xref: /openbmc/linux/mm/hugetlb.c (revision 4652ae7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266 		vma->vm_private_data;
267 }
268 
269 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270 {
271 	if (__vma_shareable_lock(vma)) {
272 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273 
274 		down_read(&vma_lock->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	}
285 }
286 
287 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288 {
289 	if (__vma_shareable_lock(vma)) {
290 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291 
292 		down_write(&vma_lock->rw_sema);
293 	}
294 }
295 
296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297 {
298 	if (__vma_shareable_lock(vma)) {
299 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300 
301 		up_write(&vma_lock->rw_sema);
302 	}
303 }
304 
305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306 {
307 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 	if (!__vma_shareable_lock(vma))
310 		return 1;
311 
312 	return down_write_trylock(&vma_lock->rw_sema);
313 }
314 
315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316 {
317 	if (__vma_shareable_lock(vma)) {
318 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319 
320 		lockdep_assert_held(&vma_lock->rw_sema);
321 	}
322 }
323 
324 void hugetlb_vma_lock_release(struct kref *kref)
325 {
326 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
327 			struct hugetlb_vma_lock, refs);
328 
329 	kfree(vma_lock);
330 }
331 
332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333 {
334 	struct vm_area_struct *vma = vma_lock->vma;
335 
336 	/*
337 	 * vma_lock structure may or not be released as a result of put,
338 	 * it certainly will no longer be attached to vma so clear pointer.
339 	 * Semaphore synchronizes access to vma_lock->vma field.
340 	 */
341 	vma_lock->vma = NULL;
342 	vma->vm_private_data = NULL;
343 	up_write(&vma_lock->rw_sema);
344 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 }
346 
347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348 {
349 	if (__vma_shareable_lock(vma)) {
350 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351 
352 		__hugetlb_vma_unlock_write_put(vma_lock);
353 	}
354 }
355 
356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 {
358 	/*
359 	 * Only present in sharable vmas.
360 	 */
361 	if (!vma || !__vma_shareable_lock(vma))
362 		return;
363 
364 	if (vma->vm_private_data) {
365 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366 
367 		down_write(&vma_lock->rw_sema);
368 		__hugetlb_vma_unlock_write_put(vma_lock);
369 	}
370 }
371 
372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373 {
374 	struct hugetlb_vma_lock *vma_lock;
375 
376 	/* Only establish in (flags) sharable vmas */
377 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 		return;
379 
380 	/* Should never get here with non-NULL vm_private_data */
381 	if (vma->vm_private_data)
382 		return;
383 
384 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 	if (!vma_lock) {
386 		/*
387 		 * If we can not allocate structure, then vma can not
388 		 * participate in pmd sharing.  This is only a possible
389 		 * performance enhancement and memory saving issue.
390 		 * However, the lock is also used to synchronize page
391 		 * faults with truncation.  If the lock is not present,
392 		 * unlikely races could leave pages in a file past i_size
393 		 * until the file is removed.  Warn in the unlikely case of
394 		 * allocation failure.
395 		 */
396 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397 		return;
398 	}
399 
400 	kref_init(&vma_lock->refs);
401 	init_rwsem(&vma_lock->rw_sema);
402 	vma_lock->vma = vma;
403 	vma->vm_private_data = vma_lock;
404 }
405 
406 /* Helper that removes a struct file_region from the resv_map cache and returns
407  * it for use.
408  */
409 static struct file_region *
410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411 {
412 	struct file_region *nrg;
413 
414 	VM_BUG_ON(resv->region_cache_count <= 0);
415 
416 	resv->region_cache_count--;
417 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418 	list_del(&nrg->link);
419 
420 	nrg->from = from;
421 	nrg->to = to;
422 
423 	return nrg;
424 }
425 
426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427 					      struct file_region *rg)
428 {
429 #ifdef CONFIG_CGROUP_HUGETLB
430 	nrg->reservation_counter = rg->reservation_counter;
431 	nrg->css = rg->css;
432 	if (rg->css)
433 		css_get(rg->css);
434 #endif
435 }
436 
437 /* Helper that records hugetlb_cgroup uncharge info. */
438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439 						struct hstate *h,
440 						struct resv_map *resv,
441 						struct file_region *nrg)
442 {
443 #ifdef CONFIG_CGROUP_HUGETLB
444 	if (h_cg) {
445 		nrg->reservation_counter =
446 			&h_cg->rsvd_hugepage[hstate_index(h)];
447 		nrg->css = &h_cg->css;
448 		/*
449 		 * The caller will hold exactly one h_cg->css reference for the
450 		 * whole contiguous reservation region. But this area might be
451 		 * scattered when there are already some file_regions reside in
452 		 * it. As a result, many file_regions may share only one css
453 		 * reference. In order to ensure that one file_region must hold
454 		 * exactly one h_cg->css reference, we should do css_get for
455 		 * each file_region and leave the reference held by caller
456 		 * untouched.
457 		 */
458 		css_get(&h_cg->css);
459 		if (!resv->pages_per_hpage)
460 			resv->pages_per_hpage = pages_per_huge_page(h);
461 		/* pages_per_hpage should be the same for all entries in
462 		 * a resv_map.
463 		 */
464 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465 	} else {
466 		nrg->reservation_counter = NULL;
467 		nrg->css = NULL;
468 	}
469 #endif
470 }
471 
472 static void put_uncharge_info(struct file_region *rg)
473 {
474 #ifdef CONFIG_CGROUP_HUGETLB
475 	if (rg->css)
476 		css_put(rg->css);
477 #endif
478 }
479 
480 static bool has_same_uncharge_info(struct file_region *rg,
481 				   struct file_region *org)
482 {
483 #ifdef CONFIG_CGROUP_HUGETLB
484 	return rg->reservation_counter == org->reservation_counter &&
485 	       rg->css == org->css;
486 
487 #else
488 	return true;
489 #endif
490 }
491 
492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493 {
494 	struct file_region *nrg, *prg;
495 
496 	prg = list_prev_entry(rg, link);
497 	if (&prg->link != &resv->regions && prg->to == rg->from &&
498 	    has_same_uncharge_info(prg, rg)) {
499 		prg->to = rg->to;
500 
501 		list_del(&rg->link);
502 		put_uncharge_info(rg);
503 		kfree(rg);
504 
505 		rg = prg;
506 	}
507 
508 	nrg = list_next_entry(rg, link);
509 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510 	    has_same_uncharge_info(nrg, rg)) {
511 		nrg->from = rg->from;
512 
513 		list_del(&rg->link);
514 		put_uncharge_info(rg);
515 		kfree(rg);
516 	}
517 }
518 
519 static inline long
520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
522 		     long *regions_needed)
523 {
524 	struct file_region *nrg;
525 
526 	if (!regions_needed) {
527 		nrg = get_file_region_entry_from_cache(map, from, to);
528 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529 		list_add(&nrg->link, rg);
530 		coalesce_file_region(map, nrg);
531 	} else
532 		*regions_needed += 1;
533 
534 	return to - from;
535 }
536 
537 /*
538  * Must be called with resv->lock held.
539  *
540  * Calling this with regions_needed != NULL will count the number of pages
541  * to be added but will not modify the linked list. And regions_needed will
542  * indicate the number of file_regions needed in the cache to carry out to add
543  * the regions for this range.
544  */
545 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546 				     struct hugetlb_cgroup *h_cg,
547 				     struct hstate *h, long *regions_needed)
548 {
549 	long add = 0;
550 	struct list_head *head = &resv->regions;
551 	long last_accounted_offset = f;
552 	struct file_region *iter, *trg = NULL;
553 	struct list_head *rg = NULL;
554 
555 	if (regions_needed)
556 		*regions_needed = 0;
557 
558 	/* In this loop, we essentially handle an entry for the range
559 	 * [last_accounted_offset, iter->from), at every iteration, with some
560 	 * bounds checking.
561 	 */
562 	list_for_each_entry_safe(iter, trg, head, link) {
563 		/* Skip irrelevant regions that start before our range. */
564 		if (iter->from < f) {
565 			/* If this region ends after the last accounted offset,
566 			 * then we need to update last_accounted_offset.
567 			 */
568 			if (iter->to > last_accounted_offset)
569 				last_accounted_offset = iter->to;
570 			continue;
571 		}
572 
573 		/* When we find a region that starts beyond our range, we've
574 		 * finished.
575 		 */
576 		if (iter->from >= t) {
577 			rg = iter->link.prev;
578 			break;
579 		}
580 
581 		/* Add an entry for last_accounted_offset -> iter->from, and
582 		 * update last_accounted_offset.
583 		 */
584 		if (iter->from > last_accounted_offset)
585 			add += hugetlb_resv_map_add(resv, iter->link.prev,
586 						    last_accounted_offset,
587 						    iter->from, h, h_cg,
588 						    regions_needed);
589 
590 		last_accounted_offset = iter->to;
591 	}
592 
593 	/* Handle the case where our range extends beyond
594 	 * last_accounted_offset.
595 	 */
596 	if (!rg)
597 		rg = head->prev;
598 	if (last_accounted_offset < t)
599 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600 					    t, h, h_cg, regions_needed);
601 
602 	return add;
603 }
604 
605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606  */
607 static int allocate_file_region_entries(struct resv_map *resv,
608 					int regions_needed)
609 	__must_hold(&resv->lock)
610 {
611 	LIST_HEAD(allocated_regions);
612 	int to_allocate = 0, i = 0;
613 	struct file_region *trg = NULL, *rg = NULL;
614 
615 	VM_BUG_ON(regions_needed < 0);
616 
617 	/*
618 	 * Check for sufficient descriptors in the cache to accommodate
619 	 * the number of in progress add operations plus regions_needed.
620 	 *
621 	 * This is a while loop because when we drop the lock, some other call
622 	 * to region_add or region_del may have consumed some region_entries,
623 	 * so we keep looping here until we finally have enough entries for
624 	 * (adds_in_progress + regions_needed).
625 	 */
626 	while (resv->region_cache_count <
627 	       (resv->adds_in_progress + regions_needed)) {
628 		to_allocate = resv->adds_in_progress + regions_needed -
629 			      resv->region_cache_count;
630 
631 		/* At this point, we should have enough entries in the cache
632 		 * for all the existing adds_in_progress. We should only be
633 		 * needing to allocate for regions_needed.
634 		 */
635 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636 
637 		spin_unlock(&resv->lock);
638 		for (i = 0; i < to_allocate; i++) {
639 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 			if (!trg)
641 				goto out_of_memory;
642 			list_add(&trg->link, &allocated_regions);
643 		}
644 
645 		spin_lock(&resv->lock);
646 
647 		list_splice(&allocated_regions, &resv->region_cache);
648 		resv->region_cache_count += to_allocate;
649 	}
650 
651 	return 0;
652 
653 out_of_memory:
654 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655 		list_del(&rg->link);
656 		kfree(rg);
657 	}
658 	return -ENOMEM;
659 }
660 
661 /*
662  * Add the huge page range represented by [f, t) to the reserve
663  * map.  Regions will be taken from the cache to fill in this range.
664  * Sufficient regions should exist in the cache due to the previous
665  * call to region_chg with the same range, but in some cases the cache will not
666  * have sufficient entries due to races with other code doing region_add or
667  * region_del.  The extra needed entries will be allocated.
668  *
669  * regions_needed is the out value provided by a previous call to region_chg.
670  *
671  * Return the number of new huge pages added to the map.  This number is greater
672  * than or equal to zero.  If file_region entries needed to be allocated for
673  * this operation and we were not able to allocate, it returns -ENOMEM.
674  * region_add of regions of length 1 never allocate file_regions and cannot
675  * fail; region_chg will always allocate at least 1 entry and a region_add for
676  * 1 page will only require at most 1 entry.
677  */
678 static long region_add(struct resv_map *resv, long f, long t,
679 		       long in_regions_needed, struct hstate *h,
680 		       struct hugetlb_cgroup *h_cg)
681 {
682 	long add = 0, actual_regions_needed = 0;
683 
684 	spin_lock(&resv->lock);
685 retry:
686 
687 	/* Count how many regions are actually needed to execute this add. */
688 	add_reservation_in_range(resv, f, t, NULL, NULL,
689 				 &actual_regions_needed);
690 
691 	/*
692 	 * Check for sufficient descriptors in the cache to accommodate
693 	 * this add operation. Note that actual_regions_needed may be greater
694 	 * than in_regions_needed, as the resv_map may have been modified since
695 	 * the region_chg call. In this case, we need to make sure that we
696 	 * allocate extra entries, such that we have enough for all the
697 	 * existing adds_in_progress, plus the excess needed for this
698 	 * operation.
699 	 */
700 	if (actual_regions_needed > in_regions_needed &&
701 	    resv->region_cache_count <
702 		    resv->adds_in_progress +
703 			    (actual_regions_needed - in_regions_needed)) {
704 		/* region_add operation of range 1 should never need to
705 		 * allocate file_region entries.
706 		 */
707 		VM_BUG_ON(t - f <= 1);
708 
709 		if (allocate_file_region_entries(
710 			    resv, actual_regions_needed - in_regions_needed)) {
711 			return -ENOMEM;
712 		}
713 
714 		goto retry;
715 	}
716 
717 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718 
719 	resv->adds_in_progress -= in_regions_needed;
720 
721 	spin_unlock(&resv->lock);
722 	return add;
723 }
724 
725 /*
726  * Examine the existing reserve map and determine how many
727  * huge pages in the specified range [f, t) are NOT currently
728  * represented.  This routine is called before a subsequent
729  * call to region_add that will actually modify the reserve
730  * map to add the specified range [f, t).  region_chg does
731  * not change the number of huge pages represented by the
732  * map.  A number of new file_region structures is added to the cache as a
733  * placeholder, for the subsequent region_add call to use. At least 1
734  * file_region structure is added.
735  *
736  * out_regions_needed is the number of regions added to the
737  * resv->adds_in_progress.  This value needs to be provided to a follow up call
738  * to region_add or region_abort for proper accounting.
739  *
740  * Returns the number of huge pages that need to be added to the existing
741  * reservation map for the range [f, t).  This number is greater or equal to
742  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
743  * is needed and can not be allocated.
744  */
745 static long region_chg(struct resv_map *resv, long f, long t,
746 		       long *out_regions_needed)
747 {
748 	long chg = 0;
749 
750 	spin_lock(&resv->lock);
751 
752 	/* Count how many hugepages in this range are NOT represented. */
753 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 				       out_regions_needed);
755 
756 	if (*out_regions_needed == 0)
757 		*out_regions_needed = 1;
758 
759 	if (allocate_file_region_entries(resv, *out_regions_needed))
760 		return -ENOMEM;
761 
762 	resv->adds_in_progress += *out_regions_needed;
763 
764 	spin_unlock(&resv->lock);
765 	return chg;
766 }
767 
768 /*
769  * Abort the in progress add operation.  The adds_in_progress field
770  * of the resv_map keeps track of the operations in progress between
771  * calls to region_chg and region_add.  Operations are sometimes
772  * aborted after the call to region_chg.  In such cases, region_abort
773  * is called to decrement the adds_in_progress counter. regions_needed
774  * is the value returned by the region_chg call, it is used to decrement
775  * the adds_in_progress counter.
776  *
777  * NOTE: The range arguments [f, t) are not needed or used in this
778  * routine.  They are kept to make reading the calling code easier as
779  * arguments will match the associated region_chg call.
780  */
781 static void region_abort(struct resv_map *resv, long f, long t,
782 			 long regions_needed)
783 {
784 	spin_lock(&resv->lock);
785 	VM_BUG_ON(!resv->region_cache_count);
786 	resv->adds_in_progress -= regions_needed;
787 	spin_unlock(&resv->lock);
788 }
789 
790 /*
791  * Delete the specified range [f, t) from the reserve map.  If the
792  * t parameter is LONG_MAX, this indicates that ALL regions after f
793  * should be deleted.  Locate the regions which intersect [f, t)
794  * and either trim, delete or split the existing regions.
795  *
796  * Returns the number of huge pages deleted from the reserve map.
797  * In the normal case, the return value is zero or more.  In the
798  * case where a region must be split, a new region descriptor must
799  * be allocated.  If the allocation fails, -ENOMEM will be returned.
800  * NOTE: If the parameter t == LONG_MAX, then we will never split
801  * a region and possibly return -ENOMEM.  Callers specifying
802  * t == LONG_MAX do not need to check for -ENOMEM error.
803  */
804 static long region_del(struct resv_map *resv, long f, long t)
805 {
806 	struct list_head *head = &resv->regions;
807 	struct file_region *rg, *trg;
808 	struct file_region *nrg = NULL;
809 	long del = 0;
810 
811 retry:
812 	spin_lock(&resv->lock);
813 	list_for_each_entry_safe(rg, trg, head, link) {
814 		/*
815 		 * Skip regions before the range to be deleted.  file_region
816 		 * ranges are normally of the form [from, to).  However, there
817 		 * may be a "placeholder" entry in the map which is of the form
818 		 * (from, to) with from == to.  Check for placeholder entries
819 		 * at the beginning of the range to be deleted.
820 		 */
821 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 			continue;
823 
824 		if (rg->from >= t)
825 			break;
826 
827 		if (f > rg->from && t < rg->to) { /* Must split region */
828 			/*
829 			 * Check for an entry in the cache before dropping
830 			 * lock and attempting allocation.
831 			 */
832 			if (!nrg &&
833 			    resv->region_cache_count > resv->adds_in_progress) {
834 				nrg = list_first_entry(&resv->region_cache,
835 							struct file_region,
836 							link);
837 				list_del(&nrg->link);
838 				resv->region_cache_count--;
839 			}
840 
841 			if (!nrg) {
842 				spin_unlock(&resv->lock);
843 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 				if (!nrg)
845 					return -ENOMEM;
846 				goto retry;
847 			}
848 
849 			del += t - f;
850 			hugetlb_cgroup_uncharge_file_region(
851 				resv, rg, t - f, false);
852 
853 			/* New entry for end of split region */
854 			nrg->from = t;
855 			nrg->to = rg->to;
856 
857 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858 
859 			INIT_LIST_HEAD(&nrg->link);
860 
861 			/* Original entry is trimmed */
862 			rg->to = f;
863 
864 			list_add(&nrg->link, &rg->link);
865 			nrg = NULL;
866 			break;
867 		}
868 
869 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870 			del += rg->to - rg->from;
871 			hugetlb_cgroup_uncharge_file_region(resv, rg,
872 							    rg->to - rg->from, true);
873 			list_del(&rg->link);
874 			kfree(rg);
875 			continue;
876 		}
877 
878 		if (f <= rg->from) {	/* Trim beginning of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    t - rg->from, false);
881 
882 			del += t - rg->from;
883 			rg->from = t;
884 		} else {		/* Trim end of region */
885 			hugetlb_cgroup_uncharge_file_region(resv, rg,
886 							    rg->to - f, false);
887 
888 			del += rg->to - f;
889 			rg->to = f;
890 		}
891 	}
892 
893 	spin_unlock(&resv->lock);
894 	kfree(nrg);
895 	return del;
896 }
897 
898 /*
899  * A rare out of memory error was encountered which prevented removal of
900  * the reserve map region for a page.  The huge page itself was free'ed
901  * and removed from the page cache.  This routine will adjust the subpool
902  * usage count, and the global reserve count if needed.  By incrementing
903  * these counts, the reserve map entry which could not be deleted will
904  * appear as a "reserved" entry instead of simply dangling with incorrect
905  * counts.
906  */
907 void hugetlb_fix_reserve_counts(struct inode *inode)
908 {
909 	struct hugepage_subpool *spool = subpool_inode(inode);
910 	long rsv_adjust;
911 	bool reserved = false;
912 
913 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914 	if (rsv_adjust > 0) {
915 		struct hstate *h = hstate_inode(inode);
916 
917 		if (!hugetlb_acct_memory(h, 1))
918 			reserved = true;
919 	} else if (!rsv_adjust) {
920 		reserved = true;
921 	}
922 
923 	if (!reserved)
924 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925 }
926 
927 /*
928  * Count and return the number of huge pages in the reserve map
929  * that intersect with the range [f, t).
930  */
931 static long region_count(struct resv_map *resv, long f, long t)
932 {
933 	struct list_head *head = &resv->regions;
934 	struct file_region *rg;
935 	long chg = 0;
936 
937 	spin_lock(&resv->lock);
938 	/* Locate each segment we overlap with, and count that overlap. */
939 	list_for_each_entry(rg, head, link) {
940 		long seg_from;
941 		long seg_to;
942 
943 		if (rg->to <= f)
944 			continue;
945 		if (rg->from >= t)
946 			break;
947 
948 		seg_from = max(rg->from, f);
949 		seg_to = min(rg->to, t);
950 
951 		chg += seg_to - seg_from;
952 	}
953 	spin_unlock(&resv->lock);
954 
955 	return chg;
956 }
957 
958 /*
959  * Convert the address within this vma to the page offset within
960  * the mapping, in pagecache page units; huge pages here.
961  */
962 static pgoff_t vma_hugecache_offset(struct hstate *h,
963 			struct vm_area_struct *vma, unsigned long address)
964 {
965 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
966 			(vma->vm_pgoff >> huge_page_order(h));
967 }
968 
969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970 				     unsigned long address)
971 {
972 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
973 }
974 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975 
976 /*
977  * Return the size of the pages allocated when backing a VMA. In the majority
978  * cases this will be same size as used by the page table entries.
979  */
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982 	if (vma->vm_ops && vma->vm_ops->pagesize)
983 		return vma->vm_ops->pagesize(vma);
984 	return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987 
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996 	return vma_kernel_pagesize(vma);
997 }
998 
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007 
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029 	return (unsigned long)vma->vm_private_data;
1030 }
1031 
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033 							unsigned long value)
1034 {
1035 	vma->vm_private_data = (void *)value;
1036 }
1037 
1038 static void
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 					  struct hugetlb_cgroup *h_cg,
1041 					  struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044 	if (!h_cg || !h) {
1045 		resv_map->reservation_counter = NULL;
1046 		resv_map->pages_per_hpage = 0;
1047 		resv_map->css = NULL;
1048 	} else {
1049 		resv_map->reservation_counter =
1050 			&h_cg->rsvd_hugepage[hstate_index(h)];
1051 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 		resv_map->css = &h_cg->css;
1053 	}
1054 #endif
1055 }
1056 
1057 struct resv_map *resv_map_alloc(void)
1058 {
1059 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061 
1062 	if (!resv_map || !rg) {
1063 		kfree(resv_map);
1064 		kfree(rg);
1065 		return NULL;
1066 	}
1067 
1068 	kref_init(&resv_map->refs);
1069 	spin_lock_init(&resv_map->lock);
1070 	INIT_LIST_HEAD(&resv_map->regions);
1071 
1072 	resv_map->adds_in_progress = 0;
1073 	/*
1074 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 	 * fields don't do cgroup accounting. On private mappings, these will be
1076 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 	 * reservations are to be un-charged from here.
1078 	 */
1079 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080 
1081 	INIT_LIST_HEAD(&resv_map->region_cache);
1082 	list_add(&rg->link, &resv_map->region_cache);
1083 	resv_map->region_cache_count = 1;
1084 
1085 	return resv_map;
1086 }
1087 
1088 void resv_map_release(struct kref *ref)
1089 {
1090 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 	struct list_head *head = &resv_map->region_cache;
1092 	struct file_region *rg, *trg;
1093 
1094 	/* Clear out any active regions before we release the map. */
1095 	region_del(resv_map, 0, LONG_MAX);
1096 
1097 	/* ... and any entries left in the cache */
1098 	list_for_each_entry_safe(rg, trg, head, link) {
1099 		list_del(&rg->link);
1100 		kfree(rg);
1101 	}
1102 
1103 	VM_BUG_ON(resv_map->adds_in_progress);
1104 
1105 	kfree(resv_map);
1106 }
1107 
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110 	/*
1111 	 * At inode evict time, i_mapping may not point to the original
1112 	 * address space within the inode.  This original address space
1113 	 * contains the pointer to the resv_map.  So, always use the
1114 	 * address space embedded within the inode.
1115 	 * The VERY common case is inode->mapping == &inode->i_data but,
1116 	 * this may not be true for device special inodes.
1117 	 */
1118 	return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120 
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 	if (vma->vm_flags & VM_MAYSHARE) {
1125 		struct address_space *mapping = vma->vm_file->f_mapping;
1126 		struct inode *inode = mapping->host;
1127 
1128 		return inode_resv_map(inode);
1129 
1130 	} else {
1131 		return (struct resv_map *)(get_vma_private_data(vma) &
1132 							~HPAGE_RESV_MASK);
1133 	}
1134 }
1135 
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140 
1141 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 				HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144 
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149 
1150 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152 
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156 
1157 	return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159 
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 	/*
1164 	 * Clear vm_private_data
1165 	 * - For shared mappings this is a per-vma semaphore that may be
1166 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1167 	 *   Before clearing, make sure pointer is not associated with vma
1168 	 *   as this will leak the structure.  This is the case when called
1169 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 	 *   been called to allocate a new structure.
1171 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 	 *   not apply to children.  Faults generated by the children are
1173 	 *   not guaranteed to succeed, even if read-only.
1174 	 */
1175 	if (vma->vm_flags & VM_MAYSHARE) {
1176 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177 
1178 		if (vma_lock && vma_lock->vma != vma)
1179 			vma->vm_private_data = NULL;
1180 	} else
1181 		vma->vm_private_data = NULL;
1182 }
1183 
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_lock writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193 	/*
1194 	 * Clear the old hugetlb private page reservation.
1195 	 * It has already been transferred to new_vma.
1196 	 *
1197 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 	 * which copies vma into new_vma and unmaps vma. After the copy
1199 	 * operation both new_vma and vma share a reference to the resv_map
1200 	 * struct, and at that point vma is about to be unmapped. We don't
1201 	 * want to return the reservation to the pool at unmap of vma because
1202 	 * the reservation still lives on in new_vma, so simply decrement the
1203 	 * ref here and remove the resv_map reference from this vma.
1204 	 */
1205 	struct resv_map *reservations = vma_resv_map(vma);
1206 
1207 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 		kref_put(&reservations->refs, resv_map_release);
1210 	}
1211 
1212 	hugetlb_dup_vma_private(vma);
1213 }
1214 
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218 	if (vma->vm_flags & VM_NORESERVE) {
1219 		/*
1220 		 * This address is already reserved by other process(chg == 0),
1221 		 * so, we should decrement reserved count. Without decrementing,
1222 		 * reserve count remains after releasing inode, because this
1223 		 * allocated page will go into page cache and is regarded as
1224 		 * coming from reserved pool in releasing step.  Currently, we
1225 		 * don't have any other solution to deal with this situation
1226 		 * properly, so add work-around here.
1227 		 */
1228 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 			return true;
1230 		else
1231 			return false;
1232 	}
1233 
1234 	/* Shared mappings always use reserves */
1235 	if (vma->vm_flags & VM_MAYSHARE) {
1236 		/*
1237 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238 		 * be a region map for all pages.  The only situation where
1239 		 * there is no region map is if a hole was punched via
1240 		 * fallocate.  In this case, there really are no reserves to
1241 		 * use.  This situation is indicated if chg != 0.
1242 		 */
1243 		if (chg)
1244 			return false;
1245 		else
1246 			return true;
1247 	}
1248 
1249 	/*
1250 	 * Only the process that called mmap() has reserves for
1251 	 * private mappings.
1252 	 */
1253 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 		/*
1255 		 * Like the shared case above, a hole punch or truncate
1256 		 * could have been performed on the private mapping.
1257 		 * Examine the value of chg to determine if reserves
1258 		 * actually exist or were previously consumed.
1259 		 * Very Subtle - The value of chg comes from a previous
1260 		 * call to vma_needs_reserves().  The reserve map for
1261 		 * private mappings has different (opposite) semantics
1262 		 * than that of shared mappings.  vma_needs_reserves()
1263 		 * has already taken this difference in semantics into
1264 		 * account.  Therefore, the meaning of chg is the same
1265 		 * as in the shared case above.  Code could easily be
1266 		 * combined, but keeping it separate draws attention to
1267 		 * subtle differences.
1268 		 */
1269 		if (chg)
1270 			return false;
1271 		else
1272 			return true;
1273 	}
1274 
1275 	return false;
1276 }
1277 
1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279 {
1280 	int nid = folio_nid(folio);
1281 
1282 	lockdep_assert_held(&hugetlb_lock);
1283 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284 
1285 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 	h->free_huge_pages++;
1287 	h->free_huge_pages_node[nid]++;
1288 	folio_set_hugetlb_freed(folio);
1289 }
1290 
1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 {
1293 	struct page *page;
1294 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295 
1296 	lockdep_assert_held(&hugetlb_lock);
1297 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298 		if (pin && !is_longterm_pinnable_page(page))
1299 			continue;
1300 
1301 		if (PageHWPoison(page))
1302 			continue;
1303 
1304 		list_move(&page->lru, &h->hugepage_activelist);
1305 		set_page_refcounted(page);
1306 		ClearHPageFreed(page);
1307 		h->free_huge_pages--;
1308 		h->free_huge_pages_node[nid]--;
1309 		return page;
1310 	}
1311 
1312 	return NULL;
1313 }
1314 
1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 		nodemask_t *nmask)
1317 {
1318 	unsigned int cpuset_mems_cookie;
1319 	struct zonelist *zonelist;
1320 	struct zone *zone;
1321 	struct zoneref *z;
1322 	int node = NUMA_NO_NODE;
1323 
1324 	zonelist = node_zonelist(nid, gfp_mask);
1325 
1326 retry_cpuset:
1327 	cpuset_mems_cookie = read_mems_allowed_begin();
1328 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 		struct page *page;
1330 
1331 		if (!cpuset_zone_allowed(zone, gfp_mask))
1332 			continue;
1333 		/*
1334 		 * no need to ask again on the same node. Pool is node rather than
1335 		 * zone aware
1336 		 */
1337 		if (zone_to_nid(zone) == node)
1338 			continue;
1339 		node = zone_to_nid(zone);
1340 
1341 		page = dequeue_huge_page_node_exact(h, node);
1342 		if (page)
1343 			return page;
1344 	}
1345 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 		goto retry_cpuset;
1347 
1348 	return NULL;
1349 }
1350 
1351 static unsigned long available_huge_pages(struct hstate *h)
1352 {
1353 	return h->free_huge_pages - h->resv_huge_pages;
1354 }
1355 
1356 static struct page *dequeue_huge_page_vma(struct hstate *h,
1357 				struct vm_area_struct *vma,
1358 				unsigned long address, int avoid_reserve,
1359 				long chg)
1360 {
1361 	struct page *page = NULL;
1362 	struct mempolicy *mpol;
1363 	gfp_t gfp_mask;
1364 	nodemask_t *nodemask;
1365 	int nid;
1366 
1367 	/*
1368 	 * A child process with MAP_PRIVATE mappings created by their parent
1369 	 * have no page reserves. This check ensures that reservations are
1370 	 * not "stolen". The child may still get SIGKILLed
1371 	 */
1372 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 		goto err;
1374 
1375 	/* If reserves cannot be used, ensure enough pages are in the pool */
1376 	if (avoid_reserve && !available_huge_pages(h))
1377 		goto err;
1378 
1379 	gfp_mask = htlb_alloc_mask(h);
1380 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381 
1382 	if (mpol_is_preferred_many(mpol)) {
1383 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384 
1385 		/* Fallback to all nodes if page==NULL */
1386 		nodemask = NULL;
1387 	}
1388 
1389 	if (!page)
1390 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391 
1392 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393 		SetHPageRestoreReserve(page);
1394 		h->resv_huge_pages--;
1395 	}
1396 
1397 	mpol_cond_put(mpol);
1398 	return page;
1399 
1400 err:
1401 	return NULL;
1402 }
1403 
1404 /*
1405  * common helper functions for hstate_next_node_to_{alloc|free}.
1406  * We may have allocated or freed a huge page based on a different
1407  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408  * be outside of *nodes_allowed.  Ensure that we use an allowed
1409  * node for alloc or free.
1410  */
1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412 {
1413 	nid = next_node_in(nid, *nodes_allowed);
1414 	VM_BUG_ON(nid >= MAX_NUMNODES);
1415 
1416 	return nid;
1417 }
1418 
1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420 {
1421 	if (!node_isset(nid, *nodes_allowed))
1422 		nid = next_node_allowed(nid, nodes_allowed);
1423 	return nid;
1424 }
1425 
1426 /*
1427  * returns the previously saved node ["this node"] from which to
1428  * allocate a persistent huge page for the pool and advance the
1429  * next node from which to allocate, handling wrap at end of node
1430  * mask.
1431  */
1432 static int hstate_next_node_to_alloc(struct hstate *h,
1433 					nodemask_t *nodes_allowed)
1434 {
1435 	int nid;
1436 
1437 	VM_BUG_ON(!nodes_allowed);
1438 
1439 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441 
1442 	return nid;
1443 }
1444 
1445 /*
1446  * helper for remove_pool_huge_page() - return the previously saved
1447  * node ["this node"] from which to free a huge page.  Advance the
1448  * next node id whether or not we find a free huge page to free so
1449  * that the next attempt to free addresses the next node.
1450  */
1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 {
1453 	int nid;
1454 
1455 	VM_BUG_ON(!nodes_allowed);
1456 
1457 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459 
1460 	return nid;
1461 }
1462 
1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1464 	for (nr_nodes = nodes_weight(*mask);				\
1465 		nr_nodes > 0 &&						\
1466 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1467 		nr_nodes--)
1468 
1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1470 	for (nr_nodes = nodes_weight(*mask);				\
1471 		nr_nodes > 0 &&						\
1472 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1473 		nr_nodes--)
1474 
1475 /* used to demote non-gigantic_huge pages as well */
1476 static void __destroy_compound_gigantic_folio(struct folio *folio,
1477 					unsigned int order, bool demote)
1478 {
1479 	int i;
1480 	int nr_pages = 1 << order;
1481 	struct page *p;
1482 
1483 	atomic_set(folio_mapcount_ptr(folio), 0);
1484 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1485 	atomic_set(folio_pincount_ptr(folio), 0);
1486 
1487 	for (i = 1; i < nr_pages; i++) {
1488 		p = folio_page(folio, i);
1489 		p->mapping = NULL;
1490 		clear_compound_head(p);
1491 		if (!demote)
1492 			set_page_refcounted(p);
1493 	}
1494 
1495 	folio_set_compound_order(folio, 0);
1496 	__folio_clear_head(folio);
1497 }
1498 
1499 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500 					unsigned int order)
1501 {
1502 	__destroy_compound_gigantic_folio(folio, order, true);
1503 }
1504 
1505 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1506 static void destroy_compound_gigantic_folio(struct folio *folio,
1507 					unsigned int order)
1508 {
1509 	__destroy_compound_gigantic_folio(folio, order, false);
1510 }
1511 
1512 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513 {
1514 	/*
1515 	 * If the page isn't allocated using the cma allocator,
1516 	 * cma_release() returns false.
1517 	 */
1518 #ifdef CONFIG_CMA
1519 	int nid = folio_nid(folio);
1520 
1521 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 		return;
1523 #endif
1524 
1525 	free_contig_range(folio_pfn(folio), 1 << order);
1526 }
1527 
1528 #ifdef CONFIG_CONTIG_ALLOC
1529 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1530 		int nid, nodemask_t *nodemask)
1531 {
1532 	struct page *page;
1533 	unsigned long nr_pages = pages_per_huge_page(h);
1534 	if (nid == NUMA_NO_NODE)
1535 		nid = numa_mem_id();
1536 
1537 #ifdef CONFIG_CMA
1538 	{
1539 		int node;
1540 
1541 		if (hugetlb_cma[nid]) {
1542 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543 					huge_page_order(h), true);
1544 			if (page)
1545 				return page_folio(page);
1546 		}
1547 
1548 		if (!(gfp_mask & __GFP_THISNODE)) {
1549 			for_each_node_mask(node, *nodemask) {
1550 				if (node == nid || !hugetlb_cma[node])
1551 					continue;
1552 
1553 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1554 						huge_page_order(h), true);
1555 				if (page)
1556 					return page_folio(page);
1557 			}
1558 		}
1559 	}
1560 #endif
1561 
1562 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 	return page ? page_folio(page) : NULL;
1564 }
1565 
1566 #else /* !CONFIG_CONTIG_ALLOC */
1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 					int nid, nodemask_t *nodemask)
1569 {
1570 	return NULL;
1571 }
1572 #endif /* CONFIG_CONTIG_ALLOC */
1573 
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 					int nid, nodemask_t *nodemask)
1577 {
1578 	return NULL;
1579 }
1580 static inline void free_gigantic_folio(struct folio *folio,
1581 						unsigned int order) { }
1582 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1583 						unsigned int order) { }
1584 #endif
1585 
1586 /*
1587  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1588  * as just a compound page.
1589  *
1590  * A reference is held on the folio, except in the case of demote.
1591  *
1592  * Must be called with hugetlb lock held.
1593  */
1594 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1595 							bool adjust_surplus,
1596 							bool demote)
1597 {
1598 	int nid = folio_nid(folio);
1599 
1600 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1601 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1602 
1603 	lockdep_assert_held(&hugetlb_lock);
1604 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605 		return;
1606 
1607 	list_del(&folio->lru);
1608 
1609 	if (folio_test_hugetlb_freed(folio)) {
1610 		h->free_huge_pages--;
1611 		h->free_huge_pages_node[nid]--;
1612 	}
1613 	if (adjust_surplus) {
1614 		h->surplus_huge_pages--;
1615 		h->surplus_huge_pages_node[nid]--;
1616 	}
1617 
1618 	/*
1619 	 * Very subtle
1620 	 *
1621 	 * For non-gigantic pages set the destructor to the normal compound
1622 	 * page dtor.  This is needed in case someone takes an additional
1623 	 * temporary ref to the page, and freeing is delayed until they drop
1624 	 * their reference.
1625 	 *
1626 	 * For gigantic pages set the destructor to the null dtor.  This
1627 	 * destructor will never be called.  Before freeing the gigantic
1628 	 * page destroy_compound_gigantic_folio will turn the folio into a
1629 	 * simple group of pages.  After this the destructor does not
1630 	 * apply.
1631 	 *
1632 	 * This handles the case where more than one ref is held when and
1633 	 * after update_and_free_hugetlb_folio is called.
1634 	 *
1635 	 * In the case of demote we do not ref count the page as it will soon
1636 	 * be turned into a page of smaller size.
1637 	 */
1638 	if (!demote)
1639 		folio_ref_unfreeze(folio, 1);
1640 	if (hstate_is_gigantic(h))
1641 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1642 	else
1643 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644 
1645 	h->nr_huge_pages--;
1646 	h->nr_huge_pages_node[nid]--;
1647 }
1648 
1649 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1650 							bool adjust_surplus)
1651 {
1652 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653 }
1654 
1655 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1656 							bool adjust_surplus)
1657 {
1658 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659 }
1660 
1661 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 			     bool adjust_surplus)
1663 {
1664 	int zeroed;
1665 	int nid = folio_nid(folio);
1666 
1667 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1668 
1669 	lockdep_assert_held(&hugetlb_lock);
1670 
1671 	INIT_LIST_HEAD(&folio->lru);
1672 	h->nr_huge_pages++;
1673 	h->nr_huge_pages_node[nid]++;
1674 
1675 	if (adjust_surplus) {
1676 		h->surplus_huge_pages++;
1677 		h->surplus_huge_pages_node[nid]++;
1678 	}
1679 
1680 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1681 	folio_change_private(folio, NULL);
1682 	/*
1683 	 * We have to set hugetlb_vmemmap_optimized again as above
1684 	 * folio_change_private(folio, NULL) cleared it.
1685 	 */
1686 	folio_set_hugetlb_vmemmap_optimized(folio);
1687 
1688 	/*
1689 	 * This folio is about to be managed by the hugetlb allocator and
1690 	 * should have no users.  Drop our reference, and check for others
1691 	 * just in case.
1692 	 */
1693 	zeroed = folio_put_testzero(folio);
1694 	if (unlikely(!zeroed))
1695 		/*
1696 		 * It is VERY unlikely soneone else has taken a ref on
1697 		 * the page.  In this case, we simply return as the
1698 		 * hugetlb destructor (free_huge_page) will be called
1699 		 * when this other ref is dropped.
1700 		 */
1701 		return;
1702 
1703 	arch_clear_hugepage_flags(&folio->page);
1704 	enqueue_hugetlb_folio(h, folio);
1705 }
1706 
1707 static void __update_and_free_page(struct hstate *h, struct page *page)
1708 {
1709 	int i;
1710 	struct folio *folio = page_folio(page);
1711 	struct page *subpage;
1712 
1713 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 		return;
1715 
1716 	/*
1717 	 * If we don't know which subpages are hwpoisoned, we can't free
1718 	 * the hugepage, so it's leaked intentionally.
1719 	 */
1720 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 		return;
1722 
1723 	if (hugetlb_vmemmap_restore(h, page)) {
1724 		spin_lock_irq(&hugetlb_lock);
1725 		/*
1726 		 * If we cannot allocate vmemmap pages, just refuse to free the
1727 		 * page and put the page back on the hugetlb free list and treat
1728 		 * as a surplus page.
1729 		 */
1730 		add_hugetlb_folio(h, folio, true);
1731 		spin_unlock_irq(&hugetlb_lock);
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * Move PageHWPoison flag from head page to the raw error pages,
1737 	 * which makes any healthy subpages reusable.
1738 	 */
1739 	if (unlikely(folio_test_hwpoison(folio)))
1740 		hugetlb_clear_page_hwpoison(&folio->page);
1741 
1742 	for (i = 0; i < pages_per_huge_page(h); i++) {
1743 		subpage = folio_page(folio, i);
1744 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1745 				1 << PG_referenced | 1 << PG_dirty |
1746 				1 << PG_active | 1 << PG_private |
1747 				1 << PG_writeback);
1748 	}
1749 
1750 	/*
1751 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1752 	 * need to be given back to CMA in free_gigantic_folio.
1753 	 */
1754 	if (hstate_is_gigantic(h) ||
1755 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1756 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1757 		free_gigantic_folio(folio, huge_page_order(h));
1758 	} else {
1759 		__free_pages(page, huge_page_order(h));
1760 	}
1761 }
1762 
1763 /*
1764  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1765  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1766  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1767  * the vmemmap pages.
1768  *
1769  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1770  * freed and frees them one-by-one. As the page->mapping pointer is going
1771  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1772  * structure of a lockless linked list of huge pages to be freed.
1773  */
1774 static LLIST_HEAD(hpage_freelist);
1775 
1776 static void free_hpage_workfn(struct work_struct *work)
1777 {
1778 	struct llist_node *node;
1779 
1780 	node = llist_del_all(&hpage_freelist);
1781 
1782 	while (node) {
1783 		struct page *page;
1784 		struct hstate *h;
1785 
1786 		page = container_of((struct address_space **)node,
1787 				     struct page, mapping);
1788 		node = node->next;
1789 		page->mapping = NULL;
1790 		/*
1791 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1792 		 * is going to trigger because a previous call to
1793 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1794 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795 		 * directly.
1796 		 */
1797 		h = size_to_hstate(page_size(page));
1798 
1799 		__update_and_free_page(h, page);
1800 
1801 		cond_resched();
1802 	}
1803 }
1804 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1805 
1806 static inline void flush_free_hpage_work(struct hstate *h)
1807 {
1808 	if (hugetlb_vmemmap_optimizable(h))
1809 		flush_work(&free_hpage_work);
1810 }
1811 
1812 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813 				 bool atomic)
1814 {
1815 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1816 		__update_and_free_page(h, &folio->page);
1817 		return;
1818 	}
1819 
1820 	/*
1821 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1822 	 *
1823 	 * Only call schedule_work() if hpage_freelist is previously
1824 	 * empty. Otherwise, schedule_work() had been called but the workfn
1825 	 * hasn't retrieved the list yet.
1826 	 */
1827 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1828 		schedule_work(&free_hpage_work);
1829 }
1830 
1831 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1832 {
1833 	struct page *page, *t_page;
1834 	struct folio *folio;
1835 
1836 	list_for_each_entry_safe(page, t_page, list, lru) {
1837 		folio = page_folio(page);
1838 		update_and_free_hugetlb_folio(h, folio, false);
1839 		cond_resched();
1840 	}
1841 }
1842 
1843 struct hstate *size_to_hstate(unsigned long size)
1844 {
1845 	struct hstate *h;
1846 
1847 	for_each_hstate(h) {
1848 		if (huge_page_size(h) == size)
1849 			return h;
1850 	}
1851 	return NULL;
1852 }
1853 
1854 void free_huge_page(struct page *page)
1855 {
1856 	/*
1857 	 * Can't pass hstate in here because it is called from the
1858 	 * compound page destructor.
1859 	 */
1860 	struct folio *folio = page_folio(page);
1861 	struct hstate *h = folio_hstate(folio);
1862 	int nid = folio_nid(folio);
1863 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 	bool restore_reserve;
1865 	unsigned long flags;
1866 
1867 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869 
1870 	hugetlb_set_folio_subpool(folio, NULL);
1871 	if (folio_test_anon(folio))
1872 		__ClearPageAnonExclusive(&folio->page);
1873 	folio->mapping = NULL;
1874 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 	folio_clear_hugetlb_restore_reserve(folio);
1876 
1877 	/*
1878 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 	 * reservation.  If the page was associated with a subpool, there
1880 	 * would have been a page reserved in the subpool before allocation
1881 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1882 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 	 * remove the reserved page from the subpool.
1884 	 */
1885 	if (!restore_reserve) {
1886 		/*
1887 		 * A return code of zero implies that the subpool will be
1888 		 * under its minimum size if the reservation is not restored
1889 		 * after page is free.  Therefore, force restore_reserve
1890 		 * operation.
1891 		 */
1892 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 			restore_reserve = true;
1894 	}
1895 
1896 	spin_lock_irqsave(&hugetlb_lock, flags);
1897 	folio_clear_hugetlb_migratable(folio);
1898 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 				     pages_per_huge_page(h), folio);
1900 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 					  pages_per_huge_page(h), folio);
1902 	if (restore_reserve)
1903 		h->resv_huge_pages++;
1904 
1905 	if (folio_test_hugetlb_temporary(folio)) {
1906 		remove_hugetlb_folio(h, folio, false);
1907 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 		update_and_free_hugetlb_folio(h, folio, true);
1909 	} else if (h->surplus_huge_pages_node[nid]) {
1910 		/* remove the page from active list */
1911 		remove_hugetlb_folio(h, folio, true);
1912 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 		update_and_free_hugetlb_folio(h, folio, true);
1914 	} else {
1915 		arch_clear_hugepage_flags(page);
1916 		enqueue_hugetlb_folio(h, folio);
1917 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 	}
1919 }
1920 
1921 /*
1922  * Must be called with the hugetlb lock held
1923  */
1924 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925 {
1926 	lockdep_assert_held(&hugetlb_lock);
1927 	h->nr_huge_pages++;
1928 	h->nr_huge_pages_node[nid]++;
1929 }
1930 
1931 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932 {
1933 	hugetlb_vmemmap_optimize(h, &folio->page);
1934 	INIT_LIST_HEAD(&folio->lru);
1935 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1936 	hugetlb_set_folio_subpool(folio, NULL);
1937 	set_hugetlb_cgroup(folio, NULL);
1938 	set_hugetlb_cgroup_rsvd(folio, NULL);
1939 }
1940 
1941 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942 {
1943 	__prep_new_hugetlb_folio(h, folio);
1944 	spin_lock_irq(&hugetlb_lock);
1945 	__prep_account_new_huge_page(h, nid);
1946 	spin_unlock_irq(&hugetlb_lock);
1947 }
1948 
1949 static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 					unsigned int order, bool demote)
1951 {
1952 	int i, j;
1953 	int nr_pages = 1 << order;
1954 	struct page *p;
1955 
1956 	__folio_clear_reserved(folio);
1957 	__folio_set_head(folio);
1958 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1959 	folio_set_compound_order(folio, order);
1960 	for (i = 0; i < nr_pages; i++) {
1961 		p = folio_page(folio, i);
1962 
1963 		/*
1964 		 * For gigantic hugepages allocated through bootmem at
1965 		 * boot, it's safer to be consistent with the not-gigantic
1966 		 * hugepages and clear the PG_reserved bit from all tail pages
1967 		 * too.  Otherwise drivers using get_user_pages() to access tail
1968 		 * pages may get the reference counting wrong if they see
1969 		 * PG_reserved set on a tail page (despite the head page not
1970 		 * having PG_reserved set).  Enforcing this consistency between
1971 		 * head and tail pages allows drivers to optimize away a check
1972 		 * on the head page when they need know if put_page() is needed
1973 		 * after get_user_pages().
1974 		 */
1975 		if (i != 0)	/* head page cleared above */
1976 			__ClearPageReserved(p);
1977 		/*
1978 		 * Subtle and very unlikely
1979 		 *
1980 		 * Gigantic 'page allocators' such as memblock or cma will
1981 		 * return a set of pages with each page ref counted.  We need
1982 		 * to turn this set of pages into a compound page with tail
1983 		 * page ref counts set to zero.  Code such as speculative page
1984 		 * cache adding could take a ref on a 'to be' tail page.
1985 		 * We need to respect any increased ref count, and only set
1986 		 * the ref count to zero if count is currently 1.  If count
1987 		 * is not 1, we return an error.  An error return indicates
1988 		 * the set of pages can not be converted to a gigantic page.
1989 		 * The caller who allocated the pages should then discard the
1990 		 * pages using the appropriate free interface.
1991 		 *
1992 		 * In the case of demote, the ref count will be zero.
1993 		 */
1994 		if (!demote) {
1995 			if (!page_ref_freeze(p, 1)) {
1996 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 				goto out_error;
1998 			}
1999 		} else {
2000 			VM_BUG_ON_PAGE(page_count(p), p);
2001 		}
2002 		if (i != 0)
2003 			set_compound_head(p, &folio->page);
2004 	}
2005 	atomic_set(folio_mapcount_ptr(folio), -1);
2006 	atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2007 	atomic_set(folio_pincount_ptr(folio), 0);
2008 	return true;
2009 
2010 out_error:
2011 	/* undo page modifications made above */
2012 	for (j = 0; j < i; j++) {
2013 		p = folio_page(folio, j);
2014 		if (j != 0)
2015 			clear_compound_head(p);
2016 		set_page_refcounted(p);
2017 	}
2018 	/* need to clear PG_reserved on remaining tail pages  */
2019 	for (; j < nr_pages; j++) {
2020 		p = folio_page(folio, j);
2021 		__ClearPageReserved(p);
2022 	}
2023 	folio_set_compound_order(folio, 0);
2024 	__folio_clear_head(folio);
2025 	return false;
2026 }
2027 
2028 static bool prep_compound_gigantic_folio(struct folio *folio,
2029 							unsigned int order)
2030 {
2031 	return __prep_compound_gigantic_folio(folio, order, false);
2032 }
2033 
2034 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 							unsigned int order)
2036 {
2037 	return __prep_compound_gigantic_folio(folio, order, true);
2038 }
2039 
2040 /*
2041  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2042  * transparent huge pages.  See the PageTransHuge() documentation for more
2043  * details.
2044  */
2045 int PageHuge(struct page *page)
2046 {
2047 	if (!PageCompound(page))
2048 		return 0;
2049 
2050 	page = compound_head(page);
2051 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2052 }
2053 EXPORT_SYMBOL_GPL(PageHuge);
2054 
2055 /*
2056  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2057  * normal or transparent huge pages.
2058  */
2059 int PageHeadHuge(struct page *page_head)
2060 {
2061 	if (!PageHead(page_head))
2062 		return 0;
2063 
2064 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2065 }
2066 EXPORT_SYMBOL_GPL(PageHeadHuge);
2067 
2068 /*
2069  * Find and lock address space (mapping) in write mode.
2070  *
2071  * Upon entry, the page is locked which means that page_mapping() is
2072  * stable.  Due to locking order, we can only trylock_write.  If we can
2073  * not get the lock, simply return NULL to caller.
2074  */
2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076 {
2077 	struct address_space *mapping = page_mapping(hpage);
2078 
2079 	if (!mapping)
2080 		return mapping;
2081 
2082 	if (i_mmap_trylock_write(mapping))
2083 		return mapping;
2084 
2085 	return NULL;
2086 }
2087 
2088 pgoff_t hugetlb_basepage_index(struct page *page)
2089 {
2090 	struct page *page_head = compound_head(page);
2091 	pgoff_t index = page_index(page_head);
2092 	unsigned long compound_idx;
2093 
2094 	if (compound_order(page_head) >= MAX_ORDER)
2095 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 	else
2097 		compound_idx = page - page_head;
2098 
2099 	return (index << compound_order(page_head)) + compound_idx;
2100 }
2101 
2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 		nodemask_t *node_alloc_noretry)
2105 {
2106 	int order = huge_page_order(h);
2107 	struct page *page;
2108 	bool alloc_try_hard = true;
2109 	bool retry = true;
2110 
2111 	/*
2112 	 * By default we always try hard to allocate the page with
2113 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2114 	 * a loop (to adjust global huge page counts) and previous allocation
2115 	 * failed, do not continue to try hard on the same node.  Use the
2116 	 * node_alloc_noretry bitmap to manage this state information.
2117 	 */
2118 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 		alloc_try_hard = false;
2120 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 	if (alloc_try_hard)
2122 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 	if (nid == NUMA_NO_NODE)
2124 		nid = numa_mem_id();
2125 retry:
2126 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2127 
2128 	/* Freeze head page */
2129 	if (page && !page_ref_freeze(page, 1)) {
2130 		__free_pages(page, order);
2131 		if (retry) {	/* retry once */
2132 			retry = false;
2133 			goto retry;
2134 		}
2135 		/* WOW!  twice in a row. */
2136 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 		page = NULL;
2138 	}
2139 
2140 	/*
2141 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 	 * indicates an overall state change.  Clear bit so that we resume
2143 	 * normal 'try hard' allocations.
2144 	 */
2145 	if (node_alloc_noretry && page && !alloc_try_hard)
2146 		node_clear(nid, *node_alloc_noretry);
2147 
2148 	/*
2149 	 * If we tried hard to get a page but failed, set bit so that
2150 	 * subsequent attempts will not try as hard until there is an
2151 	 * overall state change.
2152 	 */
2153 	if (node_alloc_noretry && !page && alloc_try_hard)
2154 		node_set(nid, *node_alloc_noretry);
2155 
2156 	if (!page) {
2157 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158 		return NULL;
2159 	}
2160 
2161 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2162 	return page_folio(page);
2163 }
2164 
2165 /*
2166  * Common helper to allocate a fresh hugetlb page. All specific allocators
2167  * should use this function to get new hugetlb pages
2168  *
2169  * Note that returned page is 'frozen':  ref count of head page and all tail
2170  * pages is zero.
2171  */
2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 		nodemask_t *node_alloc_noretry)
2175 {
2176 	struct folio *folio;
2177 	bool retry = false;
2178 
2179 retry:
2180 	if (hstate_is_gigantic(h))
2181 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 	else
2183 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 				nid, nmask, node_alloc_noretry);
2185 	if (!folio)
2186 		return NULL;
2187 	if (hstate_is_gigantic(h)) {
2188 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 			/*
2190 			 * Rare failure to convert pages to compound page.
2191 			 * Free pages and try again - ONCE!
2192 			 */
2193 			free_gigantic_folio(folio, huge_page_order(h));
2194 			if (!retry) {
2195 				retry = true;
2196 				goto retry;
2197 			}
2198 			return NULL;
2199 		}
2200 	}
2201 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202 
2203 	return folio;
2204 }
2205 
2206 /*
2207  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208  * manner.
2209  */
2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 				nodemask_t *node_alloc_noretry)
2212 {
2213 	struct folio *folio;
2214 	int nr_nodes, node;
2215 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216 
2217 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 					nodes_allowed, node_alloc_noretry);
2220 		if (folio) {
2221 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222 			return 1;
2223 		}
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Remove huge page from pool from next node to free.  Attempt to keep
2231  * persistent huge pages more or less balanced over allowed nodes.
2232  * This routine only 'removes' the hugetlb page.  The caller must make
2233  * an additional call to free the page to low level allocators.
2234  * Called with hugetlb_lock locked.
2235  */
2236 static struct page *remove_pool_huge_page(struct hstate *h,
2237 						nodemask_t *nodes_allowed,
2238 						 bool acct_surplus)
2239 {
2240 	int nr_nodes, node;
2241 	struct page *page = NULL;
2242 	struct folio *folio;
2243 
2244 	lockdep_assert_held(&hugetlb_lock);
2245 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 		/*
2247 		 * If we're returning unused surplus pages, only examine
2248 		 * nodes with surplus pages.
2249 		 */
2250 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 		    !list_empty(&h->hugepage_freelists[node])) {
2252 			page = list_entry(h->hugepage_freelists[node].next,
2253 					  struct page, lru);
2254 			folio = page_folio(page);
2255 			remove_hugetlb_folio(h, folio, acct_surplus);
2256 			break;
2257 		}
2258 	}
2259 
2260 	return page;
2261 }
2262 
2263 /*
2264  * Dissolve a given free hugepage into free buddy pages. This function does
2265  * nothing for in-use hugepages and non-hugepages.
2266  * This function returns values like below:
2267  *
2268  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269  *           when the system is under memory pressure and the feature of
2270  *           freeing unused vmemmap pages associated with each hugetlb page
2271  *           is enabled.
2272  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2273  *           (allocated or reserved.)
2274  *       0:  successfully dissolved free hugepages or the page is not a
2275  *           hugepage (considered as already dissolved)
2276  */
2277 int dissolve_free_huge_page(struct page *page)
2278 {
2279 	int rc = -EBUSY;
2280 	struct folio *folio = page_folio(page);
2281 
2282 retry:
2283 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 	if (!folio_test_hugetlb(folio))
2285 		return 0;
2286 
2287 	spin_lock_irq(&hugetlb_lock);
2288 	if (!folio_test_hugetlb(folio)) {
2289 		rc = 0;
2290 		goto out;
2291 	}
2292 
2293 	if (!folio_ref_count(folio)) {
2294 		struct hstate *h = folio_hstate(folio);
2295 		if (!available_huge_pages(h))
2296 			goto out;
2297 
2298 		/*
2299 		 * We should make sure that the page is already on the free list
2300 		 * when it is dissolved.
2301 		 */
2302 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 			spin_unlock_irq(&hugetlb_lock);
2304 			cond_resched();
2305 
2306 			/*
2307 			 * Theoretically, we should return -EBUSY when we
2308 			 * encounter this race. In fact, we have a chance
2309 			 * to successfully dissolve the page if we do a
2310 			 * retry. Because the race window is quite small.
2311 			 * If we seize this opportunity, it is an optimization
2312 			 * for increasing the success rate of dissolving page.
2313 			 */
2314 			goto retry;
2315 		}
2316 
2317 		remove_hugetlb_folio(h, folio, false);
2318 		h->max_huge_pages--;
2319 		spin_unlock_irq(&hugetlb_lock);
2320 
2321 		/*
2322 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2324 		 * free the page if it can not allocate required vmemmap.  We
2325 		 * need to adjust max_huge_pages if the page is not freed.
2326 		 * Attempt to allocate vmemmmap here so that we can take
2327 		 * appropriate action on failure.
2328 		 */
2329 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 		if (!rc) {
2331 			update_and_free_hugetlb_folio(h, folio, false);
2332 		} else {
2333 			spin_lock_irq(&hugetlb_lock);
2334 			add_hugetlb_folio(h, folio, false);
2335 			h->max_huge_pages++;
2336 			spin_unlock_irq(&hugetlb_lock);
2337 		}
2338 
2339 		return rc;
2340 	}
2341 out:
2342 	spin_unlock_irq(&hugetlb_lock);
2343 	return rc;
2344 }
2345 
2346 /*
2347  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348  * make specified memory blocks removable from the system.
2349  * Note that this will dissolve a free gigantic hugepage completely, if any
2350  * part of it lies within the given range.
2351  * Also note that if dissolve_free_huge_page() returns with an error, all
2352  * free hugepages that were dissolved before that error are lost.
2353  */
2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355 {
2356 	unsigned long pfn;
2357 	struct page *page;
2358 	int rc = 0;
2359 	unsigned int order;
2360 	struct hstate *h;
2361 
2362 	if (!hugepages_supported())
2363 		return rc;
2364 
2365 	order = huge_page_order(&default_hstate);
2366 	for_each_hstate(h)
2367 		order = min(order, huge_page_order(h));
2368 
2369 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 		page = pfn_to_page(pfn);
2371 		rc = dissolve_free_huge_page(page);
2372 		if (rc)
2373 			break;
2374 	}
2375 
2376 	return rc;
2377 }
2378 
2379 /*
2380  * Allocates a fresh surplus page from the page allocator.
2381  */
2382 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2383 						int nid, nodemask_t *nmask)
2384 {
2385 	struct folio *folio = NULL;
2386 
2387 	if (hstate_is_gigantic(h))
2388 		return NULL;
2389 
2390 	spin_lock_irq(&hugetlb_lock);
2391 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 		goto out_unlock;
2393 	spin_unlock_irq(&hugetlb_lock);
2394 
2395 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396 	if (!folio)
2397 		return NULL;
2398 
2399 	spin_lock_irq(&hugetlb_lock);
2400 	/*
2401 	 * We could have raced with the pool size change.
2402 	 * Double check that and simply deallocate the new page
2403 	 * if we would end up overcommiting the surpluses. Abuse
2404 	 * temporary page to workaround the nasty free_huge_page
2405 	 * codeflow
2406 	 */
2407 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 		folio_set_hugetlb_temporary(folio);
2409 		spin_unlock_irq(&hugetlb_lock);
2410 		free_huge_page(&folio->page);
2411 		return NULL;
2412 	}
2413 
2414 	h->surplus_huge_pages++;
2415 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2416 
2417 out_unlock:
2418 	spin_unlock_irq(&hugetlb_lock);
2419 
2420 	return &folio->page;
2421 }
2422 
2423 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2424 				     int nid, nodemask_t *nmask)
2425 {
2426 	struct folio *folio;
2427 
2428 	if (hstate_is_gigantic(h))
2429 		return NULL;
2430 
2431 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432 	if (!folio)
2433 		return NULL;
2434 
2435 	/* fresh huge pages are frozen */
2436 	folio_ref_unfreeze(folio, 1);
2437 	/*
2438 	 * We do not account these pages as surplus because they are only
2439 	 * temporary and will be released properly on the last reference
2440 	 */
2441 	folio_set_hugetlb_temporary(folio);
2442 
2443 	return &folio->page;
2444 }
2445 
2446 /*
2447  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448  */
2449 static
2450 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2451 		struct vm_area_struct *vma, unsigned long addr)
2452 {
2453 	struct page *page = NULL;
2454 	struct mempolicy *mpol;
2455 	gfp_t gfp_mask = htlb_alloc_mask(h);
2456 	int nid;
2457 	nodemask_t *nodemask;
2458 
2459 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 	if (mpol_is_preferred_many(mpol)) {
2461 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462 
2463 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2465 
2466 		/* Fallback to all nodes if page==NULL */
2467 		nodemask = NULL;
2468 	}
2469 
2470 	if (!page)
2471 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2472 	mpol_cond_put(mpol);
2473 	return page;
2474 }
2475 
2476 /* page migration callback function */
2477 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2478 		nodemask_t *nmask, gfp_t gfp_mask)
2479 {
2480 	spin_lock_irq(&hugetlb_lock);
2481 	if (available_huge_pages(h)) {
2482 		struct page *page;
2483 
2484 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2485 		if (page) {
2486 			spin_unlock_irq(&hugetlb_lock);
2487 			return page;
2488 		}
2489 	}
2490 	spin_unlock_irq(&hugetlb_lock);
2491 
2492 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493 }
2494 
2495 /* mempolicy aware migration callback */
2496 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2497 		unsigned long address)
2498 {
2499 	struct mempolicy *mpol;
2500 	nodemask_t *nodemask;
2501 	struct page *page;
2502 	gfp_t gfp_mask;
2503 	int node;
2504 
2505 	gfp_mask = htlb_alloc_mask(h);
2506 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2508 	mpol_cond_put(mpol);
2509 
2510 	return page;
2511 }
2512 
2513 /*
2514  * Increase the hugetlb pool such that it can accommodate a reservation
2515  * of size 'delta'.
2516  */
2517 static int gather_surplus_pages(struct hstate *h, long delta)
2518 	__must_hold(&hugetlb_lock)
2519 {
2520 	LIST_HEAD(surplus_list);
2521 	struct page *page, *tmp;
2522 	int ret;
2523 	long i;
2524 	long needed, allocated;
2525 	bool alloc_ok = true;
2526 
2527 	lockdep_assert_held(&hugetlb_lock);
2528 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2529 	if (needed <= 0) {
2530 		h->resv_huge_pages += delta;
2531 		return 0;
2532 	}
2533 
2534 	allocated = 0;
2535 
2536 	ret = -ENOMEM;
2537 retry:
2538 	spin_unlock_irq(&hugetlb_lock);
2539 	for (i = 0; i < needed; i++) {
2540 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2541 				NUMA_NO_NODE, NULL);
2542 		if (!page) {
2543 			alloc_ok = false;
2544 			break;
2545 		}
2546 		list_add(&page->lru, &surplus_list);
2547 		cond_resched();
2548 	}
2549 	allocated += i;
2550 
2551 	/*
2552 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2553 	 * because either resv_huge_pages or free_huge_pages may have changed.
2554 	 */
2555 	spin_lock_irq(&hugetlb_lock);
2556 	needed = (h->resv_huge_pages + delta) -
2557 			(h->free_huge_pages + allocated);
2558 	if (needed > 0) {
2559 		if (alloc_ok)
2560 			goto retry;
2561 		/*
2562 		 * We were not able to allocate enough pages to
2563 		 * satisfy the entire reservation so we free what
2564 		 * we've allocated so far.
2565 		 */
2566 		goto free;
2567 	}
2568 	/*
2569 	 * The surplus_list now contains _at_least_ the number of extra pages
2570 	 * needed to accommodate the reservation.  Add the appropriate number
2571 	 * of pages to the hugetlb pool and free the extras back to the buddy
2572 	 * allocator.  Commit the entire reservation here to prevent another
2573 	 * process from stealing the pages as they are added to the pool but
2574 	 * before they are reserved.
2575 	 */
2576 	needed += allocated;
2577 	h->resv_huge_pages += delta;
2578 	ret = 0;
2579 
2580 	/* Free the needed pages to the hugetlb pool */
2581 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582 		if ((--needed) < 0)
2583 			break;
2584 		/* Add the page to the hugetlb allocator */
2585 		enqueue_hugetlb_folio(h, page_folio(page));
2586 	}
2587 free:
2588 	spin_unlock_irq(&hugetlb_lock);
2589 
2590 	/*
2591 	 * Free unnecessary surplus pages to the buddy allocator.
2592 	 * Pages have no ref count, call free_huge_page directly.
2593 	 */
2594 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2595 		free_huge_page(page);
2596 	spin_lock_irq(&hugetlb_lock);
2597 
2598 	return ret;
2599 }
2600 
2601 /*
2602  * This routine has two main purposes:
2603  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2604  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2605  *    to the associated reservation map.
2606  * 2) Free any unused surplus pages that may have been allocated to satisfy
2607  *    the reservation.  As many as unused_resv_pages may be freed.
2608  */
2609 static void return_unused_surplus_pages(struct hstate *h,
2610 					unsigned long unused_resv_pages)
2611 {
2612 	unsigned long nr_pages;
2613 	struct page *page;
2614 	LIST_HEAD(page_list);
2615 
2616 	lockdep_assert_held(&hugetlb_lock);
2617 	/* Uncommit the reservation */
2618 	h->resv_huge_pages -= unused_resv_pages;
2619 
2620 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2621 		goto out;
2622 
2623 	/*
2624 	 * Part (or even all) of the reservation could have been backed
2625 	 * by pre-allocated pages. Only free surplus pages.
2626 	 */
2627 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628 
2629 	/*
2630 	 * We want to release as many surplus pages as possible, spread
2631 	 * evenly across all nodes with memory. Iterate across these nodes
2632 	 * until we can no longer free unreserved surplus pages. This occurs
2633 	 * when the nodes with surplus pages have no free pages.
2634 	 * remove_pool_huge_page() will balance the freed pages across the
2635 	 * on-line nodes with memory and will handle the hstate accounting.
2636 	 */
2637 	while (nr_pages--) {
2638 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2639 		if (!page)
2640 			goto out;
2641 
2642 		list_add(&page->lru, &page_list);
2643 	}
2644 
2645 out:
2646 	spin_unlock_irq(&hugetlb_lock);
2647 	update_and_free_pages_bulk(h, &page_list);
2648 	spin_lock_irq(&hugetlb_lock);
2649 }
2650 
2651 
2652 /*
2653  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2654  * are used by the huge page allocation routines to manage reservations.
2655  *
2656  * vma_needs_reservation is called to determine if the huge page at addr
2657  * within the vma has an associated reservation.  If a reservation is
2658  * needed, the value 1 is returned.  The caller is then responsible for
2659  * managing the global reservation and subpool usage counts.  After
2660  * the huge page has been allocated, vma_commit_reservation is called
2661  * to add the page to the reservation map.  If the page allocation fails,
2662  * the reservation must be ended instead of committed.  vma_end_reservation
2663  * is called in such cases.
2664  *
2665  * In the normal case, vma_commit_reservation returns the same value
2666  * as the preceding vma_needs_reservation call.  The only time this
2667  * is not the case is if a reserve map was changed between calls.  It
2668  * is the responsibility of the caller to notice the difference and
2669  * take appropriate action.
2670  *
2671  * vma_add_reservation is used in error paths where a reservation must
2672  * be restored when a newly allocated huge page must be freed.  It is
2673  * to be called after calling vma_needs_reservation to determine if a
2674  * reservation exists.
2675  *
2676  * vma_del_reservation is used in error paths where an entry in the reserve
2677  * map was created during huge page allocation and must be removed.  It is to
2678  * be called after calling vma_needs_reservation to determine if a reservation
2679  * exists.
2680  */
2681 enum vma_resv_mode {
2682 	VMA_NEEDS_RESV,
2683 	VMA_COMMIT_RESV,
2684 	VMA_END_RESV,
2685 	VMA_ADD_RESV,
2686 	VMA_DEL_RESV,
2687 };
2688 static long __vma_reservation_common(struct hstate *h,
2689 				struct vm_area_struct *vma, unsigned long addr,
2690 				enum vma_resv_mode mode)
2691 {
2692 	struct resv_map *resv;
2693 	pgoff_t idx;
2694 	long ret;
2695 	long dummy_out_regions_needed;
2696 
2697 	resv = vma_resv_map(vma);
2698 	if (!resv)
2699 		return 1;
2700 
2701 	idx = vma_hugecache_offset(h, vma, addr);
2702 	switch (mode) {
2703 	case VMA_NEEDS_RESV:
2704 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2705 		/* We assume that vma_reservation_* routines always operate on
2706 		 * 1 page, and that adding to resv map a 1 page entry can only
2707 		 * ever require 1 region.
2708 		 */
2709 		VM_BUG_ON(dummy_out_regions_needed != 1);
2710 		break;
2711 	case VMA_COMMIT_RESV:
2712 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2713 		/* region_add calls of range 1 should never fail. */
2714 		VM_BUG_ON(ret < 0);
2715 		break;
2716 	case VMA_END_RESV:
2717 		region_abort(resv, idx, idx + 1, 1);
2718 		ret = 0;
2719 		break;
2720 	case VMA_ADD_RESV:
2721 		if (vma->vm_flags & VM_MAYSHARE) {
2722 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 			/* region_add calls of range 1 should never fail. */
2724 			VM_BUG_ON(ret < 0);
2725 		} else {
2726 			region_abort(resv, idx, idx + 1, 1);
2727 			ret = region_del(resv, idx, idx + 1);
2728 		}
2729 		break;
2730 	case VMA_DEL_RESV:
2731 		if (vma->vm_flags & VM_MAYSHARE) {
2732 			region_abort(resv, idx, idx + 1, 1);
2733 			ret = region_del(resv, idx, idx + 1);
2734 		} else {
2735 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736 			/* region_add calls of range 1 should never fail. */
2737 			VM_BUG_ON(ret < 0);
2738 		}
2739 		break;
2740 	default:
2741 		BUG();
2742 	}
2743 
2744 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745 		return ret;
2746 	/*
2747 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2748 	 *
2749 	 * In most cases, reserves always exist for private mappings.
2750 	 * However, a file associated with mapping could have been
2751 	 * hole punched or truncated after reserves were consumed.
2752 	 * As subsequent fault on such a range will not use reserves.
2753 	 * Subtle - The reserve map for private mappings has the
2754 	 * opposite meaning than that of shared mappings.  If NO
2755 	 * entry is in the reserve map, it means a reservation exists.
2756 	 * If an entry exists in the reserve map, it means the
2757 	 * reservation has already been consumed.  As a result, the
2758 	 * return value of this routine is the opposite of the
2759 	 * value returned from reserve map manipulation routines above.
2760 	 */
2761 	if (ret > 0)
2762 		return 0;
2763 	if (ret == 0)
2764 		return 1;
2765 	return ret;
2766 }
2767 
2768 static long vma_needs_reservation(struct hstate *h,
2769 			struct vm_area_struct *vma, unsigned long addr)
2770 {
2771 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772 }
2773 
2774 static long vma_commit_reservation(struct hstate *h,
2775 			struct vm_area_struct *vma, unsigned long addr)
2776 {
2777 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778 }
2779 
2780 static void vma_end_reservation(struct hstate *h,
2781 			struct vm_area_struct *vma, unsigned long addr)
2782 {
2783 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784 }
2785 
2786 static long vma_add_reservation(struct hstate *h,
2787 			struct vm_area_struct *vma, unsigned long addr)
2788 {
2789 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790 }
2791 
2792 static long vma_del_reservation(struct hstate *h,
2793 			struct vm_area_struct *vma, unsigned long addr)
2794 {
2795 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2796 }
2797 
2798 /*
2799  * This routine is called to restore reservation information on error paths.
2800  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2801  * the hugetlb mutex should remain held when calling this routine.
2802  *
2803  * It handles two specific cases:
2804  * 1) A reservation was in place and the page consumed the reservation.
2805  *    HPageRestoreReserve is set in the page.
2806  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2807  *    not set.  However, alloc_huge_page always updates the reserve map.
2808  *
2809  * In case 1, free_huge_page later in the error path will increment the
2810  * global reserve count.  But, free_huge_page does not have enough context
2811  * to adjust the reservation map.  This case deals primarily with private
2812  * mappings.  Adjust the reserve map here to be consistent with global
2813  * reserve count adjustments to be made by free_huge_page.  Make sure the
2814  * reserve map indicates there is a reservation present.
2815  *
2816  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2817  */
2818 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2819 			unsigned long address, struct page *page)
2820 {
2821 	long rc = vma_needs_reservation(h, vma, address);
2822 
2823 	if (HPageRestoreReserve(page)) {
2824 		if (unlikely(rc < 0))
2825 			/*
2826 			 * Rare out of memory condition in reserve map
2827 			 * manipulation.  Clear HPageRestoreReserve so that
2828 			 * global reserve count will not be incremented
2829 			 * by free_huge_page.  This will make it appear
2830 			 * as though the reservation for this page was
2831 			 * consumed.  This may prevent the task from
2832 			 * faulting in the page at a later time.  This
2833 			 * is better than inconsistent global huge page
2834 			 * accounting of reserve counts.
2835 			 */
2836 			ClearHPageRestoreReserve(page);
2837 		else if (rc)
2838 			(void)vma_add_reservation(h, vma, address);
2839 		else
2840 			vma_end_reservation(h, vma, address);
2841 	} else {
2842 		if (!rc) {
2843 			/*
2844 			 * This indicates there is an entry in the reserve map
2845 			 * not added by alloc_huge_page.  We know it was added
2846 			 * before the alloc_huge_page call, otherwise
2847 			 * HPageRestoreReserve would be set on the page.
2848 			 * Remove the entry so that a subsequent allocation
2849 			 * does not consume a reservation.
2850 			 */
2851 			rc = vma_del_reservation(h, vma, address);
2852 			if (rc < 0)
2853 				/*
2854 				 * VERY rare out of memory condition.  Since
2855 				 * we can not delete the entry, set
2856 				 * HPageRestoreReserve so that the reserve
2857 				 * count will be incremented when the page
2858 				 * is freed.  This reserve will be consumed
2859 				 * on a subsequent allocation.
2860 				 */
2861 				SetHPageRestoreReserve(page);
2862 		} else if (rc < 0) {
2863 			/*
2864 			 * Rare out of memory condition from
2865 			 * vma_needs_reservation call.  Memory allocation is
2866 			 * only attempted if a new entry is needed.  Therefore,
2867 			 * this implies there is not an entry in the
2868 			 * reserve map.
2869 			 *
2870 			 * For shared mappings, no entry in the map indicates
2871 			 * no reservation.  We are done.
2872 			 */
2873 			if (!(vma->vm_flags & VM_MAYSHARE))
2874 				/*
2875 				 * For private mappings, no entry indicates
2876 				 * a reservation is present.  Since we can
2877 				 * not add an entry, set SetHPageRestoreReserve
2878 				 * on the page so reserve count will be
2879 				 * incremented when freed.  This reserve will
2880 				 * be consumed on a subsequent allocation.
2881 				 */
2882 				SetHPageRestoreReserve(page);
2883 		} else
2884 			/*
2885 			 * No reservation present, do nothing
2886 			 */
2887 			 vma_end_reservation(h, vma, address);
2888 	}
2889 }
2890 
2891 /*
2892  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2893  * the old one
2894  * @h: struct hstate old page belongs to
2895  * @old_folio: Old folio to dissolve
2896  * @list: List to isolate the page in case we need to
2897  * Returns 0 on success, otherwise negated error.
2898  */
2899 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2900 			struct folio *old_folio, struct list_head *list)
2901 {
2902 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2903 	int nid = folio_nid(old_folio);
2904 	struct folio *new_folio;
2905 	int ret = 0;
2906 
2907 	/*
2908 	 * Before dissolving the folio, we need to allocate a new one for the
2909 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2910 	 * by doing everything but actually updating counters and adding to
2911 	 * the pool.  This simplifies and let us do most of the processing
2912 	 * under the lock.
2913 	 */
2914 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915 	if (!new_folio)
2916 		return -ENOMEM;
2917 	__prep_new_hugetlb_folio(h, new_folio);
2918 
2919 retry:
2920 	spin_lock_irq(&hugetlb_lock);
2921 	if (!folio_test_hugetlb(old_folio)) {
2922 		/*
2923 		 * Freed from under us. Drop new_folio too.
2924 		 */
2925 		goto free_new;
2926 	} else if (folio_ref_count(old_folio)) {
2927 		/*
2928 		 * Someone has grabbed the folio, try to isolate it here.
2929 		 * Fail with -EBUSY if not possible.
2930 		 */
2931 		spin_unlock_irq(&hugetlb_lock);
2932 		ret = isolate_hugetlb(&old_folio->page, list);
2933 		spin_lock_irq(&hugetlb_lock);
2934 		goto free_new;
2935 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2936 		/*
2937 		 * Folio's refcount is 0 but it has not been enqueued in the
2938 		 * freelist yet. Race window is small, so we can succeed here if
2939 		 * we retry.
2940 		 */
2941 		spin_unlock_irq(&hugetlb_lock);
2942 		cond_resched();
2943 		goto retry;
2944 	} else {
2945 		/*
2946 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2947 		 * the freelist and decrease the counters. These will be
2948 		 * incremented again when calling __prep_account_new_huge_page()
2949 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2950 		 * remain stable since this happens under the lock.
2951 		 */
2952 		remove_hugetlb_folio(h, old_folio, false);
2953 
2954 		/*
2955 		 * Ref count on new_folio is already zero as it was dropped
2956 		 * earlier.  It can be directly added to the pool free list.
2957 		 */
2958 		__prep_account_new_huge_page(h, nid);
2959 		enqueue_hugetlb_folio(h, new_folio);
2960 
2961 		/*
2962 		 * Folio has been replaced, we can safely free the old one.
2963 		 */
2964 		spin_unlock_irq(&hugetlb_lock);
2965 		update_and_free_hugetlb_folio(h, old_folio, false);
2966 	}
2967 
2968 	return ret;
2969 
2970 free_new:
2971 	spin_unlock_irq(&hugetlb_lock);
2972 	/* Folio has a zero ref count, but needs a ref to be freed */
2973 	folio_ref_unfreeze(new_folio, 1);
2974 	update_and_free_hugetlb_folio(h, new_folio, false);
2975 
2976 	return ret;
2977 }
2978 
2979 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980 {
2981 	struct hstate *h;
2982 	struct folio *folio = page_folio(page);
2983 	int ret = -EBUSY;
2984 
2985 	/*
2986 	 * The page might have been dissolved from under our feet, so make sure
2987 	 * to carefully check the state under the lock.
2988 	 * Return success when racing as if we dissolved the page ourselves.
2989 	 */
2990 	spin_lock_irq(&hugetlb_lock);
2991 	if (folio_test_hugetlb(folio)) {
2992 		h = folio_hstate(folio);
2993 	} else {
2994 		spin_unlock_irq(&hugetlb_lock);
2995 		return 0;
2996 	}
2997 	spin_unlock_irq(&hugetlb_lock);
2998 
2999 	/*
3000 	 * Fence off gigantic pages as there is a cyclic dependency between
3001 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3002 	 * of bailing out right away without further retrying.
3003 	 */
3004 	if (hstate_is_gigantic(h))
3005 		return -ENOMEM;
3006 
3007 	if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3008 		ret = 0;
3009 	else if (!folio_ref_count(folio))
3010 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011 
3012 	return ret;
3013 }
3014 
3015 struct page *alloc_huge_page(struct vm_area_struct *vma,
3016 				    unsigned long addr, int avoid_reserve)
3017 {
3018 	struct hugepage_subpool *spool = subpool_vma(vma);
3019 	struct hstate *h = hstate_vma(vma);
3020 	struct page *page;
3021 	struct folio *folio;
3022 	long map_chg, map_commit;
3023 	long gbl_chg;
3024 	int ret, idx;
3025 	struct hugetlb_cgroup *h_cg;
3026 	bool deferred_reserve;
3027 
3028 	idx = hstate_index(h);
3029 	/*
3030 	 * Examine the region/reserve map to determine if the process
3031 	 * has a reservation for the page to be allocated.  A return
3032 	 * code of zero indicates a reservation exists (no change).
3033 	 */
3034 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035 	if (map_chg < 0)
3036 		return ERR_PTR(-ENOMEM);
3037 
3038 	/*
3039 	 * Processes that did not create the mapping will have no
3040 	 * reserves as indicated by the region/reserve map. Check
3041 	 * that the allocation will not exceed the subpool limit.
3042 	 * Allocations for MAP_NORESERVE mappings also need to be
3043 	 * checked against any subpool limit.
3044 	 */
3045 	if (map_chg || avoid_reserve) {
3046 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047 		if (gbl_chg < 0) {
3048 			vma_end_reservation(h, vma, addr);
3049 			return ERR_PTR(-ENOSPC);
3050 		}
3051 
3052 		/*
3053 		 * Even though there was no reservation in the region/reserve
3054 		 * map, there could be reservations associated with the
3055 		 * subpool that can be used.  This would be indicated if the
3056 		 * return value of hugepage_subpool_get_pages() is zero.
3057 		 * However, if avoid_reserve is specified we still avoid even
3058 		 * the subpool reservations.
3059 		 */
3060 		if (avoid_reserve)
3061 			gbl_chg = 1;
3062 	}
3063 
3064 	/* If this allocation is not consuming a reservation, charge it now.
3065 	 */
3066 	deferred_reserve = map_chg || avoid_reserve;
3067 	if (deferred_reserve) {
3068 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069 			idx, pages_per_huge_page(h), &h_cg);
3070 		if (ret)
3071 			goto out_subpool_put;
3072 	}
3073 
3074 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075 	if (ret)
3076 		goto out_uncharge_cgroup_reservation;
3077 
3078 	spin_lock_irq(&hugetlb_lock);
3079 	/*
3080 	 * glb_chg is passed to indicate whether or not a page must be taken
3081 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3082 	 * a reservation exists for the allocation.
3083 	 */
3084 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085 	if (!page) {
3086 		spin_unlock_irq(&hugetlb_lock);
3087 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3088 		if (!page)
3089 			goto out_uncharge_cgroup;
3090 		spin_lock_irq(&hugetlb_lock);
3091 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092 			SetHPageRestoreReserve(page);
3093 			h->resv_huge_pages--;
3094 		}
3095 		list_add(&page->lru, &h->hugepage_activelist);
3096 		set_page_refcounted(page);
3097 		/* Fall through */
3098 	}
3099 	folio = page_folio(page);
3100 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3101 	/* If allocation is not consuming a reservation, also store the
3102 	 * hugetlb_cgroup pointer on the page.
3103 	 */
3104 	if (deferred_reserve) {
3105 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106 						  h_cg, page);
3107 	}
3108 
3109 	spin_unlock_irq(&hugetlb_lock);
3110 
3111 	hugetlb_set_page_subpool(page, spool);
3112 
3113 	map_commit = vma_commit_reservation(h, vma, addr);
3114 	if (unlikely(map_chg > map_commit)) {
3115 		/*
3116 		 * The page was added to the reservation map between
3117 		 * vma_needs_reservation and vma_commit_reservation.
3118 		 * This indicates a race with hugetlb_reserve_pages.
3119 		 * Adjust for the subpool count incremented above AND
3120 		 * in hugetlb_reserve_pages for the same page.  Also,
3121 		 * the reservation count added in hugetlb_reserve_pages
3122 		 * no longer applies.
3123 		 */
3124 		long rsv_adjust;
3125 
3126 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127 		hugetlb_acct_memory(h, -rsv_adjust);
3128 		if (deferred_reserve)
3129 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130 					pages_per_huge_page(h), folio);
3131 	}
3132 	return page;
3133 
3134 out_uncharge_cgroup:
3135 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136 out_uncharge_cgroup_reservation:
3137 	if (deferred_reserve)
3138 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 						    h_cg);
3140 out_subpool_put:
3141 	if (map_chg || avoid_reserve)
3142 		hugepage_subpool_put_pages(spool, 1);
3143 	vma_end_reservation(h, vma, addr);
3144 	return ERR_PTR(-ENOSPC);
3145 }
3146 
3147 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150 {
3151 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 	int nr_nodes, node;
3153 
3154 	/* do node specific alloc */
3155 	if (nid != NUMA_NO_NODE) {
3156 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 		if (!m)
3159 			return 0;
3160 		goto found;
3161 	}
3162 	/* allocate from next node when distributing huge pages */
3163 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164 		m = memblock_alloc_try_nid_raw(
3165 				huge_page_size(h), huge_page_size(h),
3166 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 		/*
3168 		 * Use the beginning of the huge page to store the
3169 		 * huge_bootmem_page struct (until gather_bootmem
3170 		 * puts them into the mem_map).
3171 		 */
3172 		if (!m)
3173 			return 0;
3174 		goto found;
3175 	}
3176 
3177 found:
3178 	/* Put them into a private list first because mem_map is not up yet */
3179 	INIT_LIST_HEAD(&m->list);
3180 	list_add(&m->list, &huge_boot_pages);
3181 	m->hstate = h;
3182 	return 1;
3183 }
3184 
3185 /*
3186  * Put bootmem huge pages into the standard lists after mem_map is up.
3187  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188  */
3189 static void __init gather_bootmem_prealloc(void)
3190 {
3191 	struct huge_bootmem_page *m;
3192 
3193 	list_for_each_entry(m, &huge_boot_pages, list) {
3194 		struct page *page = virt_to_page(m);
3195 		struct folio *folio = page_folio(page);
3196 		struct hstate *h = m->hstate;
3197 
3198 		VM_BUG_ON(!hstate_is_gigantic(h));
3199 		WARN_ON(folio_ref_count(folio) != 1);
3200 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201 			WARN_ON(folio_test_reserved(folio));
3202 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203 			free_huge_page(page); /* add to the hugepage allocator */
3204 		} else {
3205 			/* VERY unlikely inflated ref count on a tail page */
3206 			free_gigantic_folio(folio, huge_page_order(h));
3207 		}
3208 
3209 		/*
3210 		 * We need to restore the 'stolen' pages to totalram_pages
3211 		 * in order to fix confusing memory reports from free(1) and
3212 		 * other side-effects, like CommitLimit going negative.
3213 		 */
3214 		adjust_managed_page_count(page, pages_per_huge_page(h));
3215 		cond_resched();
3216 	}
3217 }
3218 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219 {
3220 	unsigned long i;
3221 	char buf[32];
3222 
3223 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224 		if (hstate_is_gigantic(h)) {
3225 			if (!alloc_bootmem_huge_page(h, nid))
3226 				break;
3227 		} else {
3228 			struct folio *folio;
3229 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230 
3231 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232 					&node_states[N_MEMORY], NULL);
3233 			if (!folio)
3234 				break;
3235 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236 		}
3237 		cond_resched();
3238 	}
3239 	if (i == h->max_huge_pages_node[nid])
3240 		return;
3241 
3242 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3244 		h->max_huge_pages_node[nid], buf, nid, i);
3245 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246 	h->max_huge_pages_node[nid] = i;
3247 }
3248 
3249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250 {
3251 	unsigned long i;
3252 	nodemask_t *node_alloc_noretry;
3253 	bool node_specific_alloc = false;
3254 
3255 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258 		return;
3259 	}
3260 
3261 	/* do node specific alloc */
3262 	for_each_online_node(i) {
3263 		if (h->max_huge_pages_node[i] > 0) {
3264 			hugetlb_hstate_alloc_pages_onenode(h, i);
3265 			node_specific_alloc = true;
3266 		}
3267 	}
3268 
3269 	if (node_specific_alloc)
3270 		return;
3271 
3272 	/* below will do all node balanced alloc */
3273 	if (!hstate_is_gigantic(h)) {
3274 		/*
3275 		 * Bit mask controlling how hard we retry per-node allocations.
3276 		 * Ignore errors as lower level routines can deal with
3277 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3278 		 * time, we are likely in bigger trouble.
3279 		 */
3280 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 						GFP_KERNEL);
3282 	} else {
3283 		/* allocations done at boot time */
3284 		node_alloc_noretry = NULL;
3285 	}
3286 
3287 	/* bit mask controlling how hard we retry per-node allocations */
3288 	if (node_alloc_noretry)
3289 		nodes_clear(*node_alloc_noretry);
3290 
3291 	for (i = 0; i < h->max_huge_pages; ++i) {
3292 		if (hstate_is_gigantic(h)) {
3293 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294 				break;
3295 		} else if (!alloc_pool_huge_page(h,
3296 					 &node_states[N_MEMORY],
3297 					 node_alloc_noretry))
3298 			break;
3299 		cond_resched();
3300 	}
3301 	if (i < h->max_huge_pages) {
3302 		char buf[32];
3303 
3304 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3306 			h->max_huge_pages, buf, i);
3307 		h->max_huge_pages = i;
3308 	}
3309 	kfree(node_alloc_noretry);
3310 }
3311 
3312 static void __init hugetlb_init_hstates(void)
3313 {
3314 	struct hstate *h, *h2;
3315 
3316 	for_each_hstate(h) {
3317 		/* oversize hugepages were init'ed in early boot */
3318 		if (!hstate_is_gigantic(h))
3319 			hugetlb_hstate_alloc_pages(h);
3320 
3321 		/*
3322 		 * Set demote order for each hstate.  Note that
3323 		 * h->demote_order is initially 0.
3324 		 * - We can not demote gigantic pages if runtime freeing
3325 		 *   is not supported, so skip this.
3326 		 * - If CMA allocation is possible, we can not demote
3327 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3328 		 */
3329 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330 			continue;
3331 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332 			continue;
3333 		for_each_hstate(h2) {
3334 			if (h2 == h)
3335 				continue;
3336 			if (h2->order < h->order &&
3337 			    h2->order > h->demote_order)
3338 				h->demote_order = h2->order;
3339 		}
3340 	}
3341 }
3342 
3343 static void __init report_hugepages(void)
3344 {
3345 	struct hstate *h;
3346 
3347 	for_each_hstate(h) {
3348 		char buf[32];
3349 
3350 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352 			buf, h->free_huge_pages);
3353 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355 	}
3356 }
3357 
3358 #ifdef CONFIG_HIGHMEM
3359 static void try_to_free_low(struct hstate *h, unsigned long count,
3360 						nodemask_t *nodes_allowed)
3361 {
3362 	int i;
3363 	LIST_HEAD(page_list);
3364 
3365 	lockdep_assert_held(&hugetlb_lock);
3366 	if (hstate_is_gigantic(h))
3367 		return;
3368 
3369 	/*
3370 	 * Collect pages to be freed on a list, and free after dropping lock
3371 	 */
3372 	for_each_node_mask(i, *nodes_allowed) {
3373 		struct page *page, *next;
3374 		struct list_head *freel = &h->hugepage_freelists[i];
3375 		list_for_each_entry_safe(page, next, freel, lru) {
3376 			if (count >= h->nr_huge_pages)
3377 				goto out;
3378 			if (PageHighMem(page))
3379 				continue;
3380 			remove_hugetlb_folio(h, page_folio(page), false);
3381 			list_add(&page->lru, &page_list);
3382 		}
3383 	}
3384 
3385 out:
3386 	spin_unlock_irq(&hugetlb_lock);
3387 	update_and_free_pages_bulk(h, &page_list);
3388 	spin_lock_irq(&hugetlb_lock);
3389 }
3390 #else
3391 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392 						nodemask_t *nodes_allowed)
3393 {
3394 }
3395 #endif
3396 
3397 /*
3398  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3399  * balanced by operating on them in a round-robin fashion.
3400  * Returns 1 if an adjustment was made.
3401  */
3402 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 				int delta)
3404 {
3405 	int nr_nodes, node;
3406 
3407 	lockdep_assert_held(&hugetlb_lock);
3408 	VM_BUG_ON(delta != -1 && delta != 1);
3409 
3410 	if (delta < 0) {
3411 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412 			if (h->surplus_huge_pages_node[node])
3413 				goto found;
3414 		}
3415 	} else {
3416 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417 			if (h->surplus_huge_pages_node[node] <
3418 					h->nr_huge_pages_node[node])
3419 				goto found;
3420 		}
3421 	}
3422 	return 0;
3423 
3424 found:
3425 	h->surplus_huge_pages += delta;
3426 	h->surplus_huge_pages_node[node] += delta;
3427 	return 1;
3428 }
3429 
3430 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432 			      nodemask_t *nodes_allowed)
3433 {
3434 	unsigned long min_count, ret;
3435 	struct page *page;
3436 	LIST_HEAD(page_list);
3437 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438 
3439 	/*
3440 	 * Bit mask controlling how hard we retry per-node allocations.
3441 	 * If we can not allocate the bit mask, do not attempt to allocate
3442 	 * the requested huge pages.
3443 	 */
3444 	if (node_alloc_noretry)
3445 		nodes_clear(*node_alloc_noretry);
3446 	else
3447 		return -ENOMEM;
3448 
3449 	/*
3450 	 * resize_lock mutex prevents concurrent adjustments to number of
3451 	 * pages in hstate via the proc/sysfs interfaces.
3452 	 */
3453 	mutex_lock(&h->resize_lock);
3454 	flush_free_hpage_work(h);
3455 	spin_lock_irq(&hugetlb_lock);
3456 
3457 	/*
3458 	 * Check for a node specific request.
3459 	 * Changing node specific huge page count may require a corresponding
3460 	 * change to the global count.  In any case, the passed node mask
3461 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3462 	 */
3463 	if (nid != NUMA_NO_NODE) {
3464 		unsigned long old_count = count;
3465 
3466 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467 		/*
3468 		 * User may have specified a large count value which caused the
3469 		 * above calculation to overflow.  In this case, they wanted
3470 		 * to allocate as many huge pages as possible.  Set count to
3471 		 * largest possible value to align with their intention.
3472 		 */
3473 		if (count < old_count)
3474 			count = ULONG_MAX;
3475 	}
3476 
3477 	/*
3478 	 * Gigantic pages runtime allocation depend on the capability for large
3479 	 * page range allocation.
3480 	 * If the system does not provide this feature, return an error when
3481 	 * the user tries to allocate gigantic pages but let the user free the
3482 	 * boottime allocated gigantic pages.
3483 	 */
3484 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485 		if (count > persistent_huge_pages(h)) {
3486 			spin_unlock_irq(&hugetlb_lock);
3487 			mutex_unlock(&h->resize_lock);
3488 			NODEMASK_FREE(node_alloc_noretry);
3489 			return -EINVAL;
3490 		}
3491 		/* Fall through to decrease pool */
3492 	}
3493 
3494 	/*
3495 	 * Increase the pool size
3496 	 * First take pages out of surplus state.  Then make up the
3497 	 * remaining difference by allocating fresh huge pages.
3498 	 *
3499 	 * We might race with alloc_surplus_huge_page() here and be unable
3500 	 * to convert a surplus huge page to a normal huge page. That is
3501 	 * not critical, though, it just means the overall size of the
3502 	 * pool might be one hugepage larger than it needs to be, but
3503 	 * within all the constraints specified by the sysctls.
3504 	 */
3505 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507 			break;
3508 	}
3509 
3510 	while (count > persistent_huge_pages(h)) {
3511 		/*
3512 		 * If this allocation races such that we no longer need the
3513 		 * page, free_huge_page will handle it by freeing the page
3514 		 * and reducing the surplus.
3515 		 */
3516 		spin_unlock_irq(&hugetlb_lock);
3517 
3518 		/* yield cpu to avoid soft lockup */
3519 		cond_resched();
3520 
3521 		ret = alloc_pool_huge_page(h, nodes_allowed,
3522 						node_alloc_noretry);
3523 		spin_lock_irq(&hugetlb_lock);
3524 		if (!ret)
3525 			goto out;
3526 
3527 		/* Bail for signals. Probably ctrl-c from user */
3528 		if (signal_pending(current))
3529 			goto out;
3530 	}
3531 
3532 	/*
3533 	 * Decrease the pool size
3534 	 * First return free pages to the buddy allocator (being careful
3535 	 * to keep enough around to satisfy reservations).  Then place
3536 	 * pages into surplus state as needed so the pool will shrink
3537 	 * to the desired size as pages become free.
3538 	 *
3539 	 * By placing pages into the surplus state independent of the
3540 	 * overcommit value, we are allowing the surplus pool size to
3541 	 * exceed overcommit. There are few sane options here. Since
3542 	 * alloc_surplus_huge_page() is checking the global counter,
3543 	 * though, we'll note that we're not allowed to exceed surplus
3544 	 * and won't grow the pool anywhere else. Not until one of the
3545 	 * sysctls are changed, or the surplus pages go out of use.
3546 	 */
3547 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548 	min_count = max(count, min_count);
3549 	try_to_free_low(h, min_count, nodes_allowed);
3550 
3551 	/*
3552 	 * Collect pages to be removed on list without dropping lock
3553 	 */
3554 	while (min_count < persistent_huge_pages(h)) {
3555 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3556 		if (!page)
3557 			break;
3558 
3559 		list_add(&page->lru, &page_list);
3560 	}
3561 	/* free the pages after dropping lock */
3562 	spin_unlock_irq(&hugetlb_lock);
3563 	update_and_free_pages_bulk(h, &page_list);
3564 	flush_free_hpage_work(h);
3565 	spin_lock_irq(&hugetlb_lock);
3566 
3567 	while (count < persistent_huge_pages(h)) {
3568 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569 			break;
3570 	}
3571 out:
3572 	h->max_huge_pages = persistent_huge_pages(h);
3573 	spin_unlock_irq(&hugetlb_lock);
3574 	mutex_unlock(&h->resize_lock);
3575 
3576 	NODEMASK_FREE(node_alloc_noretry);
3577 
3578 	return 0;
3579 }
3580 
3581 static int demote_free_huge_page(struct hstate *h, struct page *page)
3582 {
3583 	int i, nid = page_to_nid(page);
3584 	struct hstate *target_hstate;
3585 	struct folio *folio = page_folio(page);
3586 	struct page *subpage;
3587 	int rc = 0;
3588 
3589 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590 
3591 	remove_hugetlb_folio_for_demote(h, folio, false);
3592 	spin_unlock_irq(&hugetlb_lock);
3593 
3594 	rc = hugetlb_vmemmap_restore(h, page);
3595 	if (rc) {
3596 		/* Allocation of vmemmmap failed, we can not demote page */
3597 		spin_lock_irq(&hugetlb_lock);
3598 		set_page_refcounted(page);
3599 		add_hugetlb_folio(h, page_folio(page), false);
3600 		return rc;
3601 	}
3602 
3603 	/*
3604 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605 	 * sizes as it will not ref count pages.
3606 	 */
3607 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608 
3609 	/*
3610 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611 	 * Without the mutex, pages added to target hstate could be marked
3612 	 * as surplus.
3613 	 *
3614 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3615 	 * use the convention of always taking larger size hstate mutex first.
3616 	 */
3617 	mutex_lock(&target_hstate->resize_lock);
3618 	for (i = 0; i < pages_per_huge_page(h);
3619 				i += pages_per_huge_page(target_hstate)) {
3620 		subpage = nth_page(page, i);
3621 		folio = page_folio(subpage);
3622 		if (hstate_is_gigantic(target_hstate))
3623 			prep_compound_gigantic_folio_for_demote(folio,
3624 							target_hstate->order);
3625 		else
3626 			prep_compound_page(subpage, target_hstate->order);
3627 		set_page_private(subpage, 0);
3628 		prep_new_hugetlb_folio(target_hstate, folio, nid);
3629 		free_huge_page(subpage);
3630 	}
3631 	mutex_unlock(&target_hstate->resize_lock);
3632 
3633 	spin_lock_irq(&hugetlb_lock);
3634 
3635 	/*
3636 	 * Not absolutely necessary, but for consistency update max_huge_pages
3637 	 * based on pool changes for the demoted page.
3638 	 */
3639 	h->max_huge_pages--;
3640 	target_hstate->max_huge_pages +=
3641 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642 
3643 	return rc;
3644 }
3645 
3646 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647 	__must_hold(&hugetlb_lock)
3648 {
3649 	int nr_nodes, node;
3650 	struct page *page;
3651 
3652 	lockdep_assert_held(&hugetlb_lock);
3653 
3654 	/* We should never get here if no demote order */
3655 	if (!h->demote_order) {
3656 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657 		return -EINVAL;		/* internal error */
3658 	}
3659 
3660 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3662 			if (PageHWPoison(page))
3663 				continue;
3664 
3665 			return demote_free_huge_page(h, page);
3666 		}
3667 	}
3668 
3669 	/*
3670 	 * Only way to get here is if all pages on free lists are poisoned.
3671 	 * Return -EBUSY so that caller will not retry.
3672 	 */
3673 	return -EBUSY;
3674 }
3675 
3676 #define HSTATE_ATTR_RO(_name) \
3677 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3678 
3679 #define HSTATE_ATTR_WO(_name) \
3680 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3681 
3682 #define HSTATE_ATTR(_name) \
3683 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3684 
3685 static struct kobject *hugepages_kobj;
3686 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3687 
3688 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3689 
3690 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3691 {
3692 	int i;
3693 
3694 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3695 		if (hstate_kobjs[i] == kobj) {
3696 			if (nidp)
3697 				*nidp = NUMA_NO_NODE;
3698 			return &hstates[i];
3699 		}
3700 
3701 	return kobj_to_node_hstate(kobj, nidp);
3702 }
3703 
3704 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3705 					struct kobj_attribute *attr, char *buf)
3706 {
3707 	struct hstate *h;
3708 	unsigned long nr_huge_pages;
3709 	int nid;
3710 
3711 	h = kobj_to_hstate(kobj, &nid);
3712 	if (nid == NUMA_NO_NODE)
3713 		nr_huge_pages = h->nr_huge_pages;
3714 	else
3715 		nr_huge_pages = h->nr_huge_pages_node[nid];
3716 
3717 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718 }
3719 
3720 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3721 					   struct hstate *h, int nid,
3722 					   unsigned long count, size_t len)
3723 {
3724 	int err;
3725 	nodemask_t nodes_allowed, *n_mask;
3726 
3727 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728 		return -EINVAL;
3729 
3730 	if (nid == NUMA_NO_NODE) {
3731 		/*
3732 		 * global hstate attribute
3733 		 */
3734 		if (!(obey_mempolicy &&
3735 				init_nodemask_of_mempolicy(&nodes_allowed)))
3736 			n_mask = &node_states[N_MEMORY];
3737 		else
3738 			n_mask = &nodes_allowed;
3739 	} else {
3740 		/*
3741 		 * Node specific request.  count adjustment happens in
3742 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3743 		 */
3744 		init_nodemask_of_node(&nodes_allowed, nid);
3745 		n_mask = &nodes_allowed;
3746 	}
3747 
3748 	err = set_max_huge_pages(h, count, nid, n_mask);
3749 
3750 	return err ? err : len;
3751 }
3752 
3753 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3754 					 struct kobject *kobj, const char *buf,
3755 					 size_t len)
3756 {
3757 	struct hstate *h;
3758 	unsigned long count;
3759 	int nid;
3760 	int err;
3761 
3762 	err = kstrtoul(buf, 10, &count);
3763 	if (err)
3764 		return err;
3765 
3766 	h = kobj_to_hstate(kobj, &nid);
3767 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768 }
3769 
3770 static ssize_t nr_hugepages_show(struct kobject *kobj,
3771 				       struct kobj_attribute *attr, char *buf)
3772 {
3773 	return nr_hugepages_show_common(kobj, attr, buf);
3774 }
3775 
3776 static ssize_t nr_hugepages_store(struct kobject *kobj,
3777 	       struct kobj_attribute *attr, const char *buf, size_t len)
3778 {
3779 	return nr_hugepages_store_common(false, kobj, buf, len);
3780 }
3781 HSTATE_ATTR(nr_hugepages);
3782 
3783 #ifdef CONFIG_NUMA
3784 
3785 /*
3786  * hstate attribute for optionally mempolicy-based constraint on persistent
3787  * huge page alloc/free.
3788  */
3789 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3790 					   struct kobj_attribute *attr,
3791 					   char *buf)
3792 {
3793 	return nr_hugepages_show_common(kobj, attr, buf);
3794 }
3795 
3796 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3797 	       struct kobj_attribute *attr, const char *buf, size_t len)
3798 {
3799 	return nr_hugepages_store_common(true, kobj, buf, len);
3800 }
3801 HSTATE_ATTR(nr_hugepages_mempolicy);
3802 #endif
3803 
3804 
3805 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3806 					struct kobj_attribute *attr, char *buf)
3807 {
3808 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3809 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810 }
3811 
3812 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3813 		struct kobj_attribute *attr, const char *buf, size_t count)
3814 {
3815 	int err;
3816 	unsigned long input;
3817 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3818 
3819 	if (hstate_is_gigantic(h))
3820 		return -EINVAL;
3821 
3822 	err = kstrtoul(buf, 10, &input);
3823 	if (err)
3824 		return err;
3825 
3826 	spin_lock_irq(&hugetlb_lock);
3827 	h->nr_overcommit_huge_pages = input;
3828 	spin_unlock_irq(&hugetlb_lock);
3829 
3830 	return count;
3831 }
3832 HSTATE_ATTR(nr_overcommit_hugepages);
3833 
3834 static ssize_t free_hugepages_show(struct kobject *kobj,
3835 					struct kobj_attribute *attr, char *buf)
3836 {
3837 	struct hstate *h;
3838 	unsigned long free_huge_pages;
3839 	int nid;
3840 
3841 	h = kobj_to_hstate(kobj, &nid);
3842 	if (nid == NUMA_NO_NODE)
3843 		free_huge_pages = h->free_huge_pages;
3844 	else
3845 		free_huge_pages = h->free_huge_pages_node[nid];
3846 
3847 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3848 }
3849 HSTATE_ATTR_RO(free_hugepages);
3850 
3851 static ssize_t resv_hugepages_show(struct kobject *kobj,
3852 					struct kobj_attribute *attr, char *buf)
3853 {
3854 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3855 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3856 }
3857 HSTATE_ATTR_RO(resv_hugepages);
3858 
3859 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3860 					struct kobj_attribute *attr, char *buf)
3861 {
3862 	struct hstate *h;
3863 	unsigned long surplus_huge_pages;
3864 	int nid;
3865 
3866 	h = kobj_to_hstate(kobj, &nid);
3867 	if (nid == NUMA_NO_NODE)
3868 		surplus_huge_pages = h->surplus_huge_pages;
3869 	else
3870 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3871 
3872 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3873 }
3874 HSTATE_ATTR_RO(surplus_hugepages);
3875 
3876 static ssize_t demote_store(struct kobject *kobj,
3877 	       struct kobj_attribute *attr, const char *buf, size_t len)
3878 {
3879 	unsigned long nr_demote;
3880 	unsigned long nr_available;
3881 	nodemask_t nodes_allowed, *n_mask;
3882 	struct hstate *h;
3883 	int err;
3884 	int nid;
3885 
3886 	err = kstrtoul(buf, 10, &nr_demote);
3887 	if (err)
3888 		return err;
3889 	h = kobj_to_hstate(kobj, &nid);
3890 
3891 	if (nid != NUMA_NO_NODE) {
3892 		init_nodemask_of_node(&nodes_allowed, nid);
3893 		n_mask = &nodes_allowed;
3894 	} else {
3895 		n_mask = &node_states[N_MEMORY];
3896 	}
3897 
3898 	/* Synchronize with other sysfs operations modifying huge pages */
3899 	mutex_lock(&h->resize_lock);
3900 	spin_lock_irq(&hugetlb_lock);
3901 
3902 	while (nr_demote) {
3903 		/*
3904 		 * Check for available pages to demote each time thorough the
3905 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3906 		 */
3907 		if (nid != NUMA_NO_NODE)
3908 			nr_available = h->free_huge_pages_node[nid];
3909 		else
3910 			nr_available = h->free_huge_pages;
3911 		nr_available -= h->resv_huge_pages;
3912 		if (!nr_available)
3913 			break;
3914 
3915 		err = demote_pool_huge_page(h, n_mask);
3916 		if (err)
3917 			break;
3918 
3919 		nr_demote--;
3920 	}
3921 
3922 	spin_unlock_irq(&hugetlb_lock);
3923 	mutex_unlock(&h->resize_lock);
3924 
3925 	if (err)
3926 		return err;
3927 	return len;
3928 }
3929 HSTATE_ATTR_WO(demote);
3930 
3931 static ssize_t demote_size_show(struct kobject *kobj,
3932 					struct kobj_attribute *attr, char *buf)
3933 {
3934 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3935 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3936 
3937 	return sysfs_emit(buf, "%lukB\n", demote_size);
3938 }
3939 
3940 static ssize_t demote_size_store(struct kobject *kobj,
3941 					struct kobj_attribute *attr,
3942 					const char *buf, size_t count)
3943 {
3944 	struct hstate *h, *demote_hstate;
3945 	unsigned long demote_size;
3946 	unsigned int demote_order;
3947 
3948 	demote_size = (unsigned long)memparse(buf, NULL);
3949 
3950 	demote_hstate = size_to_hstate(demote_size);
3951 	if (!demote_hstate)
3952 		return -EINVAL;
3953 	demote_order = demote_hstate->order;
3954 	if (demote_order < HUGETLB_PAGE_ORDER)
3955 		return -EINVAL;
3956 
3957 	/* demote order must be smaller than hstate order */
3958 	h = kobj_to_hstate(kobj, NULL);
3959 	if (demote_order >= h->order)
3960 		return -EINVAL;
3961 
3962 	/* resize_lock synchronizes access to demote size and writes */
3963 	mutex_lock(&h->resize_lock);
3964 	h->demote_order = demote_order;
3965 	mutex_unlock(&h->resize_lock);
3966 
3967 	return count;
3968 }
3969 HSTATE_ATTR(demote_size);
3970 
3971 static struct attribute *hstate_attrs[] = {
3972 	&nr_hugepages_attr.attr,
3973 	&nr_overcommit_hugepages_attr.attr,
3974 	&free_hugepages_attr.attr,
3975 	&resv_hugepages_attr.attr,
3976 	&surplus_hugepages_attr.attr,
3977 #ifdef CONFIG_NUMA
3978 	&nr_hugepages_mempolicy_attr.attr,
3979 #endif
3980 	NULL,
3981 };
3982 
3983 static const struct attribute_group hstate_attr_group = {
3984 	.attrs = hstate_attrs,
3985 };
3986 
3987 static struct attribute *hstate_demote_attrs[] = {
3988 	&demote_size_attr.attr,
3989 	&demote_attr.attr,
3990 	NULL,
3991 };
3992 
3993 static const struct attribute_group hstate_demote_attr_group = {
3994 	.attrs = hstate_demote_attrs,
3995 };
3996 
3997 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3998 				    struct kobject **hstate_kobjs,
3999 				    const struct attribute_group *hstate_attr_group)
4000 {
4001 	int retval;
4002 	int hi = hstate_index(h);
4003 
4004 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4005 	if (!hstate_kobjs[hi])
4006 		return -ENOMEM;
4007 
4008 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4009 	if (retval) {
4010 		kobject_put(hstate_kobjs[hi]);
4011 		hstate_kobjs[hi] = NULL;
4012 		return retval;
4013 	}
4014 
4015 	if (h->demote_order) {
4016 		retval = sysfs_create_group(hstate_kobjs[hi],
4017 					    &hstate_demote_attr_group);
4018 		if (retval) {
4019 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4020 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4021 			kobject_put(hstate_kobjs[hi]);
4022 			hstate_kobjs[hi] = NULL;
4023 			return retval;
4024 		}
4025 	}
4026 
4027 	return 0;
4028 }
4029 
4030 #ifdef CONFIG_NUMA
4031 static bool hugetlb_sysfs_initialized __ro_after_init;
4032 
4033 /*
4034  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4035  * with node devices in node_devices[] using a parallel array.  The array
4036  * index of a node device or _hstate == node id.
4037  * This is here to avoid any static dependency of the node device driver, in
4038  * the base kernel, on the hugetlb module.
4039  */
4040 struct node_hstate {
4041 	struct kobject		*hugepages_kobj;
4042 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4043 };
4044 static struct node_hstate node_hstates[MAX_NUMNODES];
4045 
4046 /*
4047  * A subset of global hstate attributes for node devices
4048  */
4049 static struct attribute *per_node_hstate_attrs[] = {
4050 	&nr_hugepages_attr.attr,
4051 	&free_hugepages_attr.attr,
4052 	&surplus_hugepages_attr.attr,
4053 	NULL,
4054 };
4055 
4056 static const struct attribute_group per_node_hstate_attr_group = {
4057 	.attrs = per_node_hstate_attrs,
4058 };
4059 
4060 /*
4061  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4062  * Returns node id via non-NULL nidp.
4063  */
4064 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4065 {
4066 	int nid;
4067 
4068 	for (nid = 0; nid < nr_node_ids; nid++) {
4069 		struct node_hstate *nhs = &node_hstates[nid];
4070 		int i;
4071 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4072 			if (nhs->hstate_kobjs[i] == kobj) {
4073 				if (nidp)
4074 					*nidp = nid;
4075 				return &hstates[i];
4076 			}
4077 	}
4078 
4079 	BUG();
4080 	return NULL;
4081 }
4082 
4083 /*
4084  * Unregister hstate attributes from a single node device.
4085  * No-op if no hstate attributes attached.
4086  */
4087 void hugetlb_unregister_node(struct node *node)
4088 {
4089 	struct hstate *h;
4090 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4091 
4092 	if (!nhs->hugepages_kobj)
4093 		return;		/* no hstate attributes */
4094 
4095 	for_each_hstate(h) {
4096 		int idx = hstate_index(h);
4097 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4098 
4099 		if (!hstate_kobj)
4100 			continue;
4101 		if (h->demote_order)
4102 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4103 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4104 		kobject_put(hstate_kobj);
4105 		nhs->hstate_kobjs[idx] = NULL;
4106 	}
4107 
4108 	kobject_put(nhs->hugepages_kobj);
4109 	nhs->hugepages_kobj = NULL;
4110 }
4111 
4112 
4113 /*
4114  * Register hstate attributes for a single node device.
4115  * No-op if attributes already registered.
4116  */
4117 void hugetlb_register_node(struct node *node)
4118 {
4119 	struct hstate *h;
4120 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 	int err;
4122 
4123 	if (!hugetlb_sysfs_initialized)
4124 		return;
4125 
4126 	if (nhs->hugepages_kobj)
4127 		return;		/* already allocated */
4128 
4129 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4130 							&node->dev.kobj);
4131 	if (!nhs->hugepages_kobj)
4132 		return;
4133 
4134 	for_each_hstate(h) {
4135 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4136 						nhs->hstate_kobjs,
4137 						&per_node_hstate_attr_group);
4138 		if (err) {
4139 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4140 				h->name, node->dev.id);
4141 			hugetlb_unregister_node(node);
4142 			break;
4143 		}
4144 	}
4145 }
4146 
4147 /*
4148  * hugetlb init time:  register hstate attributes for all registered node
4149  * devices of nodes that have memory.  All on-line nodes should have
4150  * registered their associated device by this time.
4151  */
4152 static void __init hugetlb_register_all_nodes(void)
4153 {
4154 	int nid;
4155 
4156 	for_each_online_node(nid)
4157 		hugetlb_register_node(node_devices[nid]);
4158 }
4159 #else	/* !CONFIG_NUMA */
4160 
4161 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4162 {
4163 	BUG();
4164 	if (nidp)
4165 		*nidp = -1;
4166 	return NULL;
4167 }
4168 
4169 static void hugetlb_register_all_nodes(void) { }
4170 
4171 #endif
4172 
4173 #ifdef CONFIG_CMA
4174 static void __init hugetlb_cma_check(void);
4175 #else
4176 static inline __init void hugetlb_cma_check(void)
4177 {
4178 }
4179 #endif
4180 
4181 static void __init hugetlb_sysfs_init(void)
4182 {
4183 	struct hstate *h;
4184 	int err;
4185 
4186 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4187 	if (!hugepages_kobj)
4188 		return;
4189 
4190 	for_each_hstate(h) {
4191 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4192 					 hstate_kobjs, &hstate_attr_group);
4193 		if (err)
4194 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4195 	}
4196 
4197 #ifdef CONFIG_NUMA
4198 	hugetlb_sysfs_initialized = true;
4199 #endif
4200 	hugetlb_register_all_nodes();
4201 }
4202 
4203 static int __init hugetlb_init(void)
4204 {
4205 	int i;
4206 
4207 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208 			__NR_HPAGEFLAGS);
4209 
4210 	if (!hugepages_supported()) {
4211 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4212 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213 		return 0;
4214 	}
4215 
4216 	/*
4217 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4218 	 * architectures depend on setup being done here.
4219 	 */
4220 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4221 	if (!parsed_default_hugepagesz) {
4222 		/*
4223 		 * If we did not parse a default huge page size, set
4224 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4225 		 * number of huge pages for this default size was implicitly
4226 		 * specified, set that here as well.
4227 		 * Note that the implicit setting will overwrite an explicit
4228 		 * setting.  A warning will be printed in this case.
4229 		 */
4230 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4231 		if (default_hstate_max_huge_pages) {
4232 			if (default_hstate.max_huge_pages) {
4233 				char buf[32];
4234 
4235 				string_get_size(huge_page_size(&default_hstate),
4236 					1, STRING_UNITS_2, buf, 32);
4237 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4238 					default_hstate.max_huge_pages, buf);
4239 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4240 					default_hstate_max_huge_pages);
4241 			}
4242 			default_hstate.max_huge_pages =
4243 				default_hstate_max_huge_pages;
4244 
4245 			for_each_online_node(i)
4246 				default_hstate.max_huge_pages_node[i] =
4247 					default_hugepages_in_node[i];
4248 		}
4249 	}
4250 
4251 	hugetlb_cma_check();
4252 	hugetlb_init_hstates();
4253 	gather_bootmem_prealloc();
4254 	report_hugepages();
4255 
4256 	hugetlb_sysfs_init();
4257 	hugetlb_cgroup_file_init();
4258 
4259 #ifdef CONFIG_SMP
4260 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4261 #else
4262 	num_fault_mutexes = 1;
4263 #endif
4264 	hugetlb_fault_mutex_table =
4265 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4266 			      GFP_KERNEL);
4267 	BUG_ON(!hugetlb_fault_mutex_table);
4268 
4269 	for (i = 0; i < num_fault_mutexes; i++)
4270 		mutex_init(&hugetlb_fault_mutex_table[i]);
4271 	return 0;
4272 }
4273 subsys_initcall(hugetlb_init);
4274 
4275 /* Overwritten by architectures with more huge page sizes */
4276 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4277 {
4278 	return size == HPAGE_SIZE;
4279 }
4280 
4281 void __init hugetlb_add_hstate(unsigned int order)
4282 {
4283 	struct hstate *h;
4284 	unsigned long i;
4285 
4286 	if (size_to_hstate(PAGE_SIZE << order)) {
4287 		return;
4288 	}
4289 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4290 	BUG_ON(order == 0);
4291 	h = &hstates[hugetlb_max_hstate++];
4292 	mutex_init(&h->resize_lock);
4293 	h->order = order;
4294 	h->mask = ~(huge_page_size(h) - 1);
4295 	for (i = 0; i < MAX_NUMNODES; ++i)
4296 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4297 	INIT_LIST_HEAD(&h->hugepage_activelist);
4298 	h->next_nid_to_alloc = first_memory_node;
4299 	h->next_nid_to_free = first_memory_node;
4300 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4301 					huge_page_size(h)/SZ_1K);
4302 
4303 	parsed_hstate = h;
4304 }
4305 
4306 bool __init __weak hugetlb_node_alloc_supported(void)
4307 {
4308 	return true;
4309 }
4310 
4311 static void __init hugepages_clear_pages_in_node(void)
4312 {
4313 	if (!hugetlb_max_hstate) {
4314 		default_hstate_max_huge_pages = 0;
4315 		memset(default_hugepages_in_node, 0,
4316 			sizeof(default_hugepages_in_node));
4317 	} else {
4318 		parsed_hstate->max_huge_pages = 0;
4319 		memset(parsed_hstate->max_huge_pages_node, 0,
4320 			sizeof(parsed_hstate->max_huge_pages_node));
4321 	}
4322 }
4323 
4324 /*
4325  * hugepages command line processing
4326  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4327  * specification.  If not, ignore the hugepages value.  hugepages can also
4328  * be the first huge page command line  option in which case it implicitly
4329  * specifies the number of huge pages for the default size.
4330  */
4331 static int __init hugepages_setup(char *s)
4332 {
4333 	unsigned long *mhp;
4334 	static unsigned long *last_mhp;
4335 	int node = NUMA_NO_NODE;
4336 	int count;
4337 	unsigned long tmp;
4338 	char *p = s;
4339 
4340 	if (!parsed_valid_hugepagesz) {
4341 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4342 		parsed_valid_hugepagesz = true;
4343 		return 1;
4344 	}
4345 
4346 	/*
4347 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4348 	 * yet, so this hugepages= parameter goes to the "default hstate".
4349 	 * Otherwise, it goes with the previously parsed hugepagesz or
4350 	 * default_hugepagesz.
4351 	 */
4352 	else if (!hugetlb_max_hstate)
4353 		mhp = &default_hstate_max_huge_pages;
4354 	else
4355 		mhp = &parsed_hstate->max_huge_pages;
4356 
4357 	if (mhp == last_mhp) {
4358 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359 		return 1;
4360 	}
4361 
4362 	while (*p) {
4363 		count = 0;
4364 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4365 			goto invalid;
4366 		/* Parameter is node format */
4367 		if (p[count] == ':') {
4368 			if (!hugetlb_node_alloc_supported()) {
4369 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370 				return 1;
4371 			}
4372 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4373 				goto invalid;
4374 			node = array_index_nospec(tmp, MAX_NUMNODES);
4375 			p += count + 1;
4376 			/* Parse hugepages */
4377 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378 				goto invalid;
4379 			if (!hugetlb_max_hstate)
4380 				default_hugepages_in_node[node] = tmp;
4381 			else
4382 				parsed_hstate->max_huge_pages_node[node] = tmp;
4383 			*mhp += tmp;
4384 			/* Go to parse next node*/
4385 			if (p[count] == ',')
4386 				p += count + 1;
4387 			else
4388 				break;
4389 		} else {
4390 			if (p != s)
4391 				goto invalid;
4392 			*mhp = tmp;
4393 			break;
4394 		}
4395 	}
4396 
4397 	/*
4398 	 * Global state is always initialized later in hugetlb_init.
4399 	 * But we need to allocate gigantic hstates here early to still
4400 	 * use the bootmem allocator.
4401 	 */
4402 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4403 		hugetlb_hstate_alloc_pages(parsed_hstate);
4404 
4405 	last_mhp = mhp;
4406 
4407 	return 1;
4408 
4409 invalid:
4410 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4411 	hugepages_clear_pages_in_node();
4412 	return 1;
4413 }
4414 __setup("hugepages=", hugepages_setup);
4415 
4416 /*
4417  * hugepagesz command line processing
4418  * A specific huge page size can only be specified once with hugepagesz.
4419  * hugepagesz is followed by hugepages on the command line.  The global
4420  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4421  * hugepagesz argument was valid.
4422  */
4423 static int __init hugepagesz_setup(char *s)
4424 {
4425 	unsigned long size;
4426 	struct hstate *h;
4427 
4428 	parsed_valid_hugepagesz = false;
4429 	size = (unsigned long)memparse(s, NULL);
4430 
4431 	if (!arch_hugetlb_valid_size(size)) {
4432 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4433 		return 1;
4434 	}
4435 
4436 	h = size_to_hstate(size);
4437 	if (h) {
4438 		/*
4439 		 * hstate for this size already exists.  This is normally
4440 		 * an error, but is allowed if the existing hstate is the
4441 		 * default hstate.  More specifically, it is only allowed if
4442 		 * the number of huge pages for the default hstate was not
4443 		 * previously specified.
4444 		 */
4445 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4446 		    default_hstate.max_huge_pages) {
4447 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448 			return 1;
4449 		}
4450 
4451 		/*
4452 		 * No need to call hugetlb_add_hstate() as hstate already
4453 		 * exists.  But, do set parsed_hstate so that a following
4454 		 * hugepages= parameter will be applied to this hstate.
4455 		 */
4456 		parsed_hstate = h;
4457 		parsed_valid_hugepagesz = true;
4458 		return 1;
4459 	}
4460 
4461 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4462 	parsed_valid_hugepagesz = true;
4463 	return 1;
4464 }
4465 __setup("hugepagesz=", hugepagesz_setup);
4466 
4467 /*
4468  * default_hugepagesz command line input
4469  * Only one instance of default_hugepagesz allowed on command line.
4470  */
4471 static int __init default_hugepagesz_setup(char *s)
4472 {
4473 	unsigned long size;
4474 	int i;
4475 
4476 	parsed_valid_hugepagesz = false;
4477 	if (parsed_default_hugepagesz) {
4478 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4479 		return 1;
4480 	}
4481 
4482 	size = (unsigned long)memparse(s, NULL);
4483 
4484 	if (!arch_hugetlb_valid_size(size)) {
4485 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4486 		return 1;
4487 	}
4488 
4489 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4490 	parsed_valid_hugepagesz = true;
4491 	parsed_default_hugepagesz = true;
4492 	default_hstate_idx = hstate_index(size_to_hstate(size));
4493 
4494 	/*
4495 	 * The number of default huge pages (for this size) could have been
4496 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4497 	 * then default_hstate_max_huge_pages is set.  If the default huge
4498 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4499 	 * allocated here from bootmem allocator.
4500 	 */
4501 	if (default_hstate_max_huge_pages) {
4502 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4503 		for_each_online_node(i)
4504 			default_hstate.max_huge_pages_node[i] =
4505 				default_hugepages_in_node[i];
4506 		if (hstate_is_gigantic(&default_hstate))
4507 			hugetlb_hstate_alloc_pages(&default_hstate);
4508 		default_hstate_max_huge_pages = 0;
4509 	}
4510 
4511 	return 1;
4512 }
4513 __setup("default_hugepagesz=", default_hugepagesz_setup);
4514 
4515 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516 {
4517 #ifdef CONFIG_NUMA
4518 	struct mempolicy *mpol = get_task_policy(current);
4519 
4520 	/*
4521 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4522 	 * (from policy_nodemask) specifically for hugetlb case
4523 	 */
4524 	if (mpol->mode == MPOL_BIND &&
4525 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4526 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4527 		return &mpol->nodes;
4528 #endif
4529 	return NULL;
4530 }
4531 
4532 static unsigned int allowed_mems_nr(struct hstate *h)
4533 {
4534 	int node;
4535 	unsigned int nr = 0;
4536 	nodemask_t *mbind_nodemask;
4537 	unsigned int *array = h->free_huge_pages_node;
4538 	gfp_t gfp_mask = htlb_alloc_mask(h);
4539 
4540 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4541 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4542 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4543 			nr += array[node];
4544 	}
4545 
4546 	return nr;
4547 }
4548 
4549 #ifdef CONFIG_SYSCTL
4550 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4551 					  void *buffer, size_t *length,
4552 					  loff_t *ppos, unsigned long *out)
4553 {
4554 	struct ctl_table dup_table;
4555 
4556 	/*
4557 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4558 	 * can duplicate the @table and alter the duplicate of it.
4559 	 */
4560 	dup_table = *table;
4561 	dup_table.data = out;
4562 
4563 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564 }
4565 
4566 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4567 			 struct ctl_table *table, int write,
4568 			 void *buffer, size_t *length, loff_t *ppos)
4569 {
4570 	struct hstate *h = &default_hstate;
4571 	unsigned long tmp = h->max_huge_pages;
4572 	int ret;
4573 
4574 	if (!hugepages_supported())
4575 		return -EOPNOTSUPP;
4576 
4577 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578 					     &tmp);
4579 	if (ret)
4580 		goto out;
4581 
4582 	if (write)
4583 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4584 						  NUMA_NO_NODE, tmp, *length);
4585 out:
4586 	return ret;
4587 }
4588 
4589 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4590 			  void *buffer, size_t *length, loff_t *ppos)
4591 {
4592 
4593 	return hugetlb_sysctl_handler_common(false, table, write,
4594 							buffer, length, ppos);
4595 }
4596 
4597 #ifdef CONFIG_NUMA
4598 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4599 			  void *buffer, size_t *length, loff_t *ppos)
4600 {
4601 	return hugetlb_sysctl_handler_common(true, table, write,
4602 							buffer, length, ppos);
4603 }
4604 #endif /* CONFIG_NUMA */
4605 
4606 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4607 		void *buffer, size_t *length, loff_t *ppos)
4608 {
4609 	struct hstate *h = &default_hstate;
4610 	unsigned long tmp;
4611 	int ret;
4612 
4613 	if (!hugepages_supported())
4614 		return -EOPNOTSUPP;
4615 
4616 	tmp = h->nr_overcommit_huge_pages;
4617 
4618 	if (write && hstate_is_gigantic(h))
4619 		return -EINVAL;
4620 
4621 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622 					     &tmp);
4623 	if (ret)
4624 		goto out;
4625 
4626 	if (write) {
4627 		spin_lock_irq(&hugetlb_lock);
4628 		h->nr_overcommit_huge_pages = tmp;
4629 		spin_unlock_irq(&hugetlb_lock);
4630 	}
4631 out:
4632 	return ret;
4633 }
4634 
4635 #endif /* CONFIG_SYSCTL */
4636 
4637 void hugetlb_report_meminfo(struct seq_file *m)
4638 {
4639 	struct hstate *h;
4640 	unsigned long total = 0;
4641 
4642 	if (!hugepages_supported())
4643 		return;
4644 
4645 	for_each_hstate(h) {
4646 		unsigned long count = h->nr_huge_pages;
4647 
4648 		total += huge_page_size(h) * count;
4649 
4650 		if (h == &default_hstate)
4651 			seq_printf(m,
4652 				   "HugePages_Total:   %5lu\n"
4653 				   "HugePages_Free:    %5lu\n"
4654 				   "HugePages_Rsvd:    %5lu\n"
4655 				   "HugePages_Surp:    %5lu\n"
4656 				   "Hugepagesize:   %8lu kB\n",
4657 				   count,
4658 				   h->free_huge_pages,
4659 				   h->resv_huge_pages,
4660 				   h->surplus_huge_pages,
4661 				   huge_page_size(h) / SZ_1K);
4662 	}
4663 
4664 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4665 }
4666 
4667 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4668 {
4669 	struct hstate *h = &default_hstate;
4670 
4671 	if (!hugepages_supported())
4672 		return 0;
4673 
4674 	return sysfs_emit_at(buf, len,
4675 			     "Node %d HugePages_Total: %5u\n"
4676 			     "Node %d HugePages_Free:  %5u\n"
4677 			     "Node %d HugePages_Surp:  %5u\n",
4678 			     nid, h->nr_huge_pages_node[nid],
4679 			     nid, h->free_huge_pages_node[nid],
4680 			     nid, h->surplus_huge_pages_node[nid]);
4681 }
4682 
4683 void hugetlb_show_meminfo_node(int nid)
4684 {
4685 	struct hstate *h;
4686 
4687 	if (!hugepages_supported())
4688 		return;
4689 
4690 	for_each_hstate(h)
4691 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4692 			nid,
4693 			h->nr_huge_pages_node[nid],
4694 			h->free_huge_pages_node[nid],
4695 			h->surplus_huge_pages_node[nid],
4696 			huge_page_size(h) / SZ_1K);
4697 }
4698 
4699 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4700 {
4701 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4702 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703 }
4704 
4705 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4706 unsigned long hugetlb_total_pages(void)
4707 {
4708 	struct hstate *h;
4709 	unsigned long nr_total_pages = 0;
4710 
4711 	for_each_hstate(h)
4712 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4713 	return nr_total_pages;
4714 }
4715 
4716 static int hugetlb_acct_memory(struct hstate *h, long delta)
4717 {
4718 	int ret = -ENOMEM;
4719 
4720 	if (!delta)
4721 		return 0;
4722 
4723 	spin_lock_irq(&hugetlb_lock);
4724 	/*
4725 	 * When cpuset is configured, it breaks the strict hugetlb page
4726 	 * reservation as the accounting is done on a global variable. Such
4727 	 * reservation is completely rubbish in the presence of cpuset because
4728 	 * the reservation is not checked against page availability for the
4729 	 * current cpuset. Application can still potentially OOM'ed by kernel
4730 	 * with lack of free htlb page in cpuset that the task is in.
4731 	 * Attempt to enforce strict accounting with cpuset is almost
4732 	 * impossible (or too ugly) because cpuset is too fluid that
4733 	 * task or memory node can be dynamically moved between cpusets.
4734 	 *
4735 	 * The change of semantics for shared hugetlb mapping with cpuset is
4736 	 * undesirable. However, in order to preserve some of the semantics,
4737 	 * we fall back to check against current free page availability as
4738 	 * a best attempt and hopefully to minimize the impact of changing
4739 	 * semantics that cpuset has.
4740 	 *
4741 	 * Apart from cpuset, we also have memory policy mechanism that
4742 	 * also determines from which node the kernel will allocate memory
4743 	 * in a NUMA system. So similar to cpuset, we also should consider
4744 	 * the memory policy of the current task. Similar to the description
4745 	 * above.
4746 	 */
4747 	if (delta > 0) {
4748 		if (gather_surplus_pages(h, delta) < 0)
4749 			goto out;
4750 
4751 		if (delta > allowed_mems_nr(h)) {
4752 			return_unused_surplus_pages(h, delta);
4753 			goto out;
4754 		}
4755 	}
4756 
4757 	ret = 0;
4758 	if (delta < 0)
4759 		return_unused_surplus_pages(h, (unsigned long) -delta);
4760 
4761 out:
4762 	spin_unlock_irq(&hugetlb_lock);
4763 	return ret;
4764 }
4765 
4766 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4767 {
4768 	struct resv_map *resv = vma_resv_map(vma);
4769 
4770 	/*
4771 	 * HPAGE_RESV_OWNER indicates a private mapping.
4772 	 * This new VMA should share its siblings reservation map if present.
4773 	 * The VMA will only ever have a valid reservation map pointer where
4774 	 * it is being copied for another still existing VMA.  As that VMA
4775 	 * has a reference to the reservation map it cannot disappear until
4776 	 * after this open call completes.  It is therefore safe to take a
4777 	 * new reference here without additional locking.
4778 	 */
4779 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4780 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4781 		kref_get(&resv->refs);
4782 	}
4783 
4784 	/*
4785 	 * vma_lock structure for sharable mappings is vma specific.
4786 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4787 	 * new structure.  Before clearing, make sure vma_lock is not
4788 	 * for this vma.
4789 	 */
4790 	if (vma->vm_flags & VM_MAYSHARE) {
4791 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792 
4793 		if (vma_lock) {
4794 			if (vma_lock->vma != vma) {
4795 				vma->vm_private_data = NULL;
4796 				hugetlb_vma_lock_alloc(vma);
4797 			} else
4798 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4799 		} else
4800 			hugetlb_vma_lock_alloc(vma);
4801 	}
4802 }
4803 
4804 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4805 {
4806 	struct hstate *h = hstate_vma(vma);
4807 	struct resv_map *resv;
4808 	struct hugepage_subpool *spool = subpool_vma(vma);
4809 	unsigned long reserve, start, end;
4810 	long gbl_reserve;
4811 
4812 	hugetlb_vma_lock_free(vma);
4813 
4814 	resv = vma_resv_map(vma);
4815 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 		return;
4817 
4818 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4819 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4820 
4821 	reserve = (end - start) - region_count(resv, start, end);
4822 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4823 	if (reserve) {
4824 		/*
4825 		 * Decrement reserve counts.  The global reserve count may be
4826 		 * adjusted if the subpool has a minimum size.
4827 		 */
4828 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4829 		hugetlb_acct_memory(h, -gbl_reserve);
4830 	}
4831 
4832 	kref_put(&resv->refs, resv_map_release);
4833 }
4834 
4835 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4836 {
4837 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4838 		return -EINVAL;
4839 
4840 	/*
4841 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4842 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4843 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4844 	 */
4845 	if (addr & ~PUD_MASK) {
4846 		/*
4847 		 * hugetlb_vm_op_split is called right before we attempt to
4848 		 * split the VMA. We will need to unshare PMDs in the old and
4849 		 * new VMAs, so let's unshare before we split.
4850 		 */
4851 		unsigned long floor = addr & PUD_MASK;
4852 		unsigned long ceil = floor + PUD_SIZE;
4853 
4854 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4855 			hugetlb_unshare_pmds(vma, floor, ceil);
4856 	}
4857 
4858 	return 0;
4859 }
4860 
4861 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4862 {
4863 	return huge_page_size(hstate_vma(vma));
4864 }
4865 
4866 /*
4867  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4868  * handle_mm_fault() to try to instantiate regular-sized pages in the
4869  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4870  * this far.
4871  */
4872 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4873 {
4874 	BUG();
4875 	return 0;
4876 }
4877 
4878 /*
4879  * When a new function is introduced to vm_operations_struct and added
4880  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4881  * This is because under System V memory model, mappings created via
4882  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4883  * their original vm_ops are overwritten with shm_vm_ops.
4884  */
4885 const struct vm_operations_struct hugetlb_vm_ops = {
4886 	.fault = hugetlb_vm_op_fault,
4887 	.open = hugetlb_vm_op_open,
4888 	.close = hugetlb_vm_op_close,
4889 	.may_split = hugetlb_vm_op_split,
4890 	.pagesize = hugetlb_vm_op_pagesize,
4891 };
4892 
4893 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4894 				int writable)
4895 {
4896 	pte_t entry;
4897 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4898 
4899 	if (writable) {
4900 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4901 					 vma->vm_page_prot)));
4902 	} else {
4903 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4904 					   vma->vm_page_prot));
4905 	}
4906 	entry = pte_mkyoung(entry);
4907 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908 
4909 	return entry;
4910 }
4911 
4912 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4913 				   unsigned long address, pte_t *ptep)
4914 {
4915 	pte_t entry;
4916 
4917 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4918 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4919 		update_mmu_cache(vma, address, ptep);
4920 }
4921 
4922 bool is_hugetlb_entry_migration(pte_t pte)
4923 {
4924 	swp_entry_t swp;
4925 
4926 	if (huge_pte_none(pte) || pte_present(pte))
4927 		return false;
4928 	swp = pte_to_swp_entry(pte);
4929 	if (is_migration_entry(swp))
4930 		return true;
4931 	else
4932 		return false;
4933 }
4934 
4935 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4936 {
4937 	swp_entry_t swp;
4938 
4939 	if (huge_pte_none(pte) || pte_present(pte))
4940 		return false;
4941 	swp = pte_to_swp_entry(pte);
4942 	if (is_hwpoison_entry(swp))
4943 		return true;
4944 	else
4945 		return false;
4946 }
4947 
4948 static void
4949 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4950 		     struct page *new_page)
4951 {
4952 	__SetPageUptodate(new_page);
4953 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4954 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4955 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4956 	SetHPageMigratable(new_page);
4957 }
4958 
4959 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4960 			    struct vm_area_struct *dst_vma,
4961 			    struct vm_area_struct *src_vma)
4962 {
4963 	pte_t *src_pte, *dst_pte, entry;
4964 	struct page *ptepage;
4965 	unsigned long addr;
4966 	bool cow = is_cow_mapping(src_vma->vm_flags);
4967 	struct hstate *h = hstate_vma(src_vma);
4968 	unsigned long sz = huge_page_size(h);
4969 	unsigned long npages = pages_per_huge_page(h);
4970 	struct mmu_notifier_range range;
4971 	unsigned long last_addr_mask;
4972 	int ret = 0;
4973 
4974 	if (cow) {
4975 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4976 					src_vma->vm_start,
4977 					src_vma->vm_end);
4978 		mmu_notifier_invalidate_range_start(&range);
4979 		mmap_assert_write_locked(src);
4980 		raw_write_seqcount_begin(&src->write_protect_seq);
4981 	} else {
4982 		/*
4983 		 * For shared mappings the vma lock must be held before
4984 		 * calling huge_pte_offset in the src vma. Otherwise, the
4985 		 * returned ptep could go away if part of a shared pmd and
4986 		 * another thread calls huge_pmd_unshare.
4987 		 */
4988 		hugetlb_vma_lock_read(src_vma);
4989 	}
4990 
4991 	last_addr_mask = hugetlb_mask_last_page(h);
4992 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4993 		spinlock_t *src_ptl, *dst_ptl;
4994 		src_pte = huge_pte_offset(src, addr, sz);
4995 		if (!src_pte) {
4996 			addr |= last_addr_mask;
4997 			continue;
4998 		}
4999 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5000 		if (!dst_pte) {
5001 			ret = -ENOMEM;
5002 			break;
5003 		}
5004 
5005 		/*
5006 		 * If the pagetables are shared don't copy or take references.
5007 		 *
5008 		 * dst_pte == src_pte is the common case of src/dest sharing.
5009 		 * However, src could have 'unshared' and dst shares with
5010 		 * another vma. So page_count of ptep page is checked instead
5011 		 * to reliably determine whether pte is shared.
5012 		 */
5013 		if (page_count(virt_to_page(dst_pte)) > 1) {
5014 			addr |= last_addr_mask;
5015 			continue;
5016 		}
5017 
5018 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5019 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5020 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5021 		entry = huge_ptep_get(src_pte);
5022 again:
5023 		if (huge_pte_none(entry)) {
5024 			/*
5025 			 * Skip if src entry none.
5026 			 */
5027 			;
5028 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5029 			bool uffd_wp = huge_pte_uffd_wp(entry);
5030 
5031 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5032 				entry = huge_pte_clear_uffd_wp(entry);
5033 			set_huge_pte_at(dst, addr, dst_pte, entry);
5034 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5035 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5036 			bool uffd_wp = huge_pte_uffd_wp(entry);
5037 
5038 			if (!is_readable_migration_entry(swp_entry) && cow) {
5039 				/*
5040 				 * COW mappings require pages in both
5041 				 * parent and child to be set to read.
5042 				 */
5043 				swp_entry = make_readable_migration_entry(
5044 							swp_offset(swp_entry));
5045 				entry = swp_entry_to_pte(swp_entry);
5046 				if (userfaultfd_wp(src_vma) && uffd_wp)
5047 					entry = huge_pte_mkuffd_wp(entry);
5048 				set_huge_pte_at(src, addr, src_pte, entry);
5049 			}
5050 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051 				entry = huge_pte_clear_uffd_wp(entry);
5052 			set_huge_pte_at(dst, addr, dst_pte, entry);
5053 		} else if (unlikely(is_pte_marker(entry))) {
5054 			/*
5055 			 * We copy the pte marker only if the dst vma has
5056 			 * uffd-wp enabled.
5057 			 */
5058 			if (userfaultfd_wp(dst_vma))
5059 				set_huge_pte_at(dst, addr, dst_pte, entry);
5060 		} else {
5061 			entry = huge_ptep_get(src_pte);
5062 			ptepage = pte_page(entry);
5063 			get_page(ptepage);
5064 
5065 			/*
5066 			 * Failing to duplicate the anon rmap is a rare case
5067 			 * where we see pinned hugetlb pages while they're
5068 			 * prone to COW. We need to do the COW earlier during
5069 			 * fork.
5070 			 *
5071 			 * When pre-allocating the page or copying data, we
5072 			 * need to be without the pgtable locks since we could
5073 			 * sleep during the process.
5074 			 */
5075 			if (!PageAnon(ptepage)) {
5076 				page_dup_file_rmap(ptepage, true);
5077 			} else if (page_try_dup_anon_rmap(ptepage, true,
5078 							  src_vma)) {
5079 				pte_t src_pte_old = entry;
5080 				struct page *new;
5081 
5082 				spin_unlock(src_ptl);
5083 				spin_unlock(dst_ptl);
5084 				/* Do not use reserve as it's private owned */
5085 				new = alloc_huge_page(dst_vma, addr, 1);
5086 				if (IS_ERR(new)) {
5087 					put_page(ptepage);
5088 					ret = PTR_ERR(new);
5089 					break;
5090 				}
5091 				copy_user_huge_page(new, ptepage, addr, dst_vma,
5092 						    npages);
5093 				put_page(ptepage);
5094 
5095 				/* Install the new huge page if src pte stable */
5096 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5097 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5098 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5099 				entry = huge_ptep_get(src_pte);
5100 				if (!pte_same(src_pte_old, entry)) {
5101 					restore_reserve_on_error(h, dst_vma, addr,
5102 								new);
5103 					put_page(new);
5104 					/* huge_ptep of dst_pte won't change as in child */
5105 					goto again;
5106 				}
5107 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
5108 				spin_unlock(src_ptl);
5109 				spin_unlock(dst_ptl);
5110 				continue;
5111 			}
5112 
5113 			if (cow) {
5114 				/*
5115 				 * No need to notify as we are downgrading page
5116 				 * table protection not changing it to point
5117 				 * to a new page.
5118 				 *
5119 				 * See Documentation/mm/mmu_notifier.rst
5120 				 */
5121 				huge_ptep_set_wrprotect(src, addr, src_pte);
5122 				entry = huge_pte_wrprotect(entry);
5123 			}
5124 
5125 			set_huge_pte_at(dst, addr, dst_pte, entry);
5126 			hugetlb_count_add(npages, dst);
5127 		}
5128 		spin_unlock(src_ptl);
5129 		spin_unlock(dst_ptl);
5130 	}
5131 
5132 	if (cow) {
5133 		raw_write_seqcount_end(&src->write_protect_seq);
5134 		mmu_notifier_invalidate_range_end(&range);
5135 	} else {
5136 		hugetlb_vma_unlock_read(src_vma);
5137 	}
5138 
5139 	return ret;
5140 }
5141 
5142 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5143 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5144 {
5145 	struct hstate *h = hstate_vma(vma);
5146 	struct mm_struct *mm = vma->vm_mm;
5147 	spinlock_t *src_ptl, *dst_ptl;
5148 	pte_t pte;
5149 
5150 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5151 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5152 
5153 	/*
5154 	 * We don't have to worry about the ordering of src and dst ptlocks
5155 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5156 	 */
5157 	if (src_ptl != dst_ptl)
5158 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5159 
5160 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5161 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5162 
5163 	if (src_ptl != dst_ptl)
5164 		spin_unlock(src_ptl);
5165 	spin_unlock(dst_ptl);
5166 }
5167 
5168 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5169 			     struct vm_area_struct *new_vma,
5170 			     unsigned long old_addr, unsigned long new_addr,
5171 			     unsigned long len)
5172 {
5173 	struct hstate *h = hstate_vma(vma);
5174 	struct address_space *mapping = vma->vm_file->f_mapping;
5175 	unsigned long sz = huge_page_size(h);
5176 	struct mm_struct *mm = vma->vm_mm;
5177 	unsigned long old_end = old_addr + len;
5178 	unsigned long last_addr_mask;
5179 	pte_t *src_pte, *dst_pte;
5180 	struct mmu_notifier_range range;
5181 	bool shared_pmd = false;
5182 
5183 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5184 				old_end);
5185 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5186 	/*
5187 	 * In case of shared PMDs, we should cover the maximum possible
5188 	 * range.
5189 	 */
5190 	flush_cache_range(vma, range.start, range.end);
5191 
5192 	mmu_notifier_invalidate_range_start(&range);
5193 	last_addr_mask = hugetlb_mask_last_page(h);
5194 	/* Prevent race with file truncation */
5195 	hugetlb_vma_lock_write(vma);
5196 	i_mmap_lock_write(mapping);
5197 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5198 		src_pte = huge_pte_offset(mm, old_addr, sz);
5199 		if (!src_pte) {
5200 			old_addr |= last_addr_mask;
5201 			new_addr |= last_addr_mask;
5202 			continue;
5203 		}
5204 		if (huge_pte_none(huge_ptep_get(src_pte)))
5205 			continue;
5206 
5207 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5208 			shared_pmd = true;
5209 			old_addr |= last_addr_mask;
5210 			new_addr |= last_addr_mask;
5211 			continue;
5212 		}
5213 
5214 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5215 		if (!dst_pte)
5216 			break;
5217 
5218 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5219 	}
5220 
5221 	if (shared_pmd)
5222 		flush_tlb_range(vma, range.start, range.end);
5223 	else
5224 		flush_tlb_range(vma, old_end - len, old_end);
5225 	mmu_notifier_invalidate_range_end(&range);
5226 	i_mmap_unlock_write(mapping);
5227 	hugetlb_vma_unlock_write(vma);
5228 
5229 	return len + old_addr - old_end;
5230 }
5231 
5232 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5233 				   unsigned long start, unsigned long end,
5234 				   struct page *ref_page, zap_flags_t zap_flags)
5235 {
5236 	struct mm_struct *mm = vma->vm_mm;
5237 	unsigned long address;
5238 	pte_t *ptep;
5239 	pte_t pte;
5240 	spinlock_t *ptl;
5241 	struct page *page;
5242 	struct hstate *h = hstate_vma(vma);
5243 	unsigned long sz = huge_page_size(h);
5244 	unsigned long last_addr_mask;
5245 	bool force_flush = false;
5246 
5247 	WARN_ON(!is_vm_hugetlb_page(vma));
5248 	BUG_ON(start & ~huge_page_mask(h));
5249 	BUG_ON(end & ~huge_page_mask(h));
5250 
5251 	/*
5252 	 * This is a hugetlb vma, all the pte entries should point
5253 	 * to huge page.
5254 	 */
5255 	tlb_change_page_size(tlb, sz);
5256 	tlb_start_vma(tlb, vma);
5257 
5258 	last_addr_mask = hugetlb_mask_last_page(h);
5259 	address = start;
5260 	for (; address < end; address += sz) {
5261 		ptep = huge_pte_offset(mm, address, sz);
5262 		if (!ptep) {
5263 			address |= last_addr_mask;
5264 			continue;
5265 		}
5266 
5267 		ptl = huge_pte_lock(h, mm, ptep);
5268 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5269 			spin_unlock(ptl);
5270 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5271 			force_flush = true;
5272 			address |= last_addr_mask;
5273 			continue;
5274 		}
5275 
5276 		pte = huge_ptep_get(ptep);
5277 		if (huge_pte_none(pte)) {
5278 			spin_unlock(ptl);
5279 			continue;
5280 		}
5281 
5282 		/*
5283 		 * Migrating hugepage or HWPoisoned hugepage is already
5284 		 * unmapped and its refcount is dropped, so just clear pte here.
5285 		 */
5286 		if (unlikely(!pte_present(pte))) {
5287 			/*
5288 			 * If the pte was wr-protected by uffd-wp in any of the
5289 			 * swap forms, meanwhile the caller does not want to
5290 			 * drop the uffd-wp bit in this zap, then replace the
5291 			 * pte with a marker.
5292 			 */
5293 			if (pte_swp_uffd_wp_any(pte) &&
5294 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5295 				set_huge_pte_at(mm, address, ptep,
5296 						make_pte_marker(PTE_MARKER_UFFD_WP));
5297 			else
5298 				huge_pte_clear(mm, address, ptep, sz);
5299 			spin_unlock(ptl);
5300 			continue;
5301 		}
5302 
5303 		page = pte_page(pte);
5304 		/*
5305 		 * If a reference page is supplied, it is because a specific
5306 		 * page is being unmapped, not a range. Ensure the page we
5307 		 * are about to unmap is the actual page of interest.
5308 		 */
5309 		if (ref_page) {
5310 			if (page != ref_page) {
5311 				spin_unlock(ptl);
5312 				continue;
5313 			}
5314 			/*
5315 			 * Mark the VMA as having unmapped its page so that
5316 			 * future faults in this VMA will fail rather than
5317 			 * looking like data was lost
5318 			 */
5319 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5320 		}
5321 
5322 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5323 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5324 		if (huge_pte_dirty(pte))
5325 			set_page_dirty(page);
5326 		/* Leave a uffd-wp pte marker if needed */
5327 		if (huge_pte_uffd_wp(pte) &&
5328 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5329 			set_huge_pte_at(mm, address, ptep,
5330 					make_pte_marker(PTE_MARKER_UFFD_WP));
5331 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5332 		page_remove_rmap(page, vma, true);
5333 
5334 		spin_unlock(ptl);
5335 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5336 		/*
5337 		 * Bail out after unmapping reference page if supplied
5338 		 */
5339 		if (ref_page)
5340 			break;
5341 	}
5342 	tlb_end_vma(tlb, vma);
5343 
5344 	/*
5345 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5346 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5347 	 * guaranteed that the last refernece would not be dropped. But we must
5348 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5349 	 * dropped and the last reference to the shared PMDs page might be
5350 	 * dropped as well.
5351 	 *
5352 	 * In theory we could defer the freeing of the PMD pages as well, but
5353 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5354 	 * detect sharing, so we cannot defer the release of the page either.
5355 	 * Instead, do flush now.
5356 	 */
5357 	if (force_flush)
5358 		tlb_flush_mmu_tlbonly(tlb);
5359 }
5360 
5361 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5362 			  struct vm_area_struct *vma, unsigned long start,
5363 			  unsigned long end, struct page *ref_page,
5364 			  zap_flags_t zap_flags)
5365 {
5366 	hugetlb_vma_lock_write(vma);
5367 	i_mmap_lock_write(vma->vm_file->f_mapping);
5368 
5369 	/* mmu notification performed in caller */
5370 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5371 
5372 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5373 		/*
5374 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5375 		 * When the vma_lock is freed, this makes the vma ineligible
5376 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5377 		 * pmd sharing.  This is important as page tables for this
5378 		 * unmapped range will be asynchrously deleted.  If the page
5379 		 * tables are shared, there will be issues when accessed by
5380 		 * someone else.
5381 		 */
5382 		__hugetlb_vma_unlock_write_free(vma);
5383 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5384 	} else {
5385 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5386 		hugetlb_vma_unlock_write(vma);
5387 	}
5388 }
5389 
5390 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5391 			  unsigned long end, struct page *ref_page,
5392 			  zap_flags_t zap_flags)
5393 {
5394 	struct mmu_notifier_range range;
5395 	struct mmu_gather tlb;
5396 
5397 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5398 				start, end);
5399 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5400 	mmu_notifier_invalidate_range_start(&range);
5401 	tlb_gather_mmu(&tlb, vma->vm_mm);
5402 
5403 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5404 
5405 	mmu_notifier_invalidate_range_end(&range);
5406 	tlb_finish_mmu(&tlb);
5407 }
5408 
5409 /*
5410  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5411  * mapping it owns the reserve page for. The intention is to unmap the page
5412  * from other VMAs and let the children be SIGKILLed if they are faulting the
5413  * same region.
5414  */
5415 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5416 			      struct page *page, unsigned long address)
5417 {
5418 	struct hstate *h = hstate_vma(vma);
5419 	struct vm_area_struct *iter_vma;
5420 	struct address_space *mapping;
5421 	pgoff_t pgoff;
5422 
5423 	/*
5424 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5425 	 * from page cache lookup which is in HPAGE_SIZE units.
5426 	 */
5427 	address = address & huge_page_mask(h);
5428 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5429 			vma->vm_pgoff;
5430 	mapping = vma->vm_file->f_mapping;
5431 
5432 	/*
5433 	 * Take the mapping lock for the duration of the table walk. As
5434 	 * this mapping should be shared between all the VMAs,
5435 	 * __unmap_hugepage_range() is called as the lock is already held
5436 	 */
5437 	i_mmap_lock_write(mapping);
5438 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5439 		/* Do not unmap the current VMA */
5440 		if (iter_vma == vma)
5441 			continue;
5442 
5443 		/*
5444 		 * Shared VMAs have their own reserves and do not affect
5445 		 * MAP_PRIVATE accounting but it is possible that a shared
5446 		 * VMA is using the same page so check and skip such VMAs.
5447 		 */
5448 		if (iter_vma->vm_flags & VM_MAYSHARE)
5449 			continue;
5450 
5451 		/*
5452 		 * Unmap the page from other VMAs without their own reserves.
5453 		 * They get marked to be SIGKILLed if they fault in these
5454 		 * areas. This is because a future no-page fault on this VMA
5455 		 * could insert a zeroed page instead of the data existing
5456 		 * from the time of fork. This would look like data corruption
5457 		 */
5458 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5459 			unmap_hugepage_range(iter_vma, address,
5460 					     address + huge_page_size(h), page, 0);
5461 	}
5462 	i_mmap_unlock_write(mapping);
5463 }
5464 
5465 /*
5466  * hugetlb_wp() should be called with page lock of the original hugepage held.
5467  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5468  * cannot race with other handlers or page migration.
5469  * Keep the pte_same checks anyway to make transition from the mutex easier.
5470  */
5471 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5472 		       unsigned long address, pte_t *ptep, unsigned int flags,
5473 		       struct page *pagecache_page, spinlock_t *ptl)
5474 {
5475 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5476 	pte_t pte;
5477 	struct hstate *h = hstate_vma(vma);
5478 	struct page *old_page, *new_page;
5479 	int outside_reserve = 0;
5480 	vm_fault_t ret = 0;
5481 	unsigned long haddr = address & huge_page_mask(h);
5482 	struct mmu_notifier_range range;
5483 
5484 	/*
5485 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5486 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5487 	 */
5488 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5489 		return VM_FAULT_SIGSEGV;
5490 
5491 	/* Let's take out MAP_SHARED mappings first. */
5492 	if (vma->vm_flags & VM_MAYSHARE) {
5493 		set_huge_ptep_writable(vma, haddr, ptep);
5494 		return 0;
5495 	}
5496 
5497 	pte = huge_ptep_get(ptep);
5498 	old_page = pte_page(pte);
5499 
5500 	delayacct_wpcopy_start();
5501 
5502 retry_avoidcopy:
5503 	/*
5504 	 * If no-one else is actually using this page, we're the exclusive
5505 	 * owner and can reuse this page.
5506 	 */
5507 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5508 		if (!PageAnonExclusive(old_page))
5509 			page_move_anon_rmap(old_page, vma);
5510 		if (likely(!unshare))
5511 			set_huge_ptep_writable(vma, haddr, ptep);
5512 
5513 		delayacct_wpcopy_end();
5514 		return 0;
5515 	}
5516 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5517 		       old_page);
5518 
5519 	/*
5520 	 * If the process that created a MAP_PRIVATE mapping is about to
5521 	 * perform a COW due to a shared page count, attempt to satisfy
5522 	 * the allocation without using the existing reserves. The pagecache
5523 	 * page is used to determine if the reserve at this address was
5524 	 * consumed or not. If reserves were used, a partial faulted mapping
5525 	 * at the time of fork() could consume its reserves on COW instead
5526 	 * of the full address range.
5527 	 */
5528 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5529 			old_page != pagecache_page)
5530 		outside_reserve = 1;
5531 
5532 	get_page(old_page);
5533 
5534 	/*
5535 	 * Drop page table lock as buddy allocator may be called. It will
5536 	 * be acquired again before returning to the caller, as expected.
5537 	 */
5538 	spin_unlock(ptl);
5539 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5540 
5541 	if (IS_ERR(new_page)) {
5542 		/*
5543 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5544 		 * it is due to references held by a child and an insufficient
5545 		 * huge page pool. To guarantee the original mappers
5546 		 * reliability, unmap the page from child processes. The child
5547 		 * may get SIGKILLed if it later faults.
5548 		 */
5549 		if (outside_reserve) {
5550 			struct address_space *mapping = vma->vm_file->f_mapping;
5551 			pgoff_t idx;
5552 			u32 hash;
5553 
5554 			put_page(old_page);
5555 			/*
5556 			 * Drop hugetlb_fault_mutex and vma_lock before
5557 			 * unmapping.  unmapping needs to hold vma_lock
5558 			 * in write mode.  Dropping vma_lock in read mode
5559 			 * here is OK as COW mappings do not interact with
5560 			 * PMD sharing.
5561 			 *
5562 			 * Reacquire both after unmap operation.
5563 			 */
5564 			idx = vma_hugecache_offset(h, vma, haddr);
5565 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5566 			hugetlb_vma_unlock_read(vma);
5567 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5568 
5569 			unmap_ref_private(mm, vma, old_page, haddr);
5570 
5571 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5572 			hugetlb_vma_lock_read(vma);
5573 			spin_lock(ptl);
5574 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5575 			if (likely(ptep &&
5576 				   pte_same(huge_ptep_get(ptep), pte)))
5577 				goto retry_avoidcopy;
5578 			/*
5579 			 * race occurs while re-acquiring page table
5580 			 * lock, and our job is done.
5581 			 */
5582 			delayacct_wpcopy_end();
5583 			return 0;
5584 		}
5585 
5586 		ret = vmf_error(PTR_ERR(new_page));
5587 		goto out_release_old;
5588 	}
5589 
5590 	/*
5591 	 * When the original hugepage is shared one, it does not have
5592 	 * anon_vma prepared.
5593 	 */
5594 	if (unlikely(anon_vma_prepare(vma))) {
5595 		ret = VM_FAULT_OOM;
5596 		goto out_release_all;
5597 	}
5598 
5599 	copy_user_huge_page(new_page, old_page, address, vma,
5600 			    pages_per_huge_page(h));
5601 	__SetPageUptodate(new_page);
5602 
5603 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5604 				haddr + huge_page_size(h));
5605 	mmu_notifier_invalidate_range_start(&range);
5606 
5607 	/*
5608 	 * Retake the page table lock to check for racing updates
5609 	 * before the page tables are altered
5610 	 */
5611 	spin_lock(ptl);
5612 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5613 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5614 		/* Break COW or unshare */
5615 		huge_ptep_clear_flush(vma, haddr, ptep);
5616 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5617 		page_remove_rmap(old_page, vma, true);
5618 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5619 		set_huge_pte_at(mm, haddr, ptep,
5620 				make_huge_pte(vma, new_page, !unshare));
5621 		SetHPageMigratable(new_page);
5622 		/* Make the old page be freed below */
5623 		new_page = old_page;
5624 	}
5625 	spin_unlock(ptl);
5626 	mmu_notifier_invalidate_range_end(&range);
5627 out_release_all:
5628 	/*
5629 	 * No restore in case of successful pagetable update (Break COW or
5630 	 * unshare)
5631 	 */
5632 	if (new_page != old_page)
5633 		restore_reserve_on_error(h, vma, haddr, new_page);
5634 	put_page(new_page);
5635 out_release_old:
5636 	put_page(old_page);
5637 
5638 	spin_lock(ptl); /* Caller expects lock to be held */
5639 
5640 	delayacct_wpcopy_end();
5641 	return ret;
5642 }
5643 
5644 /*
5645  * Return whether there is a pagecache page to back given address within VMA.
5646  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5647  */
5648 static bool hugetlbfs_pagecache_present(struct hstate *h,
5649 			struct vm_area_struct *vma, unsigned long address)
5650 {
5651 	struct address_space *mapping;
5652 	pgoff_t idx;
5653 	struct page *page;
5654 
5655 	mapping = vma->vm_file->f_mapping;
5656 	idx = vma_hugecache_offset(h, vma, address);
5657 
5658 	page = find_get_page(mapping, idx);
5659 	if (page)
5660 		put_page(page);
5661 	return page != NULL;
5662 }
5663 
5664 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5665 			   pgoff_t idx)
5666 {
5667 	struct folio *folio = page_folio(page);
5668 	struct inode *inode = mapping->host;
5669 	struct hstate *h = hstate_inode(inode);
5670 	int err;
5671 
5672 	__folio_set_locked(folio);
5673 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5674 
5675 	if (unlikely(err)) {
5676 		__folio_clear_locked(folio);
5677 		return err;
5678 	}
5679 	ClearHPageRestoreReserve(page);
5680 
5681 	/*
5682 	 * mark folio dirty so that it will not be removed from cache/file
5683 	 * by non-hugetlbfs specific code paths.
5684 	 */
5685 	folio_mark_dirty(folio);
5686 
5687 	spin_lock(&inode->i_lock);
5688 	inode->i_blocks += blocks_per_huge_page(h);
5689 	spin_unlock(&inode->i_lock);
5690 	return 0;
5691 }
5692 
5693 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5694 						  struct address_space *mapping,
5695 						  pgoff_t idx,
5696 						  unsigned int flags,
5697 						  unsigned long haddr,
5698 						  unsigned long addr,
5699 						  unsigned long reason)
5700 {
5701 	u32 hash;
5702 	struct vm_fault vmf = {
5703 		.vma = vma,
5704 		.address = haddr,
5705 		.real_address = addr,
5706 		.flags = flags,
5707 
5708 		/*
5709 		 * Hard to debug if it ends up being
5710 		 * used by a callee that assumes
5711 		 * something about the other
5712 		 * uninitialized fields... same as in
5713 		 * memory.c
5714 		 */
5715 	};
5716 
5717 	/*
5718 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5719 	 * userfault. Also mmap_lock could be dropped due to handling
5720 	 * userfault, any vma operation should be careful from here.
5721 	 */
5722 	hugetlb_vma_unlock_read(vma);
5723 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5724 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5725 	return handle_userfault(&vmf, reason);
5726 }
5727 
5728 /*
5729  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5730  * false if pte changed or is changing.
5731  */
5732 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5733 			       pte_t *ptep, pte_t old_pte)
5734 {
5735 	spinlock_t *ptl;
5736 	bool same;
5737 
5738 	ptl = huge_pte_lock(h, mm, ptep);
5739 	same = pte_same(huge_ptep_get(ptep), old_pte);
5740 	spin_unlock(ptl);
5741 
5742 	return same;
5743 }
5744 
5745 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5746 			struct vm_area_struct *vma,
5747 			struct address_space *mapping, pgoff_t idx,
5748 			unsigned long address, pte_t *ptep,
5749 			pte_t old_pte, unsigned int flags)
5750 {
5751 	struct hstate *h = hstate_vma(vma);
5752 	vm_fault_t ret = VM_FAULT_SIGBUS;
5753 	int anon_rmap = 0;
5754 	unsigned long size;
5755 	struct page *page;
5756 	pte_t new_pte;
5757 	spinlock_t *ptl;
5758 	unsigned long haddr = address & huge_page_mask(h);
5759 	bool new_page, new_pagecache_page = false;
5760 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5761 
5762 	/*
5763 	 * Currently, we are forced to kill the process in the event the
5764 	 * original mapper has unmapped pages from the child due to a failed
5765 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5766 	 * be obvious.
5767 	 */
5768 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5769 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5770 			   current->pid);
5771 		goto out;
5772 	}
5773 
5774 	/*
5775 	 * Use page lock to guard against racing truncation
5776 	 * before we get page_table_lock.
5777 	 */
5778 	new_page = false;
5779 	page = find_lock_page(mapping, idx);
5780 	if (!page) {
5781 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5782 		if (idx >= size)
5783 			goto out;
5784 		/* Check for page in userfault range */
5785 		if (userfaultfd_missing(vma)) {
5786 			/*
5787 			 * Since hugetlb_no_page() was examining pte
5788 			 * without pgtable lock, we need to re-test under
5789 			 * lock because the pte may not be stable and could
5790 			 * have changed from under us.  Try to detect
5791 			 * either changed or during-changing ptes and retry
5792 			 * properly when needed.
5793 			 *
5794 			 * Note that userfaultfd is actually fine with
5795 			 * false positives (e.g. caused by pte changed),
5796 			 * but not wrong logical events (e.g. caused by
5797 			 * reading a pte during changing).  The latter can
5798 			 * confuse the userspace, so the strictness is very
5799 			 * much preferred.  E.g., MISSING event should
5800 			 * never happen on the page after UFFDIO_COPY has
5801 			 * correctly installed the page and returned.
5802 			 */
5803 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5804 				ret = 0;
5805 				goto out;
5806 			}
5807 
5808 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5809 							haddr, address,
5810 							VM_UFFD_MISSING);
5811 		}
5812 
5813 		page = alloc_huge_page(vma, haddr, 0);
5814 		if (IS_ERR(page)) {
5815 			/*
5816 			 * Returning error will result in faulting task being
5817 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5818 			 * tasks from racing to fault in the same page which
5819 			 * could result in false unable to allocate errors.
5820 			 * Page migration does not take the fault mutex, but
5821 			 * does a clear then write of pte's under page table
5822 			 * lock.  Page fault code could race with migration,
5823 			 * notice the clear pte and try to allocate a page
5824 			 * here.  Before returning error, get ptl and make
5825 			 * sure there really is no pte entry.
5826 			 */
5827 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5828 				ret = vmf_error(PTR_ERR(page));
5829 			else
5830 				ret = 0;
5831 			goto out;
5832 		}
5833 		clear_huge_page(page, address, pages_per_huge_page(h));
5834 		__SetPageUptodate(page);
5835 		new_page = true;
5836 
5837 		if (vma->vm_flags & VM_MAYSHARE) {
5838 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5839 			if (err) {
5840 				/*
5841 				 * err can't be -EEXIST which implies someone
5842 				 * else consumed the reservation since hugetlb
5843 				 * fault mutex is held when add a hugetlb page
5844 				 * to the page cache. So it's safe to call
5845 				 * restore_reserve_on_error() here.
5846 				 */
5847 				restore_reserve_on_error(h, vma, haddr, page);
5848 				put_page(page);
5849 				goto out;
5850 			}
5851 			new_pagecache_page = true;
5852 		} else {
5853 			lock_page(page);
5854 			if (unlikely(anon_vma_prepare(vma))) {
5855 				ret = VM_FAULT_OOM;
5856 				goto backout_unlocked;
5857 			}
5858 			anon_rmap = 1;
5859 		}
5860 	} else {
5861 		/*
5862 		 * If memory error occurs between mmap() and fault, some process
5863 		 * don't have hwpoisoned swap entry for errored virtual address.
5864 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5865 		 */
5866 		if (unlikely(PageHWPoison(page))) {
5867 			ret = VM_FAULT_HWPOISON_LARGE |
5868 				VM_FAULT_SET_HINDEX(hstate_index(h));
5869 			goto backout_unlocked;
5870 		}
5871 
5872 		/* Check for page in userfault range. */
5873 		if (userfaultfd_minor(vma)) {
5874 			unlock_page(page);
5875 			put_page(page);
5876 			/* See comment in userfaultfd_missing() block above */
5877 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5878 				ret = 0;
5879 				goto out;
5880 			}
5881 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5882 							haddr, address,
5883 							VM_UFFD_MINOR);
5884 		}
5885 	}
5886 
5887 	/*
5888 	 * If we are going to COW a private mapping later, we examine the
5889 	 * pending reservations for this page now. This will ensure that
5890 	 * any allocations necessary to record that reservation occur outside
5891 	 * the spinlock.
5892 	 */
5893 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5894 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5895 			ret = VM_FAULT_OOM;
5896 			goto backout_unlocked;
5897 		}
5898 		/* Just decrements count, does not deallocate */
5899 		vma_end_reservation(h, vma, haddr);
5900 	}
5901 
5902 	ptl = huge_pte_lock(h, mm, ptep);
5903 	ret = 0;
5904 	/* If pte changed from under us, retry */
5905 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5906 		goto backout;
5907 
5908 	if (anon_rmap)
5909 		hugepage_add_new_anon_rmap(page, vma, haddr);
5910 	else
5911 		page_dup_file_rmap(page, true);
5912 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5913 				&& (vma->vm_flags & VM_SHARED)));
5914 	/*
5915 	 * If this pte was previously wr-protected, keep it wr-protected even
5916 	 * if populated.
5917 	 */
5918 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5919 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5920 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5921 
5922 	hugetlb_count_add(pages_per_huge_page(h), mm);
5923 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5924 		/* Optimization, do the COW without a second fault */
5925 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5926 	}
5927 
5928 	spin_unlock(ptl);
5929 
5930 	/*
5931 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5932 	 * found in the pagecache may not have HPageMigratableset if they have
5933 	 * been isolated for migration.
5934 	 */
5935 	if (new_page)
5936 		SetHPageMigratable(page);
5937 
5938 	unlock_page(page);
5939 out:
5940 	hugetlb_vma_unlock_read(vma);
5941 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5942 	return ret;
5943 
5944 backout:
5945 	spin_unlock(ptl);
5946 backout_unlocked:
5947 	if (new_page && !new_pagecache_page)
5948 		restore_reserve_on_error(h, vma, haddr, page);
5949 
5950 	unlock_page(page);
5951 	put_page(page);
5952 	goto out;
5953 }
5954 
5955 #ifdef CONFIG_SMP
5956 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5957 {
5958 	unsigned long key[2];
5959 	u32 hash;
5960 
5961 	key[0] = (unsigned long) mapping;
5962 	key[1] = idx;
5963 
5964 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5965 
5966 	return hash & (num_fault_mutexes - 1);
5967 }
5968 #else
5969 /*
5970  * For uniprocessor systems we always use a single mutex, so just
5971  * return 0 and avoid the hashing overhead.
5972  */
5973 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5974 {
5975 	return 0;
5976 }
5977 #endif
5978 
5979 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5980 			unsigned long address, unsigned int flags)
5981 {
5982 	pte_t *ptep, entry;
5983 	spinlock_t *ptl;
5984 	vm_fault_t ret;
5985 	u32 hash;
5986 	pgoff_t idx;
5987 	struct page *page = NULL;
5988 	struct page *pagecache_page = NULL;
5989 	struct hstate *h = hstate_vma(vma);
5990 	struct address_space *mapping;
5991 	int need_wait_lock = 0;
5992 	unsigned long haddr = address & huge_page_mask(h);
5993 
5994 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5995 	if (ptep) {
5996 		/*
5997 		 * Since we hold no locks, ptep could be stale.  That is
5998 		 * OK as we are only making decisions based on content and
5999 		 * not actually modifying content here.
6000 		 */
6001 		entry = huge_ptep_get(ptep);
6002 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6003 			migration_entry_wait_huge(vma, ptep);
6004 			return 0;
6005 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6006 			return VM_FAULT_HWPOISON_LARGE |
6007 				VM_FAULT_SET_HINDEX(hstate_index(h));
6008 	}
6009 
6010 	/*
6011 	 * Serialize hugepage allocation and instantiation, so that we don't
6012 	 * get spurious allocation failures if two CPUs race to instantiate
6013 	 * the same page in the page cache.
6014 	 */
6015 	mapping = vma->vm_file->f_mapping;
6016 	idx = vma_hugecache_offset(h, vma, haddr);
6017 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6018 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6019 
6020 	/*
6021 	 * Acquire vma lock before calling huge_pte_alloc and hold
6022 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6023 	 * being called elsewhere and making the ptep no longer valid.
6024 	 *
6025 	 * ptep could have already be assigned via huge_pte_offset.  That
6026 	 * is OK, as huge_pte_alloc will return the same value unless
6027 	 * something has changed.
6028 	 */
6029 	hugetlb_vma_lock_read(vma);
6030 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6031 	if (!ptep) {
6032 		hugetlb_vma_unlock_read(vma);
6033 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6034 		return VM_FAULT_OOM;
6035 	}
6036 
6037 	entry = huge_ptep_get(ptep);
6038 	/* PTE markers should be handled the same way as none pte */
6039 	if (huge_pte_none_mostly(entry))
6040 		/*
6041 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6042 		 * mutex internally, which make us return immediately.
6043 		 */
6044 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6045 				      entry, flags);
6046 
6047 	ret = 0;
6048 
6049 	/*
6050 	 * entry could be a migration/hwpoison entry at this point, so this
6051 	 * check prevents the kernel from going below assuming that we have
6052 	 * an active hugepage in pagecache. This goto expects the 2nd page
6053 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6054 	 * properly handle it.
6055 	 */
6056 	if (!pte_present(entry))
6057 		goto out_mutex;
6058 
6059 	/*
6060 	 * If we are going to COW/unshare the mapping later, we examine the
6061 	 * pending reservations for this page now. This will ensure that any
6062 	 * allocations necessary to record that reservation occur outside the
6063 	 * spinlock. Also lookup the pagecache page now as it is used to
6064 	 * determine if a reservation has been consumed.
6065 	 */
6066 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6067 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6068 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6069 			ret = VM_FAULT_OOM;
6070 			goto out_mutex;
6071 		}
6072 		/* Just decrements count, does not deallocate */
6073 		vma_end_reservation(h, vma, haddr);
6074 
6075 		pagecache_page = find_lock_page(mapping, idx);
6076 	}
6077 
6078 	ptl = huge_pte_lock(h, mm, ptep);
6079 
6080 	/* Check for a racing update before calling hugetlb_wp() */
6081 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6082 		goto out_ptl;
6083 
6084 	/* Handle userfault-wp first, before trying to lock more pages */
6085 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6086 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6087 		struct vm_fault vmf = {
6088 			.vma = vma,
6089 			.address = haddr,
6090 			.real_address = address,
6091 			.flags = flags,
6092 		};
6093 
6094 		spin_unlock(ptl);
6095 		if (pagecache_page) {
6096 			unlock_page(pagecache_page);
6097 			put_page(pagecache_page);
6098 		}
6099 		hugetlb_vma_unlock_read(vma);
6100 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6101 		return handle_userfault(&vmf, VM_UFFD_WP);
6102 	}
6103 
6104 	/*
6105 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6106 	 * pagecache_page, so here we need take the former one
6107 	 * when page != pagecache_page or !pagecache_page.
6108 	 */
6109 	page = pte_page(entry);
6110 	if (page != pagecache_page)
6111 		if (!trylock_page(page)) {
6112 			need_wait_lock = 1;
6113 			goto out_ptl;
6114 		}
6115 
6116 	get_page(page);
6117 
6118 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6119 		if (!huge_pte_write(entry)) {
6120 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6121 					 pagecache_page, ptl);
6122 			goto out_put_page;
6123 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6124 			entry = huge_pte_mkdirty(entry);
6125 		}
6126 	}
6127 	entry = pte_mkyoung(entry);
6128 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6129 						flags & FAULT_FLAG_WRITE))
6130 		update_mmu_cache(vma, haddr, ptep);
6131 out_put_page:
6132 	if (page != pagecache_page)
6133 		unlock_page(page);
6134 	put_page(page);
6135 out_ptl:
6136 	spin_unlock(ptl);
6137 
6138 	if (pagecache_page) {
6139 		unlock_page(pagecache_page);
6140 		put_page(pagecache_page);
6141 	}
6142 out_mutex:
6143 	hugetlb_vma_unlock_read(vma);
6144 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6145 	/*
6146 	 * Generally it's safe to hold refcount during waiting page lock. But
6147 	 * here we just wait to defer the next page fault to avoid busy loop and
6148 	 * the page is not used after unlocked before returning from the current
6149 	 * page fault. So we are safe from accessing freed page, even if we wait
6150 	 * here without taking refcount.
6151 	 */
6152 	if (need_wait_lock)
6153 		wait_on_page_locked(page);
6154 	return ret;
6155 }
6156 
6157 #ifdef CONFIG_USERFAULTFD
6158 /*
6159  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6160  * modifications for huge pages.
6161  */
6162 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6163 			    pte_t *dst_pte,
6164 			    struct vm_area_struct *dst_vma,
6165 			    unsigned long dst_addr,
6166 			    unsigned long src_addr,
6167 			    enum mcopy_atomic_mode mode,
6168 			    struct page **pagep,
6169 			    bool wp_copy)
6170 {
6171 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6172 	struct hstate *h = hstate_vma(dst_vma);
6173 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6174 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6175 	unsigned long size;
6176 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6177 	pte_t _dst_pte;
6178 	spinlock_t *ptl;
6179 	int ret = -ENOMEM;
6180 	struct page *page;
6181 	int writable;
6182 	bool page_in_pagecache = false;
6183 
6184 	if (is_continue) {
6185 		ret = -EFAULT;
6186 		page = find_lock_page(mapping, idx);
6187 		if (!page)
6188 			goto out;
6189 		page_in_pagecache = true;
6190 	} else if (!*pagep) {
6191 		/* If a page already exists, then it's UFFDIO_COPY for
6192 		 * a non-missing case. Return -EEXIST.
6193 		 */
6194 		if (vm_shared &&
6195 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6196 			ret = -EEXIST;
6197 			goto out;
6198 		}
6199 
6200 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6201 		if (IS_ERR(page)) {
6202 			ret = -ENOMEM;
6203 			goto out;
6204 		}
6205 
6206 		ret = copy_huge_page_from_user(page,
6207 						(const void __user *) src_addr,
6208 						pages_per_huge_page(h), false);
6209 
6210 		/* fallback to copy_from_user outside mmap_lock */
6211 		if (unlikely(ret)) {
6212 			ret = -ENOENT;
6213 			/* Free the allocated page which may have
6214 			 * consumed a reservation.
6215 			 */
6216 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6217 			put_page(page);
6218 
6219 			/* Allocate a temporary page to hold the copied
6220 			 * contents.
6221 			 */
6222 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6223 			if (!page) {
6224 				ret = -ENOMEM;
6225 				goto out;
6226 			}
6227 			*pagep = page;
6228 			/* Set the outparam pagep and return to the caller to
6229 			 * copy the contents outside the lock. Don't free the
6230 			 * page.
6231 			 */
6232 			goto out;
6233 		}
6234 	} else {
6235 		if (vm_shared &&
6236 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6237 			put_page(*pagep);
6238 			ret = -EEXIST;
6239 			*pagep = NULL;
6240 			goto out;
6241 		}
6242 
6243 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6244 		if (IS_ERR(page)) {
6245 			put_page(*pagep);
6246 			ret = -ENOMEM;
6247 			*pagep = NULL;
6248 			goto out;
6249 		}
6250 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6251 				    pages_per_huge_page(h));
6252 		put_page(*pagep);
6253 		*pagep = NULL;
6254 	}
6255 
6256 	/*
6257 	 * The memory barrier inside __SetPageUptodate makes sure that
6258 	 * preceding stores to the page contents become visible before
6259 	 * the set_pte_at() write.
6260 	 */
6261 	__SetPageUptodate(page);
6262 
6263 	/* Add shared, newly allocated pages to the page cache. */
6264 	if (vm_shared && !is_continue) {
6265 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6266 		ret = -EFAULT;
6267 		if (idx >= size)
6268 			goto out_release_nounlock;
6269 
6270 		/*
6271 		 * Serialization between remove_inode_hugepages() and
6272 		 * hugetlb_add_to_page_cache() below happens through the
6273 		 * hugetlb_fault_mutex_table that here must be hold by
6274 		 * the caller.
6275 		 */
6276 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6277 		if (ret)
6278 			goto out_release_nounlock;
6279 		page_in_pagecache = true;
6280 	}
6281 
6282 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6283 
6284 	ret = -EIO;
6285 	if (PageHWPoison(page))
6286 		goto out_release_unlock;
6287 
6288 	/*
6289 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6290 	 * registered, we firstly wr-protect a none pte which has no page cache
6291 	 * page backing it, then access the page.
6292 	 */
6293 	ret = -EEXIST;
6294 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6295 		goto out_release_unlock;
6296 
6297 	if (page_in_pagecache)
6298 		page_dup_file_rmap(page, true);
6299 	else
6300 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6301 
6302 	/*
6303 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6304 	 * with wp flag set, don't set pte write bit.
6305 	 */
6306 	if (wp_copy || (is_continue && !vm_shared))
6307 		writable = 0;
6308 	else
6309 		writable = dst_vma->vm_flags & VM_WRITE;
6310 
6311 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6312 	/*
6313 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6314 	 * extremely important for hugetlbfs for now since swapping is not
6315 	 * supported, but we should still be clear in that this page cannot be
6316 	 * thrown away at will, even if write bit not set.
6317 	 */
6318 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6319 	_dst_pte = pte_mkyoung(_dst_pte);
6320 
6321 	if (wp_copy)
6322 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6323 
6324 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6325 
6326 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6327 
6328 	/* No need to invalidate - it was non-present before */
6329 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6330 
6331 	spin_unlock(ptl);
6332 	if (!is_continue)
6333 		SetHPageMigratable(page);
6334 	if (vm_shared || is_continue)
6335 		unlock_page(page);
6336 	ret = 0;
6337 out:
6338 	return ret;
6339 out_release_unlock:
6340 	spin_unlock(ptl);
6341 	if (vm_shared || is_continue)
6342 		unlock_page(page);
6343 out_release_nounlock:
6344 	if (!page_in_pagecache)
6345 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6346 	put_page(page);
6347 	goto out;
6348 }
6349 #endif /* CONFIG_USERFAULTFD */
6350 
6351 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6352 				 int refs, struct page **pages,
6353 				 struct vm_area_struct **vmas)
6354 {
6355 	int nr;
6356 
6357 	for (nr = 0; nr < refs; nr++) {
6358 		if (likely(pages))
6359 			pages[nr] = nth_page(page, nr);
6360 		if (vmas)
6361 			vmas[nr] = vma;
6362 	}
6363 }
6364 
6365 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6366 					       unsigned int flags, pte_t *pte,
6367 					       bool *unshare)
6368 {
6369 	pte_t pteval = huge_ptep_get(pte);
6370 
6371 	*unshare = false;
6372 	if (is_swap_pte(pteval))
6373 		return true;
6374 	if (huge_pte_write(pteval))
6375 		return false;
6376 	if (flags & FOLL_WRITE)
6377 		return true;
6378 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6379 		*unshare = true;
6380 		return true;
6381 	}
6382 	return false;
6383 }
6384 
6385 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6386 				unsigned long address, unsigned int flags)
6387 {
6388 	struct hstate *h = hstate_vma(vma);
6389 	struct mm_struct *mm = vma->vm_mm;
6390 	unsigned long haddr = address & huge_page_mask(h);
6391 	struct page *page = NULL;
6392 	spinlock_t *ptl;
6393 	pte_t *pte, entry;
6394 
6395 	/*
6396 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6397 	 * follow_hugetlb_page().
6398 	 */
6399 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6400 		return NULL;
6401 
6402 retry:
6403 	pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6404 	if (!pte)
6405 		return NULL;
6406 
6407 	ptl = huge_pte_lock(h, mm, pte);
6408 	entry = huge_ptep_get(pte);
6409 	if (pte_present(entry)) {
6410 		page = pte_page(entry) +
6411 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6412 		/*
6413 		 * Note that page may be a sub-page, and with vmemmap
6414 		 * optimizations the page struct may be read only.
6415 		 * try_grab_page() will increase the ref count on the
6416 		 * head page, so this will be OK.
6417 		 *
6418 		 * try_grab_page() should always be able to get the page here,
6419 		 * because we hold the ptl lock and have verified pte_present().
6420 		 */
6421 		if (try_grab_page(page, flags)) {
6422 			page = NULL;
6423 			goto out;
6424 		}
6425 	} else {
6426 		if (is_hugetlb_entry_migration(entry)) {
6427 			spin_unlock(ptl);
6428 			__migration_entry_wait_huge(pte, ptl);
6429 			goto retry;
6430 		}
6431 		/*
6432 		 * hwpoisoned entry is treated as no_page_table in
6433 		 * follow_page_mask().
6434 		 */
6435 	}
6436 out:
6437 	spin_unlock(ptl);
6438 	return page;
6439 }
6440 
6441 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6442 			 struct page **pages, struct vm_area_struct **vmas,
6443 			 unsigned long *position, unsigned long *nr_pages,
6444 			 long i, unsigned int flags, int *locked)
6445 {
6446 	unsigned long pfn_offset;
6447 	unsigned long vaddr = *position;
6448 	unsigned long remainder = *nr_pages;
6449 	struct hstate *h = hstate_vma(vma);
6450 	int err = -EFAULT, refs;
6451 
6452 	while (vaddr < vma->vm_end && remainder) {
6453 		pte_t *pte;
6454 		spinlock_t *ptl = NULL;
6455 		bool unshare = false;
6456 		int absent;
6457 		struct page *page;
6458 
6459 		/*
6460 		 * If we have a pending SIGKILL, don't keep faulting pages and
6461 		 * potentially allocating memory.
6462 		 */
6463 		if (fatal_signal_pending(current)) {
6464 			remainder = 0;
6465 			break;
6466 		}
6467 
6468 		/*
6469 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6470 		 * each hugepage.  We have to make sure we get the
6471 		 * first, for the page indexing below to work.
6472 		 *
6473 		 * Note that page table lock is not held when pte is null.
6474 		 */
6475 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6476 				      huge_page_size(h));
6477 		if (pte)
6478 			ptl = huge_pte_lock(h, mm, pte);
6479 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6480 
6481 		/*
6482 		 * When coredumping, it suits get_dump_page if we just return
6483 		 * an error where there's an empty slot with no huge pagecache
6484 		 * to back it.  This way, we avoid allocating a hugepage, and
6485 		 * the sparse dumpfile avoids allocating disk blocks, but its
6486 		 * huge holes still show up with zeroes where they need to be.
6487 		 */
6488 		if (absent && (flags & FOLL_DUMP) &&
6489 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6490 			if (pte)
6491 				spin_unlock(ptl);
6492 			remainder = 0;
6493 			break;
6494 		}
6495 
6496 		/*
6497 		 * We need call hugetlb_fault for both hugepages under migration
6498 		 * (in which case hugetlb_fault waits for the migration,) and
6499 		 * hwpoisoned hugepages (in which case we need to prevent the
6500 		 * caller from accessing to them.) In order to do this, we use
6501 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6502 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6503 		 * both cases, and because we can't follow correct pages
6504 		 * directly from any kind of swap entries.
6505 		 */
6506 		if (absent ||
6507 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6508 			vm_fault_t ret;
6509 			unsigned int fault_flags = 0;
6510 
6511 			if (pte)
6512 				spin_unlock(ptl);
6513 			if (flags & FOLL_WRITE)
6514 				fault_flags |= FAULT_FLAG_WRITE;
6515 			else if (unshare)
6516 				fault_flags |= FAULT_FLAG_UNSHARE;
6517 			if (locked) {
6518 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6519 					FAULT_FLAG_KILLABLE;
6520 				if (flags & FOLL_INTERRUPTIBLE)
6521 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6522 			}
6523 			if (flags & FOLL_NOWAIT)
6524 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6525 					FAULT_FLAG_RETRY_NOWAIT;
6526 			if (flags & FOLL_TRIED) {
6527 				/*
6528 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6529 				 * FAULT_FLAG_TRIED can co-exist
6530 				 */
6531 				fault_flags |= FAULT_FLAG_TRIED;
6532 			}
6533 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6534 			if (ret & VM_FAULT_ERROR) {
6535 				err = vm_fault_to_errno(ret, flags);
6536 				remainder = 0;
6537 				break;
6538 			}
6539 			if (ret & VM_FAULT_RETRY) {
6540 				if (locked &&
6541 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6542 					*locked = 0;
6543 				*nr_pages = 0;
6544 				/*
6545 				 * VM_FAULT_RETRY must not return an
6546 				 * error, it will return zero
6547 				 * instead.
6548 				 *
6549 				 * No need to update "position" as the
6550 				 * caller will not check it after
6551 				 * *nr_pages is set to 0.
6552 				 */
6553 				return i;
6554 			}
6555 			continue;
6556 		}
6557 
6558 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6559 		page = pte_page(huge_ptep_get(pte));
6560 
6561 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6562 			       !PageAnonExclusive(page), page);
6563 
6564 		/*
6565 		 * If subpage information not requested, update counters
6566 		 * and skip the same_page loop below.
6567 		 */
6568 		if (!pages && !vmas && !pfn_offset &&
6569 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6570 		    (remainder >= pages_per_huge_page(h))) {
6571 			vaddr += huge_page_size(h);
6572 			remainder -= pages_per_huge_page(h);
6573 			i += pages_per_huge_page(h);
6574 			spin_unlock(ptl);
6575 			continue;
6576 		}
6577 
6578 		/* vaddr may not be aligned to PAGE_SIZE */
6579 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6580 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6581 
6582 		if (pages || vmas)
6583 			record_subpages_vmas(nth_page(page, pfn_offset),
6584 					     vma, refs,
6585 					     likely(pages) ? pages + i : NULL,
6586 					     vmas ? vmas + i : NULL);
6587 
6588 		if (pages) {
6589 			/*
6590 			 * try_grab_folio() should always succeed here,
6591 			 * because: a) we hold the ptl lock, and b) we've just
6592 			 * checked that the huge page is present in the page
6593 			 * tables. If the huge page is present, then the tail
6594 			 * pages must also be present. The ptl prevents the
6595 			 * head page and tail pages from being rearranged in
6596 			 * any way. As this is hugetlb, the pages will never
6597 			 * be p2pdma or not longterm pinable. So this page
6598 			 * must be available at this point, unless the page
6599 			 * refcount overflowed:
6600 			 */
6601 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6602 							 flags))) {
6603 				spin_unlock(ptl);
6604 				remainder = 0;
6605 				err = -ENOMEM;
6606 				break;
6607 			}
6608 		}
6609 
6610 		vaddr += (refs << PAGE_SHIFT);
6611 		remainder -= refs;
6612 		i += refs;
6613 
6614 		spin_unlock(ptl);
6615 	}
6616 	*nr_pages = remainder;
6617 	/*
6618 	 * setting position is actually required only if remainder is
6619 	 * not zero but it's faster not to add a "if (remainder)"
6620 	 * branch.
6621 	 */
6622 	*position = vaddr;
6623 
6624 	return i ? i : err;
6625 }
6626 
6627 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6628 		unsigned long address, unsigned long end,
6629 		pgprot_t newprot, unsigned long cp_flags)
6630 {
6631 	struct mm_struct *mm = vma->vm_mm;
6632 	unsigned long start = address;
6633 	pte_t *ptep;
6634 	pte_t pte;
6635 	struct hstate *h = hstate_vma(vma);
6636 	unsigned long pages = 0, psize = huge_page_size(h);
6637 	bool shared_pmd = false;
6638 	struct mmu_notifier_range range;
6639 	unsigned long last_addr_mask;
6640 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6641 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6642 
6643 	/*
6644 	 * In the case of shared PMDs, the area to flush could be beyond
6645 	 * start/end.  Set range.start/range.end to cover the maximum possible
6646 	 * range if PMD sharing is possible.
6647 	 */
6648 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6649 				0, vma, mm, start, end);
6650 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6651 
6652 	BUG_ON(address >= end);
6653 	flush_cache_range(vma, range.start, range.end);
6654 
6655 	mmu_notifier_invalidate_range_start(&range);
6656 	hugetlb_vma_lock_write(vma);
6657 	i_mmap_lock_write(vma->vm_file->f_mapping);
6658 	last_addr_mask = hugetlb_mask_last_page(h);
6659 	for (; address < end; address += psize) {
6660 		spinlock_t *ptl;
6661 		ptep = huge_pte_offset(mm, address, psize);
6662 		if (!ptep) {
6663 			if (!uffd_wp) {
6664 				address |= last_addr_mask;
6665 				continue;
6666 			}
6667 			/*
6668 			 * Userfaultfd wr-protect requires pgtable
6669 			 * pre-allocations to install pte markers.
6670 			 */
6671 			ptep = huge_pte_alloc(mm, vma, address, psize);
6672 			if (!ptep)
6673 				break;
6674 		}
6675 		ptl = huge_pte_lock(h, mm, ptep);
6676 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6677 			/*
6678 			 * When uffd-wp is enabled on the vma, unshare
6679 			 * shouldn't happen at all.  Warn about it if it
6680 			 * happened due to some reason.
6681 			 */
6682 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6683 			pages++;
6684 			spin_unlock(ptl);
6685 			shared_pmd = true;
6686 			address |= last_addr_mask;
6687 			continue;
6688 		}
6689 		pte = huge_ptep_get(ptep);
6690 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6691 			/* Nothing to do. */
6692 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6693 			swp_entry_t entry = pte_to_swp_entry(pte);
6694 			struct page *page = pfn_swap_entry_to_page(entry);
6695 			pte_t newpte = pte;
6696 
6697 			if (is_writable_migration_entry(entry)) {
6698 				if (PageAnon(page))
6699 					entry = make_readable_exclusive_migration_entry(
6700 								swp_offset(entry));
6701 				else
6702 					entry = make_readable_migration_entry(
6703 								swp_offset(entry));
6704 				newpte = swp_entry_to_pte(entry);
6705 				pages++;
6706 			}
6707 
6708 			if (uffd_wp)
6709 				newpte = pte_swp_mkuffd_wp(newpte);
6710 			else if (uffd_wp_resolve)
6711 				newpte = pte_swp_clear_uffd_wp(newpte);
6712 			if (!pte_same(pte, newpte))
6713 				set_huge_pte_at(mm, address, ptep, newpte);
6714 		} else if (unlikely(is_pte_marker(pte))) {
6715 			/* No other markers apply for now. */
6716 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6717 			if (uffd_wp_resolve)
6718 				/* Safe to modify directly (non-present->none). */
6719 				huge_pte_clear(mm, address, ptep, psize);
6720 		} else if (!huge_pte_none(pte)) {
6721 			pte_t old_pte;
6722 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6723 
6724 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6725 			pte = huge_pte_modify(old_pte, newprot);
6726 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6727 			if (uffd_wp)
6728 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6729 			else if (uffd_wp_resolve)
6730 				pte = huge_pte_clear_uffd_wp(pte);
6731 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6732 			pages++;
6733 		} else {
6734 			/* None pte */
6735 			if (unlikely(uffd_wp))
6736 				/* Safe to modify directly (none->non-present). */
6737 				set_huge_pte_at(mm, address, ptep,
6738 						make_pte_marker(PTE_MARKER_UFFD_WP));
6739 		}
6740 		spin_unlock(ptl);
6741 	}
6742 	/*
6743 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6744 	 * may have cleared our pud entry and done put_page on the page table:
6745 	 * once we release i_mmap_rwsem, another task can do the final put_page
6746 	 * and that page table be reused and filled with junk.  If we actually
6747 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6748 	 */
6749 	if (shared_pmd)
6750 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6751 	else
6752 		flush_hugetlb_tlb_range(vma, start, end);
6753 	/*
6754 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6755 	 * page table protection not changing it to point to a new page.
6756 	 *
6757 	 * See Documentation/mm/mmu_notifier.rst
6758 	 */
6759 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6760 	hugetlb_vma_unlock_write(vma);
6761 	mmu_notifier_invalidate_range_end(&range);
6762 
6763 	return pages << h->order;
6764 }
6765 
6766 /* Return true if reservation was successful, false otherwise.  */
6767 bool hugetlb_reserve_pages(struct inode *inode,
6768 					long from, long to,
6769 					struct vm_area_struct *vma,
6770 					vm_flags_t vm_flags)
6771 {
6772 	long chg, add = -1;
6773 	struct hstate *h = hstate_inode(inode);
6774 	struct hugepage_subpool *spool = subpool_inode(inode);
6775 	struct resv_map *resv_map;
6776 	struct hugetlb_cgroup *h_cg = NULL;
6777 	long gbl_reserve, regions_needed = 0;
6778 
6779 	/* This should never happen */
6780 	if (from > to) {
6781 		VM_WARN(1, "%s called with a negative range\n", __func__);
6782 		return false;
6783 	}
6784 
6785 	/*
6786 	 * vma specific semaphore used for pmd sharing and fault/truncation
6787 	 * synchronization
6788 	 */
6789 	hugetlb_vma_lock_alloc(vma);
6790 
6791 	/*
6792 	 * Only apply hugepage reservation if asked. At fault time, an
6793 	 * attempt will be made for VM_NORESERVE to allocate a page
6794 	 * without using reserves
6795 	 */
6796 	if (vm_flags & VM_NORESERVE)
6797 		return true;
6798 
6799 	/*
6800 	 * Shared mappings base their reservation on the number of pages that
6801 	 * are already allocated on behalf of the file. Private mappings need
6802 	 * to reserve the full area even if read-only as mprotect() may be
6803 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6804 	 */
6805 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6806 		/*
6807 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6808 		 * called for inodes for which resv_maps were created (see
6809 		 * hugetlbfs_get_inode).
6810 		 */
6811 		resv_map = inode_resv_map(inode);
6812 
6813 		chg = region_chg(resv_map, from, to, &regions_needed);
6814 	} else {
6815 		/* Private mapping. */
6816 		resv_map = resv_map_alloc();
6817 		if (!resv_map)
6818 			goto out_err;
6819 
6820 		chg = to - from;
6821 
6822 		set_vma_resv_map(vma, resv_map);
6823 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6824 	}
6825 
6826 	if (chg < 0)
6827 		goto out_err;
6828 
6829 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6830 				chg * pages_per_huge_page(h), &h_cg) < 0)
6831 		goto out_err;
6832 
6833 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6834 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6835 		 * of the resv_map.
6836 		 */
6837 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6838 	}
6839 
6840 	/*
6841 	 * There must be enough pages in the subpool for the mapping. If
6842 	 * the subpool has a minimum size, there may be some global
6843 	 * reservations already in place (gbl_reserve).
6844 	 */
6845 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6846 	if (gbl_reserve < 0)
6847 		goto out_uncharge_cgroup;
6848 
6849 	/*
6850 	 * Check enough hugepages are available for the reservation.
6851 	 * Hand the pages back to the subpool if there are not
6852 	 */
6853 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6854 		goto out_put_pages;
6855 
6856 	/*
6857 	 * Account for the reservations made. Shared mappings record regions
6858 	 * that have reservations as they are shared by multiple VMAs.
6859 	 * When the last VMA disappears, the region map says how much
6860 	 * the reservation was and the page cache tells how much of
6861 	 * the reservation was consumed. Private mappings are per-VMA and
6862 	 * only the consumed reservations are tracked. When the VMA
6863 	 * disappears, the original reservation is the VMA size and the
6864 	 * consumed reservations are stored in the map. Hence, nothing
6865 	 * else has to be done for private mappings here
6866 	 */
6867 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6868 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6869 
6870 		if (unlikely(add < 0)) {
6871 			hugetlb_acct_memory(h, -gbl_reserve);
6872 			goto out_put_pages;
6873 		} else if (unlikely(chg > add)) {
6874 			/*
6875 			 * pages in this range were added to the reserve
6876 			 * map between region_chg and region_add.  This
6877 			 * indicates a race with alloc_huge_page.  Adjust
6878 			 * the subpool and reserve counts modified above
6879 			 * based on the difference.
6880 			 */
6881 			long rsv_adjust;
6882 
6883 			/*
6884 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6885 			 * reference to h_cg->css. See comment below for detail.
6886 			 */
6887 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6888 				hstate_index(h),
6889 				(chg - add) * pages_per_huge_page(h), h_cg);
6890 
6891 			rsv_adjust = hugepage_subpool_put_pages(spool,
6892 								chg - add);
6893 			hugetlb_acct_memory(h, -rsv_adjust);
6894 		} else if (h_cg) {
6895 			/*
6896 			 * The file_regions will hold their own reference to
6897 			 * h_cg->css. So we should release the reference held
6898 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6899 			 * done.
6900 			 */
6901 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6902 		}
6903 	}
6904 	return true;
6905 
6906 out_put_pages:
6907 	/* put back original number of pages, chg */
6908 	(void)hugepage_subpool_put_pages(spool, chg);
6909 out_uncharge_cgroup:
6910 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6911 					    chg * pages_per_huge_page(h), h_cg);
6912 out_err:
6913 	hugetlb_vma_lock_free(vma);
6914 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6915 		/* Only call region_abort if the region_chg succeeded but the
6916 		 * region_add failed or didn't run.
6917 		 */
6918 		if (chg >= 0 && add < 0)
6919 			region_abort(resv_map, from, to, regions_needed);
6920 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6921 		kref_put(&resv_map->refs, resv_map_release);
6922 	return false;
6923 }
6924 
6925 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6926 								long freed)
6927 {
6928 	struct hstate *h = hstate_inode(inode);
6929 	struct resv_map *resv_map = inode_resv_map(inode);
6930 	long chg = 0;
6931 	struct hugepage_subpool *spool = subpool_inode(inode);
6932 	long gbl_reserve;
6933 
6934 	/*
6935 	 * Since this routine can be called in the evict inode path for all
6936 	 * hugetlbfs inodes, resv_map could be NULL.
6937 	 */
6938 	if (resv_map) {
6939 		chg = region_del(resv_map, start, end);
6940 		/*
6941 		 * region_del() can fail in the rare case where a region
6942 		 * must be split and another region descriptor can not be
6943 		 * allocated.  If end == LONG_MAX, it will not fail.
6944 		 */
6945 		if (chg < 0)
6946 			return chg;
6947 	}
6948 
6949 	spin_lock(&inode->i_lock);
6950 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6951 	spin_unlock(&inode->i_lock);
6952 
6953 	/*
6954 	 * If the subpool has a minimum size, the number of global
6955 	 * reservations to be released may be adjusted.
6956 	 *
6957 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6958 	 * won't go negative.
6959 	 */
6960 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6961 	hugetlb_acct_memory(h, -gbl_reserve);
6962 
6963 	return 0;
6964 }
6965 
6966 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6967 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6968 				struct vm_area_struct *vma,
6969 				unsigned long addr, pgoff_t idx)
6970 {
6971 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6972 				svma->vm_start;
6973 	unsigned long sbase = saddr & PUD_MASK;
6974 	unsigned long s_end = sbase + PUD_SIZE;
6975 
6976 	/* Allow segments to share if only one is marked locked */
6977 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6978 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6979 
6980 	/*
6981 	 * match the virtual addresses, permission and the alignment of the
6982 	 * page table page.
6983 	 *
6984 	 * Also, vma_lock (vm_private_data) is required for sharing.
6985 	 */
6986 	if (pmd_index(addr) != pmd_index(saddr) ||
6987 	    vm_flags != svm_flags ||
6988 	    !range_in_vma(svma, sbase, s_end) ||
6989 	    !svma->vm_private_data)
6990 		return 0;
6991 
6992 	return saddr;
6993 }
6994 
6995 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6996 {
6997 	unsigned long start = addr & PUD_MASK;
6998 	unsigned long end = start + PUD_SIZE;
6999 
7000 #ifdef CONFIG_USERFAULTFD
7001 	if (uffd_disable_huge_pmd_share(vma))
7002 		return false;
7003 #endif
7004 	/*
7005 	 * check on proper vm_flags and page table alignment
7006 	 */
7007 	if (!(vma->vm_flags & VM_MAYSHARE))
7008 		return false;
7009 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7010 		return false;
7011 	if (!range_in_vma(vma, start, end))
7012 		return false;
7013 	return true;
7014 }
7015 
7016 /*
7017  * Determine if start,end range within vma could be mapped by shared pmd.
7018  * If yes, adjust start and end to cover range associated with possible
7019  * shared pmd mappings.
7020  */
7021 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7022 				unsigned long *start, unsigned long *end)
7023 {
7024 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7025 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7026 
7027 	/*
7028 	 * vma needs to span at least one aligned PUD size, and the range
7029 	 * must be at least partially within in.
7030 	 */
7031 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7032 		(*end <= v_start) || (*start >= v_end))
7033 		return;
7034 
7035 	/* Extend the range to be PUD aligned for a worst case scenario */
7036 	if (*start > v_start)
7037 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7038 
7039 	if (*end < v_end)
7040 		*end = ALIGN(*end, PUD_SIZE);
7041 }
7042 
7043 /*
7044  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7045  * and returns the corresponding pte. While this is not necessary for the
7046  * !shared pmd case because we can allocate the pmd later as well, it makes the
7047  * code much cleaner. pmd allocation is essential for the shared case because
7048  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7049  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7050  * bad pmd for sharing.
7051  */
7052 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7053 		      unsigned long addr, pud_t *pud)
7054 {
7055 	struct address_space *mapping = vma->vm_file->f_mapping;
7056 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7057 			vma->vm_pgoff;
7058 	struct vm_area_struct *svma;
7059 	unsigned long saddr;
7060 	pte_t *spte = NULL;
7061 	pte_t *pte;
7062 	spinlock_t *ptl;
7063 
7064 	i_mmap_lock_read(mapping);
7065 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7066 		if (svma == vma)
7067 			continue;
7068 
7069 		saddr = page_table_shareable(svma, vma, addr, idx);
7070 		if (saddr) {
7071 			spte = huge_pte_offset(svma->vm_mm, saddr,
7072 					       vma_mmu_pagesize(svma));
7073 			if (spte) {
7074 				get_page(virt_to_page(spte));
7075 				break;
7076 			}
7077 		}
7078 	}
7079 
7080 	if (!spte)
7081 		goto out;
7082 
7083 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7084 	if (pud_none(*pud)) {
7085 		pud_populate(mm, pud,
7086 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7087 		mm_inc_nr_pmds(mm);
7088 	} else {
7089 		put_page(virt_to_page(spte));
7090 	}
7091 	spin_unlock(ptl);
7092 out:
7093 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7094 	i_mmap_unlock_read(mapping);
7095 	return pte;
7096 }
7097 
7098 /*
7099  * unmap huge page backed by shared pte.
7100  *
7101  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7102  * indicated by page_count > 1, unmap is achieved by clearing pud and
7103  * decrementing the ref count. If count == 1, the pte page is not shared.
7104  *
7105  * Called with page table lock held.
7106  *
7107  * returns: 1 successfully unmapped a shared pte page
7108  *	    0 the underlying pte page is not shared, or it is the last user
7109  */
7110 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7111 					unsigned long addr, pte_t *ptep)
7112 {
7113 	pgd_t *pgd = pgd_offset(mm, addr);
7114 	p4d_t *p4d = p4d_offset(pgd, addr);
7115 	pud_t *pud = pud_offset(p4d, addr);
7116 
7117 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7118 	hugetlb_vma_assert_locked(vma);
7119 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7120 	if (page_count(virt_to_page(ptep)) == 1)
7121 		return 0;
7122 
7123 	pud_clear(pud);
7124 	put_page(virt_to_page(ptep));
7125 	mm_dec_nr_pmds(mm);
7126 	return 1;
7127 }
7128 
7129 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7130 
7131 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7132 		      unsigned long addr, pud_t *pud)
7133 {
7134 	return NULL;
7135 }
7136 
7137 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7138 				unsigned long addr, pte_t *ptep)
7139 {
7140 	return 0;
7141 }
7142 
7143 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7144 				unsigned long *start, unsigned long *end)
7145 {
7146 }
7147 
7148 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7149 {
7150 	return false;
7151 }
7152 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7153 
7154 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7155 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7156 			unsigned long addr, unsigned long sz)
7157 {
7158 	pgd_t *pgd;
7159 	p4d_t *p4d;
7160 	pud_t *pud;
7161 	pte_t *pte = NULL;
7162 
7163 	pgd = pgd_offset(mm, addr);
7164 	p4d = p4d_alloc(mm, pgd, addr);
7165 	if (!p4d)
7166 		return NULL;
7167 	pud = pud_alloc(mm, p4d, addr);
7168 	if (pud) {
7169 		if (sz == PUD_SIZE) {
7170 			pte = (pte_t *)pud;
7171 		} else {
7172 			BUG_ON(sz != PMD_SIZE);
7173 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7174 				pte = huge_pmd_share(mm, vma, addr, pud);
7175 			else
7176 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7177 		}
7178 	}
7179 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7180 
7181 	return pte;
7182 }
7183 
7184 /*
7185  * huge_pte_offset() - Walk the page table to resolve the hugepage
7186  * entry at address @addr
7187  *
7188  * Return: Pointer to page table entry (PUD or PMD) for
7189  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7190  * size @sz doesn't match the hugepage size at this level of the page
7191  * table.
7192  */
7193 pte_t *huge_pte_offset(struct mm_struct *mm,
7194 		       unsigned long addr, unsigned long sz)
7195 {
7196 	pgd_t *pgd;
7197 	p4d_t *p4d;
7198 	pud_t *pud;
7199 	pmd_t *pmd;
7200 
7201 	pgd = pgd_offset(mm, addr);
7202 	if (!pgd_present(*pgd))
7203 		return NULL;
7204 	p4d = p4d_offset(pgd, addr);
7205 	if (!p4d_present(*p4d))
7206 		return NULL;
7207 
7208 	pud = pud_offset(p4d, addr);
7209 	if (sz == PUD_SIZE)
7210 		/* must be pud huge, non-present or none */
7211 		return (pte_t *)pud;
7212 	if (!pud_present(*pud))
7213 		return NULL;
7214 	/* must have a valid entry and size to go further */
7215 
7216 	pmd = pmd_offset(pud, addr);
7217 	/* must be pmd huge, non-present or none */
7218 	return (pte_t *)pmd;
7219 }
7220 
7221 /*
7222  * Return a mask that can be used to update an address to the last huge
7223  * page in a page table page mapping size.  Used to skip non-present
7224  * page table entries when linearly scanning address ranges.  Architectures
7225  * with unique huge page to page table relationships can define their own
7226  * version of this routine.
7227  */
7228 unsigned long hugetlb_mask_last_page(struct hstate *h)
7229 {
7230 	unsigned long hp_size = huge_page_size(h);
7231 
7232 	if (hp_size == PUD_SIZE)
7233 		return P4D_SIZE - PUD_SIZE;
7234 	else if (hp_size == PMD_SIZE)
7235 		return PUD_SIZE - PMD_SIZE;
7236 	else
7237 		return 0UL;
7238 }
7239 
7240 #else
7241 
7242 /* See description above.  Architectures can provide their own version. */
7243 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7244 {
7245 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7246 	if (huge_page_size(h) == PMD_SIZE)
7247 		return PUD_SIZE - PMD_SIZE;
7248 #endif
7249 	return 0UL;
7250 }
7251 
7252 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7253 
7254 /*
7255  * These functions are overwritable if your architecture needs its own
7256  * behavior.
7257  */
7258 int isolate_hugetlb(struct page *page, struct list_head *list)
7259 {
7260 	int ret = 0;
7261 
7262 	spin_lock_irq(&hugetlb_lock);
7263 	if (!PageHeadHuge(page) ||
7264 	    !HPageMigratable(page) ||
7265 	    !get_page_unless_zero(page)) {
7266 		ret = -EBUSY;
7267 		goto unlock;
7268 	}
7269 	ClearHPageMigratable(page);
7270 	list_move_tail(&page->lru, list);
7271 unlock:
7272 	spin_unlock_irq(&hugetlb_lock);
7273 	return ret;
7274 }
7275 
7276 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7277 {
7278 	int ret = 0;
7279 
7280 	*hugetlb = false;
7281 	spin_lock_irq(&hugetlb_lock);
7282 	if (PageHeadHuge(page)) {
7283 		*hugetlb = true;
7284 		if (HPageFreed(page))
7285 			ret = 0;
7286 		else if (HPageMigratable(page) || unpoison)
7287 			ret = get_page_unless_zero(page);
7288 		else
7289 			ret = -EBUSY;
7290 	}
7291 	spin_unlock_irq(&hugetlb_lock);
7292 	return ret;
7293 }
7294 
7295 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7296 				bool *migratable_cleared)
7297 {
7298 	int ret;
7299 
7300 	spin_lock_irq(&hugetlb_lock);
7301 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7302 	spin_unlock_irq(&hugetlb_lock);
7303 	return ret;
7304 }
7305 
7306 void putback_active_hugepage(struct page *page)
7307 {
7308 	spin_lock_irq(&hugetlb_lock);
7309 	SetHPageMigratable(page);
7310 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7311 	spin_unlock_irq(&hugetlb_lock);
7312 	put_page(page);
7313 }
7314 
7315 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7316 {
7317 	struct hstate *h = folio_hstate(old_folio);
7318 
7319 	hugetlb_cgroup_migrate(old_folio, new_folio);
7320 	set_page_owner_migrate_reason(&new_folio->page, reason);
7321 
7322 	/*
7323 	 * transfer temporary state of the new hugetlb folio. This is
7324 	 * reverse to other transitions because the newpage is going to
7325 	 * be final while the old one will be freed so it takes over
7326 	 * the temporary status.
7327 	 *
7328 	 * Also note that we have to transfer the per-node surplus state
7329 	 * here as well otherwise the global surplus count will not match
7330 	 * the per-node's.
7331 	 */
7332 	if (folio_test_hugetlb_temporary(new_folio)) {
7333 		int old_nid = folio_nid(old_folio);
7334 		int new_nid = folio_nid(new_folio);
7335 
7336 		folio_set_hugetlb_temporary(old_folio);
7337 		folio_clear_hugetlb_temporary(new_folio);
7338 
7339 
7340 		/*
7341 		 * There is no need to transfer the per-node surplus state
7342 		 * when we do not cross the node.
7343 		 */
7344 		if (new_nid == old_nid)
7345 			return;
7346 		spin_lock_irq(&hugetlb_lock);
7347 		if (h->surplus_huge_pages_node[old_nid]) {
7348 			h->surplus_huge_pages_node[old_nid]--;
7349 			h->surplus_huge_pages_node[new_nid]++;
7350 		}
7351 		spin_unlock_irq(&hugetlb_lock);
7352 	}
7353 }
7354 
7355 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7356 				   unsigned long start,
7357 				   unsigned long end)
7358 {
7359 	struct hstate *h = hstate_vma(vma);
7360 	unsigned long sz = huge_page_size(h);
7361 	struct mm_struct *mm = vma->vm_mm;
7362 	struct mmu_notifier_range range;
7363 	unsigned long address;
7364 	spinlock_t *ptl;
7365 	pte_t *ptep;
7366 
7367 	if (!(vma->vm_flags & VM_MAYSHARE))
7368 		return;
7369 
7370 	if (start >= end)
7371 		return;
7372 
7373 	flush_cache_range(vma, start, end);
7374 	/*
7375 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7376 	 * we have already done the PUD_SIZE alignment.
7377 	 */
7378 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7379 				start, end);
7380 	mmu_notifier_invalidate_range_start(&range);
7381 	hugetlb_vma_lock_write(vma);
7382 	i_mmap_lock_write(vma->vm_file->f_mapping);
7383 	for (address = start; address < end; address += PUD_SIZE) {
7384 		ptep = huge_pte_offset(mm, address, sz);
7385 		if (!ptep)
7386 			continue;
7387 		ptl = huge_pte_lock(h, mm, ptep);
7388 		huge_pmd_unshare(mm, vma, address, ptep);
7389 		spin_unlock(ptl);
7390 	}
7391 	flush_hugetlb_tlb_range(vma, start, end);
7392 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7393 	hugetlb_vma_unlock_write(vma);
7394 	/*
7395 	 * No need to call mmu_notifier_invalidate_range(), see
7396 	 * Documentation/mm/mmu_notifier.rst.
7397 	 */
7398 	mmu_notifier_invalidate_range_end(&range);
7399 }
7400 
7401 /*
7402  * This function will unconditionally remove all the shared pmd pgtable entries
7403  * within the specific vma for a hugetlbfs memory range.
7404  */
7405 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7406 {
7407 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7408 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7409 }
7410 
7411 #ifdef CONFIG_CMA
7412 static bool cma_reserve_called __initdata;
7413 
7414 static int __init cmdline_parse_hugetlb_cma(char *p)
7415 {
7416 	int nid, count = 0;
7417 	unsigned long tmp;
7418 	char *s = p;
7419 
7420 	while (*s) {
7421 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7422 			break;
7423 
7424 		if (s[count] == ':') {
7425 			if (tmp >= MAX_NUMNODES)
7426 				break;
7427 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7428 
7429 			s += count + 1;
7430 			tmp = memparse(s, &s);
7431 			hugetlb_cma_size_in_node[nid] = tmp;
7432 			hugetlb_cma_size += tmp;
7433 
7434 			/*
7435 			 * Skip the separator if have one, otherwise
7436 			 * break the parsing.
7437 			 */
7438 			if (*s == ',')
7439 				s++;
7440 			else
7441 				break;
7442 		} else {
7443 			hugetlb_cma_size = memparse(p, &p);
7444 			break;
7445 		}
7446 	}
7447 
7448 	return 0;
7449 }
7450 
7451 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7452 
7453 void __init hugetlb_cma_reserve(int order)
7454 {
7455 	unsigned long size, reserved, per_node;
7456 	bool node_specific_cma_alloc = false;
7457 	int nid;
7458 
7459 	cma_reserve_called = true;
7460 
7461 	if (!hugetlb_cma_size)
7462 		return;
7463 
7464 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7465 		if (hugetlb_cma_size_in_node[nid] == 0)
7466 			continue;
7467 
7468 		if (!node_online(nid)) {
7469 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7470 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7471 			hugetlb_cma_size_in_node[nid] = 0;
7472 			continue;
7473 		}
7474 
7475 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7476 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7477 				nid, (PAGE_SIZE << order) / SZ_1M);
7478 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7479 			hugetlb_cma_size_in_node[nid] = 0;
7480 		} else {
7481 			node_specific_cma_alloc = true;
7482 		}
7483 	}
7484 
7485 	/* Validate the CMA size again in case some invalid nodes specified. */
7486 	if (!hugetlb_cma_size)
7487 		return;
7488 
7489 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7490 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7491 			(PAGE_SIZE << order) / SZ_1M);
7492 		hugetlb_cma_size = 0;
7493 		return;
7494 	}
7495 
7496 	if (!node_specific_cma_alloc) {
7497 		/*
7498 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7499 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7500 		 */
7501 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7502 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7503 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7504 	}
7505 
7506 	reserved = 0;
7507 	for_each_online_node(nid) {
7508 		int res;
7509 		char name[CMA_MAX_NAME];
7510 
7511 		if (node_specific_cma_alloc) {
7512 			if (hugetlb_cma_size_in_node[nid] == 0)
7513 				continue;
7514 
7515 			size = hugetlb_cma_size_in_node[nid];
7516 		} else {
7517 			size = min(per_node, hugetlb_cma_size - reserved);
7518 		}
7519 
7520 		size = round_up(size, PAGE_SIZE << order);
7521 
7522 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7523 		/*
7524 		 * Note that 'order per bit' is based on smallest size that
7525 		 * may be returned to CMA allocator in the case of
7526 		 * huge page demotion.
7527 		 */
7528 		res = cma_declare_contiguous_nid(0, size, 0,
7529 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7530 						 0, false, name,
7531 						 &hugetlb_cma[nid], nid);
7532 		if (res) {
7533 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7534 				res, nid);
7535 			continue;
7536 		}
7537 
7538 		reserved += size;
7539 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7540 			size / SZ_1M, nid);
7541 
7542 		if (reserved >= hugetlb_cma_size)
7543 			break;
7544 	}
7545 
7546 	if (!reserved)
7547 		/*
7548 		 * hugetlb_cma_size is used to determine if allocations from
7549 		 * cma are possible.  Set to zero if no cma regions are set up.
7550 		 */
7551 		hugetlb_cma_size = 0;
7552 }
7553 
7554 static void __init hugetlb_cma_check(void)
7555 {
7556 	if (!hugetlb_cma_size || cma_reserve_called)
7557 		return;
7558 
7559 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7560 }
7561 
7562 #endif /* CONFIG_CMA */
7563