xref: /openbmc/linux/mm/hugetlb.c (revision 4a44a19b)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 unsigned long hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 
44 __initdata LIST_HEAD(huge_boot_pages);
45 
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50 
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56 
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63 
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
67 
68 	spin_unlock(&spool->lock);
69 
70 	/* If no pages are used, and no other handles to the subpool
71 	 * remain, free the subpool the subpool remain */
72 	if (free)
73 		kfree(spool);
74 }
75 
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78 	struct hugepage_subpool *spool;
79 
80 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 	if (!spool)
82 		return NULL;
83 
84 	spin_lock_init(&spool->lock);
85 	spool->count = 1;
86 	spool->max_hpages = nr_blocks;
87 	spool->used_hpages = 0;
88 
89 	return spool;
90 }
91 
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94 	spin_lock(&spool->lock);
95 	BUG_ON(!spool->count);
96 	spool->count--;
97 	unlock_or_release_subpool(spool);
98 }
99 
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 				      long delta)
102 {
103 	int ret = 0;
104 
105 	if (!spool)
106 		return 0;
107 
108 	spin_lock(&spool->lock);
109 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 		spool->used_hpages += delta;
111 	} else {
112 		ret = -ENOMEM;
113 	}
114 	spin_unlock(&spool->lock);
115 
116 	return ret;
117 }
118 
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 				       long delta)
121 {
122 	if (!spool)
123 		return;
124 
125 	spin_lock(&spool->lock);
126 	spool->used_hpages -= delta;
127 	/* If hugetlbfs_put_super couldn't free spool due to
128 	* an outstanding quota reference, free it now. */
129 	unlock_or_release_subpool(spool);
130 }
131 
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134 	return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136 
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139 	return subpool_inode(file_inode(vma->vm_file));
140 }
141 
142 /*
143  * Region tracking -- allows tracking of reservations and instantiated pages
144  *                    across the pages in a mapping.
145  *
146  * The region data structures are embedded into a resv_map and
147  * protected by a resv_map's lock
148  */
149 struct file_region {
150 	struct list_head link;
151 	long from;
152 	long to;
153 };
154 
155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157 	struct list_head *head = &resv->regions;
158 	struct file_region *rg, *nrg, *trg;
159 
160 	spin_lock(&resv->lock);
161 	/* Locate the region we are either in or before. */
162 	list_for_each_entry(rg, head, link)
163 		if (f <= rg->to)
164 			break;
165 
166 	/* Round our left edge to the current segment if it encloses us. */
167 	if (f > rg->from)
168 		f = rg->from;
169 
170 	/* Check for and consume any regions we now overlap with. */
171 	nrg = rg;
172 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 		if (&rg->link == head)
174 			break;
175 		if (rg->from > t)
176 			break;
177 
178 		/* If this area reaches higher then extend our area to
179 		 * include it completely.  If this is not the first area
180 		 * which we intend to reuse, free it. */
181 		if (rg->to > t)
182 			t = rg->to;
183 		if (rg != nrg) {
184 			list_del(&rg->link);
185 			kfree(rg);
186 		}
187 	}
188 	nrg->from = f;
189 	nrg->to = t;
190 	spin_unlock(&resv->lock);
191 	return 0;
192 }
193 
194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196 	struct list_head *head = &resv->regions;
197 	struct file_region *rg, *nrg = NULL;
198 	long chg = 0;
199 
200 retry:
201 	spin_lock(&resv->lock);
202 	/* Locate the region we are before or in. */
203 	list_for_each_entry(rg, head, link)
204 		if (f <= rg->to)
205 			break;
206 
207 	/* If we are below the current region then a new region is required.
208 	 * Subtle, allocate a new region at the position but make it zero
209 	 * size such that we can guarantee to record the reservation. */
210 	if (&rg->link == head || t < rg->from) {
211 		if (!nrg) {
212 			spin_unlock(&resv->lock);
213 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 			if (!nrg)
215 				return -ENOMEM;
216 
217 			nrg->from = f;
218 			nrg->to   = f;
219 			INIT_LIST_HEAD(&nrg->link);
220 			goto retry;
221 		}
222 
223 		list_add(&nrg->link, rg->link.prev);
224 		chg = t - f;
225 		goto out_nrg;
226 	}
227 
228 	/* Round our left edge to the current segment if it encloses us. */
229 	if (f > rg->from)
230 		f = rg->from;
231 	chg = t - f;
232 
233 	/* Check for and consume any regions we now overlap with. */
234 	list_for_each_entry(rg, rg->link.prev, link) {
235 		if (&rg->link == head)
236 			break;
237 		if (rg->from > t)
238 			goto out;
239 
240 		/* We overlap with this area, if it extends further than
241 		 * us then we must extend ourselves.  Account for its
242 		 * existing reservation. */
243 		if (rg->to > t) {
244 			chg += rg->to - t;
245 			t = rg->to;
246 		}
247 		chg -= rg->to - rg->from;
248 	}
249 
250 out:
251 	spin_unlock(&resv->lock);
252 	/*  We already know we raced and no longer need the new region */
253 	kfree(nrg);
254 	return chg;
255 out_nrg:
256 	spin_unlock(&resv->lock);
257 	return chg;
258 }
259 
260 static long region_truncate(struct resv_map *resv, long end)
261 {
262 	struct list_head *head = &resv->regions;
263 	struct file_region *rg, *trg;
264 	long chg = 0;
265 
266 	spin_lock(&resv->lock);
267 	/* Locate the region we are either in or before. */
268 	list_for_each_entry(rg, head, link)
269 		if (end <= rg->to)
270 			break;
271 	if (&rg->link == head)
272 		goto out;
273 
274 	/* If we are in the middle of a region then adjust it. */
275 	if (end > rg->from) {
276 		chg = rg->to - end;
277 		rg->to = end;
278 		rg = list_entry(rg->link.next, typeof(*rg), link);
279 	}
280 
281 	/* Drop any remaining regions. */
282 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 		if (&rg->link == head)
284 			break;
285 		chg += rg->to - rg->from;
286 		list_del(&rg->link);
287 		kfree(rg);
288 	}
289 
290 out:
291 	spin_unlock(&resv->lock);
292 	return chg;
293 }
294 
295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297 	struct list_head *head = &resv->regions;
298 	struct file_region *rg;
299 	long chg = 0;
300 
301 	spin_lock(&resv->lock);
302 	/* Locate each segment we overlap with, and count that overlap. */
303 	list_for_each_entry(rg, head, link) {
304 		long seg_from;
305 		long seg_to;
306 
307 		if (rg->to <= f)
308 			continue;
309 		if (rg->from >= t)
310 			break;
311 
312 		seg_from = max(rg->from, f);
313 		seg_to = min(rg->to, t);
314 
315 		chg += seg_to - seg_from;
316 	}
317 	spin_unlock(&resv->lock);
318 
319 	return chg;
320 }
321 
322 /*
323  * Convert the address within this vma to the page offset within
324  * the mapping, in pagecache page units; huge pages here.
325  */
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 			struct vm_area_struct *vma, unsigned long address)
328 {
329 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 			(vma->vm_pgoff >> huge_page_order(h));
331 }
332 
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 				     unsigned long address)
335 {
336 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338 
339 /*
340  * Return the size of the pages allocated when backing a VMA. In the majority
341  * cases this will be same size as used by the page table entries.
342  */
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345 	struct hstate *hstate;
346 
347 	if (!is_vm_hugetlb_page(vma))
348 		return PAGE_SIZE;
349 
350 	hstate = hstate_vma(vma);
351 
352 	return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355 
356 /*
357  * Return the page size being used by the MMU to back a VMA. In the majority
358  * of cases, the page size used by the kernel matches the MMU size. On
359  * architectures where it differs, an architecture-specific version of this
360  * function is required.
361  */
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365 	return vma_kernel_pagesize(vma);
366 }
367 #endif
368 
369 /*
370  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371  * bits of the reservation map pointer, which are always clear due to
372  * alignment.
373  */
374 #define HPAGE_RESV_OWNER    (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377 
378 /*
379  * These helpers are used to track how many pages are reserved for
380  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381  * is guaranteed to have their future faults succeed.
382  *
383  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384  * the reserve counters are updated with the hugetlb_lock held. It is safe
385  * to reset the VMA at fork() time as it is not in use yet and there is no
386  * chance of the global counters getting corrupted as a result of the values.
387  *
388  * The private mapping reservation is represented in a subtly different
389  * manner to a shared mapping.  A shared mapping has a region map associated
390  * with the underlying file, this region map represents the backing file
391  * pages which have ever had a reservation assigned which this persists even
392  * after the page is instantiated.  A private mapping has a region map
393  * associated with the original mmap which is attached to all VMAs which
394  * reference it, this region map represents those offsets which have consumed
395  * reservation ie. where pages have been instantiated.
396  */
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399 	return (unsigned long)vma->vm_private_data;
400 }
401 
402 static void set_vma_private_data(struct vm_area_struct *vma,
403 							unsigned long value)
404 {
405 	vma->vm_private_data = (void *)value;
406 }
407 
408 struct resv_map *resv_map_alloc(void)
409 {
410 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 	if (!resv_map)
412 		return NULL;
413 
414 	kref_init(&resv_map->refs);
415 	spin_lock_init(&resv_map->lock);
416 	INIT_LIST_HEAD(&resv_map->regions);
417 
418 	return resv_map;
419 }
420 
421 void resv_map_release(struct kref *ref)
422 {
423 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424 
425 	/* Clear out any active regions before we release the map. */
426 	region_truncate(resv_map, 0);
427 	kfree(resv_map);
428 }
429 
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432 	return inode->i_mapping->private_data;
433 }
434 
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 	if (vma->vm_flags & VM_MAYSHARE) {
439 		struct address_space *mapping = vma->vm_file->f_mapping;
440 		struct inode *inode = mapping->host;
441 
442 		return inode_resv_map(inode);
443 
444 	} else {
445 		return (struct resv_map *)(get_vma_private_data(vma) &
446 							~HPAGE_RESV_MASK);
447 	}
448 }
449 
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
454 
455 	set_vma_private_data(vma, (get_vma_private_data(vma) &
456 				HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458 
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
463 
464 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466 
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
470 
471 	return (get_vma_private_data(vma) & flag) != 0;
472 }
473 
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478 	if (!(vma->vm_flags & VM_MAYSHARE))
479 		vma->vm_private_data = (void *)0;
480 }
481 
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485 	if (vma->vm_flags & VM_NORESERVE) {
486 		/*
487 		 * This address is already reserved by other process(chg == 0),
488 		 * so, we should decrement reserved count. Without decrementing,
489 		 * reserve count remains after releasing inode, because this
490 		 * allocated page will go into page cache and is regarded as
491 		 * coming from reserved pool in releasing step.  Currently, we
492 		 * don't have any other solution to deal with this situation
493 		 * properly, so add work-around here.
494 		 */
495 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 			return 1;
497 		else
498 			return 0;
499 	}
500 
501 	/* Shared mappings always use reserves */
502 	if (vma->vm_flags & VM_MAYSHARE)
503 		return 1;
504 
505 	/*
506 	 * Only the process that called mmap() has reserves for
507 	 * private mappings.
508 	 */
509 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 		return 1;
511 
512 	return 0;
513 }
514 
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517 	int nid = page_to_nid(page);
518 	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 	h->free_huge_pages++;
520 	h->free_huge_pages_node[nid]++;
521 }
522 
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525 	struct page *page;
526 
527 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 		if (!is_migrate_isolate_page(page))
529 			break;
530 	/*
531 	 * if 'non-isolated free hugepage' not found on the list,
532 	 * the allocation fails.
533 	 */
534 	if (&h->hugepage_freelists[nid] == &page->lru)
535 		return NULL;
536 	list_move(&page->lru, &h->hugepage_activelist);
537 	set_page_refcounted(page);
538 	h->free_huge_pages--;
539 	h->free_huge_pages_node[nid]--;
540 	return page;
541 }
542 
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 		return GFP_HIGHUSER_MOVABLE;
548 	else
549 		return GFP_HIGHUSER;
550 }
551 
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 				struct vm_area_struct *vma,
554 				unsigned long address, int avoid_reserve,
555 				long chg)
556 {
557 	struct page *page = NULL;
558 	struct mempolicy *mpol;
559 	nodemask_t *nodemask;
560 	struct zonelist *zonelist;
561 	struct zone *zone;
562 	struct zoneref *z;
563 	unsigned int cpuset_mems_cookie;
564 
565 	/*
566 	 * A child process with MAP_PRIVATE mappings created by their parent
567 	 * have no page reserves. This check ensures that reservations are
568 	 * not "stolen". The child may still get SIGKILLed
569 	 */
570 	if (!vma_has_reserves(vma, chg) &&
571 			h->free_huge_pages - h->resv_huge_pages == 0)
572 		goto err;
573 
574 	/* If reserves cannot be used, ensure enough pages are in the pool */
575 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 		goto err;
577 
578 retry_cpuset:
579 	cpuset_mems_cookie = read_mems_allowed_begin();
580 	zonelist = huge_zonelist(vma, address,
581 					htlb_alloc_mask(h), &mpol, &nodemask);
582 
583 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 						MAX_NR_ZONES - 1, nodemask) {
585 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 			if (page) {
588 				if (avoid_reserve)
589 					break;
590 				if (!vma_has_reserves(vma, chg))
591 					break;
592 
593 				SetPagePrivate(page);
594 				h->resv_huge_pages--;
595 				break;
596 			}
597 		}
598 	}
599 
600 	mpol_cond_put(mpol);
601 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 		goto retry_cpuset;
603 	return page;
604 
605 err:
606 	return NULL;
607 }
608 
609 /*
610  * common helper functions for hstate_next_node_to_{alloc|free}.
611  * We may have allocated or freed a huge page based on a different
612  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613  * be outside of *nodes_allowed.  Ensure that we use an allowed
614  * node for alloc or free.
615  */
616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617 {
618 	nid = next_node(nid, *nodes_allowed);
619 	if (nid == MAX_NUMNODES)
620 		nid = first_node(*nodes_allowed);
621 	VM_BUG_ON(nid >= MAX_NUMNODES);
622 
623 	return nid;
624 }
625 
626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628 	if (!node_isset(nid, *nodes_allowed))
629 		nid = next_node_allowed(nid, nodes_allowed);
630 	return nid;
631 }
632 
633 /*
634  * returns the previously saved node ["this node"] from which to
635  * allocate a persistent huge page for the pool and advance the
636  * next node from which to allocate, handling wrap at end of node
637  * mask.
638  */
639 static int hstate_next_node_to_alloc(struct hstate *h,
640 					nodemask_t *nodes_allowed)
641 {
642 	int nid;
643 
644 	VM_BUG_ON(!nodes_allowed);
645 
646 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648 
649 	return nid;
650 }
651 
652 /*
653  * helper for free_pool_huge_page() - return the previously saved
654  * node ["this node"] from which to free a huge page.  Advance the
655  * next node id whether or not we find a free huge page to free so
656  * that the next attempt to free addresses the next node.
657  */
658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659 {
660 	int nid;
661 
662 	VM_BUG_ON(!nodes_allowed);
663 
664 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666 
667 	return nid;
668 }
669 
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
671 	for (nr_nodes = nodes_weight(*mask);				\
672 		nr_nodes > 0 &&						\
673 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
674 		nr_nodes--)
675 
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
677 	for (nr_nodes = nodes_weight(*mask);				\
678 		nr_nodes > 0 &&						\
679 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
680 		nr_nodes--)
681 
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683 static void destroy_compound_gigantic_page(struct page *page,
684 					unsigned long order)
685 {
686 	int i;
687 	int nr_pages = 1 << order;
688 	struct page *p = page + 1;
689 
690 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 		__ClearPageTail(p);
692 		set_page_refcounted(p);
693 		p->first_page = NULL;
694 	}
695 
696 	set_compound_order(page, 0);
697 	__ClearPageHead(page);
698 }
699 
700 static void free_gigantic_page(struct page *page, unsigned order)
701 {
702 	free_contig_range(page_to_pfn(page), 1 << order);
703 }
704 
705 static int __alloc_gigantic_page(unsigned long start_pfn,
706 				unsigned long nr_pages)
707 {
708 	unsigned long end_pfn = start_pfn + nr_pages;
709 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710 }
711 
712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 				unsigned long nr_pages)
714 {
715 	unsigned long i, end_pfn = start_pfn + nr_pages;
716 	struct page *page;
717 
718 	for (i = start_pfn; i < end_pfn; i++) {
719 		if (!pfn_valid(i))
720 			return false;
721 
722 		page = pfn_to_page(i);
723 
724 		if (PageReserved(page))
725 			return false;
726 
727 		if (page_count(page) > 0)
728 			return false;
729 
730 		if (PageHuge(page))
731 			return false;
732 	}
733 
734 	return true;
735 }
736 
737 static bool zone_spans_last_pfn(const struct zone *zone,
738 			unsigned long start_pfn, unsigned long nr_pages)
739 {
740 	unsigned long last_pfn = start_pfn + nr_pages - 1;
741 	return zone_spans_pfn(zone, last_pfn);
742 }
743 
744 static struct page *alloc_gigantic_page(int nid, unsigned order)
745 {
746 	unsigned long nr_pages = 1 << order;
747 	unsigned long ret, pfn, flags;
748 	struct zone *z;
749 
750 	z = NODE_DATA(nid)->node_zones;
751 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 		spin_lock_irqsave(&z->lock, flags);
753 
754 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 				/*
758 				 * We release the zone lock here because
759 				 * alloc_contig_range() will also lock the zone
760 				 * at some point. If there's an allocation
761 				 * spinning on this lock, it may win the race
762 				 * and cause alloc_contig_range() to fail...
763 				 */
764 				spin_unlock_irqrestore(&z->lock, flags);
765 				ret = __alloc_gigantic_page(pfn, nr_pages);
766 				if (!ret)
767 					return pfn_to_page(pfn);
768 				spin_lock_irqsave(&z->lock, flags);
769 			}
770 			pfn += nr_pages;
771 		}
772 
773 		spin_unlock_irqrestore(&z->lock, flags);
774 	}
775 
776 	return NULL;
777 }
778 
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781 
782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783 {
784 	struct page *page;
785 
786 	page = alloc_gigantic_page(nid, huge_page_order(h));
787 	if (page) {
788 		prep_compound_gigantic_page(page, huge_page_order(h));
789 		prep_new_huge_page(h, page, nid);
790 	}
791 
792 	return page;
793 }
794 
795 static int alloc_fresh_gigantic_page(struct hstate *h,
796 				nodemask_t *nodes_allowed)
797 {
798 	struct page *page = NULL;
799 	int nr_nodes, node;
800 
801 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 		page = alloc_fresh_gigantic_page_node(h, node);
803 		if (page)
804 			return 1;
805 	}
806 
807 	return 0;
808 }
809 
810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
812 static inline bool gigantic_page_supported(void) { return false; }
813 static inline void free_gigantic_page(struct page *page, unsigned order) { }
814 static inline void destroy_compound_gigantic_page(struct page *page,
815 						unsigned long order) { }
816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 					nodemask_t *nodes_allowed) { return 0; }
818 #endif
819 
820 static void update_and_free_page(struct hstate *h, struct page *page)
821 {
822 	int i;
823 
824 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 		return;
826 
827 	h->nr_huge_pages--;
828 	h->nr_huge_pages_node[page_to_nid(page)]--;
829 	for (i = 0; i < pages_per_huge_page(h); i++) {
830 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 				1 << PG_referenced | 1 << PG_dirty |
832 				1 << PG_active | 1 << PG_private |
833 				1 << PG_writeback);
834 	}
835 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836 	set_compound_page_dtor(page, NULL);
837 	set_page_refcounted(page);
838 	if (hstate_is_gigantic(h)) {
839 		destroy_compound_gigantic_page(page, huge_page_order(h));
840 		free_gigantic_page(page, huge_page_order(h));
841 	} else {
842 		arch_release_hugepage(page);
843 		__free_pages(page, huge_page_order(h));
844 	}
845 }
846 
847 struct hstate *size_to_hstate(unsigned long size)
848 {
849 	struct hstate *h;
850 
851 	for_each_hstate(h) {
852 		if (huge_page_size(h) == size)
853 			return h;
854 	}
855 	return NULL;
856 }
857 
858 void free_huge_page(struct page *page)
859 {
860 	/*
861 	 * Can't pass hstate in here because it is called from the
862 	 * compound page destructor.
863 	 */
864 	struct hstate *h = page_hstate(page);
865 	int nid = page_to_nid(page);
866 	struct hugepage_subpool *spool =
867 		(struct hugepage_subpool *)page_private(page);
868 	bool restore_reserve;
869 
870 	set_page_private(page, 0);
871 	page->mapping = NULL;
872 	BUG_ON(page_count(page));
873 	BUG_ON(page_mapcount(page));
874 	restore_reserve = PagePrivate(page);
875 	ClearPagePrivate(page);
876 
877 	spin_lock(&hugetlb_lock);
878 	hugetlb_cgroup_uncharge_page(hstate_index(h),
879 				     pages_per_huge_page(h), page);
880 	if (restore_reserve)
881 		h->resv_huge_pages++;
882 
883 	if (h->surplus_huge_pages_node[nid]) {
884 		/* remove the page from active list */
885 		list_del(&page->lru);
886 		update_and_free_page(h, page);
887 		h->surplus_huge_pages--;
888 		h->surplus_huge_pages_node[nid]--;
889 	} else {
890 		arch_clear_hugepage_flags(page);
891 		enqueue_huge_page(h, page);
892 	}
893 	spin_unlock(&hugetlb_lock);
894 	hugepage_subpool_put_pages(spool, 1);
895 }
896 
897 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
898 {
899 	INIT_LIST_HEAD(&page->lru);
900 	set_compound_page_dtor(page, free_huge_page);
901 	spin_lock(&hugetlb_lock);
902 	set_hugetlb_cgroup(page, NULL);
903 	h->nr_huge_pages++;
904 	h->nr_huge_pages_node[nid]++;
905 	spin_unlock(&hugetlb_lock);
906 	put_page(page); /* free it into the hugepage allocator */
907 }
908 
909 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
910 {
911 	int i;
912 	int nr_pages = 1 << order;
913 	struct page *p = page + 1;
914 
915 	/* we rely on prep_new_huge_page to set the destructor */
916 	set_compound_order(page, order);
917 	__SetPageHead(page);
918 	__ClearPageReserved(page);
919 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920 		__SetPageTail(p);
921 		/*
922 		 * For gigantic hugepages allocated through bootmem at
923 		 * boot, it's safer to be consistent with the not-gigantic
924 		 * hugepages and clear the PG_reserved bit from all tail pages
925 		 * too.  Otherwse drivers using get_user_pages() to access tail
926 		 * pages may get the reference counting wrong if they see
927 		 * PG_reserved set on a tail page (despite the head page not
928 		 * having PG_reserved set).  Enforcing this consistency between
929 		 * head and tail pages allows drivers to optimize away a check
930 		 * on the head page when they need know if put_page() is needed
931 		 * after get_user_pages().
932 		 */
933 		__ClearPageReserved(p);
934 		set_page_count(p, 0);
935 		p->first_page = page;
936 	}
937 }
938 
939 /*
940  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
941  * transparent huge pages.  See the PageTransHuge() documentation for more
942  * details.
943  */
944 int PageHuge(struct page *page)
945 {
946 	if (!PageCompound(page))
947 		return 0;
948 
949 	page = compound_head(page);
950 	return get_compound_page_dtor(page) == free_huge_page;
951 }
952 EXPORT_SYMBOL_GPL(PageHuge);
953 
954 /*
955  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
956  * normal or transparent huge pages.
957  */
958 int PageHeadHuge(struct page *page_head)
959 {
960 	if (!PageHead(page_head))
961 		return 0;
962 
963 	return get_compound_page_dtor(page_head) == free_huge_page;
964 }
965 
966 pgoff_t __basepage_index(struct page *page)
967 {
968 	struct page *page_head = compound_head(page);
969 	pgoff_t index = page_index(page_head);
970 	unsigned long compound_idx;
971 
972 	if (!PageHuge(page_head))
973 		return page_index(page);
974 
975 	if (compound_order(page_head) >= MAX_ORDER)
976 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
977 	else
978 		compound_idx = page - page_head;
979 
980 	return (index << compound_order(page_head)) + compound_idx;
981 }
982 
983 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
984 {
985 	struct page *page;
986 
987 	page = alloc_pages_exact_node(nid,
988 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
989 						__GFP_REPEAT|__GFP_NOWARN,
990 		huge_page_order(h));
991 	if (page) {
992 		if (arch_prepare_hugepage(page)) {
993 			__free_pages(page, huge_page_order(h));
994 			return NULL;
995 		}
996 		prep_new_huge_page(h, page, nid);
997 	}
998 
999 	return page;
1000 }
1001 
1002 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004 	struct page *page;
1005 	int nr_nodes, node;
1006 	int ret = 0;
1007 
1008 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1009 		page = alloc_fresh_huge_page_node(h, node);
1010 		if (page) {
1011 			ret = 1;
1012 			break;
1013 		}
1014 	}
1015 
1016 	if (ret)
1017 		count_vm_event(HTLB_BUDDY_PGALLOC);
1018 	else
1019 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020 
1021 	return ret;
1022 }
1023 
1024 /*
1025  * Free huge page from pool from next node to free.
1026  * Attempt to keep persistent huge pages more or less
1027  * balanced over allowed nodes.
1028  * Called with hugetlb_lock locked.
1029  */
1030 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1031 							 bool acct_surplus)
1032 {
1033 	int nr_nodes, node;
1034 	int ret = 0;
1035 
1036 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1037 		/*
1038 		 * If we're returning unused surplus pages, only examine
1039 		 * nodes with surplus pages.
1040 		 */
1041 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1042 		    !list_empty(&h->hugepage_freelists[node])) {
1043 			struct page *page =
1044 				list_entry(h->hugepage_freelists[node].next,
1045 					  struct page, lru);
1046 			list_del(&page->lru);
1047 			h->free_huge_pages--;
1048 			h->free_huge_pages_node[node]--;
1049 			if (acct_surplus) {
1050 				h->surplus_huge_pages--;
1051 				h->surplus_huge_pages_node[node]--;
1052 			}
1053 			update_and_free_page(h, page);
1054 			ret = 1;
1055 			break;
1056 		}
1057 	}
1058 
1059 	return ret;
1060 }
1061 
1062 /*
1063  * Dissolve a given free hugepage into free buddy pages. This function does
1064  * nothing for in-use (including surplus) hugepages.
1065  */
1066 static void dissolve_free_huge_page(struct page *page)
1067 {
1068 	spin_lock(&hugetlb_lock);
1069 	if (PageHuge(page) && !page_count(page)) {
1070 		struct hstate *h = page_hstate(page);
1071 		int nid = page_to_nid(page);
1072 		list_del(&page->lru);
1073 		h->free_huge_pages--;
1074 		h->free_huge_pages_node[nid]--;
1075 		update_and_free_page(h, page);
1076 	}
1077 	spin_unlock(&hugetlb_lock);
1078 }
1079 
1080 /*
1081  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1082  * make specified memory blocks removable from the system.
1083  * Note that start_pfn should aligned with (minimum) hugepage size.
1084  */
1085 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1086 {
1087 	unsigned int order = 8 * sizeof(void *);
1088 	unsigned long pfn;
1089 	struct hstate *h;
1090 
1091 	if (!hugepages_supported())
1092 		return;
1093 
1094 	/* Set scan step to minimum hugepage size */
1095 	for_each_hstate(h)
1096 		if (order > huge_page_order(h))
1097 			order = huge_page_order(h);
1098 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1099 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1100 		dissolve_free_huge_page(pfn_to_page(pfn));
1101 }
1102 
1103 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1104 {
1105 	struct page *page;
1106 	unsigned int r_nid;
1107 
1108 	if (hstate_is_gigantic(h))
1109 		return NULL;
1110 
1111 	/*
1112 	 * Assume we will successfully allocate the surplus page to
1113 	 * prevent racing processes from causing the surplus to exceed
1114 	 * overcommit
1115 	 *
1116 	 * This however introduces a different race, where a process B
1117 	 * tries to grow the static hugepage pool while alloc_pages() is
1118 	 * called by process A. B will only examine the per-node
1119 	 * counters in determining if surplus huge pages can be
1120 	 * converted to normal huge pages in adjust_pool_surplus(). A
1121 	 * won't be able to increment the per-node counter, until the
1122 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1123 	 * no more huge pages can be converted from surplus to normal
1124 	 * state (and doesn't try to convert again). Thus, we have a
1125 	 * case where a surplus huge page exists, the pool is grown, and
1126 	 * the surplus huge page still exists after, even though it
1127 	 * should just have been converted to a normal huge page. This
1128 	 * does not leak memory, though, as the hugepage will be freed
1129 	 * once it is out of use. It also does not allow the counters to
1130 	 * go out of whack in adjust_pool_surplus() as we don't modify
1131 	 * the node values until we've gotten the hugepage and only the
1132 	 * per-node value is checked there.
1133 	 */
1134 	spin_lock(&hugetlb_lock);
1135 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1136 		spin_unlock(&hugetlb_lock);
1137 		return NULL;
1138 	} else {
1139 		h->nr_huge_pages++;
1140 		h->surplus_huge_pages++;
1141 	}
1142 	spin_unlock(&hugetlb_lock);
1143 
1144 	if (nid == NUMA_NO_NODE)
1145 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1146 				   __GFP_REPEAT|__GFP_NOWARN,
1147 				   huge_page_order(h));
1148 	else
1149 		page = alloc_pages_exact_node(nid,
1150 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1151 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1152 
1153 	if (page && arch_prepare_hugepage(page)) {
1154 		__free_pages(page, huge_page_order(h));
1155 		page = NULL;
1156 	}
1157 
1158 	spin_lock(&hugetlb_lock);
1159 	if (page) {
1160 		INIT_LIST_HEAD(&page->lru);
1161 		r_nid = page_to_nid(page);
1162 		set_compound_page_dtor(page, free_huge_page);
1163 		set_hugetlb_cgroup(page, NULL);
1164 		/*
1165 		 * We incremented the global counters already
1166 		 */
1167 		h->nr_huge_pages_node[r_nid]++;
1168 		h->surplus_huge_pages_node[r_nid]++;
1169 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1170 	} else {
1171 		h->nr_huge_pages--;
1172 		h->surplus_huge_pages--;
1173 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1174 	}
1175 	spin_unlock(&hugetlb_lock);
1176 
1177 	return page;
1178 }
1179 
1180 /*
1181  * This allocation function is useful in the context where vma is irrelevant.
1182  * E.g. soft-offlining uses this function because it only cares physical
1183  * address of error page.
1184  */
1185 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1186 {
1187 	struct page *page = NULL;
1188 
1189 	spin_lock(&hugetlb_lock);
1190 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1191 		page = dequeue_huge_page_node(h, nid);
1192 	spin_unlock(&hugetlb_lock);
1193 
1194 	if (!page)
1195 		page = alloc_buddy_huge_page(h, nid);
1196 
1197 	return page;
1198 }
1199 
1200 /*
1201  * Increase the hugetlb pool such that it can accommodate a reservation
1202  * of size 'delta'.
1203  */
1204 static int gather_surplus_pages(struct hstate *h, int delta)
1205 {
1206 	struct list_head surplus_list;
1207 	struct page *page, *tmp;
1208 	int ret, i;
1209 	int needed, allocated;
1210 	bool alloc_ok = true;
1211 
1212 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1213 	if (needed <= 0) {
1214 		h->resv_huge_pages += delta;
1215 		return 0;
1216 	}
1217 
1218 	allocated = 0;
1219 	INIT_LIST_HEAD(&surplus_list);
1220 
1221 	ret = -ENOMEM;
1222 retry:
1223 	spin_unlock(&hugetlb_lock);
1224 	for (i = 0; i < needed; i++) {
1225 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1226 		if (!page) {
1227 			alloc_ok = false;
1228 			break;
1229 		}
1230 		list_add(&page->lru, &surplus_list);
1231 	}
1232 	allocated += i;
1233 
1234 	/*
1235 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1236 	 * because either resv_huge_pages or free_huge_pages may have changed.
1237 	 */
1238 	spin_lock(&hugetlb_lock);
1239 	needed = (h->resv_huge_pages + delta) -
1240 			(h->free_huge_pages + allocated);
1241 	if (needed > 0) {
1242 		if (alloc_ok)
1243 			goto retry;
1244 		/*
1245 		 * We were not able to allocate enough pages to
1246 		 * satisfy the entire reservation so we free what
1247 		 * we've allocated so far.
1248 		 */
1249 		goto free;
1250 	}
1251 	/*
1252 	 * The surplus_list now contains _at_least_ the number of extra pages
1253 	 * needed to accommodate the reservation.  Add the appropriate number
1254 	 * of pages to the hugetlb pool and free the extras back to the buddy
1255 	 * allocator.  Commit the entire reservation here to prevent another
1256 	 * process from stealing the pages as they are added to the pool but
1257 	 * before they are reserved.
1258 	 */
1259 	needed += allocated;
1260 	h->resv_huge_pages += delta;
1261 	ret = 0;
1262 
1263 	/* Free the needed pages to the hugetlb pool */
1264 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1265 		if ((--needed) < 0)
1266 			break;
1267 		/*
1268 		 * This page is now managed by the hugetlb allocator and has
1269 		 * no users -- drop the buddy allocator's reference.
1270 		 */
1271 		put_page_testzero(page);
1272 		VM_BUG_ON_PAGE(page_count(page), page);
1273 		enqueue_huge_page(h, page);
1274 	}
1275 free:
1276 	spin_unlock(&hugetlb_lock);
1277 
1278 	/* Free unnecessary surplus pages to the buddy allocator */
1279 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1280 		put_page(page);
1281 	spin_lock(&hugetlb_lock);
1282 
1283 	return ret;
1284 }
1285 
1286 /*
1287  * When releasing a hugetlb pool reservation, any surplus pages that were
1288  * allocated to satisfy the reservation must be explicitly freed if they were
1289  * never used.
1290  * Called with hugetlb_lock held.
1291  */
1292 static void return_unused_surplus_pages(struct hstate *h,
1293 					unsigned long unused_resv_pages)
1294 {
1295 	unsigned long nr_pages;
1296 
1297 	/* Uncommit the reservation */
1298 	h->resv_huge_pages -= unused_resv_pages;
1299 
1300 	/* Cannot return gigantic pages currently */
1301 	if (hstate_is_gigantic(h))
1302 		return;
1303 
1304 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1305 
1306 	/*
1307 	 * We want to release as many surplus pages as possible, spread
1308 	 * evenly across all nodes with memory. Iterate across these nodes
1309 	 * until we can no longer free unreserved surplus pages. This occurs
1310 	 * when the nodes with surplus pages have no free pages.
1311 	 * free_pool_huge_page() will balance the the freed pages across the
1312 	 * on-line nodes with memory and will handle the hstate accounting.
1313 	 */
1314 	while (nr_pages--) {
1315 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1316 			break;
1317 		cond_resched_lock(&hugetlb_lock);
1318 	}
1319 }
1320 
1321 /*
1322  * Determine if the huge page at addr within the vma has an associated
1323  * reservation.  Where it does not we will need to logically increase
1324  * reservation and actually increase subpool usage before an allocation
1325  * can occur.  Where any new reservation would be required the
1326  * reservation change is prepared, but not committed.  Once the page
1327  * has been allocated from the subpool and instantiated the change should
1328  * be committed via vma_commit_reservation.  No action is required on
1329  * failure.
1330  */
1331 static long vma_needs_reservation(struct hstate *h,
1332 			struct vm_area_struct *vma, unsigned long addr)
1333 {
1334 	struct resv_map *resv;
1335 	pgoff_t idx;
1336 	long chg;
1337 
1338 	resv = vma_resv_map(vma);
1339 	if (!resv)
1340 		return 1;
1341 
1342 	idx = vma_hugecache_offset(h, vma, addr);
1343 	chg = region_chg(resv, idx, idx + 1);
1344 
1345 	if (vma->vm_flags & VM_MAYSHARE)
1346 		return chg;
1347 	else
1348 		return chg < 0 ? chg : 0;
1349 }
1350 static void vma_commit_reservation(struct hstate *h,
1351 			struct vm_area_struct *vma, unsigned long addr)
1352 {
1353 	struct resv_map *resv;
1354 	pgoff_t idx;
1355 
1356 	resv = vma_resv_map(vma);
1357 	if (!resv)
1358 		return;
1359 
1360 	idx = vma_hugecache_offset(h, vma, addr);
1361 	region_add(resv, idx, idx + 1);
1362 }
1363 
1364 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1365 				    unsigned long addr, int avoid_reserve)
1366 {
1367 	struct hugepage_subpool *spool = subpool_vma(vma);
1368 	struct hstate *h = hstate_vma(vma);
1369 	struct page *page;
1370 	long chg;
1371 	int ret, idx;
1372 	struct hugetlb_cgroup *h_cg;
1373 
1374 	idx = hstate_index(h);
1375 	/*
1376 	 * Processes that did not create the mapping will have no
1377 	 * reserves and will not have accounted against subpool
1378 	 * limit. Check that the subpool limit can be made before
1379 	 * satisfying the allocation MAP_NORESERVE mappings may also
1380 	 * need pages and subpool limit allocated allocated if no reserve
1381 	 * mapping overlaps.
1382 	 */
1383 	chg = vma_needs_reservation(h, vma, addr);
1384 	if (chg < 0)
1385 		return ERR_PTR(-ENOMEM);
1386 	if (chg || avoid_reserve)
1387 		if (hugepage_subpool_get_pages(spool, 1))
1388 			return ERR_PTR(-ENOSPC);
1389 
1390 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1391 	if (ret)
1392 		goto out_subpool_put;
1393 
1394 	spin_lock(&hugetlb_lock);
1395 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1396 	if (!page) {
1397 		spin_unlock(&hugetlb_lock);
1398 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1399 		if (!page)
1400 			goto out_uncharge_cgroup;
1401 
1402 		spin_lock(&hugetlb_lock);
1403 		list_move(&page->lru, &h->hugepage_activelist);
1404 		/* Fall through */
1405 	}
1406 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1407 	spin_unlock(&hugetlb_lock);
1408 
1409 	set_page_private(page, (unsigned long)spool);
1410 
1411 	vma_commit_reservation(h, vma, addr);
1412 	return page;
1413 
1414 out_uncharge_cgroup:
1415 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1416 out_subpool_put:
1417 	if (chg || avoid_reserve)
1418 		hugepage_subpool_put_pages(spool, 1);
1419 	return ERR_PTR(-ENOSPC);
1420 }
1421 
1422 /*
1423  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1424  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1425  * where no ERR_VALUE is expected to be returned.
1426  */
1427 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1428 				unsigned long addr, int avoid_reserve)
1429 {
1430 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1431 	if (IS_ERR(page))
1432 		page = NULL;
1433 	return page;
1434 }
1435 
1436 int __weak alloc_bootmem_huge_page(struct hstate *h)
1437 {
1438 	struct huge_bootmem_page *m;
1439 	int nr_nodes, node;
1440 
1441 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1442 		void *addr;
1443 
1444 		addr = memblock_virt_alloc_try_nid_nopanic(
1445 				huge_page_size(h), huge_page_size(h),
1446 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1447 		if (addr) {
1448 			/*
1449 			 * Use the beginning of the huge page to store the
1450 			 * huge_bootmem_page struct (until gather_bootmem
1451 			 * puts them into the mem_map).
1452 			 */
1453 			m = addr;
1454 			goto found;
1455 		}
1456 	}
1457 	return 0;
1458 
1459 found:
1460 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1461 	/* Put them into a private list first because mem_map is not up yet */
1462 	list_add(&m->list, &huge_boot_pages);
1463 	m->hstate = h;
1464 	return 1;
1465 }
1466 
1467 static void __init prep_compound_huge_page(struct page *page, int order)
1468 {
1469 	if (unlikely(order > (MAX_ORDER - 1)))
1470 		prep_compound_gigantic_page(page, order);
1471 	else
1472 		prep_compound_page(page, order);
1473 }
1474 
1475 /* Put bootmem huge pages into the standard lists after mem_map is up */
1476 static void __init gather_bootmem_prealloc(void)
1477 {
1478 	struct huge_bootmem_page *m;
1479 
1480 	list_for_each_entry(m, &huge_boot_pages, list) {
1481 		struct hstate *h = m->hstate;
1482 		struct page *page;
1483 
1484 #ifdef CONFIG_HIGHMEM
1485 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1486 		memblock_free_late(__pa(m),
1487 				   sizeof(struct huge_bootmem_page));
1488 #else
1489 		page = virt_to_page(m);
1490 #endif
1491 		WARN_ON(page_count(page) != 1);
1492 		prep_compound_huge_page(page, h->order);
1493 		WARN_ON(PageReserved(page));
1494 		prep_new_huge_page(h, page, page_to_nid(page));
1495 		/*
1496 		 * If we had gigantic hugepages allocated at boot time, we need
1497 		 * to restore the 'stolen' pages to totalram_pages in order to
1498 		 * fix confusing memory reports from free(1) and another
1499 		 * side-effects, like CommitLimit going negative.
1500 		 */
1501 		if (hstate_is_gigantic(h))
1502 			adjust_managed_page_count(page, 1 << h->order);
1503 	}
1504 }
1505 
1506 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1507 {
1508 	unsigned long i;
1509 
1510 	for (i = 0; i < h->max_huge_pages; ++i) {
1511 		if (hstate_is_gigantic(h)) {
1512 			if (!alloc_bootmem_huge_page(h))
1513 				break;
1514 		} else if (!alloc_fresh_huge_page(h,
1515 					 &node_states[N_MEMORY]))
1516 			break;
1517 	}
1518 	h->max_huge_pages = i;
1519 }
1520 
1521 static void __init hugetlb_init_hstates(void)
1522 {
1523 	struct hstate *h;
1524 
1525 	for_each_hstate(h) {
1526 		/* oversize hugepages were init'ed in early boot */
1527 		if (!hstate_is_gigantic(h))
1528 			hugetlb_hstate_alloc_pages(h);
1529 	}
1530 }
1531 
1532 static char * __init memfmt(char *buf, unsigned long n)
1533 {
1534 	if (n >= (1UL << 30))
1535 		sprintf(buf, "%lu GB", n >> 30);
1536 	else if (n >= (1UL << 20))
1537 		sprintf(buf, "%lu MB", n >> 20);
1538 	else
1539 		sprintf(buf, "%lu KB", n >> 10);
1540 	return buf;
1541 }
1542 
1543 static void __init report_hugepages(void)
1544 {
1545 	struct hstate *h;
1546 
1547 	for_each_hstate(h) {
1548 		char buf[32];
1549 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1550 			memfmt(buf, huge_page_size(h)),
1551 			h->free_huge_pages);
1552 	}
1553 }
1554 
1555 #ifdef CONFIG_HIGHMEM
1556 static void try_to_free_low(struct hstate *h, unsigned long count,
1557 						nodemask_t *nodes_allowed)
1558 {
1559 	int i;
1560 
1561 	if (hstate_is_gigantic(h))
1562 		return;
1563 
1564 	for_each_node_mask(i, *nodes_allowed) {
1565 		struct page *page, *next;
1566 		struct list_head *freel = &h->hugepage_freelists[i];
1567 		list_for_each_entry_safe(page, next, freel, lru) {
1568 			if (count >= h->nr_huge_pages)
1569 				return;
1570 			if (PageHighMem(page))
1571 				continue;
1572 			list_del(&page->lru);
1573 			update_and_free_page(h, page);
1574 			h->free_huge_pages--;
1575 			h->free_huge_pages_node[page_to_nid(page)]--;
1576 		}
1577 	}
1578 }
1579 #else
1580 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1581 						nodemask_t *nodes_allowed)
1582 {
1583 }
1584 #endif
1585 
1586 /*
1587  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1588  * balanced by operating on them in a round-robin fashion.
1589  * Returns 1 if an adjustment was made.
1590  */
1591 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1592 				int delta)
1593 {
1594 	int nr_nodes, node;
1595 
1596 	VM_BUG_ON(delta != -1 && delta != 1);
1597 
1598 	if (delta < 0) {
1599 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1600 			if (h->surplus_huge_pages_node[node])
1601 				goto found;
1602 		}
1603 	} else {
1604 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1605 			if (h->surplus_huge_pages_node[node] <
1606 					h->nr_huge_pages_node[node])
1607 				goto found;
1608 		}
1609 	}
1610 	return 0;
1611 
1612 found:
1613 	h->surplus_huge_pages += delta;
1614 	h->surplus_huge_pages_node[node] += delta;
1615 	return 1;
1616 }
1617 
1618 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1619 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1620 						nodemask_t *nodes_allowed)
1621 {
1622 	unsigned long min_count, ret;
1623 
1624 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1625 		return h->max_huge_pages;
1626 
1627 	/*
1628 	 * Increase the pool size
1629 	 * First take pages out of surplus state.  Then make up the
1630 	 * remaining difference by allocating fresh huge pages.
1631 	 *
1632 	 * We might race with alloc_buddy_huge_page() here and be unable
1633 	 * to convert a surplus huge page to a normal huge page. That is
1634 	 * not critical, though, it just means the overall size of the
1635 	 * pool might be one hugepage larger than it needs to be, but
1636 	 * within all the constraints specified by the sysctls.
1637 	 */
1638 	spin_lock(&hugetlb_lock);
1639 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1640 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1641 			break;
1642 	}
1643 
1644 	while (count > persistent_huge_pages(h)) {
1645 		/*
1646 		 * If this allocation races such that we no longer need the
1647 		 * page, free_huge_page will handle it by freeing the page
1648 		 * and reducing the surplus.
1649 		 */
1650 		spin_unlock(&hugetlb_lock);
1651 		if (hstate_is_gigantic(h))
1652 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1653 		else
1654 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1655 		spin_lock(&hugetlb_lock);
1656 		if (!ret)
1657 			goto out;
1658 
1659 		/* Bail for signals. Probably ctrl-c from user */
1660 		if (signal_pending(current))
1661 			goto out;
1662 	}
1663 
1664 	/*
1665 	 * Decrease the pool size
1666 	 * First return free pages to the buddy allocator (being careful
1667 	 * to keep enough around to satisfy reservations).  Then place
1668 	 * pages into surplus state as needed so the pool will shrink
1669 	 * to the desired size as pages become free.
1670 	 *
1671 	 * By placing pages into the surplus state independent of the
1672 	 * overcommit value, we are allowing the surplus pool size to
1673 	 * exceed overcommit. There are few sane options here. Since
1674 	 * alloc_buddy_huge_page() is checking the global counter,
1675 	 * though, we'll note that we're not allowed to exceed surplus
1676 	 * and won't grow the pool anywhere else. Not until one of the
1677 	 * sysctls are changed, or the surplus pages go out of use.
1678 	 */
1679 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1680 	min_count = max(count, min_count);
1681 	try_to_free_low(h, min_count, nodes_allowed);
1682 	while (min_count < persistent_huge_pages(h)) {
1683 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1684 			break;
1685 		cond_resched_lock(&hugetlb_lock);
1686 	}
1687 	while (count < persistent_huge_pages(h)) {
1688 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1689 			break;
1690 	}
1691 out:
1692 	ret = persistent_huge_pages(h);
1693 	spin_unlock(&hugetlb_lock);
1694 	return ret;
1695 }
1696 
1697 #define HSTATE_ATTR_RO(_name) \
1698 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1699 
1700 #define HSTATE_ATTR(_name) \
1701 	static struct kobj_attribute _name##_attr = \
1702 		__ATTR(_name, 0644, _name##_show, _name##_store)
1703 
1704 static struct kobject *hugepages_kobj;
1705 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1706 
1707 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1708 
1709 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1714 		if (hstate_kobjs[i] == kobj) {
1715 			if (nidp)
1716 				*nidp = NUMA_NO_NODE;
1717 			return &hstates[i];
1718 		}
1719 
1720 	return kobj_to_node_hstate(kobj, nidp);
1721 }
1722 
1723 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1724 					struct kobj_attribute *attr, char *buf)
1725 {
1726 	struct hstate *h;
1727 	unsigned long nr_huge_pages;
1728 	int nid;
1729 
1730 	h = kobj_to_hstate(kobj, &nid);
1731 	if (nid == NUMA_NO_NODE)
1732 		nr_huge_pages = h->nr_huge_pages;
1733 	else
1734 		nr_huge_pages = h->nr_huge_pages_node[nid];
1735 
1736 	return sprintf(buf, "%lu\n", nr_huge_pages);
1737 }
1738 
1739 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1740 					   struct hstate *h, int nid,
1741 					   unsigned long count, size_t len)
1742 {
1743 	int err;
1744 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1745 
1746 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1747 		err = -EINVAL;
1748 		goto out;
1749 	}
1750 
1751 	if (nid == NUMA_NO_NODE) {
1752 		/*
1753 		 * global hstate attribute
1754 		 */
1755 		if (!(obey_mempolicy &&
1756 				init_nodemask_of_mempolicy(nodes_allowed))) {
1757 			NODEMASK_FREE(nodes_allowed);
1758 			nodes_allowed = &node_states[N_MEMORY];
1759 		}
1760 	} else if (nodes_allowed) {
1761 		/*
1762 		 * per node hstate attribute: adjust count to global,
1763 		 * but restrict alloc/free to the specified node.
1764 		 */
1765 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1766 		init_nodemask_of_node(nodes_allowed, nid);
1767 	} else
1768 		nodes_allowed = &node_states[N_MEMORY];
1769 
1770 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1771 
1772 	if (nodes_allowed != &node_states[N_MEMORY])
1773 		NODEMASK_FREE(nodes_allowed);
1774 
1775 	return len;
1776 out:
1777 	NODEMASK_FREE(nodes_allowed);
1778 	return err;
1779 }
1780 
1781 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1782 					 struct kobject *kobj, const char *buf,
1783 					 size_t len)
1784 {
1785 	struct hstate *h;
1786 	unsigned long count;
1787 	int nid;
1788 	int err;
1789 
1790 	err = kstrtoul(buf, 10, &count);
1791 	if (err)
1792 		return err;
1793 
1794 	h = kobj_to_hstate(kobj, &nid);
1795 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1796 }
1797 
1798 static ssize_t nr_hugepages_show(struct kobject *kobj,
1799 				       struct kobj_attribute *attr, char *buf)
1800 {
1801 	return nr_hugepages_show_common(kobj, attr, buf);
1802 }
1803 
1804 static ssize_t nr_hugepages_store(struct kobject *kobj,
1805 	       struct kobj_attribute *attr, const char *buf, size_t len)
1806 {
1807 	return nr_hugepages_store_common(false, kobj, buf, len);
1808 }
1809 HSTATE_ATTR(nr_hugepages);
1810 
1811 #ifdef CONFIG_NUMA
1812 
1813 /*
1814  * hstate attribute for optionally mempolicy-based constraint on persistent
1815  * huge page alloc/free.
1816  */
1817 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1818 				       struct kobj_attribute *attr, char *buf)
1819 {
1820 	return nr_hugepages_show_common(kobj, attr, buf);
1821 }
1822 
1823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1824 	       struct kobj_attribute *attr, const char *buf, size_t len)
1825 {
1826 	return nr_hugepages_store_common(true, kobj, buf, len);
1827 }
1828 HSTATE_ATTR(nr_hugepages_mempolicy);
1829 #endif
1830 
1831 
1832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1833 					struct kobj_attribute *attr, char *buf)
1834 {
1835 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1836 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1837 }
1838 
1839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1840 		struct kobj_attribute *attr, const char *buf, size_t count)
1841 {
1842 	int err;
1843 	unsigned long input;
1844 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1845 
1846 	if (hstate_is_gigantic(h))
1847 		return -EINVAL;
1848 
1849 	err = kstrtoul(buf, 10, &input);
1850 	if (err)
1851 		return err;
1852 
1853 	spin_lock(&hugetlb_lock);
1854 	h->nr_overcommit_huge_pages = input;
1855 	spin_unlock(&hugetlb_lock);
1856 
1857 	return count;
1858 }
1859 HSTATE_ATTR(nr_overcommit_hugepages);
1860 
1861 static ssize_t free_hugepages_show(struct kobject *kobj,
1862 					struct kobj_attribute *attr, char *buf)
1863 {
1864 	struct hstate *h;
1865 	unsigned long free_huge_pages;
1866 	int nid;
1867 
1868 	h = kobj_to_hstate(kobj, &nid);
1869 	if (nid == NUMA_NO_NODE)
1870 		free_huge_pages = h->free_huge_pages;
1871 	else
1872 		free_huge_pages = h->free_huge_pages_node[nid];
1873 
1874 	return sprintf(buf, "%lu\n", free_huge_pages);
1875 }
1876 HSTATE_ATTR_RO(free_hugepages);
1877 
1878 static ssize_t resv_hugepages_show(struct kobject *kobj,
1879 					struct kobj_attribute *attr, char *buf)
1880 {
1881 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1882 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1883 }
1884 HSTATE_ATTR_RO(resv_hugepages);
1885 
1886 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1887 					struct kobj_attribute *attr, char *buf)
1888 {
1889 	struct hstate *h;
1890 	unsigned long surplus_huge_pages;
1891 	int nid;
1892 
1893 	h = kobj_to_hstate(kobj, &nid);
1894 	if (nid == NUMA_NO_NODE)
1895 		surplus_huge_pages = h->surplus_huge_pages;
1896 	else
1897 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1898 
1899 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1900 }
1901 HSTATE_ATTR_RO(surplus_hugepages);
1902 
1903 static struct attribute *hstate_attrs[] = {
1904 	&nr_hugepages_attr.attr,
1905 	&nr_overcommit_hugepages_attr.attr,
1906 	&free_hugepages_attr.attr,
1907 	&resv_hugepages_attr.attr,
1908 	&surplus_hugepages_attr.attr,
1909 #ifdef CONFIG_NUMA
1910 	&nr_hugepages_mempolicy_attr.attr,
1911 #endif
1912 	NULL,
1913 };
1914 
1915 static struct attribute_group hstate_attr_group = {
1916 	.attrs = hstate_attrs,
1917 };
1918 
1919 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1920 				    struct kobject **hstate_kobjs,
1921 				    struct attribute_group *hstate_attr_group)
1922 {
1923 	int retval;
1924 	int hi = hstate_index(h);
1925 
1926 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1927 	if (!hstate_kobjs[hi])
1928 		return -ENOMEM;
1929 
1930 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1931 	if (retval)
1932 		kobject_put(hstate_kobjs[hi]);
1933 
1934 	return retval;
1935 }
1936 
1937 static void __init hugetlb_sysfs_init(void)
1938 {
1939 	struct hstate *h;
1940 	int err;
1941 
1942 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1943 	if (!hugepages_kobj)
1944 		return;
1945 
1946 	for_each_hstate(h) {
1947 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1948 					 hstate_kobjs, &hstate_attr_group);
1949 		if (err)
1950 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1951 	}
1952 }
1953 
1954 #ifdef CONFIG_NUMA
1955 
1956 /*
1957  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1958  * with node devices in node_devices[] using a parallel array.  The array
1959  * index of a node device or _hstate == node id.
1960  * This is here to avoid any static dependency of the node device driver, in
1961  * the base kernel, on the hugetlb module.
1962  */
1963 struct node_hstate {
1964 	struct kobject		*hugepages_kobj;
1965 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1966 };
1967 struct node_hstate node_hstates[MAX_NUMNODES];
1968 
1969 /*
1970  * A subset of global hstate attributes for node devices
1971  */
1972 static struct attribute *per_node_hstate_attrs[] = {
1973 	&nr_hugepages_attr.attr,
1974 	&free_hugepages_attr.attr,
1975 	&surplus_hugepages_attr.attr,
1976 	NULL,
1977 };
1978 
1979 static struct attribute_group per_node_hstate_attr_group = {
1980 	.attrs = per_node_hstate_attrs,
1981 };
1982 
1983 /*
1984  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1985  * Returns node id via non-NULL nidp.
1986  */
1987 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1988 {
1989 	int nid;
1990 
1991 	for (nid = 0; nid < nr_node_ids; nid++) {
1992 		struct node_hstate *nhs = &node_hstates[nid];
1993 		int i;
1994 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1995 			if (nhs->hstate_kobjs[i] == kobj) {
1996 				if (nidp)
1997 					*nidp = nid;
1998 				return &hstates[i];
1999 			}
2000 	}
2001 
2002 	BUG();
2003 	return NULL;
2004 }
2005 
2006 /*
2007  * Unregister hstate attributes from a single node device.
2008  * No-op if no hstate attributes attached.
2009  */
2010 static void hugetlb_unregister_node(struct node *node)
2011 {
2012 	struct hstate *h;
2013 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2014 
2015 	if (!nhs->hugepages_kobj)
2016 		return;		/* no hstate attributes */
2017 
2018 	for_each_hstate(h) {
2019 		int idx = hstate_index(h);
2020 		if (nhs->hstate_kobjs[idx]) {
2021 			kobject_put(nhs->hstate_kobjs[idx]);
2022 			nhs->hstate_kobjs[idx] = NULL;
2023 		}
2024 	}
2025 
2026 	kobject_put(nhs->hugepages_kobj);
2027 	nhs->hugepages_kobj = NULL;
2028 }
2029 
2030 /*
2031  * hugetlb module exit:  unregister hstate attributes from node devices
2032  * that have them.
2033  */
2034 static void hugetlb_unregister_all_nodes(void)
2035 {
2036 	int nid;
2037 
2038 	/*
2039 	 * disable node device registrations.
2040 	 */
2041 	register_hugetlbfs_with_node(NULL, NULL);
2042 
2043 	/*
2044 	 * remove hstate attributes from any nodes that have them.
2045 	 */
2046 	for (nid = 0; nid < nr_node_ids; nid++)
2047 		hugetlb_unregister_node(node_devices[nid]);
2048 }
2049 
2050 /*
2051  * Register hstate attributes for a single node device.
2052  * No-op if attributes already registered.
2053  */
2054 static void hugetlb_register_node(struct node *node)
2055 {
2056 	struct hstate *h;
2057 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2058 	int err;
2059 
2060 	if (nhs->hugepages_kobj)
2061 		return;		/* already allocated */
2062 
2063 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2064 							&node->dev.kobj);
2065 	if (!nhs->hugepages_kobj)
2066 		return;
2067 
2068 	for_each_hstate(h) {
2069 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2070 						nhs->hstate_kobjs,
2071 						&per_node_hstate_attr_group);
2072 		if (err) {
2073 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2074 				h->name, node->dev.id);
2075 			hugetlb_unregister_node(node);
2076 			break;
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  * hugetlb init time:  register hstate attributes for all registered node
2083  * devices of nodes that have memory.  All on-line nodes should have
2084  * registered their associated device by this time.
2085  */
2086 static void hugetlb_register_all_nodes(void)
2087 {
2088 	int nid;
2089 
2090 	for_each_node_state(nid, N_MEMORY) {
2091 		struct node *node = node_devices[nid];
2092 		if (node->dev.id == nid)
2093 			hugetlb_register_node(node);
2094 	}
2095 
2096 	/*
2097 	 * Let the node device driver know we're here so it can
2098 	 * [un]register hstate attributes on node hotplug.
2099 	 */
2100 	register_hugetlbfs_with_node(hugetlb_register_node,
2101 				     hugetlb_unregister_node);
2102 }
2103 #else	/* !CONFIG_NUMA */
2104 
2105 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2106 {
2107 	BUG();
2108 	if (nidp)
2109 		*nidp = -1;
2110 	return NULL;
2111 }
2112 
2113 static void hugetlb_unregister_all_nodes(void) { }
2114 
2115 static void hugetlb_register_all_nodes(void) { }
2116 
2117 #endif
2118 
2119 static void __exit hugetlb_exit(void)
2120 {
2121 	struct hstate *h;
2122 
2123 	hugetlb_unregister_all_nodes();
2124 
2125 	for_each_hstate(h) {
2126 		kobject_put(hstate_kobjs[hstate_index(h)]);
2127 	}
2128 
2129 	kobject_put(hugepages_kobj);
2130 	kfree(htlb_fault_mutex_table);
2131 }
2132 module_exit(hugetlb_exit);
2133 
2134 static int __init hugetlb_init(void)
2135 {
2136 	int i;
2137 
2138 	if (!hugepages_supported())
2139 		return 0;
2140 
2141 	if (!size_to_hstate(default_hstate_size)) {
2142 		default_hstate_size = HPAGE_SIZE;
2143 		if (!size_to_hstate(default_hstate_size))
2144 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2145 	}
2146 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2147 	if (default_hstate_max_huge_pages)
2148 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2149 
2150 	hugetlb_init_hstates();
2151 	gather_bootmem_prealloc();
2152 	report_hugepages();
2153 
2154 	hugetlb_sysfs_init();
2155 	hugetlb_register_all_nodes();
2156 	hugetlb_cgroup_file_init();
2157 
2158 #ifdef CONFIG_SMP
2159 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2160 #else
2161 	num_fault_mutexes = 1;
2162 #endif
2163 	htlb_fault_mutex_table =
2164 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2165 	BUG_ON(!htlb_fault_mutex_table);
2166 
2167 	for (i = 0; i < num_fault_mutexes; i++)
2168 		mutex_init(&htlb_fault_mutex_table[i]);
2169 	return 0;
2170 }
2171 module_init(hugetlb_init);
2172 
2173 /* Should be called on processing a hugepagesz=... option */
2174 void __init hugetlb_add_hstate(unsigned order)
2175 {
2176 	struct hstate *h;
2177 	unsigned long i;
2178 
2179 	if (size_to_hstate(PAGE_SIZE << order)) {
2180 		pr_warning("hugepagesz= specified twice, ignoring\n");
2181 		return;
2182 	}
2183 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2184 	BUG_ON(order == 0);
2185 	h = &hstates[hugetlb_max_hstate++];
2186 	h->order = order;
2187 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2188 	h->nr_huge_pages = 0;
2189 	h->free_huge_pages = 0;
2190 	for (i = 0; i < MAX_NUMNODES; ++i)
2191 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2192 	INIT_LIST_HEAD(&h->hugepage_activelist);
2193 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2194 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2195 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2196 					huge_page_size(h)/1024);
2197 
2198 	parsed_hstate = h;
2199 }
2200 
2201 static int __init hugetlb_nrpages_setup(char *s)
2202 {
2203 	unsigned long *mhp;
2204 	static unsigned long *last_mhp;
2205 
2206 	/*
2207 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2208 	 * so this hugepages= parameter goes to the "default hstate".
2209 	 */
2210 	if (!hugetlb_max_hstate)
2211 		mhp = &default_hstate_max_huge_pages;
2212 	else
2213 		mhp = &parsed_hstate->max_huge_pages;
2214 
2215 	if (mhp == last_mhp) {
2216 		pr_warning("hugepages= specified twice without "
2217 			   "interleaving hugepagesz=, ignoring\n");
2218 		return 1;
2219 	}
2220 
2221 	if (sscanf(s, "%lu", mhp) <= 0)
2222 		*mhp = 0;
2223 
2224 	/*
2225 	 * Global state is always initialized later in hugetlb_init.
2226 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2227 	 * use the bootmem allocator.
2228 	 */
2229 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2230 		hugetlb_hstate_alloc_pages(parsed_hstate);
2231 
2232 	last_mhp = mhp;
2233 
2234 	return 1;
2235 }
2236 __setup("hugepages=", hugetlb_nrpages_setup);
2237 
2238 static int __init hugetlb_default_setup(char *s)
2239 {
2240 	default_hstate_size = memparse(s, &s);
2241 	return 1;
2242 }
2243 __setup("default_hugepagesz=", hugetlb_default_setup);
2244 
2245 static unsigned int cpuset_mems_nr(unsigned int *array)
2246 {
2247 	int node;
2248 	unsigned int nr = 0;
2249 
2250 	for_each_node_mask(node, cpuset_current_mems_allowed)
2251 		nr += array[node];
2252 
2253 	return nr;
2254 }
2255 
2256 #ifdef CONFIG_SYSCTL
2257 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2258 			 struct ctl_table *table, int write,
2259 			 void __user *buffer, size_t *length, loff_t *ppos)
2260 {
2261 	struct hstate *h = &default_hstate;
2262 	unsigned long tmp = h->max_huge_pages;
2263 	int ret;
2264 
2265 	if (!hugepages_supported())
2266 		return -ENOTSUPP;
2267 
2268 	table->data = &tmp;
2269 	table->maxlen = sizeof(unsigned long);
2270 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2271 	if (ret)
2272 		goto out;
2273 
2274 	if (write)
2275 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2276 						  NUMA_NO_NODE, tmp, *length);
2277 out:
2278 	return ret;
2279 }
2280 
2281 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2282 			  void __user *buffer, size_t *length, loff_t *ppos)
2283 {
2284 
2285 	return hugetlb_sysctl_handler_common(false, table, write,
2286 							buffer, length, ppos);
2287 }
2288 
2289 #ifdef CONFIG_NUMA
2290 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2291 			  void __user *buffer, size_t *length, loff_t *ppos)
2292 {
2293 	return hugetlb_sysctl_handler_common(true, table, write,
2294 							buffer, length, ppos);
2295 }
2296 #endif /* CONFIG_NUMA */
2297 
2298 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2299 			void __user *buffer,
2300 			size_t *length, loff_t *ppos)
2301 {
2302 	struct hstate *h = &default_hstate;
2303 	unsigned long tmp;
2304 	int ret;
2305 
2306 	if (!hugepages_supported())
2307 		return -ENOTSUPP;
2308 
2309 	tmp = h->nr_overcommit_huge_pages;
2310 
2311 	if (write && hstate_is_gigantic(h))
2312 		return -EINVAL;
2313 
2314 	table->data = &tmp;
2315 	table->maxlen = sizeof(unsigned long);
2316 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2317 	if (ret)
2318 		goto out;
2319 
2320 	if (write) {
2321 		spin_lock(&hugetlb_lock);
2322 		h->nr_overcommit_huge_pages = tmp;
2323 		spin_unlock(&hugetlb_lock);
2324 	}
2325 out:
2326 	return ret;
2327 }
2328 
2329 #endif /* CONFIG_SYSCTL */
2330 
2331 void hugetlb_report_meminfo(struct seq_file *m)
2332 {
2333 	struct hstate *h = &default_hstate;
2334 	if (!hugepages_supported())
2335 		return;
2336 	seq_printf(m,
2337 			"HugePages_Total:   %5lu\n"
2338 			"HugePages_Free:    %5lu\n"
2339 			"HugePages_Rsvd:    %5lu\n"
2340 			"HugePages_Surp:    %5lu\n"
2341 			"Hugepagesize:   %8lu kB\n",
2342 			h->nr_huge_pages,
2343 			h->free_huge_pages,
2344 			h->resv_huge_pages,
2345 			h->surplus_huge_pages,
2346 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2347 }
2348 
2349 int hugetlb_report_node_meminfo(int nid, char *buf)
2350 {
2351 	struct hstate *h = &default_hstate;
2352 	if (!hugepages_supported())
2353 		return 0;
2354 	return sprintf(buf,
2355 		"Node %d HugePages_Total: %5u\n"
2356 		"Node %d HugePages_Free:  %5u\n"
2357 		"Node %d HugePages_Surp:  %5u\n",
2358 		nid, h->nr_huge_pages_node[nid],
2359 		nid, h->free_huge_pages_node[nid],
2360 		nid, h->surplus_huge_pages_node[nid]);
2361 }
2362 
2363 void hugetlb_show_meminfo(void)
2364 {
2365 	struct hstate *h;
2366 	int nid;
2367 
2368 	if (!hugepages_supported())
2369 		return;
2370 
2371 	for_each_node_state(nid, N_MEMORY)
2372 		for_each_hstate(h)
2373 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2374 				nid,
2375 				h->nr_huge_pages_node[nid],
2376 				h->free_huge_pages_node[nid],
2377 				h->surplus_huge_pages_node[nid],
2378 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2379 }
2380 
2381 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2382 unsigned long hugetlb_total_pages(void)
2383 {
2384 	struct hstate *h;
2385 	unsigned long nr_total_pages = 0;
2386 
2387 	for_each_hstate(h)
2388 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2389 	return nr_total_pages;
2390 }
2391 
2392 static int hugetlb_acct_memory(struct hstate *h, long delta)
2393 {
2394 	int ret = -ENOMEM;
2395 
2396 	spin_lock(&hugetlb_lock);
2397 	/*
2398 	 * When cpuset is configured, it breaks the strict hugetlb page
2399 	 * reservation as the accounting is done on a global variable. Such
2400 	 * reservation is completely rubbish in the presence of cpuset because
2401 	 * the reservation is not checked against page availability for the
2402 	 * current cpuset. Application can still potentially OOM'ed by kernel
2403 	 * with lack of free htlb page in cpuset that the task is in.
2404 	 * Attempt to enforce strict accounting with cpuset is almost
2405 	 * impossible (or too ugly) because cpuset is too fluid that
2406 	 * task or memory node can be dynamically moved between cpusets.
2407 	 *
2408 	 * The change of semantics for shared hugetlb mapping with cpuset is
2409 	 * undesirable. However, in order to preserve some of the semantics,
2410 	 * we fall back to check against current free page availability as
2411 	 * a best attempt and hopefully to minimize the impact of changing
2412 	 * semantics that cpuset has.
2413 	 */
2414 	if (delta > 0) {
2415 		if (gather_surplus_pages(h, delta) < 0)
2416 			goto out;
2417 
2418 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2419 			return_unused_surplus_pages(h, delta);
2420 			goto out;
2421 		}
2422 	}
2423 
2424 	ret = 0;
2425 	if (delta < 0)
2426 		return_unused_surplus_pages(h, (unsigned long) -delta);
2427 
2428 out:
2429 	spin_unlock(&hugetlb_lock);
2430 	return ret;
2431 }
2432 
2433 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2434 {
2435 	struct resv_map *resv = vma_resv_map(vma);
2436 
2437 	/*
2438 	 * This new VMA should share its siblings reservation map if present.
2439 	 * The VMA will only ever have a valid reservation map pointer where
2440 	 * it is being copied for another still existing VMA.  As that VMA
2441 	 * has a reference to the reservation map it cannot disappear until
2442 	 * after this open call completes.  It is therefore safe to take a
2443 	 * new reference here without additional locking.
2444 	 */
2445 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2446 		kref_get(&resv->refs);
2447 }
2448 
2449 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2450 {
2451 	struct hstate *h = hstate_vma(vma);
2452 	struct resv_map *resv = vma_resv_map(vma);
2453 	struct hugepage_subpool *spool = subpool_vma(vma);
2454 	unsigned long reserve, start, end;
2455 
2456 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2457 		return;
2458 
2459 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2460 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2461 
2462 	reserve = (end - start) - region_count(resv, start, end);
2463 
2464 	kref_put(&resv->refs, resv_map_release);
2465 
2466 	if (reserve) {
2467 		hugetlb_acct_memory(h, -reserve);
2468 		hugepage_subpool_put_pages(spool, reserve);
2469 	}
2470 }
2471 
2472 /*
2473  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2474  * handle_mm_fault() to try to instantiate regular-sized pages in the
2475  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2476  * this far.
2477  */
2478 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2479 {
2480 	BUG();
2481 	return 0;
2482 }
2483 
2484 const struct vm_operations_struct hugetlb_vm_ops = {
2485 	.fault = hugetlb_vm_op_fault,
2486 	.open = hugetlb_vm_op_open,
2487 	.close = hugetlb_vm_op_close,
2488 };
2489 
2490 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2491 				int writable)
2492 {
2493 	pte_t entry;
2494 
2495 	if (writable) {
2496 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2497 					 vma->vm_page_prot)));
2498 	} else {
2499 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2500 					   vma->vm_page_prot));
2501 	}
2502 	entry = pte_mkyoung(entry);
2503 	entry = pte_mkhuge(entry);
2504 	entry = arch_make_huge_pte(entry, vma, page, writable);
2505 
2506 	return entry;
2507 }
2508 
2509 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2510 				   unsigned long address, pte_t *ptep)
2511 {
2512 	pte_t entry;
2513 
2514 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2515 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2516 		update_mmu_cache(vma, address, ptep);
2517 }
2518 
2519 static int is_hugetlb_entry_migration(pte_t pte)
2520 {
2521 	swp_entry_t swp;
2522 
2523 	if (huge_pte_none(pte) || pte_present(pte))
2524 		return 0;
2525 	swp = pte_to_swp_entry(pte);
2526 	if (non_swap_entry(swp) && is_migration_entry(swp))
2527 		return 1;
2528 	else
2529 		return 0;
2530 }
2531 
2532 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2533 {
2534 	swp_entry_t swp;
2535 
2536 	if (huge_pte_none(pte) || pte_present(pte))
2537 		return 0;
2538 	swp = pte_to_swp_entry(pte);
2539 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2540 		return 1;
2541 	else
2542 		return 0;
2543 }
2544 
2545 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2546 			    struct vm_area_struct *vma)
2547 {
2548 	pte_t *src_pte, *dst_pte, entry;
2549 	struct page *ptepage;
2550 	unsigned long addr;
2551 	int cow;
2552 	struct hstate *h = hstate_vma(vma);
2553 	unsigned long sz = huge_page_size(h);
2554 	unsigned long mmun_start;	/* For mmu_notifiers */
2555 	unsigned long mmun_end;		/* For mmu_notifiers */
2556 	int ret = 0;
2557 
2558 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2559 
2560 	mmun_start = vma->vm_start;
2561 	mmun_end = vma->vm_end;
2562 	if (cow)
2563 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2564 
2565 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2566 		spinlock_t *src_ptl, *dst_ptl;
2567 		src_pte = huge_pte_offset(src, addr);
2568 		if (!src_pte)
2569 			continue;
2570 		dst_pte = huge_pte_alloc(dst, addr, sz);
2571 		if (!dst_pte) {
2572 			ret = -ENOMEM;
2573 			break;
2574 		}
2575 
2576 		/* If the pagetables are shared don't copy or take references */
2577 		if (dst_pte == src_pte)
2578 			continue;
2579 
2580 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2581 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2582 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2583 		entry = huge_ptep_get(src_pte);
2584 		if (huge_pte_none(entry)) { /* skip none entry */
2585 			;
2586 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2587 				    is_hugetlb_entry_hwpoisoned(entry))) {
2588 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2589 
2590 			if (is_write_migration_entry(swp_entry) && cow) {
2591 				/*
2592 				 * COW mappings require pages in both
2593 				 * parent and child to be set to read.
2594 				 */
2595 				make_migration_entry_read(&swp_entry);
2596 				entry = swp_entry_to_pte(swp_entry);
2597 				set_huge_pte_at(src, addr, src_pte, entry);
2598 			}
2599 			set_huge_pte_at(dst, addr, dst_pte, entry);
2600 		} else {
2601 			if (cow)
2602 				huge_ptep_set_wrprotect(src, addr, src_pte);
2603 			entry = huge_ptep_get(src_pte);
2604 			ptepage = pte_page(entry);
2605 			get_page(ptepage);
2606 			page_dup_rmap(ptepage);
2607 			set_huge_pte_at(dst, addr, dst_pte, entry);
2608 		}
2609 		spin_unlock(src_ptl);
2610 		spin_unlock(dst_ptl);
2611 	}
2612 
2613 	if (cow)
2614 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2615 
2616 	return ret;
2617 }
2618 
2619 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2620 			    unsigned long start, unsigned long end,
2621 			    struct page *ref_page)
2622 {
2623 	int force_flush = 0;
2624 	struct mm_struct *mm = vma->vm_mm;
2625 	unsigned long address;
2626 	pte_t *ptep;
2627 	pte_t pte;
2628 	spinlock_t *ptl;
2629 	struct page *page;
2630 	struct hstate *h = hstate_vma(vma);
2631 	unsigned long sz = huge_page_size(h);
2632 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2633 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2634 
2635 	WARN_ON(!is_vm_hugetlb_page(vma));
2636 	BUG_ON(start & ~huge_page_mask(h));
2637 	BUG_ON(end & ~huge_page_mask(h));
2638 
2639 	tlb_start_vma(tlb, vma);
2640 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2641 again:
2642 	for (address = start; address < end; address += sz) {
2643 		ptep = huge_pte_offset(mm, address);
2644 		if (!ptep)
2645 			continue;
2646 
2647 		ptl = huge_pte_lock(h, mm, ptep);
2648 		if (huge_pmd_unshare(mm, &address, ptep))
2649 			goto unlock;
2650 
2651 		pte = huge_ptep_get(ptep);
2652 		if (huge_pte_none(pte))
2653 			goto unlock;
2654 
2655 		/*
2656 		 * HWPoisoned hugepage is already unmapped and dropped reference
2657 		 */
2658 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2659 			huge_pte_clear(mm, address, ptep);
2660 			goto unlock;
2661 		}
2662 
2663 		page = pte_page(pte);
2664 		/*
2665 		 * If a reference page is supplied, it is because a specific
2666 		 * page is being unmapped, not a range. Ensure the page we
2667 		 * are about to unmap is the actual page of interest.
2668 		 */
2669 		if (ref_page) {
2670 			if (page != ref_page)
2671 				goto unlock;
2672 
2673 			/*
2674 			 * Mark the VMA as having unmapped its page so that
2675 			 * future faults in this VMA will fail rather than
2676 			 * looking like data was lost
2677 			 */
2678 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2679 		}
2680 
2681 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2682 		tlb_remove_tlb_entry(tlb, ptep, address);
2683 		if (huge_pte_dirty(pte))
2684 			set_page_dirty(page);
2685 
2686 		page_remove_rmap(page);
2687 		force_flush = !__tlb_remove_page(tlb, page);
2688 		if (force_flush) {
2689 			spin_unlock(ptl);
2690 			break;
2691 		}
2692 		/* Bail out after unmapping reference page if supplied */
2693 		if (ref_page) {
2694 			spin_unlock(ptl);
2695 			break;
2696 		}
2697 unlock:
2698 		spin_unlock(ptl);
2699 	}
2700 	/*
2701 	 * mmu_gather ran out of room to batch pages, we break out of
2702 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2703 	 * and page-free while holding it.
2704 	 */
2705 	if (force_flush) {
2706 		force_flush = 0;
2707 		tlb_flush_mmu(tlb);
2708 		if (address < end && !ref_page)
2709 			goto again;
2710 	}
2711 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2712 	tlb_end_vma(tlb, vma);
2713 }
2714 
2715 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2716 			  struct vm_area_struct *vma, unsigned long start,
2717 			  unsigned long end, struct page *ref_page)
2718 {
2719 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2720 
2721 	/*
2722 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2723 	 * test will fail on a vma being torn down, and not grab a page table
2724 	 * on its way out.  We're lucky that the flag has such an appropriate
2725 	 * name, and can in fact be safely cleared here. We could clear it
2726 	 * before the __unmap_hugepage_range above, but all that's necessary
2727 	 * is to clear it before releasing the i_mmap_mutex. This works
2728 	 * because in the context this is called, the VMA is about to be
2729 	 * destroyed and the i_mmap_mutex is held.
2730 	 */
2731 	vma->vm_flags &= ~VM_MAYSHARE;
2732 }
2733 
2734 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2735 			  unsigned long end, struct page *ref_page)
2736 {
2737 	struct mm_struct *mm;
2738 	struct mmu_gather tlb;
2739 
2740 	mm = vma->vm_mm;
2741 
2742 	tlb_gather_mmu(&tlb, mm, start, end);
2743 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2744 	tlb_finish_mmu(&tlb, start, end);
2745 }
2746 
2747 /*
2748  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2749  * mappping it owns the reserve page for. The intention is to unmap the page
2750  * from other VMAs and let the children be SIGKILLed if they are faulting the
2751  * same region.
2752  */
2753 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2754 			      struct page *page, unsigned long address)
2755 {
2756 	struct hstate *h = hstate_vma(vma);
2757 	struct vm_area_struct *iter_vma;
2758 	struct address_space *mapping;
2759 	pgoff_t pgoff;
2760 
2761 	/*
2762 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2763 	 * from page cache lookup which is in HPAGE_SIZE units.
2764 	 */
2765 	address = address & huge_page_mask(h);
2766 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2767 			vma->vm_pgoff;
2768 	mapping = file_inode(vma->vm_file)->i_mapping;
2769 
2770 	/*
2771 	 * Take the mapping lock for the duration of the table walk. As
2772 	 * this mapping should be shared between all the VMAs,
2773 	 * __unmap_hugepage_range() is called as the lock is already held
2774 	 */
2775 	mutex_lock(&mapping->i_mmap_mutex);
2776 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2777 		/* Do not unmap the current VMA */
2778 		if (iter_vma == vma)
2779 			continue;
2780 
2781 		/*
2782 		 * Unmap the page from other VMAs without their own reserves.
2783 		 * They get marked to be SIGKILLed if they fault in these
2784 		 * areas. This is because a future no-page fault on this VMA
2785 		 * could insert a zeroed page instead of the data existing
2786 		 * from the time of fork. This would look like data corruption
2787 		 */
2788 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2789 			unmap_hugepage_range(iter_vma, address,
2790 					     address + huge_page_size(h), page);
2791 	}
2792 	mutex_unlock(&mapping->i_mmap_mutex);
2793 }
2794 
2795 /*
2796  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2797  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2798  * cannot race with other handlers or page migration.
2799  * Keep the pte_same checks anyway to make transition from the mutex easier.
2800  */
2801 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2802 			unsigned long address, pte_t *ptep, pte_t pte,
2803 			struct page *pagecache_page, spinlock_t *ptl)
2804 {
2805 	struct hstate *h = hstate_vma(vma);
2806 	struct page *old_page, *new_page;
2807 	int ret = 0, outside_reserve = 0;
2808 	unsigned long mmun_start;	/* For mmu_notifiers */
2809 	unsigned long mmun_end;		/* For mmu_notifiers */
2810 
2811 	old_page = pte_page(pte);
2812 
2813 retry_avoidcopy:
2814 	/* If no-one else is actually using this page, avoid the copy
2815 	 * and just make the page writable */
2816 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2817 		page_move_anon_rmap(old_page, vma, address);
2818 		set_huge_ptep_writable(vma, address, ptep);
2819 		return 0;
2820 	}
2821 
2822 	/*
2823 	 * If the process that created a MAP_PRIVATE mapping is about to
2824 	 * perform a COW due to a shared page count, attempt to satisfy
2825 	 * the allocation without using the existing reserves. The pagecache
2826 	 * page is used to determine if the reserve at this address was
2827 	 * consumed or not. If reserves were used, a partial faulted mapping
2828 	 * at the time of fork() could consume its reserves on COW instead
2829 	 * of the full address range.
2830 	 */
2831 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2832 			old_page != pagecache_page)
2833 		outside_reserve = 1;
2834 
2835 	page_cache_get(old_page);
2836 
2837 	/*
2838 	 * Drop page table lock as buddy allocator may be called. It will
2839 	 * be acquired again before returning to the caller, as expected.
2840 	 */
2841 	spin_unlock(ptl);
2842 	new_page = alloc_huge_page(vma, address, outside_reserve);
2843 
2844 	if (IS_ERR(new_page)) {
2845 		/*
2846 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2847 		 * it is due to references held by a child and an insufficient
2848 		 * huge page pool. To guarantee the original mappers
2849 		 * reliability, unmap the page from child processes. The child
2850 		 * may get SIGKILLed if it later faults.
2851 		 */
2852 		if (outside_reserve) {
2853 			page_cache_release(old_page);
2854 			BUG_ON(huge_pte_none(pte));
2855 			unmap_ref_private(mm, vma, old_page, address);
2856 			BUG_ON(huge_pte_none(pte));
2857 			spin_lock(ptl);
2858 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2859 			if (likely(ptep &&
2860 				   pte_same(huge_ptep_get(ptep), pte)))
2861 				goto retry_avoidcopy;
2862 			/*
2863 			 * race occurs while re-acquiring page table
2864 			 * lock, and our job is done.
2865 			 */
2866 			return 0;
2867 		}
2868 
2869 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2870 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2871 		goto out_release_old;
2872 	}
2873 
2874 	/*
2875 	 * When the original hugepage is shared one, it does not have
2876 	 * anon_vma prepared.
2877 	 */
2878 	if (unlikely(anon_vma_prepare(vma))) {
2879 		ret = VM_FAULT_OOM;
2880 		goto out_release_all;
2881 	}
2882 
2883 	copy_user_huge_page(new_page, old_page, address, vma,
2884 			    pages_per_huge_page(h));
2885 	__SetPageUptodate(new_page);
2886 
2887 	mmun_start = address & huge_page_mask(h);
2888 	mmun_end = mmun_start + huge_page_size(h);
2889 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2890 
2891 	/*
2892 	 * Retake the page table lock to check for racing updates
2893 	 * before the page tables are altered
2894 	 */
2895 	spin_lock(ptl);
2896 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2897 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2898 		ClearPagePrivate(new_page);
2899 
2900 		/* Break COW */
2901 		huge_ptep_clear_flush(vma, address, ptep);
2902 		set_huge_pte_at(mm, address, ptep,
2903 				make_huge_pte(vma, new_page, 1));
2904 		page_remove_rmap(old_page);
2905 		hugepage_add_new_anon_rmap(new_page, vma, address);
2906 		/* Make the old page be freed below */
2907 		new_page = old_page;
2908 	}
2909 	spin_unlock(ptl);
2910 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2911 out_release_all:
2912 	page_cache_release(new_page);
2913 out_release_old:
2914 	page_cache_release(old_page);
2915 
2916 	spin_lock(ptl); /* Caller expects lock to be held */
2917 	return ret;
2918 }
2919 
2920 /* Return the pagecache page at a given address within a VMA */
2921 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2922 			struct vm_area_struct *vma, unsigned long address)
2923 {
2924 	struct address_space *mapping;
2925 	pgoff_t idx;
2926 
2927 	mapping = vma->vm_file->f_mapping;
2928 	idx = vma_hugecache_offset(h, vma, address);
2929 
2930 	return find_lock_page(mapping, idx);
2931 }
2932 
2933 /*
2934  * Return whether there is a pagecache page to back given address within VMA.
2935  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2936  */
2937 static bool hugetlbfs_pagecache_present(struct hstate *h,
2938 			struct vm_area_struct *vma, unsigned long address)
2939 {
2940 	struct address_space *mapping;
2941 	pgoff_t idx;
2942 	struct page *page;
2943 
2944 	mapping = vma->vm_file->f_mapping;
2945 	idx = vma_hugecache_offset(h, vma, address);
2946 
2947 	page = find_get_page(mapping, idx);
2948 	if (page)
2949 		put_page(page);
2950 	return page != NULL;
2951 }
2952 
2953 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2954 			   struct address_space *mapping, pgoff_t idx,
2955 			   unsigned long address, pte_t *ptep, unsigned int flags)
2956 {
2957 	struct hstate *h = hstate_vma(vma);
2958 	int ret = VM_FAULT_SIGBUS;
2959 	int anon_rmap = 0;
2960 	unsigned long size;
2961 	struct page *page;
2962 	pte_t new_pte;
2963 	spinlock_t *ptl;
2964 
2965 	/*
2966 	 * Currently, we are forced to kill the process in the event the
2967 	 * original mapper has unmapped pages from the child due to a failed
2968 	 * COW. Warn that such a situation has occurred as it may not be obvious
2969 	 */
2970 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2971 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2972 			   current->pid);
2973 		return ret;
2974 	}
2975 
2976 	/*
2977 	 * Use page lock to guard against racing truncation
2978 	 * before we get page_table_lock.
2979 	 */
2980 retry:
2981 	page = find_lock_page(mapping, idx);
2982 	if (!page) {
2983 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2984 		if (idx >= size)
2985 			goto out;
2986 		page = alloc_huge_page(vma, address, 0);
2987 		if (IS_ERR(page)) {
2988 			ret = PTR_ERR(page);
2989 			if (ret == -ENOMEM)
2990 				ret = VM_FAULT_OOM;
2991 			else
2992 				ret = VM_FAULT_SIGBUS;
2993 			goto out;
2994 		}
2995 		clear_huge_page(page, address, pages_per_huge_page(h));
2996 		__SetPageUptodate(page);
2997 
2998 		if (vma->vm_flags & VM_MAYSHARE) {
2999 			int err;
3000 			struct inode *inode = mapping->host;
3001 
3002 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3003 			if (err) {
3004 				put_page(page);
3005 				if (err == -EEXIST)
3006 					goto retry;
3007 				goto out;
3008 			}
3009 			ClearPagePrivate(page);
3010 
3011 			spin_lock(&inode->i_lock);
3012 			inode->i_blocks += blocks_per_huge_page(h);
3013 			spin_unlock(&inode->i_lock);
3014 		} else {
3015 			lock_page(page);
3016 			if (unlikely(anon_vma_prepare(vma))) {
3017 				ret = VM_FAULT_OOM;
3018 				goto backout_unlocked;
3019 			}
3020 			anon_rmap = 1;
3021 		}
3022 	} else {
3023 		/*
3024 		 * If memory error occurs between mmap() and fault, some process
3025 		 * don't have hwpoisoned swap entry for errored virtual address.
3026 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3027 		 */
3028 		if (unlikely(PageHWPoison(page))) {
3029 			ret = VM_FAULT_HWPOISON |
3030 				VM_FAULT_SET_HINDEX(hstate_index(h));
3031 			goto backout_unlocked;
3032 		}
3033 	}
3034 
3035 	/*
3036 	 * If we are going to COW a private mapping later, we examine the
3037 	 * pending reservations for this page now. This will ensure that
3038 	 * any allocations necessary to record that reservation occur outside
3039 	 * the spinlock.
3040 	 */
3041 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3042 		if (vma_needs_reservation(h, vma, address) < 0) {
3043 			ret = VM_FAULT_OOM;
3044 			goto backout_unlocked;
3045 		}
3046 
3047 	ptl = huge_pte_lockptr(h, mm, ptep);
3048 	spin_lock(ptl);
3049 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3050 	if (idx >= size)
3051 		goto backout;
3052 
3053 	ret = 0;
3054 	if (!huge_pte_none(huge_ptep_get(ptep)))
3055 		goto backout;
3056 
3057 	if (anon_rmap) {
3058 		ClearPagePrivate(page);
3059 		hugepage_add_new_anon_rmap(page, vma, address);
3060 	} else
3061 		page_dup_rmap(page);
3062 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3063 				&& (vma->vm_flags & VM_SHARED)));
3064 	set_huge_pte_at(mm, address, ptep, new_pte);
3065 
3066 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3067 		/* Optimization, do the COW without a second fault */
3068 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3069 	}
3070 
3071 	spin_unlock(ptl);
3072 	unlock_page(page);
3073 out:
3074 	return ret;
3075 
3076 backout:
3077 	spin_unlock(ptl);
3078 backout_unlocked:
3079 	unlock_page(page);
3080 	put_page(page);
3081 	goto out;
3082 }
3083 
3084 #ifdef CONFIG_SMP
3085 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3086 			    struct vm_area_struct *vma,
3087 			    struct address_space *mapping,
3088 			    pgoff_t idx, unsigned long address)
3089 {
3090 	unsigned long key[2];
3091 	u32 hash;
3092 
3093 	if (vma->vm_flags & VM_SHARED) {
3094 		key[0] = (unsigned long) mapping;
3095 		key[1] = idx;
3096 	} else {
3097 		key[0] = (unsigned long) mm;
3098 		key[1] = address >> huge_page_shift(h);
3099 	}
3100 
3101 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3102 
3103 	return hash & (num_fault_mutexes - 1);
3104 }
3105 #else
3106 /*
3107  * For uniprocesor systems we always use a single mutex, so just
3108  * return 0 and avoid the hashing overhead.
3109  */
3110 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3111 			    struct vm_area_struct *vma,
3112 			    struct address_space *mapping,
3113 			    pgoff_t idx, unsigned long address)
3114 {
3115 	return 0;
3116 }
3117 #endif
3118 
3119 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3120 			unsigned long address, unsigned int flags)
3121 {
3122 	pte_t *ptep, entry;
3123 	spinlock_t *ptl;
3124 	int ret;
3125 	u32 hash;
3126 	pgoff_t idx;
3127 	struct page *page = NULL;
3128 	struct page *pagecache_page = NULL;
3129 	struct hstate *h = hstate_vma(vma);
3130 	struct address_space *mapping;
3131 
3132 	address &= huge_page_mask(h);
3133 
3134 	ptep = huge_pte_offset(mm, address);
3135 	if (ptep) {
3136 		entry = huge_ptep_get(ptep);
3137 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3138 			migration_entry_wait_huge(vma, mm, ptep);
3139 			return 0;
3140 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3141 			return VM_FAULT_HWPOISON_LARGE |
3142 				VM_FAULT_SET_HINDEX(hstate_index(h));
3143 	}
3144 
3145 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3146 	if (!ptep)
3147 		return VM_FAULT_OOM;
3148 
3149 	mapping = vma->vm_file->f_mapping;
3150 	idx = vma_hugecache_offset(h, vma, address);
3151 
3152 	/*
3153 	 * Serialize hugepage allocation and instantiation, so that we don't
3154 	 * get spurious allocation failures if two CPUs race to instantiate
3155 	 * the same page in the page cache.
3156 	 */
3157 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3158 	mutex_lock(&htlb_fault_mutex_table[hash]);
3159 
3160 	entry = huge_ptep_get(ptep);
3161 	if (huge_pte_none(entry)) {
3162 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3163 		goto out_mutex;
3164 	}
3165 
3166 	ret = 0;
3167 
3168 	/*
3169 	 * If we are going to COW the mapping later, we examine the pending
3170 	 * reservations for this page now. This will ensure that any
3171 	 * allocations necessary to record that reservation occur outside the
3172 	 * spinlock. For private mappings, we also lookup the pagecache
3173 	 * page now as it is used to determine if a reservation has been
3174 	 * consumed.
3175 	 */
3176 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3177 		if (vma_needs_reservation(h, vma, address) < 0) {
3178 			ret = VM_FAULT_OOM;
3179 			goto out_mutex;
3180 		}
3181 
3182 		if (!(vma->vm_flags & VM_MAYSHARE))
3183 			pagecache_page = hugetlbfs_pagecache_page(h,
3184 								vma, address);
3185 	}
3186 
3187 	/*
3188 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3189 	 * pagecache_page, so here we need take the former one
3190 	 * when page != pagecache_page or !pagecache_page.
3191 	 * Note that locking order is always pagecache_page -> page,
3192 	 * so no worry about deadlock.
3193 	 */
3194 	page = pte_page(entry);
3195 	get_page(page);
3196 	if (page != pagecache_page)
3197 		lock_page(page);
3198 
3199 	ptl = huge_pte_lockptr(h, mm, ptep);
3200 	spin_lock(ptl);
3201 	/* Check for a racing update before calling hugetlb_cow */
3202 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3203 		goto out_ptl;
3204 
3205 
3206 	if (flags & FAULT_FLAG_WRITE) {
3207 		if (!huge_pte_write(entry)) {
3208 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3209 					pagecache_page, ptl);
3210 			goto out_ptl;
3211 		}
3212 		entry = huge_pte_mkdirty(entry);
3213 	}
3214 	entry = pte_mkyoung(entry);
3215 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3216 						flags & FAULT_FLAG_WRITE))
3217 		update_mmu_cache(vma, address, ptep);
3218 
3219 out_ptl:
3220 	spin_unlock(ptl);
3221 
3222 	if (pagecache_page) {
3223 		unlock_page(pagecache_page);
3224 		put_page(pagecache_page);
3225 	}
3226 	if (page != pagecache_page)
3227 		unlock_page(page);
3228 	put_page(page);
3229 
3230 out_mutex:
3231 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3232 	return ret;
3233 }
3234 
3235 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3236 			 struct page **pages, struct vm_area_struct **vmas,
3237 			 unsigned long *position, unsigned long *nr_pages,
3238 			 long i, unsigned int flags)
3239 {
3240 	unsigned long pfn_offset;
3241 	unsigned long vaddr = *position;
3242 	unsigned long remainder = *nr_pages;
3243 	struct hstate *h = hstate_vma(vma);
3244 
3245 	while (vaddr < vma->vm_end && remainder) {
3246 		pte_t *pte;
3247 		spinlock_t *ptl = NULL;
3248 		int absent;
3249 		struct page *page;
3250 
3251 		/*
3252 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3253 		 * each hugepage.  We have to make sure we get the
3254 		 * first, for the page indexing below to work.
3255 		 *
3256 		 * Note that page table lock is not held when pte is null.
3257 		 */
3258 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3259 		if (pte)
3260 			ptl = huge_pte_lock(h, mm, pte);
3261 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3262 
3263 		/*
3264 		 * When coredumping, it suits get_dump_page if we just return
3265 		 * an error where there's an empty slot with no huge pagecache
3266 		 * to back it.  This way, we avoid allocating a hugepage, and
3267 		 * the sparse dumpfile avoids allocating disk blocks, but its
3268 		 * huge holes still show up with zeroes where they need to be.
3269 		 */
3270 		if (absent && (flags & FOLL_DUMP) &&
3271 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3272 			if (pte)
3273 				spin_unlock(ptl);
3274 			remainder = 0;
3275 			break;
3276 		}
3277 
3278 		/*
3279 		 * We need call hugetlb_fault for both hugepages under migration
3280 		 * (in which case hugetlb_fault waits for the migration,) and
3281 		 * hwpoisoned hugepages (in which case we need to prevent the
3282 		 * caller from accessing to them.) In order to do this, we use
3283 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3284 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3285 		 * both cases, and because we can't follow correct pages
3286 		 * directly from any kind of swap entries.
3287 		 */
3288 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3289 		    ((flags & FOLL_WRITE) &&
3290 		      !huge_pte_write(huge_ptep_get(pte)))) {
3291 			int ret;
3292 
3293 			if (pte)
3294 				spin_unlock(ptl);
3295 			ret = hugetlb_fault(mm, vma, vaddr,
3296 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3297 			if (!(ret & VM_FAULT_ERROR))
3298 				continue;
3299 
3300 			remainder = 0;
3301 			break;
3302 		}
3303 
3304 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3305 		page = pte_page(huge_ptep_get(pte));
3306 same_page:
3307 		if (pages) {
3308 			pages[i] = mem_map_offset(page, pfn_offset);
3309 			get_page_foll(pages[i]);
3310 		}
3311 
3312 		if (vmas)
3313 			vmas[i] = vma;
3314 
3315 		vaddr += PAGE_SIZE;
3316 		++pfn_offset;
3317 		--remainder;
3318 		++i;
3319 		if (vaddr < vma->vm_end && remainder &&
3320 				pfn_offset < pages_per_huge_page(h)) {
3321 			/*
3322 			 * We use pfn_offset to avoid touching the pageframes
3323 			 * of this compound page.
3324 			 */
3325 			goto same_page;
3326 		}
3327 		spin_unlock(ptl);
3328 	}
3329 	*nr_pages = remainder;
3330 	*position = vaddr;
3331 
3332 	return i ? i : -EFAULT;
3333 }
3334 
3335 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3336 		unsigned long address, unsigned long end, pgprot_t newprot)
3337 {
3338 	struct mm_struct *mm = vma->vm_mm;
3339 	unsigned long start = address;
3340 	pte_t *ptep;
3341 	pte_t pte;
3342 	struct hstate *h = hstate_vma(vma);
3343 	unsigned long pages = 0;
3344 
3345 	BUG_ON(address >= end);
3346 	flush_cache_range(vma, address, end);
3347 
3348 	mmu_notifier_invalidate_range_start(mm, start, end);
3349 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3350 	for (; address < end; address += huge_page_size(h)) {
3351 		spinlock_t *ptl;
3352 		ptep = huge_pte_offset(mm, address);
3353 		if (!ptep)
3354 			continue;
3355 		ptl = huge_pte_lock(h, mm, ptep);
3356 		if (huge_pmd_unshare(mm, &address, ptep)) {
3357 			pages++;
3358 			spin_unlock(ptl);
3359 			continue;
3360 		}
3361 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3362 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3363 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3364 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3365 			set_huge_pte_at(mm, address, ptep, pte);
3366 			pages++;
3367 		}
3368 		spin_unlock(ptl);
3369 	}
3370 	/*
3371 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3372 	 * may have cleared our pud entry and done put_page on the page table:
3373 	 * once we release i_mmap_mutex, another task can do the final put_page
3374 	 * and that page table be reused and filled with junk.
3375 	 */
3376 	flush_tlb_range(vma, start, end);
3377 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3378 	mmu_notifier_invalidate_range_end(mm, start, end);
3379 
3380 	return pages << h->order;
3381 }
3382 
3383 int hugetlb_reserve_pages(struct inode *inode,
3384 					long from, long to,
3385 					struct vm_area_struct *vma,
3386 					vm_flags_t vm_flags)
3387 {
3388 	long ret, chg;
3389 	struct hstate *h = hstate_inode(inode);
3390 	struct hugepage_subpool *spool = subpool_inode(inode);
3391 	struct resv_map *resv_map;
3392 
3393 	/*
3394 	 * Only apply hugepage reservation if asked. At fault time, an
3395 	 * attempt will be made for VM_NORESERVE to allocate a page
3396 	 * without using reserves
3397 	 */
3398 	if (vm_flags & VM_NORESERVE)
3399 		return 0;
3400 
3401 	/*
3402 	 * Shared mappings base their reservation on the number of pages that
3403 	 * are already allocated on behalf of the file. Private mappings need
3404 	 * to reserve the full area even if read-only as mprotect() may be
3405 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3406 	 */
3407 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3408 		resv_map = inode_resv_map(inode);
3409 
3410 		chg = region_chg(resv_map, from, to);
3411 
3412 	} else {
3413 		resv_map = resv_map_alloc();
3414 		if (!resv_map)
3415 			return -ENOMEM;
3416 
3417 		chg = to - from;
3418 
3419 		set_vma_resv_map(vma, resv_map);
3420 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3421 	}
3422 
3423 	if (chg < 0) {
3424 		ret = chg;
3425 		goto out_err;
3426 	}
3427 
3428 	/* There must be enough pages in the subpool for the mapping */
3429 	if (hugepage_subpool_get_pages(spool, chg)) {
3430 		ret = -ENOSPC;
3431 		goto out_err;
3432 	}
3433 
3434 	/*
3435 	 * Check enough hugepages are available for the reservation.
3436 	 * Hand the pages back to the subpool if there are not
3437 	 */
3438 	ret = hugetlb_acct_memory(h, chg);
3439 	if (ret < 0) {
3440 		hugepage_subpool_put_pages(spool, chg);
3441 		goto out_err;
3442 	}
3443 
3444 	/*
3445 	 * Account for the reservations made. Shared mappings record regions
3446 	 * that have reservations as they are shared by multiple VMAs.
3447 	 * When the last VMA disappears, the region map says how much
3448 	 * the reservation was and the page cache tells how much of
3449 	 * the reservation was consumed. Private mappings are per-VMA and
3450 	 * only the consumed reservations are tracked. When the VMA
3451 	 * disappears, the original reservation is the VMA size and the
3452 	 * consumed reservations are stored in the map. Hence, nothing
3453 	 * else has to be done for private mappings here
3454 	 */
3455 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3456 		region_add(resv_map, from, to);
3457 	return 0;
3458 out_err:
3459 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3460 		kref_put(&resv_map->refs, resv_map_release);
3461 	return ret;
3462 }
3463 
3464 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3465 {
3466 	struct hstate *h = hstate_inode(inode);
3467 	struct resv_map *resv_map = inode_resv_map(inode);
3468 	long chg = 0;
3469 	struct hugepage_subpool *spool = subpool_inode(inode);
3470 
3471 	if (resv_map)
3472 		chg = region_truncate(resv_map, offset);
3473 	spin_lock(&inode->i_lock);
3474 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3475 	spin_unlock(&inode->i_lock);
3476 
3477 	hugepage_subpool_put_pages(spool, (chg - freed));
3478 	hugetlb_acct_memory(h, -(chg - freed));
3479 }
3480 
3481 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3482 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3483 				struct vm_area_struct *vma,
3484 				unsigned long addr, pgoff_t idx)
3485 {
3486 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3487 				svma->vm_start;
3488 	unsigned long sbase = saddr & PUD_MASK;
3489 	unsigned long s_end = sbase + PUD_SIZE;
3490 
3491 	/* Allow segments to share if only one is marked locked */
3492 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3493 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3494 
3495 	/*
3496 	 * match the virtual addresses, permission and the alignment of the
3497 	 * page table page.
3498 	 */
3499 	if (pmd_index(addr) != pmd_index(saddr) ||
3500 	    vm_flags != svm_flags ||
3501 	    sbase < svma->vm_start || svma->vm_end < s_end)
3502 		return 0;
3503 
3504 	return saddr;
3505 }
3506 
3507 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3508 {
3509 	unsigned long base = addr & PUD_MASK;
3510 	unsigned long end = base + PUD_SIZE;
3511 
3512 	/*
3513 	 * check on proper vm_flags and page table alignment
3514 	 */
3515 	if (vma->vm_flags & VM_MAYSHARE &&
3516 	    vma->vm_start <= base && end <= vma->vm_end)
3517 		return 1;
3518 	return 0;
3519 }
3520 
3521 /*
3522  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3523  * and returns the corresponding pte. While this is not necessary for the
3524  * !shared pmd case because we can allocate the pmd later as well, it makes the
3525  * code much cleaner. pmd allocation is essential for the shared case because
3526  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3527  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3528  * bad pmd for sharing.
3529  */
3530 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3531 {
3532 	struct vm_area_struct *vma = find_vma(mm, addr);
3533 	struct address_space *mapping = vma->vm_file->f_mapping;
3534 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3535 			vma->vm_pgoff;
3536 	struct vm_area_struct *svma;
3537 	unsigned long saddr;
3538 	pte_t *spte = NULL;
3539 	pte_t *pte;
3540 	spinlock_t *ptl;
3541 
3542 	if (!vma_shareable(vma, addr))
3543 		return (pte_t *)pmd_alloc(mm, pud, addr);
3544 
3545 	mutex_lock(&mapping->i_mmap_mutex);
3546 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3547 		if (svma == vma)
3548 			continue;
3549 
3550 		saddr = page_table_shareable(svma, vma, addr, idx);
3551 		if (saddr) {
3552 			spte = huge_pte_offset(svma->vm_mm, saddr);
3553 			if (spte) {
3554 				get_page(virt_to_page(spte));
3555 				break;
3556 			}
3557 		}
3558 	}
3559 
3560 	if (!spte)
3561 		goto out;
3562 
3563 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3564 	spin_lock(ptl);
3565 	if (pud_none(*pud))
3566 		pud_populate(mm, pud,
3567 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3568 	else
3569 		put_page(virt_to_page(spte));
3570 	spin_unlock(ptl);
3571 out:
3572 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3573 	mutex_unlock(&mapping->i_mmap_mutex);
3574 	return pte;
3575 }
3576 
3577 /*
3578  * unmap huge page backed by shared pte.
3579  *
3580  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3581  * indicated by page_count > 1, unmap is achieved by clearing pud and
3582  * decrementing the ref count. If count == 1, the pte page is not shared.
3583  *
3584  * called with page table lock held.
3585  *
3586  * returns: 1 successfully unmapped a shared pte page
3587  *	    0 the underlying pte page is not shared, or it is the last user
3588  */
3589 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3590 {
3591 	pgd_t *pgd = pgd_offset(mm, *addr);
3592 	pud_t *pud = pud_offset(pgd, *addr);
3593 
3594 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3595 	if (page_count(virt_to_page(ptep)) == 1)
3596 		return 0;
3597 
3598 	pud_clear(pud);
3599 	put_page(virt_to_page(ptep));
3600 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3601 	return 1;
3602 }
3603 #define want_pmd_share()	(1)
3604 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3605 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3606 {
3607 	return NULL;
3608 }
3609 #define want_pmd_share()	(0)
3610 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3611 
3612 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3613 pte_t *huge_pte_alloc(struct mm_struct *mm,
3614 			unsigned long addr, unsigned long sz)
3615 {
3616 	pgd_t *pgd;
3617 	pud_t *pud;
3618 	pte_t *pte = NULL;
3619 
3620 	pgd = pgd_offset(mm, addr);
3621 	pud = pud_alloc(mm, pgd, addr);
3622 	if (pud) {
3623 		if (sz == PUD_SIZE) {
3624 			pte = (pte_t *)pud;
3625 		} else {
3626 			BUG_ON(sz != PMD_SIZE);
3627 			if (want_pmd_share() && pud_none(*pud))
3628 				pte = huge_pmd_share(mm, addr, pud);
3629 			else
3630 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3631 		}
3632 	}
3633 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3634 
3635 	return pte;
3636 }
3637 
3638 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3639 {
3640 	pgd_t *pgd;
3641 	pud_t *pud;
3642 	pmd_t *pmd = NULL;
3643 
3644 	pgd = pgd_offset(mm, addr);
3645 	if (pgd_present(*pgd)) {
3646 		pud = pud_offset(pgd, addr);
3647 		if (pud_present(*pud)) {
3648 			if (pud_huge(*pud))
3649 				return (pte_t *)pud;
3650 			pmd = pmd_offset(pud, addr);
3651 		}
3652 	}
3653 	return (pte_t *) pmd;
3654 }
3655 
3656 struct page *
3657 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3658 		pmd_t *pmd, int write)
3659 {
3660 	struct page *page;
3661 
3662 	page = pte_page(*(pte_t *)pmd);
3663 	if (page)
3664 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3665 	return page;
3666 }
3667 
3668 struct page *
3669 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3670 		pud_t *pud, int write)
3671 {
3672 	struct page *page;
3673 
3674 	page = pte_page(*(pte_t *)pud);
3675 	if (page)
3676 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3677 	return page;
3678 }
3679 
3680 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3681 
3682 /* Can be overriden by architectures */
3683 struct page * __weak
3684 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3685 	       pud_t *pud, int write)
3686 {
3687 	BUG();
3688 	return NULL;
3689 }
3690 
3691 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3692 
3693 #ifdef CONFIG_MEMORY_FAILURE
3694 
3695 /* Should be called in hugetlb_lock */
3696 static int is_hugepage_on_freelist(struct page *hpage)
3697 {
3698 	struct page *page;
3699 	struct page *tmp;
3700 	struct hstate *h = page_hstate(hpage);
3701 	int nid = page_to_nid(hpage);
3702 
3703 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3704 		if (page == hpage)
3705 			return 1;
3706 	return 0;
3707 }
3708 
3709 /*
3710  * This function is called from memory failure code.
3711  * Assume the caller holds page lock of the head page.
3712  */
3713 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3714 {
3715 	struct hstate *h = page_hstate(hpage);
3716 	int nid = page_to_nid(hpage);
3717 	int ret = -EBUSY;
3718 
3719 	spin_lock(&hugetlb_lock);
3720 	if (is_hugepage_on_freelist(hpage)) {
3721 		/*
3722 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3723 		 * but dangling hpage->lru can trigger list-debug warnings
3724 		 * (this happens when we call unpoison_memory() on it),
3725 		 * so let it point to itself with list_del_init().
3726 		 */
3727 		list_del_init(&hpage->lru);
3728 		set_page_refcounted(hpage);
3729 		h->free_huge_pages--;
3730 		h->free_huge_pages_node[nid]--;
3731 		ret = 0;
3732 	}
3733 	spin_unlock(&hugetlb_lock);
3734 	return ret;
3735 }
3736 #endif
3737 
3738 bool isolate_huge_page(struct page *page, struct list_head *list)
3739 {
3740 	VM_BUG_ON_PAGE(!PageHead(page), page);
3741 	if (!get_page_unless_zero(page))
3742 		return false;
3743 	spin_lock(&hugetlb_lock);
3744 	list_move_tail(&page->lru, list);
3745 	spin_unlock(&hugetlb_lock);
3746 	return true;
3747 }
3748 
3749 void putback_active_hugepage(struct page *page)
3750 {
3751 	VM_BUG_ON_PAGE(!PageHead(page), page);
3752 	spin_lock(&hugetlb_lock);
3753 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3754 	spin_unlock(&hugetlb_lock);
3755 	put_page(page);
3756 }
3757 
3758 bool is_hugepage_active(struct page *page)
3759 {
3760 	VM_BUG_ON_PAGE(!PageHuge(page), page);
3761 	/*
3762 	 * This function can be called for a tail page because the caller,
3763 	 * scan_movable_pages, scans through a given pfn-range which typically
3764 	 * covers one memory block. In systems using gigantic hugepage (1GB
3765 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3766 	 * support migrating such large hugepages for now, so return false
3767 	 * when called for tail pages.
3768 	 */
3769 	if (PageTail(page))
3770 		return false;
3771 	/*
3772 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3773 	 * so we should return false for them.
3774 	 */
3775 	if (unlikely(PageHWPoison(page)))
3776 		return false;
3777 	return page_count(page) > 0;
3778 }
3779