1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlb.h> 34 35 #include <linux/io.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/node.h> 39 #include <linux/userfaultfd_k.h> 40 #include <linux/page_owner.h> 41 #include "internal.h" 42 43 int hugetlb_max_hstate __read_mostly; 44 unsigned int default_hstate_idx; 45 struct hstate hstates[HUGE_MAX_HSTATE]; 46 /* 47 * Minimum page order among possible hugepage sizes, set to a proper value 48 * at boot time. 49 */ 50 static unsigned int minimum_order __read_mostly = UINT_MAX; 51 52 __initdata LIST_HEAD(huge_boot_pages); 53 54 /* for command line parsing */ 55 static struct hstate * __initdata parsed_hstate; 56 static unsigned long __initdata default_hstate_max_huge_pages; 57 static unsigned long __initdata default_hstate_size; 58 static bool __initdata parsed_valid_hugepagesz = true; 59 60 /* 61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 62 * free_huge_pages, and surplus_huge_pages. 63 */ 64 DEFINE_SPINLOCK(hugetlb_lock); 65 66 /* 67 * Serializes faults on the same logical page. This is used to 68 * prevent spurious OOMs when the hugepage pool is fully utilized. 69 */ 70 static int num_fault_mutexes; 71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 72 73 /* Forward declaration */ 74 static int hugetlb_acct_memory(struct hstate *h, long delta); 75 76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 77 { 78 bool free = (spool->count == 0) && (spool->used_hpages == 0); 79 80 spin_unlock(&spool->lock); 81 82 /* If no pages are used, and no other handles to the subpool 83 * remain, give up any reservations mased on minimum size and 84 * free the subpool */ 85 if (free) { 86 if (spool->min_hpages != -1) 87 hugetlb_acct_memory(spool->hstate, 88 -spool->min_hpages); 89 kfree(spool); 90 } 91 } 92 93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 94 long min_hpages) 95 { 96 struct hugepage_subpool *spool; 97 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 99 if (!spool) 100 return NULL; 101 102 spin_lock_init(&spool->lock); 103 spool->count = 1; 104 spool->max_hpages = max_hpages; 105 spool->hstate = h; 106 spool->min_hpages = min_hpages; 107 108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 109 kfree(spool); 110 return NULL; 111 } 112 spool->rsv_hpages = min_hpages; 113 114 return spool; 115 } 116 117 void hugepage_put_subpool(struct hugepage_subpool *spool) 118 { 119 spin_lock(&spool->lock); 120 BUG_ON(!spool->count); 121 spool->count--; 122 unlock_or_release_subpool(spool); 123 } 124 125 /* 126 * Subpool accounting for allocating and reserving pages. 127 * Return -ENOMEM if there are not enough resources to satisfy the 128 * the request. Otherwise, return the number of pages by which the 129 * global pools must be adjusted (upward). The returned value may 130 * only be different than the passed value (delta) in the case where 131 * a subpool minimum size must be manitained. 132 */ 133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 134 long delta) 135 { 136 long ret = delta; 137 138 if (!spool) 139 return ret; 140 141 spin_lock(&spool->lock); 142 143 if (spool->max_hpages != -1) { /* maximum size accounting */ 144 if ((spool->used_hpages + delta) <= spool->max_hpages) 145 spool->used_hpages += delta; 146 else { 147 ret = -ENOMEM; 148 goto unlock_ret; 149 } 150 } 151 152 /* minimum size accounting */ 153 if (spool->min_hpages != -1 && spool->rsv_hpages) { 154 if (delta > spool->rsv_hpages) { 155 /* 156 * Asking for more reserves than those already taken on 157 * behalf of subpool. Return difference. 158 */ 159 ret = delta - spool->rsv_hpages; 160 spool->rsv_hpages = 0; 161 } else { 162 ret = 0; /* reserves already accounted for */ 163 spool->rsv_hpages -= delta; 164 } 165 } 166 167 unlock_ret: 168 spin_unlock(&spool->lock); 169 return ret; 170 } 171 172 /* 173 * Subpool accounting for freeing and unreserving pages. 174 * Return the number of global page reservations that must be dropped. 175 * The return value may only be different than the passed value (delta) 176 * in the case where a subpool minimum size must be maintained. 177 */ 178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 179 long delta) 180 { 181 long ret = delta; 182 183 if (!spool) 184 return delta; 185 186 spin_lock(&spool->lock); 187 188 if (spool->max_hpages != -1) /* maximum size accounting */ 189 spool->used_hpages -= delta; 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 193 if (spool->rsv_hpages + delta <= spool->min_hpages) 194 ret = 0; 195 else 196 ret = spool->rsv_hpages + delta - spool->min_hpages; 197 198 spool->rsv_hpages += delta; 199 if (spool->rsv_hpages > spool->min_hpages) 200 spool->rsv_hpages = spool->min_hpages; 201 } 202 203 /* 204 * If hugetlbfs_put_super couldn't free spool due to an outstanding 205 * quota reference, free it now. 206 */ 207 unlock_or_release_subpool(spool); 208 209 return ret; 210 } 211 212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 213 { 214 return HUGETLBFS_SB(inode->i_sb)->spool; 215 } 216 217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 218 { 219 return subpool_inode(file_inode(vma->vm_file)); 220 } 221 222 /* 223 * Region tracking -- allows tracking of reservations and instantiated pages 224 * across the pages in a mapping. 225 * 226 * The region data structures are embedded into a resv_map and protected 227 * by a resv_map's lock. The set of regions within the resv_map represent 228 * reservations for huge pages, or huge pages that have already been 229 * instantiated within the map. The from and to elements are huge page 230 * indicies into the associated mapping. from indicates the starting index 231 * of the region. to represents the first index past the end of the region. 232 * 233 * For example, a file region structure with from == 0 and to == 4 represents 234 * four huge pages in a mapping. It is important to note that the to element 235 * represents the first element past the end of the region. This is used in 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 237 * 238 * Interval notation of the form [from, to) will be used to indicate that 239 * the endpoint from is inclusive and to is exclusive. 240 */ 241 struct file_region { 242 struct list_head link; 243 long from; 244 long to; 245 }; 246 247 /* 248 * Add the huge page range represented by [f, t) to the reserve 249 * map. In the normal case, existing regions will be expanded 250 * to accommodate the specified range. Sufficient regions should 251 * exist for expansion due to the previous call to region_chg 252 * with the same range. However, it is possible that region_del 253 * could have been called after region_chg and modifed the map 254 * in such a way that no region exists to be expanded. In this 255 * case, pull a region descriptor from the cache associated with 256 * the map and use that for the new range. 257 * 258 * Return the number of new huge pages added to the map. This 259 * number is greater than or equal to zero. 260 */ 261 static long region_add(struct resv_map *resv, long f, long t) 262 { 263 struct list_head *head = &resv->regions; 264 struct file_region *rg, *nrg, *trg; 265 long add = 0; 266 267 spin_lock(&resv->lock); 268 /* Locate the region we are either in or before. */ 269 list_for_each_entry(rg, head, link) 270 if (f <= rg->to) 271 break; 272 273 /* 274 * If no region exists which can be expanded to include the 275 * specified range, the list must have been modified by an 276 * interleving call to region_del(). Pull a region descriptor 277 * from the cache and use it for this range. 278 */ 279 if (&rg->link == head || t < rg->from) { 280 VM_BUG_ON(resv->region_cache_count <= 0); 281 282 resv->region_cache_count--; 283 nrg = list_first_entry(&resv->region_cache, struct file_region, 284 link); 285 list_del(&nrg->link); 286 287 nrg->from = f; 288 nrg->to = t; 289 list_add(&nrg->link, rg->link.prev); 290 291 add += t - f; 292 goto out_locked; 293 } 294 295 /* Round our left edge to the current segment if it encloses us. */ 296 if (f > rg->from) 297 f = rg->from; 298 299 /* Check for and consume any regions we now overlap with. */ 300 nrg = rg; 301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 302 if (&rg->link == head) 303 break; 304 if (rg->from > t) 305 break; 306 307 /* If this area reaches higher then extend our area to 308 * include it completely. If this is not the first area 309 * which we intend to reuse, free it. */ 310 if (rg->to > t) 311 t = rg->to; 312 if (rg != nrg) { 313 /* Decrement return value by the deleted range. 314 * Another range will span this area so that by 315 * end of routine add will be >= zero 316 */ 317 add -= (rg->to - rg->from); 318 list_del(&rg->link); 319 kfree(rg); 320 } 321 } 322 323 add += (nrg->from - f); /* Added to beginning of region */ 324 nrg->from = f; 325 add += t - nrg->to; /* Added to end of region */ 326 nrg->to = t; 327 328 out_locked: 329 resv->adds_in_progress--; 330 spin_unlock(&resv->lock); 331 VM_BUG_ON(add < 0); 332 return add; 333 } 334 335 /* 336 * Examine the existing reserve map and determine how many 337 * huge pages in the specified range [f, t) are NOT currently 338 * represented. This routine is called before a subsequent 339 * call to region_add that will actually modify the reserve 340 * map to add the specified range [f, t). region_chg does 341 * not change the number of huge pages represented by the 342 * map. However, if the existing regions in the map can not 343 * be expanded to represent the new range, a new file_region 344 * structure is added to the map as a placeholder. This is 345 * so that the subsequent region_add call will have all the 346 * regions it needs and will not fail. 347 * 348 * Upon entry, region_chg will also examine the cache of region descriptors 349 * associated with the map. If there are not enough descriptors cached, one 350 * will be allocated for the in progress add operation. 351 * 352 * Returns the number of huge pages that need to be added to the existing 353 * reservation map for the range [f, t). This number is greater or equal to 354 * zero. -ENOMEM is returned if a new file_region structure or cache entry 355 * is needed and can not be allocated. 356 */ 357 static long region_chg(struct resv_map *resv, long f, long t) 358 { 359 struct list_head *head = &resv->regions; 360 struct file_region *rg, *nrg = NULL; 361 long chg = 0; 362 363 retry: 364 spin_lock(&resv->lock); 365 retry_locked: 366 resv->adds_in_progress++; 367 368 /* 369 * Check for sufficient descriptors in the cache to accommodate 370 * the number of in progress add operations. 371 */ 372 if (resv->adds_in_progress > resv->region_cache_count) { 373 struct file_region *trg; 374 375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 376 /* Must drop lock to allocate a new descriptor. */ 377 resv->adds_in_progress--; 378 spin_unlock(&resv->lock); 379 380 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 381 if (!trg) { 382 kfree(nrg); 383 return -ENOMEM; 384 } 385 386 spin_lock(&resv->lock); 387 list_add(&trg->link, &resv->region_cache); 388 resv->region_cache_count++; 389 goto retry_locked; 390 } 391 392 /* Locate the region we are before or in. */ 393 list_for_each_entry(rg, head, link) 394 if (f <= rg->to) 395 break; 396 397 /* If we are below the current region then a new region is required. 398 * Subtle, allocate a new region at the position but make it zero 399 * size such that we can guarantee to record the reservation. */ 400 if (&rg->link == head || t < rg->from) { 401 if (!nrg) { 402 resv->adds_in_progress--; 403 spin_unlock(&resv->lock); 404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 405 if (!nrg) 406 return -ENOMEM; 407 408 nrg->from = f; 409 nrg->to = f; 410 INIT_LIST_HEAD(&nrg->link); 411 goto retry; 412 } 413 414 list_add(&nrg->link, rg->link.prev); 415 chg = t - f; 416 goto out_nrg; 417 } 418 419 /* Round our left edge to the current segment if it encloses us. */ 420 if (f > rg->from) 421 f = rg->from; 422 chg = t - f; 423 424 /* Check for and consume any regions we now overlap with. */ 425 list_for_each_entry(rg, rg->link.prev, link) { 426 if (&rg->link == head) 427 break; 428 if (rg->from > t) 429 goto out; 430 431 /* We overlap with this area, if it extends further than 432 * us then we must extend ourselves. Account for its 433 * existing reservation. */ 434 if (rg->to > t) { 435 chg += rg->to - t; 436 t = rg->to; 437 } 438 chg -= rg->to - rg->from; 439 } 440 441 out: 442 spin_unlock(&resv->lock); 443 /* We already know we raced and no longer need the new region */ 444 kfree(nrg); 445 return chg; 446 out_nrg: 447 spin_unlock(&resv->lock); 448 return chg; 449 } 450 451 /* 452 * Abort the in progress add operation. The adds_in_progress field 453 * of the resv_map keeps track of the operations in progress between 454 * calls to region_chg and region_add. Operations are sometimes 455 * aborted after the call to region_chg. In such cases, region_abort 456 * is called to decrement the adds_in_progress counter. 457 * 458 * NOTE: The range arguments [f, t) are not needed or used in this 459 * routine. They are kept to make reading the calling code easier as 460 * arguments will match the associated region_chg call. 461 */ 462 static void region_abort(struct resv_map *resv, long f, long t) 463 { 464 spin_lock(&resv->lock); 465 VM_BUG_ON(!resv->region_cache_count); 466 resv->adds_in_progress--; 467 spin_unlock(&resv->lock); 468 } 469 470 /* 471 * Delete the specified range [f, t) from the reserve map. If the 472 * t parameter is LONG_MAX, this indicates that ALL regions after f 473 * should be deleted. Locate the regions which intersect [f, t) 474 * and either trim, delete or split the existing regions. 475 * 476 * Returns the number of huge pages deleted from the reserve map. 477 * In the normal case, the return value is zero or more. In the 478 * case where a region must be split, a new region descriptor must 479 * be allocated. If the allocation fails, -ENOMEM will be returned. 480 * NOTE: If the parameter t == LONG_MAX, then we will never split 481 * a region and possibly return -ENOMEM. Callers specifying 482 * t == LONG_MAX do not need to check for -ENOMEM error. 483 */ 484 static long region_del(struct resv_map *resv, long f, long t) 485 { 486 struct list_head *head = &resv->regions; 487 struct file_region *rg, *trg; 488 struct file_region *nrg = NULL; 489 long del = 0; 490 491 retry: 492 spin_lock(&resv->lock); 493 list_for_each_entry_safe(rg, trg, head, link) { 494 /* 495 * Skip regions before the range to be deleted. file_region 496 * ranges are normally of the form [from, to). However, there 497 * may be a "placeholder" entry in the map which is of the form 498 * (from, to) with from == to. Check for placeholder entries 499 * at the beginning of the range to be deleted. 500 */ 501 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 502 continue; 503 504 if (rg->from >= t) 505 break; 506 507 if (f > rg->from && t < rg->to) { /* Must split region */ 508 /* 509 * Check for an entry in the cache before dropping 510 * lock and attempting allocation. 511 */ 512 if (!nrg && 513 resv->region_cache_count > resv->adds_in_progress) { 514 nrg = list_first_entry(&resv->region_cache, 515 struct file_region, 516 link); 517 list_del(&nrg->link); 518 resv->region_cache_count--; 519 } 520 521 if (!nrg) { 522 spin_unlock(&resv->lock); 523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 524 if (!nrg) 525 return -ENOMEM; 526 goto retry; 527 } 528 529 del += t - f; 530 531 /* New entry for end of split region */ 532 nrg->from = t; 533 nrg->to = rg->to; 534 INIT_LIST_HEAD(&nrg->link); 535 536 /* Original entry is trimmed */ 537 rg->to = f; 538 539 list_add(&nrg->link, &rg->link); 540 nrg = NULL; 541 break; 542 } 543 544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 545 del += rg->to - rg->from; 546 list_del(&rg->link); 547 kfree(rg); 548 continue; 549 } 550 551 if (f <= rg->from) { /* Trim beginning of region */ 552 del += t - rg->from; 553 rg->from = t; 554 } else { /* Trim end of region */ 555 del += rg->to - f; 556 rg->to = f; 557 } 558 } 559 560 spin_unlock(&resv->lock); 561 kfree(nrg); 562 return del; 563 } 564 565 /* 566 * A rare out of memory error was encountered which prevented removal of 567 * the reserve map region for a page. The huge page itself was free'ed 568 * and removed from the page cache. This routine will adjust the subpool 569 * usage count, and the global reserve count if needed. By incrementing 570 * these counts, the reserve map entry which could not be deleted will 571 * appear as a "reserved" entry instead of simply dangling with incorrect 572 * counts. 573 */ 574 void hugetlb_fix_reserve_counts(struct inode *inode) 575 { 576 struct hugepage_subpool *spool = subpool_inode(inode); 577 long rsv_adjust; 578 579 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 580 if (rsv_adjust) { 581 struct hstate *h = hstate_inode(inode); 582 583 hugetlb_acct_memory(h, 1); 584 } 585 } 586 587 /* 588 * Count and return the number of huge pages in the reserve map 589 * that intersect with the range [f, t). 590 */ 591 static long region_count(struct resv_map *resv, long f, long t) 592 { 593 struct list_head *head = &resv->regions; 594 struct file_region *rg; 595 long chg = 0; 596 597 spin_lock(&resv->lock); 598 /* Locate each segment we overlap with, and count that overlap. */ 599 list_for_each_entry(rg, head, link) { 600 long seg_from; 601 long seg_to; 602 603 if (rg->to <= f) 604 continue; 605 if (rg->from >= t) 606 break; 607 608 seg_from = max(rg->from, f); 609 seg_to = min(rg->to, t); 610 611 chg += seg_to - seg_from; 612 } 613 spin_unlock(&resv->lock); 614 615 return chg; 616 } 617 618 /* 619 * Convert the address within this vma to the page offset within 620 * the mapping, in pagecache page units; huge pages here. 621 */ 622 static pgoff_t vma_hugecache_offset(struct hstate *h, 623 struct vm_area_struct *vma, unsigned long address) 624 { 625 return ((address - vma->vm_start) >> huge_page_shift(h)) + 626 (vma->vm_pgoff >> huge_page_order(h)); 627 } 628 629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 630 unsigned long address) 631 { 632 return vma_hugecache_offset(hstate_vma(vma), vma, address); 633 } 634 EXPORT_SYMBOL_GPL(linear_hugepage_index); 635 636 /* 637 * Return the size of the pages allocated when backing a VMA. In the majority 638 * cases this will be same size as used by the page table entries. 639 */ 640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 641 { 642 if (vma->vm_ops && vma->vm_ops->pagesize) 643 return vma->vm_ops->pagesize(vma); 644 return PAGE_SIZE; 645 } 646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 647 648 /* 649 * Return the page size being used by the MMU to back a VMA. In the majority 650 * of cases, the page size used by the kernel matches the MMU size. On 651 * architectures where it differs, an architecture-specific 'strong' 652 * version of this symbol is required. 653 */ 654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 655 { 656 return vma_kernel_pagesize(vma); 657 } 658 659 /* 660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 661 * bits of the reservation map pointer, which are always clear due to 662 * alignment. 663 */ 664 #define HPAGE_RESV_OWNER (1UL << 0) 665 #define HPAGE_RESV_UNMAPPED (1UL << 1) 666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 667 668 /* 669 * These helpers are used to track how many pages are reserved for 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 671 * is guaranteed to have their future faults succeed. 672 * 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 674 * the reserve counters are updated with the hugetlb_lock held. It is safe 675 * to reset the VMA at fork() time as it is not in use yet and there is no 676 * chance of the global counters getting corrupted as a result of the values. 677 * 678 * The private mapping reservation is represented in a subtly different 679 * manner to a shared mapping. A shared mapping has a region map associated 680 * with the underlying file, this region map represents the backing file 681 * pages which have ever had a reservation assigned which this persists even 682 * after the page is instantiated. A private mapping has a region map 683 * associated with the original mmap which is attached to all VMAs which 684 * reference it, this region map represents those offsets which have consumed 685 * reservation ie. where pages have been instantiated. 686 */ 687 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 688 { 689 return (unsigned long)vma->vm_private_data; 690 } 691 692 static void set_vma_private_data(struct vm_area_struct *vma, 693 unsigned long value) 694 { 695 vma->vm_private_data = (void *)value; 696 } 697 698 struct resv_map *resv_map_alloc(void) 699 { 700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 702 703 if (!resv_map || !rg) { 704 kfree(resv_map); 705 kfree(rg); 706 return NULL; 707 } 708 709 kref_init(&resv_map->refs); 710 spin_lock_init(&resv_map->lock); 711 INIT_LIST_HEAD(&resv_map->regions); 712 713 resv_map->adds_in_progress = 0; 714 715 INIT_LIST_HEAD(&resv_map->region_cache); 716 list_add(&rg->link, &resv_map->region_cache); 717 resv_map->region_cache_count = 1; 718 719 return resv_map; 720 } 721 722 void resv_map_release(struct kref *ref) 723 { 724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 725 struct list_head *head = &resv_map->region_cache; 726 struct file_region *rg, *trg; 727 728 /* Clear out any active regions before we release the map. */ 729 region_del(resv_map, 0, LONG_MAX); 730 731 /* ... and any entries left in the cache */ 732 list_for_each_entry_safe(rg, trg, head, link) { 733 list_del(&rg->link); 734 kfree(rg); 735 } 736 737 VM_BUG_ON(resv_map->adds_in_progress); 738 739 kfree(resv_map); 740 } 741 742 static inline struct resv_map *inode_resv_map(struct inode *inode) 743 { 744 /* 745 * At inode evict time, i_mapping may not point to the original 746 * address space within the inode. This original address space 747 * contains the pointer to the resv_map. So, always use the 748 * address space embedded within the inode. 749 * The VERY common case is inode->mapping == &inode->i_data but, 750 * this may not be true for device special inodes. 751 */ 752 return (struct resv_map *)(&inode->i_data)->private_data; 753 } 754 755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 756 { 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 758 if (vma->vm_flags & VM_MAYSHARE) { 759 struct address_space *mapping = vma->vm_file->f_mapping; 760 struct inode *inode = mapping->host; 761 762 return inode_resv_map(inode); 763 764 } else { 765 return (struct resv_map *)(get_vma_private_data(vma) & 766 ~HPAGE_RESV_MASK); 767 } 768 } 769 770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 771 { 772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 774 775 set_vma_private_data(vma, (get_vma_private_data(vma) & 776 HPAGE_RESV_MASK) | (unsigned long)map); 777 } 778 779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 780 { 781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 783 784 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 785 } 786 787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 788 { 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 790 791 return (get_vma_private_data(vma) & flag) != 0; 792 } 793 794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 796 { 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 798 if (!(vma->vm_flags & VM_MAYSHARE)) 799 vma->vm_private_data = (void *)0; 800 } 801 802 /* Returns true if the VMA has associated reserve pages */ 803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 804 { 805 if (vma->vm_flags & VM_NORESERVE) { 806 /* 807 * This address is already reserved by other process(chg == 0), 808 * so, we should decrement reserved count. Without decrementing, 809 * reserve count remains after releasing inode, because this 810 * allocated page will go into page cache and is regarded as 811 * coming from reserved pool in releasing step. Currently, we 812 * don't have any other solution to deal with this situation 813 * properly, so add work-around here. 814 */ 815 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 816 return true; 817 else 818 return false; 819 } 820 821 /* Shared mappings always use reserves */ 822 if (vma->vm_flags & VM_MAYSHARE) { 823 /* 824 * We know VM_NORESERVE is not set. Therefore, there SHOULD 825 * be a region map for all pages. The only situation where 826 * there is no region map is if a hole was punched via 827 * fallocate. In this case, there really are no reverves to 828 * use. This situation is indicated if chg != 0. 829 */ 830 if (chg) 831 return false; 832 else 833 return true; 834 } 835 836 /* 837 * Only the process that called mmap() has reserves for 838 * private mappings. 839 */ 840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 841 /* 842 * Like the shared case above, a hole punch or truncate 843 * could have been performed on the private mapping. 844 * Examine the value of chg to determine if reserves 845 * actually exist or were previously consumed. 846 * Very Subtle - The value of chg comes from a previous 847 * call to vma_needs_reserves(). The reserve map for 848 * private mappings has different (opposite) semantics 849 * than that of shared mappings. vma_needs_reserves() 850 * has already taken this difference in semantics into 851 * account. Therefore, the meaning of chg is the same 852 * as in the shared case above. Code could easily be 853 * combined, but keeping it separate draws attention to 854 * subtle differences. 855 */ 856 if (chg) 857 return false; 858 else 859 return true; 860 } 861 862 return false; 863 } 864 865 static void enqueue_huge_page(struct hstate *h, struct page *page) 866 { 867 int nid = page_to_nid(page); 868 list_move(&page->lru, &h->hugepage_freelists[nid]); 869 h->free_huge_pages++; 870 h->free_huge_pages_node[nid]++; 871 } 872 873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 874 { 875 struct page *page; 876 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 878 if (!PageHWPoison(page)) 879 break; 880 /* 881 * if 'non-isolated free hugepage' not found on the list, 882 * the allocation fails. 883 */ 884 if (&h->hugepage_freelists[nid] == &page->lru) 885 return NULL; 886 list_move(&page->lru, &h->hugepage_activelist); 887 set_page_refcounted(page); 888 h->free_huge_pages--; 889 h->free_huge_pages_node[nid]--; 890 return page; 891 } 892 893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 894 nodemask_t *nmask) 895 { 896 unsigned int cpuset_mems_cookie; 897 struct zonelist *zonelist; 898 struct zone *zone; 899 struct zoneref *z; 900 int node = NUMA_NO_NODE; 901 902 zonelist = node_zonelist(nid, gfp_mask); 903 904 retry_cpuset: 905 cpuset_mems_cookie = read_mems_allowed_begin(); 906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 907 struct page *page; 908 909 if (!cpuset_zone_allowed(zone, gfp_mask)) 910 continue; 911 /* 912 * no need to ask again on the same node. Pool is node rather than 913 * zone aware 914 */ 915 if (zone_to_nid(zone) == node) 916 continue; 917 node = zone_to_nid(zone); 918 919 page = dequeue_huge_page_node_exact(h, node); 920 if (page) 921 return page; 922 } 923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 924 goto retry_cpuset; 925 926 return NULL; 927 } 928 929 /* Movability of hugepages depends on migration support. */ 930 static inline gfp_t htlb_alloc_mask(struct hstate *h) 931 { 932 if (hugepage_movable_supported(h)) 933 return GFP_HIGHUSER_MOVABLE; 934 else 935 return GFP_HIGHUSER; 936 } 937 938 static struct page *dequeue_huge_page_vma(struct hstate *h, 939 struct vm_area_struct *vma, 940 unsigned long address, int avoid_reserve, 941 long chg) 942 { 943 struct page *page; 944 struct mempolicy *mpol; 945 gfp_t gfp_mask; 946 nodemask_t *nodemask; 947 int nid; 948 949 /* 950 * A child process with MAP_PRIVATE mappings created by their parent 951 * have no page reserves. This check ensures that reservations are 952 * not "stolen". The child may still get SIGKILLed 953 */ 954 if (!vma_has_reserves(vma, chg) && 955 h->free_huge_pages - h->resv_huge_pages == 0) 956 goto err; 957 958 /* If reserves cannot be used, ensure enough pages are in the pool */ 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 960 goto err; 961 962 gfp_mask = htlb_alloc_mask(h); 963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 966 SetPagePrivate(page); 967 h->resv_huge_pages--; 968 } 969 970 mpol_cond_put(mpol); 971 return page; 972 973 err: 974 return NULL; 975 } 976 977 /* 978 * common helper functions for hstate_next_node_to_{alloc|free}. 979 * We may have allocated or freed a huge page based on a different 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 981 * be outside of *nodes_allowed. Ensure that we use an allowed 982 * node for alloc or free. 983 */ 984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 985 { 986 nid = next_node_in(nid, *nodes_allowed); 987 VM_BUG_ON(nid >= MAX_NUMNODES); 988 989 return nid; 990 } 991 992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 993 { 994 if (!node_isset(nid, *nodes_allowed)) 995 nid = next_node_allowed(nid, nodes_allowed); 996 return nid; 997 } 998 999 /* 1000 * returns the previously saved node ["this node"] from which to 1001 * allocate a persistent huge page for the pool and advance the 1002 * next node from which to allocate, handling wrap at end of node 1003 * mask. 1004 */ 1005 static int hstate_next_node_to_alloc(struct hstate *h, 1006 nodemask_t *nodes_allowed) 1007 { 1008 int nid; 1009 1010 VM_BUG_ON(!nodes_allowed); 1011 1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1014 1015 return nid; 1016 } 1017 1018 /* 1019 * helper for free_pool_huge_page() - return the previously saved 1020 * node ["this node"] from which to free a huge page. Advance the 1021 * next node id whether or not we find a free huge page to free so 1022 * that the next attempt to free addresses the next node. 1023 */ 1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1025 { 1026 int nid; 1027 1028 VM_BUG_ON(!nodes_allowed); 1029 1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1032 1033 return nid; 1034 } 1035 1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1037 for (nr_nodes = nodes_weight(*mask); \ 1038 nr_nodes > 0 && \ 1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1040 nr_nodes--) 1041 1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1043 for (nr_nodes = nodes_weight(*mask); \ 1044 nr_nodes > 0 && \ 1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1046 nr_nodes--) 1047 1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1049 static void destroy_compound_gigantic_page(struct page *page, 1050 unsigned int order) 1051 { 1052 int i; 1053 int nr_pages = 1 << order; 1054 struct page *p = page + 1; 1055 1056 atomic_set(compound_mapcount_ptr(page), 0); 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1058 clear_compound_head(p); 1059 set_page_refcounted(p); 1060 } 1061 1062 set_compound_order(page, 0); 1063 __ClearPageHead(page); 1064 } 1065 1066 static void free_gigantic_page(struct page *page, unsigned int order) 1067 { 1068 free_contig_range(page_to_pfn(page), 1 << order); 1069 } 1070 1071 #ifdef CONFIG_CONTIG_ALLOC 1072 static int __alloc_gigantic_page(unsigned long start_pfn, 1073 unsigned long nr_pages, gfp_t gfp_mask) 1074 { 1075 unsigned long end_pfn = start_pfn + nr_pages; 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1077 gfp_mask); 1078 } 1079 1080 static bool pfn_range_valid_gigantic(struct zone *z, 1081 unsigned long start_pfn, unsigned long nr_pages) 1082 { 1083 unsigned long i, end_pfn = start_pfn + nr_pages; 1084 struct page *page; 1085 1086 for (i = start_pfn; i < end_pfn; i++) { 1087 page = pfn_to_online_page(i); 1088 if (!page) 1089 return false; 1090 1091 if (page_zone(page) != z) 1092 return false; 1093 1094 if (PageReserved(page)) 1095 return false; 1096 1097 if (page_count(page) > 0) 1098 return false; 1099 1100 if (PageHuge(page)) 1101 return false; 1102 } 1103 1104 return true; 1105 } 1106 1107 static bool zone_spans_last_pfn(const struct zone *zone, 1108 unsigned long start_pfn, unsigned long nr_pages) 1109 { 1110 unsigned long last_pfn = start_pfn + nr_pages - 1; 1111 return zone_spans_pfn(zone, last_pfn); 1112 } 1113 1114 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1115 int nid, nodemask_t *nodemask) 1116 { 1117 unsigned int order = huge_page_order(h); 1118 unsigned long nr_pages = 1 << order; 1119 unsigned long ret, pfn, flags; 1120 struct zonelist *zonelist; 1121 struct zone *zone; 1122 struct zoneref *z; 1123 1124 zonelist = node_zonelist(nid, gfp_mask); 1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1126 spin_lock_irqsave(&zone->lock, flags); 1127 1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1131 /* 1132 * We release the zone lock here because 1133 * alloc_contig_range() will also lock the zone 1134 * at some point. If there's an allocation 1135 * spinning on this lock, it may win the race 1136 * and cause alloc_contig_range() to fail... 1137 */ 1138 spin_unlock_irqrestore(&zone->lock, flags); 1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1140 if (!ret) 1141 return pfn_to_page(pfn); 1142 spin_lock_irqsave(&zone->lock, flags); 1143 } 1144 pfn += nr_pages; 1145 } 1146 1147 spin_unlock_irqrestore(&zone->lock, flags); 1148 } 1149 1150 return NULL; 1151 } 1152 1153 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1154 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1155 #else /* !CONFIG_CONTIG_ALLOC */ 1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1157 int nid, nodemask_t *nodemask) 1158 { 1159 return NULL; 1160 } 1161 #endif /* CONFIG_CONTIG_ALLOC */ 1162 1163 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1164 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1165 int nid, nodemask_t *nodemask) 1166 { 1167 return NULL; 1168 } 1169 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1170 static inline void destroy_compound_gigantic_page(struct page *page, 1171 unsigned int order) { } 1172 #endif 1173 1174 static void update_and_free_page(struct hstate *h, struct page *page) 1175 { 1176 int i; 1177 1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1179 return; 1180 1181 h->nr_huge_pages--; 1182 h->nr_huge_pages_node[page_to_nid(page)]--; 1183 for (i = 0; i < pages_per_huge_page(h); i++) { 1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1185 1 << PG_referenced | 1 << PG_dirty | 1186 1 << PG_active | 1 << PG_private | 1187 1 << PG_writeback); 1188 } 1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1191 set_page_refcounted(page); 1192 if (hstate_is_gigantic(h)) { 1193 destroy_compound_gigantic_page(page, huge_page_order(h)); 1194 free_gigantic_page(page, huge_page_order(h)); 1195 } else { 1196 __free_pages(page, huge_page_order(h)); 1197 } 1198 } 1199 1200 struct hstate *size_to_hstate(unsigned long size) 1201 { 1202 struct hstate *h; 1203 1204 for_each_hstate(h) { 1205 if (huge_page_size(h) == size) 1206 return h; 1207 } 1208 return NULL; 1209 } 1210 1211 /* 1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1213 * to hstate->hugepage_activelist.) 1214 * 1215 * This function can be called for tail pages, but never returns true for them. 1216 */ 1217 bool page_huge_active(struct page *page) 1218 { 1219 VM_BUG_ON_PAGE(!PageHuge(page), page); 1220 return PageHead(page) && PagePrivate(&page[1]); 1221 } 1222 1223 /* never called for tail page */ 1224 static void set_page_huge_active(struct page *page) 1225 { 1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1227 SetPagePrivate(&page[1]); 1228 } 1229 1230 static void clear_page_huge_active(struct page *page) 1231 { 1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1233 ClearPagePrivate(&page[1]); 1234 } 1235 1236 /* 1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1238 * code 1239 */ 1240 static inline bool PageHugeTemporary(struct page *page) 1241 { 1242 if (!PageHuge(page)) 1243 return false; 1244 1245 return (unsigned long)page[2].mapping == -1U; 1246 } 1247 1248 static inline void SetPageHugeTemporary(struct page *page) 1249 { 1250 page[2].mapping = (void *)-1U; 1251 } 1252 1253 static inline void ClearPageHugeTemporary(struct page *page) 1254 { 1255 page[2].mapping = NULL; 1256 } 1257 1258 void free_huge_page(struct page *page) 1259 { 1260 /* 1261 * Can't pass hstate in here because it is called from the 1262 * compound page destructor. 1263 */ 1264 struct hstate *h = page_hstate(page); 1265 int nid = page_to_nid(page); 1266 struct hugepage_subpool *spool = 1267 (struct hugepage_subpool *)page_private(page); 1268 bool restore_reserve; 1269 1270 VM_BUG_ON_PAGE(page_count(page), page); 1271 VM_BUG_ON_PAGE(page_mapcount(page), page); 1272 1273 set_page_private(page, 0); 1274 page->mapping = NULL; 1275 restore_reserve = PagePrivate(page); 1276 ClearPagePrivate(page); 1277 1278 /* 1279 * If PagePrivate() was set on page, page allocation consumed a 1280 * reservation. If the page was associated with a subpool, there 1281 * would have been a page reserved in the subpool before allocation 1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1283 * reservtion, do not call hugepage_subpool_put_pages() as this will 1284 * remove the reserved page from the subpool. 1285 */ 1286 if (!restore_reserve) { 1287 /* 1288 * A return code of zero implies that the subpool will be 1289 * under its minimum size if the reservation is not restored 1290 * after page is free. Therefore, force restore_reserve 1291 * operation. 1292 */ 1293 if (hugepage_subpool_put_pages(spool, 1) == 0) 1294 restore_reserve = true; 1295 } 1296 1297 spin_lock(&hugetlb_lock); 1298 clear_page_huge_active(page); 1299 hugetlb_cgroup_uncharge_page(hstate_index(h), 1300 pages_per_huge_page(h), page); 1301 if (restore_reserve) 1302 h->resv_huge_pages++; 1303 1304 if (PageHugeTemporary(page)) { 1305 list_del(&page->lru); 1306 ClearPageHugeTemporary(page); 1307 update_and_free_page(h, page); 1308 } else if (h->surplus_huge_pages_node[nid]) { 1309 /* remove the page from active list */ 1310 list_del(&page->lru); 1311 update_and_free_page(h, page); 1312 h->surplus_huge_pages--; 1313 h->surplus_huge_pages_node[nid]--; 1314 } else { 1315 arch_clear_hugepage_flags(page); 1316 enqueue_huge_page(h, page); 1317 } 1318 spin_unlock(&hugetlb_lock); 1319 } 1320 1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1322 { 1323 INIT_LIST_HEAD(&page->lru); 1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1325 spin_lock(&hugetlb_lock); 1326 set_hugetlb_cgroup(page, NULL); 1327 h->nr_huge_pages++; 1328 h->nr_huge_pages_node[nid]++; 1329 spin_unlock(&hugetlb_lock); 1330 } 1331 1332 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1333 { 1334 int i; 1335 int nr_pages = 1 << order; 1336 struct page *p = page + 1; 1337 1338 /* we rely on prep_new_huge_page to set the destructor */ 1339 set_compound_order(page, order); 1340 __ClearPageReserved(page); 1341 __SetPageHead(page); 1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1343 /* 1344 * For gigantic hugepages allocated through bootmem at 1345 * boot, it's safer to be consistent with the not-gigantic 1346 * hugepages and clear the PG_reserved bit from all tail pages 1347 * too. Otherwse drivers using get_user_pages() to access tail 1348 * pages may get the reference counting wrong if they see 1349 * PG_reserved set on a tail page (despite the head page not 1350 * having PG_reserved set). Enforcing this consistency between 1351 * head and tail pages allows drivers to optimize away a check 1352 * on the head page when they need know if put_page() is needed 1353 * after get_user_pages(). 1354 */ 1355 __ClearPageReserved(p); 1356 set_page_count(p, 0); 1357 set_compound_head(p, page); 1358 } 1359 atomic_set(compound_mapcount_ptr(page), -1); 1360 } 1361 1362 /* 1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1364 * transparent huge pages. See the PageTransHuge() documentation for more 1365 * details. 1366 */ 1367 int PageHuge(struct page *page) 1368 { 1369 if (!PageCompound(page)) 1370 return 0; 1371 1372 page = compound_head(page); 1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1374 } 1375 EXPORT_SYMBOL_GPL(PageHuge); 1376 1377 /* 1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1379 * normal or transparent huge pages. 1380 */ 1381 int PageHeadHuge(struct page *page_head) 1382 { 1383 if (!PageHead(page_head)) 1384 return 0; 1385 1386 return get_compound_page_dtor(page_head) == free_huge_page; 1387 } 1388 1389 pgoff_t __basepage_index(struct page *page) 1390 { 1391 struct page *page_head = compound_head(page); 1392 pgoff_t index = page_index(page_head); 1393 unsigned long compound_idx; 1394 1395 if (!PageHuge(page_head)) 1396 return page_index(page); 1397 1398 if (compound_order(page_head) >= MAX_ORDER) 1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1400 else 1401 compound_idx = page - page_head; 1402 1403 return (index << compound_order(page_head)) + compound_idx; 1404 } 1405 1406 static struct page *alloc_buddy_huge_page(struct hstate *h, 1407 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1408 nodemask_t *node_alloc_noretry) 1409 { 1410 int order = huge_page_order(h); 1411 struct page *page; 1412 bool alloc_try_hard = true; 1413 1414 /* 1415 * By default we always try hard to allocate the page with 1416 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1417 * a loop (to adjust global huge page counts) and previous allocation 1418 * failed, do not continue to try hard on the same node. Use the 1419 * node_alloc_noretry bitmap to manage this state information. 1420 */ 1421 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1422 alloc_try_hard = false; 1423 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1424 if (alloc_try_hard) 1425 gfp_mask |= __GFP_RETRY_MAYFAIL; 1426 if (nid == NUMA_NO_NODE) 1427 nid = numa_mem_id(); 1428 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1429 if (page) 1430 __count_vm_event(HTLB_BUDDY_PGALLOC); 1431 else 1432 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1433 1434 /* 1435 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1436 * indicates an overall state change. Clear bit so that we resume 1437 * normal 'try hard' allocations. 1438 */ 1439 if (node_alloc_noretry && page && !alloc_try_hard) 1440 node_clear(nid, *node_alloc_noretry); 1441 1442 /* 1443 * If we tried hard to get a page but failed, set bit so that 1444 * subsequent attempts will not try as hard until there is an 1445 * overall state change. 1446 */ 1447 if (node_alloc_noretry && !page && alloc_try_hard) 1448 node_set(nid, *node_alloc_noretry); 1449 1450 return page; 1451 } 1452 1453 /* 1454 * Common helper to allocate a fresh hugetlb page. All specific allocators 1455 * should use this function to get new hugetlb pages 1456 */ 1457 static struct page *alloc_fresh_huge_page(struct hstate *h, 1458 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1459 nodemask_t *node_alloc_noretry) 1460 { 1461 struct page *page; 1462 1463 if (hstate_is_gigantic(h)) 1464 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1465 else 1466 page = alloc_buddy_huge_page(h, gfp_mask, 1467 nid, nmask, node_alloc_noretry); 1468 if (!page) 1469 return NULL; 1470 1471 if (hstate_is_gigantic(h)) 1472 prep_compound_gigantic_page(page, huge_page_order(h)); 1473 prep_new_huge_page(h, page, page_to_nid(page)); 1474 1475 return page; 1476 } 1477 1478 /* 1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1480 * manner. 1481 */ 1482 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1483 nodemask_t *node_alloc_noretry) 1484 { 1485 struct page *page; 1486 int nr_nodes, node; 1487 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1488 1489 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1490 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1491 node_alloc_noretry); 1492 if (page) 1493 break; 1494 } 1495 1496 if (!page) 1497 return 0; 1498 1499 put_page(page); /* free it into the hugepage allocator */ 1500 1501 return 1; 1502 } 1503 1504 /* 1505 * Free huge page from pool from next node to free. 1506 * Attempt to keep persistent huge pages more or less 1507 * balanced over allowed nodes. 1508 * Called with hugetlb_lock locked. 1509 */ 1510 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1511 bool acct_surplus) 1512 { 1513 int nr_nodes, node; 1514 int ret = 0; 1515 1516 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1517 /* 1518 * If we're returning unused surplus pages, only examine 1519 * nodes with surplus pages. 1520 */ 1521 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1522 !list_empty(&h->hugepage_freelists[node])) { 1523 struct page *page = 1524 list_entry(h->hugepage_freelists[node].next, 1525 struct page, lru); 1526 list_del(&page->lru); 1527 h->free_huge_pages--; 1528 h->free_huge_pages_node[node]--; 1529 if (acct_surplus) { 1530 h->surplus_huge_pages--; 1531 h->surplus_huge_pages_node[node]--; 1532 } 1533 update_and_free_page(h, page); 1534 ret = 1; 1535 break; 1536 } 1537 } 1538 1539 return ret; 1540 } 1541 1542 /* 1543 * Dissolve a given free hugepage into free buddy pages. This function does 1544 * nothing for in-use hugepages and non-hugepages. 1545 * This function returns values like below: 1546 * 1547 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1548 * (allocated or reserved.) 1549 * 0: successfully dissolved free hugepages or the page is not a 1550 * hugepage (considered as already dissolved) 1551 */ 1552 int dissolve_free_huge_page(struct page *page) 1553 { 1554 int rc = -EBUSY; 1555 1556 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1557 if (!PageHuge(page)) 1558 return 0; 1559 1560 spin_lock(&hugetlb_lock); 1561 if (!PageHuge(page)) { 1562 rc = 0; 1563 goto out; 1564 } 1565 1566 if (!page_count(page)) { 1567 struct page *head = compound_head(page); 1568 struct hstate *h = page_hstate(head); 1569 int nid = page_to_nid(head); 1570 if (h->free_huge_pages - h->resv_huge_pages == 0) 1571 goto out; 1572 /* 1573 * Move PageHWPoison flag from head page to the raw error page, 1574 * which makes any subpages rather than the error page reusable. 1575 */ 1576 if (PageHWPoison(head) && page != head) { 1577 SetPageHWPoison(page); 1578 ClearPageHWPoison(head); 1579 } 1580 list_del(&head->lru); 1581 h->free_huge_pages--; 1582 h->free_huge_pages_node[nid]--; 1583 h->max_huge_pages--; 1584 update_and_free_page(h, head); 1585 rc = 0; 1586 } 1587 out: 1588 spin_unlock(&hugetlb_lock); 1589 return rc; 1590 } 1591 1592 /* 1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1594 * make specified memory blocks removable from the system. 1595 * Note that this will dissolve a free gigantic hugepage completely, if any 1596 * part of it lies within the given range. 1597 * Also note that if dissolve_free_huge_page() returns with an error, all 1598 * free hugepages that were dissolved before that error are lost. 1599 */ 1600 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1601 { 1602 unsigned long pfn; 1603 struct page *page; 1604 int rc = 0; 1605 1606 if (!hugepages_supported()) 1607 return rc; 1608 1609 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1610 page = pfn_to_page(pfn); 1611 rc = dissolve_free_huge_page(page); 1612 if (rc) 1613 break; 1614 } 1615 1616 return rc; 1617 } 1618 1619 /* 1620 * Allocates a fresh surplus page from the page allocator. 1621 */ 1622 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1623 int nid, nodemask_t *nmask) 1624 { 1625 struct page *page = NULL; 1626 1627 if (hstate_is_gigantic(h)) 1628 return NULL; 1629 1630 spin_lock(&hugetlb_lock); 1631 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1632 goto out_unlock; 1633 spin_unlock(&hugetlb_lock); 1634 1635 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1636 if (!page) 1637 return NULL; 1638 1639 spin_lock(&hugetlb_lock); 1640 /* 1641 * We could have raced with the pool size change. 1642 * Double check that and simply deallocate the new page 1643 * if we would end up overcommiting the surpluses. Abuse 1644 * temporary page to workaround the nasty free_huge_page 1645 * codeflow 1646 */ 1647 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1648 SetPageHugeTemporary(page); 1649 spin_unlock(&hugetlb_lock); 1650 put_page(page); 1651 return NULL; 1652 } else { 1653 h->surplus_huge_pages++; 1654 h->surplus_huge_pages_node[page_to_nid(page)]++; 1655 } 1656 1657 out_unlock: 1658 spin_unlock(&hugetlb_lock); 1659 1660 return page; 1661 } 1662 1663 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1664 int nid, nodemask_t *nmask) 1665 { 1666 struct page *page; 1667 1668 if (hstate_is_gigantic(h)) 1669 return NULL; 1670 1671 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1672 if (!page) 1673 return NULL; 1674 1675 /* 1676 * We do not account these pages as surplus because they are only 1677 * temporary and will be released properly on the last reference 1678 */ 1679 SetPageHugeTemporary(page); 1680 1681 return page; 1682 } 1683 1684 /* 1685 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1686 */ 1687 static 1688 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1689 struct vm_area_struct *vma, unsigned long addr) 1690 { 1691 struct page *page; 1692 struct mempolicy *mpol; 1693 gfp_t gfp_mask = htlb_alloc_mask(h); 1694 int nid; 1695 nodemask_t *nodemask; 1696 1697 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1698 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1699 mpol_cond_put(mpol); 1700 1701 return page; 1702 } 1703 1704 /* page migration callback function */ 1705 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1706 { 1707 gfp_t gfp_mask = htlb_alloc_mask(h); 1708 struct page *page = NULL; 1709 1710 if (nid != NUMA_NO_NODE) 1711 gfp_mask |= __GFP_THISNODE; 1712 1713 spin_lock(&hugetlb_lock); 1714 if (h->free_huge_pages - h->resv_huge_pages > 0) 1715 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1716 spin_unlock(&hugetlb_lock); 1717 1718 if (!page) 1719 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1720 1721 return page; 1722 } 1723 1724 /* page migration callback function */ 1725 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1726 nodemask_t *nmask) 1727 { 1728 gfp_t gfp_mask = htlb_alloc_mask(h); 1729 1730 spin_lock(&hugetlb_lock); 1731 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1732 struct page *page; 1733 1734 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1735 if (page) { 1736 spin_unlock(&hugetlb_lock); 1737 return page; 1738 } 1739 } 1740 spin_unlock(&hugetlb_lock); 1741 1742 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1743 } 1744 1745 /* mempolicy aware migration callback */ 1746 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1747 unsigned long address) 1748 { 1749 struct mempolicy *mpol; 1750 nodemask_t *nodemask; 1751 struct page *page; 1752 gfp_t gfp_mask; 1753 int node; 1754 1755 gfp_mask = htlb_alloc_mask(h); 1756 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1757 page = alloc_huge_page_nodemask(h, node, nodemask); 1758 mpol_cond_put(mpol); 1759 1760 return page; 1761 } 1762 1763 /* 1764 * Increase the hugetlb pool such that it can accommodate a reservation 1765 * of size 'delta'. 1766 */ 1767 static int gather_surplus_pages(struct hstate *h, int delta) 1768 { 1769 struct list_head surplus_list; 1770 struct page *page, *tmp; 1771 int ret, i; 1772 int needed, allocated; 1773 bool alloc_ok = true; 1774 1775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1776 if (needed <= 0) { 1777 h->resv_huge_pages += delta; 1778 return 0; 1779 } 1780 1781 allocated = 0; 1782 INIT_LIST_HEAD(&surplus_list); 1783 1784 ret = -ENOMEM; 1785 retry: 1786 spin_unlock(&hugetlb_lock); 1787 for (i = 0; i < needed; i++) { 1788 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1789 NUMA_NO_NODE, NULL); 1790 if (!page) { 1791 alloc_ok = false; 1792 break; 1793 } 1794 list_add(&page->lru, &surplus_list); 1795 cond_resched(); 1796 } 1797 allocated += i; 1798 1799 /* 1800 * After retaking hugetlb_lock, we need to recalculate 'needed' 1801 * because either resv_huge_pages or free_huge_pages may have changed. 1802 */ 1803 spin_lock(&hugetlb_lock); 1804 needed = (h->resv_huge_pages + delta) - 1805 (h->free_huge_pages + allocated); 1806 if (needed > 0) { 1807 if (alloc_ok) 1808 goto retry; 1809 /* 1810 * We were not able to allocate enough pages to 1811 * satisfy the entire reservation so we free what 1812 * we've allocated so far. 1813 */ 1814 goto free; 1815 } 1816 /* 1817 * The surplus_list now contains _at_least_ the number of extra pages 1818 * needed to accommodate the reservation. Add the appropriate number 1819 * of pages to the hugetlb pool and free the extras back to the buddy 1820 * allocator. Commit the entire reservation here to prevent another 1821 * process from stealing the pages as they are added to the pool but 1822 * before they are reserved. 1823 */ 1824 needed += allocated; 1825 h->resv_huge_pages += delta; 1826 ret = 0; 1827 1828 /* Free the needed pages to the hugetlb pool */ 1829 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1830 if ((--needed) < 0) 1831 break; 1832 /* 1833 * This page is now managed by the hugetlb allocator and has 1834 * no users -- drop the buddy allocator's reference. 1835 */ 1836 put_page_testzero(page); 1837 VM_BUG_ON_PAGE(page_count(page), page); 1838 enqueue_huge_page(h, page); 1839 } 1840 free: 1841 spin_unlock(&hugetlb_lock); 1842 1843 /* Free unnecessary surplus pages to the buddy allocator */ 1844 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1845 put_page(page); 1846 spin_lock(&hugetlb_lock); 1847 1848 return ret; 1849 } 1850 1851 /* 1852 * This routine has two main purposes: 1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1854 * in unused_resv_pages. This corresponds to the prior adjustments made 1855 * to the associated reservation map. 1856 * 2) Free any unused surplus pages that may have been allocated to satisfy 1857 * the reservation. As many as unused_resv_pages may be freed. 1858 * 1859 * Called with hugetlb_lock held. However, the lock could be dropped (and 1860 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1861 * we must make sure nobody else can claim pages we are in the process of 1862 * freeing. Do this by ensuring resv_huge_page always is greater than the 1863 * number of huge pages we plan to free when dropping the lock. 1864 */ 1865 static void return_unused_surplus_pages(struct hstate *h, 1866 unsigned long unused_resv_pages) 1867 { 1868 unsigned long nr_pages; 1869 1870 /* Cannot return gigantic pages currently */ 1871 if (hstate_is_gigantic(h)) 1872 goto out; 1873 1874 /* 1875 * Part (or even all) of the reservation could have been backed 1876 * by pre-allocated pages. Only free surplus pages. 1877 */ 1878 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1879 1880 /* 1881 * We want to release as many surplus pages as possible, spread 1882 * evenly across all nodes with memory. Iterate across these nodes 1883 * until we can no longer free unreserved surplus pages. This occurs 1884 * when the nodes with surplus pages have no free pages. 1885 * free_pool_huge_page() will balance the the freed pages across the 1886 * on-line nodes with memory and will handle the hstate accounting. 1887 * 1888 * Note that we decrement resv_huge_pages as we free the pages. If 1889 * we drop the lock, resv_huge_pages will still be sufficiently large 1890 * to cover subsequent pages we may free. 1891 */ 1892 while (nr_pages--) { 1893 h->resv_huge_pages--; 1894 unused_resv_pages--; 1895 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1896 goto out; 1897 cond_resched_lock(&hugetlb_lock); 1898 } 1899 1900 out: 1901 /* Fully uncommit the reservation */ 1902 h->resv_huge_pages -= unused_resv_pages; 1903 } 1904 1905 1906 /* 1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1908 * are used by the huge page allocation routines to manage reservations. 1909 * 1910 * vma_needs_reservation is called to determine if the huge page at addr 1911 * within the vma has an associated reservation. If a reservation is 1912 * needed, the value 1 is returned. The caller is then responsible for 1913 * managing the global reservation and subpool usage counts. After 1914 * the huge page has been allocated, vma_commit_reservation is called 1915 * to add the page to the reservation map. If the page allocation fails, 1916 * the reservation must be ended instead of committed. vma_end_reservation 1917 * is called in such cases. 1918 * 1919 * In the normal case, vma_commit_reservation returns the same value 1920 * as the preceding vma_needs_reservation call. The only time this 1921 * is not the case is if a reserve map was changed between calls. It 1922 * is the responsibility of the caller to notice the difference and 1923 * take appropriate action. 1924 * 1925 * vma_add_reservation is used in error paths where a reservation must 1926 * be restored when a newly allocated huge page must be freed. It is 1927 * to be called after calling vma_needs_reservation to determine if a 1928 * reservation exists. 1929 */ 1930 enum vma_resv_mode { 1931 VMA_NEEDS_RESV, 1932 VMA_COMMIT_RESV, 1933 VMA_END_RESV, 1934 VMA_ADD_RESV, 1935 }; 1936 static long __vma_reservation_common(struct hstate *h, 1937 struct vm_area_struct *vma, unsigned long addr, 1938 enum vma_resv_mode mode) 1939 { 1940 struct resv_map *resv; 1941 pgoff_t idx; 1942 long ret; 1943 1944 resv = vma_resv_map(vma); 1945 if (!resv) 1946 return 1; 1947 1948 idx = vma_hugecache_offset(h, vma, addr); 1949 switch (mode) { 1950 case VMA_NEEDS_RESV: 1951 ret = region_chg(resv, idx, idx + 1); 1952 break; 1953 case VMA_COMMIT_RESV: 1954 ret = region_add(resv, idx, idx + 1); 1955 break; 1956 case VMA_END_RESV: 1957 region_abort(resv, idx, idx + 1); 1958 ret = 0; 1959 break; 1960 case VMA_ADD_RESV: 1961 if (vma->vm_flags & VM_MAYSHARE) 1962 ret = region_add(resv, idx, idx + 1); 1963 else { 1964 region_abort(resv, idx, idx + 1); 1965 ret = region_del(resv, idx, idx + 1); 1966 } 1967 break; 1968 default: 1969 BUG(); 1970 } 1971 1972 if (vma->vm_flags & VM_MAYSHARE) 1973 return ret; 1974 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1975 /* 1976 * In most cases, reserves always exist for private mappings. 1977 * However, a file associated with mapping could have been 1978 * hole punched or truncated after reserves were consumed. 1979 * As subsequent fault on such a range will not use reserves. 1980 * Subtle - The reserve map for private mappings has the 1981 * opposite meaning than that of shared mappings. If NO 1982 * entry is in the reserve map, it means a reservation exists. 1983 * If an entry exists in the reserve map, it means the 1984 * reservation has already been consumed. As a result, the 1985 * return value of this routine is the opposite of the 1986 * value returned from reserve map manipulation routines above. 1987 */ 1988 if (ret) 1989 return 0; 1990 else 1991 return 1; 1992 } 1993 else 1994 return ret < 0 ? ret : 0; 1995 } 1996 1997 static long vma_needs_reservation(struct hstate *h, 1998 struct vm_area_struct *vma, unsigned long addr) 1999 { 2000 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2001 } 2002 2003 static long vma_commit_reservation(struct hstate *h, 2004 struct vm_area_struct *vma, unsigned long addr) 2005 { 2006 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2007 } 2008 2009 static void vma_end_reservation(struct hstate *h, 2010 struct vm_area_struct *vma, unsigned long addr) 2011 { 2012 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2013 } 2014 2015 static long vma_add_reservation(struct hstate *h, 2016 struct vm_area_struct *vma, unsigned long addr) 2017 { 2018 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2019 } 2020 2021 /* 2022 * This routine is called to restore a reservation on error paths. In the 2023 * specific error paths, a huge page was allocated (via alloc_huge_page) 2024 * and is about to be freed. If a reservation for the page existed, 2025 * alloc_huge_page would have consumed the reservation and set PagePrivate 2026 * in the newly allocated page. When the page is freed via free_huge_page, 2027 * the global reservation count will be incremented if PagePrivate is set. 2028 * However, free_huge_page can not adjust the reserve map. Adjust the 2029 * reserve map here to be consistent with global reserve count adjustments 2030 * to be made by free_huge_page. 2031 */ 2032 static void restore_reserve_on_error(struct hstate *h, 2033 struct vm_area_struct *vma, unsigned long address, 2034 struct page *page) 2035 { 2036 if (unlikely(PagePrivate(page))) { 2037 long rc = vma_needs_reservation(h, vma, address); 2038 2039 if (unlikely(rc < 0)) { 2040 /* 2041 * Rare out of memory condition in reserve map 2042 * manipulation. Clear PagePrivate so that 2043 * global reserve count will not be incremented 2044 * by free_huge_page. This will make it appear 2045 * as though the reservation for this page was 2046 * consumed. This may prevent the task from 2047 * faulting in the page at a later time. This 2048 * is better than inconsistent global huge page 2049 * accounting of reserve counts. 2050 */ 2051 ClearPagePrivate(page); 2052 } else if (rc) { 2053 rc = vma_add_reservation(h, vma, address); 2054 if (unlikely(rc < 0)) 2055 /* 2056 * See above comment about rare out of 2057 * memory condition. 2058 */ 2059 ClearPagePrivate(page); 2060 } else 2061 vma_end_reservation(h, vma, address); 2062 } 2063 } 2064 2065 struct page *alloc_huge_page(struct vm_area_struct *vma, 2066 unsigned long addr, int avoid_reserve) 2067 { 2068 struct hugepage_subpool *spool = subpool_vma(vma); 2069 struct hstate *h = hstate_vma(vma); 2070 struct page *page; 2071 long map_chg, map_commit; 2072 long gbl_chg; 2073 int ret, idx; 2074 struct hugetlb_cgroup *h_cg; 2075 2076 idx = hstate_index(h); 2077 /* 2078 * Examine the region/reserve map to determine if the process 2079 * has a reservation for the page to be allocated. A return 2080 * code of zero indicates a reservation exists (no change). 2081 */ 2082 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2083 if (map_chg < 0) 2084 return ERR_PTR(-ENOMEM); 2085 2086 /* 2087 * Processes that did not create the mapping will have no 2088 * reserves as indicated by the region/reserve map. Check 2089 * that the allocation will not exceed the subpool limit. 2090 * Allocations for MAP_NORESERVE mappings also need to be 2091 * checked against any subpool limit. 2092 */ 2093 if (map_chg || avoid_reserve) { 2094 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2095 if (gbl_chg < 0) { 2096 vma_end_reservation(h, vma, addr); 2097 return ERR_PTR(-ENOSPC); 2098 } 2099 2100 /* 2101 * Even though there was no reservation in the region/reserve 2102 * map, there could be reservations associated with the 2103 * subpool that can be used. This would be indicated if the 2104 * return value of hugepage_subpool_get_pages() is zero. 2105 * However, if avoid_reserve is specified we still avoid even 2106 * the subpool reservations. 2107 */ 2108 if (avoid_reserve) 2109 gbl_chg = 1; 2110 } 2111 2112 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2113 if (ret) 2114 goto out_subpool_put; 2115 2116 spin_lock(&hugetlb_lock); 2117 /* 2118 * glb_chg is passed to indicate whether or not a page must be taken 2119 * from the global free pool (global change). gbl_chg == 0 indicates 2120 * a reservation exists for the allocation. 2121 */ 2122 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2123 if (!page) { 2124 spin_unlock(&hugetlb_lock); 2125 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2126 if (!page) 2127 goto out_uncharge_cgroup; 2128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2129 SetPagePrivate(page); 2130 h->resv_huge_pages--; 2131 } 2132 spin_lock(&hugetlb_lock); 2133 list_move(&page->lru, &h->hugepage_activelist); 2134 /* Fall through */ 2135 } 2136 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2137 spin_unlock(&hugetlb_lock); 2138 2139 set_page_private(page, (unsigned long)spool); 2140 2141 map_commit = vma_commit_reservation(h, vma, addr); 2142 if (unlikely(map_chg > map_commit)) { 2143 /* 2144 * The page was added to the reservation map between 2145 * vma_needs_reservation and vma_commit_reservation. 2146 * This indicates a race with hugetlb_reserve_pages. 2147 * Adjust for the subpool count incremented above AND 2148 * in hugetlb_reserve_pages for the same page. Also, 2149 * the reservation count added in hugetlb_reserve_pages 2150 * no longer applies. 2151 */ 2152 long rsv_adjust; 2153 2154 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2155 hugetlb_acct_memory(h, -rsv_adjust); 2156 } 2157 return page; 2158 2159 out_uncharge_cgroup: 2160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2161 out_subpool_put: 2162 if (map_chg || avoid_reserve) 2163 hugepage_subpool_put_pages(spool, 1); 2164 vma_end_reservation(h, vma, addr); 2165 return ERR_PTR(-ENOSPC); 2166 } 2167 2168 int alloc_bootmem_huge_page(struct hstate *h) 2169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2170 int __alloc_bootmem_huge_page(struct hstate *h) 2171 { 2172 struct huge_bootmem_page *m; 2173 int nr_nodes, node; 2174 2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2176 void *addr; 2177 2178 addr = memblock_alloc_try_nid_raw( 2179 huge_page_size(h), huge_page_size(h), 2180 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2181 if (addr) { 2182 /* 2183 * Use the beginning of the huge page to store the 2184 * huge_bootmem_page struct (until gather_bootmem 2185 * puts them into the mem_map). 2186 */ 2187 m = addr; 2188 goto found; 2189 } 2190 } 2191 return 0; 2192 2193 found: 2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2195 /* Put them into a private list first because mem_map is not up yet */ 2196 INIT_LIST_HEAD(&m->list); 2197 list_add(&m->list, &huge_boot_pages); 2198 m->hstate = h; 2199 return 1; 2200 } 2201 2202 static void __init prep_compound_huge_page(struct page *page, 2203 unsigned int order) 2204 { 2205 if (unlikely(order > (MAX_ORDER - 1))) 2206 prep_compound_gigantic_page(page, order); 2207 else 2208 prep_compound_page(page, order); 2209 } 2210 2211 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2212 static void __init gather_bootmem_prealloc(void) 2213 { 2214 struct huge_bootmem_page *m; 2215 2216 list_for_each_entry(m, &huge_boot_pages, list) { 2217 struct page *page = virt_to_page(m); 2218 struct hstate *h = m->hstate; 2219 2220 WARN_ON(page_count(page) != 1); 2221 prep_compound_huge_page(page, h->order); 2222 WARN_ON(PageReserved(page)); 2223 prep_new_huge_page(h, page, page_to_nid(page)); 2224 put_page(page); /* free it into the hugepage allocator */ 2225 2226 /* 2227 * If we had gigantic hugepages allocated at boot time, we need 2228 * to restore the 'stolen' pages to totalram_pages in order to 2229 * fix confusing memory reports from free(1) and another 2230 * side-effects, like CommitLimit going negative. 2231 */ 2232 if (hstate_is_gigantic(h)) 2233 adjust_managed_page_count(page, 1 << h->order); 2234 cond_resched(); 2235 } 2236 } 2237 2238 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2239 { 2240 unsigned long i; 2241 nodemask_t *node_alloc_noretry; 2242 2243 if (!hstate_is_gigantic(h)) { 2244 /* 2245 * Bit mask controlling how hard we retry per-node allocations. 2246 * Ignore errors as lower level routines can deal with 2247 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2248 * time, we are likely in bigger trouble. 2249 */ 2250 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2251 GFP_KERNEL); 2252 } else { 2253 /* allocations done at boot time */ 2254 node_alloc_noretry = NULL; 2255 } 2256 2257 /* bit mask controlling how hard we retry per-node allocations */ 2258 if (node_alloc_noretry) 2259 nodes_clear(*node_alloc_noretry); 2260 2261 for (i = 0; i < h->max_huge_pages; ++i) { 2262 if (hstate_is_gigantic(h)) { 2263 if (!alloc_bootmem_huge_page(h)) 2264 break; 2265 } else if (!alloc_pool_huge_page(h, 2266 &node_states[N_MEMORY], 2267 node_alloc_noretry)) 2268 break; 2269 cond_resched(); 2270 } 2271 if (i < h->max_huge_pages) { 2272 char buf[32]; 2273 2274 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2275 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2276 h->max_huge_pages, buf, i); 2277 h->max_huge_pages = i; 2278 } 2279 2280 kfree(node_alloc_noretry); 2281 } 2282 2283 static void __init hugetlb_init_hstates(void) 2284 { 2285 struct hstate *h; 2286 2287 for_each_hstate(h) { 2288 if (minimum_order > huge_page_order(h)) 2289 minimum_order = huge_page_order(h); 2290 2291 /* oversize hugepages were init'ed in early boot */ 2292 if (!hstate_is_gigantic(h)) 2293 hugetlb_hstate_alloc_pages(h); 2294 } 2295 VM_BUG_ON(minimum_order == UINT_MAX); 2296 } 2297 2298 static void __init report_hugepages(void) 2299 { 2300 struct hstate *h; 2301 2302 for_each_hstate(h) { 2303 char buf[32]; 2304 2305 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2306 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2307 buf, h->free_huge_pages); 2308 } 2309 } 2310 2311 #ifdef CONFIG_HIGHMEM 2312 static void try_to_free_low(struct hstate *h, unsigned long count, 2313 nodemask_t *nodes_allowed) 2314 { 2315 int i; 2316 2317 if (hstate_is_gigantic(h)) 2318 return; 2319 2320 for_each_node_mask(i, *nodes_allowed) { 2321 struct page *page, *next; 2322 struct list_head *freel = &h->hugepage_freelists[i]; 2323 list_for_each_entry_safe(page, next, freel, lru) { 2324 if (count >= h->nr_huge_pages) 2325 return; 2326 if (PageHighMem(page)) 2327 continue; 2328 list_del(&page->lru); 2329 update_and_free_page(h, page); 2330 h->free_huge_pages--; 2331 h->free_huge_pages_node[page_to_nid(page)]--; 2332 } 2333 } 2334 } 2335 #else 2336 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2337 nodemask_t *nodes_allowed) 2338 { 2339 } 2340 #endif 2341 2342 /* 2343 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2344 * balanced by operating on them in a round-robin fashion. 2345 * Returns 1 if an adjustment was made. 2346 */ 2347 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2348 int delta) 2349 { 2350 int nr_nodes, node; 2351 2352 VM_BUG_ON(delta != -1 && delta != 1); 2353 2354 if (delta < 0) { 2355 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2356 if (h->surplus_huge_pages_node[node]) 2357 goto found; 2358 } 2359 } else { 2360 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2361 if (h->surplus_huge_pages_node[node] < 2362 h->nr_huge_pages_node[node]) 2363 goto found; 2364 } 2365 } 2366 return 0; 2367 2368 found: 2369 h->surplus_huge_pages += delta; 2370 h->surplus_huge_pages_node[node] += delta; 2371 return 1; 2372 } 2373 2374 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2375 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2376 nodemask_t *nodes_allowed) 2377 { 2378 unsigned long min_count, ret; 2379 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2380 2381 /* 2382 * Bit mask controlling how hard we retry per-node allocations. 2383 * If we can not allocate the bit mask, do not attempt to allocate 2384 * the requested huge pages. 2385 */ 2386 if (node_alloc_noretry) 2387 nodes_clear(*node_alloc_noretry); 2388 else 2389 return -ENOMEM; 2390 2391 spin_lock(&hugetlb_lock); 2392 2393 /* 2394 * Check for a node specific request. 2395 * Changing node specific huge page count may require a corresponding 2396 * change to the global count. In any case, the passed node mask 2397 * (nodes_allowed) will restrict alloc/free to the specified node. 2398 */ 2399 if (nid != NUMA_NO_NODE) { 2400 unsigned long old_count = count; 2401 2402 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2403 /* 2404 * User may have specified a large count value which caused the 2405 * above calculation to overflow. In this case, they wanted 2406 * to allocate as many huge pages as possible. Set count to 2407 * largest possible value to align with their intention. 2408 */ 2409 if (count < old_count) 2410 count = ULONG_MAX; 2411 } 2412 2413 /* 2414 * Gigantic pages runtime allocation depend on the capability for large 2415 * page range allocation. 2416 * If the system does not provide this feature, return an error when 2417 * the user tries to allocate gigantic pages but let the user free the 2418 * boottime allocated gigantic pages. 2419 */ 2420 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2421 if (count > persistent_huge_pages(h)) { 2422 spin_unlock(&hugetlb_lock); 2423 NODEMASK_FREE(node_alloc_noretry); 2424 return -EINVAL; 2425 } 2426 /* Fall through to decrease pool */ 2427 } 2428 2429 /* 2430 * Increase the pool size 2431 * First take pages out of surplus state. Then make up the 2432 * remaining difference by allocating fresh huge pages. 2433 * 2434 * We might race with alloc_surplus_huge_page() here and be unable 2435 * to convert a surplus huge page to a normal huge page. That is 2436 * not critical, though, it just means the overall size of the 2437 * pool might be one hugepage larger than it needs to be, but 2438 * within all the constraints specified by the sysctls. 2439 */ 2440 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2441 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2442 break; 2443 } 2444 2445 while (count > persistent_huge_pages(h)) { 2446 /* 2447 * If this allocation races such that we no longer need the 2448 * page, free_huge_page will handle it by freeing the page 2449 * and reducing the surplus. 2450 */ 2451 spin_unlock(&hugetlb_lock); 2452 2453 /* yield cpu to avoid soft lockup */ 2454 cond_resched(); 2455 2456 ret = alloc_pool_huge_page(h, nodes_allowed, 2457 node_alloc_noretry); 2458 spin_lock(&hugetlb_lock); 2459 if (!ret) 2460 goto out; 2461 2462 /* Bail for signals. Probably ctrl-c from user */ 2463 if (signal_pending(current)) 2464 goto out; 2465 } 2466 2467 /* 2468 * Decrease the pool size 2469 * First return free pages to the buddy allocator (being careful 2470 * to keep enough around to satisfy reservations). Then place 2471 * pages into surplus state as needed so the pool will shrink 2472 * to the desired size as pages become free. 2473 * 2474 * By placing pages into the surplus state independent of the 2475 * overcommit value, we are allowing the surplus pool size to 2476 * exceed overcommit. There are few sane options here. Since 2477 * alloc_surplus_huge_page() is checking the global counter, 2478 * though, we'll note that we're not allowed to exceed surplus 2479 * and won't grow the pool anywhere else. Not until one of the 2480 * sysctls are changed, or the surplus pages go out of use. 2481 */ 2482 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2483 min_count = max(count, min_count); 2484 try_to_free_low(h, min_count, nodes_allowed); 2485 while (min_count < persistent_huge_pages(h)) { 2486 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2487 break; 2488 cond_resched_lock(&hugetlb_lock); 2489 } 2490 while (count < persistent_huge_pages(h)) { 2491 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2492 break; 2493 } 2494 out: 2495 h->max_huge_pages = persistent_huge_pages(h); 2496 spin_unlock(&hugetlb_lock); 2497 2498 NODEMASK_FREE(node_alloc_noretry); 2499 2500 return 0; 2501 } 2502 2503 #define HSTATE_ATTR_RO(_name) \ 2504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2505 2506 #define HSTATE_ATTR(_name) \ 2507 static struct kobj_attribute _name##_attr = \ 2508 __ATTR(_name, 0644, _name##_show, _name##_store) 2509 2510 static struct kobject *hugepages_kobj; 2511 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2512 2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2514 2515 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2516 { 2517 int i; 2518 2519 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2520 if (hstate_kobjs[i] == kobj) { 2521 if (nidp) 2522 *nidp = NUMA_NO_NODE; 2523 return &hstates[i]; 2524 } 2525 2526 return kobj_to_node_hstate(kobj, nidp); 2527 } 2528 2529 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2530 struct kobj_attribute *attr, char *buf) 2531 { 2532 struct hstate *h; 2533 unsigned long nr_huge_pages; 2534 int nid; 2535 2536 h = kobj_to_hstate(kobj, &nid); 2537 if (nid == NUMA_NO_NODE) 2538 nr_huge_pages = h->nr_huge_pages; 2539 else 2540 nr_huge_pages = h->nr_huge_pages_node[nid]; 2541 2542 return sprintf(buf, "%lu\n", nr_huge_pages); 2543 } 2544 2545 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2546 struct hstate *h, int nid, 2547 unsigned long count, size_t len) 2548 { 2549 int err; 2550 nodemask_t nodes_allowed, *n_mask; 2551 2552 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2553 return -EINVAL; 2554 2555 if (nid == NUMA_NO_NODE) { 2556 /* 2557 * global hstate attribute 2558 */ 2559 if (!(obey_mempolicy && 2560 init_nodemask_of_mempolicy(&nodes_allowed))) 2561 n_mask = &node_states[N_MEMORY]; 2562 else 2563 n_mask = &nodes_allowed; 2564 } else { 2565 /* 2566 * Node specific request. count adjustment happens in 2567 * set_max_huge_pages() after acquiring hugetlb_lock. 2568 */ 2569 init_nodemask_of_node(&nodes_allowed, nid); 2570 n_mask = &nodes_allowed; 2571 } 2572 2573 err = set_max_huge_pages(h, count, nid, n_mask); 2574 2575 return err ? err : len; 2576 } 2577 2578 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2579 struct kobject *kobj, const char *buf, 2580 size_t len) 2581 { 2582 struct hstate *h; 2583 unsigned long count; 2584 int nid; 2585 int err; 2586 2587 err = kstrtoul(buf, 10, &count); 2588 if (err) 2589 return err; 2590 2591 h = kobj_to_hstate(kobj, &nid); 2592 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2593 } 2594 2595 static ssize_t nr_hugepages_show(struct kobject *kobj, 2596 struct kobj_attribute *attr, char *buf) 2597 { 2598 return nr_hugepages_show_common(kobj, attr, buf); 2599 } 2600 2601 static ssize_t nr_hugepages_store(struct kobject *kobj, 2602 struct kobj_attribute *attr, const char *buf, size_t len) 2603 { 2604 return nr_hugepages_store_common(false, kobj, buf, len); 2605 } 2606 HSTATE_ATTR(nr_hugepages); 2607 2608 #ifdef CONFIG_NUMA 2609 2610 /* 2611 * hstate attribute for optionally mempolicy-based constraint on persistent 2612 * huge page alloc/free. 2613 */ 2614 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2615 struct kobj_attribute *attr, char *buf) 2616 { 2617 return nr_hugepages_show_common(kobj, attr, buf); 2618 } 2619 2620 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2621 struct kobj_attribute *attr, const char *buf, size_t len) 2622 { 2623 return nr_hugepages_store_common(true, kobj, buf, len); 2624 } 2625 HSTATE_ATTR(nr_hugepages_mempolicy); 2626 #endif 2627 2628 2629 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2630 struct kobj_attribute *attr, char *buf) 2631 { 2632 struct hstate *h = kobj_to_hstate(kobj, NULL); 2633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2634 } 2635 2636 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2637 struct kobj_attribute *attr, const char *buf, size_t count) 2638 { 2639 int err; 2640 unsigned long input; 2641 struct hstate *h = kobj_to_hstate(kobj, NULL); 2642 2643 if (hstate_is_gigantic(h)) 2644 return -EINVAL; 2645 2646 err = kstrtoul(buf, 10, &input); 2647 if (err) 2648 return err; 2649 2650 spin_lock(&hugetlb_lock); 2651 h->nr_overcommit_huge_pages = input; 2652 spin_unlock(&hugetlb_lock); 2653 2654 return count; 2655 } 2656 HSTATE_ATTR(nr_overcommit_hugepages); 2657 2658 static ssize_t free_hugepages_show(struct kobject *kobj, 2659 struct kobj_attribute *attr, char *buf) 2660 { 2661 struct hstate *h; 2662 unsigned long free_huge_pages; 2663 int nid; 2664 2665 h = kobj_to_hstate(kobj, &nid); 2666 if (nid == NUMA_NO_NODE) 2667 free_huge_pages = h->free_huge_pages; 2668 else 2669 free_huge_pages = h->free_huge_pages_node[nid]; 2670 2671 return sprintf(buf, "%lu\n", free_huge_pages); 2672 } 2673 HSTATE_ATTR_RO(free_hugepages); 2674 2675 static ssize_t resv_hugepages_show(struct kobject *kobj, 2676 struct kobj_attribute *attr, char *buf) 2677 { 2678 struct hstate *h = kobj_to_hstate(kobj, NULL); 2679 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2680 } 2681 HSTATE_ATTR_RO(resv_hugepages); 2682 2683 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2684 struct kobj_attribute *attr, char *buf) 2685 { 2686 struct hstate *h; 2687 unsigned long surplus_huge_pages; 2688 int nid; 2689 2690 h = kobj_to_hstate(kobj, &nid); 2691 if (nid == NUMA_NO_NODE) 2692 surplus_huge_pages = h->surplus_huge_pages; 2693 else 2694 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2695 2696 return sprintf(buf, "%lu\n", surplus_huge_pages); 2697 } 2698 HSTATE_ATTR_RO(surplus_hugepages); 2699 2700 static struct attribute *hstate_attrs[] = { 2701 &nr_hugepages_attr.attr, 2702 &nr_overcommit_hugepages_attr.attr, 2703 &free_hugepages_attr.attr, 2704 &resv_hugepages_attr.attr, 2705 &surplus_hugepages_attr.attr, 2706 #ifdef CONFIG_NUMA 2707 &nr_hugepages_mempolicy_attr.attr, 2708 #endif 2709 NULL, 2710 }; 2711 2712 static const struct attribute_group hstate_attr_group = { 2713 .attrs = hstate_attrs, 2714 }; 2715 2716 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2717 struct kobject **hstate_kobjs, 2718 const struct attribute_group *hstate_attr_group) 2719 { 2720 int retval; 2721 int hi = hstate_index(h); 2722 2723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2724 if (!hstate_kobjs[hi]) 2725 return -ENOMEM; 2726 2727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2728 if (retval) 2729 kobject_put(hstate_kobjs[hi]); 2730 2731 return retval; 2732 } 2733 2734 static void __init hugetlb_sysfs_init(void) 2735 { 2736 struct hstate *h; 2737 int err; 2738 2739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2740 if (!hugepages_kobj) 2741 return; 2742 2743 for_each_hstate(h) { 2744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2745 hstate_kobjs, &hstate_attr_group); 2746 if (err) 2747 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2748 } 2749 } 2750 2751 #ifdef CONFIG_NUMA 2752 2753 /* 2754 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2755 * with node devices in node_devices[] using a parallel array. The array 2756 * index of a node device or _hstate == node id. 2757 * This is here to avoid any static dependency of the node device driver, in 2758 * the base kernel, on the hugetlb module. 2759 */ 2760 struct node_hstate { 2761 struct kobject *hugepages_kobj; 2762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2763 }; 2764 static struct node_hstate node_hstates[MAX_NUMNODES]; 2765 2766 /* 2767 * A subset of global hstate attributes for node devices 2768 */ 2769 static struct attribute *per_node_hstate_attrs[] = { 2770 &nr_hugepages_attr.attr, 2771 &free_hugepages_attr.attr, 2772 &surplus_hugepages_attr.attr, 2773 NULL, 2774 }; 2775 2776 static const struct attribute_group per_node_hstate_attr_group = { 2777 .attrs = per_node_hstate_attrs, 2778 }; 2779 2780 /* 2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2782 * Returns node id via non-NULL nidp. 2783 */ 2784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2785 { 2786 int nid; 2787 2788 for (nid = 0; nid < nr_node_ids; nid++) { 2789 struct node_hstate *nhs = &node_hstates[nid]; 2790 int i; 2791 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2792 if (nhs->hstate_kobjs[i] == kobj) { 2793 if (nidp) 2794 *nidp = nid; 2795 return &hstates[i]; 2796 } 2797 } 2798 2799 BUG(); 2800 return NULL; 2801 } 2802 2803 /* 2804 * Unregister hstate attributes from a single node device. 2805 * No-op if no hstate attributes attached. 2806 */ 2807 static void hugetlb_unregister_node(struct node *node) 2808 { 2809 struct hstate *h; 2810 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2811 2812 if (!nhs->hugepages_kobj) 2813 return; /* no hstate attributes */ 2814 2815 for_each_hstate(h) { 2816 int idx = hstate_index(h); 2817 if (nhs->hstate_kobjs[idx]) { 2818 kobject_put(nhs->hstate_kobjs[idx]); 2819 nhs->hstate_kobjs[idx] = NULL; 2820 } 2821 } 2822 2823 kobject_put(nhs->hugepages_kobj); 2824 nhs->hugepages_kobj = NULL; 2825 } 2826 2827 2828 /* 2829 * Register hstate attributes for a single node device. 2830 * No-op if attributes already registered. 2831 */ 2832 static void hugetlb_register_node(struct node *node) 2833 { 2834 struct hstate *h; 2835 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2836 int err; 2837 2838 if (nhs->hugepages_kobj) 2839 return; /* already allocated */ 2840 2841 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2842 &node->dev.kobj); 2843 if (!nhs->hugepages_kobj) 2844 return; 2845 2846 for_each_hstate(h) { 2847 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2848 nhs->hstate_kobjs, 2849 &per_node_hstate_attr_group); 2850 if (err) { 2851 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2852 h->name, node->dev.id); 2853 hugetlb_unregister_node(node); 2854 break; 2855 } 2856 } 2857 } 2858 2859 /* 2860 * hugetlb init time: register hstate attributes for all registered node 2861 * devices of nodes that have memory. All on-line nodes should have 2862 * registered their associated device by this time. 2863 */ 2864 static void __init hugetlb_register_all_nodes(void) 2865 { 2866 int nid; 2867 2868 for_each_node_state(nid, N_MEMORY) { 2869 struct node *node = node_devices[nid]; 2870 if (node->dev.id == nid) 2871 hugetlb_register_node(node); 2872 } 2873 2874 /* 2875 * Let the node device driver know we're here so it can 2876 * [un]register hstate attributes on node hotplug. 2877 */ 2878 register_hugetlbfs_with_node(hugetlb_register_node, 2879 hugetlb_unregister_node); 2880 } 2881 #else /* !CONFIG_NUMA */ 2882 2883 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2884 { 2885 BUG(); 2886 if (nidp) 2887 *nidp = -1; 2888 return NULL; 2889 } 2890 2891 static void hugetlb_register_all_nodes(void) { } 2892 2893 #endif 2894 2895 static int __init hugetlb_init(void) 2896 { 2897 int i; 2898 2899 if (!hugepages_supported()) 2900 return 0; 2901 2902 if (!size_to_hstate(default_hstate_size)) { 2903 if (default_hstate_size != 0) { 2904 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2905 default_hstate_size, HPAGE_SIZE); 2906 } 2907 2908 default_hstate_size = HPAGE_SIZE; 2909 if (!size_to_hstate(default_hstate_size)) 2910 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2911 } 2912 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2913 if (default_hstate_max_huge_pages) { 2914 if (!default_hstate.max_huge_pages) 2915 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2916 } 2917 2918 hugetlb_init_hstates(); 2919 gather_bootmem_prealloc(); 2920 report_hugepages(); 2921 2922 hugetlb_sysfs_init(); 2923 hugetlb_register_all_nodes(); 2924 hugetlb_cgroup_file_init(); 2925 2926 #ifdef CONFIG_SMP 2927 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2928 #else 2929 num_fault_mutexes = 1; 2930 #endif 2931 hugetlb_fault_mutex_table = 2932 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2933 GFP_KERNEL); 2934 BUG_ON(!hugetlb_fault_mutex_table); 2935 2936 for (i = 0; i < num_fault_mutexes; i++) 2937 mutex_init(&hugetlb_fault_mutex_table[i]); 2938 return 0; 2939 } 2940 subsys_initcall(hugetlb_init); 2941 2942 /* Should be called on processing a hugepagesz=... option */ 2943 void __init hugetlb_bad_size(void) 2944 { 2945 parsed_valid_hugepagesz = false; 2946 } 2947 2948 void __init hugetlb_add_hstate(unsigned int order) 2949 { 2950 struct hstate *h; 2951 unsigned long i; 2952 2953 if (size_to_hstate(PAGE_SIZE << order)) { 2954 pr_warn("hugepagesz= specified twice, ignoring\n"); 2955 return; 2956 } 2957 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2958 BUG_ON(order == 0); 2959 h = &hstates[hugetlb_max_hstate++]; 2960 h->order = order; 2961 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2962 h->nr_huge_pages = 0; 2963 h->free_huge_pages = 0; 2964 for (i = 0; i < MAX_NUMNODES; ++i) 2965 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2966 INIT_LIST_HEAD(&h->hugepage_activelist); 2967 h->next_nid_to_alloc = first_memory_node; 2968 h->next_nid_to_free = first_memory_node; 2969 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2970 huge_page_size(h)/1024); 2971 2972 parsed_hstate = h; 2973 } 2974 2975 static int __init hugetlb_nrpages_setup(char *s) 2976 { 2977 unsigned long *mhp; 2978 static unsigned long *last_mhp; 2979 2980 if (!parsed_valid_hugepagesz) { 2981 pr_warn("hugepages = %s preceded by " 2982 "an unsupported hugepagesz, ignoring\n", s); 2983 parsed_valid_hugepagesz = true; 2984 return 1; 2985 } 2986 /* 2987 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2988 * so this hugepages= parameter goes to the "default hstate". 2989 */ 2990 else if (!hugetlb_max_hstate) 2991 mhp = &default_hstate_max_huge_pages; 2992 else 2993 mhp = &parsed_hstate->max_huge_pages; 2994 2995 if (mhp == last_mhp) { 2996 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2997 return 1; 2998 } 2999 3000 if (sscanf(s, "%lu", mhp) <= 0) 3001 *mhp = 0; 3002 3003 /* 3004 * Global state is always initialized later in hugetlb_init. 3005 * But we need to allocate >= MAX_ORDER hstates here early to still 3006 * use the bootmem allocator. 3007 */ 3008 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3009 hugetlb_hstate_alloc_pages(parsed_hstate); 3010 3011 last_mhp = mhp; 3012 3013 return 1; 3014 } 3015 __setup("hugepages=", hugetlb_nrpages_setup); 3016 3017 static int __init hugetlb_default_setup(char *s) 3018 { 3019 default_hstate_size = memparse(s, &s); 3020 return 1; 3021 } 3022 __setup("default_hugepagesz=", hugetlb_default_setup); 3023 3024 static unsigned int cpuset_mems_nr(unsigned int *array) 3025 { 3026 int node; 3027 unsigned int nr = 0; 3028 3029 for_each_node_mask(node, cpuset_current_mems_allowed) 3030 nr += array[node]; 3031 3032 return nr; 3033 } 3034 3035 #ifdef CONFIG_SYSCTL 3036 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3037 struct ctl_table *table, int write, 3038 void __user *buffer, size_t *length, loff_t *ppos) 3039 { 3040 struct hstate *h = &default_hstate; 3041 unsigned long tmp = h->max_huge_pages; 3042 int ret; 3043 3044 if (!hugepages_supported()) 3045 return -EOPNOTSUPP; 3046 3047 table->data = &tmp; 3048 table->maxlen = sizeof(unsigned long); 3049 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3050 if (ret) 3051 goto out; 3052 3053 if (write) 3054 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3055 NUMA_NO_NODE, tmp, *length); 3056 out: 3057 return ret; 3058 } 3059 3060 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3061 void __user *buffer, size_t *length, loff_t *ppos) 3062 { 3063 3064 return hugetlb_sysctl_handler_common(false, table, write, 3065 buffer, length, ppos); 3066 } 3067 3068 #ifdef CONFIG_NUMA 3069 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3070 void __user *buffer, size_t *length, loff_t *ppos) 3071 { 3072 return hugetlb_sysctl_handler_common(true, table, write, 3073 buffer, length, ppos); 3074 } 3075 #endif /* CONFIG_NUMA */ 3076 3077 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3078 void __user *buffer, 3079 size_t *length, loff_t *ppos) 3080 { 3081 struct hstate *h = &default_hstate; 3082 unsigned long tmp; 3083 int ret; 3084 3085 if (!hugepages_supported()) 3086 return -EOPNOTSUPP; 3087 3088 tmp = h->nr_overcommit_huge_pages; 3089 3090 if (write && hstate_is_gigantic(h)) 3091 return -EINVAL; 3092 3093 table->data = &tmp; 3094 table->maxlen = sizeof(unsigned long); 3095 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3096 if (ret) 3097 goto out; 3098 3099 if (write) { 3100 spin_lock(&hugetlb_lock); 3101 h->nr_overcommit_huge_pages = tmp; 3102 spin_unlock(&hugetlb_lock); 3103 } 3104 out: 3105 return ret; 3106 } 3107 3108 #endif /* CONFIG_SYSCTL */ 3109 3110 void hugetlb_report_meminfo(struct seq_file *m) 3111 { 3112 struct hstate *h; 3113 unsigned long total = 0; 3114 3115 if (!hugepages_supported()) 3116 return; 3117 3118 for_each_hstate(h) { 3119 unsigned long count = h->nr_huge_pages; 3120 3121 total += (PAGE_SIZE << huge_page_order(h)) * count; 3122 3123 if (h == &default_hstate) 3124 seq_printf(m, 3125 "HugePages_Total: %5lu\n" 3126 "HugePages_Free: %5lu\n" 3127 "HugePages_Rsvd: %5lu\n" 3128 "HugePages_Surp: %5lu\n" 3129 "Hugepagesize: %8lu kB\n", 3130 count, 3131 h->free_huge_pages, 3132 h->resv_huge_pages, 3133 h->surplus_huge_pages, 3134 (PAGE_SIZE << huge_page_order(h)) / 1024); 3135 } 3136 3137 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3138 } 3139 3140 int hugetlb_report_node_meminfo(int nid, char *buf) 3141 { 3142 struct hstate *h = &default_hstate; 3143 if (!hugepages_supported()) 3144 return 0; 3145 return sprintf(buf, 3146 "Node %d HugePages_Total: %5u\n" 3147 "Node %d HugePages_Free: %5u\n" 3148 "Node %d HugePages_Surp: %5u\n", 3149 nid, h->nr_huge_pages_node[nid], 3150 nid, h->free_huge_pages_node[nid], 3151 nid, h->surplus_huge_pages_node[nid]); 3152 } 3153 3154 void hugetlb_show_meminfo(void) 3155 { 3156 struct hstate *h; 3157 int nid; 3158 3159 if (!hugepages_supported()) 3160 return; 3161 3162 for_each_node_state(nid, N_MEMORY) 3163 for_each_hstate(h) 3164 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3165 nid, 3166 h->nr_huge_pages_node[nid], 3167 h->free_huge_pages_node[nid], 3168 h->surplus_huge_pages_node[nid], 3169 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3170 } 3171 3172 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3173 { 3174 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3175 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3176 } 3177 3178 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3179 unsigned long hugetlb_total_pages(void) 3180 { 3181 struct hstate *h; 3182 unsigned long nr_total_pages = 0; 3183 3184 for_each_hstate(h) 3185 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3186 return nr_total_pages; 3187 } 3188 3189 static int hugetlb_acct_memory(struct hstate *h, long delta) 3190 { 3191 int ret = -ENOMEM; 3192 3193 spin_lock(&hugetlb_lock); 3194 /* 3195 * When cpuset is configured, it breaks the strict hugetlb page 3196 * reservation as the accounting is done on a global variable. Such 3197 * reservation is completely rubbish in the presence of cpuset because 3198 * the reservation is not checked against page availability for the 3199 * current cpuset. Application can still potentially OOM'ed by kernel 3200 * with lack of free htlb page in cpuset that the task is in. 3201 * Attempt to enforce strict accounting with cpuset is almost 3202 * impossible (or too ugly) because cpuset is too fluid that 3203 * task or memory node can be dynamically moved between cpusets. 3204 * 3205 * The change of semantics for shared hugetlb mapping with cpuset is 3206 * undesirable. However, in order to preserve some of the semantics, 3207 * we fall back to check against current free page availability as 3208 * a best attempt and hopefully to minimize the impact of changing 3209 * semantics that cpuset has. 3210 */ 3211 if (delta > 0) { 3212 if (gather_surplus_pages(h, delta) < 0) 3213 goto out; 3214 3215 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3216 return_unused_surplus_pages(h, delta); 3217 goto out; 3218 } 3219 } 3220 3221 ret = 0; 3222 if (delta < 0) 3223 return_unused_surplus_pages(h, (unsigned long) -delta); 3224 3225 out: 3226 spin_unlock(&hugetlb_lock); 3227 return ret; 3228 } 3229 3230 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3231 { 3232 struct resv_map *resv = vma_resv_map(vma); 3233 3234 /* 3235 * This new VMA should share its siblings reservation map if present. 3236 * The VMA will only ever have a valid reservation map pointer where 3237 * it is being copied for another still existing VMA. As that VMA 3238 * has a reference to the reservation map it cannot disappear until 3239 * after this open call completes. It is therefore safe to take a 3240 * new reference here without additional locking. 3241 */ 3242 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3243 kref_get(&resv->refs); 3244 } 3245 3246 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3247 { 3248 struct hstate *h = hstate_vma(vma); 3249 struct resv_map *resv = vma_resv_map(vma); 3250 struct hugepage_subpool *spool = subpool_vma(vma); 3251 unsigned long reserve, start, end; 3252 long gbl_reserve; 3253 3254 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3255 return; 3256 3257 start = vma_hugecache_offset(h, vma, vma->vm_start); 3258 end = vma_hugecache_offset(h, vma, vma->vm_end); 3259 3260 reserve = (end - start) - region_count(resv, start, end); 3261 3262 kref_put(&resv->refs, resv_map_release); 3263 3264 if (reserve) { 3265 /* 3266 * Decrement reserve counts. The global reserve count may be 3267 * adjusted if the subpool has a minimum size. 3268 */ 3269 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3270 hugetlb_acct_memory(h, -gbl_reserve); 3271 } 3272 } 3273 3274 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3275 { 3276 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3277 return -EINVAL; 3278 return 0; 3279 } 3280 3281 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3282 { 3283 struct hstate *hstate = hstate_vma(vma); 3284 3285 return 1UL << huge_page_shift(hstate); 3286 } 3287 3288 /* 3289 * We cannot handle pagefaults against hugetlb pages at all. They cause 3290 * handle_mm_fault() to try to instantiate regular-sized pages in the 3291 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3292 * this far. 3293 */ 3294 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3295 { 3296 BUG(); 3297 return 0; 3298 } 3299 3300 /* 3301 * When a new function is introduced to vm_operations_struct and added 3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3303 * This is because under System V memory model, mappings created via 3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3305 * their original vm_ops are overwritten with shm_vm_ops. 3306 */ 3307 const struct vm_operations_struct hugetlb_vm_ops = { 3308 .fault = hugetlb_vm_op_fault, 3309 .open = hugetlb_vm_op_open, 3310 .close = hugetlb_vm_op_close, 3311 .split = hugetlb_vm_op_split, 3312 .pagesize = hugetlb_vm_op_pagesize, 3313 }; 3314 3315 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3316 int writable) 3317 { 3318 pte_t entry; 3319 3320 if (writable) { 3321 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3322 vma->vm_page_prot))); 3323 } else { 3324 entry = huge_pte_wrprotect(mk_huge_pte(page, 3325 vma->vm_page_prot)); 3326 } 3327 entry = pte_mkyoung(entry); 3328 entry = pte_mkhuge(entry); 3329 entry = arch_make_huge_pte(entry, vma, page, writable); 3330 3331 return entry; 3332 } 3333 3334 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3335 unsigned long address, pte_t *ptep) 3336 { 3337 pte_t entry; 3338 3339 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3340 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3341 update_mmu_cache(vma, address, ptep); 3342 } 3343 3344 bool is_hugetlb_entry_migration(pte_t pte) 3345 { 3346 swp_entry_t swp; 3347 3348 if (huge_pte_none(pte) || pte_present(pte)) 3349 return false; 3350 swp = pte_to_swp_entry(pte); 3351 if (non_swap_entry(swp) && is_migration_entry(swp)) 3352 return true; 3353 else 3354 return false; 3355 } 3356 3357 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3358 { 3359 swp_entry_t swp; 3360 3361 if (huge_pte_none(pte) || pte_present(pte)) 3362 return 0; 3363 swp = pte_to_swp_entry(pte); 3364 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3365 return 1; 3366 else 3367 return 0; 3368 } 3369 3370 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3371 struct vm_area_struct *vma) 3372 { 3373 pte_t *src_pte, *dst_pte, entry, dst_entry; 3374 struct page *ptepage; 3375 unsigned long addr; 3376 int cow; 3377 struct hstate *h = hstate_vma(vma); 3378 unsigned long sz = huge_page_size(h); 3379 struct mmu_notifier_range range; 3380 int ret = 0; 3381 3382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3383 3384 if (cow) { 3385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3386 vma->vm_start, 3387 vma->vm_end); 3388 mmu_notifier_invalidate_range_start(&range); 3389 } 3390 3391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3392 spinlock_t *src_ptl, *dst_ptl; 3393 src_pte = huge_pte_offset(src, addr, sz); 3394 if (!src_pte) 3395 continue; 3396 dst_pte = huge_pte_alloc(dst, addr, sz); 3397 if (!dst_pte) { 3398 ret = -ENOMEM; 3399 break; 3400 } 3401 3402 /* 3403 * If the pagetables are shared don't copy or take references. 3404 * dst_pte == src_pte is the common case of src/dest sharing. 3405 * 3406 * However, src could have 'unshared' and dst shares with 3407 * another vma. If dst_pte !none, this implies sharing. 3408 * Check here before taking page table lock, and once again 3409 * after taking the lock below. 3410 */ 3411 dst_entry = huge_ptep_get(dst_pte); 3412 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3413 continue; 3414 3415 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3416 src_ptl = huge_pte_lockptr(h, src, src_pte); 3417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3418 entry = huge_ptep_get(src_pte); 3419 dst_entry = huge_ptep_get(dst_pte); 3420 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3421 /* 3422 * Skip if src entry none. Also, skip in the 3423 * unlikely case dst entry !none as this implies 3424 * sharing with another vma. 3425 */ 3426 ; 3427 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3428 is_hugetlb_entry_hwpoisoned(entry))) { 3429 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3430 3431 if (is_write_migration_entry(swp_entry) && cow) { 3432 /* 3433 * COW mappings require pages in both 3434 * parent and child to be set to read. 3435 */ 3436 make_migration_entry_read(&swp_entry); 3437 entry = swp_entry_to_pte(swp_entry); 3438 set_huge_swap_pte_at(src, addr, src_pte, 3439 entry, sz); 3440 } 3441 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3442 } else { 3443 if (cow) { 3444 /* 3445 * No need to notify as we are downgrading page 3446 * table protection not changing it to point 3447 * to a new page. 3448 * 3449 * See Documentation/vm/mmu_notifier.rst 3450 */ 3451 huge_ptep_set_wrprotect(src, addr, src_pte); 3452 } 3453 entry = huge_ptep_get(src_pte); 3454 ptepage = pte_page(entry); 3455 get_page(ptepage); 3456 page_dup_rmap(ptepage, true); 3457 set_huge_pte_at(dst, addr, dst_pte, entry); 3458 hugetlb_count_add(pages_per_huge_page(h), dst); 3459 } 3460 spin_unlock(src_ptl); 3461 spin_unlock(dst_ptl); 3462 } 3463 3464 if (cow) 3465 mmu_notifier_invalidate_range_end(&range); 3466 3467 return ret; 3468 } 3469 3470 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3471 unsigned long start, unsigned long end, 3472 struct page *ref_page) 3473 { 3474 struct mm_struct *mm = vma->vm_mm; 3475 unsigned long address; 3476 pte_t *ptep; 3477 pte_t pte; 3478 spinlock_t *ptl; 3479 struct page *page; 3480 struct hstate *h = hstate_vma(vma); 3481 unsigned long sz = huge_page_size(h); 3482 struct mmu_notifier_range range; 3483 3484 WARN_ON(!is_vm_hugetlb_page(vma)); 3485 BUG_ON(start & ~huge_page_mask(h)); 3486 BUG_ON(end & ~huge_page_mask(h)); 3487 3488 /* 3489 * This is a hugetlb vma, all the pte entries should point 3490 * to huge page. 3491 */ 3492 tlb_change_page_size(tlb, sz); 3493 tlb_start_vma(tlb, vma); 3494 3495 /* 3496 * If sharing possible, alert mmu notifiers of worst case. 3497 */ 3498 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3499 end); 3500 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3501 mmu_notifier_invalidate_range_start(&range); 3502 address = start; 3503 for (; address < end; address += sz) { 3504 ptep = huge_pte_offset(mm, address, sz); 3505 if (!ptep) 3506 continue; 3507 3508 ptl = huge_pte_lock(h, mm, ptep); 3509 if (huge_pmd_unshare(mm, &address, ptep)) { 3510 spin_unlock(ptl); 3511 /* 3512 * We just unmapped a page of PMDs by clearing a PUD. 3513 * The caller's TLB flush range should cover this area. 3514 */ 3515 continue; 3516 } 3517 3518 pte = huge_ptep_get(ptep); 3519 if (huge_pte_none(pte)) { 3520 spin_unlock(ptl); 3521 continue; 3522 } 3523 3524 /* 3525 * Migrating hugepage or HWPoisoned hugepage is already 3526 * unmapped and its refcount is dropped, so just clear pte here. 3527 */ 3528 if (unlikely(!pte_present(pte))) { 3529 huge_pte_clear(mm, address, ptep, sz); 3530 spin_unlock(ptl); 3531 continue; 3532 } 3533 3534 page = pte_page(pte); 3535 /* 3536 * If a reference page is supplied, it is because a specific 3537 * page is being unmapped, not a range. Ensure the page we 3538 * are about to unmap is the actual page of interest. 3539 */ 3540 if (ref_page) { 3541 if (page != ref_page) { 3542 spin_unlock(ptl); 3543 continue; 3544 } 3545 /* 3546 * Mark the VMA as having unmapped its page so that 3547 * future faults in this VMA will fail rather than 3548 * looking like data was lost 3549 */ 3550 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3551 } 3552 3553 pte = huge_ptep_get_and_clear(mm, address, ptep); 3554 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3555 if (huge_pte_dirty(pte)) 3556 set_page_dirty(page); 3557 3558 hugetlb_count_sub(pages_per_huge_page(h), mm); 3559 page_remove_rmap(page, true); 3560 3561 spin_unlock(ptl); 3562 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3563 /* 3564 * Bail out after unmapping reference page if supplied 3565 */ 3566 if (ref_page) 3567 break; 3568 } 3569 mmu_notifier_invalidate_range_end(&range); 3570 tlb_end_vma(tlb, vma); 3571 } 3572 3573 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3574 struct vm_area_struct *vma, unsigned long start, 3575 unsigned long end, struct page *ref_page) 3576 { 3577 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3578 3579 /* 3580 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3581 * test will fail on a vma being torn down, and not grab a page table 3582 * on its way out. We're lucky that the flag has such an appropriate 3583 * name, and can in fact be safely cleared here. We could clear it 3584 * before the __unmap_hugepage_range above, but all that's necessary 3585 * is to clear it before releasing the i_mmap_rwsem. This works 3586 * because in the context this is called, the VMA is about to be 3587 * destroyed and the i_mmap_rwsem is held. 3588 */ 3589 vma->vm_flags &= ~VM_MAYSHARE; 3590 } 3591 3592 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3593 unsigned long end, struct page *ref_page) 3594 { 3595 struct mm_struct *mm; 3596 struct mmu_gather tlb; 3597 unsigned long tlb_start = start; 3598 unsigned long tlb_end = end; 3599 3600 /* 3601 * If shared PMDs were possibly used within this vma range, adjust 3602 * start/end for worst case tlb flushing. 3603 * Note that we can not be sure if PMDs are shared until we try to 3604 * unmap pages. However, we want to make sure TLB flushing covers 3605 * the largest possible range. 3606 */ 3607 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3608 3609 mm = vma->vm_mm; 3610 3611 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3612 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3613 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3614 } 3615 3616 /* 3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3618 * mappping it owns the reserve page for. The intention is to unmap the page 3619 * from other VMAs and let the children be SIGKILLed if they are faulting the 3620 * same region. 3621 */ 3622 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3623 struct page *page, unsigned long address) 3624 { 3625 struct hstate *h = hstate_vma(vma); 3626 struct vm_area_struct *iter_vma; 3627 struct address_space *mapping; 3628 pgoff_t pgoff; 3629 3630 /* 3631 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3632 * from page cache lookup which is in HPAGE_SIZE units. 3633 */ 3634 address = address & huge_page_mask(h); 3635 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3636 vma->vm_pgoff; 3637 mapping = vma->vm_file->f_mapping; 3638 3639 /* 3640 * Take the mapping lock for the duration of the table walk. As 3641 * this mapping should be shared between all the VMAs, 3642 * __unmap_hugepage_range() is called as the lock is already held 3643 */ 3644 i_mmap_lock_write(mapping); 3645 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3646 /* Do not unmap the current VMA */ 3647 if (iter_vma == vma) 3648 continue; 3649 3650 /* 3651 * Shared VMAs have their own reserves and do not affect 3652 * MAP_PRIVATE accounting but it is possible that a shared 3653 * VMA is using the same page so check and skip such VMAs. 3654 */ 3655 if (iter_vma->vm_flags & VM_MAYSHARE) 3656 continue; 3657 3658 /* 3659 * Unmap the page from other VMAs without their own reserves. 3660 * They get marked to be SIGKILLed if they fault in these 3661 * areas. This is because a future no-page fault on this VMA 3662 * could insert a zeroed page instead of the data existing 3663 * from the time of fork. This would look like data corruption 3664 */ 3665 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3666 unmap_hugepage_range(iter_vma, address, 3667 address + huge_page_size(h), page); 3668 } 3669 i_mmap_unlock_write(mapping); 3670 } 3671 3672 /* 3673 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3675 * cannot race with other handlers or page migration. 3676 * Keep the pte_same checks anyway to make transition from the mutex easier. 3677 */ 3678 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3679 unsigned long address, pte_t *ptep, 3680 struct page *pagecache_page, spinlock_t *ptl) 3681 { 3682 pte_t pte; 3683 struct hstate *h = hstate_vma(vma); 3684 struct page *old_page, *new_page; 3685 int outside_reserve = 0; 3686 vm_fault_t ret = 0; 3687 unsigned long haddr = address & huge_page_mask(h); 3688 struct mmu_notifier_range range; 3689 3690 pte = huge_ptep_get(ptep); 3691 old_page = pte_page(pte); 3692 3693 retry_avoidcopy: 3694 /* If no-one else is actually using this page, avoid the copy 3695 * and just make the page writable */ 3696 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3697 page_move_anon_rmap(old_page, vma); 3698 set_huge_ptep_writable(vma, haddr, ptep); 3699 return 0; 3700 } 3701 3702 /* 3703 * If the process that created a MAP_PRIVATE mapping is about to 3704 * perform a COW due to a shared page count, attempt to satisfy 3705 * the allocation without using the existing reserves. The pagecache 3706 * page is used to determine if the reserve at this address was 3707 * consumed or not. If reserves were used, a partial faulted mapping 3708 * at the time of fork() could consume its reserves on COW instead 3709 * of the full address range. 3710 */ 3711 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3712 old_page != pagecache_page) 3713 outside_reserve = 1; 3714 3715 get_page(old_page); 3716 3717 /* 3718 * Drop page table lock as buddy allocator may be called. It will 3719 * be acquired again before returning to the caller, as expected. 3720 */ 3721 spin_unlock(ptl); 3722 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3723 3724 if (IS_ERR(new_page)) { 3725 /* 3726 * If a process owning a MAP_PRIVATE mapping fails to COW, 3727 * it is due to references held by a child and an insufficient 3728 * huge page pool. To guarantee the original mappers 3729 * reliability, unmap the page from child processes. The child 3730 * may get SIGKILLed if it later faults. 3731 */ 3732 if (outside_reserve) { 3733 put_page(old_page); 3734 BUG_ON(huge_pte_none(pte)); 3735 unmap_ref_private(mm, vma, old_page, haddr); 3736 BUG_ON(huge_pte_none(pte)); 3737 spin_lock(ptl); 3738 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3739 if (likely(ptep && 3740 pte_same(huge_ptep_get(ptep), pte))) 3741 goto retry_avoidcopy; 3742 /* 3743 * race occurs while re-acquiring page table 3744 * lock, and our job is done. 3745 */ 3746 return 0; 3747 } 3748 3749 ret = vmf_error(PTR_ERR(new_page)); 3750 goto out_release_old; 3751 } 3752 3753 /* 3754 * When the original hugepage is shared one, it does not have 3755 * anon_vma prepared. 3756 */ 3757 if (unlikely(anon_vma_prepare(vma))) { 3758 ret = VM_FAULT_OOM; 3759 goto out_release_all; 3760 } 3761 3762 copy_user_huge_page(new_page, old_page, address, vma, 3763 pages_per_huge_page(h)); 3764 __SetPageUptodate(new_page); 3765 3766 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3767 haddr + huge_page_size(h)); 3768 mmu_notifier_invalidate_range_start(&range); 3769 3770 /* 3771 * Retake the page table lock to check for racing updates 3772 * before the page tables are altered 3773 */ 3774 spin_lock(ptl); 3775 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3776 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3777 ClearPagePrivate(new_page); 3778 3779 /* Break COW */ 3780 huge_ptep_clear_flush(vma, haddr, ptep); 3781 mmu_notifier_invalidate_range(mm, range.start, range.end); 3782 set_huge_pte_at(mm, haddr, ptep, 3783 make_huge_pte(vma, new_page, 1)); 3784 page_remove_rmap(old_page, true); 3785 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3786 set_page_huge_active(new_page); 3787 /* Make the old page be freed below */ 3788 new_page = old_page; 3789 } 3790 spin_unlock(ptl); 3791 mmu_notifier_invalidate_range_end(&range); 3792 out_release_all: 3793 restore_reserve_on_error(h, vma, haddr, new_page); 3794 put_page(new_page); 3795 out_release_old: 3796 put_page(old_page); 3797 3798 spin_lock(ptl); /* Caller expects lock to be held */ 3799 return ret; 3800 } 3801 3802 /* Return the pagecache page at a given address within a VMA */ 3803 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3804 struct vm_area_struct *vma, unsigned long address) 3805 { 3806 struct address_space *mapping; 3807 pgoff_t idx; 3808 3809 mapping = vma->vm_file->f_mapping; 3810 idx = vma_hugecache_offset(h, vma, address); 3811 3812 return find_lock_page(mapping, idx); 3813 } 3814 3815 /* 3816 * Return whether there is a pagecache page to back given address within VMA. 3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3818 */ 3819 static bool hugetlbfs_pagecache_present(struct hstate *h, 3820 struct vm_area_struct *vma, unsigned long address) 3821 { 3822 struct address_space *mapping; 3823 pgoff_t idx; 3824 struct page *page; 3825 3826 mapping = vma->vm_file->f_mapping; 3827 idx = vma_hugecache_offset(h, vma, address); 3828 3829 page = find_get_page(mapping, idx); 3830 if (page) 3831 put_page(page); 3832 return page != NULL; 3833 } 3834 3835 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3836 pgoff_t idx) 3837 { 3838 struct inode *inode = mapping->host; 3839 struct hstate *h = hstate_inode(inode); 3840 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3841 3842 if (err) 3843 return err; 3844 ClearPagePrivate(page); 3845 3846 /* 3847 * set page dirty so that it will not be removed from cache/file 3848 * by non-hugetlbfs specific code paths. 3849 */ 3850 set_page_dirty(page); 3851 3852 spin_lock(&inode->i_lock); 3853 inode->i_blocks += blocks_per_huge_page(h); 3854 spin_unlock(&inode->i_lock); 3855 return 0; 3856 } 3857 3858 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3859 struct vm_area_struct *vma, 3860 struct address_space *mapping, pgoff_t idx, 3861 unsigned long address, pte_t *ptep, unsigned int flags) 3862 { 3863 struct hstate *h = hstate_vma(vma); 3864 vm_fault_t ret = VM_FAULT_SIGBUS; 3865 int anon_rmap = 0; 3866 unsigned long size; 3867 struct page *page; 3868 pte_t new_pte; 3869 spinlock_t *ptl; 3870 unsigned long haddr = address & huge_page_mask(h); 3871 bool new_page = false; 3872 3873 /* 3874 * Currently, we are forced to kill the process in the event the 3875 * original mapper has unmapped pages from the child due to a failed 3876 * COW. Warn that such a situation has occurred as it may not be obvious 3877 */ 3878 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3879 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3880 current->pid); 3881 return ret; 3882 } 3883 3884 /* 3885 * Use page lock to guard against racing truncation 3886 * before we get page_table_lock. 3887 */ 3888 retry: 3889 page = find_lock_page(mapping, idx); 3890 if (!page) { 3891 size = i_size_read(mapping->host) >> huge_page_shift(h); 3892 if (idx >= size) 3893 goto out; 3894 3895 /* 3896 * Check for page in userfault range 3897 */ 3898 if (userfaultfd_missing(vma)) { 3899 u32 hash; 3900 struct vm_fault vmf = { 3901 .vma = vma, 3902 .address = haddr, 3903 .flags = flags, 3904 /* 3905 * Hard to debug if it ends up being 3906 * used by a callee that assumes 3907 * something about the other 3908 * uninitialized fields... same as in 3909 * memory.c 3910 */ 3911 }; 3912 3913 /* 3914 * hugetlb_fault_mutex must be dropped before 3915 * handling userfault. Reacquire after handling 3916 * fault to make calling code simpler. 3917 */ 3918 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 3919 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3920 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3921 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3922 goto out; 3923 } 3924 3925 page = alloc_huge_page(vma, haddr, 0); 3926 if (IS_ERR(page)) { 3927 /* 3928 * Returning error will result in faulting task being 3929 * sent SIGBUS. The hugetlb fault mutex prevents two 3930 * tasks from racing to fault in the same page which 3931 * could result in false unable to allocate errors. 3932 * Page migration does not take the fault mutex, but 3933 * does a clear then write of pte's under page table 3934 * lock. Page fault code could race with migration, 3935 * notice the clear pte and try to allocate a page 3936 * here. Before returning error, get ptl and make 3937 * sure there really is no pte entry. 3938 */ 3939 ptl = huge_pte_lock(h, mm, ptep); 3940 if (!huge_pte_none(huge_ptep_get(ptep))) { 3941 ret = 0; 3942 spin_unlock(ptl); 3943 goto out; 3944 } 3945 spin_unlock(ptl); 3946 ret = vmf_error(PTR_ERR(page)); 3947 goto out; 3948 } 3949 clear_huge_page(page, address, pages_per_huge_page(h)); 3950 __SetPageUptodate(page); 3951 new_page = true; 3952 3953 if (vma->vm_flags & VM_MAYSHARE) { 3954 int err = huge_add_to_page_cache(page, mapping, idx); 3955 if (err) { 3956 put_page(page); 3957 if (err == -EEXIST) 3958 goto retry; 3959 goto out; 3960 } 3961 } else { 3962 lock_page(page); 3963 if (unlikely(anon_vma_prepare(vma))) { 3964 ret = VM_FAULT_OOM; 3965 goto backout_unlocked; 3966 } 3967 anon_rmap = 1; 3968 } 3969 } else { 3970 /* 3971 * If memory error occurs between mmap() and fault, some process 3972 * don't have hwpoisoned swap entry for errored virtual address. 3973 * So we need to block hugepage fault by PG_hwpoison bit check. 3974 */ 3975 if (unlikely(PageHWPoison(page))) { 3976 ret = VM_FAULT_HWPOISON | 3977 VM_FAULT_SET_HINDEX(hstate_index(h)); 3978 goto backout_unlocked; 3979 } 3980 } 3981 3982 /* 3983 * If we are going to COW a private mapping later, we examine the 3984 * pending reservations for this page now. This will ensure that 3985 * any allocations necessary to record that reservation occur outside 3986 * the spinlock. 3987 */ 3988 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3989 if (vma_needs_reservation(h, vma, haddr) < 0) { 3990 ret = VM_FAULT_OOM; 3991 goto backout_unlocked; 3992 } 3993 /* Just decrements count, does not deallocate */ 3994 vma_end_reservation(h, vma, haddr); 3995 } 3996 3997 ptl = huge_pte_lock(h, mm, ptep); 3998 size = i_size_read(mapping->host) >> huge_page_shift(h); 3999 if (idx >= size) 4000 goto backout; 4001 4002 ret = 0; 4003 if (!huge_pte_none(huge_ptep_get(ptep))) 4004 goto backout; 4005 4006 if (anon_rmap) { 4007 ClearPagePrivate(page); 4008 hugepage_add_new_anon_rmap(page, vma, haddr); 4009 } else 4010 page_dup_rmap(page, true); 4011 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4012 && (vma->vm_flags & VM_SHARED))); 4013 set_huge_pte_at(mm, haddr, ptep, new_pte); 4014 4015 hugetlb_count_add(pages_per_huge_page(h), mm); 4016 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4017 /* Optimization, do the COW without a second fault */ 4018 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4019 } 4020 4021 spin_unlock(ptl); 4022 4023 /* 4024 * Only make newly allocated pages active. Existing pages found 4025 * in the pagecache could be !page_huge_active() if they have been 4026 * isolated for migration. 4027 */ 4028 if (new_page) 4029 set_page_huge_active(page); 4030 4031 unlock_page(page); 4032 out: 4033 return ret; 4034 4035 backout: 4036 spin_unlock(ptl); 4037 backout_unlocked: 4038 unlock_page(page); 4039 restore_reserve_on_error(h, vma, haddr, page); 4040 put_page(page); 4041 goto out; 4042 } 4043 4044 #ifdef CONFIG_SMP 4045 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 4046 pgoff_t idx, unsigned long address) 4047 { 4048 unsigned long key[2]; 4049 u32 hash; 4050 4051 key[0] = (unsigned long) mapping; 4052 key[1] = idx; 4053 4054 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 4055 4056 return hash & (num_fault_mutexes - 1); 4057 } 4058 #else 4059 /* 4060 * For uniprocesor systems we always use a single mutex, so just 4061 * return 0 and avoid the hashing overhead. 4062 */ 4063 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 4064 pgoff_t idx, unsigned long address) 4065 { 4066 return 0; 4067 } 4068 #endif 4069 4070 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4071 unsigned long address, unsigned int flags) 4072 { 4073 pte_t *ptep, entry; 4074 spinlock_t *ptl; 4075 vm_fault_t ret; 4076 u32 hash; 4077 pgoff_t idx; 4078 struct page *page = NULL; 4079 struct page *pagecache_page = NULL; 4080 struct hstate *h = hstate_vma(vma); 4081 struct address_space *mapping; 4082 int need_wait_lock = 0; 4083 unsigned long haddr = address & huge_page_mask(h); 4084 4085 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4086 if (ptep) { 4087 entry = huge_ptep_get(ptep); 4088 if (unlikely(is_hugetlb_entry_migration(entry))) { 4089 migration_entry_wait_huge(vma, mm, ptep); 4090 return 0; 4091 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4092 return VM_FAULT_HWPOISON_LARGE | 4093 VM_FAULT_SET_HINDEX(hstate_index(h)); 4094 } else { 4095 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4096 if (!ptep) 4097 return VM_FAULT_OOM; 4098 } 4099 4100 mapping = vma->vm_file->f_mapping; 4101 idx = vma_hugecache_offset(h, vma, haddr); 4102 4103 /* 4104 * Serialize hugepage allocation and instantiation, so that we don't 4105 * get spurious allocation failures if two CPUs race to instantiate 4106 * the same page in the page cache. 4107 */ 4108 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 4109 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4110 4111 entry = huge_ptep_get(ptep); 4112 if (huge_pte_none(entry)) { 4113 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4114 goto out_mutex; 4115 } 4116 4117 ret = 0; 4118 4119 /* 4120 * entry could be a migration/hwpoison entry at this point, so this 4121 * check prevents the kernel from going below assuming that we have 4122 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4123 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4124 * handle it. 4125 */ 4126 if (!pte_present(entry)) 4127 goto out_mutex; 4128 4129 /* 4130 * If we are going to COW the mapping later, we examine the pending 4131 * reservations for this page now. This will ensure that any 4132 * allocations necessary to record that reservation occur outside the 4133 * spinlock. For private mappings, we also lookup the pagecache 4134 * page now as it is used to determine if a reservation has been 4135 * consumed. 4136 */ 4137 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4138 if (vma_needs_reservation(h, vma, haddr) < 0) { 4139 ret = VM_FAULT_OOM; 4140 goto out_mutex; 4141 } 4142 /* Just decrements count, does not deallocate */ 4143 vma_end_reservation(h, vma, haddr); 4144 4145 if (!(vma->vm_flags & VM_MAYSHARE)) 4146 pagecache_page = hugetlbfs_pagecache_page(h, 4147 vma, haddr); 4148 } 4149 4150 ptl = huge_pte_lock(h, mm, ptep); 4151 4152 /* Check for a racing update before calling hugetlb_cow */ 4153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4154 goto out_ptl; 4155 4156 /* 4157 * hugetlb_cow() requires page locks of pte_page(entry) and 4158 * pagecache_page, so here we need take the former one 4159 * when page != pagecache_page or !pagecache_page. 4160 */ 4161 page = pte_page(entry); 4162 if (page != pagecache_page) 4163 if (!trylock_page(page)) { 4164 need_wait_lock = 1; 4165 goto out_ptl; 4166 } 4167 4168 get_page(page); 4169 4170 if (flags & FAULT_FLAG_WRITE) { 4171 if (!huge_pte_write(entry)) { 4172 ret = hugetlb_cow(mm, vma, address, ptep, 4173 pagecache_page, ptl); 4174 goto out_put_page; 4175 } 4176 entry = huge_pte_mkdirty(entry); 4177 } 4178 entry = pte_mkyoung(entry); 4179 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4180 flags & FAULT_FLAG_WRITE)) 4181 update_mmu_cache(vma, haddr, ptep); 4182 out_put_page: 4183 if (page != pagecache_page) 4184 unlock_page(page); 4185 put_page(page); 4186 out_ptl: 4187 spin_unlock(ptl); 4188 4189 if (pagecache_page) { 4190 unlock_page(pagecache_page); 4191 put_page(pagecache_page); 4192 } 4193 out_mutex: 4194 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4195 /* 4196 * Generally it's safe to hold refcount during waiting page lock. But 4197 * here we just wait to defer the next page fault to avoid busy loop and 4198 * the page is not used after unlocked before returning from the current 4199 * page fault. So we are safe from accessing freed page, even if we wait 4200 * here without taking refcount. 4201 */ 4202 if (need_wait_lock) 4203 wait_on_page_locked(page); 4204 return ret; 4205 } 4206 4207 /* 4208 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4209 * modifications for huge pages. 4210 */ 4211 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4212 pte_t *dst_pte, 4213 struct vm_area_struct *dst_vma, 4214 unsigned long dst_addr, 4215 unsigned long src_addr, 4216 struct page **pagep) 4217 { 4218 struct address_space *mapping; 4219 pgoff_t idx; 4220 unsigned long size; 4221 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4222 struct hstate *h = hstate_vma(dst_vma); 4223 pte_t _dst_pte; 4224 spinlock_t *ptl; 4225 int ret; 4226 struct page *page; 4227 4228 if (!*pagep) { 4229 ret = -ENOMEM; 4230 page = alloc_huge_page(dst_vma, dst_addr, 0); 4231 if (IS_ERR(page)) 4232 goto out; 4233 4234 ret = copy_huge_page_from_user(page, 4235 (const void __user *) src_addr, 4236 pages_per_huge_page(h), false); 4237 4238 /* fallback to copy_from_user outside mmap_sem */ 4239 if (unlikely(ret)) { 4240 ret = -ENOENT; 4241 *pagep = page; 4242 /* don't free the page */ 4243 goto out; 4244 } 4245 } else { 4246 page = *pagep; 4247 *pagep = NULL; 4248 } 4249 4250 /* 4251 * The memory barrier inside __SetPageUptodate makes sure that 4252 * preceding stores to the page contents become visible before 4253 * the set_pte_at() write. 4254 */ 4255 __SetPageUptodate(page); 4256 4257 mapping = dst_vma->vm_file->f_mapping; 4258 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4259 4260 /* 4261 * If shared, add to page cache 4262 */ 4263 if (vm_shared) { 4264 size = i_size_read(mapping->host) >> huge_page_shift(h); 4265 ret = -EFAULT; 4266 if (idx >= size) 4267 goto out_release_nounlock; 4268 4269 /* 4270 * Serialization between remove_inode_hugepages() and 4271 * huge_add_to_page_cache() below happens through the 4272 * hugetlb_fault_mutex_table that here must be hold by 4273 * the caller. 4274 */ 4275 ret = huge_add_to_page_cache(page, mapping, idx); 4276 if (ret) 4277 goto out_release_nounlock; 4278 } 4279 4280 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4281 spin_lock(ptl); 4282 4283 /* 4284 * Recheck the i_size after holding PT lock to make sure not 4285 * to leave any page mapped (as page_mapped()) beyond the end 4286 * of the i_size (remove_inode_hugepages() is strict about 4287 * enforcing that). If we bail out here, we'll also leave a 4288 * page in the radix tree in the vm_shared case beyond the end 4289 * of the i_size, but remove_inode_hugepages() will take care 4290 * of it as soon as we drop the hugetlb_fault_mutex_table. 4291 */ 4292 size = i_size_read(mapping->host) >> huge_page_shift(h); 4293 ret = -EFAULT; 4294 if (idx >= size) 4295 goto out_release_unlock; 4296 4297 ret = -EEXIST; 4298 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4299 goto out_release_unlock; 4300 4301 if (vm_shared) { 4302 page_dup_rmap(page, true); 4303 } else { 4304 ClearPagePrivate(page); 4305 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4306 } 4307 4308 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4309 if (dst_vma->vm_flags & VM_WRITE) 4310 _dst_pte = huge_pte_mkdirty(_dst_pte); 4311 _dst_pte = pte_mkyoung(_dst_pte); 4312 4313 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4314 4315 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4316 dst_vma->vm_flags & VM_WRITE); 4317 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4318 4319 /* No need to invalidate - it was non-present before */ 4320 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4321 4322 spin_unlock(ptl); 4323 set_page_huge_active(page); 4324 if (vm_shared) 4325 unlock_page(page); 4326 ret = 0; 4327 out: 4328 return ret; 4329 out_release_unlock: 4330 spin_unlock(ptl); 4331 if (vm_shared) 4332 unlock_page(page); 4333 out_release_nounlock: 4334 put_page(page); 4335 goto out; 4336 } 4337 4338 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4339 struct page **pages, struct vm_area_struct **vmas, 4340 unsigned long *position, unsigned long *nr_pages, 4341 long i, unsigned int flags, int *nonblocking) 4342 { 4343 unsigned long pfn_offset; 4344 unsigned long vaddr = *position; 4345 unsigned long remainder = *nr_pages; 4346 struct hstate *h = hstate_vma(vma); 4347 int err = -EFAULT; 4348 4349 while (vaddr < vma->vm_end && remainder) { 4350 pte_t *pte; 4351 spinlock_t *ptl = NULL; 4352 int absent; 4353 struct page *page; 4354 4355 /* 4356 * If we have a pending SIGKILL, don't keep faulting pages and 4357 * potentially allocating memory. 4358 */ 4359 if (fatal_signal_pending(current)) { 4360 remainder = 0; 4361 break; 4362 } 4363 4364 /* 4365 * Some archs (sparc64, sh*) have multiple pte_ts to 4366 * each hugepage. We have to make sure we get the 4367 * first, for the page indexing below to work. 4368 * 4369 * Note that page table lock is not held when pte is null. 4370 */ 4371 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4372 huge_page_size(h)); 4373 if (pte) 4374 ptl = huge_pte_lock(h, mm, pte); 4375 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4376 4377 /* 4378 * When coredumping, it suits get_dump_page if we just return 4379 * an error where there's an empty slot with no huge pagecache 4380 * to back it. This way, we avoid allocating a hugepage, and 4381 * the sparse dumpfile avoids allocating disk blocks, but its 4382 * huge holes still show up with zeroes where they need to be. 4383 */ 4384 if (absent && (flags & FOLL_DUMP) && 4385 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4386 if (pte) 4387 spin_unlock(ptl); 4388 remainder = 0; 4389 break; 4390 } 4391 4392 /* 4393 * We need call hugetlb_fault for both hugepages under migration 4394 * (in which case hugetlb_fault waits for the migration,) and 4395 * hwpoisoned hugepages (in which case we need to prevent the 4396 * caller from accessing to them.) In order to do this, we use 4397 * here is_swap_pte instead of is_hugetlb_entry_migration and 4398 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4399 * both cases, and because we can't follow correct pages 4400 * directly from any kind of swap entries. 4401 */ 4402 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4403 ((flags & FOLL_WRITE) && 4404 !huge_pte_write(huge_ptep_get(pte)))) { 4405 vm_fault_t ret; 4406 unsigned int fault_flags = 0; 4407 4408 if (pte) 4409 spin_unlock(ptl); 4410 if (flags & FOLL_WRITE) 4411 fault_flags |= FAULT_FLAG_WRITE; 4412 if (nonblocking) 4413 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4414 if (flags & FOLL_NOWAIT) 4415 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4416 FAULT_FLAG_RETRY_NOWAIT; 4417 if (flags & FOLL_TRIED) { 4418 VM_WARN_ON_ONCE(fault_flags & 4419 FAULT_FLAG_ALLOW_RETRY); 4420 fault_flags |= FAULT_FLAG_TRIED; 4421 } 4422 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4423 if (ret & VM_FAULT_ERROR) { 4424 err = vm_fault_to_errno(ret, flags); 4425 remainder = 0; 4426 break; 4427 } 4428 if (ret & VM_FAULT_RETRY) { 4429 if (nonblocking && 4430 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4431 *nonblocking = 0; 4432 *nr_pages = 0; 4433 /* 4434 * VM_FAULT_RETRY must not return an 4435 * error, it will return zero 4436 * instead. 4437 * 4438 * No need to update "position" as the 4439 * caller will not check it after 4440 * *nr_pages is set to 0. 4441 */ 4442 return i; 4443 } 4444 continue; 4445 } 4446 4447 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4448 page = pte_page(huge_ptep_get(pte)); 4449 4450 /* 4451 * Instead of doing 'try_get_page()' below in the same_page 4452 * loop, just check the count once here. 4453 */ 4454 if (unlikely(page_count(page) <= 0)) { 4455 if (pages) { 4456 spin_unlock(ptl); 4457 remainder = 0; 4458 err = -ENOMEM; 4459 break; 4460 } 4461 } 4462 same_page: 4463 if (pages) { 4464 pages[i] = mem_map_offset(page, pfn_offset); 4465 get_page(pages[i]); 4466 } 4467 4468 if (vmas) 4469 vmas[i] = vma; 4470 4471 vaddr += PAGE_SIZE; 4472 ++pfn_offset; 4473 --remainder; 4474 ++i; 4475 if (vaddr < vma->vm_end && remainder && 4476 pfn_offset < pages_per_huge_page(h)) { 4477 /* 4478 * We use pfn_offset to avoid touching the pageframes 4479 * of this compound page. 4480 */ 4481 goto same_page; 4482 } 4483 spin_unlock(ptl); 4484 } 4485 *nr_pages = remainder; 4486 /* 4487 * setting position is actually required only if remainder is 4488 * not zero but it's faster not to add a "if (remainder)" 4489 * branch. 4490 */ 4491 *position = vaddr; 4492 4493 return i ? i : err; 4494 } 4495 4496 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4497 /* 4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4499 * implement this. 4500 */ 4501 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4502 #endif 4503 4504 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4505 unsigned long address, unsigned long end, pgprot_t newprot) 4506 { 4507 struct mm_struct *mm = vma->vm_mm; 4508 unsigned long start = address; 4509 pte_t *ptep; 4510 pte_t pte; 4511 struct hstate *h = hstate_vma(vma); 4512 unsigned long pages = 0; 4513 bool shared_pmd = false; 4514 struct mmu_notifier_range range; 4515 4516 /* 4517 * In the case of shared PMDs, the area to flush could be beyond 4518 * start/end. Set range.start/range.end to cover the maximum possible 4519 * range if PMD sharing is possible. 4520 */ 4521 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4522 0, vma, mm, start, end); 4523 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4524 4525 BUG_ON(address >= end); 4526 flush_cache_range(vma, range.start, range.end); 4527 4528 mmu_notifier_invalidate_range_start(&range); 4529 i_mmap_lock_write(vma->vm_file->f_mapping); 4530 for (; address < end; address += huge_page_size(h)) { 4531 spinlock_t *ptl; 4532 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4533 if (!ptep) 4534 continue; 4535 ptl = huge_pte_lock(h, mm, ptep); 4536 if (huge_pmd_unshare(mm, &address, ptep)) { 4537 pages++; 4538 spin_unlock(ptl); 4539 shared_pmd = true; 4540 continue; 4541 } 4542 pte = huge_ptep_get(ptep); 4543 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4544 spin_unlock(ptl); 4545 continue; 4546 } 4547 if (unlikely(is_hugetlb_entry_migration(pte))) { 4548 swp_entry_t entry = pte_to_swp_entry(pte); 4549 4550 if (is_write_migration_entry(entry)) { 4551 pte_t newpte; 4552 4553 make_migration_entry_read(&entry); 4554 newpte = swp_entry_to_pte(entry); 4555 set_huge_swap_pte_at(mm, address, ptep, 4556 newpte, huge_page_size(h)); 4557 pages++; 4558 } 4559 spin_unlock(ptl); 4560 continue; 4561 } 4562 if (!huge_pte_none(pte)) { 4563 pte_t old_pte; 4564 4565 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4566 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4567 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4568 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4569 pages++; 4570 } 4571 spin_unlock(ptl); 4572 } 4573 /* 4574 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4575 * may have cleared our pud entry and done put_page on the page table: 4576 * once we release i_mmap_rwsem, another task can do the final put_page 4577 * and that page table be reused and filled with junk. If we actually 4578 * did unshare a page of pmds, flush the range corresponding to the pud. 4579 */ 4580 if (shared_pmd) 4581 flush_hugetlb_tlb_range(vma, range.start, range.end); 4582 else 4583 flush_hugetlb_tlb_range(vma, start, end); 4584 /* 4585 * No need to call mmu_notifier_invalidate_range() we are downgrading 4586 * page table protection not changing it to point to a new page. 4587 * 4588 * See Documentation/vm/mmu_notifier.rst 4589 */ 4590 i_mmap_unlock_write(vma->vm_file->f_mapping); 4591 mmu_notifier_invalidate_range_end(&range); 4592 4593 return pages << h->order; 4594 } 4595 4596 int hugetlb_reserve_pages(struct inode *inode, 4597 long from, long to, 4598 struct vm_area_struct *vma, 4599 vm_flags_t vm_flags) 4600 { 4601 long ret, chg; 4602 struct hstate *h = hstate_inode(inode); 4603 struct hugepage_subpool *spool = subpool_inode(inode); 4604 struct resv_map *resv_map; 4605 long gbl_reserve; 4606 4607 /* This should never happen */ 4608 if (from > to) { 4609 VM_WARN(1, "%s called with a negative range\n", __func__); 4610 return -EINVAL; 4611 } 4612 4613 /* 4614 * Only apply hugepage reservation if asked. At fault time, an 4615 * attempt will be made for VM_NORESERVE to allocate a page 4616 * without using reserves 4617 */ 4618 if (vm_flags & VM_NORESERVE) 4619 return 0; 4620 4621 /* 4622 * Shared mappings base their reservation on the number of pages that 4623 * are already allocated on behalf of the file. Private mappings need 4624 * to reserve the full area even if read-only as mprotect() may be 4625 * called to make the mapping read-write. Assume !vma is a shm mapping 4626 */ 4627 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4628 /* 4629 * resv_map can not be NULL as hugetlb_reserve_pages is only 4630 * called for inodes for which resv_maps were created (see 4631 * hugetlbfs_get_inode). 4632 */ 4633 resv_map = inode_resv_map(inode); 4634 4635 chg = region_chg(resv_map, from, to); 4636 4637 } else { 4638 resv_map = resv_map_alloc(); 4639 if (!resv_map) 4640 return -ENOMEM; 4641 4642 chg = to - from; 4643 4644 set_vma_resv_map(vma, resv_map); 4645 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4646 } 4647 4648 if (chg < 0) { 4649 ret = chg; 4650 goto out_err; 4651 } 4652 4653 /* 4654 * There must be enough pages in the subpool for the mapping. If 4655 * the subpool has a minimum size, there may be some global 4656 * reservations already in place (gbl_reserve). 4657 */ 4658 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4659 if (gbl_reserve < 0) { 4660 ret = -ENOSPC; 4661 goto out_err; 4662 } 4663 4664 /* 4665 * Check enough hugepages are available for the reservation. 4666 * Hand the pages back to the subpool if there are not 4667 */ 4668 ret = hugetlb_acct_memory(h, gbl_reserve); 4669 if (ret < 0) { 4670 /* put back original number of pages, chg */ 4671 (void)hugepage_subpool_put_pages(spool, chg); 4672 goto out_err; 4673 } 4674 4675 /* 4676 * Account for the reservations made. Shared mappings record regions 4677 * that have reservations as they are shared by multiple VMAs. 4678 * When the last VMA disappears, the region map says how much 4679 * the reservation was and the page cache tells how much of 4680 * the reservation was consumed. Private mappings are per-VMA and 4681 * only the consumed reservations are tracked. When the VMA 4682 * disappears, the original reservation is the VMA size and the 4683 * consumed reservations are stored in the map. Hence, nothing 4684 * else has to be done for private mappings here 4685 */ 4686 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4687 long add = region_add(resv_map, from, to); 4688 4689 if (unlikely(chg > add)) { 4690 /* 4691 * pages in this range were added to the reserve 4692 * map between region_chg and region_add. This 4693 * indicates a race with alloc_huge_page. Adjust 4694 * the subpool and reserve counts modified above 4695 * based on the difference. 4696 */ 4697 long rsv_adjust; 4698 4699 rsv_adjust = hugepage_subpool_put_pages(spool, 4700 chg - add); 4701 hugetlb_acct_memory(h, -rsv_adjust); 4702 } 4703 } 4704 return 0; 4705 out_err: 4706 if (!vma || vma->vm_flags & VM_MAYSHARE) 4707 /* Don't call region_abort if region_chg failed */ 4708 if (chg >= 0) 4709 region_abort(resv_map, from, to); 4710 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4711 kref_put(&resv_map->refs, resv_map_release); 4712 return ret; 4713 } 4714 4715 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4716 long freed) 4717 { 4718 struct hstate *h = hstate_inode(inode); 4719 struct resv_map *resv_map = inode_resv_map(inode); 4720 long chg = 0; 4721 struct hugepage_subpool *spool = subpool_inode(inode); 4722 long gbl_reserve; 4723 4724 /* 4725 * Since this routine can be called in the evict inode path for all 4726 * hugetlbfs inodes, resv_map could be NULL. 4727 */ 4728 if (resv_map) { 4729 chg = region_del(resv_map, start, end); 4730 /* 4731 * region_del() can fail in the rare case where a region 4732 * must be split and another region descriptor can not be 4733 * allocated. If end == LONG_MAX, it will not fail. 4734 */ 4735 if (chg < 0) 4736 return chg; 4737 } 4738 4739 spin_lock(&inode->i_lock); 4740 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4741 spin_unlock(&inode->i_lock); 4742 4743 /* 4744 * If the subpool has a minimum size, the number of global 4745 * reservations to be released may be adjusted. 4746 */ 4747 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4748 hugetlb_acct_memory(h, -gbl_reserve); 4749 4750 return 0; 4751 } 4752 4753 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4754 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4755 struct vm_area_struct *vma, 4756 unsigned long addr, pgoff_t idx) 4757 { 4758 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4759 svma->vm_start; 4760 unsigned long sbase = saddr & PUD_MASK; 4761 unsigned long s_end = sbase + PUD_SIZE; 4762 4763 /* Allow segments to share if only one is marked locked */ 4764 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4765 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4766 4767 /* 4768 * match the virtual addresses, permission and the alignment of the 4769 * page table page. 4770 */ 4771 if (pmd_index(addr) != pmd_index(saddr) || 4772 vm_flags != svm_flags || 4773 sbase < svma->vm_start || svma->vm_end < s_end) 4774 return 0; 4775 4776 return saddr; 4777 } 4778 4779 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4780 { 4781 unsigned long base = addr & PUD_MASK; 4782 unsigned long end = base + PUD_SIZE; 4783 4784 /* 4785 * check on proper vm_flags and page table alignment 4786 */ 4787 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4788 return true; 4789 return false; 4790 } 4791 4792 /* 4793 * Determine if start,end range within vma could be mapped by shared pmd. 4794 * If yes, adjust start and end to cover range associated with possible 4795 * shared pmd mappings. 4796 */ 4797 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4798 unsigned long *start, unsigned long *end) 4799 { 4800 unsigned long check_addr = *start; 4801 4802 if (!(vma->vm_flags & VM_MAYSHARE)) 4803 return; 4804 4805 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4806 unsigned long a_start = check_addr & PUD_MASK; 4807 unsigned long a_end = a_start + PUD_SIZE; 4808 4809 /* 4810 * If sharing is possible, adjust start/end if necessary. 4811 */ 4812 if (range_in_vma(vma, a_start, a_end)) { 4813 if (a_start < *start) 4814 *start = a_start; 4815 if (a_end > *end) 4816 *end = a_end; 4817 } 4818 } 4819 } 4820 4821 /* 4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4823 * and returns the corresponding pte. While this is not necessary for the 4824 * !shared pmd case because we can allocate the pmd later as well, it makes the 4825 * code much cleaner. pmd allocation is essential for the shared case because 4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4828 * bad pmd for sharing. 4829 */ 4830 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4831 { 4832 struct vm_area_struct *vma = find_vma(mm, addr); 4833 struct address_space *mapping = vma->vm_file->f_mapping; 4834 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4835 vma->vm_pgoff; 4836 struct vm_area_struct *svma; 4837 unsigned long saddr; 4838 pte_t *spte = NULL; 4839 pte_t *pte; 4840 spinlock_t *ptl; 4841 4842 if (!vma_shareable(vma, addr)) 4843 return (pte_t *)pmd_alloc(mm, pud, addr); 4844 4845 i_mmap_lock_write(mapping); 4846 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4847 if (svma == vma) 4848 continue; 4849 4850 saddr = page_table_shareable(svma, vma, addr, idx); 4851 if (saddr) { 4852 spte = huge_pte_offset(svma->vm_mm, saddr, 4853 vma_mmu_pagesize(svma)); 4854 if (spte) { 4855 get_page(virt_to_page(spte)); 4856 break; 4857 } 4858 } 4859 } 4860 4861 if (!spte) 4862 goto out; 4863 4864 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4865 if (pud_none(*pud)) { 4866 pud_populate(mm, pud, 4867 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4868 mm_inc_nr_pmds(mm); 4869 } else { 4870 put_page(virt_to_page(spte)); 4871 } 4872 spin_unlock(ptl); 4873 out: 4874 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4875 i_mmap_unlock_write(mapping); 4876 return pte; 4877 } 4878 4879 /* 4880 * unmap huge page backed by shared pte. 4881 * 4882 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4883 * indicated by page_count > 1, unmap is achieved by clearing pud and 4884 * decrementing the ref count. If count == 1, the pte page is not shared. 4885 * 4886 * called with page table lock held. 4887 * 4888 * returns: 1 successfully unmapped a shared pte page 4889 * 0 the underlying pte page is not shared, or it is the last user 4890 */ 4891 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4892 { 4893 pgd_t *pgd = pgd_offset(mm, *addr); 4894 p4d_t *p4d = p4d_offset(pgd, *addr); 4895 pud_t *pud = pud_offset(p4d, *addr); 4896 4897 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4898 if (page_count(virt_to_page(ptep)) == 1) 4899 return 0; 4900 4901 pud_clear(pud); 4902 put_page(virt_to_page(ptep)); 4903 mm_dec_nr_pmds(mm); 4904 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4905 return 1; 4906 } 4907 #define want_pmd_share() (1) 4908 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4909 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4910 { 4911 return NULL; 4912 } 4913 4914 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4915 { 4916 return 0; 4917 } 4918 4919 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4920 unsigned long *start, unsigned long *end) 4921 { 4922 } 4923 #define want_pmd_share() (0) 4924 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4925 4926 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4927 pte_t *huge_pte_alloc(struct mm_struct *mm, 4928 unsigned long addr, unsigned long sz) 4929 { 4930 pgd_t *pgd; 4931 p4d_t *p4d; 4932 pud_t *pud; 4933 pte_t *pte = NULL; 4934 4935 pgd = pgd_offset(mm, addr); 4936 p4d = p4d_alloc(mm, pgd, addr); 4937 if (!p4d) 4938 return NULL; 4939 pud = pud_alloc(mm, p4d, addr); 4940 if (pud) { 4941 if (sz == PUD_SIZE) { 4942 pte = (pte_t *)pud; 4943 } else { 4944 BUG_ON(sz != PMD_SIZE); 4945 if (want_pmd_share() && pud_none(*pud)) 4946 pte = huge_pmd_share(mm, addr, pud); 4947 else 4948 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4949 } 4950 } 4951 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4952 4953 return pte; 4954 } 4955 4956 /* 4957 * huge_pte_offset() - Walk the page table to resolve the hugepage 4958 * entry at address @addr 4959 * 4960 * Return: Pointer to page table or swap entry (PUD or PMD) for 4961 * address @addr, or NULL if a p*d_none() entry is encountered and the 4962 * size @sz doesn't match the hugepage size at this level of the page 4963 * table. 4964 */ 4965 pte_t *huge_pte_offset(struct mm_struct *mm, 4966 unsigned long addr, unsigned long sz) 4967 { 4968 pgd_t *pgd; 4969 p4d_t *p4d; 4970 pud_t *pud; 4971 pmd_t *pmd; 4972 4973 pgd = pgd_offset(mm, addr); 4974 if (!pgd_present(*pgd)) 4975 return NULL; 4976 p4d = p4d_offset(pgd, addr); 4977 if (!p4d_present(*p4d)) 4978 return NULL; 4979 4980 pud = pud_offset(p4d, addr); 4981 if (sz != PUD_SIZE && pud_none(*pud)) 4982 return NULL; 4983 /* hugepage or swap? */ 4984 if (pud_huge(*pud) || !pud_present(*pud)) 4985 return (pte_t *)pud; 4986 4987 pmd = pmd_offset(pud, addr); 4988 if (sz != PMD_SIZE && pmd_none(*pmd)) 4989 return NULL; 4990 /* hugepage or swap? */ 4991 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4992 return (pte_t *)pmd; 4993 4994 return NULL; 4995 } 4996 4997 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4998 4999 /* 5000 * These functions are overwritable if your architecture needs its own 5001 * behavior. 5002 */ 5003 struct page * __weak 5004 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5005 int write) 5006 { 5007 return ERR_PTR(-EINVAL); 5008 } 5009 5010 struct page * __weak 5011 follow_huge_pd(struct vm_area_struct *vma, 5012 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5013 { 5014 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5015 return NULL; 5016 } 5017 5018 struct page * __weak 5019 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5020 pmd_t *pmd, int flags) 5021 { 5022 struct page *page = NULL; 5023 spinlock_t *ptl; 5024 pte_t pte; 5025 retry: 5026 ptl = pmd_lockptr(mm, pmd); 5027 spin_lock(ptl); 5028 /* 5029 * make sure that the address range covered by this pmd is not 5030 * unmapped from other threads. 5031 */ 5032 if (!pmd_huge(*pmd)) 5033 goto out; 5034 pte = huge_ptep_get((pte_t *)pmd); 5035 if (pte_present(pte)) { 5036 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5037 if (flags & FOLL_GET) 5038 get_page(page); 5039 } else { 5040 if (is_hugetlb_entry_migration(pte)) { 5041 spin_unlock(ptl); 5042 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5043 goto retry; 5044 } 5045 /* 5046 * hwpoisoned entry is treated as no_page_table in 5047 * follow_page_mask(). 5048 */ 5049 } 5050 out: 5051 spin_unlock(ptl); 5052 return page; 5053 } 5054 5055 struct page * __weak 5056 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5057 pud_t *pud, int flags) 5058 { 5059 if (flags & FOLL_GET) 5060 return NULL; 5061 5062 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5063 } 5064 5065 struct page * __weak 5066 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5067 { 5068 if (flags & FOLL_GET) 5069 return NULL; 5070 5071 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5072 } 5073 5074 bool isolate_huge_page(struct page *page, struct list_head *list) 5075 { 5076 bool ret = true; 5077 5078 VM_BUG_ON_PAGE(!PageHead(page), page); 5079 spin_lock(&hugetlb_lock); 5080 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5081 ret = false; 5082 goto unlock; 5083 } 5084 clear_page_huge_active(page); 5085 list_move_tail(&page->lru, list); 5086 unlock: 5087 spin_unlock(&hugetlb_lock); 5088 return ret; 5089 } 5090 5091 void putback_active_hugepage(struct page *page) 5092 { 5093 VM_BUG_ON_PAGE(!PageHead(page), page); 5094 spin_lock(&hugetlb_lock); 5095 set_page_huge_active(page); 5096 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5097 spin_unlock(&hugetlb_lock); 5098 put_page(page); 5099 } 5100 5101 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5102 { 5103 struct hstate *h = page_hstate(oldpage); 5104 5105 hugetlb_cgroup_migrate(oldpage, newpage); 5106 set_page_owner_migrate_reason(newpage, reason); 5107 5108 /* 5109 * transfer temporary state of the new huge page. This is 5110 * reverse to other transitions because the newpage is going to 5111 * be final while the old one will be freed so it takes over 5112 * the temporary status. 5113 * 5114 * Also note that we have to transfer the per-node surplus state 5115 * here as well otherwise the global surplus count will not match 5116 * the per-node's. 5117 */ 5118 if (PageHugeTemporary(newpage)) { 5119 int old_nid = page_to_nid(oldpage); 5120 int new_nid = page_to_nid(newpage); 5121 5122 SetPageHugeTemporary(oldpage); 5123 ClearPageHugeTemporary(newpage); 5124 5125 spin_lock(&hugetlb_lock); 5126 if (h->surplus_huge_pages_node[old_nid]) { 5127 h->surplus_huge_pages_node[old_nid]--; 5128 h->surplus_huge_pages_node[new_nid]++; 5129 } 5130 spin_unlock(&hugetlb_lock); 5131 } 5132 } 5133