1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 36 #include <asm/page.h> 37 #include <asm/pgalloc.h> 38 #include <asm/tlb.h> 39 40 #include <linux/io.h> 41 #include <linux/hugetlb.h> 42 #include <linux/hugetlb_cgroup.h> 43 #include <linux/node.h> 44 #include <linux/page_owner.h> 45 #include "internal.h" 46 #include "hugetlb_vmemmap.h" 47 48 int hugetlb_max_hstate __read_mostly; 49 unsigned int default_hstate_idx; 50 struct hstate hstates[HUGE_MAX_HSTATE]; 51 52 #ifdef CONFIG_CMA 53 static struct cma *hugetlb_cma[MAX_NUMNODES]; 54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 55 static bool hugetlb_cma_page(struct page *page, unsigned int order) 56 { 57 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 58 1 << order); 59 } 60 #else 61 static bool hugetlb_cma_page(struct page *page, unsigned int order) 62 { 63 return false; 64 } 65 #endif 66 static unsigned long hugetlb_cma_size __initdata; 67 68 /* 69 * Minimum page order among possible hugepage sizes, set to a proper value 70 * at boot time. 71 */ 72 static unsigned int minimum_order __read_mostly = UINT_MAX; 73 74 __initdata LIST_HEAD(huge_boot_pages); 75 76 /* for command line parsing */ 77 static struct hstate * __initdata parsed_hstate; 78 static unsigned long __initdata default_hstate_max_huge_pages; 79 static bool __initdata parsed_valid_hugepagesz = true; 80 static bool __initdata parsed_default_hugepagesz; 81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 82 83 /* 84 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 85 * free_huge_pages, and surplus_huge_pages. 86 */ 87 DEFINE_SPINLOCK(hugetlb_lock); 88 89 /* 90 * Serializes faults on the same logical page. This is used to 91 * prevent spurious OOMs when the hugepage pool is fully utilized. 92 */ 93 static int num_fault_mutexes; 94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 95 96 /* Forward declaration */ 97 static int hugetlb_acct_memory(struct hstate *h, long delta); 98 99 static inline bool subpool_is_free(struct hugepage_subpool *spool) 100 { 101 if (spool->count) 102 return false; 103 if (spool->max_hpages != -1) 104 return spool->used_hpages == 0; 105 if (spool->min_hpages != -1) 106 return spool->rsv_hpages == spool->min_hpages; 107 108 return true; 109 } 110 111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 112 unsigned long irq_flags) 113 { 114 spin_unlock_irqrestore(&spool->lock, irq_flags); 115 116 /* If no pages are used, and no other handles to the subpool 117 * remain, give up any reservations based on minimum size and 118 * free the subpool */ 119 if (subpool_is_free(spool)) { 120 if (spool->min_hpages != -1) 121 hugetlb_acct_memory(spool->hstate, 122 -spool->min_hpages); 123 kfree(spool); 124 } 125 } 126 127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 128 long min_hpages) 129 { 130 struct hugepage_subpool *spool; 131 132 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 133 if (!spool) 134 return NULL; 135 136 spin_lock_init(&spool->lock); 137 spool->count = 1; 138 spool->max_hpages = max_hpages; 139 spool->hstate = h; 140 spool->min_hpages = min_hpages; 141 142 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 143 kfree(spool); 144 return NULL; 145 } 146 spool->rsv_hpages = min_hpages; 147 148 return spool; 149 } 150 151 void hugepage_put_subpool(struct hugepage_subpool *spool) 152 { 153 unsigned long flags; 154 155 spin_lock_irqsave(&spool->lock, flags); 156 BUG_ON(!spool->count); 157 spool->count--; 158 unlock_or_release_subpool(spool, flags); 159 } 160 161 /* 162 * Subpool accounting for allocating and reserving pages. 163 * Return -ENOMEM if there are not enough resources to satisfy the 164 * request. Otherwise, return the number of pages by which the 165 * global pools must be adjusted (upward). The returned value may 166 * only be different than the passed value (delta) in the case where 167 * a subpool minimum size must be maintained. 168 */ 169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 170 long delta) 171 { 172 long ret = delta; 173 174 if (!spool) 175 return ret; 176 177 spin_lock_irq(&spool->lock); 178 179 if (spool->max_hpages != -1) { /* maximum size accounting */ 180 if ((spool->used_hpages + delta) <= spool->max_hpages) 181 spool->used_hpages += delta; 182 else { 183 ret = -ENOMEM; 184 goto unlock_ret; 185 } 186 } 187 188 /* minimum size accounting */ 189 if (spool->min_hpages != -1 && spool->rsv_hpages) { 190 if (delta > spool->rsv_hpages) { 191 /* 192 * Asking for more reserves than those already taken on 193 * behalf of subpool. Return difference. 194 */ 195 ret = delta - spool->rsv_hpages; 196 spool->rsv_hpages = 0; 197 } else { 198 ret = 0; /* reserves already accounted for */ 199 spool->rsv_hpages -= delta; 200 } 201 } 202 203 unlock_ret: 204 spin_unlock_irq(&spool->lock); 205 return ret; 206 } 207 208 /* 209 * Subpool accounting for freeing and unreserving pages. 210 * Return the number of global page reservations that must be dropped. 211 * The return value may only be different than the passed value (delta) 212 * in the case where a subpool minimum size must be maintained. 213 */ 214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 215 long delta) 216 { 217 long ret = delta; 218 unsigned long flags; 219 220 if (!spool) 221 return delta; 222 223 spin_lock_irqsave(&spool->lock, flags); 224 225 if (spool->max_hpages != -1) /* maximum size accounting */ 226 spool->used_hpages -= delta; 227 228 /* minimum size accounting */ 229 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 230 if (spool->rsv_hpages + delta <= spool->min_hpages) 231 ret = 0; 232 else 233 ret = spool->rsv_hpages + delta - spool->min_hpages; 234 235 spool->rsv_hpages += delta; 236 if (spool->rsv_hpages > spool->min_hpages) 237 spool->rsv_hpages = spool->min_hpages; 238 } 239 240 /* 241 * If hugetlbfs_put_super couldn't free spool due to an outstanding 242 * quota reference, free it now. 243 */ 244 unlock_or_release_subpool(spool, flags); 245 246 return ret; 247 } 248 249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 250 { 251 return HUGETLBFS_SB(inode->i_sb)->spool; 252 } 253 254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 255 { 256 return subpool_inode(file_inode(vma->vm_file)); 257 } 258 259 /* Helper that removes a struct file_region from the resv_map cache and returns 260 * it for use. 261 */ 262 static struct file_region * 263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 264 { 265 struct file_region *nrg = NULL; 266 267 VM_BUG_ON(resv->region_cache_count <= 0); 268 269 resv->region_cache_count--; 270 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 271 list_del(&nrg->link); 272 273 nrg->from = from; 274 nrg->to = to; 275 276 return nrg; 277 } 278 279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 280 struct file_region *rg) 281 { 282 #ifdef CONFIG_CGROUP_HUGETLB 283 nrg->reservation_counter = rg->reservation_counter; 284 nrg->css = rg->css; 285 if (rg->css) 286 css_get(rg->css); 287 #endif 288 } 289 290 /* Helper that records hugetlb_cgroup uncharge info. */ 291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 292 struct hstate *h, 293 struct resv_map *resv, 294 struct file_region *nrg) 295 { 296 #ifdef CONFIG_CGROUP_HUGETLB 297 if (h_cg) { 298 nrg->reservation_counter = 299 &h_cg->rsvd_hugepage[hstate_index(h)]; 300 nrg->css = &h_cg->css; 301 /* 302 * The caller will hold exactly one h_cg->css reference for the 303 * whole contiguous reservation region. But this area might be 304 * scattered when there are already some file_regions reside in 305 * it. As a result, many file_regions may share only one css 306 * reference. In order to ensure that one file_region must hold 307 * exactly one h_cg->css reference, we should do css_get for 308 * each file_region and leave the reference held by caller 309 * untouched. 310 */ 311 css_get(&h_cg->css); 312 if (!resv->pages_per_hpage) 313 resv->pages_per_hpage = pages_per_huge_page(h); 314 /* pages_per_hpage should be the same for all entries in 315 * a resv_map. 316 */ 317 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 318 } else { 319 nrg->reservation_counter = NULL; 320 nrg->css = NULL; 321 } 322 #endif 323 } 324 325 static void put_uncharge_info(struct file_region *rg) 326 { 327 #ifdef CONFIG_CGROUP_HUGETLB 328 if (rg->css) 329 css_put(rg->css); 330 #endif 331 } 332 333 static bool has_same_uncharge_info(struct file_region *rg, 334 struct file_region *org) 335 { 336 #ifdef CONFIG_CGROUP_HUGETLB 337 return rg->reservation_counter == org->reservation_counter && 338 rg->css == org->css; 339 340 #else 341 return true; 342 #endif 343 } 344 345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 346 { 347 struct file_region *nrg = NULL, *prg = NULL; 348 349 prg = list_prev_entry(rg, link); 350 if (&prg->link != &resv->regions && prg->to == rg->from && 351 has_same_uncharge_info(prg, rg)) { 352 prg->to = rg->to; 353 354 list_del(&rg->link); 355 put_uncharge_info(rg); 356 kfree(rg); 357 358 rg = prg; 359 } 360 361 nrg = list_next_entry(rg, link); 362 if (&nrg->link != &resv->regions && nrg->from == rg->to && 363 has_same_uncharge_info(nrg, rg)) { 364 nrg->from = rg->from; 365 366 list_del(&rg->link); 367 put_uncharge_info(rg); 368 kfree(rg); 369 } 370 } 371 372 static inline long 373 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 374 long to, struct hstate *h, struct hugetlb_cgroup *cg, 375 long *regions_needed) 376 { 377 struct file_region *nrg; 378 379 if (!regions_needed) { 380 nrg = get_file_region_entry_from_cache(map, from, to); 381 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 382 list_add(&nrg->link, rg); 383 coalesce_file_region(map, nrg); 384 } else 385 *regions_needed += 1; 386 387 return to - from; 388 } 389 390 /* 391 * Must be called with resv->lock held. 392 * 393 * Calling this with regions_needed != NULL will count the number of pages 394 * to be added but will not modify the linked list. And regions_needed will 395 * indicate the number of file_regions needed in the cache to carry out to add 396 * the regions for this range. 397 */ 398 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 399 struct hugetlb_cgroup *h_cg, 400 struct hstate *h, long *regions_needed) 401 { 402 long add = 0; 403 struct list_head *head = &resv->regions; 404 long last_accounted_offset = f; 405 struct file_region *iter, *trg = NULL; 406 struct list_head *rg = NULL; 407 408 if (regions_needed) 409 *regions_needed = 0; 410 411 /* In this loop, we essentially handle an entry for the range 412 * [last_accounted_offset, iter->from), at every iteration, with some 413 * bounds checking. 414 */ 415 list_for_each_entry_safe(iter, trg, head, link) { 416 /* Skip irrelevant regions that start before our range. */ 417 if (iter->from < f) { 418 /* If this region ends after the last accounted offset, 419 * then we need to update last_accounted_offset. 420 */ 421 if (iter->to > last_accounted_offset) 422 last_accounted_offset = iter->to; 423 continue; 424 } 425 426 /* When we find a region that starts beyond our range, we've 427 * finished. 428 */ 429 if (iter->from >= t) { 430 rg = iter->link.prev; 431 break; 432 } 433 434 /* Add an entry for last_accounted_offset -> iter->from, and 435 * update last_accounted_offset. 436 */ 437 if (iter->from > last_accounted_offset) 438 add += hugetlb_resv_map_add(resv, iter->link.prev, 439 last_accounted_offset, 440 iter->from, h, h_cg, 441 regions_needed); 442 443 last_accounted_offset = iter->to; 444 } 445 446 /* Handle the case where our range extends beyond 447 * last_accounted_offset. 448 */ 449 if (!rg) 450 rg = head->prev; 451 if (last_accounted_offset < t) 452 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 453 t, h, h_cg, regions_needed); 454 455 return add; 456 } 457 458 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 459 */ 460 static int allocate_file_region_entries(struct resv_map *resv, 461 int regions_needed) 462 __must_hold(&resv->lock) 463 { 464 struct list_head allocated_regions; 465 int to_allocate = 0, i = 0; 466 struct file_region *trg = NULL, *rg = NULL; 467 468 VM_BUG_ON(regions_needed < 0); 469 470 INIT_LIST_HEAD(&allocated_regions); 471 472 /* 473 * Check for sufficient descriptors in the cache to accommodate 474 * the number of in progress add operations plus regions_needed. 475 * 476 * This is a while loop because when we drop the lock, some other call 477 * to region_add or region_del may have consumed some region_entries, 478 * so we keep looping here until we finally have enough entries for 479 * (adds_in_progress + regions_needed). 480 */ 481 while (resv->region_cache_count < 482 (resv->adds_in_progress + regions_needed)) { 483 to_allocate = resv->adds_in_progress + regions_needed - 484 resv->region_cache_count; 485 486 /* At this point, we should have enough entries in the cache 487 * for all the existing adds_in_progress. We should only be 488 * needing to allocate for regions_needed. 489 */ 490 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 491 492 spin_unlock(&resv->lock); 493 for (i = 0; i < to_allocate; i++) { 494 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 495 if (!trg) 496 goto out_of_memory; 497 list_add(&trg->link, &allocated_regions); 498 } 499 500 spin_lock(&resv->lock); 501 502 list_splice(&allocated_regions, &resv->region_cache); 503 resv->region_cache_count += to_allocate; 504 } 505 506 return 0; 507 508 out_of_memory: 509 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 510 list_del(&rg->link); 511 kfree(rg); 512 } 513 return -ENOMEM; 514 } 515 516 /* 517 * Add the huge page range represented by [f, t) to the reserve 518 * map. Regions will be taken from the cache to fill in this range. 519 * Sufficient regions should exist in the cache due to the previous 520 * call to region_chg with the same range, but in some cases the cache will not 521 * have sufficient entries due to races with other code doing region_add or 522 * region_del. The extra needed entries will be allocated. 523 * 524 * regions_needed is the out value provided by a previous call to region_chg. 525 * 526 * Return the number of new huge pages added to the map. This number is greater 527 * than or equal to zero. If file_region entries needed to be allocated for 528 * this operation and we were not able to allocate, it returns -ENOMEM. 529 * region_add of regions of length 1 never allocate file_regions and cannot 530 * fail; region_chg will always allocate at least 1 entry and a region_add for 531 * 1 page will only require at most 1 entry. 532 */ 533 static long region_add(struct resv_map *resv, long f, long t, 534 long in_regions_needed, struct hstate *h, 535 struct hugetlb_cgroup *h_cg) 536 { 537 long add = 0, actual_regions_needed = 0; 538 539 spin_lock(&resv->lock); 540 retry: 541 542 /* Count how many regions are actually needed to execute this add. */ 543 add_reservation_in_range(resv, f, t, NULL, NULL, 544 &actual_regions_needed); 545 546 /* 547 * Check for sufficient descriptors in the cache to accommodate 548 * this add operation. Note that actual_regions_needed may be greater 549 * than in_regions_needed, as the resv_map may have been modified since 550 * the region_chg call. In this case, we need to make sure that we 551 * allocate extra entries, such that we have enough for all the 552 * existing adds_in_progress, plus the excess needed for this 553 * operation. 554 */ 555 if (actual_regions_needed > in_regions_needed && 556 resv->region_cache_count < 557 resv->adds_in_progress + 558 (actual_regions_needed - in_regions_needed)) { 559 /* region_add operation of range 1 should never need to 560 * allocate file_region entries. 561 */ 562 VM_BUG_ON(t - f <= 1); 563 564 if (allocate_file_region_entries( 565 resv, actual_regions_needed - in_regions_needed)) { 566 return -ENOMEM; 567 } 568 569 goto retry; 570 } 571 572 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 573 574 resv->adds_in_progress -= in_regions_needed; 575 576 spin_unlock(&resv->lock); 577 return add; 578 } 579 580 /* 581 * Examine the existing reserve map and determine how many 582 * huge pages in the specified range [f, t) are NOT currently 583 * represented. This routine is called before a subsequent 584 * call to region_add that will actually modify the reserve 585 * map to add the specified range [f, t). region_chg does 586 * not change the number of huge pages represented by the 587 * map. A number of new file_region structures is added to the cache as a 588 * placeholder, for the subsequent region_add call to use. At least 1 589 * file_region structure is added. 590 * 591 * out_regions_needed is the number of regions added to the 592 * resv->adds_in_progress. This value needs to be provided to a follow up call 593 * to region_add or region_abort for proper accounting. 594 * 595 * Returns the number of huge pages that need to be added to the existing 596 * reservation map for the range [f, t). This number is greater or equal to 597 * zero. -ENOMEM is returned if a new file_region structure or cache entry 598 * is needed and can not be allocated. 599 */ 600 static long region_chg(struct resv_map *resv, long f, long t, 601 long *out_regions_needed) 602 { 603 long chg = 0; 604 605 spin_lock(&resv->lock); 606 607 /* Count how many hugepages in this range are NOT represented. */ 608 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 609 out_regions_needed); 610 611 if (*out_regions_needed == 0) 612 *out_regions_needed = 1; 613 614 if (allocate_file_region_entries(resv, *out_regions_needed)) 615 return -ENOMEM; 616 617 resv->adds_in_progress += *out_regions_needed; 618 619 spin_unlock(&resv->lock); 620 return chg; 621 } 622 623 /* 624 * Abort the in progress add operation. The adds_in_progress field 625 * of the resv_map keeps track of the operations in progress between 626 * calls to region_chg and region_add. Operations are sometimes 627 * aborted after the call to region_chg. In such cases, region_abort 628 * is called to decrement the adds_in_progress counter. regions_needed 629 * is the value returned by the region_chg call, it is used to decrement 630 * the adds_in_progress counter. 631 * 632 * NOTE: The range arguments [f, t) are not needed or used in this 633 * routine. They are kept to make reading the calling code easier as 634 * arguments will match the associated region_chg call. 635 */ 636 static void region_abort(struct resv_map *resv, long f, long t, 637 long regions_needed) 638 { 639 spin_lock(&resv->lock); 640 VM_BUG_ON(!resv->region_cache_count); 641 resv->adds_in_progress -= regions_needed; 642 spin_unlock(&resv->lock); 643 } 644 645 /* 646 * Delete the specified range [f, t) from the reserve map. If the 647 * t parameter is LONG_MAX, this indicates that ALL regions after f 648 * should be deleted. Locate the regions which intersect [f, t) 649 * and either trim, delete or split the existing regions. 650 * 651 * Returns the number of huge pages deleted from the reserve map. 652 * In the normal case, the return value is zero or more. In the 653 * case where a region must be split, a new region descriptor must 654 * be allocated. If the allocation fails, -ENOMEM will be returned. 655 * NOTE: If the parameter t == LONG_MAX, then we will never split 656 * a region and possibly return -ENOMEM. Callers specifying 657 * t == LONG_MAX do not need to check for -ENOMEM error. 658 */ 659 static long region_del(struct resv_map *resv, long f, long t) 660 { 661 struct list_head *head = &resv->regions; 662 struct file_region *rg, *trg; 663 struct file_region *nrg = NULL; 664 long del = 0; 665 666 retry: 667 spin_lock(&resv->lock); 668 list_for_each_entry_safe(rg, trg, head, link) { 669 /* 670 * Skip regions before the range to be deleted. file_region 671 * ranges are normally of the form [from, to). However, there 672 * may be a "placeholder" entry in the map which is of the form 673 * (from, to) with from == to. Check for placeholder entries 674 * at the beginning of the range to be deleted. 675 */ 676 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 677 continue; 678 679 if (rg->from >= t) 680 break; 681 682 if (f > rg->from && t < rg->to) { /* Must split region */ 683 /* 684 * Check for an entry in the cache before dropping 685 * lock and attempting allocation. 686 */ 687 if (!nrg && 688 resv->region_cache_count > resv->adds_in_progress) { 689 nrg = list_first_entry(&resv->region_cache, 690 struct file_region, 691 link); 692 list_del(&nrg->link); 693 resv->region_cache_count--; 694 } 695 696 if (!nrg) { 697 spin_unlock(&resv->lock); 698 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 699 if (!nrg) 700 return -ENOMEM; 701 goto retry; 702 } 703 704 del += t - f; 705 hugetlb_cgroup_uncharge_file_region( 706 resv, rg, t - f, false); 707 708 /* New entry for end of split region */ 709 nrg->from = t; 710 nrg->to = rg->to; 711 712 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 713 714 INIT_LIST_HEAD(&nrg->link); 715 716 /* Original entry is trimmed */ 717 rg->to = f; 718 719 list_add(&nrg->link, &rg->link); 720 nrg = NULL; 721 break; 722 } 723 724 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 725 del += rg->to - rg->from; 726 hugetlb_cgroup_uncharge_file_region(resv, rg, 727 rg->to - rg->from, true); 728 list_del(&rg->link); 729 kfree(rg); 730 continue; 731 } 732 733 if (f <= rg->from) { /* Trim beginning of region */ 734 hugetlb_cgroup_uncharge_file_region(resv, rg, 735 t - rg->from, false); 736 737 del += t - rg->from; 738 rg->from = t; 739 } else { /* Trim end of region */ 740 hugetlb_cgroup_uncharge_file_region(resv, rg, 741 rg->to - f, false); 742 743 del += rg->to - f; 744 rg->to = f; 745 } 746 } 747 748 spin_unlock(&resv->lock); 749 kfree(nrg); 750 return del; 751 } 752 753 /* 754 * A rare out of memory error was encountered which prevented removal of 755 * the reserve map region for a page. The huge page itself was free'ed 756 * and removed from the page cache. This routine will adjust the subpool 757 * usage count, and the global reserve count if needed. By incrementing 758 * these counts, the reserve map entry which could not be deleted will 759 * appear as a "reserved" entry instead of simply dangling with incorrect 760 * counts. 761 */ 762 void hugetlb_fix_reserve_counts(struct inode *inode) 763 { 764 struct hugepage_subpool *spool = subpool_inode(inode); 765 long rsv_adjust; 766 bool reserved = false; 767 768 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 769 if (rsv_adjust > 0) { 770 struct hstate *h = hstate_inode(inode); 771 772 if (!hugetlb_acct_memory(h, 1)) 773 reserved = true; 774 } else if (!rsv_adjust) { 775 reserved = true; 776 } 777 778 if (!reserved) 779 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 780 } 781 782 /* 783 * Count and return the number of huge pages in the reserve map 784 * that intersect with the range [f, t). 785 */ 786 static long region_count(struct resv_map *resv, long f, long t) 787 { 788 struct list_head *head = &resv->regions; 789 struct file_region *rg; 790 long chg = 0; 791 792 spin_lock(&resv->lock); 793 /* Locate each segment we overlap with, and count that overlap. */ 794 list_for_each_entry(rg, head, link) { 795 long seg_from; 796 long seg_to; 797 798 if (rg->to <= f) 799 continue; 800 if (rg->from >= t) 801 break; 802 803 seg_from = max(rg->from, f); 804 seg_to = min(rg->to, t); 805 806 chg += seg_to - seg_from; 807 } 808 spin_unlock(&resv->lock); 809 810 return chg; 811 } 812 813 /* 814 * Convert the address within this vma to the page offset within 815 * the mapping, in pagecache page units; huge pages here. 816 */ 817 static pgoff_t vma_hugecache_offset(struct hstate *h, 818 struct vm_area_struct *vma, unsigned long address) 819 { 820 return ((address - vma->vm_start) >> huge_page_shift(h)) + 821 (vma->vm_pgoff >> huge_page_order(h)); 822 } 823 824 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 825 unsigned long address) 826 { 827 return vma_hugecache_offset(hstate_vma(vma), vma, address); 828 } 829 EXPORT_SYMBOL_GPL(linear_hugepage_index); 830 831 /* 832 * Return the size of the pages allocated when backing a VMA. In the majority 833 * cases this will be same size as used by the page table entries. 834 */ 835 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 836 { 837 if (vma->vm_ops && vma->vm_ops->pagesize) 838 return vma->vm_ops->pagesize(vma); 839 return PAGE_SIZE; 840 } 841 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 842 843 /* 844 * Return the page size being used by the MMU to back a VMA. In the majority 845 * of cases, the page size used by the kernel matches the MMU size. On 846 * architectures where it differs, an architecture-specific 'strong' 847 * version of this symbol is required. 848 */ 849 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 850 { 851 return vma_kernel_pagesize(vma); 852 } 853 854 /* 855 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 856 * bits of the reservation map pointer, which are always clear due to 857 * alignment. 858 */ 859 #define HPAGE_RESV_OWNER (1UL << 0) 860 #define HPAGE_RESV_UNMAPPED (1UL << 1) 861 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 862 863 /* 864 * These helpers are used to track how many pages are reserved for 865 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 866 * is guaranteed to have their future faults succeed. 867 * 868 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 869 * the reserve counters are updated with the hugetlb_lock held. It is safe 870 * to reset the VMA at fork() time as it is not in use yet and there is no 871 * chance of the global counters getting corrupted as a result of the values. 872 * 873 * The private mapping reservation is represented in a subtly different 874 * manner to a shared mapping. A shared mapping has a region map associated 875 * with the underlying file, this region map represents the backing file 876 * pages which have ever had a reservation assigned which this persists even 877 * after the page is instantiated. A private mapping has a region map 878 * associated with the original mmap which is attached to all VMAs which 879 * reference it, this region map represents those offsets which have consumed 880 * reservation ie. where pages have been instantiated. 881 */ 882 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 883 { 884 return (unsigned long)vma->vm_private_data; 885 } 886 887 static void set_vma_private_data(struct vm_area_struct *vma, 888 unsigned long value) 889 { 890 vma->vm_private_data = (void *)value; 891 } 892 893 static void 894 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 895 struct hugetlb_cgroup *h_cg, 896 struct hstate *h) 897 { 898 #ifdef CONFIG_CGROUP_HUGETLB 899 if (!h_cg || !h) { 900 resv_map->reservation_counter = NULL; 901 resv_map->pages_per_hpage = 0; 902 resv_map->css = NULL; 903 } else { 904 resv_map->reservation_counter = 905 &h_cg->rsvd_hugepage[hstate_index(h)]; 906 resv_map->pages_per_hpage = pages_per_huge_page(h); 907 resv_map->css = &h_cg->css; 908 } 909 #endif 910 } 911 912 struct resv_map *resv_map_alloc(void) 913 { 914 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 915 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 916 917 if (!resv_map || !rg) { 918 kfree(resv_map); 919 kfree(rg); 920 return NULL; 921 } 922 923 kref_init(&resv_map->refs); 924 spin_lock_init(&resv_map->lock); 925 INIT_LIST_HEAD(&resv_map->regions); 926 927 resv_map->adds_in_progress = 0; 928 /* 929 * Initialize these to 0. On shared mappings, 0's here indicate these 930 * fields don't do cgroup accounting. On private mappings, these will be 931 * re-initialized to the proper values, to indicate that hugetlb cgroup 932 * reservations are to be un-charged from here. 933 */ 934 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 935 936 INIT_LIST_HEAD(&resv_map->region_cache); 937 list_add(&rg->link, &resv_map->region_cache); 938 resv_map->region_cache_count = 1; 939 940 return resv_map; 941 } 942 943 void resv_map_release(struct kref *ref) 944 { 945 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 946 struct list_head *head = &resv_map->region_cache; 947 struct file_region *rg, *trg; 948 949 /* Clear out any active regions before we release the map. */ 950 region_del(resv_map, 0, LONG_MAX); 951 952 /* ... and any entries left in the cache */ 953 list_for_each_entry_safe(rg, trg, head, link) { 954 list_del(&rg->link); 955 kfree(rg); 956 } 957 958 VM_BUG_ON(resv_map->adds_in_progress); 959 960 kfree(resv_map); 961 } 962 963 static inline struct resv_map *inode_resv_map(struct inode *inode) 964 { 965 /* 966 * At inode evict time, i_mapping may not point to the original 967 * address space within the inode. This original address space 968 * contains the pointer to the resv_map. So, always use the 969 * address space embedded within the inode. 970 * The VERY common case is inode->mapping == &inode->i_data but, 971 * this may not be true for device special inodes. 972 */ 973 return (struct resv_map *)(&inode->i_data)->private_data; 974 } 975 976 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 977 { 978 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 979 if (vma->vm_flags & VM_MAYSHARE) { 980 struct address_space *mapping = vma->vm_file->f_mapping; 981 struct inode *inode = mapping->host; 982 983 return inode_resv_map(inode); 984 985 } else { 986 return (struct resv_map *)(get_vma_private_data(vma) & 987 ~HPAGE_RESV_MASK); 988 } 989 } 990 991 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 992 { 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 994 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 995 996 set_vma_private_data(vma, (get_vma_private_data(vma) & 997 HPAGE_RESV_MASK) | (unsigned long)map); 998 } 999 1000 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1001 { 1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1003 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1004 1005 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1006 } 1007 1008 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1009 { 1010 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1011 1012 return (get_vma_private_data(vma) & flag) != 0; 1013 } 1014 1015 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1016 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1017 { 1018 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1019 if (!(vma->vm_flags & VM_MAYSHARE)) 1020 vma->vm_private_data = (void *)0; 1021 } 1022 1023 /* 1024 * Reset and decrement one ref on hugepage private reservation. 1025 * Called with mm->mmap_sem writer semaphore held. 1026 * This function should be only used by move_vma() and operate on 1027 * same sized vma. It should never come here with last ref on the 1028 * reservation. 1029 */ 1030 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1031 { 1032 /* 1033 * Clear the old hugetlb private page reservation. 1034 * It has already been transferred to new_vma. 1035 * 1036 * During a mremap() operation of a hugetlb vma we call move_vma() 1037 * which copies vma into new_vma and unmaps vma. After the copy 1038 * operation both new_vma and vma share a reference to the resv_map 1039 * struct, and at that point vma is about to be unmapped. We don't 1040 * want to return the reservation to the pool at unmap of vma because 1041 * the reservation still lives on in new_vma, so simply decrement the 1042 * ref here and remove the resv_map reference from this vma. 1043 */ 1044 struct resv_map *reservations = vma_resv_map(vma); 1045 1046 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1047 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1048 kref_put(&reservations->refs, resv_map_release); 1049 } 1050 1051 reset_vma_resv_huge_pages(vma); 1052 } 1053 1054 /* Returns true if the VMA has associated reserve pages */ 1055 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1056 { 1057 if (vma->vm_flags & VM_NORESERVE) { 1058 /* 1059 * This address is already reserved by other process(chg == 0), 1060 * so, we should decrement reserved count. Without decrementing, 1061 * reserve count remains after releasing inode, because this 1062 * allocated page will go into page cache and is regarded as 1063 * coming from reserved pool in releasing step. Currently, we 1064 * don't have any other solution to deal with this situation 1065 * properly, so add work-around here. 1066 */ 1067 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1068 return true; 1069 else 1070 return false; 1071 } 1072 1073 /* Shared mappings always use reserves */ 1074 if (vma->vm_flags & VM_MAYSHARE) { 1075 /* 1076 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1077 * be a region map for all pages. The only situation where 1078 * there is no region map is if a hole was punched via 1079 * fallocate. In this case, there really are no reserves to 1080 * use. This situation is indicated if chg != 0. 1081 */ 1082 if (chg) 1083 return false; 1084 else 1085 return true; 1086 } 1087 1088 /* 1089 * Only the process that called mmap() has reserves for 1090 * private mappings. 1091 */ 1092 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1093 /* 1094 * Like the shared case above, a hole punch or truncate 1095 * could have been performed on the private mapping. 1096 * Examine the value of chg to determine if reserves 1097 * actually exist or were previously consumed. 1098 * Very Subtle - The value of chg comes from a previous 1099 * call to vma_needs_reserves(). The reserve map for 1100 * private mappings has different (opposite) semantics 1101 * than that of shared mappings. vma_needs_reserves() 1102 * has already taken this difference in semantics into 1103 * account. Therefore, the meaning of chg is the same 1104 * as in the shared case above. Code could easily be 1105 * combined, but keeping it separate draws attention to 1106 * subtle differences. 1107 */ 1108 if (chg) 1109 return false; 1110 else 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 static void enqueue_huge_page(struct hstate *h, struct page *page) 1118 { 1119 int nid = page_to_nid(page); 1120 1121 lockdep_assert_held(&hugetlb_lock); 1122 VM_BUG_ON_PAGE(page_count(page), page); 1123 1124 list_move(&page->lru, &h->hugepage_freelists[nid]); 1125 h->free_huge_pages++; 1126 h->free_huge_pages_node[nid]++; 1127 SetHPageFreed(page); 1128 } 1129 1130 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1131 { 1132 struct page *page; 1133 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1134 1135 lockdep_assert_held(&hugetlb_lock); 1136 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1137 if (pin && !is_pinnable_page(page)) 1138 continue; 1139 1140 if (PageHWPoison(page)) 1141 continue; 1142 1143 list_move(&page->lru, &h->hugepage_activelist); 1144 set_page_refcounted(page); 1145 ClearHPageFreed(page); 1146 h->free_huge_pages--; 1147 h->free_huge_pages_node[nid]--; 1148 return page; 1149 } 1150 1151 return NULL; 1152 } 1153 1154 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1155 nodemask_t *nmask) 1156 { 1157 unsigned int cpuset_mems_cookie; 1158 struct zonelist *zonelist; 1159 struct zone *zone; 1160 struct zoneref *z; 1161 int node = NUMA_NO_NODE; 1162 1163 zonelist = node_zonelist(nid, gfp_mask); 1164 1165 retry_cpuset: 1166 cpuset_mems_cookie = read_mems_allowed_begin(); 1167 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1168 struct page *page; 1169 1170 if (!cpuset_zone_allowed(zone, gfp_mask)) 1171 continue; 1172 /* 1173 * no need to ask again on the same node. Pool is node rather than 1174 * zone aware 1175 */ 1176 if (zone_to_nid(zone) == node) 1177 continue; 1178 node = zone_to_nid(zone); 1179 1180 page = dequeue_huge_page_node_exact(h, node); 1181 if (page) 1182 return page; 1183 } 1184 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1185 goto retry_cpuset; 1186 1187 return NULL; 1188 } 1189 1190 static struct page *dequeue_huge_page_vma(struct hstate *h, 1191 struct vm_area_struct *vma, 1192 unsigned long address, int avoid_reserve, 1193 long chg) 1194 { 1195 struct page *page = NULL; 1196 struct mempolicy *mpol; 1197 gfp_t gfp_mask; 1198 nodemask_t *nodemask; 1199 int nid; 1200 1201 /* 1202 * A child process with MAP_PRIVATE mappings created by their parent 1203 * have no page reserves. This check ensures that reservations are 1204 * not "stolen". The child may still get SIGKILLed 1205 */ 1206 if (!vma_has_reserves(vma, chg) && 1207 h->free_huge_pages - h->resv_huge_pages == 0) 1208 goto err; 1209 1210 /* If reserves cannot be used, ensure enough pages are in the pool */ 1211 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1212 goto err; 1213 1214 gfp_mask = htlb_alloc_mask(h); 1215 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1216 1217 if (mpol_is_preferred_many(mpol)) { 1218 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1219 1220 /* Fallback to all nodes if page==NULL */ 1221 nodemask = NULL; 1222 } 1223 1224 if (!page) 1225 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1226 1227 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1228 SetHPageRestoreReserve(page); 1229 h->resv_huge_pages--; 1230 } 1231 1232 mpol_cond_put(mpol); 1233 return page; 1234 1235 err: 1236 return NULL; 1237 } 1238 1239 /* 1240 * common helper functions for hstate_next_node_to_{alloc|free}. 1241 * We may have allocated or freed a huge page based on a different 1242 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1243 * be outside of *nodes_allowed. Ensure that we use an allowed 1244 * node for alloc or free. 1245 */ 1246 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1247 { 1248 nid = next_node_in(nid, *nodes_allowed); 1249 VM_BUG_ON(nid >= MAX_NUMNODES); 1250 1251 return nid; 1252 } 1253 1254 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1255 { 1256 if (!node_isset(nid, *nodes_allowed)) 1257 nid = next_node_allowed(nid, nodes_allowed); 1258 return nid; 1259 } 1260 1261 /* 1262 * returns the previously saved node ["this node"] from which to 1263 * allocate a persistent huge page for the pool and advance the 1264 * next node from which to allocate, handling wrap at end of node 1265 * mask. 1266 */ 1267 static int hstate_next_node_to_alloc(struct hstate *h, 1268 nodemask_t *nodes_allowed) 1269 { 1270 int nid; 1271 1272 VM_BUG_ON(!nodes_allowed); 1273 1274 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1275 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1276 1277 return nid; 1278 } 1279 1280 /* 1281 * helper for remove_pool_huge_page() - return the previously saved 1282 * node ["this node"] from which to free a huge page. Advance the 1283 * next node id whether or not we find a free huge page to free so 1284 * that the next attempt to free addresses the next node. 1285 */ 1286 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1287 { 1288 int nid; 1289 1290 VM_BUG_ON(!nodes_allowed); 1291 1292 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1293 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1294 1295 return nid; 1296 } 1297 1298 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1299 for (nr_nodes = nodes_weight(*mask); \ 1300 nr_nodes > 0 && \ 1301 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1302 nr_nodes--) 1303 1304 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1305 for (nr_nodes = nodes_weight(*mask); \ 1306 nr_nodes > 0 && \ 1307 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1308 nr_nodes--) 1309 1310 /* used to demote non-gigantic_huge pages as well */ 1311 static void __destroy_compound_gigantic_page(struct page *page, 1312 unsigned int order, bool demote) 1313 { 1314 int i; 1315 int nr_pages = 1 << order; 1316 struct page *p = page + 1; 1317 1318 atomic_set(compound_mapcount_ptr(page), 0); 1319 atomic_set(compound_pincount_ptr(page), 0); 1320 1321 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1322 p->mapping = NULL; 1323 clear_compound_head(p); 1324 if (!demote) 1325 set_page_refcounted(p); 1326 } 1327 1328 set_compound_order(page, 0); 1329 #ifdef CONFIG_64BIT 1330 page[1].compound_nr = 0; 1331 #endif 1332 __ClearPageHead(page); 1333 } 1334 1335 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1336 unsigned int order) 1337 { 1338 __destroy_compound_gigantic_page(page, order, true); 1339 } 1340 1341 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1342 static void destroy_compound_gigantic_page(struct page *page, 1343 unsigned int order) 1344 { 1345 __destroy_compound_gigantic_page(page, order, false); 1346 } 1347 1348 static void free_gigantic_page(struct page *page, unsigned int order) 1349 { 1350 /* 1351 * If the page isn't allocated using the cma allocator, 1352 * cma_release() returns false. 1353 */ 1354 #ifdef CONFIG_CMA 1355 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1356 return; 1357 #endif 1358 1359 free_contig_range(page_to_pfn(page), 1 << order); 1360 } 1361 1362 #ifdef CONFIG_CONTIG_ALLOC 1363 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1364 int nid, nodemask_t *nodemask) 1365 { 1366 unsigned long nr_pages = pages_per_huge_page(h); 1367 if (nid == NUMA_NO_NODE) 1368 nid = numa_mem_id(); 1369 1370 #ifdef CONFIG_CMA 1371 { 1372 struct page *page; 1373 int node; 1374 1375 if (hugetlb_cma[nid]) { 1376 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1377 huge_page_order(h), true); 1378 if (page) 1379 return page; 1380 } 1381 1382 if (!(gfp_mask & __GFP_THISNODE)) { 1383 for_each_node_mask(node, *nodemask) { 1384 if (node == nid || !hugetlb_cma[node]) 1385 continue; 1386 1387 page = cma_alloc(hugetlb_cma[node], nr_pages, 1388 huge_page_order(h), true); 1389 if (page) 1390 return page; 1391 } 1392 } 1393 } 1394 #endif 1395 1396 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1397 } 1398 1399 #else /* !CONFIG_CONTIG_ALLOC */ 1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1401 int nid, nodemask_t *nodemask) 1402 { 1403 return NULL; 1404 } 1405 #endif /* CONFIG_CONTIG_ALLOC */ 1406 1407 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1408 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1409 int nid, nodemask_t *nodemask) 1410 { 1411 return NULL; 1412 } 1413 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1414 static inline void destroy_compound_gigantic_page(struct page *page, 1415 unsigned int order) { } 1416 #endif 1417 1418 /* 1419 * Remove hugetlb page from lists, and update dtor so that page appears 1420 * as just a compound page. 1421 * 1422 * A reference is held on the page, except in the case of demote. 1423 * 1424 * Must be called with hugetlb lock held. 1425 */ 1426 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1427 bool adjust_surplus, 1428 bool demote) 1429 { 1430 int nid = page_to_nid(page); 1431 1432 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1434 1435 lockdep_assert_held(&hugetlb_lock); 1436 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1437 return; 1438 1439 list_del(&page->lru); 1440 1441 if (HPageFreed(page)) { 1442 h->free_huge_pages--; 1443 h->free_huge_pages_node[nid]--; 1444 } 1445 if (adjust_surplus) { 1446 h->surplus_huge_pages--; 1447 h->surplus_huge_pages_node[nid]--; 1448 } 1449 1450 /* 1451 * Very subtle 1452 * 1453 * For non-gigantic pages set the destructor to the normal compound 1454 * page dtor. This is needed in case someone takes an additional 1455 * temporary ref to the page, and freeing is delayed until they drop 1456 * their reference. 1457 * 1458 * For gigantic pages set the destructor to the null dtor. This 1459 * destructor will never be called. Before freeing the gigantic 1460 * page destroy_compound_gigantic_page will turn the compound page 1461 * into a simple group of pages. After this the destructor does not 1462 * apply. 1463 * 1464 * This handles the case where more than one ref is held when and 1465 * after update_and_free_page is called. 1466 * 1467 * In the case of demote we do not ref count the page as it will soon 1468 * be turned into a page of smaller size. 1469 */ 1470 if (!demote) 1471 set_page_refcounted(page); 1472 if (hstate_is_gigantic(h)) 1473 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1474 else 1475 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1476 1477 h->nr_huge_pages--; 1478 h->nr_huge_pages_node[nid]--; 1479 } 1480 1481 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1482 bool adjust_surplus) 1483 { 1484 __remove_hugetlb_page(h, page, adjust_surplus, false); 1485 } 1486 1487 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1488 bool adjust_surplus) 1489 { 1490 __remove_hugetlb_page(h, page, adjust_surplus, true); 1491 } 1492 1493 static void add_hugetlb_page(struct hstate *h, struct page *page, 1494 bool adjust_surplus) 1495 { 1496 int zeroed; 1497 int nid = page_to_nid(page); 1498 1499 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1500 1501 lockdep_assert_held(&hugetlb_lock); 1502 1503 INIT_LIST_HEAD(&page->lru); 1504 h->nr_huge_pages++; 1505 h->nr_huge_pages_node[nid]++; 1506 1507 if (adjust_surplus) { 1508 h->surplus_huge_pages++; 1509 h->surplus_huge_pages_node[nid]++; 1510 } 1511 1512 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1513 set_page_private(page, 0); 1514 SetHPageVmemmapOptimized(page); 1515 1516 /* 1517 * This page is about to be managed by the hugetlb allocator and 1518 * should have no users. Drop our reference, and check for others 1519 * just in case. 1520 */ 1521 zeroed = put_page_testzero(page); 1522 if (!zeroed) 1523 /* 1524 * It is VERY unlikely soneone else has taken a ref on 1525 * the page. In this case, we simply return as the 1526 * hugetlb destructor (free_huge_page) will be called 1527 * when this other ref is dropped. 1528 */ 1529 return; 1530 1531 arch_clear_hugepage_flags(page); 1532 enqueue_huge_page(h, page); 1533 } 1534 1535 static void __update_and_free_page(struct hstate *h, struct page *page) 1536 { 1537 int i; 1538 struct page *subpage = page; 1539 1540 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1541 return; 1542 1543 if (hugetlb_vmemmap_alloc(h, page)) { 1544 spin_lock_irq(&hugetlb_lock); 1545 /* 1546 * If we cannot allocate vmemmap pages, just refuse to free the 1547 * page and put the page back on the hugetlb free list and treat 1548 * as a surplus page. 1549 */ 1550 add_hugetlb_page(h, page, true); 1551 spin_unlock_irq(&hugetlb_lock); 1552 return; 1553 } 1554 1555 for (i = 0; i < pages_per_huge_page(h); 1556 i++, subpage = mem_map_next(subpage, page, i)) { 1557 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1558 1 << PG_referenced | 1 << PG_dirty | 1559 1 << PG_active | 1 << PG_private | 1560 1 << PG_writeback); 1561 } 1562 1563 /* 1564 * Non-gigantic pages demoted from CMA allocated gigantic pages 1565 * need to be given back to CMA in free_gigantic_page. 1566 */ 1567 if (hstate_is_gigantic(h) || 1568 hugetlb_cma_page(page, huge_page_order(h))) { 1569 destroy_compound_gigantic_page(page, huge_page_order(h)); 1570 free_gigantic_page(page, huge_page_order(h)); 1571 } else { 1572 __free_pages(page, huge_page_order(h)); 1573 } 1574 } 1575 1576 /* 1577 * As update_and_free_page() can be called under any context, so we cannot 1578 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1579 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1580 * the vmemmap pages. 1581 * 1582 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1583 * freed and frees them one-by-one. As the page->mapping pointer is going 1584 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1585 * structure of a lockless linked list of huge pages to be freed. 1586 */ 1587 static LLIST_HEAD(hpage_freelist); 1588 1589 static void free_hpage_workfn(struct work_struct *work) 1590 { 1591 struct llist_node *node; 1592 1593 node = llist_del_all(&hpage_freelist); 1594 1595 while (node) { 1596 struct page *page; 1597 struct hstate *h; 1598 1599 page = container_of((struct address_space **)node, 1600 struct page, mapping); 1601 node = node->next; 1602 page->mapping = NULL; 1603 /* 1604 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1605 * is going to trigger because a previous call to 1606 * remove_hugetlb_page() will set_compound_page_dtor(page, 1607 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1608 */ 1609 h = size_to_hstate(page_size(page)); 1610 1611 __update_and_free_page(h, page); 1612 1613 cond_resched(); 1614 } 1615 } 1616 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1617 1618 static inline void flush_free_hpage_work(struct hstate *h) 1619 { 1620 if (hugetlb_optimize_vmemmap_pages(h)) 1621 flush_work(&free_hpage_work); 1622 } 1623 1624 static void update_and_free_page(struct hstate *h, struct page *page, 1625 bool atomic) 1626 { 1627 if (!HPageVmemmapOptimized(page) || !atomic) { 1628 __update_and_free_page(h, page); 1629 return; 1630 } 1631 1632 /* 1633 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1634 * 1635 * Only call schedule_work() if hpage_freelist is previously 1636 * empty. Otherwise, schedule_work() had been called but the workfn 1637 * hasn't retrieved the list yet. 1638 */ 1639 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1640 schedule_work(&free_hpage_work); 1641 } 1642 1643 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1644 { 1645 struct page *page, *t_page; 1646 1647 list_for_each_entry_safe(page, t_page, list, lru) { 1648 update_and_free_page(h, page, false); 1649 cond_resched(); 1650 } 1651 } 1652 1653 struct hstate *size_to_hstate(unsigned long size) 1654 { 1655 struct hstate *h; 1656 1657 for_each_hstate(h) { 1658 if (huge_page_size(h) == size) 1659 return h; 1660 } 1661 return NULL; 1662 } 1663 1664 void free_huge_page(struct page *page) 1665 { 1666 /* 1667 * Can't pass hstate in here because it is called from the 1668 * compound page destructor. 1669 */ 1670 struct hstate *h = page_hstate(page); 1671 int nid = page_to_nid(page); 1672 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1673 bool restore_reserve; 1674 unsigned long flags; 1675 1676 VM_BUG_ON_PAGE(page_count(page), page); 1677 VM_BUG_ON_PAGE(page_mapcount(page), page); 1678 1679 hugetlb_set_page_subpool(page, NULL); 1680 page->mapping = NULL; 1681 restore_reserve = HPageRestoreReserve(page); 1682 ClearHPageRestoreReserve(page); 1683 1684 /* 1685 * If HPageRestoreReserve was set on page, page allocation consumed a 1686 * reservation. If the page was associated with a subpool, there 1687 * would have been a page reserved in the subpool before allocation 1688 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1689 * reservation, do not call hugepage_subpool_put_pages() as this will 1690 * remove the reserved page from the subpool. 1691 */ 1692 if (!restore_reserve) { 1693 /* 1694 * A return code of zero implies that the subpool will be 1695 * under its minimum size if the reservation is not restored 1696 * after page is free. Therefore, force restore_reserve 1697 * operation. 1698 */ 1699 if (hugepage_subpool_put_pages(spool, 1) == 0) 1700 restore_reserve = true; 1701 } 1702 1703 spin_lock_irqsave(&hugetlb_lock, flags); 1704 ClearHPageMigratable(page); 1705 hugetlb_cgroup_uncharge_page(hstate_index(h), 1706 pages_per_huge_page(h), page); 1707 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1708 pages_per_huge_page(h), page); 1709 if (restore_reserve) 1710 h->resv_huge_pages++; 1711 1712 if (HPageTemporary(page)) { 1713 remove_hugetlb_page(h, page, false); 1714 spin_unlock_irqrestore(&hugetlb_lock, flags); 1715 update_and_free_page(h, page, true); 1716 } else if (h->surplus_huge_pages_node[nid]) { 1717 /* remove the page from active list */ 1718 remove_hugetlb_page(h, page, true); 1719 spin_unlock_irqrestore(&hugetlb_lock, flags); 1720 update_and_free_page(h, page, true); 1721 } else { 1722 arch_clear_hugepage_flags(page); 1723 enqueue_huge_page(h, page); 1724 spin_unlock_irqrestore(&hugetlb_lock, flags); 1725 } 1726 } 1727 1728 /* 1729 * Must be called with the hugetlb lock held 1730 */ 1731 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1732 { 1733 lockdep_assert_held(&hugetlb_lock); 1734 h->nr_huge_pages++; 1735 h->nr_huge_pages_node[nid]++; 1736 } 1737 1738 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1739 { 1740 hugetlb_vmemmap_free(h, page); 1741 INIT_LIST_HEAD(&page->lru); 1742 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1743 hugetlb_set_page_subpool(page, NULL); 1744 set_hugetlb_cgroup(page, NULL); 1745 set_hugetlb_cgroup_rsvd(page, NULL); 1746 } 1747 1748 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1749 { 1750 __prep_new_huge_page(h, page); 1751 spin_lock_irq(&hugetlb_lock); 1752 __prep_account_new_huge_page(h, nid); 1753 spin_unlock_irq(&hugetlb_lock); 1754 } 1755 1756 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1757 bool demote) 1758 { 1759 int i, j; 1760 int nr_pages = 1 << order; 1761 struct page *p = page + 1; 1762 1763 /* we rely on prep_new_huge_page to set the destructor */ 1764 set_compound_order(page, order); 1765 __ClearPageReserved(page); 1766 __SetPageHead(page); 1767 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1768 /* 1769 * For gigantic hugepages allocated through bootmem at 1770 * boot, it's safer to be consistent with the not-gigantic 1771 * hugepages and clear the PG_reserved bit from all tail pages 1772 * too. Otherwise drivers using get_user_pages() to access tail 1773 * pages may get the reference counting wrong if they see 1774 * PG_reserved set on a tail page (despite the head page not 1775 * having PG_reserved set). Enforcing this consistency between 1776 * head and tail pages allows drivers to optimize away a check 1777 * on the head page when they need know if put_page() is needed 1778 * after get_user_pages(). 1779 */ 1780 __ClearPageReserved(p); 1781 /* 1782 * Subtle and very unlikely 1783 * 1784 * Gigantic 'page allocators' such as memblock or cma will 1785 * return a set of pages with each page ref counted. We need 1786 * to turn this set of pages into a compound page with tail 1787 * page ref counts set to zero. Code such as speculative page 1788 * cache adding could take a ref on a 'to be' tail page. 1789 * We need to respect any increased ref count, and only set 1790 * the ref count to zero if count is currently 1. If count 1791 * is not 1, we return an error. An error return indicates 1792 * the set of pages can not be converted to a gigantic page. 1793 * The caller who allocated the pages should then discard the 1794 * pages using the appropriate free interface. 1795 * 1796 * In the case of demote, the ref count will be zero. 1797 */ 1798 if (!demote) { 1799 if (!page_ref_freeze(p, 1)) { 1800 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1801 goto out_error; 1802 } 1803 } else { 1804 VM_BUG_ON_PAGE(page_count(p), p); 1805 } 1806 set_compound_head(p, page); 1807 } 1808 atomic_set(compound_mapcount_ptr(page), -1); 1809 atomic_set(compound_pincount_ptr(page), 0); 1810 return true; 1811 1812 out_error: 1813 /* undo tail page modifications made above */ 1814 p = page + 1; 1815 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1816 clear_compound_head(p); 1817 set_page_refcounted(p); 1818 } 1819 /* need to clear PG_reserved on remaining tail pages */ 1820 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1821 __ClearPageReserved(p); 1822 set_compound_order(page, 0); 1823 #ifdef CONFIG_64BIT 1824 page[1].compound_nr = 0; 1825 #endif 1826 __ClearPageHead(page); 1827 return false; 1828 } 1829 1830 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1831 { 1832 return __prep_compound_gigantic_page(page, order, false); 1833 } 1834 1835 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1836 unsigned int order) 1837 { 1838 return __prep_compound_gigantic_page(page, order, true); 1839 } 1840 1841 /* 1842 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1843 * transparent huge pages. See the PageTransHuge() documentation for more 1844 * details. 1845 */ 1846 int PageHuge(struct page *page) 1847 { 1848 if (!PageCompound(page)) 1849 return 0; 1850 1851 page = compound_head(page); 1852 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1853 } 1854 EXPORT_SYMBOL_GPL(PageHuge); 1855 1856 /* 1857 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1858 * normal or transparent huge pages. 1859 */ 1860 int PageHeadHuge(struct page *page_head) 1861 { 1862 if (!PageHead(page_head)) 1863 return 0; 1864 1865 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1866 } 1867 EXPORT_SYMBOL_GPL(PageHeadHuge); 1868 1869 /* 1870 * Find and lock address space (mapping) in write mode. 1871 * 1872 * Upon entry, the page is locked which means that page_mapping() is 1873 * stable. Due to locking order, we can only trylock_write. If we can 1874 * not get the lock, simply return NULL to caller. 1875 */ 1876 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1877 { 1878 struct address_space *mapping = page_mapping(hpage); 1879 1880 if (!mapping) 1881 return mapping; 1882 1883 if (i_mmap_trylock_write(mapping)) 1884 return mapping; 1885 1886 return NULL; 1887 } 1888 1889 pgoff_t hugetlb_basepage_index(struct page *page) 1890 { 1891 struct page *page_head = compound_head(page); 1892 pgoff_t index = page_index(page_head); 1893 unsigned long compound_idx; 1894 1895 if (compound_order(page_head) >= MAX_ORDER) 1896 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1897 else 1898 compound_idx = page - page_head; 1899 1900 return (index << compound_order(page_head)) + compound_idx; 1901 } 1902 1903 static struct page *alloc_buddy_huge_page(struct hstate *h, 1904 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1905 nodemask_t *node_alloc_noretry) 1906 { 1907 int order = huge_page_order(h); 1908 struct page *page; 1909 bool alloc_try_hard = true; 1910 1911 /* 1912 * By default we always try hard to allocate the page with 1913 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1914 * a loop (to adjust global huge page counts) and previous allocation 1915 * failed, do not continue to try hard on the same node. Use the 1916 * node_alloc_noretry bitmap to manage this state information. 1917 */ 1918 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1919 alloc_try_hard = false; 1920 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1921 if (alloc_try_hard) 1922 gfp_mask |= __GFP_RETRY_MAYFAIL; 1923 if (nid == NUMA_NO_NODE) 1924 nid = numa_mem_id(); 1925 page = __alloc_pages(gfp_mask, order, nid, nmask); 1926 if (page) 1927 __count_vm_event(HTLB_BUDDY_PGALLOC); 1928 else 1929 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1930 1931 /* 1932 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1933 * indicates an overall state change. Clear bit so that we resume 1934 * normal 'try hard' allocations. 1935 */ 1936 if (node_alloc_noretry && page && !alloc_try_hard) 1937 node_clear(nid, *node_alloc_noretry); 1938 1939 /* 1940 * If we tried hard to get a page but failed, set bit so that 1941 * subsequent attempts will not try as hard until there is an 1942 * overall state change. 1943 */ 1944 if (node_alloc_noretry && !page && alloc_try_hard) 1945 node_set(nid, *node_alloc_noretry); 1946 1947 return page; 1948 } 1949 1950 /* 1951 * Common helper to allocate a fresh hugetlb page. All specific allocators 1952 * should use this function to get new hugetlb pages 1953 */ 1954 static struct page *alloc_fresh_huge_page(struct hstate *h, 1955 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1956 nodemask_t *node_alloc_noretry) 1957 { 1958 struct page *page; 1959 bool retry = false; 1960 1961 retry: 1962 if (hstate_is_gigantic(h)) 1963 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1964 else 1965 page = alloc_buddy_huge_page(h, gfp_mask, 1966 nid, nmask, node_alloc_noretry); 1967 if (!page) 1968 return NULL; 1969 1970 if (hstate_is_gigantic(h)) { 1971 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1972 /* 1973 * Rare failure to convert pages to compound page. 1974 * Free pages and try again - ONCE! 1975 */ 1976 free_gigantic_page(page, huge_page_order(h)); 1977 if (!retry) { 1978 retry = true; 1979 goto retry; 1980 } 1981 return NULL; 1982 } 1983 } 1984 prep_new_huge_page(h, page, page_to_nid(page)); 1985 1986 return page; 1987 } 1988 1989 /* 1990 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1991 * manner. 1992 */ 1993 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1994 nodemask_t *node_alloc_noretry) 1995 { 1996 struct page *page; 1997 int nr_nodes, node; 1998 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1999 2000 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2001 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2002 node_alloc_noretry); 2003 if (page) 2004 break; 2005 } 2006 2007 if (!page) 2008 return 0; 2009 2010 put_page(page); /* free it into the hugepage allocator */ 2011 2012 return 1; 2013 } 2014 2015 /* 2016 * Remove huge page from pool from next node to free. Attempt to keep 2017 * persistent huge pages more or less balanced over allowed nodes. 2018 * This routine only 'removes' the hugetlb page. The caller must make 2019 * an additional call to free the page to low level allocators. 2020 * Called with hugetlb_lock locked. 2021 */ 2022 static struct page *remove_pool_huge_page(struct hstate *h, 2023 nodemask_t *nodes_allowed, 2024 bool acct_surplus) 2025 { 2026 int nr_nodes, node; 2027 struct page *page = NULL; 2028 2029 lockdep_assert_held(&hugetlb_lock); 2030 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2031 /* 2032 * If we're returning unused surplus pages, only examine 2033 * nodes with surplus pages. 2034 */ 2035 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2036 !list_empty(&h->hugepage_freelists[node])) { 2037 page = list_entry(h->hugepage_freelists[node].next, 2038 struct page, lru); 2039 remove_hugetlb_page(h, page, acct_surplus); 2040 break; 2041 } 2042 } 2043 2044 return page; 2045 } 2046 2047 /* 2048 * Dissolve a given free hugepage into free buddy pages. This function does 2049 * nothing for in-use hugepages and non-hugepages. 2050 * This function returns values like below: 2051 * 2052 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2053 * when the system is under memory pressure and the feature of 2054 * freeing unused vmemmap pages associated with each hugetlb page 2055 * is enabled. 2056 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2057 * (allocated or reserved.) 2058 * 0: successfully dissolved free hugepages or the page is not a 2059 * hugepage (considered as already dissolved) 2060 */ 2061 int dissolve_free_huge_page(struct page *page) 2062 { 2063 int rc = -EBUSY; 2064 2065 retry: 2066 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2067 if (!PageHuge(page)) 2068 return 0; 2069 2070 spin_lock_irq(&hugetlb_lock); 2071 if (!PageHuge(page)) { 2072 rc = 0; 2073 goto out; 2074 } 2075 2076 if (!page_count(page)) { 2077 struct page *head = compound_head(page); 2078 struct hstate *h = page_hstate(head); 2079 if (h->free_huge_pages - h->resv_huge_pages == 0) 2080 goto out; 2081 2082 /* 2083 * We should make sure that the page is already on the free list 2084 * when it is dissolved. 2085 */ 2086 if (unlikely(!HPageFreed(head))) { 2087 spin_unlock_irq(&hugetlb_lock); 2088 cond_resched(); 2089 2090 /* 2091 * Theoretically, we should return -EBUSY when we 2092 * encounter this race. In fact, we have a chance 2093 * to successfully dissolve the page if we do a 2094 * retry. Because the race window is quite small. 2095 * If we seize this opportunity, it is an optimization 2096 * for increasing the success rate of dissolving page. 2097 */ 2098 goto retry; 2099 } 2100 2101 remove_hugetlb_page(h, head, false); 2102 h->max_huge_pages--; 2103 spin_unlock_irq(&hugetlb_lock); 2104 2105 /* 2106 * Normally update_and_free_page will allocate required vmemmmap 2107 * before freeing the page. update_and_free_page will fail to 2108 * free the page if it can not allocate required vmemmap. We 2109 * need to adjust max_huge_pages if the page is not freed. 2110 * Attempt to allocate vmemmmap here so that we can take 2111 * appropriate action on failure. 2112 */ 2113 rc = hugetlb_vmemmap_alloc(h, head); 2114 if (!rc) { 2115 /* 2116 * Move PageHWPoison flag from head page to the raw 2117 * error page, which makes any subpages rather than 2118 * the error page reusable. 2119 */ 2120 if (PageHWPoison(head) && page != head) { 2121 SetPageHWPoison(page); 2122 ClearPageHWPoison(head); 2123 } 2124 update_and_free_page(h, head, false); 2125 } else { 2126 spin_lock_irq(&hugetlb_lock); 2127 add_hugetlb_page(h, head, false); 2128 h->max_huge_pages++; 2129 spin_unlock_irq(&hugetlb_lock); 2130 } 2131 2132 return rc; 2133 } 2134 out: 2135 spin_unlock_irq(&hugetlb_lock); 2136 return rc; 2137 } 2138 2139 /* 2140 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2141 * make specified memory blocks removable from the system. 2142 * Note that this will dissolve a free gigantic hugepage completely, if any 2143 * part of it lies within the given range. 2144 * Also note that if dissolve_free_huge_page() returns with an error, all 2145 * free hugepages that were dissolved before that error are lost. 2146 */ 2147 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2148 { 2149 unsigned long pfn; 2150 struct page *page; 2151 int rc = 0; 2152 2153 if (!hugepages_supported()) 2154 return rc; 2155 2156 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 2157 page = pfn_to_page(pfn); 2158 rc = dissolve_free_huge_page(page); 2159 if (rc) 2160 break; 2161 } 2162 2163 return rc; 2164 } 2165 2166 /* 2167 * Allocates a fresh surplus page from the page allocator. 2168 */ 2169 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2170 int nid, nodemask_t *nmask, bool zero_ref) 2171 { 2172 struct page *page = NULL; 2173 bool retry = false; 2174 2175 if (hstate_is_gigantic(h)) 2176 return NULL; 2177 2178 spin_lock_irq(&hugetlb_lock); 2179 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2180 goto out_unlock; 2181 spin_unlock_irq(&hugetlb_lock); 2182 2183 retry: 2184 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2185 if (!page) 2186 return NULL; 2187 2188 spin_lock_irq(&hugetlb_lock); 2189 /* 2190 * We could have raced with the pool size change. 2191 * Double check that and simply deallocate the new page 2192 * if we would end up overcommiting the surpluses. Abuse 2193 * temporary page to workaround the nasty free_huge_page 2194 * codeflow 2195 */ 2196 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2197 SetHPageTemporary(page); 2198 spin_unlock_irq(&hugetlb_lock); 2199 put_page(page); 2200 return NULL; 2201 } 2202 2203 if (zero_ref) { 2204 /* 2205 * Caller requires a page with zero ref count. 2206 * We will drop ref count here. If someone else is holding 2207 * a ref, the page will be freed when they drop it. Abuse 2208 * temporary page flag to accomplish this. 2209 */ 2210 SetHPageTemporary(page); 2211 if (!put_page_testzero(page)) { 2212 /* 2213 * Unexpected inflated ref count on freshly allocated 2214 * huge. Retry once. 2215 */ 2216 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2217 spin_unlock_irq(&hugetlb_lock); 2218 if (retry) 2219 return NULL; 2220 2221 retry = true; 2222 goto retry; 2223 } 2224 ClearHPageTemporary(page); 2225 } 2226 2227 h->surplus_huge_pages++; 2228 h->surplus_huge_pages_node[page_to_nid(page)]++; 2229 2230 out_unlock: 2231 spin_unlock_irq(&hugetlb_lock); 2232 2233 return page; 2234 } 2235 2236 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2237 int nid, nodemask_t *nmask) 2238 { 2239 struct page *page; 2240 2241 if (hstate_is_gigantic(h)) 2242 return NULL; 2243 2244 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2245 if (!page) 2246 return NULL; 2247 2248 /* 2249 * We do not account these pages as surplus because they are only 2250 * temporary and will be released properly on the last reference 2251 */ 2252 SetHPageTemporary(page); 2253 2254 return page; 2255 } 2256 2257 /* 2258 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2259 */ 2260 static 2261 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2262 struct vm_area_struct *vma, unsigned long addr) 2263 { 2264 struct page *page = NULL; 2265 struct mempolicy *mpol; 2266 gfp_t gfp_mask = htlb_alloc_mask(h); 2267 int nid; 2268 nodemask_t *nodemask; 2269 2270 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2271 if (mpol_is_preferred_many(mpol)) { 2272 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2273 2274 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2275 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2276 2277 /* Fallback to all nodes if page==NULL */ 2278 nodemask = NULL; 2279 } 2280 2281 if (!page) 2282 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2283 mpol_cond_put(mpol); 2284 return page; 2285 } 2286 2287 /* page migration callback function */ 2288 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2289 nodemask_t *nmask, gfp_t gfp_mask) 2290 { 2291 spin_lock_irq(&hugetlb_lock); 2292 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2293 struct page *page; 2294 2295 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2296 if (page) { 2297 spin_unlock_irq(&hugetlb_lock); 2298 return page; 2299 } 2300 } 2301 spin_unlock_irq(&hugetlb_lock); 2302 2303 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2304 } 2305 2306 /* mempolicy aware migration callback */ 2307 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2308 unsigned long address) 2309 { 2310 struct mempolicy *mpol; 2311 nodemask_t *nodemask; 2312 struct page *page; 2313 gfp_t gfp_mask; 2314 int node; 2315 2316 gfp_mask = htlb_alloc_mask(h); 2317 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2318 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2319 mpol_cond_put(mpol); 2320 2321 return page; 2322 } 2323 2324 /* 2325 * Increase the hugetlb pool such that it can accommodate a reservation 2326 * of size 'delta'. 2327 */ 2328 static int gather_surplus_pages(struct hstate *h, long delta) 2329 __must_hold(&hugetlb_lock) 2330 { 2331 struct list_head surplus_list; 2332 struct page *page, *tmp; 2333 int ret; 2334 long i; 2335 long needed, allocated; 2336 bool alloc_ok = true; 2337 2338 lockdep_assert_held(&hugetlb_lock); 2339 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2340 if (needed <= 0) { 2341 h->resv_huge_pages += delta; 2342 return 0; 2343 } 2344 2345 allocated = 0; 2346 INIT_LIST_HEAD(&surplus_list); 2347 2348 ret = -ENOMEM; 2349 retry: 2350 spin_unlock_irq(&hugetlb_lock); 2351 for (i = 0; i < needed; i++) { 2352 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2353 NUMA_NO_NODE, NULL, true); 2354 if (!page) { 2355 alloc_ok = false; 2356 break; 2357 } 2358 list_add(&page->lru, &surplus_list); 2359 cond_resched(); 2360 } 2361 allocated += i; 2362 2363 /* 2364 * After retaking hugetlb_lock, we need to recalculate 'needed' 2365 * because either resv_huge_pages or free_huge_pages may have changed. 2366 */ 2367 spin_lock_irq(&hugetlb_lock); 2368 needed = (h->resv_huge_pages + delta) - 2369 (h->free_huge_pages + allocated); 2370 if (needed > 0) { 2371 if (alloc_ok) 2372 goto retry; 2373 /* 2374 * We were not able to allocate enough pages to 2375 * satisfy the entire reservation so we free what 2376 * we've allocated so far. 2377 */ 2378 goto free; 2379 } 2380 /* 2381 * The surplus_list now contains _at_least_ the number of extra pages 2382 * needed to accommodate the reservation. Add the appropriate number 2383 * of pages to the hugetlb pool and free the extras back to the buddy 2384 * allocator. Commit the entire reservation here to prevent another 2385 * process from stealing the pages as they are added to the pool but 2386 * before they are reserved. 2387 */ 2388 needed += allocated; 2389 h->resv_huge_pages += delta; 2390 ret = 0; 2391 2392 /* Free the needed pages to the hugetlb pool */ 2393 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2394 if ((--needed) < 0) 2395 break; 2396 /* Add the page to the hugetlb allocator */ 2397 enqueue_huge_page(h, page); 2398 } 2399 free: 2400 spin_unlock_irq(&hugetlb_lock); 2401 2402 /* 2403 * Free unnecessary surplus pages to the buddy allocator. 2404 * Pages have no ref count, call free_huge_page directly. 2405 */ 2406 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2407 free_huge_page(page); 2408 spin_lock_irq(&hugetlb_lock); 2409 2410 return ret; 2411 } 2412 2413 /* 2414 * This routine has two main purposes: 2415 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2416 * in unused_resv_pages. This corresponds to the prior adjustments made 2417 * to the associated reservation map. 2418 * 2) Free any unused surplus pages that may have been allocated to satisfy 2419 * the reservation. As many as unused_resv_pages may be freed. 2420 */ 2421 static void return_unused_surplus_pages(struct hstate *h, 2422 unsigned long unused_resv_pages) 2423 { 2424 unsigned long nr_pages; 2425 struct page *page; 2426 LIST_HEAD(page_list); 2427 2428 lockdep_assert_held(&hugetlb_lock); 2429 /* Uncommit the reservation */ 2430 h->resv_huge_pages -= unused_resv_pages; 2431 2432 /* Cannot return gigantic pages currently */ 2433 if (hstate_is_gigantic(h)) 2434 goto out; 2435 2436 /* 2437 * Part (or even all) of the reservation could have been backed 2438 * by pre-allocated pages. Only free surplus pages. 2439 */ 2440 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2441 2442 /* 2443 * We want to release as many surplus pages as possible, spread 2444 * evenly across all nodes with memory. Iterate across these nodes 2445 * until we can no longer free unreserved surplus pages. This occurs 2446 * when the nodes with surplus pages have no free pages. 2447 * remove_pool_huge_page() will balance the freed pages across the 2448 * on-line nodes with memory and will handle the hstate accounting. 2449 */ 2450 while (nr_pages--) { 2451 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2452 if (!page) 2453 goto out; 2454 2455 list_add(&page->lru, &page_list); 2456 } 2457 2458 out: 2459 spin_unlock_irq(&hugetlb_lock); 2460 update_and_free_pages_bulk(h, &page_list); 2461 spin_lock_irq(&hugetlb_lock); 2462 } 2463 2464 2465 /* 2466 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2467 * are used by the huge page allocation routines to manage reservations. 2468 * 2469 * vma_needs_reservation is called to determine if the huge page at addr 2470 * within the vma has an associated reservation. If a reservation is 2471 * needed, the value 1 is returned. The caller is then responsible for 2472 * managing the global reservation and subpool usage counts. After 2473 * the huge page has been allocated, vma_commit_reservation is called 2474 * to add the page to the reservation map. If the page allocation fails, 2475 * the reservation must be ended instead of committed. vma_end_reservation 2476 * is called in such cases. 2477 * 2478 * In the normal case, vma_commit_reservation returns the same value 2479 * as the preceding vma_needs_reservation call. The only time this 2480 * is not the case is if a reserve map was changed between calls. It 2481 * is the responsibility of the caller to notice the difference and 2482 * take appropriate action. 2483 * 2484 * vma_add_reservation is used in error paths where a reservation must 2485 * be restored when a newly allocated huge page must be freed. It is 2486 * to be called after calling vma_needs_reservation to determine if a 2487 * reservation exists. 2488 * 2489 * vma_del_reservation is used in error paths where an entry in the reserve 2490 * map was created during huge page allocation and must be removed. It is to 2491 * be called after calling vma_needs_reservation to determine if a reservation 2492 * exists. 2493 */ 2494 enum vma_resv_mode { 2495 VMA_NEEDS_RESV, 2496 VMA_COMMIT_RESV, 2497 VMA_END_RESV, 2498 VMA_ADD_RESV, 2499 VMA_DEL_RESV, 2500 }; 2501 static long __vma_reservation_common(struct hstate *h, 2502 struct vm_area_struct *vma, unsigned long addr, 2503 enum vma_resv_mode mode) 2504 { 2505 struct resv_map *resv; 2506 pgoff_t idx; 2507 long ret; 2508 long dummy_out_regions_needed; 2509 2510 resv = vma_resv_map(vma); 2511 if (!resv) 2512 return 1; 2513 2514 idx = vma_hugecache_offset(h, vma, addr); 2515 switch (mode) { 2516 case VMA_NEEDS_RESV: 2517 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2518 /* We assume that vma_reservation_* routines always operate on 2519 * 1 page, and that adding to resv map a 1 page entry can only 2520 * ever require 1 region. 2521 */ 2522 VM_BUG_ON(dummy_out_regions_needed != 1); 2523 break; 2524 case VMA_COMMIT_RESV: 2525 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2526 /* region_add calls of range 1 should never fail. */ 2527 VM_BUG_ON(ret < 0); 2528 break; 2529 case VMA_END_RESV: 2530 region_abort(resv, idx, idx + 1, 1); 2531 ret = 0; 2532 break; 2533 case VMA_ADD_RESV: 2534 if (vma->vm_flags & VM_MAYSHARE) { 2535 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2536 /* region_add calls of range 1 should never fail. */ 2537 VM_BUG_ON(ret < 0); 2538 } else { 2539 region_abort(resv, idx, idx + 1, 1); 2540 ret = region_del(resv, idx, idx + 1); 2541 } 2542 break; 2543 case VMA_DEL_RESV: 2544 if (vma->vm_flags & VM_MAYSHARE) { 2545 region_abort(resv, idx, idx + 1, 1); 2546 ret = region_del(resv, idx, idx + 1); 2547 } else { 2548 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2549 /* region_add calls of range 1 should never fail. */ 2550 VM_BUG_ON(ret < 0); 2551 } 2552 break; 2553 default: 2554 BUG(); 2555 } 2556 2557 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2558 return ret; 2559 /* 2560 * We know private mapping must have HPAGE_RESV_OWNER set. 2561 * 2562 * In most cases, reserves always exist for private mappings. 2563 * However, a file associated with mapping could have been 2564 * hole punched or truncated after reserves were consumed. 2565 * As subsequent fault on such a range will not use reserves. 2566 * Subtle - The reserve map for private mappings has the 2567 * opposite meaning than that of shared mappings. If NO 2568 * entry is in the reserve map, it means a reservation exists. 2569 * If an entry exists in the reserve map, it means the 2570 * reservation has already been consumed. As a result, the 2571 * return value of this routine is the opposite of the 2572 * value returned from reserve map manipulation routines above. 2573 */ 2574 if (ret > 0) 2575 return 0; 2576 if (ret == 0) 2577 return 1; 2578 return ret; 2579 } 2580 2581 static long vma_needs_reservation(struct hstate *h, 2582 struct vm_area_struct *vma, unsigned long addr) 2583 { 2584 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2585 } 2586 2587 static long vma_commit_reservation(struct hstate *h, 2588 struct vm_area_struct *vma, unsigned long addr) 2589 { 2590 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2591 } 2592 2593 static void vma_end_reservation(struct hstate *h, 2594 struct vm_area_struct *vma, unsigned long addr) 2595 { 2596 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2597 } 2598 2599 static long vma_add_reservation(struct hstate *h, 2600 struct vm_area_struct *vma, unsigned long addr) 2601 { 2602 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2603 } 2604 2605 static long vma_del_reservation(struct hstate *h, 2606 struct vm_area_struct *vma, unsigned long addr) 2607 { 2608 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2609 } 2610 2611 /* 2612 * This routine is called to restore reservation information on error paths. 2613 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2614 * the hugetlb mutex should remain held when calling this routine. 2615 * 2616 * It handles two specific cases: 2617 * 1) A reservation was in place and the page consumed the reservation. 2618 * HPageRestoreReserve is set in the page. 2619 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2620 * not set. However, alloc_huge_page always updates the reserve map. 2621 * 2622 * In case 1, free_huge_page later in the error path will increment the 2623 * global reserve count. But, free_huge_page does not have enough context 2624 * to adjust the reservation map. This case deals primarily with private 2625 * mappings. Adjust the reserve map here to be consistent with global 2626 * reserve count adjustments to be made by free_huge_page. Make sure the 2627 * reserve map indicates there is a reservation present. 2628 * 2629 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2630 */ 2631 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2632 unsigned long address, struct page *page) 2633 { 2634 long rc = vma_needs_reservation(h, vma, address); 2635 2636 if (HPageRestoreReserve(page)) { 2637 if (unlikely(rc < 0)) 2638 /* 2639 * Rare out of memory condition in reserve map 2640 * manipulation. Clear HPageRestoreReserve so that 2641 * global reserve count will not be incremented 2642 * by free_huge_page. This will make it appear 2643 * as though the reservation for this page was 2644 * consumed. This may prevent the task from 2645 * faulting in the page at a later time. This 2646 * is better than inconsistent global huge page 2647 * accounting of reserve counts. 2648 */ 2649 ClearHPageRestoreReserve(page); 2650 else if (rc) 2651 (void)vma_add_reservation(h, vma, address); 2652 else 2653 vma_end_reservation(h, vma, address); 2654 } else { 2655 if (!rc) { 2656 /* 2657 * This indicates there is an entry in the reserve map 2658 * not added by alloc_huge_page. We know it was added 2659 * before the alloc_huge_page call, otherwise 2660 * HPageRestoreReserve would be set on the page. 2661 * Remove the entry so that a subsequent allocation 2662 * does not consume a reservation. 2663 */ 2664 rc = vma_del_reservation(h, vma, address); 2665 if (rc < 0) 2666 /* 2667 * VERY rare out of memory condition. Since 2668 * we can not delete the entry, set 2669 * HPageRestoreReserve so that the reserve 2670 * count will be incremented when the page 2671 * is freed. This reserve will be consumed 2672 * on a subsequent allocation. 2673 */ 2674 SetHPageRestoreReserve(page); 2675 } else if (rc < 0) { 2676 /* 2677 * Rare out of memory condition from 2678 * vma_needs_reservation call. Memory allocation is 2679 * only attempted if a new entry is needed. Therefore, 2680 * this implies there is not an entry in the 2681 * reserve map. 2682 * 2683 * For shared mappings, no entry in the map indicates 2684 * no reservation. We are done. 2685 */ 2686 if (!(vma->vm_flags & VM_MAYSHARE)) 2687 /* 2688 * For private mappings, no entry indicates 2689 * a reservation is present. Since we can 2690 * not add an entry, set SetHPageRestoreReserve 2691 * on the page so reserve count will be 2692 * incremented when freed. This reserve will 2693 * be consumed on a subsequent allocation. 2694 */ 2695 SetHPageRestoreReserve(page); 2696 } else 2697 /* 2698 * No reservation present, do nothing 2699 */ 2700 vma_end_reservation(h, vma, address); 2701 } 2702 } 2703 2704 /* 2705 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2706 * @h: struct hstate old page belongs to 2707 * @old_page: Old page to dissolve 2708 * @list: List to isolate the page in case we need to 2709 * Returns 0 on success, otherwise negated error. 2710 */ 2711 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2712 struct list_head *list) 2713 { 2714 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2715 int nid = page_to_nid(old_page); 2716 bool alloc_retry = false; 2717 struct page *new_page; 2718 int ret = 0; 2719 2720 /* 2721 * Before dissolving the page, we need to allocate a new one for the 2722 * pool to remain stable. Here, we allocate the page and 'prep' it 2723 * by doing everything but actually updating counters and adding to 2724 * the pool. This simplifies and let us do most of the processing 2725 * under the lock. 2726 */ 2727 alloc_retry: 2728 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2729 if (!new_page) 2730 return -ENOMEM; 2731 /* 2732 * If all goes well, this page will be directly added to the free 2733 * list in the pool. For this the ref count needs to be zero. 2734 * Attempt to drop now, and retry once if needed. It is VERY 2735 * unlikely there is another ref on the page. 2736 * 2737 * If someone else has a reference to the page, it will be freed 2738 * when they drop their ref. Abuse temporary page flag to accomplish 2739 * this. Retry once if there is an inflated ref count. 2740 */ 2741 SetHPageTemporary(new_page); 2742 if (!put_page_testzero(new_page)) { 2743 if (alloc_retry) 2744 return -EBUSY; 2745 2746 alloc_retry = true; 2747 goto alloc_retry; 2748 } 2749 ClearHPageTemporary(new_page); 2750 2751 __prep_new_huge_page(h, new_page); 2752 2753 retry: 2754 spin_lock_irq(&hugetlb_lock); 2755 if (!PageHuge(old_page)) { 2756 /* 2757 * Freed from under us. Drop new_page too. 2758 */ 2759 goto free_new; 2760 } else if (page_count(old_page)) { 2761 /* 2762 * Someone has grabbed the page, try to isolate it here. 2763 * Fail with -EBUSY if not possible. 2764 */ 2765 spin_unlock_irq(&hugetlb_lock); 2766 if (!isolate_huge_page(old_page, list)) 2767 ret = -EBUSY; 2768 spin_lock_irq(&hugetlb_lock); 2769 goto free_new; 2770 } else if (!HPageFreed(old_page)) { 2771 /* 2772 * Page's refcount is 0 but it has not been enqueued in the 2773 * freelist yet. Race window is small, so we can succeed here if 2774 * we retry. 2775 */ 2776 spin_unlock_irq(&hugetlb_lock); 2777 cond_resched(); 2778 goto retry; 2779 } else { 2780 /* 2781 * Ok, old_page is still a genuine free hugepage. Remove it from 2782 * the freelist and decrease the counters. These will be 2783 * incremented again when calling __prep_account_new_huge_page() 2784 * and enqueue_huge_page() for new_page. The counters will remain 2785 * stable since this happens under the lock. 2786 */ 2787 remove_hugetlb_page(h, old_page, false); 2788 2789 /* 2790 * Ref count on new page is already zero as it was dropped 2791 * earlier. It can be directly added to the pool free list. 2792 */ 2793 __prep_account_new_huge_page(h, nid); 2794 enqueue_huge_page(h, new_page); 2795 2796 /* 2797 * Pages have been replaced, we can safely free the old one. 2798 */ 2799 spin_unlock_irq(&hugetlb_lock); 2800 update_and_free_page(h, old_page, false); 2801 } 2802 2803 return ret; 2804 2805 free_new: 2806 spin_unlock_irq(&hugetlb_lock); 2807 /* Page has a zero ref count, but needs a ref to be freed */ 2808 set_page_refcounted(new_page); 2809 update_and_free_page(h, new_page, false); 2810 2811 return ret; 2812 } 2813 2814 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2815 { 2816 struct hstate *h; 2817 struct page *head; 2818 int ret = -EBUSY; 2819 2820 /* 2821 * The page might have been dissolved from under our feet, so make sure 2822 * to carefully check the state under the lock. 2823 * Return success when racing as if we dissolved the page ourselves. 2824 */ 2825 spin_lock_irq(&hugetlb_lock); 2826 if (PageHuge(page)) { 2827 head = compound_head(page); 2828 h = page_hstate(head); 2829 } else { 2830 spin_unlock_irq(&hugetlb_lock); 2831 return 0; 2832 } 2833 spin_unlock_irq(&hugetlb_lock); 2834 2835 /* 2836 * Fence off gigantic pages as there is a cyclic dependency between 2837 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2838 * of bailing out right away without further retrying. 2839 */ 2840 if (hstate_is_gigantic(h)) 2841 return -ENOMEM; 2842 2843 if (page_count(head) && isolate_huge_page(head, list)) 2844 ret = 0; 2845 else if (!page_count(head)) 2846 ret = alloc_and_dissolve_huge_page(h, head, list); 2847 2848 return ret; 2849 } 2850 2851 struct page *alloc_huge_page(struct vm_area_struct *vma, 2852 unsigned long addr, int avoid_reserve) 2853 { 2854 struct hugepage_subpool *spool = subpool_vma(vma); 2855 struct hstate *h = hstate_vma(vma); 2856 struct page *page; 2857 long map_chg, map_commit; 2858 long gbl_chg; 2859 int ret, idx; 2860 struct hugetlb_cgroup *h_cg; 2861 bool deferred_reserve; 2862 2863 idx = hstate_index(h); 2864 /* 2865 * Examine the region/reserve map to determine if the process 2866 * has a reservation for the page to be allocated. A return 2867 * code of zero indicates a reservation exists (no change). 2868 */ 2869 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2870 if (map_chg < 0) 2871 return ERR_PTR(-ENOMEM); 2872 2873 /* 2874 * Processes that did not create the mapping will have no 2875 * reserves as indicated by the region/reserve map. Check 2876 * that the allocation will not exceed the subpool limit. 2877 * Allocations for MAP_NORESERVE mappings also need to be 2878 * checked against any subpool limit. 2879 */ 2880 if (map_chg || avoid_reserve) { 2881 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2882 if (gbl_chg < 0) { 2883 vma_end_reservation(h, vma, addr); 2884 return ERR_PTR(-ENOSPC); 2885 } 2886 2887 /* 2888 * Even though there was no reservation in the region/reserve 2889 * map, there could be reservations associated with the 2890 * subpool that can be used. This would be indicated if the 2891 * return value of hugepage_subpool_get_pages() is zero. 2892 * However, if avoid_reserve is specified we still avoid even 2893 * the subpool reservations. 2894 */ 2895 if (avoid_reserve) 2896 gbl_chg = 1; 2897 } 2898 2899 /* If this allocation is not consuming a reservation, charge it now. 2900 */ 2901 deferred_reserve = map_chg || avoid_reserve; 2902 if (deferred_reserve) { 2903 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2904 idx, pages_per_huge_page(h), &h_cg); 2905 if (ret) 2906 goto out_subpool_put; 2907 } 2908 2909 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2910 if (ret) 2911 goto out_uncharge_cgroup_reservation; 2912 2913 spin_lock_irq(&hugetlb_lock); 2914 /* 2915 * glb_chg is passed to indicate whether or not a page must be taken 2916 * from the global free pool (global change). gbl_chg == 0 indicates 2917 * a reservation exists for the allocation. 2918 */ 2919 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2920 if (!page) { 2921 spin_unlock_irq(&hugetlb_lock); 2922 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2923 if (!page) 2924 goto out_uncharge_cgroup; 2925 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2926 SetHPageRestoreReserve(page); 2927 h->resv_huge_pages--; 2928 } 2929 spin_lock_irq(&hugetlb_lock); 2930 list_add(&page->lru, &h->hugepage_activelist); 2931 /* Fall through */ 2932 } 2933 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2934 /* If allocation is not consuming a reservation, also store the 2935 * hugetlb_cgroup pointer on the page. 2936 */ 2937 if (deferred_reserve) { 2938 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2939 h_cg, page); 2940 } 2941 2942 spin_unlock_irq(&hugetlb_lock); 2943 2944 hugetlb_set_page_subpool(page, spool); 2945 2946 map_commit = vma_commit_reservation(h, vma, addr); 2947 if (unlikely(map_chg > map_commit)) { 2948 /* 2949 * The page was added to the reservation map between 2950 * vma_needs_reservation and vma_commit_reservation. 2951 * This indicates a race with hugetlb_reserve_pages. 2952 * Adjust for the subpool count incremented above AND 2953 * in hugetlb_reserve_pages for the same page. Also, 2954 * the reservation count added in hugetlb_reserve_pages 2955 * no longer applies. 2956 */ 2957 long rsv_adjust; 2958 2959 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2960 hugetlb_acct_memory(h, -rsv_adjust); 2961 if (deferred_reserve) 2962 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2963 pages_per_huge_page(h), page); 2964 } 2965 return page; 2966 2967 out_uncharge_cgroup: 2968 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2969 out_uncharge_cgroup_reservation: 2970 if (deferred_reserve) 2971 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2972 h_cg); 2973 out_subpool_put: 2974 if (map_chg || avoid_reserve) 2975 hugepage_subpool_put_pages(spool, 1); 2976 vma_end_reservation(h, vma, addr); 2977 return ERR_PTR(-ENOSPC); 2978 } 2979 2980 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2981 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2982 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2983 { 2984 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2985 int nr_nodes, node; 2986 2987 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes) 2988 return 0; 2989 /* do node specific alloc */ 2990 if (nid != NUMA_NO_NODE) { 2991 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2992 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2993 if (!m) 2994 return 0; 2995 goto found; 2996 } 2997 /* allocate from next node when distributing huge pages */ 2998 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2999 m = memblock_alloc_try_nid_raw( 3000 huge_page_size(h), huge_page_size(h), 3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3002 /* 3003 * Use the beginning of the huge page to store the 3004 * huge_bootmem_page struct (until gather_bootmem 3005 * puts them into the mem_map). 3006 */ 3007 if (!m) 3008 return 0; 3009 goto found; 3010 } 3011 3012 found: 3013 /* Put them into a private list first because mem_map is not up yet */ 3014 INIT_LIST_HEAD(&m->list); 3015 list_add(&m->list, &huge_boot_pages); 3016 m->hstate = h; 3017 return 1; 3018 } 3019 3020 /* 3021 * Put bootmem huge pages into the standard lists after mem_map is up. 3022 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3023 */ 3024 static void __init gather_bootmem_prealloc(void) 3025 { 3026 struct huge_bootmem_page *m; 3027 3028 list_for_each_entry(m, &huge_boot_pages, list) { 3029 struct page *page = virt_to_page(m); 3030 struct hstate *h = m->hstate; 3031 3032 VM_BUG_ON(!hstate_is_gigantic(h)); 3033 WARN_ON(page_count(page) != 1); 3034 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3035 WARN_ON(PageReserved(page)); 3036 prep_new_huge_page(h, page, page_to_nid(page)); 3037 put_page(page); /* add to the hugepage allocator */ 3038 } else { 3039 /* VERY unlikely inflated ref count on a tail page */ 3040 free_gigantic_page(page, huge_page_order(h)); 3041 } 3042 3043 /* 3044 * We need to restore the 'stolen' pages to totalram_pages 3045 * in order to fix confusing memory reports from free(1) and 3046 * other side-effects, like CommitLimit going negative. 3047 */ 3048 adjust_managed_page_count(page, pages_per_huge_page(h)); 3049 cond_resched(); 3050 } 3051 } 3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3053 { 3054 unsigned long i; 3055 char buf[32]; 3056 3057 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3058 if (hstate_is_gigantic(h)) { 3059 if (!alloc_bootmem_huge_page(h, nid)) 3060 break; 3061 } else { 3062 struct page *page; 3063 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3064 3065 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3066 &node_states[N_MEMORY], NULL); 3067 if (!page) 3068 break; 3069 put_page(page); /* free it into the hugepage allocator */ 3070 } 3071 cond_resched(); 3072 } 3073 if (i == h->max_huge_pages_node[nid]) 3074 return; 3075 3076 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3077 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3078 h->max_huge_pages_node[nid], buf, nid, i); 3079 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3080 h->max_huge_pages_node[nid] = i; 3081 } 3082 3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3084 { 3085 unsigned long i; 3086 nodemask_t *node_alloc_noretry; 3087 bool node_specific_alloc = false; 3088 3089 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3090 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3091 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3092 return; 3093 } 3094 3095 /* do node specific alloc */ 3096 for (i = 0; i < nr_online_nodes; i++) { 3097 if (h->max_huge_pages_node[i] > 0) { 3098 hugetlb_hstate_alloc_pages_onenode(h, i); 3099 node_specific_alloc = true; 3100 } 3101 } 3102 3103 if (node_specific_alloc) 3104 return; 3105 3106 /* below will do all node balanced alloc */ 3107 if (!hstate_is_gigantic(h)) { 3108 /* 3109 * Bit mask controlling how hard we retry per-node allocations. 3110 * Ignore errors as lower level routines can deal with 3111 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3112 * time, we are likely in bigger trouble. 3113 */ 3114 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3115 GFP_KERNEL); 3116 } else { 3117 /* allocations done at boot time */ 3118 node_alloc_noretry = NULL; 3119 } 3120 3121 /* bit mask controlling how hard we retry per-node allocations */ 3122 if (node_alloc_noretry) 3123 nodes_clear(*node_alloc_noretry); 3124 3125 for (i = 0; i < h->max_huge_pages; ++i) { 3126 if (hstate_is_gigantic(h)) { 3127 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3128 break; 3129 } else if (!alloc_pool_huge_page(h, 3130 &node_states[N_MEMORY], 3131 node_alloc_noretry)) 3132 break; 3133 cond_resched(); 3134 } 3135 if (i < h->max_huge_pages) { 3136 char buf[32]; 3137 3138 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3139 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3140 h->max_huge_pages, buf, i); 3141 h->max_huge_pages = i; 3142 } 3143 kfree(node_alloc_noretry); 3144 } 3145 3146 static void __init hugetlb_init_hstates(void) 3147 { 3148 struct hstate *h, *h2; 3149 3150 for_each_hstate(h) { 3151 if (minimum_order > huge_page_order(h)) 3152 minimum_order = huge_page_order(h); 3153 3154 /* oversize hugepages were init'ed in early boot */ 3155 if (!hstate_is_gigantic(h)) 3156 hugetlb_hstate_alloc_pages(h); 3157 3158 /* 3159 * Set demote order for each hstate. Note that 3160 * h->demote_order is initially 0. 3161 * - We can not demote gigantic pages if runtime freeing 3162 * is not supported, so skip this. 3163 * - If CMA allocation is possible, we can not demote 3164 * HUGETLB_PAGE_ORDER or smaller size pages. 3165 */ 3166 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3167 continue; 3168 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3169 continue; 3170 for_each_hstate(h2) { 3171 if (h2 == h) 3172 continue; 3173 if (h2->order < h->order && 3174 h2->order > h->demote_order) 3175 h->demote_order = h2->order; 3176 } 3177 } 3178 VM_BUG_ON(minimum_order == UINT_MAX); 3179 } 3180 3181 static void __init report_hugepages(void) 3182 { 3183 struct hstate *h; 3184 3185 for_each_hstate(h) { 3186 char buf[32]; 3187 3188 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3189 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 3190 buf, h->free_huge_pages); 3191 } 3192 } 3193 3194 #ifdef CONFIG_HIGHMEM 3195 static void try_to_free_low(struct hstate *h, unsigned long count, 3196 nodemask_t *nodes_allowed) 3197 { 3198 int i; 3199 LIST_HEAD(page_list); 3200 3201 lockdep_assert_held(&hugetlb_lock); 3202 if (hstate_is_gigantic(h)) 3203 return; 3204 3205 /* 3206 * Collect pages to be freed on a list, and free after dropping lock 3207 */ 3208 for_each_node_mask(i, *nodes_allowed) { 3209 struct page *page, *next; 3210 struct list_head *freel = &h->hugepage_freelists[i]; 3211 list_for_each_entry_safe(page, next, freel, lru) { 3212 if (count >= h->nr_huge_pages) 3213 goto out; 3214 if (PageHighMem(page)) 3215 continue; 3216 remove_hugetlb_page(h, page, false); 3217 list_add(&page->lru, &page_list); 3218 } 3219 } 3220 3221 out: 3222 spin_unlock_irq(&hugetlb_lock); 3223 update_and_free_pages_bulk(h, &page_list); 3224 spin_lock_irq(&hugetlb_lock); 3225 } 3226 #else 3227 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3228 nodemask_t *nodes_allowed) 3229 { 3230 } 3231 #endif 3232 3233 /* 3234 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3235 * balanced by operating on them in a round-robin fashion. 3236 * Returns 1 if an adjustment was made. 3237 */ 3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3239 int delta) 3240 { 3241 int nr_nodes, node; 3242 3243 lockdep_assert_held(&hugetlb_lock); 3244 VM_BUG_ON(delta != -1 && delta != 1); 3245 3246 if (delta < 0) { 3247 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3248 if (h->surplus_huge_pages_node[node]) 3249 goto found; 3250 } 3251 } else { 3252 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3253 if (h->surplus_huge_pages_node[node] < 3254 h->nr_huge_pages_node[node]) 3255 goto found; 3256 } 3257 } 3258 return 0; 3259 3260 found: 3261 h->surplus_huge_pages += delta; 3262 h->surplus_huge_pages_node[node] += delta; 3263 return 1; 3264 } 3265 3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3268 nodemask_t *nodes_allowed) 3269 { 3270 unsigned long min_count, ret; 3271 struct page *page; 3272 LIST_HEAD(page_list); 3273 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3274 3275 /* 3276 * Bit mask controlling how hard we retry per-node allocations. 3277 * If we can not allocate the bit mask, do not attempt to allocate 3278 * the requested huge pages. 3279 */ 3280 if (node_alloc_noretry) 3281 nodes_clear(*node_alloc_noretry); 3282 else 3283 return -ENOMEM; 3284 3285 /* 3286 * resize_lock mutex prevents concurrent adjustments to number of 3287 * pages in hstate via the proc/sysfs interfaces. 3288 */ 3289 mutex_lock(&h->resize_lock); 3290 flush_free_hpage_work(h); 3291 spin_lock_irq(&hugetlb_lock); 3292 3293 /* 3294 * Check for a node specific request. 3295 * Changing node specific huge page count may require a corresponding 3296 * change to the global count. In any case, the passed node mask 3297 * (nodes_allowed) will restrict alloc/free to the specified node. 3298 */ 3299 if (nid != NUMA_NO_NODE) { 3300 unsigned long old_count = count; 3301 3302 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3303 /* 3304 * User may have specified a large count value which caused the 3305 * above calculation to overflow. In this case, they wanted 3306 * to allocate as many huge pages as possible. Set count to 3307 * largest possible value to align with their intention. 3308 */ 3309 if (count < old_count) 3310 count = ULONG_MAX; 3311 } 3312 3313 /* 3314 * Gigantic pages runtime allocation depend on the capability for large 3315 * page range allocation. 3316 * If the system does not provide this feature, return an error when 3317 * the user tries to allocate gigantic pages but let the user free the 3318 * boottime allocated gigantic pages. 3319 */ 3320 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3321 if (count > persistent_huge_pages(h)) { 3322 spin_unlock_irq(&hugetlb_lock); 3323 mutex_unlock(&h->resize_lock); 3324 NODEMASK_FREE(node_alloc_noretry); 3325 return -EINVAL; 3326 } 3327 /* Fall through to decrease pool */ 3328 } 3329 3330 /* 3331 * Increase the pool size 3332 * First take pages out of surplus state. Then make up the 3333 * remaining difference by allocating fresh huge pages. 3334 * 3335 * We might race with alloc_surplus_huge_page() here and be unable 3336 * to convert a surplus huge page to a normal huge page. That is 3337 * not critical, though, it just means the overall size of the 3338 * pool might be one hugepage larger than it needs to be, but 3339 * within all the constraints specified by the sysctls. 3340 */ 3341 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3342 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3343 break; 3344 } 3345 3346 while (count > persistent_huge_pages(h)) { 3347 /* 3348 * If this allocation races such that we no longer need the 3349 * page, free_huge_page will handle it by freeing the page 3350 * and reducing the surplus. 3351 */ 3352 spin_unlock_irq(&hugetlb_lock); 3353 3354 /* yield cpu to avoid soft lockup */ 3355 cond_resched(); 3356 3357 ret = alloc_pool_huge_page(h, nodes_allowed, 3358 node_alloc_noretry); 3359 spin_lock_irq(&hugetlb_lock); 3360 if (!ret) 3361 goto out; 3362 3363 /* Bail for signals. Probably ctrl-c from user */ 3364 if (signal_pending(current)) 3365 goto out; 3366 } 3367 3368 /* 3369 * Decrease the pool size 3370 * First return free pages to the buddy allocator (being careful 3371 * to keep enough around to satisfy reservations). Then place 3372 * pages into surplus state as needed so the pool will shrink 3373 * to the desired size as pages become free. 3374 * 3375 * By placing pages into the surplus state independent of the 3376 * overcommit value, we are allowing the surplus pool size to 3377 * exceed overcommit. There are few sane options here. Since 3378 * alloc_surplus_huge_page() is checking the global counter, 3379 * though, we'll note that we're not allowed to exceed surplus 3380 * and won't grow the pool anywhere else. Not until one of the 3381 * sysctls are changed, or the surplus pages go out of use. 3382 */ 3383 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3384 min_count = max(count, min_count); 3385 try_to_free_low(h, min_count, nodes_allowed); 3386 3387 /* 3388 * Collect pages to be removed on list without dropping lock 3389 */ 3390 while (min_count < persistent_huge_pages(h)) { 3391 page = remove_pool_huge_page(h, nodes_allowed, 0); 3392 if (!page) 3393 break; 3394 3395 list_add(&page->lru, &page_list); 3396 } 3397 /* free the pages after dropping lock */ 3398 spin_unlock_irq(&hugetlb_lock); 3399 update_and_free_pages_bulk(h, &page_list); 3400 flush_free_hpage_work(h); 3401 spin_lock_irq(&hugetlb_lock); 3402 3403 while (count < persistent_huge_pages(h)) { 3404 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3405 break; 3406 } 3407 out: 3408 h->max_huge_pages = persistent_huge_pages(h); 3409 spin_unlock_irq(&hugetlb_lock); 3410 mutex_unlock(&h->resize_lock); 3411 3412 NODEMASK_FREE(node_alloc_noretry); 3413 3414 return 0; 3415 } 3416 3417 static int demote_free_huge_page(struct hstate *h, struct page *page) 3418 { 3419 int i, nid = page_to_nid(page); 3420 struct hstate *target_hstate; 3421 int rc = 0; 3422 3423 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3424 3425 remove_hugetlb_page_for_demote(h, page, false); 3426 spin_unlock_irq(&hugetlb_lock); 3427 3428 rc = hugetlb_vmemmap_alloc(h, page); 3429 if (rc) { 3430 /* Allocation of vmemmmap failed, we can not demote page */ 3431 spin_lock_irq(&hugetlb_lock); 3432 set_page_refcounted(page); 3433 add_hugetlb_page(h, page, false); 3434 return rc; 3435 } 3436 3437 /* 3438 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3439 * sizes as it will not ref count pages. 3440 */ 3441 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3442 3443 /* 3444 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3445 * Without the mutex, pages added to target hstate could be marked 3446 * as surplus. 3447 * 3448 * Note that we already hold h->resize_lock. To prevent deadlock, 3449 * use the convention of always taking larger size hstate mutex first. 3450 */ 3451 mutex_lock(&target_hstate->resize_lock); 3452 for (i = 0; i < pages_per_huge_page(h); 3453 i += pages_per_huge_page(target_hstate)) { 3454 if (hstate_is_gigantic(target_hstate)) 3455 prep_compound_gigantic_page_for_demote(page + i, 3456 target_hstate->order); 3457 else 3458 prep_compound_page(page + i, target_hstate->order); 3459 set_page_private(page + i, 0); 3460 set_page_refcounted(page + i); 3461 prep_new_huge_page(target_hstate, page + i, nid); 3462 put_page(page + i); 3463 } 3464 mutex_unlock(&target_hstate->resize_lock); 3465 3466 spin_lock_irq(&hugetlb_lock); 3467 3468 /* 3469 * Not absolutely necessary, but for consistency update max_huge_pages 3470 * based on pool changes for the demoted page. 3471 */ 3472 h->max_huge_pages--; 3473 target_hstate->max_huge_pages += pages_per_huge_page(h); 3474 3475 return rc; 3476 } 3477 3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3479 __must_hold(&hugetlb_lock) 3480 { 3481 int nr_nodes, node; 3482 struct page *page; 3483 3484 lockdep_assert_held(&hugetlb_lock); 3485 3486 /* We should never get here if no demote order */ 3487 if (!h->demote_order) { 3488 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3489 return -EINVAL; /* internal error */ 3490 } 3491 3492 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3493 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3494 if (PageHWPoison(page)) 3495 continue; 3496 3497 return demote_free_huge_page(h, page); 3498 } 3499 } 3500 3501 /* 3502 * Only way to get here is if all pages on free lists are poisoned. 3503 * Return -EBUSY so that caller will not retry. 3504 */ 3505 return -EBUSY; 3506 } 3507 3508 #define HSTATE_ATTR_RO(_name) \ 3509 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3510 3511 #define HSTATE_ATTR_WO(_name) \ 3512 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3513 3514 #define HSTATE_ATTR(_name) \ 3515 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3516 3517 static struct kobject *hugepages_kobj; 3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3519 3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3521 3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3523 { 3524 int i; 3525 3526 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3527 if (hstate_kobjs[i] == kobj) { 3528 if (nidp) 3529 *nidp = NUMA_NO_NODE; 3530 return &hstates[i]; 3531 } 3532 3533 return kobj_to_node_hstate(kobj, nidp); 3534 } 3535 3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3537 struct kobj_attribute *attr, char *buf) 3538 { 3539 struct hstate *h; 3540 unsigned long nr_huge_pages; 3541 int nid; 3542 3543 h = kobj_to_hstate(kobj, &nid); 3544 if (nid == NUMA_NO_NODE) 3545 nr_huge_pages = h->nr_huge_pages; 3546 else 3547 nr_huge_pages = h->nr_huge_pages_node[nid]; 3548 3549 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3550 } 3551 3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3553 struct hstate *h, int nid, 3554 unsigned long count, size_t len) 3555 { 3556 int err; 3557 nodemask_t nodes_allowed, *n_mask; 3558 3559 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3560 return -EINVAL; 3561 3562 if (nid == NUMA_NO_NODE) { 3563 /* 3564 * global hstate attribute 3565 */ 3566 if (!(obey_mempolicy && 3567 init_nodemask_of_mempolicy(&nodes_allowed))) 3568 n_mask = &node_states[N_MEMORY]; 3569 else 3570 n_mask = &nodes_allowed; 3571 } else { 3572 /* 3573 * Node specific request. count adjustment happens in 3574 * set_max_huge_pages() after acquiring hugetlb_lock. 3575 */ 3576 init_nodemask_of_node(&nodes_allowed, nid); 3577 n_mask = &nodes_allowed; 3578 } 3579 3580 err = set_max_huge_pages(h, count, nid, n_mask); 3581 3582 return err ? err : len; 3583 } 3584 3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3586 struct kobject *kobj, const char *buf, 3587 size_t len) 3588 { 3589 struct hstate *h; 3590 unsigned long count; 3591 int nid; 3592 int err; 3593 3594 err = kstrtoul(buf, 10, &count); 3595 if (err) 3596 return err; 3597 3598 h = kobj_to_hstate(kobj, &nid); 3599 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3600 } 3601 3602 static ssize_t nr_hugepages_show(struct kobject *kobj, 3603 struct kobj_attribute *attr, char *buf) 3604 { 3605 return nr_hugepages_show_common(kobj, attr, buf); 3606 } 3607 3608 static ssize_t nr_hugepages_store(struct kobject *kobj, 3609 struct kobj_attribute *attr, const char *buf, size_t len) 3610 { 3611 return nr_hugepages_store_common(false, kobj, buf, len); 3612 } 3613 HSTATE_ATTR(nr_hugepages); 3614 3615 #ifdef CONFIG_NUMA 3616 3617 /* 3618 * hstate attribute for optionally mempolicy-based constraint on persistent 3619 * huge page alloc/free. 3620 */ 3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3622 struct kobj_attribute *attr, 3623 char *buf) 3624 { 3625 return nr_hugepages_show_common(kobj, attr, buf); 3626 } 3627 3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3629 struct kobj_attribute *attr, const char *buf, size_t len) 3630 { 3631 return nr_hugepages_store_common(true, kobj, buf, len); 3632 } 3633 HSTATE_ATTR(nr_hugepages_mempolicy); 3634 #endif 3635 3636 3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3638 struct kobj_attribute *attr, char *buf) 3639 { 3640 struct hstate *h = kobj_to_hstate(kobj, NULL); 3641 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3642 } 3643 3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3645 struct kobj_attribute *attr, const char *buf, size_t count) 3646 { 3647 int err; 3648 unsigned long input; 3649 struct hstate *h = kobj_to_hstate(kobj, NULL); 3650 3651 if (hstate_is_gigantic(h)) 3652 return -EINVAL; 3653 3654 err = kstrtoul(buf, 10, &input); 3655 if (err) 3656 return err; 3657 3658 spin_lock_irq(&hugetlb_lock); 3659 h->nr_overcommit_huge_pages = input; 3660 spin_unlock_irq(&hugetlb_lock); 3661 3662 return count; 3663 } 3664 HSTATE_ATTR(nr_overcommit_hugepages); 3665 3666 static ssize_t free_hugepages_show(struct kobject *kobj, 3667 struct kobj_attribute *attr, char *buf) 3668 { 3669 struct hstate *h; 3670 unsigned long free_huge_pages; 3671 int nid; 3672 3673 h = kobj_to_hstate(kobj, &nid); 3674 if (nid == NUMA_NO_NODE) 3675 free_huge_pages = h->free_huge_pages; 3676 else 3677 free_huge_pages = h->free_huge_pages_node[nid]; 3678 3679 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3680 } 3681 HSTATE_ATTR_RO(free_hugepages); 3682 3683 static ssize_t resv_hugepages_show(struct kobject *kobj, 3684 struct kobj_attribute *attr, char *buf) 3685 { 3686 struct hstate *h = kobj_to_hstate(kobj, NULL); 3687 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3688 } 3689 HSTATE_ATTR_RO(resv_hugepages); 3690 3691 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3692 struct kobj_attribute *attr, char *buf) 3693 { 3694 struct hstate *h; 3695 unsigned long surplus_huge_pages; 3696 int nid; 3697 3698 h = kobj_to_hstate(kobj, &nid); 3699 if (nid == NUMA_NO_NODE) 3700 surplus_huge_pages = h->surplus_huge_pages; 3701 else 3702 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3703 3704 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3705 } 3706 HSTATE_ATTR_RO(surplus_hugepages); 3707 3708 static ssize_t demote_store(struct kobject *kobj, 3709 struct kobj_attribute *attr, const char *buf, size_t len) 3710 { 3711 unsigned long nr_demote; 3712 unsigned long nr_available; 3713 nodemask_t nodes_allowed, *n_mask; 3714 struct hstate *h; 3715 int err = 0; 3716 int nid; 3717 3718 err = kstrtoul(buf, 10, &nr_demote); 3719 if (err) 3720 return err; 3721 h = kobj_to_hstate(kobj, &nid); 3722 3723 if (nid != NUMA_NO_NODE) { 3724 init_nodemask_of_node(&nodes_allowed, nid); 3725 n_mask = &nodes_allowed; 3726 } else { 3727 n_mask = &node_states[N_MEMORY]; 3728 } 3729 3730 /* Synchronize with other sysfs operations modifying huge pages */ 3731 mutex_lock(&h->resize_lock); 3732 spin_lock_irq(&hugetlb_lock); 3733 3734 while (nr_demote) { 3735 /* 3736 * Check for available pages to demote each time thorough the 3737 * loop as demote_pool_huge_page will drop hugetlb_lock. 3738 */ 3739 if (nid != NUMA_NO_NODE) 3740 nr_available = h->free_huge_pages_node[nid]; 3741 else 3742 nr_available = h->free_huge_pages; 3743 nr_available -= h->resv_huge_pages; 3744 if (!nr_available) 3745 break; 3746 3747 err = demote_pool_huge_page(h, n_mask); 3748 if (err) 3749 break; 3750 3751 nr_demote--; 3752 } 3753 3754 spin_unlock_irq(&hugetlb_lock); 3755 mutex_unlock(&h->resize_lock); 3756 3757 if (err) 3758 return err; 3759 return len; 3760 } 3761 HSTATE_ATTR_WO(demote); 3762 3763 static ssize_t demote_size_show(struct kobject *kobj, 3764 struct kobj_attribute *attr, char *buf) 3765 { 3766 int nid; 3767 struct hstate *h = kobj_to_hstate(kobj, &nid); 3768 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3769 3770 return sysfs_emit(buf, "%lukB\n", demote_size); 3771 } 3772 3773 static ssize_t demote_size_store(struct kobject *kobj, 3774 struct kobj_attribute *attr, 3775 const char *buf, size_t count) 3776 { 3777 struct hstate *h, *demote_hstate; 3778 unsigned long demote_size; 3779 unsigned int demote_order; 3780 int nid; 3781 3782 demote_size = (unsigned long)memparse(buf, NULL); 3783 3784 demote_hstate = size_to_hstate(demote_size); 3785 if (!demote_hstate) 3786 return -EINVAL; 3787 demote_order = demote_hstate->order; 3788 if (demote_order < HUGETLB_PAGE_ORDER) 3789 return -EINVAL; 3790 3791 /* demote order must be smaller than hstate order */ 3792 h = kobj_to_hstate(kobj, &nid); 3793 if (demote_order >= h->order) 3794 return -EINVAL; 3795 3796 /* resize_lock synchronizes access to demote size and writes */ 3797 mutex_lock(&h->resize_lock); 3798 h->demote_order = demote_order; 3799 mutex_unlock(&h->resize_lock); 3800 3801 return count; 3802 } 3803 HSTATE_ATTR(demote_size); 3804 3805 static struct attribute *hstate_attrs[] = { 3806 &nr_hugepages_attr.attr, 3807 &nr_overcommit_hugepages_attr.attr, 3808 &free_hugepages_attr.attr, 3809 &resv_hugepages_attr.attr, 3810 &surplus_hugepages_attr.attr, 3811 #ifdef CONFIG_NUMA 3812 &nr_hugepages_mempolicy_attr.attr, 3813 #endif 3814 NULL, 3815 }; 3816 3817 static const struct attribute_group hstate_attr_group = { 3818 .attrs = hstate_attrs, 3819 }; 3820 3821 static struct attribute *hstate_demote_attrs[] = { 3822 &demote_size_attr.attr, 3823 &demote_attr.attr, 3824 NULL, 3825 }; 3826 3827 static const struct attribute_group hstate_demote_attr_group = { 3828 .attrs = hstate_demote_attrs, 3829 }; 3830 3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3832 struct kobject **hstate_kobjs, 3833 const struct attribute_group *hstate_attr_group) 3834 { 3835 int retval; 3836 int hi = hstate_index(h); 3837 3838 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3839 if (!hstate_kobjs[hi]) 3840 return -ENOMEM; 3841 3842 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3843 if (retval) { 3844 kobject_put(hstate_kobjs[hi]); 3845 hstate_kobjs[hi] = NULL; 3846 } 3847 3848 if (h->demote_order) { 3849 if (sysfs_create_group(hstate_kobjs[hi], 3850 &hstate_demote_attr_group)) 3851 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3852 } 3853 3854 return retval; 3855 } 3856 3857 static void __init hugetlb_sysfs_init(void) 3858 { 3859 struct hstate *h; 3860 int err; 3861 3862 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3863 if (!hugepages_kobj) 3864 return; 3865 3866 for_each_hstate(h) { 3867 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3868 hstate_kobjs, &hstate_attr_group); 3869 if (err) 3870 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3871 } 3872 } 3873 3874 #ifdef CONFIG_NUMA 3875 3876 /* 3877 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3878 * with node devices in node_devices[] using a parallel array. The array 3879 * index of a node device or _hstate == node id. 3880 * This is here to avoid any static dependency of the node device driver, in 3881 * the base kernel, on the hugetlb module. 3882 */ 3883 struct node_hstate { 3884 struct kobject *hugepages_kobj; 3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3886 }; 3887 static struct node_hstate node_hstates[MAX_NUMNODES]; 3888 3889 /* 3890 * A subset of global hstate attributes for node devices 3891 */ 3892 static struct attribute *per_node_hstate_attrs[] = { 3893 &nr_hugepages_attr.attr, 3894 &free_hugepages_attr.attr, 3895 &surplus_hugepages_attr.attr, 3896 NULL, 3897 }; 3898 3899 static const struct attribute_group per_node_hstate_attr_group = { 3900 .attrs = per_node_hstate_attrs, 3901 }; 3902 3903 /* 3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3905 * Returns node id via non-NULL nidp. 3906 */ 3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3908 { 3909 int nid; 3910 3911 for (nid = 0; nid < nr_node_ids; nid++) { 3912 struct node_hstate *nhs = &node_hstates[nid]; 3913 int i; 3914 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3915 if (nhs->hstate_kobjs[i] == kobj) { 3916 if (nidp) 3917 *nidp = nid; 3918 return &hstates[i]; 3919 } 3920 } 3921 3922 BUG(); 3923 return NULL; 3924 } 3925 3926 /* 3927 * Unregister hstate attributes from a single node device. 3928 * No-op if no hstate attributes attached. 3929 */ 3930 static void hugetlb_unregister_node(struct node *node) 3931 { 3932 struct hstate *h; 3933 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3934 3935 if (!nhs->hugepages_kobj) 3936 return; /* no hstate attributes */ 3937 3938 for_each_hstate(h) { 3939 int idx = hstate_index(h); 3940 if (nhs->hstate_kobjs[idx]) { 3941 kobject_put(nhs->hstate_kobjs[idx]); 3942 nhs->hstate_kobjs[idx] = NULL; 3943 } 3944 } 3945 3946 kobject_put(nhs->hugepages_kobj); 3947 nhs->hugepages_kobj = NULL; 3948 } 3949 3950 3951 /* 3952 * Register hstate attributes for a single node device. 3953 * No-op if attributes already registered. 3954 */ 3955 static void hugetlb_register_node(struct node *node) 3956 { 3957 struct hstate *h; 3958 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3959 int err; 3960 3961 if (nhs->hugepages_kobj) 3962 return; /* already allocated */ 3963 3964 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3965 &node->dev.kobj); 3966 if (!nhs->hugepages_kobj) 3967 return; 3968 3969 for_each_hstate(h) { 3970 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3971 nhs->hstate_kobjs, 3972 &per_node_hstate_attr_group); 3973 if (err) { 3974 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3975 h->name, node->dev.id); 3976 hugetlb_unregister_node(node); 3977 break; 3978 } 3979 } 3980 } 3981 3982 /* 3983 * hugetlb init time: register hstate attributes for all registered node 3984 * devices of nodes that have memory. All on-line nodes should have 3985 * registered their associated device by this time. 3986 */ 3987 static void __init hugetlb_register_all_nodes(void) 3988 { 3989 int nid; 3990 3991 for_each_node_state(nid, N_MEMORY) { 3992 struct node *node = node_devices[nid]; 3993 if (node->dev.id == nid) 3994 hugetlb_register_node(node); 3995 } 3996 3997 /* 3998 * Let the node device driver know we're here so it can 3999 * [un]register hstate attributes on node hotplug. 4000 */ 4001 register_hugetlbfs_with_node(hugetlb_register_node, 4002 hugetlb_unregister_node); 4003 } 4004 #else /* !CONFIG_NUMA */ 4005 4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4007 { 4008 BUG(); 4009 if (nidp) 4010 *nidp = -1; 4011 return NULL; 4012 } 4013 4014 static void hugetlb_register_all_nodes(void) { } 4015 4016 #endif 4017 4018 static int __init hugetlb_init(void) 4019 { 4020 int i; 4021 4022 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4023 __NR_HPAGEFLAGS); 4024 4025 if (!hugepages_supported()) { 4026 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4027 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4028 return 0; 4029 } 4030 4031 /* 4032 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4033 * architectures depend on setup being done here. 4034 */ 4035 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4036 if (!parsed_default_hugepagesz) { 4037 /* 4038 * If we did not parse a default huge page size, set 4039 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4040 * number of huge pages for this default size was implicitly 4041 * specified, set that here as well. 4042 * Note that the implicit setting will overwrite an explicit 4043 * setting. A warning will be printed in this case. 4044 */ 4045 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4046 if (default_hstate_max_huge_pages) { 4047 if (default_hstate.max_huge_pages) { 4048 char buf[32]; 4049 4050 string_get_size(huge_page_size(&default_hstate), 4051 1, STRING_UNITS_2, buf, 32); 4052 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4053 default_hstate.max_huge_pages, buf); 4054 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4055 default_hstate_max_huge_pages); 4056 } 4057 default_hstate.max_huge_pages = 4058 default_hstate_max_huge_pages; 4059 4060 for (i = 0; i < nr_online_nodes; i++) 4061 default_hstate.max_huge_pages_node[i] = 4062 default_hugepages_in_node[i]; 4063 } 4064 } 4065 4066 hugetlb_cma_check(); 4067 hugetlb_init_hstates(); 4068 gather_bootmem_prealloc(); 4069 report_hugepages(); 4070 4071 hugetlb_sysfs_init(); 4072 hugetlb_register_all_nodes(); 4073 hugetlb_cgroup_file_init(); 4074 4075 #ifdef CONFIG_SMP 4076 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4077 #else 4078 num_fault_mutexes = 1; 4079 #endif 4080 hugetlb_fault_mutex_table = 4081 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4082 GFP_KERNEL); 4083 BUG_ON(!hugetlb_fault_mutex_table); 4084 4085 for (i = 0; i < num_fault_mutexes; i++) 4086 mutex_init(&hugetlb_fault_mutex_table[i]); 4087 return 0; 4088 } 4089 subsys_initcall(hugetlb_init); 4090 4091 /* Overwritten by architectures with more huge page sizes */ 4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4093 { 4094 return size == HPAGE_SIZE; 4095 } 4096 4097 void __init hugetlb_add_hstate(unsigned int order) 4098 { 4099 struct hstate *h; 4100 unsigned long i; 4101 4102 if (size_to_hstate(PAGE_SIZE << order)) { 4103 return; 4104 } 4105 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4106 BUG_ON(order == 0); 4107 h = &hstates[hugetlb_max_hstate++]; 4108 mutex_init(&h->resize_lock); 4109 h->order = order; 4110 h->mask = ~(huge_page_size(h) - 1); 4111 for (i = 0; i < MAX_NUMNODES; ++i) 4112 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4113 INIT_LIST_HEAD(&h->hugepage_activelist); 4114 h->next_nid_to_alloc = first_memory_node; 4115 h->next_nid_to_free = first_memory_node; 4116 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4117 huge_page_size(h)/1024); 4118 hugetlb_vmemmap_init(h); 4119 4120 parsed_hstate = h; 4121 } 4122 4123 bool __init __weak hugetlb_node_alloc_supported(void) 4124 { 4125 return true; 4126 } 4127 /* 4128 * hugepages command line processing 4129 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4130 * specification. If not, ignore the hugepages value. hugepages can also 4131 * be the first huge page command line option in which case it implicitly 4132 * specifies the number of huge pages for the default size. 4133 */ 4134 static int __init hugepages_setup(char *s) 4135 { 4136 unsigned long *mhp; 4137 static unsigned long *last_mhp; 4138 int node = NUMA_NO_NODE; 4139 int count; 4140 unsigned long tmp; 4141 char *p = s; 4142 4143 if (!parsed_valid_hugepagesz) { 4144 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4145 parsed_valid_hugepagesz = true; 4146 return 0; 4147 } 4148 4149 /* 4150 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4151 * yet, so this hugepages= parameter goes to the "default hstate". 4152 * Otherwise, it goes with the previously parsed hugepagesz or 4153 * default_hugepagesz. 4154 */ 4155 else if (!hugetlb_max_hstate) 4156 mhp = &default_hstate_max_huge_pages; 4157 else 4158 mhp = &parsed_hstate->max_huge_pages; 4159 4160 if (mhp == last_mhp) { 4161 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4162 return 0; 4163 } 4164 4165 while (*p) { 4166 count = 0; 4167 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4168 goto invalid; 4169 /* Parameter is node format */ 4170 if (p[count] == ':') { 4171 if (!hugetlb_node_alloc_supported()) { 4172 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4173 return 0; 4174 } 4175 if (tmp >= nr_online_nodes) 4176 goto invalid; 4177 node = array_index_nospec(tmp, nr_online_nodes); 4178 p += count + 1; 4179 /* Parse hugepages */ 4180 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4181 goto invalid; 4182 if (!hugetlb_max_hstate) 4183 default_hugepages_in_node[node] = tmp; 4184 else 4185 parsed_hstate->max_huge_pages_node[node] = tmp; 4186 *mhp += tmp; 4187 /* Go to parse next node*/ 4188 if (p[count] == ',') 4189 p += count + 1; 4190 else 4191 break; 4192 } else { 4193 if (p != s) 4194 goto invalid; 4195 *mhp = tmp; 4196 break; 4197 } 4198 } 4199 4200 /* 4201 * Global state is always initialized later in hugetlb_init. 4202 * But we need to allocate gigantic hstates here early to still 4203 * use the bootmem allocator. 4204 */ 4205 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4206 hugetlb_hstate_alloc_pages(parsed_hstate); 4207 4208 last_mhp = mhp; 4209 4210 return 1; 4211 4212 invalid: 4213 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4214 return 0; 4215 } 4216 __setup("hugepages=", hugepages_setup); 4217 4218 /* 4219 * hugepagesz command line processing 4220 * A specific huge page size can only be specified once with hugepagesz. 4221 * hugepagesz is followed by hugepages on the command line. The global 4222 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4223 * hugepagesz argument was valid. 4224 */ 4225 static int __init hugepagesz_setup(char *s) 4226 { 4227 unsigned long size; 4228 struct hstate *h; 4229 4230 parsed_valid_hugepagesz = false; 4231 size = (unsigned long)memparse(s, NULL); 4232 4233 if (!arch_hugetlb_valid_size(size)) { 4234 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4235 return 0; 4236 } 4237 4238 h = size_to_hstate(size); 4239 if (h) { 4240 /* 4241 * hstate for this size already exists. This is normally 4242 * an error, but is allowed if the existing hstate is the 4243 * default hstate. More specifically, it is only allowed if 4244 * the number of huge pages for the default hstate was not 4245 * previously specified. 4246 */ 4247 if (!parsed_default_hugepagesz || h != &default_hstate || 4248 default_hstate.max_huge_pages) { 4249 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4250 return 0; 4251 } 4252 4253 /* 4254 * No need to call hugetlb_add_hstate() as hstate already 4255 * exists. But, do set parsed_hstate so that a following 4256 * hugepages= parameter will be applied to this hstate. 4257 */ 4258 parsed_hstate = h; 4259 parsed_valid_hugepagesz = true; 4260 return 1; 4261 } 4262 4263 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4264 parsed_valid_hugepagesz = true; 4265 return 1; 4266 } 4267 __setup("hugepagesz=", hugepagesz_setup); 4268 4269 /* 4270 * default_hugepagesz command line input 4271 * Only one instance of default_hugepagesz allowed on command line. 4272 */ 4273 static int __init default_hugepagesz_setup(char *s) 4274 { 4275 unsigned long size; 4276 int i; 4277 4278 parsed_valid_hugepagesz = false; 4279 if (parsed_default_hugepagesz) { 4280 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4281 return 0; 4282 } 4283 4284 size = (unsigned long)memparse(s, NULL); 4285 4286 if (!arch_hugetlb_valid_size(size)) { 4287 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4288 return 0; 4289 } 4290 4291 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4292 parsed_valid_hugepagesz = true; 4293 parsed_default_hugepagesz = true; 4294 default_hstate_idx = hstate_index(size_to_hstate(size)); 4295 4296 /* 4297 * The number of default huge pages (for this size) could have been 4298 * specified as the first hugetlb parameter: hugepages=X. If so, 4299 * then default_hstate_max_huge_pages is set. If the default huge 4300 * page size is gigantic (>= MAX_ORDER), then the pages must be 4301 * allocated here from bootmem allocator. 4302 */ 4303 if (default_hstate_max_huge_pages) { 4304 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4305 for (i = 0; i < nr_online_nodes; i++) 4306 default_hstate.max_huge_pages_node[i] = 4307 default_hugepages_in_node[i]; 4308 if (hstate_is_gigantic(&default_hstate)) 4309 hugetlb_hstate_alloc_pages(&default_hstate); 4310 default_hstate_max_huge_pages = 0; 4311 } 4312 4313 return 1; 4314 } 4315 __setup("default_hugepagesz=", default_hugepagesz_setup); 4316 4317 static unsigned int allowed_mems_nr(struct hstate *h) 4318 { 4319 int node; 4320 unsigned int nr = 0; 4321 nodemask_t *mpol_allowed; 4322 unsigned int *array = h->free_huge_pages_node; 4323 gfp_t gfp_mask = htlb_alloc_mask(h); 4324 4325 mpol_allowed = policy_nodemask_current(gfp_mask); 4326 4327 for_each_node_mask(node, cpuset_current_mems_allowed) { 4328 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4329 nr += array[node]; 4330 } 4331 4332 return nr; 4333 } 4334 4335 #ifdef CONFIG_SYSCTL 4336 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4337 void *buffer, size_t *length, 4338 loff_t *ppos, unsigned long *out) 4339 { 4340 struct ctl_table dup_table; 4341 4342 /* 4343 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4344 * can duplicate the @table and alter the duplicate of it. 4345 */ 4346 dup_table = *table; 4347 dup_table.data = out; 4348 4349 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4350 } 4351 4352 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4353 struct ctl_table *table, int write, 4354 void *buffer, size_t *length, loff_t *ppos) 4355 { 4356 struct hstate *h = &default_hstate; 4357 unsigned long tmp = h->max_huge_pages; 4358 int ret; 4359 4360 if (!hugepages_supported()) 4361 return -EOPNOTSUPP; 4362 4363 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4364 &tmp); 4365 if (ret) 4366 goto out; 4367 4368 if (write) 4369 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4370 NUMA_NO_NODE, tmp, *length); 4371 out: 4372 return ret; 4373 } 4374 4375 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4376 void *buffer, size_t *length, loff_t *ppos) 4377 { 4378 4379 return hugetlb_sysctl_handler_common(false, table, write, 4380 buffer, length, ppos); 4381 } 4382 4383 #ifdef CONFIG_NUMA 4384 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4385 void *buffer, size_t *length, loff_t *ppos) 4386 { 4387 return hugetlb_sysctl_handler_common(true, table, write, 4388 buffer, length, ppos); 4389 } 4390 #endif /* CONFIG_NUMA */ 4391 4392 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4393 void *buffer, size_t *length, loff_t *ppos) 4394 { 4395 struct hstate *h = &default_hstate; 4396 unsigned long tmp; 4397 int ret; 4398 4399 if (!hugepages_supported()) 4400 return -EOPNOTSUPP; 4401 4402 tmp = h->nr_overcommit_huge_pages; 4403 4404 if (write && hstate_is_gigantic(h)) 4405 return -EINVAL; 4406 4407 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4408 &tmp); 4409 if (ret) 4410 goto out; 4411 4412 if (write) { 4413 spin_lock_irq(&hugetlb_lock); 4414 h->nr_overcommit_huge_pages = tmp; 4415 spin_unlock_irq(&hugetlb_lock); 4416 } 4417 out: 4418 return ret; 4419 } 4420 4421 #endif /* CONFIG_SYSCTL */ 4422 4423 void hugetlb_report_meminfo(struct seq_file *m) 4424 { 4425 struct hstate *h; 4426 unsigned long total = 0; 4427 4428 if (!hugepages_supported()) 4429 return; 4430 4431 for_each_hstate(h) { 4432 unsigned long count = h->nr_huge_pages; 4433 4434 total += huge_page_size(h) * count; 4435 4436 if (h == &default_hstate) 4437 seq_printf(m, 4438 "HugePages_Total: %5lu\n" 4439 "HugePages_Free: %5lu\n" 4440 "HugePages_Rsvd: %5lu\n" 4441 "HugePages_Surp: %5lu\n" 4442 "Hugepagesize: %8lu kB\n", 4443 count, 4444 h->free_huge_pages, 4445 h->resv_huge_pages, 4446 h->surplus_huge_pages, 4447 huge_page_size(h) / SZ_1K); 4448 } 4449 4450 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4451 } 4452 4453 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4454 { 4455 struct hstate *h = &default_hstate; 4456 4457 if (!hugepages_supported()) 4458 return 0; 4459 4460 return sysfs_emit_at(buf, len, 4461 "Node %d HugePages_Total: %5u\n" 4462 "Node %d HugePages_Free: %5u\n" 4463 "Node %d HugePages_Surp: %5u\n", 4464 nid, h->nr_huge_pages_node[nid], 4465 nid, h->free_huge_pages_node[nid], 4466 nid, h->surplus_huge_pages_node[nid]); 4467 } 4468 4469 void hugetlb_show_meminfo(void) 4470 { 4471 struct hstate *h; 4472 int nid; 4473 4474 if (!hugepages_supported()) 4475 return; 4476 4477 for_each_node_state(nid, N_MEMORY) 4478 for_each_hstate(h) 4479 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4480 nid, 4481 h->nr_huge_pages_node[nid], 4482 h->free_huge_pages_node[nid], 4483 h->surplus_huge_pages_node[nid], 4484 huge_page_size(h) / SZ_1K); 4485 } 4486 4487 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4488 { 4489 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4490 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4491 } 4492 4493 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4494 unsigned long hugetlb_total_pages(void) 4495 { 4496 struct hstate *h; 4497 unsigned long nr_total_pages = 0; 4498 4499 for_each_hstate(h) 4500 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4501 return nr_total_pages; 4502 } 4503 4504 static int hugetlb_acct_memory(struct hstate *h, long delta) 4505 { 4506 int ret = -ENOMEM; 4507 4508 if (!delta) 4509 return 0; 4510 4511 spin_lock_irq(&hugetlb_lock); 4512 /* 4513 * When cpuset is configured, it breaks the strict hugetlb page 4514 * reservation as the accounting is done on a global variable. Such 4515 * reservation is completely rubbish in the presence of cpuset because 4516 * the reservation is not checked against page availability for the 4517 * current cpuset. Application can still potentially OOM'ed by kernel 4518 * with lack of free htlb page in cpuset that the task is in. 4519 * Attempt to enforce strict accounting with cpuset is almost 4520 * impossible (or too ugly) because cpuset is too fluid that 4521 * task or memory node can be dynamically moved between cpusets. 4522 * 4523 * The change of semantics for shared hugetlb mapping with cpuset is 4524 * undesirable. However, in order to preserve some of the semantics, 4525 * we fall back to check against current free page availability as 4526 * a best attempt and hopefully to minimize the impact of changing 4527 * semantics that cpuset has. 4528 * 4529 * Apart from cpuset, we also have memory policy mechanism that 4530 * also determines from which node the kernel will allocate memory 4531 * in a NUMA system. So similar to cpuset, we also should consider 4532 * the memory policy of the current task. Similar to the description 4533 * above. 4534 */ 4535 if (delta > 0) { 4536 if (gather_surplus_pages(h, delta) < 0) 4537 goto out; 4538 4539 if (delta > allowed_mems_nr(h)) { 4540 return_unused_surplus_pages(h, delta); 4541 goto out; 4542 } 4543 } 4544 4545 ret = 0; 4546 if (delta < 0) 4547 return_unused_surplus_pages(h, (unsigned long) -delta); 4548 4549 out: 4550 spin_unlock_irq(&hugetlb_lock); 4551 return ret; 4552 } 4553 4554 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4555 { 4556 struct resv_map *resv = vma_resv_map(vma); 4557 4558 /* 4559 * This new VMA should share its siblings reservation map if present. 4560 * The VMA will only ever have a valid reservation map pointer where 4561 * it is being copied for another still existing VMA. As that VMA 4562 * has a reference to the reservation map it cannot disappear until 4563 * after this open call completes. It is therefore safe to take a 4564 * new reference here without additional locking. 4565 */ 4566 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4567 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4568 kref_get(&resv->refs); 4569 } 4570 } 4571 4572 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4573 { 4574 struct hstate *h = hstate_vma(vma); 4575 struct resv_map *resv = vma_resv_map(vma); 4576 struct hugepage_subpool *spool = subpool_vma(vma); 4577 unsigned long reserve, start, end; 4578 long gbl_reserve; 4579 4580 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4581 return; 4582 4583 start = vma_hugecache_offset(h, vma, vma->vm_start); 4584 end = vma_hugecache_offset(h, vma, vma->vm_end); 4585 4586 reserve = (end - start) - region_count(resv, start, end); 4587 hugetlb_cgroup_uncharge_counter(resv, start, end); 4588 if (reserve) { 4589 /* 4590 * Decrement reserve counts. The global reserve count may be 4591 * adjusted if the subpool has a minimum size. 4592 */ 4593 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4594 hugetlb_acct_memory(h, -gbl_reserve); 4595 } 4596 4597 kref_put(&resv->refs, resv_map_release); 4598 } 4599 4600 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4601 { 4602 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4603 return -EINVAL; 4604 return 0; 4605 } 4606 4607 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4608 { 4609 return huge_page_size(hstate_vma(vma)); 4610 } 4611 4612 /* 4613 * We cannot handle pagefaults against hugetlb pages at all. They cause 4614 * handle_mm_fault() to try to instantiate regular-sized pages in the 4615 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4616 * this far. 4617 */ 4618 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4619 { 4620 BUG(); 4621 return 0; 4622 } 4623 4624 /* 4625 * When a new function is introduced to vm_operations_struct and added 4626 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4627 * This is because under System V memory model, mappings created via 4628 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4629 * their original vm_ops are overwritten with shm_vm_ops. 4630 */ 4631 const struct vm_operations_struct hugetlb_vm_ops = { 4632 .fault = hugetlb_vm_op_fault, 4633 .open = hugetlb_vm_op_open, 4634 .close = hugetlb_vm_op_close, 4635 .may_split = hugetlb_vm_op_split, 4636 .pagesize = hugetlb_vm_op_pagesize, 4637 }; 4638 4639 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4640 int writable) 4641 { 4642 pte_t entry; 4643 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4644 4645 if (writable) { 4646 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4647 vma->vm_page_prot))); 4648 } else { 4649 entry = huge_pte_wrprotect(mk_huge_pte(page, 4650 vma->vm_page_prot)); 4651 } 4652 entry = pte_mkyoung(entry); 4653 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4654 4655 return entry; 4656 } 4657 4658 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4659 unsigned long address, pte_t *ptep) 4660 { 4661 pte_t entry; 4662 4663 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4664 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4665 update_mmu_cache(vma, address, ptep); 4666 } 4667 4668 bool is_hugetlb_entry_migration(pte_t pte) 4669 { 4670 swp_entry_t swp; 4671 4672 if (huge_pte_none(pte) || pte_present(pte)) 4673 return false; 4674 swp = pte_to_swp_entry(pte); 4675 if (is_migration_entry(swp)) 4676 return true; 4677 else 4678 return false; 4679 } 4680 4681 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4682 { 4683 swp_entry_t swp; 4684 4685 if (huge_pte_none(pte) || pte_present(pte)) 4686 return false; 4687 swp = pte_to_swp_entry(pte); 4688 if (is_hwpoison_entry(swp)) 4689 return true; 4690 else 4691 return false; 4692 } 4693 4694 static void 4695 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4696 struct page *new_page) 4697 { 4698 __SetPageUptodate(new_page); 4699 hugepage_add_new_anon_rmap(new_page, vma, addr); 4700 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4701 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4702 ClearHPageRestoreReserve(new_page); 4703 SetHPageMigratable(new_page); 4704 } 4705 4706 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4707 struct vm_area_struct *vma) 4708 { 4709 pte_t *src_pte, *dst_pte, entry, dst_entry; 4710 struct page *ptepage; 4711 unsigned long addr; 4712 bool cow = is_cow_mapping(vma->vm_flags); 4713 struct hstate *h = hstate_vma(vma); 4714 unsigned long sz = huge_page_size(h); 4715 unsigned long npages = pages_per_huge_page(h); 4716 struct address_space *mapping = vma->vm_file->f_mapping; 4717 struct mmu_notifier_range range; 4718 int ret = 0; 4719 4720 if (cow) { 4721 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4722 vma->vm_start, 4723 vma->vm_end); 4724 mmu_notifier_invalidate_range_start(&range); 4725 } else { 4726 /* 4727 * For shared mappings i_mmap_rwsem must be held to call 4728 * huge_pte_alloc, otherwise the returned ptep could go 4729 * away if part of a shared pmd and another thread calls 4730 * huge_pmd_unshare. 4731 */ 4732 i_mmap_lock_read(mapping); 4733 } 4734 4735 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4736 spinlock_t *src_ptl, *dst_ptl; 4737 src_pte = huge_pte_offset(src, addr, sz); 4738 if (!src_pte) 4739 continue; 4740 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4741 if (!dst_pte) { 4742 ret = -ENOMEM; 4743 break; 4744 } 4745 4746 /* 4747 * If the pagetables are shared don't copy or take references. 4748 * dst_pte == src_pte is the common case of src/dest sharing. 4749 * 4750 * However, src could have 'unshared' and dst shares with 4751 * another vma. If dst_pte !none, this implies sharing. 4752 * Check here before taking page table lock, and once again 4753 * after taking the lock below. 4754 */ 4755 dst_entry = huge_ptep_get(dst_pte); 4756 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4757 continue; 4758 4759 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4760 src_ptl = huge_pte_lockptr(h, src, src_pte); 4761 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4762 entry = huge_ptep_get(src_pte); 4763 dst_entry = huge_ptep_get(dst_pte); 4764 again: 4765 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4766 /* 4767 * Skip if src entry none. Also, skip in the 4768 * unlikely case dst entry !none as this implies 4769 * sharing with another vma. 4770 */ 4771 ; 4772 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4773 is_hugetlb_entry_hwpoisoned(entry))) { 4774 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4775 4776 if (is_writable_migration_entry(swp_entry) && cow) { 4777 /* 4778 * COW mappings require pages in both 4779 * parent and child to be set to read. 4780 */ 4781 swp_entry = make_readable_migration_entry( 4782 swp_offset(swp_entry)); 4783 entry = swp_entry_to_pte(swp_entry); 4784 set_huge_swap_pte_at(src, addr, src_pte, 4785 entry, sz); 4786 } 4787 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4788 } else { 4789 entry = huge_ptep_get(src_pte); 4790 ptepage = pte_page(entry); 4791 get_page(ptepage); 4792 4793 /* 4794 * This is a rare case where we see pinned hugetlb 4795 * pages while they're prone to COW. We need to do the 4796 * COW earlier during fork. 4797 * 4798 * When pre-allocating the page or copying data, we 4799 * need to be without the pgtable locks since we could 4800 * sleep during the process. 4801 */ 4802 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4803 pte_t src_pte_old = entry; 4804 struct page *new; 4805 4806 spin_unlock(src_ptl); 4807 spin_unlock(dst_ptl); 4808 /* Do not use reserve as it's private owned */ 4809 new = alloc_huge_page(vma, addr, 1); 4810 if (IS_ERR(new)) { 4811 put_page(ptepage); 4812 ret = PTR_ERR(new); 4813 break; 4814 } 4815 copy_user_huge_page(new, ptepage, addr, vma, 4816 npages); 4817 put_page(ptepage); 4818 4819 /* Install the new huge page if src pte stable */ 4820 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4821 src_ptl = huge_pte_lockptr(h, src, src_pte); 4822 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4823 entry = huge_ptep_get(src_pte); 4824 if (!pte_same(src_pte_old, entry)) { 4825 restore_reserve_on_error(h, vma, addr, 4826 new); 4827 put_page(new); 4828 /* dst_entry won't change as in child */ 4829 goto again; 4830 } 4831 hugetlb_install_page(vma, dst_pte, addr, new); 4832 spin_unlock(src_ptl); 4833 spin_unlock(dst_ptl); 4834 continue; 4835 } 4836 4837 if (cow) { 4838 /* 4839 * No need to notify as we are downgrading page 4840 * table protection not changing it to point 4841 * to a new page. 4842 * 4843 * See Documentation/vm/mmu_notifier.rst 4844 */ 4845 huge_ptep_set_wrprotect(src, addr, src_pte); 4846 entry = huge_pte_wrprotect(entry); 4847 } 4848 4849 page_dup_rmap(ptepage, true); 4850 set_huge_pte_at(dst, addr, dst_pte, entry); 4851 hugetlb_count_add(npages, dst); 4852 } 4853 spin_unlock(src_ptl); 4854 spin_unlock(dst_ptl); 4855 } 4856 4857 if (cow) 4858 mmu_notifier_invalidate_range_end(&range); 4859 else 4860 i_mmap_unlock_read(mapping); 4861 4862 return ret; 4863 } 4864 4865 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4866 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4867 { 4868 struct hstate *h = hstate_vma(vma); 4869 struct mm_struct *mm = vma->vm_mm; 4870 spinlock_t *src_ptl, *dst_ptl; 4871 pte_t pte; 4872 4873 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4874 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4875 4876 /* 4877 * We don't have to worry about the ordering of src and dst ptlocks 4878 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4879 */ 4880 if (src_ptl != dst_ptl) 4881 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4882 4883 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4884 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4885 4886 if (src_ptl != dst_ptl) 4887 spin_unlock(src_ptl); 4888 spin_unlock(dst_ptl); 4889 } 4890 4891 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4892 struct vm_area_struct *new_vma, 4893 unsigned long old_addr, unsigned long new_addr, 4894 unsigned long len) 4895 { 4896 struct hstate *h = hstate_vma(vma); 4897 struct address_space *mapping = vma->vm_file->f_mapping; 4898 unsigned long sz = huge_page_size(h); 4899 struct mm_struct *mm = vma->vm_mm; 4900 unsigned long old_end = old_addr + len; 4901 unsigned long old_addr_copy; 4902 pte_t *src_pte, *dst_pte; 4903 struct mmu_notifier_range range; 4904 4905 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4906 old_end); 4907 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4908 mmu_notifier_invalidate_range_start(&range); 4909 /* Prevent race with file truncation */ 4910 i_mmap_lock_write(mapping); 4911 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4912 src_pte = huge_pte_offset(mm, old_addr, sz); 4913 if (!src_pte) 4914 continue; 4915 if (huge_pte_none(huge_ptep_get(src_pte))) 4916 continue; 4917 4918 /* old_addr arg to huge_pmd_unshare() is a pointer and so the 4919 * arg may be modified. Pass a copy instead to preserve the 4920 * value in old_addr. 4921 */ 4922 old_addr_copy = old_addr; 4923 4924 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) 4925 continue; 4926 4927 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4928 if (!dst_pte) 4929 break; 4930 4931 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 4932 } 4933 flush_tlb_range(vma, old_end - len, old_end); 4934 mmu_notifier_invalidate_range_end(&range); 4935 i_mmap_unlock_write(mapping); 4936 4937 return len + old_addr - old_end; 4938 } 4939 4940 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4941 unsigned long start, unsigned long end, 4942 struct page *ref_page) 4943 { 4944 struct mm_struct *mm = vma->vm_mm; 4945 unsigned long address; 4946 pte_t *ptep; 4947 pte_t pte; 4948 spinlock_t *ptl; 4949 struct page *page; 4950 struct hstate *h = hstate_vma(vma); 4951 unsigned long sz = huge_page_size(h); 4952 struct mmu_notifier_range range; 4953 bool force_flush = false; 4954 4955 WARN_ON(!is_vm_hugetlb_page(vma)); 4956 BUG_ON(start & ~huge_page_mask(h)); 4957 BUG_ON(end & ~huge_page_mask(h)); 4958 4959 /* 4960 * This is a hugetlb vma, all the pte entries should point 4961 * to huge page. 4962 */ 4963 tlb_change_page_size(tlb, sz); 4964 tlb_start_vma(tlb, vma); 4965 4966 /* 4967 * If sharing possible, alert mmu notifiers of worst case. 4968 */ 4969 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4970 end); 4971 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4972 mmu_notifier_invalidate_range_start(&range); 4973 address = start; 4974 for (; address < end; address += sz) { 4975 ptep = huge_pte_offset(mm, address, sz); 4976 if (!ptep) 4977 continue; 4978 4979 ptl = huge_pte_lock(h, mm, ptep); 4980 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4981 spin_unlock(ptl); 4982 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 4983 force_flush = true; 4984 continue; 4985 } 4986 4987 pte = huge_ptep_get(ptep); 4988 if (huge_pte_none(pte)) { 4989 spin_unlock(ptl); 4990 continue; 4991 } 4992 4993 /* 4994 * Migrating hugepage or HWPoisoned hugepage is already 4995 * unmapped and its refcount is dropped, so just clear pte here. 4996 */ 4997 if (unlikely(!pte_present(pte))) { 4998 huge_pte_clear(mm, address, ptep, sz); 4999 spin_unlock(ptl); 5000 continue; 5001 } 5002 5003 page = pte_page(pte); 5004 /* 5005 * If a reference page is supplied, it is because a specific 5006 * page is being unmapped, not a range. Ensure the page we 5007 * are about to unmap is the actual page of interest. 5008 */ 5009 if (ref_page) { 5010 if (page != ref_page) { 5011 spin_unlock(ptl); 5012 continue; 5013 } 5014 /* 5015 * Mark the VMA as having unmapped its page so that 5016 * future faults in this VMA will fail rather than 5017 * looking like data was lost 5018 */ 5019 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5020 } 5021 5022 pte = huge_ptep_get_and_clear(mm, address, ptep); 5023 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5024 if (huge_pte_dirty(pte)) 5025 set_page_dirty(page); 5026 5027 hugetlb_count_sub(pages_per_huge_page(h), mm); 5028 page_remove_rmap(page, vma, true); 5029 5030 spin_unlock(ptl); 5031 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5032 /* 5033 * Bail out after unmapping reference page if supplied 5034 */ 5035 if (ref_page) 5036 break; 5037 } 5038 mmu_notifier_invalidate_range_end(&range); 5039 tlb_end_vma(tlb, vma); 5040 5041 /* 5042 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5043 * could defer the flush until now, since by holding i_mmap_rwsem we 5044 * guaranteed that the last refernece would not be dropped. But we must 5045 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5046 * dropped and the last reference to the shared PMDs page might be 5047 * dropped as well. 5048 * 5049 * In theory we could defer the freeing of the PMD pages as well, but 5050 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5051 * detect sharing, so we cannot defer the release of the page either. 5052 * Instead, do flush now. 5053 */ 5054 if (force_flush) 5055 tlb_flush_mmu_tlbonly(tlb); 5056 } 5057 5058 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5059 struct vm_area_struct *vma, unsigned long start, 5060 unsigned long end, struct page *ref_page) 5061 { 5062 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 5063 5064 /* 5065 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5066 * test will fail on a vma being torn down, and not grab a page table 5067 * on its way out. We're lucky that the flag has such an appropriate 5068 * name, and can in fact be safely cleared here. We could clear it 5069 * before the __unmap_hugepage_range above, but all that's necessary 5070 * is to clear it before releasing the i_mmap_rwsem. This works 5071 * because in the context this is called, the VMA is about to be 5072 * destroyed and the i_mmap_rwsem is held. 5073 */ 5074 vma->vm_flags &= ~VM_MAYSHARE; 5075 } 5076 5077 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5078 unsigned long end, struct page *ref_page) 5079 { 5080 struct mmu_gather tlb; 5081 5082 tlb_gather_mmu(&tlb, vma->vm_mm); 5083 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 5084 tlb_finish_mmu(&tlb); 5085 } 5086 5087 /* 5088 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5089 * mapping it owns the reserve page for. The intention is to unmap the page 5090 * from other VMAs and let the children be SIGKILLed if they are faulting the 5091 * same region. 5092 */ 5093 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5094 struct page *page, unsigned long address) 5095 { 5096 struct hstate *h = hstate_vma(vma); 5097 struct vm_area_struct *iter_vma; 5098 struct address_space *mapping; 5099 pgoff_t pgoff; 5100 5101 /* 5102 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5103 * from page cache lookup which is in HPAGE_SIZE units. 5104 */ 5105 address = address & huge_page_mask(h); 5106 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5107 vma->vm_pgoff; 5108 mapping = vma->vm_file->f_mapping; 5109 5110 /* 5111 * Take the mapping lock for the duration of the table walk. As 5112 * this mapping should be shared between all the VMAs, 5113 * __unmap_hugepage_range() is called as the lock is already held 5114 */ 5115 i_mmap_lock_write(mapping); 5116 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5117 /* Do not unmap the current VMA */ 5118 if (iter_vma == vma) 5119 continue; 5120 5121 /* 5122 * Shared VMAs have their own reserves and do not affect 5123 * MAP_PRIVATE accounting but it is possible that a shared 5124 * VMA is using the same page so check and skip such VMAs. 5125 */ 5126 if (iter_vma->vm_flags & VM_MAYSHARE) 5127 continue; 5128 5129 /* 5130 * Unmap the page from other VMAs without their own reserves. 5131 * They get marked to be SIGKILLed if they fault in these 5132 * areas. This is because a future no-page fault on this VMA 5133 * could insert a zeroed page instead of the data existing 5134 * from the time of fork. This would look like data corruption 5135 */ 5136 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5137 unmap_hugepage_range(iter_vma, address, 5138 address + huge_page_size(h), page); 5139 } 5140 i_mmap_unlock_write(mapping); 5141 } 5142 5143 /* 5144 * Hugetlb_cow() should be called with page lock of the original hugepage held. 5145 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5146 * cannot race with other handlers or page migration. 5147 * Keep the pte_same checks anyway to make transition from the mutex easier. 5148 */ 5149 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 5150 unsigned long address, pte_t *ptep, 5151 struct page *pagecache_page, spinlock_t *ptl) 5152 { 5153 pte_t pte; 5154 struct hstate *h = hstate_vma(vma); 5155 struct page *old_page, *new_page; 5156 int outside_reserve = 0; 5157 vm_fault_t ret = 0; 5158 unsigned long haddr = address & huge_page_mask(h); 5159 struct mmu_notifier_range range; 5160 5161 pte = huge_ptep_get(ptep); 5162 old_page = pte_page(pte); 5163 5164 retry_avoidcopy: 5165 /* If no-one else is actually using this page, avoid the copy 5166 * and just make the page writable */ 5167 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5168 page_move_anon_rmap(old_page, vma); 5169 set_huge_ptep_writable(vma, haddr, ptep); 5170 return 0; 5171 } 5172 5173 /* 5174 * If the process that created a MAP_PRIVATE mapping is about to 5175 * perform a COW due to a shared page count, attempt to satisfy 5176 * the allocation without using the existing reserves. The pagecache 5177 * page is used to determine if the reserve at this address was 5178 * consumed or not. If reserves were used, a partial faulted mapping 5179 * at the time of fork() could consume its reserves on COW instead 5180 * of the full address range. 5181 */ 5182 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5183 old_page != pagecache_page) 5184 outside_reserve = 1; 5185 5186 get_page(old_page); 5187 5188 /* 5189 * Drop page table lock as buddy allocator may be called. It will 5190 * be acquired again before returning to the caller, as expected. 5191 */ 5192 spin_unlock(ptl); 5193 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5194 5195 if (IS_ERR(new_page)) { 5196 /* 5197 * If a process owning a MAP_PRIVATE mapping fails to COW, 5198 * it is due to references held by a child and an insufficient 5199 * huge page pool. To guarantee the original mappers 5200 * reliability, unmap the page from child processes. The child 5201 * may get SIGKILLed if it later faults. 5202 */ 5203 if (outside_reserve) { 5204 struct address_space *mapping = vma->vm_file->f_mapping; 5205 pgoff_t idx; 5206 u32 hash; 5207 5208 put_page(old_page); 5209 BUG_ON(huge_pte_none(pte)); 5210 /* 5211 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5212 * unmapping. unmapping needs to hold i_mmap_rwsem 5213 * in write mode. Dropping i_mmap_rwsem in read mode 5214 * here is OK as COW mappings do not interact with 5215 * PMD sharing. 5216 * 5217 * Reacquire both after unmap operation. 5218 */ 5219 idx = vma_hugecache_offset(h, vma, haddr); 5220 hash = hugetlb_fault_mutex_hash(mapping, idx); 5221 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5222 i_mmap_unlock_read(mapping); 5223 5224 unmap_ref_private(mm, vma, old_page, haddr); 5225 5226 i_mmap_lock_read(mapping); 5227 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5228 spin_lock(ptl); 5229 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5230 if (likely(ptep && 5231 pte_same(huge_ptep_get(ptep), pte))) 5232 goto retry_avoidcopy; 5233 /* 5234 * race occurs while re-acquiring page table 5235 * lock, and our job is done. 5236 */ 5237 return 0; 5238 } 5239 5240 ret = vmf_error(PTR_ERR(new_page)); 5241 goto out_release_old; 5242 } 5243 5244 /* 5245 * When the original hugepage is shared one, it does not have 5246 * anon_vma prepared. 5247 */ 5248 if (unlikely(anon_vma_prepare(vma))) { 5249 ret = VM_FAULT_OOM; 5250 goto out_release_all; 5251 } 5252 5253 copy_user_huge_page(new_page, old_page, address, vma, 5254 pages_per_huge_page(h)); 5255 __SetPageUptodate(new_page); 5256 5257 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5258 haddr + huge_page_size(h)); 5259 mmu_notifier_invalidate_range_start(&range); 5260 5261 /* 5262 * Retake the page table lock to check for racing updates 5263 * before the page tables are altered 5264 */ 5265 spin_lock(ptl); 5266 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5267 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5268 ClearHPageRestoreReserve(new_page); 5269 5270 /* Break COW */ 5271 huge_ptep_clear_flush(vma, haddr, ptep); 5272 mmu_notifier_invalidate_range(mm, range.start, range.end); 5273 page_remove_rmap(old_page, vma, true); 5274 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5275 set_huge_pte_at(mm, haddr, ptep, 5276 make_huge_pte(vma, new_page, 1)); 5277 SetHPageMigratable(new_page); 5278 /* Make the old page be freed below */ 5279 new_page = old_page; 5280 } 5281 spin_unlock(ptl); 5282 mmu_notifier_invalidate_range_end(&range); 5283 out_release_all: 5284 /* No restore in case of successful pagetable update (Break COW) */ 5285 if (new_page != old_page) 5286 restore_reserve_on_error(h, vma, haddr, new_page); 5287 put_page(new_page); 5288 out_release_old: 5289 put_page(old_page); 5290 5291 spin_lock(ptl); /* Caller expects lock to be held */ 5292 return ret; 5293 } 5294 5295 /* Return the pagecache page at a given address within a VMA */ 5296 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5297 struct vm_area_struct *vma, unsigned long address) 5298 { 5299 struct address_space *mapping; 5300 pgoff_t idx; 5301 5302 mapping = vma->vm_file->f_mapping; 5303 idx = vma_hugecache_offset(h, vma, address); 5304 5305 return find_lock_page(mapping, idx); 5306 } 5307 5308 /* 5309 * Return whether there is a pagecache page to back given address within VMA. 5310 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5311 */ 5312 static bool hugetlbfs_pagecache_present(struct hstate *h, 5313 struct vm_area_struct *vma, unsigned long address) 5314 { 5315 struct address_space *mapping; 5316 pgoff_t idx; 5317 struct page *page; 5318 5319 mapping = vma->vm_file->f_mapping; 5320 idx = vma_hugecache_offset(h, vma, address); 5321 5322 page = find_get_page(mapping, idx); 5323 if (page) 5324 put_page(page); 5325 return page != NULL; 5326 } 5327 5328 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5329 pgoff_t idx) 5330 { 5331 struct inode *inode = mapping->host; 5332 struct hstate *h = hstate_inode(inode); 5333 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 5334 5335 if (err) 5336 return err; 5337 ClearHPageRestoreReserve(page); 5338 5339 /* 5340 * set page dirty so that it will not be removed from cache/file 5341 * by non-hugetlbfs specific code paths. 5342 */ 5343 set_page_dirty(page); 5344 5345 spin_lock(&inode->i_lock); 5346 inode->i_blocks += blocks_per_huge_page(h); 5347 spin_unlock(&inode->i_lock); 5348 return 0; 5349 } 5350 5351 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5352 struct address_space *mapping, 5353 pgoff_t idx, 5354 unsigned int flags, 5355 unsigned long haddr, 5356 unsigned long addr, 5357 unsigned long reason) 5358 { 5359 vm_fault_t ret; 5360 u32 hash; 5361 struct vm_fault vmf = { 5362 .vma = vma, 5363 .address = haddr, 5364 .real_address = addr, 5365 .flags = flags, 5366 5367 /* 5368 * Hard to debug if it ends up being 5369 * used by a callee that assumes 5370 * something about the other 5371 * uninitialized fields... same as in 5372 * memory.c 5373 */ 5374 }; 5375 5376 /* 5377 * hugetlb_fault_mutex and i_mmap_rwsem must be 5378 * dropped before handling userfault. Reacquire 5379 * after handling fault to make calling code simpler. 5380 */ 5381 hash = hugetlb_fault_mutex_hash(mapping, idx); 5382 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5383 i_mmap_unlock_read(mapping); 5384 ret = handle_userfault(&vmf, reason); 5385 i_mmap_lock_read(mapping); 5386 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5387 5388 return ret; 5389 } 5390 5391 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5392 struct vm_area_struct *vma, 5393 struct address_space *mapping, pgoff_t idx, 5394 unsigned long address, pte_t *ptep, unsigned int flags) 5395 { 5396 struct hstate *h = hstate_vma(vma); 5397 vm_fault_t ret = VM_FAULT_SIGBUS; 5398 int anon_rmap = 0; 5399 unsigned long size; 5400 struct page *page; 5401 pte_t new_pte; 5402 spinlock_t *ptl; 5403 unsigned long haddr = address & huge_page_mask(h); 5404 bool new_page, new_pagecache_page = false; 5405 5406 /* 5407 * Currently, we are forced to kill the process in the event the 5408 * original mapper has unmapped pages from the child due to a failed 5409 * COW. Warn that such a situation has occurred as it may not be obvious 5410 */ 5411 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5412 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5413 current->pid); 5414 return ret; 5415 } 5416 5417 /* 5418 * We can not race with truncation due to holding i_mmap_rwsem. 5419 * i_size is modified when holding i_mmap_rwsem, so check here 5420 * once for faults beyond end of file. 5421 */ 5422 size = i_size_read(mapping->host) >> huge_page_shift(h); 5423 if (idx >= size) 5424 goto out; 5425 5426 retry: 5427 new_page = false; 5428 page = find_lock_page(mapping, idx); 5429 if (!page) { 5430 /* Check for page in userfault range */ 5431 if (userfaultfd_missing(vma)) { 5432 ret = hugetlb_handle_userfault(vma, mapping, idx, 5433 flags, haddr, address, 5434 VM_UFFD_MISSING); 5435 goto out; 5436 } 5437 5438 page = alloc_huge_page(vma, haddr, 0); 5439 if (IS_ERR(page)) { 5440 /* 5441 * Returning error will result in faulting task being 5442 * sent SIGBUS. The hugetlb fault mutex prevents two 5443 * tasks from racing to fault in the same page which 5444 * could result in false unable to allocate errors. 5445 * Page migration does not take the fault mutex, but 5446 * does a clear then write of pte's under page table 5447 * lock. Page fault code could race with migration, 5448 * notice the clear pte and try to allocate a page 5449 * here. Before returning error, get ptl and make 5450 * sure there really is no pte entry. 5451 */ 5452 ptl = huge_pte_lock(h, mm, ptep); 5453 ret = 0; 5454 if (huge_pte_none(huge_ptep_get(ptep))) 5455 ret = vmf_error(PTR_ERR(page)); 5456 spin_unlock(ptl); 5457 goto out; 5458 } 5459 clear_huge_page(page, address, pages_per_huge_page(h)); 5460 __SetPageUptodate(page); 5461 new_page = true; 5462 5463 if (vma->vm_flags & VM_MAYSHARE) { 5464 int err = huge_add_to_page_cache(page, mapping, idx); 5465 if (err) { 5466 put_page(page); 5467 if (err == -EEXIST) 5468 goto retry; 5469 goto out; 5470 } 5471 new_pagecache_page = true; 5472 } else { 5473 lock_page(page); 5474 if (unlikely(anon_vma_prepare(vma))) { 5475 ret = VM_FAULT_OOM; 5476 goto backout_unlocked; 5477 } 5478 anon_rmap = 1; 5479 } 5480 } else { 5481 /* 5482 * If memory error occurs between mmap() and fault, some process 5483 * don't have hwpoisoned swap entry for errored virtual address. 5484 * So we need to block hugepage fault by PG_hwpoison bit check. 5485 */ 5486 if (unlikely(PageHWPoison(page))) { 5487 ret = VM_FAULT_HWPOISON_LARGE | 5488 VM_FAULT_SET_HINDEX(hstate_index(h)); 5489 goto backout_unlocked; 5490 } 5491 5492 /* Check for page in userfault range. */ 5493 if (userfaultfd_minor(vma)) { 5494 unlock_page(page); 5495 put_page(page); 5496 ret = hugetlb_handle_userfault(vma, mapping, idx, 5497 flags, haddr, address, 5498 VM_UFFD_MINOR); 5499 goto out; 5500 } 5501 } 5502 5503 /* 5504 * If we are going to COW a private mapping later, we examine the 5505 * pending reservations for this page now. This will ensure that 5506 * any allocations necessary to record that reservation occur outside 5507 * the spinlock. 5508 */ 5509 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5510 if (vma_needs_reservation(h, vma, haddr) < 0) { 5511 ret = VM_FAULT_OOM; 5512 goto backout_unlocked; 5513 } 5514 /* Just decrements count, does not deallocate */ 5515 vma_end_reservation(h, vma, haddr); 5516 } 5517 5518 ptl = huge_pte_lock(h, mm, ptep); 5519 ret = 0; 5520 if (!huge_pte_none(huge_ptep_get(ptep))) 5521 goto backout; 5522 5523 if (anon_rmap) { 5524 ClearHPageRestoreReserve(page); 5525 hugepage_add_new_anon_rmap(page, vma, haddr); 5526 } else 5527 page_dup_rmap(page, true); 5528 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5529 && (vma->vm_flags & VM_SHARED))); 5530 set_huge_pte_at(mm, haddr, ptep, new_pte); 5531 5532 hugetlb_count_add(pages_per_huge_page(h), mm); 5533 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5534 /* Optimization, do the COW without a second fault */ 5535 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 5536 } 5537 5538 spin_unlock(ptl); 5539 5540 /* 5541 * Only set HPageMigratable in newly allocated pages. Existing pages 5542 * found in the pagecache may not have HPageMigratableset if they have 5543 * been isolated for migration. 5544 */ 5545 if (new_page) 5546 SetHPageMigratable(page); 5547 5548 unlock_page(page); 5549 out: 5550 return ret; 5551 5552 backout: 5553 spin_unlock(ptl); 5554 backout_unlocked: 5555 unlock_page(page); 5556 /* restore reserve for newly allocated pages not in page cache */ 5557 if (new_page && !new_pagecache_page) 5558 restore_reserve_on_error(h, vma, haddr, page); 5559 put_page(page); 5560 goto out; 5561 } 5562 5563 #ifdef CONFIG_SMP 5564 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5565 { 5566 unsigned long key[2]; 5567 u32 hash; 5568 5569 key[0] = (unsigned long) mapping; 5570 key[1] = idx; 5571 5572 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5573 5574 return hash & (num_fault_mutexes - 1); 5575 } 5576 #else 5577 /* 5578 * For uniprocessor systems we always use a single mutex, so just 5579 * return 0 and avoid the hashing overhead. 5580 */ 5581 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5582 { 5583 return 0; 5584 } 5585 #endif 5586 5587 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5588 unsigned long address, unsigned int flags) 5589 { 5590 pte_t *ptep, entry; 5591 spinlock_t *ptl; 5592 vm_fault_t ret; 5593 u32 hash; 5594 pgoff_t idx; 5595 struct page *page = NULL; 5596 struct page *pagecache_page = NULL; 5597 struct hstate *h = hstate_vma(vma); 5598 struct address_space *mapping; 5599 int need_wait_lock = 0; 5600 unsigned long haddr = address & huge_page_mask(h); 5601 5602 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5603 if (ptep) { 5604 /* 5605 * Since we hold no locks, ptep could be stale. That is 5606 * OK as we are only making decisions based on content and 5607 * not actually modifying content here. 5608 */ 5609 entry = huge_ptep_get(ptep); 5610 if (unlikely(is_hugetlb_entry_migration(entry))) { 5611 migration_entry_wait_huge(vma, mm, ptep); 5612 return 0; 5613 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5614 return VM_FAULT_HWPOISON_LARGE | 5615 VM_FAULT_SET_HINDEX(hstate_index(h)); 5616 } 5617 5618 /* 5619 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5620 * until finished with ptep. This serves two purposes: 5621 * 1) It prevents huge_pmd_unshare from being called elsewhere 5622 * and making the ptep no longer valid. 5623 * 2) It synchronizes us with i_size modifications during truncation. 5624 * 5625 * ptep could have already be assigned via huge_pte_offset. That 5626 * is OK, as huge_pte_alloc will return the same value unless 5627 * something has changed. 5628 */ 5629 mapping = vma->vm_file->f_mapping; 5630 i_mmap_lock_read(mapping); 5631 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5632 if (!ptep) { 5633 i_mmap_unlock_read(mapping); 5634 return VM_FAULT_OOM; 5635 } 5636 5637 /* 5638 * Serialize hugepage allocation and instantiation, so that we don't 5639 * get spurious allocation failures if two CPUs race to instantiate 5640 * the same page in the page cache. 5641 */ 5642 idx = vma_hugecache_offset(h, vma, haddr); 5643 hash = hugetlb_fault_mutex_hash(mapping, idx); 5644 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5645 5646 entry = huge_ptep_get(ptep); 5647 if (huge_pte_none(entry)) { 5648 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 5649 goto out_mutex; 5650 } 5651 5652 ret = 0; 5653 5654 /* 5655 * entry could be a migration/hwpoison entry at this point, so this 5656 * check prevents the kernel from going below assuming that we have 5657 * an active hugepage in pagecache. This goto expects the 2nd page 5658 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5659 * properly handle it. 5660 */ 5661 if (!pte_present(entry)) 5662 goto out_mutex; 5663 5664 /* 5665 * If we are going to COW the mapping later, we examine the pending 5666 * reservations for this page now. This will ensure that any 5667 * allocations necessary to record that reservation occur outside the 5668 * spinlock. For private mappings, we also lookup the pagecache 5669 * page now as it is used to determine if a reservation has been 5670 * consumed. 5671 */ 5672 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5673 if (vma_needs_reservation(h, vma, haddr) < 0) { 5674 ret = VM_FAULT_OOM; 5675 goto out_mutex; 5676 } 5677 /* Just decrements count, does not deallocate */ 5678 vma_end_reservation(h, vma, haddr); 5679 5680 if (!(vma->vm_flags & VM_MAYSHARE)) 5681 pagecache_page = hugetlbfs_pagecache_page(h, 5682 vma, haddr); 5683 } 5684 5685 ptl = huge_pte_lock(h, mm, ptep); 5686 5687 /* Check for a racing update before calling hugetlb_cow */ 5688 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5689 goto out_ptl; 5690 5691 /* 5692 * hugetlb_cow() requires page locks of pte_page(entry) and 5693 * pagecache_page, so here we need take the former one 5694 * when page != pagecache_page or !pagecache_page. 5695 */ 5696 page = pte_page(entry); 5697 if (page != pagecache_page) 5698 if (!trylock_page(page)) { 5699 need_wait_lock = 1; 5700 goto out_ptl; 5701 } 5702 5703 get_page(page); 5704 5705 if (flags & FAULT_FLAG_WRITE) { 5706 if (!huge_pte_write(entry)) { 5707 ret = hugetlb_cow(mm, vma, address, ptep, 5708 pagecache_page, ptl); 5709 goto out_put_page; 5710 } 5711 entry = huge_pte_mkdirty(entry); 5712 } 5713 entry = pte_mkyoung(entry); 5714 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5715 flags & FAULT_FLAG_WRITE)) 5716 update_mmu_cache(vma, haddr, ptep); 5717 out_put_page: 5718 if (page != pagecache_page) 5719 unlock_page(page); 5720 put_page(page); 5721 out_ptl: 5722 spin_unlock(ptl); 5723 5724 if (pagecache_page) { 5725 unlock_page(pagecache_page); 5726 put_page(pagecache_page); 5727 } 5728 out_mutex: 5729 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5730 i_mmap_unlock_read(mapping); 5731 /* 5732 * Generally it's safe to hold refcount during waiting page lock. But 5733 * here we just wait to defer the next page fault to avoid busy loop and 5734 * the page is not used after unlocked before returning from the current 5735 * page fault. So we are safe from accessing freed page, even if we wait 5736 * here without taking refcount. 5737 */ 5738 if (need_wait_lock) 5739 wait_on_page_locked(page); 5740 return ret; 5741 } 5742 5743 #ifdef CONFIG_USERFAULTFD 5744 /* 5745 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5746 * modifications for huge pages. 5747 */ 5748 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5749 pte_t *dst_pte, 5750 struct vm_area_struct *dst_vma, 5751 unsigned long dst_addr, 5752 unsigned long src_addr, 5753 enum mcopy_atomic_mode mode, 5754 struct page **pagep) 5755 { 5756 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5757 struct hstate *h = hstate_vma(dst_vma); 5758 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5759 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5760 unsigned long size; 5761 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5762 pte_t _dst_pte; 5763 spinlock_t *ptl; 5764 int ret = -ENOMEM; 5765 struct page *page; 5766 int writable; 5767 bool page_in_pagecache = false; 5768 5769 if (is_continue) { 5770 ret = -EFAULT; 5771 page = find_lock_page(mapping, idx); 5772 if (!page) 5773 goto out; 5774 page_in_pagecache = true; 5775 } else if (!*pagep) { 5776 /* If a page already exists, then it's UFFDIO_COPY for 5777 * a non-missing case. Return -EEXIST. 5778 */ 5779 if (vm_shared && 5780 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5781 ret = -EEXIST; 5782 goto out; 5783 } 5784 5785 page = alloc_huge_page(dst_vma, dst_addr, 0); 5786 if (IS_ERR(page)) { 5787 ret = -ENOMEM; 5788 goto out; 5789 } 5790 5791 ret = copy_huge_page_from_user(page, 5792 (const void __user *) src_addr, 5793 pages_per_huge_page(h), false); 5794 5795 /* fallback to copy_from_user outside mmap_lock */ 5796 if (unlikely(ret)) { 5797 ret = -ENOENT; 5798 /* Free the allocated page which may have 5799 * consumed a reservation. 5800 */ 5801 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5802 put_page(page); 5803 5804 /* Allocate a temporary page to hold the copied 5805 * contents. 5806 */ 5807 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5808 if (!page) { 5809 ret = -ENOMEM; 5810 goto out; 5811 } 5812 *pagep = page; 5813 /* Set the outparam pagep and return to the caller to 5814 * copy the contents outside the lock. Don't free the 5815 * page. 5816 */ 5817 goto out; 5818 } 5819 } else { 5820 if (vm_shared && 5821 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5822 put_page(*pagep); 5823 ret = -EEXIST; 5824 *pagep = NULL; 5825 goto out; 5826 } 5827 5828 page = alloc_huge_page(dst_vma, dst_addr, 0); 5829 if (IS_ERR(page)) { 5830 ret = -ENOMEM; 5831 *pagep = NULL; 5832 goto out; 5833 } 5834 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 5835 pages_per_huge_page(h)); 5836 put_page(*pagep); 5837 *pagep = NULL; 5838 } 5839 5840 /* 5841 * The memory barrier inside __SetPageUptodate makes sure that 5842 * preceding stores to the page contents become visible before 5843 * the set_pte_at() write. 5844 */ 5845 __SetPageUptodate(page); 5846 5847 /* Add shared, newly allocated pages to the page cache. */ 5848 if (vm_shared && !is_continue) { 5849 size = i_size_read(mapping->host) >> huge_page_shift(h); 5850 ret = -EFAULT; 5851 if (idx >= size) 5852 goto out_release_nounlock; 5853 5854 /* 5855 * Serialization between remove_inode_hugepages() and 5856 * huge_add_to_page_cache() below happens through the 5857 * hugetlb_fault_mutex_table that here must be hold by 5858 * the caller. 5859 */ 5860 ret = huge_add_to_page_cache(page, mapping, idx); 5861 if (ret) 5862 goto out_release_nounlock; 5863 page_in_pagecache = true; 5864 } 5865 5866 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5867 spin_lock(ptl); 5868 5869 /* 5870 * Recheck the i_size after holding PT lock to make sure not 5871 * to leave any page mapped (as page_mapped()) beyond the end 5872 * of the i_size (remove_inode_hugepages() is strict about 5873 * enforcing that). If we bail out here, we'll also leave a 5874 * page in the radix tree in the vm_shared case beyond the end 5875 * of the i_size, but remove_inode_hugepages() will take care 5876 * of it as soon as we drop the hugetlb_fault_mutex_table. 5877 */ 5878 size = i_size_read(mapping->host) >> huge_page_shift(h); 5879 ret = -EFAULT; 5880 if (idx >= size) 5881 goto out_release_unlock; 5882 5883 ret = -EEXIST; 5884 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5885 goto out_release_unlock; 5886 5887 if (vm_shared) { 5888 page_dup_rmap(page, true); 5889 } else { 5890 ClearHPageRestoreReserve(page); 5891 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5892 } 5893 5894 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5895 if (is_continue && !vm_shared) 5896 writable = 0; 5897 else 5898 writable = dst_vma->vm_flags & VM_WRITE; 5899 5900 _dst_pte = make_huge_pte(dst_vma, page, writable); 5901 if (writable) 5902 _dst_pte = huge_pte_mkdirty(_dst_pte); 5903 _dst_pte = pte_mkyoung(_dst_pte); 5904 5905 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5906 5907 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5908 dst_vma->vm_flags & VM_WRITE); 5909 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5910 5911 /* No need to invalidate - it was non-present before */ 5912 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5913 5914 spin_unlock(ptl); 5915 if (!is_continue) 5916 SetHPageMigratable(page); 5917 if (vm_shared || is_continue) 5918 unlock_page(page); 5919 ret = 0; 5920 out: 5921 return ret; 5922 out_release_unlock: 5923 spin_unlock(ptl); 5924 if (vm_shared || is_continue) 5925 unlock_page(page); 5926 out_release_nounlock: 5927 if (!page_in_pagecache) 5928 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5929 put_page(page); 5930 goto out; 5931 } 5932 #endif /* CONFIG_USERFAULTFD */ 5933 5934 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5935 int refs, struct page **pages, 5936 struct vm_area_struct **vmas) 5937 { 5938 int nr; 5939 5940 for (nr = 0; nr < refs; nr++) { 5941 if (likely(pages)) 5942 pages[nr] = mem_map_offset(page, nr); 5943 if (vmas) 5944 vmas[nr] = vma; 5945 } 5946 } 5947 5948 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5949 struct page **pages, struct vm_area_struct **vmas, 5950 unsigned long *position, unsigned long *nr_pages, 5951 long i, unsigned int flags, int *locked) 5952 { 5953 unsigned long pfn_offset; 5954 unsigned long vaddr = *position; 5955 unsigned long remainder = *nr_pages; 5956 struct hstate *h = hstate_vma(vma); 5957 int err = -EFAULT, refs; 5958 5959 while (vaddr < vma->vm_end && remainder) { 5960 pte_t *pte; 5961 spinlock_t *ptl = NULL; 5962 int absent; 5963 struct page *page; 5964 5965 /* 5966 * If we have a pending SIGKILL, don't keep faulting pages and 5967 * potentially allocating memory. 5968 */ 5969 if (fatal_signal_pending(current)) { 5970 remainder = 0; 5971 break; 5972 } 5973 5974 /* 5975 * Some archs (sparc64, sh*) have multiple pte_ts to 5976 * each hugepage. We have to make sure we get the 5977 * first, for the page indexing below to work. 5978 * 5979 * Note that page table lock is not held when pte is null. 5980 */ 5981 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5982 huge_page_size(h)); 5983 if (pte) 5984 ptl = huge_pte_lock(h, mm, pte); 5985 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5986 5987 /* 5988 * When coredumping, it suits get_dump_page if we just return 5989 * an error where there's an empty slot with no huge pagecache 5990 * to back it. This way, we avoid allocating a hugepage, and 5991 * the sparse dumpfile avoids allocating disk blocks, but its 5992 * huge holes still show up with zeroes where they need to be. 5993 */ 5994 if (absent && (flags & FOLL_DUMP) && 5995 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5996 if (pte) 5997 spin_unlock(ptl); 5998 remainder = 0; 5999 break; 6000 } 6001 6002 /* 6003 * We need call hugetlb_fault for both hugepages under migration 6004 * (in which case hugetlb_fault waits for the migration,) and 6005 * hwpoisoned hugepages (in which case we need to prevent the 6006 * caller from accessing to them.) In order to do this, we use 6007 * here is_swap_pte instead of is_hugetlb_entry_migration and 6008 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6009 * both cases, and because we can't follow correct pages 6010 * directly from any kind of swap entries. 6011 */ 6012 if (absent || is_swap_pte(huge_ptep_get(pte)) || 6013 ((flags & FOLL_WRITE) && 6014 !huge_pte_write(huge_ptep_get(pte)))) { 6015 vm_fault_t ret; 6016 unsigned int fault_flags = 0; 6017 6018 if (pte) 6019 spin_unlock(ptl); 6020 if (flags & FOLL_WRITE) 6021 fault_flags |= FAULT_FLAG_WRITE; 6022 if (locked) 6023 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6024 FAULT_FLAG_KILLABLE; 6025 if (flags & FOLL_NOWAIT) 6026 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6027 FAULT_FLAG_RETRY_NOWAIT; 6028 if (flags & FOLL_TRIED) { 6029 /* 6030 * Note: FAULT_FLAG_ALLOW_RETRY and 6031 * FAULT_FLAG_TRIED can co-exist 6032 */ 6033 fault_flags |= FAULT_FLAG_TRIED; 6034 } 6035 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6036 if (ret & VM_FAULT_ERROR) { 6037 err = vm_fault_to_errno(ret, flags); 6038 remainder = 0; 6039 break; 6040 } 6041 if (ret & VM_FAULT_RETRY) { 6042 if (locked && 6043 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6044 *locked = 0; 6045 *nr_pages = 0; 6046 /* 6047 * VM_FAULT_RETRY must not return an 6048 * error, it will return zero 6049 * instead. 6050 * 6051 * No need to update "position" as the 6052 * caller will not check it after 6053 * *nr_pages is set to 0. 6054 */ 6055 return i; 6056 } 6057 continue; 6058 } 6059 6060 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6061 page = pte_page(huge_ptep_get(pte)); 6062 6063 /* 6064 * If subpage information not requested, update counters 6065 * and skip the same_page loop below. 6066 */ 6067 if (!pages && !vmas && !pfn_offset && 6068 (vaddr + huge_page_size(h) < vma->vm_end) && 6069 (remainder >= pages_per_huge_page(h))) { 6070 vaddr += huge_page_size(h); 6071 remainder -= pages_per_huge_page(h); 6072 i += pages_per_huge_page(h); 6073 spin_unlock(ptl); 6074 continue; 6075 } 6076 6077 /* vaddr may not be aligned to PAGE_SIZE */ 6078 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6079 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6080 6081 if (pages || vmas) 6082 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6083 vma, refs, 6084 likely(pages) ? pages + i : NULL, 6085 vmas ? vmas + i : NULL); 6086 6087 if (pages) { 6088 /* 6089 * try_grab_folio() should always succeed here, 6090 * because: a) we hold the ptl lock, and b) we've just 6091 * checked that the huge page is present in the page 6092 * tables. If the huge page is present, then the tail 6093 * pages must also be present. The ptl prevents the 6094 * head page and tail pages from being rearranged in 6095 * any way. So this page must be available at this 6096 * point, unless the page refcount overflowed: 6097 */ 6098 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6099 flags))) { 6100 spin_unlock(ptl); 6101 remainder = 0; 6102 err = -ENOMEM; 6103 break; 6104 } 6105 } 6106 6107 vaddr += (refs << PAGE_SHIFT); 6108 remainder -= refs; 6109 i += refs; 6110 6111 spin_unlock(ptl); 6112 } 6113 *nr_pages = remainder; 6114 /* 6115 * setting position is actually required only if remainder is 6116 * not zero but it's faster not to add a "if (remainder)" 6117 * branch. 6118 */ 6119 *position = vaddr; 6120 6121 return i ? i : err; 6122 } 6123 6124 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6125 unsigned long address, unsigned long end, pgprot_t newprot) 6126 { 6127 struct mm_struct *mm = vma->vm_mm; 6128 unsigned long start = address; 6129 pte_t *ptep; 6130 pte_t pte; 6131 struct hstate *h = hstate_vma(vma); 6132 unsigned long pages = 0; 6133 bool shared_pmd = false; 6134 struct mmu_notifier_range range; 6135 6136 /* 6137 * In the case of shared PMDs, the area to flush could be beyond 6138 * start/end. Set range.start/range.end to cover the maximum possible 6139 * range if PMD sharing is possible. 6140 */ 6141 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6142 0, vma, mm, start, end); 6143 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6144 6145 BUG_ON(address >= end); 6146 flush_cache_range(vma, range.start, range.end); 6147 6148 mmu_notifier_invalidate_range_start(&range); 6149 i_mmap_lock_write(vma->vm_file->f_mapping); 6150 for (; address < end; address += huge_page_size(h)) { 6151 spinlock_t *ptl; 6152 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 6153 if (!ptep) 6154 continue; 6155 ptl = huge_pte_lock(h, mm, ptep); 6156 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 6157 pages++; 6158 spin_unlock(ptl); 6159 shared_pmd = true; 6160 continue; 6161 } 6162 pte = huge_ptep_get(ptep); 6163 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6164 spin_unlock(ptl); 6165 continue; 6166 } 6167 if (unlikely(is_hugetlb_entry_migration(pte))) { 6168 swp_entry_t entry = pte_to_swp_entry(pte); 6169 6170 if (is_writable_migration_entry(entry)) { 6171 pte_t newpte; 6172 6173 entry = make_readable_migration_entry( 6174 swp_offset(entry)); 6175 newpte = swp_entry_to_pte(entry); 6176 set_huge_swap_pte_at(mm, address, ptep, 6177 newpte, huge_page_size(h)); 6178 pages++; 6179 } 6180 spin_unlock(ptl); 6181 continue; 6182 } 6183 if (!huge_pte_none(pte)) { 6184 pte_t old_pte; 6185 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6186 6187 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6188 pte = huge_pte_modify(old_pte, newprot); 6189 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6190 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6191 pages++; 6192 } 6193 spin_unlock(ptl); 6194 } 6195 /* 6196 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6197 * may have cleared our pud entry and done put_page on the page table: 6198 * once we release i_mmap_rwsem, another task can do the final put_page 6199 * and that page table be reused and filled with junk. If we actually 6200 * did unshare a page of pmds, flush the range corresponding to the pud. 6201 */ 6202 if (shared_pmd) 6203 flush_hugetlb_tlb_range(vma, range.start, range.end); 6204 else 6205 flush_hugetlb_tlb_range(vma, start, end); 6206 /* 6207 * No need to call mmu_notifier_invalidate_range() we are downgrading 6208 * page table protection not changing it to point to a new page. 6209 * 6210 * See Documentation/vm/mmu_notifier.rst 6211 */ 6212 i_mmap_unlock_write(vma->vm_file->f_mapping); 6213 mmu_notifier_invalidate_range_end(&range); 6214 6215 return pages << h->order; 6216 } 6217 6218 /* Return true if reservation was successful, false otherwise. */ 6219 bool hugetlb_reserve_pages(struct inode *inode, 6220 long from, long to, 6221 struct vm_area_struct *vma, 6222 vm_flags_t vm_flags) 6223 { 6224 long chg, add = -1; 6225 struct hstate *h = hstate_inode(inode); 6226 struct hugepage_subpool *spool = subpool_inode(inode); 6227 struct resv_map *resv_map; 6228 struct hugetlb_cgroup *h_cg = NULL; 6229 long gbl_reserve, regions_needed = 0; 6230 6231 /* This should never happen */ 6232 if (from > to) { 6233 VM_WARN(1, "%s called with a negative range\n", __func__); 6234 return false; 6235 } 6236 6237 /* 6238 * Only apply hugepage reservation if asked. At fault time, an 6239 * attempt will be made for VM_NORESERVE to allocate a page 6240 * without using reserves 6241 */ 6242 if (vm_flags & VM_NORESERVE) 6243 return true; 6244 6245 /* 6246 * Shared mappings base their reservation on the number of pages that 6247 * are already allocated on behalf of the file. Private mappings need 6248 * to reserve the full area even if read-only as mprotect() may be 6249 * called to make the mapping read-write. Assume !vma is a shm mapping 6250 */ 6251 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6252 /* 6253 * resv_map can not be NULL as hugetlb_reserve_pages is only 6254 * called for inodes for which resv_maps were created (see 6255 * hugetlbfs_get_inode). 6256 */ 6257 resv_map = inode_resv_map(inode); 6258 6259 chg = region_chg(resv_map, from, to, ®ions_needed); 6260 6261 } else { 6262 /* Private mapping. */ 6263 resv_map = resv_map_alloc(); 6264 if (!resv_map) 6265 return false; 6266 6267 chg = to - from; 6268 6269 set_vma_resv_map(vma, resv_map); 6270 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6271 } 6272 6273 if (chg < 0) 6274 goto out_err; 6275 6276 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6277 chg * pages_per_huge_page(h), &h_cg) < 0) 6278 goto out_err; 6279 6280 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6281 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6282 * of the resv_map. 6283 */ 6284 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6285 } 6286 6287 /* 6288 * There must be enough pages in the subpool for the mapping. If 6289 * the subpool has a minimum size, there may be some global 6290 * reservations already in place (gbl_reserve). 6291 */ 6292 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6293 if (gbl_reserve < 0) 6294 goto out_uncharge_cgroup; 6295 6296 /* 6297 * Check enough hugepages are available for the reservation. 6298 * Hand the pages back to the subpool if there are not 6299 */ 6300 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6301 goto out_put_pages; 6302 6303 /* 6304 * Account for the reservations made. Shared mappings record regions 6305 * that have reservations as they are shared by multiple VMAs. 6306 * When the last VMA disappears, the region map says how much 6307 * the reservation was and the page cache tells how much of 6308 * the reservation was consumed. Private mappings are per-VMA and 6309 * only the consumed reservations are tracked. When the VMA 6310 * disappears, the original reservation is the VMA size and the 6311 * consumed reservations are stored in the map. Hence, nothing 6312 * else has to be done for private mappings here 6313 */ 6314 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6315 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6316 6317 if (unlikely(add < 0)) { 6318 hugetlb_acct_memory(h, -gbl_reserve); 6319 goto out_put_pages; 6320 } else if (unlikely(chg > add)) { 6321 /* 6322 * pages in this range were added to the reserve 6323 * map between region_chg and region_add. This 6324 * indicates a race with alloc_huge_page. Adjust 6325 * the subpool and reserve counts modified above 6326 * based on the difference. 6327 */ 6328 long rsv_adjust; 6329 6330 /* 6331 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6332 * reference to h_cg->css. See comment below for detail. 6333 */ 6334 hugetlb_cgroup_uncharge_cgroup_rsvd( 6335 hstate_index(h), 6336 (chg - add) * pages_per_huge_page(h), h_cg); 6337 6338 rsv_adjust = hugepage_subpool_put_pages(spool, 6339 chg - add); 6340 hugetlb_acct_memory(h, -rsv_adjust); 6341 } else if (h_cg) { 6342 /* 6343 * The file_regions will hold their own reference to 6344 * h_cg->css. So we should release the reference held 6345 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6346 * done. 6347 */ 6348 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6349 } 6350 } 6351 return true; 6352 6353 out_put_pages: 6354 /* put back original number of pages, chg */ 6355 (void)hugepage_subpool_put_pages(spool, chg); 6356 out_uncharge_cgroup: 6357 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6358 chg * pages_per_huge_page(h), h_cg); 6359 out_err: 6360 if (!vma || vma->vm_flags & VM_MAYSHARE) 6361 /* Only call region_abort if the region_chg succeeded but the 6362 * region_add failed or didn't run. 6363 */ 6364 if (chg >= 0 && add < 0) 6365 region_abort(resv_map, from, to, regions_needed); 6366 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6367 kref_put(&resv_map->refs, resv_map_release); 6368 return false; 6369 } 6370 6371 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6372 long freed) 6373 { 6374 struct hstate *h = hstate_inode(inode); 6375 struct resv_map *resv_map = inode_resv_map(inode); 6376 long chg = 0; 6377 struct hugepage_subpool *spool = subpool_inode(inode); 6378 long gbl_reserve; 6379 6380 /* 6381 * Since this routine can be called in the evict inode path for all 6382 * hugetlbfs inodes, resv_map could be NULL. 6383 */ 6384 if (resv_map) { 6385 chg = region_del(resv_map, start, end); 6386 /* 6387 * region_del() can fail in the rare case where a region 6388 * must be split and another region descriptor can not be 6389 * allocated. If end == LONG_MAX, it will not fail. 6390 */ 6391 if (chg < 0) 6392 return chg; 6393 } 6394 6395 spin_lock(&inode->i_lock); 6396 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6397 spin_unlock(&inode->i_lock); 6398 6399 /* 6400 * If the subpool has a minimum size, the number of global 6401 * reservations to be released may be adjusted. 6402 * 6403 * Note that !resv_map implies freed == 0. So (chg - freed) 6404 * won't go negative. 6405 */ 6406 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6407 hugetlb_acct_memory(h, -gbl_reserve); 6408 6409 return 0; 6410 } 6411 6412 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6413 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6414 struct vm_area_struct *vma, 6415 unsigned long addr, pgoff_t idx) 6416 { 6417 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6418 svma->vm_start; 6419 unsigned long sbase = saddr & PUD_MASK; 6420 unsigned long s_end = sbase + PUD_SIZE; 6421 6422 /* Allow segments to share if only one is marked locked */ 6423 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6424 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6425 6426 /* 6427 * match the virtual addresses, permission and the alignment of the 6428 * page table page. 6429 */ 6430 if (pmd_index(addr) != pmd_index(saddr) || 6431 vm_flags != svm_flags || 6432 !range_in_vma(svma, sbase, s_end)) 6433 return 0; 6434 6435 return saddr; 6436 } 6437 6438 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6439 { 6440 unsigned long base = addr & PUD_MASK; 6441 unsigned long end = base + PUD_SIZE; 6442 6443 /* 6444 * check on proper vm_flags and page table alignment 6445 */ 6446 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6447 return true; 6448 return false; 6449 } 6450 6451 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6452 { 6453 #ifdef CONFIG_USERFAULTFD 6454 if (uffd_disable_huge_pmd_share(vma)) 6455 return false; 6456 #endif 6457 return vma_shareable(vma, addr); 6458 } 6459 6460 /* 6461 * Determine if start,end range within vma could be mapped by shared pmd. 6462 * If yes, adjust start and end to cover range associated with possible 6463 * shared pmd mappings. 6464 */ 6465 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6466 unsigned long *start, unsigned long *end) 6467 { 6468 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6469 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6470 6471 /* 6472 * vma needs to span at least one aligned PUD size, and the range 6473 * must be at least partially within in. 6474 */ 6475 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6476 (*end <= v_start) || (*start >= v_end)) 6477 return; 6478 6479 /* Extend the range to be PUD aligned for a worst case scenario */ 6480 if (*start > v_start) 6481 *start = ALIGN_DOWN(*start, PUD_SIZE); 6482 6483 if (*end < v_end) 6484 *end = ALIGN(*end, PUD_SIZE); 6485 } 6486 6487 /* 6488 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6489 * and returns the corresponding pte. While this is not necessary for the 6490 * !shared pmd case because we can allocate the pmd later as well, it makes the 6491 * code much cleaner. 6492 * 6493 * This routine must be called with i_mmap_rwsem held in at least read mode if 6494 * sharing is possible. For hugetlbfs, this prevents removal of any page 6495 * table entries associated with the address space. This is important as we 6496 * are setting up sharing based on existing page table entries (mappings). 6497 */ 6498 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6499 unsigned long addr, pud_t *pud) 6500 { 6501 struct address_space *mapping = vma->vm_file->f_mapping; 6502 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6503 vma->vm_pgoff; 6504 struct vm_area_struct *svma; 6505 unsigned long saddr; 6506 pte_t *spte = NULL; 6507 pte_t *pte; 6508 spinlock_t *ptl; 6509 6510 i_mmap_assert_locked(mapping); 6511 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6512 if (svma == vma) 6513 continue; 6514 6515 saddr = page_table_shareable(svma, vma, addr, idx); 6516 if (saddr) { 6517 spte = huge_pte_offset(svma->vm_mm, saddr, 6518 vma_mmu_pagesize(svma)); 6519 if (spte) { 6520 get_page(virt_to_page(spte)); 6521 break; 6522 } 6523 } 6524 } 6525 6526 if (!spte) 6527 goto out; 6528 6529 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6530 if (pud_none(*pud)) { 6531 pud_populate(mm, pud, 6532 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6533 mm_inc_nr_pmds(mm); 6534 } else { 6535 put_page(virt_to_page(spte)); 6536 } 6537 spin_unlock(ptl); 6538 out: 6539 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6540 return pte; 6541 } 6542 6543 /* 6544 * unmap huge page backed by shared pte. 6545 * 6546 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6547 * indicated by page_count > 1, unmap is achieved by clearing pud and 6548 * decrementing the ref count. If count == 1, the pte page is not shared. 6549 * 6550 * Called with page table lock held and i_mmap_rwsem held in write mode. 6551 * 6552 * returns: 1 successfully unmapped a shared pte page 6553 * 0 the underlying pte page is not shared, or it is the last user 6554 */ 6555 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6556 unsigned long *addr, pte_t *ptep) 6557 { 6558 pgd_t *pgd = pgd_offset(mm, *addr); 6559 p4d_t *p4d = p4d_offset(pgd, *addr); 6560 pud_t *pud = pud_offset(p4d, *addr); 6561 6562 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6563 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6564 if (page_count(virt_to_page(ptep)) == 1) 6565 return 0; 6566 6567 pud_clear(pud); 6568 put_page(virt_to_page(ptep)); 6569 mm_dec_nr_pmds(mm); 6570 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 6571 return 1; 6572 } 6573 6574 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6575 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6576 unsigned long addr, pud_t *pud) 6577 { 6578 return NULL; 6579 } 6580 6581 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6582 unsigned long *addr, pte_t *ptep) 6583 { 6584 return 0; 6585 } 6586 6587 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6588 unsigned long *start, unsigned long *end) 6589 { 6590 } 6591 6592 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6593 { 6594 return false; 6595 } 6596 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6597 6598 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6599 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6600 unsigned long addr, unsigned long sz) 6601 { 6602 pgd_t *pgd; 6603 p4d_t *p4d; 6604 pud_t *pud; 6605 pte_t *pte = NULL; 6606 6607 pgd = pgd_offset(mm, addr); 6608 p4d = p4d_alloc(mm, pgd, addr); 6609 if (!p4d) 6610 return NULL; 6611 pud = pud_alloc(mm, p4d, addr); 6612 if (pud) { 6613 if (sz == PUD_SIZE) { 6614 pte = (pte_t *)pud; 6615 } else { 6616 BUG_ON(sz != PMD_SIZE); 6617 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6618 pte = huge_pmd_share(mm, vma, addr, pud); 6619 else 6620 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6621 } 6622 } 6623 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6624 6625 return pte; 6626 } 6627 6628 /* 6629 * huge_pte_offset() - Walk the page table to resolve the hugepage 6630 * entry at address @addr 6631 * 6632 * Return: Pointer to page table entry (PUD or PMD) for 6633 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6634 * size @sz doesn't match the hugepage size at this level of the page 6635 * table. 6636 */ 6637 pte_t *huge_pte_offset(struct mm_struct *mm, 6638 unsigned long addr, unsigned long sz) 6639 { 6640 pgd_t *pgd; 6641 p4d_t *p4d; 6642 pud_t *pud; 6643 pmd_t *pmd; 6644 6645 pgd = pgd_offset(mm, addr); 6646 if (!pgd_present(*pgd)) 6647 return NULL; 6648 p4d = p4d_offset(pgd, addr); 6649 if (!p4d_present(*p4d)) 6650 return NULL; 6651 6652 pud = pud_offset(p4d, addr); 6653 if (sz == PUD_SIZE) 6654 /* must be pud huge, non-present or none */ 6655 return (pte_t *)pud; 6656 if (!pud_present(*pud)) 6657 return NULL; 6658 /* must have a valid entry and size to go further */ 6659 6660 pmd = pmd_offset(pud, addr); 6661 /* must be pmd huge, non-present or none */ 6662 return (pte_t *)pmd; 6663 } 6664 6665 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6666 6667 /* 6668 * These functions are overwritable if your architecture needs its own 6669 * behavior. 6670 */ 6671 struct page * __weak 6672 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6673 int write) 6674 { 6675 return ERR_PTR(-EINVAL); 6676 } 6677 6678 struct page * __weak 6679 follow_huge_pd(struct vm_area_struct *vma, 6680 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6681 { 6682 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6683 return NULL; 6684 } 6685 6686 struct page * __weak 6687 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6688 pmd_t *pmd, int flags) 6689 { 6690 struct page *page = NULL; 6691 spinlock_t *ptl; 6692 pte_t pte; 6693 6694 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 6695 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 6696 (FOLL_PIN | FOLL_GET))) 6697 return NULL; 6698 6699 retry: 6700 ptl = pmd_lockptr(mm, pmd); 6701 spin_lock(ptl); 6702 /* 6703 * make sure that the address range covered by this pmd is not 6704 * unmapped from other threads. 6705 */ 6706 if (!pmd_huge(*pmd)) 6707 goto out; 6708 pte = huge_ptep_get((pte_t *)pmd); 6709 if (pte_present(pte)) { 6710 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6711 /* 6712 * try_grab_page() should always succeed here, because: a) we 6713 * hold the pmd (ptl) lock, and b) we've just checked that the 6714 * huge pmd (head) page is present in the page tables. The ptl 6715 * prevents the head page and tail pages from being rearranged 6716 * in any way. So this page must be available at this point, 6717 * unless the page refcount overflowed: 6718 */ 6719 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6720 page = NULL; 6721 goto out; 6722 } 6723 } else { 6724 if (is_hugetlb_entry_migration(pte)) { 6725 spin_unlock(ptl); 6726 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 6727 goto retry; 6728 } 6729 /* 6730 * hwpoisoned entry is treated as no_page_table in 6731 * follow_page_mask(). 6732 */ 6733 } 6734 out: 6735 spin_unlock(ptl); 6736 return page; 6737 } 6738 6739 struct page * __weak 6740 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6741 pud_t *pud, int flags) 6742 { 6743 if (flags & (FOLL_GET | FOLL_PIN)) 6744 return NULL; 6745 6746 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 6747 } 6748 6749 struct page * __weak 6750 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 6751 { 6752 if (flags & (FOLL_GET | FOLL_PIN)) 6753 return NULL; 6754 6755 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 6756 } 6757 6758 bool isolate_huge_page(struct page *page, struct list_head *list) 6759 { 6760 bool ret = true; 6761 6762 spin_lock_irq(&hugetlb_lock); 6763 if (!PageHeadHuge(page) || 6764 !HPageMigratable(page) || 6765 !get_page_unless_zero(page)) { 6766 ret = false; 6767 goto unlock; 6768 } 6769 ClearHPageMigratable(page); 6770 list_move_tail(&page->lru, list); 6771 unlock: 6772 spin_unlock_irq(&hugetlb_lock); 6773 return ret; 6774 } 6775 6776 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 6777 { 6778 int ret = 0; 6779 6780 *hugetlb = false; 6781 spin_lock_irq(&hugetlb_lock); 6782 if (PageHeadHuge(page)) { 6783 *hugetlb = true; 6784 if (HPageFreed(page)) 6785 ret = 0; 6786 else if (HPageMigratable(page)) 6787 ret = get_page_unless_zero(page); 6788 else 6789 ret = -EBUSY; 6790 } 6791 spin_unlock_irq(&hugetlb_lock); 6792 return ret; 6793 } 6794 6795 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 6796 { 6797 int ret; 6798 6799 spin_lock_irq(&hugetlb_lock); 6800 ret = __get_huge_page_for_hwpoison(pfn, flags); 6801 spin_unlock_irq(&hugetlb_lock); 6802 return ret; 6803 } 6804 6805 void putback_active_hugepage(struct page *page) 6806 { 6807 spin_lock_irq(&hugetlb_lock); 6808 SetHPageMigratable(page); 6809 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 6810 spin_unlock_irq(&hugetlb_lock); 6811 put_page(page); 6812 } 6813 6814 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 6815 { 6816 struct hstate *h = page_hstate(oldpage); 6817 6818 hugetlb_cgroup_migrate(oldpage, newpage); 6819 set_page_owner_migrate_reason(newpage, reason); 6820 6821 /* 6822 * transfer temporary state of the new huge page. This is 6823 * reverse to other transitions because the newpage is going to 6824 * be final while the old one will be freed so it takes over 6825 * the temporary status. 6826 * 6827 * Also note that we have to transfer the per-node surplus state 6828 * here as well otherwise the global surplus count will not match 6829 * the per-node's. 6830 */ 6831 if (HPageTemporary(newpage)) { 6832 int old_nid = page_to_nid(oldpage); 6833 int new_nid = page_to_nid(newpage); 6834 6835 SetHPageTemporary(oldpage); 6836 ClearHPageTemporary(newpage); 6837 6838 /* 6839 * There is no need to transfer the per-node surplus state 6840 * when we do not cross the node. 6841 */ 6842 if (new_nid == old_nid) 6843 return; 6844 spin_lock_irq(&hugetlb_lock); 6845 if (h->surplus_huge_pages_node[old_nid]) { 6846 h->surplus_huge_pages_node[old_nid]--; 6847 h->surplus_huge_pages_node[new_nid]++; 6848 } 6849 spin_unlock_irq(&hugetlb_lock); 6850 } 6851 } 6852 6853 /* 6854 * This function will unconditionally remove all the shared pmd pgtable entries 6855 * within the specific vma for a hugetlbfs memory range. 6856 */ 6857 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6858 { 6859 struct hstate *h = hstate_vma(vma); 6860 unsigned long sz = huge_page_size(h); 6861 struct mm_struct *mm = vma->vm_mm; 6862 struct mmu_notifier_range range; 6863 unsigned long address, start, end; 6864 spinlock_t *ptl; 6865 pte_t *ptep; 6866 6867 if (!(vma->vm_flags & VM_MAYSHARE)) 6868 return; 6869 6870 start = ALIGN(vma->vm_start, PUD_SIZE); 6871 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6872 6873 if (start >= end) 6874 return; 6875 6876 /* 6877 * No need to call adjust_range_if_pmd_sharing_possible(), because 6878 * we have already done the PUD_SIZE alignment. 6879 */ 6880 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6881 start, end); 6882 mmu_notifier_invalidate_range_start(&range); 6883 i_mmap_lock_write(vma->vm_file->f_mapping); 6884 for (address = start; address < end; address += PUD_SIZE) { 6885 unsigned long tmp = address; 6886 6887 ptep = huge_pte_offset(mm, address, sz); 6888 if (!ptep) 6889 continue; 6890 ptl = huge_pte_lock(h, mm, ptep); 6891 /* We don't want 'address' to be changed */ 6892 huge_pmd_unshare(mm, vma, &tmp, ptep); 6893 spin_unlock(ptl); 6894 } 6895 flush_hugetlb_tlb_range(vma, start, end); 6896 i_mmap_unlock_write(vma->vm_file->f_mapping); 6897 /* 6898 * No need to call mmu_notifier_invalidate_range(), see 6899 * Documentation/vm/mmu_notifier.rst. 6900 */ 6901 mmu_notifier_invalidate_range_end(&range); 6902 } 6903 6904 #ifdef CONFIG_CMA 6905 static bool cma_reserve_called __initdata; 6906 6907 static int __init cmdline_parse_hugetlb_cma(char *p) 6908 { 6909 int nid, count = 0; 6910 unsigned long tmp; 6911 char *s = p; 6912 6913 while (*s) { 6914 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 6915 break; 6916 6917 if (s[count] == ':') { 6918 if (tmp >= MAX_NUMNODES) 6919 break; 6920 nid = array_index_nospec(tmp, MAX_NUMNODES); 6921 6922 s += count + 1; 6923 tmp = memparse(s, &s); 6924 hugetlb_cma_size_in_node[nid] = tmp; 6925 hugetlb_cma_size += tmp; 6926 6927 /* 6928 * Skip the separator if have one, otherwise 6929 * break the parsing. 6930 */ 6931 if (*s == ',') 6932 s++; 6933 else 6934 break; 6935 } else { 6936 hugetlb_cma_size = memparse(p, &p); 6937 break; 6938 } 6939 } 6940 6941 return 0; 6942 } 6943 6944 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6945 6946 void __init hugetlb_cma_reserve(int order) 6947 { 6948 unsigned long size, reserved, per_node; 6949 bool node_specific_cma_alloc = false; 6950 int nid; 6951 6952 cma_reserve_called = true; 6953 6954 if (!hugetlb_cma_size) 6955 return; 6956 6957 for (nid = 0; nid < MAX_NUMNODES; nid++) { 6958 if (hugetlb_cma_size_in_node[nid] == 0) 6959 continue; 6960 6961 if (!node_state(nid, N_ONLINE)) { 6962 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 6963 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6964 hugetlb_cma_size_in_node[nid] = 0; 6965 continue; 6966 } 6967 6968 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 6969 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 6970 nid, (PAGE_SIZE << order) / SZ_1M); 6971 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6972 hugetlb_cma_size_in_node[nid] = 0; 6973 } else { 6974 node_specific_cma_alloc = true; 6975 } 6976 } 6977 6978 /* Validate the CMA size again in case some invalid nodes specified. */ 6979 if (!hugetlb_cma_size) 6980 return; 6981 6982 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6983 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6984 (PAGE_SIZE << order) / SZ_1M); 6985 hugetlb_cma_size = 0; 6986 return; 6987 } 6988 6989 if (!node_specific_cma_alloc) { 6990 /* 6991 * If 3 GB area is requested on a machine with 4 numa nodes, 6992 * let's allocate 1 GB on first three nodes and ignore the last one. 6993 */ 6994 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6995 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6996 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6997 } 6998 6999 reserved = 0; 7000 for_each_node_state(nid, N_ONLINE) { 7001 int res; 7002 char name[CMA_MAX_NAME]; 7003 7004 if (node_specific_cma_alloc) { 7005 if (hugetlb_cma_size_in_node[nid] == 0) 7006 continue; 7007 7008 size = hugetlb_cma_size_in_node[nid]; 7009 } else { 7010 size = min(per_node, hugetlb_cma_size - reserved); 7011 } 7012 7013 size = round_up(size, PAGE_SIZE << order); 7014 7015 snprintf(name, sizeof(name), "hugetlb%d", nid); 7016 /* 7017 * Note that 'order per bit' is based on smallest size that 7018 * may be returned to CMA allocator in the case of 7019 * huge page demotion. 7020 */ 7021 res = cma_declare_contiguous_nid(0, size, 0, 7022 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7023 0, false, name, 7024 &hugetlb_cma[nid], nid); 7025 if (res) { 7026 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7027 res, nid); 7028 continue; 7029 } 7030 7031 reserved += size; 7032 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7033 size / SZ_1M, nid); 7034 7035 if (reserved >= hugetlb_cma_size) 7036 break; 7037 } 7038 7039 if (!reserved) 7040 /* 7041 * hugetlb_cma_size is used to determine if allocations from 7042 * cma are possible. Set to zero if no cma regions are set up. 7043 */ 7044 hugetlb_cma_size = 0; 7045 } 7046 7047 void __init hugetlb_cma_check(void) 7048 { 7049 if (!hugetlb_cma_size || cma_reserve_called) 7050 return; 7051 7052 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7053 } 7054 7055 #endif /* CONFIG_CMA */ 7056