xref: /openbmc/linux/mm/hugetlb.c (revision 4cfb9080)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265 	if (__vma_shareable_lock(vma)) {
266 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267 
268 		down_read(&vma_lock->rw_sema);
269 	}
270 }
271 
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274 	if (__vma_shareable_lock(vma)) {
275 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276 
277 		up_read(&vma_lock->rw_sema);
278 	}
279 }
280 
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		down_write(&vma_lock->rw_sema);
287 	}
288 }
289 
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292 	if (__vma_shareable_lock(vma)) {
293 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294 
295 		up_write(&vma_lock->rw_sema);
296 	}
297 }
298 
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302 
303 	if (!__vma_shareable_lock(vma))
304 		return 1;
305 
306 	return down_write_trylock(&vma_lock->rw_sema);
307 }
308 
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311 	if (__vma_shareable_lock(vma)) {
312 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313 
314 		lockdep_assert_held(&vma_lock->rw_sema);
315 	}
316 }
317 
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 			struct hugetlb_vma_lock, refs);
322 
323 	kfree(vma_lock);
324 }
325 
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328 	struct vm_area_struct *vma = vma_lock->vma;
329 
330 	/*
331 	 * vma_lock structure may or not be released as a result of put,
332 	 * it certainly will no longer be attached to vma so clear pointer.
333 	 * Semaphore synchronizes access to vma_lock->vma field.
334 	 */
335 	vma_lock->vma = NULL;
336 	vma->vm_private_data = NULL;
337 	up_write(&vma_lock->rw_sema);
338 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340 
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343 	if (__vma_shareable_lock(vma)) {
344 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345 
346 		__hugetlb_vma_unlock_write_put(vma_lock);
347 	}
348 }
349 
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352 	/*
353 	 * Only present in sharable vmas.
354 	 */
355 	if (!vma || !__vma_shareable_lock(vma))
356 		return;
357 
358 	if (vma->vm_private_data) {
359 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360 
361 		down_write(&vma_lock->rw_sema);
362 		__hugetlb_vma_unlock_write_put(vma_lock);
363 	}
364 }
365 
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368 	struct hugetlb_vma_lock *vma_lock;
369 
370 	/* Only establish in (flags) sharable vmas */
371 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 		return;
373 
374 	/* Should never get here with non-NULL vm_private_data */
375 	if (vma->vm_private_data)
376 		return;
377 
378 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 	if (!vma_lock) {
380 		/*
381 		 * If we can not allocate structure, then vma can not
382 		 * participate in pmd sharing.  This is only a possible
383 		 * performance enhancement and memory saving issue.
384 		 * However, the lock is also used to synchronize page
385 		 * faults with truncation.  If the lock is not present,
386 		 * unlikely races could leave pages in a file past i_size
387 		 * until the file is removed.  Warn in the unlikely case of
388 		 * allocation failure.
389 		 */
390 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 		return;
392 	}
393 
394 	kref_init(&vma_lock->refs);
395 	init_rwsem(&vma_lock->rw_sema);
396 	vma_lock->vma = vma;
397 	vma->vm_private_data = vma_lock;
398 }
399 
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406 	struct file_region *nrg;
407 
408 	VM_BUG_ON(resv->region_cache_count <= 0);
409 
410 	resv->region_cache_count--;
411 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 	list_del(&nrg->link);
413 
414 	nrg->from = from;
415 	nrg->to = to;
416 
417 	return nrg;
418 }
419 
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 					      struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424 	nrg->reservation_counter = rg->reservation_counter;
425 	nrg->css = rg->css;
426 	if (rg->css)
427 		css_get(rg->css);
428 #endif
429 }
430 
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 						struct hstate *h,
434 						struct resv_map *resv,
435 						struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438 	if (h_cg) {
439 		nrg->reservation_counter =
440 			&h_cg->rsvd_hugepage[hstate_index(h)];
441 		nrg->css = &h_cg->css;
442 		/*
443 		 * The caller will hold exactly one h_cg->css reference for the
444 		 * whole contiguous reservation region. But this area might be
445 		 * scattered when there are already some file_regions reside in
446 		 * it. As a result, many file_regions may share only one css
447 		 * reference. In order to ensure that one file_region must hold
448 		 * exactly one h_cg->css reference, we should do css_get for
449 		 * each file_region and leave the reference held by caller
450 		 * untouched.
451 		 */
452 		css_get(&h_cg->css);
453 		if (!resv->pages_per_hpage)
454 			resv->pages_per_hpage = pages_per_huge_page(h);
455 		/* pages_per_hpage should be the same for all entries in
456 		 * a resv_map.
457 		 */
458 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 	} else {
460 		nrg->reservation_counter = NULL;
461 		nrg->css = NULL;
462 	}
463 #endif
464 }
465 
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469 	if (rg->css)
470 		css_put(rg->css);
471 #endif
472 }
473 
474 static bool has_same_uncharge_info(struct file_region *rg,
475 				   struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478 	return rg->reservation_counter == org->reservation_counter &&
479 	       rg->css == org->css;
480 
481 #else
482 	return true;
483 #endif
484 }
485 
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488 	struct file_region *nrg, *prg;
489 
490 	prg = list_prev_entry(rg, link);
491 	if (&prg->link != &resv->regions && prg->to == rg->from &&
492 	    has_same_uncharge_info(prg, rg)) {
493 		prg->to = rg->to;
494 
495 		list_del(&rg->link);
496 		put_uncharge_info(rg);
497 		kfree(rg);
498 
499 		rg = prg;
500 	}
501 
502 	nrg = list_next_entry(rg, link);
503 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 	    has_same_uncharge_info(nrg, rg)) {
505 		nrg->from = rg->from;
506 
507 		list_del(&rg->link);
508 		put_uncharge_info(rg);
509 		kfree(rg);
510 	}
511 }
512 
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 		     long *regions_needed)
517 {
518 	struct file_region *nrg;
519 
520 	if (!regions_needed) {
521 		nrg = get_file_region_entry_from_cache(map, from, to);
522 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 		list_add(&nrg->link, rg);
524 		coalesce_file_region(map, nrg);
525 	} else
526 		*regions_needed += 1;
527 
528 	return to - from;
529 }
530 
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 				     struct hugetlb_cgroup *h_cg,
541 				     struct hstate *h, long *regions_needed)
542 {
543 	long add = 0;
544 	struct list_head *head = &resv->regions;
545 	long last_accounted_offset = f;
546 	struct file_region *iter, *trg = NULL;
547 	struct list_head *rg = NULL;
548 
549 	if (regions_needed)
550 		*regions_needed = 0;
551 
552 	/* In this loop, we essentially handle an entry for the range
553 	 * [last_accounted_offset, iter->from), at every iteration, with some
554 	 * bounds checking.
555 	 */
556 	list_for_each_entry_safe(iter, trg, head, link) {
557 		/* Skip irrelevant regions that start before our range. */
558 		if (iter->from < f) {
559 			/* If this region ends after the last accounted offset,
560 			 * then we need to update last_accounted_offset.
561 			 */
562 			if (iter->to > last_accounted_offset)
563 				last_accounted_offset = iter->to;
564 			continue;
565 		}
566 
567 		/* When we find a region that starts beyond our range, we've
568 		 * finished.
569 		 */
570 		if (iter->from >= t) {
571 			rg = iter->link.prev;
572 			break;
573 		}
574 
575 		/* Add an entry for last_accounted_offset -> iter->from, and
576 		 * update last_accounted_offset.
577 		 */
578 		if (iter->from > last_accounted_offset)
579 			add += hugetlb_resv_map_add(resv, iter->link.prev,
580 						    last_accounted_offset,
581 						    iter->from, h, h_cg,
582 						    regions_needed);
583 
584 		last_accounted_offset = iter->to;
585 	}
586 
587 	/* Handle the case where our range extends beyond
588 	 * last_accounted_offset.
589 	 */
590 	if (!rg)
591 		rg = head->prev;
592 	if (last_accounted_offset < t)
593 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 					    t, h, h_cg, regions_needed);
595 
596 	return add;
597 }
598 
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602 					int regions_needed)
603 	__must_hold(&resv->lock)
604 {
605 	LIST_HEAD(allocated_regions);
606 	int to_allocate = 0, i = 0;
607 	struct file_region *trg = NULL, *rg = NULL;
608 
609 	VM_BUG_ON(regions_needed < 0);
610 
611 	/*
612 	 * Check for sufficient descriptors in the cache to accommodate
613 	 * the number of in progress add operations plus regions_needed.
614 	 *
615 	 * This is a while loop because when we drop the lock, some other call
616 	 * to region_add or region_del may have consumed some region_entries,
617 	 * so we keep looping here until we finally have enough entries for
618 	 * (adds_in_progress + regions_needed).
619 	 */
620 	while (resv->region_cache_count <
621 	       (resv->adds_in_progress + regions_needed)) {
622 		to_allocate = resv->adds_in_progress + regions_needed -
623 			      resv->region_cache_count;
624 
625 		/* At this point, we should have enough entries in the cache
626 		 * for all the existing adds_in_progress. We should only be
627 		 * needing to allocate for regions_needed.
628 		 */
629 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630 
631 		spin_unlock(&resv->lock);
632 		for (i = 0; i < to_allocate; i++) {
633 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 			if (!trg)
635 				goto out_of_memory;
636 			list_add(&trg->link, &allocated_regions);
637 		}
638 
639 		spin_lock(&resv->lock);
640 
641 		list_splice(&allocated_regions, &resv->region_cache);
642 		resv->region_cache_count += to_allocate;
643 	}
644 
645 	return 0;
646 
647 out_of_memory:
648 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 		list_del(&rg->link);
650 		kfree(rg);
651 	}
652 	return -ENOMEM;
653 }
654 
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673 		       long in_regions_needed, struct hstate *h,
674 		       struct hugetlb_cgroup *h_cg)
675 {
676 	long add = 0, actual_regions_needed = 0;
677 
678 	spin_lock(&resv->lock);
679 retry:
680 
681 	/* Count how many regions are actually needed to execute this add. */
682 	add_reservation_in_range(resv, f, t, NULL, NULL,
683 				 &actual_regions_needed);
684 
685 	/*
686 	 * Check for sufficient descriptors in the cache to accommodate
687 	 * this add operation. Note that actual_regions_needed may be greater
688 	 * than in_regions_needed, as the resv_map may have been modified since
689 	 * the region_chg call. In this case, we need to make sure that we
690 	 * allocate extra entries, such that we have enough for all the
691 	 * existing adds_in_progress, plus the excess needed for this
692 	 * operation.
693 	 */
694 	if (actual_regions_needed > in_regions_needed &&
695 	    resv->region_cache_count <
696 		    resv->adds_in_progress +
697 			    (actual_regions_needed - in_regions_needed)) {
698 		/* region_add operation of range 1 should never need to
699 		 * allocate file_region entries.
700 		 */
701 		VM_BUG_ON(t - f <= 1);
702 
703 		if (allocate_file_region_entries(
704 			    resv, actual_regions_needed - in_regions_needed)) {
705 			return -ENOMEM;
706 		}
707 
708 		goto retry;
709 	}
710 
711 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712 
713 	resv->adds_in_progress -= in_regions_needed;
714 
715 	spin_unlock(&resv->lock);
716 	return add;
717 }
718 
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740 		       long *out_regions_needed)
741 {
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 
746 	/* Count how many hugepages in this range are NOT represented. */
747 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 				       out_regions_needed);
749 
750 	if (*out_regions_needed == 0)
751 		*out_regions_needed = 1;
752 
753 	if (allocate_file_region_entries(resv, *out_regions_needed))
754 		return -ENOMEM;
755 
756 	resv->adds_in_progress += *out_regions_needed;
757 
758 	spin_unlock(&resv->lock);
759 	return chg;
760 }
761 
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776 			 long regions_needed)
777 {
778 	spin_lock(&resv->lock);
779 	VM_BUG_ON(!resv->region_cache_count);
780 	resv->adds_in_progress -= regions_needed;
781 	spin_unlock(&resv->lock);
782 }
783 
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800 	struct list_head *head = &resv->regions;
801 	struct file_region *rg, *trg;
802 	struct file_region *nrg = NULL;
803 	long del = 0;
804 
805 retry:
806 	spin_lock(&resv->lock);
807 	list_for_each_entry_safe(rg, trg, head, link) {
808 		/*
809 		 * Skip regions before the range to be deleted.  file_region
810 		 * ranges are normally of the form [from, to).  However, there
811 		 * may be a "placeholder" entry in the map which is of the form
812 		 * (from, to) with from == to.  Check for placeholder entries
813 		 * at the beginning of the range to be deleted.
814 		 */
815 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 			continue;
817 
818 		if (rg->from >= t)
819 			break;
820 
821 		if (f > rg->from && t < rg->to) { /* Must split region */
822 			/*
823 			 * Check for an entry in the cache before dropping
824 			 * lock and attempting allocation.
825 			 */
826 			if (!nrg &&
827 			    resv->region_cache_count > resv->adds_in_progress) {
828 				nrg = list_first_entry(&resv->region_cache,
829 							struct file_region,
830 							link);
831 				list_del(&nrg->link);
832 				resv->region_cache_count--;
833 			}
834 
835 			if (!nrg) {
836 				spin_unlock(&resv->lock);
837 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 				if (!nrg)
839 					return -ENOMEM;
840 				goto retry;
841 			}
842 
843 			del += t - f;
844 			hugetlb_cgroup_uncharge_file_region(
845 				resv, rg, t - f, false);
846 
847 			/* New entry for end of split region */
848 			nrg->from = t;
849 			nrg->to = rg->to;
850 
851 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852 
853 			INIT_LIST_HEAD(&nrg->link);
854 
855 			/* Original entry is trimmed */
856 			rg->to = f;
857 
858 			list_add(&nrg->link, &rg->link);
859 			nrg = NULL;
860 			break;
861 		}
862 
863 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 			del += rg->to - rg->from;
865 			hugetlb_cgroup_uncharge_file_region(resv, rg,
866 							    rg->to - rg->from, true);
867 			list_del(&rg->link);
868 			kfree(rg);
869 			continue;
870 		}
871 
872 		if (f <= rg->from) {	/* Trim beginning of region */
873 			hugetlb_cgroup_uncharge_file_region(resv, rg,
874 							    t - rg->from, false);
875 
876 			del += t - rg->from;
877 			rg->from = t;
878 		} else {		/* Trim end of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    rg->to - f, false);
881 
882 			del += rg->to - f;
883 			rg->to = f;
884 		}
885 	}
886 
887 	spin_unlock(&resv->lock);
888 	kfree(nrg);
889 	return del;
890 }
891 
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903 	struct hugepage_subpool *spool = subpool_inode(inode);
904 	long rsv_adjust;
905 	bool reserved = false;
906 
907 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 	if (rsv_adjust > 0) {
909 		struct hstate *h = hstate_inode(inode);
910 
911 		if (!hugetlb_acct_memory(h, 1))
912 			reserved = true;
913 	} else if (!rsv_adjust) {
914 		reserved = true;
915 	}
916 
917 	if (!reserved)
918 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920 
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927 	struct list_head *head = &resv->regions;
928 	struct file_region *rg;
929 	long chg = 0;
930 
931 	spin_lock(&resv->lock);
932 	/* Locate each segment we overlap with, and count that overlap. */
933 	list_for_each_entry(rg, head, link) {
934 		long seg_from;
935 		long seg_to;
936 
937 		if (rg->to <= f)
938 			continue;
939 		if (rg->from >= t)
940 			break;
941 
942 		seg_from = max(rg->from, f);
943 		seg_to = min(rg->to, t);
944 
945 		chg += seg_to - seg_from;
946 	}
947 	spin_unlock(&resv->lock);
948 
949 	return chg;
950 }
951 
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 			struct vm_area_struct *vma, unsigned long address)
958 {
959 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 			(vma->vm_pgoff >> huge_page_order(h));
961 }
962 
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 				     unsigned long address)
965 {
966 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969 
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976 	if (vma->vm_ops && vma->vm_ops->pagesize)
977 		return vma->vm_ops->pagesize(vma);
978 	return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981 
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990 	return vma_kernel_pagesize(vma);
991 }
992 
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001 
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023 	return (unsigned long)vma->vm_private_data;
1024 }
1025 
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 							unsigned long value)
1028 {
1029 	vma->vm_private_data = (void *)value;
1030 }
1031 
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 					  struct hugetlb_cgroup *h_cg,
1035 					  struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038 	if (!h_cg || !h) {
1039 		resv_map->reservation_counter = NULL;
1040 		resv_map->pages_per_hpage = 0;
1041 		resv_map->css = NULL;
1042 	} else {
1043 		resv_map->reservation_counter =
1044 			&h_cg->rsvd_hugepage[hstate_index(h)];
1045 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 		resv_map->css = &h_cg->css;
1047 	}
1048 #endif
1049 }
1050 
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055 
1056 	if (!resv_map || !rg) {
1057 		kfree(resv_map);
1058 		kfree(rg);
1059 		return NULL;
1060 	}
1061 
1062 	kref_init(&resv_map->refs);
1063 	spin_lock_init(&resv_map->lock);
1064 	INIT_LIST_HEAD(&resv_map->regions);
1065 
1066 	resv_map->adds_in_progress = 0;
1067 	/*
1068 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 	 * fields don't do cgroup accounting. On private mappings, these will be
1070 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 	 * reservations are to be un-charged from here.
1072 	 */
1073 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074 
1075 	INIT_LIST_HEAD(&resv_map->region_cache);
1076 	list_add(&rg->link, &resv_map->region_cache);
1077 	resv_map->region_cache_count = 1;
1078 
1079 	return resv_map;
1080 }
1081 
1082 void resv_map_release(struct kref *ref)
1083 {
1084 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 	struct list_head *head = &resv_map->region_cache;
1086 	struct file_region *rg, *trg;
1087 
1088 	/* Clear out any active regions before we release the map. */
1089 	region_del(resv_map, 0, LONG_MAX);
1090 
1091 	/* ... and any entries left in the cache */
1092 	list_for_each_entry_safe(rg, trg, head, link) {
1093 		list_del(&rg->link);
1094 		kfree(rg);
1095 	}
1096 
1097 	VM_BUG_ON(resv_map->adds_in_progress);
1098 
1099 	kfree(resv_map);
1100 }
1101 
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104 	/*
1105 	 * At inode evict time, i_mapping may not point to the original
1106 	 * address space within the inode.  This original address space
1107 	 * contains the pointer to the resv_map.  So, always use the
1108 	 * address space embedded within the inode.
1109 	 * The VERY common case is inode->mapping == &inode->i_data but,
1110 	 * this may not be true for device special inodes.
1111 	 */
1112 	return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114 
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 	if (vma->vm_flags & VM_MAYSHARE) {
1119 		struct address_space *mapping = vma->vm_file->f_mapping;
1120 		struct inode *inode = mapping->host;
1121 
1122 		return inode_resv_map(inode);
1123 
1124 	} else {
1125 		return (struct resv_map *)(get_vma_private_data(vma) &
1126 							~HPAGE_RESV_MASK);
1127 	}
1128 }
1129 
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134 
1135 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 				HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138 
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143 
1144 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146 
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 
1151 	return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153 
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	/*
1158 	 * Clear vm_private_data
1159 	 * - For shared mappings this is a per-vma semaphore that may be
1160 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1161 	 *   Before clearing, make sure pointer is not associated with vma
1162 	 *   as this will leak the structure.  This is the case when called
1163 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 	 *   been called to allocate a new structure.
1165 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 	 *   not apply to children.  Faults generated by the children are
1167 	 *   not guaranteed to succeed, even if read-only.
1168 	 */
1169 	if (vma->vm_flags & VM_MAYSHARE) {
1170 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171 
1172 		if (vma_lock && vma_lock->vma != vma)
1173 			vma->vm_private_data = NULL;
1174 	} else
1175 		vma->vm_private_data = NULL;
1176 }
1177 
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * Clear the old hugetlb private page reservation.
1189 	 * It has already been transferred to new_vma.
1190 	 *
1191 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 	 * which copies vma into new_vma and unmaps vma. After the copy
1193 	 * operation both new_vma and vma share a reference to the resv_map
1194 	 * struct, and at that point vma is about to be unmapped. We don't
1195 	 * want to return the reservation to the pool at unmap of vma because
1196 	 * the reservation still lives on in new_vma, so simply decrement the
1197 	 * ref here and remove the resv_map reference from this vma.
1198 	 */
1199 	struct resv_map *reservations = vma_resv_map(vma);
1200 
1201 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 		kref_put(&reservations->refs, resv_map_release);
1204 	}
1205 
1206 	hugetlb_dup_vma_private(vma);
1207 }
1208 
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212 	if (vma->vm_flags & VM_NORESERVE) {
1213 		/*
1214 		 * This address is already reserved by other process(chg == 0),
1215 		 * so, we should decrement reserved count. Without decrementing,
1216 		 * reserve count remains after releasing inode, because this
1217 		 * allocated page will go into page cache and is regarded as
1218 		 * coming from reserved pool in releasing step.  Currently, we
1219 		 * don't have any other solution to deal with this situation
1220 		 * properly, so add work-around here.
1221 		 */
1222 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 			return true;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	/* Shared mappings always use reserves */
1229 	if (vma->vm_flags & VM_MAYSHARE) {
1230 		/*
1231 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232 		 * be a region map for all pages.  The only situation where
1233 		 * there is no region map is if a hole was punched via
1234 		 * fallocate.  In this case, there really are no reserves to
1235 		 * use.  This situation is indicated if chg != 0.
1236 		 */
1237 		if (chg)
1238 			return false;
1239 		else
1240 			return true;
1241 	}
1242 
1243 	/*
1244 	 * Only the process that called mmap() has reserves for
1245 	 * private mappings.
1246 	 */
1247 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 		/*
1249 		 * Like the shared case above, a hole punch or truncate
1250 		 * could have been performed on the private mapping.
1251 		 * Examine the value of chg to determine if reserves
1252 		 * actually exist or were previously consumed.
1253 		 * Very Subtle - The value of chg comes from a previous
1254 		 * call to vma_needs_reserves().  The reserve map for
1255 		 * private mappings has different (opposite) semantics
1256 		 * than that of shared mappings.  vma_needs_reserves()
1257 		 * has already taken this difference in semantics into
1258 		 * account.  Therefore, the meaning of chg is the same
1259 		 * as in the shared case above.  Code could easily be
1260 		 * combined, but keeping it separate draws attention to
1261 		 * subtle differences.
1262 		 */
1263 		if (chg)
1264 			return false;
1265 		else
1266 			return true;
1267 	}
1268 
1269 	return false;
1270 }
1271 
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274 	int nid = folio_nid(folio);
1275 
1276 	lockdep_assert_held(&hugetlb_lock);
1277 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278 
1279 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 	h->free_huge_pages++;
1281 	h->free_huge_pages_node[nid]++;
1282 	folio_set_hugetlb_freed(folio);
1283 }
1284 
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 								int nid)
1287 {
1288 	struct folio *folio;
1289 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290 
1291 	lockdep_assert_held(&hugetlb_lock);
1292 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 		if (pin && !folio_is_longterm_pinnable(folio))
1294 			continue;
1295 
1296 		if (folio_test_hwpoison(folio))
1297 			continue;
1298 
1299 		list_move(&folio->lru, &h->hugepage_activelist);
1300 		folio_ref_unfreeze(folio, 1);
1301 		folio_clear_hugetlb_freed(folio);
1302 		h->free_huge_pages--;
1303 		h->free_huge_pages_node[nid]--;
1304 		return folio;
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 							int nid, nodemask_t *nmask)
1312 {
1313 	unsigned int cpuset_mems_cookie;
1314 	struct zonelist *zonelist;
1315 	struct zone *zone;
1316 	struct zoneref *z;
1317 	int node = NUMA_NO_NODE;
1318 
1319 	zonelist = node_zonelist(nid, gfp_mask);
1320 
1321 retry_cpuset:
1322 	cpuset_mems_cookie = read_mems_allowed_begin();
1323 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 		struct folio *folio;
1325 
1326 		if (!cpuset_zone_allowed(zone, gfp_mask))
1327 			continue;
1328 		/*
1329 		 * no need to ask again on the same node. Pool is node rather than
1330 		 * zone aware
1331 		 */
1332 		if (zone_to_nid(zone) == node)
1333 			continue;
1334 		node = zone_to_nid(zone);
1335 
1336 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 		if (folio)
1338 			return folio;
1339 	}
1340 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 		goto retry_cpuset;
1342 
1343 	return NULL;
1344 }
1345 
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348 	return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350 
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 				struct vm_area_struct *vma,
1353 				unsigned long address, int avoid_reserve,
1354 				long chg)
1355 {
1356 	struct folio *folio = NULL;
1357 	struct mempolicy *mpol;
1358 	gfp_t gfp_mask;
1359 	nodemask_t *nodemask;
1360 	int nid;
1361 
1362 	/*
1363 	 * A child process with MAP_PRIVATE mappings created by their parent
1364 	 * have no page reserves. This check ensures that reservations are
1365 	 * not "stolen". The child may still get SIGKILLed
1366 	 */
1367 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 		goto err;
1369 
1370 	/* If reserves cannot be used, ensure enough pages are in the pool */
1371 	if (avoid_reserve && !available_huge_pages(h))
1372 		goto err;
1373 
1374 	gfp_mask = htlb_alloc_mask(h);
1375 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376 
1377 	if (mpol_is_preferred_many(mpol)) {
1378 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 							nid, nodemask);
1380 
1381 		/* Fallback to all nodes if page==NULL */
1382 		nodemask = NULL;
1383 	}
1384 
1385 	if (!folio)
1386 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 							nid, nodemask);
1388 
1389 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 		folio_set_hugetlb_restore_reserve(folio);
1391 		h->resv_huge_pages--;
1392 	}
1393 
1394 	mpol_cond_put(mpol);
1395 	return folio;
1396 
1397 err:
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410 	nid = next_node_in(nid, *nodes_allowed);
1411 	VM_BUG_ON(nid >= MAX_NUMNODES);
1412 
1413 	return nid;
1414 }
1415 
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418 	if (!node_isset(nid, *nodes_allowed))
1419 		nid = next_node_allowed(nid, nodes_allowed);
1420 	return nid;
1421 }
1422 
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 					nodemask_t *nodes_allowed)
1431 {
1432 	int nid;
1433 
1434 	VM_BUG_ON(!nodes_allowed);
1435 
1436 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438 
1439 	return nid;
1440 }
1441 
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450 	int nid;
1451 
1452 	VM_BUG_ON(!nodes_allowed);
1453 
1454 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456 
1457 	return nid;
1458 }
1459 
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1461 	for (nr_nodes = nodes_weight(*mask);				\
1462 		nr_nodes > 0 &&						\
1463 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1464 		nr_nodes--)
1465 
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 					unsigned int order, bool demote)
1475 {
1476 	int i;
1477 	int nr_pages = 1 << order;
1478 	struct page *p;
1479 
1480 	atomic_set(&folio->_entire_mapcount, 0);
1481 	atomic_set(&folio->_nr_pages_mapped, 0);
1482 	atomic_set(&folio->_pincount, 0);
1483 
1484 	for (i = 1; i < nr_pages; i++) {
1485 		p = folio_page(folio, i);
1486 		p->mapping = NULL;
1487 		clear_compound_head(p);
1488 		if (!demote)
1489 			set_page_refcounted(p);
1490 	}
1491 
1492 	__folio_clear_head(folio);
1493 }
1494 
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1496 					unsigned int order)
1497 {
1498 	__destroy_compound_gigantic_folio(folio, order, true);
1499 }
1500 
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1503 					unsigned int order)
1504 {
1505 	__destroy_compound_gigantic_folio(folio, order, false);
1506 }
1507 
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1509 {
1510 	/*
1511 	 * If the page isn't allocated using the cma allocator,
1512 	 * cma_release() returns false.
1513 	 */
1514 #ifdef CONFIG_CMA
1515 	int nid = folio_nid(folio);
1516 
1517 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1518 		return;
1519 #endif
1520 
1521 	free_contig_range(folio_pfn(folio), 1 << order);
1522 }
1523 
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526 		int nid, nodemask_t *nodemask)
1527 {
1528 	struct page *page;
1529 	unsigned long nr_pages = pages_per_huge_page(h);
1530 	if (nid == NUMA_NO_NODE)
1531 		nid = numa_mem_id();
1532 
1533 #ifdef CONFIG_CMA
1534 	{
1535 		int node;
1536 
1537 		if (hugetlb_cma[nid]) {
1538 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539 					huge_page_order(h), true);
1540 			if (page)
1541 				return page_folio(page);
1542 		}
1543 
1544 		if (!(gfp_mask & __GFP_THISNODE)) {
1545 			for_each_node_mask(node, *nodemask) {
1546 				if (node == nid || !hugetlb_cma[node])
1547 					continue;
1548 
1549 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1550 						huge_page_order(h), true);
1551 				if (page)
1552 					return page_folio(page);
1553 			}
1554 		}
1555 	}
1556 #endif
1557 
1558 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559 	return page ? page_folio(page) : NULL;
1560 }
1561 
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564 					int nid, nodemask_t *nodemask)
1565 {
1566 	return NULL;
1567 }
1568 #endif /* CONFIG_CONTIG_ALLOC */
1569 
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 					int nid, nodemask_t *nodemask)
1573 {
1574 	return NULL;
1575 }
1576 static inline void free_gigantic_folio(struct folio *folio,
1577 						unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579 						unsigned int order) { }
1580 #endif
1581 
1582 static inline void __clear_hugetlb_destructor(struct hstate *h,
1583 						struct folio *folio)
1584 {
1585 	lockdep_assert_held(&hugetlb_lock);
1586 
1587 	/*
1588 	 * Very subtle
1589 	 *
1590 	 * For non-gigantic pages set the destructor to the normal compound
1591 	 * page dtor.  This is needed in case someone takes an additional
1592 	 * temporary ref to the page, and freeing is delayed until they drop
1593 	 * their reference.
1594 	 *
1595 	 * For gigantic pages set the destructor to the null dtor.  This
1596 	 * destructor will never be called.  Before freeing the gigantic
1597 	 * page destroy_compound_gigantic_folio will turn the folio into a
1598 	 * simple group of pages.  After this the destructor does not
1599 	 * apply.
1600 	 *
1601 	 */
1602 	if (hstate_is_gigantic(h))
1603 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1604 	else
1605 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1606 }
1607 
1608 /*
1609  * Remove hugetlb folio from lists.
1610  * If vmemmap exists for the folio, update dtor so that the folio appears
1611  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1612  * to update dtor.
1613  *
1614  * A reference is held on the folio, except in the case of demote.
1615  *
1616  * Must be called with hugetlb lock held.
1617  */
1618 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1619 							bool adjust_surplus,
1620 							bool demote)
1621 {
1622 	int nid = folio_nid(folio);
1623 
1624 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1625 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1626 
1627 	lockdep_assert_held(&hugetlb_lock);
1628 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1629 		return;
1630 
1631 	list_del(&folio->lru);
1632 
1633 	if (folio_test_hugetlb_freed(folio)) {
1634 		h->free_huge_pages--;
1635 		h->free_huge_pages_node[nid]--;
1636 	}
1637 	if (adjust_surplus) {
1638 		h->surplus_huge_pages--;
1639 		h->surplus_huge_pages_node[nid]--;
1640 	}
1641 
1642 	/*
1643 	 * We can only clear the hugetlb destructor after allocating vmemmap
1644 	 * pages.  Otherwise, someone (memory error handling) may try to write
1645 	 * to tail struct pages.
1646 	 */
1647 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1648 		__clear_hugetlb_destructor(h, folio);
1649 
1650 	 /*
1651 	  * In the case of demote we do not ref count the page as it will soon
1652 	  * be turned into a page of smaller size.
1653 	 */
1654 	if (!demote)
1655 		folio_ref_unfreeze(folio, 1);
1656 
1657 	h->nr_huge_pages--;
1658 	h->nr_huge_pages_node[nid]--;
1659 }
1660 
1661 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 							bool adjust_surplus)
1663 {
1664 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1665 }
1666 
1667 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1668 							bool adjust_surplus)
1669 {
1670 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1671 }
1672 
1673 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1674 			     bool adjust_surplus)
1675 {
1676 	int zeroed;
1677 	int nid = folio_nid(folio);
1678 
1679 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1680 
1681 	lockdep_assert_held(&hugetlb_lock);
1682 
1683 	INIT_LIST_HEAD(&folio->lru);
1684 	h->nr_huge_pages++;
1685 	h->nr_huge_pages_node[nid]++;
1686 
1687 	if (adjust_surplus) {
1688 		h->surplus_huge_pages++;
1689 		h->surplus_huge_pages_node[nid]++;
1690 	}
1691 
1692 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1693 	folio_change_private(folio, NULL);
1694 	/*
1695 	 * We have to set hugetlb_vmemmap_optimized again as above
1696 	 * folio_change_private(folio, NULL) cleared it.
1697 	 */
1698 	folio_set_hugetlb_vmemmap_optimized(folio);
1699 
1700 	/*
1701 	 * This folio is about to be managed by the hugetlb allocator and
1702 	 * should have no users.  Drop our reference, and check for others
1703 	 * just in case.
1704 	 */
1705 	zeroed = folio_put_testzero(folio);
1706 	if (unlikely(!zeroed))
1707 		/*
1708 		 * It is VERY unlikely soneone else has taken a ref on
1709 		 * the page.  In this case, we simply return as the
1710 		 * hugetlb destructor (free_huge_page) will be called
1711 		 * when this other ref is dropped.
1712 		 */
1713 		return;
1714 
1715 	arch_clear_hugepage_flags(&folio->page);
1716 	enqueue_hugetlb_folio(h, folio);
1717 }
1718 
1719 static void __update_and_free_hugetlb_folio(struct hstate *h,
1720 						struct folio *folio)
1721 {
1722 	int i;
1723 	struct page *subpage;
1724 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1725 
1726 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1727 		return;
1728 
1729 	/*
1730 	 * If we don't know which subpages are hwpoisoned, we can't free
1731 	 * the hugepage, so it's leaked intentionally.
1732 	 */
1733 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1734 		return;
1735 
1736 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1737 		spin_lock_irq(&hugetlb_lock);
1738 		/*
1739 		 * If we cannot allocate vmemmap pages, just refuse to free the
1740 		 * page and put the page back on the hugetlb free list and treat
1741 		 * as a surplus page.
1742 		 */
1743 		add_hugetlb_folio(h, folio, true);
1744 		spin_unlock_irq(&hugetlb_lock);
1745 		return;
1746 	}
1747 
1748 	/*
1749 	 * Move PageHWPoison flag from head page to the raw error pages,
1750 	 * which makes any healthy subpages reusable.
1751 	 */
1752 	if (unlikely(folio_test_hwpoison(folio)))
1753 		folio_clear_hugetlb_hwpoison(folio);
1754 
1755 	/*
1756 	 * If vmemmap pages were allocated above, then we need to clear the
1757 	 * hugetlb destructor under the hugetlb lock.
1758 	 */
1759 	if (clear_dtor) {
1760 		spin_lock_irq(&hugetlb_lock);
1761 		__clear_hugetlb_destructor(h, folio);
1762 		spin_unlock_irq(&hugetlb_lock);
1763 	}
1764 
1765 	for (i = 0; i < pages_per_huge_page(h); i++) {
1766 		subpage = folio_page(folio, i);
1767 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1768 				1 << PG_referenced | 1 << PG_dirty |
1769 				1 << PG_active | 1 << PG_private |
1770 				1 << PG_writeback);
1771 	}
1772 
1773 	/*
1774 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1775 	 * need to be given back to CMA in free_gigantic_folio.
1776 	 */
1777 	if (hstate_is_gigantic(h) ||
1778 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1779 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1780 		free_gigantic_folio(folio, huge_page_order(h));
1781 	} else {
1782 		__free_pages(&folio->page, huge_page_order(h));
1783 	}
1784 }
1785 
1786 /*
1787  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1788  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1789  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1790  * the vmemmap pages.
1791  *
1792  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1793  * freed and frees them one-by-one. As the page->mapping pointer is going
1794  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1795  * structure of a lockless linked list of huge pages to be freed.
1796  */
1797 static LLIST_HEAD(hpage_freelist);
1798 
1799 static void free_hpage_workfn(struct work_struct *work)
1800 {
1801 	struct llist_node *node;
1802 
1803 	node = llist_del_all(&hpage_freelist);
1804 
1805 	while (node) {
1806 		struct page *page;
1807 		struct hstate *h;
1808 
1809 		page = container_of((struct address_space **)node,
1810 				     struct page, mapping);
1811 		node = node->next;
1812 		page->mapping = NULL;
1813 		/*
1814 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1815 		 * is going to trigger because a previous call to
1816 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1817 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1818 		 * directly.
1819 		 */
1820 		h = size_to_hstate(page_size(page));
1821 
1822 		__update_and_free_hugetlb_folio(h, page_folio(page));
1823 
1824 		cond_resched();
1825 	}
1826 }
1827 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1828 
1829 static inline void flush_free_hpage_work(struct hstate *h)
1830 {
1831 	if (hugetlb_vmemmap_optimizable(h))
1832 		flush_work(&free_hpage_work);
1833 }
1834 
1835 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1836 				 bool atomic)
1837 {
1838 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1839 		__update_and_free_hugetlb_folio(h, folio);
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1845 	 *
1846 	 * Only call schedule_work() if hpage_freelist is previously
1847 	 * empty. Otherwise, schedule_work() had been called but the workfn
1848 	 * hasn't retrieved the list yet.
1849 	 */
1850 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1851 		schedule_work(&free_hpage_work);
1852 }
1853 
1854 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1855 {
1856 	struct page *page, *t_page;
1857 	struct folio *folio;
1858 
1859 	list_for_each_entry_safe(page, t_page, list, lru) {
1860 		folio = page_folio(page);
1861 		update_and_free_hugetlb_folio(h, folio, false);
1862 		cond_resched();
1863 	}
1864 }
1865 
1866 struct hstate *size_to_hstate(unsigned long size)
1867 {
1868 	struct hstate *h;
1869 
1870 	for_each_hstate(h) {
1871 		if (huge_page_size(h) == size)
1872 			return h;
1873 	}
1874 	return NULL;
1875 }
1876 
1877 void free_huge_page(struct page *page)
1878 {
1879 	/*
1880 	 * Can't pass hstate in here because it is called from the
1881 	 * compound page destructor.
1882 	 */
1883 	struct folio *folio = page_folio(page);
1884 	struct hstate *h = folio_hstate(folio);
1885 	int nid = folio_nid(folio);
1886 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1887 	bool restore_reserve;
1888 	unsigned long flags;
1889 
1890 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1891 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1892 
1893 	hugetlb_set_folio_subpool(folio, NULL);
1894 	if (folio_test_anon(folio))
1895 		__ClearPageAnonExclusive(&folio->page);
1896 	folio->mapping = NULL;
1897 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1898 	folio_clear_hugetlb_restore_reserve(folio);
1899 
1900 	/*
1901 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1902 	 * reservation.  If the page was associated with a subpool, there
1903 	 * would have been a page reserved in the subpool before allocation
1904 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1905 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1906 	 * remove the reserved page from the subpool.
1907 	 */
1908 	if (!restore_reserve) {
1909 		/*
1910 		 * A return code of zero implies that the subpool will be
1911 		 * under its minimum size if the reservation is not restored
1912 		 * after page is free.  Therefore, force restore_reserve
1913 		 * operation.
1914 		 */
1915 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1916 			restore_reserve = true;
1917 	}
1918 
1919 	spin_lock_irqsave(&hugetlb_lock, flags);
1920 	folio_clear_hugetlb_migratable(folio);
1921 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1922 				     pages_per_huge_page(h), folio);
1923 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1924 					  pages_per_huge_page(h), folio);
1925 	if (restore_reserve)
1926 		h->resv_huge_pages++;
1927 
1928 	if (folio_test_hugetlb_temporary(folio)) {
1929 		remove_hugetlb_folio(h, folio, false);
1930 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1931 		update_and_free_hugetlb_folio(h, folio, true);
1932 	} else if (h->surplus_huge_pages_node[nid]) {
1933 		/* remove the page from active list */
1934 		remove_hugetlb_folio(h, folio, true);
1935 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 		update_and_free_hugetlb_folio(h, folio, true);
1937 	} else {
1938 		arch_clear_hugepage_flags(page);
1939 		enqueue_hugetlb_folio(h, folio);
1940 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1941 	}
1942 }
1943 
1944 /*
1945  * Must be called with the hugetlb lock held
1946  */
1947 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1948 {
1949 	lockdep_assert_held(&hugetlb_lock);
1950 	h->nr_huge_pages++;
1951 	h->nr_huge_pages_node[nid]++;
1952 }
1953 
1954 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955 {
1956 	hugetlb_vmemmap_optimize(h, &folio->page);
1957 	INIT_LIST_HEAD(&folio->lru);
1958 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1959 	hugetlb_set_folio_subpool(folio, NULL);
1960 	set_hugetlb_cgroup(folio, NULL);
1961 	set_hugetlb_cgroup_rsvd(folio, NULL);
1962 }
1963 
1964 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1965 {
1966 	__prep_new_hugetlb_folio(h, folio);
1967 	spin_lock_irq(&hugetlb_lock);
1968 	__prep_account_new_huge_page(h, nid);
1969 	spin_unlock_irq(&hugetlb_lock);
1970 }
1971 
1972 static bool __prep_compound_gigantic_folio(struct folio *folio,
1973 					unsigned int order, bool demote)
1974 {
1975 	int i, j;
1976 	int nr_pages = 1 << order;
1977 	struct page *p;
1978 
1979 	__folio_clear_reserved(folio);
1980 	for (i = 0; i < nr_pages; i++) {
1981 		p = folio_page(folio, i);
1982 
1983 		/*
1984 		 * For gigantic hugepages allocated through bootmem at
1985 		 * boot, it's safer to be consistent with the not-gigantic
1986 		 * hugepages and clear the PG_reserved bit from all tail pages
1987 		 * too.  Otherwise drivers using get_user_pages() to access tail
1988 		 * pages may get the reference counting wrong if they see
1989 		 * PG_reserved set on a tail page (despite the head page not
1990 		 * having PG_reserved set).  Enforcing this consistency between
1991 		 * head and tail pages allows drivers to optimize away a check
1992 		 * on the head page when they need know if put_page() is needed
1993 		 * after get_user_pages().
1994 		 */
1995 		if (i != 0)	/* head page cleared above */
1996 			__ClearPageReserved(p);
1997 		/*
1998 		 * Subtle and very unlikely
1999 		 *
2000 		 * Gigantic 'page allocators' such as memblock or cma will
2001 		 * return a set of pages with each page ref counted.  We need
2002 		 * to turn this set of pages into a compound page with tail
2003 		 * page ref counts set to zero.  Code such as speculative page
2004 		 * cache adding could take a ref on a 'to be' tail page.
2005 		 * We need to respect any increased ref count, and only set
2006 		 * the ref count to zero if count is currently 1.  If count
2007 		 * is not 1, we return an error.  An error return indicates
2008 		 * the set of pages can not be converted to a gigantic page.
2009 		 * The caller who allocated the pages should then discard the
2010 		 * pages using the appropriate free interface.
2011 		 *
2012 		 * In the case of demote, the ref count will be zero.
2013 		 */
2014 		if (!demote) {
2015 			if (!page_ref_freeze(p, 1)) {
2016 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2017 				goto out_error;
2018 			}
2019 		} else {
2020 			VM_BUG_ON_PAGE(page_count(p), p);
2021 		}
2022 		if (i != 0)
2023 			set_compound_head(p, &folio->page);
2024 	}
2025 	__folio_set_head(folio);
2026 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2027 	folio_set_order(folio, order);
2028 	atomic_set(&folio->_entire_mapcount, -1);
2029 	atomic_set(&folio->_nr_pages_mapped, 0);
2030 	atomic_set(&folio->_pincount, 0);
2031 	return true;
2032 
2033 out_error:
2034 	/* undo page modifications made above */
2035 	for (j = 0; j < i; j++) {
2036 		p = folio_page(folio, j);
2037 		if (j != 0)
2038 			clear_compound_head(p);
2039 		set_page_refcounted(p);
2040 	}
2041 	/* need to clear PG_reserved on remaining tail pages  */
2042 	for (; j < nr_pages; j++) {
2043 		p = folio_page(folio, j);
2044 		__ClearPageReserved(p);
2045 	}
2046 	return false;
2047 }
2048 
2049 static bool prep_compound_gigantic_folio(struct folio *folio,
2050 							unsigned int order)
2051 {
2052 	return __prep_compound_gigantic_folio(folio, order, false);
2053 }
2054 
2055 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2056 							unsigned int order)
2057 {
2058 	return __prep_compound_gigantic_folio(folio, order, true);
2059 }
2060 
2061 /*
2062  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2063  * transparent huge pages.  See the PageTransHuge() documentation for more
2064  * details.
2065  */
2066 int PageHuge(struct page *page)
2067 {
2068 	struct folio *folio;
2069 
2070 	if (!PageCompound(page))
2071 		return 0;
2072 	folio = page_folio(page);
2073 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2074 }
2075 EXPORT_SYMBOL_GPL(PageHuge);
2076 
2077 /**
2078  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2079  * @folio: The folio to test.
2080  *
2081  * Context: Any context.  Caller should have a reference on the folio to
2082  * prevent it from being turned into a tail page.
2083  * Return: True for hugetlbfs folios, false for anon folios or folios
2084  * belonging to other filesystems.
2085  */
2086 bool folio_test_hugetlb(struct folio *folio)
2087 {
2088 	if (!folio_test_large(folio))
2089 		return false;
2090 
2091 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2092 }
2093 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2094 
2095 /*
2096  * Find and lock address space (mapping) in write mode.
2097  *
2098  * Upon entry, the page is locked which means that page_mapping() is
2099  * stable.  Due to locking order, we can only trylock_write.  If we can
2100  * not get the lock, simply return NULL to caller.
2101  */
2102 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2103 {
2104 	struct address_space *mapping = page_mapping(hpage);
2105 
2106 	if (!mapping)
2107 		return mapping;
2108 
2109 	if (i_mmap_trylock_write(mapping))
2110 		return mapping;
2111 
2112 	return NULL;
2113 }
2114 
2115 pgoff_t hugetlb_basepage_index(struct page *page)
2116 {
2117 	struct page *page_head = compound_head(page);
2118 	pgoff_t index = page_index(page_head);
2119 	unsigned long compound_idx;
2120 
2121 	if (compound_order(page_head) > MAX_ORDER)
2122 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2123 	else
2124 		compound_idx = page - page_head;
2125 
2126 	return (index << compound_order(page_head)) + compound_idx;
2127 }
2128 
2129 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2130 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2131 		nodemask_t *node_alloc_noretry)
2132 {
2133 	int order = huge_page_order(h);
2134 	struct page *page;
2135 	bool alloc_try_hard = true;
2136 	bool retry = true;
2137 
2138 	/*
2139 	 * By default we always try hard to allocate the page with
2140 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2141 	 * a loop (to adjust global huge page counts) and previous allocation
2142 	 * failed, do not continue to try hard on the same node.  Use the
2143 	 * node_alloc_noretry bitmap to manage this state information.
2144 	 */
2145 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2146 		alloc_try_hard = false;
2147 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2148 	if (alloc_try_hard)
2149 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2150 	if (nid == NUMA_NO_NODE)
2151 		nid = numa_mem_id();
2152 retry:
2153 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2154 
2155 	/* Freeze head page */
2156 	if (page && !page_ref_freeze(page, 1)) {
2157 		__free_pages(page, order);
2158 		if (retry) {	/* retry once */
2159 			retry = false;
2160 			goto retry;
2161 		}
2162 		/* WOW!  twice in a row. */
2163 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2164 		page = NULL;
2165 	}
2166 
2167 	/*
2168 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2169 	 * indicates an overall state change.  Clear bit so that we resume
2170 	 * normal 'try hard' allocations.
2171 	 */
2172 	if (node_alloc_noretry && page && !alloc_try_hard)
2173 		node_clear(nid, *node_alloc_noretry);
2174 
2175 	/*
2176 	 * If we tried hard to get a page but failed, set bit so that
2177 	 * subsequent attempts will not try as hard until there is an
2178 	 * overall state change.
2179 	 */
2180 	if (node_alloc_noretry && !page && alloc_try_hard)
2181 		node_set(nid, *node_alloc_noretry);
2182 
2183 	if (!page) {
2184 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2185 		return NULL;
2186 	}
2187 
2188 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2189 	return page_folio(page);
2190 }
2191 
2192 /*
2193  * Common helper to allocate a fresh hugetlb page. All specific allocators
2194  * should use this function to get new hugetlb pages
2195  *
2196  * Note that returned page is 'frozen':  ref count of head page and all tail
2197  * pages is zero.
2198  */
2199 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2200 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2201 		nodemask_t *node_alloc_noretry)
2202 {
2203 	struct folio *folio;
2204 	bool retry = false;
2205 
2206 retry:
2207 	if (hstate_is_gigantic(h))
2208 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2209 	else
2210 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2211 				nid, nmask, node_alloc_noretry);
2212 	if (!folio)
2213 		return NULL;
2214 	if (hstate_is_gigantic(h)) {
2215 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2216 			/*
2217 			 * Rare failure to convert pages to compound page.
2218 			 * Free pages and try again - ONCE!
2219 			 */
2220 			free_gigantic_folio(folio, huge_page_order(h));
2221 			if (!retry) {
2222 				retry = true;
2223 				goto retry;
2224 			}
2225 			return NULL;
2226 		}
2227 	}
2228 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2229 
2230 	return folio;
2231 }
2232 
2233 /*
2234  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2235  * manner.
2236  */
2237 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2238 				nodemask_t *node_alloc_noretry)
2239 {
2240 	struct folio *folio;
2241 	int nr_nodes, node;
2242 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2243 
2244 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2245 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2246 					nodes_allowed, node_alloc_noretry);
2247 		if (folio) {
2248 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2249 			return 1;
2250 		}
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 /*
2257  * Remove huge page from pool from next node to free.  Attempt to keep
2258  * persistent huge pages more or less balanced over allowed nodes.
2259  * This routine only 'removes' the hugetlb page.  The caller must make
2260  * an additional call to free the page to low level allocators.
2261  * Called with hugetlb_lock locked.
2262  */
2263 static struct page *remove_pool_huge_page(struct hstate *h,
2264 						nodemask_t *nodes_allowed,
2265 						 bool acct_surplus)
2266 {
2267 	int nr_nodes, node;
2268 	struct page *page = NULL;
2269 	struct folio *folio;
2270 
2271 	lockdep_assert_held(&hugetlb_lock);
2272 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2273 		/*
2274 		 * If we're returning unused surplus pages, only examine
2275 		 * nodes with surplus pages.
2276 		 */
2277 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2278 		    !list_empty(&h->hugepage_freelists[node])) {
2279 			page = list_entry(h->hugepage_freelists[node].next,
2280 					  struct page, lru);
2281 			folio = page_folio(page);
2282 			remove_hugetlb_folio(h, folio, acct_surplus);
2283 			break;
2284 		}
2285 	}
2286 
2287 	return page;
2288 }
2289 
2290 /*
2291  * Dissolve a given free hugepage into free buddy pages. This function does
2292  * nothing for in-use hugepages and non-hugepages.
2293  * This function returns values like below:
2294  *
2295  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2296  *           when the system is under memory pressure and the feature of
2297  *           freeing unused vmemmap pages associated with each hugetlb page
2298  *           is enabled.
2299  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2300  *           (allocated or reserved.)
2301  *       0:  successfully dissolved free hugepages or the page is not a
2302  *           hugepage (considered as already dissolved)
2303  */
2304 int dissolve_free_huge_page(struct page *page)
2305 {
2306 	int rc = -EBUSY;
2307 	struct folio *folio = page_folio(page);
2308 
2309 retry:
2310 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2311 	if (!folio_test_hugetlb(folio))
2312 		return 0;
2313 
2314 	spin_lock_irq(&hugetlb_lock);
2315 	if (!folio_test_hugetlb(folio)) {
2316 		rc = 0;
2317 		goto out;
2318 	}
2319 
2320 	if (!folio_ref_count(folio)) {
2321 		struct hstate *h = folio_hstate(folio);
2322 		if (!available_huge_pages(h))
2323 			goto out;
2324 
2325 		/*
2326 		 * We should make sure that the page is already on the free list
2327 		 * when it is dissolved.
2328 		 */
2329 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2330 			spin_unlock_irq(&hugetlb_lock);
2331 			cond_resched();
2332 
2333 			/*
2334 			 * Theoretically, we should return -EBUSY when we
2335 			 * encounter this race. In fact, we have a chance
2336 			 * to successfully dissolve the page if we do a
2337 			 * retry. Because the race window is quite small.
2338 			 * If we seize this opportunity, it is an optimization
2339 			 * for increasing the success rate of dissolving page.
2340 			 */
2341 			goto retry;
2342 		}
2343 
2344 		remove_hugetlb_folio(h, folio, false);
2345 		h->max_huge_pages--;
2346 		spin_unlock_irq(&hugetlb_lock);
2347 
2348 		/*
2349 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2350 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2351 		 * free the page if it can not allocate required vmemmap.  We
2352 		 * need to adjust max_huge_pages if the page is not freed.
2353 		 * Attempt to allocate vmemmmap here so that we can take
2354 		 * appropriate action on failure.
2355 		 */
2356 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2357 		if (!rc) {
2358 			update_and_free_hugetlb_folio(h, folio, false);
2359 		} else {
2360 			spin_lock_irq(&hugetlb_lock);
2361 			add_hugetlb_folio(h, folio, false);
2362 			h->max_huge_pages++;
2363 			spin_unlock_irq(&hugetlb_lock);
2364 		}
2365 
2366 		return rc;
2367 	}
2368 out:
2369 	spin_unlock_irq(&hugetlb_lock);
2370 	return rc;
2371 }
2372 
2373 /*
2374  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2375  * make specified memory blocks removable from the system.
2376  * Note that this will dissolve a free gigantic hugepage completely, if any
2377  * part of it lies within the given range.
2378  * Also note that if dissolve_free_huge_page() returns with an error, all
2379  * free hugepages that were dissolved before that error are lost.
2380  */
2381 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2382 {
2383 	unsigned long pfn;
2384 	struct page *page;
2385 	int rc = 0;
2386 	unsigned int order;
2387 	struct hstate *h;
2388 
2389 	if (!hugepages_supported())
2390 		return rc;
2391 
2392 	order = huge_page_order(&default_hstate);
2393 	for_each_hstate(h)
2394 		order = min(order, huge_page_order(h));
2395 
2396 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2397 		page = pfn_to_page(pfn);
2398 		rc = dissolve_free_huge_page(page);
2399 		if (rc)
2400 			break;
2401 	}
2402 
2403 	return rc;
2404 }
2405 
2406 /*
2407  * Allocates a fresh surplus page from the page allocator.
2408  */
2409 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2410 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2411 {
2412 	struct folio *folio = NULL;
2413 
2414 	if (hstate_is_gigantic(h))
2415 		return NULL;
2416 
2417 	spin_lock_irq(&hugetlb_lock);
2418 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2419 		goto out_unlock;
2420 	spin_unlock_irq(&hugetlb_lock);
2421 
2422 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2423 	if (!folio)
2424 		return NULL;
2425 
2426 	spin_lock_irq(&hugetlb_lock);
2427 	/*
2428 	 * We could have raced with the pool size change.
2429 	 * Double check that and simply deallocate the new page
2430 	 * if we would end up overcommiting the surpluses. Abuse
2431 	 * temporary page to workaround the nasty free_huge_page
2432 	 * codeflow
2433 	 */
2434 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2435 		folio_set_hugetlb_temporary(folio);
2436 		spin_unlock_irq(&hugetlb_lock);
2437 		free_huge_page(&folio->page);
2438 		return NULL;
2439 	}
2440 
2441 	h->surplus_huge_pages++;
2442 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2443 
2444 out_unlock:
2445 	spin_unlock_irq(&hugetlb_lock);
2446 
2447 	return folio;
2448 }
2449 
2450 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2451 				     int nid, nodemask_t *nmask)
2452 {
2453 	struct folio *folio;
2454 
2455 	if (hstate_is_gigantic(h))
2456 		return NULL;
2457 
2458 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2459 	if (!folio)
2460 		return NULL;
2461 
2462 	/* fresh huge pages are frozen */
2463 	folio_ref_unfreeze(folio, 1);
2464 	/*
2465 	 * We do not account these pages as surplus because they are only
2466 	 * temporary and will be released properly on the last reference
2467 	 */
2468 	folio_set_hugetlb_temporary(folio);
2469 
2470 	return folio;
2471 }
2472 
2473 /*
2474  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2475  */
2476 static
2477 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2478 		struct vm_area_struct *vma, unsigned long addr)
2479 {
2480 	struct folio *folio = NULL;
2481 	struct mempolicy *mpol;
2482 	gfp_t gfp_mask = htlb_alloc_mask(h);
2483 	int nid;
2484 	nodemask_t *nodemask;
2485 
2486 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2487 	if (mpol_is_preferred_many(mpol)) {
2488 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2489 
2490 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2491 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2492 
2493 		/* Fallback to all nodes if page==NULL */
2494 		nodemask = NULL;
2495 	}
2496 
2497 	if (!folio)
2498 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2499 	mpol_cond_put(mpol);
2500 	return folio;
2501 }
2502 
2503 /* folio migration callback function */
2504 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2505 		nodemask_t *nmask, gfp_t gfp_mask)
2506 {
2507 	spin_lock_irq(&hugetlb_lock);
2508 	if (available_huge_pages(h)) {
2509 		struct folio *folio;
2510 
2511 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2512 						preferred_nid, nmask);
2513 		if (folio) {
2514 			spin_unlock_irq(&hugetlb_lock);
2515 			return folio;
2516 		}
2517 	}
2518 	spin_unlock_irq(&hugetlb_lock);
2519 
2520 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2521 }
2522 
2523 /* mempolicy aware migration callback */
2524 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2525 		unsigned long address)
2526 {
2527 	struct mempolicy *mpol;
2528 	nodemask_t *nodemask;
2529 	struct folio *folio;
2530 	gfp_t gfp_mask;
2531 	int node;
2532 
2533 	gfp_mask = htlb_alloc_mask(h);
2534 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2535 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2536 	mpol_cond_put(mpol);
2537 
2538 	return folio;
2539 }
2540 
2541 /*
2542  * Increase the hugetlb pool such that it can accommodate a reservation
2543  * of size 'delta'.
2544  */
2545 static int gather_surplus_pages(struct hstate *h, long delta)
2546 	__must_hold(&hugetlb_lock)
2547 {
2548 	LIST_HEAD(surplus_list);
2549 	struct folio *folio;
2550 	struct page *page, *tmp;
2551 	int ret;
2552 	long i;
2553 	long needed, allocated;
2554 	bool alloc_ok = true;
2555 
2556 	lockdep_assert_held(&hugetlb_lock);
2557 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2558 	if (needed <= 0) {
2559 		h->resv_huge_pages += delta;
2560 		return 0;
2561 	}
2562 
2563 	allocated = 0;
2564 
2565 	ret = -ENOMEM;
2566 retry:
2567 	spin_unlock_irq(&hugetlb_lock);
2568 	for (i = 0; i < needed; i++) {
2569 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2570 				NUMA_NO_NODE, NULL);
2571 		if (!folio) {
2572 			alloc_ok = false;
2573 			break;
2574 		}
2575 		list_add(&folio->lru, &surplus_list);
2576 		cond_resched();
2577 	}
2578 	allocated += i;
2579 
2580 	/*
2581 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2582 	 * because either resv_huge_pages or free_huge_pages may have changed.
2583 	 */
2584 	spin_lock_irq(&hugetlb_lock);
2585 	needed = (h->resv_huge_pages + delta) -
2586 			(h->free_huge_pages + allocated);
2587 	if (needed > 0) {
2588 		if (alloc_ok)
2589 			goto retry;
2590 		/*
2591 		 * We were not able to allocate enough pages to
2592 		 * satisfy the entire reservation so we free what
2593 		 * we've allocated so far.
2594 		 */
2595 		goto free;
2596 	}
2597 	/*
2598 	 * The surplus_list now contains _at_least_ the number of extra pages
2599 	 * needed to accommodate the reservation.  Add the appropriate number
2600 	 * of pages to the hugetlb pool and free the extras back to the buddy
2601 	 * allocator.  Commit the entire reservation here to prevent another
2602 	 * process from stealing the pages as they are added to the pool but
2603 	 * before they are reserved.
2604 	 */
2605 	needed += allocated;
2606 	h->resv_huge_pages += delta;
2607 	ret = 0;
2608 
2609 	/* Free the needed pages to the hugetlb pool */
2610 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2611 		if ((--needed) < 0)
2612 			break;
2613 		/* Add the page to the hugetlb allocator */
2614 		enqueue_hugetlb_folio(h, page_folio(page));
2615 	}
2616 free:
2617 	spin_unlock_irq(&hugetlb_lock);
2618 
2619 	/*
2620 	 * Free unnecessary surplus pages to the buddy allocator.
2621 	 * Pages have no ref count, call free_huge_page directly.
2622 	 */
2623 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2624 		free_huge_page(page);
2625 	spin_lock_irq(&hugetlb_lock);
2626 
2627 	return ret;
2628 }
2629 
2630 /*
2631  * This routine has two main purposes:
2632  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2633  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2634  *    to the associated reservation map.
2635  * 2) Free any unused surplus pages that may have been allocated to satisfy
2636  *    the reservation.  As many as unused_resv_pages may be freed.
2637  */
2638 static void return_unused_surplus_pages(struct hstate *h,
2639 					unsigned long unused_resv_pages)
2640 {
2641 	unsigned long nr_pages;
2642 	struct page *page;
2643 	LIST_HEAD(page_list);
2644 
2645 	lockdep_assert_held(&hugetlb_lock);
2646 	/* Uncommit the reservation */
2647 	h->resv_huge_pages -= unused_resv_pages;
2648 
2649 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2650 		goto out;
2651 
2652 	/*
2653 	 * Part (or even all) of the reservation could have been backed
2654 	 * by pre-allocated pages. Only free surplus pages.
2655 	 */
2656 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2657 
2658 	/*
2659 	 * We want to release as many surplus pages as possible, spread
2660 	 * evenly across all nodes with memory. Iterate across these nodes
2661 	 * until we can no longer free unreserved surplus pages. This occurs
2662 	 * when the nodes with surplus pages have no free pages.
2663 	 * remove_pool_huge_page() will balance the freed pages across the
2664 	 * on-line nodes with memory and will handle the hstate accounting.
2665 	 */
2666 	while (nr_pages--) {
2667 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2668 		if (!page)
2669 			goto out;
2670 
2671 		list_add(&page->lru, &page_list);
2672 	}
2673 
2674 out:
2675 	spin_unlock_irq(&hugetlb_lock);
2676 	update_and_free_pages_bulk(h, &page_list);
2677 	spin_lock_irq(&hugetlb_lock);
2678 }
2679 
2680 
2681 /*
2682  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2683  * are used by the huge page allocation routines to manage reservations.
2684  *
2685  * vma_needs_reservation is called to determine if the huge page at addr
2686  * within the vma has an associated reservation.  If a reservation is
2687  * needed, the value 1 is returned.  The caller is then responsible for
2688  * managing the global reservation and subpool usage counts.  After
2689  * the huge page has been allocated, vma_commit_reservation is called
2690  * to add the page to the reservation map.  If the page allocation fails,
2691  * the reservation must be ended instead of committed.  vma_end_reservation
2692  * is called in such cases.
2693  *
2694  * In the normal case, vma_commit_reservation returns the same value
2695  * as the preceding vma_needs_reservation call.  The only time this
2696  * is not the case is if a reserve map was changed between calls.  It
2697  * is the responsibility of the caller to notice the difference and
2698  * take appropriate action.
2699  *
2700  * vma_add_reservation is used in error paths where a reservation must
2701  * be restored when a newly allocated huge page must be freed.  It is
2702  * to be called after calling vma_needs_reservation to determine if a
2703  * reservation exists.
2704  *
2705  * vma_del_reservation is used in error paths where an entry in the reserve
2706  * map was created during huge page allocation and must be removed.  It is to
2707  * be called after calling vma_needs_reservation to determine if a reservation
2708  * exists.
2709  */
2710 enum vma_resv_mode {
2711 	VMA_NEEDS_RESV,
2712 	VMA_COMMIT_RESV,
2713 	VMA_END_RESV,
2714 	VMA_ADD_RESV,
2715 	VMA_DEL_RESV,
2716 };
2717 static long __vma_reservation_common(struct hstate *h,
2718 				struct vm_area_struct *vma, unsigned long addr,
2719 				enum vma_resv_mode mode)
2720 {
2721 	struct resv_map *resv;
2722 	pgoff_t idx;
2723 	long ret;
2724 	long dummy_out_regions_needed;
2725 
2726 	resv = vma_resv_map(vma);
2727 	if (!resv)
2728 		return 1;
2729 
2730 	idx = vma_hugecache_offset(h, vma, addr);
2731 	switch (mode) {
2732 	case VMA_NEEDS_RESV:
2733 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2734 		/* We assume that vma_reservation_* routines always operate on
2735 		 * 1 page, and that adding to resv map a 1 page entry can only
2736 		 * ever require 1 region.
2737 		 */
2738 		VM_BUG_ON(dummy_out_regions_needed != 1);
2739 		break;
2740 	case VMA_COMMIT_RESV:
2741 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742 		/* region_add calls of range 1 should never fail. */
2743 		VM_BUG_ON(ret < 0);
2744 		break;
2745 	case VMA_END_RESV:
2746 		region_abort(resv, idx, idx + 1, 1);
2747 		ret = 0;
2748 		break;
2749 	case VMA_ADD_RESV:
2750 		if (vma->vm_flags & VM_MAYSHARE) {
2751 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2752 			/* region_add calls of range 1 should never fail. */
2753 			VM_BUG_ON(ret < 0);
2754 		} else {
2755 			region_abort(resv, idx, idx + 1, 1);
2756 			ret = region_del(resv, idx, idx + 1);
2757 		}
2758 		break;
2759 	case VMA_DEL_RESV:
2760 		if (vma->vm_flags & VM_MAYSHARE) {
2761 			region_abort(resv, idx, idx + 1, 1);
2762 			ret = region_del(resv, idx, idx + 1);
2763 		} else {
2764 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2765 			/* region_add calls of range 1 should never fail. */
2766 			VM_BUG_ON(ret < 0);
2767 		}
2768 		break;
2769 	default:
2770 		BUG();
2771 	}
2772 
2773 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2774 		return ret;
2775 	/*
2776 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2777 	 *
2778 	 * In most cases, reserves always exist for private mappings.
2779 	 * However, a file associated with mapping could have been
2780 	 * hole punched or truncated after reserves were consumed.
2781 	 * As subsequent fault on such a range will not use reserves.
2782 	 * Subtle - The reserve map for private mappings has the
2783 	 * opposite meaning than that of shared mappings.  If NO
2784 	 * entry is in the reserve map, it means a reservation exists.
2785 	 * If an entry exists in the reserve map, it means the
2786 	 * reservation has already been consumed.  As a result, the
2787 	 * return value of this routine is the opposite of the
2788 	 * value returned from reserve map manipulation routines above.
2789 	 */
2790 	if (ret > 0)
2791 		return 0;
2792 	if (ret == 0)
2793 		return 1;
2794 	return ret;
2795 }
2796 
2797 static long vma_needs_reservation(struct hstate *h,
2798 			struct vm_area_struct *vma, unsigned long addr)
2799 {
2800 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2801 }
2802 
2803 static long vma_commit_reservation(struct hstate *h,
2804 			struct vm_area_struct *vma, unsigned long addr)
2805 {
2806 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2807 }
2808 
2809 static void vma_end_reservation(struct hstate *h,
2810 			struct vm_area_struct *vma, unsigned long addr)
2811 {
2812 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2813 }
2814 
2815 static long vma_add_reservation(struct hstate *h,
2816 			struct vm_area_struct *vma, unsigned long addr)
2817 {
2818 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2819 }
2820 
2821 static long vma_del_reservation(struct hstate *h,
2822 			struct vm_area_struct *vma, unsigned long addr)
2823 {
2824 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2825 }
2826 
2827 /*
2828  * This routine is called to restore reservation information on error paths.
2829  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2830  * and the hugetlb mutex should remain held when calling this routine.
2831  *
2832  * It handles two specific cases:
2833  * 1) A reservation was in place and the folio consumed the reservation.
2834  *    hugetlb_restore_reserve is set in the folio.
2835  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2836  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2837  *
2838  * In case 1, free_huge_page later in the error path will increment the
2839  * global reserve count.  But, free_huge_page does not have enough context
2840  * to adjust the reservation map.  This case deals primarily with private
2841  * mappings.  Adjust the reserve map here to be consistent with global
2842  * reserve count adjustments to be made by free_huge_page.  Make sure the
2843  * reserve map indicates there is a reservation present.
2844  *
2845  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2846  */
2847 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2848 			unsigned long address, struct folio *folio)
2849 {
2850 	long rc = vma_needs_reservation(h, vma, address);
2851 
2852 	if (folio_test_hugetlb_restore_reserve(folio)) {
2853 		if (unlikely(rc < 0))
2854 			/*
2855 			 * Rare out of memory condition in reserve map
2856 			 * manipulation.  Clear hugetlb_restore_reserve so
2857 			 * that global reserve count will not be incremented
2858 			 * by free_huge_page.  This will make it appear
2859 			 * as though the reservation for this folio was
2860 			 * consumed.  This may prevent the task from
2861 			 * faulting in the folio at a later time.  This
2862 			 * is better than inconsistent global huge page
2863 			 * accounting of reserve counts.
2864 			 */
2865 			folio_clear_hugetlb_restore_reserve(folio);
2866 		else if (rc)
2867 			(void)vma_add_reservation(h, vma, address);
2868 		else
2869 			vma_end_reservation(h, vma, address);
2870 	} else {
2871 		if (!rc) {
2872 			/*
2873 			 * This indicates there is an entry in the reserve map
2874 			 * not added by alloc_hugetlb_folio.  We know it was added
2875 			 * before the alloc_hugetlb_folio call, otherwise
2876 			 * hugetlb_restore_reserve would be set on the folio.
2877 			 * Remove the entry so that a subsequent allocation
2878 			 * does not consume a reservation.
2879 			 */
2880 			rc = vma_del_reservation(h, vma, address);
2881 			if (rc < 0)
2882 				/*
2883 				 * VERY rare out of memory condition.  Since
2884 				 * we can not delete the entry, set
2885 				 * hugetlb_restore_reserve so that the reserve
2886 				 * count will be incremented when the folio
2887 				 * is freed.  This reserve will be consumed
2888 				 * on a subsequent allocation.
2889 				 */
2890 				folio_set_hugetlb_restore_reserve(folio);
2891 		} else if (rc < 0) {
2892 			/*
2893 			 * Rare out of memory condition from
2894 			 * vma_needs_reservation call.  Memory allocation is
2895 			 * only attempted if a new entry is needed.  Therefore,
2896 			 * this implies there is not an entry in the
2897 			 * reserve map.
2898 			 *
2899 			 * For shared mappings, no entry in the map indicates
2900 			 * no reservation.  We are done.
2901 			 */
2902 			if (!(vma->vm_flags & VM_MAYSHARE))
2903 				/*
2904 				 * For private mappings, no entry indicates
2905 				 * a reservation is present.  Since we can
2906 				 * not add an entry, set hugetlb_restore_reserve
2907 				 * on the folio so reserve count will be
2908 				 * incremented when freed.  This reserve will
2909 				 * be consumed on a subsequent allocation.
2910 				 */
2911 				folio_set_hugetlb_restore_reserve(folio);
2912 		} else
2913 			/*
2914 			 * No reservation present, do nothing
2915 			 */
2916 			 vma_end_reservation(h, vma, address);
2917 	}
2918 }
2919 
2920 /*
2921  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2922  * the old one
2923  * @h: struct hstate old page belongs to
2924  * @old_folio: Old folio to dissolve
2925  * @list: List to isolate the page in case we need to
2926  * Returns 0 on success, otherwise negated error.
2927  */
2928 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2929 			struct folio *old_folio, struct list_head *list)
2930 {
2931 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2932 	int nid = folio_nid(old_folio);
2933 	struct folio *new_folio;
2934 	int ret = 0;
2935 
2936 	/*
2937 	 * Before dissolving the folio, we need to allocate a new one for the
2938 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2939 	 * by doing everything but actually updating counters and adding to
2940 	 * the pool.  This simplifies and let us do most of the processing
2941 	 * under the lock.
2942 	 */
2943 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2944 	if (!new_folio)
2945 		return -ENOMEM;
2946 	__prep_new_hugetlb_folio(h, new_folio);
2947 
2948 retry:
2949 	spin_lock_irq(&hugetlb_lock);
2950 	if (!folio_test_hugetlb(old_folio)) {
2951 		/*
2952 		 * Freed from under us. Drop new_folio too.
2953 		 */
2954 		goto free_new;
2955 	} else if (folio_ref_count(old_folio)) {
2956 		bool isolated;
2957 
2958 		/*
2959 		 * Someone has grabbed the folio, try to isolate it here.
2960 		 * Fail with -EBUSY if not possible.
2961 		 */
2962 		spin_unlock_irq(&hugetlb_lock);
2963 		isolated = isolate_hugetlb(old_folio, list);
2964 		ret = isolated ? 0 : -EBUSY;
2965 		spin_lock_irq(&hugetlb_lock);
2966 		goto free_new;
2967 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2968 		/*
2969 		 * Folio's refcount is 0 but it has not been enqueued in the
2970 		 * freelist yet. Race window is small, so we can succeed here if
2971 		 * we retry.
2972 		 */
2973 		spin_unlock_irq(&hugetlb_lock);
2974 		cond_resched();
2975 		goto retry;
2976 	} else {
2977 		/*
2978 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2979 		 * the freelist and decrease the counters. These will be
2980 		 * incremented again when calling __prep_account_new_huge_page()
2981 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2982 		 * remain stable since this happens under the lock.
2983 		 */
2984 		remove_hugetlb_folio(h, old_folio, false);
2985 
2986 		/*
2987 		 * Ref count on new_folio is already zero as it was dropped
2988 		 * earlier.  It can be directly added to the pool free list.
2989 		 */
2990 		__prep_account_new_huge_page(h, nid);
2991 		enqueue_hugetlb_folio(h, new_folio);
2992 
2993 		/*
2994 		 * Folio has been replaced, we can safely free the old one.
2995 		 */
2996 		spin_unlock_irq(&hugetlb_lock);
2997 		update_and_free_hugetlb_folio(h, old_folio, false);
2998 	}
2999 
3000 	return ret;
3001 
3002 free_new:
3003 	spin_unlock_irq(&hugetlb_lock);
3004 	/* Folio has a zero ref count, but needs a ref to be freed */
3005 	folio_ref_unfreeze(new_folio, 1);
3006 	update_and_free_hugetlb_folio(h, new_folio, false);
3007 
3008 	return ret;
3009 }
3010 
3011 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3012 {
3013 	struct hstate *h;
3014 	struct folio *folio = page_folio(page);
3015 	int ret = -EBUSY;
3016 
3017 	/*
3018 	 * The page might have been dissolved from under our feet, so make sure
3019 	 * to carefully check the state under the lock.
3020 	 * Return success when racing as if we dissolved the page ourselves.
3021 	 */
3022 	spin_lock_irq(&hugetlb_lock);
3023 	if (folio_test_hugetlb(folio)) {
3024 		h = folio_hstate(folio);
3025 	} else {
3026 		spin_unlock_irq(&hugetlb_lock);
3027 		return 0;
3028 	}
3029 	spin_unlock_irq(&hugetlb_lock);
3030 
3031 	/*
3032 	 * Fence off gigantic pages as there is a cyclic dependency between
3033 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3034 	 * of bailing out right away without further retrying.
3035 	 */
3036 	if (hstate_is_gigantic(h))
3037 		return -ENOMEM;
3038 
3039 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3040 		ret = 0;
3041 	else if (!folio_ref_count(folio))
3042 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3043 
3044 	return ret;
3045 }
3046 
3047 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3048 				    unsigned long addr, int avoid_reserve)
3049 {
3050 	struct hugepage_subpool *spool = subpool_vma(vma);
3051 	struct hstate *h = hstate_vma(vma);
3052 	struct folio *folio;
3053 	long map_chg, map_commit;
3054 	long gbl_chg;
3055 	int ret, idx;
3056 	struct hugetlb_cgroup *h_cg = NULL;
3057 	bool deferred_reserve;
3058 
3059 	idx = hstate_index(h);
3060 	/*
3061 	 * Examine the region/reserve map to determine if the process
3062 	 * has a reservation for the page to be allocated.  A return
3063 	 * code of zero indicates a reservation exists (no change).
3064 	 */
3065 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3066 	if (map_chg < 0)
3067 		return ERR_PTR(-ENOMEM);
3068 
3069 	/*
3070 	 * Processes that did not create the mapping will have no
3071 	 * reserves as indicated by the region/reserve map. Check
3072 	 * that the allocation will not exceed the subpool limit.
3073 	 * Allocations for MAP_NORESERVE mappings also need to be
3074 	 * checked against any subpool limit.
3075 	 */
3076 	if (map_chg || avoid_reserve) {
3077 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3078 		if (gbl_chg < 0) {
3079 			vma_end_reservation(h, vma, addr);
3080 			return ERR_PTR(-ENOSPC);
3081 		}
3082 
3083 		/*
3084 		 * Even though there was no reservation in the region/reserve
3085 		 * map, there could be reservations associated with the
3086 		 * subpool that can be used.  This would be indicated if the
3087 		 * return value of hugepage_subpool_get_pages() is zero.
3088 		 * However, if avoid_reserve is specified we still avoid even
3089 		 * the subpool reservations.
3090 		 */
3091 		if (avoid_reserve)
3092 			gbl_chg = 1;
3093 	}
3094 
3095 	/* If this allocation is not consuming a reservation, charge it now.
3096 	 */
3097 	deferred_reserve = map_chg || avoid_reserve;
3098 	if (deferred_reserve) {
3099 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3100 			idx, pages_per_huge_page(h), &h_cg);
3101 		if (ret)
3102 			goto out_subpool_put;
3103 	}
3104 
3105 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3106 	if (ret)
3107 		goto out_uncharge_cgroup_reservation;
3108 
3109 	spin_lock_irq(&hugetlb_lock);
3110 	/*
3111 	 * glb_chg is passed to indicate whether or not a page must be taken
3112 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3113 	 * a reservation exists for the allocation.
3114 	 */
3115 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3116 	if (!folio) {
3117 		spin_unlock_irq(&hugetlb_lock);
3118 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3119 		if (!folio)
3120 			goto out_uncharge_cgroup;
3121 		spin_lock_irq(&hugetlb_lock);
3122 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3123 			folio_set_hugetlb_restore_reserve(folio);
3124 			h->resv_huge_pages--;
3125 		}
3126 		list_add(&folio->lru, &h->hugepage_activelist);
3127 		folio_ref_unfreeze(folio, 1);
3128 		/* Fall through */
3129 	}
3130 
3131 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3132 	/* If allocation is not consuming a reservation, also store the
3133 	 * hugetlb_cgroup pointer on the page.
3134 	 */
3135 	if (deferred_reserve) {
3136 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3137 						  h_cg, folio);
3138 	}
3139 
3140 	spin_unlock_irq(&hugetlb_lock);
3141 
3142 	hugetlb_set_folio_subpool(folio, spool);
3143 
3144 	map_commit = vma_commit_reservation(h, vma, addr);
3145 	if (unlikely(map_chg > map_commit)) {
3146 		/*
3147 		 * The page was added to the reservation map between
3148 		 * vma_needs_reservation and vma_commit_reservation.
3149 		 * This indicates a race with hugetlb_reserve_pages.
3150 		 * Adjust for the subpool count incremented above AND
3151 		 * in hugetlb_reserve_pages for the same page.  Also,
3152 		 * the reservation count added in hugetlb_reserve_pages
3153 		 * no longer applies.
3154 		 */
3155 		long rsv_adjust;
3156 
3157 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3158 		hugetlb_acct_memory(h, -rsv_adjust);
3159 		if (deferred_reserve)
3160 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3161 					pages_per_huge_page(h), folio);
3162 	}
3163 	return folio;
3164 
3165 out_uncharge_cgroup:
3166 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3167 out_uncharge_cgroup_reservation:
3168 	if (deferred_reserve)
3169 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3170 						    h_cg);
3171 out_subpool_put:
3172 	if (map_chg || avoid_reserve)
3173 		hugepage_subpool_put_pages(spool, 1);
3174 	vma_end_reservation(h, vma, addr);
3175 	return ERR_PTR(-ENOSPC);
3176 }
3177 
3178 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3179 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3180 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3181 {
3182 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3183 	int nr_nodes, node;
3184 
3185 	/* do node specific alloc */
3186 	if (nid != NUMA_NO_NODE) {
3187 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3188 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3189 		if (!m)
3190 			return 0;
3191 		goto found;
3192 	}
3193 	/* allocate from next node when distributing huge pages */
3194 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3195 		m = memblock_alloc_try_nid_raw(
3196 				huge_page_size(h), huge_page_size(h),
3197 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3198 		/*
3199 		 * Use the beginning of the huge page to store the
3200 		 * huge_bootmem_page struct (until gather_bootmem
3201 		 * puts them into the mem_map).
3202 		 */
3203 		if (!m)
3204 			return 0;
3205 		goto found;
3206 	}
3207 
3208 found:
3209 	/* Put them into a private list first because mem_map is not up yet */
3210 	INIT_LIST_HEAD(&m->list);
3211 	list_add(&m->list, &huge_boot_pages);
3212 	m->hstate = h;
3213 	return 1;
3214 }
3215 
3216 /*
3217  * Put bootmem huge pages into the standard lists after mem_map is up.
3218  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3219  */
3220 static void __init gather_bootmem_prealloc(void)
3221 {
3222 	struct huge_bootmem_page *m;
3223 
3224 	list_for_each_entry(m, &huge_boot_pages, list) {
3225 		struct page *page = virt_to_page(m);
3226 		struct folio *folio = page_folio(page);
3227 		struct hstate *h = m->hstate;
3228 
3229 		VM_BUG_ON(!hstate_is_gigantic(h));
3230 		WARN_ON(folio_ref_count(folio) != 1);
3231 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3232 			WARN_ON(folio_test_reserved(folio));
3233 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3234 			free_huge_page(page); /* add to the hugepage allocator */
3235 		} else {
3236 			/* VERY unlikely inflated ref count on a tail page */
3237 			free_gigantic_folio(folio, huge_page_order(h));
3238 		}
3239 
3240 		/*
3241 		 * We need to restore the 'stolen' pages to totalram_pages
3242 		 * in order to fix confusing memory reports from free(1) and
3243 		 * other side-effects, like CommitLimit going negative.
3244 		 */
3245 		adjust_managed_page_count(page, pages_per_huge_page(h));
3246 		cond_resched();
3247 	}
3248 }
3249 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3250 {
3251 	unsigned long i;
3252 	char buf[32];
3253 
3254 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3255 		if (hstate_is_gigantic(h)) {
3256 			if (!alloc_bootmem_huge_page(h, nid))
3257 				break;
3258 		} else {
3259 			struct folio *folio;
3260 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3261 
3262 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3263 					&node_states[N_MEMORY], NULL);
3264 			if (!folio)
3265 				break;
3266 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3267 		}
3268 		cond_resched();
3269 	}
3270 	if (i == h->max_huge_pages_node[nid])
3271 		return;
3272 
3273 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3274 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3275 		h->max_huge_pages_node[nid], buf, nid, i);
3276 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3277 	h->max_huge_pages_node[nid] = i;
3278 }
3279 
3280 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3281 {
3282 	unsigned long i;
3283 	nodemask_t *node_alloc_noretry;
3284 	bool node_specific_alloc = false;
3285 
3286 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3287 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3288 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3289 		return;
3290 	}
3291 
3292 	/* do node specific alloc */
3293 	for_each_online_node(i) {
3294 		if (h->max_huge_pages_node[i] > 0) {
3295 			hugetlb_hstate_alloc_pages_onenode(h, i);
3296 			node_specific_alloc = true;
3297 		}
3298 	}
3299 
3300 	if (node_specific_alloc)
3301 		return;
3302 
3303 	/* below will do all node balanced alloc */
3304 	if (!hstate_is_gigantic(h)) {
3305 		/*
3306 		 * Bit mask controlling how hard we retry per-node allocations.
3307 		 * Ignore errors as lower level routines can deal with
3308 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3309 		 * time, we are likely in bigger trouble.
3310 		 */
3311 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3312 						GFP_KERNEL);
3313 	} else {
3314 		/* allocations done at boot time */
3315 		node_alloc_noretry = NULL;
3316 	}
3317 
3318 	/* bit mask controlling how hard we retry per-node allocations */
3319 	if (node_alloc_noretry)
3320 		nodes_clear(*node_alloc_noretry);
3321 
3322 	for (i = 0; i < h->max_huge_pages; ++i) {
3323 		if (hstate_is_gigantic(h)) {
3324 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3325 				break;
3326 		} else if (!alloc_pool_huge_page(h,
3327 					 &node_states[N_MEMORY],
3328 					 node_alloc_noretry))
3329 			break;
3330 		cond_resched();
3331 	}
3332 	if (i < h->max_huge_pages) {
3333 		char buf[32];
3334 
3335 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3336 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3337 			h->max_huge_pages, buf, i);
3338 		h->max_huge_pages = i;
3339 	}
3340 	kfree(node_alloc_noretry);
3341 }
3342 
3343 static void __init hugetlb_init_hstates(void)
3344 {
3345 	struct hstate *h, *h2;
3346 
3347 	for_each_hstate(h) {
3348 		/* oversize hugepages were init'ed in early boot */
3349 		if (!hstate_is_gigantic(h))
3350 			hugetlb_hstate_alloc_pages(h);
3351 
3352 		/*
3353 		 * Set demote order for each hstate.  Note that
3354 		 * h->demote_order is initially 0.
3355 		 * - We can not demote gigantic pages if runtime freeing
3356 		 *   is not supported, so skip this.
3357 		 * - If CMA allocation is possible, we can not demote
3358 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3359 		 */
3360 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3361 			continue;
3362 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3363 			continue;
3364 		for_each_hstate(h2) {
3365 			if (h2 == h)
3366 				continue;
3367 			if (h2->order < h->order &&
3368 			    h2->order > h->demote_order)
3369 				h->demote_order = h2->order;
3370 		}
3371 	}
3372 }
3373 
3374 static void __init report_hugepages(void)
3375 {
3376 	struct hstate *h;
3377 
3378 	for_each_hstate(h) {
3379 		char buf[32];
3380 
3381 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3382 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3383 			buf, h->free_huge_pages);
3384 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3385 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3386 	}
3387 }
3388 
3389 #ifdef CONFIG_HIGHMEM
3390 static void try_to_free_low(struct hstate *h, unsigned long count,
3391 						nodemask_t *nodes_allowed)
3392 {
3393 	int i;
3394 	LIST_HEAD(page_list);
3395 
3396 	lockdep_assert_held(&hugetlb_lock);
3397 	if (hstate_is_gigantic(h))
3398 		return;
3399 
3400 	/*
3401 	 * Collect pages to be freed on a list, and free after dropping lock
3402 	 */
3403 	for_each_node_mask(i, *nodes_allowed) {
3404 		struct page *page, *next;
3405 		struct list_head *freel = &h->hugepage_freelists[i];
3406 		list_for_each_entry_safe(page, next, freel, lru) {
3407 			if (count >= h->nr_huge_pages)
3408 				goto out;
3409 			if (PageHighMem(page))
3410 				continue;
3411 			remove_hugetlb_folio(h, page_folio(page), false);
3412 			list_add(&page->lru, &page_list);
3413 		}
3414 	}
3415 
3416 out:
3417 	spin_unlock_irq(&hugetlb_lock);
3418 	update_and_free_pages_bulk(h, &page_list);
3419 	spin_lock_irq(&hugetlb_lock);
3420 }
3421 #else
3422 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3423 						nodemask_t *nodes_allowed)
3424 {
3425 }
3426 #endif
3427 
3428 /*
3429  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3430  * balanced by operating on them in a round-robin fashion.
3431  * Returns 1 if an adjustment was made.
3432  */
3433 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3434 				int delta)
3435 {
3436 	int nr_nodes, node;
3437 
3438 	lockdep_assert_held(&hugetlb_lock);
3439 	VM_BUG_ON(delta != -1 && delta != 1);
3440 
3441 	if (delta < 0) {
3442 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3443 			if (h->surplus_huge_pages_node[node])
3444 				goto found;
3445 		}
3446 	} else {
3447 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3448 			if (h->surplus_huge_pages_node[node] <
3449 					h->nr_huge_pages_node[node])
3450 				goto found;
3451 		}
3452 	}
3453 	return 0;
3454 
3455 found:
3456 	h->surplus_huge_pages += delta;
3457 	h->surplus_huge_pages_node[node] += delta;
3458 	return 1;
3459 }
3460 
3461 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3462 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3463 			      nodemask_t *nodes_allowed)
3464 {
3465 	unsigned long min_count, ret;
3466 	struct page *page;
3467 	LIST_HEAD(page_list);
3468 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3469 
3470 	/*
3471 	 * Bit mask controlling how hard we retry per-node allocations.
3472 	 * If we can not allocate the bit mask, do not attempt to allocate
3473 	 * the requested huge pages.
3474 	 */
3475 	if (node_alloc_noretry)
3476 		nodes_clear(*node_alloc_noretry);
3477 	else
3478 		return -ENOMEM;
3479 
3480 	/*
3481 	 * resize_lock mutex prevents concurrent adjustments to number of
3482 	 * pages in hstate via the proc/sysfs interfaces.
3483 	 */
3484 	mutex_lock(&h->resize_lock);
3485 	flush_free_hpage_work(h);
3486 	spin_lock_irq(&hugetlb_lock);
3487 
3488 	/*
3489 	 * Check for a node specific request.
3490 	 * Changing node specific huge page count may require a corresponding
3491 	 * change to the global count.  In any case, the passed node mask
3492 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3493 	 */
3494 	if (nid != NUMA_NO_NODE) {
3495 		unsigned long old_count = count;
3496 
3497 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3498 		/*
3499 		 * User may have specified a large count value which caused the
3500 		 * above calculation to overflow.  In this case, they wanted
3501 		 * to allocate as many huge pages as possible.  Set count to
3502 		 * largest possible value to align with their intention.
3503 		 */
3504 		if (count < old_count)
3505 			count = ULONG_MAX;
3506 	}
3507 
3508 	/*
3509 	 * Gigantic pages runtime allocation depend on the capability for large
3510 	 * page range allocation.
3511 	 * If the system does not provide this feature, return an error when
3512 	 * the user tries to allocate gigantic pages but let the user free the
3513 	 * boottime allocated gigantic pages.
3514 	 */
3515 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3516 		if (count > persistent_huge_pages(h)) {
3517 			spin_unlock_irq(&hugetlb_lock);
3518 			mutex_unlock(&h->resize_lock);
3519 			NODEMASK_FREE(node_alloc_noretry);
3520 			return -EINVAL;
3521 		}
3522 		/* Fall through to decrease pool */
3523 	}
3524 
3525 	/*
3526 	 * Increase the pool size
3527 	 * First take pages out of surplus state.  Then make up the
3528 	 * remaining difference by allocating fresh huge pages.
3529 	 *
3530 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3531 	 * to convert a surplus huge page to a normal huge page. That is
3532 	 * not critical, though, it just means the overall size of the
3533 	 * pool might be one hugepage larger than it needs to be, but
3534 	 * within all the constraints specified by the sysctls.
3535 	 */
3536 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3537 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3538 			break;
3539 	}
3540 
3541 	while (count > persistent_huge_pages(h)) {
3542 		/*
3543 		 * If this allocation races such that we no longer need the
3544 		 * page, free_huge_page will handle it by freeing the page
3545 		 * and reducing the surplus.
3546 		 */
3547 		spin_unlock_irq(&hugetlb_lock);
3548 
3549 		/* yield cpu to avoid soft lockup */
3550 		cond_resched();
3551 
3552 		ret = alloc_pool_huge_page(h, nodes_allowed,
3553 						node_alloc_noretry);
3554 		spin_lock_irq(&hugetlb_lock);
3555 		if (!ret)
3556 			goto out;
3557 
3558 		/* Bail for signals. Probably ctrl-c from user */
3559 		if (signal_pending(current))
3560 			goto out;
3561 	}
3562 
3563 	/*
3564 	 * Decrease the pool size
3565 	 * First return free pages to the buddy allocator (being careful
3566 	 * to keep enough around to satisfy reservations).  Then place
3567 	 * pages into surplus state as needed so the pool will shrink
3568 	 * to the desired size as pages become free.
3569 	 *
3570 	 * By placing pages into the surplus state independent of the
3571 	 * overcommit value, we are allowing the surplus pool size to
3572 	 * exceed overcommit. There are few sane options here. Since
3573 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3574 	 * though, we'll note that we're not allowed to exceed surplus
3575 	 * and won't grow the pool anywhere else. Not until one of the
3576 	 * sysctls are changed, or the surplus pages go out of use.
3577 	 */
3578 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3579 	min_count = max(count, min_count);
3580 	try_to_free_low(h, min_count, nodes_allowed);
3581 
3582 	/*
3583 	 * Collect pages to be removed on list without dropping lock
3584 	 */
3585 	while (min_count < persistent_huge_pages(h)) {
3586 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3587 		if (!page)
3588 			break;
3589 
3590 		list_add(&page->lru, &page_list);
3591 	}
3592 	/* free the pages after dropping lock */
3593 	spin_unlock_irq(&hugetlb_lock);
3594 	update_and_free_pages_bulk(h, &page_list);
3595 	flush_free_hpage_work(h);
3596 	spin_lock_irq(&hugetlb_lock);
3597 
3598 	while (count < persistent_huge_pages(h)) {
3599 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3600 			break;
3601 	}
3602 out:
3603 	h->max_huge_pages = persistent_huge_pages(h);
3604 	spin_unlock_irq(&hugetlb_lock);
3605 	mutex_unlock(&h->resize_lock);
3606 
3607 	NODEMASK_FREE(node_alloc_noretry);
3608 
3609 	return 0;
3610 }
3611 
3612 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3613 {
3614 	int i, nid = folio_nid(folio);
3615 	struct hstate *target_hstate;
3616 	struct page *subpage;
3617 	struct folio *inner_folio;
3618 	int rc = 0;
3619 
3620 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3621 
3622 	remove_hugetlb_folio_for_demote(h, folio, false);
3623 	spin_unlock_irq(&hugetlb_lock);
3624 
3625 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3626 	if (rc) {
3627 		/* Allocation of vmemmmap failed, we can not demote folio */
3628 		spin_lock_irq(&hugetlb_lock);
3629 		folio_ref_unfreeze(folio, 1);
3630 		add_hugetlb_folio(h, folio, false);
3631 		return rc;
3632 	}
3633 
3634 	/*
3635 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3636 	 * sizes as it will not ref count folios.
3637 	 */
3638 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3639 
3640 	/*
3641 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3642 	 * Without the mutex, pages added to target hstate could be marked
3643 	 * as surplus.
3644 	 *
3645 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3646 	 * use the convention of always taking larger size hstate mutex first.
3647 	 */
3648 	mutex_lock(&target_hstate->resize_lock);
3649 	for (i = 0; i < pages_per_huge_page(h);
3650 				i += pages_per_huge_page(target_hstate)) {
3651 		subpage = folio_page(folio, i);
3652 		inner_folio = page_folio(subpage);
3653 		if (hstate_is_gigantic(target_hstate))
3654 			prep_compound_gigantic_folio_for_demote(inner_folio,
3655 							target_hstate->order);
3656 		else
3657 			prep_compound_page(subpage, target_hstate->order);
3658 		folio_change_private(inner_folio, NULL);
3659 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3660 		free_huge_page(subpage);
3661 	}
3662 	mutex_unlock(&target_hstate->resize_lock);
3663 
3664 	spin_lock_irq(&hugetlb_lock);
3665 
3666 	/*
3667 	 * Not absolutely necessary, but for consistency update max_huge_pages
3668 	 * based on pool changes for the demoted page.
3669 	 */
3670 	h->max_huge_pages--;
3671 	target_hstate->max_huge_pages +=
3672 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3673 
3674 	return rc;
3675 }
3676 
3677 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3678 	__must_hold(&hugetlb_lock)
3679 {
3680 	int nr_nodes, node;
3681 	struct folio *folio;
3682 
3683 	lockdep_assert_held(&hugetlb_lock);
3684 
3685 	/* We should never get here if no demote order */
3686 	if (!h->demote_order) {
3687 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3688 		return -EINVAL;		/* internal error */
3689 	}
3690 
3691 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3692 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3693 			if (folio_test_hwpoison(folio))
3694 				continue;
3695 			return demote_free_hugetlb_folio(h, folio);
3696 		}
3697 	}
3698 
3699 	/*
3700 	 * Only way to get here is if all pages on free lists are poisoned.
3701 	 * Return -EBUSY so that caller will not retry.
3702 	 */
3703 	return -EBUSY;
3704 }
3705 
3706 #define HSTATE_ATTR_RO(_name) \
3707 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3708 
3709 #define HSTATE_ATTR_WO(_name) \
3710 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3711 
3712 #define HSTATE_ATTR(_name) \
3713 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3714 
3715 static struct kobject *hugepages_kobj;
3716 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3717 
3718 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3719 
3720 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3721 {
3722 	int i;
3723 
3724 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3725 		if (hstate_kobjs[i] == kobj) {
3726 			if (nidp)
3727 				*nidp = NUMA_NO_NODE;
3728 			return &hstates[i];
3729 		}
3730 
3731 	return kobj_to_node_hstate(kobj, nidp);
3732 }
3733 
3734 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3735 					struct kobj_attribute *attr, char *buf)
3736 {
3737 	struct hstate *h;
3738 	unsigned long nr_huge_pages;
3739 	int nid;
3740 
3741 	h = kobj_to_hstate(kobj, &nid);
3742 	if (nid == NUMA_NO_NODE)
3743 		nr_huge_pages = h->nr_huge_pages;
3744 	else
3745 		nr_huge_pages = h->nr_huge_pages_node[nid];
3746 
3747 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3748 }
3749 
3750 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3751 					   struct hstate *h, int nid,
3752 					   unsigned long count, size_t len)
3753 {
3754 	int err;
3755 	nodemask_t nodes_allowed, *n_mask;
3756 
3757 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3758 		return -EINVAL;
3759 
3760 	if (nid == NUMA_NO_NODE) {
3761 		/*
3762 		 * global hstate attribute
3763 		 */
3764 		if (!(obey_mempolicy &&
3765 				init_nodemask_of_mempolicy(&nodes_allowed)))
3766 			n_mask = &node_states[N_MEMORY];
3767 		else
3768 			n_mask = &nodes_allowed;
3769 	} else {
3770 		/*
3771 		 * Node specific request.  count adjustment happens in
3772 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3773 		 */
3774 		init_nodemask_of_node(&nodes_allowed, nid);
3775 		n_mask = &nodes_allowed;
3776 	}
3777 
3778 	err = set_max_huge_pages(h, count, nid, n_mask);
3779 
3780 	return err ? err : len;
3781 }
3782 
3783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3784 					 struct kobject *kobj, const char *buf,
3785 					 size_t len)
3786 {
3787 	struct hstate *h;
3788 	unsigned long count;
3789 	int nid;
3790 	int err;
3791 
3792 	err = kstrtoul(buf, 10, &count);
3793 	if (err)
3794 		return err;
3795 
3796 	h = kobj_to_hstate(kobj, &nid);
3797 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3798 }
3799 
3800 static ssize_t nr_hugepages_show(struct kobject *kobj,
3801 				       struct kobj_attribute *attr, char *buf)
3802 {
3803 	return nr_hugepages_show_common(kobj, attr, buf);
3804 }
3805 
3806 static ssize_t nr_hugepages_store(struct kobject *kobj,
3807 	       struct kobj_attribute *attr, const char *buf, size_t len)
3808 {
3809 	return nr_hugepages_store_common(false, kobj, buf, len);
3810 }
3811 HSTATE_ATTR(nr_hugepages);
3812 
3813 #ifdef CONFIG_NUMA
3814 
3815 /*
3816  * hstate attribute for optionally mempolicy-based constraint on persistent
3817  * huge page alloc/free.
3818  */
3819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3820 					   struct kobj_attribute *attr,
3821 					   char *buf)
3822 {
3823 	return nr_hugepages_show_common(kobj, attr, buf);
3824 }
3825 
3826 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3827 	       struct kobj_attribute *attr, const char *buf, size_t len)
3828 {
3829 	return nr_hugepages_store_common(true, kobj, buf, len);
3830 }
3831 HSTATE_ATTR(nr_hugepages_mempolicy);
3832 #endif
3833 
3834 
3835 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3836 					struct kobj_attribute *attr, char *buf)
3837 {
3838 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3839 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3840 }
3841 
3842 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3843 		struct kobj_attribute *attr, const char *buf, size_t count)
3844 {
3845 	int err;
3846 	unsigned long input;
3847 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3848 
3849 	if (hstate_is_gigantic(h))
3850 		return -EINVAL;
3851 
3852 	err = kstrtoul(buf, 10, &input);
3853 	if (err)
3854 		return err;
3855 
3856 	spin_lock_irq(&hugetlb_lock);
3857 	h->nr_overcommit_huge_pages = input;
3858 	spin_unlock_irq(&hugetlb_lock);
3859 
3860 	return count;
3861 }
3862 HSTATE_ATTR(nr_overcommit_hugepages);
3863 
3864 static ssize_t free_hugepages_show(struct kobject *kobj,
3865 					struct kobj_attribute *attr, char *buf)
3866 {
3867 	struct hstate *h;
3868 	unsigned long free_huge_pages;
3869 	int nid;
3870 
3871 	h = kobj_to_hstate(kobj, &nid);
3872 	if (nid == NUMA_NO_NODE)
3873 		free_huge_pages = h->free_huge_pages;
3874 	else
3875 		free_huge_pages = h->free_huge_pages_node[nid];
3876 
3877 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3878 }
3879 HSTATE_ATTR_RO(free_hugepages);
3880 
3881 static ssize_t resv_hugepages_show(struct kobject *kobj,
3882 					struct kobj_attribute *attr, char *buf)
3883 {
3884 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3885 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3886 }
3887 HSTATE_ATTR_RO(resv_hugepages);
3888 
3889 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3890 					struct kobj_attribute *attr, char *buf)
3891 {
3892 	struct hstate *h;
3893 	unsigned long surplus_huge_pages;
3894 	int nid;
3895 
3896 	h = kobj_to_hstate(kobj, &nid);
3897 	if (nid == NUMA_NO_NODE)
3898 		surplus_huge_pages = h->surplus_huge_pages;
3899 	else
3900 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3901 
3902 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3903 }
3904 HSTATE_ATTR_RO(surplus_hugepages);
3905 
3906 static ssize_t demote_store(struct kobject *kobj,
3907 	       struct kobj_attribute *attr, const char *buf, size_t len)
3908 {
3909 	unsigned long nr_demote;
3910 	unsigned long nr_available;
3911 	nodemask_t nodes_allowed, *n_mask;
3912 	struct hstate *h;
3913 	int err;
3914 	int nid;
3915 
3916 	err = kstrtoul(buf, 10, &nr_demote);
3917 	if (err)
3918 		return err;
3919 	h = kobj_to_hstate(kobj, &nid);
3920 
3921 	if (nid != NUMA_NO_NODE) {
3922 		init_nodemask_of_node(&nodes_allowed, nid);
3923 		n_mask = &nodes_allowed;
3924 	} else {
3925 		n_mask = &node_states[N_MEMORY];
3926 	}
3927 
3928 	/* Synchronize with other sysfs operations modifying huge pages */
3929 	mutex_lock(&h->resize_lock);
3930 	spin_lock_irq(&hugetlb_lock);
3931 
3932 	while (nr_demote) {
3933 		/*
3934 		 * Check for available pages to demote each time thorough the
3935 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3936 		 */
3937 		if (nid != NUMA_NO_NODE)
3938 			nr_available = h->free_huge_pages_node[nid];
3939 		else
3940 			nr_available = h->free_huge_pages;
3941 		nr_available -= h->resv_huge_pages;
3942 		if (!nr_available)
3943 			break;
3944 
3945 		err = demote_pool_huge_page(h, n_mask);
3946 		if (err)
3947 			break;
3948 
3949 		nr_demote--;
3950 	}
3951 
3952 	spin_unlock_irq(&hugetlb_lock);
3953 	mutex_unlock(&h->resize_lock);
3954 
3955 	if (err)
3956 		return err;
3957 	return len;
3958 }
3959 HSTATE_ATTR_WO(demote);
3960 
3961 static ssize_t demote_size_show(struct kobject *kobj,
3962 					struct kobj_attribute *attr, char *buf)
3963 {
3964 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3965 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3966 
3967 	return sysfs_emit(buf, "%lukB\n", demote_size);
3968 }
3969 
3970 static ssize_t demote_size_store(struct kobject *kobj,
3971 					struct kobj_attribute *attr,
3972 					const char *buf, size_t count)
3973 {
3974 	struct hstate *h, *demote_hstate;
3975 	unsigned long demote_size;
3976 	unsigned int demote_order;
3977 
3978 	demote_size = (unsigned long)memparse(buf, NULL);
3979 
3980 	demote_hstate = size_to_hstate(demote_size);
3981 	if (!demote_hstate)
3982 		return -EINVAL;
3983 	demote_order = demote_hstate->order;
3984 	if (demote_order < HUGETLB_PAGE_ORDER)
3985 		return -EINVAL;
3986 
3987 	/* demote order must be smaller than hstate order */
3988 	h = kobj_to_hstate(kobj, NULL);
3989 	if (demote_order >= h->order)
3990 		return -EINVAL;
3991 
3992 	/* resize_lock synchronizes access to demote size and writes */
3993 	mutex_lock(&h->resize_lock);
3994 	h->demote_order = demote_order;
3995 	mutex_unlock(&h->resize_lock);
3996 
3997 	return count;
3998 }
3999 HSTATE_ATTR(demote_size);
4000 
4001 static struct attribute *hstate_attrs[] = {
4002 	&nr_hugepages_attr.attr,
4003 	&nr_overcommit_hugepages_attr.attr,
4004 	&free_hugepages_attr.attr,
4005 	&resv_hugepages_attr.attr,
4006 	&surplus_hugepages_attr.attr,
4007 #ifdef CONFIG_NUMA
4008 	&nr_hugepages_mempolicy_attr.attr,
4009 #endif
4010 	NULL,
4011 };
4012 
4013 static const struct attribute_group hstate_attr_group = {
4014 	.attrs = hstate_attrs,
4015 };
4016 
4017 static struct attribute *hstate_demote_attrs[] = {
4018 	&demote_size_attr.attr,
4019 	&demote_attr.attr,
4020 	NULL,
4021 };
4022 
4023 static const struct attribute_group hstate_demote_attr_group = {
4024 	.attrs = hstate_demote_attrs,
4025 };
4026 
4027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4028 				    struct kobject **hstate_kobjs,
4029 				    const struct attribute_group *hstate_attr_group)
4030 {
4031 	int retval;
4032 	int hi = hstate_index(h);
4033 
4034 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4035 	if (!hstate_kobjs[hi])
4036 		return -ENOMEM;
4037 
4038 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4039 	if (retval) {
4040 		kobject_put(hstate_kobjs[hi]);
4041 		hstate_kobjs[hi] = NULL;
4042 		return retval;
4043 	}
4044 
4045 	if (h->demote_order) {
4046 		retval = sysfs_create_group(hstate_kobjs[hi],
4047 					    &hstate_demote_attr_group);
4048 		if (retval) {
4049 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4050 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4051 			kobject_put(hstate_kobjs[hi]);
4052 			hstate_kobjs[hi] = NULL;
4053 			return retval;
4054 		}
4055 	}
4056 
4057 	return 0;
4058 }
4059 
4060 #ifdef CONFIG_NUMA
4061 static bool hugetlb_sysfs_initialized __ro_after_init;
4062 
4063 /*
4064  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4065  * with node devices in node_devices[] using a parallel array.  The array
4066  * index of a node device or _hstate == node id.
4067  * This is here to avoid any static dependency of the node device driver, in
4068  * the base kernel, on the hugetlb module.
4069  */
4070 struct node_hstate {
4071 	struct kobject		*hugepages_kobj;
4072 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4073 };
4074 static struct node_hstate node_hstates[MAX_NUMNODES];
4075 
4076 /*
4077  * A subset of global hstate attributes for node devices
4078  */
4079 static struct attribute *per_node_hstate_attrs[] = {
4080 	&nr_hugepages_attr.attr,
4081 	&free_hugepages_attr.attr,
4082 	&surplus_hugepages_attr.attr,
4083 	NULL,
4084 };
4085 
4086 static const struct attribute_group per_node_hstate_attr_group = {
4087 	.attrs = per_node_hstate_attrs,
4088 };
4089 
4090 /*
4091  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4092  * Returns node id via non-NULL nidp.
4093  */
4094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4095 {
4096 	int nid;
4097 
4098 	for (nid = 0; nid < nr_node_ids; nid++) {
4099 		struct node_hstate *nhs = &node_hstates[nid];
4100 		int i;
4101 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4102 			if (nhs->hstate_kobjs[i] == kobj) {
4103 				if (nidp)
4104 					*nidp = nid;
4105 				return &hstates[i];
4106 			}
4107 	}
4108 
4109 	BUG();
4110 	return NULL;
4111 }
4112 
4113 /*
4114  * Unregister hstate attributes from a single node device.
4115  * No-op if no hstate attributes attached.
4116  */
4117 void hugetlb_unregister_node(struct node *node)
4118 {
4119 	struct hstate *h;
4120 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 
4122 	if (!nhs->hugepages_kobj)
4123 		return;		/* no hstate attributes */
4124 
4125 	for_each_hstate(h) {
4126 		int idx = hstate_index(h);
4127 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4128 
4129 		if (!hstate_kobj)
4130 			continue;
4131 		if (h->demote_order)
4132 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4133 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4134 		kobject_put(hstate_kobj);
4135 		nhs->hstate_kobjs[idx] = NULL;
4136 	}
4137 
4138 	kobject_put(nhs->hugepages_kobj);
4139 	nhs->hugepages_kobj = NULL;
4140 }
4141 
4142 
4143 /*
4144  * Register hstate attributes for a single node device.
4145  * No-op if attributes already registered.
4146  */
4147 void hugetlb_register_node(struct node *node)
4148 {
4149 	struct hstate *h;
4150 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4151 	int err;
4152 
4153 	if (!hugetlb_sysfs_initialized)
4154 		return;
4155 
4156 	if (nhs->hugepages_kobj)
4157 		return;		/* already allocated */
4158 
4159 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4160 							&node->dev.kobj);
4161 	if (!nhs->hugepages_kobj)
4162 		return;
4163 
4164 	for_each_hstate(h) {
4165 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4166 						nhs->hstate_kobjs,
4167 						&per_node_hstate_attr_group);
4168 		if (err) {
4169 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4170 				h->name, node->dev.id);
4171 			hugetlb_unregister_node(node);
4172 			break;
4173 		}
4174 	}
4175 }
4176 
4177 /*
4178  * hugetlb init time:  register hstate attributes for all registered node
4179  * devices of nodes that have memory.  All on-line nodes should have
4180  * registered their associated device by this time.
4181  */
4182 static void __init hugetlb_register_all_nodes(void)
4183 {
4184 	int nid;
4185 
4186 	for_each_online_node(nid)
4187 		hugetlb_register_node(node_devices[nid]);
4188 }
4189 #else	/* !CONFIG_NUMA */
4190 
4191 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4192 {
4193 	BUG();
4194 	if (nidp)
4195 		*nidp = -1;
4196 	return NULL;
4197 }
4198 
4199 static void hugetlb_register_all_nodes(void) { }
4200 
4201 #endif
4202 
4203 #ifdef CONFIG_CMA
4204 static void __init hugetlb_cma_check(void);
4205 #else
4206 static inline __init void hugetlb_cma_check(void)
4207 {
4208 }
4209 #endif
4210 
4211 static void __init hugetlb_sysfs_init(void)
4212 {
4213 	struct hstate *h;
4214 	int err;
4215 
4216 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4217 	if (!hugepages_kobj)
4218 		return;
4219 
4220 	for_each_hstate(h) {
4221 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4222 					 hstate_kobjs, &hstate_attr_group);
4223 		if (err)
4224 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4225 	}
4226 
4227 #ifdef CONFIG_NUMA
4228 	hugetlb_sysfs_initialized = true;
4229 #endif
4230 	hugetlb_register_all_nodes();
4231 }
4232 
4233 #ifdef CONFIG_SYSCTL
4234 static void hugetlb_sysctl_init(void);
4235 #else
4236 static inline void hugetlb_sysctl_init(void) { }
4237 #endif
4238 
4239 static int __init hugetlb_init(void)
4240 {
4241 	int i;
4242 
4243 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4244 			__NR_HPAGEFLAGS);
4245 
4246 	if (!hugepages_supported()) {
4247 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4248 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4249 		return 0;
4250 	}
4251 
4252 	/*
4253 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4254 	 * architectures depend on setup being done here.
4255 	 */
4256 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4257 	if (!parsed_default_hugepagesz) {
4258 		/*
4259 		 * If we did not parse a default huge page size, set
4260 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4261 		 * number of huge pages for this default size was implicitly
4262 		 * specified, set that here as well.
4263 		 * Note that the implicit setting will overwrite an explicit
4264 		 * setting.  A warning will be printed in this case.
4265 		 */
4266 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4267 		if (default_hstate_max_huge_pages) {
4268 			if (default_hstate.max_huge_pages) {
4269 				char buf[32];
4270 
4271 				string_get_size(huge_page_size(&default_hstate),
4272 					1, STRING_UNITS_2, buf, 32);
4273 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4274 					default_hstate.max_huge_pages, buf);
4275 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4276 					default_hstate_max_huge_pages);
4277 			}
4278 			default_hstate.max_huge_pages =
4279 				default_hstate_max_huge_pages;
4280 
4281 			for_each_online_node(i)
4282 				default_hstate.max_huge_pages_node[i] =
4283 					default_hugepages_in_node[i];
4284 		}
4285 	}
4286 
4287 	hugetlb_cma_check();
4288 	hugetlb_init_hstates();
4289 	gather_bootmem_prealloc();
4290 	report_hugepages();
4291 
4292 	hugetlb_sysfs_init();
4293 	hugetlb_cgroup_file_init();
4294 	hugetlb_sysctl_init();
4295 
4296 #ifdef CONFIG_SMP
4297 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4298 #else
4299 	num_fault_mutexes = 1;
4300 #endif
4301 	hugetlb_fault_mutex_table =
4302 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4303 			      GFP_KERNEL);
4304 	BUG_ON(!hugetlb_fault_mutex_table);
4305 
4306 	for (i = 0; i < num_fault_mutexes; i++)
4307 		mutex_init(&hugetlb_fault_mutex_table[i]);
4308 	return 0;
4309 }
4310 subsys_initcall(hugetlb_init);
4311 
4312 /* Overwritten by architectures with more huge page sizes */
4313 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4314 {
4315 	return size == HPAGE_SIZE;
4316 }
4317 
4318 void __init hugetlb_add_hstate(unsigned int order)
4319 {
4320 	struct hstate *h;
4321 	unsigned long i;
4322 
4323 	if (size_to_hstate(PAGE_SIZE << order)) {
4324 		return;
4325 	}
4326 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4327 	BUG_ON(order == 0);
4328 	h = &hstates[hugetlb_max_hstate++];
4329 	mutex_init(&h->resize_lock);
4330 	h->order = order;
4331 	h->mask = ~(huge_page_size(h) - 1);
4332 	for (i = 0; i < MAX_NUMNODES; ++i)
4333 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4334 	INIT_LIST_HEAD(&h->hugepage_activelist);
4335 	h->next_nid_to_alloc = first_memory_node;
4336 	h->next_nid_to_free = first_memory_node;
4337 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4338 					huge_page_size(h)/SZ_1K);
4339 
4340 	parsed_hstate = h;
4341 }
4342 
4343 bool __init __weak hugetlb_node_alloc_supported(void)
4344 {
4345 	return true;
4346 }
4347 
4348 static void __init hugepages_clear_pages_in_node(void)
4349 {
4350 	if (!hugetlb_max_hstate) {
4351 		default_hstate_max_huge_pages = 0;
4352 		memset(default_hugepages_in_node, 0,
4353 			sizeof(default_hugepages_in_node));
4354 	} else {
4355 		parsed_hstate->max_huge_pages = 0;
4356 		memset(parsed_hstate->max_huge_pages_node, 0,
4357 			sizeof(parsed_hstate->max_huge_pages_node));
4358 	}
4359 }
4360 
4361 /*
4362  * hugepages command line processing
4363  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4364  * specification.  If not, ignore the hugepages value.  hugepages can also
4365  * be the first huge page command line  option in which case it implicitly
4366  * specifies the number of huge pages for the default size.
4367  */
4368 static int __init hugepages_setup(char *s)
4369 {
4370 	unsigned long *mhp;
4371 	static unsigned long *last_mhp;
4372 	int node = NUMA_NO_NODE;
4373 	int count;
4374 	unsigned long tmp;
4375 	char *p = s;
4376 
4377 	if (!parsed_valid_hugepagesz) {
4378 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4379 		parsed_valid_hugepagesz = true;
4380 		return 1;
4381 	}
4382 
4383 	/*
4384 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4385 	 * yet, so this hugepages= parameter goes to the "default hstate".
4386 	 * Otherwise, it goes with the previously parsed hugepagesz or
4387 	 * default_hugepagesz.
4388 	 */
4389 	else if (!hugetlb_max_hstate)
4390 		mhp = &default_hstate_max_huge_pages;
4391 	else
4392 		mhp = &parsed_hstate->max_huge_pages;
4393 
4394 	if (mhp == last_mhp) {
4395 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4396 		return 1;
4397 	}
4398 
4399 	while (*p) {
4400 		count = 0;
4401 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4402 			goto invalid;
4403 		/* Parameter is node format */
4404 		if (p[count] == ':') {
4405 			if (!hugetlb_node_alloc_supported()) {
4406 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4407 				return 1;
4408 			}
4409 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4410 				goto invalid;
4411 			node = array_index_nospec(tmp, MAX_NUMNODES);
4412 			p += count + 1;
4413 			/* Parse hugepages */
4414 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4415 				goto invalid;
4416 			if (!hugetlb_max_hstate)
4417 				default_hugepages_in_node[node] = tmp;
4418 			else
4419 				parsed_hstate->max_huge_pages_node[node] = tmp;
4420 			*mhp += tmp;
4421 			/* Go to parse next node*/
4422 			if (p[count] == ',')
4423 				p += count + 1;
4424 			else
4425 				break;
4426 		} else {
4427 			if (p != s)
4428 				goto invalid;
4429 			*mhp = tmp;
4430 			break;
4431 		}
4432 	}
4433 
4434 	/*
4435 	 * Global state is always initialized later in hugetlb_init.
4436 	 * But we need to allocate gigantic hstates here early to still
4437 	 * use the bootmem allocator.
4438 	 */
4439 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4440 		hugetlb_hstate_alloc_pages(parsed_hstate);
4441 
4442 	last_mhp = mhp;
4443 
4444 	return 1;
4445 
4446 invalid:
4447 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4448 	hugepages_clear_pages_in_node();
4449 	return 1;
4450 }
4451 __setup("hugepages=", hugepages_setup);
4452 
4453 /*
4454  * hugepagesz command line processing
4455  * A specific huge page size can only be specified once with hugepagesz.
4456  * hugepagesz is followed by hugepages on the command line.  The global
4457  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4458  * hugepagesz argument was valid.
4459  */
4460 static int __init hugepagesz_setup(char *s)
4461 {
4462 	unsigned long size;
4463 	struct hstate *h;
4464 
4465 	parsed_valid_hugepagesz = false;
4466 	size = (unsigned long)memparse(s, NULL);
4467 
4468 	if (!arch_hugetlb_valid_size(size)) {
4469 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4470 		return 1;
4471 	}
4472 
4473 	h = size_to_hstate(size);
4474 	if (h) {
4475 		/*
4476 		 * hstate for this size already exists.  This is normally
4477 		 * an error, but is allowed if the existing hstate is the
4478 		 * default hstate.  More specifically, it is only allowed if
4479 		 * the number of huge pages for the default hstate was not
4480 		 * previously specified.
4481 		 */
4482 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4483 		    default_hstate.max_huge_pages) {
4484 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4485 			return 1;
4486 		}
4487 
4488 		/*
4489 		 * No need to call hugetlb_add_hstate() as hstate already
4490 		 * exists.  But, do set parsed_hstate so that a following
4491 		 * hugepages= parameter will be applied to this hstate.
4492 		 */
4493 		parsed_hstate = h;
4494 		parsed_valid_hugepagesz = true;
4495 		return 1;
4496 	}
4497 
4498 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4499 	parsed_valid_hugepagesz = true;
4500 	return 1;
4501 }
4502 __setup("hugepagesz=", hugepagesz_setup);
4503 
4504 /*
4505  * default_hugepagesz command line input
4506  * Only one instance of default_hugepagesz allowed on command line.
4507  */
4508 static int __init default_hugepagesz_setup(char *s)
4509 {
4510 	unsigned long size;
4511 	int i;
4512 
4513 	parsed_valid_hugepagesz = false;
4514 	if (parsed_default_hugepagesz) {
4515 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4516 		return 1;
4517 	}
4518 
4519 	size = (unsigned long)memparse(s, NULL);
4520 
4521 	if (!arch_hugetlb_valid_size(size)) {
4522 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4523 		return 1;
4524 	}
4525 
4526 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4527 	parsed_valid_hugepagesz = true;
4528 	parsed_default_hugepagesz = true;
4529 	default_hstate_idx = hstate_index(size_to_hstate(size));
4530 
4531 	/*
4532 	 * The number of default huge pages (for this size) could have been
4533 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4534 	 * then default_hstate_max_huge_pages is set.  If the default huge
4535 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4536 	 * allocated here from bootmem allocator.
4537 	 */
4538 	if (default_hstate_max_huge_pages) {
4539 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4540 		for_each_online_node(i)
4541 			default_hstate.max_huge_pages_node[i] =
4542 				default_hugepages_in_node[i];
4543 		if (hstate_is_gigantic(&default_hstate))
4544 			hugetlb_hstate_alloc_pages(&default_hstate);
4545 		default_hstate_max_huge_pages = 0;
4546 	}
4547 
4548 	return 1;
4549 }
4550 __setup("default_hugepagesz=", default_hugepagesz_setup);
4551 
4552 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4553 {
4554 #ifdef CONFIG_NUMA
4555 	struct mempolicy *mpol = get_task_policy(current);
4556 
4557 	/*
4558 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4559 	 * (from policy_nodemask) specifically for hugetlb case
4560 	 */
4561 	if (mpol->mode == MPOL_BIND &&
4562 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4563 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4564 		return &mpol->nodes;
4565 #endif
4566 	return NULL;
4567 }
4568 
4569 static unsigned int allowed_mems_nr(struct hstate *h)
4570 {
4571 	int node;
4572 	unsigned int nr = 0;
4573 	nodemask_t *mbind_nodemask;
4574 	unsigned int *array = h->free_huge_pages_node;
4575 	gfp_t gfp_mask = htlb_alloc_mask(h);
4576 
4577 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4578 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4579 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4580 			nr += array[node];
4581 	}
4582 
4583 	return nr;
4584 }
4585 
4586 #ifdef CONFIG_SYSCTL
4587 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4588 					  void *buffer, size_t *length,
4589 					  loff_t *ppos, unsigned long *out)
4590 {
4591 	struct ctl_table dup_table;
4592 
4593 	/*
4594 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4595 	 * can duplicate the @table and alter the duplicate of it.
4596 	 */
4597 	dup_table = *table;
4598 	dup_table.data = out;
4599 
4600 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4601 }
4602 
4603 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4604 			 struct ctl_table *table, int write,
4605 			 void *buffer, size_t *length, loff_t *ppos)
4606 {
4607 	struct hstate *h = &default_hstate;
4608 	unsigned long tmp = h->max_huge_pages;
4609 	int ret;
4610 
4611 	if (!hugepages_supported())
4612 		return -EOPNOTSUPP;
4613 
4614 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4615 					     &tmp);
4616 	if (ret)
4617 		goto out;
4618 
4619 	if (write)
4620 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4621 						  NUMA_NO_NODE, tmp, *length);
4622 out:
4623 	return ret;
4624 }
4625 
4626 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4627 			  void *buffer, size_t *length, loff_t *ppos)
4628 {
4629 
4630 	return hugetlb_sysctl_handler_common(false, table, write,
4631 							buffer, length, ppos);
4632 }
4633 
4634 #ifdef CONFIG_NUMA
4635 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4636 			  void *buffer, size_t *length, loff_t *ppos)
4637 {
4638 	return hugetlb_sysctl_handler_common(true, table, write,
4639 							buffer, length, ppos);
4640 }
4641 #endif /* CONFIG_NUMA */
4642 
4643 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4644 		void *buffer, size_t *length, loff_t *ppos)
4645 {
4646 	struct hstate *h = &default_hstate;
4647 	unsigned long tmp;
4648 	int ret;
4649 
4650 	if (!hugepages_supported())
4651 		return -EOPNOTSUPP;
4652 
4653 	tmp = h->nr_overcommit_huge_pages;
4654 
4655 	if (write && hstate_is_gigantic(h))
4656 		return -EINVAL;
4657 
4658 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4659 					     &tmp);
4660 	if (ret)
4661 		goto out;
4662 
4663 	if (write) {
4664 		spin_lock_irq(&hugetlb_lock);
4665 		h->nr_overcommit_huge_pages = tmp;
4666 		spin_unlock_irq(&hugetlb_lock);
4667 	}
4668 out:
4669 	return ret;
4670 }
4671 
4672 static struct ctl_table hugetlb_table[] = {
4673 	{
4674 		.procname	= "nr_hugepages",
4675 		.data		= NULL,
4676 		.maxlen		= sizeof(unsigned long),
4677 		.mode		= 0644,
4678 		.proc_handler	= hugetlb_sysctl_handler,
4679 	},
4680 #ifdef CONFIG_NUMA
4681 	{
4682 		.procname       = "nr_hugepages_mempolicy",
4683 		.data           = NULL,
4684 		.maxlen         = sizeof(unsigned long),
4685 		.mode           = 0644,
4686 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4687 	},
4688 #endif
4689 	{
4690 		.procname	= "hugetlb_shm_group",
4691 		.data		= &sysctl_hugetlb_shm_group,
4692 		.maxlen		= sizeof(gid_t),
4693 		.mode		= 0644,
4694 		.proc_handler	= proc_dointvec,
4695 	},
4696 	{
4697 		.procname	= "nr_overcommit_hugepages",
4698 		.data		= NULL,
4699 		.maxlen		= sizeof(unsigned long),
4700 		.mode		= 0644,
4701 		.proc_handler	= hugetlb_overcommit_handler,
4702 	},
4703 	{ }
4704 };
4705 
4706 static void hugetlb_sysctl_init(void)
4707 {
4708 	register_sysctl_init("vm", hugetlb_table);
4709 }
4710 #endif /* CONFIG_SYSCTL */
4711 
4712 void hugetlb_report_meminfo(struct seq_file *m)
4713 {
4714 	struct hstate *h;
4715 	unsigned long total = 0;
4716 
4717 	if (!hugepages_supported())
4718 		return;
4719 
4720 	for_each_hstate(h) {
4721 		unsigned long count = h->nr_huge_pages;
4722 
4723 		total += huge_page_size(h) * count;
4724 
4725 		if (h == &default_hstate)
4726 			seq_printf(m,
4727 				   "HugePages_Total:   %5lu\n"
4728 				   "HugePages_Free:    %5lu\n"
4729 				   "HugePages_Rsvd:    %5lu\n"
4730 				   "HugePages_Surp:    %5lu\n"
4731 				   "Hugepagesize:   %8lu kB\n",
4732 				   count,
4733 				   h->free_huge_pages,
4734 				   h->resv_huge_pages,
4735 				   h->surplus_huge_pages,
4736 				   huge_page_size(h) / SZ_1K);
4737 	}
4738 
4739 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4740 }
4741 
4742 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4743 {
4744 	struct hstate *h = &default_hstate;
4745 
4746 	if (!hugepages_supported())
4747 		return 0;
4748 
4749 	return sysfs_emit_at(buf, len,
4750 			     "Node %d HugePages_Total: %5u\n"
4751 			     "Node %d HugePages_Free:  %5u\n"
4752 			     "Node %d HugePages_Surp:  %5u\n",
4753 			     nid, h->nr_huge_pages_node[nid],
4754 			     nid, h->free_huge_pages_node[nid],
4755 			     nid, h->surplus_huge_pages_node[nid]);
4756 }
4757 
4758 void hugetlb_show_meminfo_node(int nid)
4759 {
4760 	struct hstate *h;
4761 
4762 	if (!hugepages_supported())
4763 		return;
4764 
4765 	for_each_hstate(h)
4766 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4767 			nid,
4768 			h->nr_huge_pages_node[nid],
4769 			h->free_huge_pages_node[nid],
4770 			h->surplus_huge_pages_node[nid],
4771 			huge_page_size(h) / SZ_1K);
4772 }
4773 
4774 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4775 {
4776 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4777 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4778 }
4779 
4780 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4781 unsigned long hugetlb_total_pages(void)
4782 {
4783 	struct hstate *h;
4784 	unsigned long nr_total_pages = 0;
4785 
4786 	for_each_hstate(h)
4787 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4788 	return nr_total_pages;
4789 }
4790 
4791 static int hugetlb_acct_memory(struct hstate *h, long delta)
4792 {
4793 	int ret = -ENOMEM;
4794 
4795 	if (!delta)
4796 		return 0;
4797 
4798 	spin_lock_irq(&hugetlb_lock);
4799 	/*
4800 	 * When cpuset is configured, it breaks the strict hugetlb page
4801 	 * reservation as the accounting is done on a global variable. Such
4802 	 * reservation is completely rubbish in the presence of cpuset because
4803 	 * the reservation is not checked against page availability for the
4804 	 * current cpuset. Application can still potentially OOM'ed by kernel
4805 	 * with lack of free htlb page in cpuset that the task is in.
4806 	 * Attempt to enforce strict accounting with cpuset is almost
4807 	 * impossible (or too ugly) because cpuset is too fluid that
4808 	 * task or memory node can be dynamically moved between cpusets.
4809 	 *
4810 	 * The change of semantics for shared hugetlb mapping with cpuset is
4811 	 * undesirable. However, in order to preserve some of the semantics,
4812 	 * we fall back to check against current free page availability as
4813 	 * a best attempt and hopefully to minimize the impact of changing
4814 	 * semantics that cpuset has.
4815 	 *
4816 	 * Apart from cpuset, we also have memory policy mechanism that
4817 	 * also determines from which node the kernel will allocate memory
4818 	 * in a NUMA system. So similar to cpuset, we also should consider
4819 	 * the memory policy of the current task. Similar to the description
4820 	 * above.
4821 	 */
4822 	if (delta > 0) {
4823 		if (gather_surplus_pages(h, delta) < 0)
4824 			goto out;
4825 
4826 		if (delta > allowed_mems_nr(h)) {
4827 			return_unused_surplus_pages(h, delta);
4828 			goto out;
4829 		}
4830 	}
4831 
4832 	ret = 0;
4833 	if (delta < 0)
4834 		return_unused_surplus_pages(h, (unsigned long) -delta);
4835 
4836 out:
4837 	spin_unlock_irq(&hugetlb_lock);
4838 	return ret;
4839 }
4840 
4841 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4842 {
4843 	struct resv_map *resv = vma_resv_map(vma);
4844 
4845 	/*
4846 	 * HPAGE_RESV_OWNER indicates a private mapping.
4847 	 * This new VMA should share its siblings reservation map if present.
4848 	 * The VMA will only ever have a valid reservation map pointer where
4849 	 * it is being copied for another still existing VMA.  As that VMA
4850 	 * has a reference to the reservation map it cannot disappear until
4851 	 * after this open call completes.  It is therefore safe to take a
4852 	 * new reference here without additional locking.
4853 	 */
4854 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4855 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4856 		kref_get(&resv->refs);
4857 	}
4858 
4859 	/*
4860 	 * vma_lock structure for sharable mappings is vma specific.
4861 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4862 	 * new structure.  Before clearing, make sure vma_lock is not
4863 	 * for this vma.
4864 	 */
4865 	if (vma->vm_flags & VM_MAYSHARE) {
4866 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4867 
4868 		if (vma_lock) {
4869 			if (vma_lock->vma != vma) {
4870 				vma->vm_private_data = NULL;
4871 				hugetlb_vma_lock_alloc(vma);
4872 			} else
4873 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4874 		} else
4875 			hugetlb_vma_lock_alloc(vma);
4876 	}
4877 }
4878 
4879 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4880 {
4881 	struct hstate *h = hstate_vma(vma);
4882 	struct resv_map *resv;
4883 	struct hugepage_subpool *spool = subpool_vma(vma);
4884 	unsigned long reserve, start, end;
4885 	long gbl_reserve;
4886 
4887 	hugetlb_vma_lock_free(vma);
4888 
4889 	resv = vma_resv_map(vma);
4890 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4891 		return;
4892 
4893 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4894 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4895 
4896 	reserve = (end - start) - region_count(resv, start, end);
4897 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4898 	if (reserve) {
4899 		/*
4900 		 * Decrement reserve counts.  The global reserve count may be
4901 		 * adjusted if the subpool has a minimum size.
4902 		 */
4903 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4904 		hugetlb_acct_memory(h, -gbl_reserve);
4905 	}
4906 
4907 	kref_put(&resv->refs, resv_map_release);
4908 }
4909 
4910 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4911 {
4912 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4913 		return -EINVAL;
4914 
4915 	/*
4916 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4917 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4918 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4919 	 */
4920 	if (addr & ~PUD_MASK) {
4921 		/*
4922 		 * hugetlb_vm_op_split is called right before we attempt to
4923 		 * split the VMA. We will need to unshare PMDs in the old and
4924 		 * new VMAs, so let's unshare before we split.
4925 		 */
4926 		unsigned long floor = addr & PUD_MASK;
4927 		unsigned long ceil = floor + PUD_SIZE;
4928 
4929 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4930 			hugetlb_unshare_pmds(vma, floor, ceil);
4931 	}
4932 
4933 	return 0;
4934 }
4935 
4936 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4937 {
4938 	return huge_page_size(hstate_vma(vma));
4939 }
4940 
4941 /*
4942  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4943  * handle_mm_fault() to try to instantiate regular-sized pages in the
4944  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4945  * this far.
4946  */
4947 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4948 {
4949 	BUG();
4950 	return 0;
4951 }
4952 
4953 /*
4954  * When a new function is introduced to vm_operations_struct and added
4955  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4956  * This is because under System V memory model, mappings created via
4957  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4958  * their original vm_ops are overwritten with shm_vm_ops.
4959  */
4960 const struct vm_operations_struct hugetlb_vm_ops = {
4961 	.fault = hugetlb_vm_op_fault,
4962 	.open = hugetlb_vm_op_open,
4963 	.close = hugetlb_vm_op_close,
4964 	.may_split = hugetlb_vm_op_split,
4965 	.pagesize = hugetlb_vm_op_pagesize,
4966 };
4967 
4968 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4969 				int writable)
4970 {
4971 	pte_t entry;
4972 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4973 
4974 	if (writable) {
4975 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4976 					 vma->vm_page_prot)));
4977 	} else {
4978 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4979 					   vma->vm_page_prot));
4980 	}
4981 	entry = pte_mkyoung(entry);
4982 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4983 
4984 	return entry;
4985 }
4986 
4987 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4988 				   unsigned long address, pte_t *ptep)
4989 {
4990 	pte_t entry;
4991 
4992 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4993 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4994 		update_mmu_cache(vma, address, ptep);
4995 }
4996 
4997 bool is_hugetlb_entry_migration(pte_t pte)
4998 {
4999 	swp_entry_t swp;
5000 
5001 	if (huge_pte_none(pte) || pte_present(pte))
5002 		return false;
5003 	swp = pte_to_swp_entry(pte);
5004 	if (is_migration_entry(swp))
5005 		return true;
5006 	else
5007 		return false;
5008 }
5009 
5010 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5011 {
5012 	swp_entry_t swp;
5013 
5014 	if (huge_pte_none(pte) || pte_present(pte))
5015 		return false;
5016 	swp = pte_to_swp_entry(pte);
5017 	if (is_hwpoison_entry(swp))
5018 		return true;
5019 	else
5020 		return false;
5021 }
5022 
5023 static void
5024 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5025 		      struct folio *new_folio, pte_t old)
5026 {
5027 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5028 
5029 	__folio_mark_uptodate(new_folio);
5030 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5031 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5032 		newpte = huge_pte_mkuffd_wp(newpte);
5033 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5034 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5035 	folio_set_hugetlb_migratable(new_folio);
5036 }
5037 
5038 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5039 			    struct vm_area_struct *dst_vma,
5040 			    struct vm_area_struct *src_vma)
5041 {
5042 	pte_t *src_pte, *dst_pte, entry;
5043 	struct folio *pte_folio;
5044 	unsigned long addr;
5045 	bool cow = is_cow_mapping(src_vma->vm_flags);
5046 	struct hstate *h = hstate_vma(src_vma);
5047 	unsigned long sz = huge_page_size(h);
5048 	unsigned long npages = pages_per_huge_page(h);
5049 	struct mmu_notifier_range range;
5050 	unsigned long last_addr_mask;
5051 	int ret = 0;
5052 
5053 	if (cow) {
5054 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5055 					src_vma->vm_start,
5056 					src_vma->vm_end);
5057 		mmu_notifier_invalidate_range_start(&range);
5058 		mmap_assert_write_locked(src);
5059 		raw_write_seqcount_begin(&src->write_protect_seq);
5060 	} else {
5061 		/*
5062 		 * For shared mappings the vma lock must be held before
5063 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5064 		 * returned ptep could go away if part of a shared pmd and
5065 		 * another thread calls huge_pmd_unshare.
5066 		 */
5067 		hugetlb_vma_lock_read(src_vma);
5068 	}
5069 
5070 	last_addr_mask = hugetlb_mask_last_page(h);
5071 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5072 		spinlock_t *src_ptl, *dst_ptl;
5073 		src_pte = hugetlb_walk(src_vma, addr, sz);
5074 		if (!src_pte) {
5075 			addr |= last_addr_mask;
5076 			continue;
5077 		}
5078 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5079 		if (!dst_pte) {
5080 			ret = -ENOMEM;
5081 			break;
5082 		}
5083 
5084 		/*
5085 		 * If the pagetables are shared don't copy or take references.
5086 		 *
5087 		 * dst_pte == src_pte is the common case of src/dest sharing.
5088 		 * However, src could have 'unshared' and dst shares with
5089 		 * another vma. So page_count of ptep page is checked instead
5090 		 * to reliably determine whether pte is shared.
5091 		 */
5092 		if (page_count(virt_to_page(dst_pte)) > 1) {
5093 			addr |= last_addr_mask;
5094 			continue;
5095 		}
5096 
5097 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5098 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5099 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5100 		entry = huge_ptep_get(src_pte);
5101 again:
5102 		if (huge_pte_none(entry)) {
5103 			/*
5104 			 * Skip if src entry none.
5105 			 */
5106 			;
5107 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5108 			if (!userfaultfd_wp(dst_vma))
5109 				entry = huge_pte_clear_uffd_wp(entry);
5110 			set_huge_pte_at(dst, addr, dst_pte, entry);
5111 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5112 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5113 			bool uffd_wp = pte_swp_uffd_wp(entry);
5114 
5115 			if (!is_readable_migration_entry(swp_entry) && cow) {
5116 				/*
5117 				 * COW mappings require pages in both
5118 				 * parent and child to be set to read.
5119 				 */
5120 				swp_entry = make_readable_migration_entry(
5121 							swp_offset(swp_entry));
5122 				entry = swp_entry_to_pte(swp_entry);
5123 				if (userfaultfd_wp(src_vma) && uffd_wp)
5124 					entry = pte_swp_mkuffd_wp(entry);
5125 				set_huge_pte_at(src, addr, src_pte, entry);
5126 			}
5127 			if (!userfaultfd_wp(dst_vma))
5128 				entry = huge_pte_clear_uffd_wp(entry);
5129 			set_huge_pte_at(dst, addr, dst_pte, entry);
5130 		} else if (unlikely(is_pte_marker(entry))) {
5131 			/* No swap on hugetlb */
5132 			WARN_ON_ONCE(
5133 			    is_swapin_error_entry(pte_to_swp_entry(entry)));
5134 			/*
5135 			 * We copy the pte marker only if the dst vma has
5136 			 * uffd-wp enabled.
5137 			 */
5138 			if (userfaultfd_wp(dst_vma))
5139 				set_huge_pte_at(dst, addr, dst_pte, entry);
5140 		} else {
5141 			entry = huge_ptep_get(src_pte);
5142 			pte_folio = page_folio(pte_page(entry));
5143 			folio_get(pte_folio);
5144 
5145 			/*
5146 			 * Failing to duplicate the anon rmap is a rare case
5147 			 * where we see pinned hugetlb pages while they're
5148 			 * prone to COW. We need to do the COW earlier during
5149 			 * fork.
5150 			 *
5151 			 * When pre-allocating the page or copying data, we
5152 			 * need to be without the pgtable locks since we could
5153 			 * sleep during the process.
5154 			 */
5155 			if (!folio_test_anon(pte_folio)) {
5156 				page_dup_file_rmap(&pte_folio->page, true);
5157 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5158 							  true, src_vma)) {
5159 				pte_t src_pte_old = entry;
5160 				struct folio *new_folio;
5161 
5162 				spin_unlock(src_ptl);
5163 				spin_unlock(dst_ptl);
5164 				/* Do not use reserve as it's private owned */
5165 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5166 				if (IS_ERR(new_folio)) {
5167 					folio_put(pte_folio);
5168 					ret = PTR_ERR(new_folio);
5169 					break;
5170 				}
5171 				ret = copy_user_large_folio(new_folio,
5172 							    pte_folio,
5173 							    addr, dst_vma);
5174 				folio_put(pte_folio);
5175 				if (ret) {
5176 					folio_put(new_folio);
5177 					break;
5178 				}
5179 
5180 				/* Install the new hugetlb folio if src pte stable */
5181 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5182 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5183 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5184 				entry = huge_ptep_get(src_pte);
5185 				if (!pte_same(src_pte_old, entry)) {
5186 					restore_reserve_on_error(h, dst_vma, addr,
5187 								new_folio);
5188 					folio_put(new_folio);
5189 					/* huge_ptep of dst_pte won't change as in child */
5190 					goto again;
5191 				}
5192 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5193 						      new_folio, src_pte_old);
5194 				spin_unlock(src_ptl);
5195 				spin_unlock(dst_ptl);
5196 				continue;
5197 			}
5198 
5199 			if (cow) {
5200 				/*
5201 				 * No need to notify as we are downgrading page
5202 				 * table protection not changing it to point
5203 				 * to a new page.
5204 				 *
5205 				 * See Documentation/mm/mmu_notifier.rst
5206 				 */
5207 				huge_ptep_set_wrprotect(src, addr, src_pte);
5208 				entry = huge_pte_wrprotect(entry);
5209 			}
5210 
5211 			if (!userfaultfd_wp(dst_vma))
5212 				entry = huge_pte_clear_uffd_wp(entry);
5213 
5214 			set_huge_pte_at(dst, addr, dst_pte, entry);
5215 			hugetlb_count_add(npages, dst);
5216 		}
5217 		spin_unlock(src_ptl);
5218 		spin_unlock(dst_ptl);
5219 	}
5220 
5221 	if (cow) {
5222 		raw_write_seqcount_end(&src->write_protect_seq);
5223 		mmu_notifier_invalidate_range_end(&range);
5224 	} else {
5225 		hugetlb_vma_unlock_read(src_vma);
5226 	}
5227 
5228 	return ret;
5229 }
5230 
5231 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5232 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5233 {
5234 	struct hstate *h = hstate_vma(vma);
5235 	struct mm_struct *mm = vma->vm_mm;
5236 	spinlock_t *src_ptl, *dst_ptl;
5237 	pte_t pte;
5238 
5239 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5240 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5241 
5242 	/*
5243 	 * We don't have to worry about the ordering of src and dst ptlocks
5244 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5245 	 */
5246 	if (src_ptl != dst_ptl)
5247 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5248 
5249 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5250 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5251 
5252 	if (src_ptl != dst_ptl)
5253 		spin_unlock(src_ptl);
5254 	spin_unlock(dst_ptl);
5255 }
5256 
5257 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5258 			     struct vm_area_struct *new_vma,
5259 			     unsigned long old_addr, unsigned long new_addr,
5260 			     unsigned long len)
5261 {
5262 	struct hstate *h = hstate_vma(vma);
5263 	struct address_space *mapping = vma->vm_file->f_mapping;
5264 	unsigned long sz = huge_page_size(h);
5265 	struct mm_struct *mm = vma->vm_mm;
5266 	unsigned long old_end = old_addr + len;
5267 	unsigned long last_addr_mask;
5268 	pte_t *src_pte, *dst_pte;
5269 	struct mmu_notifier_range range;
5270 	bool shared_pmd = false;
5271 
5272 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5273 				old_end);
5274 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5275 	/*
5276 	 * In case of shared PMDs, we should cover the maximum possible
5277 	 * range.
5278 	 */
5279 	flush_cache_range(vma, range.start, range.end);
5280 
5281 	mmu_notifier_invalidate_range_start(&range);
5282 	last_addr_mask = hugetlb_mask_last_page(h);
5283 	/* Prevent race with file truncation */
5284 	hugetlb_vma_lock_write(vma);
5285 	i_mmap_lock_write(mapping);
5286 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5287 		src_pte = hugetlb_walk(vma, old_addr, sz);
5288 		if (!src_pte) {
5289 			old_addr |= last_addr_mask;
5290 			new_addr |= last_addr_mask;
5291 			continue;
5292 		}
5293 		if (huge_pte_none(huge_ptep_get(src_pte)))
5294 			continue;
5295 
5296 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5297 			shared_pmd = true;
5298 			old_addr |= last_addr_mask;
5299 			new_addr |= last_addr_mask;
5300 			continue;
5301 		}
5302 
5303 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5304 		if (!dst_pte)
5305 			break;
5306 
5307 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5308 	}
5309 
5310 	if (shared_pmd)
5311 		flush_tlb_range(vma, range.start, range.end);
5312 	else
5313 		flush_tlb_range(vma, old_end - len, old_end);
5314 	mmu_notifier_invalidate_range_end(&range);
5315 	i_mmap_unlock_write(mapping);
5316 	hugetlb_vma_unlock_write(vma);
5317 
5318 	return len + old_addr - old_end;
5319 }
5320 
5321 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5322 				   unsigned long start, unsigned long end,
5323 				   struct page *ref_page, zap_flags_t zap_flags)
5324 {
5325 	struct mm_struct *mm = vma->vm_mm;
5326 	unsigned long address;
5327 	pte_t *ptep;
5328 	pte_t pte;
5329 	spinlock_t *ptl;
5330 	struct page *page;
5331 	struct hstate *h = hstate_vma(vma);
5332 	unsigned long sz = huge_page_size(h);
5333 	unsigned long last_addr_mask;
5334 	bool force_flush = false;
5335 
5336 	WARN_ON(!is_vm_hugetlb_page(vma));
5337 	BUG_ON(start & ~huge_page_mask(h));
5338 	BUG_ON(end & ~huge_page_mask(h));
5339 
5340 	/*
5341 	 * This is a hugetlb vma, all the pte entries should point
5342 	 * to huge page.
5343 	 */
5344 	tlb_change_page_size(tlb, sz);
5345 	tlb_start_vma(tlb, vma);
5346 
5347 	last_addr_mask = hugetlb_mask_last_page(h);
5348 	address = start;
5349 	for (; address < end; address += sz) {
5350 		ptep = hugetlb_walk(vma, address, sz);
5351 		if (!ptep) {
5352 			address |= last_addr_mask;
5353 			continue;
5354 		}
5355 
5356 		ptl = huge_pte_lock(h, mm, ptep);
5357 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5358 			spin_unlock(ptl);
5359 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5360 			force_flush = true;
5361 			address |= last_addr_mask;
5362 			continue;
5363 		}
5364 
5365 		pte = huge_ptep_get(ptep);
5366 		if (huge_pte_none(pte)) {
5367 			spin_unlock(ptl);
5368 			continue;
5369 		}
5370 
5371 		/*
5372 		 * Migrating hugepage or HWPoisoned hugepage is already
5373 		 * unmapped and its refcount is dropped, so just clear pte here.
5374 		 */
5375 		if (unlikely(!pte_present(pte))) {
5376 			/*
5377 			 * If the pte was wr-protected by uffd-wp in any of the
5378 			 * swap forms, meanwhile the caller does not want to
5379 			 * drop the uffd-wp bit in this zap, then replace the
5380 			 * pte with a marker.
5381 			 */
5382 			if (pte_swp_uffd_wp_any(pte) &&
5383 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5384 				set_huge_pte_at(mm, address, ptep,
5385 						make_pte_marker(PTE_MARKER_UFFD_WP));
5386 			else
5387 				huge_pte_clear(mm, address, ptep, sz);
5388 			spin_unlock(ptl);
5389 			continue;
5390 		}
5391 
5392 		page = pte_page(pte);
5393 		/*
5394 		 * If a reference page is supplied, it is because a specific
5395 		 * page is being unmapped, not a range. Ensure the page we
5396 		 * are about to unmap is the actual page of interest.
5397 		 */
5398 		if (ref_page) {
5399 			if (page != ref_page) {
5400 				spin_unlock(ptl);
5401 				continue;
5402 			}
5403 			/*
5404 			 * Mark the VMA as having unmapped its page so that
5405 			 * future faults in this VMA will fail rather than
5406 			 * looking like data was lost
5407 			 */
5408 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5409 		}
5410 
5411 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5412 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5413 		if (huge_pte_dirty(pte))
5414 			set_page_dirty(page);
5415 		/* Leave a uffd-wp pte marker if needed */
5416 		if (huge_pte_uffd_wp(pte) &&
5417 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5418 			set_huge_pte_at(mm, address, ptep,
5419 					make_pte_marker(PTE_MARKER_UFFD_WP));
5420 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5421 		page_remove_rmap(page, vma, true);
5422 
5423 		spin_unlock(ptl);
5424 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5425 		/*
5426 		 * Bail out after unmapping reference page if supplied
5427 		 */
5428 		if (ref_page)
5429 			break;
5430 	}
5431 	tlb_end_vma(tlb, vma);
5432 
5433 	/*
5434 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5435 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5436 	 * guaranteed that the last refernece would not be dropped. But we must
5437 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5438 	 * dropped and the last reference to the shared PMDs page might be
5439 	 * dropped as well.
5440 	 *
5441 	 * In theory we could defer the freeing of the PMD pages as well, but
5442 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5443 	 * detect sharing, so we cannot defer the release of the page either.
5444 	 * Instead, do flush now.
5445 	 */
5446 	if (force_flush)
5447 		tlb_flush_mmu_tlbonly(tlb);
5448 }
5449 
5450 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5451 			  struct vm_area_struct *vma, unsigned long start,
5452 			  unsigned long end, struct page *ref_page,
5453 			  zap_flags_t zap_flags)
5454 {
5455 	hugetlb_vma_lock_write(vma);
5456 	i_mmap_lock_write(vma->vm_file->f_mapping);
5457 
5458 	/* mmu notification performed in caller */
5459 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5460 
5461 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5462 		/*
5463 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5464 		 * When the vma_lock is freed, this makes the vma ineligible
5465 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5466 		 * pmd sharing.  This is important as page tables for this
5467 		 * unmapped range will be asynchrously deleted.  If the page
5468 		 * tables are shared, there will be issues when accessed by
5469 		 * someone else.
5470 		 */
5471 		__hugetlb_vma_unlock_write_free(vma);
5472 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5473 	} else {
5474 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5475 		hugetlb_vma_unlock_write(vma);
5476 	}
5477 }
5478 
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480 			  unsigned long end, struct page *ref_page,
5481 			  zap_flags_t zap_flags)
5482 {
5483 	struct mmu_notifier_range range;
5484 	struct mmu_gather tlb;
5485 
5486 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5487 				start, end);
5488 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489 	mmu_notifier_invalidate_range_start(&range);
5490 	tlb_gather_mmu(&tlb, vma->vm_mm);
5491 
5492 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5493 
5494 	mmu_notifier_invalidate_range_end(&range);
5495 	tlb_finish_mmu(&tlb);
5496 }
5497 
5498 /*
5499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500  * mapping it owns the reserve page for. The intention is to unmap the page
5501  * from other VMAs and let the children be SIGKILLed if they are faulting the
5502  * same region.
5503  */
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505 			      struct page *page, unsigned long address)
5506 {
5507 	struct hstate *h = hstate_vma(vma);
5508 	struct vm_area_struct *iter_vma;
5509 	struct address_space *mapping;
5510 	pgoff_t pgoff;
5511 
5512 	/*
5513 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514 	 * from page cache lookup which is in HPAGE_SIZE units.
5515 	 */
5516 	address = address & huge_page_mask(h);
5517 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5518 			vma->vm_pgoff;
5519 	mapping = vma->vm_file->f_mapping;
5520 
5521 	/*
5522 	 * Take the mapping lock for the duration of the table walk. As
5523 	 * this mapping should be shared between all the VMAs,
5524 	 * __unmap_hugepage_range() is called as the lock is already held
5525 	 */
5526 	i_mmap_lock_write(mapping);
5527 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528 		/* Do not unmap the current VMA */
5529 		if (iter_vma == vma)
5530 			continue;
5531 
5532 		/*
5533 		 * Shared VMAs have their own reserves and do not affect
5534 		 * MAP_PRIVATE accounting but it is possible that a shared
5535 		 * VMA is using the same page so check and skip such VMAs.
5536 		 */
5537 		if (iter_vma->vm_flags & VM_MAYSHARE)
5538 			continue;
5539 
5540 		/*
5541 		 * Unmap the page from other VMAs without their own reserves.
5542 		 * They get marked to be SIGKILLed if they fault in these
5543 		 * areas. This is because a future no-page fault on this VMA
5544 		 * could insert a zeroed page instead of the data existing
5545 		 * from the time of fork. This would look like data corruption
5546 		 */
5547 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548 			unmap_hugepage_range(iter_vma, address,
5549 					     address + huge_page_size(h), page, 0);
5550 	}
5551 	i_mmap_unlock_write(mapping);
5552 }
5553 
5554 /*
5555  * hugetlb_wp() should be called with page lock of the original hugepage held.
5556  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557  * cannot race with other handlers or page migration.
5558  * Keep the pte_same checks anyway to make transition from the mutex easier.
5559  */
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561 		       unsigned long address, pte_t *ptep, unsigned int flags,
5562 		       struct folio *pagecache_folio, spinlock_t *ptl)
5563 {
5564 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565 	pte_t pte = huge_ptep_get(ptep);
5566 	struct hstate *h = hstate_vma(vma);
5567 	struct folio *old_folio;
5568 	struct folio *new_folio;
5569 	int outside_reserve = 0;
5570 	vm_fault_t ret = 0;
5571 	unsigned long haddr = address & huge_page_mask(h);
5572 	struct mmu_notifier_range range;
5573 
5574 	/*
5575 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5576 	 * handled when the uffd-wp protection is removed.
5577 	 *
5578 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5579 	 * can trigger this, because hugetlb_fault() will always resolve
5580 	 * uffd-wp bit first.
5581 	 */
5582 	if (!unshare && huge_pte_uffd_wp(pte))
5583 		return 0;
5584 
5585 	/*
5586 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5588 	 */
5589 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590 		return VM_FAULT_SIGSEGV;
5591 
5592 	/* Let's take out MAP_SHARED mappings first. */
5593 	if (vma->vm_flags & VM_MAYSHARE) {
5594 		set_huge_ptep_writable(vma, haddr, ptep);
5595 		return 0;
5596 	}
5597 
5598 	old_folio = page_folio(pte_page(pte));
5599 
5600 	delayacct_wpcopy_start();
5601 
5602 retry_avoidcopy:
5603 	/*
5604 	 * If no-one else is actually using this page, we're the exclusive
5605 	 * owner and can reuse this page.
5606 	 */
5607 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608 		if (!PageAnonExclusive(&old_folio->page))
5609 			page_move_anon_rmap(&old_folio->page, vma);
5610 		if (likely(!unshare))
5611 			set_huge_ptep_writable(vma, haddr, ptep);
5612 
5613 		delayacct_wpcopy_end();
5614 		return 0;
5615 	}
5616 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5618 
5619 	/*
5620 	 * If the process that created a MAP_PRIVATE mapping is about to
5621 	 * perform a COW due to a shared page count, attempt to satisfy
5622 	 * the allocation without using the existing reserves. The pagecache
5623 	 * page is used to determine if the reserve at this address was
5624 	 * consumed or not. If reserves were used, a partial faulted mapping
5625 	 * at the time of fork() could consume its reserves on COW instead
5626 	 * of the full address range.
5627 	 */
5628 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629 			old_folio != pagecache_folio)
5630 		outside_reserve = 1;
5631 
5632 	folio_get(old_folio);
5633 
5634 	/*
5635 	 * Drop page table lock as buddy allocator may be called. It will
5636 	 * be acquired again before returning to the caller, as expected.
5637 	 */
5638 	spin_unlock(ptl);
5639 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5640 
5641 	if (IS_ERR(new_folio)) {
5642 		/*
5643 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5644 		 * it is due to references held by a child and an insufficient
5645 		 * huge page pool. To guarantee the original mappers
5646 		 * reliability, unmap the page from child processes. The child
5647 		 * may get SIGKILLed if it later faults.
5648 		 */
5649 		if (outside_reserve) {
5650 			struct address_space *mapping = vma->vm_file->f_mapping;
5651 			pgoff_t idx;
5652 			u32 hash;
5653 
5654 			folio_put(old_folio);
5655 			/*
5656 			 * Drop hugetlb_fault_mutex and vma_lock before
5657 			 * unmapping.  unmapping needs to hold vma_lock
5658 			 * in write mode.  Dropping vma_lock in read mode
5659 			 * here is OK as COW mappings do not interact with
5660 			 * PMD sharing.
5661 			 *
5662 			 * Reacquire both after unmap operation.
5663 			 */
5664 			idx = vma_hugecache_offset(h, vma, haddr);
5665 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5666 			hugetlb_vma_unlock_read(vma);
5667 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5668 
5669 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5670 
5671 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672 			hugetlb_vma_lock_read(vma);
5673 			spin_lock(ptl);
5674 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5675 			if (likely(ptep &&
5676 				   pte_same(huge_ptep_get(ptep), pte)))
5677 				goto retry_avoidcopy;
5678 			/*
5679 			 * race occurs while re-acquiring page table
5680 			 * lock, and our job is done.
5681 			 */
5682 			delayacct_wpcopy_end();
5683 			return 0;
5684 		}
5685 
5686 		ret = vmf_error(PTR_ERR(new_folio));
5687 		goto out_release_old;
5688 	}
5689 
5690 	/*
5691 	 * When the original hugepage is shared one, it does not have
5692 	 * anon_vma prepared.
5693 	 */
5694 	if (unlikely(anon_vma_prepare(vma))) {
5695 		ret = VM_FAULT_OOM;
5696 		goto out_release_all;
5697 	}
5698 
5699 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700 		ret = VM_FAULT_HWPOISON_LARGE;
5701 		goto out_release_all;
5702 	}
5703 	__folio_mark_uptodate(new_folio);
5704 
5705 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706 				haddr + huge_page_size(h));
5707 	mmu_notifier_invalidate_range_start(&range);
5708 
5709 	/*
5710 	 * Retake the page table lock to check for racing updates
5711 	 * before the page tables are altered
5712 	 */
5713 	spin_lock(ptl);
5714 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5717 
5718 		/* Break COW or unshare */
5719 		huge_ptep_clear_flush(vma, haddr, ptep);
5720 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5721 		page_remove_rmap(&old_folio->page, vma, true);
5722 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5723 		if (huge_pte_uffd_wp(pte))
5724 			newpte = huge_pte_mkuffd_wp(newpte);
5725 		set_huge_pte_at(mm, haddr, ptep, newpte);
5726 		folio_set_hugetlb_migratable(new_folio);
5727 		/* Make the old page be freed below */
5728 		new_folio = old_folio;
5729 	}
5730 	spin_unlock(ptl);
5731 	mmu_notifier_invalidate_range_end(&range);
5732 out_release_all:
5733 	/*
5734 	 * No restore in case of successful pagetable update (Break COW or
5735 	 * unshare)
5736 	 */
5737 	if (new_folio != old_folio)
5738 		restore_reserve_on_error(h, vma, haddr, new_folio);
5739 	folio_put(new_folio);
5740 out_release_old:
5741 	folio_put(old_folio);
5742 
5743 	spin_lock(ptl); /* Caller expects lock to be held */
5744 
5745 	delayacct_wpcopy_end();
5746 	return ret;
5747 }
5748 
5749 /*
5750  * Return whether there is a pagecache page to back given address within VMA.
5751  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5752  */
5753 static bool hugetlbfs_pagecache_present(struct hstate *h,
5754 			struct vm_area_struct *vma, unsigned long address)
5755 {
5756 	struct address_space *mapping = vma->vm_file->f_mapping;
5757 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5758 	struct folio *folio;
5759 
5760 	folio = filemap_get_folio(mapping, idx);
5761 	if (IS_ERR(folio))
5762 		return false;
5763 	folio_put(folio);
5764 	return true;
5765 }
5766 
5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5768 			   pgoff_t idx)
5769 {
5770 	struct inode *inode = mapping->host;
5771 	struct hstate *h = hstate_inode(inode);
5772 	int err;
5773 
5774 	__folio_set_locked(folio);
5775 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5776 
5777 	if (unlikely(err)) {
5778 		__folio_clear_locked(folio);
5779 		return err;
5780 	}
5781 	folio_clear_hugetlb_restore_reserve(folio);
5782 
5783 	/*
5784 	 * mark folio dirty so that it will not be removed from cache/file
5785 	 * by non-hugetlbfs specific code paths.
5786 	 */
5787 	folio_mark_dirty(folio);
5788 
5789 	spin_lock(&inode->i_lock);
5790 	inode->i_blocks += blocks_per_huge_page(h);
5791 	spin_unlock(&inode->i_lock);
5792 	return 0;
5793 }
5794 
5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5796 						  struct address_space *mapping,
5797 						  pgoff_t idx,
5798 						  unsigned int flags,
5799 						  unsigned long haddr,
5800 						  unsigned long addr,
5801 						  unsigned long reason)
5802 {
5803 	u32 hash;
5804 	struct vm_fault vmf = {
5805 		.vma = vma,
5806 		.address = haddr,
5807 		.real_address = addr,
5808 		.flags = flags,
5809 
5810 		/*
5811 		 * Hard to debug if it ends up being
5812 		 * used by a callee that assumes
5813 		 * something about the other
5814 		 * uninitialized fields... same as in
5815 		 * memory.c
5816 		 */
5817 	};
5818 
5819 	/*
5820 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5821 	 * userfault. Also mmap_lock could be dropped due to handling
5822 	 * userfault, any vma operation should be careful from here.
5823 	 */
5824 	hugetlb_vma_unlock_read(vma);
5825 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5826 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5827 	return handle_userfault(&vmf, reason);
5828 }
5829 
5830 /*
5831  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5832  * false if pte changed or is changing.
5833  */
5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5835 			       pte_t *ptep, pte_t old_pte)
5836 {
5837 	spinlock_t *ptl;
5838 	bool same;
5839 
5840 	ptl = huge_pte_lock(h, mm, ptep);
5841 	same = pte_same(huge_ptep_get(ptep), old_pte);
5842 	spin_unlock(ptl);
5843 
5844 	return same;
5845 }
5846 
5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5848 			struct vm_area_struct *vma,
5849 			struct address_space *mapping, pgoff_t idx,
5850 			unsigned long address, pte_t *ptep,
5851 			pte_t old_pte, unsigned int flags)
5852 {
5853 	struct hstate *h = hstate_vma(vma);
5854 	vm_fault_t ret = VM_FAULT_SIGBUS;
5855 	int anon_rmap = 0;
5856 	unsigned long size;
5857 	struct folio *folio;
5858 	pte_t new_pte;
5859 	spinlock_t *ptl;
5860 	unsigned long haddr = address & huge_page_mask(h);
5861 	bool new_folio, new_pagecache_folio = false;
5862 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5863 
5864 	/*
5865 	 * Currently, we are forced to kill the process in the event the
5866 	 * original mapper has unmapped pages from the child due to a failed
5867 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5868 	 * be obvious.
5869 	 */
5870 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5871 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5872 			   current->pid);
5873 		goto out;
5874 	}
5875 
5876 	/*
5877 	 * Use page lock to guard against racing truncation
5878 	 * before we get page_table_lock.
5879 	 */
5880 	new_folio = false;
5881 	folio = filemap_lock_folio(mapping, idx);
5882 	if (IS_ERR(folio)) {
5883 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5884 		if (idx >= size)
5885 			goto out;
5886 		/* Check for page in userfault range */
5887 		if (userfaultfd_missing(vma)) {
5888 			/*
5889 			 * Since hugetlb_no_page() was examining pte
5890 			 * without pgtable lock, we need to re-test under
5891 			 * lock because the pte may not be stable and could
5892 			 * have changed from under us.  Try to detect
5893 			 * either changed or during-changing ptes and retry
5894 			 * properly when needed.
5895 			 *
5896 			 * Note that userfaultfd is actually fine with
5897 			 * false positives (e.g. caused by pte changed),
5898 			 * but not wrong logical events (e.g. caused by
5899 			 * reading a pte during changing).  The latter can
5900 			 * confuse the userspace, so the strictness is very
5901 			 * much preferred.  E.g., MISSING event should
5902 			 * never happen on the page after UFFDIO_COPY has
5903 			 * correctly installed the page and returned.
5904 			 */
5905 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5906 				ret = 0;
5907 				goto out;
5908 			}
5909 
5910 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5911 							haddr, address,
5912 							VM_UFFD_MISSING);
5913 		}
5914 
5915 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5916 		if (IS_ERR(folio)) {
5917 			/*
5918 			 * Returning error will result in faulting task being
5919 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5920 			 * tasks from racing to fault in the same page which
5921 			 * could result in false unable to allocate errors.
5922 			 * Page migration does not take the fault mutex, but
5923 			 * does a clear then write of pte's under page table
5924 			 * lock.  Page fault code could race with migration,
5925 			 * notice the clear pte and try to allocate a page
5926 			 * here.  Before returning error, get ptl and make
5927 			 * sure there really is no pte entry.
5928 			 */
5929 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5930 				ret = vmf_error(PTR_ERR(folio));
5931 			else
5932 				ret = 0;
5933 			goto out;
5934 		}
5935 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5936 		__folio_mark_uptodate(folio);
5937 		new_folio = true;
5938 
5939 		if (vma->vm_flags & VM_MAYSHARE) {
5940 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5941 			if (err) {
5942 				/*
5943 				 * err can't be -EEXIST which implies someone
5944 				 * else consumed the reservation since hugetlb
5945 				 * fault mutex is held when add a hugetlb page
5946 				 * to the page cache. So it's safe to call
5947 				 * restore_reserve_on_error() here.
5948 				 */
5949 				restore_reserve_on_error(h, vma, haddr, folio);
5950 				folio_put(folio);
5951 				goto out;
5952 			}
5953 			new_pagecache_folio = true;
5954 		} else {
5955 			folio_lock(folio);
5956 			if (unlikely(anon_vma_prepare(vma))) {
5957 				ret = VM_FAULT_OOM;
5958 				goto backout_unlocked;
5959 			}
5960 			anon_rmap = 1;
5961 		}
5962 	} else {
5963 		/*
5964 		 * If memory error occurs between mmap() and fault, some process
5965 		 * don't have hwpoisoned swap entry for errored virtual address.
5966 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5967 		 */
5968 		if (unlikely(folio_test_hwpoison(folio))) {
5969 			ret = VM_FAULT_HWPOISON_LARGE |
5970 				VM_FAULT_SET_HINDEX(hstate_index(h));
5971 			goto backout_unlocked;
5972 		}
5973 
5974 		/* Check for page in userfault range. */
5975 		if (userfaultfd_minor(vma)) {
5976 			folio_unlock(folio);
5977 			folio_put(folio);
5978 			/* See comment in userfaultfd_missing() block above */
5979 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5980 				ret = 0;
5981 				goto out;
5982 			}
5983 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5984 							haddr, address,
5985 							VM_UFFD_MINOR);
5986 		}
5987 	}
5988 
5989 	/*
5990 	 * If we are going to COW a private mapping later, we examine the
5991 	 * pending reservations for this page now. This will ensure that
5992 	 * any allocations necessary to record that reservation occur outside
5993 	 * the spinlock.
5994 	 */
5995 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5997 			ret = VM_FAULT_OOM;
5998 			goto backout_unlocked;
5999 		}
6000 		/* Just decrements count, does not deallocate */
6001 		vma_end_reservation(h, vma, haddr);
6002 	}
6003 
6004 	ptl = huge_pte_lock(h, mm, ptep);
6005 	ret = 0;
6006 	/* If pte changed from under us, retry */
6007 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6008 		goto backout;
6009 
6010 	if (anon_rmap)
6011 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6012 	else
6013 		page_dup_file_rmap(&folio->page, true);
6014 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6015 				&& (vma->vm_flags & VM_SHARED)));
6016 	/*
6017 	 * If this pte was previously wr-protected, keep it wr-protected even
6018 	 * if populated.
6019 	 */
6020 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6021 		new_pte = huge_pte_mkuffd_wp(new_pte);
6022 	set_huge_pte_at(mm, haddr, ptep, new_pte);
6023 
6024 	hugetlb_count_add(pages_per_huge_page(h), mm);
6025 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6026 		/* Optimization, do the COW without a second fault */
6027 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6028 	}
6029 
6030 	spin_unlock(ptl);
6031 
6032 	/*
6033 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6034 	 * found in the pagecache may not have hugetlb_migratable if they have
6035 	 * been isolated for migration.
6036 	 */
6037 	if (new_folio)
6038 		folio_set_hugetlb_migratable(folio);
6039 
6040 	folio_unlock(folio);
6041 out:
6042 	hugetlb_vma_unlock_read(vma);
6043 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6044 	return ret;
6045 
6046 backout:
6047 	spin_unlock(ptl);
6048 backout_unlocked:
6049 	if (new_folio && !new_pagecache_folio)
6050 		restore_reserve_on_error(h, vma, haddr, folio);
6051 
6052 	folio_unlock(folio);
6053 	folio_put(folio);
6054 	goto out;
6055 }
6056 
6057 #ifdef CONFIG_SMP
6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6059 {
6060 	unsigned long key[2];
6061 	u32 hash;
6062 
6063 	key[0] = (unsigned long) mapping;
6064 	key[1] = idx;
6065 
6066 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6067 
6068 	return hash & (num_fault_mutexes - 1);
6069 }
6070 #else
6071 /*
6072  * For uniprocessor systems we always use a single mutex, so just
6073  * return 0 and avoid the hashing overhead.
6074  */
6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6076 {
6077 	return 0;
6078 }
6079 #endif
6080 
6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6082 			unsigned long address, unsigned int flags)
6083 {
6084 	pte_t *ptep, entry;
6085 	spinlock_t *ptl;
6086 	vm_fault_t ret;
6087 	u32 hash;
6088 	pgoff_t idx;
6089 	struct folio *folio = NULL;
6090 	struct folio *pagecache_folio = NULL;
6091 	struct hstate *h = hstate_vma(vma);
6092 	struct address_space *mapping;
6093 	int need_wait_lock = 0;
6094 	unsigned long haddr = address & huge_page_mask(h);
6095 
6096 	/*
6097 	 * Serialize hugepage allocation and instantiation, so that we don't
6098 	 * get spurious allocation failures if two CPUs race to instantiate
6099 	 * the same page in the page cache.
6100 	 */
6101 	mapping = vma->vm_file->f_mapping;
6102 	idx = vma_hugecache_offset(h, vma, haddr);
6103 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6104 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6105 
6106 	/*
6107 	 * Acquire vma lock before calling huge_pte_alloc and hold
6108 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6109 	 * being called elsewhere and making the ptep no longer valid.
6110 	 */
6111 	hugetlb_vma_lock_read(vma);
6112 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6113 	if (!ptep) {
6114 		hugetlb_vma_unlock_read(vma);
6115 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6116 		return VM_FAULT_OOM;
6117 	}
6118 
6119 	entry = huge_ptep_get(ptep);
6120 	/* PTE markers should be handled the same way as none pte */
6121 	if (huge_pte_none_mostly(entry))
6122 		/*
6123 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6124 		 * mutex internally, which make us return immediately.
6125 		 */
6126 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6127 				      entry, flags);
6128 
6129 	ret = 0;
6130 
6131 	/*
6132 	 * entry could be a migration/hwpoison entry at this point, so this
6133 	 * check prevents the kernel from going below assuming that we have
6134 	 * an active hugepage in pagecache. This goto expects the 2nd page
6135 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6136 	 * properly handle it.
6137 	 */
6138 	if (!pte_present(entry)) {
6139 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6140 			/*
6141 			 * Release the hugetlb fault lock now, but retain
6142 			 * the vma lock, because it is needed to guard the
6143 			 * huge_pte_lockptr() later in
6144 			 * migration_entry_wait_huge(). The vma lock will
6145 			 * be released there.
6146 			 */
6147 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148 			migration_entry_wait_huge(vma, ptep);
6149 			return 0;
6150 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6151 			ret = VM_FAULT_HWPOISON_LARGE |
6152 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6153 		goto out_mutex;
6154 	}
6155 
6156 	/*
6157 	 * If we are going to COW/unshare the mapping later, we examine the
6158 	 * pending reservations for this page now. This will ensure that any
6159 	 * allocations necessary to record that reservation occur outside the
6160 	 * spinlock. Also lookup the pagecache page now as it is used to
6161 	 * determine if a reservation has been consumed.
6162 	 */
6163 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6164 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6165 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6166 			ret = VM_FAULT_OOM;
6167 			goto out_mutex;
6168 		}
6169 		/* Just decrements count, does not deallocate */
6170 		vma_end_reservation(h, vma, haddr);
6171 
6172 		pagecache_folio = filemap_lock_folio(mapping, idx);
6173 		if (IS_ERR(pagecache_folio))
6174 			pagecache_folio = NULL;
6175 	}
6176 
6177 	ptl = huge_pte_lock(h, mm, ptep);
6178 
6179 	/* Check for a racing update before calling hugetlb_wp() */
6180 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6181 		goto out_ptl;
6182 
6183 	/* Handle userfault-wp first, before trying to lock more pages */
6184 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6185 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6186 		struct vm_fault vmf = {
6187 			.vma = vma,
6188 			.address = haddr,
6189 			.real_address = address,
6190 			.flags = flags,
6191 		};
6192 
6193 		spin_unlock(ptl);
6194 		if (pagecache_folio) {
6195 			folio_unlock(pagecache_folio);
6196 			folio_put(pagecache_folio);
6197 		}
6198 		hugetlb_vma_unlock_read(vma);
6199 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6200 		return handle_userfault(&vmf, VM_UFFD_WP);
6201 	}
6202 
6203 	/*
6204 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6205 	 * pagecache_folio, so here we need take the former one
6206 	 * when folio != pagecache_folio or !pagecache_folio.
6207 	 */
6208 	folio = page_folio(pte_page(entry));
6209 	if (folio != pagecache_folio)
6210 		if (!folio_trylock(folio)) {
6211 			need_wait_lock = 1;
6212 			goto out_ptl;
6213 		}
6214 
6215 	folio_get(folio);
6216 
6217 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6218 		if (!huge_pte_write(entry)) {
6219 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6220 					 pagecache_folio, ptl);
6221 			goto out_put_page;
6222 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6223 			entry = huge_pte_mkdirty(entry);
6224 		}
6225 	}
6226 	entry = pte_mkyoung(entry);
6227 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6228 						flags & FAULT_FLAG_WRITE))
6229 		update_mmu_cache(vma, haddr, ptep);
6230 out_put_page:
6231 	if (folio != pagecache_folio)
6232 		folio_unlock(folio);
6233 	folio_put(folio);
6234 out_ptl:
6235 	spin_unlock(ptl);
6236 
6237 	if (pagecache_folio) {
6238 		folio_unlock(pagecache_folio);
6239 		folio_put(pagecache_folio);
6240 	}
6241 out_mutex:
6242 	hugetlb_vma_unlock_read(vma);
6243 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6244 	/*
6245 	 * Generally it's safe to hold refcount during waiting page lock. But
6246 	 * here we just wait to defer the next page fault to avoid busy loop and
6247 	 * the page is not used after unlocked before returning from the current
6248 	 * page fault. So we are safe from accessing freed page, even if we wait
6249 	 * here without taking refcount.
6250 	 */
6251 	if (need_wait_lock)
6252 		folio_wait_locked(folio);
6253 	return ret;
6254 }
6255 
6256 #ifdef CONFIG_USERFAULTFD
6257 /*
6258  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6259  * with modifications for hugetlb pages.
6260  */
6261 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6262 			     struct vm_area_struct *dst_vma,
6263 			     unsigned long dst_addr,
6264 			     unsigned long src_addr,
6265 			     uffd_flags_t flags,
6266 			     struct folio **foliop)
6267 {
6268 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6269 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6270 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6271 	struct hstate *h = hstate_vma(dst_vma);
6272 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6273 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6274 	unsigned long size;
6275 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6276 	pte_t _dst_pte;
6277 	spinlock_t *ptl;
6278 	int ret = -ENOMEM;
6279 	struct folio *folio;
6280 	int writable;
6281 	bool folio_in_pagecache = false;
6282 
6283 	if (is_continue) {
6284 		ret = -EFAULT;
6285 		folio = filemap_lock_folio(mapping, idx);
6286 		if (IS_ERR(folio))
6287 			goto out;
6288 		folio_in_pagecache = true;
6289 	} else if (!*foliop) {
6290 		/* If a folio already exists, then it's UFFDIO_COPY for
6291 		 * a non-missing case. Return -EEXIST.
6292 		 */
6293 		if (vm_shared &&
6294 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6295 			ret = -EEXIST;
6296 			goto out;
6297 		}
6298 
6299 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6300 		if (IS_ERR(folio)) {
6301 			ret = -ENOMEM;
6302 			goto out;
6303 		}
6304 
6305 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6306 					   false);
6307 
6308 		/* fallback to copy_from_user outside mmap_lock */
6309 		if (unlikely(ret)) {
6310 			ret = -ENOENT;
6311 			/* Free the allocated folio which may have
6312 			 * consumed a reservation.
6313 			 */
6314 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6315 			folio_put(folio);
6316 
6317 			/* Allocate a temporary folio to hold the copied
6318 			 * contents.
6319 			 */
6320 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6321 			if (!folio) {
6322 				ret = -ENOMEM;
6323 				goto out;
6324 			}
6325 			*foliop = folio;
6326 			/* Set the outparam foliop and return to the caller to
6327 			 * copy the contents outside the lock. Don't free the
6328 			 * folio.
6329 			 */
6330 			goto out;
6331 		}
6332 	} else {
6333 		if (vm_shared &&
6334 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6335 			folio_put(*foliop);
6336 			ret = -EEXIST;
6337 			*foliop = NULL;
6338 			goto out;
6339 		}
6340 
6341 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6342 		if (IS_ERR(folio)) {
6343 			folio_put(*foliop);
6344 			ret = -ENOMEM;
6345 			*foliop = NULL;
6346 			goto out;
6347 		}
6348 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6349 		folio_put(*foliop);
6350 		*foliop = NULL;
6351 		if (ret) {
6352 			folio_put(folio);
6353 			goto out;
6354 		}
6355 	}
6356 
6357 	/*
6358 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6359 	 * preceding stores to the page contents become visible before
6360 	 * the set_pte_at() write.
6361 	 */
6362 	__folio_mark_uptodate(folio);
6363 
6364 	/* Add shared, newly allocated pages to the page cache. */
6365 	if (vm_shared && !is_continue) {
6366 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6367 		ret = -EFAULT;
6368 		if (idx >= size)
6369 			goto out_release_nounlock;
6370 
6371 		/*
6372 		 * Serialization between remove_inode_hugepages() and
6373 		 * hugetlb_add_to_page_cache() below happens through the
6374 		 * hugetlb_fault_mutex_table that here must be hold by
6375 		 * the caller.
6376 		 */
6377 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6378 		if (ret)
6379 			goto out_release_nounlock;
6380 		folio_in_pagecache = true;
6381 	}
6382 
6383 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6384 
6385 	ret = -EIO;
6386 	if (folio_test_hwpoison(folio))
6387 		goto out_release_unlock;
6388 
6389 	/*
6390 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6391 	 * registered, we firstly wr-protect a none pte which has no page cache
6392 	 * page backing it, then access the page.
6393 	 */
6394 	ret = -EEXIST;
6395 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6396 		goto out_release_unlock;
6397 
6398 	if (folio_in_pagecache)
6399 		page_dup_file_rmap(&folio->page, true);
6400 	else
6401 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6402 
6403 	/*
6404 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6405 	 * with wp flag set, don't set pte write bit.
6406 	 */
6407 	if (wp_enabled || (is_continue && !vm_shared))
6408 		writable = 0;
6409 	else
6410 		writable = dst_vma->vm_flags & VM_WRITE;
6411 
6412 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6413 	/*
6414 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6415 	 * extremely important for hugetlbfs for now since swapping is not
6416 	 * supported, but we should still be clear in that this page cannot be
6417 	 * thrown away at will, even if write bit not set.
6418 	 */
6419 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6420 	_dst_pte = pte_mkyoung(_dst_pte);
6421 
6422 	if (wp_enabled)
6423 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6424 
6425 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6426 
6427 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6428 
6429 	/* No need to invalidate - it was non-present before */
6430 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6431 
6432 	spin_unlock(ptl);
6433 	if (!is_continue)
6434 		folio_set_hugetlb_migratable(folio);
6435 	if (vm_shared || is_continue)
6436 		folio_unlock(folio);
6437 	ret = 0;
6438 out:
6439 	return ret;
6440 out_release_unlock:
6441 	spin_unlock(ptl);
6442 	if (vm_shared || is_continue)
6443 		folio_unlock(folio);
6444 out_release_nounlock:
6445 	if (!folio_in_pagecache)
6446 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6447 	folio_put(folio);
6448 	goto out;
6449 }
6450 #endif /* CONFIG_USERFAULTFD */
6451 
6452 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6453 			    int refs, struct page **pages)
6454 {
6455 	int nr;
6456 
6457 	for (nr = 0; nr < refs; nr++) {
6458 		if (likely(pages))
6459 			pages[nr] = nth_page(page, nr);
6460 	}
6461 }
6462 
6463 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6464 					       unsigned int flags, pte_t *pte,
6465 					       bool *unshare)
6466 {
6467 	pte_t pteval = huge_ptep_get(pte);
6468 
6469 	*unshare = false;
6470 	if (is_swap_pte(pteval))
6471 		return true;
6472 	if (huge_pte_write(pteval))
6473 		return false;
6474 	if (flags & FOLL_WRITE)
6475 		return true;
6476 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6477 		*unshare = true;
6478 		return true;
6479 	}
6480 	return false;
6481 }
6482 
6483 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6484 				unsigned long address, unsigned int flags)
6485 {
6486 	struct hstate *h = hstate_vma(vma);
6487 	struct mm_struct *mm = vma->vm_mm;
6488 	unsigned long haddr = address & huge_page_mask(h);
6489 	struct page *page = NULL;
6490 	spinlock_t *ptl;
6491 	pte_t *pte, entry;
6492 
6493 	/*
6494 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6495 	 * follow_hugetlb_page().
6496 	 */
6497 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6498 		return NULL;
6499 
6500 	hugetlb_vma_lock_read(vma);
6501 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6502 	if (!pte)
6503 		goto out_unlock;
6504 
6505 	ptl = huge_pte_lock(h, mm, pte);
6506 	entry = huge_ptep_get(pte);
6507 	if (pte_present(entry)) {
6508 		page = pte_page(entry) +
6509 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6510 		/*
6511 		 * Note that page may be a sub-page, and with vmemmap
6512 		 * optimizations the page struct may be read only.
6513 		 * try_grab_page() will increase the ref count on the
6514 		 * head page, so this will be OK.
6515 		 *
6516 		 * try_grab_page() should always be able to get the page here,
6517 		 * because we hold the ptl lock and have verified pte_present().
6518 		 */
6519 		if (try_grab_page(page, flags)) {
6520 			page = NULL;
6521 			goto out;
6522 		}
6523 	}
6524 out:
6525 	spin_unlock(ptl);
6526 out_unlock:
6527 	hugetlb_vma_unlock_read(vma);
6528 	return page;
6529 }
6530 
6531 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6532 			 struct page **pages, unsigned long *position,
6533 			 unsigned long *nr_pages, long i, unsigned int flags,
6534 			 int *locked)
6535 {
6536 	unsigned long pfn_offset;
6537 	unsigned long vaddr = *position;
6538 	unsigned long remainder = *nr_pages;
6539 	struct hstate *h = hstate_vma(vma);
6540 	int err = -EFAULT, refs;
6541 
6542 	while (vaddr < vma->vm_end && remainder) {
6543 		pte_t *pte;
6544 		spinlock_t *ptl = NULL;
6545 		bool unshare = false;
6546 		int absent;
6547 		struct page *page;
6548 
6549 		/*
6550 		 * If we have a pending SIGKILL, don't keep faulting pages and
6551 		 * potentially allocating memory.
6552 		 */
6553 		if (fatal_signal_pending(current)) {
6554 			remainder = 0;
6555 			break;
6556 		}
6557 
6558 		hugetlb_vma_lock_read(vma);
6559 		/*
6560 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6561 		 * each hugepage.  We have to make sure we get the
6562 		 * first, for the page indexing below to work.
6563 		 *
6564 		 * Note that page table lock is not held when pte is null.
6565 		 */
6566 		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6567 				   huge_page_size(h));
6568 		if (pte)
6569 			ptl = huge_pte_lock(h, mm, pte);
6570 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6571 
6572 		/*
6573 		 * When coredumping, it suits get_dump_page if we just return
6574 		 * an error where there's an empty slot with no huge pagecache
6575 		 * to back it.  This way, we avoid allocating a hugepage, and
6576 		 * the sparse dumpfile avoids allocating disk blocks, but its
6577 		 * huge holes still show up with zeroes where they need to be.
6578 		 */
6579 		if (absent && (flags & FOLL_DUMP) &&
6580 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6581 			if (pte)
6582 				spin_unlock(ptl);
6583 			hugetlb_vma_unlock_read(vma);
6584 			remainder = 0;
6585 			break;
6586 		}
6587 
6588 		/*
6589 		 * We need call hugetlb_fault for both hugepages under migration
6590 		 * (in which case hugetlb_fault waits for the migration,) and
6591 		 * hwpoisoned hugepages (in which case we need to prevent the
6592 		 * caller from accessing to them.) In order to do this, we use
6593 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6594 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6595 		 * both cases, and because we can't follow correct pages
6596 		 * directly from any kind of swap entries.
6597 		 */
6598 		if (absent ||
6599 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6600 			vm_fault_t ret;
6601 			unsigned int fault_flags = 0;
6602 
6603 			if (pte)
6604 				spin_unlock(ptl);
6605 			hugetlb_vma_unlock_read(vma);
6606 
6607 			if (flags & FOLL_WRITE)
6608 				fault_flags |= FAULT_FLAG_WRITE;
6609 			else if (unshare)
6610 				fault_flags |= FAULT_FLAG_UNSHARE;
6611 			if (locked) {
6612 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6613 					FAULT_FLAG_KILLABLE;
6614 				if (flags & FOLL_INTERRUPTIBLE)
6615 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6616 			}
6617 			if (flags & FOLL_NOWAIT)
6618 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6619 					FAULT_FLAG_RETRY_NOWAIT;
6620 			if (flags & FOLL_TRIED) {
6621 				/*
6622 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6623 				 * FAULT_FLAG_TRIED can co-exist
6624 				 */
6625 				fault_flags |= FAULT_FLAG_TRIED;
6626 			}
6627 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6628 			if (ret & VM_FAULT_ERROR) {
6629 				err = vm_fault_to_errno(ret, flags);
6630 				remainder = 0;
6631 				break;
6632 			}
6633 			if (ret & VM_FAULT_RETRY) {
6634 				if (locked &&
6635 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6636 					*locked = 0;
6637 				*nr_pages = 0;
6638 				/*
6639 				 * VM_FAULT_RETRY must not return an
6640 				 * error, it will return zero
6641 				 * instead.
6642 				 *
6643 				 * No need to update "position" as the
6644 				 * caller will not check it after
6645 				 * *nr_pages is set to 0.
6646 				 */
6647 				return i;
6648 			}
6649 			continue;
6650 		}
6651 
6652 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6653 		page = pte_page(huge_ptep_get(pte));
6654 
6655 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6656 			       !PageAnonExclusive(page), page);
6657 
6658 		/*
6659 		 * If subpage information not requested, update counters
6660 		 * and skip the same_page loop below.
6661 		 */
6662 		if (!pages && !pfn_offset &&
6663 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6664 		    (remainder >= pages_per_huge_page(h))) {
6665 			vaddr += huge_page_size(h);
6666 			remainder -= pages_per_huge_page(h);
6667 			i += pages_per_huge_page(h);
6668 			spin_unlock(ptl);
6669 			hugetlb_vma_unlock_read(vma);
6670 			continue;
6671 		}
6672 
6673 		/* vaddr may not be aligned to PAGE_SIZE */
6674 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6675 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6676 
6677 		if (pages)
6678 			record_subpages(nth_page(page, pfn_offset),
6679 					vma, refs,
6680 					likely(pages) ? pages + i : NULL);
6681 
6682 		if (pages) {
6683 			/*
6684 			 * try_grab_folio() should always succeed here,
6685 			 * because: a) we hold the ptl lock, and b) we've just
6686 			 * checked that the huge page is present in the page
6687 			 * tables. If the huge page is present, then the tail
6688 			 * pages must also be present. The ptl prevents the
6689 			 * head page and tail pages from being rearranged in
6690 			 * any way. As this is hugetlb, the pages will never
6691 			 * be p2pdma or not longterm pinable. So this page
6692 			 * must be available at this point, unless the page
6693 			 * refcount overflowed:
6694 			 */
6695 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6696 							 flags))) {
6697 				spin_unlock(ptl);
6698 				hugetlb_vma_unlock_read(vma);
6699 				remainder = 0;
6700 				err = -ENOMEM;
6701 				break;
6702 			}
6703 		}
6704 
6705 		vaddr += (refs << PAGE_SHIFT);
6706 		remainder -= refs;
6707 		i += refs;
6708 
6709 		spin_unlock(ptl);
6710 		hugetlb_vma_unlock_read(vma);
6711 	}
6712 	*nr_pages = remainder;
6713 	/*
6714 	 * setting position is actually required only if remainder is
6715 	 * not zero but it's faster not to add a "if (remainder)"
6716 	 * branch.
6717 	 */
6718 	*position = vaddr;
6719 
6720 	return i ? i : err;
6721 }
6722 
6723 long hugetlb_change_protection(struct vm_area_struct *vma,
6724 		unsigned long address, unsigned long end,
6725 		pgprot_t newprot, unsigned long cp_flags)
6726 {
6727 	struct mm_struct *mm = vma->vm_mm;
6728 	unsigned long start = address;
6729 	pte_t *ptep;
6730 	pte_t pte;
6731 	struct hstate *h = hstate_vma(vma);
6732 	long pages = 0, psize = huge_page_size(h);
6733 	bool shared_pmd = false;
6734 	struct mmu_notifier_range range;
6735 	unsigned long last_addr_mask;
6736 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6737 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6738 
6739 	/*
6740 	 * In the case of shared PMDs, the area to flush could be beyond
6741 	 * start/end.  Set range.start/range.end to cover the maximum possible
6742 	 * range if PMD sharing is possible.
6743 	 */
6744 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6745 				0, mm, start, end);
6746 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6747 
6748 	BUG_ON(address >= end);
6749 	flush_cache_range(vma, range.start, range.end);
6750 
6751 	mmu_notifier_invalidate_range_start(&range);
6752 	hugetlb_vma_lock_write(vma);
6753 	i_mmap_lock_write(vma->vm_file->f_mapping);
6754 	last_addr_mask = hugetlb_mask_last_page(h);
6755 	for (; address < end; address += psize) {
6756 		spinlock_t *ptl;
6757 		ptep = hugetlb_walk(vma, address, psize);
6758 		if (!ptep) {
6759 			if (!uffd_wp) {
6760 				address |= last_addr_mask;
6761 				continue;
6762 			}
6763 			/*
6764 			 * Userfaultfd wr-protect requires pgtable
6765 			 * pre-allocations to install pte markers.
6766 			 */
6767 			ptep = huge_pte_alloc(mm, vma, address, psize);
6768 			if (!ptep) {
6769 				pages = -ENOMEM;
6770 				break;
6771 			}
6772 		}
6773 		ptl = huge_pte_lock(h, mm, ptep);
6774 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6775 			/*
6776 			 * When uffd-wp is enabled on the vma, unshare
6777 			 * shouldn't happen at all.  Warn about it if it
6778 			 * happened due to some reason.
6779 			 */
6780 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6781 			pages++;
6782 			spin_unlock(ptl);
6783 			shared_pmd = true;
6784 			address |= last_addr_mask;
6785 			continue;
6786 		}
6787 		pte = huge_ptep_get(ptep);
6788 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6789 			/* Nothing to do. */
6790 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6791 			swp_entry_t entry = pte_to_swp_entry(pte);
6792 			struct page *page = pfn_swap_entry_to_page(entry);
6793 			pte_t newpte = pte;
6794 
6795 			if (is_writable_migration_entry(entry)) {
6796 				if (PageAnon(page))
6797 					entry = make_readable_exclusive_migration_entry(
6798 								swp_offset(entry));
6799 				else
6800 					entry = make_readable_migration_entry(
6801 								swp_offset(entry));
6802 				newpte = swp_entry_to_pte(entry);
6803 				pages++;
6804 			}
6805 
6806 			if (uffd_wp)
6807 				newpte = pte_swp_mkuffd_wp(newpte);
6808 			else if (uffd_wp_resolve)
6809 				newpte = pte_swp_clear_uffd_wp(newpte);
6810 			if (!pte_same(pte, newpte))
6811 				set_huge_pte_at(mm, address, ptep, newpte);
6812 		} else if (unlikely(is_pte_marker(pte))) {
6813 			/* No other markers apply for now. */
6814 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6815 			if (uffd_wp_resolve)
6816 				/* Safe to modify directly (non-present->none). */
6817 				huge_pte_clear(mm, address, ptep, psize);
6818 		} else if (!huge_pte_none(pte)) {
6819 			pte_t old_pte;
6820 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6821 
6822 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6823 			pte = huge_pte_modify(old_pte, newprot);
6824 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6825 			if (uffd_wp)
6826 				pte = huge_pte_mkuffd_wp(pte);
6827 			else if (uffd_wp_resolve)
6828 				pte = huge_pte_clear_uffd_wp(pte);
6829 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6830 			pages++;
6831 		} else {
6832 			/* None pte */
6833 			if (unlikely(uffd_wp))
6834 				/* Safe to modify directly (none->non-present). */
6835 				set_huge_pte_at(mm, address, ptep,
6836 						make_pte_marker(PTE_MARKER_UFFD_WP));
6837 		}
6838 		spin_unlock(ptl);
6839 	}
6840 	/*
6841 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6842 	 * may have cleared our pud entry and done put_page on the page table:
6843 	 * once we release i_mmap_rwsem, another task can do the final put_page
6844 	 * and that page table be reused and filled with junk.  If we actually
6845 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6846 	 */
6847 	if (shared_pmd)
6848 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6849 	else
6850 		flush_hugetlb_tlb_range(vma, start, end);
6851 	/*
6852 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6853 	 * page table protection not changing it to point to a new page.
6854 	 *
6855 	 * See Documentation/mm/mmu_notifier.rst
6856 	 */
6857 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6858 	hugetlb_vma_unlock_write(vma);
6859 	mmu_notifier_invalidate_range_end(&range);
6860 
6861 	return pages > 0 ? (pages << h->order) : pages;
6862 }
6863 
6864 /* Return true if reservation was successful, false otherwise.  */
6865 bool hugetlb_reserve_pages(struct inode *inode,
6866 					long from, long to,
6867 					struct vm_area_struct *vma,
6868 					vm_flags_t vm_flags)
6869 {
6870 	long chg = -1, add = -1;
6871 	struct hstate *h = hstate_inode(inode);
6872 	struct hugepage_subpool *spool = subpool_inode(inode);
6873 	struct resv_map *resv_map;
6874 	struct hugetlb_cgroup *h_cg = NULL;
6875 	long gbl_reserve, regions_needed = 0;
6876 
6877 	/* This should never happen */
6878 	if (from > to) {
6879 		VM_WARN(1, "%s called with a negative range\n", __func__);
6880 		return false;
6881 	}
6882 
6883 	/*
6884 	 * vma specific semaphore used for pmd sharing and fault/truncation
6885 	 * synchronization
6886 	 */
6887 	hugetlb_vma_lock_alloc(vma);
6888 
6889 	/*
6890 	 * Only apply hugepage reservation if asked. At fault time, an
6891 	 * attempt will be made for VM_NORESERVE to allocate a page
6892 	 * without using reserves
6893 	 */
6894 	if (vm_flags & VM_NORESERVE)
6895 		return true;
6896 
6897 	/*
6898 	 * Shared mappings base their reservation on the number of pages that
6899 	 * are already allocated on behalf of the file. Private mappings need
6900 	 * to reserve the full area even if read-only as mprotect() may be
6901 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6902 	 */
6903 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6904 		/*
6905 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6906 		 * called for inodes for which resv_maps were created (see
6907 		 * hugetlbfs_get_inode).
6908 		 */
6909 		resv_map = inode_resv_map(inode);
6910 
6911 		chg = region_chg(resv_map, from, to, &regions_needed);
6912 	} else {
6913 		/* Private mapping. */
6914 		resv_map = resv_map_alloc();
6915 		if (!resv_map)
6916 			goto out_err;
6917 
6918 		chg = to - from;
6919 
6920 		set_vma_resv_map(vma, resv_map);
6921 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6922 	}
6923 
6924 	if (chg < 0)
6925 		goto out_err;
6926 
6927 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6928 				chg * pages_per_huge_page(h), &h_cg) < 0)
6929 		goto out_err;
6930 
6931 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6932 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6933 		 * of the resv_map.
6934 		 */
6935 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6936 	}
6937 
6938 	/*
6939 	 * There must be enough pages in the subpool for the mapping. If
6940 	 * the subpool has a minimum size, there may be some global
6941 	 * reservations already in place (gbl_reserve).
6942 	 */
6943 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6944 	if (gbl_reserve < 0)
6945 		goto out_uncharge_cgroup;
6946 
6947 	/*
6948 	 * Check enough hugepages are available for the reservation.
6949 	 * Hand the pages back to the subpool if there are not
6950 	 */
6951 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6952 		goto out_put_pages;
6953 
6954 	/*
6955 	 * Account for the reservations made. Shared mappings record regions
6956 	 * that have reservations as they are shared by multiple VMAs.
6957 	 * When the last VMA disappears, the region map says how much
6958 	 * the reservation was and the page cache tells how much of
6959 	 * the reservation was consumed. Private mappings are per-VMA and
6960 	 * only the consumed reservations are tracked. When the VMA
6961 	 * disappears, the original reservation is the VMA size and the
6962 	 * consumed reservations are stored in the map. Hence, nothing
6963 	 * else has to be done for private mappings here
6964 	 */
6965 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6966 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6967 
6968 		if (unlikely(add < 0)) {
6969 			hugetlb_acct_memory(h, -gbl_reserve);
6970 			goto out_put_pages;
6971 		} else if (unlikely(chg > add)) {
6972 			/*
6973 			 * pages in this range were added to the reserve
6974 			 * map between region_chg and region_add.  This
6975 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6976 			 * the subpool and reserve counts modified above
6977 			 * based on the difference.
6978 			 */
6979 			long rsv_adjust;
6980 
6981 			/*
6982 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6983 			 * reference to h_cg->css. See comment below for detail.
6984 			 */
6985 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6986 				hstate_index(h),
6987 				(chg - add) * pages_per_huge_page(h), h_cg);
6988 
6989 			rsv_adjust = hugepage_subpool_put_pages(spool,
6990 								chg - add);
6991 			hugetlb_acct_memory(h, -rsv_adjust);
6992 		} else if (h_cg) {
6993 			/*
6994 			 * The file_regions will hold their own reference to
6995 			 * h_cg->css. So we should release the reference held
6996 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6997 			 * done.
6998 			 */
6999 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7000 		}
7001 	}
7002 	return true;
7003 
7004 out_put_pages:
7005 	/* put back original number of pages, chg */
7006 	(void)hugepage_subpool_put_pages(spool, chg);
7007 out_uncharge_cgroup:
7008 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7009 					    chg * pages_per_huge_page(h), h_cg);
7010 out_err:
7011 	hugetlb_vma_lock_free(vma);
7012 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7013 		/* Only call region_abort if the region_chg succeeded but the
7014 		 * region_add failed or didn't run.
7015 		 */
7016 		if (chg >= 0 && add < 0)
7017 			region_abort(resv_map, from, to, regions_needed);
7018 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
7019 		kref_put(&resv_map->refs, resv_map_release);
7020 	return false;
7021 }
7022 
7023 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7024 								long freed)
7025 {
7026 	struct hstate *h = hstate_inode(inode);
7027 	struct resv_map *resv_map = inode_resv_map(inode);
7028 	long chg = 0;
7029 	struct hugepage_subpool *spool = subpool_inode(inode);
7030 	long gbl_reserve;
7031 
7032 	/*
7033 	 * Since this routine can be called in the evict inode path for all
7034 	 * hugetlbfs inodes, resv_map could be NULL.
7035 	 */
7036 	if (resv_map) {
7037 		chg = region_del(resv_map, start, end);
7038 		/*
7039 		 * region_del() can fail in the rare case where a region
7040 		 * must be split and another region descriptor can not be
7041 		 * allocated.  If end == LONG_MAX, it will not fail.
7042 		 */
7043 		if (chg < 0)
7044 			return chg;
7045 	}
7046 
7047 	spin_lock(&inode->i_lock);
7048 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7049 	spin_unlock(&inode->i_lock);
7050 
7051 	/*
7052 	 * If the subpool has a minimum size, the number of global
7053 	 * reservations to be released may be adjusted.
7054 	 *
7055 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7056 	 * won't go negative.
7057 	 */
7058 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7059 	hugetlb_acct_memory(h, -gbl_reserve);
7060 
7061 	return 0;
7062 }
7063 
7064 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7065 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7066 				struct vm_area_struct *vma,
7067 				unsigned long addr, pgoff_t idx)
7068 {
7069 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7070 				svma->vm_start;
7071 	unsigned long sbase = saddr & PUD_MASK;
7072 	unsigned long s_end = sbase + PUD_SIZE;
7073 
7074 	/* Allow segments to share if only one is marked locked */
7075 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7076 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7077 
7078 	/*
7079 	 * match the virtual addresses, permission and the alignment of the
7080 	 * page table page.
7081 	 *
7082 	 * Also, vma_lock (vm_private_data) is required for sharing.
7083 	 */
7084 	if (pmd_index(addr) != pmd_index(saddr) ||
7085 	    vm_flags != svm_flags ||
7086 	    !range_in_vma(svma, sbase, s_end) ||
7087 	    !svma->vm_private_data)
7088 		return 0;
7089 
7090 	return saddr;
7091 }
7092 
7093 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7094 {
7095 	unsigned long start = addr & PUD_MASK;
7096 	unsigned long end = start + PUD_SIZE;
7097 
7098 #ifdef CONFIG_USERFAULTFD
7099 	if (uffd_disable_huge_pmd_share(vma))
7100 		return false;
7101 #endif
7102 	/*
7103 	 * check on proper vm_flags and page table alignment
7104 	 */
7105 	if (!(vma->vm_flags & VM_MAYSHARE))
7106 		return false;
7107 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7108 		return false;
7109 	if (!range_in_vma(vma, start, end))
7110 		return false;
7111 	return true;
7112 }
7113 
7114 /*
7115  * Determine if start,end range within vma could be mapped by shared pmd.
7116  * If yes, adjust start and end to cover range associated with possible
7117  * shared pmd mappings.
7118  */
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120 				unsigned long *start, unsigned long *end)
7121 {
7122 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7123 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7124 
7125 	/*
7126 	 * vma needs to span at least one aligned PUD size, and the range
7127 	 * must be at least partially within in.
7128 	 */
7129 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7130 		(*end <= v_start) || (*start >= v_end))
7131 		return;
7132 
7133 	/* Extend the range to be PUD aligned for a worst case scenario */
7134 	if (*start > v_start)
7135 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7136 
7137 	if (*end < v_end)
7138 		*end = ALIGN(*end, PUD_SIZE);
7139 }
7140 
7141 /*
7142  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7143  * and returns the corresponding pte. While this is not necessary for the
7144  * !shared pmd case because we can allocate the pmd later as well, it makes the
7145  * code much cleaner. pmd allocation is essential for the shared case because
7146  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7147  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7148  * bad pmd for sharing.
7149  */
7150 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7151 		      unsigned long addr, pud_t *pud)
7152 {
7153 	struct address_space *mapping = vma->vm_file->f_mapping;
7154 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7155 			vma->vm_pgoff;
7156 	struct vm_area_struct *svma;
7157 	unsigned long saddr;
7158 	pte_t *spte = NULL;
7159 	pte_t *pte;
7160 
7161 	i_mmap_lock_read(mapping);
7162 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7163 		if (svma == vma)
7164 			continue;
7165 
7166 		saddr = page_table_shareable(svma, vma, addr, idx);
7167 		if (saddr) {
7168 			spte = hugetlb_walk(svma, saddr,
7169 					    vma_mmu_pagesize(svma));
7170 			if (spte) {
7171 				get_page(virt_to_page(spte));
7172 				break;
7173 			}
7174 		}
7175 	}
7176 
7177 	if (!spte)
7178 		goto out;
7179 
7180 	spin_lock(&mm->page_table_lock);
7181 	if (pud_none(*pud)) {
7182 		pud_populate(mm, pud,
7183 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7184 		mm_inc_nr_pmds(mm);
7185 	} else {
7186 		put_page(virt_to_page(spte));
7187 	}
7188 	spin_unlock(&mm->page_table_lock);
7189 out:
7190 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7191 	i_mmap_unlock_read(mapping);
7192 	return pte;
7193 }
7194 
7195 /*
7196  * unmap huge page backed by shared pte.
7197  *
7198  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7199  * indicated by page_count > 1, unmap is achieved by clearing pud and
7200  * decrementing the ref count. If count == 1, the pte page is not shared.
7201  *
7202  * Called with page table lock held.
7203  *
7204  * returns: 1 successfully unmapped a shared pte page
7205  *	    0 the underlying pte page is not shared, or it is the last user
7206  */
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208 					unsigned long addr, pte_t *ptep)
7209 {
7210 	pgd_t *pgd = pgd_offset(mm, addr);
7211 	p4d_t *p4d = p4d_offset(pgd, addr);
7212 	pud_t *pud = pud_offset(p4d, addr);
7213 
7214 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7215 	hugetlb_vma_assert_locked(vma);
7216 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7217 	if (page_count(virt_to_page(ptep)) == 1)
7218 		return 0;
7219 
7220 	pud_clear(pud);
7221 	put_page(virt_to_page(ptep));
7222 	mm_dec_nr_pmds(mm);
7223 	return 1;
7224 }
7225 
7226 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7227 
7228 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7229 		      unsigned long addr, pud_t *pud)
7230 {
7231 	return NULL;
7232 }
7233 
7234 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7235 				unsigned long addr, pte_t *ptep)
7236 {
7237 	return 0;
7238 }
7239 
7240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7241 				unsigned long *start, unsigned long *end)
7242 {
7243 }
7244 
7245 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7246 {
7247 	return false;
7248 }
7249 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7250 
7251 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7252 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7253 			unsigned long addr, unsigned long sz)
7254 {
7255 	pgd_t *pgd;
7256 	p4d_t *p4d;
7257 	pud_t *pud;
7258 	pte_t *pte = NULL;
7259 
7260 	pgd = pgd_offset(mm, addr);
7261 	p4d = p4d_alloc(mm, pgd, addr);
7262 	if (!p4d)
7263 		return NULL;
7264 	pud = pud_alloc(mm, p4d, addr);
7265 	if (pud) {
7266 		if (sz == PUD_SIZE) {
7267 			pte = (pte_t *)pud;
7268 		} else {
7269 			BUG_ON(sz != PMD_SIZE);
7270 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7271 				pte = huge_pmd_share(mm, vma, addr, pud);
7272 			else
7273 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7274 		}
7275 	}
7276 
7277 	if (pte) {
7278 		pte_t pteval = ptep_get_lockless(pte);
7279 
7280 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7281 	}
7282 
7283 	return pte;
7284 }
7285 
7286 /*
7287  * huge_pte_offset() - Walk the page table to resolve the hugepage
7288  * entry at address @addr
7289  *
7290  * Return: Pointer to page table entry (PUD or PMD) for
7291  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7292  * size @sz doesn't match the hugepage size at this level of the page
7293  * table.
7294  */
7295 pte_t *huge_pte_offset(struct mm_struct *mm,
7296 		       unsigned long addr, unsigned long sz)
7297 {
7298 	pgd_t *pgd;
7299 	p4d_t *p4d;
7300 	pud_t *pud;
7301 	pmd_t *pmd;
7302 
7303 	pgd = pgd_offset(mm, addr);
7304 	if (!pgd_present(*pgd))
7305 		return NULL;
7306 	p4d = p4d_offset(pgd, addr);
7307 	if (!p4d_present(*p4d))
7308 		return NULL;
7309 
7310 	pud = pud_offset(p4d, addr);
7311 	if (sz == PUD_SIZE)
7312 		/* must be pud huge, non-present or none */
7313 		return (pte_t *)pud;
7314 	if (!pud_present(*pud))
7315 		return NULL;
7316 	/* must have a valid entry and size to go further */
7317 
7318 	pmd = pmd_offset(pud, addr);
7319 	/* must be pmd huge, non-present or none */
7320 	return (pte_t *)pmd;
7321 }
7322 
7323 /*
7324  * Return a mask that can be used to update an address to the last huge
7325  * page in a page table page mapping size.  Used to skip non-present
7326  * page table entries when linearly scanning address ranges.  Architectures
7327  * with unique huge page to page table relationships can define their own
7328  * version of this routine.
7329  */
7330 unsigned long hugetlb_mask_last_page(struct hstate *h)
7331 {
7332 	unsigned long hp_size = huge_page_size(h);
7333 
7334 	if (hp_size == PUD_SIZE)
7335 		return P4D_SIZE - PUD_SIZE;
7336 	else if (hp_size == PMD_SIZE)
7337 		return PUD_SIZE - PMD_SIZE;
7338 	else
7339 		return 0UL;
7340 }
7341 
7342 #else
7343 
7344 /* See description above.  Architectures can provide their own version. */
7345 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7346 {
7347 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7348 	if (huge_page_size(h) == PMD_SIZE)
7349 		return PUD_SIZE - PMD_SIZE;
7350 #endif
7351 	return 0UL;
7352 }
7353 
7354 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7355 
7356 /*
7357  * These functions are overwritable if your architecture needs its own
7358  * behavior.
7359  */
7360 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7361 {
7362 	bool ret = true;
7363 
7364 	spin_lock_irq(&hugetlb_lock);
7365 	if (!folio_test_hugetlb(folio) ||
7366 	    !folio_test_hugetlb_migratable(folio) ||
7367 	    !folio_try_get(folio)) {
7368 		ret = false;
7369 		goto unlock;
7370 	}
7371 	folio_clear_hugetlb_migratable(folio);
7372 	list_move_tail(&folio->lru, list);
7373 unlock:
7374 	spin_unlock_irq(&hugetlb_lock);
7375 	return ret;
7376 }
7377 
7378 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7379 {
7380 	int ret = 0;
7381 
7382 	*hugetlb = false;
7383 	spin_lock_irq(&hugetlb_lock);
7384 	if (folio_test_hugetlb(folio)) {
7385 		*hugetlb = true;
7386 		if (folio_test_hugetlb_freed(folio))
7387 			ret = 0;
7388 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7389 			ret = folio_try_get(folio);
7390 		else
7391 			ret = -EBUSY;
7392 	}
7393 	spin_unlock_irq(&hugetlb_lock);
7394 	return ret;
7395 }
7396 
7397 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7398 				bool *migratable_cleared)
7399 {
7400 	int ret;
7401 
7402 	spin_lock_irq(&hugetlb_lock);
7403 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7404 	spin_unlock_irq(&hugetlb_lock);
7405 	return ret;
7406 }
7407 
7408 void folio_putback_active_hugetlb(struct folio *folio)
7409 {
7410 	spin_lock_irq(&hugetlb_lock);
7411 	folio_set_hugetlb_migratable(folio);
7412 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7413 	spin_unlock_irq(&hugetlb_lock);
7414 	folio_put(folio);
7415 }
7416 
7417 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7418 {
7419 	struct hstate *h = folio_hstate(old_folio);
7420 
7421 	hugetlb_cgroup_migrate(old_folio, new_folio);
7422 	set_page_owner_migrate_reason(&new_folio->page, reason);
7423 
7424 	/*
7425 	 * transfer temporary state of the new hugetlb folio. This is
7426 	 * reverse to other transitions because the newpage is going to
7427 	 * be final while the old one will be freed so it takes over
7428 	 * the temporary status.
7429 	 *
7430 	 * Also note that we have to transfer the per-node surplus state
7431 	 * here as well otherwise the global surplus count will not match
7432 	 * the per-node's.
7433 	 */
7434 	if (folio_test_hugetlb_temporary(new_folio)) {
7435 		int old_nid = folio_nid(old_folio);
7436 		int new_nid = folio_nid(new_folio);
7437 
7438 		folio_set_hugetlb_temporary(old_folio);
7439 		folio_clear_hugetlb_temporary(new_folio);
7440 
7441 
7442 		/*
7443 		 * There is no need to transfer the per-node surplus state
7444 		 * when we do not cross the node.
7445 		 */
7446 		if (new_nid == old_nid)
7447 			return;
7448 		spin_lock_irq(&hugetlb_lock);
7449 		if (h->surplus_huge_pages_node[old_nid]) {
7450 			h->surplus_huge_pages_node[old_nid]--;
7451 			h->surplus_huge_pages_node[new_nid]++;
7452 		}
7453 		spin_unlock_irq(&hugetlb_lock);
7454 	}
7455 }
7456 
7457 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7458 				   unsigned long start,
7459 				   unsigned long end)
7460 {
7461 	struct hstate *h = hstate_vma(vma);
7462 	unsigned long sz = huge_page_size(h);
7463 	struct mm_struct *mm = vma->vm_mm;
7464 	struct mmu_notifier_range range;
7465 	unsigned long address;
7466 	spinlock_t *ptl;
7467 	pte_t *ptep;
7468 
7469 	if (!(vma->vm_flags & VM_MAYSHARE))
7470 		return;
7471 
7472 	if (start >= end)
7473 		return;
7474 
7475 	flush_cache_range(vma, start, end);
7476 	/*
7477 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7478 	 * we have already done the PUD_SIZE alignment.
7479 	 */
7480 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7481 				start, end);
7482 	mmu_notifier_invalidate_range_start(&range);
7483 	hugetlb_vma_lock_write(vma);
7484 	i_mmap_lock_write(vma->vm_file->f_mapping);
7485 	for (address = start; address < end; address += PUD_SIZE) {
7486 		ptep = hugetlb_walk(vma, address, sz);
7487 		if (!ptep)
7488 			continue;
7489 		ptl = huge_pte_lock(h, mm, ptep);
7490 		huge_pmd_unshare(mm, vma, address, ptep);
7491 		spin_unlock(ptl);
7492 	}
7493 	flush_hugetlb_tlb_range(vma, start, end);
7494 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7495 	hugetlb_vma_unlock_write(vma);
7496 	/*
7497 	 * No need to call mmu_notifier_invalidate_range(), see
7498 	 * Documentation/mm/mmu_notifier.rst.
7499 	 */
7500 	mmu_notifier_invalidate_range_end(&range);
7501 }
7502 
7503 /*
7504  * This function will unconditionally remove all the shared pmd pgtable entries
7505  * within the specific vma for a hugetlbfs memory range.
7506  */
7507 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7508 {
7509 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7510 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7511 }
7512 
7513 #ifdef CONFIG_CMA
7514 static bool cma_reserve_called __initdata;
7515 
7516 static int __init cmdline_parse_hugetlb_cma(char *p)
7517 {
7518 	int nid, count = 0;
7519 	unsigned long tmp;
7520 	char *s = p;
7521 
7522 	while (*s) {
7523 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7524 			break;
7525 
7526 		if (s[count] == ':') {
7527 			if (tmp >= MAX_NUMNODES)
7528 				break;
7529 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7530 
7531 			s += count + 1;
7532 			tmp = memparse(s, &s);
7533 			hugetlb_cma_size_in_node[nid] = tmp;
7534 			hugetlb_cma_size += tmp;
7535 
7536 			/*
7537 			 * Skip the separator if have one, otherwise
7538 			 * break the parsing.
7539 			 */
7540 			if (*s == ',')
7541 				s++;
7542 			else
7543 				break;
7544 		} else {
7545 			hugetlb_cma_size = memparse(p, &p);
7546 			break;
7547 		}
7548 	}
7549 
7550 	return 0;
7551 }
7552 
7553 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7554 
7555 void __init hugetlb_cma_reserve(int order)
7556 {
7557 	unsigned long size, reserved, per_node;
7558 	bool node_specific_cma_alloc = false;
7559 	int nid;
7560 
7561 	cma_reserve_called = true;
7562 
7563 	if (!hugetlb_cma_size)
7564 		return;
7565 
7566 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7567 		if (hugetlb_cma_size_in_node[nid] == 0)
7568 			continue;
7569 
7570 		if (!node_online(nid)) {
7571 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7572 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7573 			hugetlb_cma_size_in_node[nid] = 0;
7574 			continue;
7575 		}
7576 
7577 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7578 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7579 				nid, (PAGE_SIZE << order) / SZ_1M);
7580 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7581 			hugetlb_cma_size_in_node[nid] = 0;
7582 		} else {
7583 			node_specific_cma_alloc = true;
7584 		}
7585 	}
7586 
7587 	/* Validate the CMA size again in case some invalid nodes specified. */
7588 	if (!hugetlb_cma_size)
7589 		return;
7590 
7591 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7592 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7593 			(PAGE_SIZE << order) / SZ_1M);
7594 		hugetlb_cma_size = 0;
7595 		return;
7596 	}
7597 
7598 	if (!node_specific_cma_alloc) {
7599 		/*
7600 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7601 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7602 		 */
7603 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7604 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7605 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7606 	}
7607 
7608 	reserved = 0;
7609 	for_each_online_node(nid) {
7610 		int res;
7611 		char name[CMA_MAX_NAME];
7612 
7613 		if (node_specific_cma_alloc) {
7614 			if (hugetlb_cma_size_in_node[nid] == 0)
7615 				continue;
7616 
7617 			size = hugetlb_cma_size_in_node[nid];
7618 		} else {
7619 			size = min(per_node, hugetlb_cma_size - reserved);
7620 		}
7621 
7622 		size = round_up(size, PAGE_SIZE << order);
7623 
7624 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7625 		/*
7626 		 * Note that 'order per bit' is based on smallest size that
7627 		 * may be returned to CMA allocator in the case of
7628 		 * huge page demotion.
7629 		 */
7630 		res = cma_declare_contiguous_nid(0, size, 0,
7631 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7632 						 0, false, name,
7633 						 &hugetlb_cma[nid], nid);
7634 		if (res) {
7635 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7636 				res, nid);
7637 			continue;
7638 		}
7639 
7640 		reserved += size;
7641 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7642 			size / SZ_1M, nid);
7643 
7644 		if (reserved >= hugetlb_cma_size)
7645 			break;
7646 	}
7647 
7648 	if (!reserved)
7649 		/*
7650 		 * hugetlb_cma_size is used to determine if allocations from
7651 		 * cma are possible.  Set to zero if no cma regions are set up.
7652 		 */
7653 		hugetlb_cma_size = 0;
7654 }
7655 
7656 static void __init hugetlb_cma_check(void)
7657 {
7658 	if (!hugetlb_cma_size || cma_reserve_called)
7659 		return;
7660 
7661 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7662 }
7663 
7664 #endif /* CONFIG_CMA */
7665