xref: /openbmc/linux/mm/hugetlb.c (revision 483eb062)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35 
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(file_inode(vma->vm_file));
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		long seg_from;
277 		long seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 	if (!(vma->vm_flags & VM_MAYSHARE))
443 		vma->vm_private_data = (void *)0;
444 }
445 
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 	if (vma->vm_flags & VM_NORESERVE) {
450 		/*
451 		 * This address is already reserved by other process(chg == 0),
452 		 * so, we should decrement reserved count. Without decrementing,
453 		 * reserve count remains after releasing inode, because this
454 		 * allocated page will go into page cache and is regarded as
455 		 * coming from reserved pool in releasing step.  Currently, we
456 		 * don't have any other solution to deal with this situation
457 		 * properly, so add work-around here.
458 		 */
459 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 			return 1;
461 		else
462 			return 0;
463 	}
464 
465 	/* Shared mappings always use reserves */
466 	if (vma->vm_flags & VM_MAYSHARE)
467 		return 1;
468 
469 	/*
470 	 * Only the process that called mmap() has reserves for
471 	 * private mappings.
472 	 */
473 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 		return 1;
475 
476 	return 0;
477 }
478 
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481 	int nid = page_to_nid(page);
482 	list_move(&page->lru, &h->hugepage_freelists[nid]);
483 	h->free_huge_pages++;
484 	h->free_huge_pages_node[nid]++;
485 }
486 
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489 	struct page *page;
490 
491 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 		if (!is_migrate_isolate_page(page))
493 			break;
494 	/*
495 	 * if 'non-isolated free hugepage' not found on the list,
496 	 * the allocation fails.
497 	 */
498 	if (&h->hugepage_freelists[nid] == &page->lru)
499 		return NULL;
500 	list_move(&page->lru, &h->hugepage_activelist);
501 	set_page_refcounted(page);
502 	h->free_huge_pages--;
503 	h->free_huge_pages_node[nid]--;
504 	return page;
505 }
506 
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510 	if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 		return GFP_HIGHUSER_MOVABLE;
512 	else
513 		return GFP_HIGHUSER;
514 }
515 
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 				struct vm_area_struct *vma,
518 				unsigned long address, int avoid_reserve,
519 				long chg)
520 {
521 	struct page *page = NULL;
522 	struct mempolicy *mpol;
523 	nodemask_t *nodemask;
524 	struct zonelist *zonelist;
525 	struct zone *zone;
526 	struct zoneref *z;
527 	unsigned int cpuset_mems_cookie;
528 
529 	/*
530 	 * A child process with MAP_PRIVATE mappings created by their parent
531 	 * have no page reserves. This check ensures that reservations are
532 	 * not "stolen". The child may still get SIGKILLed
533 	 */
534 	if (!vma_has_reserves(vma, chg) &&
535 			h->free_huge_pages - h->resv_huge_pages == 0)
536 		goto err;
537 
538 	/* If reserves cannot be used, ensure enough pages are in the pool */
539 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540 		goto err;
541 
542 retry_cpuset:
543 	cpuset_mems_cookie = get_mems_allowed();
544 	zonelist = huge_zonelist(vma, address,
545 					htlb_alloc_mask(h), &mpol, &nodemask);
546 
547 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 						MAX_NR_ZONES - 1, nodemask) {
549 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 			if (page) {
552 				if (avoid_reserve)
553 					break;
554 				if (!vma_has_reserves(vma, chg))
555 					break;
556 
557 				SetPagePrivate(page);
558 				h->resv_huge_pages--;
559 				break;
560 			}
561 		}
562 	}
563 
564 	mpol_cond_put(mpol);
565 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566 		goto retry_cpuset;
567 	return page;
568 
569 err:
570 	return NULL;
571 }
572 
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575 	int i;
576 
577 	VM_BUG_ON(h->order >= MAX_ORDER);
578 
579 	h->nr_huge_pages--;
580 	h->nr_huge_pages_node[page_to_nid(page)]--;
581 	for (i = 0; i < pages_per_huge_page(h); i++) {
582 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 				1 << PG_referenced | 1 << PG_dirty |
584 				1 << PG_active | 1 << PG_reserved |
585 				1 << PG_private | 1 << PG_writeback);
586 	}
587 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
588 	set_compound_page_dtor(page, NULL);
589 	set_page_refcounted(page);
590 	arch_release_hugepage(page);
591 	__free_pages(page, huge_page_order(h));
592 }
593 
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596 	struct hstate *h;
597 
598 	for_each_hstate(h) {
599 		if (huge_page_size(h) == size)
600 			return h;
601 	}
602 	return NULL;
603 }
604 
605 static void free_huge_page(struct page *page)
606 {
607 	/*
608 	 * Can't pass hstate in here because it is called from the
609 	 * compound page destructor.
610 	 */
611 	struct hstate *h = page_hstate(page);
612 	int nid = page_to_nid(page);
613 	struct hugepage_subpool *spool =
614 		(struct hugepage_subpool *)page_private(page);
615 	bool restore_reserve;
616 
617 	set_page_private(page, 0);
618 	page->mapping = NULL;
619 	BUG_ON(page_count(page));
620 	BUG_ON(page_mapcount(page));
621 	restore_reserve = PagePrivate(page);
622 	ClearPagePrivate(page);
623 
624 	spin_lock(&hugetlb_lock);
625 	hugetlb_cgroup_uncharge_page(hstate_index(h),
626 				     pages_per_huge_page(h), page);
627 	if (restore_reserve)
628 		h->resv_huge_pages++;
629 
630 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 		/* remove the page from active list */
632 		list_del(&page->lru);
633 		update_and_free_page(h, page);
634 		h->surplus_huge_pages--;
635 		h->surplus_huge_pages_node[nid]--;
636 	} else {
637 		arch_clear_hugepage_flags(page);
638 		enqueue_huge_page(h, page);
639 	}
640 	spin_unlock(&hugetlb_lock);
641 	hugepage_subpool_put_pages(spool, 1);
642 }
643 
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646 	INIT_LIST_HEAD(&page->lru);
647 	set_compound_page_dtor(page, free_huge_page);
648 	spin_lock(&hugetlb_lock);
649 	set_hugetlb_cgroup(page, NULL);
650 	h->nr_huge_pages++;
651 	h->nr_huge_pages_node[nid]++;
652 	spin_unlock(&hugetlb_lock);
653 	put_page(page); /* free it into the hugepage allocator */
654 }
655 
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658 	int i;
659 	int nr_pages = 1 << order;
660 	struct page *p = page + 1;
661 
662 	/* we rely on prep_new_huge_page to set the destructor */
663 	set_compound_order(page, order);
664 	__SetPageHead(page);
665 	__ClearPageReserved(page);
666 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 		__SetPageTail(p);
668 		/*
669 		 * For gigantic hugepages allocated through bootmem at
670 		 * boot, it's safer to be consistent with the not-gigantic
671 		 * hugepages and clear the PG_reserved bit from all tail pages
672 		 * too.  Otherwse drivers using get_user_pages() to access tail
673 		 * pages may get the reference counting wrong if they see
674 		 * PG_reserved set on a tail page (despite the head page not
675 		 * having PG_reserved set).  Enforcing this consistency between
676 		 * head and tail pages allows drivers to optimize away a check
677 		 * on the head page when they need know if put_page() is needed
678 		 * after get_user_pages().
679 		 */
680 		__ClearPageReserved(p);
681 		set_page_count(p, 0);
682 		p->first_page = page;
683 	}
684 }
685 
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693 	if (!PageCompound(page))
694 		return 0;
695 
696 	page = compound_head(page);
697 	return get_compound_page_dtor(page) == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHuge);
700 
701 /*
702  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703  * normal or transparent huge pages.
704  */
705 int PageHeadHuge(struct page *page_head)
706 {
707 	if (!PageHead(page_head))
708 		return 0;
709 
710 	return get_compound_page_dtor(page_head) == free_huge_page;
711 }
712 
713 pgoff_t __basepage_index(struct page *page)
714 {
715 	struct page *page_head = compound_head(page);
716 	pgoff_t index = page_index(page_head);
717 	unsigned long compound_idx;
718 
719 	if (!PageHuge(page_head))
720 		return page_index(page);
721 
722 	if (compound_order(page_head) >= MAX_ORDER)
723 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724 	else
725 		compound_idx = page - page_head;
726 
727 	return (index << compound_order(page_head)) + compound_idx;
728 }
729 
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
731 {
732 	struct page *page;
733 
734 	if (h->order >= MAX_ORDER)
735 		return NULL;
736 
737 	page = alloc_pages_exact_node(nid,
738 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739 						__GFP_REPEAT|__GFP_NOWARN,
740 		huge_page_order(h));
741 	if (page) {
742 		if (arch_prepare_hugepage(page)) {
743 			__free_pages(page, huge_page_order(h));
744 			return NULL;
745 		}
746 		prep_new_huge_page(h, page, nid);
747 	}
748 
749 	return page;
750 }
751 
752 /*
753  * common helper functions for hstate_next_node_to_{alloc|free}.
754  * We may have allocated or freed a huge page based on a different
755  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756  * be outside of *nodes_allowed.  Ensure that we use an allowed
757  * node for alloc or free.
758  */
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760 {
761 	nid = next_node(nid, *nodes_allowed);
762 	if (nid == MAX_NUMNODES)
763 		nid = first_node(*nodes_allowed);
764 	VM_BUG_ON(nid >= MAX_NUMNODES);
765 
766 	return nid;
767 }
768 
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770 {
771 	if (!node_isset(nid, *nodes_allowed))
772 		nid = next_node_allowed(nid, nodes_allowed);
773 	return nid;
774 }
775 
776 /*
777  * returns the previously saved node ["this node"] from which to
778  * allocate a persistent huge page for the pool and advance the
779  * next node from which to allocate, handling wrap at end of node
780  * mask.
781  */
782 static int hstate_next_node_to_alloc(struct hstate *h,
783 					nodemask_t *nodes_allowed)
784 {
785 	int nid;
786 
787 	VM_BUG_ON(!nodes_allowed);
788 
789 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791 
792 	return nid;
793 }
794 
795 /*
796  * helper for free_pool_huge_page() - return the previously saved
797  * node ["this node"] from which to free a huge page.  Advance the
798  * next node id whether or not we find a free huge page to free so
799  * that the next attempt to free addresses the next node.
800  */
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802 {
803 	int nid;
804 
805 	VM_BUG_ON(!nodes_allowed);
806 
807 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809 
810 	return nid;
811 }
812 
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
814 	for (nr_nodes = nodes_weight(*mask);				\
815 		nr_nodes > 0 &&						\
816 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
817 		nr_nodes--)
818 
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
820 	for (nr_nodes = nodes_weight(*mask);				\
821 		nr_nodes > 0 &&						\
822 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
823 		nr_nodes--)
824 
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826 {
827 	struct page *page;
828 	int nr_nodes, node;
829 	int ret = 0;
830 
831 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832 		page = alloc_fresh_huge_page_node(h, node);
833 		if (page) {
834 			ret = 1;
835 			break;
836 		}
837 	}
838 
839 	if (ret)
840 		count_vm_event(HTLB_BUDDY_PGALLOC);
841 	else
842 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843 
844 	return ret;
845 }
846 
847 /*
848  * Free huge page from pool from next node to free.
849  * Attempt to keep persistent huge pages more or less
850  * balanced over allowed nodes.
851  * Called with hugetlb_lock locked.
852  */
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854 							 bool acct_surplus)
855 {
856 	int nr_nodes, node;
857 	int ret = 0;
858 
859 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860 		/*
861 		 * If we're returning unused surplus pages, only examine
862 		 * nodes with surplus pages.
863 		 */
864 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865 		    !list_empty(&h->hugepage_freelists[node])) {
866 			struct page *page =
867 				list_entry(h->hugepage_freelists[node].next,
868 					  struct page, lru);
869 			list_del(&page->lru);
870 			h->free_huge_pages--;
871 			h->free_huge_pages_node[node]--;
872 			if (acct_surplus) {
873 				h->surplus_huge_pages--;
874 				h->surplus_huge_pages_node[node]--;
875 			}
876 			update_and_free_page(h, page);
877 			ret = 1;
878 			break;
879 		}
880 	}
881 
882 	return ret;
883 }
884 
885 /*
886  * Dissolve a given free hugepage into free buddy pages. This function does
887  * nothing for in-use (including surplus) hugepages.
888  */
889 static void dissolve_free_huge_page(struct page *page)
890 {
891 	spin_lock(&hugetlb_lock);
892 	if (PageHuge(page) && !page_count(page)) {
893 		struct hstate *h = page_hstate(page);
894 		int nid = page_to_nid(page);
895 		list_del(&page->lru);
896 		h->free_huge_pages--;
897 		h->free_huge_pages_node[nid]--;
898 		update_and_free_page(h, page);
899 	}
900 	spin_unlock(&hugetlb_lock);
901 }
902 
903 /*
904  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905  * make specified memory blocks removable from the system.
906  * Note that start_pfn should aligned with (minimum) hugepage size.
907  */
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909 {
910 	unsigned int order = 8 * sizeof(void *);
911 	unsigned long pfn;
912 	struct hstate *h;
913 
914 	/* Set scan step to minimum hugepage size */
915 	for_each_hstate(h)
916 		if (order > huge_page_order(h))
917 			order = huge_page_order(h);
918 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920 		dissolve_free_huge_page(pfn_to_page(pfn));
921 }
922 
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924 {
925 	struct page *page;
926 	unsigned int r_nid;
927 
928 	if (h->order >= MAX_ORDER)
929 		return NULL;
930 
931 	/*
932 	 * Assume we will successfully allocate the surplus page to
933 	 * prevent racing processes from causing the surplus to exceed
934 	 * overcommit
935 	 *
936 	 * This however introduces a different race, where a process B
937 	 * tries to grow the static hugepage pool while alloc_pages() is
938 	 * called by process A. B will only examine the per-node
939 	 * counters in determining if surplus huge pages can be
940 	 * converted to normal huge pages in adjust_pool_surplus(). A
941 	 * won't be able to increment the per-node counter, until the
942 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943 	 * no more huge pages can be converted from surplus to normal
944 	 * state (and doesn't try to convert again). Thus, we have a
945 	 * case where a surplus huge page exists, the pool is grown, and
946 	 * the surplus huge page still exists after, even though it
947 	 * should just have been converted to a normal huge page. This
948 	 * does not leak memory, though, as the hugepage will be freed
949 	 * once it is out of use. It also does not allow the counters to
950 	 * go out of whack in adjust_pool_surplus() as we don't modify
951 	 * the node values until we've gotten the hugepage and only the
952 	 * per-node value is checked there.
953 	 */
954 	spin_lock(&hugetlb_lock);
955 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956 		spin_unlock(&hugetlb_lock);
957 		return NULL;
958 	} else {
959 		h->nr_huge_pages++;
960 		h->surplus_huge_pages++;
961 	}
962 	spin_unlock(&hugetlb_lock);
963 
964 	if (nid == NUMA_NO_NODE)
965 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966 				   __GFP_REPEAT|__GFP_NOWARN,
967 				   huge_page_order(h));
968 	else
969 		page = alloc_pages_exact_node(nid,
970 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972 
973 	if (page && arch_prepare_hugepage(page)) {
974 		__free_pages(page, huge_page_order(h));
975 		page = NULL;
976 	}
977 
978 	spin_lock(&hugetlb_lock);
979 	if (page) {
980 		INIT_LIST_HEAD(&page->lru);
981 		r_nid = page_to_nid(page);
982 		set_compound_page_dtor(page, free_huge_page);
983 		set_hugetlb_cgroup(page, NULL);
984 		/*
985 		 * We incremented the global counters already
986 		 */
987 		h->nr_huge_pages_node[r_nid]++;
988 		h->surplus_huge_pages_node[r_nid]++;
989 		__count_vm_event(HTLB_BUDDY_PGALLOC);
990 	} else {
991 		h->nr_huge_pages--;
992 		h->surplus_huge_pages--;
993 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994 	}
995 	spin_unlock(&hugetlb_lock);
996 
997 	return page;
998 }
999 
1000 /*
1001  * This allocation function is useful in the context where vma is irrelevant.
1002  * E.g. soft-offlining uses this function because it only cares physical
1003  * address of error page.
1004  */
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006 {
1007 	struct page *page = NULL;
1008 
1009 	spin_lock(&hugetlb_lock);
1010 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1011 		page = dequeue_huge_page_node(h, nid);
1012 	spin_unlock(&hugetlb_lock);
1013 
1014 	if (!page)
1015 		page = alloc_buddy_huge_page(h, nid);
1016 
1017 	return page;
1018 }
1019 
1020 /*
1021  * Increase the hugetlb pool such that it can accommodate a reservation
1022  * of size 'delta'.
1023  */
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1025 {
1026 	struct list_head surplus_list;
1027 	struct page *page, *tmp;
1028 	int ret, i;
1029 	int needed, allocated;
1030 	bool alloc_ok = true;
1031 
1032 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033 	if (needed <= 0) {
1034 		h->resv_huge_pages += delta;
1035 		return 0;
1036 	}
1037 
1038 	allocated = 0;
1039 	INIT_LIST_HEAD(&surplus_list);
1040 
1041 	ret = -ENOMEM;
1042 retry:
1043 	spin_unlock(&hugetlb_lock);
1044 	for (i = 0; i < needed; i++) {
1045 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046 		if (!page) {
1047 			alloc_ok = false;
1048 			break;
1049 		}
1050 		list_add(&page->lru, &surplus_list);
1051 	}
1052 	allocated += i;
1053 
1054 	/*
1055 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056 	 * because either resv_huge_pages or free_huge_pages may have changed.
1057 	 */
1058 	spin_lock(&hugetlb_lock);
1059 	needed = (h->resv_huge_pages + delta) -
1060 			(h->free_huge_pages + allocated);
1061 	if (needed > 0) {
1062 		if (alloc_ok)
1063 			goto retry;
1064 		/*
1065 		 * We were not able to allocate enough pages to
1066 		 * satisfy the entire reservation so we free what
1067 		 * we've allocated so far.
1068 		 */
1069 		goto free;
1070 	}
1071 	/*
1072 	 * The surplus_list now contains _at_least_ the number of extra pages
1073 	 * needed to accommodate the reservation.  Add the appropriate number
1074 	 * of pages to the hugetlb pool and free the extras back to the buddy
1075 	 * allocator.  Commit the entire reservation here to prevent another
1076 	 * process from stealing the pages as they are added to the pool but
1077 	 * before they are reserved.
1078 	 */
1079 	needed += allocated;
1080 	h->resv_huge_pages += delta;
1081 	ret = 0;
1082 
1083 	/* Free the needed pages to the hugetlb pool */
1084 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085 		if ((--needed) < 0)
1086 			break;
1087 		/*
1088 		 * This page is now managed by the hugetlb allocator and has
1089 		 * no users -- drop the buddy allocator's reference.
1090 		 */
1091 		put_page_testzero(page);
1092 		VM_BUG_ON_PAGE(page_count(page), page);
1093 		enqueue_huge_page(h, page);
1094 	}
1095 free:
1096 	spin_unlock(&hugetlb_lock);
1097 
1098 	/* Free unnecessary surplus pages to the buddy allocator */
1099 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100 		put_page(page);
1101 	spin_lock(&hugetlb_lock);
1102 
1103 	return ret;
1104 }
1105 
1106 /*
1107  * When releasing a hugetlb pool reservation, any surplus pages that were
1108  * allocated to satisfy the reservation must be explicitly freed if they were
1109  * never used.
1110  * Called with hugetlb_lock held.
1111  */
1112 static void return_unused_surplus_pages(struct hstate *h,
1113 					unsigned long unused_resv_pages)
1114 {
1115 	unsigned long nr_pages;
1116 
1117 	/* Uncommit the reservation */
1118 	h->resv_huge_pages -= unused_resv_pages;
1119 
1120 	/* Cannot return gigantic pages currently */
1121 	if (h->order >= MAX_ORDER)
1122 		return;
1123 
1124 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125 
1126 	/*
1127 	 * We want to release as many surplus pages as possible, spread
1128 	 * evenly across all nodes with memory. Iterate across these nodes
1129 	 * until we can no longer free unreserved surplus pages. This occurs
1130 	 * when the nodes with surplus pages have no free pages.
1131 	 * free_pool_huge_page() will balance the the freed pages across the
1132 	 * on-line nodes with memory and will handle the hstate accounting.
1133 	 */
1134 	while (nr_pages--) {
1135 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136 			break;
1137 	}
1138 }
1139 
1140 /*
1141  * Determine if the huge page at addr within the vma has an associated
1142  * reservation.  Where it does not we will need to logically increase
1143  * reservation and actually increase subpool usage before an allocation
1144  * can occur.  Where any new reservation would be required the
1145  * reservation change is prepared, but not committed.  Once the page
1146  * has been allocated from the subpool and instantiated the change should
1147  * be committed via vma_commit_reservation.  No action is required on
1148  * failure.
1149  */
1150 static long vma_needs_reservation(struct hstate *h,
1151 			struct vm_area_struct *vma, unsigned long addr)
1152 {
1153 	struct address_space *mapping = vma->vm_file->f_mapping;
1154 	struct inode *inode = mapping->host;
1155 
1156 	if (vma->vm_flags & VM_MAYSHARE) {
1157 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158 		return region_chg(&inode->i_mapping->private_list,
1159 							idx, idx + 1);
1160 
1161 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162 		return 1;
1163 
1164 	} else  {
1165 		long err;
1166 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167 		struct resv_map *resv = vma_resv_map(vma);
1168 
1169 		err = region_chg(&resv->regions, idx, idx + 1);
1170 		if (err < 0)
1171 			return err;
1172 		return 0;
1173 	}
1174 }
1175 static void vma_commit_reservation(struct hstate *h,
1176 			struct vm_area_struct *vma, unsigned long addr)
1177 {
1178 	struct address_space *mapping = vma->vm_file->f_mapping;
1179 	struct inode *inode = mapping->host;
1180 
1181 	if (vma->vm_flags & VM_MAYSHARE) {
1182 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1184 
1185 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187 		struct resv_map *resv = vma_resv_map(vma);
1188 
1189 		/* Mark this page used in the map. */
1190 		region_add(&resv->regions, idx, idx + 1);
1191 	}
1192 }
1193 
1194 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195 				    unsigned long addr, int avoid_reserve)
1196 {
1197 	struct hugepage_subpool *spool = subpool_vma(vma);
1198 	struct hstate *h = hstate_vma(vma);
1199 	struct page *page;
1200 	long chg;
1201 	int ret, idx;
1202 	struct hugetlb_cgroup *h_cg;
1203 
1204 	idx = hstate_index(h);
1205 	/*
1206 	 * Processes that did not create the mapping will have no
1207 	 * reserves and will not have accounted against subpool
1208 	 * limit. Check that the subpool limit can be made before
1209 	 * satisfying the allocation MAP_NORESERVE mappings may also
1210 	 * need pages and subpool limit allocated allocated if no reserve
1211 	 * mapping overlaps.
1212 	 */
1213 	chg = vma_needs_reservation(h, vma, addr);
1214 	if (chg < 0)
1215 		return ERR_PTR(-ENOMEM);
1216 	if (chg || avoid_reserve)
1217 		if (hugepage_subpool_get_pages(spool, 1))
1218 			return ERR_PTR(-ENOSPC);
1219 
1220 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1221 	if (ret) {
1222 		if (chg || avoid_reserve)
1223 			hugepage_subpool_put_pages(spool, 1);
1224 		return ERR_PTR(-ENOSPC);
1225 	}
1226 	spin_lock(&hugetlb_lock);
1227 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1228 	if (!page) {
1229 		spin_unlock(&hugetlb_lock);
1230 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1231 		if (!page) {
1232 			hugetlb_cgroup_uncharge_cgroup(idx,
1233 						       pages_per_huge_page(h),
1234 						       h_cg);
1235 			if (chg || avoid_reserve)
1236 				hugepage_subpool_put_pages(spool, 1);
1237 			return ERR_PTR(-ENOSPC);
1238 		}
1239 		spin_lock(&hugetlb_lock);
1240 		list_move(&page->lru, &h->hugepage_activelist);
1241 		/* Fall through */
1242 	}
1243 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1244 	spin_unlock(&hugetlb_lock);
1245 
1246 	set_page_private(page, (unsigned long)spool);
1247 
1248 	vma_commit_reservation(h, vma, addr);
1249 	return page;
1250 }
1251 
1252 /*
1253  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255  * where no ERR_VALUE is expected to be returned.
1256  */
1257 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1258 				unsigned long addr, int avoid_reserve)
1259 {
1260 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1261 	if (IS_ERR(page))
1262 		page = NULL;
1263 	return page;
1264 }
1265 
1266 int __weak alloc_bootmem_huge_page(struct hstate *h)
1267 {
1268 	struct huge_bootmem_page *m;
1269 	int nr_nodes, node;
1270 
1271 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1272 		void *addr;
1273 
1274 		addr = memblock_virt_alloc_try_nid_nopanic(
1275 				huge_page_size(h), huge_page_size(h),
1276 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1277 		if (addr) {
1278 			/*
1279 			 * Use the beginning of the huge page to store the
1280 			 * huge_bootmem_page struct (until gather_bootmem
1281 			 * puts them into the mem_map).
1282 			 */
1283 			m = addr;
1284 			goto found;
1285 		}
1286 	}
1287 	return 0;
1288 
1289 found:
1290 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1291 	/* Put them into a private list first because mem_map is not up yet */
1292 	list_add(&m->list, &huge_boot_pages);
1293 	m->hstate = h;
1294 	return 1;
1295 }
1296 
1297 static void prep_compound_huge_page(struct page *page, int order)
1298 {
1299 	if (unlikely(order > (MAX_ORDER - 1)))
1300 		prep_compound_gigantic_page(page, order);
1301 	else
1302 		prep_compound_page(page, order);
1303 }
1304 
1305 /* Put bootmem huge pages into the standard lists after mem_map is up */
1306 static void __init gather_bootmem_prealloc(void)
1307 {
1308 	struct huge_bootmem_page *m;
1309 
1310 	list_for_each_entry(m, &huge_boot_pages, list) {
1311 		struct hstate *h = m->hstate;
1312 		struct page *page;
1313 
1314 #ifdef CONFIG_HIGHMEM
1315 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316 		memblock_free_late(__pa(m),
1317 				   sizeof(struct huge_bootmem_page));
1318 #else
1319 		page = virt_to_page(m);
1320 #endif
1321 		WARN_ON(page_count(page) != 1);
1322 		prep_compound_huge_page(page, h->order);
1323 		WARN_ON(PageReserved(page));
1324 		prep_new_huge_page(h, page, page_to_nid(page));
1325 		/*
1326 		 * If we had gigantic hugepages allocated at boot time, we need
1327 		 * to restore the 'stolen' pages to totalram_pages in order to
1328 		 * fix confusing memory reports from free(1) and another
1329 		 * side-effects, like CommitLimit going negative.
1330 		 */
1331 		if (h->order > (MAX_ORDER - 1))
1332 			adjust_managed_page_count(page, 1 << h->order);
1333 	}
1334 }
1335 
1336 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1337 {
1338 	unsigned long i;
1339 
1340 	for (i = 0; i < h->max_huge_pages; ++i) {
1341 		if (h->order >= MAX_ORDER) {
1342 			if (!alloc_bootmem_huge_page(h))
1343 				break;
1344 		} else if (!alloc_fresh_huge_page(h,
1345 					 &node_states[N_MEMORY]))
1346 			break;
1347 	}
1348 	h->max_huge_pages = i;
1349 }
1350 
1351 static void __init hugetlb_init_hstates(void)
1352 {
1353 	struct hstate *h;
1354 
1355 	for_each_hstate(h) {
1356 		/* oversize hugepages were init'ed in early boot */
1357 		if (h->order < MAX_ORDER)
1358 			hugetlb_hstate_alloc_pages(h);
1359 	}
1360 }
1361 
1362 static char * __init memfmt(char *buf, unsigned long n)
1363 {
1364 	if (n >= (1UL << 30))
1365 		sprintf(buf, "%lu GB", n >> 30);
1366 	else if (n >= (1UL << 20))
1367 		sprintf(buf, "%lu MB", n >> 20);
1368 	else
1369 		sprintf(buf, "%lu KB", n >> 10);
1370 	return buf;
1371 }
1372 
1373 static void __init report_hugepages(void)
1374 {
1375 	struct hstate *h;
1376 
1377 	for_each_hstate(h) {
1378 		char buf[32];
1379 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380 			memfmt(buf, huge_page_size(h)),
1381 			h->free_huge_pages);
1382 	}
1383 }
1384 
1385 #ifdef CONFIG_HIGHMEM
1386 static void try_to_free_low(struct hstate *h, unsigned long count,
1387 						nodemask_t *nodes_allowed)
1388 {
1389 	int i;
1390 
1391 	if (h->order >= MAX_ORDER)
1392 		return;
1393 
1394 	for_each_node_mask(i, *nodes_allowed) {
1395 		struct page *page, *next;
1396 		struct list_head *freel = &h->hugepage_freelists[i];
1397 		list_for_each_entry_safe(page, next, freel, lru) {
1398 			if (count >= h->nr_huge_pages)
1399 				return;
1400 			if (PageHighMem(page))
1401 				continue;
1402 			list_del(&page->lru);
1403 			update_and_free_page(h, page);
1404 			h->free_huge_pages--;
1405 			h->free_huge_pages_node[page_to_nid(page)]--;
1406 		}
1407 	}
1408 }
1409 #else
1410 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1411 						nodemask_t *nodes_allowed)
1412 {
1413 }
1414 #endif
1415 
1416 /*
1417  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1418  * balanced by operating on them in a round-robin fashion.
1419  * Returns 1 if an adjustment was made.
1420  */
1421 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1422 				int delta)
1423 {
1424 	int nr_nodes, node;
1425 
1426 	VM_BUG_ON(delta != -1 && delta != 1);
1427 
1428 	if (delta < 0) {
1429 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430 			if (h->surplus_huge_pages_node[node])
1431 				goto found;
1432 		}
1433 	} else {
1434 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1435 			if (h->surplus_huge_pages_node[node] <
1436 					h->nr_huge_pages_node[node])
1437 				goto found;
1438 		}
1439 	}
1440 	return 0;
1441 
1442 found:
1443 	h->surplus_huge_pages += delta;
1444 	h->surplus_huge_pages_node[node] += delta;
1445 	return 1;
1446 }
1447 
1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1450 						nodemask_t *nodes_allowed)
1451 {
1452 	unsigned long min_count, ret;
1453 
1454 	if (h->order >= MAX_ORDER)
1455 		return h->max_huge_pages;
1456 
1457 	/*
1458 	 * Increase the pool size
1459 	 * First take pages out of surplus state.  Then make up the
1460 	 * remaining difference by allocating fresh huge pages.
1461 	 *
1462 	 * We might race with alloc_buddy_huge_page() here and be unable
1463 	 * to convert a surplus huge page to a normal huge page. That is
1464 	 * not critical, though, it just means the overall size of the
1465 	 * pool might be one hugepage larger than it needs to be, but
1466 	 * within all the constraints specified by the sysctls.
1467 	 */
1468 	spin_lock(&hugetlb_lock);
1469 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1471 			break;
1472 	}
1473 
1474 	while (count > persistent_huge_pages(h)) {
1475 		/*
1476 		 * If this allocation races such that we no longer need the
1477 		 * page, free_huge_page will handle it by freeing the page
1478 		 * and reducing the surplus.
1479 		 */
1480 		spin_unlock(&hugetlb_lock);
1481 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1482 		spin_lock(&hugetlb_lock);
1483 		if (!ret)
1484 			goto out;
1485 
1486 		/* Bail for signals. Probably ctrl-c from user */
1487 		if (signal_pending(current))
1488 			goto out;
1489 	}
1490 
1491 	/*
1492 	 * Decrease the pool size
1493 	 * First return free pages to the buddy allocator (being careful
1494 	 * to keep enough around to satisfy reservations).  Then place
1495 	 * pages into surplus state as needed so the pool will shrink
1496 	 * to the desired size as pages become free.
1497 	 *
1498 	 * By placing pages into the surplus state independent of the
1499 	 * overcommit value, we are allowing the surplus pool size to
1500 	 * exceed overcommit. There are few sane options here. Since
1501 	 * alloc_buddy_huge_page() is checking the global counter,
1502 	 * though, we'll note that we're not allowed to exceed surplus
1503 	 * and won't grow the pool anywhere else. Not until one of the
1504 	 * sysctls are changed, or the surplus pages go out of use.
1505 	 */
1506 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507 	min_count = max(count, min_count);
1508 	try_to_free_low(h, min_count, nodes_allowed);
1509 	while (min_count < persistent_huge_pages(h)) {
1510 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1511 			break;
1512 	}
1513 	while (count < persistent_huge_pages(h)) {
1514 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1515 			break;
1516 	}
1517 out:
1518 	ret = persistent_huge_pages(h);
1519 	spin_unlock(&hugetlb_lock);
1520 	return ret;
1521 }
1522 
1523 #define HSTATE_ATTR_RO(_name) \
1524 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1525 
1526 #define HSTATE_ATTR(_name) \
1527 	static struct kobj_attribute _name##_attr = \
1528 		__ATTR(_name, 0644, _name##_show, _name##_store)
1529 
1530 static struct kobject *hugepages_kobj;
1531 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1532 
1533 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1534 
1535 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1536 {
1537 	int i;
1538 
1539 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1540 		if (hstate_kobjs[i] == kobj) {
1541 			if (nidp)
1542 				*nidp = NUMA_NO_NODE;
1543 			return &hstates[i];
1544 		}
1545 
1546 	return kobj_to_node_hstate(kobj, nidp);
1547 }
1548 
1549 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1550 					struct kobj_attribute *attr, char *buf)
1551 {
1552 	struct hstate *h;
1553 	unsigned long nr_huge_pages;
1554 	int nid;
1555 
1556 	h = kobj_to_hstate(kobj, &nid);
1557 	if (nid == NUMA_NO_NODE)
1558 		nr_huge_pages = h->nr_huge_pages;
1559 	else
1560 		nr_huge_pages = h->nr_huge_pages_node[nid];
1561 
1562 	return sprintf(buf, "%lu\n", nr_huge_pages);
1563 }
1564 
1565 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1566 			struct kobject *kobj, struct kobj_attribute *attr,
1567 			const char *buf, size_t len)
1568 {
1569 	int err;
1570 	int nid;
1571 	unsigned long count;
1572 	struct hstate *h;
1573 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1574 
1575 	err = kstrtoul(buf, 10, &count);
1576 	if (err)
1577 		goto out;
1578 
1579 	h = kobj_to_hstate(kobj, &nid);
1580 	if (h->order >= MAX_ORDER) {
1581 		err = -EINVAL;
1582 		goto out;
1583 	}
1584 
1585 	if (nid == NUMA_NO_NODE) {
1586 		/*
1587 		 * global hstate attribute
1588 		 */
1589 		if (!(obey_mempolicy &&
1590 				init_nodemask_of_mempolicy(nodes_allowed))) {
1591 			NODEMASK_FREE(nodes_allowed);
1592 			nodes_allowed = &node_states[N_MEMORY];
1593 		}
1594 	} else if (nodes_allowed) {
1595 		/*
1596 		 * per node hstate attribute: adjust count to global,
1597 		 * but restrict alloc/free to the specified node.
1598 		 */
1599 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1600 		init_nodemask_of_node(nodes_allowed, nid);
1601 	} else
1602 		nodes_allowed = &node_states[N_MEMORY];
1603 
1604 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1605 
1606 	if (nodes_allowed != &node_states[N_MEMORY])
1607 		NODEMASK_FREE(nodes_allowed);
1608 
1609 	return len;
1610 out:
1611 	NODEMASK_FREE(nodes_allowed);
1612 	return err;
1613 }
1614 
1615 static ssize_t nr_hugepages_show(struct kobject *kobj,
1616 				       struct kobj_attribute *attr, char *buf)
1617 {
1618 	return nr_hugepages_show_common(kobj, attr, buf);
1619 }
1620 
1621 static ssize_t nr_hugepages_store(struct kobject *kobj,
1622 	       struct kobj_attribute *attr, const char *buf, size_t len)
1623 {
1624 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1625 }
1626 HSTATE_ATTR(nr_hugepages);
1627 
1628 #ifdef CONFIG_NUMA
1629 
1630 /*
1631  * hstate attribute for optionally mempolicy-based constraint on persistent
1632  * huge page alloc/free.
1633  */
1634 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1635 				       struct kobj_attribute *attr, char *buf)
1636 {
1637 	return nr_hugepages_show_common(kobj, attr, buf);
1638 }
1639 
1640 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1641 	       struct kobj_attribute *attr, const char *buf, size_t len)
1642 {
1643 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1644 }
1645 HSTATE_ATTR(nr_hugepages_mempolicy);
1646 #endif
1647 
1648 
1649 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1650 					struct kobj_attribute *attr, char *buf)
1651 {
1652 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1653 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1654 }
1655 
1656 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1657 		struct kobj_attribute *attr, const char *buf, size_t count)
1658 {
1659 	int err;
1660 	unsigned long input;
1661 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1662 
1663 	if (h->order >= MAX_ORDER)
1664 		return -EINVAL;
1665 
1666 	err = kstrtoul(buf, 10, &input);
1667 	if (err)
1668 		return err;
1669 
1670 	spin_lock(&hugetlb_lock);
1671 	h->nr_overcommit_huge_pages = input;
1672 	spin_unlock(&hugetlb_lock);
1673 
1674 	return count;
1675 }
1676 HSTATE_ATTR(nr_overcommit_hugepages);
1677 
1678 static ssize_t free_hugepages_show(struct kobject *kobj,
1679 					struct kobj_attribute *attr, char *buf)
1680 {
1681 	struct hstate *h;
1682 	unsigned long free_huge_pages;
1683 	int nid;
1684 
1685 	h = kobj_to_hstate(kobj, &nid);
1686 	if (nid == NUMA_NO_NODE)
1687 		free_huge_pages = h->free_huge_pages;
1688 	else
1689 		free_huge_pages = h->free_huge_pages_node[nid];
1690 
1691 	return sprintf(buf, "%lu\n", free_huge_pages);
1692 }
1693 HSTATE_ATTR_RO(free_hugepages);
1694 
1695 static ssize_t resv_hugepages_show(struct kobject *kobj,
1696 					struct kobj_attribute *attr, char *buf)
1697 {
1698 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1699 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1700 }
1701 HSTATE_ATTR_RO(resv_hugepages);
1702 
1703 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1704 					struct kobj_attribute *attr, char *buf)
1705 {
1706 	struct hstate *h;
1707 	unsigned long surplus_huge_pages;
1708 	int nid;
1709 
1710 	h = kobj_to_hstate(kobj, &nid);
1711 	if (nid == NUMA_NO_NODE)
1712 		surplus_huge_pages = h->surplus_huge_pages;
1713 	else
1714 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1715 
1716 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1717 }
1718 HSTATE_ATTR_RO(surplus_hugepages);
1719 
1720 static struct attribute *hstate_attrs[] = {
1721 	&nr_hugepages_attr.attr,
1722 	&nr_overcommit_hugepages_attr.attr,
1723 	&free_hugepages_attr.attr,
1724 	&resv_hugepages_attr.attr,
1725 	&surplus_hugepages_attr.attr,
1726 #ifdef CONFIG_NUMA
1727 	&nr_hugepages_mempolicy_attr.attr,
1728 #endif
1729 	NULL,
1730 };
1731 
1732 static struct attribute_group hstate_attr_group = {
1733 	.attrs = hstate_attrs,
1734 };
1735 
1736 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1737 				    struct kobject **hstate_kobjs,
1738 				    struct attribute_group *hstate_attr_group)
1739 {
1740 	int retval;
1741 	int hi = hstate_index(h);
1742 
1743 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1744 	if (!hstate_kobjs[hi])
1745 		return -ENOMEM;
1746 
1747 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1748 	if (retval)
1749 		kobject_put(hstate_kobjs[hi]);
1750 
1751 	return retval;
1752 }
1753 
1754 static void __init hugetlb_sysfs_init(void)
1755 {
1756 	struct hstate *h;
1757 	int err;
1758 
1759 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1760 	if (!hugepages_kobj)
1761 		return;
1762 
1763 	for_each_hstate(h) {
1764 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1765 					 hstate_kobjs, &hstate_attr_group);
1766 		if (err)
1767 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1768 	}
1769 }
1770 
1771 #ifdef CONFIG_NUMA
1772 
1773 /*
1774  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775  * with node devices in node_devices[] using a parallel array.  The array
1776  * index of a node device or _hstate == node id.
1777  * This is here to avoid any static dependency of the node device driver, in
1778  * the base kernel, on the hugetlb module.
1779  */
1780 struct node_hstate {
1781 	struct kobject		*hugepages_kobj;
1782 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1783 };
1784 struct node_hstate node_hstates[MAX_NUMNODES];
1785 
1786 /*
1787  * A subset of global hstate attributes for node devices
1788  */
1789 static struct attribute *per_node_hstate_attrs[] = {
1790 	&nr_hugepages_attr.attr,
1791 	&free_hugepages_attr.attr,
1792 	&surplus_hugepages_attr.attr,
1793 	NULL,
1794 };
1795 
1796 static struct attribute_group per_node_hstate_attr_group = {
1797 	.attrs = per_node_hstate_attrs,
1798 };
1799 
1800 /*
1801  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802  * Returns node id via non-NULL nidp.
1803  */
1804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1805 {
1806 	int nid;
1807 
1808 	for (nid = 0; nid < nr_node_ids; nid++) {
1809 		struct node_hstate *nhs = &node_hstates[nid];
1810 		int i;
1811 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1812 			if (nhs->hstate_kobjs[i] == kobj) {
1813 				if (nidp)
1814 					*nidp = nid;
1815 				return &hstates[i];
1816 			}
1817 	}
1818 
1819 	BUG();
1820 	return NULL;
1821 }
1822 
1823 /*
1824  * Unregister hstate attributes from a single node device.
1825  * No-op if no hstate attributes attached.
1826  */
1827 static void hugetlb_unregister_node(struct node *node)
1828 {
1829 	struct hstate *h;
1830 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1831 
1832 	if (!nhs->hugepages_kobj)
1833 		return;		/* no hstate attributes */
1834 
1835 	for_each_hstate(h) {
1836 		int idx = hstate_index(h);
1837 		if (nhs->hstate_kobjs[idx]) {
1838 			kobject_put(nhs->hstate_kobjs[idx]);
1839 			nhs->hstate_kobjs[idx] = NULL;
1840 		}
1841 	}
1842 
1843 	kobject_put(nhs->hugepages_kobj);
1844 	nhs->hugepages_kobj = NULL;
1845 }
1846 
1847 /*
1848  * hugetlb module exit:  unregister hstate attributes from node devices
1849  * that have them.
1850  */
1851 static void hugetlb_unregister_all_nodes(void)
1852 {
1853 	int nid;
1854 
1855 	/*
1856 	 * disable node device registrations.
1857 	 */
1858 	register_hugetlbfs_with_node(NULL, NULL);
1859 
1860 	/*
1861 	 * remove hstate attributes from any nodes that have them.
1862 	 */
1863 	for (nid = 0; nid < nr_node_ids; nid++)
1864 		hugetlb_unregister_node(node_devices[nid]);
1865 }
1866 
1867 /*
1868  * Register hstate attributes for a single node device.
1869  * No-op if attributes already registered.
1870  */
1871 static void hugetlb_register_node(struct node *node)
1872 {
1873 	struct hstate *h;
1874 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1875 	int err;
1876 
1877 	if (nhs->hugepages_kobj)
1878 		return;		/* already allocated */
1879 
1880 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1881 							&node->dev.kobj);
1882 	if (!nhs->hugepages_kobj)
1883 		return;
1884 
1885 	for_each_hstate(h) {
1886 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1887 						nhs->hstate_kobjs,
1888 						&per_node_hstate_attr_group);
1889 		if (err) {
1890 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1891 				h->name, node->dev.id);
1892 			hugetlb_unregister_node(node);
1893 			break;
1894 		}
1895 	}
1896 }
1897 
1898 /*
1899  * hugetlb init time:  register hstate attributes for all registered node
1900  * devices of nodes that have memory.  All on-line nodes should have
1901  * registered their associated device by this time.
1902  */
1903 static void hugetlb_register_all_nodes(void)
1904 {
1905 	int nid;
1906 
1907 	for_each_node_state(nid, N_MEMORY) {
1908 		struct node *node = node_devices[nid];
1909 		if (node->dev.id == nid)
1910 			hugetlb_register_node(node);
1911 	}
1912 
1913 	/*
1914 	 * Let the node device driver know we're here so it can
1915 	 * [un]register hstate attributes on node hotplug.
1916 	 */
1917 	register_hugetlbfs_with_node(hugetlb_register_node,
1918 				     hugetlb_unregister_node);
1919 }
1920 #else	/* !CONFIG_NUMA */
1921 
1922 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1923 {
1924 	BUG();
1925 	if (nidp)
1926 		*nidp = -1;
1927 	return NULL;
1928 }
1929 
1930 static void hugetlb_unregister_all_nodes(void) { }
1931 
1932 static void hugetlb_register_all_nodes(void) { }
1933 
1934 #endif
1935 
1936 static void __exit hugetlb_exit(void)
1937 {
1938 	struct hstate *h;
1939 
1940 	hugetlb_unregister_all_nodes();
1941 
1942 	for_each_hstate(h) {
1943 		kobject_put(hstate_kobjs[hstate_index(h)]);
1944 	}
1945 
1946 	kobject_put(hugepages_kobj);
1947 }
1948 module_exit(hugetlb_exit);
1949 
1950 static int __init hugetlb_init(void)
1951 {
1952 	/* Some platform decide whether they support huge pages at boot
1953 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1954 	 * there is no such support
1955 	 */
1956 	if (HPAGE_SHIFT == 0)
1957 		return 0;
1958 
1959 	if (!size_to_hstate(default_hstate_size)) {
1960 		default_hstate_size = HPAGE_SIZE;
1961 		if (!size_to_hstate(default_hstate_size))
1962 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1963 	}
1964 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1965 	if (default_hstate_max_huge_pages)
1966 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1967 
1968 	hugetlb_init_hstates();
1969 	gather_bootmem_prealloc();
1970 	report_hugepages();
1971 
1972 	hugetlb_sysfs_init();
1973 	hugetlb_register_all_nodes();
1974 	hugetlb_cgroup_file_init();
1975 
1976 	return 0;
1977 }
1978 module_init(hugetlb_init);
1979 
1980 /* Should be called on processing a hugepagesz=... option */
1981 void __init hugetlb_add_hstate(unsigned order)
1982 {
1983 	struct hstate *h;
1984 	unsigned long i;
1985 
1986 	if (size_to_hstate(PAGE_SIZE << order)) {
1987 		pr_warning("hugepagesz= specified twice, ignoring\n");
1988 		return;
1989 	}
1990 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1991 	BUG_ON(order == 0);
1992 	h = &hstates[hugetlb_max_hstate++];
1993 	h->order = order;
1994 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1995 	h->nr_huge_pages = 0;
1996 	h->free_huge_pages = 0;
1997 	for (i = 0; i < MAX_NUMNODES; ++i)
1998 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1999 	INIT_LIST_HEAD(&h->hugepage_activelist);
2000 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2001 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2002 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2003 					huge_page_size(h)/1024);
2004 
2005 	parsed_hstate = h;
2006 }
2007 
2008 static int __init hugetlb_nrpages_setup(char *s)
2009 {
2010 	unsigned long *mhp;
2011 	static unsigned long *last_mhp;
2012 
2013 	/*
2014 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015 	 * so this hugepages= parameter goes to the "default hstate".
2016 	 */
2017 	if (!hugetlb_max_hstate)
2018 		mhp = &default_hstate_max_huge_pages;
2019 	else
2020 		mhp = &parsed_hstate->max_huge_pages;
2021 
2022 	if (mhp == last_mhp) {
2023 		pr_warning("hugepages= specified twice without "
2024 			   "interleaving hugepagesz=, ignoring\n");
2025 		return 1;
2026 	}
2027 
2028 	if (sscanf(s, "%lu", mhp) <= 0)
2029 		*mhp = 0;
2030 
2031 	/*
2032 	 * Global state is always initialized later in hugetlb_init.
2033 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2034 	 * use the bootmem allocator.
2035 	 */
2036 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2037 		hugetlb_hstate_alloc_pages(parsed_hstate);
2038 
2039 	last_mhp = mhp;
2040 
2041 	return 1;
2042 }
2043 __setup("hugepages=", hugetlb_nrpages_setup);
2044 
2045 static int __init hugetlb_default_setup(char *s)
2046 {
2047 	default_hstate_size = memparse(s, &s);
2048 	return 1;
2049 }
2050 __setup("default_hugepagesz=", hugetlb_default_setup);
2051 
2052 static unsigned int cpuset_mems_nr(unsigned int *array)
2053 {
2054 	int node;
2055 	unsigned int nr = 0;
2056 
2057 	for_each_node_mask(node, cpuset_current_mems_allowed)
2058 		nr += array[node];
2059 
2060 	return nr;
2061 }
2062 
2063 #ifdef CONFIG_SYSCTL
2064 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2065 			 struct ctl_table *table, int write,
2066 			 void __user *buffer, size_t *length, loff_t *ppos)
2067 {
2068 	struct hstate *h = &default_hstate;
2069 	unsigned long tmp;
2070 	int ret;
2071 
2072 	tmp = h->max_huge_pages;
2073 
2074 	if (write && h->order >= MAX_ORDER)
2075 		return -EINVAL;
2076 
2077 	table->data = &tmp;
2078 	table->maxlen = sizeof(unsigned long);
2079 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080 	if (ret)
2081 		goto out;
2082 
2083 	if (write) {
2084 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2085 						GFP_KERNEL | __GFP_NORETRY);
2086 		if (!(obey_mempolicy &&
2087 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2088 			NODEMASK_FREE(nodes_allowed);
2089 			nodes_allowed = &node_states[N_MEMORY];
2090 		}
2091 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2092 
2093 		if (nodes_allowed != &node_states[N_MEMORY])
2094 			NODEMASK_FREE(nodes_allowed);
2095 	}
2096 out:
2097 	return ret;
2098 }
2099 
2100 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2101 			  void __user *buffer, size_t *length, loff_t *ppos)
2102 {
2103 
2104 	return hugetlb_sysctl_handler_common(false, table, write,
2105 							buffer, length, ppos);
2106 }
2107 
2108 #ifdef CONFIG_NUMA
2109 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2110 			  void __user *buffer, size_t *length, loff_t *ppos)
2111 {
2112 	return hugetlb_sysctl_handler_common(true, table, write,
2113 							buffer, length, ppos);
2114 }
2115 #endif /* CONFIG_NUMA */
2116 
2117 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118 			void __user *buffer,
2119 			size_t *length, loff_t *ppos)
2120 {
2121 	struct hstate *h = &default_hstate;
2122 	unsigned long tmp;
2123 	int ret;
2124 
2125 	tmp = h->nr_overcommit_huge_pages;
2126 
2127 	if (write && h->order >= MAX_ORDER)
2128 		return -EINVAL;
2129 
2130 	table->data = &tmp;
2131 	table->maxlen = sizeof(unsigned long);
2132 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2133 	if (ret)
2134 		goto out;
2135 
2136 	if (write) {
2137 		spin_lock(&hugetlb_lock);
2138 		h->nr_overcommit_huge_pages = tmp;
2139 		spin_unlock(&hugetlb_lock);
2140 	}
2141 out:
2142 	return ret;
2143 }
2144 
2145 #endif /* CONFIG_SYSCTL */
2146 
2147 void hugetlb_report_meminfo(struct seq_file *m)
2148 {
2149 	struct hstate *h = &default_hstate;
2150 	seq_printf(m,
2151 			"HugePages_Total:   %5lu\n"
2152 			"HugePages_Free:    %5lu\n"
2153 			"HugePages_Rsvd:    %5lu\n"
2154 			"HugePages_Surp:    %5lu\n"
2155 			"Hugepagesize:   %8lu kB\n",
2156 			h->nr_huge_pages,
2157 			h->free_huge_pages,
2158 			h->resv_huge_pages,
2159 			h->surplus_huge_pages,
2160 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2161 }
2162 
2163 int hugetlb_report_node_meminfo(int nid, char *buf)
2164 {
2165 	struct hstate *h = &default_hstate;
2166 	return sprintf(buf,
2167 		"Node %d HugePages_Total: %5u\n"
2168 		"Node %d HugePages_Free:  %5u\n"
2169 		"Node %d HugePages_Surp:  %5u\n",
2170 		nid, h->nr_huge_pages_node[nid],
2171 		nid, h->free_huge_pages_node[nid],
2172 		nid, h->surplus_huge_pages_node[nid]);
2173 }
2174 
2175 void hugetlb_show_meminfo(void)
2176 {
2177 	struct hstate *h;
2178 	int nid;
2179 
2180 	for_each_node_state(nid, N_MEMORY)
2181 		for_each_hstate(h)
2182 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2183 				nid,
2184 				h->nr_huge_pages_node[nid],
2185 				h->free_huge_pages_node[nid],
2186 				h->surplus_huge_pages_node[nid],
2187 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2188 }
2189 
2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191 unsigned long hugetlb_total_pages(void)
2192 {
2193 	struct hstate *h;
2194 	unsigned long nr_total_pages = 0;
2195 
2196 	for_each_hstate(h)
2197 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198 	return nr_total_pages;
2199 }
2200 
2201 static int hugetlb_acct_memory(struct hstate *h, long delta)
2202 {
2203 	int ret = -ENOMEM;
2204 
2205 	spin_lock(&hugetlb_lock);
2206 	/*
2207 	 * When cpuset is configured, it breaks the strict hugetlb page
2208 	 * reservation as the accounting is done on a global variable. Such
2209 	 * reservation is completely rubbish in the presence of cpuset because
2210 	 * the reservation is not checked against page availability for the
2211 	 * current cpuset. Application can still potentially OOM'ed by kernel
2212 	 * with lack of free htlb page in cpuset that the task is in.
2213 	 * Attempt to enforce strict accounting with cpuset is almost
2214 	 * impossible (or too ugly) because cpuset is too fluid that
2215 	 * task or memory node can be dynamically moved between cpusets.
2216 	 *
2217 	 * The change of semantics for shared hugetlb mapping with cpuset is
2218 	 * undesirable. However, in order to preserve some of the semantics,
2219 	 * we fall back to check against current free page availability as
2220 	 * a best attempt and hopefully to minimize the impact of changing
2221 	 * semantics that cpuset has.
2222 	 */
2223 	if (delta > 0) {
2224 		if (gather_surplus_pages(h, delta) < 0)
2225 			goto out;
2226 
2227 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228 			return_unused_surplus_pages(h, delta);
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	ret = 0;
2234 	if (delta < 0)
2235 		return_unused_surplus_pages(h, (unsigned long) -delta);
2236 
2237 out:
2238 	spin_unlock(&hugetlb_lock);
2239 	return ret;
2240 }
2241 
2242 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2243 {
2244 	struct resv_map *resv = vma_resv_map(vma);
2245 
2246 	/*
2247 	 * This new VMA should share its siblings reservation map if present.
2248 	 * The VMA will only ever have a valid reservation map pointer where
2249 	 * it is being copied for another still existing VMA.  As that VMA
2250 	 * has a reference to the reservation map it cannot disappear until
2251 	 * after this open call completes.  It is therefore safe to take a
2252 	 * new reference here without additional locking.
2253 	 */
2254 	if (resv)
2255 		kref_get(&resv->refs);
2256 }
2257 
2258 static void resv_map_put(struct vm_area_struct *vma)
2259 {
2260 	struct resv_map *resv = vma_resv_map(vma);
2261 
2262 	if (!resv)
2263 		return;
2264 	kref_put(&resv->refs, resv_map_release);
2265 }
2266 
2267 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2268 {
2269 	struct hstate *h = hstate_vma(vma);
2270 	struct resv_map *resv = vma_resv_map(vma);
2271 	struct hugepage_subpool *spool = subpool_vma(vma);
2272 	unsigned long reserve;
2273 	unsigned long start;
2274 	unsigned long end;
2275 
2276 	if (resv) {
2277 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2278 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2279 
2280 		reserve = (end - start) -
2281 			region_count(&resv->regions, start, end);
2282 
2283 		resv_map_put(vma);
2284 
2285 		if (reserve) {
2286 			hugetlb_acct_memory(h, -reserve);
2287 			hugepage_subpool_put_pages(spool, reserve);
2288 		}
2289 	}
2290 }
2291 
2292 /*
2293  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2294  * handle_mm_fault() to try to instantiate regular-sized pages in the
2295  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2296  * this far.
2297  */
2298 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300 	BUG();
2301 	return 0;
2302 }
2303 
2304 const struct vm_operations_struct hugetlb_vm_ops = {
2305 	.fault = hugetlb_vm_op_fault,
2306 	.open = hugetlb_vm_op_open,
2307 	.close = hugetlb_vm_op_close,
2308 };
2309 
2310 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2311 				int writable)
2312 {
2313 	pte_t entry;
2314 
2315 	if (writable) {
2316 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317 					 vma->vm_page_prot)));
2318 	} else {
2319 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2320 					   vma->vm_page_prot));
2321 	}
2322 	entry = pte_mkyoung(entry);
2323 	entry = pte_mkhuge(entry);
2324 	entry = arch_make_huge_pte(entry, vma, page, writable);
2325 
2326 	return entry;
2327 }
2328 
2329 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330 				   unsigned long address, pte_t *ptep)
2331 {
2332 	pte_t entry;
2333 
2334 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336 		update_mmu_cache(vma, address, ptep);
2337 }
2338 
2339 
2340 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2341 			    struct vm_area_struct *vma)
2342 {
2343 	pte_t *src_pte, *dst_pte, entry;
2344 	struct page *ptepage;
2345 	unsigned long addr;
2346 	int cow;
2347 	struct hstate *h = hstate_vma(vma);
2348 	unsigned long sz = huge_page_size(h);
2349 	unsigned long mmun_start;	/* For mmu_notifiers */
2350 	unsigned long mmun_end;		/* For mmu_notifiers */
2351 	int ret = 0;
2352 
2353 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2354 
2355 	mmun_start = vma->vm_start;
2356 	mmun_end = vma->vm_end;
2357 	if (cow)
2358 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2359 
2360 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2361 		spinlock_t *src_ptl, *dst_ptl;
2362 		src_pte = huge_pte_offset(src, addr);
2363 		if (!src_pte)
2364 			continue;
2365 		dst_pte = huge_pte_alloc(dst, addr, sz);
2366 		if (!dst_pte) {
2367 			ret = -ENOMEM;
2368 			break;
2369 		}
2370 
2371 		/* If the pagetables are shared don't copy or take references */
2372 		if (dst_pte == src_pte)
2373 			continue;
2374 
2375 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2376 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2377 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2378 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379 			if (cow)
2380 				huge_ptep_set_wrprotect(src, addr, src_pte);
2381 			entry = huge_ptep_get(src_pte);
2382 			ptepage = pte_page(entry);
2383 			get_page(ptepage);
2384 			page_dup_rmap(ptepage);
2385 			set_huge_pte_at(dst, addr, dst_pte, entry);
2386 		}
2387 		spin_unlock(src_ptl);
2388 		spin_unlock(dst_ptl);
2389 	}
2390 
2391 	if (cow)
2392 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2393 
2394 	return ret;
2395 }
2396 
2397 static int is_hugetlb_entry_migration(pte_t pte)
2398 {
2399 	swp_entry_t swp;
2400 
2401 	if (huge_pte_none(pte) || pte_present(pte))
2402 		return 0;
2403 	swp = pte_to_swp_entry(pte);
2404 	if (non_swap_entry(swp) && is_migration_entry(swp))
2405 		return 1;
2406 	else
2407 		return 0;
2408 }
2409 
2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2411 {
2412 	swp_entry_t swp;
2413 
2414 	if (huge_pte_none(pte) || pte_present(pte))
2415 		return 0;
2416 	swp = pte_to_swp_entry(pte);
2417 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2418 		return 1;
2419 	else
2420 		return 0;
2421 }
2422 
2423 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2424 			    unsigned long start, unsigned long end,
2425 			    struct page *ref_page)
2426 {
2427 	int force_flush = 0;
2428 	struct mm_struct *mm = vma->vm_mm;
2429 	unsigned long address;
2430 	pte_t *ptep;
2431 	pte_t pte;
2432 	spinlock_t *ptl;
2433 	struct page *page;
2434 	struct hstate *h = hstate_vma(vma);
2435 	unsigned long sz = huge_page_size(h);
2436 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2437 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2438 
2439 	WARN_ON(!is_vm_hugetlb_page(vma));
2440 	BUG_ON(start & ~huge_page_mask(h));
2441 	BUG_ON(end & ~huge_page_mask(h));
2442 
2443 	tlb_start_vma(tlb, vma);
2444 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2445 again:
2446 	for (address = start; address < end; address += sz) {
2447 		ptep = huge_pte_offset(mm, address);
2448 		if (!ptep)
2449 			continue;
2450 
2451 		ptl = huge_pte_lock(h, mm, ptep);
2452 		if (huge_pmd_unshare(mm, &address, ptep))
2453 			goto unlock;
2454 
2455 		pte = huge_ptep_get(ptep);
2456 		if (huge_pte_none(pte))
2457 			goto unlock;
2458 
2459 		/*
2460 		 * HWPoisoned hugepage is already unmapped and dropped reference
2461 		 */
2462 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2463 			huge_pte_clear(mm, address, ptep);
2464 			goto unlock;
2465 		}
2466 
2467 		page = pte_page(pte);
2468 		/*
2469 		 * If a reference page is supplied, it is because a specific
2470 		 * page is being unmapped, not a range. Ensure the page we
2471 		 * are about to unmap is the actual page of interest.
2472 		 */
2473 		if (ref_page) {
2474 			if (page != ref_page)
2475 				goto unlock;
2476 
2477 			/*
2478 			 * Mark the VMA as having unmapped its page so that
2479 			 * future faults in this VMA will fail rather than
2480 			 * looking like data was lost
2481 			 */
2482 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2483 		}
2484 
2485 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2486 		tlb_remove_tlb_entry(tlb, ptep, address);
2487 		if (huge_pte_dirty(pte))
2488 			set_page_dirty(page);
2489 
2490 		page_remove_rmap(page);
2491 		force_flush = !__tlb_remove_page(tlb, page);
2492 		if (force_flush) {
2493 			spin_unlock(ptl);
2494 			break;
2495 		}
2496 		/* Bail out after unmapping reference page if supplied */
2497 		if (ref_page) {
2498 			spin_unlock(ptl);
2499 			break;
2500 		}
2501 unlock:
2502 		spin_unlock(ptl);
2503 	}
2504 	/*
2505 	 * mmu_gather ran out of room to batch pages, we break out of
2506 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2507 	 * and page-free while holding it.
2508 	 */
2509 	if (force_flush) {
2510 		force_flush = 0;
2511 		tlb_flush_mmu(tlb);
2512 		if (address < end && !ref_page)
2513 			goto again;
2514 	}
2515 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2516 	tlb_end_vma(tlb, vma);
2517 }
2518 
2519 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2520 			  struct vm_area_struct *vma, unsigned long start,
2521 			  unsigned long end, struct page *ref_page)
2522 {
2523 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2524 
2525 	/*
2526 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2527 	 * test will fail on a vma being torn down, and not grab a page table
2528 	 * on its way out.  We're lucky that the flag has such an appropriate
2529 	 * name, and can in fact be safely cleared here. We could clear it
2530 	 * before the __unmap_hugepage_range above, but all that's necessary
2531 	 * is to clear it before releasing the i_mmap_mutex. This works
2532 	 * because in the context this is called, the VMA is about to be
2533 	 * destroyed and the i_mmap_mutex is held.
2534 	 */
2535 	vma->vm_flags &= ~VM_MAYSHARE;
2536 }
2537 
2538 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2539 			  unsigned long end, struct page *ref_page)
2540 {
2541 	struct mm_struct *mm;
2542 	struct mmu_gather tlb;
2543 
2544 	mm = vma->vm_mm;
2545 
2546 	tlb_gather_mmu(&tlb, mm, start, end);
2547 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2548 	tlb_finish_mmu(&tlb, start, end);
2549 }
2550 
2551 /*
2552  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2553  * mappping it owns the reserve page for. The intention is to unmap the page
2554  * from other VMAs and let the children be SIGKILLed if they are faulting the
2555  * same region.
2556  */
2557 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2558 				struct page *page, unsigned long address)
2559 {
2560 	struct hstate *h = hstate_vma(vma);
2561 	struct vm_area_struct *iter_vma;
2562 	struct address_space *mapping;
2563 	pgoff_t pgoff;
2564 
2565 	/*
2566 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2567 	 * from page cache lookup which is in HPAGE_SIZE units.
2568 	 */
2569 	address = address & huge_page_mask(h);
2570 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2571 			vma->vm_pgoff;
2572 	mapping = file_inode(vma->vm_file)->i_mapping;
2573 
2574 	/*
2575 	 * Take the mapping lock for the duration of the table walk. As
2576 	 * this mapping should be shared between all the VMAs,
2577 	 * __unmap_hugepage_range() is called as the lock is already held
2578 	 */
2579 	mutex_lock(&mapping->i_mmap_mutex);
2580 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2581 		/* Do not unmap the current VMA */
2582 		if (iter_vma == vma)
2583 			continue;
2584 
2585 		/*
2586 		 * Unmap the page from other VMAs without their own reserves.
2587 		 * They get marked to be SIGKILLed if they fault in these
2588 		 * areas. This is because a future no-page fault on this VMA
2589 		 * could insert a zeroed page instead of the data existing
2590 		 * from the time of fork. This would look like data corruption
2591 		 */
2592 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2593 			unmap_hugepage_range(iter_vma, address,
2594 					     address + huge_page_size(h), page);
2595 	}
2596 	mutex_unlock(&mapping->i_mmap_mutex);
2597 
2598 	return 1;
2599 }
2600 
2601 /*
2602  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2604  * cannot race with other handlers or page migration.
2605  * Keep the pte_same checks anyway to make transition from the mutex easier.
2606  */
2607 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2608 			unsigned long address, pte_t *ptep, pte_t pte,
2609 			struct page *pagecache_page, spinlock_t *ptl)
2610 {
2611 	struct hstate *h = hstate_vma(vma);
2612 	struct page *old_page, *new_page;
2613 	int outside_reserve = 0;
2614 	unsigned long mmun_start;	/* For mmu_notifiers */
2615 	unsigned long mmun_end;		/* For mmu_notifiers */
2616 
2617 	old_page = pte_page(pte);
2618 
2619 retry_avoidcopy:
2620 	/* If no-one else is actually using this page, avoid the copy
2621 	 * and just make the page writable */
2622 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2623 		page_move_anon_rmap(old_page, vma, address);
2624 		set_huge_ptep_writable(vma, address, ptep);
2625 		return 0;
2626 	}
2627 
2628 	/*
2629 	 * If the process that created a MAP_PRIVATE mapping is about to
2630 	 * perform a COW due to a shared page count, attempt to satisfy
2631 	 * the allocation without using the existing reserves. The pagecache
2632 	 * page is used to determine if the reserve at this address was
2633 	 * consumed or not. If reserves were used, a partial faulted mapping
2634 	 * at the time of fork() could consume its reserves on COW instead
2635 	 * of the full address range.
2636 	 */
2637 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2638 			old_page != pagecache_page)
2639 		outside_reserve = 1;
2640 
2641 	page_cache_get(old_page);
2642 
2643 	/* Drop page table lock as buddy allocator may be called */
2644 	spin_unlock(ptl);
2645 	new_page = alloc_huge_page(vma, address, outside_reserve);
2646 
2647 	if (IS_ERR(new_page)) {
2648 		long err = PTR_ERR(new_page);
2649 		page_cache_release(old_page);
2650 
2651 		/*
2652 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2653 		 * it is due to references held by a child and an insufficient
2654 		 * huge page pool. To guarantee the original mappers
2655 		 * reliability, unmap the page from child processes. The child
2656 		 * may get SIGKILLed if it later faults.
2657 		 */
2658 		if (outside_reserve) {
2659 			BUG_ON(huge_pte_none(pte));
2660 			if (unmap_ref_private(mm, vma, old_page, address)) {
2661 				BUG_ON(huge_pte_none(pte));
2662 				spin_lock(ptl);
2663 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2664 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2665 					goto retry_avoidcopy;
2666 				/*
2667 				 * race occurs while re-acquiring page table
2668 				 * lock, and our job is done.
2669 				 */
2670 				return 0;
2671 			}
2672 			WARN_ON_ONCE(1);
2673 		}
2674 
2675 		/* Caller expects lock to be held */
2676 		spin_lock(ptl);
2677 		if (err == -ENOMEM)
2678 			return VM_FAULT_OOM;
2679 		else
2680 			return VM_FAULT_SIGBUS;
2681 	}
2682 
2683 	/*
2684 	 * When the original hugepage is shared one, it does not have
2685 	 * anon_vma prepared.
2686 	 */
2687 	if (unlikely(anon_vma_prepare(vma))) {
2688 		page_cache_release(new_page);
2689 		page_cache_release(old_page);
2690 		/* Caller expects lock to be held */
2691 		spin_lock(ptl);
2692 		return VM_FAULT_OOM;
2693 	}
2694 
2695 	copy_user_huge_page(new_page, old_page, address, vma,
2696 			    pages_per_huge_page(h));
2697 	__SetPageUptodate(new_page);
2698 
2699 	mmun_start = address & huge_page_mask(h);
2700 	mmun_end = mmun_start + huge_page_size(h);
2701 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2702 	/*
2703 	 * Retake the page table lock to check for racing updates
2704 	 * before the page tables are altered
2705 	 */
2706 	spin_lock(ptl);
2707 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2708 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2709 		ClearPagePrivate(new_page);
2710 
2711 		/* Break COW */
2712 		huge_ptep_clear_flush(vma, address, ptep);
2713 		set_huge_pte_at(mm, address, ptep,
2714 				make_huge_pte(vma, new_page, 1));
2715 		page_remove_rmap(old_page);
2716 		hugepage_add_new_anon_rmap(new_page, vma, address);
2717 		/* Make the old page be freed below */
2718 		new_page = old_page;
2719 	}
2720 	spin_unlock(ptl);
2721 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2722 	page_cache_release(new_page);
2723 	page_cache_release(old_page);
2724 
2725 	/* Caller expects lock to be held */
2726 	spin_lock(ptl);
2727 	return 0;
2728 }
2729 
2730 /* Return the pagecache page at a given address within a VMA */
2731 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2732 			struct vm_area_struct *vma, unsigned long address)
2733 {
2734 	struct address_space *mapping;
2735 	pgoff_t idx;
2736 
2737 	mapping = vma->vm_file->f_mapping;
2738 	idx = vma_hugecache_offset(h, vma, address);
2739 
2740 	return find_lock_page(mapping, idx);
2741 }
2742 
2743 /*
2744  * Return whether there is a pagecache page to back given address within VMA.
2745  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2746  */
2747 static bool hugetlbfs_pagecache_present(struct hstate *h,
2748 			struct vm_area_struct *vma, unsigned long address)
2749 {
2750 	struct address_space *mapping;
2751 	pgoff_t idx;
2752 	struct page *page;
2753 
2754 	mapping = vma->vm_file->f_mapping;
2755 	idx = vma_hugecache_offset(h, vma, address);
2756 
2757 	page = find_get_page(mapping, idx);
2758 	if (page)
2759 		put_page(page);
2760 	return page != NULL;
2761 }
2762 
2763 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2764 			unsigned long address, pte_t *ptep, unsigned int flags)
2765 {
2766 	struct hstate *h = hstate_vma(vma);
2767 	int ret = VM_FAULT_SIGBUS;
2768 	int anon_rmap = 0;
2769 	pgoff_t idx;
2770 	unsigned long size;
2771 	struct page *page;
2772 	struct address_space *mapping;
2773 	pte_t new_pte;
2774 	spinlock_t *ptl;
2775 
2776 	/*
2777 	 * Currently, we are forced to kill the process in the event the
2778 	 * original mapper has unmapped pages from the child due to a failed
2779 	 * COW. Warn that such a situation has occurred as it may not be obvious
2780 	 */
2781 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2782 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2783 			   current->pid);
2784 		return ret;
2785 	}
2786 
2787 	mapping = vma->vm_file->f_mapping;
2788 	idx = vma_hugecache_offset(h, vma, address);
2789 
2790 	/*
2791 	 * Use page lock to guard against racing truncation
2792 	 * before we get page_table_lock.
2793 	 */
2794 retry:
2795 	page = find_lock_page(mapping, idx);
2796 	if (!page) {
2797 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2798 		if (idx >= size)
2799 			goto out;
2800 		page = alloc_huge_page(vma, address, 0);
2801 		if (IS_ERR(page)) {
2802 			ret = PTR_ERR(page);
2803 			if (ret == -ENOMEM)
2804 				ret = VM_FAULT_OOM;
2805 			else
2806 				ret = VM_FAULT_SIGBUS;
2807 			goto out;
2808 		}
2809 		clear_huge_page(page, address, pages_per_huge_page(h));
2810 		__SetPageUptodate(page);
2811 
2812 		if (vma->vm_flags & VM_MAYSHARE) {
2813 			int err;
2814 			struct inode *inode = mapping->host;
2815 
2816 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2817 			if (err) {
2818 				put_page(page);
2819 				if (err == -EEXIST)
2820 					goto retry;
2821 				goto out;
2822 			}
2823 			ClearPagePrivate(page);
2824 
2825 			spin_lock(&inode->i_lock);
2826 			inode->i_blocks += blocks_per_huge_page(h);
2827 			spin_unlock(&inode->i_lock);
2828 		} else {
2829 			lock_page(page);
2830 			if (unlikely(anon_vma_prepare(vma))) {
2831 				ret = VM_FAULT_OOM;
2832 				goto backout_unlocked;
2833 			}
2834 			anon_rmap = 1;
2835 		}
2836 	} else {
2837 		/*
2838 		 * If memory error occurs between mmap() and fault, some process
2839 		 * don't have hwpoisoned swap entry for errored virtual address.
2840 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2841 		 */
2842 		if (unlikely(PageHWPoison(page))) {
2843 			ret = VM_FAULT_HWPOISON |
2844 				VM_FAULT_SET_HINDEX(hstate_index(h));
2845 			goto backout_unlocked;
2846 		}
2847 	}
2848 
2849 	/*
2850 	 * If we are going to COW a private mapping later, we examine the
2851 	 * pending reservations for this page now. This will ensure that
2852 	 * any allocations necessary to record that reservation occur outside
2853 	 * the spinlock.
2854 	 */
2855 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2856 		if (vma_needs_reservation(h, vma, address) < 0) {
2857 			ret = VM_FAULT_OOM;
2858 			goto backout_unlocked;
2859 		}
2860 
2861 	ptl = huge_pte_lockptr(h, mm, ptep);
2862 	spin_lock(ptl);
2863 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2864 	if (idx >= size)
2865 		goto backout;
2866 
2867 	ret = 0;
2868 	if (!huge_pte_none(huge_ptep_get(ptep)))
2869 		goto backout;
2870 
2871 	if (anon_rmap) {
2872 		ClearPagePrivate(page);
2873 		hugepage_add_new_anon_rmap(page, vma, address);
2874 	}
2875 	else
2876 		page_dup_rmap(page);
2877 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2878 				&& (vma->vm_flags & VM_SHARED)));
2879 	set_huge_pte_at(mm, address, ptep, new_pte);
2880 
2881 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2882 		/* Optimization, do the COW without a second fault */
2883 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2884 	}
2885 
2886 	spin_unlock(ptl);
2887 	unlock_page(page);
2888 out:
2889 	return ret;
2890 
2891 backout:
2892 	spin_unlock(ptl);
2893 backout_unlocked:
2894 	unlock_page(page);
2895 	put_page(page);
2896 	goto out;
2897 }
2898 
2899 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2900 			unsigned long address, unsigned int flags)
2901 {
2902 	pte_t *ptep;
2903 	pte_t entry;
2904 	spinlock_t *ptl;
2905 	int ret;
2906 	struct page *page = NULL;
2907 	struct page *pagecache_page = NULL;
2908 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2909 	struct hstate *h = hstate_vma(vma);
2910 
2911 	address &= huge_page_mask(h);
2912 
2913 	ptep = huge_pte_offset(mm, address);
2914 	if (ptep) {
2915 		entry = huge_ptep_get(ptep);
2916 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2917 			migration_entry_wait_huge(vma, mm, ptep);
2918 			return 0;
2919 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2920 			return VM_FAULT_HWPOISON_LARGE |
2921 				VM_FAULT_SET_HINDEX(hstate_index(h));
2922 	}
2923 
2924 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2925 	if (!ptep)
2926 		return VM_FAULT_OOM;
2927 
2928 	/*
2929 	 * Serialize hugepage allocation and instantiation, so that we don't
2930 	 * get spurious allocation failures if two CPUs race to instantiate
2931 	 * the same page in the page cache.
2932 	 */
2933 	mutex_lock(&hugetlb_instantiation_mutex);
2934 	entry = huge_ptep_get(ptep);
2935 	if (huge_pte_none(entry)) {
2936 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2937 		goto out_mutex;
2938 	}
2939 
2940 	ret = 0;
2941 
2942 	/*
2943 	 * If we are going to COW the mapping later, we examine the pending
2944 	 * reservations for this page now. This will ensure that any
2945 	 * allocations necessary to record that reservation occur outside the
2946 	 * spinlock. For private mappings, we also lookup the pagecache
2947 	 * page now as it is used to determine if a reservation has been
2948 	 * consumed.
2949 	 */
2950 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2951 		if (vma_needs_reservation(h, vma, address) < 0) {
2952 			ret = VM_FAULT_OOM;
2953 			goto out_mutex;
2954 		}
2955 
2956 		if (!(vma->vm_flags & VM_MAYSHARE))
2957 			pagecache_page = hugetlbfs_pagecache_page(h,
2958 								vma, address);
2959 	}
2960 
2961 	/*
2962 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2963 	 * pagecache_page, so here we need take the former one
2964 	 * when page != pagecache_page or !pagecache_page.
2965 	 * Note that locking order is always pagecache_page -> page,
2966 	 * so no worry about deadlock.
2967 	 */
2968 	page = pte_page(entry);
2969 	get_page(page);
2970 	if (page != pagecache_page)
2971 		lock_page(page);
2972 
2973 	ptl = huge_pte_lockptr(h, mm, ptep);
2974 	spin_lock(ptl);
2975 	/* Check for a racing update before calling hugetlb_cow */
2976 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2977 		goto out_ptl;
2978 
2979 
2980 	if (flags & FAULT_FLAG_WRITE) {
2981 		if (!huge_pte_write(entry)) {
2982 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2983 					pagecache_page, ptl);
2984 			goto out_ptl;
2985 		}
2986 		entry = huge_pte_mkdirty(entry);
2987 	}
2988 	entry = pte_mkyoung(entry);
2989 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2990 						flags & FAULT_FLAG_WRITE))
2991 		update_mmu_cache(vma, address, ptep);
2992 
2993 out_ptl:
2994 	spin_unlock(ptl);
2995 
2996 	if (pagecache_page) {
2997 		unlock_page(pagecache_page);
2998 		put_page(pagecache_page);
2999 	}
3000 	if (page != pagecache_page)
3001 		unlock_page(page);
3002 	put_page(page);
3003 
3004 out_mutex:
3005 	mutex_unlock(&hugetlb_instantiation_mutex);
3006 
3007 	return ret;
3008 }
3009 
3010 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3011 			 struct page **pages, struct vm_area_struct **vmas,
3012 			 unsigned long *position, unsigned long *nr_pages,
3013 			 long i, unsigned int flags)
3014 {
3015 	unsigned long pfn_offset;
3016 	unsigned long vaddr = *position;
3017 	unsigned long remainder = *nr_pages;
3018 	struct hstate *h = hstate_vma(vma);
3019 
3020 	while (vaddr < vma->vm_end && remainder) {
3021 		pte_t *pte;
3022 		spinlock_t *ptl = NULL;
3023 		int absent;
3024 		struct page *page;
3025 
3026 		/*
3027 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3028 		 * each hugepage.  We have to make sure we get the
3029 		 * first, for the page indexing below to work.
3030 		 *
3031 		 * Note that page table lock is not held when pte is null.
3032 		 */
3033 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3034 		if (pte)
3035 			ptl = huge_pte_lock(h, mm, pte);
3036 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3037 
3038 		/*
3039 		 * When coredumping, it suits get_dump_page if we just return
3040 		 * an error where there's an empty slot with no huge pagecache
3041 		 * to back it.  This way, we avoid allocating a hugepage, and
3042 		 * the sparse dumpfile avoids allocating disk blocks, but its
3043 		 * huge holes still show up with zeroes where they need to be.
3044 		 */
3045 		if (absent && (flags & FOLL_DUMP) &&
3046 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3047 			if (pte)
3048 				spin_unlock(ptl);
3049 			remainder = 0;
3050 			break;
3051 		}
3052 
3053 		/*
3054 		 * We need call hugetlb_fault for both hugepages under migration
3055 		 * (in which case hugetlb_fault waits for the migration,) and
3056 		 * hwpoisoned hugepages (in which case we need to prevent the
3057 		 * caller from accessing to them.) In order to do this, we use
3058 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3059 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3060 		 * both cases, and because we can't follow correct pages
3061 		 * directly from any kind of swap entries.
3062 		 */
3063 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3064 		    ((flags & FOLL_WRITE) &&
3065 		      !huge_pte_write(huge_ptep_get(pte)))) {
3066 			int ret;
3067 
3068 			if (pte)
3069 				spin_unlock(ptl);
3070 			ret = hugetlb_fault(mm, vma, vaddr,
3071 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3072 			if (!(ret & VM_FAULT_ERROR))
3073 				continue;
3074 
3075 			remainder = 0;
3076 			break;
3077 		}
3078 
3079 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3080 		page = pte_page(huge_ptep_get(pte));
3081 same_page:
3082 		if (pages) {
3083 			pages[i] = mem_map_offset(page, pfn_offset);
3084 			get_page_foll(pages[i]);
3085 		}
3086 
3087 		if (vmas)
3088 			vmas[i] = vma;
3089 
3090 		vaddr += PAGE_SIZE;
3091 		++pfn_offset;
3092 		--remainder;
3093 		++i;
3094 		if (vaddr < vma->vm_end && remainder &&
3095 				pfn_offset < pages_per_huge_page(h)) {
3096 			/*
3097 			 * We use pfn_offset to avoid touching the pageframes
3098 			 * of this compound page.
3099 			 */
3100 			goto same_page;
3101 		}
3102 		spin_unlock(ptl);
3103 	}
3104 	*nr_pages = remainder;
3105 	*position = vaddr;
3106 
3107 	return i ? i : -EFAULT;
3108 }
3109 
3110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3111 		unsigned long address, unsigned long end, pgprot_t newprot)
3112 {
3113 	struct mm_struct *mm = vma->vm_mm;
3114 	unsigned long start = address;
3115 	pte_t *ptep;
3116 	pte_t pte;
3117 	struct hstate *h = hstate_vma(vma);
3118 	unsigned long pages = 0;
3119 
3120 	BUG_ON(address >= end);
3121 	flush_cache_range(vma, address, end);
3122 
3123 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3124 	for (; address < end; address += huge_page_size(h)) {
3125 		spinlock_t *ptl;
3126 		ptep = huge_pte_offset(mm, address);
3127 		if (!ptep)
3128 			continue;
3129 		ptl = huge_pte_lock(h, mm, ptep);
3130 		if (huge_pmd_unshare(mm, &address, ptep)) {
3131 			pages++;
3132 			spin_unlock(ptl);
3133 			continue;
3134 		}
3135 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3136 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3137 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3138 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3139 			set_huge_pte_at(mm, address, ptep, pte);
3140 			pages++;
3141 		}
3142 		spin_unlock(ptl);
3143 	}
3144 	/*
3145 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3146 	 * may have cleared our pud entry and done put_page on the page table:
3147 	 * once we release i_mmap_mutex, another task can do the final put_page
3148 	 * and that page table be reused and filled with junk.
3149 	 */
3150 	flush_tlb_range(vma, start, end);
3151 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3152 
3153 	return pages << h->order;
3154 }
3155 
3156 int hugetlb_reserve_pages(struct inode *inode,
3157 					long from, long to,
3158 					struct vm_area_struct *vma,
3159 					vm_flags_t vm_flags)
3160 {
3161 	long ret, chg;
3162 	struct hstate *h = hstate_inode(inode);
3163 	struct hugepage_subpool *spool = subpool_inode(inode);
3164 
3165 	/*
3166 	 * Only apply hugepage reservation if asked. At fault time, an
3167 	 * attempt will be made for VM_NORESERVE to allocate a page
3168 	 * without using reserves
3169 	 */
3170 	if (vm_flags & VM_NORESERVE)
3171 		return 0;
3172 
3173 	/*
3174 	 * Shared mappings base their reservation on the number of pages that
3175 	 * are already allocated on behalf of the file. Private mappings need
3176 	 * to reserve the full area even if read-only as mprotect() may be
3177 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3178 	 */
3179 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3180 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3181 	else {
3182 		struct resv_map *resv_map = resv_map_alloc();
3183 		if (!resv_map)
3184 			return -ENOMEM;
3185 
3186 		chg = to - from;
3187 
3188 		set_vma_resv_map(vma, resv_map);
3189 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3190 	}
3191 
3192 	if (chg < 0) {
3193 		ret = chg;
3194 		goto out_err;
3195 	}
3196 
3197 	/* There must be enough pages in the subpool for the mapping */
3198 	if (hugepage_subpool_get_pages(spool, chg)) {
3199 		ret = -ENOSPC;
3200 		goto out_err;
3201 	}
3202 
3203 	/*
3204 	 * Check enough hugepages are available for the reservation.
3205 	 * Hand the pages back to the subpool if there are not
3206 	 */
3207 	ret = hugetlb_acct_memory(h, chg);
3208 	if (ret < 0) {
3209 		hugepage_subpool_put_pages(spool, chg);
3210 		goto out_err;
3211 	}
3212 
3213 	/*
3214 	 * Account for the reservations made. Shared mappings record regions
3215 	 * that have reservations as they are shared by multiple VMAs.
3216 	 * When the last VMA disappears, the region map says how much
3217 	 * the reservation was and the page cache tells how much of
3218 	 * the reservation was consumed. Private mappings are per-VMA and
3219 	 * only the consumed reservations are tracked. When the VMA
3220 	 * disappears, the original reservation is the VMA size and the
3221 	 * consumed reservations are stored in the map. Hence, nothing
3222 	 * else has to be done for private mappings here
3223 	 */
3224 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3225 		region_add(&inode->i_mapping->private_list, from, to);
3226 	return 0;
3227 out_err:
3228 	if (vma)
3229 		resv_map_put(vma);
3230 	return ret;
3231 }
3232 
3233 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3234 {
3235 	struct hstate *h = hstate_inode(inode);
3236 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3237 	struct hugepage_subpool *spool = subpool_inode(inode);
3238 
3239 	spin_lock(&inode->i_lock);
3240 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3241 	spin_unlock(&inode->i_lock);
3242 
3243 	hugepage_subpool_put_pages(spool, (chg - freed));
3244 	hugetlb_acct_memory(h, -(chg - freed));
3245 }
3246 
3247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3248 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3249 				struct vm_area_struct *vma,
3250 				unsigned long addr, pgoff_t idx)
3251 {
3252 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3253 				svma->vm_start;
3254 	unsigned long sbase = saddr & PUD_MASK;
3255 	unsigned long s_end = sbase + PUD_SIZE;
3256 
3257 	/* Allow segments to share if only one is marked locked */
3258 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3259 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3260 
3261 	/*
3262 	 * match the virtual addresses, permission and the alignment of the
3263 	 * page table page.
3264 	 */
3265 	if (pmd_index(addr) != pmd_index(saddr) ||
3266 	    vm_flags != svm_flags ||
3267 	    sbase < svma->vm_start || svma->vm_end < s_end)
3268 		return 0;
3269 
3270 	return saddr;
3271 }
3272 
3273 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3274 {
3275 	unsigned long base = addr & PUD_MASK;
3276 	unsigned long end = base + PUD_SIZE;
3277 
3278 	/*
3279 	 * check on proper vm_flags and page table alignment
3280 	 */
3281 	if (vma->vm_flags & VM_MAYSHARE &&
3282 	    vma->vm_start <= base && end <= vma->vm_end)
3283 		return 1;
3284 	return 0;
3285 }
3286 
3287 /*
3288  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3289  * and returns the corresponding pte. While this is not necessary for the
3290  * !shared pmd case because we can allocate the pmd later as well, it makes the
3291  * code much cleaner. pmd allocation is essential for the shared case because
3292  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3293  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3294  * bad pmd for sharing.
3295  */
3296 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3297 {
3298 	struct vm_area_struct *vma = find_vma(mm, addr);
3299 	struct address_space *mapping = vma->vm_file->f_mapping;
3300 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3301 			vma->vm_pgoff;
3302 	struct vm_area_struct *svma;
3303 	unsigned long saddr;
3304 	pte_t *spte = NULL;
3305 	pte_t *pte;
3306 	spinlock_t *ptl;
3307 
3308 	if (!vma_shareable(vma, addr))
3309 		return (pte_t *)pmd_alloc(mm, pud, addr);
3310 
3311 	mutex_lock(&mapping->i_mmap_mutex);
3312 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3313 		if (svma == vma)
3314 			continue;
3315 
3316 		saddr = page_table_shareable(svma, vma, addr, idx);
3317 		if (saddr) {
3318 			spte = huge_pte_offset(svma->vm_mm, saddr);
3319 			if (spte) {
3320 				get_page(virt_to_page(spte));
3321 				break;
3322 			}
3323 		}
3324 	}
3325 
3326 	if (!spte)
3327 		goto out;
3328 
3329 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3330 	spin_lock(ptl);
3331 	if (pud_none(*pud))
3332 		pud_populate(mm, pud,
3333 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3334 	else
3335 		put_page(virt_to_page(spte));
3336 	spin_unlock(ptl);
3337 out:
3338 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3339 	mutex_unlock(&mapping->i_mmap_mutex);
3340 	return pte;
3341 }
3342 
3343 /*
3344  * unmap huge page backed by shared pte.
3345  *
3346  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3347  * indicated by page_count > 1, unmap is achieved by clearing pud and
3348  * decrementing the ref count. If count == 1, the pte page is not shared.
3349  *
3350  * called with page table lock held.
3351  *
3352  * returns: 1 successfully unmapped a shared pte page
3353  *	    0 the underlying pte page is not shared, or it is the last user
3354  */
3355 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3356 {
3357 	pgd_t *pgd = pgd_offset(mm, *addr);
3358 	pud_t *pud = pud_offset(pgd, *addr);
3359 
3360 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3361 	if (page_count(virt_to_page(ptep)) == 1)
3362 		return 0;
3363 
3364 	pud_clear(pud);
3365 	put_page(virt_to_page(ptep));
3366 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3367 	return 1;
3368 }
3369 #define want_pmd_share()	(1)
3370 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3371 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3372 {
3373 	return NULL;
3374 }
3375 #define want_pmd_share()	(0)
3376 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3377 
3378 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3379 pte_t *huge_pte_alloc(struct mm_struct *mm,
3380 			unsigned long addr, unsigned long sz)
3381 {
3382 	pgd_t *pgd;
3383 	pud_t *pud;
3384 	pte_t *pte = NULL;
3385 
3386 	pgd = pgd_offset(mm, addr);
3387 	pud = pud_alloc(mm, pgd, addr);
3388 	if (pud) {
3389 		if (sz == PUD_SIZE) {
3390 			pte = (pte_t *)pud;
3391 		} else {
3392 			BUG_ON(sz != PMD_SIZE);
3393 			if (want_pmd_share() && pud_none(*pud))
3394 				pte = huge_pmd_share(mm, addr, pud);
3395 			else
3396 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3397 		}
3398 	}
3399 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3400 
3401 	return pte;
3402 }
3403 
3404 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3405 {
3406 	pgd_t *pgd;
3407 	pud_t *pud;
3408 	pmd_t *pmd = NULL;
3409 
3410 	pgd = pgd_offset(mm, addr);
3411 	if (pgd_present(*pgd)) {
3412 		pud = pud_offset(pgd, addr);
3413 		if (pud_present(*pud)) {
3414 			if (pud_huge(*pud))
3415 				return (pte_t *)pud;
3416 			pmd = pmd_offset(pud, addr);
3417 		}
3418 	}
3419 	return (pte_t *) pmd;
3420 }
3421 
3422 struct page *
3423 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3424 		pmd_t *pmd, int write)
3425 {
3426 	struct page *page;
3427 
3428 	page = pte_page(*(pte_t *)pmd);
3429 	if (page)
3430 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3431 	return page;
3432 }
3433 
3434 struct page *
3435 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3436 		pud_t *pud, int write)
3437 {
3438 	struct page *page;
3439 
3440 	page = pte_page(*(pte_t *)pud);
3441 	if (page)
3442 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3443 	return page;
3444 }
3445 
3446 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3447 
3448 /* Can be overriden by architectures */
3449 __attribute__((weak)) struct page *
3450 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3451 	       pud_t *pud, int write)
3452 {
3453 	BUG();
3454 	return NULL;
3455 }
3456 
3457 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3458 
3459 #ifdef CONFIG_MEMORY_FAILURE
3460 
3461 /* Should be called in hugetlb_lock */
3462 static int is_hugepage_on_freelist(struct page *hpage)
3463 {
3464 	struct page *page;
3465 	struct page *tmp;
3466 	struct hstate *h = page_hstate(hpage);
3467 	int nid = page_to_nid(hpage);
3468 
3469 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3470 		if (page == hpage)
3471 			return 1;
3472 	return 0;
3473 }
3474 
3475 /*
3476  * This function is called from memory failure code.
3477  * Assume the caller holds page lock of the head page.
3478  */
3479 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3480 {
3481 	struct hstate *h = page_hstate(hpage);
3482 	int nid = page_to_nid(hpage);
3483 	int ret = -EBUSY;
3484 
3485 	spin_lock(&hugetlb_lock);
3486 	if (is_hugepage_on_freelist(hpage)) {
3487 		/*
3488 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3489 		 * but dangling hpage->lru can trigger list-debug warnings
3490 		 * (this happens when we call unpoison_memory() on it),
3491 		 * so let it point to itself with list_del_init().
3492 		 */
3493 		list_del_init(&hpage->lru);
3494 		set_page_refcounted(hpage);
3495 		h->free_huge_pages--;
3496 		h->free_huge_pages_node[nid]--;
3497 		ret = 0;
3498 	}
3499 	spin_unlock(&hugetlb_lock);
3500 	return ret;
3501 }
3502 #endif
3503 
3504 bool isolate_huge_page(struct page *page, struct list_head *list)
3505 {
3506 	VM_BUG_ON_PAGE(!PageHead(page), page);
3507 	if (!get_page_unless_zero(page))
3508 		return false;
3509 	spin_lock(&hugetlb_lock);
3510 	list_move_tail(&page->lru, list);
3511 	spin_unlock(&hugetlb_lock);
3512 	return true;
3513 }
3514 
3515 void putback_active_hugepage(struct page *page)
3516 {
3517 	VM_BUG_ON_PAGE(!PageHead(page), page);
3518 	spin_lock(&hugetlb_lock);
3519 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3520 	spin_unlock(&hugetlb_lock);
3521 	put_page(page);
3522 }
3523 
3524 bool is_hugepage_active(struct page *page)
3525 {
3526 	VM_BUG_ON_PAGE(!PageHuge(page), page);
3527 	/*
3528 	 * This function can be called for a tail page because the caller,
3529 	 * scan_movable_pages, scans through a given pfn-range which typically
3530 	 * covers one memory block. In systems using gigantic hugepage (1GB
3531 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3532 	 * support migrating such large hugepages for now, so return false
3533 	 * when called for tail pages.
3534 	 */
3535 	if (PageTail(page))
3536 		return false;
3537 	/*
3538 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3539 	 * so we should return false for them.
3540 	 */
3541 	if (unlikely(PageHWPoison(page)))
3542 		return false;
3543 	return page_count(page) > 0;
3544 }
3545