1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 30 #include <linux/io.h> 31 #include <linux/hugetlb.h> 32 #include <linux/hugetlb_cgroup.h> 33 #include <linux/node.h> 34 #include "internal.h" 35 36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 37 unsigned long hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 43 __initdata LIST_HEAD(huge_boot_pages); 44 45 /* for command line parsing */ 46 static struct hstate * __initdata parsed_hstate; 47 static unsigned long __initdata default_hstate_max_huge_pages; 48 static unsigned long __initdata default_hstate_size; 49 50 /* 51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 52 * free_huge_pages, and surplus_huge_pages. 53 */ 54 DEFINE_SPINLOCK(hugetlb_lock); 55 56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 57 { 58 bool free = (spool->count == 0) && (spool->used_hpages == 0); 59 60 spin_unlock(&spool->lock); 61 62 /* If no pages are used, and no other handles to the subpool 63 * remain, free the subpool the subpool remain */ 64 if (free) 65 kfree(spool); 66 } 67 68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 69 { 70 struct hugepage_subpool *spool; 71 72 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 73 if (!spool) 74 return NULL; 75 76 spin_lock_init(&spool->lock); 77 spool->count = 1; 78 spool->max_hpages = nr_blocks; 79 spool->used_hpages = 0; 80 81 return spool; 82 } 83 84 void hugepage_put_subpool(struct hugepage_subpool *spool) 85 { 86 spin_lock(&spool->lock); 87 BUG_ON(!spool->count); 88 spool->count--; 89 unlock_or_release_subpool(spool); 90 } 91 92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 93 long delta) 94 { 95 int ret = 0; 96 97 if (!spool) 98 return 0; 99 100 spin_lock(&spool->lock); 101 if ((spool->used_hpages + delta) <= spool->max_hpages) { 102 spool->used_hpages += delta; 103 } else { 104 ret = -ENOMEM; 105 } 106 spin_unlock(&spool->lock); 107 108 return ret; 109 } 110 111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 112 long delta) 113 { 114 if (!spool) 115 return; 116 117 spin_lock(&spool->lock); 118 spool->used_hpages -= delta; 119 /* If hugetlbfs_put_super couldn't free spool due to 120 * an outstanding quota reference, free it now. */ 121 unlock_or_release_subpool(spool); 122 } 123 124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 125 { 126 return HUGETLBFS_SB(inode->i_sb)->spool; 127 } 128 129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 130 { 131 return subpool_inode(file_inode(vma->vm_file)); 132 } 133 134 /* 135 * Region tracking -- allows tracking of reservations and instantiated pages 136 * across the pages in a mapping. 137 * 138 * The region data structures are protected by a combination of the mmap_sem 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller 140 * must either hold the mmap_sem for write, or the mmap_sem for read and 141 * the hugetlb_instantiation_mutex: 142 * 143 * down_write(&mm->mmap_sem); 144 * or 145 * down_read(&mm->mmap_sem); 146 * mutex_lock(&hugetlb_instantiation_mutex); 147 */ 148 struct file_region { 149 struct list_head link; 150 long from; 151 long to; 152 }; 153 154 static long region_add(struct list_head *head, long f, long t) 155 { 156 struct file_region *rg, *nrg, *trg; 157 158 /* Locate the region we are either in or before. */ 159 list_for_each_entry(rg, head, link) 160 if (f <= rg->to) 161 break; 162 163 /* Round our left edge to the current segment if it encloses us. */ 164 if (f > rg->from) 165 f = rg->from; 166 167 /* Check for and consume any regions we now overlap with. */ 168 nrg = rg; 169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 170 if (&rg->link == head) 171 break; 172 if (rg->from > t) 173 break; 174 175 /* If this area reaches higher then extend our area to 176 * include it completely. If this is not the first area 177 * which we intend to reuse, free it. */ 178 if (rg->to > t) 179 t = rg->to; 180 if (rg != nrg) { 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 } 185 nrg->from = f; 186 nrg->to = t; 187 return 0; 188 } 189 190 static long region_chg(struct list_head *head, long f, long t) 191 { 192 struct file_region *rg, *nrg; 193 long chg = 0; 194 195 /* Locate the region we are before or in. */ 196 list_for_each_entry(rg, head, link) 197 if (f <= rg->to) 198 break; 199 200 /* If we are below the current region then a new region is required. 201 * Subtle, allocate a new region at the position but make it zero 202 * size such that we can guarantee to record the reservation. */ 203 if (&rg->link == head || t < rg->from) { 204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 205 if (!nrg) 206 return -ENOMEM; 207 nrg->from = f; 208 nrg->to = f; 209 INIT_LIST_HEAD(&nrg->link); 210 list_add(&nrg->link, rg->link.prev); 211 212 return t - f; 213 } 214 215 /* Round our left edge to the current segment if it encloses us. */ 216 if (f > rg->from) 217 f = rg->from; 218 chg = t - f; 219 220 /* Check for and consume any regions we now overlap with. */ 221 list_for_each_entry(rg, rg->link.prev, link) { 222 if (&rg->link == head) 223 break; 224 if (rg->from > t) 225 return chg; 226 227 /* We overlap with this area, if it extends further than 228 * us then we must extend ourselves. Account for its 229 * existing reservation. */ 230 if (rg->to > t) { 231 chg += rg->to - t; 232 t = rg->to; 233 } 234 chg -= rg->to - rg->from; 235 } 236 return chg; 237 } 238 239 static long region_truncate(struct list_head *head, long end) 240 { 241 struct file_region *rg, *trg; 242 long chg = 0; 243 244 /* Locate the region we are either in or before. */ 245 list_for_each_entry(rg, head, link) 246 if (end <= rg->to) 247 break; 248 if (&rg->link == head) 249 return 0; 250 251 /* If we are in the middle of a region then adjust it. */ 252 if (end > rg->from) { 253 chg = rg->to - end; 254 rg->to = end; 255 rg = list_entry(rg->link.next, typeof(*rg), link); 256 } 257 258 /* Drop any remaining regions. */ 259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 260 if (&rg->link == head) 261 break; 262 chg += rg->to - rg->from; 263 list_del(&rg->link); 264 kfree(rg); 265 } 266 return chg; 267 } 268 269 static long region_count(struct list_head *head, long f, long t) 270 { 271 struct file_region *rg; 272 long chg = 0; 273 274 /* Locate each segment we overlap with, and count that overlap. */ 275 list_for_each_entry(rg, head, link) { 276 long seg_from; 277 long seg_to; 278 279 if (rg->to <= f) 280 continue; 281 if (rg->from >= t) 282 break; 283 284 seg_from = max(rg->from, f); 285 seg_to = min(rg->to, t); 286 287 chg += seg_to - seg_from; 288 } 289 290 return chg; 291 } 292 293 /* 294 * Convert the address within this vma to the page offset within 295 * the mapping, in pagecache page units; huge pages here. 296 */ 297 static pgoff_t vma_hugecache_offset(struct hstate *h, 298 struct vm_area_struct *vma, unsigned long address) 299 { 300 return ((address - vma->vm_start) >> huge_page_shift(h)) + 301 (vma->vm_pgoff >> huge_page_order(h)); 302 } 303 304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 305 unsigned long address) 306 { 307 return vma_hugecache_offset(hstate_vma(vma), vma, address); 308 } 309 310 /* 311 * Return the size of the pages allocated when backing a VMA. In the majority 312 * cases this will be same size as used by the page table entries. 313 */ 314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 315 { 316 struct hstate *hstate; 317 318 if (!is_vm_hugetlb_page(vma)) 319 return PAGE_SIZE; 320 321 hstate = hstate_vma(vma); 322 323 return 1UL << huge_page_shift(hstate); 324 } 325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 326 327 /* 328 * Return the page size being used by the MMU to back a VMA. In the majority 329 * of cases, the page size used by the kernel matches the MMU size. On 330 * architectures where it differs, an architecture-specific version of this 331 * function is required. 332 */ 333 #ifndef vma_mmu_pagesize 334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 335 { 336 return vma_kernel_pagesize(vma); 337 } 338 #endif 339 340 /* 341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 342 * bits of the reservation map pointer, which are always clear due to 343 * alignment. 344 */ 345 #define HPAGE_RESV_OWNER (1UL << 0) 346 #define HPAGE_RESV_UNMAPPED (1UL << 1) 347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 348 349 /* 350 * These helpers are used to track how many pages are reserved for 351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 352 * is guaranteed to have their future faults succeed. 353 * 354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 355 * the reserve counters are updated with the hugetlb_lock held. It is safe 356 * to reset the VMA at fork() time as it is not in use yet and there is no 357 * chance of the global counters getting corrupted as a result of the values. 358 * 359 * The private mapping reservation is represented in a subtly different 360 * manner to a shared mapping. A shared mapping has a region map associated 361 * with the underlying file, this region map represents the backing file 362 * pages which have ever had a reservation assigned which this persists even 363 * after the page is instantiated. A private mapping has a region map 364 * associated with the original mmap which is attached to all VMAs which 365 * reference it, this region map represents those offsets which have consumed 366 * reservation ie. where pages have been instantiated. 367 */ 368 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 369 { 370 return (unsigned long)vma->vm_private_data; 371 } 372 373 static void set_vma_private_data(struct vm_area_struct *vma, 374 unsigned long value) 375 { 376 vma->vm_private_data = (void *)value; 377 } 378 379 struct resv_map { 380 struct kref refs; 381 struct list_head regions; 382 }; 383 384 static struct resv_map *resv_map_alloc(void) 385 { 386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 387 if (!resv_map) 388 return NULL; 389 390 kref_init(&resv_map->refs); 391 INIT_LIST_HEAD(&resv_map->regions); 392 393 return resv_map; 394 } 395 396 static void resv_map_release(struct kref *ref) 397 { 398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 399 400 /* Clear out any active regions before we release the map. */ 401 region_truncate(&resv_map->regions, 0); 402 kfree(resv_map); 403 } 404 405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 406 { 407 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 408 if (!(vma->vm_flags & VM_MAYSHARE)) 409 return (struct resv_map *)(get_vma_private_data(vma) & 410 ~HPAGE_RESV_MASK); 411 return NULL; 412 } 413 414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 415 { 416 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 418 419 set_vma_private_data(vma, (get_vma_private_data(vma) & 420 HPAGE_RESV_MASK) | (unsigned long)map); 421 } 422 423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 424 { 425 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 427 428 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 429 } 430 431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 432 { 433 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 434 435 return (get_vma_private_data(vma) & flag) != 0; 436 } 437 438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 440 { 441 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 442 if (!(vma->vm_flags & VM_MAYSHARE)) 443 vma->vm_private_data = (void *)0; 444 } 445 446 /* Returns true if the VMA has associated reserve pages */ 447 static int vma_has_reserves(struct vm_area_struct *vma, long chg) 448 { 449 if (vma->vm_flags & VM_NORESERVE) { 450 /* 451 * This address is already reserved by other process(chg == 0), 452 * so, we should decrement reserved count. Without decrementing, 453 * reserve count remains after releasing inode, because this 454 * allocated page will go into page cache and is regarded as 455 * coming from reserved pool in releasing step. Currently, we 456 * don't have any other solution to deal with this situation 457 * properly, so add work-around here. 458 */ 459 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 460 return 1; 461 else 462 return 0; 463 } 464 465 /* Shared mappings always use reserves */ 466 if (vma->vm_flags & VM_MAYSHARE) 467 return 1; 468 469 /* 470 * Only the process that called mmap() has reserves for 471 * private mappings. 472 */ 473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 474 return 1; 475 476 return 0; 477 } 478 479 static void enqueue_huge_page(struct hstate *h, struct page *page) 480 { 481 int nid = page_to_nid(page); 482 list_move(&page->lru, &h->hugepage_freelists[nid]); 483 h->free_huge_pages++; 484 h->free_huge_pages_node[nid]++; 485 } 486 487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 488 { 489 struct page *page; 490 491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 492 if (!is_migrate_isolate_page(page)) 493 break; 494 /* 495 * if 'non-isolated free hugepage' not found on the list, 496 * the allocation fails. 497 */ 498 if (&h->hugepage_freelists[nid] == &page->lru) 499 return NULL; 500 list_move(&page->lru, &h->hugepage_activelist); 501 set_page_refcounted(page); 502 h->free_huge_pages--; 503 h->free_huge_pages_node[nid]--; 504 return page; 505 } 506 507 /* Movability of hugepages depends on migration support. */ 508 static inline gfp_t htlb_alloc_mask(struct hstate *h) 509 { 510 if (hugepages_treat_as_movable || hugepage_migration_support(h)) 511 return GFP_HIGHUSER_MOVABLE; 512 else 513 return GFP_HIGHUSER; 514 } 515 516 static struct page *dequeue_huge_page_vma(struct hstate *h, 517 struct vm_area_struct *vma, 518 unsigned long address, int avoid_reserve, 519 long chg) 520 { 521 struct page *page = NULL; 522 struct mempolicy *mpol; 523 nodemask_t *nodemask; 524 struct zonelist *zonelist; 525 struct zone *zone; 526 struct zoneref *z; 527 unsigned int cpuset_mems_cookie; 528 529 /* 530 * A child process with MAP_PRIVATE mappings created by their parent 531 * have no page reserves. This check ensures that reservations are 532 * not "stolen". The child may still get SIGKILLed 533 */ 534 if (!vma_has_reserves(vma, chg) && 535 h->free_huge_pages - h->resv_huge_pages == 0) 536 goto err; 537 538 /* If reserves cannot be used, ensure enough pages are in the pool */ 539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 540 goto err; 541 542 retry_cpuset: 543 cpuset_mems_cookie = get_mems_allowed(); 544 zonelist = huge_zonelist(vma, address, 545 htlb_alloc_mask(h), &mpol, &nodemask); 546 547 for_each_zone_zonelist_nodemask(zone, z, zonelist, 548 MAX_NR_ZONES - 1, nodemask) { 549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { 550 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 551 if (page) { 552 if (avoid_reserve) 553 break; 554 if (!vma_has_reserves(vma, chg)) 555 break; 556 557 SetPagePrivate(page); 558 h->resv_huge_pages--; 559 break; 560 } 561 } 562 } 563 564 mpol_cond_put(mpol); 565 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 566 goto retry_cpuset; 567 return page; 568 569 err: 570 return NULL; 571 } 572 573 static void update_and_free_page(struct hstate *h, struct page *page) 574 { 575 int i; 576 577 VM_BUG_ON(h->order >= MAX_ORDER); 578 579 h->nr_huge_pages--; 580 h->nr_huge_pages_node[page_to_nid(page)]--; 581 for (i = 0; i < pages_per_huge_page(h); i++) { 582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 583 1 << PG_referenced | 1 << PG_dirty | 584 1 << PG_active | 1 << PG_reserved | 585 1 << PG_private | 1 << PG_writeback); 586 } 587 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 588 set_compound_page_dtor(page, NULL); 589 set_page_refcounted(page); 590 arch_release_hugepage(page); 591 __free_pages(page, huge_page_order(h)); 592 } 593 594 struct hstate *size_to_hstate(unsigned long size) 595 { 596 struct hstate *h; 597 598 for_each_hstate(h) { 599 if (huge_page_size(h) == size) 600 return h; 601 } 602 return NULL; 603 } 604 605 static void free_huge_page(struct page *page) 606 { 607 /* 608 * Can't pass hstate in here because it is called from the 609 * compound page destructor. 610 */ 611 struct hstate *h = page_hstate(page); 612 int nid = page_to_nid(page); 613 struct hugepage_subpool *spool = 614 (struct hugepage_subpool *)page_private(page); 615 bool restore_reserve; 616 617 set_page_private(page, 0); 618 page->mapping = NULL; 619 BUG_ON(page_count(page)); 620 BUG_ON(page_mapcount(page)); 621 restore_reserve = PagePrivate(page); 622 ClearPagePrivate(page); 623 624 spin_lock(&hugetlb_lock); 625 hugetlb_cgroup_uncharge_page(hstate_index(h), 626 pages_per_huge_page(h), page); 627 if (restore_reserve) 628 h->resv_huge_pages++; 629 630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 631 /* remove the page from active list */ 632 list_del(&page->lru); 633 update_and_free_page(h, page); 634 h->surplus_huge_pages--; 635 h->surplus_huge_pages_node[nid]--; 636 } else { 637 arch_clear_hugepage_flags(page); 638 enqueue_huge_page(h, page); 639 } 640 spin_unlock(&hugetlb_lock); 641 hugepage_subpool_put_pages(spool, 1); 642 } 643 644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 645 { 646 INIT_LIST_HEAD(&page->lru); 647 set_compound_page_dtor(page, free_huge_page); 648 spin_lock(&hugetlb_lock); 649 set_hugetlb_cgroup(page, NULL); 650 h->nr_huge_pages++; 651 h->nr_huge_pages_node[nid]++; 652 spin_unlock(&hugetlb_lock); 653 put_page(page); /* free it into the hugepage allocator */ 654 } 655 656 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 657 { 658 int i; 659 int nr_pages = 1 << order; 660 struct page *p = page + 1; 661 662 /* we rely on prep_new_huge_page to set the destructor */ 663 set_compound_order(page, order); 664 __SetPageHead(page); 665 __ClearPageReserved(page); 666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 667 __SetPageTail(p); 668 /* 669 * For gigantic hugepages allocated through bootmem at 670 * boot, it's safer to be consistent with the not-gigantic 671 * hugepages and clear the PG_reserved bit from all tail pages 672 * too. Otherwse drivers using get_user_pages() to access tail 673 * pages may get the reference counting wrong if they see 674 * PG_reserved set on a tail page (despite the head page not 675 * having PG_reserved set). Enforcing this consistency between 676 * head and tail pages allows drivers to optimize away a check 677 * on the head page when they need know if put_page() is needed 678 * after get_user_pages(). 679 */ 680 __ClearPageReserved(p); 681 set_page_count(p, 0); 682 p->first_page = page; 683 } 684 } 685 686 /* 687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 688 * transparent huge pages. See the PageTransHuge() documentation for more 689 * details. 690 */ 691 int PageHuge(struct page *page) 692 { 693 if (!PageCompound(page)) 694 return 0; 695 696 page = compound_head(page); 697 return get_compound_page_dtor(page) == free_huge_page; 698 } 699 EXPORT_SYMBOL_GPL(PageHuge); 700 701 /* 702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 703 * normal or transparent huge pages. 704 */ 705 int PageHeadHuge(struct page *page_head) 706 { 707 if (!PageHead(page_head)) 708 return 0; 709 710 return get_compound_page_dtor(page_head) == free_huge_page; 711 } 712 713 pgoff_t __basepage_index(struct page *page) 714 { 715 struct page *page_head = compound_head(page); 716 pgoff_t index = page_index(page_head); 717 unsigned long compound_idx; 718 719 if (!PageHuge(page_head)) 720 return page_index(page); 721 722 if (compound_order(page_head) >= MAX_ORDER) 723 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 724 else 725 compound_idx = page - page_head; 726 727 return (index << compound_order(page_head)) + compound_idx; 728 } 729 730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 731 { 732 struct page *page; 733 734 if (h->order >= MAX_ORDER) 735 return NULL; 736 737 page = alloc_pages_exact_node(nid, 738 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 739 __GFP_REPEAT|__GFP_NOWARN, 740 huge_page_order(h)); 741 if (page) { 742 if (arch_prepare_hugepage(page)) { 743 __free_pages(page, huge_page_order(h)); 744 return NULL; 745 } 746 prep_new_huge_page(h, page, nid); 747 } 748 749 return page; 750 } 751 752 /* 753 * common helper functions for hstate_next_node_to_{alloc|free}. 754 * We may have allocated or freed a huge page based on a different 755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 756 * be outside of *nodes_allowed. Ensure that we use an allowed 757 * node for alloc or free. 758 */ 759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 760 { 761 nid = next_node(nid, *nodes_allowed); 762 if (nid == MAX_NUMNODES) 763 nid = first_node(*nodes_allowed); 764 VM_BUG_ON(nid >= MAX_NUMNODES); 765 766 return nid; 767 } 768 769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 770 { 771 if (!node_isset(nid, *nodes_allowed)) 772 nid = next_node_allowed(nid, nodes_allowed); 773 return nid; 774 } 775 776 /* 777 * returns the previously saved node ["this node"] from which to 778 * allocate a persistent huge page for the pool and advance the 779 * next node from which to allocate, handling wrap at end of node 780 * mask. 781 */ 782 static int hstate_next_node_to_alloc(struct hstate *h, 783 nodemask_t *nodes_allowed) 784 { 785 int nid; 786 787 VM_BUG_ON(!nodes_allowed); 788 789 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 790 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 791 792 return nid; 793 } 794 795 /* 796 * helper for free_pool_huge_page() - return the previously saved 797 * node ["this node"] from which to free a huge page. Advance the 798 * next node id whether or not we find a free huge page to free so 799 * that the next attempt to free addresses the next node. 800 */ 801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 802 { 803 int nid; 804 805 VM_BUG_ON(!nodes_allowed); 806 807 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 808 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 809 810 return nid; 811 } 812 813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 814 for (nr_nodes = nodes_weight(*mask); \ 815 nr_nodes > 0 && \ 816 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 817 nr_nodes--) 818 819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 820 for (nr_nodes = nodes_weight(*mask); \ 821 nr_nodes > 0 && \ 822 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 823 nr_nodes--) 824 825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 826 { 827 struct page *page; 828 int nr_nodes, node; 829 int ret = 0; 830 831 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 832 page = alloc_fresh_huge_page_node(h, node); 833 if (page) { 834 ret = 1; 835 break; 836 } 837 } 838 839 if (ret) 840 count_vm_event(HTLB_BUDDY_PGALLOC); 841 else 842 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 843 844 return ret; 845 } 846 847 /* 848 * Free huge page from pool from next node to free. 849 * Attempt to keep persistent huge pages more or less 850 * balanced over allowed nodes. 851 * Called with hugetlb_lock locked. 852 */ 853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 854 bool acct_surplus) 855 { 856 int nr_nodes, node; 857 int ret = 0; 858 859 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 860 /* 861 * If we're returning unused surplus pages, only examine 862 * nodes with surplus pages. 863 */ 864 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 865 !list_empty(&h->hugepage_freelists[node])) { 866 struct page *page = 867 list_entry(h->hugepage_freelists[node].next, 868 struct page, lru); 869 list_del(&page->lru); 870 h->free_huge_pages--; 871 h->free_huge_pages_node[node]--; 872 if (acct_surplus) { 873 h->surplus_huge_pages--; 874 h->surplus_huge_pages_node[node]--; 875 } 876 update_and_free_page(h, page); 877 ret = 1; 878 break; 879 } 880 } 881 882 return ret; 883 } 884 885 /* 886 * Dissolve a given free hugepage into free buddy pages. This function does 887 * nothing for in-use (including surplus) hugepages. 888 */ 889 static void dissolve_free_huge_page(struct page *page) 890 { 891 spin_lock(&hugetlb_lock); 892 if (PageHuge(page) && !page_count(page)) { 893 struct hstate *h = page_hstate(page); 894 int nid = page_to_nid(page); 895 list_del(&page->lru); 896 h->free_huge_pages--; 897 h->free_huge_pages_node[nid]--; 898 update_and_free_page(h, page); 899 } 900 spin_unlock(&hugetlb_lock); 901 } 902 903 /* 904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 905 * make specified memory blocks removable from the system. 906 * Note that start_pfn should aligned with (minimum) hugepage size. 907 */ 908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 909 { 910 unsigned int order = 8 * sizeof(void *); 911 unsigned long pfn; 912 struct hstate *h; 913 914 /* Set scan step to minimum hugepage size */ 915 for_each_hstate(h) 916 if (order > huge_page_order(h)) 917 order = huge_page_order(h); 918 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); 919 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) 920 dissolve_free_huge_page(pfn_to_page(pfn)); 921 } 922 923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 924 { 925 struct page *page; 926 unsigned int r_nid; 927 928 if (h->order >= MAX_ORDER) 929 return NULL; 930 931 /* 932 * Assume we will successfully allocate the surplus page to 933 * prevent racing processes from causing the surplus to exceed 934 * overcommit 935 * 936 * This however introduces a different race, where a process B 937 * tries to grow the static hugepage pool while alloc_pages() is 938 * called by process A. B will only examine the per-node 939 * counters in determining if surplus huge pages can be 940 * converted to normal huge pages in adjust_pool_surplus(). A 941 * won't be able to increment the per-node counter, until the 942 * lock is dropped by B, but B doesn't drop hugetlb_lock until 943 * no more huge pages can be converted from surplus to normal 944 * state (and doesn't try to convert again). Thus, we have a 945 * case where a surplus huge page exists, the pool is grown, and 946 * the surplus huge page still exists after, even though it 947 * should just have been converted to a normal huge page. This 948 * does not leak memory, though, as the hugepage will be freed 949 * once it is out of use. It also does not allow the counters to 950 * go out of whack in adjust_pool_surplus() as we don't modify 951 * the node values until we've gotten the hugepage and only the 952 * per-node value is checked there. 953 */ 954 spin_lock(&hugetlb_lock); 955 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 956 spin_unlock(&hugetlb_lock); 957 return NULL; 958 } else { 959 h->nr_huge_pages++; 960 h->surplus_huge_pages++; 961 } 962 spin_unlock(&hugetlb_lock); 963 964 if (nid == NUMA_NO_NODE) 965 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 966 __GFP_REPEAT|__GFP_NOWARN, 967 huge_page_order(h)); 968 else 969 page = alloc_pages_exact_node(nid, 970 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 971 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 972 973 if (page && arch_prepare_hugepage(page)) { 974 __free_pages(page, huge_page_order(h)); 975 page = NULL; 976 } 977 978 spin_lock(&hugetlb_lock); 979 if (page) { 980 INIT_LIST_HEAD(&page->lru); 981 r_nid = page_to_nid(page); 982 set_compound_page_dtor(page, free_huge_page); 983 set_hugetlb_cgroup(page, NULL); 984 /* 985 * We incremented the global counters already 986 */ 987 h->nr_huge_pages_node[r_nid]++; 988 h->surplus_huge_pages_node[r_nid]++; 989 __count_vm_event(HTLB_BUDDY_PGALLOC); 990 } else { 991 h->nr_huge_pages--; 992 h->surplus_huge_pages--; 993 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 994 } 995 spin_unlock(&hugetlb_lock); 996 997 return page; 998 } 999 1000 /* 1001 * This allocation function is useful in the context where vma is irrelevant. 1002 * E.g. soft-offlining uses this function because it only cares physical 1003 * address of error page. 1004 */ 1005 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1006 { 1007 struct page *page = NULL; 1008 1009 spin_lock(&hugetlb_lock); 1010 if (h->free_huge_pages - h->resv_huge_pages > 0) 1011 page = dequeue_huge_page_node(h, nid); 1012 spin_unlock(&hugetlb_lock); 1013 1014 if (!page) 1015 page = alloc_buddy_huge_page(h, nid); 1016 1017 return page; 1018 } 1019 1020 /* 1021 * Increase the hugetlb pool such that it can accommodate a reservation 1022 * of size 'delta'. 1023 */ 1024 static int gather_surplus_pages(struct hstate *h, int delta) 1025 { 1026 struct list_head surplus_list; 1027 struct page *page, *tmp; 1028 int ret, i; 1029 int needed, allocated; 1030 bool alloc_ok = true; 1031 1032 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1033 if (needed <= 0) { 1034 h->resv_huge_pages += delta; 1035 return 0; 1036 } 1037 1038 allocated = 0; 1039 INIT_LIST_HEAD(&surplus_list); 1040 1041 ret = -ENOMEM; 1042 retry: 1043 spin_unlock(&hugetlb_lock); 1044 for (i = 0; i < needed; i++) { 1045 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1046 if (!page) { 1047 alloc_ok = false; 1048 break; 1049 } 1050 list_add(&page->lru, &surplus_list); 1051 } 1052 allocated += i; 1053 1054 /* 1055 * After retaking hugetlb_lock, we need to recalculate 'needed' 1056 * because either resv_huge_pages or free_huge_pages may have changed. 1057 */ 1058 spin_lock(&hugetlb_lock); 1059 needed = (h->resv_huge_pages + delta) - 1060 (h->free_huge_pages + allocated); 1061 if (needed > 0) { 1062 if (alloc_ok) 1063 goto retry; 1064 /* 1065 * We were not able to allocate enough pages to 1066 * satisfy the entire reservation so we free what 1067 * we've allocated so far. 1068 */ 1069 goto free; 1070 } 1071 /* 1072 * The surplus_list now contains _at_least_ the number of extra pages 1073 * needed to accommodate the reservation. Add the appropriate number 1074 * of pages to the hugetlb pool and free the extras back to the buddy 1075 * allocator. Commit the entire reservation here to prevent another 1076 * process from stealing the pages as they are added to the pool but 1077 * before they are reserved. 1078 */ 1079 needed += allocated; 1080 h->resv_huge_pages += delta; 1081 ret = 0; 1082 1083 /* Free the needed pages to the hugetlb pool */ 1084 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1085 if ((--needed) < 0) 1086 break; 1087 /* 1088 * This page is now managed by the hugetlb allocator and has 1089 * no users -- drop the buddy allocator's reference. 1090 */ 1091 put_page_testzero(page); 1092 VM_BUG_ON_PAGE(page_count(page), page); 1093 enqueue_huge_page(h, page); 1094 } 1095 free: 1096 spin_unlock(&hugetlb_lock); 1097 1098 /* Free unnecessary surplus pages to the buddy allocator */ 1099 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1100 put_page(page); 1101 spin_lock(&hugetlb_lock); 1102 1103 return ret; 1104 } 1105 1106 /* 1107 * When releasing a hugetlb pool reservation, any surplus pages that were 1108 * allocated to satisfy the reservation must be explicitly freed if they were 1109 * never used. 1110 * Called with hugetlb_lock held. 1111 */ 1112 static void return_unused_surplus_pages(struct hstate *h, 1113 unsigned long unused_resv_pages) 1114 { 1115 unsigned long nr_pages; 1116 1117 /* Uncommit the reservation */ 1118 h->resv_huge_pages -= unused_resv_pages; 1119 1120 /* Cannot return gigantic pages currently */ 1121 if (h->order >= MAX_ORDER) 1122 return; 1123 1124 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1125 1126 /* 1127 * We want to release as many surplus pages as possible, spread 1128 * evenly across all nodes with memory. Iterate across these nodes 1129 * until we can no longer free unreserved surplus pages. This occurs 1130 * when the nodes with surplus pages have no free pages. 1131 * free_pool_huge_page() will balance the the freed pages across the 1132 * on-line nodes with memory and will handle the hstate accounting. 1133 */ 1134 while (nr_pages--) { 1135 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1136 break; 1137 } 1138 } 1139 1140 /* 1141 * Determine if the huge page at addr within the vma has an associated 1142 * reservation. Where it does not we will need to logically increase 1143 * reservation and actually increase subpool usage before an allocation 1144 * can occur. Where any new reservation would be required the 1145 * reservation change is prepared, but not committed. Once the page 1146 * has been allocated from the subpool and instantiated the change should 1147 * be committed via vma_commit_reservation. No action is required on 1148 * failure. 1149 */ 1150 static long vma_needs_reservation(struct hstate *h, 1151 struct vm_area_struct *vma, unsigned long addr) 1152 { 1153 struct address_space *mapping = vma->vm_file->f_mapping; 1154 struct inode *inode = mapping->host; 1155 1156 if (vma->vm_flags & VM_MAYSHARE) { 1157 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1158 return region_chg(&inode->i_mapping->private_list, 1159 idx, idx + 1); 1160 1161 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1162 return 1; 1163 1164 } else { 1165 long err; 1166 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1167 struct resv_map *resv = vma_resv_map(vma); 1168 1169 err = region_chg(&resv->regions, idx, idx + 1); 1170 if (err < 0) 1171 return err; 1172 return 0; 1173 } 1174 } 1175 static void vma_commit_reservation(struct hstate *h, 1176 struct vm_area_struct *vma, unsigned long addr) 1177 { 1178 struct address_space *mapping = vma->vm_file->f_mapping; 1179 struct inode *inode = mapping->host; 1180 1181 if (vma->vm_flags & VM_MAYSHARE) { 1182 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1183 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1184 1185 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1186 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1187 struct resv_map *resv = vma_resv_map(vma); 1188 1189 /* Mark this page used in the map. */ 1190 region_add(&resv->regions, idx, idx + 1); 1191 } 1192 } 1193 1194 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1195 unsigned long addr, int avoid_reserve) 1196 { 1197 struct hugepage_subpool *spool = subpool_vma(vma); 1198 struct hstate *h = hstate_vma(vma); 1199 struct page *page; 1200 long chg; 1201 int ret, idx; 1202 struct hugetlb_cgroup *h_cg; 1203 1204 idx = hstate_index(h); 1205 /* 1206 * Processes that did not create the mapping will have no 1207 * reserves and will not have accounted against subpool 1208 * limit. Check that the subpool limit can be made before 1209 * satisfying the allocation MAP_NORESERVE mappings may also 1210 * need pages and subpool limit allocated allocated if no reserve 1211 * mapping overlaps. 1212 */ 1213 chg = vma_needs_reservation(h, vma, addr); 1214 if (chg < 0) 1215 return ERR_PTR(-ENOMEM); 1216 if (chg || avoid_reserve) 1217 if (hugepage_subpool_get_pages(spool, 1)) 1218 return ERR_PTR(-ENOSPC); 1219 1220 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1221 if (ret) { 1222 if (chg || avoid_reserve) 1223 hugepage_subpool_put_pages(spool, 1); 1224 return ERR_PTR(-ENOSPC); 1225 } 1226 spin_lock(&hugetlb_lock); 1227 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); 1228 if (!page) { 1229 spin_unlock(&hugetlb_lock); 1230 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1231 if (!page) { 1232 hugetlb_cgroup_uncharge_cgroup(idx, 1233 pages_per_huge_page(h), 1234 h_cg); 1235 if (chg || avoid_reserve) 1236 hugepage_subpool_put_pages(spool, 1); 1237 return ERR_PTR(-ENOSPC); 1238 } 1239 spin_lock(&hugetlb_lock); 1240 list_move(&page->lru, &h->hugepage_activelist); 1241 /* Fall through */ 1242 } 1243 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1244 spin_unlock(&hugetlb_lock); 1245 1246 set_page_private(page, (unsigned long)spool); 1247 1248 vma_commit_reservation(h, vma, addr); 1249 return page; 1250 } 1251 1252 /* 1253 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1254 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1255 * where no ERR_VALUE is expected to be returned. 1256 */ 1257 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1258 unsigned long addr, int avoid_reserve) 1259 { 1260 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1261 if (IS_ERR(page)) 1262 page = NULL; 1263 return page; 1264 } 1265 1266 int __weak alloc_bootmem_huge_page(struct hstate *h) 1267 { 1268 struct huge_bootmem_page *m; 1269 int nr_nodes, node; 1270 1271 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1272 void *addr; 1273 1274 addr = memblock_virt_alloc_try_nid_nopanic( 1275 huge_page_size(h), huge_page_size(h), 1276 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1277 if (addr) { 1278 /* 1279 * Use the beginning of the huge page to store the 1280 * huge_bootmem_page struct (until gather_bootmem 1281 * puts them into the mem_map). 1282 */ 1283 m = addr; 1284 goto found; 1285 } 1286 } 1287 return 0; 1288 1289 found: 1290 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1291 /* Put them into a private list first because mem_map is not up yet */ 1292 list_add(&m->list, &huge_boot_pages); 1293 m->hstate = h; 1294 return 1; 1295 } 1296 1297 static void prep_compound_huge_page(struct page *page, int order) 1298 { 1299 if (unlikely(order > (MAX_ORDER - 1))) 1300 prep_compound_gigantic_page(page, order); 1301 else 1302 prep_compound_page(page, order); 1303 } 1304 1305 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1306 static void __init gather_bootmem_prealloc(void) 1307 { 1308 struct huge_bootmem_page *m; 1309 1310 list_for_each_entry(m, &huge_boot_pages, list) { 1311 struct hstate *h = m->hstate; 1312 struct page *page; 1313 1314 #ifdef CONFIG_HIGHMEM 1315 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1316 memblock_free_late(__pa(m), 1317 sizeof(struct huge_bootmem_page)); 1318 #else 1319 page = virt_to_page(m); 1320 #endif 1321 WARN_ON(page_count(page) != 1); 1322 prep_compound_huge_page(page, h->order); 1323 WARN_ON(PageReserved(page)); 1324 prep_new_huge_page(h, page, page_to_nid(page)); 1325 /* 1326 * If we had gigantic hugepages allocated at boot time, we need 1327 * to restore the 'stolen' pages to totalram_pages in order to 1328 * fix confusing memory reports from free(1) and another 1329 * side-effects, like CommitLimit going negative. 1330 */ 1331 if (h->order > (MAX_ORDER - 1)) 1332 adjust_managed_page_count(page, 1 << h->order); 1333 } 1334 } 1335 1336 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1337 { 1338 unsigned long i; 1339 1340 for (i = 0; i < h->max_huge_pages; ++i) { 1341 if (h->order >= MAX_ORDER) { 1342 if (!alloc_bootmem_huge_page(h)) 1343 break; 1344 } else if (!alloc_fresh_huge_page(h, 1345 &node_states[N_MEMORY])) 1346 break; 1347 } 1348 h->max_huge_pages = i; 1349 } 1350 1351 static void __init hugetlb_init_hstates(void) 1352 { 1353 struct hstate *h; 1354 1355 for_each_hstate(h) { 1356 /* oversize hugepages were init'ed in early boot */ 1357 if (h->order < MAX_ORDER) 1358 hugetlb_hstate_alloc_pages(h); 1359 } 1360 } 1361 1362 static char * __init memfmt(char *buf, unsigned long n) 1363 { 1364 if (n >= (1UL << 30)) 1365 sprintf(buf, "%lu GB", n >> 30); 1366 else if (n >= (1UL << 20)) 1367 sprintf(buf, "%lu MB", n >> 20); 1368 else 1369 sprintf(buf, "%lu KB", n >> 10); 1370 return buf; 1371 } 1372 1373 static void __init report_hugepages(void) 1374 { 1375 struct hstate *h; 1376 1377 for_each_hstate(h) { 1378 char buf[32]; 1379 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1380 memfmt(buf, huge_page_size(h)), 1381 h->free_huge_pages); 1382 } 1383 } 1384 1385 #ifdef CONFIG_HIGHMEM 1386 static void try_to_free_low(struct hstate *h, unsigned long count, 1387 nodemask_t *nodes_allowed) 1388 { 1389 int i; 1390 1391 if (h->order >= MAX_ORDER) 1392 return; 1393 1394 for_each_node_mask(i, *nodes_allowed) { 1395 struct page *page, *next; 1396 struct list_head *freel = &h->hugepage_freelists[i]; 1397 list_for_each_entry_safe(page, next, freel, lru) { 1398 if (count >= h->nr_huge_pages) 1399 return; 1400 if (PageHighMem(page)) 1401 continue; 1402 list_del(&page->lru); 1403 update_and_free_page(h, page); 1404 h->free_huge_pages--; 1405 h->free_huge_pages_node[page_to_nid(page)]--; 1406 } 1407 } 1408 } 1409 #else 1410 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1411 nodemask_t *nodes_allowed) 1412 { 1413 } 1414 #endif 1415 1416 /* 1417 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1418 * balanced by operating on them in a round-robin fashion. 1419 * Returns 1 if an adjustment was made. 1420 */ 1421 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1422 int delta) 1423 { 1424 int nr_nodes, node; 1425 1426 VM_BUG_ON(delta != -1 && delta != 1); 1427 1428 if (delta < 0) { 1429 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1430 if (h->surplus_huge_pages_node[node]) 1431 goto found; 1432 } 1433 } else { 1434 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1435 if (h->surplus_huge_pages_node[node] < 1436 h->nr_huge_pages_node[node]) 1437 goto found; 1438 } 1439 } 1440 return 0; 1441 1442 found: 1443 h->surplus_huge_pages += delta; 1444 h->surplus_huge_pages_node[node] += delta; 1445 return 1; 1446 } 1447 1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1449 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1450 nodemask_t *nodes_allowed) 1451 { 1452 unsigned long min_count, ret; 1453 1454 if (h->order >= MAX_ORDER) 1455 return h->max_huge_pages; 1456 1457 /* 1458 * Increase the pool size 1459 * First take pages out of surplus state. Then make up the 1460 * remaining difference by allocating fresh huge pages. 1461 * 1462 * We might race with alloc_buddy_huge_page() here and be unable 1463 * to convert a surplus huge page to a normal huge page. That is 1464 * not critical, though, it just means the overall size of the 1465 * pool might be one hugepage larger than it needs to be, but 1466 * within all the constraints specified by the sysctls. 1467 */ 1468 spin_lock(&hugetlb_lock); 1469 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1470 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1471 break; 1472 } 1473 1474 while (count > persistent_huge_pages(h)) { 1475 /* 1476 * If this allocation races such that we no longer need the 1477 * page, free_huge_page will handle it by freeing the page 1478 * and reducing the surplus. 1479 */ 1480 spin_unlock(&hugetlb_lock); 1481 ret = alloc_fresh_huge_page(h, nodes_allowed); 1482 spin_lock(&hugetlb_lock); 1483 if (!ret) 1484 goto out; 1485 1486 /* Bail for signals. Probably ctrl-c from user */ 1487 if (signal_pending(current)) 1488 goto out; 1489 } 1490 1491 /* 1492 * Decrease the pool size 1493 * First return free pages to the buddy allocator (being careful 1494 * to keep enough around to satisfy reservations). Then place 1495 * pages into surplus state as needed so the pool will shrink 1496 * to the desired size as pages become free. 1497 * 1498 * By placing pages into the surplus state independent of the 1499 * overcommit value, we are allowing the surplus pool size to 1500 * exceed overcommit. There are few sane options here. Since 1501 * alloc_buddy_huge_page() is checking the global counter, 1502 * though, we'll note that we're not allowed to exceed surplus 1503 * and won't grow the pool anywhere else. Not until one of the 1504 * sysctls are changed, or the surplus pages go out of use. 1505 */ 1506 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1507 min_count = max(count, min_count); 1508 try_to_free_low(h, min_count, nodes_allowed); 1509 while (min_count < persistent_huge_pages(h)) { 1510 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1511 break; 1512 } 1513 while (count < persistent_huge_pages(h)) { 1514 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1515 break; 1516 } 1517 out: 1518 ret = persistent_huge_pages(h); 1519 spin_unlock(&hugetlb_lock); 1520 return ret; 1521 } 1522 1523 #define HSTATE_ATTR_RO(_name) \ 1524 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1525 1526 #define HSTATE_ATTR(_name) \ 1527 static struct kobj_attribute _name##_attr = \ 1528 __ATTR(_name, 0644, _name##_show, _name##_store) 1529 1530 static struct kobject *hugepages_kobj; 1531 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1532 1533 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1534 1535 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1536 { 1537 int i; 1538 1539 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1540 if (hstate_kobjs[i] == kobj) { 1541 if (nidp) 1542 *nidp = NUMA_NO_NODE; 1543 return &hstates[i]; 1544 } 1545 1546 return kobj_to_node_hstate(kobj, nidp); 1547 } 1548 1549 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1550 struct kobj_attribute *attr, char *buf) 1551 { 1552 struct hstate *h; 1553 unsigned long nr_huge_pages; 1554 int nid; 1555 1556 h = kobj_to_hstate(kobj, &nid); 1557 if (nid == NUMA_NO_NODE) 1558 nr_huge_pages = h->nr_huge_pages; 1559 else 1560 nr_huge_pages = h->nr_huge_pages_node[nid]; 1561 1562 return sprintf(buf, "%lu\n", nr_huge_pages); 1563 } 1564 1565 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1566 struct kobject *kobj, struct kobj_attribute *attr, 1567 const char *buf, size_t len) 1568 { 1569 int err; 1570 int nid; 1571 unsigned long count; 1572 struct hstate *h; 1573 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1574 1575 err = kstrtoul(buf, 10, &count); 1576 if (err) 1577 goto out; 1578 1579 h = kobj_to_hstate(kobj, &nid); 1580 if (h->order >= MAX_ORDER) { 1581 err = -EINVAL; 1582 goto out; 1583 } 1584 1585 if (nid == NUMA_NO_NODE) { 1586 /* 1587 * global hstate attribute 1588 */ 1589 if (!(obey_mempolicy && 1590 init_nodemask_of_mempolicy(nodes_allowed))) { 1591 NODEMASK_FREE(nodes_allowed); 1592 nodes_allowed = &node_states[N_MEMORY]; 1593 } 1594 } else if (nodes_allowed) { 1595 /* 1596 * per node hstate attribute: adjust count to global, 1597 * but restrict alloc/free to the specified node. 1598 */ 1599 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1600 init_nodemask_of_node(nodes_allowed, nid); 1601 } else 1602 nodes_allowed = &node_states[N_MEMORY]; 1603 1604 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1605 1606 if (nodes_allowed != &node_states[N_MEMORY]) 1607 NODEMASK_FREE(nodes_allowed); 1608 1609 return len; 1610 out: 1611 NODEMASK_FREE(nodes_allowed); 1612 return err; 1613 } 1614 1615 static ssize_t nr_hugepages_show(struct kobject *kobj, 1616 struct kobj_attribute *attr, char *buf) 1617 { 1618 return nr_hugepages_show_common(kobj, attr, buf); 1619 } 1620 1621 static ssize_t nr_hugepages_store(struct kobject *kobj, 1622 struct kobj_attribute *attr, const char *buf, size_t len) 1623 { 1624 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1625 } 1626 HSTATE_ATTR(nr_hugepages); 1627 1628 #ifdef CONFIG_NUMA 1629 1630 /* 1631 * hstate attribute for optionally mempolicy-based constraint on persistent 1632 * huge page alloc/free. 1633 */ 1634 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1635 struct kobj_attribute *attr, char *buf) 1636 { 1637 return nr_hugepages_show_common(kobj, attr, buf); 1638 } 1639 1640 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1641 struct kobj_attribute *attr, const char *buf, size_t len) 1642 { 1643 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1644 } 1645 HSTATE_ATTR(nr_hugepages_mempolicy); 1646 #endif 1647 1648 1649 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1650 struct kobj_attribute *attr, char *buf) 1651 { 1652 struct hstate *h = kobj_to_hstate(kobj, NULL); 1653 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1654 } 1655 1656 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1657 struct kobj_attribute *attr, const char *buf, size_t count) 1658 { 1659 int err; 1660 unsigned long input; 1661 struct hstate *h = kobj_to_hstate(kobj, NULL); 1662 1663 if (h->order >= MAX_ORDER) 1664 return -EINVAL; 1665 1666 err = kstrtoul(buf, 10, &input); 1667 if (err) 1668 return err; 1669 1670 spin_lock(&hugetlb_lock); 1671 h->nr_overcommit_huge_pages = input; 1672 spin_unlock(&hugetlb_lock); 1673 1674 return count; 1675 } 1676 HSTATE_ATTR(nr_overcommit_hugepages); 1677 1678 static ssize_t free_hugepages_show(struct kobject *kobj, 1679 struct kobj_attribute *attr, char *buf) 1680 { 1681 struct hstate *h; 1682 unsigned long free_huge_pages; 1683 int nid; 1684 1685 h = kobj_to_hstate(kobj, &nid); 1686 if (nid == NUMA_NO_NODE) 1687 free_huge_pages = h->free_huge_pages; 1688 else 1689 free_huge_pages = h->free_huge_pages_node[nid]; 1690 1691 return sprintf(buf, "%lu\n", free_huge_pages); 1692 } 1693 HSTATE_ATTR_RO(free_hugepages); 1694 1695 static ssize_t resv_hugepages_show(struct kobject *kobj, 1696 struct kobj_attribute *attr, char *buf) 1697 { 1698 struct hstate *h = kobj_to_hstate(kobj, NULL); 1699 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1700 } 1701 HSTATE_ATTR_RO(resv_hugepages); 1702 1703 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1704 struct kobj_attribute *attr, char *buf) 1705 { 1706 struct hstate *h; 1707 unsigned long surplus_huge_pages; 1708 int nid; 1709 1710 h = kobj_to_hstate(kobj, &nid); 1711 if (nid == NUMA_NO_NODE) 1712 surplus_huge_pages = h->surplus_huge_pages; 1713 else 1714 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1715 1716 return sprintf(buf, "%lu\n", surplus_huge_pages); 1717 } 1718 HSTATE_ATTR_RO(surplus_hugepages); 1719 1720 static struct attribute *hstate_attrs[] = { 1721 &nr_hugepages_attr.attr, 1722 &nr_overcommit_hugepages_attr.attr, 1723 &free_hugepages_attr.attr, 1724 &resv_hugepages_attr.attr, 1725 &surplus_hugepages_attr.attr, 1726 #ifdef CONFIG_NUMA 1727 &nr_hugepages_mempolicy_attr.attr, 1728 #endif 1729 NULL, 1730 }; 1731 1732 static struct attribute_group hstate_attr_group = { 1733 .attrs = hstate_attrs, 1734 }; 1735 1736 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1737 struct kobject **hstate_kobjs, 1738 struct attribute_group *hstate_attr_group) 1739 { 1740 int retval; 1741 int hi = hstate_index(h); 1742 1743 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1744 if (!hstate_kobjs[hi]) 1745 return -ENOMEM; 1746 1747 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1748 if (retval) 1749 kobject_put(hstate_kobjs[hi]); 1750 1751 return retval; 1752 } 1753 1754 static void __init hugetlb_sysfs_init(void) 1755 { 1756 struct hstate *h; 1757 int err; 1758 1759 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1760 if (!hugepages_kobj) 1761 return; 1762 1763 for_each_hstate(h) { 1764 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1765 hstate_kobjs, &hstate_attr_group); 1766 if (err) 1767 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1768 } 1769 } 1770 1771 #ifdef CONFIG_NUMA 1772 1773 /* 1774 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1775 * with node devices in node_devices[] using a parallel array. The array 1776 * index of a node device or _hstate == node id. 1777 * This is here to avoid any static dependency of the node device driver, in 1778 * the base kernel, on the hugetlb module. 1779 */ 1780 struct node_hstate { 1781 struct kobject *hugepages_kobj; 1782 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1783 }; 1784 struct node_hstate node_hstates[MAX_NUMNODES]; 1785 1786 /* 1787 * A subset of global hstate attributes for node devices 1788 */ 1789 static struct attribute *per_node_hstate_attrs[] = { 1790 &nr_hugepages_attr.attr, 1791 &free_hugepages_attr.attr, 1792 &surplus_hugepages_attr.attr, 1793 NULL, 1794 }; 1795 1796 static struct attribute_group per_node_hstate_attr_group = { 1797 .attrs = per_node_hstate_attrs, 1798 }; 1799 1800 /* 1801 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1802 * Returns node id via non-NULL nidp. 1803 */ 1804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1805 { 1806 int nid; 1807 1808 for (nid = 0; nid < nr_node_ids; nid++) { 1809 struct node_hstate *nhs = &node_hstates[nid]; 1810 int i; 1811 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1812 if (nhs->hstate_kobjs[i] == kobj) { 1813 if (nidp) 1814 *nidp = nid; 1815 return &hstates[i]; 1816 } 1817 } 1818 1819 BUG(); 1820 return NULL; 1821 } 1822 1823 /* 1824 * Unregister hstate attributes from a single node device. 1825 * No-op if no hstate attributes attached. 1826 */ 1827 static void hugetlb_unregister_node(struct node *node) 1828 { 1829 struct hstate *h; 1830 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1831 1832 if (!nhs->hugepages_kobj) 1833 return; /* no hstate attributes */ 1834 1835 for_each_hstate(h) { 1836 int idx = hstate_index(h); 1837 if (nhs->hstate_kobjs[idx]) { 1838 kobject_put(nhs->hstate_kobjs[idx]); 1839 nhs->hstate_kobjs[idx] = NULL; 1840 } 1841 } 1842 1843 kobject_put(nhs->hugepages_kobj); 1844 nhs->hugepages_kobj = NULL; 1845 } 1846 1847 /* 1848 * hugetlb module exit: unregister hstate attributes from node devices 1849 * that have them. 1850 */ 1851 static void hugetlb_unregister_all_nodes(void) 1852 { 1853 int nid; 1854 1855 /* 1856 * disable node device registrations. 1857 */ 1858 register_hugetlbfs_with_node(NULL, NULL); 1859 1860 /* 1861 * remove hstate attributes from any nodes that have them. 1862 */ 1863 for (nid = 0; nid < nr_node_ids; nid++) 1864 hugetlb_unregister_node(node_devices[nid]); 1865 } 1866 1867 /* 1868 * Register hstate attributes for a single node device. 1869 * No-op if attributes already registered. 1870 */ 1871 static void hugetlb_register_node(struct node *node) 1872 { 1873 struct hstate *h; 1874 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1875 int err; 1876 1877 if (nhs->hugepages_kobj) 1878 return; /* already allocated */ 1879 1880 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1881 &node->dev.kobj); 1882 if (!nhs->hugepages_kobj) 1883 return; 1884 1885 for_each_hstate(h) { 1886 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1887 nhs->hstate_kobjs, 1888 &per_node_hstate_attr_group); 1889 if (err) { 1890 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 1891 h->name, node->dev.id); 1892 hugetlb_unregister_node(node); 1893 break; 1894 } 1895 } 1896 } 1897 1898 /* 1899 * hugetlb init time: register hstate attributes for all registered node 1900 * devices of nodes that have memory. All on-line nodes should have 1901 * registered their associated device by this time. 1902 */ 1903 static void hugetlb_register_all_nodes(void) 1904 { 1905 int nid; 1906 1907 for_each_node_state(nid, N_MEMORY) { 1908 struct node *node = node_devices[nid]; 1909 if (node->dev.id == nid) 1910 hugetlb_register_node(node); 1911 } 1912 1913 /* 1914 * Let the node device driver know we're here so it can 1915 * [un]register hstate attributes on node hotplug. 1916 */ 1917 register_hugetlbfs_with_node(hugetlb_register_node, 1918 hugetlb_unregister_node); 1919 } 1920 #else /* !CONFIG_NUMA */ 1921 1922 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1923 { 1924 BUG(); 1925 if (nidp) 1926 *nidp = -1; 1927 return NULL; 1928 } 1929 1930 static void hugetlb_unregister_all_nodes(void) { } 1931 1932 static void hugetlb_register_all_nodes(void) { } 1933 1934 #endif 1935 1936 static void __exit hugetlb_exit(void) 1937 { 1938 struct hstate *h; 1939 1940 hugetlb_unregister_all_nodes(); 1941 1942 for_each_hstate(h) { 1943 kobject_put(hstate_kobjs[hstate_index(h)]); 1944 } 1945 1946 kobject_put(hugepages_kobj); 1947 } 1948 module_exit(hugetlb_exit); 1949 1950 static int __init hugetlb_init(void) 1951 { 1952 /* Some platform decide whether they support huge pages at boot 1953 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1954 * there is no such support 1955 */ 1956 if (HPAGE_SHIFT == 0) 1957 return 0; 1958 1959 if (!size_to_hstate(default_hstate_size)) { 1960 default_hstate_size = HPAGE_SIZE; 1961 if (!size_to_hstate(default_hstate_size)) 1962 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1963 } 1964 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 1965 if (default_hstate_max_huge_pages) 1966 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1967 1968 hugetlb_init_hstates(); 1969 gather_bootmem_prealloc(); 1970 report_hugepages(); 1971 1972 hugetlb_sysfs_init(); 1973 hugetlb_register_all_nodes(); 1974 hugetlb_cgroup_file_init(); 1975 1976 return 0; 1977 } 1978 module_init(hugetlb_init); 1979 1980 /* Should be called on processing a hugepagesz=... option */ 1981 void __init hugetlb_add_hstate(unsigned order) 1982 { 1983 struct hstate *h; 1984 unsigned long i; 1985 1986 if (size_to_hstate(PAGE_SIZE << order)) { 1987 pr_warning("hugepagesz= specified twice, ignoring\n"); 1988 return; 1989 } 1990 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 1991 BUG_ON(order == 0); 1992 h = &hstates[hugetlb_max_hstate++]; 1993 h->order = order; 1994 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1995 h->nr_huge_pages = 0; 1996 h->free_huge_pages = 0; 1997 for (i = 0; i < MAX_NUMNODES; ++i) 1998 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1999 INIT_LIST_HEAD(&h->hugepage_activelist); 2000 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2001 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2002 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2003 huge_page_size(h)/1024); 2004 2005 parsed_hstate = h; 2006 } 2007 2008 static int __init hugetlb_nrpages_setup(char *s) 2009 { 2010 unsigned long *mhp; 2011 static unsigned long *last_mhp; 2012 2013 /* 2014 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2015 * so this hugepages= parameter goes to the "default hstate". 2016 */ 2017 if (!hugetlb_max_hstate) 2018 mhp = &default_hstate_max_huge_pages; 2019 else 2020 mhp = &parsed_hstate->max_huge_pages; 2021 2022 if (mhp == last_mhp) { 2023 pr_warning("hugepages= specified twice without " 2024 "interleaving hugepagesz=, ignoring\n"); 2025 return 1; 2026 } 2027 2028 if (sscanf(s, "%lu", mhp) <= 0) 2029 *mhp = 0; 2030 2031 /* 2032 * Global state is always initialized later in hugetlb_init. 2033 * But we need to allocate >= MAX_ORDER hstates here early to still 2034 * use the bootmem allocator. 2035 */ 2036 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2037 hugetlb_hstate_alloc_pages(parsed_hstate); 2038 2039 last_mhp = mhp; 2040 2041 return 1; 2042 } 2043 __setup("hugepages=", hugetlb_nrpages_setup); 2044 2045 static int __init hugetlb_default_setup(char *s) 2046 { 2047 default_hstate_size = memparse(s, &s); 2048 return 1; 2049 } 2050 __setup("default_hugepagesz=", hugetlb_default_setup); 2051 2052 static unsigned int cpuset_mems_nr(unsigned int *array) 2053 { 2054 int node; 2055 unsigned int nr = 0; 2056 2057 for_each_node_mask(node, cpuset_current_mems_allowed) 2058 nr += array[node]; 2059 2060 return nr; 2061 } 2062 2063 #ifdef CONFIG_SYSCTL 2064 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2065 struct ctl_table *table, int write, 2066 void __user *buffer, size_t *length, loff_t *ppos) 2067 { 2068 struct hstate *h = &default_hstate; 2069 unsigned long tmp; 2070 int ret; 2071 2072 tmp = h->max_huge_pages; 2073 2074 if (write && h->order >= MAX_ORDER) 2075 return -EINVAL; 2076 2077 table->data = &tmp; 2078 table->maxlen = sizeof(unsigned long); 2079 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2080 if (ret) 2081 goto out; 2082 2083 if (write) { 2084 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2085 GFP_KERNEL | __GFP_NORETRY); 2086 if (!(obey_mempolicy && 2087 init_nodemask_of_mempolicy(nodes_allowed))) { 2088 NODEMASK_FREE(nodes_allowed); 2089 nodes_allowed = &node_states[N_MEMORY]; 2090 } 2091 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2092 2093 if (nodes_allowed != &node_states[N_MEMORY]) 2094 NODEMASK_FREE(nodes_allowed); 2095 } 2096 out: 2097 return ret; 2098 } 2099 2100 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2101 void __user *buffer, size_t *length, loff_t *ppos) 2102 { 2103 2104 return hugetlb_sysctl_handler_common(false, table, write, 2105 buffer, length, ppos); 2106 } 2107 2108 #ifdef CONFIG_NUMA 2109 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2110 void __user *buffer, size_t *length, loff_t *ppos) 2111 { 2112 return hugetlb_sysctl_handler_common(true, table, write, 2113 buffer, length, ppos); 2114 } 2115 #endif /* CONFIG_NUMA */ 2116 2117 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2118 void __user *buffer, 2119 size_t *length, loff_t *ppos) 2120 { 2121 struct hstate *h = &default_hstate; 2122 unsigned long tmp; 2123 int ret; 2124 2125 tmp = h->nr_overcommit_huge_pages; 2126 2127 if (write && h->order >= MAX_ORDER) 2128 return -EINVAL; 2129 2130 table->data = &tmp; 2131 table->maxlen = sizeof(unsigned long); 2132 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2133 if (ret) 2134 goto out; 2135 2136 if (write) { 2137 spin_lock(&hugetlb_lock); 2138 h->nr_overcommit_huge_pages = tmp; 2139 spin_unlock(&hugetlb_lock); 2140 } 2141 out: 2142 return ret; 2143 } 2144 2145 #endif /* CONFIG_SYSCTL */ 2146 2147 void hugetlb_report_meminfo(struct seq_file *m) 2148 { 2149 struct hstate *h = &default_hstate; 2150 seq_printf(m, 2151 "HugePages_Total: %5lu\n" 2152 "HugePages_Free: %5lu\n" 2153 "HugePages_Rsvd: %5lu\n" 2154 "HugePages_Surp: %5lu\n" 2155 "Hugepagesize: %8lu kB\n", 2156 h->nr_huge_pages, 2157 h->free_huge_pages, 2158 h->resv_huge_pages, 2159 h->surplus_huge_pages, 2160 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2161 } 2162 2163 int hugetlb_report_node_meminfo(int nid, char *buf) 2164 { 2165 struct hstate *h = &default_hstate; 2166 return sprintf(buf, 2167 "Node %d HugePages_Total: %5u\n" 2168 "Node %d HugePages_Free: %5u\n" 2169 "Node %d HugePages_Surp: %5u\n", 2170 nid, h->nr_huge_pages_node[nid], 2171 nid, h->free_huge_pages_node[nid], 2172 nid, h->surplus_huge_pages_node[nid]); 2173 } 2174 2175 void hugetlb_show_meminfo(void) 2176 { 2177 struct hstate *h; 2178 int nid; 2179 2180 for_each_node_state(nid, N_MEMORY) 2181 for_each_hstate(h) 2182 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2183 nid, 2184 h->nr_huge_pages_node[nid], 2185 h->free_huge_pages_node[nid], 2186 h->surplus_huge_pages_node[nid], 2187 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2188 } 2189 2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2191 unsigned long hugetlb_total_pages(void) 2192 { 2193 struct hstate *h; 2194 unsigned long nr_total_pages = 0; 2195 2196 for_each_hstate(h) 2197 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2198 return nr_total_pages; 2199 } 2200 2201 static int hugetlb_acct_memory(struct hstate *h, long delta) 2202 { 2203 int ret = -ENOMEM; 2204 2205 spin_lock(&hugetlb_lock); 2206 /* 2207 * When cpuset is configured, it breaks the strict hugetlb page 2208 * reservation as the accounting is done on a global variable. Such 2209 * reservation is completely rubbish in the presence of cpuset because 2210 * the reservation is not checked against page availability for the 2211 * current cpuset. Application can still potentially OOM'ed by kernel 2212 * with lack of free htlb page in cpuset that the task is in. 2213 * Attempt to enforce strict accounting with cpuset is almost 2214 * impossible (or too ugly) because cpuset is too fluid that 2215 * task or memory node can be dynamically moved between cpusets. 2216 * 2217 * The change of semantics for shared hugetlb mapping with cpuset is 2218 * undesirable. However, in order to preserve some of the semantics, 2219 * we fall back to check against current free page availability as 2220 * a best attempt and hopefully to minimize the impact of changing 2221 * semantics that cpuset has. 2222 */ 2223 if (delta > 0) { 2224 if (gather_surplus_pages(h, delta) < 0) 2225 goto out; 2226 2227 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2228 return_unused_surplus_pages(h, delta); 2229 goto out; 2230 } 2231 } 2232 2233 ret = 0; 2234 if (delta < 0) 2235 return_unused_surplus_pages(h, (unsigned long) -delta); 2236 2237 out: 2238 spin_unlock(&hugetlb_lock); 2239 return ret; 2240 } 2241 2242 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2243 { 2244 struct resv_map *resv = vma_resv_map(vma); 2245 2246 /* 2247 * This new VMA should share its siblings reservation map if present. 2248 * The VMA will only ever have a valid reservation map pointer where 2249 * it is being copied for another still existing VMA. As that VMA 2250 * has a reference to the reservation map it cannot disappear until 2251 * after this open call completes. It is therefore safe to take a 2252 * new reference here without additional locking. 2253 */ 2254 if (resv) 2255 kref_get(&resv->refs); 2256 } 2257 2258 static void resv_map_put(struct vm_area_struct *vma) 2259 { 2260 struct resv_map *resv = vma_resv_map(vma); 2261 2262 if (!resv) 2263 return; 2264 kref_put(&resv->refs, resv_map_release); 2265 } 2266 2267 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2268 { 2269 struct hstate *h = hstate_vma(vma); 2270 struct resv_map *resv = vma_resv_map(vma); 2271 struct hugepage_subpool *spool = subpool_vma(vma); 2272 unsigned long reserve; 2273 unsigned long start; 2274 unsigned long end; 2275 2276 if (resv) { 2277 start = vma_hugecache_offset(h, vma, vma->vm_start); 2278 end = vma_hugecache_offset(h, vma, vma->vm_end); 2279 2280 reserve = (end - start) - 2281 region_count(&resv->regions, start, end); 2282 2283 resv_map_put(vma); 2284 2285 if (reserve) { 2286 hugetlb_acct_memory(h, -reserve); 2287 hugepage_subpool_put_pages(spool, reserve); 2288 } 2289 } 2290 } 2291 2292 /* 2293 * We cannot handle pagefaults against hugetlb pages at all. They cause 2294 * handle_mm_fault() to try to instantiate regular-sized pages in the 2295 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2296 * this far. 2297 */ 2298 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2299 { 2300 BUG(); 2301 return 0; 2302 } 2303 2304 const struct vm_operations_struct hugetlb_vm_ops = { 2305 .fault = hugetlb_vm_op_fault, 2306 .open = hugetlb_vm_op_open, 2307 .close = hugetlb_vm_op_close, 2308 }; 2309 2310 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2311 int writable) 2312 { 2313 pte_t entry; 2314 2315 if (writable) { 2316 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2317 vma->vm_page_prot))); 2318 } else { 2319 entry = huge_pte_wrprotect(mk_huge_pte(page, 2320 vma->vm_page_prot)); 2321 } 2322 entry = pte_mkyoung(entry); 2323 entry = pte_mkhuge(entry); 2324 entry = arch_make_huge_pte(entry, vma, page, writable); 2325 2326 return entry; 2327 } 2328 2329 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2330 unsigned long address, pte_t *ptep) 2331 { 2332 pte_t entry; 2333 2334 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2335 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2336 update_mmu_cache(vma, address, ptep); 2337 } 2338 2339 2340 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2341 struct vm_area_struct *vma) 2342 { 2343 pte_t *src_pte, *dst_pte, entry; 2344 struct page *ptepage; 2345 unsigned long addr; 2346 int cow; 2347 struct hstate *h = hstate_vma(vma); 2348 unsigned long sz = huge_page_size(h); 2349 unsigned long mmun_start; /* For mmu_notifiers */ 2350 unsigned long mmun_end; /* For mmu_notifiers */ 2351 int ret = 0; 2352 2353 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2354 2355 mmun_start = vma->vm_start; 2356 mmun_end = vma->vm_end; 2357 if (cow) 2358 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 2359 2360 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2361 spinlock_t *src_ptl, *dst_ptl; 2362 src_pte = huge_pte_offset(src, addr); 2363 if (!src_pte) 2364 continue; 2365 dst_pte = huge_pte_alloc(dst, addr, sz); 2366 if (!dst_pte) { 2367 ret = -ENOMEM; 2368 break; 2369 } 2370 2371 /* If the pagetables are shared don't copy or take references */ 2372 if (dst_pte == src_pte) 2373 continue; 2374 2375 dst_ptl = huge_pte_lock(h, dst, dst_pte); 2376 src_ptl = huge_pte_lockptr(h, src, src_pte); 2377 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 2378 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2379 if (cow) 2380 huge_ptep_set_wrprotect(src, addr, src_pte); 2381 entry = huge_ptep_get(src_pte); 2382 ptepage = pte_page(entry); 2383 get_page(ptepage); 2384 page_dup_rmap(ptepage); 2385 set_huge_pte_at(dst, addr, dst_pte, entry); 2386 } 2387 spin_unlock(src_ptl); 2388 spin_unlock(dst_ptl); 2389 } 2390 2391 if (cow) 2392 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 2393 2394 return ret; 2395 } 2396 2397 static int is_hugetlb_entry_migration(pte_t pte) 2398 { 2399 swp_entry_t swp; 2400 2401 if (huge_pte_none(pte) || pte_present(pte)) 2402 return 0; 2403 swp = pte_to_swp_entry(pte); 2404 if (non_swap_entry(swp) && is_migration_entry(swp)) 2405 return 1; 2406 else 2407 return 0; 2408 } 2409 2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2411 { 2412 swp_entry_t swp; 2413 2414 if (huge_pte_none(pte) || pte_present(pte)) 2415 return 0; 2416 swp = pte_to_swp_entry(pte); 2417 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2418 return 1; 2419 else 2420 return 0; 2421 } 2422 2423 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2424 unsigned long start, unsigned long end, 2425 struct page *ref_page) 2426 { 2427 int force_flush = 0; 2428 struct mm_struct *mm = vma->vm_mm; 2429 unsigned long address; 2430 pte_t *ptep; 2431 pte_t pte; 2432 spinlock_t *ptl; 2433 struct page *page; 2434 struct hstate *h = hstate_vma(vma); 2435 unsigned long sz = huge_page_size(h); 2436 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2437 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2438 2439 WARN_ON(!is_vm_hugetlb_page(vma)); 2440 BUG_ON(start & ~huge_page_mask(h)); 2441 BUG_ON(end & ~huge_page_mask(h)); 2442 2443 tlb_start_vma(tlb, vma); 2444 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2445 again: 2446 for (address = start; address < end; address += sz) { 2447 ptep = huge_pte_offset(mm, address); 2448 if (!ptep) 2449 continue; 2450 2451 ptl = huge_pte_lock(h, mm, ptep); 2452 if (huge_pmd_unshare(mm, &address, ptep)) 2453 goto unlock; 2454 2455 pte = huge_ptep_get(ptep); 2456 if (huge_pte_none(pte)) 2457 goto unlock; 2458 2459 /* 2460 * HWPoisoned hugepage is already unmapped and dropped reference 2461 */ 2462 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 2463 huge_pte_clear(mm, address, ptep); 2464 goto unlock; 2465 } 2466 2467 page = pte_page(pte); 2468 /* 2469 * If a reference page is supplied, it is because a specific 2470 * page is being unmapped, not a range. Ensure the page we 2471 * are about to unmap is the actual page of interest. 2472 */ 2473 if (ref_page) { 2474 if (page != ref_page) 2475 goto unlock; 2476 2477 /* 2478 * Mark the VMA as having unmapped its page so that 2479 * future faults in this VMA will fail rather than 2480 * looking like data was lost 2481 */ 2482 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2483 } 2484 2485 pte = huge_ptep_get_and_clear(mm, address, ptep); 2486 tlb_remove_tlb_entry(tlb, ptep, address); 2487 if (huge_pte_dirty(pte)) 2488 set_page_dirty(page); 2489 2490 page_remove_rmap(page); 2491 force_flush = !__tlb_remove_page(tlb, page); 2492 if (force_flush) { 2493 spin_unlock(ptl); 2494 break; 2495 } 2496 /* Bail out after unmapping reference page if supplied */ 2497 if (ref_page) { 2498 spin_unlock(ptl); 2499 break; 2500 } 2501 unlock: 2502 spin_unlock(ptl); 2503 } 2504 /* 2505 * mmu_gather ran out of room to batch pages, we break out of 2506 * the PTE lock to avoid doing the potential expensive TLB invalidate 2507 * and page-free while holding it. 2508 */ 2509 if (force_flush) { 2510 force_flush = 0; 2511 tlb_flush_mmu(tlb); 2512 if (address < end && !ref_page) 2513 goto again; 2514 } 2515 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2516 tlb_end_vma(tlb, vma); 2517 } 2518 2519 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2520 struct vm_area_struct *vma, unsigned long start, 2521 unsigned long end, struct page *ref_page) 2522 { 2523 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2524 2525 /* 2526 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2527 * test will fail on a vma being torn down, and not grab a page table 2528 * on its way out. We're lucky that the flag has such an appropriate 2529 * name, and can in fact be safely cleared here. We could clear it 2530 * before the __unmap_hugepage_range above, but all that's necessary 2531 * is to clear it before releasing the i_mmap_mutex. This works 2532 * because in the context this is called, the VMA is about to be 2533 * destroyed and the i_mmap_mutex is held. 2534 */ 2535 vma->vm_flags &= ~VM_MAYSHARE; 2536 } 2537 2538 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2539 unsigned long end, struct page *ref_page) 2540 { 2541 struct mm_struct *mm; 2542 struct mmu_gather tlb; 2543 2544 mm = vma->vm_mm; 2545 2546 tlb_gather_mmu(&tlb, mm, start, end); 2547 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2548 tlb_finish_mmu(&tlb, start, end); 2549 } 2550 2551 /* 2552 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2553 * mappping it owns the reserve page for. The intention is to unmap the page 2554 * from other VMAs and let the children be SIGKILLed if they are faulting the 2555 * same region. 2556 */ 2557 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2558 struct page *page, unsigned long address) 2559 { 2560 struct hstate *h = hstate_vma(vma); 2561 struct vm_area_struct *iter_vma; 2562 struct address_space *mapping; 2563 pgoff_t pgoff; 2564 2565 /* 2566 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2567 * from page cache lookup which is in HPAGE_SIZE units. 2568 */ 2569 address = address & huge_page_mask(h); 2570 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2571 vma->vm_pgoff; 2572 mapping = file_inode(vma->vm_file)->i_mapping; 2573 2574 /* 2575 * Take the mapping lock for the duration of the table walk. As 2576 * this mapping should be shared between all the VMAs, 2577 * __unmap_hugepage_range() is called as the lock is already held 2578 */ 2579 mutex_lock(&mapping->i_mmap_mutex); 2580 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2581 /* Do not unmap the current VMA */ 2582 if (iter_vma == vma) 2583 continue; 2584 2585 /* 2586 * Unmap the page from other VMAs without their own reserves. 2587 * They get marked to be SIGKILLed if they fault in these 2588 * areas. This is because a future no-page fault on this VMA 2589 * could insert a zeroed page instead of the data existing 2590 * from the time of fork. This would look like data corruption 2591 */ 2592 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2593 unmap_hugepage_range(iter_vma, address, 2594 address + huge_page_size(h), page); 2595 } 2596 mutex_unlock(&mapping->i_mmap_mutex); 2597 2598 return 1; 2599 } 2600 2601 /* 2602 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2603 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2604 * cannot race with other handlers or page migration. 2605 * Keep the pte_same checks anyway to make transition from the mutex easier. 2606 */ 2607 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2608 unsigned long address, pte_t *ptep, pte_t pte, 2609 struct page *pagecache_page, spinlock_t *ptl) 2610 { 2611 struct hstate *h = hstate_vma(vma); 2612 struct page *old_page, *new_page; 2613 int outside_reserve = 0; 2614 unsigned long mmun_start; /* For mmu_notifiers */ 2615 unsigned long mmun_end; /* For mmu_notifiers */ 2616 2617 old_page = pte_page(pte); 2618 2619 retry_avoidcopy: 2620 /* If no-one else is actually using this page, avoid the copy 2621 * and just make the page writable */ 2622 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 2623 page_move_anon_rmap(old_page, vma, address); 2624 set_huge_ptep_writable(vma, address, ptep); 2625 return 0; 2626 } 2627 2628 /* 2629 * If the process that created a MAP_PRIVATE mapping is about to 2630 * perform a COW due to a shared page count, attempt to satisfy 2631 * the allocation without using the existing reserves. The pagecache 2632 * page is used to determine if the reserve at this address was 2633 * consumed or not. If reserves were used, a partial faulted mapping 2634 * at the time of fork() could consume its reserves on COW instead 2635 * of the full address range. 2636 */ 2637 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2638 old_page != pagecache_page) 2639 outside_reserve = 1; 2640 2641 page_cache_get(old_page); 2642 2643 /* Drop page table lock as buddy allocator may be called */ 2644 spin_unlock(ptl); 2645 new_page = alloc_huge_page(vma, address, outside_reserve); 2646 2647 if (IS_ERR(new_page)) { 2648 long err = PTR_ERR(new_page); 2649 page_cache_release(old_page); 2650 2651 /* 2652 * If a process owning a MAP_PRIVATE mapping fails to COW, 2653 * it is due to references held by a child and an insufficient 2654 * huge page pool. To guarantee the original mappers 2655 * reliability, unmap the page from child processes. The child 2656 * may get SIGKILLed if it later faults. 2657 */ 2658 if (outside_reserve) { 2659 BUG_ON(huge_pte_none(pte)); 2660 if (unmap_ref_private(mm, vma, old_page, address)) { 2661 BUG_ON(huge_pte_none(pte)); 2662 spin_lock(ptl); 2663 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2664 if (likely(pte_same(huge_ptep_get(ptep), pte))) 2665 goto retry_avoidcopy; 2666 /* 2667 * race occurs while re-acquiring page table 2668 * lock, and our job is done. 2669 */ 2670 return 0; 2671 } 2672 WARN_ON_ONCE(1); 2673 } 2674 2675 /* Caller expects lock to be held */ 2676 spin_lock(ptl); 2677 if (err == -ENOMEM) 2678 return VM_FAULT_OOM; 2679 else 2680 return VM_FAULT_SIGBUS; 2681 } 2682 2683 /* 2684 * When the original hugepage is shared one, it does not have 2685 * anon_vma prepared. 2686 */ 2687 if (unlikely(anon_vma_prepare(vma))) { 2688 page_cache_release(new_page); 2689 page_cache_release(old_page); 2690 /* Caller expects lock to be held */ 2691 spin_lock(ptl); 2692 return VM_FAULT_OOM; 2693 } 2694 2695 copy_user_huge_page(new_page, old_page, address, vma, 2696 pages_per_huge_page(h)); 2697 __SetPageUptodate(new_page); 2698 2699 mmun_start = address & huge_page_mask(h); 2700 mmun_end = mmun_start + huge_page_size(h); 2701 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2702 /* 2703 * Retake the page table lock to check for racing updates 2704 * before the page tables are altered 2705 */ 2706 spin_lock(ptl); 2707 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2708 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2709 ClearPagePrivate(new_page); 2710 2711 /* Break COW */ 2712 huge_ptep_clear_flush(vma, address, ptep); 2713 set_huge_pte_at(mm, address, ptep, 2714 make_huge_pte(vma, new_page, 1)); 2715 page_remove_rmap(old_page); 2716 hugepage_add_new_anon_rmap(new_page, vma, address); 2717 /* Make the old page be freed below */ 2718 new_page = old_page; 2719 } 2720 spin_unlock(ptl); 2721 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2722 page_cache_release(new_page); 2723 page_cache_release(old_page); 2724 2725 /* Caller expects lock to be held */ 2726 spin_lock(ptl); 2727 return 0; 2728 } 2729 2730 /* Return the pagecache page at a given address within a VMA */ 2731 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2732 struct vm_area_struct *vma, unsigned long address) 2733 { 2734 struct address_space *mapping; 2735 pgoff_t idx; 2736 2737 mapping = vma->vm_file->f_mapping; 2738 idx = vma_hugecache_offset(h, vma, address); 2739 2740 return find_lock_page(mapping, idx); 2741 } 2742 2743 /* 2744 * Return whether there is a pagecache page to back given address within VMA. 2745 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2746 */ 2747 static bool hugetlbfs_pagecache_present(struct hstate *h, 2748 struct vm_area_struct *vma, unsigned long address) 2749 { 2750 struct address_space *mapping; 2751 pgoff_t idx; 2752 struct page *page; 2753 2754 mapping = vma->vm_file->f_mapping; 2755 idx = vma_hugecache_offset(h, vma, address); 2756 2757 page = find_get_page(mapping, idx); 2758 if (page) 2759 put_page(page); 2760 return page != NULL; 2761 } 2762 2763 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2764 unsigned long address, pte_t *ptep, unsigned int flags) 2765 { 2766 struct hstate *h = hstate_vma(vma); 2767 int ret = VM_FAULT_SIGBUS; 2768 int anon_rmap = 0; 2769 pgoff_t idx; 2770 unsigned long size; 2771 struct page *page; 2772 struct address_space *mapping; 2773 pte_t new_pte; 2774 spinlock_t *ptl; 2775 2776 /* 2777 * Currently, we are forced to kill the process in the event the 2778 * original mapper has unmapped pages from the child due to a failed 2779 * COW. Warn that such a situation has occurred as it may not be obvious 2780 */ 2781 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2782 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2783 current->pid); 2784 return ret; 2785 } 2786 2787 mapping = vma->vm_file->f_mapping; 2788 idx = vma_hugecache_offset(h, vma, address); 2789 2790 /* 2791 * Use page lock to guard against racing truncation 2792 * before we get page_table_lock. 2793 */ 2794 retry: 2795 page = find_lock_page(mapping, idx); 2796 if (!page) { 2797 size = i_size_read(mapping->host) >> huge_page_shift(h); 2798 if (idx >= size) 2799 goto out; 2800 page = alloc_huge_page(vma, address, 0); 2801 if (IS_ERR(page)) { 2802 ret = PTR_ERR(page); 2803 if (ret == -ENOMEM) 2804 ret = VM_FAULT_OOM; 2805 else 2806 ret = VM_FAULT_SIGBUS; 2807 goto out; 2808 } 2809 clear_huge_page(page, address, pages_per_huge_page(h)); 2810 __SetPageUptodate(page); 2811 2812 if (vma->vm_flags & VM_MAYSHARE) { 2813 int err; 2814 struct inode *inode = mapping->host; 2815 2816 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2817 if (err) { 2818 put_page(page); 2819 if (err == -EEXIST) 2820 goto retry; 2821 goto out; 2822 } 2823 ClearPagePrivate(page); 2824 2825 spin_lock(&inode->i_lock); 2826 inode->i_blocks += blocks_per_huge_page(h); 2827 spin_unlock(&inode->i_lock); 2828 } else { 2829 lock_page(page); 2830 if (unlikely(anon_vma_prepare(vma))) { 2831 ret = VM_FAULT_OOM; 2832 goto backout_unlocked; 2833 } 2834 anon_rmap = 1; 2835 } 2836 } else { 2837 /* 2838 * If memory error occurs between mmap() and fault, some process 2839 * don't have hwpoisoned swap entry for errored virtual address. 2840 * So we need to block hugepage fault by PG_hwpoison bit check. 2841 */ 2842 if (unlikely(PageHWPoison(page))) { 2843 ret = VM_FAULT_HWPOISON | 2844 VM_FAULT_SET_HINDEX(hstate_index(h)); 2845 goto backout_unlocked; 2846 } 2847 } 2848 2849 /* 2850 * If we are going to COW a private mapping later, we examine the 2851 * pending reservations for this page now. This will ensure that 2852 * any allocations necessary to record that reservation occur outside 2853 * the spinlock. 2854 */ 2855 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2856 if (vma_needs_reservation(h, vma, address) < 0) { 2857 ret = VM_FAULT_OOM; 2858 goto backout_unlocked; 2859 } 2860 2861 ptl = huge_pte_lockptr(h, mm, ptep); 2862 spin_lock(ptl); 2863 size = i_size_read(mapping->host) >> huge_page_shift(h); 2864 if (idx >= size) 2865 goto backout; 2866 2867 ret = 0; 2868 if (!huge_pte_none(huge_ptep_get(ptep))) 2869 goto backout; 2870 2871 if (anon_rmap) { 2872 ClearPagePrivate(page); 2873 hugepage_add_new_anon_rmap(page, vma, address); 2874 } 2875 else 2876 page_dup_rmap(page); 2877 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2878 && (vma->vm_flags & VM_SHARED))); 2879 set_huge_pte_at(mm, address, ptep, new_pte); 2880 2881 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2882 /* Optimization, do the COW without a second fault */ 2883 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 2884 } 2885 2886 spin_unlock(ptl); 2887 unlock_page(page); 2888 out: 2889 return ret; 2890 2891 backout: 2892 spin_unlock(ptl); 2893 backout_unlocked: 2894 unlock_page(page); 2895 put_page(page); 2896 goto out; 2897 } 2898 2899 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2900 unsigned long address, unsigned int flags) 2901 { 2902 pte_t *ptep; 2903 pte_t entry; 2904 spinlock_t *ptl; 2905 int ret; 2906 struct page *page = NULL; 2907 struct page *pagecache_page = NULL; 2908 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2909 struct hstate *h = hstate_vma(vma); 2910 2911 address &= huge_page_mask(h); 2912 2913 ptep = huge_pte_offset(mm, address); 2914 if (ptep) { 2915 entry = huge_ptep_get(ptep); 2916 if (unlikely(is_hugetlb_entry_migration(entry))) { 2917 migration_entry_wait_huge(vma, mm, ptep); 2918 return 0; 2919 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2920 return VM_FAULT_HWPOISON_LARGE | 2921 VM_FAULT_SET_HINDEX(hstate_index(h)); 2922 } 2923 2924 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2925 if (!ptep) 2926 return VM_FAULT_OOM; 2927 2928 /* 2929 * Serialize hugepage allocation and instantiation, so that we don't 2930 * get spurious allocation failures if two CPUs race to instantiate 2931 * the same page in the page cache. 2932 */ 2933 mutex_lock(&hugetlb_instantiation_mutex); 2934 entry = huge_ptep_get(ptep); 2935 if (huge_pte_none(entry)) { 2936 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2937 goto out_mutex; 2938 } 2939 2940 ret = 0; 2941 2942 /* 2943 * If we are going to COW the mapping later, we examine the pending 2944 * reservations for this page now. This will ensure that any 2945 * allocations necessary to record that reservation occur outside the 2946 * spinlock. For private mappings, we also lookup the pagecache 2947 * page now as it is used to determine if a reservation has been 2948 * consumed. 2949 */ 2950 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 2951 if (vma_needs_reservation(h, vma, address) < 0) { 2952 ret = VM_FAULT_OOM; 2953 goto out_mutex; 2954 } 2955 2956 if (!(vma->vm_flags & VM_MAYSHARE)) 2957 pagecache_page = hugetlbfs_pagecache_page(h, 2958 vma, address); 2959 } 2960 2961 /* 2962 * hugetlb_cow() requires page locks of pte_page(entry) and 2963 * pagecache_page, so here we need take the former one 2964 * when page != pagecache_page or !pagecache_page. 2965 * Note that locking order is always pagecache_page -> page, 2966 * so no worry about deadlock. 2967 */ 2968 page = pte_page(entry); 2969 get_page(page); 2970 if (page != pagecache_page) 2971 lock_page(page); 2972 2973 ptl = huge_pte_lockptr(h, mm, ptep); 2974 spin_lock(ptl); 2975 /* Check for a racing update before calling hugetlb_cow */ 2976 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2977 goto out_ptl; 2978 2979 2980 if (flags & FAULT_FLAG_WRITE) { 2981 if (!huge_pte_write(entry)) { 2982 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2983 pagecache_page, ptl); 2984 goto out_ptl; 2985 } 2986 entry = huge_pte_mkdirty(entry); 2987 } 2988 entry = pte_mkyoung(entry); 2989 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2990 flags & FAULT_FLAG_WRITE)) 2991 update_mmu_cache(vma, address, ptep); 2992 2993 out_ptl: 2994 spin_unlock(ptl); 2995 2996 if (pagecache_page) { 2997 unlock_page(pagecache_page); 2998 put_page(pagecache_page); 2999 } 3000 if (page != pagecache_page) 3001 unlock_page(page); 3002 put_page(page); 3003 3004 out_mutex: 3005 mutex_unlock(&hugetlb_instantiation_mutex); 3006 3007 return ret; 3008 } 3009 3010 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3011 struct page **pages, struct vm_area_struct **vmas, 3012 unsigned long *position, unsigned long *nr_pages, 3013 long i, unsigned int flags) 3014 { 3015 unsigned long pfn_offset; 3016 unsigned long vaddr = *position; 3017 unsigned long remainder = *nr_pages; 3018 struct hstate *h = hstate_vma(vma); 3019 3020 while (vaddr < vma->vm_end && remainder) { 3021 pte_t *pte; 3022 spinlock_t *ptl = NULL; 3023 int absent; 3024 struct page *page; 3025 3026 /* 3027 * Some archs (sparc64, sh*) have multiple pte_ts to 3028 * each hugepage. We have to make sure we get the 3029 * first, for the page indexing below to work. 3030 * 3031 * Note that page table lock is not held when pte is null. 3032 */ 3033 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3034 if (pte) 3035 ptl = huge_pte_lock(h, mm, pte); 3036 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3037 3038 /* 3039 * When coredumping, it suits get_dump_page if we just return 3040 * an error where there's an empty slot with no huge pagecache 3041 * to back it. This way, we avoid allocating a hugepage, and 3042 * the sparse dumpfile avoids allocating disk blocks, but its 3043 * huge holes still show up with zeroes where they need to be. 3044 */ 3045 if (absent && (flags & FOLL_DUMP) && 3046 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3047 if (pte) 3048 spin_unlock(ptl); 3049 remainder = 0; 3050 break; 3051 } 3052 3053 /* 3054 * We need call hugetlb_fault for both hugepages under migration 3055 * (in which case hugetlb_fault waits for the migration,) and 3056 * hwpoisoned hugepages (in which case we need to prevent the 3057 * caller from accessing to them.) In order to do this, we use 3058 * here is_swap_pte instead of is_hugetlb_entry_migration and 3059 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3060 * both cases, and because we can't follow correct pages 3061 * directly from any kind of swap entries. 3062 */ 3063 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3064 ((flags & FOLL_WRITE) && 3065 !huge_pte_write(huge_ptep_get(pte)))) { 3066 int ret; 3067 3068 if (pte) 3069 spin_unlock(ptl); 3070 ret = hugetlb_fault(mm, vma, vaddr, 3071 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3072 if (!(ret & VM_FAULT_ERROR)) 3073 continue; 3074 3075 remainder = 0; 3076 break; 3077 } 3078 3079 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3080 page = pte_page(huge_ptep_get(pte)); 3081 same_page: 3082 if (pages) { 3083 pages[i] = mem_map_offset(page, pfn_offset); 3084 get_page_foll(pages[i]); 3085 } 3086 3087 if (vmas) 3088 vmas[i] = vma; 3089 3090 vaddr += PAGE_SIZE; 3091 ++pfn_offset; 3092 --remainder; 3093 ++i; 3094 if (vaddr < vma->vm_end && remainder && 3095 pfn_offset < pages_per_huge_page(h)) { 3096 /* 3097 * We use pfn_offset to avoid touching the pageframes 3098 * of this compound page. 3099 */ 3100 goto same_page; 3101 } 3102 spin_unlock(ptl); 3103 } 3104 *nr_pages = remainder; 3105 *position = vaddr; 3106 3107 return i ? i : -EFAULT; 3108 } 3109 3110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3111 unsigned long address, unsigned long end, pgprot_t newprot) 3112 { 3113 struct mm_struct *mm = vma->vm_mm; 3114 unsigned long start = address; 3115 pte_t *ptep; 3116 pte_t pte; 3117 struct hstate *h = hstate_vma(vma); 3118 unsigned long pages = 0; 3119 3120 BUG_ON(address >= end); 3121 flush_cache_range(vma, address, end); 3122 3123 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3124 for (; address < end; address += huge_page_size(h)) { 3125 spinlock_t *ptl; 3126 ptep = huge_pte_offset(mm, address); 3127 if (!ptep) 3128 continue; 3129 ptl = huge_pte_lock(h, mm, ptep); 3130 if (huge_pmd_unshare(mm, &address, ptep)) { 3131 pages++; 3132 spin_unlock(ptl); 3133 continue; 3134 } 3135 if (!huge_pte_none(huge_ptep_get(ptep))) { 3136 pte = huge_ptep_get_and_clear(mm, address, ptep); 3137 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3138 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3139 set_huge_pte_at(mm, address, ptep, pte); 3140 pages++; 3141 } 3142 spin_unlock(ptl); 3143 } 3144 /* 3145 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3146 * may have cleared our pud entry and done put_page on the page table: 3147 * once we release i_mmap_mutex, another task can do the final put_page 3148 * and that page table be reused and filled with junk. 3149 */ 3150 flush_tlb_range(vma, start, end); 3151 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3152 3153 return pages << h->order; 3154 } 3155 3156 int hugetlb_reserve_pages(struct inode *inode, 3157 long from, long to, 3158 struct vm_area_struct *vma, 3159 vm_flags_t vm_flags) 3160 { 3161 long ret, chg; 3162 struct hstate *h = hstate_inode(inode); 3163 struct hugepage_subpool *spool = subpool_inode(inode); 3164 3165 /* 3166 * Only apply hugepage reservation if asked. At fault time, an 3167 * attempt will be made for VM_NORESERVE to allocate a page 3168 * without using reserves 3169 */ 3170 if (vm_flags & VM_NORESERVE) 3171 return 0; 3172 3173 /* 3174 * Shared mappings base their reservation on the number of pages that 3175 * are already allocated on behalf of the file. Private mappings need 3176 * to reserve the full area even if read-only as mprotect() may be 3177 * called to make the mapping read-write. Assume !vma is a shm mapping 3178 */ 3179 if (!vma || vma->vm_flags & VM_MAYSHARE) 3180 chg = region_chg(&inode->i_mapping->private_list, from, to); 3181 else { 3182 struct resv_map *resv_map = resv_map_alloc(); 3183 if (!resv_map) 3184 return -ENOMEM; 3185 3186 chg = to - from; 3187 3188 set_vma_resv_map(vma, resv_map); 3189 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3190 } 3191 3192 if (chg < 0) { 3193 ret = chg; 3194 goto out_err; 3195 } 3196 3197 /* There must be enough pages in the subpool for the mapping */ 3198 if (hugepage_subpool_get_pages(spool, chg)) { 3199 ret = -ENOSPC; 3200 goto out_err; 3201 } 3202 3203 /* 3204 * Check enough hugepages are available for the reservation. 3205 * Hand the pages back to the subpool if there are not 3206 */ 3207 ret = hugetlb_acct_memory(h, chg); 3208 if (ret < 0) { 3209 hugepage_subpool_put_pages(spool, chg); 3210 goto out_err; 3211 } 3212 3213 /* 3214 * Account for the reservations made. Shared mappings record regions 3215 * that have reservations as they are shared by multiple VMAs. 3216 * When the last VMA disappears, the region map says how much 3217 * the reservation was and the page cache tells how much of 3218 * the reservation was consumed. Private mappings are per-VMA and 3219 * only the consumed reservations are tracked. When the VMA 3220 * disappears, the original reservation is the VMA size and the 3221 * consumed reservations are stored in the map. Hence, nothing 3222 * else has to be done for private mappings here 3223 */ 3224 if (!vma || vma->vm_flags & VM_MAYSHARE) 3225 region_add(&inode->i_mapping->private_list, from, to); 3226 return 0; 3227 out_err: 3228 if (vma) 3229 resv_map_put(vma); 3230 return ret; 3231 } 3232 3233 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3234 { 3235 struct hstate *h = hstate_inode(inode); 3236 long chg = region_truncate(&inode->i_mapping->private_list, offset); 3237 struct hugepage_subpool *spool = subpool_inode(inode); 3238 3239 spin_lock(&inode->i_lock); 3240 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3241 spin_unlock(&inode->i_lock); 3242 3243 hugepage_subpool_put_pages(spool, (chg - freed)); 3244 hugetlb_acct_memory(h, -(chg - freed)); 3245 } 3246 3247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3248 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3249 struct vm_area_struct *vma, 3250 unsigned long addr, pgoff_t idx) 3251 { 3252 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3253 svma->vm_start; 3254 unsigned long sbase = saddr & PUD_MASK; 3255 unsigned long s_end = sbase + PUD_SIZE; 3256 3257 /* Allow segments to share if only one is marked locked */ 3258 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3259 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3260 3261 /* 3262 * match the virtual addresses, permission and the alignment of the 3263 * page table page. 3264 */ 3265 if (pmd_index(addr) != pmd_index(saddr) || 3266 vm_flags != svm_flags || 3267 sbase < svma->vm_start || svma->vm_end < s_end) 3268 return 0; 3269 3270 return saddr; 3271 } 3272 3273 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3274 { 3275 unsigned long base = addr & PUD_MASK; 3276 unsigned long end = base + PUD_SIZE; 3277 3278 /* 3279 * check on proper vm_flags and page table alignment 3280 */ 3281 if (vma->vm_flags & VM_MAYSHARE && 3282 vma->vm_start <= base && end <= vma->vm_end) 3283 return 1; 3284 return 0; 3285 } 3286 3287 /* 3288 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3289 * and returns the corresponding pte. While this is not necessary for the 3290 * !shared pmd case because we can allocate the pmd later as well, it makes the 3291 * code much cleaner. pmd allocation is essential for the shared case because 3292 * pud has to be populated inside the same i_mmap_mutex section - otherwise 3293 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3294 * bad pmd for sharing. 3295 */ 3296 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3297 { 3298 struct vm_area_struct *vma = find_vma(mm, addr); 3299 struct address_space *mapping = vma->vm_file->f_mapping; 3300 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3301 vma->vm_pgoff; 3302 struct vm_area_struct *svma; 3303 unsigned long saddr; 3304 pte_t *spte = NULL; 3305 pte_t *pte; 3306 spinlock_t *ptl; 3307 3308 if (!vma_shareable(vma, addr)) 3309 return (pte_t *)pmd_alloc(mm, pud, addr); 3310 3311 mutex_lock(&mapping->i_mmap_mutex); 3312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3313 if (svma == vma) 3314 continue; 3315 3316 saddr = page_table_shareable(svma, vma, addr, idx); 3317 if (saddr) { 3318 spte = huge_pte_offset(svma->vm_mm, saddr); 3319 if (spte) { 3320 get_page(virt_to_page(spte)); 3321 break; 3322 } 3323 } 3324 } 3325 3326 if (!spte) 3327 goto out; 3328 3329 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 3330 spin_lock(ptl); 3331 if (pud_none(*pud)) 3332 pud_populate(mm, pud, 3333 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3334 else 3335 put_page(virt_to_page(spte)); 3336 spin_unlock(ptl); 3337 out: 3338 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3339 mutex_unlock(&mapping->i_mmap_mutex); 3340 return pte; 3341 } 3342 3343 /* 3344 * unmap huge page backed by shared pte. 3345 * 3346 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3347 * indicated by page_count > 1, unmap is achieved by clearing pud and 3348 * decrementing the ref count. If count == 1, the pte page is not shared. 3349 * 3350 * called with page table lock held. 3351 * 3352 * returns: 1 successfully unmapped a shared pte page 3353 * 0 the underlying pte page is not shared, or it is the last user 3354 */ 3355 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3356 { 3357 pgd_t *pgd = pgd_offset(mm, *addr); 3358 pud_t *pud = pud_offset(pgd, *addr); 3359 3360 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3361 if (page_count(virt_to_page(ptep)) == 1) 3362 return 0; 3363 3364 pud_clear(pud); 3365 put_page(virt_to_page(ptep)); 3366 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3367 return 1; 3368 } 3369 #define want_pmd_share() (1) 3370 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3371 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3372 { 3373 return NULL; 3374 } 3375 #define want_pmd_share() (0) 3376 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3377 3378 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3379 pte_t *huge_pte_alloc(struct mm_struct *mm, 3380 unsigned long addr, unsigned long sz) 3381 { 3382 pgd_t *pgd; 3383 pud_t *pud; 3384 pte_t *pte = NULL; 3385 3386 pgd = pgd_offset(mm, addr); 3387 pud = pud_alloc(mm, pgd, addr); 3388 if (pud) { 3389 if (sz == PUD_SIZE) { 3390 pte = (pte_t *)pud; 3391 } else { 3392 BUG_ON(sz != PMD_SIZE); 3393 if (want_pmd_share() && pud_none(*pud)) 3394 pte = huge_pmd_share(mm, addr, pud); 3395 else 3396 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3397 } 3398 } 3399 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3400 3401 return pte; 3402 } 3403 3404 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3405 { 3406 pgd_t *pgd; 3407 pud_t *pud; 3408 pmd_t *pmd = NULL; 3409 3410 pgd = pgd_offset(mm, addr); 3411 if (pgd_present(*pgd)) { 3412 pud = pud_offset(pgd, addr); 3413 if (pud_present(*pud)) { 3414 if (pud_huge(*pud)) 3415 return (pte_t *)pud; 3416 pmd = pmd_offset(pud, addr); 3417 } 3418 } 3419 return (pte_t *) pmd; 3420 } 3421 3422 struct page * 3423 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3424 pmd_t *pmd, int write) 3425 { 3426 struct page *page; 3427 3428 page = pte_page(*(pte_t *)pmd); 3429 if (page) 3430 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 3431 return page; 3432 } 3433 3434 struct page * 3435 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3436 pud_t *pud, int write) 3437 { 3438 struct page *page; 3439 3440 page = pte_page(*(pte_t *)pud); 3441 if (page) 3442 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 3443 return page; 3444 } 3445 3446 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3447 3448 /* Can be overriden by architectures */ 3449 __attribute__((weak)) struct page * 3450 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3451 pud_t *pud, int write) 3452 { 3453 BUG(); 3454 return NULL; 3455 } 3456 3457 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3458 3459 #ifdef CONFIG_MEMORY_FAILURE 3460 3461 /* Should be called in hugetlb_lock */ 3462 static int is_hugepage_on_freelist(struct page *hpage) 3463 { 3464 struct page *page; 3465 struct page *tmp; 3466 struct hstate *h = page_hstate(hpage); 3467 int nid = page_to_nid(hpage); 3468 3469 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3470 if (page == hpage) 3471 return 1; 3472 return 0; 3473 } 3474 3475 /* 3476 * This function is called from memory failure code. 3477 * Assume the caller holds page lock of the head page. 3478 */ 3479 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3480 { 3481 struct hstate *h = page_hstate(hpage); 3482 int nid = page_to_nid(hpage); 3483 int ret = -EBUSY; 3484 3485 spin_lock(&hugetlb_lock); 3486 if (is_hugepage_on_freelist(hpage)) { 3487 /* 3488 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3489 * but dangling hpage->lru can trigger list-debug warnings 3490 * (this happens when we call unpoison_memory() on it), 3491 * so let it point to itself with list_del_init(). 3492 */ 3493 list_del_init(&hpage->lru); 3494 set_page_refcounted(hpage); 3495 h->free_huge_pages--; 3496 h->free_huge_pages_node[nid]--; 3497 ret = 0; 3498 } 3499 spin_unlock(&hugetlb_lock); 3500 return ret; 3501 } 3502 #endif 3503 3504 bool isolate_huge_page(struct page *page, struct list_head *list) 3505 { 3506 VM_BUG_ON_PAGE(!PageHead(page), page); 3507 if (!get_page_unless_zero(page)) 3508 return false; 3509 spin_lock(&hugetlb_lock); 3510 list_move_tail(&page->lru, list); 3511 spin_unlock(&hugetlb_lock); 3512 return true; 3513 } 3514 3515 void putback_active_hugepage(struct page *page) 3516 { 3517 VM_BUG_ON_PAGE(!PageHead(page), page); 3518 spin_lock(&hugetlb_lock); 3519 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 3520 spin_unlock(&hugetlb_lock); 3521 put_page(page); 3522 } 3523 3524 bool is_hugepage_active(struct page *page) 3525 { 3526 VM_BUG_ON_PAGE(!PageHuge(page), page); 3527 /* 3528 * This function can be called for a tail page because the caller, 3529 * scan_movable_pages, scans through a given pfn-range which typically 3530 * covers one memory block. In systems using gigantic hugepage (1GB 3531 * for x86_64,) a hugepage is larger than a memory block, and we don't 3532 * support migrating such large hugepages for now, so return false 3533 * when called for tail pages. 3534 */ 3535 if (PageTail(page)) 3536 return false; 3537 /* 3538 * Refcount of a hwpoisoned hugepages is 1, but they are not active, 3539 * so we should return false for them. 3540 */ 3541 if (unlikely(PageHWPoison(page))) 3542 return false; 3543 return page_count(page) > 0; 3544 } 3545