If a process owning a MAP_PRIVATE mapping fails to COW, 5644 * it is due to references held by a child and an insufficient 5645 * huge page pool. To guarantee the original mappers 5646 * reliability, unmap the page from child processes. The child 5647 * may get SIGKILLed if it later faults. 5648 */ 5649 if (outside_reserve) { 5650 struct address_space *mapping = vma->vm_file->f_mapping; 5651 pgoff_t idx; 5652 u32 hash; 5653 5654 folio_put(old_folio); 5655 /* 5656 * Drop hugetlb_fault_mutex and vma_lock before 5657 * unmapping. unmapping needs to hold vma_lock 5658 * in write mode. Dropping vma_lock in read mode 5659 * here is OK as COW mappings do not interact with 5660 * PMD sharing. 5661 * 5662 * Reacquire both after unmap operation. 5663 */ 5664 idx = vma_hugecache_offset(h, vma, haddr); 5665 hash = hugetlb_fault_mutex_hash(mapping, idx); 5666 hugetlb_vma_unlock_read(vma); 5667 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5668 5669 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5670 5671 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5672 hugetlb_vma_lock_read(vma); 5673 spin_lock(ptl); 5674 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5675 if (likely(ptep && 5676 pte_same(huge_ptep_get(ptep), pte))) 5677 goto retry_avoidcopy; 5678 /* 5679 * race occurs while re-acquiring page table 5680 * lock, and our job is done. 5681 */ 5682 delayacct_wpcopy_end(); 5683 return 0; 5684 } 5685 5686 ret = vmf_error(PTR_ERR(new_folio)); 5687 goto out_release_old; 5688 } 5689 5690 /* 5691 * When the original hugepage is shared one, it does not have 5692 * anon_vma prepared. 5693 */ 5694 if (unlikely(anon_vma_prepare(vma))) { 5695 ret = VM_FAULT_OOM; 5696 goto out_release_all; 5697 } 5698 5699 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5700 ret = VM_FAULT_HWPOISON_LARGE; 5701 goto out_release_all; 5702 } 5703 __folio_mark_uptodate(new_folio); 5704 5705 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5706 haddr + huge_page_size(h)); 5707 mmu_notifier_invalidate_range_start(&range); 5708 5709 /* 5710 * Retake the page table lock to check for racing updates 5711 * before the page tables are altered 5712 */ 5713 spin_lock(ptl); 5714 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5715 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5716 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5717 5718 /* Break COW or unshare */ 5719 huge_ptep_clear_flush(vma, haddr, ptep); 5720 mmu_notifier_invalidate_range(mm, range.start, range.end); 5721 page_remove_rmap(&old_folio->page, vma, true); 5722 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5723 if (huge_pte_uffd_wp(pte)) 5724 newpte = huge_pte_mkuffd_wp(newpte); 5725 set_huge_pte_at(mm, haddr, ptep, newpte); 5726 folio_set_hugetlb_migratable(new_folio); 5727 /* Make the old page be freed below */ 5728 new_folio = old_folio; 5729 } 5730 spin_unlock(ptl); 5731 mmu_notifier_invalidate_range_end(&range); 5732 out_release_all: 5733 /* 5734 * No restore in case of successful pagetable update (Break COW or 5735 * unshare) 5736 */ 5737 if (new_folio != old_folio) 5738 restore_reserve_on_error(h, vma, haddr, new_folio); 5739 folio_put(new_folio); 5740 out_release_old: 5741 folio_put(old_folio); 5742 5743 spin_lock(ptl); /* Caller expects lock to be held */ 5744 5745 delayacct_wpcopy_end(); 5746 return ret; 5747 } 5748 5749 /* 5750 * Return whether there is a pagecache page to back given address within VMA. 5751 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5752 */ 5753 static bool hugetlbfs_pagecache_present(struct hstate *h, 5754 struct vm_area_struct *vma, unsigned long address) 5755 { 5756 struct address_space *mapping = vma->vm_file->f_mapping; 5757 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5758 struct folio *folio; 5759 5760 folio = filemap_get_folio(mapping, idx); 5761 if (IS_ERR(folio)) 5762 return false; 5763 folio_put(folio); 5764 return true; 5765 } 5766 5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5768 pgoff_t idx) 5769 { 5770 struct inode *inode = mapping->host; 5771 struct hstate *h = hstate_inode(inode); 5772 int err; 5773 5774 __folio_set_locked(folio); 5775 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5776 5777 if (unlikely(err)) { 5778 __folio_clear_locked(folio); 5779 return err; 5780 } 5781 folio_clear_hugetlb_restore_reserve(folio); 5782 5783 /* 5784 * mark folio dirty so that it will not be removed from cache/file 5785 * by non-hugetlbfs specific code paths. 5786 */ 5787 folio_mark_dirty(folio); 5788 5789 spin_lock(&inode->i_lock); 5790 inode->i_blocks += blocks_per_huge_page(h); 5791 spin_unlock(&inode->i_lock); 5792 return 0; 5793 } 5794 5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5796 struct address_space *mapping, 5797 pgoff_t idx, 5798 unsigned int flags, 5799 unsigned long haddr, 5800 unsigned long addr, 5801 unsigned long reason) 5802 { 5803 u32 hash; 5804 struct vm_fault vmf = { 5805 .vma = vma, 5806 .address = haddr, 5807 .real_address = addr, 5808 .flags = flags, 5809 5810 /* 5811 * Hard to debug if it ends up being 5812 * used by a callee that assumes 5813 * something about the other 5814 * uninitialized fields... same as in 5815 * memory.c 5816 */ 5817 }; 5818 5819 /* 5820 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5821 * userfault. Also mmap_lock could be dropped due to handling 5822 * userfault, any vma operation should be careful from here. 5823 */ 5824 hugetlb_vma_unlock_read(vma); 5825 hash = hugetlb_fault_mutex_hash(mapping, idx); 5826 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5827 return handle_userfault(&vmf, reason); 5828 } 5829 5830 /* 5831 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5832 * false if pte changed or is changing. 5833 */ 5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5835 pte_t *ptep, pte_t old_pte) 5836 { 5837 spinlock_t *ptl; 5838 bool same; 5839 5840 ptl = huge_pte_lock(h, mm, ptep); 5841 same = pte_same(huge_ptep_get(ptep), old_pte); 5842 spin_unlock(ptl); 5843 5844 return same; 5845 } 5846 5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5848 struct vm_area_struct *vma, 5849 struct address_space *mapping, pgoff_t idx, 5850 unsigned long address, pte_t *ptep, 5851 pte_t old_pte, unsigned int flags) 5852 { 5853 struct hstate *h = hstate_vma(vma); 5854 vm_fault_t ret = VM_FAULT_SIGBUS; 5855 int anon_rmap = 0; 5856 unsigned long size; 5857 struct folio *folio; 5858 pte_t new_pte; 5859 spinlock_t *ptl; 5860 unsigned long haddr = address & huge_page_mask(h); 5861 bool new_folio, new_pagecache_folio = false; 5862 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5863 5864 /* 5865 * Currently, we are forced to kill the process in the event the 5866 * original mapper has unmapped pages from the child due to a failed 5867 * COW/unsharing. Warn that such a situation has occurred as it may not 5868 * be obvious. 5869 */ 5870 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5871 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5872 current->pid); 5873 goto out; 5874 } 5875 5876 /* 5877 * Use page lock to guard against racing truncation 5878 * before we get page_table_lock. 5879 */ 5880 new_folio = false; 5881 folio = filemap_lock_folio(mapping, idx); 5882 if (IS_ERR(folio)) { 5883 size = i_size_read(mapping->host) >> huge_page_shift(h); 5884 if (idx >= size) 5885 goto out; 5886 /* Check for page in userfault range */ 5887 if (userfaultfd_missing(vma)) { 5888 /* 5889 * Since hugetlb_no_page() was examining pte 5890 * without pgtable lock, we need to re-test under 5891 * lock because the pte may not be stable and could 5892 * have changed from under us. Try to detect 5893 * either changed or during-changing ptes and retry 5894 * properly when needed. 5895 * 5896 * Note that userfaultfd is actually fine with 5897 * false positives (e.g. caused by pte changed), 5898 * but not wrong logical events (e.g. caused by 5899 * reading a pte during changing). The latter can 5900 * confuse the userspace, so the strictness is very 5901 * much preferred. E.g., MISSING event should 5902 * never happen on the page after UFFDIO_COPY has 5903 * correctly installed the page and returned. 5904 */ 5905 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5906 ret = 0; 5907 goto out; 5908 } 5909 5910 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5911 haddr, address, 5912 VM_UFFD_MISSING); 5913 } 5914 5915 folio = alloc_hugetlb_folio(vma, haddr, 0); 5916 if (IS_ERR(folio)) { 5917 /* 5918 * Returning error will result in faulting task being 5919 * sent SIGBUS. The hugetlb fault mutex prevents two 5920 * tasks from racing to fault in the same page which 5921 * could result in false unable to allocate errors. 5922 * Page migration does not take the fault mutex, but 5923 * does a clear then write of pte's under page table 5924 * lock. Page fault code could race with migration, 5925 * notice the clear pte and try to allocate a page 5926 * here. Before returning error, get ptl and make 5927 * sure there really is no pte entry. 5928 */ 5929 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5930 ret = vmf_error(PTR_ERR(folio)); 5931 else 5932 ret = 0; 5933 goto out; 5934 } 5935 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5936 __folio_mark_uptodate(folio); 5937 new_folio = true; 5938 5939 if (vma->vm_flags & VM_MAYSHARE) { 5940 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5941 if (err) { 5942 /* 5943 * err can't be -EEXIST which implies someone 5944 * else consumed the reservation since hugetlb 5945 * fault mutex is held when add a hugetlb page 5946 * to the page cache. So it's safe to call 5947 * restore_reserve_on_error() here. 5948 */ 5949 restore_reserve_on_error(h, vma, haddr, folio); 5950 folio_put(folio); 5951 goto out; 5952 } 5953 new_pagecache_folio = true; 5954 } else { 5955 folio_lock(folio); 5956 if (unlikely(anon_vma_prepare(vma))) { 5957 ret = VM_FAULT_OOM; 5958 goto backout_unlocked; 5959 } 5960 anon_rmap = 1; 5961 } 5962 } else { 5963 /* 5964 * If memory error occurs between mmap() and fault, some process 5965 * don't have hwpoisoned swap entry for errored virtual address. 5966 * So we need to block hugepage fault by PG_hwpoison bit check. 5967 */ 5968 if (unlikely(folio_test_hwpoison(folio))) { 5969 ret = VM_FAULT_HWPOISON_LARGE | 5970 VM_FAULT_SET_HINDEX(hstate_index(h)); 5971 goto backout_unlocked; 5972 } 5973 5974 /* Check for page in userfault range. */ 5975 if (userfaultfd_minor(vma)) { 5976 folio_unlock(folio); 5977 folio_put(folio); 5978 /* See comment in userfaultfd_missing() block above */ 5979 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5980 ret = 0; 5981 goto out; 5982 } 5983 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5984 haddr, address, 5985 VM_UFFD_MINOR); 5986 } 5987 } 5988 5989 /* 5990 * If we are going to COW a private mapping later, we examine the 5991 * pending reservations for this page now. This will ensure that 5992 * any allocations necessary to record that reservation occur outside 5993 * the spinlock. 5994 */ 5995 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5996 if (vma_needs_reservation(h, vma, haddr) < 0) { 5997 ret = VM_FAULT_OOM; 5998 goto backout_unlocked; 5999 } 6000 /* Just decrements count, does not deallocate */ 6001 vma_end_reservation(h, vma, haddr); 6002 } 6003 6004 ptl = huge_pte_lock(h, mm, ptep); 6005 ret = 0; 6006 /* If pte changed from under us, retry */ 6007 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6008 goto backout; 6009 6010 if (anon_rmap) 6011 hugepage_add_new_anon_rmap(folio, vma, haddr); 6012 else 6013 page_dup_file_rmap(&folio->page, true); 6014 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6015 && (vma->vm_flags & VM_SHARED))); 6016 /* 6017 * If this pte was previously wr-protected, keep it wr-protected even 6018 * if populated. 6019 */ 6020 if (unlikely(pte_marker_uffd_wp(old_pte))) 6021 new_pte = huge_pte_mkuffd_wp(new_pte); 6022 set_huge_pte_at(mm, haddr, ptep, new_pte); 6023 6024 hugetlb_count_add(pages_per_huge_page(h), mm); 6025 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6026 /* Optimization, do the COW without a second fault */ 6027 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6028 } 6029 6030 spin_unlock(ptl); 6031 6032 /* 6033 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6034 * found in the pagecache may not have hugetlb_migratable if they have 6035 * been isolated for migration. 6036 */ 6037 if (new_folio) 6038 folio_set_hugetlb_migratable(folio); 6039 6040 folio_unlock(folio); 6041 out: 6042 hugetlb_vma_unlock_read(vma); 6043 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6044 return ret; 6045 6046 backout: 6047 spin_unlock(ptl); 6048 backout_unlocked: 6049 if (new_folio && !new_pagecache_folio) 6050 restore_reserve_on_error(h, vma, haddr, folio); 6051 6052 folio_unlock(folio); 6053 folio_put(folio); 6054 goto out; 6055 } 6056 6057 #ifdef CONFIG_SMP 6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6059 { 6060 unsigned long key[2]; 6061 u32 hash; 6062 6063 key[0] = (unsigned long) mapping; 6064 key[1] = idx; 6065 6066 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6067 6068 return hash & (num_fault_mutexes - 1); 6069 } 6070 #else 6071 /* 6072 * For uniprocessor systems we always use a single mutex, so just 6073 * return 0 and avoid the hashing overhead. 6074 */ 6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6076 { 6077 return 0; 6078 } 6079 #endif 6080 6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6082 unsigned long address, unsigned int flags) 6083 { 6084 pte_t *ptep, entry; 6085 spinlock_t *ptl; 6086 vm_fault_t ret; 6087 u32 hash; 6088 pgoff_t idx; 6089 struct folio *folio = NULL; 6090 struct folio *pagecache_folio = NULL; 6091 struct hstate *h = hstate_vma(vma); 6092 struct address_space *mapping; 6093 int need_wait_lock = 0; 6094 unsigned long haddr = address & huge_page_mask(h); 6095 6096 /* 6097 * Serialize hugepage allocation and instantiation, so that we don't 6098 * get spurious allocation failures if two CPUs race to instantiate 6099 * the same page in the page cache. 6100 */ 6101 mapping = vma->vm_file->f_mapping; 6102 idx = vma_hugecache_offset(h, vma, haddr); 6103 hash = hugetlb_fault_mutex_hash(mapping, idx); 6104 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6105 6106 /* 6107 * Acquire vma lock before calling huge_pte_alloc and hold 6108 * until finished with ptep. This prevents huge_pmd_unshare from 6109 * being called elsewhere and making the ptep no longer valid. 6110 */ 6111 hugetlb_vma_lock_read(vma); 6112 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6113 if (!ptep) { 6114 hugetlb_vma_unlock_read(vma); 6115 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6116 return VM_FAULT_OOM; 6117 } 6118 6119 entry = huge_ptep_get(ptep); 6120 /* PTE markers should be handled the same way as none pte */ 6121 if (huge_pte_none_mostly(entry)) 6122 /* 6123 * hugetlb_no_page will drop vma lock and hugetlb fault 6124 * mutex internally, which make us return immediately. 6125 */ 6126 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6127 entry, flags); 6128 6129 ret = 0; 6130 6131 /* 6132 * entry could be a migration/hwpoison entry at this point, so this 6133 * check prevents the kernel from going below assuming that we have 6134 * an active hugepage in pagecache. This goto expects the 2nd page 6135 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6136 * properly handle it. 6137 */ 6138 if (!pte_present(entry)) { 6139 if (unlikely(is_hugetlb_entry_migration(entry))) { 6140 /* 6141 * Release the hugetlb fault lock now, but retain 6142 * the vma lock, because it is needed to guard the 6143 * huge_pte_lockptr() later in 6144 * migration_entry_wait_huge(). The vma lock will 6145 * be released there. 6146 */ 6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6148 migration_entry_wait_huge(vma, ptep); 6149 return 0; 6150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6151 ret = VM_FAULT_HWPOISON_LARGE | 6152 VM_FAULT_SET_HINDEX(hstate_index(h)); 6153 goto out_mutex; 6154 } 6155 6156 /* 6157 * If we are going to COW/unshare the mapping later, we examine the 6158 * pending reservations for this page now. This will ensure that any 6159 * allocations necessary to record that reservation occur outside the 6160 * spinlock. Also lookup the pagecache page now as it is used to 6161 * determine if a reservation has been consumed. 6162 */ 6163 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6164 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6165 if (vma_needs_reservation(h, vma, haddr) < 0) { 6166 ret = VM_FAULT_OOM; 6167 goto out_mutex; 6168 } 6169 /* Just decrements count, does not deallocate */ 6170 vma_end_reservation(h, vma, haddr); 6171 6172 pagecache_folio = filemap_lock_folio(mapping, idx); 6173 if (IS_ERR(pagecache_folio)) 6174 pagecache_folio = NULL; 6175 } 6176 6177 ptl = huge_pte_lock(h, mm, ptep); 6178 6179 /* Check for a racing update before calling hugetlb_wp() */ 6180 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6181 goto out_ptl; 6182 6183 /* Handle userfault-wp first, before trying to lock more pages */ 6184 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6185 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6186 struct vm_fault vmf = { 6187 .vma = vma, 6188 .address = haddr, 6189 .real_address = address, 6190 .flags = flags, 6191 }; 6192 6193 spin_unlock(ptl); 6194 if (pagecache_folio) { 6195 folio_unlock(pagecache_folio); 6196 folio_put(pagecache_folio); 6197 } 6198 hugetlb_vma_unlock_read(vma); 6199 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6200 return handle_userfault(&vmf, VM_UFFD_WP); 6201 } 6202 6203 /* 6204 * hugetlb_wp() requires page locks of pte_page(entry) and 6205 * pagecache_folio, so here we need take the former one 6206 * when folio != pagecache_folio or !pagecache_folio. 6207 */ 6208 folio = page_folio(pte_page(entry)); 6209 if (folio != pagecache_folio) 6210 if (!folio_trylock(folio)) { 6211 need_wait_lock = 1; 6212 goto out_ptl; 6213 } 6214 6215 folio_get(folio); 6216 6217 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6218 if (!huge_pte_write(entry)) { 6219 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6220 pagecache_folio, ptl); 6221 goto out_put_page; 6222 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6223 entry = huge_pte_mkdirty(entry); 6224 } 6225 } 6226 entry = pte_mkyoung(entry); 6227 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6228 flags & FAULT_FLAG_WRITE)) 6229 update_mmu_cache(vma, haddr, ptep); 6230 out_put_page: 6231 if (folio != pagecache_folio) 6232 folio_unlock(folio); 6233 folio_put(folio); 6234 out_ptl: 6235 spin_unlock(ptl); 6236 6237 if (pagecache_folio) { 6238 folio_unlock(pagecache_folio); 6239 folio_put(pagecache_folio); 6240 } 6241 out_mutex: 6242 hugetlb_vma_unlock_read(vma); 6243 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6244 /* 6245 * Generally it's safe to hold refcount during waiting page lock. But 6246 * here we just wait to defer the next page fault to avoid busy loop and 6247 * the page is not used after unlocked before returning from the current 6248 * page fault. So we are safe from accessing freed page, even if we wait 6249 * here without taking refcount. 6250 */ 6251 if (need_wait_lock) 6252 folio_wait_locked(folio); 6253 return ret; 6254 } 6255 6256 #ifdef CONFIG_USERFAULTFD 6257 /* 6258 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6259 * with modifications for hugetlb pages. 6260 */ 6261 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6262 struct vm_area_struct *dst_vma, 6263 unsigned long dst_addr, 6264 unsigned long src_addr, 6265 uffd_flags_t flags, 6266 struct folio **foliop) 6267 { 6268 struct mm_struct *dst_mm = dst_vma->vm_mm; 6269 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6270 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6271 struct hstate *h = hstate_vma(dst_vma); 6272 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6273 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6274 unsigned long size; 6275 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6276 pte_t _dst_pte; 6277 spinlock_t *ptl; 6278 int ret = -ENOMEM; 6279 struct folio *folio; 6280 int writable; 6281 bool folio_in_pagecache = false; 6282 6283 if (is_continue) { 6284 ret = -EFAULT; 6285 folio = filemap_lock_folio(mapping, idx); 6286 if (IS_ERR(folio)) 6287 goto out; 6288 folio_in_pagecache = true; 6289 } else if (!*foliop) { 6290 /* If a folio already exists, then it's UFFDIO_COPY for 6291 * a non-missing case. Return -EEXIST. 6292 */ 6293 if (vm_shared && 6294 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6295 ret = -EEXIST; 6296 goto out; 6297 } 6298 6299 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6300 if (IS_ERR(folio)) { 6301 ret = -ENOMEM; 6302 goto out; 6303 } 6304 6305 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6306 false); 6307 6308 /* fallback to copy_from_user outside mmap_lock */ 6309 if (unlikely(ret)) { 6310 ret = -ENOENT; 6311 /* Free the allocated folio which may have 6312 * consumed a reservation. 6313 */ 6314 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6315 folio_put(folio); 6316 6317 /* Allocate a temporary folio to hold the copied 6318 * contents. 6319 */ 6320 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6321 if (!folio) { 6322 ret = -ENOMEM; 6323 goto out; 6324 } 6325 *foliop = folio; 6326 /* Set the outparam foliop and return to the caller to 6327 * copy the contents outside the lock. Don't free the 6328 * folio. 6329 */ 6330 goto out; 6331 } 6332 } else { 6333 if (vm_shared && 6334 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6335 folio_put(*foliop); 6336 ret = -EEXIST; 6337 *foliop = NULL; 6338 goto out; 6339 } 6340 6341 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6342 if (IS_ERR(folio)) { 6343 folio_put(*foliop); 6344 ret = -ENOMEM; 6345 *foliop = NULL; 6346 goto out; 6347 } 6348 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6349 folio_put(*foliop); 6350 *foliop = NULL; 6351 if (ret) { 6352 folio_put(folio); 6353 goto out; 6354 } 6355 } 6356 6357 /* 6358 * The memory barrier inside __folio_mark_uptodate makes sure that 6359 * preceding stores to the page contents become visible before 6360 * the set_pte_at() write. 6361 */ 6362 __folio_mark_uptodate(folio); 6363 6364 /* Add shared, newly allocated pages to the page cache. */ 6365 if (vm_shared && !is_continue) { 6366 size = i_size_read(mapping->host) >> huge_page_shift(h); 6367 ret = -EFAULT; 6368 if (idx >= size) 6369 goto out_release_nounlock; 6370 6371 /* 6372 * Serialization between remove_inode_hugepages() and 6373 * hugetlb_add_to_page_cache() below happens through the 6374 * hugetlb_fault_mutex_table that here must be hold by 6375 * the caller. 6376 */ 6377 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6378 if (ret) 6379 goto out_release_nounlock; 6380 folio_in_pagecache = true; 6381 } 6382 6383 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6384 6385 ret = -EIO; 6386 if (folio_test_hwpoison(folio)) 6387 goto out_release_unlock; 6388 6389 /* 6390 * We allow to overwrite a pte marker: consider when both MISSING|WP 6391 * registered, we firstly wr-protect a none pte which has no page cache 6392 * page backing it, then access the page. 6393 */ 6394 ret = -EEXIST; 6395 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6396 goto out_release_unlock; 6397 6398 if (folio_in_pagecache) 6399 page_dup_file_rmap(&folio->page, true); 6400 else 6401 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6402 6403 /* 6404 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6405 * with wp flag set, don't set pte write bit. 6406 */ 6407 if (wp_enabled || (is_continue && !vm_shared)) 6408 writable = 0; 6409 else 6410 writable = dst_vma->vm_flags & VM_WRITE; 6411 6412 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6413 /* 6414 * Always mark UFFDIO_COPY page dirty; note that this may not be 6415 * extremely important for hugetlbfs for now since swapping is not 6416 * supported, but we should still be clear in that this page cannot be 6417 * thrown away at will, even if write bit not set. 6418 */ 6419 _dst_pte = huge_pte_mkdirty(_dst_pte); 6420 _dst_pte = pte_mkyoung(_dst_pte); 6421 6422 if (wp_enabled) 6423 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6424 6425 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6426 6427 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6428 6429 /* No need to invalidate - it was non-present before */ 6430 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6431 6432 spin_unlock(ptl); 6433 if (!is_continue) 6434 folio_set_hugetlb_migratable(folio); 6435 if (vm_shared || is_continue) 6436 folio_unlock(folio); 6437 ret = 0; 6438 out: 6439 return ret; 6440 out_release_unlock: 6441 spin_unlock(ptl); 6442 if (vm_shared || is_continue) 6443 folio_unlock(folio); 6444 out_release_nounlock: 6445 if (!folio_in_pagecache) 6446 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6447 folio_put(folio); 6448 goto out; 6449 } 6450 #endif /* CONFIG_USERFAULTFD */ 6451 6452 static void record_subpages(struct page *page, struct vm_area_struct *vma, 6453 int refs, struct page **pages) 6454 { 6455 int nr; 6456 6457 for (nr = 0; nr < refs; nr++) { 6458 if (likely(pages)) 6459 pages[nr] = nth_page(page, nr); 6460 } 6461 } 6462 6463 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6464 unsigned int flags, pte_t *pte, 6465 bool *unshare) 6466 { 6467 pte_t pteval = huge_ptep_get(pte); 6468 6469 *unshare = false; 6470 if (is_swap_pte(pteval)) 6471 return true; 6472 if (huge_pte_write(pteval)) 6473 return false; 6474 if (flags & FOLL_WRITE) 6475 return true; 6476 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6477 *unshare = true; 6478 return true; 6479 } 6480 return false; 6481 } 6482 6483 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6484 unsigned long address, unsigned int flags) 6485 { 6486 struct hstate *h = hstate_vma(vma); 6487 struct mm_struct *mm = vma->vm_mm; 6488 unsigned long haddr = address & huge_page_mask(h); 6489 struct page *page = NULL; 6490 spinlock_t *ptl; 6491 pte_t *pte, entry; 6492 6493 /* 6494 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6495 * follow_hugetlb_page(). 6496 */ 6497 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6498 return NULL; 6499 6500 hugetlb_vma_lock_read(vma); 6501 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6502 if (!pte) 6503 goto out_unlock; 6504 6505 ptl = huge_pte_lock(h, mm, pte); 6506 entry = huge_ptep_get(pte); 6507 if (pte_present(entry)) { 6508 page = pte_page(entry) + 6509 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6510 /* 6511 * Note that page may be a sub-page, and with vmemmap 6512 * optimizations the page struct may be read only. 6513 * try_grab_page() will increase the ref count on the 6514 * head page, so this will be OK. 6515 * 6516 * try_grab_page() should always be able to get the page here, 6517 * because we hold the ptl lock and have verified pte_present(). 6518 */ 6519 if (try_grab_page(page, flags)) { 6520 page = NULL; 6521 goto out; 6522 } 6523 } 6524 out: 6525 spin_unlock(ptl); 6526 out_unlock: 6527 hugetlb_vma_unlock_read(vma); 6528 return page; 6529 } 6530 6531 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6532 struct page **pages, unsigned long *position, 6533 unsigned long *nr_pages, long i, unsigned int flags, 6534 int *locked) 6535 { 6536 unsigned long pfn_offset; 6537 unsigned long vaddr = *position; 6538 unsigned long remainder = *nr_pages; 6539 struct hstate *h = hstate_vma(vma); 6540 int err = -EFAULT, refs; 6541 6542 while (vaddr < vma->vm_end && remainder) { 6543 pte_t *pte; 6544 spinlock_t *ptl = NULL; 6545 bool unshare = false; 6546 int absent; 6547 struct page *page; 6548 6549 /* 6550 * If we have a pending SIGKILL, don't keep faulting pages and 6551 * potentially allocating memory. 6552 */ 6553 if (fatal_signal_pending(current)) { 6554 remainder = 0; 6555 break; 6556 } 6557 6558 hugetlb_vma_lock_read(vma); 6559 /* 6560 * Some archs (sparc64, sh*) have multiple pte_ts to 6561 * each hugepage. We have to make sure we get the 6562 * first, for the page indexing below to work. 6563 * 6564 * Note that page table lock is not held when pte is null. 6565 */ 6566 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), 6567 huge_page_size(h)); 6568 if (pte) 6569 ptl = huge_pte_lock(h, mm, pte); 6570 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6571 6572 /* 6573 * When coredumping, it suits get_dump_page if we just return 6574 * an error where there's an empty slot with no huge pagecache 6575 * to back it. This way, we avoid allocating a hugepage, and 6576 * the sparse dumpfile avoids allocating disk blocks, but its 6577 * huge holes still show up with zeroes where they need to be. 6578 */ 6579 if (absent && (flags & FOLL_DUMP) && 6580 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6581 if (pte) 6582 spin_unlock(ptl); 6583 hugetlb_vma_unlock_read(vma); 6584 remainder = 0; 6585 break; 6586 } 6587 6588 /* 6589 * We need call hugetlb_fault for both hugepages under migration 6590 * (in which case hugetlb_fault waits for the migration,) and 6591 * hwpoisoned hugepages (in which case we need to prevent the 6592 * caller from accessing to them.) In order to do this, we use 6593 * here is_swap_pte instead of is_hugetlb_entry_migration and 6594 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6595 * both cases, and because we can't follow correct pages 6596 * directly from any kind of swap entries. 6597 */ 6598 if (absent || 6599 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6600 vm_fault_t ret; 6601 unsigned int fault_flags = 0; 6602 6603 if (pte) 6604 spin_unlock(ptl); 6605 hugetlb_vma_unlock_read(vma); 6606 6607 if (flags & FOLL_WRITE) 6608 fault_flags |= FAULT_FLAG_WRITE; 6609 else if (unshare) 6610 fault_flags |= FAULT_FLAG_UNSHARE; 6611 if (locked) { 6612 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6613 FAULT_FLAG_KILLABLE; 6614 if (flags & FOLL_INTERRUPTIBLE) 6615 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 6616 } 6617 if (flags & FOLL_NOWAIT) 6618 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6619 FAULT_FLAG_RETRY_NOWAIT; 6620 if (flags & FOLL_TRIED) { 6621 /* 6622 * Note: FAULT_FLAG_ALLOW_RETRY and 6623 * FAULT_FLAG_TRIED can co-exist 6624 */ 6625 fault_flags |= FAULT_FLAG_TRIED; 6626 } 6627 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6628 if (ret & VM_FAULT_ERROR) { 6629 err = vm_fault_to_errno(ret, flags); 6630 remainder = 0; 6631 break; 6632 } 6633 if (ret & VM_FAULT_RETRY) { 6634 if (locked && 6635 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6636 *locked = 0; 6637 *nr_pages = 0; 6638 /* 6639 * VM_FAULT_RETRY must not return an 6640 * error, it will return zero 6641 * instead. 6642 * 6643 * No need to update "position" as the 6644 * caller will not check it after 6645 * *nr_pages is set to 0. 6646 */ 6647 return i; 6648 } 6649 continue; 6650 } 6651 6652 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6653 page = pte_page(huge_ptep_get(pte)); 6654 6655 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6656 !PageAnonExclusive(page), page); 6657 6658 /* 6659 * If subpage information not requested, update counters 6660 * and skip the same_page loop below. 6661 */ 6662 if (!pages && !pfn_offset && 6663 (vaddr + huge_page_size(h) < vma->vm_end) && 6664 (remainder >= pages_per_huge_page(h))) { 6665 vaddr += huge_page_size(h); 6666 remainder -= pages_per_huge_page(h); 6667 i += pages_per_huge_page(h); 6668 spin_unlock(ptl); 6669 hugetlb_vma_unlock_read(vma); 6670 continue; 6671 } 6672 6673 /* vaddr may not be aligned to PAGE_SIZE */ 6674 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6675 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6676 6677 if (pages) 6678 record_subpages(nth_page(page, pfn_offset), 6679 vma, refs, 6680 likely(pages) ? pages + i : NULL); 6681 6682 if (pages) { 6683 /* 6684 * try_grab_folio() should always succeed here, 6685 * because: a) we hold the ptl lock, and b) we've just 6686 * checked that the huge page is present in the page 6687 * tables. If the huge page is present, then the tail 6688 * pages must also be present. The ptl prevents the 6689 * head page and tail pages from being rearranged in 6690 * any way. As this is hugetlb, the pages will never 6691 * be p2pdma or not longterm pinable. So this page 6692 * must be available at this point, unless the page 6693 * refcount overflowed: 6694 */ 6695 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6696 flags))) { 6697 spin_unlock(ptl); 6698 hugetlb_vma_unlock_read(vma); 6699 remainder = 0; 6700 err = -ENOMEM; 6701 break; 6702 } 6703 } 6704 6705 vaddr += (refs << PAGE_SHIFT); 6706 remainder -= refs; 6707 i += refs; 6708 6709 spin_unlock(ptl); 6710 hugetlb_vma_unlock_read(vma); 6711 } 6712 *nr_pages = remainder; 6713 /* 6714 * setting position is actually required only if remainder is 6715 * not zero but it's faster not to add a "if (remainder)" 6716 * branch. 6717 */ 6718 *position = vaddr; 6719 6720 return i ? i : err; 6721 } 6722 6723 long hugetlb_change_protection(struct vm_area_struct *vma, 6724 unsigned long address, unsigned long end, 6725 pgprot_t newprot, unsigned long cp_flags) 6726 { 6727 struct mm_struct *mm = vma->vm_mm; 6728 unsigned long start = address; 6729 pte_t *ptep; 6730 pte_t pte; 6731 struct hstate *h = hstate_vma(vma); 6732 long pages = 0, psize = huge_page_size(h); 6733 bool shared_pmd = false; 6734 struct mmu_notifier_range range; 6735 unsigned long last_addr_mask; 6736 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6737 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6738 6739 /* 6740 * In the case of shared PMDs, the area to flush could be beyond 6741 * start/end. Set range.start/range.end to cover the maximum possible 6742 * range if PMD sharing is possible. 6743 */ 6744 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6745 0, mm, start, end); 6746 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6747 6748 BUG_ON(address >= end); 6749 flush_cache_range(vma, range.start, range.end); 6750 6751 mmu_notifier_invalidate_range_start(&range); 6752 hugetlb_vma_lock_write(vma); 6753 i_mmap_lock_write(vma->vm_file->f_mapping); 6754 last_addr_mask = hugetlb_mask_last_page(h); 6755 for (; address < end; address += psize) { 6756 spinlock_t *ptl; 6757 ptep = hugetlb_walk(vma, address, psize); 6758 if (!ptep) { 6759 if (!uffd_wp) { 6760 address |= last_addr_mask; 6761 continue; 6762 } 6763 /* 6764 * Userfaultfd wr-protect requires pgtable 6765 * pre-allocations to install pte markers. 6766 */ 6767 ptep = huge_pte_alloc(mm, vma, address, psize); 6768 if (!ptep) { 6769 pages = -ENOMEM; 6770 break; 6771 } 6772 } 6773 ptl = huge_pte_lock(h, mm, ptep); 6774 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6775 /* 6776 * When uffd-wp is enabled on the vma, unshare 6777 * shouldn't happen at all. Warn about it if it 6778 * happened due to some reason. 6779 */ 6780 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6781 pages++; 6782 spin_unlock(ptl); 6783 shared_pmd = true; 6784 address |= last_addr_mask; 6785 continue; 6786 } 6787 pte = huge_ptep_get(ptep); 6788 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6789 /* Nothing to do. */ 6790 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6791 swp_entry_t entry = pte_to_swp_entry(pte); 6792 struct page *page = pfn_swap_entry_to_page(entry); 6793 pte_t newpte = pte; 6794 6795 if (is_writable_migration_entry(entry)) { 6796 if (PageAnon(page)) 6797 entry = make_readable_exclusive_migration_entry( 6798 swp_offset(entry)); 6799 else 6800 entry = make_readable_migration_entry( 6801 swp_offset(entry)); 6802 newpte = swp_entry_to_pte(entry); 6803 pages++; 6804 } 6805 6806 if (uffd_wp) 6807 newpte = pte_swp_mkuffd_wp(newpte); 6808 else if (uffd_wp_resolve) 6809 newpte = pte_swp_clear_uffd_wp(newpte); 6810 if (!pte_same(pte, newpte)) 6811 set_huge_pte_at(mm, address, ptep, newpte); 6812 } else if (unlikely(is_pte_marker(pte))) { 6813 /* No other markers apply for now. */ 6814 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6815 if (uffd_wp_resolve) 6816 /* Safe to modify directly (non-present->none). */ 6817 huge_pte_clear(mm, address, ptep, psize); 6818 } else if (!huge_pte_none(pte)) { 6819 pte_t old_pte; 6820 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6821 6822 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6823 pte = huge_pte_modify(old_pte, newprot); 6824 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6825 if (uffd_wp) 6826 pte = huge_pte_mkuffd_wp(pte); 6827 else if (uffd_wp_resolve) 6828 pte = huge_pte_clear_uffd_wp(pte); 6829 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6830 pages++; 6831 } else { 6832 /* None pte */ 6833 if (unlikely(uffd_wp)) 6834 /* Safe to modify directly (none->non-present). */ 6835 set_huge_pte_at(mm, address, ptep, 6836 make_pte_marker(PTE_MARKER_UFFD_WP)); 6837 } 6838 spin_unlock(ptl); 6839 } 6840 /* 6841 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6842 * may have cleared our pud entry and done put_page on the page table: 6843 * once we release i_mmap_rwsem, another task can do the final put_page 6844 * and that page table be reused and filled with junk. If we actually 6845 * did unshare a page of pmds, flush the range corresponding to the pud. 6846 */ 6847 if (shared_pmd) 6848 flush_hugetlb_tlb_range(vma, range.start, range.end); 6849 else 6850 flush_hugetlb_tlb_range(vma, start, end); 6851 /* 6852 * No need to call mmu_notifier_invalidate_range() we are downgrading 6853 * page table protection not changing it to point to a new page. 6854 * 6855 * See Documentation/mm/mmu_notifier.rst 6856 */ 6857 i_mmap_unlock_write(vma->vm_file->f_mapping); 6858 hugetlb_vma_unlock_write(vma); 6859 mmu_notifier_invalidate_range_end(&range); 6860 6861 return pages > 0 ? (pages << h->order) : pages; 6862 } 6863 6864 /* Return true if reservation was successful, false otherwise. */ 6865 bool hugetlb_reserve_pages(struct inode *inode, 6866 long from, long to, 6867 struct vm_area_struct *vma, 6868 vm_flags_t vm_flags) 6869 { 6870 long chg = -1, add = -1; 6871 struct hstate *h = hstate_inode(inode); 6872 struct hugepage_subpool *spool = subpool_inode(inode); 6873 struct resv_map *resv_map; 6874 struct hugetlb_cgroup *h_cg = NULL; 6875 long gbl_reserve, regions_needed = 0; 6876 6877 /* This should never happen */ 6878 if (from > to) { 6879 VM_WARN(1, "%s called with a negative range\n", __func__); 6880 return false; 6881 } 6882 6883 /* 6884 * vma specific semaphore used for pmd sharing and fault/truncation 6885 * synchronization 6886 */ 6887 hugetlb_vma_lock_alloc(vma); 6888 6889 /* 6890 * Only apply hugepage reservation if asked. At fault time, an 6891 * attempt will be made for VM_NORESERVE to allocate a page 6892 * without using reserves 6893 */ 6894 if (vm_flags & VM_NORESERVE) 6895 return true; 6896 6897 /* 6898 * Shared mappings base their reservation on the number of pages that 6899 * are already allocated on behalf of the file. Private mappings need 6900 * to reserve the full area even if read-only as mprotect() may be 6901 * called to make the mapping read-write. Assume !vma is a shm mapping 6902 */ 6903 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6904 /* 6905 * resv_map can not be NULL as hugetlb_reserve_pages is only 6906 * called for inodes for which resv_maps were created (see 6907 * hugetlbfs_get_inode). 6908 */ 6909 resv_map = inode_resv_map(inode); 6910 6911 chg = region_chg(resv_map, from, to, ®ions_needed); 6912 } else { 6913 /* Private mapping. */ 6914 resv_map = resv_map_alloc(); 6915 if (!resv_map) 6916 goto out_err; 6917 6918 chg = to - from; 6919 6920 set_vma_resv_map(vma, resv_map); 6921 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6922 } 6923 6924 if (chg < 0) 6925 goto out_err; 6926 6927 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6928 chg * pages_per_huge_page(h), &h_cg) < 0) 6929 goto out_err; 6930 6931 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6932 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6933 * of the resv_map. 6934 */ 6935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6936 } 6937 6938 /* 6939 * There must be enough pages in the subpool for the mapping. If 6940 * the subpool has a minimum size, there may be some global 6941 * reservations already in place (gbl_reserve). 6942 */ 6943 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6944 if (gbl_reserve < 0) 6945 goto out_uncharge_cgroup; 6946 6947 /* 6948 * Check enough hugepages are available for the reservation. 6949 * Hand the pages back to the subpool if there are not 6950 */ 6951 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6952 goto out_put_pages; 6953 6954 /* 6955 * Account for the reservations made. Shared mappings record regions 6956 * that have reservations as they are shared by multiple VMAs. 6957 * When the last VMA disappears, the region map says how much 6958 * the reservation was and the page cache tells how much of 6959 * the reservation was consumed. Private mappings are per-VMA and 6960 * only the consumed reservations are tracked. When the VMA 6961 * disappears, the original reservation is the VMA size and the 6962 * consumed reservations are stored in the map. Hence, nothing 6963 * else has to be done for private mappings here 6964 */ 6965 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6966 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6967 6968 if (unlikely(add < 0)) { 6969 hugetlb_acct_memory(h, -gbl_reserve); 6970 goto out_put_pages; 6971 } else if (unlikely(chg > add)) { 6972 /* 6973 * pages in this range were added to the reserve 6974 * map between region_chg and region_add. This 6975 * indicates a race with alloc_hugetlb_folio. Adjust 6976 * the subpool and reserve counts modified above 6977 * based on the difference. 6978 */ 6979 long rsv_adjust; 6980 6981 /* 6982 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6983 * reference to h_cg->css. See comment below for detail. 6984 */ 6985 hugetlb_cgroup_uncharge_cgroup_rsvd( 6986 hstate_index(h), 6987 (chg - add) * pages_per_huge_page(h), h_cg); 6988 6989 rsv_adjust = hugepage_subpool_put_pages(spool, 6990 chg - add); 6991 hugetlb_acct_memory(h, -rsv_adjust); 6992 } else if (h_cg) { 6993 /* 6994 * The file_regions will hold their own reference to 6995 * h_cg->css. So we should release the reference held 6996 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6997 * done. 6998 */ 6999 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7000 } 7001 } 7002 return true; 7003 7004 out_put_pages: 7005 /* put back original number of pages, chg */ 7006 (void)hugepage_subpool_put_pages(spool, chg); 7007 out_uncharge_cgroup: 7008 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7009 chg * pages_per_huge_page(h), h_cg); 7010 out_err: 7011 hugetlb_vma_lock_free(vma); 7012 if (!vma || vma->vm_flags & VM_MAYSHARE) 7013 /* Only call region_abort if the region_chg succeeded but the 7014 * region_add failed or didn't run. 7015 */ 7016 if (chg >= 0 && add < 0) 7017 region_abort(resv_map, from, to, regions_needed); 7018 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 7019 kref_put(&resv_map->refs, resv_map_release); 7020 return false; 7021 } 7022 7023 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7024 long freed) 7025 { 7026 struct hstate *h = hstate_inode(inode); 7027 struct resv_map *resv_map = inode_resv_map(inode); 7028 long chg = 0; 7029 struct hugepage_subpool *spool = subpool_inode(inode); 7030 long gbl_reserve; 7031 7032 /* 7033 * Since this routine can be called in the evict inode path for all 7034 * hugetlbfs inodes, resv_map could be NULL. 7035 */ 7036 if (resv_map) { 7037 chg = region_del(resv_map, start, end); 7038 /* 7039 * region_del() can fail in the rare case where a region 7040 * must be split and another region descriptor can not be 7041 * allocated. If end == LONG_MAX, it will not fail. 7042 */ 7043 if (chg < 0) 7044 return chg; 7045 } 7046 7047 spin_lock(&inode->i_lock); 7048 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7049 spin_unlock(&inode->i_lock); 7050 7051 /* 7052 * If the subpool has a minimum size, the number of global 7053 * reservations to be released may be adjusted. 7054 * 7055 * Note that !resv_map implies freed == 0. So (chg - freed) 7056 * won't go negative. 7057 */ 7058 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7059 hugetlb_acct_memory(h, -gbl_reserve); 7060 7061 return 0; 7062 } 7063 7064 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7065 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7066 struct vm_area_struct *vma, 7067 unsigned long addr, pgoff_t idx) 7068 { 7069 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7070 svma->vm_start; 7071 unsigned long sbase = saddr & PUD_MASK; 7072 unsigned long s_end = sbase + PUD_SIZE; 7073 7074 /* Allow segments to share if only one is marked locked */ 7075 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7076 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7077 7078 /* 7079 * match the virtual addresses, permission and the alignment of the 7080 * page table page. 7081 * 7082 * Also, vma_lock (vm_private_data) is required for sharing. 7083 */ 7084 if (pmd_index(addr) != pmd_index(saddr) || 7085 vm_flags != svm_flags || 7086 !range_in_vma(svma, sbase, s_end) || 7087 !svma->vm_private_data) 7088 return 0; 7089 7090 return saddr; 7091 } 7092 7093 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7094 { 7095 unsigned long start = addr & PUD_MASK; 7096 unsigned long end = start + PUD_SIZE; 7097 7098 #ifdef CONFIG_USERFAULTFD 7099 if (uffd_disable_huge_pmd_share(vma)) 7100 return false; 7101 #endif 7102 /* 7103 * check on proper vm_flags and page table alignment 7104 */ 7105 if (!(vma->vm_flags & VM_MAYSHARE)) 7106 return false; 7107 if (!vma->vm_private_data) /* vma lock required for sharing */ 7108 return false; 7109 if (!range_in_vma(vma, start, end)) 7110 return false; 7111 return true; 7112 } 7113 7114 /* 7115 * Determine if start,end range within vma could be mapped by shared pmd. 7116 * If yes, adjust start and end to cover range associated with possible 7117 * shared pmd mappings. 7118 */ 7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7120 unsigned long *start, unsigned long *end) 7121 { 7122 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7123 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7124 7125 /* 7126 * vma needs to span at least one aligned PUD size, and the range 7127 * must be at least partially within in. 7128 */ 7129 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7130 (*end <= v_start) || (*start >= v_end)) 7131 return; 7132 7133 /* Extend the range to be PUD aligned for a worst case scenario */ 7134 if (*start > v_start) 7135 *start = ALIGN_DOWN(*start, PUD_SIZE); 7136 7137 if (*end < v_end) 7138 *end = ALIGN(*end, PUD_SIZE); 7139 } 7140 7141 /* 7142 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7143 * and returns the corresponding pte. While this is not necessary for the 7144 * !shared pmd case because we can allocate the pmd later as well, it makes the 7145 * code much cleaner. pmd allocation is essential for the shared case because 7146 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7147 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7148 * bad pmd for sharing. 7149 */ 7150 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7151 unsigned long addr, pud_t *pud) 7152 { 7153 struct address_space *mapping = vma->vm_file->f_mapping; 7154 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7155 vma->vm_pgoff; 7156 struct vm_area_struct *svma; 7157 unsigned long saddr; 7158 pte_t *spte = NULL; 7159 pte_t *pte; 7160 7161 i_mmap_lock_read(mapping); 7162 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7163 if (svma == vma) 7164 continue; 7165 7166 saddr = page_table_shareable(svma, vma, addr, idx); 7167 if (saddr) { 7168 spte = hugetlb_walk(svma, saddr, 7169 vma_mmu_pagesize(svma)); 7170 if (spte) { 7171 get_page(virt_to_page(spte)); 7172 break; 7173 } 7174 } 7175 } 7176 7177 if (!spte) 7178 goto out; 7179 7180 spin_lock(&mm->page_table_lock); 7181 if (pud_none(*pud)) { 7182 pud_populate(mm, pud, 7183 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7184 mm_inc_nr_pmds(mm); 7185 } else { 7186 put_page(virt_to_page(spte)); 7187 } 7188 spin_unlock(&mm->page_table_lock); 7189 out: 7190 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7191 i_mmap_unlock_read(mapping); 7192 return pte; 7193 } 7194 7195 /* 7196 * unmap huge page backed by shared pte. 7197 * 7198 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7199 * indicated by page_count > 1, unmap is achieved by clearing pud and 7200 * decrementing the ref count. If count == 1, the pte page is not shared. 7201 * 7202 * Called with page table lock held. 7203 * 7204 * returns: 1 successfully unmapped a shared pte page 7205 * 0 the underlying pte page is not shared, or it is the last user 7206 */ 7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7208 unsigned long addr, pte_t *ptep) 7209 { 7210 pgd_t *pgd = pgd_offset(mm, addr); 7211 p4d_t *p4d = p4d_offset(pgd, addr); 7212 pud_t *pud = pud_offset(p4d, addr); 7213 7214 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7215 hugetlb_vma_assert_locked(vma); 7216 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7217 if (page_count(virt_to_page(ptep)) == 1) 7218 return 0; 7219 7220 pud_clear(pud); 7221 put_page(virt_to_page(ptep)); 7222 mm_dec_nr_pmds(mm); 7223 return 1; 7224 } 7225 7226 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7227 7228 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7229 unsigned long addr, pud_t *pud) 7230 { 7231 return NULL; 7232 } 7233 7234 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7235 unsigned long addr, pte_t *ptep) 7236 { 7237 return 0; 7238 } 7239 7240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7241 unsigned long *start, unsigned long *end) 7242 { 7243 } 7244 7245 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7246 { 7247 return false; 7248 } 7249 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7250 7251 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7252 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7253 unsigned long addr, unsigned long sz) 7254 { 7255 pgd_t *pgd; 7256 p4d_t *p4d; 7257 pud_t *pud; 7258 pte_t *pte = NULL; 7259 7260 pgd = pgd_offset(mm, addr); 7261 p4d = p4d_alloc(mm, pgd, addr); 7262 if (!p4d) 7263 return NULL; 7264 pud = pud_alloc(mm, p4d, addr); 7265 if (pud) { 7266 if (sz == PUD_SIZE) { 7267 pte = (pte_t *)pud; 7268 } else { 7269 BUG_ON(sz != PMD_SIZE); 7270 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7271 pte = huge_pmd_share(mm, vma, addr, pud); 7272 else 7273 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7274 } 7275 } 7276 7277 if (pte) { 7278 pte_t pteval = ptep_get_lockless(pte); 7279 7280 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7281 } 7282 7283 return pte; 7284 } 7285 7286 /* 7287 * huge_pte_offset() - Walk the page table to resolve the hugepage 7288 * entry at address @addr 7289 * 7290 * Return: Pointer to page table entry (PUD or PMD) for 7291 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7292 * size @sz doesn't match the hugepage size at this level of the page 7293 * table. 7294 */ 7295 pte_t *huge_pte_offset(struct mm_struct *mm, 7296 unsigned long addr, unsigned long sz) 7297 { 7298 pgd_t *pgd; 7299 p4d_t *p4d; 7300 pud_t *pud; 7301 pmd_t *pmd; 7302 7303 pgd = pgd_offset(mm, addr); 7304 if (!pgd_present(*pgd)) 7305 return NULL; 7306 p4d = p4d_offset(pgd, addr); 7307 if (!p4d_present(*p4d)) 7308 return NULL; 7309 7310 pud = pud_offset(p4d, addr); 7311 if (sz == PUD_SIZE) 7312 /* must be pud huge, non-present or none */ 7313 return (pte_t *)pud; 7314 if (!pud_present(*pud)) 7315 return NULL; 7316 /* must have a valid entry and size to go further */ 7317 7318 pmd = pmd_offset(pud, addr); 7319 /* must be pmd huge, non-present or none */ 7320 return (pte_t *)pmd; 7321 } 7322 7323 /* 7324 * Return a mask that can be used to update an address to the last huge 7325 * page in a page table page mapping size. Used to skip non-present 7326 * page table entries when linearly scanning address ranges. Architectures 7327 * with unique huge page to page table relationships can define their own 7328 * version of this routine. 7329 */ 7330 unsigned long hugetlb_mask_last_page(struct hstate *h) 7331 { 7332 unsigned long hp_size = huge_page_size(h); 7333 7334 if (hp_size == PUD_SIZE) 7335 return P4D_SIZE - PUD_SIZE; 7336 else if (hp_size == PMD_SIZE) 7337 return PUD_SIZE - PMD_SIZE; 7338 else 7339 return 0UL; 7340 } 7341 7342 #else 7343 7344 /* See description above. Architectures can provide their own version. */ 7345 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7346 { 7347 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7348 if (huge_page_size(h) == PMD_SIZE) 7349 return PUD_SIZE - PMD_SIZE; 7350 #endif 7351 return 0UL; 7352 } 7353 7354 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7355 7356 /* 7357 * These functions are overwritable if your architecture needs its own 7358 * behavior. 7359 */ 7360 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7361 { 7362 bool ret = true; 7363 7364 spin_lock_irq(&hugetlb_lock); 7365 if (!folio_test_hugetlb(folio) || 7366 !folio_test_hugetlb_migratable(folio) || 7367 !folio_try_get(folio)) { 7368 ret = false; 7369 goto unlock; 7370 } 7371 folio_clear_hugetlb_migratable(folio); 7372 list_move_tail(&folio->lru, list); 7373 unlock: 7374 spin_unlock_irq(&hugetlb_lock); 7375 return ret; 7376 } 7377 7378 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7379 { 7380 int ret = 0; 7381 7382 *hugetlb = false; 7383 spin_lock_irq(&hugetlb_lock); 7384 if (folio_test_hugetlb(folio)) { 7385 *hugetlb = true; 7386 if (folio_test_hugetlb_freed(folio)) 7387 ret = 0; 7388 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7389 ret = folio_try_get(folio); 7390 else 7391 ret = -EBUSY; 7392 } 7393 spin_unlock_irq(&hugetlb_lock); 7394 return ret; 7395 } 7396 7397 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7398 bool *migratable_cleared) 7399 { 7400 int ret; 7401 7402 spin_lock_irq(&hugetlb_lock); 7403 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7404 spin_unlock_irq(&hugetlb_lock); 7405 return ret; 7406 } 7407 7408 void folio_putback_active_hugetlb(struct folio *folio) 7409 { 7410 spin_lock_irq(&hugetlb_lock); 7411 folio_set_hugetlb_migratable(folio); 7412 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7413 spin_unlock_irq(&hugetlb_lock); 7414 folio_put(folio); 7415 } 7416 7417 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7418 { 7419 struct hstate *h = folio_hstate(old_folio); 7420 7421 hugetlb_cgroup_migrate(old_folio, new_folio); 7422 set_page_owner_migrate_reason(&new_folio->page, reason); 7423 7424 /* 7425 * transfer temporary state of the new hugetlb folio. This is 7426 * reverse to other transitions because the newpage is going to 7427 * be final while the old one will be freed so it takes over 7428 * the temporary status. 7429 * 7430 * Also note that we have to transfer the per-node surplus state 7431 * here as well otherwise the global surplus count will not match 7432 * the per-node's. 7433 */ 7434 if (folio_test_hugetlb_temporary(new_folio)) { 7435 int old_nid = folio_nid(old_folio); 7436 int new_nid = folio_nid(new_folio); 7437 7438 folio_set_hugetlb_temporary(old_folio); 7439 folio_clear_hugetlb_temporary(new_folio); 7440 7441 7442 /* 7443 * There is no need to transfer the per-node surplus state 7444 * when we do not cross the node. 7445 */ 7446 if (new_nid == old_nid) 7447 return; 7448 spin_lock_irq(&hugetlb_lock); 7449 if (h->surplus_huge_pages_node[old_nid]) { 7450 h->surplus_huge_pages_node[old_nid]--; 7451 h->surplus_huge_pages_node[new_nid]++; 7452 } 7453 spin_unlock_irq(&hugetlb_lock); 7454 } 7455 } 7456 7457 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7458 unsigned long start, 7459 unsigned long end) 7460 { 7461 struct hstate *h = hstate_vma(vma); 7462 unsigned long sz = huge_page_size(h); 7463 struct mm_struct *mm = vma->vm_mm; 7464 struct mmu_notifier_range range; 7465 unsigned long address; 7466 spinlock_t *ptl; 7467 pte_t *ptep; 7468 7469 if (!(vma->vm_flags & VM_MAYSHARE)) 7470 return; 7471 7472 if (start >= end) 7473 return; 7474 7475 flush_cache_range(vma, start, end); 7476 /* 7477 * No need to call adjust_range_if_pmd_sharing_possible(), because 7478 * we have already done the PUD_SIZE alignment. 7479 */ 7480 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7481 start, end); 7482 mmu_notifier_invalidate_range_start(&range); 7483 hugetlb_vma_lock_write(vma); 7484 i_mmap_lock_write(vma->vm_file->f_mapping); 7485 for (address = start; address < end; address += PUD_SIZE) { 7486 ptep = hugetlb_walk(vma, address, sz); 7487 if (!ptep) 7488 continue; 7489 ptl = huge_pte_lock(h, mm, ptep); 7490 huge_pmd_unshare(mm, vma, address, ptep); 7491 spin_unlock(ptl); 7492 } 7493 flush_hugetlb_tlb_range(vma, start, end); 7494 i_mmap_unlock_write(vma->vm_file->f_mapping); 7495 hugetlb_vma_unlock_write(vma); 7496 /* 7497 * No need to call mmu_notifier_invalidate_range(), see 7498 * Documentation/mm/mmu_notifier.rst. 7499 */ 7500 mmu_notifier_invalidate_range_end(&range); 7501 } 7502 7503 /* 7504 * This function will unconditionally remove all the shared pmd pgtable entries 7505 * within the specific vma for a hugetlbfs memory range. 7506 */ 7507 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7508 { 7509 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7510 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7511 } 7512 7513 #ifdef CONFIG_CMA 7514 static bool cma_reserve_called __initdata; 7515 7516 static int __init cmdline_parse_hugetlb_cma(char *p) 7517 { 7518 int nid, count = 0; 7519 unsigned long tmp; 7520 char *s = p; 7521 7522 while (*s) { 7523 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7524 break; 7525 7526 if (s[count] == ':') { 7527 if (tmp >= MAX_NUMNODES) 7528 break; 7529 nid = array_index_nospec(tmp, MAX_NUMNODES); 7530 7531 s += count + 1; 7532 tmp = memparse(s, &s); 7533 hugetlb_cma_size_in_node[nid] = tmp; 7534 hugetlb_cma_size += tmp; 7535 7536 /* 7537 * Skip the separator if have one, otherwise 7538 * break the parsing. 7539 */ 7540 if (*s == ',') 7541 s++; 7542 else 7543 break; 7544 } else { 7545 hugetlb_cma_size = memparse(p, &p); 7546 break; 7547 } 7548 } 7549 7550 return 0; 7551 } 7552 7553 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7554 7555 void __init hugetlb_cma_reserve(int order) 7556 { 7557 unsigned long size, reserved, per_node; 7558 bool node_specific_cma_alloc = false; 7559 int nid; 7560 7561 cma_reserve_called = true; 7562 7563 if (!hugetlb_cma_size) 7564 return; 7565 7566 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7567 if (hugetlb_cma_size_in_node[nid] == 0) 7568 continue; 7569 7570 if (!node_online(nid)) { 7571 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7572 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7573 hugetlb_cma_size_in_node[nid] = 0; 7574 continue; 7575 } 7576 7577 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7578 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7579 nid, (PAGE_SIZE << order) / SZ_1M); 7580 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7581 hugetlb_cma_size_in_node[nid] = 0; 7582 } else { 7583 node_specific_cma_alloc = true; 7584 } 7585 } 7586 7587 /* Validate the CMA size again in case some invalid nodes specified. */ 7588 if (!hugetlb_cma_size) 7589 return; 7590 7591 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7592 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7593 (PAGE_SIZE << order) / SZ_1M); 7594 hugetlb_cma_size = 0; 7595 return; 7596 } 7597 7598 if (!node_specific_cma_alloc) { 7599 /* 7600 * If 3 GB area is requested on a machine with 4 numa nodes, 7601 * let's allocate 1 GB on first three nodes and ignore the last one. 7602 */ 7603 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7604 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7605 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7606 } 7607 7608 reserved = 0; 7609 for_each_online_node(nid) { 7610 int res; 7611 char name[CMA_MAX_NAME]; 7612 7613 if (node_specific_cma_alloc) { 7614 if (hugetlb_cma_size_in_node[nid] == 0) 7615 continue; 7616 7617 size = hugetlb_cma_size_in_node[nid]; 7618 } else { 7619 size = min(per_node, hugetlb_cma_size - reserved); 7620 } 7621 7622 size = round_up(size, PAGE_SIZE << order); 7623 7624 snprintf(name, sizeof(name), "hugetlb%d", nid); 7625 /* 7626 * Note that 'order per bit' is based on smallest size that 7627 * may be returned to CMA allocator in the case of 7628 * huge page demotion. 7629 */ 7630 res = cma_declare_contiguous_nid(0, size, 0, 7631 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7632 0, false, name, 7633 &hugetlb_cma[nid], nid); 7634 if (res) { 7635 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7636 res, nid); 7637 continue; 7638 } 7639 7640 reserved += size; 7641 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7642 size / SZ_1M, nid); 7643 7644 if (reserved >= hugetlb_cma_size) 7645 break; 7646 } 7647 7648 if (!reserved) 7649 /* 7650 * hugetlb_cma_size is used to determine if allocations from 7651 * cma are possible. Set to zero if no cma regions are set up. 7652 */ 7653 hugetlb_cma_size = 0; 7654 } 7655 7656 static void __init hugetlb_cma_check(void) 7657 { 7658 if (!hugetlb_cma_size || cma_reserve_called) 7659 return; 7660 7661 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7662 } 7663 7664 #endif /* CONFIG_CMA */ 7665