xref: /openbmc/linux/mm/hugetlb.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39 
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47 
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51 
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58 				1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63 	return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67 
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73 
74 __initdata LIST_HEAD(huge_boot_pages);
75 
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88 
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95 
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101 	if (spool->count)
102 		return false;
103 	if (spool->max_hpages != -1)
104 		return spool->used_hpages == 0;
105 	if (spool->min_hpages != -1)
106 		return spool->rsv_hpages == spool->min_hpages;
107 
108 	return true;
109 }
110 
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112 						unsigned long irq_flags)
113 {
114 	spin_unlock_irqrestore(&spool->lock, irq_flags);
115 
116 	/* If no pages are used, and no other handles to the subpool
117 	 * remain, give up any reservations based on minimum size and
118 	 * free the subpool */
119 	if (subpool_is_free(spool)) {
120 		if (spool->min_hpages != -1)
121 			hugetlb_acct_memory(spool->hstate,
122 						-spool->min_hpages);
123 		kfree(spool);
124 	}
125 }
126 
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 						long min_hpages)
129 {
130 	struct hugepage_subpool *spool;
131 
132 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 	if (!spool)
134 		return NULL;
135 
136 	spin_lock_init(&spool->lock);
137 	spool->count = 1;
138 	spool->max_hpages = max_hpages;
139 	spool->hstate = h;
140 	spool->min_hpages = min_hpages;
141 
142 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 		kfree(spool);
144 		return NULL;
145 	}
146 	spool->rsv_hpages = min_hpages;
147 
148 	return spool;
149 }
150 
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&spool->lock, flags);
156 	BUG_ON(!spool->count);
157 	spool->count--;
158 	unlock_or_release_subpool(spool, flags);
159 }
160 
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170 				      long delta)
171 {
172 	long ret = delta;
173 
174 	if (!spool)
175 		return ret;
176 
177 	spin_lock_irq(&spool->lock);
178 
179 	if (spool->max_hpages != -1) {		/* maximum size accounting */
180 		if ((spool->used_hpages + delta) <= spool->max_hpages)
181 			spool->used_hpages += delta;
182 		else {
183 			ret = -ENOMEM;
184 			goto unlock_ret;
185 		}
186 	}
187 
188 	/* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 		if (delta > spool->rsv_hpages) {
191 			/*
192 			 * Asking for more reserves than those already taken on
193 			 * behalf of subpool.  Return difference.
194 			 */
195 			ret = delta - spool->rsv_hpages;
196 			spool->rsv_hpages = 0;
197 		} else {
198 			ret = 0;	/* reserves already accounted for */
199 			spool->rsv_hpages -= delta;
200 		}
201 	}
202 
203 unlock_ret:
204 	spin_unlock_irq(&spool->lock);
205 	return ret;
206 }
207 
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215 				       long delta)
216 {
217 	long ret = delta;
218 	unsigned long flags;
219 
220 	if (!spool)
221 		return delta;
222 
223 	spin_lock_irqsave(&spool->lock, flags);
224 
225 	if (spool->max_hpages != -1)		/* maximum size accounting */
226 		spool->used_hpages -= delta;
227 
228 	 /* minimum size accounting */
229 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 		if (spool->rsv_hpages + delta <= spool->min_hpages)
231 			ret = 0;
232 		else
233 			ret = spool->rsv_hpages + delta - spool->min_hpages;
234 
235 		spool->rsv_hpages += delta;
236 		if (spool->rsv_hpages > spool->min_hpages)
237 			spool->rsv_hpages = spool->min_hpages;
238 	}
239 
240 	/*
241 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
242 	 * quota reference, free it now.
243 	 */
244 	unlock_or_release_subpool(spool, flags);
245 
246 	return ret;
247 }
248 
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251 	return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253 
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256 	return subpool_inode(file_inode(vma->vm_file));
257 }
258 
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265 	struct file_region *nrg = NULL;
266 
267 	VM_BUG_ON(resv->region_cache_count <= 0);
268 
269 	resv->region_cache_count--;
270 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271 	list_del(&nrg->link);
272 
273 	nrg->from = from;
274 	nrg->to = to;
275 
276 	return nrg;
277 }
278 
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280 					      struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	nrg->reservation_counter = rg->reservation_counter;
284 	nrg->css = rg->css;
285 	if (rg->css)
286 		css_get(rg->css);
287 #endif
288 }
289 
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 						struct hstate *h,
293 						struct resv_map *resv,
294 						struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297 	if (h_cg) {
298 		nrg->reservation_counter =
299 			&h_cg->rsvd_hugepage[hstate_index(h)];
300 		nrg->css = &h_cg->css;
301 		/*
302 		 * The caller will hold exactly one h_cg->css reference for the
303 		 * whole contiguous reservation region. But this area might be
304 		 * scattered when there are already some file_regions reside in
305 		 * it. As a result, many file_regions may share only one css
306 		 * reference. In order to ensure that one file_region must hold
307 		 * exactly one h_cg->css reference, we should do css_get for
308 		 * each file_region and leave the reference held by caller
309 		 * untouched.
310 		 */
311 		css_get(&h_cg->css);
312 		if (!resv->pages_per_hpage)
313 			resv->pages_per_hpage = pages_per_huge_page(h);
314 		/* pages_per_hpage should be the same for all entries in
315 		 * a resv_map.
316 		 */
317 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 	} else {
319 		nrg->reservation_counter = NULL;
320 		nrg->css = NULL;
321 	}
322 #endif
323 }
324 
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328 	if (rg->css)
329 		css_put(rg->css);
330 #endif
331 }
332 
333 static bool has_same_uncharge_info(struct file_region *rg,
334 				   struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337 	return rg->reservation_counter == org->reservation_counter &&
338 	       rg->css == org->css;
339 
340 #else
341 	return true;
342 #endif
343 }
344 
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347 	struct file_region *nrg = NULL, *prg = NULL;
348 
349 	prg = list_prev_entry(rg, link);
350 	if (&prg->link != &resv->regions && prg->to == rg->from &&
351 	    has_same_uncharge_info(prg, rg)) {
352 		prg->to = rg->to;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 
358 		rg = prg;
359 	}
360 
361 	nrg = list_next_entry(rg, link);
362 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363 	    has_same_uncharge_info(nrg, rg)) {
364 		nrg->from = rg->from;
365 
366 		list_del(&rg->link);
367 		put_uncharge_info(rg);
368 		kfree(rg);
369 	}
370 }
371 
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
374 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
375 		     long *regions_needed)
376 {
377 	struct file_region *nrg;
378 
379 	if (!regions_needed) {
380 		nrg = get_file_region_entry_from_cache(map, from, to);
381 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382 		list_add(&nrg->link, rg);
383 		coalesce_file_region(map, nrg);
384 	} else
385 		*regions_needed += 1;
386 
387 	return to - from;
388 }
389 
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399 				     struct hugetlb_cgroup *h_cg,
400 				     struct hstate *h, long *regions_needed)
401 {
402 	long add = 0;
403 	struct list_head *head = &resv->regions;
404 	long last_accounted_offset = f;
405 	struct file_region *iter, *trg = NULL;
406 	struct list_head *rg = NULL;
407 
408 	if (regions_needed)
409 		*regions_needed = 0;
410 
411 	/* In this loop, we essentially handle an entry for the range
412 	 * [last_accounted_offset, iter->from), at every iteration, with some
413 	 * bounds checking.
414 	 */
415 	list_for_each_entry_safe(iter, trg, head, link) {
416 		/* Skip irrelevant regions that start before our range. */
417 		if (iter->from < f) {
418 			/* If this region ends after the last accounted offset,
419 			 * then we need to update last_accounted_offset.
420 			 */
421 			if (iter->to > last_accounted_offset)
422 				last_accounted_offset = iter->to;
423 			continue;
424 		}
425 
426 		/* When we find a region that starts beyond our range, we've
427 		 * finished.
428 		 */
429 		if (iter->from >= t) {
430 			rg = iter->link.prev;
431 			break;
432 		}
433 
434 		/* Add an entry for last_accounted_offset -> iter->from, and
435 		 * update last_accounted_offset.
436 		 */
437 		if (iter->from > last_accounted_offset)
438 			add += hugetlb_resv_map_add(resv, iter->link.prev,
439 						    last_accounted_offset,
440 						    iter->from, h, h_cg,
441 						    regions_needed);
442 
443 		last_accounted_offset = iter->to;
444 	}
445 
446 	/* Handle the case where our range extends beyond
447 	 * last_accounted_offset.
448 	 */
449 	if (!rg)
450 		rg = head->prev;
451 	if (last_accounted_offset < t)
452 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
453 					    t, h, h_cg, regions_needed);
454 
455 	return add;
456 }
457 
458 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459  */
460 static int allocate_file_region_entries(struct resv_map *resv,
461 					int regions_needed)
462 	__must_hold(&resv->lock)
463 {
464 	struct list_head allocated_regions;
465 	int to_allocate = 0, i = 0;
466 	struct file_region *trg = NULL, *rg = NULL;
467 
468 	VM_BUG_ON(regions_needed < 0);
469 
470 	INIT_LIST_HEAD(&allocated_regions);
471 
472 	/*
473 	 * Check for sufficient descriptors in the cache to accommodate
474 	 * the number of in progress add operations plus regions_needed.
475 	 *
476 	 * This is a while loop because when we drop the lock, some other call
477 	 * to region_add or region_del may have consumed some region_entries,
478 	 * so we keep looping here until we finally have enough entries for
479 	 * (adds_in_progress + regions_needed).
480 	 */
481 	while (resv->region_cache_count <
482 	       (resv->adds_in_progress + regions_needed)) {
483 		to_allocate = resv->adds_in_progress + regions_needed -
484 			      resv->region_cache_count;
485 
486 		/* At this point, we should have enough entries in the cache
487 		 * for all the existing adds_in_progress. We should only be
488 		 * needing to allocate for regions_needed.
489 		 */
490 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
491 
492 		spin_unlock(&resv->lock);
493 		for (i = 0; i < to_allocate; i++) {
494 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
495 			if (!trg)
496 				goto out_of_memory;
497 			list_add(&trg->link, &allocated_regions);
498 		}
499 
500 		spin_lock(&resv->lock);
501 
502 		list_splice(&allocated_regions, &resv->region_cache);
503 		resv->region_cache_count += to_allocate;
504 	}
505 
506 	return 0;
507 
508 out_of_memory:
509 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
510 		list_del(&rg->link);
511 		kfree(rg);
512 	}
513 	return -ENOMEM;
514 }
515 
516 /*
517  * Add the huge page range represented by [f, t) to the reserve
518  * map.  Regions will be taken from the cache to fill in this range.
519  * Sufficient regions should exist in the cache due to the previous
520  * call to region_chg with the same range, but in some cases the cache will not
521  * have sufficient entries due to races with other code doing region_add or
522  * region_del.  The extra needed entries will be allocated.
523  *
524  * regions_needed is the out value provided by a previous call to region_chg.
525  *
526  * Return the number of new huge pages added to the map.  This number is greater
527  * than or equal to zero.  If file_region entries needed to be allocated for
528  * this operation and we were not able to allocate, it returns -ENOMEM.
529  * region_add of regions of length 1 never allocate file_regions and cannot
530  * fail; region_chg will always allocate at least 1 entry and a region_add for
531  * 1 page will only require at most 1 entry.
532  */
533 static long region_add(struct resv_map *resv, long f, long t,
534 		       long in_regions_needed, struct hstate *h,
535 		       struct hugetlb_cgroup *h_cg)
536 {
537 	long add = 0, actual_regions_needed = 0;
538 
539 	spin_lock(&resv->lock);
540 retry:
541 
542 	/* Count how many regions are actually needed to execute this add. */
543 	add_reservation_in_range(resv, f, t, NULL, NULL,
544 				 &actual_regions_needed);
545 
546 	/*
547 	 * Check for sufficient descriptors in the cache to accommodate
548 	 * this add operation. Note that actual_regions_needed may be greater
549 	 * than in_regions_needed, as the resv_map may have been modified since
550 	 * the region_chg call. In this case, we need to make sure that we
551 	 * allocate extra entries, such that we have enough for all the
552 	 * existing adds_in_progress, plus the excess needed for this
553 	 * operation.
554 	 */
555 	if (actual_regions_needed > in_regions_needed &&
556 	    resv->region_cache_count <
557 		    resv->adds_in_progress +
558 			    (actual_regions_needed - in_regions_needed)) {
559 		/* region_add operation of range 1 should never need to
560 		 * allocate file_region entries.
561 		 */
562 		VM_BUG_ON(t - f <= 1);
563 
564 		if (allocate_file_region_entries(
565 			    resv, actual_regions_needed - in_regions_needed)) {
566 			return -ENOMEM;
567 		}
568 
569 		goto retry;
570 	}
571 
572 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
573 
574 	resv->adds_in_progress -= in_regions_needed;
575 
576 	spin_unlock(&resv->lock);
577 	return add;
578 }
579 
580 /*
581  * Examine the existing reserve map and determine how many
582  * huge pages in the specified range [f, t) are NOT currently
583  * represented.  This routine is called before a subsequent
584  * call to region_add that will actually modify the reserve
585  * map to add the specified range [f, t).  region_chg does
586  * not change the number of huge pages represented by the
587  * map.  A number of new file_region structures is added to the cache as a
588  * placeholder, for the subsequent region_add call to use. At least 1
589  * file_region structure is added.
590  *
591  * out_regions_needed is the number of regions added to the
592  * resv->adds_in_progress.  This value needs to be provided to a follow up call
593  * to region_add or region_abort for proper accounting.
594  *
595  * Returns the number of huge pages that need to be added to the existing
596  * reservation map for the range [f, t).  This number is greater or equal to
597  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
598  * is needed and can not be allocated.
599  */
600 static long region_chg(struct resv_map *resv, long f, long t,
601 		       long *out_regions_needed)
602 {
603 	long chg = 0;
604 
605 	spin_lock(&resv->lock);
606 
607 	/* Count how many hugepages in this range are NOT represented. */
608 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
609 				       out_regions_needed);
610 
611 	if (*out_regions_needed == 0)
612 		*out_regions_needed = 1;
613 
614 	if (allocate_file_region_entries(resv, *out_regions_needed))
615 		return -ENOMEM;
616 
617 	resv->adds_in_progress += *out_regions_needed;
618 
619 	spin_unlock(&resv->lock);
620 	return chg;
621 }
622 
623 /*
624  * Abort the in progress add operation.  The adds_in_progress field
625  * of the resv_map keeps track of the operations in progress between
626  * calls to region_chg and region_add.  Operations are sometimes
627  * aborted after the call to region_chg.  In such cases, region_abort
628  * is called to decrement the adds_in_progress counter. regions_needed
629  * is the value returned by the region_chg call, it is used to decrement
630  * the adds_in_progress counter.
631  *
632  * NOTE: The range arguments [f, t) are not needed or used in this
633  * routine.  They are kept to make reading the calling code easier as
634  * arguments will match the associated region_chg call.
635  */
636 static void region_abort(struct resv_map *resv, long f, long t,
637 			 long regions_needed)
638 {
639 	spin_lock(&resv->lock);
640 	VM_BUG_ON(!resv->region_cache_count);
641 	resv->adds_in_progress -= regions_needed;
642 	spin_unlock(&resv->lock);
643 }
644 
645 /*
646  * Delete the specified range [f, t) from the reserve map.  If the
647  * t parameter is LONG_MAX, this indicates that ALL regions after f
648  * should be deleted.  Locate the regions which intersect [f, t)
649  * and either trim, delete or split the existing regions.
650  *
651  * Returns the number of huge pages deleted from the reserve map.
652  * In the normal case, the return value is zero or more.  In the
653  * case where a region must be split, a new region descriptor must
654  * be allocated.  If the allocation fails, -ENOMEM will be returned.
655  * NOTE: If the parameter t == LONG_MAX, then we will never split
656  * a region and possibly return -ENOMEM.  Callers specifying
657  * t == LONG_MAX do not need to check for -ENOMEM error.
658  */
659 static long region_del(struct resv_map *resv, long f, long t)
660 {
661 	struct list_head *head = &resv->regions;
662 	struct file_region *rg, *trg;
663 	struct file_region *nrg = NULL;
664 	long del = 0;
665 
666 retry:
667 	spin_lock(&resv->lock);
668 	list_for_each_entry_safe(rg, trg, head, link) {
669 		/*
670 		 * Skip regions before the range to be deleted.  file_region
671 		 * ranges are normally of the form [from, to).  However, there
672 		 * may be a "placeholder" entry in the map which is of the form
673 		 * (from, to) with from == to.  Check for placeholder entries
674 		 * at the beginning of the range to be deleted.
675 		 */
676 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
677 			continue;
678 
679 		if (rg->from >= t)
680 			break;
681 
682 		if (f > rg->from && t < rg->to) { /* Must split region */
683 			/*
684 			 * Check for an entry in the cache before dropping
685 			 * lock and attempting allocation.
686 			 */
687 			if (!nrg &&
688 			    resv->region_cache_count > resv->adds_in_progress) {
689 				nrg = list_first_entry(&resv->region_cache,
690 							struct file_region,
691 							link);
692 				list_del(&nrg->link);
693 				resv->region_cache_count--;
694 			}
695 
696 			if (!nrg) {
697 				spin_unlock(&resv->lock);
698 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
699 				if (!nrg)
700 					return -ENOMEM;
701 				goto retry;
702 			}
703 
704 			del += t - f;
705 			hugetlb_cgroup_uncharge_file_region(
706 				resv, rg, t - f, false);
707 
708 			/* New entry for end of split region */
709 			nrg->from = t;
710 			nrg->to = rg->to;
711 
712 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
713 
714 			INIT_LIST_HEAD(&nrg->link);
715 
716 			/* Original entry is trimmed */
717 			rg->to = f;
718 
719 			list_add(&nrg->link, &rg->link);
720 			nrg = NULL;
721 			break;
722 		}
723 
724 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
725 			del += rg->to - rg->from;
726 			hugetlb_cgroup_uncharge_file_region(resv, rg,
727 							    rg->to - rg->from, true);
728 			list_del(&rg->link);
729 			kfree(rg);
730 			continue;
731 		}
732 
733 		if (f <= rg->from) {	/* Trim beginning of region */
734 			hugetlb_cgroup_uncharge_file_region(resv, rg,
735 							    t - rg->from, false);
736 
737 			del += t - rg->from;
738 			rg->from = t;
739 		} else {		/* Trim end of region */
740 			hugetlb_cgroup_uncharge_file_region(resv, rg,
741 							    rg->to - f, false);
742 
743 			del += rg->to - f;
744 			rg->to = f;
745 		}
746 	}
747 
748 	spin_unlock(&resv->lock);
749 	kfree(nrg);
750 	return del;
751 }
752 
753 /*
754  * A rare out of memory error was encountered which prevented removal of
755  * the reserve map region for a page.  The huge page itself was free'ed
756  * and removed from the page cache.  This routine will adjust the subpool
757  * usage count, and the global reserve count if needed.  By incrementing
758  * these counts, the reserve map entry which could not be deleted will
759  * appear as a "reserved" entry instead of simply dangling with incorrect
760  * counts.
761  */
762 void hugetlb_fix_reserve_counts(struct inode *inode)
763 {
764 	struct hugepage_subpool *spool = subpool_inode(inode);
765 	long rsv_adjust;
766 	bool reserved = false;
767 
768 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
769 	if (rsv_adjust > 0) {
770 		struct hstate *h = hstate_inode(inode);
771 
772 		if (!hugetlb_acct_memory(h, 1))
773 			reserved = true;
774 	} else if (!rsv_adjust) {
775 		reserved = true;
776 	}
777 
778 	if (!reserved)
779 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 }
781 
782 /*
783  * Count and return the number of huge pages in the reserve map
784  * that intersect with the range [f, t).
785  */
786 static long region_count(struct resv_map *resv, long f, long t)
787 {
788 	struct list_head *head = &resv->regions;
789 	struct file_region *rg;
790 	long chg = 0;
791 
792 	spin_lock(&resv->lock);
793 	/* Locate each segment we overlap with, and count that overlap. */
794 	list_for_each_entry(rg, head, link) {
795 		long seg_from;
796 		long seg_to;
797 
798 		if (rg->to <= f)
799 			continue;
800 		if (rg->from >= t)
801 			break;
802 
803 		seg_from = max(rg->from, f);
804 		seg_to = min(rg->to, t);
805 
806 		chg += seg_to - seg_from;
807 	}
808 	spin_unlock(&resv->lock);
809 
810 	return chg;
811 }
812 
813 /*
814  * Convert the address within this vma to the page offset within
815  * the mapping, in pagecache page units; huge pages here.
816  */
817 static pgoff_t vma_hugecache_offset(struct hstate *h,
818 			struct vm_area_struct *vma, unsigned long address)
819 {
820 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
821 			(vma->vm_pgoff >> huge_page_order(h));
822 }
823 
824 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
825 				     unsigned long address)
826 {
827 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
828 }
829 EXPORT_SYMBOL_GPL(linear_hugepage_index);
830 
831 /*
832  * Return the size of the pages allocated when backing a VMA. In the majority
833  * cases this will be same size as used by the page table entries.
834  */
835 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
836 {
837 	if (vma->vm_ops && vma->vm_ops->pagesize)
838 		return vma->vm_ops->pagesize(vma);
839 	return PAGE_SIZE;
840 }
841 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
842 
843 /*
844  * Return the page size being used by the MMU to back a VMA. In the majority
845  * of cases, the page size used by the kernel matches the MMU size. On
846  * architectures where it differs, an architecture-specific 'strong'
847  * version of this symbol is required.
848  */
849 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
850 {
851 	return vma_kernel_pagesize(vma);
852 }
853 
854 /*
855  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
856  * bits of the reservation map pointer, which are always clear due to
857  * alignment.
858  */
859 #define HPAGE_RESV_OWNER    (1UL << 0)
860 #define HPAGE_RESV_UNMAPPED (1UL << 1)
861 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
862 
863 /*
864  * These helpers are used to track how many pages are reserved for
865  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
866  * is guaranteed to have their future faults succeed.
867  *
868  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
869  * the reserve counters are updated with the hugetlb_lock held. It is safe
870  * to reset the VMA at fork() time as it is not in use yet and there is no
871  * chance of the global counters getting corrupted as a result of the values.
872  *
873  * The private mapping reservation is represented in a subtly different
874  * manner to a shared mapping.  A shared mapping has a region map associated
875  * with the underlying file, this region map represents the backing file
876  * pages which have ever had a reservation assigned which this persists even
877  * after the page is instantiated.  A private mapping has a region map
878  * associated with the original mmap which is attached to all VMAs which
879  * reference it, this region map represents those offsets which have consumed
880  * reservation ie. where pages have been instantiated.
881  */
882 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
883 {
884 	return (unsigned long)vma->vm_private_data;
885 }
886 
887 static void set_vma_private_data(struct vm_area_struct *vma,
888 							unsigned long value)
889 {
890 	vma->vm_private_data = (void *)value;
891 }
892 
893 static void
894 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
895 					  struct hugetlb_cgroup *h_cg,
896 					  struct hstate *h)
897 {
898 #ifdef CONFIG_CGROUP_HUGETLB
899 	if (!h_cg || !h) {
900 		resv_map->reservation_counter = NULL;
901 		resv_map->pages_per_hpage = 0;
902 		resv_map->css = NULL;
903 	} else {
904 		resv_map->reservation_counter =
905 			&h_cg->rsvd_hugepage[hstate_index(h)];
906 		resv_map->pages_per_hpage = pages_per_huge_page(h);
907 		resv_map->css = &h_cg->css;
908 	}
909 #endif
910 }
911 
912 struct resv_map *resv_map_alloc(void)
913 {
914 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
915 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
916 
917 	if (!resv_map || !rg) {
918 		kfree(resv_map);
919 		kfree(rg);
920 		return NULL;
921 	}
922 
923 	kref_init(&resv_map->refs);
924 	spin_lock_init(&resv_map->lock);
925 	INIT_LIST_HEAD(&resv_map->regions);
926 
927 	resv_map->adds_in_progress = 0;
928 	/*
929 	 * Initialize these to 0. On shared mappings, 0's here indicate these
930 	 * fields don't do cgroup accounting. On private mappings, these will be
931 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
932 	 * reservations are to be un-charged from here.
933 	 */
934 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
935 
936 	INIT_LIST_HEAD(&resv_map->region_cache);
937 	list_add(&rg->link, &resv_map->region_cache);
938 	resv_map->region_cache_count = 1;
939 
940 	return resv_map;
941 }
942 
943 void resv_map_release(struct kref *ref)
944 {
945 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
946 	struct list_head *head = &resv_map->region_cache;
947 	struct file_region *rg, *trg;
948 
949 	/* Clear out any active regions before we release the map. */
950 	region_del(resv_map, 0, LONG_MAX);
951 
952 	/* ... and any entries left in the cache */
953 	list_for_each_entry_safe(rg, trg, head, link) {
954 		list_del(&rg->link);
955 		kfree(rg);
956 	}
957 
958 	VM_BUG_ON(resv_map->adds_in_progress);
959 
960 	kfree(resv_map);
961 }
962 
963 static inline struct resv_map *inode_resv_map(struct inode *inode)
964 {
965 	/*
966 	 * At inode evict time, i_mapping may not point to the original
967 	 * address space within the inode.  This original address space
968 	 * contains the pointer to the resv_map.  So, always use the
969 	 * address space embedded within the inode.
970 	 * The VERY common case is inode->mapping == &inode->i_data but,
971 	 * this may not be true for device special inodes.
972 	 */
973 	return (struct resv_map *)(&inode->i_data)->private_data;
974 }
975 
976 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
977 {
978 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
979 	if (vma->vm_flags & VM_MAYSHARE) {
980 		struct address_space *mapping = vma->vm_file->f_mapping;
981 		struct inode *inode = mapping->host;
982 
983 		return inode_resv_map(inode);
984 
985 	} else {
986 		return (struct resv_map *)(get_vma_private_data(vma) &
987 							~HPAGE_RESV_MASK);
988 	}
989 }
990 
991 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
992 {
993 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
995 
996 	set_vma_private_data(vma, (get_vma_private_data(vma) &
997 				HPAGE_RESV_MASK) | (unsigned long)map);
998 }
999 
1000 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1001 {
1002 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1004 
1005 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1006 }
1007 
1008 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1009 {
1010 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1011 
1012 	return (get_vma_private_data(vma) & flag) != 0;
1013 }
1014 
1015 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1016 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1017 {
1018 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1019 	if (!(vma->vm_flags & VM_MAYSHARE))
1020 		vma->vm_private_data = (void *)0;
1021 }
1022 
1023 /*
1024  * Reset and decrement one ref on hugepage private reservation.
1025  * Called with mm->mmap_sem writer semaphore held.
1026  * This function should be only used by move_vma() and operate on
1027  * same sized vma. It should never come here with last ref on the
1028  * reservation.
1029  */
1030 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1031 {
1032 	/*
1033 	 * Clear the old hugetlb private page reservation.
1034 	 * It has already been transferred to new_vma.
1035 	 *
1036 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1037 	 * which copies vma into new_vma and unmaps vma. After the copy
1038 	 * operation both new_vma and vma share a reference to the resv_map
1039 	 * struct, and at that point vma is about to be unmapped. We don't
1040 	 * want to return the reservation to the pool at unmap of vma because
1041 	 * the reservation still lives on in new_vma, so simply decrement the
1042 	 * ref here and remove the resv_map reference from this vma.
1043 	 */
1044 	struct resv_map *reservations = vma_resv_map(vma);
1045 
1046 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1047 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1048 		kref_put(&reservations->refs, resv_map_release);
1049 	}
1050 
1051 	reset_vma_resv_huge_pages(vma);
1052 }
1053 
1054 /* Returns true if the VMA has associated reserve pages */
1055 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1056 {
1057 	if (vma->vm_flags & VM_NORESERVE) {
1058 		/*
1059 		 * This address is already reserved by other process(chg == 0),
1060 		 * so, we should decrement reserved count. Without decrementing,
1061 		 * reserve count remains after releasing inode, because this
1062 		 * allocated page will go into page cache and is regarded as
1063 		 * coming from reserved pool in releasing step.  Currently, we
1064 		 * don't have any other solution to deal with this situation
1065 		 * properly, so add work-around here.
1066 		 */
1067 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1068 			return true;
1069 		else
1070 			return false;
1071 	}
1072 
1073 	/* Shared mappings always use reserves */
1074 	if (vma->vm_flags & VM_MAYSHARE) {
1075 		/*
1076 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1077 		 * be a region map for all pages.  The only situation where
1078 		 * there is no region map is if a hole was punched via
1079 		 * fallocate.  In this case, there really are no reserves to
1080 		 * use.  This situation is indicated if chg != 0.
1081 		 */
1082 		if (chg)
1083 			return false;
1084 		else
1085 			return true;
1086 	}
1087 
1088 	/*
1089 	 * Only the process that called mmap() has reserves for
1090 	 * private mappings.
1091 	 */
1092 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1093 		/*
1094 		 * Like the shared case above, a hole punch or truncate
1095 		 * could have been performed on the private mapping.
1096 		 * Examine the value of chg to determine if reserves
1097 		 * actually exist or were previously consumed.
1098 		 * Very Subtle - The value of chg comes from a previous
1099 		 * call to vma_needs_reserves().  The reserve map for
1100 		 * private mappings has different (opposite) semantics
1101 		 * than that of shared mappings.  vma_needs_reserves()
1102 		 * has already taken this difference in semantics into
1103 		 * account.  Therefore, the meaning of chg is the same
1104 		 * as in the shared case above.  Code could easily be
1105 		 * combined, but keeping it separate draws attention to
1106 		 * subtle differences.
1107 		 */
1108 		if (chg)
1109 			return false;
1110 		else
1111 			return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 static void enqueue_huge_page(struct hstate *h, struct page *page)
1118 {
1119 	int nid = page_to_nid(page);
1120 
1121 	lockdep_assert_held(&hugetlb_lock);
1122 	VM_BUG_ON_PAGE(page_count(page), page);
1123 
1124 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1125 	h->free_huge_pages++;
1126 	h->free_huge_pages_node[nid]++;
1127 	SetHPageFreed(page);
1128 }
1129 
1130 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1131 {
1132 	struct page *page;
1133 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1134 
1135 	lockdep_assert_held(&hugetlb_lock);
1136 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1137 		if (pin && !is_pinnable_page(page))
1138 			continue;
1139 
1140 		if (PageHWPoison(page))
1141 			continue;
1142 
1143 		list_move(&page->lru, &h->hugepage_activelist);
1144 		set_page_refcounted(page);
1145 		ClearHPageFreed(page);
1146 		h->free_huge_pages--;
1147 		h->free_huge_pages_node[nid]--;
1148 		return page;
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1155 		nodemask_t *nmask)
1156 {
1157 	unsigned int cpuset_mems_cookie;
1158 	struct zonelist *zonelist;
1159 	struct zone *zone;
1160 	struct zoneref *z;
1161 	int node = NUMA_NO_NODE;
1162 
1163 	zonelist = node_zonelist(nid, gfp_mask);
1164 
1165 retry_cpuset:
1166 	cpuset_mems_cookie = read_mems_allowed_begin();
1167 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1168 		struct page *page;
1169 
1170 		if (!cpuset_zone_allowed(zone, gfp_mask))
1171 			continue;
1172 		/*
1173 		 * no need to ask again on the same node. Pool is node rather than
1174 		 * zone aware
1175 		 */
1176 		if (zone_to_nid(zone) == node)
1177 			continue;
1178 		node = zone_to_nid(zone);
1179 
1180 		page = dequeue_huge_page_node_exact(h, node);
1181 		if (page)
1182 			return page;
1183 	}
1184 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1185 		goto retry_cpuset;
1186 
1187 	return NULL;
1188 }
1189 
1190 static struct page *dequeue_huge_page_vma(struct hstate *h,
1191 				struct vm_area_struct *vma,
1192 				unsigned long address, int avoid_reserve,
1193 				long chg)
1194 {
1195 	struct page *page = NULL;
1196 	struct mempolicy *mpol;
1197 	gfp_t gfp_mask;
1198 	nodemask_t *nodemask;
1199 	int nid;
1200 
1201 	/*
1202 	 * A child process with MAP_PRIVATE mappings created by their parent
1203 	 * have no page reserves. This check ensures that reservations are
1204 	 * not "stolen". The child may still get SIGKILLed
1205 	 */
1206 	if (!vma_has_reserves(vma, chg) &&
1207 			h->free_huge_pages - h->resv_huge_pages == 0)
1208 		goto err;
1209 
1210 	/* If reserves cannot be used, ensure enough pages are in the pool */
1211 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1212 		goto err;
1213 
1214 	gfp_mask = htlb_alloc_mask(h);
1215 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1216 
1217 	if (mpol_is_preferred_many(mpol)) {
1218 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1219 
1220 		/* Fallback to all nodes if page==NULL */
1221 		nodemask = NULL;
1222 	}
1223 
1224 	if (!page)
1225 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1226 
1227 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1228 		SetHPageRestoreReserve(page);
1229 		h->resv_huge_pages--;
1230 	}
1231 
1232 	mpol_cond_put(mpol);
1233 	return page;
1234 
1235 err:
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * common helper functions for hstate_next_node_to_{alloc|free}.
1241  * We may have allocated or freed a huge page based on a different
1242  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1243  * be outside of *nodes_allowed.  Ensure that we use an allowed
1244  * node for alloc or free.
1245  */
1246 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1247 {
1248 	nid = next_node_in(nid, *nodes_allowed);
1249 	VM_BUG_ON(nid >= MAX_NUMNODES);
1250 
1251 	return nid;
1252 }
1253 
1254 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1255 {
1256 	if (!node_isset(nid, *nodes_allowed))
1257 		nid = next_node_allowed(nid, nodes_allowed);
1258 	return nid;
1259 }
1260 
1261 /*
1262  * returns the previously saved node ["this node"] from which to
1263  * allocate a persistent huge page for the pool and advance the
1264  * next node from which to allocate, handling wrap at end of node
1265  * mask.
1266  */
1267 static int hstate_next_node_to_alloc(struct hstate *h,
1268 					nodemask_t *nodes_allowed)
1269 {
1270 	int nid;
1271 
1272 	VM_BUG_ON(!nodes_allowed);
1273 
1274 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1275 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1276 
1277 	return nid;
1278 }
1279 
1280 /*
1281  * helper for remove_pool_huge_page() - return the previously saved
1282  * node ["this node"] from which to free a huge page.  Advance the
1283  * next node id whether or not we find a free huge page to free so
1284  * that the next attempt to free addresses the next node.
1285  */
1286 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1287 {
1288 	int nid;
1289 
1290 	VM_BUG_ON(!nodes_allowed);
1291 
1292 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1293 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1294 
1295 	return nid;
1296 }
1297 
1298 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1299 	for (nr_nodes = nodes_weight(*mask);				\
1300 		nr_nodes > 0 &&						\
1301 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1302 		nr_nodes--)
1303 
1304 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1305 	for (nr_nodes = nodes_weight(*mask);				\
1306 		nr_nodes > 0 &&						\
1307 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1308 		nr_nodes--)
1309 
1310 /* used to demote non-gigantic_huge pages as well */
1311 static void __destroy_compound_gigantic_page(struct page *page,
1312 					unsigned int order, bool demote)
1313 {
1314 	int i;
1315 	int nr_pages = 1 << order;
1316 	struct page *p = page + 1;
1317 
1318 	atomic_set(compound_mapcount_ptr(page), 0);
1319 	atomic_set(compound_pincount_ptr(page), 0);
1320 
1321 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322 		p->mapping = NULL;
1323 		clear_compound_head(p);
1324 		if (!demote)
1325 			set_page_refcounted(p);
1326 	}
1327 
1328 	set_compound_order(page, 0);
1329 #ifdef CONFIG_64BIT
1330 	page[1].compound_nr = 0;
1331 #endif
1332 	__ClearPageHead(page);
1333 }
1334 
1335 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1336 					unsigned int order)
1337 {
1338 	__destroy_compound_gigantic_page(page, order, true);
1339 }
1340 
1341 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1342 static void destroy_compound_gigantic_page(struct page *page,
1343 					unsigned int order)
1344 {
1345 	__destroy_compound_gigantic_page(page, order, false);
1346 }
1347 
1348 static void free_gigantic_page(struct page *page, unsigned int order)
1349 {
1350 	/*
1351 	 * If the page isn't allocated using the cma allocator,
1352 	 * cma_release() returns false.
1353 	 */
1354 #ifdef CONFIG_CMA
1355 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1356 		return;
1357 #endif
1358 
1359 	free_contig_range(page_to_pfn(page), 1 << order);
1360 }
1361 
1362 #ifdef CONFIG_CONTIG_ALLOC
1363 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1364 		int nid, nodemask_t *nodemask)
1365 {
1366 	unsigned long nr_pages = pages_per_huge_page(h);
1367 	if (nid == NUMA_NO_NODE)
1368 		nid = numa_mem_id();
1369 
1370 #ifdef CONFIG_CMA
1371 	{
1372 		struct page *page;
1373 		int node;
1374 
1375 		if (hugetlb_cma[nid]) {
1376 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1377 					huge_page_order(h), true);
1378 			if (page)
1379 				return page;
1380 		}
1381 
1382 		if (!(gfp_mask & __GFP_THISNODE)) {
1383 			for_each_node_mask(node, *nodemask) {
1384 				if (node == nid || !hugetlb_cma[node])
1385 					continue;
1386 
1387 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1388 						huge_page_order(h), true);
1389 				if (page)
1390 					return page;
1391 			}
1392 		}
1393 	}
1394 #endif
1395 
1396 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1397 }
1398 
1399 #else /* !CONFIG_CONTIG_ALLOC */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 					int nid, nodemask_t *nodemask)
1402 {
1403 	return NULL;
1404 }
1405 #endif /* CONFIG_CONTIG_ALLOC */
1406 
1407 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1408 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1409 					int nid, nodemask_t *nodemask)
1410 {
1411 	return NULL;
1412 }
1413 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1414 static inline void destroy_compound_gigantic_page(struct page *page,
1415 						unsigned int order) { }
1416 #endif
1417 
1418 /*
1419  * Remove hugetlb page from lists, and update dtor so that page appears
1420  * as just a compound page.
1421  *
1422  * A reference is held on the page, except in the case of demote.
1423  *
1424  * Must be called with hugetlb lock held.
1425  */
1426 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1427 							bool adjust_surplus,
1428 							bool demote)
1429 {
1430 	int nid = page_to_nid(page);
1431 
1432 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1433 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1434 
1435 	lockdep_assert_held(&hugetlb_lock);
1436 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1437 		return;
1438 
1439 	list_del(&page->lru);
1440 
1441 	if (HPageFreed(page)) {
1442 		h->free_huge_pages--;
1443 		h->free_huge_pages_node[nid]--;
1444 	}
1445 	if (adjust_surplus) {
1446 		h->surplus_huge_pages--;
1447 		h->surplus_huge_pages_node[nid]--;
1448 	}
1449 
1450 	/*
1451 	 * Very subtle
1452 	 *
1453 	 * For non-gigantic pages set the destructor to the normal compound
1454 	 * page dtor.  This is needed in case someone takes an additional
1455 	 * temporary ref to the page, and freeing is delayed until they drop
1456 	 * their reference.
1457 	 *
1458 	 * For gigantic pages set the destructor to the null dtor.  This
1459 	 * destructor will never be called.  Before freeing the gigantic
1460 	 * page destroy_compound_gigantic_page will turn the compound page
1461 	 * into a simple group of pages.  After this the destructor does not
1462 	 * apply.
1463 	 *
1464 	 * This handles the case where more than one ref is held when and
1465 	 * after update_and_free_page is called.
1466 	 *
1467 	 * In the case of demote we do not ref count the page as it will soon
1468 	 * be turned into a page of smaller size.
1469 	 */
1470 	if (!demote)
1471 		set_page_refcounted(page);
1472 	if (hstate_is_gigantic(h))
1473 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1474 	else
1475 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1476 
1477 	h->nr_huge_pages--;
1478 	h->nr_huge_pages_node[nid]--;
1479 }
1480 
1481 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1482 							bool adjust_surplus)
1483 {
1484 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1485 }
1486 
1487 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1488 							bool adjust_surplus)
1489 {
1490 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1491 }
1492 
1493 static void add_hugetlb_page(struct hstate *h, struct page *page,
1494 			     bool adjust_surplus)
1495 {
1496 	int zeroed;
1497 	int nid = page_to_nid(page);
1498 
1499 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1500 
1501 	lockdep_assert_held(&hugetlb_lock);
1502 
1503 	INIT_LIST_HEAD(&page->lru);
1504 	h->nr_huge_pages++;
1505 	h->nr_huge_pages_node[nid]++;
1506 
1507 	if (adjust_surplus) {
1508 		h->surplus_huge_pages++;
1509 		h->surplus_huge_pages_node[nid]++;
1510 	}
1511 
1512 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1513 	set_page_private(page, 0);
1514 	SetHPageVmemmapOptimized(page);
1515 
1516 	/*
1517 	 * This page is about to be managed by the hugetlb allocator and
1518 	 * should have no users.  Drop our reference, and check for others
1519 	 * just in case.
1520 	 */
1521 	zeroed = put_page_testzero(page);
1522 	if (!zeroed)
1523 		/*
1524 		 * It is VERY unlikely soneone else has taken a ref on
1525 		 * the page.  In this case, we simply return as the
1526 		 * hugetlb destructor (free_huge_page) will be called
1527 		 * when this other ref is dropped.
1528 		 */
1529 		return;
1530 
1531 	arch_clear_hugepage_flags(page);
1532 	enqueue_huge_page(h, page);
1533 }
1534 
1535 static void __update_and_free_page(struct hstate *h, struct page *page)
1536 {
1537 	int i;
1538 	struct page *subpage = page;
1539 
1540 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1541 		return;
1542 
1543 	if (hugetlb_vmemmap_alloc(h, page)) {
1544 		spin_lock_irq(&hugetlb_lock);
1545 		/*
1546 		 * If we cannot allocate vmemmap pages, just refuse to free the
1547 		 * page and put the page back on the hugetlb free list and treat
1548 		 * as a surplus page.
1549 		 */
1550 		add_hugetlb_page(h, page, true);
1551 		spin_unlock_irq(&hugetlb_lock);
1552 		return;
1553 	}
1554 
1555 	for (i = 0; i < pages_per_huge_page(h);
1556 	     i++, subpage = mem_map_next(subpage, page, i)) {
1557 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1558 				1 << PG_referenced | 1 << PG_dirty |
1559 				1 << PG_active | 1 << PG_private |
1560 				1 << PG_writeback);
1561 	}
1562 
1563 	/*
1564 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1565 	 * need to be given back to CMA in free_gigantic_page.
1566 	 */
1567 	if (hstate_is_gigantic(h) ||
1568 	    hugetlb_cma_page(page, huge_page_order(h))) {
1569 		destroy_compound_gigantic_page(page, huge_page_order(h));
1570 		free_gigantic_page(page, huge_page_order(h));
1571 	} else {
1572 		__free_pages(page, huge_page_order(h));
1573 	}
1574 }
1575 
1576 /*
1577  * As update_and_free_page() can be called under any context, so we cannot
1578  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1579  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1580  * the vmemmap pages.
1581  *
1582  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1583  * freed and frees them one-by-one. As the page->mapping pointer is going
1584  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1585  * structure of a lockless linked list of huge pages to be freed.
1586  */
1587 static LLIST_HEAD(hpage_freelist);
1588 
1589 static void free_hpage_workfn(struct work_struct *work)
1590 {
1591 	struct llist_node *node;
1592 
1593 	node = llist_del_all(&hpage_freelist);
1594 
1595 	while (node) {
1596 		struct page *page;
1597 		struct hstate *h;
1598 
1599 		page = container_of((struct address_space **)node,
1600 				     struct page, mapping);
1601 		node = node->next;
1602 		page->mapping = NULL;
1603 		/*
1604 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1605 		 * is going to trigger because a previous call to
1606 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1607 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1608 		 */
1609 		h = size_to_hstate(page_size(page));
1610 
1611 		__update_and_free_page(h, page);
1612 
1613 		cond_resched();
1614 	}
1615 }
1616 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1617 
1618 static inline void flush_free_hpage_work(struct hstate *h)
1619 {
1620 	if (hugetlb_optimize_vmemmap_pages(h))
1621 		flush_work(&free_hpage_work);
1622 }
1623 
1624 static void update_and_free_page(struct hstate *h, struct page *page,
1625 				 bool atomic)
1626 {
1627 	if (!HPageVmemmapOptimized(page) || !atomic) {
1628 		__update_and_free_page(h, page);
1629 		return;
1630 	}
1631 
1632 	/*
1633 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1634 	 *
1635 	 * Only call schedule_work() if hpage_freelist is previously
1636 	 * empty. Otherwise, schedule_work() had been called but the workfn
1637 	 * hasn't retrieved the list yet.
1638 	 */
1639 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1640 		schedule_work(&free_hpage_work);
1641 }
1642 
1643 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1644 {
1645 	struct page *page, *t_page;
1646 
1647 	list_for_each_entry_safe(page, t_page, list, lru) {
1648 		update_and_free_page(h, page, false);
1649 		cond_resched();
1650 	}
1651 }
1652 
1653 struct hstate *size_to_hstate(unsigned long size)
1654 {
1655 	struct hstate *h;
1656 
1657 	for_each_hstate(h) {
1658 		if (huge_page_size(h) == size)
1659 			return h;
1660 	}
1661 	return NULL;
1662 }
1663 
1664 void free_huge_page(struct page *page)
1665 {
1666 	/*
1667 	 * Can't pass hstate in here because it is called from the
1668 	 * compound page destructor.
1669 	 */
1670 	struct hstate *h = page_hstate(page);
1671 	int nid = page_to_nid(page);
1672 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1673 	bool restore_reserve;
1674 	unsigned long flags;
1675 
1676 	VM_BUG_ON_PAGE(page_count(page), page);
1677 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1678 
1679 	hugetlb_set_page_subpool(page, NULL);
1680 	page->mapping = NULL;
1681 	restore_reserve = HPageRestoreReserve(page);
1682 	ClearHPageRestoreReserve(page);
1683 
1684 	/*
1685 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1686 	 * reservation.  If the page was associated with a subpool, there
1687 	 * would have been a page reserved in the subpool before allocation
1688 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1689 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1690 	 * remove the reserved page from the subpool.
1691 	 */
1692 	if (!restore_reserve) {
1693 		/*
1694 		 * A return code of zero implies that the subpool will be
1695 		 * under its minimum size if the reservation is not restored
1696 		 * after page is free.  Therefore, force restore_reserve
1697 		 * operation.
1698 		 */
1699 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1700 			restore_reserve = true;
1701 	}
1702 
1703 	spin_lock_irqsave(&hugetlb_lock, flags);
1704 	ClearHPageMigratable(page);
1705 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1706 				     pages_per_huge_page(h), page);
1707 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1708 					  pages_per_huge_page(h), page);
1709 	if (restore_reserve)
1710 		h->resv_huge_pages++;
1711 
1712 	if (HPageTemporary(page)) {
1713 		remove_hugetlb_page(h, page, false);
1714 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1715 		update_and_free_page(h, page, true);
1716 	} else if (h->surplus_huge_pages_node[nid]) {
1717 		/* remove the page from active list */
1718 		remove_hugetlb_page(h, page, true);
1719 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1720 		update_and_free_page(h, page, true);
1721 	} else {
1722 		arch_clear_hugepage_flags(page);
1723 		enqueue_huge_page(h, page);
1724 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1725 	}
1726 }
1727 
1728 /*
1729  * Must be called with the hugetlb lock held
1730  */
1731 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1732 {
1733 	lockdep_assert_held(&hugetlb_lock);
1734 	h->nr_huge_pages++;
1735 	h->nr_huge_pages_node[nid]++;
1736 }
1737 
1738 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1739 {
1740 	hugetlb_vmemmap_free(h, page);
1741 	INIT_LIST_HEAD(&page->lru);
1742 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1743 	hugetlb_set_page_subpool(page, NULL);
1744 	set_hugetlb_cgroup(page, NULL);
1745 	set_hugetlb_cgroup_rsvd(page, NULL);
1746 }
1747 
1748 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1749 {
1750 	__prep_new_huge_page(h, page);
1751 	spin_lock_irq(&hugetlb_lock);
1752 	__prep_account_new_huge_page(h, nid);
1753 	spin_unlock_irq(&hugetlb_lock);
1754 }
1755 
1756 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1757 								bool demote)
1758 {
1759 	int i, j;
1760 	int nr_pages = 1 << order;
1761 	struct page *p = page + 1;
1762 
1763 	/* we rely on prep_new_huge_page to set the destructor */
1764 	set_compound_order(page, order);
1765 	__ClearPageReserved(page);
1766 	__SetPageHead(page);
1767 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1768 		/*
1769 		 * For gigantic hugepages allocated through bootmem at
1770 		 * boot, it's safer to be consistent with the not-gigantic
1771 		 * hugepages and clear the PG_reserved bit from all tail pages
1772 		 * too.  Otherwise drivers using get_user_pages() to access tail
1773 		 * pages may get the reference counting wrong if they see
1774 		 * PG_reserved set on a tail page (despite the head page not
1775 		 * having PG_reserved set).  Enforcing this consistency between
1776 		 * head and tail pages allows drivers to optimize away a check
1777 		 * on the head page when they need know if put_page() is needed
1778 		 * after get_user_pages().
1779 		 */
1780 		__ClearPageReserved(p);
1781 		/*
1782 		 * Subtle and very unlikely
1783 		 *
1784 		 * Gigantic 'page allocators' such as memblock or cma will
1785 		 * return a set of pages with each page ref counted.  We need
1786 		 * to turn this set of pages into a compound page with tail
1787 		 * page ref counts set to zero.  Code such as speculative page
1788 		 * cache adding could take a ref on a 'to be' tail page.
1789 		 * We need to respect any increased ref count, and only set
1790 		 * the ref count to zero if count is currently 1.  If count
1791 		 * is not 1, we return an error.  An error return indicates
1792 		 * the set of pages can not be converted to a gigantic page.
1793 		 * The caller who allocated the pages should then discard the
1794 		 * pages using the appropriate free interface.
1795 		 *
1796 		 * In the case of demote, the ref count will be zero.
1797 		 */
1798 		if (!demote) {
1799 			if (!page_ref_freeze(p, 1)) {
1800 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1801 				goto out_error;
1802 			}
1803 		} else {
1804 			VM_BUG_ON_PAGE(page_count(p), p);
1805 		}
1806 		set_compound_head(p, page);
1807 	}
1808 	atomic_set(compound_mapcount_ptr(page), -1);
1809 	atomic_set(compound_pincount_ptr(page), 0);
1810 	return true;
1811 
1812 out_error:
1813 	/* undo tail page modifications made above */
1814 	p = page + 1;
1815 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1816 		clear_compound_head(p);
1817 		set_page_refcounted(p);
1818 	}
1819 	/* need to clear PG_reserved on remaining tail pages  */
1820 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1821 		__ClearPageReserved(p);
1822 	set_compound_order(page, 0);
1823 #ifdef CONFIG_64BIT
1824 	page[1].compound_nr = 0;
1825 #endif
1826 	__ClearPageHead(page);
1827 	return false;
1828 }
1829 
1830 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1831 {
1832 	return __prep_compound_gigantic_page(page, order, false);
1833 }
1834 
1835 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1836 							unsigned int order)
1837 {
1838 	return __prep_compound_gigantic_page(page, order, true);
1839 }
1840 
1841 /*
1842  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1843  * transparent huge pages.  See the PageTransHuge() documentation for more
1844  * details.
1845  */
1846 int PageHuge(struct page *page)
1847 {
1848 	if (!PageCompound(page))
1849 		return 0;
1850 
1851 	page = compound_head(page);
1852 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1853 }
1854 EXPORT_SYMBOL_GPL(PageHuge);
1855 
1856 /*
1857  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1858  * normal or transparent huge pages.
1859  */
1860 int PageHeadHuge(struct page *page_head)
1861 {
1862 	if (!PageHead(page_head))
1863 		return 0;
1864 
1865 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1866 }
1867 EXPORT_SYMBOL_GPL(PageHeadHuge);
1868 
1869 /*
1870  * Find and lock address space (mapping) in write mode.
1871  *
1872  * Upon entry, the page is locked which means that page_mapping() is
1873  * stable.  Due to locking order, we can only trylock_write.  If we can
1874  * not get the lock, simply return NULL to caller.
1875  */
1876 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1877 {
1878 	struct address_space *mapping = page_mapping(hpage);
1879 
1880 	if (!mapping)
1881 		return mapping;
1882 
1883 	if (i_mmap_trylock_write(mapping))
1884 		return mapping;
1885 
1886 	return NULL;
1887 }
1888 
1889 pgoff_t hugetlb_basepage_index(struct page *page)
1890 {
1891 	struct page *page_head = compound_head(page);
1892 	pgoff_t index = page_index(page_head);
1893 	unsigned long compound_idx;
1894 
1895 	if (compound_order(page_head) >= MAX_ORDER)
1896 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1897 	else
1898 		compound_idx = page - page_head;
1899 
1900 	return (index << compound_order(page_head)) + compound_idx;
1901 }
1902 
1903 static struct page *alloc_buddy_huge_page(struct hstate *h,
1904 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1905 		nodemask_t *node_alloc_noretry)
1906 {
1907 	int order = huge_page_order(h);
1908 	struct page *page;
1909 	bool alloc_try_hard = true;
1910 
1911 	/*
1912 	 * By default we always try hard to allocate the page with
1913 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1914 	 * a loop (to adjust global huge page counts) and previous allocation
1915 	 * failed, do not continue to try hard on the same node.  Use the
1916 	 * node_alloc_noretry bitmap to manage this state information.
1917 	 */
1918 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1919 		alloc_try_hard = false;
1920 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1921 	if (alloc_try_hard)
1922 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1923 	if (nid == NUMA_NO_NODE)
1924 		nid = numa_mem_id();
1925 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1926 	if (page)
1927 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1928 	else
1929 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1930 
1931 	/*
1932 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1933 	 * indicates an overall state change.  Clear bit so that we resume
1934 	 * normal 'try hard' allocations.
1935 	 */
1936 	if (node_alloc_noretry && page && !alloc_try_hard)
1937 		node_clear(nid, *node_alloc_noretry);
1938 
1939 	/*
1940 	 * If we tried hard to get a page but failed, set bit so that
1941 	 * subsequent attempts will not try as hard until there is an
1942 	 * overall state change.
1943 	 */
1944 	if (node_alloc_noretry && !page && alloc_try_hard)
1945 		node_set(nid, *node_alloc_noretry);
1946 
1947 	return page;
1948 }
1949 
1950 /*
1951  * Common helper to allocate a fresh hugetlb page. All specific allocators
1952  * should use this function to get new hugetlb pages
1953  */
1954 static struct page *alloc_fresh_huge_page(struct hstate *h,
1955 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1956 		nodemask_t *node_alloc_noretry)
1957 {
1958 	struct page *page;
1959 	bool retry = false;
1960 
1961 retry:
1962 	if (hstate_is_gigantic(h))
1963 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1964 	else
1965 		page = alloc_buddy_huge_page(h, gfp_mask,
1966 				nid, nmask, node_alloc_noretry);
1967 	if (!page)
1968 		return NULL;
1969 
1970 	if (hstate_is_gigantic(h)) {
1971 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1972 			/*
1973 			 * Rare failure to convert pages to compound page.
1974 			 * Free pages and try again - ONCE!
1975 			 */
1976 			free_gigantic_page(page, huge_page_order(h));
1977 			if (!retry) {
1978 				retry = true;
1979 				goto retry;
1980 			}
1981 			return NULL;
1982 		}
1983 	}
1984 	prep_new_huge_page(h, page, page_to_nid(page));
1985 
1986 	return page;
1987 }
1988 
1989 /*
1990  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1991  * manner.
1992  */
1993 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1994 				nodemask_t *node_alloc_noretry)
1995 {
1996 	struct page *page;
1997 	int nr_nodes, node;
1998 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1999 
2000 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2001 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2002 						node_alloc_noretry);
2003 		if (page)
2004 			break;
2005 	}
2006 
2007 	if (!page)
2008 		return 0;
2009 
2010 	put_page(page); /* free it into the hugepage allocator */
2011 
2012 	return 1;
2013 }
2014 
2015 /*
2016  * Remove huge page from pool from next node to free.  Attempt to keep
2017  * persistent huge pages more or less balanced over allowed nodes.
2018  * This routine only 'removes' the hugetlb page.  The caller must make
2019  * an additional call to free the page to low level allocators.
2020  * Called with hugetlb_lock locked.
2021  */
2022 static struct page *remove_pool_huge_page(struct hstate *h,
2023 						nodemask_t *nodes_allowed,
2024 						 bool acct_surplus)
2025 {
2026 	int nr_nodes, node;
2027 	struct page *page = NULL;
2028 
2029 	lockdep_assert_held(&hugetlb_lock);
2030 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2031 		/*
2032 		 * If we're returning unused surplus pages, only examine
2033 		 * nodes with surplus pages.
2034 		 */
2035 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2036 		    !list_empty(&h->hugepage_freelists[node])) {
2037 			page = list_entry(h->hugepage_freelists[node].next,
2038 					  struct page, lru);
2039 			remove_hugetlb_page(h, page, acct_surplus);
2040 			break;
2041 		}
2042 	}
2043 
2044 	return page;
2045 }
2046 
2047 /*
2048  * Dissolve a given free hugepage into free buddy pages. This function does
2049  * nothing for in-use hugepages and non-hugepages.
2050  * This function returns values like below:
2051  *
2052  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2053  *           when the system is under memory pressure and the feature of
2054  *           freeing unused vmemmap pages associated with each hugetlb page
2055  *           is enabled.
2056  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2057  *           (allocated or reserved.)
2058  *       0:  successfully dissolved free hugepages or the page is not a
2059  *           hugepage (considered as already dissolved)
2060  */
2061 int dissolve_free_huge_page(struct page *page)
2062 {
2063 	int rc = -EBUSY;
2064 
2065 retry:
2066 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2067 	if (!PageHuge(page))
2068 		return 0;
2069 
2070 	spin_lock_irq(&hugetlb_lock);
2071 	if (!PageHuge(page)) {
2072 		rc = 0;
2073 		goto out;
2074 	}
2075 
2076 	if (!page_count(page)) {
2077 		struct page *head = compound_head(page);
2078 		struct hstate *h = page_hstate(head);
2079 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2080 			goto out;
2081 
2082 		/*
2083 		 * We should make sure that the page is already on the free list
2084 		 * when it is dissolved.
2085 		 */
2086 		if (unlikely(!HPageFreed(head))) {
2087 			spin_unlock_irq(&hugetlb_lock);
2088 			cond_resched();
2089 
2090 			/*
2091 			 * Theoretically, we should return -EBUSY when we
2092 			 * encounter this race. In fact, we have a chance
2093 			 * to successfully dissolve the page if we do a
2094 			 * retry. Because the race window is quite small.
2095 			 * If we seize this opportunity, it is an optimization
2096 			 * for increasing the success rate of dissolving page.
2097 			 */
2098 			goto retry;
2099 		}
2100 
2101 		remove_hugetlb_page(h, head, false);
2102 		h->max_huge_pages--;
2103 		spin_unlock_irq(&hugetlb_lock);
2104 
2105 		/*
2106 		 * Normally update_and_free_page will allocate required vmemmmap
2107 		 * before freeing the page.  update_and_free_page will fail to
2108 		 * free the page if it can not allocate required vmemmap.  We
2109 		 * need to adjust max_huge_pages if the page is not freed.
2110 		 * Attempt to allocate vmemmmap here so that we can take
2111 		 * appropriate action on failure.
2112 		 */
2113 		rc = hugetlb_vmemmap_alloc(h, head);
2114 		if (!rc) {
2115 			/*
2116 			 * Move PageHWPoison flag from head page to the raw
2117 			 * error page, which makes any subpages rather than
2118 			 * the error page reusable.
2119 			 */
2120 			if (PageHWPoison(head) && page != head) {
2121 				SetPageHWPoison(page);
2122 				ClearPageHWPoison(head);
2123 			}
2124 			update_and_free_page(h, head, false);
2125 		} else {
2126 			spin_lock_irq(&hugetlb_lock);
2127 			add_hugetlb_page(h, head, false);
2128 			h->max_huge_pages++;
2129 			spin_unlock_irq(&hugetlb_lock);
2130 		}
2131 
2132 		return rc;
2133 	}
2134 out:
2135 	spin_unlock_irq(&hugetlb_lock);
2136 	return rc;
2137 }
2138 
2139 /*
2140  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2141  * make specified memory blocks removable from the system.
2142  * Note that this will dissolve a free gigantic hugepage completely, if any
2143  * part of it lies within the given range.
2144  * Also note that if dissolve_free_huge_page() returns with an error, all
2145  * free hugepages that were dissolved before that error are lost.
2146  */
2147 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2148 {
2149 	unsigned long pfn;
2150 	struct page *page;
2151 	int rc = 0;
2152 
2153 	if (!hugepages_supported())
2154 		return rc;
2155 
2156 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2157 		page = pfn_to_page(pfn);
2158 		rc = dissolve_free_huge_page(page);
2159 		if (rc)
2160 			break;
2161 	}
2162 
2163 	return rc;
2164 }
2165 
2166 /*
2167  * Allocates a fresh surplus page from the page allocator.
2168  */
2169 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2170 		int nid, nodemask_t *nmask, bool zero_ref)
2171 {
2172 	struct page *page = NULL;
2173 	bool retry = false;
2174 
2175 	if (hstate_is_gigantic(h))
2176 		return NULL;
2177 
2178 	spin_lock_irq(&hugetlb_lock);
2179 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2180 		goto out_unlock;
2181 	spin_unlock_irq(&hugetlb_lock);
2182 
2183 retry:
2184 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2185 	if (!page)
2186 		return NULL;
2187 
2188 	spin_lock_irq(&hugetlb_lock);
2189 	/*
2190 	 * We could have raced with the pool size change.
2191 	 * Double check that and simply deallocate the new page
2192 	 * if we would end up overcommiting the surpluses. Abuse
2193 	 * temporary page to workaround the nasty free_huge_page
2194 	 * codeflow
2195 	 */
2196 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2197 		SetHPageTemporary(page);
2198 		spin_unlock_irq(&hugetlb_lock);
2199 		put_page(page);
2200 		return NULL;
2201 	}
2202 
2203 	if (zero_ref) {
2204 		/*
2205 		 * Caller requires a page with zero ref count.
2206 		 * We will drop ref count here.  If someone else is holding
2207 		 * a ref, the page will be freed when they drop it.  Abuse
2208 		 * temporary page flag to accomplish this.
2209 		 */
2210 		SetHPageTemporary(page);
2211 		if (!put_page_testzero(page)) {
2212 			/*
2213 			 * Unexpected inflated ref count on freshly allocated
2214 			 * huge.  Retry once.
2215 			 */
2216 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2217 			spin_unlock_irq(&hugetlb_lock);
2218 			if (retry)
2219 				return NULL;
2220 
2221 			retry = true;
2222 			goto retry;
2223 		}
2224 		ClearHPageTemporary(page);
2225 	}
2226 
2227 	h->surplus_huge_pages++;
2228 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2229 
2230 out_unlock:
2231 	spin_unlock_irq(&hugetlb_lock);
2232 
2233 	return page;
2234 }
2235 
2236 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2237 				     int nid, nodemask_t *nmask)
2238 {
2239 	struct page *page;
2240 
2241 	if (hstate_is_gigantic(h))
2242 		return NULL;
2243 
2244 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2245 	if (!page)
2246 		return NULL;
2247 
2248 	/*
2249 	 * We do not account these pages as surplus because they are only
2250 	 * temporary and will be released properly on the last reference
2251 	 */
2252 	SetHPageTemporary(page);
2253 
2254 	return page;
2255 }
2256 
2257 /*
2258  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2259  */
2260 static
2261 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2262 		struct vm_area_struct *vma, unsigned long addr)
2263 {
2264 	struct page *page = NULL;
2265 	struct mempolicy *mpol;
2266 	gfp_t gfp_mask = htlb_alloc_mask(h);
2267 	int nid;
2268 	nodemask_t *nodemask;
2269 
2270 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2271 	if (mpol_is_preferred_many(mpol)) {
2272 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2273 
2274 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2275 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2276 
2277 		/* Fallback to all nodes if page==NULL */
2278 		nodemask = NULL;
2279 	}
2280 
2281 	if (!page)
2282 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2283 	mpol_cond_put(mpol);
2284 	return page;
2285 }
2286 
2287 /* page migration callback function */
2288 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2289 		nodemask_t *nmask, gfp_t gfp_mask)
2290 {
2291 	spin_lock_irq(&hugetlb_lock);
2292 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2293 		struct page *page;
2294 
2295 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2296 		if (page) {
2297 			spin_unlock_irq(&hugetlb_lock);
2298 			return page;
2299 		}
2300 	}
2301 	spin_unlock_irq(&hugetlb_lock);
2302 
2303 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2304 }
2305 
2306 /* mempolicy aware migration callback */
2307 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2308 		unsigned long address)
2309 {
2310 	struct mempolicy *mpol;
2311 	nodemask_t *nodemask;
2312 	struct page *page;
2313 	gfp_t gfp_mask;
2314 	int node;
2315 
2316 	gfp_mask = htlb_alloc_mask(h);
2317 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2318 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2319 	mpol_cond_put(mpol);
2320 
2321 	return page;
2322 }
2323 
2324 /*
2325  * Increase the hugetlb pool such that it can accommodate a reservation
2326  * of size 'delta'.
2327  */
2328 static int gather_surplus_pages(struct hstate *h, long delta)
2329 	__must_hold(&hugetlb_lock)
2330 {
2331 	struct list_head surplus_list;
2332 	struct page *page, *tmp;
2333 	int ret;
2334 	long i;
2335 	long needed, allocated;
2336 	bool alloc_ok = true;
2337 
2338 	lockdep_assert_held(&hugetlb_lock);
2339 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2340 	if (needed <= 0) {
2341 		h->resv_huge_pages += delta;
2342 		return 0;
2343 	}
2344 
2345 	allocated = 0;
2346 	INIT_LIST_HEAD(&surplus_list);
2347 
2348 	ret = -ENOMEM;
2349 retry:
2350 	spin_unlock_irq(&hugetlb_lock);
2351 	for (i = 0; i < needed; i++) {
2352 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2353 				NUMA_NO_NODE, NULL, true);
2354 		if (!page) {
2355 			alloc_ok = false;
2356 			break;
2357 		}
2358 		list_add(&page->lru, &surplus_list);
2359 		cond_resched();
2360 	}
2361 	allocated += i;
2362 
2363 	/*
2364 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2365 	 * because either resv_huge_pages or free_huge_pages may have changed.
2366 	 */
2367 	spin_lock_irq(&hugetlb_lock);
2368 	needed = (h->resv_huge_pages + delta) -
2369 			(h->free_huge_pages + allocated);
2370 	if (needed > 0) {
2371 		if (alloc_ok)
2372 			goto retry;
2373 		/*
2374 		 * We were not able to allocate enough pages to
2375 		 * satisfy the entire reservation so we free what
2376 		 * we've allocated so far.
2377 		 */
2378 		goto free;
2379 	}
2380 	/*
2381 	 * The surplus_list now contains _at_least_ the number of extra pages
2382 	 * needed to accommodate the reservation.  Add the appropriate number
2383 	 * of pages to the hugetlb pool and free the extras back to the buddy
2384 	 * allocator.  Commit the entire reservation here to prevent another
2385 	 * process from stealing the pages as they are added to the pool but
2386 	 * before they are reserved.
2387 	 */
2388 	needed += allocated;
2389 	h->resv_huge_pages += delta;
2390 	ret = 0;
2391 
2392 	/* Free the needed pages to the hugetlb pool */
2393 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2394 		if ((--needed) < 0)
2395 			break;
2396 		/* Add the page to the hugetlb allocator */
2397 		enqueue_huge_page(h, page);
2398 	}
2399 free:
2400 	spin_unlock_irq(&hugetlb_lock);
2401 
2402 	/*
2403 	 * Free unnecessary surplus pages to the buddy allocator.
2404 	 * Pages have no ref count, call free_huge_page directly.
2405 	 */
2406 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2407 		free_huge_page(page);
2408 	spin_lock_irq(&hugetlb_lock);
2409 
2410 	return ret;
2411 }
2412 
2413 /*
2414  * This routine has two main purposes:
2415  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2416  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2417  *    to the associated reservation map.
2418  * 2) Free any unused surplus pages that may have been allocated to satisfy
2419  *    the reservation.  As many as unused_resv_pages may be freed.
2420  */
2421 static void return_unused_surplus_pages(struct hstate *h,
2422 					unsigned long unused_resv_pages)
2423 {
2424 	unsigned long nr_pages;
2425 	struct page *page;
2426 	LIST_HEAD(page_list);
2427 
2428 	lockdep_assert_held(&hugetlb_lock);
2429 	/* Uncommit the reservation */
2430 	h->resv_huge_pages -= unused_resv_pages;
2431 
2432 	/* Cannot return gigantic pages currently */
2433 	if (hstate_is_gigantic(h))
2434 		goto out;
2435 
2436 	/*
2437 	 * Part (or even all) of the reservation could have been backed
2438 	 * by pre-allocated pages. Only free surplus pages.
2439 	 */
2440 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2441 
2442 	/*
2443 	 * We want to release as many surplus pages as possible, spread
2444 	 * evenly across all nodes with memory. Iterate across these nodes
2445 	 * until we can no longer free unreserved surplus pages. This occurs
2446 	 * when the nodes with surplus pages have no free pages.
2447 	 * remove_pool_huge_page() will balance the freed pages across the
2448 	 * on-line nodes with memory and will handle the hstate accounting.
2449 	 */
2450 	while (nr_pages--) {
2451 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2452 		if (!page)
2453 			goto out;
2454 
2455 		list_add(&page->lru, &page_list);
2456 	}
2457 
2458 out:
2459 	spin_unlock_irq(&hugetlb_lock);
2460 	update_and_free_pages_bulk(h, &page_list);
2461 	spin_lock_irq(&hugetlb_lock);
2462 }
2463 
2464 
2465 /*
2466  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2467  * are used by the huge page allocation routines to manage reservations.
2468  *
2469  * vma_needs_reservation is called to determine if the huge page at addr
2470  * within the vma has an associated reservation.  If a reservation is
2471  * needed, the value 1 is returned.  The caller is then responsible for
2472  * managing the global reservation and subpool usage counts.  After
2473  * the huge page has been allocated, vma_commit_reservation is called
2474  * to add the page to the reservation map.  If the page allocation fails,
2475  * the reservation must be ended instead of committed.  vma_end_reservation
2476  * is called in such cases.
2477  *
2478  * In the normal case, vma_commit_reservation returns the same value
2479  * as the preceding vma_needs_reservation call.  The only time this
2480  * is not the case is if a reserve map was changed between calls.  It
2481  * is the responsibility of the caller to notice the difference and
2482  * take appropriate action.
2483  *
2484  * vma_add_reservation is used in error paths where a reservation must
2485  * be restored when a newly allocated huge page must be freed.  It is
2486  * to be called after calling vma_needs_reservation to determine if a
2487  * reservation exists.
2488  *
2489  * vma_del_reservation is used in error paths where an entry in the reserve
2490  * map was created during huge page allocation and must be removed.  It is to
2491  * be called after calling vma_needs_reservation to determine if a reservation
2492  * exists.
2493  */
2494 enum vma_resv_mode {
2495 	VMA_NEEDS_RESV,
2496 	VMA_COMMIT_RESV,
2497 	VMA_END_RESV,
2498 	VMA_ADD_RESV,
2499 	VMA_DEL_RESV,
2500 };
2501 static long __vma_reservation_common(struct hstate *h,
2502 				struct vm_area_struct *vma, unsigned long addr,
2503 				enum vma_resv_mode mode)
2504 {
2505 	struct resv_map *resv;
2506 	pgoff_t idx;
2507 	long ret;
2508 	long dummy_out_regions_needed;
2509 
2510 	resv = vma_resv_map(vma);
2511 	if (!resv)
2512 		return 1;
2513 
2514 	idx = vma_hugecache_offset(h, vma, addr);
2515 	switch (mode) {
2516 	case VMA_NEEDS_RESV:
2517 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2518 		/* We assume that vma_reservation_* routines always operate on
2519 		 * 1 page, and that adding to resv map a 1 page entry can only
2520 		 * ever require 1 region.
2521 		 */
2522 		VM_BUG_ON(dummy_out_regions_needed != 1);
2523 		break;
2524 	case VMA_COMMIT_RESV:
2525 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2526 		/* region_add calls of range 1 should never fail. */
2527 		VM_BUG_ON(ret < 0);
2528 		break;
2529 	case VMA_END_RESV:
2530 		region_abort(resv, idx, idx + 1, 1);
2531 		ret = 0;
2532 		break;
2533 	case VMA_ADD_RESV:
2534 		if (vma->vm_flags & VM_MAYSHARE) {
2535 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2536 			/* region_add calls of range 1 should never fail. */
2537 			VM_BUG_ON(ret < 0);
2538 		} else {
2539 			region_abort(resv, idx, idx + 1, 1);
2540 			ret = region_del(resv, idx, idx + 1);
2541 		}
2542 		break;
2543 	case VMA_DEL_RESV:
2544 		if (vma->vm_flags & VM_MAYSHARE) {
2545 			region_abort(resv, idx, idx + 1, 1);
2546 			ret = region_del(resv, idx, idx + 1);
2547 		} else {
2548 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2549 			/* region_add calls of range 1 should never fail. */
2550 			VM_BUG_ON(ret < 0);
2551 		}
2552 		break;
2553 	default:
2554 		BUG();
2555 	}
2556 
2557 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2558 		return ret;
2559 	/*
2560 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2561 	 *
2562 	 * In most cases, reserves always exist for private mappings.
2563 	 * However, a file associated with mapping could have been
2564 	 * hole punched or truncated after reserves were consumed.
2565 	 * As subsequent fault on such a range will not use reserves.
2566 	 * Subtle - The reserve map for private mappings has the
2567 	 * opposite meaning than that of shared mappings.  If NO
2568 	 * entry is in the reserve map, it means a reservation exists.
2569 	 * If an entry exists in the reserve map, it means the
2570 	 * reservation has already been consumed.  As a result, the
2571 	 * return value of this routine is the opposite of the
2572 	 * value returned from reserve map manipulation routines above.
2573 	 */
2574 	if (ret > 0)
2575 		return 0;
2576 	if (ret == 0)
2577 		return 1;
2578 	return ret;
2579 }
2580 
2581 static long vma_needs_reservation(struct hstate *h,
2582 			struct vm_area_struct *vma, unsigned long addr)
2583 {
2584 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2585 }
2586 
2587 static long vma_commit_reservation(struct hstate *h,
2588 			struct vm_area_struct *vma, unsigned long addr)
2589 {
2590 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2591 }
2592 
2593 static void vma_end_reservation(struct hstate *h,
2594 			struct vm_area_struct *vma, unsigned long addr)
2595 {
2596 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2597 }
2598 
2599 static long vma_add_reservation(struct hstate *h,
2600 			struct vm_area_struct *vma, unsigned long addr)
2601 {
2602 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2603 }
2604 
2605 static long vma_del_reservation(struct hstate *h,
2606 			struct vm_area_struct *vma, unsigned long addr)
2607 {
2608 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2609 }
2610 
2611 /*
2612  * This routine is called to restore reservation information on error paths.
2613  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2614  * the hugetlb mutex should remain held when calling this routine.
2615  *
2616  * It handles two specific cases:
2617  * 1) A reservation was in place and the page consumed the reservation.
2618  *    HPageRestoreReserve is set in the page.
2619  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2620  *    not set.  However, alloc_huge_page always updates the reserve map.
2621  *
2622  * In case 1, free_huge_page later in the error path will increment the
2623  * global reserve count.  But, free_huge_page does not have enough context
2624  * to adjust the reservation map.  This case deals primarily with private
2625  * mappings.  Adjust the reserve map here to be consistent with global
2626  * reserve count adjustments to be made by free_huge_page.  Make sure the
2627  * reserve map indicates there is a reservation present.
2628  *
2629  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2630  */
2631 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2632 			unsigned long address, struct page *page)
2633 {
2634 	long rc = vma_needs_reservation(h, vma, address);
2635 
2636 	if (HPageRestoreReserve(page)) {
2637 		if (unlikely(rc < 0))
2638 			/*
2639 			 * Rare out of memory condition in reserve map
2640 			 * manipulation.  Clear HPageRestoreReserve so that
2641 			 * global reserve count will not be incremented
2642 			 * by free_huge_page.  This will make it appear
2643 			 * as though the reservation for this page was
2644 			 * consumed.  This may prevent the task from
2645 			 * faulting in the page at a later time.  This
2646 			 * is better than inconsistent global huge page
2647 			 * accounting of reserve counts.
2648 			 */
2649 			ClearHPageRestoreReserve(page);
2650 		else if (rc)
2651 			(void)vma_add_reservation(h, vma, address);
2652 		else
2653 			vma_end_reservation(h, vma, address);
2654 	} else {
2655 		if (!rc) {
2656 			/*
2657 			 * This indicates there is an entry in the reserve map
2658 			 * not added by alloc_huge_page.  We know it was added
2659 			 * before the alloc_huge_page call, otherwise
2660 			 * HPageRestoreReserve would be set on the page.
2661 			 * Remove the entry so that a subsequent allocation
2662 			 * does not consume a reservation.
2663 			 */
2664 			rc = vma_del_reservation(h, vma, address);
2665 			if (rc < 0)
2666 				/*
2667 				 * VERY rare out of memory condition.  Since
2668 				 * we can not delete the entry, set
2669 				 * HPageRestoreReserve so that the reserve
2670 				 * count will be incremented when the page
2671 				 * is freed.  This reserve will be consumed
2672 				 * on a subsequent allocation.
2673 				 */
2674 				SetHPageRestoreReserve(page);
2675 		} else if (rc < 0) {
2676 			/*
2677 			 * Rare out of memory condition from
2678 			 * vma_needs_reservation call.  Memory allocation is
2679 			 * only attempted if a new entry is needed.  Therefore,
2680 			 * this implies there is not an entry in the
2681 			 * reserve map.
2682 			 *
2683 			 * For shared mappings, no entry in the map indicates
2684 			 * no reservation.  We are done.
2685 			 */
2686 			if (!(vma->vm_flags & VM_MAYSHARE))
2687 				/*
2688 				 * For private mappings, no entry indicates
2689 				 * a reservation is present.  Since we can
2690 				 * not add an entry, set SetHPageRestoreReserve
2691 				 * on the page so reserve count will be
2692 				 * incremented when freed.  This reserve will
2693 				 * be consumed on a subsequent allocation.
2694 				 */
2695 				SetHPageRestoreReserve(page);
2696 		} else
2697 			/*
2698 			 * No reservation present, do nothing
2699 			 */
2700 			 vma_end_reservation(h, vma, address);
2701 	}
2702 }
2703 
2704 /*
2705  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2706  * @h: struct hstate old page belongs to
2707  * @old_page: Old page to dissolve
2708  * @list: List to isolate the page in case we need to
2709  * Returns 0 on success, otherwise negated error.
2710  */
2711 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2712 					struct list_head *list)
2713 {
2714 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2715 	int nid = page_to_nid(old_page);
2716 	bool alloc_retry = false;
2717 	struct page *new_page;
2718 	int ret = 0;
2719 
2720 	/*
2721 	 * Before dissolving the page, we need to allocate a new one for the
2722 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2723 	 * by doing everything but actually updating counters and adding to
2724 	 * the pool.  This simplifies and let us do most of the processing
2725 	 * under the lock.
2726 	 */
2727 alloc_retry:
2728 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2729 	if (!new_page)
2730 		return -ENOMEM;
2731 	/*
2732 	 * If all goes well, this page will be directly added to the free
2733 	 * list in the pool.  For this the ref count needs to be zero.
2734 	 * Attempt to drop now, and retry once if needed.  It is VERY
2735 	 * unlikely there is another ref on the page.
2736 	 *
2737 	 * If someone else has a reference to the page, it will be freed
2738 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2739 	 * this.  Retry once if there is an inflated ref count.
2740 	 */
2741 	SetHPageTemporary(new_page);
2742 	if (!put_page_testzero(new_page)) {
2743 		if (alloc_retry)
2744 			return -EBUSY;
2745 
2746 		alloc_retry = true;
2747 		goto alloc_retry;
2748 	}
2749 	ClearHPageTemporary(new_page);
2750 
2751 	__prep_new_huge_page(h, new_page);
2752 
2753 retry:
2754 	spin_lock_irq(&hugetlb_lock);
2755 	if (!PageHuge(old_page)) {
2756 		/*
2757 		 * Freed from under us. Drop new_page too.
2758 		 */
2759 		goto free_new;
2760 	} else if (page_count(old_page)) {
2761 		/*
2762 		 * Someone has grabbed the page, try to isolate it here.
2763 		 * Fail with -EBUSY if not possible.
2764 		 */
2765 		spin_unlock_irq(&hugetlb_lock);
2766 		if (!isolate_huge_page(old_page, list))
2767 			ret = -EBUSY;
2768 		spin_lock_irq(&hugetlb_lock);
2769 		goto free_new;
2770 	} else if (!HPageFreed(old_page)) {
2771 		/*
2772 		 * Page's refcount is 0 but it has not been enqueued in the
2773 		 * freelist yet. Race window is small, so we can succeed here if
2774 		 * we retry.
2775 		 */
2776 		spin_unlock_irq(&hugetlb_lock);
2777 		cond_resched();
2778 		goto retry;
2779 	} else {
2780 		/*
2781 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2782 		 * the freelist and decrease the counters. These will be
2783 		 * incremented again when calling __prep_account_new_huge_page()
2784 		 * and enqueue_huge_page() for new_page. The counters will remain
2785 		 * stable since this happens under the lock.
2786 		 */
2787 		remove_hugetlb_page(h, old_page, false);
2788 
2789 		/*
2790 		 * Ref count on new page is already zero as it was dropped
2791 		 * earlier.  It can be directly added to the pool free list.
2792 		 */
2793 		__prep_account_new_huge_page(h, nid);
2794 		enqueue_huge_page(h, new_page);
2795 
2796 		/*
2797 		 * Pages have been replaced, we can safely free the old one.
2798 		 */
2799 		spin_unlock_irq(&hugetlb_lock);
2800 		update_and_free_page(h, old_page, false);
2801 	}
2802 
2803 	return ret;
2804 
2805 free_new:
2806 	spin_unlock_irq(&hugetlb_lock);
2807 	/* Page has a zero ref count, but needs a ref to be freed */
2808 	set_page_refcounted(new_page);
2809 	update_and_free_page(h, new_page, false);
2810 
2811 	return ret;
2812 }
2813 
2814 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2815 {
2816 	struct hstate *h;
2817 	struct page *head;
2818 	int ret = -EBUSY;
2819 
2820 	/*
2821 	 * The page might have been dissolved from under our feet, so make sure
2822 	 * to carefully check the state under the lock.
2823 	 * Return success when racing as if we dissolved the page ourselves.
2824 	 */
2825 	spin_lock_irq(&hugetlb_lock);
2826 	if (PageHuge(page)) {
2827 		head = compound_head(page);
2828 		h = page_hstate(head);
2829 	} else {
2830 		spin_unlock_irq(&hugetlb_lock);
2831 		return 0;
2832 	}
2833 	spin_unlock_irq(&hugetlb_lock);
2834 
2835 	/*
2836 	 * Fence off gigantic pages as there is a cyclic dependency between
2837 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2838 	 * of bailing out right away without further retrying.
2839 	 */
2840 	if (hstate_is_gigantic(h))
2841 		return -ENOMEM;
2842 
2843 	if (page_count(head) && isolate_huge_page(head, list))
2844 		ret = 0;
2845 	else if (!page_count(head))
2846 		ret = alloc_and_dissolve_huge_page(h, head, list);
2847 
2848 	return ret;
2849 }
2850 
2851 struct page *alloc_huge_page(struct vm_area_struct *vma,
2852 				    unsigned long addr, int avoid_reserve)
2853 {
2854 	struct hugepage_subpool *spool = subpool_vma(vma);
2855 	struct hstate *h = hstate_vma(vma);
2856 	struct page *page;
2857 	long map_chg, map_commit;
2858 	long gbl_chg;
2859 	int ret, idx;
2860 	struct hugetlb_cgroup *h_cg;
2861 	bool deferred_reserve;
2862 
2863 	idx = hstate_index(h);
2864 	/*
2865 	 * Examine the region/reserve map to determine if the process
2866 	 * has a reservation for the page to be allocated.  A return
2867 	 * code of zero indicates a reservation exists (no change).
2868 	 */
2869 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2870 	if (map_chg < 0)
2871 		return ERR_PTR(-ENOMEM);
2872 
2873 	/*
2874 	 * Processes that did not create the mapping will have no
2875 	 * reserves as indicated by the region/reserve map. Check
2876 	 * that the allocation will not exceed the subpool limit.
2877 	 * Allocations for MAP_NORESERVE mappings also need to be
2878 	 * checked against any subpool limit.
2879 	 */
2880 	if (map_chg || avoid_reserve) {
2881 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2882 		if (gbl_chg < 0) {
2883 			vma_end_reservation(h, vma, addr);
2884 			return ERR_PTR(-ENOSPC);
2885 		}
2886 
2887 		/*
2888 		 * Even though there was no reservation in the region/reserve
2889 		 * map, there could be reservations associated with the
2890 		 * subpool that can be used.  This would be indicated if the
2891 		 * return value of hugepage_subpool_get_pages() is zero.
2892 		 * However, if avoid_reserve is specified we still avoid even
2893 		 * the subpool reservations.
2894 		 */
2895 		if (avoid_reserve)
2896 			gbl_chg = 1;
2897 	}
2898 
2899 	/* If this allocation is not consuming a reservation, charge it now.
2900 	 */
2901 	deferred_reserve = map_chg || avoid_reserve;
2902 	if (deferred_reserve) {
2903 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2904 			idx, pages_per_huge_page(h), &h_cg);
2905 		if (ret)
2906 			goto out_subpool_put;
2907 	}
2908 
2909 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2910 	if (ret)
2911 		goto out_uncharge_cgroup_reservation;
2912 
2913 	spin_lock_irq(&hugetlb_lock);
2914 	/*
2915 	 * glb_chg is passed to indicate whether or not a page must be taken
2916 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2917 	 * a reservation exists for the allocation.
2918 	 */
2919 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2920 	if (!page) {
2921 		spin_unlock_irq(&hugetlb_lock);
2922 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2923 		if (!page)
2924 			goto out_uncharge_cgroup;
2925 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2926 			SetHPageRestoreReserve(page);
2927 			h->resv_huge_pages--;
2928 		}
2929 		spin_lock_irq(&hugetlb_lock);
2930 		list_add(&page->lru, &h->hugepage_activelist);
2931 		/* Fall through */
2932 	}
2933 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2934 	/* If allocation is not consuming a reservation, also store the
2935 	 * hugetlb_cgroup pointer on the page.
2936 	 */
2937 	if (deferred_reserve) {
2938 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2939 						  h_cg, page);
2940 	}
2941 
2942 	spin_unlock_irq(&hugetlb_lock);
2943 
2944 	hugetlb_set_page_subpool(page, spool);
2945 
2946 	map_commit = vma_commit_reservation(h, vma, addr);
2947 	if (unlikely(map_chg > map_commit)) {
2948 		/*
2949 		 * The page was added to the reservation map between
2950 		 * vma_needs_reservation and vma_commit_reservation.
2951 		 * This indicates a race with hugetlb_reserve_pages.
2952 		 * Adjust for the subpool count incremented above AND
2953 		 * in hugetlb_reserve_pages for the same page.  Also,
2954 		 * the reservation count added in hugetlb_reserve_pages
2955 		 * no longer applies.
2956 		 */
2957 		long rsv_adjust;
2958 
2959 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2960 		hugetlb_acct_memory(h, -rsv_adjust);
2961 		if (deferred_reserve)
2962 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2963 					pages_per_huge_page(h), page);
2964 	}
2965 	return page;
2966 
2967 out_uncharge_cgroup:
2968 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2969 out_uncharge_cgroup_reservation:
2970 	if (deferred_reserve)
2971 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2972 						    h_cg);
2973 out_subpool_put:
2974 	if (map_chg || avoid_reserve)
2975 		hugepage_subpool_put_pages(spool, 1);
2976 	vma_end_reservation(h, vma, addr);
2977 	return ERR_PTR(-ENOSPC);
2978 }
2979 
2980 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2981 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2982 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2983 {
2984 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2985 	int nr_nodes, node;
2986 
2987 	if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2988 		return 0;
2989 	/* do node specific alloc */
2990 	if (nid != NUMA_NO_NODE) {
2991 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993 		if (!m)
2994 			return 0;
2995 		goto found;
2996 	}
2997 	/* allocate from next node when distributing huge pages */
2998 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999 		m = memblock_alloc_try_nid_raw(
3000 				huge_page_size(h), huge_page_size(h),
3001 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002 		/*
3003 		 * Use the beginning of the huge page to store the
3004 		 * huge_bootmem_page struct (until gather_bootmem
3005 		 * puts them into the mem_map).
3006 		 */
3007 		if (!m)
3008 			return 0;
3009 		goto found;
3010 	}
3011 
3012 found:
3013 	/* Put them into a private list first because mem_map is not up yet */
3014 	INIT_LIST_HEAD(&m->list);
3015 	list_add(&m->list, &huge_boot_pages);
3016 	m->hstate = h;
3017 	return 1;
3018 }
3019 
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026 	struct huge_bootmem_page *m;
3027 
3028 	list_for_each_entry(m, &huge_boot_pages, list) {
3029 		struct page *page = virt_to_page(m);
3030 		struct hstate *h = m->hstate;
3031 
3032 		VM_BUG_ON(!hstate_is_gigantic(h));
3033 		WARN_ON(page_count(page) != 1);
3034 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 			WARN_ON(PageReserved(page));
3036 			prep_new_huge_page(h, page, page_to_nid(page));
3037 			put_page(page); /* add to the hugepage allocator */
3038 		} else {
3039 			/* VERY unlikely inflated ref count on a tail page */
3040 			free_gigantic_page(page, huge_page_order(h));
3041 		}
3042 
3043 		/*
3044 		 * We need to restore the 'stolen' pages to totalram_pages
3045 		 * in order to fix confusing memory reports from free(1) and
3046 		 * other side-effects, like CommitLimit going negative.
3047 		 */
3048 		adjust_managed_page_count(page, pages_per_huge_page(h));
3049 		cond_resched();
3050 	}
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054 	unsigned long i;
3055 	char buf[32];
3056 
3057 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 		if (hstate_is_gigantic(h)) {
3059 			if (!alloc_bootmem_huge_page(h, nid))
3060 				break;
3061 		} else {
3062 			struct page *page;
3063 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064 
3065 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 					&node_states[N_MEMORY], NULL);
3067 			if (!page)
3068 				break;
3069 			put_page(page); /* free it into the hugepage allocator */
3070 		}
3071 		cond_resched();
3072 	}
3073 	if (i == h->max_huge_pages_node[nid])
3074 		return;
3075 
3076 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078 		h->max_huge_pages_node[nid], buf, nid, i);
3079 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 	h->max_huge_pages_node[nid] = i;
3081 }
3082 
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085 	unsigned long i;
3086 	nodemask_t *node_alloc_noretry;
3087 	bool node_specific_alloc = false;
3088 
3089 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092 		return;
3093 	}
3094 
3095 	/* do node specific alloc */
3096 	for (i = 0; i < nr_online_nodes; i++) {
3097 		if (h->max_huge_pages_node[i] > 0) {
3098 			hugetlb_hstate_alloc_pages_onenode(h, i);
3099 			node_specific_alloc = true;
3100 		}
3101 	}
3102 
3103 	if (node_specific_alloc)
3104 		return;
3105 
3106 	/* below will do all node balanced alloc */
3107 	if (!hstate_is_gigantic(h)) {
3108 		/*
3109 		 * Bit mask controlling how hard we retry per-node allocations.
3110 		 * Ignore errors as lower level routines can deal with
3111 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112 		 * time, we are likely in bigger trouble.
3113 		 */
3114 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115 						GFP_KERNEL);
3116 	} else {
3117 		/* allocations done at boot time */
3118 		node_alloc_noretry = NULL;
3119 	}
3120 
3121 	/* bit mask controlling how hard we retry per-node allocations */
3122 	if (node_alloc_noretry)
3123 		nodes_clear(*node_alloc_noretry);
3124 
3125 	for (i = 0; i < h->max_huge_pages; ++i) {
3126 		if (hstate_is_gigantic(h)) {
3127 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128 				break;
3129 		} else if (!alloc_pool_huge_page(h,
3130 					 &node_states[N_MEMORY],
3131 					 node_alloc_noretry))
3132 			break;
3133 		cond_resched();
3134 	}
3135 	if (i < h->max_huge_pages) {
3136 		char buf[32];
3137 
3138 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140 			h->max_huge_pages, buf, i);
3141 		h->max_huge_pages = i;
3142 	}
3143 	kfree(node_alloc_noretry);
3144 }
3145 
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148 	struct hstate *h, *h2;
3149 
3150 	for_each_hstate(h) {
3151 		if (minimum_order > huge_page_order(h))
3152 			minimum_order = huge_page_order(h);
3153 
3154 		/* oversize hugepages were init'ed in early boot */
3155 		if (!hstate_is_gigantic(h))
3156 			hugetlb_hstate_alloc_pages(h);
3157 
3158 		/*
3159 		 * Set demote order for each hstate.  Note that
3160 		 * h->demote_order is initially 0.
3161 		 * - We can not demote gigantic pages if runtime freeing
3162 		 *   is not supported, so skip this.
3163 		 * - If CMA allocation is possible, we can not demote
3164 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3165 		 */
3166 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3167 			continue;
3168 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3169 			continue;
3170 		for_each_hstate(h2) {
3171 			if (h2 == h)
3172 				continue;
3173 			if (h2->order < h->order &&
3174 			    h2->order > h->demote_order)
3175 				h->demote_order = h2->order;
3176 		}
3177 	}
3178 	VM_BUG_ON(minimum_order == UINT_MAX);
3179 }
3180 
3181 static void __init report_hugepages(void)
3182 {
3183 	struct hstate *h;
3184 
3185 	for_each_hstate(h) {
3186 		char buf[32];
3187 
3188 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190 			buf, h->free_huge_pages);
3191 	}
3192 }
3193 
3194 #ifdef CONFIG_HIGHMEM
3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196 						nodemask_t *nodes_allowed)
3197 {
3198 	int i;
3199 	LIST_HEAD(page_list);
3200 
3201 	lockdep_assert_held(&hugetlb_lock);
3202 	if (hstate_is_gigantic(h))
3203 		return;
3204 
3205 	/*
3206 	 * Collect pages to be freed on a list, and free after dropping lock
3207 	 */
3208 	for_each_node_mask(i, *nodes_allowed) {
3209 		struct page *page, *next;
3210 		struct list_head *freel = &h->hugepage_freelists[i];
3211 		list_for_each_entry_safe(page, next, freel, lru) {
3212 			if (count >= h->nr_huge_pages)
3213 				goto out;
3214 			if (PageHighMem(page))
3215 				continue;
3216 			remove_hugetlb_page(h, page, false);
3217 			list_add(&page->lru, &page_list);
3218 		}
3219 	}
3220 
3221 out:
3222 	spin_unlock_irq(&hugetlb_lock);
3223 	update_and_free_pages_bulk(h, &page_list);
3224 	spin_lock_irq(&hugetlb_lock);
3225 }
3226 #else
3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228 						nodemask_t *nodes_allowed)
3229 {
3230 }
3231 #endif
3232 
3233 /*
3234  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3235  * balanced by operating on them in a round-robin fashion.
3236  * Returns 1 if an adjustment was made.
3237  */
3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3239 				int delta)
3240 {
3241 	int nr_nodes, node;
3242 
3243 	lockdep_assert_held(&hugetlb_lock);
3244 	VM_BUG_ON(delta != -1 && delta != 1);
3245 
3246 	if (delta < 0) {
3247 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248 			if (h->surplus_huge_pages_node[node])
3249 				goto found;
3250 		}
3251 	} else {
3252 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253 			if (h->surplus_huge_pages_node[node] <
3254 					h->nr_huge_pages_node[node])
3255 				goto found;
3256 		}
3257 	}
3258 	return 0;
3259 
3260 found:
3261 	h->surplus_huge_pages += delta;
3262 	h->surplus_huge_pages_node[node] += delta;
3263 	return 1;
3264 }
3265 
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268 			      nodemask_t *nodes_allowed)
3269 {
3270 	unsigned long min_count, ret;
3271 	struct page *page;
3272 	LIST_HEAD(page_list);
3273 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3274 
3275 	/*
3276 	 * Bit mask controlling how hard we retry per-node allocations.
3277 	 * If we can not allocate the bit mask, do not attempt to allocate
3278 	 * the requested huge pages.
3279 	 */
3280 	if (node_alloc_noretry)
3281 		nodes_clear(*node_alloc_noretry);
3282 	else
3283 		return -ENOMEM;
3284 
3285 	/*
3286 	 * resize_lock mutex prevents concurrent adjustments to number of
3287 	 * pages in hstate via the proc/sysfs interfaces.
3288 	 */
3289 	mutex_lock(&h->resize_lock);
3290 	flush_free_hpage_work(h);
3291 	spin_lock_irq(&hugetlb_lock);
3292 
3293 	/*
3294 	 * Check for a node specific request.
3295 	 * Changing node specific huge page count may require a corresponding
3296 	 * change to the global count.  In any case, the passed node mask
3297 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3298 	 */
3299 	if (nid != NUMA_NO_NODE) {
3300 		unsigned long old_count = count;
3301 
3302 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303 		/*
3304 		 * User may have specified a large count value which caused the
3305 		 * above calculation to overflow.  In this case, they wanted
3306 		 * to allocate as many huge pages as possible.  Set count to
3307 		 * largest possible value to align with their intention.
3308 		 */
3309 		if (count < old_count)
3310 			count = ULONG_MAX;
3311 	}
3312 
3313 	/*
3314 	 * Gigantic pages runtime allocation depend on the capability for large
3315 	 * page range allocation.
3316 	 * If the system does not provide this feature, return an error when
3317 	 * the user tries to allocate gigantic pages but let the user free the
3318 	 * boottime allocated gigantic pages.
3319 	 */
3320 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321 		if (count > persistent_huge_pages(h)) {
3322 			spin_unlock_irq(&hugetlb_lock);
3323 			mutex_unlock(&h->resize_lock);
3324 			NODEMASK_FREE(node_alloc_noretry);
3325 			return -EINVAL;
3326 		}
3327 		/* Fall through to decrease pool */
3328 	}
3329 
3330 	/*
3331 	 * Increase the pool size
3332 	 * First take pages out of surplus state.  Then make up the
3333 	 * remaining difference by allocating fresh huge pages.
3334 	 *
3335 	 * We might race with alloc_surplus_huge_page() here and be unable
3336 	 * to convert a surplus huge page to a normal huge page. That is
3337 	 * not critical, though, it just means the overall size of the
3338 	 * pool might be one hugepage larger than it needs to be, but
3339 	 * within all the constraints specified by the sysctls.
3340 	 */
3341 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3343 			break;
3344 	}
3345 
3346 	while (count > persistent_huge_pages(h)) {
3347 		/*
3348 		 * If this allocation races such that we no longer need the
3349 		 * page, free_huge_page will handle it by freeing the page
3350 		 * and reducing the surplus.
3351 		 */
3352 		spin_unlock_irq(&hugetlb_lock);
3353 
3354 		/* yield cpu to avoid soft lockup */
3355 		cond_resched();
3356 
3357 		ret = alloc_pool_huge_page(h, nodes_allowed,
3358 						node_alloc_noretry);
3359 		spin_lock_irq(&hugetlb_lock);
3360 		if (!ret)
3361 			goto out;
3362 
3363 		/* Bail for signals. Probably ctrl-c from user */
3364 		if (signal_pending(current))
3365 			goto out;
3366 	}
3367 
3368 	/*
3369 	 * Decrease the pool size
3370 	 * First return free pages to the buddy allocator (being careful
3371 	 * to keep enough around to satisfy reservations).  Then place
3372 	 * pages into surplus state as needed so the pool will shrink
3373 	 * to the desired size as pages become free.
3374 	 *
3375 	 * By placing pages into the surplus state independent of the
3376 	 * overcommit value, we are allowing the surplus pool size to
3377 	 * exceed overcommit. There are few sane options here. Since
3378 	 * alloc_surplus_huge_page() is checking the global counter,
3379 	 * though, we'll note that we're not allowed to exceed surplus
3380 	 * and won't grow the pool anywhere else. Not until one of the
3381 	 * sysctls are changed, or the surplus pages go out of use.
3382 	 */
3383 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384 	min_count = max(count, min_count);
3385 	try_to_free_low(h, min_count, nodes_allowed);
3386 
3387 	/*
3388 	 * Collect pages to be removed on list without dropping lock
3389 	 */
3390 	while (min_count < persistent_huge_pages(h)) {
3391 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3392 		if (!page)
3393 			break;
3394 
3395 		list_add(&page->lru, &page_list);
3396 	}
3397 	/* free the pages after dropping lock */
3398 	spin_unlock_irq(&hugetlb_lock);
3399 	update_and_free_pages_bulk(h, &page_list);
3400 	flush_free_hpage_work(h);
3401 	spin_lock_irq(&hugetlb_lock);
3402 
3403 	while (count < persistent_huge_pages(h)) {
3404 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3405 			break;
3406 	}
3407 out:
3408 	h->max_huge_pages = persistent_huge_pages(h);
3409 	spin_unlock_irq(&hugetlb_lock);
3410 	mutex_unlock(&h->resize_lock);
3411 
3412 	NODEMASK_FREE(node_alloc_noretry);
3413 
3414 	return 0;
3415 }
3416 
3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 {
3419 	int i, nid = page_to_nid(page);
3420 	struct hstate *target_hstate;
3421 	int rc = 0;
3422 
3423 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424 
3425 	remove_hugetlb_page_for_demote(h, page, false);
3426 	spin_unlock_irq(&hugetlb_lock);
3427 
3428 	rc = hugetlb_vmemmap_alloc(h, page);
3429 	if (rc) {
3430 		/* Allocation of vmemmmap failed, we can not demote page */
3431 		spin_lock_irq(&hugetlb_lock);
3432 		set_page_refcounted(page);
3433 		add_hugetlb_page(h, page, false);
3434 		return rc;
3435 	}
3436 
3437 	/*
3438 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 	 * sizes as it will not ref count pages.
3440 	 */
3441 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442 
3443 	/*
3444 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 	 * Without the mutex, pages added to target hstate could be marked
3446 	 * as surplus.
3447 	 *
3448 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3449 	 * use the convention of always taking larger size hstate mutex first.
3450 	 */
3451 	mutex_lock(&target_hstate->resize_lock);
3452 	for (i = 0; i < pages_per_huge_page(h);
3453 				i += pages_per_huge_page(target_hstate)) {
3454 		if (hstate_is_gigantic(target_hstate))
3455 			prep_compound_gigantic_page_for_demote(page + i,
3456 							target_hstate->order);
3457 		else
3458 			prep_compound_page(page + i, target_hstate->order);
3459 		set_page_private(page + i, 0);
3460 		set_page_refcounted(page + i);
3461 		prep_new_huge_page(target_hstate, page + i, nid);
3462 		put_page(page + i);
3463 	}
3464 	mutex_unlock(&target_hstate->resize_lock);
3465 
3466 	spin_lock_irq(&hugetlb_lock);
3467 
3468 	/*
3469 	 * Not absolutely necessary, but for consistency update max_huge_pages
3470 	 * based on pool changes for the demoted page.
3471 	 */
3472 	h->max_huge_pages--;
3473 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3474 
3475 	return rc;
3476 }
3477 
3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479 	__must_hold(&hugetlb_lock)
3480 {
3481 	int nr_nodes, node;
3482 	struct page *page;
3483 
3484 	lockdep_assert_held(&hugetlb_lock);
3485 
3486 	/* We should never get here if no demote order */
3487 	if (!h->demote_order) {
3488 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489 		return -EINVAL;		/* internal error */
3490 	}
3491 
3492 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494 			if (PageHWPoison(page))
3495 				continue;
3496 
3497 			return demote_free_huge_page(h, page);
3498 		}
3499 	}
3500 
3501 	/*
3502 	 * Only way to get here is if all pages on free lists are poisoned.
3503 	 * Return -EBUSY so that caller will not retry.
3504 	 */
3505 	return -EBUSY;
3506 }
3507 
3508 #define HSTATE_ATTR_RO(_name) \
3509 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3510 
3511 #define HSTATE_ATTR_WO(_name) \
3512 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3513 
3514 #define HSTATE_ATTR(_name) \
3515 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3516 
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3519 
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3521 
3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3523 {
3524 	int i;
3525 
3526 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527 		if (hstate_kobjs[i] == kobj) {
3528 			if (nidp)
3529 				*nidp = NUMA_NO_NODE;
3530 			return &hstates[i];
3531 		}
3532 
3533 	return kobj_to_node_hstate(kobj, nidp);
3534 }
3535 
3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537 					struct kobj_attribute *attr, char *buf)
3538 {
3539 	struct hstate *h;
3540 	unsigned long nr_huge_pages;
3541 	int nid;
3542 
3543 	h = kobj_to_hstate(kobj, &nid);
3544 	if (nid == NUMA_NO_NODE)
3545 		nr_huge_pages = h->nr_huge_pages;
3546 	else
3547 		nr_huge_pages = h->nr_huge_pages_node[nid];
3548 
3549 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3550 }
3551 
3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553 					   struct hstate *h, int nid,
3554 					   unsigned long count, size_t len)
3555 {
3556 	int err;
3557 	nodemask_t nodes_allowed, *n_mask;
3558 
3559 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3560 		return -EINVAL;
3561 
3562 	if (nid == NUMA_NO_NODE) {
3563 		/*
3564 		 * global hstate attribute
3565 		 */
3566 		if (!(obey_mempolicy &&
3567 				init_nodemask_of_mempolicy(&nodes_allowed)))
3568 			n_mask = &node_states[N_MEMORY];
3569 		else
3570 			n_mask = &nodes_allowed;
3571 	} else {
3572 		/*
3573 		 * Node specific request.  count adjustment happens in
3574 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3575 		 */
3576 		init_nodemask_of_node(&nodes_allowed, nid);
3577 		n_mask = &nodes_allowed;
3578 	}
3579 
3580 	err = set_max_huge_pages(h, count, nid, n_mask);
3581 
3582 	return err ? err : len;
3583 }
3584 
3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586 					 struct kobject *kobj, const char *buf,
3587 					 size_t len)
3588 {
3589 	struct hstate *h;
3590 	unsigned long count;
3591 	int nid;
3592 	int err;
3593 
3594 	err = kstrtoul(buf, 10, &count);
3595 	if (err)
3596 		return err;
3597 
3598 	h = kobj_to_hstate(kobj, &nid);
3599 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3600 }
3601 
3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603 				       struct kobj_attribute *attr, char *buf)
3604 {
3605 	return nr_hugepages_show_common(kobj, attr, buf);
3606 }
3607 
3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609 	       struct kobj_attribute *attr, const char *buf, size_t len)
3610 {
3611 	return nr_hugepages_store_common(false, kobj, buf, len);
3612 }
3613 HSTATE_ATTR(nr_hugepages);
3614 
3615 #ifdef CONFIG_NUMA
3616 
3617 /*
3618  * hstate attribute for optionally mempolicy-based constraint on persistent
3619  * huge page alloc/free.
3620  */
3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622 					   struct kobj_attribute *attr,
3623 					   char *buf)
3624 {
3625 	return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627 
3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629 	       struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631 	return nr_hugepages_store_common(true, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3634 #endif
3635 
3636 
3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638 					struct kobj_attribute *attr, char *buf)
3639 {
3640 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3641 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3642 }
3643 
3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645 		struct kobj_attribute *attr, const char *buf, size_t count)
3646 {
3647 	int err;
3648 	unsigned long input;
3649 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3650 
3651 	if (hstate_is_gigantic(h))
3652 		return -EINVAL;
3653 
3654 	err = kstrtoul(buf, 10, &input);
3655 	if (err)
3656 		return err;
3657 
3658 	spin_lock_irq(&hugetlb_lock);
3659 	h->nr_overcommit_huge_pages = input;
3660 	spin_unlock_irq(&hugetlb_lock);
3661 
3662 	return count;
3663 }
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3665 
3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667 					struct kobj_attribute *attr, char *buf)
3668 {
3669 	struct hstate *h;
3670 	unsigned long free_huge_pages;
3671 	int nid;
3672 
3673 	h = kobj_to_hstate(kobj, &nid);
3674 	if (nid == NUMA_NO_NODE)
3675 		free_huge_pages = h->free_huge_pages;
3676 	else
3677 		free_huge_pages = h->free_huge_pages_node[nid];
3678 
3679 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3680 }
3681 HSTATE_ATTR_RO(free_hugepages);
3682 
3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684 					struct kobj_attribute *attr, char *buf)
3685 {
3686 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3687 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3688 }
3689 HSTATE_ATTR_RO(resv_hugepages);
3690 
3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692 					struct kobj_attribute *attr, char *buf)
3693 {
3694 	struct hstate *h;
3695 	unsigned long surplus_huge_pages;
3696 	int nid;
3697 
3698 	h = kobj_to_hstate(kobj, &nid);
3699 	if (nid == NUMA_NO_NODE)
3700 		surplus_huge_pages = h->surplus_huge_pages;
3701 	else
3702 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3703 
3704 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3705 }
3706 HSTATE_ATTR_RO(surplus_hugepages);
3707 
3708 static ssize_t demote_store(struct kobject *kobj,
3709 	       struct kobj_attribute *attr, const char *buf, size_t len)
3710 {
3711 	unsigned long nr_demote;
3712 	unsigned long nr_available;
3713 	nodemask_t nodes_allowed, *n_mask;
3714 	struct hstate *h;
3715 	int err = 0;
3716 	int nid;
3717 
3718 	err = kstrtoul(buf, 10, &nr_demote);
3719 	if (err)
3720 		return err;
3721 	h = kobj_to_hstate(kobj, &nid);
3722 
3723 	if (nid != NUMA_NO_NODE) {
3724 		init_nodemask_of_node(&nodes_allowed, nid);
3725 		n_mask = &nodes_allowed;
3726 	} else {
3727 		n_mask = &node_states[N_MEMORY];
3728 	}
3729 
3730 	/* Synchronize with other sysfs operations modifying huge pages */
3731 	mutex_lock(&h->resize_lock);
3732 	spin_lock_irq(&hugetlb_lock);
3733 
3734 	while (nr_demote) {
3735 		/*
3736 		 * Check for available pages to demote each time thorough the
3737 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3738 		 */
3739 		if (nid != NUMA_NO_NODE)
3740 			nr_available = h->free_huge_pages_node[nid];
3741 		else
3742 			nr_available = h->free_huge_pages;
3743 		nr_available -= h->resv_huge_pages;
3744 		if (!nr_available)
3745 			break;
3746 
3747 		err = demote_pool_huge_page(h, n_mask);
3748 		if (err)
3749 			break;
3750 
3751 		nr_demote--;
3752 	}
3753 
3754 	spin_unlock_irq(&hugetlb_lock);
3755 	mutex_unlock(&h->resize_lock);
3756 
3757 	if (err)
3758 		return err;
3759 	return len;
3760 }
3761 HSTATE_ATTR_WO(demote);
3762 
3763 static ssize_t demote_size_show(struct kobject *kobj,
3764 					struct kobj_attribute *attr, char *buf)
3765 {
3766 	int nid;
3767 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3768 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769 
3770 	return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772 
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 					struct kobj_attribute *attr,
3775 					const char *buf, size_t count)
3776 {
3777 	struct hstate *h, *demote_hstate;
3778 	unsigned long demote_size;
3779 	unsigned int demote_order;
3780 	int nid;
3781 
3782 	demote_size = (unsigned long)memparse(buf, NULL);
3783 
3784 	demote_hstate = size_to_hstate(demote_size);
3785 	if (!demote_hstate)
3786 		return -EINVAL;
3787 	demote_order = demote_hstate->order;
3788 	if (demote_order < HUGETLB_PAGE_ORDER)
3789 		return -EINVAL;
3790 
3791 	/* demote order must be smaller than hstate order */
3792 	h = kobj_to_hstate(kobj, &nid);
3793 	if (demote_order >= h->order)
3794 		return -EINVAL;
3795 
3796 	/* resize_lock synchronizes access to demote size and writes */
3797 	mutex_lock(&h->resize_lock);
3798 	h->demote_order = demote_order;
3799 	mutex_unlock(&h->resize_lock);
3800 
3801 	return count;
3802 }
3803 HSTATE_ATTR(demote_size);
3804 
3805 static struct attribute *hstate_attrs[] = {
3806 	&nr_hugepages_attr.attr,
3807 	&nr_overcommit_hugepages_attr.attr,
3808 	&free_hugepages_attr.attr,
3809 	&resv_hugepages_attr.attr,
3810 	&surplus_hugepages_attr.attr,
3811 #ifdef CONFIG_NUMA
3812 	&nr_hugepages_mempolicy_attr.attr,
3813 #endif
3814 	NULL,
3815 };
3816 
3817 static const struct attribute_group hstate_attr_group = {
3818 	.attrs = hstate_attrs,
3819 };
3820 
3821 static struct attribute *hstate_demote_attrs[] = {
3822 	&demote_size_attr.attr,
3823 	&demote_attr.attr,
3824 	NULL,
3825 };
3826 
3827 static const struct attribute_group hstate_demote_attr_group = {
3828 	.attrs = hstate_demote_attrs,
3829 };
3830 
3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832 				    struct kobject **hstate_kobjs,
3833 				    const struct attribute_group *hstate_attr_group)
3834 {
3835 	int retval;
3836 	int hi = hstate_index(h);
3837 
3838 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839 	if (!hstate_kobjs[hi])
3840 		return -ENOMEM;
3841 
3842 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843 	if (retval) {
3844 		kobject_put(hstate_kobjs[hi]);
3845 		hstate_kobjs[hi] = NULL;
3846 	}
3847 
3848 	if (h->demote_order) {
3849 		if (sysfs_create_group(hstate_kobjs[hi],
3850 					&hstate_demote_attr_group))
3851 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3852 	}
3853 
3854 	return retval;
3855 }
3856 
3857 static void __init hugetlb_sysfs_init(void)
3858 {
3859 	struct hstate *h;
3860 	int err;
3861 
3862 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863 	if (!hugepages_kobj)
3864 		return;
3865 
3866 	for_each_hstate(h) {
3867 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868 					 hstate_kobjs, &hstate_attr_group);
3869 		if (err)
3870 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3871 	}
3872 }
3873 
3874 #ifdef CONFIG_NUMA
3875 
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884 	struct kobject		*hugepages_kobj;
3885 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888 
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 	&nr_hugepages_attr.attr,
3894 	&free_hugepages_attr.attr,
3895 	&surplus_hugepages_attr.attr,
3896 	NULL,
3897 };
3898 
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 	.attrs = per_node_hstate_attrs,
3901 };
3902 
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909 	int nid;
3910 
3911 	for (nid = 0; nid < nr_node_ids; nid++) {
3912 		struct node_hstate *nhs = &node_hstates[nid];
3913 		int i;
3914 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 			if (nhs->hstate_kobjs[i] == kobj) {
3916 				if (nidp)
3917 					*nidp = nid;
3918 				return &hstates[i];
3919 			}
3920 	}
3921 
3922 	BUG();
3923 	return NULL;
3924 }
3925 
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 static void hugetlb_unregister_node(struct node *node)
3931 {
3932 	struct hstate *h;
3933 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3934 
3935 	if (!nhs->hugepages_kobj)
3936 		return;		/* no hstate attributes */
3937 
3938 	for_each_hstate(h) {
3939 		int idx = hstate_index(h);
3940 		if (nhs->hstate_kobjs[idx]) {
3941 			kobject_put(nhs->hstate_kobjs[idx]);
3942 			nhs->hstate_kobjs[idx] = NULL;
3943 		}
3944 	}
3945 
3946 	kobject_put(nhs->hugepages_kobj);
3947 	nhs->hugepages_kobj = NULL;
3948 }
3949 
3950 
3951 /*
3952  * Register hstate attributes for a single node device.
3953  * No-op if attributes already registered.
3954  */
3955 static void hugetlb_register_node(struct node *node)
3956 {
3957 	struct hstate *h;
3958 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3959 	int err;
3960 
3961 	if (nhs->hugepages_kobj)
3962 		return;		/* already allocated */
3963 
3964 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3965 							&node->dev.kobj);
3966 	if (!nhs->hugepages_kobj)
3967 		return;
3968 
3969 	for_each_hstate(h) {
3970 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3971 						nhs->hstate_kobjs,
3972 						&per_node_hstate_attr_group);
3973 		if (err) {
3974 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975 				h->name, node->dev.id);
3976 			hugetlb_unregister_node(node);
3977 			break;
3978 		}
3979 	}
3980 }
3981 
3982 /*
3983  * hugetlb init time:  register hstate attributes for all registered node
3984  * devices of nodes that have memory.  All on-line nodes should have
3985  * registered their associated device by this time.
3986  */
3987 static void __init hugetlb_register_all_nodes(void)
3988 {
3989 	int nid;
3990 
3991 	for_each_node_state(nid, N_MEMORY) {
3992 		struct node *node = node_devices[nid];
3993 		if (node->dev.id == nid)
3994 			hugetlb_register_node(node);
3995 	}
3996 
3997 	/*
3998 	 * Let the node device driver know we're here so it can
3999 	 * [un]register hstate attributes on node hotplug.
4000 	 */
4001 	register_hugetlbfs_with_node(hugetlb_register_node,
4002 				     hugetlb_unregister_node);
4003 }
4004 #else	/* !CONFIG_NUMA */
4005 
4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4007 {
4008 	BUG();
4009 	if (nidp)
4010 		*nidp = -1;
4011 	return NULL;
4012 }
4013 
4014 static void hugetlb_register_all_nodes(void) { }
4015 
4016 #endif
4017 
4018 static int __init hugetlb_init(void)
4019 {
4020 	int i;
4021 
4022 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4023 			__NR_HPAGEFLAGS);
4024 
4025 	if (!hugepages_supported()) {
4026 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4028 		return 0;
4029 	}
4030 
4031 	/*
4032 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4033 	 * architectures depend on setup being done here.
4034 	 */
4035 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036 	if (!parsed_default_hugepagesz) {
4037 		/*
4038 		 * If we did not parse a default huge page size, set
4039 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040 		 * number of huge pages for this default size was implicitly
4041 		 * specified, set that here as well.
4042 		 * Note that the implicit setting will overwrite an explicit
4043 		 * setting.  A warning will be printed in this case.
4044 		 */
4045 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046 		if (default_hstate_max_huge_pages) {
4047 			if (default_hstate.max_huge_pages) {
4048 				char buf[32];
4049 
4050 				string_get_size(huge_page_size(&default_hstate),
4051 					1, STRING_UNITS_2, buf, 32);
4052 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053 					default_hstate.max_huge_pages, buf);
4054 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055 					default_hstate_max_huge_pages);
4056 			}
4057 			default_hstate.max_huge_pages =
4058 				default_hstate_max_huge_pages;
4059 
4060 			for (i = 0; i < nr_online_nodes; i++)
4061 				default_hstate.max_huge_pages_node[i] =
4062 					default_hugepages_in_node[i];
4063 		}
4064 	}
4065 
4066 	hugetlb_cma_check();
4067 	hugetlb_init_hstates();
4068 	gather_bootmem_prealloc();
4069 	report_hugepages();
4070 
4071 	hugetlb_sysfs_init();
4072 	hugetlb_register_all_nodes();
4073 	hugetlb_cgroup_file_init();
4074 
4075 #ifdef CONFIG_SMP
4076 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4077 #else
4078 	num_fault_mutexes = 1;
4079 #endif
4080 	hugetlb_fault_mutex_table =
4081 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4082 			      GFP_KERNEL);
4083 	BUG_ON(!hugetlb_fault_mutex_table);
4084 
4085 	for (i = 0; i < num_fault_mutexes; i++)
4086 		mutex_init(&hugetlb_fault_mutex_table[i]);
4087 	return 0;
4088 }
4089 subsys_initcall(hugetlb_init);
4090 
4091 /* Overwritten by architectures with more huge page sizes */
4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4093 {
4094 	return size == HPAGE_SIZE;
4095 }
4096 
4097 void __init hugetlb_add_hstate(unsigned int order)
4098 {
4099 	struct hstate *h;
4100 	unsigned long i;
4101 
4102 	if (size_to_hstate(PAGE_SIZE << order)) {
4103 		return;
4104 	}
4105 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4106 	BUG_ON(order == 0);
4107 	h = &hstates[hugetlb_max_hstate++];
4108 	mutex_init(&h->resize_lock);
4109 	h->order = order;
4110 	h->mask = ~(huge_page_size(h) - 1);
4111 	for (i = 0; i < MAX_NUMNODES; ++i)
4112 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113 	INIT_LIST_HEAD(&h->hugepage_activelist);
4114 	h->next_nid_to_alloc = first_memory_node;
4115 	h->next_nid_to_free = first_memory_node;
4116 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117 					huge_page_size(h)/1024);
4118 	hugetlb_vmemmap_init(h);
4119 
4120 	parsed_hstate = h;
4121 }
4122 
4123 bool __init __weak hugetlb_node_alloc_supported(void)
4124 {
4125 	return true;
4126 }
4127 /*
4128  * hugepages command line processing
4129  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4130  * specification.  If not, ignore the hugepages value.  hugepages can also
4131  * be the first huge page command line  option in which case it implicitly
4132  * specifies the number of huge pages for the default size.
4133  */
4134 static int __init hugepages_setup(char *s)
4135 {
4136 	unsigned long *mhp;
4137 	static unsigned long *last_mhp;
4138 	int node = NUMA_NO_NODE;
4139 	int count;
4140 	unsigned long tmp;
4141 	char *p = s;
4142 
4143 	if (!parsed_valid_hugepagesz) {
4144 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4145 		parsed_valid_hugepagesz = true;
4146 		return 0;
4147 	}
4148 
4149 	/*
4150 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4151 	 * yet, so this hugepages= parameter goes to the "default hstate".
4152 	 * Otherwise, it goes with the previously parsed hugepagesz or
4153 	 * default_hugepagesz.
4154 	 */
4155 	else if (!hugetlb_max_hstate)
4156 		mhp = &default_hstate_max_huge_pages;
4157 	else
4158 		mhp = &parsed_hstate->max_huge_pages;
4159 
4160 	if (mhp == last_mhp) {
4161 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4162 		return 0;
4163 	}
4164 
4165 	while (*p) {
4166 		count = 0;
4167 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4168 			goto invalid;
4169 		/* Parameter is node format */
4170 		if (p[count] == ':') {
4171 			if (!hugetlb_node_alloc_supported()) {
4172 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4173 				return 0;
4174 			}
4175 			if (tmp >= nr_online_nodes)
4176 				goto invalid;
4177 			node = array_index_nospec(tmp, nr_online_nodes);
4178 			p += count + 1;
4179 			/* Parse hugepages */
4180 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4181 				goto invalid;
4182 			if (!hugetlb_max_hstate)
4183 				default_hugepages_in_node[node] = tmp;
4184 			else
4185 				parsed_hstate->max_huge_pages_node[node] = tmp;
4186 			*mhp += tmp;
4187 			/* Go to parse next node*/
4188 			if (p[count] == ',')
4189 				p += count + 1;
4190 			else
4191 				break;
4192 		} else {
4193 			if (p != s)
4194 				goto invalid;
4195 			*mhp = tmp;
4196 			break;
4197 		}
4198 	}
4199 
4200 	/*
4201 	 * Global state is always initialized later in hugetlb_init.
4202 	 * But we need to allocate gigantic hstates here early to still
4203 	 * use the bootmem allocator.
4204 	 */
4205 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4206 		hugetlb_hstate_alloc_pages(parsed_hstate);
4207 
4208 	last_mhp = mhp;
4209 
4210 	return 1;
4211 
4212 invalid:
4213 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4214 	return 0;
4215 }
4216 __setup("hugepages=", hugepages_setup);
4217 
4218 /*
4219  * hugepagesz command line processing
4220  * A specific huge page size can only be specified once with hugepagesz.
4221  * hugepagesz is followed by hugepages on the command line.  The global
4222  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4223  * hugepagesz argument was valid.
4224  */
4225 static int __init hugepagesz_setup(char *s)
4226 {
4227 	unsigned long size;
4228 	struct hstate *h;
4229 
4230 	parsed_valid_hugepagesz = false;
4231 	size = (unsigned long)memparse(s, NULL);
4232 
4233 	if (!arch_hugetlb_valid_size(size)) {
4234 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4235 		return 0;
4236 	}
4237 
4238 	h = size_to_hstate(size);
4239 	if (h) {
4240 		/*
4241 		 * hstate for this size already exists.  This is normally
4242 		 * an error, but is allowed if the existing hstate is the
4243 		 * default hstate.  More specifically, it is only allowed if
4244 		 * the number of huge pages for the default hstate was not
4245 		 * previously specified.
4246 		 */
4247 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4248 		    default_hstate.max_huge_pages) {
4249 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4250 			return 0;
4251 		}
4252 
4253 		/*
4254 		 * No need to call hugetlb_add_hstate() as hstate already
4255 		 * exists.  But, do set parsed_hstate so that a following
4256 		 * hugepages= parameter will be applied to this hstate.
4257 		 */
4258 		parsed_hstate = h;
4259 		parsed_valid_hugepagesz = true;
4260 		return 1;
4261 	}
4262 
4263 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4264 	parsed_valid_hugepagesz = true;
4265 	return 1;
4266 }
4267 __setup("hugepagesz=", hugepagesz_setup);
4268 
4269 /*
4270  * default_hugepagesz command line input
4271  * Only one instance of default_hugepagesz allowed on command line.
4272  */
4273 static int __init default_hugepagesz_setup(char *s)
4274 {
4275 	unsigned long size;
4276 	int i;
4277 
4278 	parsed_valid_hugepagesz = false;
4279 	if (parsed_default_hugepagesz) {
4280 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4281 		return 0;
4282 	}
4283 
4284 	size = (unsigned long)memparse(s, NULL);
4285 
4286 	if (!arch_hugetlb_valid_size(size)) {
4287 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4288 		return 0;
4289 	}
4290 
4291 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4292 	parsed_valid_hugepagesz = true;
4293 	parsed_default_hugepagesz = true;
4294 	default_hstate_idx = hstate_index(size_to_hstate(size));
4295 
4296 	/*
4297 	 * The number of default huge pages (for this size) could have been
4298 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4299 	 * then default_hstate_max_huge_pages is set.  If the default huge
4300 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4301 	 * allocated here from bootmem allocator.
4302 	 */
4303 	if (default_hstate_max_huge_pages) {
4304 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4305 		for (i = 0; i < nr_online_nodes; i++)
4306 			default_hstate.max_huge_pages_node[i] =
4307 				default_hugepages_in_node[i];
4308 		if (hstate_is_gigantic(&default_hstate))
4309 			hugetlb_hstate_alloc_pages(&default_hstate);
4310 		default_hstate_max_huge_pages = 0;
4311 	}
4312 
4313 	return 1;
4314 }
4315 __setup("default_hugepagesz=", default_hugepagesz_setup);
4316 
4317 static unsigned int allowed_mems_nr(struct hstate *h)
4318 {
4319 	int node;
4320 	unsigned int nr = 0;
4321 	nodemask_t *mpol_allowed;
4322 	unsigned int *array = h->free_huge_pages_node;
4323 	gfp_t gfp_mask = htlb_alloc_mask(h);
4324 
4325 	mpol_allowed = policy_nodemask_current(gfp_mask);
4326 
4327 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4328 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4329 			nr += array[node];
4330 	}
4331 
4332 	return nr;
4333 }
4334 
4335 #ifdef CONFIG_SYSCTL
4336 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4337 					  void *buffer, size_t *length,
4338 					  loff_t *ppos, unsigned long *out)
4339 {
4340 	struct ctl_table dup_table;
4341 
4342 	/*
4343 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4344 	 * can duplicate the @table and alter the duplicate of it.
4345 	 */
4346 	dup_table = *table;
4347 	dup_table.data = out;
4348 
4349 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4350 }
4351 
4352 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4353 			 struct ctl_table *table, int write,
4354 			 void *buffer, size_t *length, loff_t *ppos)
4355 {
4356 	struct hstate *h = &default_hstate;
4357 	unsigned long tmp = h->max_huge_pages;
4358 	int ret;
4359 
4360 	if (!hugepages_supported())
4361 		return -EOPNOTSUPP;
4362 
4363 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4364 					     &tmp);
4365 	if (ret)
4366 		goto out;
4367 
4368 	if (write)
4369 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4370 						  NUMA_NO_NODE, tmp, *length);
4371 out:
4372 	return ret;
4373 }
4374 
4375 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4376 			  void *buffer, size_t *length, loff_t *ppos)
4377 {
4378 
4379 	return hugetlb_sysctl_handler_common(false, table, write,
4380 							buffer, length, ppos);
4381 }
4382 
4383 #ifdef CONFIG_NUMA
4384 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4385 			  void *buffer, size_t *length, loff_t *ppos)
4386 {
4387 	return hugetlb_sysctl_handler_common(true, table, write,
4388 							buffer, length, ppos);
4389 }
4390 #endif /* CONFIG_NUMA */
4391 
4392 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4393 		void *buffer, size_t *length, loff_t *ppos)
4394 {
4395 	struct hstate *h = &default_hstate;
4396 	unsigned long tmp;
4397 	int ret;
4398 
4399 	if (!hugepages_supported())
4400 		return -EOPNOTSUPP;
4401 
4402 	tmp = h->nr_overcommit_huge_pages;
4403 
4404 	if (write && hstate_is_gigantic(h))
4405 		return -EINVAL;
4406 
4407 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4408 					     &tmp);
4409 	if (ret)
4410 		goto out;
4411 
4412 	if (write) {
4413 		spin_lock_irq(&hugetlb_lock);
4414 		h->nr_overcommit_huge_pages = tmp;
4415 		spin_unlock_irq(&hugetlb_lock);
4416 	}
4417 out:
4418 	return ret;
4419 }
4420 
4421 #endif /* CONFIG_SYSCTL */
4422 
4423 void hugetlb_report_meminfo(struct seq_file *m)
4424 {
4425 	struct hstate *h;
4426 	unsigned long total = 0;
4427 
4428 	if (!hugepages_supported())
4429 		return;
4430 
4431 	for_each_hstate(h) {
4432 		unsigned long count = h->nr_huge_pages;
4433 
4434 		total += huge_page_size(h) * count;
4435 
4436 		if (h == &default_hstate)
4437 			seq_printf(m,
4438 				   "HugePages_Total:   %5lu\n"
4439 				   "HugePages_Free:    %5lu\n"
4440 				   "HugePages_Rsvd:    %5lu\n"
4441 				   "HugePages_Surp:    %5lu\n"
4442 				   "Hugepagesize:   %8lu kB\n",
4443 				   count,
4444 				   h->free_huge_pages,
4445 				   h->resv_huge_pages,
4446 				   h->surplus_huge_pages,
4447 				   huge_page_size(h) / SZ_1K);
4448 	}
4449 
4450 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4451 }
4452 
4453 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4454 {
4455 	struct hstate *h = &default_hstate;
4456 
4457 	if (!hugepages_supported())
4458 		return 0;
4459 
4460 	return sysfs_emit_at(buf, len,
4461 			     "Node %d HugePages_Total: %5u\n"
4462 			     "Node %d HugePages_Free:  %5u\n"
4463 			     "Node %d HugePages_Surp:  %5u\n",
4464 			     nid, h->nr_huge_pages_node[nid],
4465 			     nid, h->free_huge_pages_node[nid],
4466 			     nid, h->surplus_huge_pages_node[nid]);
4467 }
4468 
4469 void hugetlb_show_meminfo(void)
4470 {
4471 	struct hstate *h;
4472 	int nid;
4473 
4474 	if (!hugepages_supported())
4475 		return;
4476 
4477 	for_each_node_state(nid, N_MEMORY)
4478 		for_each_hstate(h)
4479 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4480 				nid,
4481 				h->nr_huge_pages_node[nid],
4482 				h->free_huge_pages_node[nid],
4483 				h->surplus_huge_pages_node[nid],
4484 				huge_page_size(h) / SZ_1K);
4485 }
4486 
4487 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4488 {
4489 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4490 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4491 }
4492 
4493 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4494 unsigned long hugetlb_total_pages(void)
4495 {
4496 	struct hstate *h;
4497 	unsigned long nr_total_pages = 0;
4498 
4499 	for_each_hstate(h)
4500 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4501 	return nr_total_pages;
4502 }
4503 
4504 static int hugetlb_acct_memory(struct hstate *h, long delta)
4505 {
4506 	int ret = -ENOMEM;
4507 
4508 	if (!delta)
4509 		return 0;
4510 
4511 	spin_lock_irq(&hugetlb_lock);
4512 	/*
4513 	 * When cpuset is configured, it breaks the strict hugetlb page
4514 	 * reservation as the accounting is done on a global variable. Such
4515 	 * reservation is completely rubbish in the presence of cpuset because
4516 	 * the reservation is not checked against page availability for the
4517 	 * current cpuset. Application can still potentially OOM'ed by kernel
4518 	 * with lack of free htlb page in cpuset that the task is in.
4519 	 * Attempt to enforce strict accounting with cpuset is almost
4520 	 * impossible (or too ugly) because cpuset is too fluid that
4521 	 * task or memory node can be dynamically moved between cpusets.
4522 	 *
4523 	 * The change of semantics for shared hugetlb mapping with cpuset is
4524 	 * undesirable. However, in order to preserve some of the semantics,
4525 	 * we fall back to check against current free page availability as
4526 	 * a best attempt and hopefully to minimize the impact of changing
4527 	 * semantics that cpuset has.
4528 	 *
4529 	 * Apart from cpuset, we also have memory policy mechanism that
4530 	 * also determines from which node the kernel will allocate memory
4531 	 * in a NUMA system. So similar to cpuset, we also should consider
4532 	 * the memory policy of the current task. Similar to the description
4533 	 * above.
4534 	 */
4535 	if (delta > 0) {
4536 		if (gather_surplus_pages(h, delta) < 0)
4537 			goto out;
4538 
4539 		if (delta > allowed_mems_nr(h)) {
4540 			return_unused_surplus_pages(h, delta);
4541 			goto out;
4542 		}
4543 	}
4544 
4545 	ret = 0;
4546 	if (delta < 0)
4547 		return_unused_surplus_pages(h, (unsigned long) -delta);
4548 
4549 out:
4550 	spin_unlock_irq(&hugetlb_lock);
4551 	return ret;
4552 }
4553 
4554 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4555 {
4556 	struct resv_map *resv = vma_resv_map(vma);
4557 
4558 	/*
4559 	 * This new VMA should share its siblings reservation map if present.
4560 	 * The VMA will only ever have a valid reservation map pointer where
4561 	 * it is being copied for another still existing VMA.  As that VMA
4562 	 * has a reference to the reservation map it cannot disappear until
4563 	 * after this open call completes.  It is therefore safe to take a
4564 	 * new reference here without additional locking.
4565 	 */
4566 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4567 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4568 		kref_get(&resv->refs);
4569 	}
4570 }
4571 
4572 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4573 {
4574 	struct hstate *h = hstate_vma(vma);
4575 	struct resv_map *resv = vma_resv_map(vma);
4576 	struct hugepage_subpool *spool = subpool_vma(vma);
4577 	unsigned long reserve, start, end;
4578 	long gbl_reserve;
4579 
4580 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4581 		return;
4582 
4583 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4584 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4585 
4586 	reserve = (end - start) - region_count(resv, start, end);
4587 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4588 	if (reserve) {
4589 		/*
4590 		 * Decrement reserve counts.  The global reserve count may be
4591 		 * adjusted if the subpool has a minimum size.
4592 		 */
4593 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4594 		hugetlb_acct_memory(h, -gbl_reserve);
4595 	}
4596 
4597 	kref_put(&resv->refs, resv_map_release);
4598 }
4599 
4600 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4601 {
4602 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4603 		return -EINVAL;
4604 	return 0;
4605 }
4606 
4607 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4608 {
4609 	return huge_page_size(hstate_vma(vma));
4610 }
4611 
4612 /*
4613  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4614  * handle_mm_fault() to try to instantiate regular-sized pages in the
4615  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4616  * this far.
4617  */
4618 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4619 {
4620 	BUG();
4621 	return 0;
4622 }
4623 
4624 /*
4625  * When a new function is introduced to vm_operations_struct and added
4626  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4627  * This is because under System V memory model, mappings created via
4628  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4629  * their original vm_ops are overwritten with shm_vm_ops.
4630  */
4631 const struct vm_operations_struct hugetlb_vm_ops = {
4632 	.fault = hugetlb_vm_op_fault,
4633 	.open = hugetlb_vm_op_open,
4634 	.close = hugetlb_vm_op_close,
4635 	.may_split = hugetlb_vm_op_split,
4636 	.pagesize = hugetlb_vm_op_pagesize,
4637 };
4638 
4639 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4640 				int writable)
4641 {
4642 	pte_t entry;
4643 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4644 
4645 	if (writable) {
4646 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4647 					 vma->vm_page_prot)));
4648 	} else {
4649 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4650 					   vma->vm_page_prot));
4651 	}
4652 	entry = pte_mkyoung(entry);
4653 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4654 
4655 	return entry;
4656 }
4657 
4658 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4659 				   unsigned long address, pte_t *ptep)
4660 {
4661 	pte_t entry;
4662 
4663 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4664 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4665 		update_mmu_cache(vma, address, ptep);
4666 }
4667 
4668 bool is_hugetlb_entry_migration(pte_t pte)
4669 {
4670 	swp_entry_t swp;
4671 
4672 	if (huge_pte_none(pte) || pte_present(pte))
4673 		return false;
4674 	swp = pte_to_swp_entry(pte);
4675 	if (is_migration_entry(swp))
4676 		return true;
4677 	else
4678 		return false;
4679 }
4680 
4681 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4682 {
4683 	swp_entry_t swp;
4684 
4685 	if (huge_pte_none(pte) || pte_present(pte))
4686 		return false;
4687 	swp = pte_to_swp_entry(pte);
4688 	if (is_hwpoison_entry(swp))
4689 		return true;
4690 	else
4691 		return false;
4692 }
4693 
4694 static void
4695 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4696 		     struct page *new_page)
4697 {
4698 	__SetPageUptodate(new_page);
4699 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4700 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4701 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4702 	ClearHPageRestoreReserve(new_page);
4703 	SetHPageMigratable(new_page);
4704 }
4705 
4706 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4707 			    struct vm_area_struct *vma)
4708 {
4709 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4710 	struct page *ptepage;
4711 	unsigned long addr;
4712 	bool cow = is_cow_mapping(vma->vm_flags);
4713 	struct hstate *h = hstate_vma(vma);
4714 	unsigned long sz = huge_page_size(h);
4715 	unsigned long npages = pages_per_huge_page(h);
4716 	struct address_space *mapping = vma->vm_file->f_mapping;
4717 	struct mmu_notifier_range range;
4718 	int ret = 0;
4719 
4720 	if (cow) {
4721 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4722 					vma->vm_start,
4723 					vma->vm_end);
4724 		mmu_notifier_invalidate_range_start(&range);
4725 	} else {
4726 		/*
4727 		 * For shared mappings i_mmap_rwsem must be held to call
4728 		 * huge_pte_alloc, otherwise the returned ptep could go
4729 		 * away if part of a shared pmd and another thread calls
4730 		 * huge_pmd_unshare.
4731 		 */
4732 		i_mmap_lock_read(mapping);
4733 	}
4734 
4735 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4736 		spinlock_t *src_ptl, *dst_ptl;
4737 		src_pte = huge_pte_offset(src, addr, sz);
4738 		if (!src_pte)
4739 			continue;
4740 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4741 		if (!dst_pte) {
4742 			ret = -ENOMEM;
4743 			break;
4744 		}
4745 
4746 		/*
4747 		 * If the pagetables are shared don't copy or take references.
4748 		 * dst_pte == src_pte is the common case of src/dest sharing.
4749 		 *
4750 		 * However, src could have 'unshared' and dst shares with
4751 		 * another vma.  If dst_pte !none, this implies sharing.
4752 		 * Check here before taking page table lock, and once again
4753 		 * after taking the lock below.
4754 		 */
4755 		dst_entry = huge_ptep_get(dst_pte);
4756 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4757 			continue;
4758 
4759 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4760 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4761 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4762 		entry = huge_ptep_get(src_pte);
4763 		dst_entry = huge_ptep_get(dst_pte);
4764 again:
4765 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4766 			/*
4767 			 * Skip if src entry none.  Also, skip in the
4768 			 * unlikely case dst entry !none as this implies
4769 			 * sharing with another vma.
4770 			 */
4771 			;
4772 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4773 				    is_hugetlb_entry_hwpoisoned(entry))) {
4774 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4775 
4776 			if (is_writable_migration_entry(swp_entry) && cow) {
4777 				/*
4778 				 * COW mappings require pages in both
4779 				 * parent and child to be set to read.
4780 				 */
4781 				swp_entry = make_readable_migration_entry(
4782 							swp_offset(swp_entry));
4783 				entry = swp_entry_to_pte(swp_entry);
4784 				set_huge_swap_pte_at(src, addr, src_pte,
4785 						     entry, sz);
4786 			}
4787 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4788 		} else {
4789 			entry = huge_ptep_get(src_pte);
4790 			ptepage = pte_page(entry);
4791 			get_page(ptepage);
4792 
4793 			/*
4794 			 * This is a rare case where we see pinned hugetlb
4795 			 * pages while they're prone to COW.  We need to do the
4796 			 * COW earlier during fork.
4797 			 *
4798 			 * When pre-allocating the page or copying data, we
4799 			 * need to be without the pgtable locks since we could
4800 			 * sleep during the process.
4801 			 */
4802 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4803 				pte_t src_pte_old = entry;
4804 				struct page *new;
4805 
4806 				spin_unlock(src_ptl);
4807 				spin_unlock(dst_ptl);
4808 				/* Do not use reserve as it's private owned */
4809 				new = alloc_huge_page(vma, addr, 1);
4810 				if (IS_ERR(new)) {
4811 					put_page(ptepage);
4812 					ret = PTR_ERR(new);
4813 					break;
4814 				}
4815 				copy_user_huge_page(new, ptepage, addr, vma,
4816 						    npages);
4817 				put_page(ptepage);
4818 
4819 				/* Install the new huge page if src pte stable */
4820 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4821 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4822 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4823 				entry = huge_ptep_get(src_pte);
4824 				if (!pte_same(src_pte_old, entry)) {
4825 					restore_reserve_on_error(h, vma, addr,
4826 								new);
4827 					put_page(new);
4828 					/* dst_entry won't change as in child */
4829 					goto again;
4830 				}
4831 				hugetlb_install_page(vma, dst_pte, addr, new);
4832 				spin_unlock(src_ptl);
4833 				spin_unlock(dst_ptl);
4834 				continue;
4835 			}
4836 
4837 			if (cow) {
4838 				/*
4839 				 * No need to notify as we are downgrading page
4840 				 * table protection not changing it to point
4841 				 * to a new page.
4842 				 *
4843 				 * See Documentation/vm/mmu_notifier.rst
4844 				 */
4845 				huge_ptep_set_wrprotect(src, addr, src_pte);
4846 				entry = huge_pte_wrprotect(entry);
4847 			}
4848 
4849 			page_dup_rmap(ptepage, true);
4850 			set_huge_pte_at(dst, addr, dst_pte, entry);
4851 			hugetlb_count_add(npages, dst);
4852 		}
4853 		spin_unlock(src_ptl);
4854 		spin_unlock(dst_ptl);
4855 	}
4856 
4857 	if (cow)
4858 		mmu_notifier_invalidate_range_end(&range);
4859 	else
4860 		i_mmap_unlock_read(mapping);
4861 
4862 	return ret;
4863 }
4864 
4865 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4866 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4867 {
4868 	struct hstate *h = hstate_vma(vma);
4869 	struct mm_struct *mm = vma->vm_mm;
4870 	spinlock_t *src_ptl, *dst_ptl;
4871 	pte_t pte;
4872 
4873 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4874 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4875 
4876 	/*
4877 	 * We don't have to worry about the ordering of src and dst ptlocks
4878 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4879 	 */
4880 	if (src_ptl != dst_ptl)
4881 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4882 
4883 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4884 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4885 
4886 	if (src_ptl != dst_ptl)
4887 		spin_unlock(src_ptl);
4888 	spin_unlock(dst_ptl);
4889 }
4890 
4891 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4892 			     struct vm_area_struct *new_vma,
4893 			     unsigned long old_addr, unsigned long new_addr,
4894 			     unsigned long len)
4895 {
4896 	struct hstate *h = hstate_vma(vma);
4897 	struct address_space *mapping = vma->vm_file->f_mapping;
4898 	unsigned long sz = huge_page_size(h);
4899 	struct mm_struct *mm = vma->vm_mm;
4900 	unsigned long old_end = old_addr + len;
4901 	unsigned long old_addr_copy;
4902 	pte_t *src_pte, *dst_pte;
4903 	struct mmu_notifier_range range;
4904 
4905 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4906 				old_end);
4907 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4908 	mmu_notifier_invalidate_range_start(&range);
4909 	/* Prevent race with file truncation */
4910 	i_mmap_lock_write(mapping);
4911 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4912 		src_pte = huge_pte_offset(mm, old_addr, sz);
4913 		if (!src_pte)
4914 			continue;
4915 		if (huge_pte_none(huge_ptep_get(src_pte)))
4916 			continue;
4917 
4918 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
4919 		 * arg may be modified. Pass a copy instead to preserve the
4920 		 * value in old_addr.
4921 		 */
4922 		old_addr_copy = old_addr;
4923 
4924 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4925 			continue;
4926 
4927 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4928 		if (!dst_pte)
4929 			break;
4930 
4931 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4932 	}
4933 	flush_tlb_range(vma, old_end - len, old_end);
4934 	mmu_notifier_invalidate_range_end(&range);
4935 	i_mmap_unlock_write(mapping);
4936 
4937 	return len + old_addr - old_end;
4938 }
4939 
4940 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4941 				   unsigned long start, unsigned long end,
4942 				   struct page *ref_page)
4943 {
4944 	struct mm_struct *mm = vma->vm_mm;
4945 	unsigned long address;
4946 	pte_t *ptep;
4947 	pte_t pte;
4948 	spinlock_t *ptl;
4949 	struct page *page;
4950 	struct hstate *h = hstate_vma(vma);
4951 	unsigned long sz = huge_page_size(h);
4952 	struct mmu_notifier_range range;
4953 	bool force_flush = false;
4954 
4955 	WARN_ON(!is_vm_hugetlb_page(vma));
4956 	BUG_ON(start & ~huge_page_mask(h));
4957 	BUG_ON(end & ~huge_page_mask(h));
4958 
4959 	/*
4960 	 * This is a hugetlb vma, all the pte entries should point
4961 	 * to huge page.
4962 	 */
4963 	tlb_change_page_size(tlb, sz);
4964 	tlb_start_vma(tlb, vma);
4965 
4966 	/*
4967 	 * If sharing possible, alert mmu notifiers of worst case.
4968 	 */
4969 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4970 				end);
4971 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4972 	mmu_notifier_invalidate_range_start(&range);
4973 	address = start;
4974 	for (; address < end; address += sz) {
4975 		ptep = huge_pte_offset(mm, address, sz);
4976 		if (!ptep)
4977 			continue;
4978 
4979 		ptl = huge_pte_lock(h, mm, ptep);
4980 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4981 			spin_unlock(ptl);
4982 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4983 			force_flush = true;
4984 			continue;
4985 		}
4986 
4987 		pte = huge_ptep_get(ptep);
4988 		if (huge_pte_none(pte)) {
4989 			spin_unlock(ptl);
4990 			continue;
4991 		}
4992 
4993 		/*
4994 		 * Migrating hugepage or HWPoisoned hugepage is already
4995 		 * unmapped and its refcount is dropped, so just clear pte here.
4996 		 */
4997 		if (unlikely(!pte_present(pte))) {
4998 			huge_pte_clear(mm, address, ptep, sz);
4999 			spin_unlock(ptl);
5000 			continue;
5001 		}
5002 
5003 		page = pte_page(pte);
5004 		/*
5005 		 * If a reference page is supplied, it is because a specific
5006 		 * page is being unmapped, not a range. Ensure the page we
5007 		 * are about to unmap is the actual page of interest.
5008 		 */
5009 		if (ref_page) {
5010 			if (page != ref_page) {
5011 				spin_unlock(ptl);
5012 				continue;
5013 			}
5014 			/*
5015 			 * Mark the VMA as having unmapped its page so that
5016 			 * future faults in this VMA will fail rather than
5017 			 * looking like data was lost
5018 			 */
5019 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5020 		}
5021 
5022 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5023 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5024 		if (huge_pte_dirty(pte))
5025 			set_page_dirty(page);
5026 
5027 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5028 		page_remove_rmap(page, vma, true);
5029 
5030 		spin_unlock(ptl);
5031 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5032 		/*
5033 		 * Bail out after unmapping reference page if supplied
5034 		 */
5035 		if (ref_page)
5036 			break;
5037 	}
5038 	mmu_notifier_invalidate_range_end(&range);
5039 	tlb_end_vma(tlb, vma);
5040 
5041 	/*
5042 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5043 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5044 	 * guaranteed that the last refernece would not be dropped. But we must
5045 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5046 	 * dropped and the last reference to the shared PMDs page might be
5047 	 * dropped as well.
5048 	 *
5049 	 * In theory we could defer the freeing of the PMD pages as well, but
5050 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5051 	 * detect sharing, so we cannot defer the release of the page either.
5052 	 * Instead, do flush now.
5053 	 */
5054 	if (force_flush)
5055 		tlb_flush_mmu_tlbonly(tlb);
5056 }
5057 
5058 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5059 			  struct vm_area_struct *vma, unsigned long start,
5060 			  unsigned long end, struct page *ref_page)
5061 {
5062 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
5063 
5064 	/*
5065 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5066 	 * test will fail on a vma being torn down, and not grab a page table
5067 	 * on its way out.  We're lucky that the flag has such an appropriate
5068 	 * name, and can in fact be safely cleared here. We could clear it
5069 	 * before the __unmap_hugepage_range above, but all that's necessary
5070 	 * is to clear it before releasing the i_mmap_rwsem. This works
5071 	 * because in the context this is called, the VMA is about to be
5072 	 * destroyed and the i_mmap_rwsem is held.
5073 	 */
5074 	vma->vm_flags &= ~VM_MAYSHARE;
5075 }
5076 
5077 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5078 			  unsigned long end, struct page *ref_page)
5079 {
5080 	struct mmu_gather tlb;
5081 
5082 	tlb_gather_mmu(&tlb, vma->vm_mm);
5083 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5084 	tlb_finish_mmu(&tlb);
5085 }
5086 
5087 /*
5088  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5089  * mapping it owns the reserve page for. The intention is to unmap the page
5090  * from other VMAs and let the children be SIGKILLed if they are faulting the
5091  * same region.
5092  */
5093 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5094 			      struct page *page, unsigned long address)
5095 {
5096 	struct hstate *h = hstate_vma(vma);
5097 	struct vm_area_struct *iter_vma;
5098 	struct address_space *mapping;
5099 	pgoff_t pgoff;
5100 
5101 	/*
5102 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5103 	 * from page cache lookup which is in HPAGE_SIZE units.
5104 	 */
5105 	address = address & huge_page_mask(h);
5106 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5107 			vma->vm_pgoff;
5108 	mapping = vma->vm_file->f_mapping;
5109 
5110 	/*
5111 	 * Take the mapping lock for the duration of the table walk. As
5112 	 * this mapping should be shared between all the VMAs,
5113 	 * __unmap_hugepage_range() is called as the lock is already held
5114 	 */
5115 	i_mmap_lock_write(mapping);
5116 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5117 		/* Do not unmap the current VMA */
5118 		if (iter_vma == vma)
5119 			continue;
5120 
5121 		/*
5122 		 * Shared VMAs have their own reserves and do not affect
5123 		 * MAP_PRIVATE accounting but it is possible that a shared
5124 		 * VMA is using the same page so check and skip such VMAs.
5125 		 */
5126 		if (iter_vma->vm_flags & VM_MAYSHARE)
5127 			continue;
5128 
5129 		/*
5130 		 * Unmap the page from other VMAs without their own reserves.
5131 		 * They get marked to be SIGKILLed if they fault in these
5132 		 * areas. This is because a future no-page fault on this VMA
5133 		 * could insert a zeroed page instead of the data existing
5134 		 * from the time of fork. This would look like data corruption
5135 		 */
5136 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5137 			unmap_hugepage_range(iter_vma, address,
5138 					     address + huge_page_size(h), page);
5139 	}
5140 	i_mmap_unlock_write(mapping);
5141 }
5142 
5143 /*
5144  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5145  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5146  * cannot race with other handlers or page migration.
5147  * Keep the pte_same checks anyway to make transition from the mutex easier.
5148  */
5149 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5150 		       unsigned long address, pte_t *ptep,
5151 		       struct page *pagecache_page, spinlock_t *ptl)
5152 {
5153 	pte_t pte;
5154 	struct hstate *h = hstate_vma(vma);
5155 	struct page *old_page, *new_page;
5156 	int outside_reserve = 0;
5157 	vm_fault_t ret = 0;
5158 	unsigned long haddr = address & huge_page_mask(h);
5159 	struct mmu_notifier_range range;
5160 
5161 	pte = huge_ptep_get(ptep);
5162 	old_page = pte_page(pte);
5163 
5164 retry_avoidcopy:
5165 	/* If no-one else is actually using this page, avoid the copy
5166 	 * and just make the page writable */
5167 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5168 		page_move_anon_rmap(old_page, vma);
5169 		set_huge_ptep_writable(vma, haddr, ptep);
5170 		return 0;
5171 	}
5172 
5173 	/*
5174 	 * If the process that created a MAP_PRIVATE mapping is about to
5175 	 * perform a COW due to a shared page count, attempt to satisfy
5176 	 * the allocation without using the existing reserves. The pagecache
5177 	 * page is used to determine if the reserve at this address was
5178 	 * consumed or not. If reserves were used, a partial faulted mapping
5179 	 * at the time of fork() could consume its reserves on COW instead
5180 	 * of the full address range.
5181 	 */
5182 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5183 			old_page != pagecache_page)
5184 		outside_reserve = 1;
5185 
5186 	get_page(old_page);
5187 
5188 	/*
5189 	 * Drop page table lock as buddy allocator may be called. It will
5190 	 * be acquired again before returning to the caller, as expected.
5191 	 */
5192 	spin_unlock(ptl);
5193 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5194 
5195 	if (IS_ERR(new_page)) {
5196 		/*
5197 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5198 		 * it is due to references held by a child and an insufficient
5199 		 * huge page pool. To guarantee the original mappers
5200 		 * reliability, unmap the page from child processes. The child
5201 		 * may get SIGKILLed if it later faults.
5202 		 */
5203 		if (outside_reserve) {
5204 			struct address_space *mapping = vma->vm_file->f_mapping;
5205 			pgoff_t idx;
5206 			u32 hash;
5207 
5208 			put_page(old_page);
5209 			BUG_ON(huge_pte_none(pte));
5210 			/*
5211 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5212 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5213 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5214 			 * here is OK as COW mappings do not interact with
5215 			 * PMD sharing.
5216 			 *
5217 			 * Reacquire both after unmap operation.
5218 			 */
5219 			idx = vma_hugecache_offset(h, vma, haddr);
5220 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5221 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5222 			i_mmap_unlock_read(mapping);
5223 
5224 			unmap_ref_private(mm, vma, old_page, haddr);
5225 
5226 			i_mmap_lock_read(mapping);
5227 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5228 			spin_lock(ptl);
5229 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5230 			if (likely(ptep &&
5231 				   pte_same(huge_ptep_get(ptep), pte)))
5232 				goto retry_avoidcopy;
5233 			/*
5234 			 * race occurs while re-acquiring page table
5235 			 * lock, and our job is done.
5236 			 */
5237 			return 0;
5238 		}
5239 
5240 		ret = vmf_error(PTR_ERR(new_page));
5241 		goto out_release_old;
5242 	}
5243 
5244 	/*
5245 	 * When the original hugepage is shared one, it does not have
5246 	 * anon_vma prepared.
5247 	 */
5248 	if (unlikely(anon_vma_prepare(vma))) {
5249 		ret = VM_FAULT_OOM;
5250 		goto out_release_all;
5251 	}
5252 
5253 	copy_user_huge_page(new_page, old_page, address, vma,
5254 			    pages_per_huge_page(h));
5255 	__SetPageUptodate(new_page);
5256 
5257 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5258 				haddr + huge_page_size(h));
5259 	mmu_notifier_invalidate_range_start(&range);
5260 
5261 	/*
5262 	 * Retake the page table lock to check for racing updates
5263 	 * before the page tables are altered
5264 	 */
5265 	spin_lock(ptl);
5266 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5267 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5268 		ClearHPageRestoreReserve(new_page);
5269 
5270 		/* Break COW */
5271 		huge_ptep_clear_flush(vma, haddr, ptep);
5272 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5273 		page_remove_rmap(old_page, vma, true);
5274 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5275 		set_huge_pte_at(mm, haddr, ptep,
5276 				make_huge_pte(vma, new_page, 1));
5277 		SetHPageMigratable(new_page);
5278 		/* Make the old page be freed below */
5279 		new_page = old_page;
5280 	}
5281 	spin_unlock(ptl);
5282 	mmu_notifier_invalidate_range_end(&range);
5283 out_release_all:
5284 	/* No restore in case of successful pagetable update (Break COW) */
5285 	if (new_page != old_page)
5286 		restore_reserve_on_error(h, vma, haddr, new_page);
5287 	put_page(new_page);
5288 out_release_old:
5289 	put_page(old_page);
5290 
5291 	spin_lock(ptl); /* Caller expects lock to be held */
5292 	return ret;
5293 }
5294 
5295 /* Return the pagecache page at a given address within a VMA */
5296 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5297 			struct vm_area_struct *vma, unsigned long address)
5298 {
5299 	struct address_space *mapping;
5300 	pgoff_t idx;
5301 
5302 	mapping = vma->vm_file->f_mapping;
5303 	idx = vma_hugecache_offset(h, vma, address);
5304 
5305 	return find_lock_page(mapping, idx);
5306 }
5307 
5308 /*
5309  * Return whether there is a pagecache page to back given address within VMA.
5310  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5311  */
5312 static bool hugetlbfs_pagecache_present(struct hstate *h,
5313 			struct vm_area_struct *vma, unsigned long address)
5314 {
5315 	struct address_space *mapping;
5316 	pgoff_t idx;
5317 	struct page *page;
5318 
5319 	mapping = vma->vm_file->f_mapping;
5320 	idx = vma_hugecache_offset(h, vma, address);
5321 
5322 	page = find_get_page(mapping, idx);
5323 	if (page)
5324 		put_page(page);
5325 	return page != NULL;
5326 }
5327 
5328 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5329 			   pgoff_t idx)
5330 {
5331 	struct inode *inode = mapping->host;
5332 	struct hstate *h = hstate_inode(inode);
5333 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5334 
5335 	if (err)
5336 		return err;
5337 	ClearHPageRestoreReserve(page);
5338 
5339 	/*
5340 	 * set page dirty so that it will not be removed from cache/file
5341 	 * by non-hugetlbfs specific code paths.
5342 	 */
5343 	set_page_dirty(page);
5344 
5345 	spin_lock(&inode->i_lock);
5346 	inode->i_blocks += blocks_per_huge_page(h);
5347 	spin_unlock(&inode->i_lock);
5348 	return 0;
5349 }
5350 
5351 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5352 						  struct address_space *mapping,
5353 						  pgoff_t idx,
5354 						  unsigned int flags,
5355 						  unsigned long haddr,
5356 						  unsigned long addr,
5357 						  unsigned long reason)
5358 {
5359 	vm_fault_t ret;
5360 	u32 hash;
5361 	struct vm_fault vmf = {
5362 		.vma = vma,
5363 		.address = haddr,
5364 		.real_address = addr,
5365 		.flags = flags,
5366 
5367 		/*
5368 		 * Hard to debug if it ends up being
5369 		 * used by a callee that assumes
5370 		 * something about the other
5371 		 * uninitialized fields... same as in
5372 		 * memory.c
5373 		 */
5374 	};
5375 
5376 	/*
5377 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5378 	 * dropped before handling userfault.  Reacquire
5379 	 * after handling fault to make calling code simpler.
5380 	 */
5381 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5382 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5383 	i_mmap_unlock_read(mapping);
5384 	ret = handle_userfault(&vmf, reason);
5385 	i_mmap_lock_read(mapping);
5386 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5387 
5388 	return ret;
5389 }
5390 
5391 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5392 			struct vm_area_struct *vma,
5393 			struct address_space *mapping, pgoff_t idx,
5394 			unsigned long address, pte_t *ptep, unsigned int flags)
5395 {
5396 	struct hstate *h = hstate_vma(vma);
5397 	vm_fault_t ret = VM_FAULT_SIGBUS;
5398 	int anon_rmap = 0;
5399 	unsigned long size;
5400 	struct page *page;
5401 	pte_t new_pte;
5402 	spinlock_t *ptl;
5403 	unsigned long haddr = address & huge_page_mask(h);
5404 	bool new_page, new_pagecache_page = false;
5405 
5406 	/*
5407 	 * Currently, we are forced to kill the process in the event the
5408 	 * original mapper has unmapped pages from the child due to a failed
5409 	 * COW. Warn that such a situation has occurred as it may not be obvious
5410 	 */
5411 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5412 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5413 			   current->pid);
5414 		return ret;
5415 	}
5416 
5417 	/*
5418 	 * We can not race with truncation due to holding i_mmap_rwsem.
5419 	 * i_size is modified when holding i_mmap_rwsem, so check here
5420 	 * once for faults beyond end of file.
5421 	 */
5422 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5423 	if (idx >= size)
5424 		goto out;
5425 
5426 retry:
5427 	new_page = false;
5428 	page = find_lock_page(mapping, idx);
5429 	if (!page) {
5430 		/* Check for page in userfault range */
5431 		if (userfaultfd_missing(vma)) {
5432 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5433 						       flags, haddr, address,
5434 						       VM_UFFD_MISSING);
5435 			goto out;
5436 		}
5437 
5438 		page = alloc_huge_page(vma, haddr, 0);
5439 		if (IS_ERR(page)) {
5440 			/*
5441 			 * Returning error will result in faulting task being
5442 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5443 			 * tasks from racing to fault in the same page which
5444 			 * could result in false unable to allocate errors.
5445 			 * Page migration does not take the fault mutex, but
5446 			 * does a clear then write of pte's under page table
5447 			 * lock.  Page fault code could race with migration,
5448 			 * notice the clear pte and try to allocate a page
5449 			 * here.  Before returning error, get ptl and make
5450 			 * sure there really is no pte entry.
5451 			 */
5452 			ptl = huge_pte_lock(h, mm, ptep);
5453 			ret = 0;
5454 			if (huge_pte_none(huge_ptep_get(ptep)))
5455 				ret = vmf_error(PTR_ERR(page));
5456 			spin_unlock(ptl);
5457 			goto out;
5458 		}
5459 		clear_huge_page(page, address, pages_per_huge_page(h));
5460 		__SetPageUptodate(page);
5461 		new_page = true;
5462 
5463 		if (vma->vm_flags & VM_MAYSHARE) {
5464 			int err = huge_add_to_page_cache(page, mapping, idx);
5465 			if (err) {
5466 				put_page(page);
5467 				if (err == -EEXIST)
5468 					goto retry;
5469 				goto out;
5470 			}
5471 			new_pagecache_page = true;
5472 		} else {
5473 			lock_page(page);
5474 			if (unlikely(anon_vma_prepare(vma))) {
5475 				ret = VM_FAULT_OOM;
5476 				goto backout_unlocked;
5477 			}
5478 			anon_rmap = 1;
5479 		}
5480 	} else {
5481 		/*
5482 		 * If memory error occurs between mmap() and fault, some process
5483 		 * don't have hwpoisoned swap entry for errored virtual address.
5484 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5485 		 */
5486 		if (unlikely(PageHWPoison(page))) {
5487 			ret = VM_FAULT_HWPOISON_LARGE |
5488 				VM_FAULT_SET_HINDEX(hstate_index(h));
5489 			goto backout_unlocked;
5490 		}
5491 
5492 		/* Check for page in userfault range. */
5493 		if (userfaultfd_minor(vma)) {
5494 			unlock_page(page);
5495 			put_page(page);
5496 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5497 						       flags, haddr, address,
5498 						       VM_UFFD_MINOR);
5499 			goto out;
5500 		}
5501 	}
5502 
5503 	/*
5504 	 * If we are going to COW a private mapping later, we examine the
5505 	 * pending reservations for this page now. This will ensure that
5506 	 * any allocations necessary to record that reservation occur outside
5507 	 * the spinlock.
5508 	 */
5509 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5510 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5511 			ret = VM_FAULT_OOM;
5512 			goto backout_unlocked;
5513 		}
5514 		/* Just decrements count, does not deallocate */
5515 		vma_end_reservation(h, vma, haddr);
5516 	}
5517 
5518 	ptl = huge_pte_lock(h, mm, ptep);
5519 	ret = 0;
5520 	if (!huge_pte_none(huge_ptep_get(ptep)))
5521 		goto backout;
5522 
5523 	if (anon_rmap) {
5524 		ClearHPageRestoreReserve(page);
5525 		hugepage_add_new_anon_rmap(page, vma, haddr);
5526 	} else
5527 		page_dup_rmap(page, true);
5528 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5529 				&& (vma->vm_flags & VM_SHARED)));
5530 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5531 
5532 	hugetlb_count_add(pages_per_huge_page(h), mm);
5533 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5534 		/* Optimization, do the COW without a second fault */
5535 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5536 	}
5537 
5538 	spin_unlock(ptl);
5539 
5540 	/*
5541 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5542 	 * found in the pagecache may not have HPageMigratableset if they have
5543 	 * been isolated for migration.
5544 	 */
5545 	if (new_page)
5546 		SetHPageMigratable(page);
5547 
5548 	unlock_page(page);
5549 out:
5550 	return ret;
5551 
5552 backout:
5553 	spin_unlock(ptl);
5554 backout_unlocked:
5555 	unlock_page(page);
5556 	/* restore reserve for newly allocated pages not in page cache */
5557 	if (new_page && !new_pagecache_page)
5558 		restore_reserve_on_error(h, vma, haddr, page);
5559 	put_page(page);
5560 	goto out;
5561 }
5562 
5563 #ifdef CONFIG_SMP
5564 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5565 {
5566 	unsigned long key[2];
5567 	u32 hash;
5568 
5569 	key[0] = (unsigned long) mapping;
5570 	key[1] = idx;
5571 
5572 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5573 
5574 	return hash & (num_fault_mutexes - 1);
5575 }
5576 #else
5577 /*
5578  * For uniprocessor systems we always use a single mutex, so just
5579  * return 0 and avoid the hashing overhead.
5580  */
5581 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5582 {
5583 	return 0;
5584 }
5585 #endif
5586 
5587 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5588 			unsigned long address, unsigned int flags)
5589 {
5590 	pte_t *ptep, entry;
5591 	spinlock_t *ptl;
5592 	vm_fault_t ret;
5593 	u32 hash;
5594 	pgoff_t idx;
5595 	struct page *page = NULL;
5596 	struct page *pagecache_page = NULL;
5597 	struct hstate *h = hstate_vma(vma);
5598 	struct address_space *mapping;
5599 	int need_wait_lock = 0;
5600 	unsigned long haddr = address & huge_page_mask(h);
5601 
5602 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5603 	if (ptep) {
5604 		/*
5605 		 * Since we hold no locks, ptep could be stale.  That is
5606 		 * OK as we are only making decisions based on content and
5607 		 * not actually modifying content here.
5608 		 */
5609 		entry = huge_ptep_get(ptep);
5610 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5611 			migration_entry_wait_huge(vma, mm, ptep);
5612 			return 0;
5613 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5614 			return VM_FAULT_HWPOISON_LARGE |
5615 				VM_FAULT_SET_HINDEX(hstate_index(h));
5616 	}
5617 
5618 	/*
5619 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5620 	 * until finished with ptep.  This serves two purposes:
5621 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5622 	 *    and making the ptep no longer valid.
5623 	 * 2) It synchronizes us with i_size modifications during truncation.
5624 	 *
5625 	 * ptep could have already be assigned via huge_pte_offset.  That
5626 	 * is OK, as huge_pte_alloc will return the same value unless
5627 	 * something has changed.
5628 	 */
5629 	mapping = vma->vm_file->f_mapping;
5630 	i_mmap_lock_read(mapping);
5631 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5632 	if (!ptep) {
5633 		i_mmap_unlock_read(mapping);
5634 		return VM_FAULT_OOM;
5635 	}
5636 
5637 	/*
5638 	 * Serialize hugepage allocation and instantiation, so that we don't
5639 	 * get spurious allocation failures if two CPUs race to instantiate
5640 	 * the same page in the page cache.
5641 	 */
5642 	idx = vma_hugecache_offset(h, vma, haddr);
5643 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5644 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5645 
5646 	entry = huge_ptep_get(ptep);
5647 	if (huge_pte_none(entry)) {
5648 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5649 		goto out_mutex;
5650 	}
5651 
5652 	ret = 0;
5653 
5654 	/*
5655 	 * entry could be a migration/hwpoison entry at this point, so this
5656 	 * check prevents the kernel from going below assuming that we have
5657 	 * an active hugepage in pagecache. This goto expects the 2nd page
5658 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5659 	 * properly handle it.
5660 	 */
5661 	if (!pte_present(entry))
5662 		goto out_mutex;
5663 
5664 	/*
5665 	 * If we are going to COW the mapping later, we examine the pending
5666 	 * reservations for this page now. This will ensure that any
5667 	 * allocations necessary to record that reservation occur outside the
5668 	 * spinlock. For private mappings, we also lookup the pagecache
5669 	 * page now as it is used to determine if a reservation has been
5670 	 * consumed.
5671 	 */
5672 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5673 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5674 			ret = VM_FAULT_OOM;
5675 			goto out_mutex;
5676 		}
5677 		/* Just decrements count, does not deallocate */
5678 		vma_end_reservation(h, vma, haddr);
5679 
5680 		if (!(vma->vm_flags & VM_MAYSHARE))
5681 			pagecache_page = hugetlbfs_pagecache_page(h,
5682 								vma, haddr);
5683 	}
5684 
5685 	ptl = huge_pte_lock(h, mm, ptep);
5686 
5687 	/* Check for a racing update before calling hugetlb_cow */
5688 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5689 		goto out_ptl;
5690 
5691 	/*
5692 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5693 	 * pagecache_page, so here we need take the former one
5694 	 * when page != pagecache_page or !pagecache_page.
5695 	 */
5696 	page = pte_page(entry);
5697 	if (page != pagecache_page)
5698 		if (!trylock_page(page)) {
5699 			need_wait_lock = 1;
5700 			goto out_ptl;
5701 		}
5702 
5703 	get_page(page);
5704 
5705 	if (flags & FAULT_FLAG_WRITE) {
5706 		if (!huge_pte_write(entry)) {
5707 			ret = hugetlb_cow(mm, vma, address, ptep,
5708 					  pagecache_page, ptl);
5709 			goto out_put_page;
5710 		}
5711 		entry = huge_pte_mkdirty(entry);
5712 	}
5713 	entry = pte_mkyoung(entry);
5714 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5715 						flags & FAULT_FLAG_WRITE))
5716 		update_mmu_cache(vma, haddr, ptep);
5717 out_put_page:
5718 	if (page != pagecache_page)
5719 		unlock_page(page);
5720 	put_page(page);
5721 out_ptl:
5722 	spin_unlock(ptl);
5723 
5724 	if (pagecache_page) {
5725 		unlock_page(pagecache_page);
5726 		put_page(pagecache_page);
5727 	}
5728 out_mutex:
5729 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5730 	i_mmap_unlock_read(mapping);
5731 	/*
5732 	 * Generally it's safe to hold refcount during waiting page lock. But
5733 	 * here we just wait to defer the next page fault to avoid busy loop and
5734 	 * the page is not used after unlocked before returning from the current
5735 	 * page fault. So we are safe from accessing freed page, even if we wait
5736 	 * here without taking refcount.
5737 	 */
5738 	if (need_wait_lock)
5739 		wait_on_page_locked(page);
5740 	return ret;
5741 }
5742 
5743 #ifdef CONFIG_USERFAULTFD
5744 /*
5745  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5746  * modifications for huge pages.
5747  */
5748 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5749 			    pte_t *dst_pte,
5750 			    struct vm_area_struct *dst_vma,
5751 			    unsigned long dst_addr,
5752 			    unsigned long src_addr,
5753 			    enum mcopy_atomic_mode mode,
5754 			    struct page **pagep)
5755 {
5756 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5757 	struct hstate *h = hstate_vma(dst_vma);
5758 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5759 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5760 	unsigned long size;
5761 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5762 	pte_t _dst_pte;
5763 	spinlock_t *ptl;
5764 	int ret = -ENOMEM;
5765 	struct page *page;
5766 	int writable;
5767 	bool page_in_pagecache = false;
5768 
5769 	if (is_continue) {
5770 		ret = -EFAULT;
5771 		page = find_lock_page(mapping, idx);
5772 		if (!page)
5773 			goto out;
5774 		page_in_pagecache = true;
5775 	} else if (!*pagep) {
5776 		/* If a page already exists, then it's UFFDIO_COPY for
5777 		 * a non-missing case. Return -EEXIST.
5778 		 */
5779 		if (vm_shared &&
5780 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5781 			ret = -EEXIST;
5782 			goto out;
5783 		}
5784 
5785 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5786 		if (IS_ERR(page)) {
5787 			ret = -ENOMEM;
5788 			goto out;
5789 		}
5790 
5791 		ret = copy_huge_page_from_user(page,
5792 						(const void __user *) src_addr,
5793 						pages_per_huge_page(h), false);
5794 
5795 		/* fallback to copy_from_user outside mmap_lock */
5796 		if (unlikely(ret)) {
5797 			ret = -ENOENT;
5798 			/* Free the allocated page which may have
5799 			 * consumed a reservation.
5800 			 */
5801 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5802 			put_page(page);
5803 
5804 			/* Allocate a temporary page to hold the copied
5805 			 * contents.
5806 			 */
5807 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5808 			if (!page) {
5809 				ret = -ENOMEM;
5810 				goto out;
5811 			}
5812 			*pagep = page;
5813 			/* Set the outparam pagep and return to the caller to
5814 			 * copy the contents outside the lock. Don't free the
5815 			 * page.
5816 			 */
5817 			goto out;
5818 		}
5819 	} else {
5820 		if (vm_shared &&
5821 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5822 			put_page(*pagep);
5823 			ret = -EEXIST;
5824 			*pagep = NULL;
5825 			goto out;
5826 		}
5827 
5828 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5829 		if (IS_ERR(page)) {
5830 			ret = -ENOMEM;
5831 			*pagep = NULL;
5832 			goto out;
5833 		}
5834 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5835 				    pages_per_huge_page(h));
5836 		put_page(*pagep);
5837 		*pagep = NULL;
5838 	}
5839 
5840 	/*
5841 	 * The memory barrier inside __SetPageUptodate makes sure that
5842 	 * preceding stores to the page contents become visible before
5843 	 * the set_pte_at() write.
5844 	 */
5845 	__SetPageUptodate(page);
5846 
5847 	/* Add shared, newly allocated pages to the page cache. */
5848 	if (vm_shared && !is_continue) {
5849 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5850 		ret = -EFAULT;
5851 		if (idx >= size)
5852 			goto out_release_nounlock;
5853 
5854 		/*
5855 		 * Serialization between remove_inode_hugepages() and
5856 		 * huge_add_to_page_cache() below happens through the
5857 		 * hugetlb_fault_mutex_table that here must be hold by
5858 		 * the caller.
5859 		 */
5860 		ret = huge_add_to_page_cache(page, mapping, idx);
5861 		if (ret)
5862 			goto out_release_nounlock;
5863 		page_in_pagecache = true;
5864 	}
5865 
5866 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5867 	spin_lock(ptl);
5868 
5869 	/*
5870 	 * Recheck the i_size after holding PT lock to make sure not
5871 	 * to leave any page mapped (as page_mapped()) beyond the end
5872 	 * of the i_size (remove_inode_hugepages() is strict about
5873 	 * enforcing that). If we bail out here, we'll also leave a
5874 	 * page in the radix tree in the vm_shared case beyond the end
5875 	 * of the i_size, but remove_inode_hugepages() will take care
5876 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5877 	 */
5878 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5879 	ret = -EFAULT;
5880 	if (idx >= size)
5881 		goto out_release_unlock;
5882 
5883 	ret = -EEXIST;
5884 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5885 		goto out_release_unlock;
5886 
5887 	if (vm_shared) {
5888 		page_dup_rmap(page, true);
5889 	} else {
5890 		ClearHPageRestoreReserve(page);
5891 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5892 	}
5893 
5894 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5895 	if (is_continue && !vm_shared)
5896 		writable = 0;
5897 	else
5898 		writable = dst_vma->vm_flags & VM_WRITE;
5899 
5900 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5901 	if (writable)
5902 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5903 	_dst_pte = pte_mkyoung(_dst_pte);
5904 
5905 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5906 
5907 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5908 					dst_vma->vm_flags & VM_WRITE);
5909 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5910 
5911 	/* No need to invalidate - it was non-present before */
5912 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5913 
5914 	spin_unlock(ptl);
5915 	if (!is_continue)
5916 		SetHPageMigratable(page);
5917 	if (vm_shared || is_continue)
5918 		unlock_page(page);
5919 	ret = 0;
5920 out:
5921 	return ret;
5922 out_release_unlock:
5923 	spin_unlock(ptl);
5924 	if (vm_shared || is_continue)
5925 		unlock_page(page);
5926 out_release_nounlock:
5927 	if (!page_in_pagecache)
5928 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5929 	put_page(page);
5930 	goto out;
5931 }
5932 #endif /* CONFIG_USERFAULTFD */
5933 
5934 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5935 				 int refs, struct page **pages,
5936 				 struct vm_area_struct **vmas)
5937 {
5938 	int nr;
5939 
5940 	for (nr = 0; nr < refs; nr++) {
5941 		if (likely(pages))
5942 			pages[nr] = mem_map_offset(page, nr);
5943 		if (vmas)
5944 			vmas[nr] = vma;
5945 	}
5946 }
5947 
5948 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5949 			 struct page **pages, struct vm_area_struct **vmas,
5950 			 unsigned long *position, unsigned long *nr_pages,
5951 			 long i, unsigned int flags, int *locked)
5952 {
5953 	unsigned long pfn_offset;
5954 	unsigned long vaddr = *position;
5955 	unsigned long remainder = *nr_pages;
5956 	struct hstate *h = hstate_vma(vma);
5957 	int err = -EFAULT, refs;
5958 
5959 	while (vaddr < vma->vm_end && remainder) {
5960 		pte_t *pte;
5961 		spinlock_t *ptl = NULL;
5962 		int absent;
5963 		struct page *page;
5964 
5965 		/*
5966 		 * If we have a pending SIGKILL, don't keep faulting pages and
5967 		 * potentially allocating memory.
5968 		 */
5969 		if (fatal_signal_pending(current)) {
5970 			remainder = 0;
5971 			break;
5972 		}
5973 
5974 		/*
5975 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5976 		 * each hugepage.  We have to make sure we get the
5977 		 * first, for the page indexing below to work.
5978 		 *
5979 		 * Note that page table lock is not held when pte is null.
5980 		 */
5981 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5982 				      huge_page_size(h));
5983 		if (pte)
5984 			ptl = huge_pte_lock(h, mm, pte);
5985 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5986 
5987 		/*
5988 		 * When coredumping, it suits get_dump_page if we just return
5989 		 * an error where there's an empty slot with no huge pagecache
5990 		 * to back it.  This way, we avoid allocating a hugepage, and
5991 		 * the sparse dumpfile avoids allocating disk blocks, but its
5992 		 * huge holes still show up with zeroes where they need to be.
5993 		 */
5994 		if (absent && (flags & FOLL_DUMP) &&
5995 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5996 			if (pte)
5997 				spin_unlock(ptl);
5998 			remainder = 0;
5999 			break;
6000 		}
6001 
6002 		/*
6003 		 * We need call hugetlb_fault for both hugepages under migration
6004 		 * (in which case hugetlb_fault waits for the migration,) and
6005 		 * hwpoisoned hugepages (in which case we need to prevent the
6006 		 * caller from accessing to them.) In order to do this, we use
6007 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6008 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6009 		 * both cases, and because we can't follow correct pages
6010 		 * directly from any kind of swap entries.
6011 		 */
6012 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6013 		    ((flags & FOLL_WRITE) &&
6014 		      !huge_pte_write(huge_ptep_get(pte)))) {
6015 			vm_fault_t ret;
6016 			unsigned int fault_flags = 0;
6017 
6018 			if (pte)
6019 				spin_unlock(ptl);
6020 			if (flags & FOLL_WRITE)
6021 				fault_flags |= FAULT_FLAG_WRITE;
6022 			if (locked)
6023 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6024 					FAULT_FLAG_KILLABLE;
6025 			if (flags & FOLL_NOWAIT)
6026 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6027 					FAULT_FLAG_RETRY_NOWAIT;
6028 			if (flags & FOLL_TRIED) {
6029 				/*
6030 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6031 				 * FAULT_FLAG_TRIED can co-exist
6032 				 */
6033 				fault_flags |= FAULT_FLAG_TRIED;
6034 			}
6035 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6036 			if (ret & VM_FAULT_ERROR) {
6037 				err = vm_fault_to_errno(ret, flags);
6038 				remainder = 0;
6039 				break;
6040 			}
6041 			if (ret & VM_FAULT_RETRY) {
6042 				if (locked &&
6043 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6044 					*locked = 0;
6045 				*nr_pages = 0;
6046 				/*
6047 				 * VM_FAULT_RETRY must not return an
6048 				 * error, it will return zero
6049 				 * instead.
6050 				 *
6051 				 * No need to update "position" as the
6052 				 * caller will not check it after
6053 				 * *nr_pages is set to 0.
6054 				 */
6055 				return i;
6056 			}
6057 			continue;
6058 		}
6059 
6060 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6061 		page = pte_page(huge_ptep_get(pte));
6062 
6063 		/*
6064 		 * If subpage information not requested, update counters
6065 		 * and skip the same_page loop below.
6066 		 */
6067 		if (!pages && !vmas && !pfn_offset &&
6068 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6069 		    (remainder >= pages_per_huge_page(h))) {
6070 			vaddr += huge_page_size(h);
6071 			remainder -= pages_per_huge_page(h);
6072 			i += pages_per_huge_page(h);
6073 			spin_unlock(ptl);
6074 			continue;
6075 		}
6076 
6077 		/* vaddr may not be aligned to PAGE_SIZE */
6078 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6079 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6080 
6081 		if (pages || vmas)
6082 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6083 					     vma, refs,
6084 					     likely(pages) ? pages + i : NULL,
6085 					     vmas ? vmas + i : NULL);
6086 
6087 		if (pages) {
6088 			/*
6089 			 * try_grab_folio() should always succeed here,
6090 			 * because: a) we hold the ptl lock, and b) we've just
6091 			 * checked that the huge page is present in the page
6092 			 * tables. If the huge page is present, then the tail
6093 			 * pages must also be present. The ptl prevents the
6094 			 * head page and tail pages from being rearranged in
6095 			 * any way. So this page must be available at this
6096 			 * point, unless the page refcount overflowed:
6097 			 */
6098 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6099 							 flags))) {
6100 				spin_unlock(ptl);
6101 				remainder = 0;
6102 				err = -ENOMEM;
6103 				break;
6104 			}
6105 		}
6106 
6107 		vaddr += (refs << PAGE_SHIFT);
6108 		remainder -= refs;
6109 		i += refs;
6110 
6111 		spin_unlock(ptl);
6112 	}
6113 	*nr_pages = remainder;
6114 	/*
6115 	 * setting position is actually required only if remainder is
6116 	 * not zero but it's faster not to add a "if (remainder)"
6117 	 * branch.
6118 	 */
6119 	*position = vaddr;
6120 
6121 	return i ? i : err;
6122 }
6123 
6124 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6125 		unsigned long address, unsigned long end, pgprot_t newprot)
6126 {
6127 	struct mm_struct *mm = vma->vm_mm;
6128 	unsigned long start = address;
6129 	pte_t *ptep;
6130 	pte_t pte;
6131 	struct hstate *h = hstate_vma(vma);
6132 	unsigned long pages = 0;
6133 	bool shared_pmd = false;
6134 	struct mmu_notifier_range range;
6135 
6136 	/*
6137 	 * In the case of shared PMDs, the area to flush could be beyond
6138 	 * start/end.  Set range.start/range.end to cover the maximum possible
6139 	 * range if PMD sharing is possible.
6140 	 */
6141 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6142 				0, vma, mm, start, end);
6143 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6144 
6145 	BUG_ON(address >= end);
6146 	flush_cache_range(vma, range.start, range.end);
6147 
6148 	mmu_notifier_invalidate_range_start(&range);
6149 	i_mmap_lock_write(vma->vm_file->f_mapping);
6150 	for (; address < end; address += huge_page_size(h)) {
6151 		spinlock_t *ptl;
6152 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6153 		if (!ptep)
6154 			continue;
6155 		ptl = huge_pte_lock(h, mm, ptep);
6156 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6157 			pages++;
6158 			spin_unlock(ptl);
6159 			shared_pmd = true;
6160 			continue;
6161 		}
6162 		pte = huge_ptep_get(ptep);
6163 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6164 			spin_unlock(ptl);
6165 			continue;
6166 		}
6167 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6168 			swp_entry_t entry = pte_to_swp_entry(pte);
6169 
6170 			if (is_writable_migration_entry(entry)) {
6171 				pte_t newpte;
6172 
6173 				entry = make_readable_migration_entry(
6174 							swp_offset(entry));
6175 				newpte = swp_entry_to_pte(entry);
6176 				set_huge_swap_pte_at(mm, address, ptep,
6177 						     newpte, huge_page_size(h));
6178 				pages++;
6179 			}
6180 			spin_unlock(ptl);
6181 			continue;
6182 		}
6183 		if (!huge_pte_none(pte)) {
6184 			pte_t old_pte;
6185 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6186 
6187 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6188 			pte = huge_pte_modify(old_pte, newprot);
6189 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6190 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6191 			pages++;
6192 		}
6193 		spin_unlock(ptl);
6194 	}
6195 	/*
6196 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6197 	 * may have cleared our pud entry and done put_page on the page table:
6198 	 * once we release i_mmap_rwsem, another task can do the final put_page
6199 	 * and that page table be reused and filled with junk.  If we actually
6200 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6201 	 */
6202 	if (shared_pmd)
6203 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6204 	else
6205 		flush_hugetlb_tlb_range(vma, start, end);
6206 	/*
6207 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6208 	 * page table protection not changing it to point to a new page.
6209 	 *
6210 	 * See Documentation/vm/mmu_notifier.rst
6211 	 */
6212 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6213 	mmu_notifier_invalidate_range_end(&range);
6214 
6215 	return pages << h->order;
6216 }
6217 
6218 /* Return true if reservation was successful, false otherwise.  */
6219 bool hugetlb_reserve_pages(struct inode *inode,
6220 					long from, long to,
6221 					struct vm_area_struct *vma,
6222 					vm_flags_t vm_flags)
6223 {
6224 	long chg, add = -1;
6225 	struct hstate *h = hstate_inode(inode);
6226 	struct hugepage_subpool *spool = subpool_inode(inode);
6227 	struct resv_map *resv_map;
6228 	struct hugetlb_cgroup *h_cg = NULL;
6229 	long gbl_reserve, regions_needed = 0;
6230 
6231 	/* This should never happen */
6232 	if (from > to) {
6233 		VM_WARN(1, "%s called with a negative range\n", __func__);
6234 		return false;
6235 	}
6236 
6237 	/*
6238 	 * Only apply hugepage reservation if asked. At fault time, an
6239 	 * attempt will be made for VM_NORESERVE to allocate a page
6240 	 * without using reserves
6241 	 */
6242 	if (vm_flags & VM_NORESERVE)
6243 		return true;
6244 
6245 	/*
6246 	 * Shared mappings base their reservation on the number of pages that
6247 	 * are already allocated on behalf of the file. Private mappings need
6248 	 * to reserve the full area even if read-only as mprotect() may be
6249 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6250 	 */
6251 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6252 		/*
6253 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6254 		 * called for inodes for which resv_maps were created (see
6255 		 * hugetlbfs_get_inode).
6256 		 */
6257 		resv_map = inode_resv_map(inode);
6258 
6259 		chg = region_chg(resv_map, from, to, &regions_needed);
6260 
6261 	} else {
6262 		/* Private mapping. */
6263 		resv_map = resv_map_alloc();
6264 		if (!resv_map)
6265 			return false;
6266 
6267 		chg = to - from;
6268 
6269 		set_vma_resv_map(vma, resv_map);
6270 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6271 	}
6272 
6273 	if (chg < 0)
6274 		goto out_err;
6275 
6276 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6277 				chg * pages_per_huge_page(h), &h_cg) < 0)
6278 		goto out_err;
6279 
6280 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6281 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6282 		 * of the resv_map.
6283 		 */
6284 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6285 	}
6286 
6287 	/*
6288 	 * There must be enough pages in the subpool for the mapping. If
6289 	 * the subpool has a minimum size, there may be some global
6290 	 * reservations already in place (gbl_reserve).
6291 	 */
6292 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6293 	if (gbl_reserve < 0)
6294 		goto out_uncharge_cgroup;
6295 
6296 	/*
6297 	 * Check enough hugepages are available for the reservation.
6298 	 * Hand the pages back to the subpool if there are not
6299 	 */
6300 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6301 		goto out_put_pages;
6302 
6303 	/*
6304 	 * Account for the reservations made. Shared mappings record regions
6305 	 * that have reservations as they are shared by multiple VMAs.
6306 	 * When the last VMA disappears, the region map says how much
6307 	 * the reservation was and the page cache tells how much of
6308 	 * the reservation was consumed. Private mappings are per-VMA and
6309 	 * only the consumed reservations are tracked. When the VMA
6310 	 * disappears, the original reservation is the VMA size and the
6311 	 * consumed reservations are stored in the map. Hence, nothing
6312 	 * else has to be done for private mappings here
6313 	 */
6314 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6315 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6316 
6317 		if (unlikely(add < 0)) {
6318 			hugetlb_acct_memory(h, -gbl_reserve);
6319 			goto out_put_pages;
6320 		} else if (unlikely(chg > add)) {
6321 			/*
6322 			 * pages in this range were added to the reserve
6323 			 * map between region_chg and region_add.  This
6324 			 * indicates a race with alloc_huge_page.  Adjust
6325 			 * the subpool and reserve counts modified above
6326 			 * based on the difference.
6327 			 */
6328 			long rsv_adjust;
6329 
6330 			/*
6331 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6332 			 * reference to h_cg->css. See comment below for detail.
6333 			 */
6334 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6335 				hstate_index(h),
6336 				(chg - add) * pages_per_huge_page(h), h_cg);
6337 
6338 			rsv_adjust = hugepage_subpool_put_pages(spool,
6339 								chg - add);
6340 			hugetlb_acct_memory(h, -rsv_adjust);
6341 		} else if (h_cg) {
6342 			/*
6343 			 * The file_regions will hold their own reference to
6344 			 * h_cg->css. So we should release the reference held
6345 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6346 			 * done.
6347 			 */
6348 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6349 		}
6350 	}
6351 	return true;
6352 
6353 out_put_pages:
6354 	/* put back original number of pages, chg */
6355 	(void)hugepage_subpool_put_pages(spool, chg);
6356 out_uncharge_cgroup:
6357 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6358 					    chg * pages_per_huge_page(h), h_cg);
6359 out_err:
6360 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6361 		/* Only call region_abort if the region_chg succeeded but the
6362 		 * region_add failed or didn't run.
6363 		 */
6364 		if (chg >= 0 && add < 0)
6365 			region_abort(resv_map, from, to, regions_needed);
6366 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6367 		kref_put(&resv_map->refs, resv_map_release);
6368 	return false;
6369 }
6370 
6371 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6372 								long freed)
6373 {
6374 	struct hstate *h = hstate_inode(inode);
6375 	struct resv_map *resv_map = inode_resv_map(inode);
6376 	long chg = 0;
6377 	struct hugepage_subpool *spool = subpool_inode(inode);
6378 	long gbl_reserve;
6379 
6380 	/*
6381 	 * Since this routine can be called in the evict inode path for all
6382 	 * hugetlbfs inodes, resv_map could be NULL.
6383 	 */
6384 	if (resv_map) {
6385 		chg = region_del(resv_map, start, end);
6386 		/*
6387 		 * region_del() can fail in the rare case where a region
6388 		 * must be split and another region descriptor can not be
6389 		 * allocated.  If end == LONG_MAX, it will not fail.
6390 		 */
6391 		if (chg < 0)
6392 			return chg;
6393 	}
6394 
6395 	spin_lock(&inode->i_lock);
6396 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6397 	spin_unlock(&inode->i_lock);
6398 
6399 	/*
6400 	 * If the subpool has a minimum size, the number of global
6401 	 * reservations to be released may be adjusted.
6402 	 *
6403 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6404 	 * won't go negative.
6405 	 */
6406 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6407 	hugetlb_acct_memory(h, -gbl_reserve);
6408 
6409 	return 0;
6410 }
6411 
6412 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6413 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6414 				struct vm_area_struct *vma,
6415 				unsigned long addr, pgoff_t idx)
6416 {
6417 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6418 				svma->vm_start;
6419 	unsigned long sbase = saddr & PUD_MASK;
6420 	unsigned long s_end = sbase + PUD_SIZE;
6421 
6422 	/* Allow segments to share if only one is marked locked */
6423 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6424 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6425 
6426 	/*
6427 	 * match the virtual addresses, permission and the alignment of the
6428 	 * page table page.
6429 	 */
6430 	if (pmd_index(addr) != pmd_index(saddr) ||
6431 	    vm_flags != svm_flags ||
6432 	    !range_in_vma(svma, sbase, s_end))
6433 		return 0;
6434 
6435 	return saddr;
6436 }
6437 
6438 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6439 {
6440 	unsigned long base = addr & PUD_MASK;
6441 	unsigned long end = base + PUD_SIZE;
6442 
6443 	/*
6444 	 * check on proper vm_flags and page table alignment
6445 	 */
6446 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6447 		return true;
6448 	return false;
6449 }
6450 
6451 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6452 {
6453 #ifdef CONFIG_USERFAULTFD
6454 	if (uffd_disable_huge_pmd_share(vma))
6455 		return false;
6456 #endif
6457 	return vma_shareable(vma, addr);
6458 }
6459 
6460 /*
6461  * Determine if start,end range within vma could be mapped by shared pmd.
6462  * If yes, adjust start and end to cover range associated with possible
6463  * shared pmd mappings.
6464  */
6465 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6466 				unsigned long *start, unsigned long *end)
6467 {
6468 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6469 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6470 
6471 	/*
6472 	 * vma needs to span at least one aligned PUD size, and the range
6473 	 * must be at least partially within in.
6474 	 */
6475 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6476 		(*end <= v_start) || (*start >= v_end))
6477 		return;
6478 
6479 	/* Extend the range to be PUD aligned for a worst case scenario */
6480 	if (*start > v_start)
6481 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6482 
6483 	if (*end < v_end)
6484 		*end = ALIGN(*end, PUD_SIZE);
6485 }
6486 
6487 /*
6488  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6489  * and returns the corresponding pte. While this is not necessary for the
6490  * !shared pmd case because we can allocate the pmd later as well, it makes the
6491  * code much cleaner.
6492  *
6493  * This routine must be called with i_mmap_rwsem held in at least read mode if
6494  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6495  * table entries associated with the address space.  This is important as we
6496  * are setting up sharing based on existing page table entries (mappings).
6497  */
6498 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6499 		      unsigned long addr, pud_t *pud)
6500 {
6501 	struct address_space *mapping = vma->vm_file->f_mapping;
6502 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6503 			vma->vm_pgoff;
6504 	struct vm_area_struct *svma;
6505 	unsigned long saddr;
6506 	pte_t *spte = NULL;
6507 	pte_t *pte;
6508 	spinlock_t *ptl;
6509 
6510 	i_mmap_assert_locked(mapping);
6511 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6512 		if (svma == vma)
6513 			continue;
6514 
6515 		saddr = page_table_shareable(svma, vma, addr, idx);
6516 		if (saddr) {
6517 			spte = huge_pte_offset(svma->vm_mm, saddr,
6518 					       vma_mmu_pagesize(svma));
6519 			if (spte) {
6520 				get_page(virt_to_page(spte));
6521 				break;
6522 			}
6523 		}
6524 	}
6525 
6526 	if (!spte)
6527 		goto out;
6528 
6529 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6530 	if (pud_none(*pud)) {
6531 		pud_populate(mm, pud,
6532 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6533 		mm_inc_nr_pmds(mm);
6534 	} else {
6535 		put_page(virt_to_page(spte));
6536 	}
6537 	spin_unlock(ptl);
6538 out:
6539 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6540 	return pte;
6541 }
6542 
6543 /*
6544  * unmap huge page backed by shared pte.
6545  *
6546  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6547  * indicated by page_count > 1, unmap is achieved by clearing pud and
6548  * decrementing the ref count. If count == 1, the pte page is not shared.
6549  *
6550  * Called with page table lock held and i_mmap_rwsem held in write mode.
6551  *
6552  * returns: 1 successfully unmapped a shared pte page
6553  *	    0 the underlying pte page is not shared, or it is the last user
6554  */
6555 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6556 					unsigned long *addr, pte_t *ptep)
6557 {
6558 	pgd_t *pgd = pgd_offset(mm, *addr);
6559 	p4d_t *p4d = p4d_offset(pgd, *addr);
6560 	pud_t *pud = pud_offset(p4d, *addr);
6561 
6562 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6563 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6564 	if (page_count(virt_to_page(ptep)) == 1)
6565 		return 0;
6566 
6567 	pud_clear(pud);
6568 	put_page(virt_to_page(ptep));
6569 	mm_dec_nr_pmds(mm);
6570 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6571 	return 1;
6572 }
6573 
6574 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6575 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6576 		      unsigned long addr, pud_t *pud)
6577 {
6578 	return NULL;
6579 }
6580 
6581 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6582 				unsigned long *addr, pte_t *ptep)
6583 {
6584 	return 0;
6585 }
6586 
6587 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6588 				unsigned long *start, unsigned long *end)
6589 {
6590 }
6591 
6592 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6593 {
6594 	return false;
6595 }
6596 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6597 
6598 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6599 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6600 			unsigned long addr, unsigned long sz)
6601 {
6602 	pgd_t *pgd;
6603 	p4d_t *p4d;
6604 	pud_t *pud;
6605 	pte_t *pte = NULL;
6606 
6607 	pgd = pgd_offset(mm, addr);
6608 	p4d = p4d_alloc(mm, pgd, addr);
6609 	if (!p4d)
6610 		return NULL;
6611 	pud = pud_alloc(mm, p4d, addr);
6612 	if (pud) {
6613 		if (sz == PUD_SIZE) {
6614 			pte = (pte_t *)pud;
6615 		} else {
6616 			BUG_ON(sz != PMD_SIZE);
6617 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6618 				pte = huge_pmd_share(mm, vma, addr, pud);
6619 			else
6620 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6621 		}
6622 	}
6623 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6624 
6625 	return pte;
6626 }
6627 
6628 /*
6629  * huge_pte_offset() - Walk the page table to resolve the hugepage
6630  * entry at address @addr
6631  *
6632  * Return: Pointer to page table entry (PUD or PMD) for
6633  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6634  * size @sz doesn't match the hugepage size at this level of the page
6635  * table.
6636  */
6637 pte_t *huge_pte_offset(struct mm_struct *mm,
6638 		       unsigned long addr, unsigned long sz)
6639 {
6640 	pgd_t *pgd;
6641 	p4d_t *p4d;
6642 	pud_t *pud;
6643 	pmd_t *pmd;
6644 
6645 	pgd = pgd_offset(mm, addr);
6646 	if (!pgd_present(*pgd))
6647 		return NULL;
6648 	p4d = p4d_offset(pgd, addr);
6649 	if (!p4d_present(*p4d))
6650 		return NULL;
6651 
6652 	pud = pud_offset(p4d, addr);
6653 	if (sz == PUD_SIZE)
6654 		/* must be pud huge, non-present or none */
6655 		return (pte_t *)pud;
6656 	if (!pud_present(*pud))
6657 		return NULL;
6658 	/* must have a valid entry and size to go further */
6659 
6660 	pmd = pmd_offset(pud, addr);
6661 	/* must be pmd huge, non-present or none */
6662 	return (pte_t *)pmd;
6663 }
6664 
6665 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6666 
6667 /*
6668  * These functions are overwritable if your architecture needs its own
6669  * behavior.
6670  */
6671 struct page * __weak
6672 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6673 			      int write)
6674 {
6675 	return ERR_PTR(-EINVAL);
6676 }
6677 
6678 struct page * __weak
6679 follow_huge_pd(struct vm_area_struct *vma,
6680 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6681 {
6682 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6683 	return NULL;
6684 }
6685 
6686 struct page * __weak
6687 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6688 		pmd_t *pmd, int flags)
6689 {
6690 	struct page *page = NULL;
6691 	spinlock_t *ptl;
6692 	pte_t pte;
6693 
6694 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6695 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6696 			 (FOLL_PIN | FOLL_GET)))
6697 		return NULL;
6698 
6699 retry:
6700 	ptl = pmd_lockptr(mm, pmd);
6701 	spin_lock(ptl);
6702 	/*
6703 	 * make sure that the address range covered by this pmd is not
6704 	 * unmapped from other threads.
6705 	 */
6706 	if (!pmd_huge(*pmd))
6707 		goto out;
6708 	pte = huge_ptep_get((pte_t *)pmd);
6709 	if (pte_present(pte)) {
6710 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6711 		/*
6712 		 * try_grab_page() should always succeed here, because: a) we
6713 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6714 		 * huge pmd (head) page is present in the page tables. The ptl
6715 		 * prevents the head page and tail pages from being rearranged
6716 		 * in any way. So this page must be available at this point,
6717 		 * unless the page refcount overflowed:
6718 		 */
6719 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6720 			page = NULL;
6721 			goto out;
6722 		}
6723 	} else {
6724 		if (is_hugetlb_entry_migration(pte)) {
6725 			spin_unlock(ptl);
6726 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6727 			goto retry;
6728 		}
6729 		/*
6730 		 * hwpoisoned entry is treated as no_page_table in
6731 		 * follow_page_mask().
6732 		 */
6733 	}
6734 out:
6735 	spin_unlock(ptl);
6736 	return page;
6737 }
6738 
6739 struct page * __weak
6740 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6741 		pud_t *pud, int flags)
6742 {
6743 	if (flags & (FOLL_GET | FOLL_PIN))
6744 		return NULL;
6745 
6746 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6747 }
6748 
6749 struct page * __weak
6750 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6751 {
6752 	if (flags & (FOLL_GET | FOLL_PIN))
6753 		return NULL;
6754 
6755 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6756 }
6757 
6758 bool isolate_huge_page(struct page *page, struct list_head *list)
6759 {
6760 	bool ret = true;
6761 
6762 	spin_lock_irq(&hugetlb_lock);
6763 	if (!PageHeadHuge(page) ||
6764 	    !HPageMigratable(page) ||
6765 	    !get_page_unless_zero(page)) {
6766 		ret = false;
6767 		goto unlock;
6768 	}
6769 	ClearHPageMigratable(page);
6770 	list_move_tail(&page->lru, list);
6771 unlock:
6772 	spin_unlock_irq(&hugetlb_lock);
6773 	return ret;
6774 }
6775 
6776 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6777 {
6778 	int ret = 0;
6779 
6780 	*hugetlb = false;
6781 	spin_lock_irq(&hugetlb_lock);
6782 	if (PageHeadHuge(page)) {
6783 		*hugetlb = true;
6784 		if (HPageFreed(page))
6785 			ret = 0;
6786 		else if (HPageMigratable(page))
6787 			ret = get_page_unless_zero(page);
6788 		else
6789 			ret = -EBUSY;
6790 	}
6791 	spin_unlock_irq(&hugetlb_lock);
6792 	return ret;
6793 }
6794 
6795 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6796 {
6797 	int ret;
6798 
6799 	spin_lock_irq(&hugetlb_lock);
6800 	ret = __get_huge_page_for_hwpoison(pfn, flags);
6801 	spin_unlock_irq(&hugetlb_lock);
6802 	return ret;
6803 }
6804 
6805 void putback_active_hugepage(struct page *page)
6806 {
6807 	spin_lock_irq(&hugetlb_lock);
6808 	SetHPageMigratable(page);
6809 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6810 	spin_unlock_irq(&hugetlb_lock);
6811 	put_page(page);
6812 }
6813 
6814 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6815 {
6816 	struct hstate *h = page_hstate(oldpage);
6817 
6818 	hugetlb_cgroup_migrate(oldpage, newpage);
6819 	set_page_owner_migrate_reason(newpage, reason);
6820 
6821 	/*
6822 	 * transfer temporary state of the new huge page. This is
6823 	 * reverse to other transitions because the newpage is going to
6824 	 * be final while the old one will be freed so it takes over
6825 	 * the temporary status.
6826 	 *
6827 	 * Also note that we have to transfer the per-node surplus state
6828 	 * here as well otherwise the global surplus count will not match
6829 	 * the per-node's.
6830 	 */
6831 	if (HPageTemporary(newpage)) {
6832 		int old_nid = page_to_nid(oldpage);
6833 		int new_nid = page_to_nid(newpage);
6834 
6835 		SetHPageTemporary(oldpage);
6836 		ClearHPageTemporary(newpage);
6837 
6838 		/*
6839 		 * There is no need to transfer the per-node surplus state
6840 		 * when we do not cross the node.
6841 		 */
6842 		if (new_nid == old_nid)
6843 			return;
6844 		spin_lock_irq(&hugetlb_lock);
6845 		if (h->surplus_huge_pages_node[old_nid]) {
6846 			h->surplus_huge_pages_node[old_nid]--;
6847 			h->surplus_huge_pages_node[new_nid]++;
6848 		}
6849 		spin_unlock_irq(&hugetlb_lock);
6850 	}
6851 }
6852 
6853 /*
6854  * This function will unconditionally remove all the shared pmd pgtable entries
6855  * within the specific vma for a hugetlbfs memory range.
6856  */
6857 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6858 {
6859 	struct hstate *h = hstate_vma(vma);
6860 	unsigned long sz = huge_page_size(h);
6861 	struct mm_struct *mm = vma->vm_mm;
6862 	struct mmu_notifier_range range;
6863 	unsigned long address, start, end;
6864 	spinlock_t *ptl;
6865 	pte_t *ptep;
6866 
6867 	if (!(vma->vm_flags & VM_MAYSHARE))
6868 		return;
6869 
6870 	start = ALIGN(vma->vm_start, PUD_SIZE);
6871 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6872 
6873 	if (start >= end)
6874 		return;
6875 
6876 	/*
6877 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6878 	 * we have already done the PUD_SIZE alignment.
6879 	 */
6880 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6881 				start, end);
6882 	mmu_notifier_invalidate_range_start(&range);
6883 	i_mmap_lock_write(vma->vm_file->f_mapping);
6884 	for (address = start; address < end; address += PUD_SIZE) {
6885 		unsigned long tmp = address;
6886 
6887 		ptep = huge_pte_offset(mm, address, sz);
6888 		if (!ptep)
6889 			continue;
6890 		ptl = huge_pte_lock(h, mm, ptep);
6891 		/* We don't want 'address' to be changed */
6892 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6893 		spin_unlock(ptl);
6894 	}
6895 	flush_hugetlb_tlb_range(vma, start, end);
6896 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6897 	/*
6898 	 * No need to call mmu_notifier_invalidate_range(), see
6899 	 * Documentation/vm/mmu_notifier.rst.
6900 	 */
6901 	mmu_notifier_invalidate_range_end(&range);
6902 }
6903 
6904 #ifdef CONFIG_CMA
6905 static bool cma_reserve_called __initdata;
6906 
6907 static int __init cmdline_parse_hugetlb_cma(char *p)
6908 {
6909 	int nid, count = 0;
6910 	unsigned long tmp;
6911 	char *s = p;
6912 
6913 	while (*s) {
6914 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6915 			break;
6916 
6917 		if (s[count] == ':') {
6918 			if (tmp >= MAX_NUMNODES)
6919 				break;
6920 			nid = array_index_nospec(tmp, MAX_NUMNODES);
6921 
6922 			s += count + 1;
6923 			tmp = memparse(s, &s);
6924 			hugetlb_cma_size_in_node[nid] = tmp;
6925 			hugetlb_cma_size += tmp;
6926 
6927 			/*
6928 			 * Skip the separator if have one, otherwise
6929 			 * break the parsing.
6930 			 */
6931 			if (*s == ',')
6932 				s++;
6933 			else
6934 				break;
6935 		} else {
6936 			hugetlb_cma_size = memparse(p, &p);
6937 			break;
6938 		}
6939 	}
6940 
6941 	return 0;
6942 }
6943 
6944 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6945 
6946 void __init hugetlb_cma_reserve(int order)
6947 {
6948 	unsigned long size, reserved, per_node;
6949 	bool node_specific_cma_alloc = false;
6950 	int nid;
6951 
6952 	cma_reserve_called = true;
6953 
6954 	if (!hugetlb_cma_size)
6955 		return;
6956 
6957 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
6958 		if (hugetlb_cma_size_in_node[nid] == 0)
6959 			continue;
6960 
6961 		if (!node_state(nid, N_ONLINE)) {
6962 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6963 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6964 			hugetlb_cma_size_in_node[nid] = 0;
6965 			continue;
6966 		}
6967 
6968 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6969 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6970 				nid, (PAGE_SIZE << order) / SZ_1M);
6971 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6972 			hugetlb_cma_size_in_node[nid] = 0;
6973 		} else {
6974 			node_specific_cma_alloc = true;
6975 		}
6976 	}
6977 
6978 	/* Validate the CMA size again in case some invalid nodes specified. */
6979 	if (!hugetlb_cma_size)
6980 		return;
6981 
6982 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6983 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6984 			(PAGE_SIZE << order) / SZ_1M);
6985 		hugetlb_cma_size = 0;
6986 		return;
6987 	}
6988 
6989 	if (!node_specific_cma_alloc) {
6990 		/*
6991 		 * If 3 GB area is requested on a machine with 4 numa nodes,
6992 		 * let's allocate 1 GB on first three nodes and ignore the last one.
6993 		 */
6994 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6995 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6996 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6997 	}
6998 
6999 	reserved = 0;
7000 	for_each_node_state(nid, N_ONLINE) {
7001 		int res;
7002 		char name[CMA_MAX_NAME];
7003 
7004 		if (node_specific_cma_alloc) {
7005 			if (hugetlb_cma_size_in_node[nid] == 0)
7006 				continue;
7007 
7008 			size = hugetlb_cma_size_in_node[nid];
7009 		} else {
7010 			size = min(per_node, hugetlb_cma_size - reserved);
7011 		}
7012 
7013 		size = round_up(size, PAGE_SIZE << order);
7014 
7015 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7016 		/*
7017 		 * Note that 'order per bit' is based on smallest size that
7018 		 * may be returned to CMA allocator in the case of
7019 		 * huge page demotion.
7020 		 */
7021 		res = cma_declare_contiguous_nid(0, size, 0,
7022 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7023 						 0, false, name,
7024 						 &hugetlb_cma[nid], nid);
7025 		if (res) {
7026 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7027 				res, nid);
7028 			continue;
7029 		}
7030 
7031 		reserved += size;
7032 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7033 			size / SZ_1M, nid);
7034 
7035 		if (reserved >= hugetlb_cma_size)
7036 			break;
7037 	}
7038 
7039 	if (!reserved)
7040 		/*
7041 		 * hugetlb_cma_size is used to determine if allocations from
7042 		 * cma are possible.  Set to zero if no cma regions are set up.
7043 		 */
7044 		hugetlb_cma_size = 0;
7045 }
7046 
7047 void __init hugetlb_cma_check(void)
7048 {
7049 	if (!hugetlb_cma_size || cma_reserve_called)
7050 		return;
7051 
7052 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7053 }
7054 
7055 #endif /* CONFIG_CMA */
7056