xref: /openbmc/linux/mm/hugetlb.c (revision 4beec1d7)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631 
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638 	struct hstate *hstate;
639 
640 	if (!is_vm_hugetlb_page(vma))
641 		return PAGE_SIZE;
642 
643 	hstate = hstate_vma(vma);
644 
645 	return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658 	return vma_kernel_pagesize(vma);
659 }
660 #endif
661 
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692 	return (unsigned long)vma->vm_private_data;
693 }
694 
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 							unsigned long value)
697 {
698 	vma->vm_private_data = (void *)value;
699 }
700 
701 struct resv_map *resv_map_alloc(void)
702 {
703 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705 
706 	if (!resv_map || !rg) {
707 		kfree(resv_map);
708 		kfree(rg);
709 		return NULL;
710 	}
711 
712 	kref_init(&resv_map->refs);
713 	spin_lock_init(&resv_map->lock);
714 	INIT_LIST_HEAD(&resv_map->regions);
715 
716 	resv_map->adds_in_progress = 0;
717 
718 	INIT_LIST_HEAD(&resv_map->region_cache);
719 	list_add(&rg->link, &resv_map->region_cache);
720 	resv_map->region_cache_count = 1;
721 
722 	return resv_map;
723 }
724 
725 void resv_map_release(struct kref *ref)
726 {
727 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 	struct list_head *head = &resv_map->region_cache;
729 	struct file_region *rg, *trg;
730 
731 	/* Clear out any active regions before we release the map. */
732 	region_del(resv_map, 0, LONG_MAX);
733 
734 	/* ... and any entries left in the cache */
735 	list_for_each_entry_safe(rg, trg, head, link) {
736 		list_del(&rg->link);
737 		kfree(rg);
738 	}
739 
740 	VM_BUG_ON(resv_map->adds_in_progress);
741 
742 	kfree(resv_map);
743 }
744 
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747 	return inode->i_mapping->private_data;
748 }
749 
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (vma->vm_flags & VM_MAYSHARE) {
754 		struct address_space *mapping = vma->vm_file->f_mapping;
755 		struct inode *inode = mapping->host;
756 
757 		return inode_resv_map(inode);
758 
759 	} else {
760 		return (struct resv_map *)(get_vma_private_data(vma) &
761 							~HPAGE_RESV_MASK);
762 	}
763 }
764 
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769 
770 	set_vma_private_data(vma, (get_vma_private_data(vma) &
771 				HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773 
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 
779 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781 
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 
786 	return (get_vma_private_data(vma) & flag) != 0;
787 }
788 
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 	if (!(vma->vm_flags & VM_MAYSHARE))
794 		vma->vm_private_data = (void *)0;
795 }
796 
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800 	if (vma->vm_flags & VM_NORESERVE) {
801 		/*
802 		 * This address is already reserved by other process(chg == 0),
803 		 * so, we should decrement reserved count. Without decrementing,
804 		 * reserve count remains after releasing inode, because this
805 		 * allocated page will go into page cache and is regarded as
806 		 * coming from reserved pool in releasing step.  Currently, we
807 		 * don't have any other solution to deal with this situation
808 		 * properly, so add work-around here.
809 		 */
810 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 			return true;
812 		else
813 			return false;
814 	}
815 
816 	/* Shared mappings always use reserves */
817 	if (vma->vm_flags & VM_MAYSHARE) {
818 		/*
819 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820 		 * be a region map for all pages.  The only situation where
821 		 * there is no region map is if a hole was punched via
822 		 * fallocate.  In this case, there really are no reverves to
823 		 * use.  This situation is indicated if chg != 0.
824 		 */
825 		if (chg)
826 			return false;
827 		else
828 			return true;
829 	}
830 
831 	/*
832 	 * Only the process that called mmap() has reserves for
833 	 * private mappings.
834 	 */
835 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 		/*
837 		 * Like the shared case above, a hole punch or truncate
838 		 * could have been performed on the private mapping.
839 		 * Examine the value of chg to determine if reserves
840 		 * actually exist or were previously consumed.
841 		 * Very Subtle - The value of chg comes from a previous
842 		 * call to vma_needs_reserves().  The reserve map for
843 		 * private mappings has different (opposite) semantics
844 		 * than that of shared mappings.  vma_needs_reserves()
845 		 * has already taken this difference in semantics into
846 		 * account.  Therefore, the meaning of chg is the same
847 		 * as in the shared case above.  Code could easily be
848 		 * combined, but keeping it separate draws attention to
849 		 * subtle differences.
850 		 */
851 		if (chg)
852 			return false;
853 		else
854 			return true;
855 	}
856 
857 	return false;
858 }
859 
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862 	int nid = page_to_nid(page);
863 	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 	h->free_huge_pages++;
865 	h->free_huge_pages_node[nid]++;
866 }
867 
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870 	struct page *page;
871 
872 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 		if (!is_migrate_isolate_page(page))
874 			break;
875 	/*
876 	 * if 'non-isolated free hugepage' not found on the list,
877 	 * the allocation fails.
878 	 */
879 	if (&h->hugepage_freelists[nid] == &page->lru)
880 		return NULL;
881 	list_move(&page->lru, &h->hugepage_activelist);
882 	set_page_refcounted(page);
883 	h->free_huge_pages--;
884 	h->free_huge_pages_node[nid]--;
885 	return page;
886 }
887 
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 		return GFP_HIGHUSER_MOVABLE;
893 	else
894 		return GFP_HIGHUSER;
895 }
896 
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 				struct vm_area_struct *vma,
899 				unsigned long address, int avoid_reserve,
900 				long chg)
901 {
902 	struct page *page = NULL;
903 	struct mempolicy *mpol;
904 	nodemask_t *nodemask;
905 	struct zonelist *zonelist;
906 	struct zone *zone;
907 	struct zoneref *z;
908 	unsigned int cpuset_mems_cookie;
909 
910 	/*
911 	 * A child process with MAP_PRIVATE mappings created by their parent
912 	 * have no page reserves. This check ensures that reservations are
913 	 * not "stolen". The child may still get SIGKILLed
914 	 */
915 	if (!vma_has_reserves(vma, chg) &&
916 			h->free_huge_pages - h->resv_huge_pages == 0)
917 		goto err;
918 
919 	/* If reserves cannot be used, ensure enough pages are in the pool */
920 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 		goto err;
922 
923 retry_cpuset:
924 	cpuset_mems_cookie = read_mems_allowed_begin();
925 	zonelist = huge_zonelist(vma, address,
926 					htlb_alloc_mask(h), &mpol, &nodemask);
927 
928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 						MAX_NR_ZONES - 1, nodemask) {
930 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 			if (page) {
933 				if (avoid_reserve)
934 					break;
935 				if (!vma_has_reserves(vma, chg))
936 					break;
937 
938 				SetPagePrivate(page);
939 				h->resv_huge_pages--;
940 				break;
941 			}
942 		}
943 	}
944 
945 	mpol_cond_put(mpol);
946 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 		goto retry_cpuset;
948 	return page;
949 
950 err:
951 	return NULL;
952 }
953 
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963 	nid = next_node_in(nid, *nodes_allowed);
964 	VM_BUG_ON(nid >= MAX_NUMNODES);
965 
966 	return nid;
967 }
968 
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971 	if (!node_isset(nid, *nodes_allowed))
972 		nid = next_node_allowed(nid, nodes_allowed);
973 	return nid;
974 }
975 
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 					nodemask_t *nodes_allowed)
984 {
985 	int nid;
986 
987 	VM_BUG_ON(!nodes_allowed);
988 
989 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991 
992 	return nid;
993 }
994 
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003 	int nid;
1004 
1005 	VM_BUG_ON(!nodes_allowed);
1006 
1007 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009 
1010 	return nid;
1011 }
1012 
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1014 	for (nr_nodes = nodes_weight(*mask);				\
1015 		nr_nodes > 0 &&						\
1016 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1017 		nr_nodes--)
1018 
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1020 	for (nr_nodes = nodes_weight(*mask);				\
1021 		nr_nodes > 0 &&						\
1022 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1023 		nr_nodes--)
1024 
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 	defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029 					unsigned int order)
1030 {
1031 	int i;
1032 	int nr_pages = 1 << order;
1033 	struct page *p = page + 1;
1034 
1035 	atomic_set(compound_mapcount_ptr(page), 0);
1036 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 		clear_compound_head(p);
1038 		set_page_refcounted(p);
1039 	}
1040 
1041 	set_compound_order(page, 0);
1042 	__ClearPageHead(page);
1043 }
1044 
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047 	free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049 
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051 				unsigned long nr_pages)
1052 {
1053 	unsigned long end_pfn = start_pfn + nr_pages;
1054 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056 
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058 			unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060 	unsigned long i, end_pfn = start_pfn + nr_pages;
1061 	struct page *page;
1062 
1063 	for (i = start_pfn; i < end_pfn; i++) {
1064 		if (!pfn_valid(i))
1065 			return false;
1066 
1067 		page = pfn_to_page(i);
1068 
1069 		if (page_zone(page) != z)
1070 			return false;
1071 
1072 		if (PageReserved(page))
1073 			return false;
1074 
1075 		if (page_count(page) > 0)
1076 			return false;
1077 
1078 		if (PageHuge(page))
1079 			return false;
1080 	}
1081 
1082 	return true;
1083 }
1084 
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086 			unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 	return zone_spans_pfn(zone, last_pfn);
1090 }
1091 
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094 	unsigned long nr_pages = 1 << order;
1095 	unsigned long ret, pfn, flags;
1096 	struct zone *z;
1097 
1098 	z = NODE_DATA(nid)->node_zones;
1099 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 		spin_lock_irqsave(&z->lock, flags);
1101 
1102 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 				/*
1106 				 * We release the zone lock here because
1107 				 * alloc_contig_range() will also lock the zone
1108 				 * at some point. If there's an allocation
1109 				 * spinning on this lock, it may win the race
1110 				 * and cause alloc_contig_range() to fail...
1111 				 */
1112 				spin_unlock_irqrestore(&z->lock, flags);
1113 				ret = __alloc_gigantic_page(pfn, nr_pages);
1114 				if (!ret)
1115 					return pfn_to_page(pfn);
1116 				spin_lock_irqsave(&z->lock, flags);
1117 			}
1118 			pfn += nr_pages;
1119 		}
1120 
1121 		spin_unlock_irqrestore(&z->lock, flags);
1122 	}
1123 
1124 	return NULL;
1125 }
1126 
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129 
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132 	struct page *page;
1133 
1134 	page = alloc_gigantic_page(nid, huge_page_order(h));
1135 	if (page) {
1136 		prep_compound_gigantic_page(page, huge_page_order(h));
1137 		prep_new_huge_page(h, page, nid);
1138 	}
1139 
1140 	return page;
1141 }
1142 
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144 				nodemask_t *nodes_allowed)
1145 {
1146 	struct page *page = NULL;
1147 	int nr_nodes, node;
1148 
1149 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 		page = alloc_fresh_gigantic_page_node(h, node);
1151 		if (page)
1152 			return 1;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163 						unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 					nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167 
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170 	int i;
1171 
1172 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173 		return;
1174 
1175 	h->nr_huge_pages--;
1176 	h->nr_huge_pages_node[page_to_nid(page)]--;
1177 	for (i = 0; i < pages_per_huge_page(h); i++) {
1178 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 				1 << PG_referenced | 1 << PG_dirty |
1180 				1 << PG_active | 1 << PG_private |
1181 				1 << PG_writeback);
1182 	}
1183 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 	set_page_refcounted(page);
1186 	if (hstate_is_gigantic(h)) {
1187 		destroy_compound_gigantic_page(page, huge_page_order(h));
1188 		free_gigantic_page(page, huge_page_order(h));
1189 	} else {
1190 		__free_pages(page, huge_page_order(h));
1191 	}
1192 }
1193 
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196 	struct hstate *h;
1197 
1198 	for_each_hstate(h) {
1199 		if (huge_page_size(h) == size)
1200 			return h;
1201 	}
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 	return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216 
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 	SetPagePrivate(&page[1]);
1222 }
1223 
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 	ClearPagePrivate(&page[1]);
1228 }
1229 
1230 void free_huge_page(struct page *page)
1231 {
1232 	/*
1233 	 * Can't pass hstate in here because it is called from the
1234 	 * compound page destructor.
1235 	 */
1236 	struct hstate *h = page_hstate(page);
1237 	int nid = page_to_nid(page);
1238 	struct hugepage_subpool *spool =
1239 		(struct hugepage_subpool *)page_private(page);
1240 	bool restore_reserve;
1241 
1242 	set_page_private(page, 0);
1243 	page->mapping = NULL;
1244 	VM_BUG_ON_PAGE(page_count(page), page);
1245 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 	restore_reserve = PagePrivate(page);
1247 	ClearPagePrivate(page);
1248 
1249 	/*
1250 	 * A return code of zero implies that the subpool will be under its
1251 	 * minimum size if the reservation is not restored after page is free.
1252 	 * Therefore, force restore_reserve operation.
1253 	 */
1254 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 		restore_reserve = true;
1256 
1257 	spin_lock(&hugetlb_lock);
1258 	clear_page_huge_active(page);
1259 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 				     pages_per_huge_page(h), page);
1261 	if (restore_reserve)
1262 		h->resv_huge_pages++;
1263 
1264 	if (h->surplus_huge_pages_node[nid]) {
1265 		/* remove the page from active list */
1266 		list_del(&page->lru);
1267 		update_and_free_page(h, page);
1268 		h->surplus_huge_pages--;
1269 		h->surplus_huge_pages_node[nid]--;
1270 	} else {
1271 		arch_clear_hugepage_flags(page);
1272 		enqueue_huge_page(h, page);
1273 	}
1274 	spin_unlock(&hugetlb_lock);
1275 }
1276 
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279 	INIT_LIST_HEAD(&page->lru);
1280 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 	spin_lock(&hugetlb_lock);
1282 	set_hugetlb_cgroup(page, NULL);
1283 	h->nr_huge_pages++;
1284 	h->nr_huge_pages_node[nid]++;
1285 	spin_unlock(&hugetlb_lock);
1286 	put_page(page); /* free it into the hugepage allocator */
1287 }
1288 
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291 	int i;
1292 	int nr_pages = 1 << order;
1293 	struct page *p = page + 1;
1294 
1295 	/* we rely on prep_new_huge_page to set the destructor */
1296 	set_compound_order(page, order);
1297 	__ClearPageReserved(page);
1298 	__SetPageHead(page);
1299 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 		/*
1301 		 * For gigantic hugepages allocated through bootmem at
1302 		 * boot, it's safer to be consistent with the not-gigantic
1303 		 * hugepages and clear the PG_reserved bit from all tail pages
1304 		 * too.  Otherwse drivers using get_user_pages() to access tail
1305 		 * pages may get the reference counting wrong if they see
1306 		 * PG_reserved set on a tail page (despite the head page not
1307 		 * having PG_reserved set).  Enforcing this consistency between
1308 		 * head and tail pages allows drivers to optimize away a check
1309 		 * on the head page when they need know if put_page() is needed
1310 		 * after get_user_pages().
1311 		 */
1312 		__ClearPageReserved(p);
1313 		set_page_count(p, 0);
1314 		set_compound_head(p, page);
1315 	}
1316 	atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318 
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326 	if (!PageCompound(page))
1327 		return 0;
1328 
1329 	page = compound_head(page);
1330 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333 
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340 	if (!PageHead(page_head))
1341 		return 0;
1342 
1343 	return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345 
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348 	struct page *page_head = compound_head(page);
1349 	pgoff_t index = page_index(page_head);
1350 	unsigned long compound_idx;
1351 
1352 	if (!PageHuge(page_head))
1353 		return page_index(page);
1354 
1355 	if (compound_order(page_head) >= MAX_ORDER)
1356 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357 	else
1358 		compound_idx = page - page_head;
1359 
1360 	return (index << compound_order(page_head)) + compound_idx;
1361 }
1362 
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365 	struct page *page;
1366 
1367 	page = __alloc_pages_node(nid,
1368 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 						__GFP_REPEAT|__GFP_NOWARN,
1370 		huge_page_order(h));
1371 	if (page) {
1372 		prep_new_huge_page(h, page, nid);
1373 	}
1374 
1375 	return page;
1376 }
1377 
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380 	struct page *page;
1381 	int nr_nodes, node;
1382 	int ret = 0;
1383 
1384 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 		page = alloc_fresh_huge_page_node(h, node);
1386 		if (page) {
1387 			ret = 1;
1388 			break;
1389 		}
1390 	}
1391 
1392 	if (ret)
1393 		count_vm_event(HTLB_BUDDY_PGALLOC);
1394 	else
1395 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396 
1397 	return ret;
1398 }
1399 
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407 							 bool acct_surplus)
1408 {
1409 	int nr_nodes, node;
1410 	int ret = 0;
1411 
1412 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 		/*
1414 		 * If we're returning unused surplus pages, only examine
1415 		 * nodes with surplus pages.
1416 		 */
1417 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 		    !list_empty(&h->hugepage_freelists[node])) {
1419 			struct page *page =
1420 				list_entry(h->hugepage_freelists[node].next,
1421 					  struct page, lru);
1422 			list_del(&page->lru);
1423 			h->free_huge_pages--;
1424 			h->free_huge_pages_node[node]--;
1425 			if (acct_surplus) {
1426 				h->surplus_huge_pages--;
1427 				h->surplus_huge_pages_node[node]--;
1428 			}
1429 			update_and_free_page(h, page);
1430 			ret = 1;
1431 			break;
1432 		}
1433 	}
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441  * number of free hugepages would be reduced below the number of reserved
1442  * hugepages.
1443  */
1444 static int dissolve_free_huge_page(struct page *page)
1445 {
1446 	int rc = 0;
1447 
1448 	spin_lock(&hugetlb_lock);
1449 	if (PageHuge(page) && !page_count(page)) {
1450 		struct page *head = compound_head(page);
1451 		struct hstate *h = page_hstate(head);
1452 		int nid = page_to_nid(head);
1453 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1454 			rc = -EBUSY;
1455 			goto out;
1456 		}
1457 		list_del(&head->lru);
1458 		h->free_huge_pages--;
1459 		h->free_huge_pages_node[nid]--;
1460 		h->max_huge_pages--;
1461 		update_and_free_page(h, head);
1462 	}
1463 out:
1464 	spin_unlock(&hugetlb_lock);
1465 	return rc;
1466 }
1467 
1468 /*
1469  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470  * make specified memory blocks removable from the system.
1471  * Note that this will dissolve a free gigantic hugepage completely, if any
1472  * part of it lies within the given range.
1473  * Also note that if dissolve_free_huge_page() returns with an error, all
1474  * free hugepages that were dissolved before that error are lost.
1475  */
1476 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1477 {
1478 	unsigned long pfn;
1479 	struct page *page;
1480 	int rc = 0;
1481 
1482 	if (!hugepages_supported())
1483 		return rc;
1484 
1485 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1486 		page = pfn_to_page(pfn);
1487 		if (PageHuge(page) && !page_count(page)) {
1488 			rc = dissolve_free_huge_page(page);
1489 			if (rc)
1490 				break;
1491 		}
1492 	}
1493 
1494 	return rc;
1495 }
1496 
1497 /*
1498  * There are 3 ways this can get called:
1499  * 1. With vma+addr: we use the VMA's memory policy
1500  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1501  *    page from any node, and let the buddy allocator itself figure
1502  *    it out.
1503  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1504  *    strictly from 'nid'
1505  */
1506 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1507 		struct vm_area_struct *vma, unsigned long addr, int nid)
1508 {
1509 	int order = huge_page_order(h);
1510 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1511 	unsigned int cpuset_mems_cookie;
1512 
1513 	/*
1514 	 * We need a VMA to get a memory policy.  If we do not
1515 	 * have one, we use the 'nid' argument.
1516 	 *
1517 	 * The mempolicy stuff below has some non-inlined bits
1518 	 * and calls ->vm_ops.  That makes it hard to optimize at
1519 	 * compile-time, even when NUMA is off and it does
1520 	 * nothing.  This helps the compiler optimize it out.
1521 	 */
1522 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1523 		/*
1524 		 * If a specific node is requested, make sure to
1525 		 * get memory from there, but only when a node
1526 		 * is explicitly specified.
1527 		 */
1528 		if (nid != NUMA_NO_NODE)
1529 			gfp |= __GFP_THISNODE;
1530 		/*
1531 		 * Make sure to call something that can handle
1532 		 * nid=NUMA_NO_NODE
1533 		 */
1534 		return alloc_pages_node(nid, gfp, order);
1535 	}
1536 
1537 	/*
1538 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1539 	 * allocate a huge page with it.  We will only reach this
1540 	 * when CONFIG_NUMA=y.
1541 	 */
1542 	do {
1543 		struct page *page;
1544 		struct mempolicy *mpol;
1545 		struct zonelist *zl;
1546 		nodemask_t *nodemask;
1547 
1548 		cpuset_mems_cookie = read_mems_allowed_begin();
1549 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1550 		mpol_cond_put(mpol);
1551 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1552 		if (page)
1553 			return page;
1554 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1555 
1556 	return NULL;
1557 }
1558 
1559 /*
1560  * There are two ways to allocate a huge page:
1561  * 1. When you have a VMA and an address (like a fault)
1562  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1563  *
1564  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1565  * this case which signifies that the allocation should be done with
1566  * respect for the VMA's memory policy.
1567  *
1568  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569  * implies that memory policies will not be taken in to account.
1570  */
1571 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1572 		struct vm_area_struct *vma, unsigned long addr, int nid)
1573 {
1574 	struct page *page;
1575 	unsigned int r_nid;
1576 
1577 	if (hstate_is_gigantic(h))
1578 		return NULL;
1579 
1580 	/*
1581 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582 	 * This makes sure the caller is picking _one_ of the modes with which
1583 	 * we can call this function, not both.
1584 	 */
1585 	if (vma || (addr != -1)) {
1586 		VM_WARN_ON_ONCE(addr == -1);
1587 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1588 	}
1589 	/*
1590 	 * Assume we will successfully allocate the surplus page to
1591 	 * prevent racing processes from causing the surplus to exceed
1592 	 * overcommit
1593 	 *
1594 	 * This however introduces a different race, where a process B
1595 	 * tries to grow the static hugepage pool while alloc_pages() is
1596 	 * called by process A. B will only examine the per-node
1597 	 * counters in determining if surplus huge pages can be
1598 	 * converted to normal huge pages in adjust_pool_surplus(). A
1599 	 * won't be able to increment the per-node counter, until the
1600 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601 	 * no more huge pages can be converted from surplus to normal
1602 	 * state (and doesn't try to convert again). Thus, we have a
1603 	 * case where a surplus huge page exists, the pool is grown, and
1604 	 * the surplus huge page still exists after, even though it
1605 	 * should just have been converted to a normal huge page. This
1606 	 * does not leak memory, though, as the hugepage will be freed
1607 	 * once it is out of use. It also does not allow the counters to
1608 	 * go out of whack in adjust_pool_surplus() as we don't modify
1609 	 * the node values until we've gotten the hugepage and only the
1610 	 * per-node value is checked there.
1611 	 */
1612 	spin_lock(&hugetlb_lock);
1613 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1614 		spin_unlock(&hugetlb_lock);
1615 		return NULL;
1616 	} else {
1617 		h->nr_huge_pages++;
1618 		h->surplus_huge_pages++;
1619 	}
1620 	spin_unlock(&hugetlb_lock);
1621 
1622 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1623 
1624 	spin_lock(&hugetlb_lock);
1625 	if (page) {
1626 		INIT_LIST_HEAD(&page->lru);
1627 		r_nid = page_to_nid(page);
1628 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1629 		set_hugetlb_cgroup(page, NULL);
1630 		/*
1631 		 * We incremented the global counters already
1632 		 */
1633 		h->nr_huge_pages_node[r_nid]++;
1634 		h->surplus_huge_pages_node[r_nid]++;
1635 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1636 	} else {
1637 		h->nr_huge_pages--;
1638 		h->surplus_huge_pages--;
1639 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1640 	}
1641 	spin_unlock(&hugetlb_lock);
1642 
1643 	return page;
1644 }
1645 
1646 /*
1647  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1648  * NUMA_NO_NODE, which means that it may be allocated
1649  * anywhere.
1650  */
1651 static
1652 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1653 {
1654 	unsigned long addr = -1;
1655 
1656 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1657 }
1658 
1659 /*
1660  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1661  */
1662 static
1663 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1664 		struct vm_area_struct *vma, unsigned long addr)
1665 {
1666 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1667 }
1668 
1669 /*
1670  * This allocation function is useful in the context where vma is irrelevant.
1671  * E.g. soft-offlining uses this function because it only cares physical
1672  * address of error page.
1673  */
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675 {
1676 	struct page *page = NULL;
1677 
1678 	spin_lock(&hugetlb_lock);
1679 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1680 		page = dequeue_huge_page_node(h, nid);
1681 	spin_unlock(&hugetlb_lock);
1682 
1683 	if (!page)
1684 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1685 
1686 	return page;
1687 }
1688 
1689 /*
1690  * Increase the hugetlb pool such that it can accommodate a reservation
1691  * of size 'delta'.
1692  */
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1694 {
1695 	struct list_head surplus_list;
1696 	struct page *page, *tmp;
1697 	int ret, i;
1698 	int needed, allocated;
1699 	bool alloc_ok = true;
1700 
1701 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 	if (needed <= 0) {
1703 		h->resv_huge_pages += delta;
1704 		return 0;
1705 	}
1706 
1707 	allocated = 0;
1708 	INIT_LIST_HEAD(&surplus_list);
1709 
1710 	ret = -ENOMEM;
1711 retry:
1712 	spin_unlock(&hugetlb_lock);
1713 	for (i = 0; i < needed; i++) {
1714 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1715 		if (!page) {
1716 			alloc_ok = false;
1717 			break;
1718 		}
1719 		list_add(&page->lru, &surplus_list);
1720 	}
1721 	allocated += i;
1722 
1723 	/*
1724 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1725 	 * because either resv_huge_pages or free_huge_pages may have changed.
1726 	 */
1727 	spin_lock(&hugetlb_lock);
1728 	needed = (h->resv_huge_pages + delta) -
1729 			(h->free_huge_pages + allocated);
1730 	if (needed > 0) {
1731 		if (alloc_ok)
1732 			goto retry;
1733 		/*
1734 		 * We were not able to allocate enough pages to
1735 		 * satisfy the entire reservation so we free what
1736 		 * we've allocated so far.
1737 		 */
1738 		goto free;
1739 	}
1740 	/*
1741 	 * The surplus_list now contains _at_least_ the number of extra pages
1742 	 * needed to accommodate the reservation.  Add the appropriate number
1743 	 * of pages to the hugetlb pool and free the extras back to the buddy
1744 	 * allocator.  Commit the entire reservation here to prevent another
1745 	 * process from stealing the pages as they are added to the pool but
1746 	 * before they are reserved.
1747 	 */
1748 	needed += allocated;
1749 	h->resv_huge_pages += delta;
1750 	ret = 0;
1751 
1752 	/* Free the needed pages to the hugetlb pool */
1753 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1754 		if ((--needed) < 0)
1755 			break;
1756 		/*
1757 		 * This page is now managed by the hugetlb allocator and has
1758 		 * no users -- drop the buddy allocator's reference.
1759 		 */
1760 		put_page_testzero(page);
1761 		VM_BUG_ON_PAGE(page_count(page), page);
1762 		enqueue_huge_page(h, page);
1763 	}
1764 free:
1765 	spin_unlock(&hugetlb_lock);
1766 
1767 	/* Free unnecessary surplus pages to the buddy allocator */
1768 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1769 		put_page(page);
1770 	spin_lock(&hugetlb_lock);
1771 
1772 	return ret;
1773 }
1774 
1775 /*
1776  * This routine has two main purposes:
1777  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1778  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1779  *    to the associated reservation map.
1780  * 2) Free any unused surplus pages that may have been allocated to satisfy
1781  *    the reservation.  As many as unused_resv_pages may be freed.
1782  *
1783  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1784  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1785  * we must make sure nobody else can claim pages we are in the process of
1786  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1787  * number of huge pages we plan to free when dropping the lock.
1788  */
1789 static void return_unused_surplus_pages(struct hstate *h,
1790 					unsigned long unused_resv_pages)
1791 {
1792 	unsigned long nr_pages;
1793 
1794 	/* Cannot return gigantic pages currently */
1795 	if (hstate_is_gigantic(h))
1796 		goto out;
1797 
1798 	/*
1799 	 * Part (or even all) of the reservation could have been backed
1800 	 * by pre-allocated pages. Only free surplus pages.
1801 	 */
1802 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1803 
1804 	/*
1805 	 * We want to release as many surplus pages as possible, spread
1806 	 * evenly across all nodes with memory. Iterate across these nodes
1807 	 * until we can no longer free unreserved surplus pages. This occurs
1808 	 * when the nodes with surplus pages have no free pages.
1809 	 * free_pool_huge_page() will balance the the freed pages across the
1810 	 * on-line nodes with memory and will handle the hstate accounting.
1811 	 *
1812 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1813 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1814 	 * to cover subsequent pages we may free.
1815 	 */
1816 	while (nr_pages--) {
1817 		h->resv_huge_pages--;
1818 		unused_resv_pages--;
1819 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1820 			goto out;
1821 		cond_resched_lock(&hugetlb_lock);
1822 	}
1823 
1824 out:
1825 	/* Fully uncommit the reservation */
1826 	h->resv_huge_pages -= unused_resv_pages;
1827 }
1828 
1829 
1830 /*
1831  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1832  * are used by the huge page allocation routines to manage reservations.
1833  *
1834  * vma_needs_reservation is called to determine if the huge page at addr
1835  * within the vma has an associated reservation.  If a reservation is
1836  * needed, the value 1 is returned.  The caller is then responsible for
1837  * managing the global reservation and subpool usage counts.  After
1838  * the huge page has been allocated, vma_commit_reservation is called
1839  * to add the page to the reservation map.  If the page allocation fails,
1840  * the reservation must be ended instead of committed.  vma_end_reservation
1841  * is called in such cases.
1842  *
1843  * In the normal case, vma_commit_reservation returns the same value
1844  * as the preceding vma_needs_reservation call.  The only time this
1845  * is not the case is if a reserve map was changed between calls.  It
1846  * is the responsibility of the caller to notice the difference and
1847  * take appropriate action.
1848  *
1849  * vma_add_reservation is used in error paths where a reservation must
1850  * be restored when a newly allocated huge page must be freed.  It is
1851  * to be called after calling vma_needs_reservation to determine if a
1852  * reservation exists.
1853  */
1854 enum vma_resv_mode {
1855 	VMA_NEEDS_RESV,
1856 	VMA_COMMIT_RESV,
1857 	VMA_END_RESV,
1858 	VMA_ADD_RESV,
1859 };
1860 static long __vma_reservation_common(struct hstate *h,
1861 				struct vm_area_struct *vma, unsigned long addr,
1862 				enum vma_resv_mode mode)
1863 {
1864 	struct resv_map *resv;
1865 	pgoff_t idx;
1866 	long ret;
1867 
1868 	resv = vma_resv_map(vma);
1869 	if (!resv)
1870 		return 1;
1871 
1872 	idx = vma_hugecache_offset(h, vma, addr);
1873 	switch (mode) {
1874 	case VMA_NEEDS_RESV:
1875 		ret = region_chg(resv, idx, idx + 1);
1876 		break;
1877 	case VMA_COMMIT_RESV:
1878 		ret = region_add(resv, idx, idx + 1);
1879 		break;
1880 	case VMA_END_RESV:
1881 		region_abort(resv, idx, idx + 1);
1882 		ret = 0;
1883 		break;
1884 	case VMA_ADD_RESV:
1885 		if (vma->vm_flags & VM_MAYSHARE)
1886 			ret = region_add(resv, idx, idx + 1);
1887 		else {
1888 			region_abort(resv, idx, idx + 1);
1889 			ret = region_del(resv, idx, idx + 1);
1890 		}
1891 		break;
1892 	default:
1893 		BUG();
1894 	}
1895 
1896 	if (vma->vm_flags & VM_MAYSHARE)
1897 		return ret;
1898 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1899 		/*
1900 		 * In most cases, reserves always exist for private mappings.
1901 		 * However, a file associated with mapping could have been
1902 		 * hole punched or truncated after reserves were consumed.
1903 		 * As subsequent fault on such a range will not use reserves.
1904 		 * Subtle - The reserve map for private mappings has the
1905 		 * opposite meaning than that of shared mappings.  If NO
1906 		 * entry is in the reserve map, it means a reservation exists.
1907 		 * If an entry exists in the reserve map, it means the
1908 		 * reservation has already been consumed.  As a result, the
1909 		 * return value of this routine is the opposite of the
1910 		 * value returned from reserve map manipulation routines above.
1911 		 */
1912 		if (ret)
1913 			return 0;
1914 		else
1915 			return 1;
1916 	}
1917 	else
1918 		return ret < 0 ? ret : 0;
1919 }
1920 
1921 static long vma_needs_reservation(struct hstate *h,
1922 			struct vm_area_struct *vma, unsigned long addr)
1923 {
1924 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1925 }
1926 
1927 static long vma_commit_reservation(struct hstate *h,
1928 			struct vm_area_struct *vma, unsigned long addr)
1929 {
1930 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1931 }
1932 
1933 static void vma_end_reservation(struct hstate *h,
1934 			struct vm_area_struct *vma, unsigned long addr)
1935 {
1936 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1937 }
1938 
1939 static long vma_add_reservation(struct hstate *h,
1940 			struct vm_area_struct *vma, unsigned long addr)
1941 {
1942 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1943 }
1944 
1945 /*
1946  * This routine is called to restore a reservation on error paths.  In the
1947  * specific error paths, a huge page was allocated (via alloc_huge_page)
1948  * and is about to be freed.  If a reservation for the page existed,
1949  * alloc_huge_page would have consumed the reservation and set PagePrivate
1950  * in the newly allocated page.  When the page is freed via free_huge_page,
1951  * the global reservation count will be incremented if PagePrivate is set.
1952  * However, free_huge_page can not adjust the reserve map.  Adjust the
1953  * reserve map here to be consistent with global reserve count adjustments
1954  * to be made by free_huge_page.
1955  */
1956 static void restore_reserve_on_error(struct hstate *h,
1957 			struct vm_area_struct *vma, unsigned long address,
1958 			struct page *page)
1959 {
1960 	if (unlikely(PagePrivate(page))) {
1961 		long rc = vma_needs_reservation(h, vma, address);
1962 
1963 		if (unlikely(rc < 0)) {
1964 			/*
1965 			 * Rare out of memory condition in reserve map
1966 			 * manipulation.  Clear PagePrivate so that
1967 			 * global reserve count will not be incremented
1968 			 * by free_huge_page.  This will make it appear
1969 			 * as though the reservation for this page was
1970 			 * consumed.  This may prevent the task from
1971 			 * faulting in the page at a later time.  This
1972 			 * is better than inconsistent global huge page
1973 			 * accounting of reserve counts.
1974 			 */
1975 			ClearPagePrivate(page);
1976 		} else if (rc) {
1977 			rc = vma_add_reservation(h, vma, address);
1978 			if (unlikely(rc < 0))
1979 				/*
1980 				 * See above comment about rare out of
1981 				 * memory condition.
1982 				 */
1983 				ClearPagePrivate(page);
1984 		} else
1985 			vma_end_reservation(h, vma, address);
1986 	}
1987 }
1988 
1989 struct page *alloc_huge_page(struct vm_area_struct *vma,
1990 				    unsigned long addr, int avoid_reserve)
1991 {
1992 	struct hugepage_subpool *spool = subpool_vma(vma);
1993 	struct hstate *h = hstate_vma(vma);
1994 	struct page *page;
1995 	long map_chg, map_commit;
1996 	long gbl_chg;
1997 	int ret, idx;
1998 	struct hugetlb_cgroup *h_cg;
1999 
2000 	idx = hstate_index(h);
2001 	/*
2002 	 * Examine the region/reserve map to determine if the process
2003 	 * has a reservation for the page to be allocated.  A return
2004 	 * code of zero indicates a reservation exists (no change).
2005 	 */
2006 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2007 	if (map_chg < 0)
2008 		return ERR_PTR(-ENOMEM);
2009 
2010 	/*
2011 	 * Processes that did not create the mapping will have no
2012 	 * reserves as indicated by the region/reserve map. Check
2013 	 * that the allocation will not exceed the subpool limit.
2014 	 * Allocations for MAP_NORESERVE mappings also need to be
2015 	 * checked against any subpool limit.
2016 	 */
2017 	if (map_chg || avoid_reserve) {
2018 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2019 		if (gbl_chg < 0) {
2020 			vma_end_reservation(h, vma, addr);
2021 			return ERR_PTR(-ENOSPC);
2022 		}
2023 
2024 		/*
2025 		 * Even though there was no reservation in the region/reserve
2026 		 * map, there could be reservations associated with the
2027 		 * subpool that can be used.  This would be indicated if the
2028 		 * return value of hugepage_subpool_get_pages() is zero.
2029 		 * However, if avoid_reserve is specified we still avoid even
2030 		 * the subpool reservations.
2031 		 */
2032 		if (avoid_reserve)
2033 			gbl_chg = 1;
2034 	}
2035 
2036 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2037 	if (ret)
2038 		goto out_subpool_put;
2039 
2040 	spin_lock(&hugetlb_lock);
2041 	/*
2042 	 * glb_chg is passed to indicate whether or not a page must be taken
2043 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2044 	 * a reservation exists for the allocation.
2045 	 */
2046 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2047 	if (!page) {
2048 		spin_unlock(&hugetlb_lock);
2049 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2050 		if (!page)
2051 			goto out_uncharge_cgroup;
2052 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2053 			SetPagePrivate(page);
2054 			h->resv_huge_pages--;
2055 		}
2056 		spin_lock(&hugetlb_lock);
2057 		list_move(&page->lru, &h->hugepage_activelist);
2058 		/* Fall through */
2059 	}
2060 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2061 	spin_unlock(&hugetlb_lock);
2062 
2063 	set_page_private(page, (unsigned long)spool);
2064 
2065 	map_commit = vma_commit_reservation(h, vma, addr);
2066 	if (unlikely(map_chg > map_commit)) {
2067 		/*
2068 		 * The page was added to the reservation map between
2069 		 * vma_needs_reservation and vma_commit_reservation.
2070 		 * This indicates a race with hugetlb_reserve_pages.
2071 		 * Adjust for the subpool count incremented above AND
2072 		 * in hugetlb_reserve_pages for the same page.  Also,
2073 		 * the reservation count added in hugetlb_reserve_pages
2074 		 * no longer applies.
2075 		 */
2076 		long rsv_adjust;
2077 
2078 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2079 		hugetlb_acct_memory(h, -rsv_adjust);
2080 	}
2081 	return page;
2082 
2083 out_uncharge_cgroup:
2084 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2085 out_subpool_put:
2086 	if (map_chg || avoid_reserve)
2087 		hugepage_subpool_put_pages(spool, 1);
2088 	vma_end_reservation(h, vma, addr);
2089 	return ERR_PTR(-ENOSPC);
2090 }
2091 
2092 /*
2093  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2094  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2095  * where no ERR_VALUE is expected to be returned.
2096  */
2097 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2098 				unsigned long addr, int avoid_reserve)
2099 {
2100 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2101 	if (IS_ERR(page))
2102 		page = NULL;
2103 	return page;
2104 }
2105 
2106 int __weak alloc_bootmem_huge_page(struct hstate *h)
2107 {
2108 	struct huge_bootmem_page *m;
2109 	int nr_nodes, node;
2110 
2111 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2112 		void *addr;
2113 
2114 		addr = memblock_virt_alloc_try_nid_nopanic(
2115 				huge_page_size(h), huge_page_size(h),
2116 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2117 		if (addr) {
2118 			/*
2119 			 * Use the beginning of the huge page to store the
2120 			 * huge_bootmem_page struct (until gather_bootmem
2121 			 * puts them into the mem_map).
2122 			 */
2123 			m = addr;
2124 			goto found;
2125 		}
2126 	}
2127 	return 0;
2128 
2129 found:
2130 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2131 	/* Put them into a private list first because mem_map is not up yet */
2132 	list_add(&m->list, &huge_boot_pages);
2133 	m->hstate = h;
2134 	return 1;
2135 }
2136 
2137 static void __init prep_compound_huge_page(struct page *page,
2138 		unsigned int order)
2139 {
2140 	if (unlikely(order > (MAX_ORDER - 1)))
2141 		prep_compound_gigantic_page(page, order);
2142 	else
2143 		prep_compound_page(page, order);
2144 }
2145 
2146 /* Put bootmem huge pages into the standard lists after mem_map is up */
2147 static void __init gather_bootmem_prealloc(void)
2148 {
2149 	struct huge_bootmem_page *m;
2150 
2151 	list_for_each_entry(m, &huge_boot_pages, list) {
2152 		struct hstate *h = m->hstate;
2153 		struct page *page;
2154 
2155 #ifdef CONFIG_HIGHMEM
2156 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2157 		memblock_free_late(__pa(m),
2158 				   sizeof(struct huge_bootmem_page));
2159 #else
2160 		page = virt_to_page(m);
2161 #endif
2162 		WARN_ON(page_count(page) != 1);
2163 		prep_compound_huge_page(page, h->order);
2164 		WARN_ON(PageReserved(page));
2165 		prep_new_huge_page(h, page, page_to_nid(page));
2166 		/*
2167 		 * If we had gigantic hugepages allocated at boot time, we need
2168 		 * to restore the 'stolen' pages to totalram_pages in order to
2169 		 * fix confusing memory reports from free(1) and another
2170 		 * side-effects, like CommitLimit going negative.
2171 		 */
2172 		if (hstate_is_gigantic(h))
2173 			adjust_managed_page_count(page, 1 << h->order);
2174 	}
2175 }
2176 
2177 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2178 {
2179 	unsigned long i;
2180 
2181 	for (i = 0; i < h->max_huge_pages; ++i) {
2182 		if (hstate_is_gigantic(h)) {
2183 			if (!alloc_bootmem_huge_page(h))
2184 				break;
2185 		} else if (!alloc_fresh_huge_page(h,
2186 					 &node_states[N_MEMORY]))
2187 			break;
2188 	}
2189 	h->max_huge_pages = i;
2190 }
2191 
2192 static void __init hugetlb_init_hstates(void)
2193 {
2194 	struct hstate *h;
2195 
2196 	for_each_hstate(h) {
2197 		if (minimum_order > huge_page_order(h))
2198 			minimum_order = huge_page_order(h);
2199 
2200 		/* oversize hugepages were init'ed in early boot */
2201 		if (!hstate_is_gigantic(h))
2202 			hugetlb_hstate_alloc_pages(h);
2203 	}
2204 	VM_BUG_ON(minimum_order == UINT_MAX);
2205 }
2206 
2207 static char * __init memfmt(char *buf, unsigned long n)
2208 {
2209 	if (n >= (1UL << 30))
2210 		sprintf(buf, "%lu GB", n >> 30);
2211 	else if (n >= (1UL << 20))
2212 		sprintf(buf, "%lu MB", n >> 20);
2213 	else
2214 		sprintf(buf, "%lu KB", n >> 10);
2215 	return buf;
2216 }
2217 
2218 static void __init report_hugepages(void)
2219 {
2220 	struct hstate *h;
2221 
2222 	for_each_hstate(h) {
2223 		char buf[32];
2224 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2225 			memfmt(buf, huge_page_size(h)),
2226 			h->free_huge_pages);
2227 	}
2228 }
2229 
2230 #ifdef CONFIG_HIGHMEM
2231 static void try_to_free_low(struct hstate *h, unsigned long count,
2232 						nodemask_t *nodes_allowed)
2233 {
2234 	int i;
2235 
2236 	if (hstate_is_gigantic(h))
2237 		return;
2238 
2239 	for_each_node_mask(i, *nodes_allowed) {
2240 		struct page *page, *next;
2241 		struct list_head *freel = &h->hugepage_freelists[i];
2242 		list_for_each_entry_safe(page, next, freel, lru) {
2243 			if (count >= h->nr_huge_pages)
2244 				return;
2245 			if (PageHighMem(page))
2246 				continue;
2247 			list_del(&page->lru);
2248 			update_and_free_page(h, page);
2249 			h->free_huge_pages--;
2250 			h->free_huge_pages_node[page_to_nid(page)]--;
2251 		}
2252 	}
2253 }
2254 #else
2255 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2256 						nodemask_t *nodes_allowed)
2257 {
2258 }
2259 #endif
2260 
2261 /*
2262  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2263  * balanced by operating on them in a round-robin fashion.
2264  * Returns 1 if an adjustment was made.
2265  */
2266 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2267 				int delta)
2268 {
2269 	int nr_nodes, node;
2270 
2271 	VM_BUG_ON(delta != -1 && delta != 1);
2272 
2273 	if (delta < 0) {
2274 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2275 			if (h->surplus_huge_pages_node[node])
2276 				goto found;
2277 		}
2278 	} else {
2279 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2280 			if (h->surplus_huge_pages_node[node] <
2281 					h->nr_huge_pages_node[node])
2282 				goto found;
2283 		}
2284 	}
2285 	return 0;
2286 
2287 found:
2288 	h->surplus_huge_pages += delta;
2289 	h->surplus_huge_pages_node[node] += delta;
2290 	return 1;
2291 }
2292 
2293 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2294 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2295 						nodemask_t *nodes_allowed)
2296 {
2297 	unsigned long min_count, ret;
2298 
2299 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2300 		return h->max_huge_pages;
2301 
2302 	/*
2303 	 * Increase the pool size
2304 	 * First take pages out of surplus state.  Then make up the
2305 	 * remaining difference by allocating fresh huge pages.
2306 	 *
2307 	 * We might race with __alloc_buddy_huge_page() here and be unable
2308 	 * to convert a surplus huge page to a normal huge page. That is
2309 	 * not critical, though, it just means the overall size of the
2310 	 * pool might be one hugepage larger than it needs to be, but
2311 	 * within all the constraints specified by the sysctls.
2312 	 */
2313 	spin_lock(&hugetlb_lock);
2314 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2315 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2316 			break;
2317 	}
2318 
2319 	while (count > persistent_huge_pages(h)) {
2320 		/*
2321 		 * If this allocation races such that we no longer need the
2322 		 * page, free_huge_page will handle it by freeing the page
2323 		 * and reducing the surplus.
2324 		 */
2325 		spin_unlock(&hugetlb_lock);
2326 
2327 		/* yield cpu to avoid soft lockup */
2328 		cond_resched();
2329 
2330 		if (hstate_is_gigantic(h))
2331 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2332 		else
2333 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2334 		spin_lock(&hugetlb_lock);
2335 		if (!ret)
2336 			goto out;
2337 
2338 		/* Bail for signals. Probably ctrl-c from user */
2339 		if (signal_pending(current))
2340 			goto out;
2341 	}
2342 
2343 	/*
2344 	 * Decrease the pool size
2345 	 * First return free pages to the buddy allocator (being careful
2346 	 * to keep enough around to satisfy reservations).  Then place
2347 	 * pages into surplus state as needed so the pool will shrink
2348 	 * to the desired size as pages become free.
2349 	 *
2350 	 * By placing pages into the surplus state independent of the
2351 	 * overcommit value, we are allowing the surplus pool size to
2352 	 * exceed overcommit. There are few sane options here. Since
2353 	 * __alloc_buddy_huge_page() is checking the global counter,
2354 	 * though, we'll note that we're not allowed to exceed surplus
2355 	 * and won't grow the pool anywhere else. Not until one of the
2356 	 * sysctls are changed, or the surplus pages go out of use.
2357 	 */
2358 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2359 	min_count = max(count, min_count);
2360 	try_to_free_low(h, min_count, nodes_allowed);
2361 	while (min_count < persistent_huge_pages(h)) {
2362 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2363 			break;
2364 		cond_resched_lock(&hugetlb_lock);
2365 	}
2366 	while (count < persistent_huge_pages(h)) {
2367 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2368 			break;
2369 	}
2370 out:
2371 	ret = persistent_huge_pages(h);
2372 	spin_unlock(&hugetlb_lock);
2373 	return ret;
2374 }
2375 
2376 #define HSTATE_ATTR_RO(_name) \
2377 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2378 
2379 #define HSTATE_ATTR(_name) \
2380 	static struct kobj_attribute _name##_attr = \
2381 		__ATTR(_name, 0644, _name##_show, _name##_store)
2382 
2383 static struct kobject *hugepages_kobj;
2384 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2385 
2386 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2387 
2388 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2389 {
2390 	int i;
2391 
2392 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2393 		if (hstate_kobjs[i] == kobj) {
2394 			if (nidp)
2395 				*nidp = NUMA_NO_NODE;
2396 			return &hstates[i];
2397 		}
2398 
2399 	return kobj_to_node_hstate(kobj, nidp);
2400 }
2401 
2402 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2403 					struct kobj_attribute *attr, char *buf)
2404 {
2405 	struct hstate *h;
2406 	unsigned long nr_huge_pages;
2407 	int nid;
2408 
2409 	h = kobj_to_hstate(kobj, &nid);
2410 	if (nid == NUMA_NO_NODE)
2411 		nr_huge_pages = h->nr_huge_pages;
2412 	else
2413 		nr_huge_pages = h->nr_huge_pages_node[nid];
2414 
2415 	return sprintf(buf, "%lu\n", nr_huge_pages);
2416 }
2417 
2418 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2419 					   struct hstate *h, int nid,
2420 					   unsigned long count, size_t len)
2421 {
2422 	int err;
2423 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2424 
2425 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2426 		err = -EINVAL;
2427 		goto out;
2428 	}
2429 
2430 	if (nid == NUMA_NO_NODE) {
2431 		/*
2432 		 * global hstate attribute
2433 		 */
2434 		if (!(obey_mempolicy &&
2435 				init_nodemask_of_mempolicy(nodes_allowed))) {
2436 			NODEMASK_FREE(nodes_allowed);
2437 			nodes_allowed = &node_states[N_MEMORY];
2438 		}
2439 	} else if (nodes_allowed) {
2440 		/*
2441 		 * per node hstate attribute: adjust count to global,
2442 		 * but restrict alloc/free to the specified node.
2443 		 */
2444 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2445 		init_nodemask_of_node(nodes_allowed, nid);
2446 	} else
2447 		nodes_allowed = &node_states[N_MEMORY];
2448 
2449 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2450 
2451 	if (nodes_allowed != &node_states[N_MEMORY])
2452 		NODEMASK_FREE(nodes_allowed);
2453 
2454 	return len;
2455 out:
2456 	NODEMASK_FREE(nodes_allowed);
2457 	return err;
2458 }
2459 
2460 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2461 					 struct kobject *kobj, const char *buf,
2462 					 size_t len)
2463 {
2464 	struct hstate *h;
2465 	unsigned long count;
2466 	int nid;
2467 	int err;
2468 
2469 	err = kstrtoul(buf, 10, &count);
2470 	if (err)
2471 		return err;
2472 
2473 	h = kobj_to_hstate(kobj, &nid);
2474 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2475 }
2476 
2477 static ssize_t nr_hugepages_show(struct kobject *kobj,
2478 				       struct kobj_attribute *attr, char *buf)
2479 {
2480 	return nr_hugepages_show_common(kobj, attr, buf);
2481 }
2482 
2483 static ssize_t nr_hugepages_store(struct kobject *kobj,
2484 	       struct kobj_attribute *attr, const char *buf, size_t len)
2485 {
2486 	return nr_hugepages_store_common(false, kobj, buf, len);
2487 }
2488 HSTATE_ATTR(nr_hugepages);
2489 
2490 #ifdef CONFIG_NUMA
2491 
2492 /*
2493  * hstate attribute for optionally mempolicy-based constraint on persistent
2494  * huge page alloc/free.
2495  */
2496 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2497 				       struct kobj_attribute *attr, char *buf)
2498 {
2499 	return nr_hugepages_show_common(kobj, attr, buf);
2500 }
2501 
2502 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2503 	       struct kobj_attribute *attr, const char *buf, size_t len)
2504 {
2505 	return nr_hugepages_store_common(true, kobj, buf, len);
2506 }
2507 HSTATE_ATTR(nr_hugepages_mempolicy);
2508 #endif
2509 
2510 
2511 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2512 					struct kobj_attribute *attr, char *buf)
2513 {
2514 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2515 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2516 }
2517 
2518 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2519 		struct kobj_attribute *attr, const char *buf, size_t count)
2520 {
2521 	int err;
2522 	unsigned long input;
2523 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2524 
2525 	if (hstate_is_gigantic(h))
2526 		return -EINVAL;
2527 
2528 	err = kstrtoul(buf, 10, &input);
2529 	if (err)
2530 		return err;
2531 
2532 	spin_lock(&hugetlb_lock);
2533 	h->nr_overcommit_huge_pages = input;
2534 	spin_unlock(&hugetlb_lock);
2535 
2536 	return count;
2537 }
2538 HSTATE_ATTR(nr_overcommit_hugepages);
2539 
2540 static ssize_t free_hugepages_show(struct kobject *kobj,
2541 					struct kobj_attribute *attr, char *buf)
2542 {
2543 	struct hstate *h;
2544 	unsigned long free_huge_pages;
2545 	int nid;
2546 
2547 	h = kobj_to_hstate(kobj, &nid);
2548 	if (nid == NUMA_NO_NODE)
2549 		free_huge_pages = h->free_huge_pages;
2550 	else
2551 		free_huge_pages = h->free_huge_pages_node[nid];
2552 
2553 	return sprintf(buf, "%lu\n", free_huge_pages);
2554 }
2555 HSTATE_ATTR_RO(free_hugepages);
2556 
2557 static ssize_t resv_hugepages_show(struct kobject *kobj,
2558 					struct kobj_attribute *attr, char *buf)
2559 {
2560 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2561 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2562 }
2563 HSTATE_ATTR_RO(resv_hugepages);
2564 
2565 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2566 					struct kobj_attribute *attr, char *buf)
2567 {
2568 	struct hstate *h;
2569 	unsigned long surplus_huge_pages;
2570 	int nid;
2571 
2572 	h = kobj_to_hstate(kobj, &nid);
2573 	if (nid == NUMA_NO_NODE)
2574 		surplus_huge_pages = h->surplus_huge_pages;
2575 	else
2576 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2577 
2578 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2579 }
2580 HSTATE_ATTR_RO(surplus_hugepages);
2581 
2582 static struct attribute *hstate_attrs[] = {
2583 	&nr_hugepages_attr.attr,
2584 	&nr_overcommit_hugepages_attr.attr,
2585 	&free_hugepages_attr.attr,
2586 	&resv_hugepages_attr.attr,
2587 	&surplus_hugepages_attr.attr,
2588 #ifdef CONFIG_NUMA
2589 	&nr_hugepages_mempolicy_attr.attr,
2590 #endif
2591 	NULL,
2592 };
2593 
2594 static struct attribute_group hstate_attr_group = {
2595 	.attrs = hstate_attrs,
2596 };
2597 
2598 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2599 				    struct kobject **hstate_kobjs,
2600 				    struct attribute_group *hstate_attr_group)
2601 {
2602 	int retval;
2603 	int hi = hstate_index(h);
2604 
2605 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2606 	if (!hstate_kobjs[hi])
2607 		return -ENOMEM;
2608 
2609 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2610 	if (retval)
2611 		kobject_put(hstate_kobjs[hi]);
2612 
2613 	return retval;
2614 }
2615 
2616 static void __init hugetlb_sysfs_init(void)
2617 {
2618 	struct hstate *h;
2619 	int err;
2620 
2621 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2622 	if (!hugepages_kobj)
2623 		return;
2624 
2625 	for_each_hstate(h) {
2626 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2627 					 hstate_kobjs, &hstate_attr_group);
2628 		if (err)
2629 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2630 	}
2631 }
2632 
2633 #ifdef CONFIG_NUMA
2634 
2635 /*
2636  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2637  * with node devices in node_devices[] using a parallel array.  The array
2638  * index of a node device or _hstate == node id.
2639  * This is here to avoid any static dependency of the node device driver, in
2640  * the base kernel, on the hugetlb module.
2641  */
2642 struct node_hstate {
2643 	struct kobject		*hugepages_kobj;
2644 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2645 };
2646 static struct node_hstate node_hstates[MAX_NUMNODES];
2647 
2648 /*
2649  * A subset of global hstate attributes for node devices
2650  */
2651 static struct attribute *per_node_hstate_attrs[] = {
2652 	&nr_hugepages_attr.attr,
2653 	&free_hugepages_attr.attr,
2654 	&surplus_hugepages_attr.attr,
2655 	NULL,
2656 };
2657 
2658 static struct attribute_group per_node_hstate_attr_group = {
2659 	.attrs = per_node_hstate_attrs,
2660 };
2661 
2662 /*
2663  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2664  * Returns node id via non-NULL nidp.
2665  */
2666 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2667 {
2668 	int nid;
2669 
2670 	for (nid = 0; nid < nr_node_ids; nid++) {
2671 		struct node_hstate *nhs = &node_hstates[nid];
2672 		int i;
2673 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2674 			if (nhs->hstate_kobjs[i] == kobj) {
2675 				if (nidp)
2676 					*nidp = nid;
2677 				return &hstates[i];
2678 			}
2679 	}
2680 
2681 	BUG();
2682 	return NULL;
2683 }
2684 
2685 /*
2686  * Unregister hstate attributes from a single node device.
2687  * No-op if no hstate attributes attached.
2688  */
2689 static void hugetlb_unregister_node(struct node *node)
2690 {
2691 	struct hstate *h;
2692 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2693 
2694 	if (!nhs->hugepages_kobj)
2695 		return;		/* no hstate attributes */
2696 
2697 	for_each_hstate(h) {
2698 		int idx = hstate_index(h);
2699 		if (nhs->hstate_kobjs[idx]) {
2700 			kobject_put(nhs->hstate_kobjs[idx]);
2701 			nhs->hstate_kobjs[idx] = NULL;
2702 		}
2703 	}
2704 
2705 	kobject_put(nhs->hugepages_kobj);
2706 	nhs->hugepages_kobj = NULL;
2707 }
2708 
2709 
2710 /*
2711  * Register hstate attributes for a single node device.
2712  * No-op if attributes already registered.
2713  */
2714 static void hugetlb_register_node(struct node *node)
2715 {
2716 	struct hstate *h;
2717 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2718 	int err;
2719 
2720 	if (nhs->hugepages_kobj)
2721 		return;		/* already allocated */
2722 
2723 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2724 							&node->dev.kobj);
2725 	if (!nhs->hugepages_kobj)
2726 		return;
2727 
2728 	for_each_hstate(h) {
2729 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2730 						nhs->hstate_kobjs,
2731 						&per_node_hstate_attr_group);
2732 		if (err) {
2733 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2734 				h->name, node->dev.id);
2735 			hugetlb_unregister_node(node);
2736 			break;
2737 		}
2738 	}
2739 }
2740 
2741 /*
2742  * hugetlb init time:  register hstate attributes for all registered node
2743  * devices of nodes that have memory.  All on-line nodes should have
2744  * registered their associated device by this time.
2745  */
2746 static void __init hugetlb_register_all_nodes(void)
2747 {
2748 	int nid;
2749 
2750 	for_each_node_state(nid, N_MEMORY) {
2751 		struct node *node = node_devices[nid];
2752 		if (node->dev.id == nid)
2753 			hugetlb_register_node(node);
2754 	}
2755 
2756 	/*
2757 	 * Let the node device driver know we're here so it can
2758 	 * [un]register hstate attributes on node hotplug.
2759 	 */
2760 	register_hugetlbfs_with_node(hugetlb_register_node,
2761 				     hugetlb_unregister_node);
2762 }
2763 #else	/* !CONFIG_NUMA */
2764 
2765 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2766 {
2767 	BUG();
2768 	if (nidp)
2769 		*nidp = -1;
2770 	return NULL;
2771 }
2772 
2773 static void hugetlb_register_all_nodes(void) { }
2774 
2775 #endif
2776 
2777 static int __init hugetlb_init(void)
2778 {
2779 	int i;
2780 
2781 	if (!hugepages_supported())
2782 		return 0;
2783 
2784 	if (!size_to_hstate(default_hstate_size)) {
2785 		default_hstate_size = HPAGE_SIZE;
2786 		if (!size_to_hstate(default_hstate_size))
2787 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2788 	}
2789 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2790 	if (default_hstate_max_huge_pages) {
2791 		if (!default_hstate.max_huge_pages)
2792 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2793 	}
2794 
2795 	hugetlb_init_hstates();
2796 	gather_bootmem_prealloc();
2797 	report_hugepages();
2798 
2799 	hugetlb_sysfs_init();
2800 	hugetlb_register_all_nodes();
2801 	hugetlb_cgroup_file_init();
2802 
2803 #ifdef CONFIG_SMP
2804 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2805 #else
2806 	num_fault_mutexes = 1;
2807 #endif
2808 	hugetlb_fault_mutex_table =
2809 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2810 	BUG_ON(!hugetlb_fault_mutex_table);
2811 
2812 	for (i = 0; i < num_fault_mutexes; i++)
2813 		mutex_init(&hugetlb_fault_mutex_table[i]);
2814 	return 0;
2815 }
2816 subsys_initcall(hugetlb_init);
2817 
2818 /* Should be called on processing a hugepagesz=... option */
2819 void __init hugetlb_bad_size(void)
2820 {
2821 	parsed_valid_hugepagesz = false;
2822 }
2823 
2824 void __init hugetlb_add_hstate(unsigned int order)
2825 {
2826 	struct hstate *h;
2827 	unsigned long i;
2828 
2829 	if (size_to_hstate(PAGE_SIZE << order)) {
2830 		pr_warn("hugepagesz= specified twice, ignoring\n");
2831 		return;
2832 	}
2833 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2834 	BUG_ON(order == 0);
2835 	h = &hstates[hugetlb_max_hstate++];
2836 	h->order = order;
2837 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2838 	h->nr_huge_pages = 0;
2839 	h->free_huge_pages = 0;
2840 	for (i = 0; i < MAX_NUMNODES; ++i)
2841 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2842 	INIT_LIST_HEAD(&h->hugepage_activelist);
2843 	h->next_nid_to_alloc = first_memory_node;
2844 	h->next_nid_to_free = first_memory_node;
2845 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2846 					huge_page_size(h)/1024);
2847 
2848 	parsed_hstate = h;
2849 }
2850 
2851 static int __init hugetlb_nrpages_setup(char *s)
2852 {
2853 	unsigned long *mhp;
2854 	static unsigned long *last_mhp;
2855 
2856 	if (!parsed_valid_hugepagesz) {
2857 		pr_warn("hugepages = %s preceded by "
2858 			"an unsupported hugepagesz, ignoring\n", s);
2859 		parsed_valid_hugepagesz = true;
2860 		return 1;
2861 	}
2862 	/*
2863 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2864 	 * so this hugepages= parameter goes to the "default hstate".
2865 	 */
2866 	else if (!hugetlb_max_hstate)
2867 		mhp = &default_hstate_max_huge_pages;
2868 	else
2869 		mhp = &parsed_hstate->max_huge_pages;
2870 
2871 	if (mhp == last_mhp) {
2872 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2873 		return 1;
2874 	}
2875 
2876 	if (sscanf(s, "%lu", mhp) <= 0)
2877 		*mhp = 0;
2878 
2879 	/*
2880 	 * Global state is always initialized later in hugetlb_init.
2881 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2882 	 * use the bootmem allocator.
2883 	 */
2884 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2885 		hugetlb_hstate_alloc_pages(parsed_hstate);
2886 
2887 	last_mhp = mhp;
2888 
2889 	return 1;
2890 }
2891 __setup("hugepages=", hugetlb_nrpages_setup);
2892 
2893 static int __init hugetlb_default_setup(char *s)
2894 {
2895 	default_hstate_size = memparse(s, &s);
2896 	return 1;
2897 }
2898 __setup("default_hugepagesz=", hugetlb_default_setup);
2899 
2900 static unsigned int cpuset_mems_nr(unsigned int *array)
2901 {
2902 	int node;
2903 	unsigned int nr = 0;
2904 
2905 	for_each_node_mask(node, cpuset_current_mems_allowed)
2906 		nr += array[node];
2907 
2908 	return nr;
2909 }
2910 
2911 #ifdef CONFIG_SYSCTL
2912 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2913 			 struct ctl_table *table, int write,
2914 			 void __user *buffer, size_t *length, loff_t *ppos)
2915 {
2916 	struct hstate *h = &default_hstate;
2917 	unsigned long tmp = h->max_huge_pages;
2918 	int ret;
2919 
2920 	if (!hugepages_supported())
2921 		return -EOPNOTSUPP;
2922 
2923 	table->data = &tmp;
2924 	table->maxlen = sizeof(unsigned long);
2925 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2926 	if (ret)
2927 		goto out;
2928 
2929 	if (write)
2930 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2931 						  NUMA_NO_NODE, tmp, *length);
2932 out:
2933 	return ret;
2934 }
2935 
2936 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2937 			  void __user *buffer, size_t *length, loff_t *ppos)
2938 {
2939 
2940 	return hugetlb_sysctl_handler_common(false, table, write,
2941 							buffer, length, ppos);
2942 }
2943 
2944 #ifdef CONFIG_NUMA
2945 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2946 			  void __user *buffer, size_t *length, loff_t *ppos)
2947 {
2948 	return hugetlb_sysctl_handler_common(true, table, write,
2949 							buffer, length, ppos);
2950 }
2951 #endif /* CONFIG_NUMA */
2952 
2953 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2954 			void __user *buffer,
2955 			size_t *length, loff_t *ppos)
2956 {
2957 	struct hstate *h = &default_hstate;
2958 	unsigned long tmp;
2959 	int ret;
2960 
2961 	if (!hugepages_supported())
2962 		return -EOPNOTSUPP;
2963 
2964 	tmp = h->nr_overcommit_huge_pages;
2965 
2966 	if (write && hstate_is_gigantic(h))
2967 		return -EINVAL;
2968 
2969 	table->data = &tmp;
2970 	table->maxlen = sizeof(unsigned long);
2971 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2972 	if (ret)
2973 		goto out;
2974 
2975 	if (write) {
2976 		spin_lock(&hugetlb_lock);
2977 		h->nr_overcommit_huge_pages = tmp;
2978 		spin_unlock(&hugetlb_lock);
2979 	}
2980 out:
2981 	return ret;
2982 }
2983 
2984 #endif /* CONFIG_SYSCTL */
2985 
2986 void hugetlb_report_meminfo(struct seq_file *m)
2987 {
2988 	struct hstate *h = &default_hstate;
2989 	if (!hugepages_supported())
2990 		return;
2991 	seq_printf(m,
2992 			"HugePages_Total:   %5lu\n"
2993 			"HugePages_Free:    %5lu\n"
2994 			"HugePages_Rsvd:    %5lu\n"
2995 			"HugePages_Surp:    %5lu\n"
2996 			"Hugepagesize:   %8lu kB\n",
2997 			h->nr_huge_pages,
2998 			h->free_huge_pages,
2999 			h->resv_huge_pages,
3000 			h->surplus_huge_pages,
3001 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3002 }
3003 
3004 int hugetlb_report_node_meminfo(int nid, char *buf)
3005 {
3006 	struct hstate *h = &default_hstate;
3007 	if (!hugepages_supported())
3008 		return 0;
3009 	return sprintf(buf,
3010 		"Node %d HugePages_Total: %5u\n"
3011 		"Node %d HugePages_Free:  %5u\n"
3012 		"Node %d HugePages_Surp:  %5u\n",
3013 		nid, h->nr_huge_pages_node[nid],
3014 		nid, h->free_huge_pages_node[nid],
3015 		nid, h->surplus_huge_pages_node[nid]);
3016 }
3017 
3018 void hugetlb_show_meminfo(void)
3019 {
3020 	struct hstate *h;
3021 	int nid;
3022 
3023 	if (!hugepages_supported())
3024 		return;
3025 
3026 	for_each_node_state(nid, N_MEMORY)
3027 		for_each_hstate(h)
3028 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 				nid,
3030 				h->nr_huge_pages_node[nid],
3031 				h->free_huge_pages_node[nid],
3032 				h->surplus_huge_pages_node[nid],
3033 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3034 }
3035 
3036 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3037 {
3038 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3039 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3040 }
3041 
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3044 {
3045 	struct hstate *h;
3046 	unsigned long nr_total_pages = 0;
3047 
3048 	for_each_hstate(h)
3049 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3050 	return nr_total_pages;
3051 }
3052 
3053 static int hugetlb_acct_memory(struct hstate *h, long delta)
3054 {
3055 	int ret = -ENOMEM;
3056 
3057 	spin_lock(&hugetlb_lock);
3058 	/*
3059 	 * When cpuset is configured, it breaks the strict hugetlb page
3060 	 * reservation as the accounting is done on a global variable. Such
3061 	 * reservation is completely rubbish in the presence of cpuset because
3062 	 * the reservation is not checked against page availability for the
3063 	 * current cpuset. Application can still potentially OOM'ed by kernel
3064 	 * with lack of free htlb page in cpuset that the task is in.
3065 	 * Attempt to enforce strict accounting with cpuset is almost
3066 	 * impossible (or too ugly) because cpuset is too fluid that
3067 	 * task or memory node can be dynamically moved between cpusets.
3068 	 *
3069 	 * The change of semantics for shared hugetlb mapping with cpuset is
3070 	 * undesirable. However, in order to preserve some of the semantics,
3071 	 * we fall back to check against current free page availability as
3072 	 * a best attempt and hopefully to minimize the impact of changing
3073 	 * semantics that cpuset has.
3074 	 */
3075 	if (delta > 0) {
3076 		if (gather_surplus_pages(h, delta) < 0)
3077 			goto out;
3078 
3079 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3080 			return_unused_surplus_pages(h, delta);
3081 			goto out;
3082 		}
3083 	}
3084 
3085 	ret = 0;
3086 	if (delta < 0)
3087 		return_unused_surplus_pages(h, (unsigned long) -delta);
3088 
3089 out:
3090 	spin_unlock(&hugetlb_lock);
3091 	return ret;
3092 }
3093 
3094 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3095 {
3096 	struct resv_map *resv = vma_resv_map(vma);
3097 
3098 	/*
3099 	 * This new VMA should share its siblings reservation map if present.
3100 	 * The VMA will only ever have a valid reservation map pointer where
3101 	 * it is being copied for another still existing VMA.  As that VMA
3102 	 * has a reference to the reservation map it cannot disappear until
3103 	 * after this open call completes.  It is therefore safe to take a
3104 	 * new reference here without additional locking.
3105 	 */
3106 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3107 		kref_get(&resv->refs);
3108 }
3109 
3110 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3111 {
3112 	struct hstate *h = hstate_vma(vma);
3113 	struct resv_map *resv = vma_resv_map(vma);
3114 	struct hugepage_subpool *spool = subpool_vma(vma);
3115 	unsigned long reserve, start, end;
3116 	long gbl_reserve;
3117 
3118 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119 		return;
3120 
3121 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3122 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3123 
3124 	reserve = (end - start) - region_count(resv, start, end);
3125 
3126 	kref_put(&resv->refs, resv_map_release);
3127 
3128 	if (reserve) {
3129 		/*
3130 		 * Decrement reserve counts.  The global reserve count may be
3131 		 * adjusted if the subpool has a minimum size.
3132 		 */
3133 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3134 		hugetlb_acct_memory(h, -gbl_reserve);
3135 	}
3136 }
3137 
3138 /*
3139  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3140  * handle_mm_fault() to try to instantiate regular-sized pages in the
3141  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3142  * this far.
3143  */
3144 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3145 {
3146 	BUG();
3147 	return 0;
3148 }
3149 
3150 const struct vm_operations_struct hugetlb_vm_ops = {
3151 	.fault = hugetlb_vm_op_fault,
3152 	.open = hugetlb_vm_op_open,
3153 	.close = hugetlb_vm_op_close,
3154 };
3155 
3156 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3157 				int writable)
3158 {
3159 	pte_t entry;
3160 
3161 	if (writable) {
3162 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3163 					 vma->vm_page_prot)));
3164 	} else {
3165 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3166 					   vma->vm_page_prot));
3167 	}
3168 	entry = pte_mkyoung(entry);
3169 	entry = pte_mkhuge(entry);
3170 	entry = arch_make_huge_pte(entry, vma, page, writable);
3171 
3172 	return entry;
3173 }
3174 
3175 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3176 				   unsigned long address, pte_t *ptep)
3177 {
3178 	pte_t entry;
3179 
3180 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3181 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3182 		update_mmu_cache(vma, address, ptep);
3183 }
3184 
3185 static int is_hugetlb_entry_migration(pte_t pte)
3186 {
3187 	swp_entry_t swp;
3188 
3189 	if (huge_pte_none(pte) || pte_present(pte))
3190 		return 0;
3191 	swp = pte_to_swp_entry(pte);
3192 	if (non_swap_entry(swp) && is_migration_entry(swp))
3193 		return 1;
3194 	else
3195 		return 0;
3196 }
3197 
3198 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3199 {
3200 	swp_entry_t swp;
3201 
3202 	if (huge_pte_none(pte) || pte_present(pte))
3203 		return 0;
3204 	swp = pte_to_swp_entry(pte);
3205 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3206 		return 1;
3207 	else
3208 		return 0;
3209 }
3210 
3211 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3212 			    struct vm_area_struct *vma)
3213 {
3214 	pte_t *src_pte, *dst_pte, entry;
3215 	struct page *ptepage;
3216 	unsigned long addr;
3217 	int cow;
3218 	struct hstate *h = hstate_vma(vma);
3219 	unsigned long sz = huge_page_size(h);
3220 	unsigned long mmun_start;	/* For mmu_notifiers */
3221 	unsigned long mmun_end;		/* For mmu_notifiers */
3222 	int ret = 0;
3223 
3224 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3225 
3226 	mmun_start = vma->vm_start;
3227 	mmun_end = vma->vm_end;
3228 	if (cow)
3229 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3230 
3231 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3232 		spinlock_t *src_ptl, *dst_ptl;
3233 		src_pte = huge_pte_offset(src, addr);
3234 		if (!src_pte)
3235 			continue;
3236 		dst_pte = huge_pte_alloc(dst, addr, sz);
3237 		if (!dst_pte) {
3238 			ret = -ENOMEM;
3239 			break;
3240 		}
3241 
3242 		/* If the pagetables are shared don't copy or take references */
3243 		if (dst_pte == src_pte)
3244 			continue;
3245 
3246 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3247 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3248 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3249 		entry = huge_ptep_get(src_pte);
3250 		if (huge_pte_none(entry)) { /* skip none entry */
3251 			;
3252 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3253 				    is_hugetlb_entry_hwpoisoned(entry))) {
3254 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3255 
3256 			if (is_write_migration_entry(swp_entry) && cow) {
3257 				/*
3258 				 * COW mappings require pages in both
3259 				 * parent and child to be set to read.
3260 				 */
3261 				make_migration_entry_read(&swp_entry);
3262 				entry = swp_entry_to_pte(swp_entry);
3263 				set_huge_pte_at(src, addr, src_pte, entry);
3264 			}
3265 			set_huge_pte_at(dst, addr, dst_pte, entry);
3266 		} else {
3267 			if (cow) {
3268 				huge_ptep_set_wrprotect(src, addr, src_pte);
3269 				mmu_notifier_invalidate_range(src, mmun_start,
3270 								   mmun_end);
3271 			}
3272 			entry = huge_ptep_get(src_pte);
3273 			ptepage = pte_page(entry);
3274 			get_page(ptepage);
3275 			page_dup_rmap(ptepage, true);
3276 			set_huge_pte_at(dst, addr, dst_pte, entry);
3277 			hugetlb_count_add(pages_per_huge_page(h), dst);
3278 		}
3279 		spin_unlock(src_ptl);
3280 		spin_unlock(dst_ptl);
3281 	}
3282 
3283 	if (cow)
3284 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3285 
3286 	return ret;
3287 }
3288 
3289 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3290 			    unsigned long start, unsigned long end,
3291 			    struct page *ref_page)
3292 {
3293 	struct mm_struct *mm = vma->vm_mm;
3294 	unsigned long address;
3295 	pte_t *ptep;
3296 	pte_t pte;
3297 	spinlock_t *ptl;
3298 	struct page *page;
3299 	struct hstate *h = hstate_vma(vma);
3300 	unsigned long sz = huge_page_size(h);
3301 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3302 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3303 
3304 	WARN_ON(!is_vm_hugetlb_page(vma));
3305 	BUG_ON(start & ~huge_page_mask(h));
3306 	BUG_ON(end & ~huge_page_mask(h));
3307 
3308 	/*
3309 	 * This is a hugetlb vma, all the pte entries should point
3310 	 * to huge page.
3311 	 */
3312 	tlb_remove_check_page_size_change(tlb, sz);
3313 	tlb_start_vma(tlb, vma);
3314 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3315 	address = start;
3316 	for (; address < end; address += sz) {
3317 		ptep = huge_pte_offset(mm, address);
3318 		if (!ptep)
3319 			continue;
3320 
3321 		ptl = huge_pte_lock(h, mm, ptep);
3322 		if (huge_pmd_unshare(mm, &address, ptep)) {
3323 			spin_unlock(ptl);
3324 			continue;
3325 		}
3326 
3327 		pte = huge_ptep_get(ptep);
3328 		if (huge_pte_none(pte)) {
3329 			spin_unlock(ptl);
3330 			continue;
3331 		}
3332 
3333 		/*
3334 		 * Migrating hugepage or HWPoisoned hugepage is already
3335 		 * unmapped and its refcount is dropped, so just clear pte here.
3336 		 */
3337 		if (unlikely(!pte_present(pte))) {
3338 			huge_pte_clear(mm, address, ptep);
3339 			spin_unlock(ptl);
3340 			continue;
3341 		}
3342 
3343 		page = pte_page(pte);
3344 		/*
3345 		 * If a reference page is supplied, it is because a specific
3346 		 * page is being unmapped, not a range. Ensure the page we
3347 		 * are about to unmap is the actual page of interest.
3348 		 */
3349 		if (ref_page) {
3350 			if (page != ref_page) {
3351 				spin_unlock(ptl);
3352 				continue;
3353 			}
3354 			/*
3355 			 * Mark the VMA as having unmapped its page so that
3356 			 * future faults in this VMA will fail rather than
3357 			 * looking like data was lost
3358 			 */
3359 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3360 		}
3361 
3362 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3363 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3364 		if (huge_pte_dirty(pte))
3365 			set_page_dirty(page);
3366 
3367 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3368 		page_remove_rmap(page, true);
3369 
3370 		spin_unlock(ptl);
3371 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3372 		/*
3373 		 * Bail out after unmapping reference page if supplied
3374 		 */
3375 		if (ref_page)
3376 			break;
3377 	}
3378 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3379 	tlb_end_vma(tlb, vma);
3380 }
3381 
3382 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3383 			  struct vm_area_struct *vma, unsigned long start,
3384 			  unsigned long end, struct page *ref_page)
3385 {
3386 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3387 
3388 	/*
3389 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3390 	 * test will fail on a vma being torn down, and not grab a page table
3391 	 * on its way out.  We're lucky that the flag has such an appropriate
3392 	 * name, and can in fact be safely cleared here. We could clear it
3393 	 * before the __unmap_hugepage_range above, but all that's necessary
3394 	 * is to clear it before releasing the i_mmap_rwsem. This works
3395 	 * because in the context this is called, the VMA is about to be
3396 	 * destroyed and the i_mmap_rwsem is held.
3397 	 */
3398 	vma->vm_flags &= ~VM_MAYSHARE;
3399 }
3400 
3401 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3402 			  unsigned long end, struct page *ref_page)
3403 {
3404 	struct mm_struct *mm;
3405 	struct mmu_gather tlb;
3406 
3407 	mm = vma->vm_mm;
3408 
3409 	tlb_gather_mmu(&tlb, mm, start, end);
3410 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3411 	tlb_finish_mmu(&tlb, start, end);
3412 }
3413 
3414 /*
3415  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3416  * mappping it owns the reserve page for. The intention is to unmap the page
3417  * from other VMAs and let the children be SIGKILLed if they are faulting the
3418  * same region.
3419  */
3420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3421 			      struct page *page, unsigned long address)
3422 {
3423 	struct hstate *h = hstate_vma(vma);
3424 	struct vm_area_struct *iter_vma;
3425 	struct address_space *mapping;
3426 	pgoff_t pgoff;
3427 
3428 	/*
3429 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3430 	 * from page cache lookup which is in HPAGE_SIZE units.
3431 	 */
3432 	address = address & huge_page_mask(h);
3433 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3434 			vma->vm_pgoff;
3435 	mapping = vma->vm_file->f_mapping;
3436 
3437 	/*
3438 	 * Take the mapping lock for the duration of the table walk. As
3439 	 * this mapping should be shared between all the VMAs,
3440 	 * __unmap_hugepage_range() is called as the lock is already held
3441 	 */
3442 	i_mmap_lock_write(mapping);
3443 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3444 		/* Do not unmap the current VMA */
3445 		if (iter_vma == vma)
3446 			continue;
3447 
3448 		/*
3449 		 * Shared VMAs have their own reserves and do not affect
3450 		 * MAP_PRIVATE accounting but it is possible that a shared
3451 		 * VMA is using the same page so check and skip such VMAs.
3452 		 */
3453 		if (iter_vma->vm_flags & VM_MAYSHARE)
3454 			continue;
3455 
3456 		/*
3457 		 * Unmap the page from other VMAs without their own reserves.
3458 		 * They get marked to be SIGKILLed if they fault in these
3459 		 * areas. This is because a future no-page fault on this VMA
3460 		 * could insert a zeroed page instead of the data existing
3461 		 * from the time of fork. This would look like data corruption
3462 		 */
3463 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3464 			unmap_hugepage_range(iter_vma, address,
3465 					     address + huge_page_size(h), page);
3466 	}
3467 	i_mmap_unlock_write(mapping);
3468 }
3469 
3470 /*
3471  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3472  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3473  * cannot race with other handlers or page migration.
3474  * Keep the pte_same checks anyway to make transition from the mutex easier.
3475  */
3476 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3477 		       unsigned long address, pte_t *ptep,
3478 		       struct page *pagecache_page, spinlock_t *ptl)
3479 {
3480 	pte_t pte;
3481 	struct hstate *h = hstate_vma(vma);
3482 	struct page *old_page, *new_page;
3483 	int ret = 0, outside_reserve = 0;
3484 	unsigned long mmun_start;	/* For mmu_notifiers */
3485 	unsigned long mmun_end;		/* For mmu_notifiers */
3486 
3487 	pte = huge_ptep_get(ptep);
3488 	old_page = pte_page(pte);
3489 
3490 retry_avoidcopy:
3491 	/* If no-one else is actually using this page, avoid the copy
3492 	 * and just make the page writable */
3493 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3494 		page_move_anon_rmap(old_page, vma);
3495 		set_huge_ptep_writable(vma, address, ptep);
3496 		return 0;
3497 	}
3498 
3499 	/*
3500 	 * If the process that created a MAP_PRIVATE mapping is about to
3501 	 * perform a COW due to a shared page count, attempt to satisfy
3502 	 * the allocation without using the existing reserves. The pagecache
3503 	 * page is used to determine if the reserve at this address was
3504 	 * consumed or not. If reserves were used, a partial faulted mapping
3505 	 * at the time of fork() could consume its reserves on COW instead
3506 	 * of the full address range.
3507 	 */
3508 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3509 			old_page != pagecache_page)
3510 		outside_reserve = 1;
3511 
3512 	get_page(old_page);
3513 
3514 	/*
3515 	 * Drop page table lock as buddy allocator may be called. It will
3516 	 * be acquired again before returning to the caller, as expected.
3517 	 */
3518 	spin_unlock(ptl);
3519 	new_page = alloc_huge_page(vma, address, outside_reserve);
3520 
3521 	if (IS_ERR(new_page)) {
3522 		/*
3523 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3524 		 * it is due to references held by a child and an insufficient
3525 		 * huge page pool. To guarantee the original mappers
3526 		 * reliability, unmap the page from child processes. The child
3527 		 * may get SIGKILLed if it later faults.
3528 		 */
3529 		if (outside_reserve) {
3530 			put_page(old_page);
3531 			BUG_ON(huge_pte_none(pte));
3532 			unmap_ref_private(mm, vma, old_page, address);
3533 			BUG_ON(huge_pte_none(pte));
3534 			spin_lock(ptl);
3535 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3536 			if (likely(ptep &&
3537 				   pte_same(huge_ptep_get(ptep), pte)))
3538 				goto retry_avoidcopy;
3539 			/*
3540 			 * race occurs while re-acquiring page table
3541 			 * lock, and our job is done.
3542 			 */
3543 			return 0;
3544 		}
3545 
3546 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3547 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3548 		goto out_release_old;
3549 	}
3550 
3551 	/*
3552 	 * When the original hugepage is shared one, it does not have
3553 	 * anon_vma prepared.
3554 	 */
3555 	if (unlikely(anon_vma_prepare(vma))) {
3556 		ret = VM_FAULT_OOM;
3557 		goto out_release_all;
3558 	}
3559 
3560 	copy_user_huge_page(new_page, old_page, address, vma,
3561 			    pages_per_huge_page(h));
3562 	__SetPageUptodate(new_page);
3563 	set_page_huge_active(new_page);
3564 
3565 	mmun_start = address & huge_page_mask(h);
3566 	mmun_end = mmun_start + huge_page_size(h);
3567 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3568 
3569 	/*
3570 	 * Retake the page table lock to check for racing updates
3571 	 * before the page tables are altered
3572 	 */
3573 	spin_lock(ptl);
3574 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3575 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3576 		ClearPagePrivate(new_page);
3577 
3578 		/* Break COW */
3579 		huge_ptep_clear_flush(vma, address, ptep);
3580 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3581 		set_huge_pte_at(mm, address, ptep,
3582 				make_huge_pte(vma, new_page, 1));
3583 		page_remove_rmap(old_page, true);
3584 		hugepage_add_new_anon_rmap(new_page, vma, address);
3585 		/* Make the old page be freed below */
3586 		new_page = old_page;
3587 	}
3588 	spin_unlock(ptl);
3589 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3590 out_release_all:
3591 	restore_reserve_on_error(h, vma, address, new_page);
3592 	put_page(new_page);
3593 out_release_old:
3594 	put_page(old_page);
3595 
3596 	spin_lock(ptl); /* Caller expects lock to be held */
3597 	return ret;
3598 }
3599 
3600 /* Return the pagecache page at a given address within a VMA */
3601 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3602 			struct vm_area_struct *vma, unsigned long address)
3603 {
3604 	struct address_space *mapping;
3605 	pgoff_t idx;
3606 
3607 	mapping = vma->vm_file->f_mapping;
3608 	idx = vma_hugecache_offset(h, vma, address);
3609 
3610 	return find_lock_page(mapping, idx);
3611 }
3612 
3613 /*
3614  * Return whether there is a pagecache page to back given address within VMA.
3615  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3616  */
3617 static bool hugetlbfs_pagecache_present(struct hstate *h,
3618 			struct vm_area_struct *vma, unsigned long address)
3619 {
3620 	struct address_space *mapping;
3621 	pgoff_t idx;
3622 	struct page *page;
3623 
3624 	mapping = vma->vm_file->f_mapping;
3625 	idx = vma_hugecache_offset(h, vma, address);
3626 
3627 	page = find_get_page(mapping, idx);
3628 	if (page)
3629 		put_page(page);
3630 	return page != NULL;
3631 }
3632 
3633 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3634 			   pgoff_t idx)
3635 {
3636 	struct inode *inode = mapping->host;
3637 	struct hstate *h = hstate_inode(inode);
3638 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3639 
3640 	if (err)
3641 		return err;
3642 	ClearPagePrivate(page);
3643 
3644 	spin_lock(&inode->i_lock);
3645 	inode->i_blocks += blocks_per_huge_page(h);
3646 	spin_unlock(&inode->i_lock);
3647 	return 0;
3648 }
3649 
3650 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3651 			   struct address_space *mapping, pgoff_t idx,
3652 			   unsigned long address, pte_t *ptep, unsigned int flags)
3653 {
3654 	struct hstate *h = hstate_vma(vma);
3655 	int ret = VM_FAULT_SIGBUS;
3656 	int anon_rmap = 0;
3657 	unsigned long size;
3658 	struct page *page;
3659 	pte_t new_pte;
3660 	spinlock_t *ptl;
3661 
3662 	/*
3663 	 * Currently, we are forced to kill the process in the event the
3664 	 * original mapper has unmapped pages from the child due to a failed
3665 	 * COW. Warn that such a situation has occurred as it may not be obvious
3666 	 */
3667 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3668 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3669 			   current->pid);
3670 		return ret;
3671 	}
3672 
3673 	/*
3674 	 * Use page lock to guard against racing truncation
3675 	 * before we get page_table_lock.
3676 	 */
3677 retry:
3678 	page = find_lock_page(mapping, idx);
3679 	if (!page) {
3680 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3681 		if (idx >= size)
3682 			goto out;
3683 		page = alloc_huge_page(vma, address, 0);
3684 		if (IS_ERR(page)) {
3685 			ret = PTR_ERR(page);
3686 			if (ret == -ENOMEM)
3687 				ret = VM_FAULT_OOM;
3688 			else
3689 				ret = VM_FAULT_SIGBUS;
3690 			goto out;
3691 		}
3692 		clear_huge_page(page, address, pages_per_huge_page(h));
3693 		__SetPageUptodate(page);
3694 		set_page_huge_active(page);
3695 
3696 		if (vma->vm_flags & VM_MAYSHARE) {
3697 			int err = huge_add_to_page_cache(page, mapping, idx);
3698 			if (err) {
3699 				put_page(page);
3700 				if (err == -EEXIST)
3701 					goto retry;
3702 				goto out;
3703 			}
3704 		} else {
3705 			lock_page(page);
3706 			if (unlikely(anon_vma_prepare(vma))) {
3707 				ret = VM_FAULT_OOM;
3708 				goto backout_unlocked;
3709 			}
3710 			anon_rmap = 1;
3711 		}
3712 	} else {
3713 		/*
3714 		 * If memory error occurs between mmap() and fault, some process
3715 		 * don't have hwpoisoned swap entry for errored virtual address.
3716 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3717 		 */
3718 		if (unlikely(PageHWPoison(page))) {
3719 			ret = VM_FAULT_HWPOISON |
3720 				VM_FAULT_SET_HINDEX(hstate_index(h));
3721 			goto backout_unlocked;
3722 		}
3723 	}
3724 
3725 	/*
3726 	 * If we are going to COW a private mapping later, we examine the
3727 	 * pending reservations for this page now. This will ensure that
3728 	 * any allocations necessary to record that reservation occur outside
3729 	 * the spinlock.
3730 	 */
3731 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3732 		if (vma_needs_reservation(h, vma, address) < 0) {
3733 			ret = VM_FAULT_OOM;
3734 			goto backout_unlocked;
3735 		}
3736 		/* Just decrements count, does not deallocate */
3737 		vma_end_reservation(h, vma, address);
3738 	}
3739 
3740 	ptl = huge_pte_lock(h, mm, ptep);
3741 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3742 	if (idx >= size)
3743 		goto backout;
3744 
3745 	ret = 0;
3746 	if (!huge_pte_none(huge_ptep_get(ptep)))
3747 		goto backout;
3748 
3749 	if (anon_rmap) {
3750 		ClearPagePrivate(page);
3751 		hugepage_add_new_anon_rmap(page, vma, address);
3752 	} else
3753 		page_dup_rmap(page, true);
3754 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3755 				&& (vma->vm_flags & VM_SHARED)));
3756 	set_huge_pte_at(mm, address, ptep, new_pte);
3757 
3758 	hugetlb_count_add(pages_per_huge_page(h), mm);
3759 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3760 		/* Optimization, do the COW without a second fault */
3761 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3762 	}
3763 
3764 	spin_unlock(ptl);
3765 	unlock_page(page);
3766 out:
3767 	return ret;
3768 
3769 backout:
3770 	spin_unlock(ptl);
3771 backout_unlocked:
3772 	unlock_page(page);
3773 	restore_reserve_on_error(h, vma, address, page);
3774 	put_page(page);
3775 	goto out;
3776 }
3777 
3778 #ifdef CONFIG_SMP
3779 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3780 			    struct vm_area_struct *vma,
3781 			    struct address_space *mapping,
3782 			    pgoff_t idx, unsigned long address)
3783 {
3784 	unsigned long key[2];
3785 	u32 hash;
3786 
3787 	if (vma->vm_flags & VM_SHARED) {
3788 		key[0] = (unsigned long) mapping;
3789 		key[1] = idx;
3790 	} else {
3791 		key[0] = (unsigned long) mm;
3792 		key[1] = address >> huge_page_shift(h);
3793 	}
3794 
3795 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3796 
3797 	return hash & (num_fault_mutexes - 1);
3798 }
3799 #else
3800 /*
3801  * For uniprocesor systems we always use a single mutex, so just
3802  * return 0 and avoid the hashing overhead.
3803  */
3804 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3805 			    struct vm_area_struct *vma,
3806 			    struct address_space *mapping,
3807 			    pgoff_t idx, unsigned long address)
3808 {
3809 	return 0;
3810 }
3811 #endif
3812 
3813 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3814 			unsigned long address, unsigned int flags)
3815 {
3816 	pte_t *ptep, entry;
3817 	spinlock_t *ptl;
3818 	int ret;
3819 	u32 hash;
3820 	pgoff_t idx;
3821 	struct page *page = NULL;
3822 	struct page *pagecache_page = NULL;
3823 	struct hstate *h = hstate_vma(vma);
3824 	struct address_space *mapping;
3825 	int need_wait_lock = 0;
3826 
3827 	address &= huge_page_mask(h);
3828 
3829 	ptep = huge_pte_offset(mm, address);
3830 	if (ptep) {
3831 		entry = huge_ptep_get(ptep);
3832 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3833 			migration_entry_wait_huge(vma, mm, ptep);
3834 			return 0;
3835 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3836 			return VM_FAULT_HWPOISON_LARGE |
3837 				VM_FAULT_SET_HINDEX(hstate_index(h));
3838 	} else {
3839 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3840 		if (!ptep)
3841 			return VM_FAULT_OOM;
3842 	}
3843 
3844 	mapping = vma->vm_file->f_mapping;
3845 	idx = vma_hugecache_offset(h, vma, address);
3846 
3847 	/*
3848 	 * Serialize hugepage allocation and instantiation, so that we don't
3849 	 * get spurious allocation failures if two CPUs race to instantiate
3850 	 * the same page in the page cache.
3851 	 */
3852 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3853 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3854 
3855 	entry = huge_ptep_get(ptep);
3856 	if (huge_pte_none(entry)) {
3857 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3858 		goto out_mutex;
3859 	}
3860 
3861 	ret = 0;
3862 
3863 	/*
3864 	 * entry could be a migration/hwpoison entry at this point, so this
3865 	 * check prevents the kernel from going below assuming that we have
3866 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3867 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3868 	 * handle it.
3869 	 */
3870 	if (!pte_present(entry))
3871 		goto out_mutex;
3872 
3873 	/*
3874 	 * If we are going to COW the mapping later, we examine the pending
3875 	 * reservations for this page now. This will ensure that any
3876 	 * allocations necessary to record that reservation occur outside the
3877 	 * spinlock. For private mappings, we also lookup the pagecache
3878 	 * page now as it is used to determine if a reservation has been
3879 	 * consumed.
3880 	 */
3881 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3882 		if (vma_needs_reservation(h, vma, address) < 0) {
3883 			ret = VM_FAULT_OOM;
3884 			goto out_mutex;
3885 		}
3886 		/* Just decrements count, does not deallocate */
3887 		vma_end_reservation(h, vma, address);
3888 
3889 		if (!(vma->vm_flags & VM_MAYSHARE))
3890 			pagecache_page = hugetlbfs_pagecache_page(h,
3891 								vma, address);
3892 	}
3893 
3894 	ptl = huge_pte_lock(h, mm, ptep);
3895 
3896 	/* Check for a racing update before calling hugetlb_cow */
3897 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3898 		goto out_ptl;
3899 
3900 	/*
3901 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3902 	 * pagecache_page, so here we need take the former one
3903 	 * when page != pagecache_page or !pagecache_page.
3904 	 */
3905 	page = pte_page(entry);
3906 	if (page != pagecache_page)
3907 		if (!trylock_page(page)) {
3908 			need_wait_lock = 1;
3909 			goto out_ptl;
3910 		}
3911 
3912 	get_page(page);
3913 
3914 	if (flags & FAULT_FLAG_WRITE) {
3915 		if (!huge_pte_write(entry)) {
3916 			ret = hugetlb_cow(mm, vma, address, ptep,
3917 					  pagecache_page, ptl);
3918 			goto out_put_page;
3919 		}
3920 		entry = huge_pte_mkdirty(entry);
3921 	}
3922 	entry = pte_mkyoung(entry);
3923 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3924 						flags & FAULT_FLAG_WRITE))
3925 		update_mmu_cache(vma, address, ptep);
3926 out_put_page:
3927 	if (page != pagecache_page)
3928 		unlock_page(page);
3929 	put_page(page);
3930 out_ptl:
3931 	spin_unlock(ptl);
3932 
3933 	if (pagecache_page) {
3934 		unlock_page(pagecache_page);
3935 		put_page(pagecache_page);
3936 	}
3937 out_mutex:
3938 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3939 	/*
3940 	 * Generally it's safe to hold refcount during waiting page lock. But
3941 	 * here we just wait to defer the next page fault to avoid busy loop and
3942 	 * the page is not used after unlocked before returning from the current
3943 	 * page fault. So we are safe from accessing freed page, even if we wait
3944 	 * here without taking refcount.
3945 	 */
3946 	if (need_wait_lock)
3947 		wait_on_page_locked(page);
3948 	return ret;
3949 }
3950 
3951 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3952 			 struct page **pages, struct vm_area_struct **vmas,
3953 			 unsigned long *position, unsigned long *nr_pages,
3954 			 long i, unsigned int flags)
3955 {
3956 	unsigned long pfn_offset;
3957 	unsigned long vaddr = *position;
3958 	unsigned long remainder = *nr_pages;
3959 	struct hstate *h = hstate_vma(vma);
3960 
3961 	while (vaddr < vma->vm_end && remainder) {
3962 		pte_t *pte;
3963 		spinlock_t *ptl = NULL;
3964 		int absent;
3965 		struct page *page;
3966 
3967 		/*
3968 		 * If we have a pending SIGKILL, don't keep faulting pages and
3969 		 * potentially allocating memory.
3970 		 */
3971 		if (unlikely(fatal_signal_pending(current))) {
3972 			remainder = 0;
3973 			break;
3974 		}
3975 
3976 		/*
3977 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3978 		 * each hugepage.  We have to make sure we get the
3979 		 * first, for the page indexing below to work.
3980 		 *
3981 		 * Note that page table lock is not held when pte is null.
3982 		 */
3983 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3984 		if (pte)
3985 			ptl = huge_pte_lock(h, mm, pte);
3986 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3987 
3988 		/*
3989 		 * When coredumping, it suits get_dump_page if we just return
3990 		 * an error where there's an empty slot with no huge pagecache
3991 		 * to back it.  This way, we avoid allocating a hugepage, and
3992 		 * the sparse dumpfile avoids allocating disk blocks, but its
3993 		 * huge holes still show up with zeroes where they need to be.
3994 		 */
3995 		if (absent && (flags & FOLL_DUMP) &&
3996 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3997 			if (pte)
3998 				spin_unlock(ptl);
3999 			remainder = 0;
4000 			break;
4001 		}
4002 
4003 		/*
4004 		 * We need call hugetlb_fault for both hugepages under migration
4005 		 * (in which case hugetlb_fault waits for the migration,) and
4006 		 * hwpoisoned hugepages (in which case we need to prevent the
4007 		 * caller from accessing to them.) In order to do this, we use
4008 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4009 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4010 		 * both cases, and because we can't follow correct pages
4011 		 * directly from any kind of swap entries.
4012 		 */
4013 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4014 		    ((flags & FOLL_WRITE) &&
4015 		      !huge_pte_write(huge_ptep_get(pte)))) {
4016 			int ret;
4017 
4018 			if (pte)
4019 				spin_unlock(ptl);
4020 			ret = hugetlb_fault(mm, vma, vaddr,
4021 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4022 			if (!(ret & VM_FAULT_ERROR))
4023 				continue;
4024 
4025 			remainder = 0;
4026 			break;
4027 		}
4028 
4029 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4030 		page = pte_page(huge_ptep_get(pte));
4031 same_page:
4032 		if (pages) {
4033 			pages[i] = mem_map_offset(page, pfn_offset);
4034 			get_page(pages[i]);
4035 		}
4036 
4037 		if (vmas)
4038 			vmas[i] = vma;
4039 
4040 		vaddr += PAGE_SIZE;
4041 		++pfn_offset;
4042 		--remainder;
4043 		++i;
4044 		if (vaddr < vma->vm_end && remainder &&
4045 				pfn_offset < pages_per_huge_page(h)) {
4046 			/*
4047 			 * We use pfn_offset to avoid touching the pageframes
4048 			 * of this compound page.
4049 			 */
4050 			goto same_page;
4051 		}
4052 		spin_unlock(ptl);
4053 	}
4054 	*nr_pages = remainder;
4055 	*position = vaddr;
4056 
4057 	return i ? i : -EFAULT;
4058 }
4059 
4060 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4061 /*
4062  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4063  * implement this.
4064  */
4065 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4066 #endif
4067 
4068 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4069 		unsigned long address, unsigned long end, pgprot_t newprot)
4070 {
4071 	struct mm_struct *mm = vma->vm_mm;
4072 	unsigned long start = address;
4073 	pte_t *ptep;
4074 	pte_t pte;
4075 	struct hstate *h = hstate_vma(vma);
4076 	unsigned long pages = 0;
4077 
4078 	BUG_ON(address >= end);
4079 	flush_cache_range(vma, address, end);
4080 
4081 	mmu_notifier_invalidate_range_start(mm, start, end);
4082 	i_mmap_lock_write(vma->vm_file->f_mapping);
4083 	for (; address < end; address += huge_page_size(h)) {
4084 		spinlock_t *ptl;
4085 		ptep = huge_pte_offset(mm, address);
4086 		if (!ptep)
4087 			continue;
4088 		ptl = huge_pte_lock(h, mm, ptep);
4089 		if (huge_pmd_unshare(mm, &address, ptep)) {
4090 			pages++;
4091 			spin_unlock(ptl);
4092 			continue;
4093 		}
4094 		pte = huge_ptep_get(ptep);
4095 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4096 			spin_unlock(ptl);
4097 			continue;
4098 		}
4099 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4100 			swp_entry_t entry = pte_to_swp_entry(pte);
4101 
4102 			if (is_write_migration_entry(entry)) {
4103 				pte_t newpte;
4104 
4105 				make_migration_entry_read(&entry);
4106 				newpte = swp_entry_to_pte(entry);
4107 				set_huge_pte_at(mm, address, ptep, newpte);
4108 				pages++;
4109 			}
4110 			spin_unlock(ptl);
4111 			continue;
4112 		}
4113 		if (!huge_pte_none(pte)) {
4114 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4115 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4116 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4117 			set_huge_pte_at(mm, address, ptep, pte);
4118 			pages++;
4119 		}
4120 		spin_unlock(ptl);
4121 	}
4122 	/*
4123 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4124 	 * may have cleared our pud entry and done put_page on the page table:
4125 	 * once we release i_mmap_rwsem, another task can do the final put_page
4126 	 * and that page table be reused and filled with junk.
4127 	 */
4128 	flush_hugetlb_tlb_range(vma, start, end);
4129 	mmu_notifier_invalidate_range(mm, start, end);
4130 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4131 	mmu_notifier_invalidate_range_end(mm, start, end);
4132 
4133 	return pages << h->order;
4134 }
4135 
4136 int hugetlb_reserve_pages(struct inode *inode,
4137 					long from, long to,
4138 					struct vm_area_struct *vma,
4139 					vm_flags_t vm_flags)
4140 {
4141 	long ret, chg;
4142 	struct hstate *h = hstate_inode(inode);
4143 	struct hugepage_subpool *spool = subpool_inode(inode);
4144 	struct resv_map *resv_map;
4145 	long gbl_reserve;
4146 
4147 	/*
4148 	 * Only apply hugepage reservation if asked. At fault time, an
4149 	 * attempt will be made for VM_NORESERVE to allocate a page
4150 	 * without using reserves
4151 	 */
4152 	if (vm_flags & VM_NORESERVE)
4153 		return 0;
4154 
4155 	/*
4156 	 * Shared mappings base their reservation on the number of pages that
4157 	 * are already allocated on behalf of the file. Private mappings need
4158 	 * to reserve the full area even if read-only as mprotect() may be
4159 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4160 	 */
4161 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4162 		resv_map = inode_resv_map(inode);
4163 
4164 		chg = region_chg(resv_map, from, to);
4165 
4166 	} else {
4167 		resv_map = resv_map_alloc();
4168 		if (!resv_map)
4169 			return -ENOMEM;
4170 
4171 		chg = to - from;
4172 
4173 		set_vma_resv_map(vma, resv_map);
4174 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4175 	}
4176 
4177 	if (chg < 0) {
4178 		ret = chg;
4179 		goto out_err;
4180 	}
4181 
4182 	/*
4183 	 * There must be enough pages in the subpool for the mapping. If
4184 	 * the subpool has a minimum size, there may be some global
4185 	 * reservations already in place (gbl_reserve).
4186 	 */
4187 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4188 	if (gbl_reserve < 0) {
4189 		ret = -ENOSPC;
4190 		goto out_err;
4191 	}
4192 
4193 	/*
4194 	 * Check enough hugepages are available for the reservation.
4195 	 * Hand the pages back to the subpool if there are not
4196 	 */
4197 	ret = hugetlb_acct_memory(h, gbl_reserve);
4198 	if (ret < 0) {
4199 		/* put back original number of pages, chg */
4200 		(void)hugepage_subpool_put_pages(spool, chg);
4201 		goto out_err;
4202 	}
4203 
4204 	/*
4205 	 * Account for the reservations made. Shared mappings record regions
4206 	 * that have reservations as they are shared by multiple VMAs.
4207 	 * When the last VMA disappears, the region map says how much
4208 	 * the reservation was and the page cache tells how much of
4209 	 * the reservation was consumed. Private mappings are per-VMA and
4210 	 * only the consumed reservations are tracked. When the VMA
4211 	 * disappears, the original reservation is the VMA size and the
4212 	 * consumed reservations are stored in the map. Hence, nothing
4213 	 * else has to be done for private mappings here
4214 	 */
4215 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4216 		long add = region_add(resv_map, from, to);
4217 
4218 		if (unlikely(chg > add)) {
4219 			/*
4220 			 * pages in this range were added to the reserve
4221 			 * map between region_chg and region_add.  This
4222 			 * indicates a race with alloc_huge_page.  Adjust
4223 			 * the subpool and reserve counts modified above
4224 			 * based on the difference.
4225 			 */
4226 			long rsv_adjust;
4227 
4228 			rsv_adjust = hugepage_subpool_put_pages(spool,
4229 								chg - add);
4230 			hugetlb_acct_memory(h, -rsv_adjust);
4231 		}
4232 	}
4233 	return 0;
4234 out_err:
4235 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4236 		region_abort(resv_map, from, to);
4237 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4238 		kref_put(&resv_map->refs, resv_map_release);
4239 	return ret;
4240 }
4241 
4242 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4243 								long freed)
4244 {
4245 	struct hstate *h = hstate_inode(inode);
4246 	struct resv_map *resv_map = inode_resv_map(inode);
4247 	long chg = 0;
4248 	struct hugepage_subpool *spool = subpool_inode(inode);
4249 	long gbl_reserve;
4250 
4251 	if (resv_map) {
4252 		chg = region_del(resv_map, start, end);
4253 		/*
4254 		 * region_del() can fail in the rare case where a region
4255 		 * must be split and another region descriptor can not be
4256 		 * allocated.  If end == LONG_MAX, it will not fail.
4257 		 */
4258 		if (chg < 0)
4259 			return chg;
4260 	}
4261 
4262 	spin_lock(&inode->i_lock);
4263 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4264 	spin_unlock(&inode->i_lock);
4265 
4266 	/*
4267 	 * If the subpool has a minimum size, the number of global
4268 	 * reservations to be released may be adjusted.
4269 	 */
4270 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4271 	hugetlb_acct_memory(h, -gbl_reserve);
4272 
4273 	return 0;
4274 }
4275 
4276 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4277 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4278 				struct vm_area_struct *vma,
4279 				unsigned long addr, pgoff_t idx)
4280 {
4281 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4282 				svma->vm_start;
4283 	unsigned long sbase = saddr & PUD_MASK;
4284 	unsigned long s_end = sbase + PUD_SIZE;
4285 
4286 	/* Allow segments to share if only one is marked locked */
4287 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4288 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4289 
4290 	/*
4291 	 * match the virtual addresses, permission and the alignment of the
4292 	 * page table page.
4293 	 */
4294 	if (pmd_index(addr) != pmd_index(saddr) ||
4295 	    vm_flags != svm_flags ||
4296 	    sbase < svma->vm_start || svma->vm_end < s_end)
4297 		return 0;
4298 
4299 	return saddr;
4300 }
4301 
4302 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4303 {
4304 	unsigned long base = addr & PUD_MASK;
4305 	unsigned long end = base + PUD_SIZE;
4306 
4307 	/*
4308 	 * check on proper vm_flags and page table alignment
4309 	 */
4310 	if (vma->vm_flags & VM_MAYSHARE &&
4311 	    vma->vm_start <= base && end <= vma->vm_end)
4312 		return true;
4313 	return false;
4314 }
4315 
4316 /*
4317  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4318  * and returns the corresponding pte. While this is not necessary for the
4319  * !shared pmd case because we can allocate the pmd later as well, it makes the
4320  * code much cleaner. pmd allocation is essential for the shared case because
4321  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4322  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4323  * bad pmd for sharing.
4324  */
4325 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4326 {
4327 	struct vm_area_struct *vma = find_vma(mm, addr);
4328 	struct address_space *mapping = vma->vm_file->f_mapping;
4329 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4330 			vma->vm_pgoff;
4331 	struct vm_area_struct *svma;
4332 	unsigned long saddr;
4333 	pte_t *spte = NULL;
4334 	pte_t *pte;
4335 	spinlock_t *ptl;
4336 
4337 	if (!vma_shareable(vma, addr))
4338 		return (pte_t *)pmd_alloc(mm, pud, addr);
4339 
4340 	i_mmap_lock_write(mapping);
4341 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4342 		if (svma == vma)
4343 			continue;
4344 
4345 		saddr = page_table_shareable(svma, vma, addr, idx);
4346 		if (saddr) {
4347 			spte = huge_pte_offset(svma->vm_mm, saddr);
4348 			if (spte) {
4349 				get_page(virt_to_page(spte));
4350 				break;
4351 			}
4352 		}
4353 	}
4354 
4355 	if (!spte)
4356 		goto out;
4357 
4358 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4359 	if (pud_none(*pud)) {
4360 		pud_populate(mm, pud,
4361 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4362 		mm_inc_nr_pmds(mm);
4363 	} else {
4364 		put_page(virt_to_page(spte));
4365 	}
4366 	spin_unlock(ptl);
4367 out:
4368 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4369 	i_mmap_unlock_write(mapping);
4370 	return pte;
4371 }
4372 
4373 /*
4374  * unmap huge page backed by shared pte.
4375  *
4376  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4377  * indicated by page_count > 1, unmap is achieved by clearing pud and
4378  * decrementing the ref count. If count == 1, the pte page is not shared.
4379  *
4380  * called with page table lock held.
4381  *
4382  * returns: 1 successfully unmapped a shared pte page
4383  *	    0 the underlying pte page is not shared, or it is the last user
4384  */
4385 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4386 {
4387 	pgd_t *pgd = pgd_offset(mm, *addr);
4388 	pud_t *pud = pud_offset(pgd, *addr);
4389 
4390 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4391 	if (page_count(virt_to_page(ptep)) == 1)
4392 		return 0;
4393 
4394 	pud_clear(pud);
4395 	put_page(virt_to_page(ptep));
4396 	mm_dec_nr_pmds(mm);
4397 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4398 	return 1;
4399 }
4400 #define want_pmd_share()	(1)
4401 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4402 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4403 {
4404 	return NULL;
4405 }
4406 
4407 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4408 {
4409 	return 0;
4410 }
4411 #define want_pmd_share()	(0)
4412 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4413 
4414 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4415 pte_t *huge_pte_alloc(struct mm_struct *mm,
4416 			unsigned long addr, unsigned long sz)
4417 {
4418 	pgd_t *pgd;
4419 	pud_t *pud;
4420 	pte_t *pte = NULL;
4421 
4422 	pgd = pgd_offset(mm, addr);
4423 	pud = pud_alloc(mm, pgd, addr);
4424 	if (pud) {
4425 		if (sz == PUD_SIZE) {
4426 			pte = (pte_t *)pud;
4427 		} else {
4428 			BUG_ON(sz != PMD_SIZE);
4429 			if (want_pmd_share() && pud_none(*pud))
4430 				pte = huge_pmd_share(mm, addr, pud);
4431 			else
4432 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4433 		}
4434 	}
4435 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4436 
4437 	return pte;
4438 }
4439 
4440 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4441 {
4442 	pgd_t *pgd;
4443 	pud_t *pud;
4444 	pmd_t *pmd = NULL;
4445 
4446 	pgd = pgd_offset(mm, addr);
4447 	if (pgd_present(*pgd)) {
4448 		pud = pud_offset(pgd, addr);
4449 		if (pud_present(*pud)) {
4450 			if (pud_huge(*pud))
4451 				return (pte_t *)pud;
4452 			pmd = pmd_offset(pud, addr);
4453 		}
4454 	}
4455 	return (pte_t *) pmd;
4456 }
4457 
4458 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4459 
4460 /*
4461  * These functions are overwritable if your architecture needs its own
4462  * behavior.
4463  */
4464 struct page * __weak
4465 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4466 			      int write)
4467 {
4468 	return ERR_PTR(-EINVAL);
4469 }
4470 
4471 struct page * __weak
4472 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4473 		pmd_t *pmd, int flags)
4474 {
4475 	struct page *page = NULL;
4476 	spinlock_t *ptl;
4477 retry:
4478 	ptl = pmd_lockptr(mm, pmd);
4479 	spin_lock(ptl);
4480 	/*
4481 	 * make sure that the address range covered by this pmd is not
4482 	 * unmapped from other threads.
4483 	 */
4484 	if (!pmd_huge(*pmd))
4485 		goto out;
4486 	if (pmd_present(*pmd)) {
4487 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4488 		if (flags & FOLL_GET)
4489 			get_page(page);
4490 	} else {
4491 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4492 			spin_unlock(ptl);
4493 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4494 			goto retry;
4495 		}
4496 		/*
4497 		 * hwpoisoned entry is treated as no_page_table in
4498 		 * follow_page_mask().
4499 		 */
4500 	}
4501 out:
4502 	spin_unlock(ptl);
4503 	return page;
4504 }
4505 
4506 struct page * __weak
4507 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4508 		pud_t *pud, int flags)
4509 {
4510 	if (flags & FOLL_GET)
4511 		return NULL;
4512 
4513 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4514 }
4515 
4516 #ifdef CONFIG_MEMORY_FAILURE
4517 
4518 /*
4519  * This function is called from memory failure code.
4520  */
4521 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4522 {
4523 	struct hstate *h = page_hstate(hpage);
4524 	int nid = page_to_nid(hpage);
4525 	int ret = -EBUSY;
4526 
4527 	spin_lock(&hugetlb_lock);
4528 	/*
4529 	 * Just checking !page_huge_active is not enough, because that could be
4530 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4531 	 */
4532 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4533 		/*
4534 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4535 		 * but dangling hpage->lru can trigger list-debug warnings
4536 		 * (this happens when we call unpoison_memory() on it),
4537 		 * so let it point to itself with list_del_init().
4538 		 */
4539 		list_del_init(&hpage->lru);
4540 		set_page_refcounted(hpage);
4541 		h->free_huge_pages--;
4542 		h->free_huge_pages_node[nid]--;
4543 		ret = 0;
4544 	}
4545 	spin_unlock(&hugetlb_lock);
4546 	return ret;
4547 }
4548 #endif
4549 
4550 bool isolate_huge_page(struct page *page, struct list_head *list)
4551 {
4552 	bool ret = true;
4553 
4554 	VM_BUG_ON_PAGE(!PageHead(page), page);
4555 	spin_lock(&hugetlb_lock);
4556 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4557 		ret = false;
4558 		goto unlock;
4559 	}
4560 	clear_page_huge_active(page);
4561 	list_move_tail(&page->lru, list);
4562 unlock:
4563 	spin_unlock(&hugetlb_lock);
4564 	return ret;
4565 }
4566 
4567 void putback_active_hugepage(struct page *page)
4568 {
4569 	VM_BUG_ON_PAGE(!PageHead(page), page);
4570 	spin_lock(&hugetlb_lock);
4571 	set_page_huge_active(page);
4572 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4573 	spin_unlock(&hugetlb_lock);
4574 	put_page(page);
4575 }
4576