1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 39 unsigned long hugepages_treat_as_movable; 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 45 __initdata LIST_HEAD(huge_boot_pages); 46 47 /* for command line parsing */ 48 static struct hstate * __initdata parsed_hstate; 49 static unsigned long __initdata default_hstate_max_huge_pages; 50 static unsigned long __initdata default_hstate_size; 51 52 /* 53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 54 * free_huge_pages, and surplus_huge_pages. 55 */ 56 DEFINE_SPINLOCK(hugetlb_lock); 57 58 /* 59 * Serializes faults on the same logical page. This is used to 60 * prevent spurious OOMs when the hugepage pool is fully utilized. 61 */ 62 static int num_fault_mutexes; 63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; 64 65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 66 { 67 bool free = (spool->count == 0) && (spool->used_hpages == 0); 68 69 spin_unlock(&spool->lock); 70 71 /* If no pages are used, and no other handles to the subpool 72 * remain, free the subpool the subpool remain */ 73 if (free) 74 kfree(spool); 75 } 76 77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 78 { 79 struct hugepage_subpool *spool; 80 81 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 82 if (!spool) 83 return NULL; 84 85 spin_lock_init(&spool->lock); 86 spool->count = 1; 87 spool->max_hpages = nr_blocks; 88 spool->used_hpages = 0; 89 90 return spool; 91 } 92 93 void hugepage_put_subpool(struct hugepage_subpool *spool) 94 { 95 spin_lock(&spool->lock); 96 BUG_ON(!spool->count); 97 spool->count--; 98 unlock_or_release_subpool(spool); 99 } 100 101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 102 long delta) 103 { 104 int ret = 0; 105 106 if (!spool) 107 return 0; 108 109 spin_lock(&spool->lock); 110 if ((spool->used_hpages + delta) <= spool->max_hpages) { 111 spool->used_hpages += delta; 112 } else { 113 ret = -ENOMEM; 114 } 115 spin_unlock(&spool->lock); 116 117 return ret; 118 } 119 120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 121 long delta) 122 { 123 if (!spool) 124 return; 125 126 spin_lock(&spool->lock); 127 spool->used_hpages -= delta; 128 /* If hugetlbfs_put_super couldn't free spool due to 129 * an outstanding quota reference, free it now. */ 130 unlock_or_release_subpool(spool); 131 } 132 133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 134 { 135 return HUGETLBFS_SB(inode->i_sb)->spool; 136 } 137 138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 139 { 140 return subpool_inode(file_inode(vma->vm_file)); 141 } 142 143 /* 144 * Region tracking -- allows tracking of reservations and instantiated pages 145 * across the pages in a mapping. 146 * 147 * The region data structures are embedded into a resv_map and 148 * protected by a resv_map's lock 149 */ 150 struct file_region { 151 struct list_head link; 152 long from; 153 long to; 154 }; 155 156 static long region_add(struct resv_map *resv, long f, long t) 157 { 158 struct list_head *head = &resv->regions; 159 struct file_region *rg, *nrg, *trg; 160 161 spin_lock(&resv->lock); 162 /* Locate the region we are either in or before. */ 163 list_for_each_entry(rg, head, link) 164 if (f <= rg->to) 165 break; 166 167 /* Round our left edge to the current segment if it encloses us. */ 168 if (f > rg->from) 169 f = rg->from; 170 171 /* Check for and consume any regions we now overlap with. */ 172 nrg = rg; 173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 174 if (&rg->link == head) 175 break; 176 if (rg->from > t) 177 break; 178 179 /* If this area reaches higher then extend our area to 180 * include it completely. If this is not the first area 181 * which we intend to reuse, free it. */ 182 if (rg->to > t) 183 t = rg->to; 184 if (rg != nrg) { 185 list_del(&rg->link); 186 kfree(rg); 187 } 188 } 189 nrg->from = f; 190 nrg->to = t; 191 spin_unlock(&resv->lock); 192 return 0; 193 } 194 195 static long region_chg(struct resv_map *resv, long f, long t) 196 { 197 struct list_head *head = &resv->regions; 198 struct file_region *rg, *nrg = NULL; 199 long chg = 0; 200 201 retry: 202 spin_lock(&resv->lock); 203 /* Locate the region we are before or in. */ 204 list_for_each_entry(rg, head, link) 205 if (f <= rg->to) 206 break; 207 208 /* If we are below the current region then a new region is required. 209 * Subtle, allocate a new region at the position but make it zero 210 * size such that we can guarantee to record the reservation. */ 211 if (&rg->link == head || t < rg->from) { 212 if (!nrg) { 213 spin_unlock(&resv->lock); 214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 215 if (!nrg) 216 return -ENOMEM; 217 218 nrg->from = f; 219 nrg->to = f; 220 INIT_LIST_HEAD(&nrg->link); 221 goto retry; 222 } 223 224 list_add(&nrg->link, rg->link.prev); 225 chg = t - f; 226 goto out_nrg; 227 } 228 229 /* Round our left edge to the current segment if it encloses us. */ 230 if (f > rg->from) 231 f = rg->from; 232 chg = t - f; 233 234 /* Check for and consume any regions we now overlap with. */ 235 list_for_each_entry(rg, rg->link.prev, link) { 236 if (&rg->link == head) 237 break; 238 if (rg->from > t) 239 goto out; 240 241 /* We overlap with this area, if it extends further than 242 * us then we must extend ourselves. Account for its 243 * existing reservation. */ 244 if (rg->to > t) { 245 chg += rg->to - t; 246 t = rg->to; 247 } 248 chg -= rg->to - rg->from; 249 } 250 251 out: 252 spin_unlock(&resv->lock); 253 /* We already know we raced and no longer need the new region */ 254 kfree(nrg); 255 return chg; 256 out_nrg: 257 spin_unlock(&resv->lock); 258 return chg; 259 } 260 261 static long region_truncate(struct resv_map *resv, long end) 262 { 263 struct list_head *head = &resv->regions; 264 struct file_region *rg, *trg; 265 long chg = 0; 266 267 spin_lock(&resv->lock); 268 /* Locate the region we are either in or before. */ 269 list_for_each_entry(rg, head, link) 270 if (end <= rg->to) 271 break; 272 if (&rg->link == head) 273 goto out; 274 275 /* If we are in the middle of a region then adjust it. */ 276 if (end > rg->from) { 277 chg = rg->to - end; 278 rg->to = end; 279 rg = list_entry(rg->link.next, typeof(*rg), link); 280 } 281 282 /* Drop any remaining regions. */ 283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 284 if (&rg->link == head) 285 break; 286 chg += rg->to - rg->from; 287 list_del(&rg->link); 288 kfree(rg); 289 } 290 291 out: 292 spin_unlock(&resv->lock); 293 return chg; 294 } 295 296 static long region_count(struct resv_map *resv, long f, long t) 297 { 298 struct list_head *head = &resv->regions; 299 struct file_region *rg; 300 long chg = 0; 301 302 spin_lock(&resv->lock); 303 /* Locate each segment we overlap with, and count that overlap. */ 304 list_for_each_entry(rg, head, link) { 305 long seg_from; 306 long seg_to; 307 308 if (rg->to <= f) 309 continue; 310 if (rg->from >= t) 311 break; 312 313 seg_from = max(rg->from, f); 314 seg_to = min(rg->to, t); 315 316 chg += seg_to - seg_from; 317 } 318 spin_unlock(&resv->lock); 319 320 return chg; 321 } 322 323 /* 324 * Convert the address within this vma to the page offset within 325 * the mapping, in pagecache page units; huge pages here. 326 */ 327 static pgoff_t vma_hugecache_offset(struct hstate *h, 328 struct vm_area_struct *vma, unsigned long address) 329 { 330 return ((address - vma->vm_start) >> huge_page_shift(h)) + 331 (vma->vm_pgoff >> huge_page_order(h)); 332 } 333 334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 335 unsigned long address) 336 { 337 return vma_hugecache_offset(hstate_vma(vma), vma, address); 338 } 339 340 /* 341 * Return the size of the pages allocated when backing a VMA. In the majority 342 * cases this will be same size as used by the page table entries. 343 */ 344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 345 { 346 struct hstate *hstate; 347 348 if (!is_vm_hugetlb_page(vma)) 349 return PAGE_SIZE; 350 351 hstate = hstate_vma(vma); 352 353 return 1UL << huge_page_shift(hstate); 354 } 355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 356 357 /* 358 * Return the page size being used by the MMU to back a VMA. In the majority 359 * of cases, the page size used by the kernel matches the MMU size. On 360 * architectures where it differs, an architecture-specific version of this 361 * function is required. 362 */ 363 #ifndef vma_mmu_pagesize 364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 365 { 366 return vma_kernel_pagesize(vma); 367 } 368 #endif 369 370 /* 371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 372 * bits of the reservation map pointer, which are always clear due to 373 * alignment. 374 */ 375 #define HPAGE_RESV_OWNER (1UL << 0) 376 #define HPAGE_RESV_UNMAPPED (1UL << 1) 377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 378 379 /* 380 * These helpers are used to track how many pages are reserved for 381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 382 * is guaranteed to have their future faults succeed. 383 * 384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 385 * the reserve counters are updated with the hugetlb_lock held. It is safe 386 * to reset the VMA at fork() time as it is not in use yet and there is no 387 * chance of the global counters getting corrupted as a result of the values. 388 * 389 * The private mapping reservation is represented in a subtly different 390 * manner to a shared mapping. A shared mapping has a region map associated 391 * with the underlying file, this region map represents the backing file 392 * pages which have ever had a reservation assigned which this persists even 393 * after the page is instantiated. A private mapping has a region map 394 * associated with the original mmap which is attached to all VMAs which 395 * reference it, this region map represents those offsets which have consumed 396 * reservation ie. where pages have been instantiated. 397 */ 398 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 399 { 400 return (unsigned long)vma->vm_private_data; 401 } 402 403 static void set_vma_private_data(struct vm_area_struct *vma, 404 unsigned long value) 405 { 406 vma->vm_private_data = (void *)value; 407 } 408 409 struct resv_map *resv_map_alloc(void) 410 { 411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 412 if (!resv_map) 413 return NULL; 414 415 kref_init(&resv_map->refs); 416 spin_lock_init(&resv_map->lock); 417 INIT_LIST_HEAD(&resv_map->regions); 418 419 return resv_map; 420 } 421 422 void resv_map_release(struct kref *ref) 423 { 424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 425 426 /* Clear out any active regions before we release the map. */ 427 region_truncate(resv_map, 0); 428 kfree(resv_map); 429 } 430 431 static inline struct resv_map *inode_resv_map(struct inode *inode) 432 { 433 return inode->i_mapping->private_data; 434 } 435 436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 437 { 438 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 439 if (vma->vm_flags & VM_MAYSHARE) { 440 struct address_space *mapping = vma->vm_file->f_mapping; 441 struct inode *inode = mapping->host; 442 443 return inode_resv_map(inode); 444 445 } else { 446 return (struct resv_map *)(get_vma_private_data(vma) & 447 ~HPAGE_RESV_MASK); 448 } 449 } 450 451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 452 { 453 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 455 456 set_vma_private_data(vma, (get_vma_private_data(vma) & 457 HPAGE_RESV_MASK) | (unsigned long)map); 458 } 459 460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 461 { 462 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 464 465 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 466 } 467 468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 469 { 470 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 471 472 return (get_vma_private_data(vma) & flag) != 0; 473 } 474 475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 477 { 478 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 479 if (!(vma->vm_flags & VM_MAYSHARE)) 480 vma->vm_private_data = (void *)0; 481 } 482 483 /* Returns true if the VMA has associated reserve pages */ 484 static int vma_has_reserves(struct vm_area_struct *vma, long chg) 485 { 486 if (vma->vm_flags & VM_NORESERVE) { 487 /* 488 * This address is already reserved by other process(chg == 0), 489 * so, we should decrement reserved count. Without decrementing, 490 * reserve count remains after releasing inode, because this 491 * allocated page will go into page cache and is regarded as 492 * coming from reserved pool in releasing step. Currently, we 493 * don't have any other solution to deal with this situation 494 * properly, so add work-around here. 495 */ 496 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 497 return 1; 498 else 499 return 0; 500 } 501 502 /* Shared mappings always use reserves */ 503 if (vma->vm_flags & VM_MAYSHARE) 504 return 1; 505 506 /* 507 * Only the process that called mmap() has reserves for 508 * private mappings. 509 */ 510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 511 return 1; 512 513 return 0; 514 } 515 516 static void enqueue_huge_page(struct hstate *h, struct page *page) 517 { 518 int nid = page_to_nid(page); 519 list_move(&page->lru, &h->hugepage_freelists[nid]); 520 h->free_huge_pages++; 521 h->free_huge_pages_node[nid]++; 522 } 523 524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 525 { 526 struct page *page; 527 528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 529 if (!is_migrate_isolate_page(page)) 530 break; 531 /* 532 * if 'non-isolated free hugepage' not found on the list, 533 * the allocation fails. 534 */ 535 if (&h->hugepage_freelists[nid] == &page->lru) 536 return NULL; 537 list_move(&page->lru, &h->hugepage_activelist); 538 set_page_refcounted(page); 539 h->free_huge_pages--; 540 h->free_huge_pages_node[nid]--; 541 return page; 542 } 543 544 /* Movability of hugepages depends on migration support. */ 545 static inline gfp_t htlb_alloc_mask(struct hstate *h) 546 { 547 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 548 return GFP_HIGHUSER_MOVABLE; 549 else 550 return GFP_HIGHUSER; 551 } 552 553 static struct page *dequeue_huge_page_vma(struct hstate *h, 554 struct vm_area_struct *vma, 555 unsigned long address, int avoid_reserve, 556 long chg) 557 { 558 struct page *page = NULL; 559 struct mempolicy *mpol; 560 nodemask_t *nodemask; 561 struct zonelist *zonelist; 562 struct zone *zone; 563 struct zoneref *z; 564 unsigned int cpuset_mems_cookie; 565 566 /* 567 * A child process with MAP_PRIVATE mappings created by their parent 568 * have no page reserves. This check ensures that reservations are 569 * not "stolen". The child may still get SIGKILLed 570 */ 571 if (!vma_has_reserves(vma, chg) && 572 h->free_huge_pages - h->resv_huge_pages == 0) 573 goto err; 574 575 /* If reserves cannot be used, ensure enough pages are in the pool */ 576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 577 goto err; 578 579 retry_cpuset: 580 cpuset_mems_cookie = read_mems_allowed_begin(); 581 zonelist = huge_zonelist(vma, address, 582 htlb_alloc_mask(h), &mpol, &nodemask); 583 584 for_each_zone_zonelist_nodemask(zone, z, zonelist, 585 MAX_NR_ZONES - 1, nodemask) { 586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { 587 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 588 if (page) { 589 if (avoid_reserve) 590 break; 591 if (!vma_has_reserves(vma, chg)) 592 break; 593 594 SetPagePrivate(page); 595 h->resv_huge_pages--; 596 break; 597 } 598 } 599 } 600 601 mpol_cond_put(mpol); 602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 603 goto retry_cpuset; 604 return page; 605 606 err: 607 return NULL; 608 } 609 610 /* 611 * common helper functions for hstate_next_node_to_{alloc|free}. 612 * We may have allocated or freed a huge page based on a different 613 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 614 * be outside of *nodes_allowed. Ensure that we use an allowed 615 * node for alloc or free. 616 */ 617 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 618 { 619 nid = next_node(nid, *nodes_allowed); 620 if (nid == MAX_NUMNODES) 621 nid = first_node(*nodes_allowed); 622 VM_BUG_ON(nid >= MAX_NUMNODES); 623 624 return nid; 625 } 626 627 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 628 { 629 if (!node_isset(nid, *nodes_allowed)) 630 nid = next_node_allowed(nid, nodes_allowed); 631 return nid; 632 } 633 634 /* 635 * returns the previously saved node ["this node"] from which to 636 * allocate a persistent huge page for the pool and advance the 637 * next node from which to allocate, handling wrap at end of node 638 * mask. 639 */ 640 static int hstate_next_node_to_alloc(struct hstate *h, 641 nodemask_t *nodes_allowed) 642 { 643 int nid; 644 645 VM_BUG_ON(!nodes_allowed); 646 647 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 648 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 649 650 return nid; 651 } 652 653 /* 654 * helper for free_pool_huge_page() - return the previously saved 655 * node ["this node"] from which to free a huge page. Advance the 656 * next node id whether or not we find a free huge page to free so 657 * that the next attempt to free addresses the next node. 658 */ 659 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 660 { 661 int nid; 662 663 VM_BUG_ON(!nodes_allowed); 664 665 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 666 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 667 668 return nid; 669 } 670 671 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 672 for (nr_nodes = nodes_weight(*mask); \ 673 nr_nodes > 0 && \ 674 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 675 nr_nodes--) 676 677 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 678 for (nr_nodes = nodes_weight(*mask); \ 679 nr_nodes > 0 && \ 680 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 681 nr_nodes--) 682 683 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) 684 static void destroy_compound_gigantic_page(struct page *page, 685 unsigned long order) 686 { 687 int i; 688 int nr_pages = 1 << order; 689 struct page *p = page + 1; 690 691 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 692 __ClearPageTail(p); 693 set_page_refcounted(p); 694 p->first_page = NULL; 695 } 696 697 set_compound_order(page, 0); 698 __ClearPageHead(page); 699 } 700 701 static void free_gigantic_page(struct page *page, unsigned order) 702 { 703 free_contig_range(page_to_pfn(page), 1 << order); 704 } 705 706 static int __alloc_gigantic_page(unsigned long start_pfn, 707 unsigned long nr_pages) 708 { 709 unsigned long end_pfn = start_pfn + nr_pages; 710 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 711 } 712 713 static bool pfn_range_valid_gigantic(unsigned long start_pfn, 714 unsigned long nr_pages) 715 { 716 unsigned long i, end_pfn = start_pfn + nr_pages; 717 struct page *page; 718 719 for (i = start_pfn; i < end_pfn; i++) { 720 if (!pfn_valid(i)) 721 return false; 722 723 page = pfn_to_page(i); 724 725 if (PageReserved(page)) 726 return false; 727 728 if (page_count(page) > 0) 729 return false; 730 731 if (PageHuge(page)) 732 return false; 733 } 734 735 return true; 736 } 737 738 static bool zone_spans_last_pfn(const struct zone *zone, 739 unsigned long start_pfn, unsigned long nr_pages) 740 { 741 unsigned long last_pfn = start_pfn + nr_pages - 1; 742 return zone_spans_pfn(zone, last_pfn); 743 } 744 745 static struct page *alloc_gigantic_page(int nid, unsigned order) 746 { 747 unsigned long nr_pages = 1 << order; 748 unsigned long ret, pfn, flags; 749 struct zone *z; 750 751 z = NODE_DATA(nid)->node_zones; 752 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 753 spin_lock_irqsave(&z->lock, flags); 754 755 pfn = ALIGN(z->zone_start_pfn, nr_pages); 756 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 757 if (pfn_range_valid_gigantic(pfn, nr_pages)) { 758 /* 759 * We release the zone lock here because 760 * alloc_contig_range() will also lock the zone 761 * at some point. If there's an allocation 762 * spinning on this lock, it may win the race 763 * and cause alloc_contig_range() to fail... 764 */ 765 spin_unlock_irqrestore(&z->lock, flags); 766 ret = __alloc_gigantic_page(pfn, nr_pages); 767 if (!ret) 768 return pfn_to_page(pfn); 769 spin_lock_irqsave(&z->lock, flags); 770 } 771 pfn += nr_pages; 772 } 773 774 spin_unlock_irqrestore(&z->lock, flags); 775 } 776 777 return NULL; 778 } 779 780 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 781 static void prep_compound_gigantic_page(struct page *page, unsigned long order); 782 783 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 784 { 785 struct page *page; 786 787 page = alloc_gigantic_page(nid, huge_page_order(h)); 788 if (page) { 789 prep_compound_gigantic_page(page, huge_page_order(h)); 790 prep_new_huge_page(h, page, nid); 791 } 792 793 return page; 794 } 795 796 static int alloc_fresh_gigantic_page(struct hstate *h, 797 nodemask_t *nodes_allowed) 798 { 799 struct page *page = NULL; 800 int nr_nodes, node; 801 802 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 803 page = alloc_fresh_gigantic_page_node(h, node); 804 if (page) 805 return 1; 806 } 807 808 return 0; 809 } 810 811 static inline bool gigantic_page_supported(void) { return true; } 812 #else 813 static inline bool gigantic_page_supported(void) { return false; } 814 static inline void free_gigantic_page(struct page *page, unsigned order) { } 815 static inline void destroy_compound_gigantic_page(struct page *page, 816 unsigned long order) { } 817 static inline int alloc_fresh_gigantic_page(struct hstate *h, 818 nodemask_t *nodes_allowed) { return 0; } 819 #endif 820 821 static void update_and_free_page(struct hstate *h, struct page *page) 822 { 823 int i; 824 825 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 826 return; 827 828 h->nr_huge_pages--; 829 h->nr_huge_pages_node[page_to_nid(page)]--; 830 for (i = 0; i < pages_per_huge_page(h); i++) { 831 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 832 1 << PG_referenced | 1 << PG_dirty | 833 1 << PG_active | 1 << PG_private | 834 1 << PG_writeback); 835 } 836 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 837 set_compound_page_dtor(page, NULL); 838 set_page_refcounted(page); 839 if (hstate_is_gigantic(h)) { 840 destroy_compound_gigantic_page(page, huge_page_order(h)); 841 free_gigantic_page(page, huge_page_order(h)); 842 } else { 843 arch_release_hugepage(page); 844 __free_pages(page, huge_page_order(h)); 845 } 846 } 847 848 struct hstate *size_to_hstate(unsigned long size) 849 { 850 struct hstate *h; 851 852 for_each_hstate(h) { 853 if (huge_page_size(h) == size) 854 return h; 855 } 856 return NULL; 857 } 858 859 void free_huge_page(struct page *page) 860 { 861 /* 862 * Can't pass hstate in here because it is called from the 863 * compound page destructor. 864 */ 865 struct hstate *h = page_hstate(page); 866 int nid = page_to_nid(page); 867 struct hugepage_subpool *spool = 868 (struct hugepage_subpool *)page_private(page); 869 bool restore_reserve; 870 871 set_page_private(page, 0); 872 page->mapping = NULL; 873 BUG_ON(page_count(page)); 874 BUG_ON(page_mapcount(page)); 875 restore_reserve = PagePrivate(page); 876 ClearPagePrivate(page); 877 878 spin_lock(&hugetlb_lock); 879 hugetlb_cgroup_uncharge_page(hstate_index(h), 880 pages_per_huge_page(h), page); 881 if (restore_reserve) 882 h->resv_huge_pages++; 883 884 if (h->surplus_huge_pages_node[nid]) { 885 /* remove the page from active list */ 886 list_del(&page->lru); 887 update_and_free_page(h, page); 888 h->surplus_huge_pages--; 889 h->surplus_huge_pages_node[nid]--; 890 } else { 891 arch_clear_hugepage_flags(page); 892 enqueue_huge_page(h, page); 893 } 894 spin_unlock(&hugetlb_lock); 895 hugepage_subpool_put_pages(spool, 1); 896 } 897 898 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 899 { 900 INIT_LIST_HEAD(&page->lru); 901 set_compound_page_dtor(page, free_huge_page); 902 spin_lock(&hugetlb_lock); 903 set_hugetlb_cgroup(page, NULL); 904 h->nr_huge_pages++; 905 h->nr_huge_pages_node[nid]++; 906 spin_unlock(&hugetlb_lock); 907 put_page(page); /* free it into the hugepage allocator */ 908 } 909 910 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 911 { 912 int i; 913 int nr_pages = 1 << order; 914 struct page *p = page + 1; 915 916 /* we rely on prep_new_huge_page to set the destructor */ 917 set_compound_order(page, order); 918 __SetPageHead(page); 919 __ClearPageReserved(page); 920 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 921 __SetPageTail(p); 922 /* 923 * For gigantic hugepages allocated through bootmem at 924 * boot, it's safer to be consistent with the not-gigantic 925 * hugepages and clear the PG_reserved bit from all tail pages 926 * too. Otherwse drivers using get_user_pages() to access tail 927 * pages may get the reference counting wrong if they see 928 * PG_reserved set on a tail page (despite the head page not 929 * having PG_reserved set). Enforcing this consistency between 930 * head and tail pages allows drivers to optimize away a check 931 * on the head page when they need know if put_page() is needed 932 * after get_user_pages(). 933 */ 934 __ClearPageReserved(p); 935 set_page_count(p, 0); 936 p->first_page = page; 937 } 938 } 939 940 /* 941 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 942 * transparent huge pages. See the PageTransHuge() documentation for more 943 * details. 944 */ 945 int PageHuge(struct page *page) 946 { 947 if (!PageCompound(page)) 948 return 0; 949 950 page = compound_head(page); 951 return get_compound_page_dtor(page) == free_huge_page; 952 } 953 EXPORT_SYMBOL_GPL(PageHuge); 954 955 /* 956 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 957 * normal or transparent huge pages. 958 */ 959 int PageHeadHuge(struct page *page_head) 960 { 961 if (!PageHead(page_head)) 962 return 0; 963 964 return get_compound_page_dtor(page_head) == free_huge_page; 965 } 966 967 pgoff_t __basepage_index(struct page *page) 968 { 969 struct page *page_head = compound_head(page); 970 pgoff_t index = page_index(page_head); 971 unsigned long compound_idx; 972 973 if (!PageHuge(page_head)) 974 return page_index(page); 975 976 if (compound_order(page_head) >= MAX_ORDER) 977 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 978 else 979 compound_idx = page - page_head; 980 981 return (index << compound_order(page_head)) + compound_idx; 982 } 983 984 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 985 { 986 struct page *page; 987 988 page = alloc_pages_exact_node(nid, 989 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 990 __GFP_REPEAT|__GFP_NOWARN, 991 huge_page_order(h)); 992 if (page) { 993 if (arch_prepare_hugepage(page)) { 994 __free_pages(page, huge_page_order(h)); 995 return NULL; 996 } 997 prep_new_huge_page(h, page, nid); 998 } 999 1000 return page; 1001 } 1002 1003 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1004 { 1005 struct page *page; 1006 int nr_nodes, node; 1007 int ret = 0; 1008 1009 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1010 page = alloc_fresh_huge_page_node(h, node); 1011 if (page) { 1012 ret = 1; 1013 break; 1014 } 1015 } 1016 1017 if (ret) 1018 count_vm_event(HTLB_BUDDY_PGALLOC); 1019 else 1020 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1021 1022 return ret; 1023 } 1024 1025 /* 1026 * Free huge page from pool from next node to free. 1027 * Attempt to keep persistent huge pages more or less 1028 * balanced over allowed nodes. 1029 * Called with hugetlb_lock locked. 1030 */ 1031 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1032 bool acct_surplus) 1033 { 1034 int nr_nodes, node; 1035 int ret = 0; 1036 1037 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1038 /* 1039 * If we're returning unused surplus pages, only examine 1040 * nodes with surplus pages. 1041 */ 1042 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1043 !list_empty(&h->hugepage_freelists[node])) { 1044 struct page *page = 1045 list_entry(h->hugepage_freelists[node].next, 1046 struct page, lru); 1047 list_del(&page->lru); 1048 h->free_huge_pages--; 1049 h->free_huge_pages_node[node]--; 1050 if (acct_surplus) { 1051 h->surplus_huge_pages--; 1052 h->surplus_huge_pages_node[node]--; 1053 } 1054 update_and_free_page(h, page); 1055 ret = 1; 1056 break; 1057 } 1058 } 1059 1060 return ret; 1061 } 1062 1063 /* 1064 * Dissolve a given free hugepage into free buddy pages. This function does 1065 * nothing for in-use (including surplus) hugepages. 1066 */ 1067 static void dissolve_free_huge_page(struct page *page) 1068 { 1069 spin_lock(&hugetlb_lock); 1070 if (PageHuge(page) && !page_count(page)) { 1071 struct hstate *h = page_hstate(page); 1072 int nid = page_to_nid(page); 1073 list_del(&page->lru); 1074 h->free_huge_pages--; 1075 h->free_huge_pages_node[nid]--; 1076 update_and_free_page(h, page); 1077 } 1078 spin_unlock(&hugetlb_lock); 1079 } 1080 1081 /* 1082 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1083 * make specified memory blocks removable from the system. 1084 * Note that start_pfn should aligned with (minimum) hugepage size. 1085 */ 1086 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1087 { 1088 unsigned int order = 8 * sizeof(void *); 1089 unsigned long pfn; 1090 struct hstate *h; 1091 1092 /* Set scan step to minimum hugepage size */ 1093 for_each_hstate(h) 1094 if (order > huge_page_order(h)) 1095 order = huge_page_order(h); 1096 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); 1097 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) 1098 dissolve_free_huge_page(pfn_to_page(pfn)); 1099 } 1100 1101 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 1102 { 1103 struct page *page; 1104 unsigned int r_nid; 1105 1106 if (hstate_is_gigantic(h)) 1107 return NULL; 1108 1109 /* 1110 * Assume we will successfully allocate the surplus page to 1111 * prevent racing processes from causing the surplus to exceed 1112 * overcommit 1113 * 1114 * This however introduces a different race, where a process B 1115 * tries to grow the static hugepage pool while alloc_pages() is 1116 * called by process A. B will only examine the per-node 1117 * counters in determining if surplus huge pages can be 1118 * converted to normal huge pages in adjust_pool_surplus(). A 1119 * won't be able to increment the per-node counter, until the 1120 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1121 * no more huge pages can be converted from surplus to normal 1122 * state (and doesn't try to convert again). Thus, we have a 1123 * case where a surplus huge page exists, the pool is grown, and 1124 * the surplus huge page still exists after, even though it 1125 * should just have been converted to a normal huge page. This 1126 * does not leak memory, though, as the hugepage will be freed 1127 * once it is out of use. It also does not allow the counters to 1128 * go out of whack in adjust_pool_surplus() as we don't modify 1129 * the node values until we've gotten the hugepage and only the 1130 * per-node value is checked there. 1131 */ 1132 spin_lock(&hugetlb_lock); 1133 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1134 spin_unlock(&hugetlb_lock); 1135 return NULL; 1136 } else { 1137 h->nr_huge_pages++; 1138 h->surplus_huge_pages++; 1139 } 1140 spin_unlock(&hugetlb_lock); 1141 1142 if (nid == NUMA_NO_NODE) 1143 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 1144 __GFP_REPEAT|__GFP_NOWARN, 1145 huge_page_order(h)); 1146 else 1147 page = alloc_pages_exact_node(nid, 1148 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1149 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 1150 1151 if (page && arch_prepare_hugepage(page)) { 1152 __free_pages(page, huge_page_order(h)); 1153 page = NULL; 1154 } 1155 1156 spin_lock(&hugetlb_lock); 1157 if (page) { 1158 INIT_LIST_HEAD(&page->lru); 1159 r_nid = page_to_nid(page); 1160 set_compound_page_dtor(page, free_huge_page); 1161 set_hugetlb_cgroup(page, NULL); 1162 /* 1163 * We incremented the global counters already 1164 */ 1165 h->nr_huge_pages_node[r_nid]++; 1166 h->surplus_huge_pages_node[r_nid]++; 1167 __count_vm_event(HTLB_BUDDY_PGALLOC); 1168 } else { 1169 h->nr_huge_pages--; 1170 h->surplus_huge_pages--; 1171 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1172 } 1173 spin_unlock(&hugetlb_lock); 1174 1175 return page; 1176 } 1177 1178 /* 1179 * This allocation function is useful in the context where vma is irrelevant. 1180 * E.g. soft-offlining uses this function because it only cares physical 1181 * address of error page. 1182 */ 1183 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1184 { 1185 struct page *page = NULL; 1186 1187 spin_lock(&hugetlb_lock); 1188 if (h->free_huge_pages - h->resv_huge_pages > 0) 1189 page = dequeue_huge_page_node(h, nid); 1190 spin_unlock(&hugetlb_lock); 1191 1192 if (!page) 1193 page = alloc_buddy_huge_page(h, nid); 1194 1195 return page; 1196 } 1197 1198 /* 1199 * Increase the hugetlb pool such that it can accommodate a reservation 1200 * of size 'delta'. 1201 */ 1202 static int gather_surplus_pages(struct hstate *h, int delta) 1203 { 1204 struct list_head surplus_list; 1205 struct page *page, *tmp; 1206 int ret, i; 1207 int needed, allocated; 1208 bool alloc_ok = true; 1209 1210 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1211 if (needed <= 0) { 1212 h->resv_huge_pages += delta; 1213 return 0; 1214 } 1215 1216 allocated = 0; 1217 INIT_LIST_HEAD(&surplus_list); 1218 1219 ret = -ENOMEM; 1220 retry: 1221 spin_unlock(&hugetlb_lock); 1222 for (i = 0; i < needed; i++) { 1223 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1224 if (!page) { 1225 alloc_ok = false; 1226 break; 1227 } 1228 list_add(&page->lru, &surplus_list); 1229 } 1230 allocated += i; 1231 1232 /* 1233 * After retaking hugetlb_lock, we need to recalculate 'needed' 1234 * because either resv_huge_pages or free_huge_pages may have changed. 1235 */ 1236 spin_lock(&hugetlb_lock); 1237 needed = (h->resv_huge_pages + delta) - 1238 (h->free_huge_pages + allocated); 1239 if (needed > 0) { 1240 if (alloc_ok) 1241 goto retry; 1242 /* 1243 * We were not able to allocate enough pages to 1244 * satisfy the entire reservation so we free what 1245 * we've allocated so far. 1246 */ 1247 goto free; 1248 } 1249 /* 1250 * The surplus_list now contains _at_least_ the number of extra pages 1251 * needed to accommodate the reservation. Add the appropriate number 1252 * of pages to the hugetlb pool and free the extras back to the buddy 1253 * allocator. Commit the entire reservation here to prevent another 1254 * process from stealing the pages as they are added to the pool but 1255 * before they are reserved. 1256 */ 1257 needed += allocated; 1258 h->resv_huge_pages += delta; 1259 ret = 0; 1260 1261 /* Free the needed pages to the hugetlb pool */ 1262 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1263 if ((--needed) < 0) 1264 break; 1265 /* 1266 * This page is now managed by the hugetlb allocator and has 1267 * no users -- drop the buddy allocator's reference. 1268 */ 1269 put_page_testzero(page); 1270 VM_BUG_ON_PAGE(page_count(page), page); 1271 enqueue_huge_page(h, page); 1272 } 1273 free: 1274 spin_unlock(&hugetlb_lock); 1275 1276 /* Free unnecessary surplus pages to the buddy allocator */ 1277 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1278 put_page(page); 1279 spin_lock(&hugetlb_lock); 1280 1281 return ret; 1282 } 1283 1284 /* 1285 * When releasing a hugetlb pool reservation, any surplus pages that were 1286 * allocated to satisfy the reservation must be explicitly freed if they were 1287 * never used. 1288 * Called with hugetlb_lock held. 1289 */ 1290 static void return_unused_surplus_pages(struct hstate *h, 1291 unsigned long unused_resv_pages) 1292 { 1293 unsigned long nr_pages; 1294 1295 /* Uncommit the reservation */ 1296 h->resv_huge_pages -= unused_resv_pages; 1297 1298 /* Cannot return gigantic pages currently */ 1299 if (hstate_is_gigantic(h)) 1300 return; 1301 1302 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1303 1304 /* 1305 * We want to release as many surplus pages as possible, spread 1306 * evenly across all nodes with memory. Iterate across these nodes 1307 * until we can no longer free unreserved surplus pages. This occurs 1308 * when the nodes with surplus pages have no free pages. 1309 * free_pool_huge_page() will balance the the freed pages across the 1310 * on-line nodes with memory and will handle the hstate accounting. 1311 */ 1312 while (nr_pages--) { 1313 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1314 break; 1315 cond_resched_lock(&hugetlb_lock); 1316 } 1317 } 1318 1319 /* 1320 * Determine if the huge page at addr within the vma has an associated 1321 * reservation. Where it does not we will need to logically increase 1322 * reservation and actually increase subpool usage before an allocation 1323 * can occur. Where any new reservation would be required the 1324 * reservation change is prepared, but not committed. Once the page 1325 * has been allocated from the subpool and instantiated the change should 1326 * be committed via vma_commit_reservation. No action is required on 1327 * failure. 1328 */ 1329 static long vma_needs_reservation(struct hstate *h, 1330 struct vm_area_struct *vma, unsigned long addr) 1331 { 1332 struct resv_map *resv; 1333 pgoff_t idx; 1334 long chg; 1335 1336 resv = vma_resv_map(vma); 1337 if (!resv) 1338 return 1; 1339 1340 idx = vma_hugecache_offset(h, vma, addr); 1341 chg = region_chg(resv, idx, idx + 1); 1342 1343 if (vma->vm_flags & VM_MAYSHARE) 1344 return chg; 1345 else 1346 return chg < 0 ? chg : 0; 1347 } 1348 static void vma_commit_reservation(struct hstate *h, 1349 struct vm_area_struct *vma, unsigned long addr) 1350 { 1351 struct resv_map *resv; 1352 pgoff_t idx; 1353 1354 resv = vma_resv_map(vma); 1355 if (!resv) 1356 return; 1357 1358 idx = vma_hugecache_offset(h, vma, addr); 1359 region_add(resv, idx, idx + 1); 1360 } 1361 1362 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1363 unsigned long addr, int avoid_reserve) 1364 { 1365 struct hugepage_subpool *spool = subpool_vma(vma); 1366 struct hstate *h = hstate_vma(vma); 1367 struct page *page; 1368 long chg; 1369 int ret, idx; 1370 struct hugetlb_cgroup *h_cg; 1371 1372 idx = hstate_index(h); 1373 /* 1374 * Processes that did not create the mapping will have no 1375 * reserves and will not have accounted against subpool 1376 * limit. Check that the subpool limit can be made before 1377 * satisfying the allocation MAP_NORESERVE mappings may also 1378 * need pages and subpool limit allocated allocated if no reserve 1379 * mapping overlaps. 1380 */ 1381 chg = vma_needs_reservation(h, vma, addr); 1382 if (chg < 0) 1383 return ERR_PTR(-ENOMEM); 1384 if (chg || avoid_reserve) 1385 if (hugepage_subpool_get_pages(spool, 1)) 1386 return ERR_PTR(-ENOSPC); 1387 1388 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1389 if (ret) 1390 goto out_subpool_put; 1391 1392 spin_lock(&hugetlb_lock); 1393 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); 1394 if (!page) { 1395 spin_unlock(&hugetlb_lock); 1396 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1397 if (!page) 1398 goto out_uncharge_cgroup; 1399 1400 spin_lock(&hugetlb_lock); 1401 list_move(&page->lru, &h->hugepage_activelist); 1402 /* Fall through */ 1403 } 1404 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1405 spin_unlock(&hugetlb_lock); 1406 1407 set_page_private(page, (unsigned long)spool); 1408 1409 vma_commit_reservation(h, vma, addr); 1410 return page; 1411 1412 out_uncharge_cgroup: 1413 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1414 out_subpool_put: 1415 if (chg || avoid_reserve) 1416 hugepage_subpool_put_pages(spool, 1); 1417 return ERR_PTR(-ENOSPC); 1418 } 1419 1420 /* 1421 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1422 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1423 * where no ERR_VALUE is expected to be returned. 1424 */ 1425 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1426 unsigned long addr, int avoid_reserve) 1427 { 1428 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1429 if (IS_ERR(page)) 1430 page = NULL; 1431 return page; 1432 } 1433 1434 int __weak alloc_bootmem_huge_page(struct hstate *h) 1435 { 1436 struct huge_bootmem_page *m; 1437 int nr_nodes, node; 1438 1439 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1440 void *addr; 1441 1442 addr = memblock_virt_alloc_try_nid_nopanic( 1443 huge_page_size(h), huge_page_size(h), 1444 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1445 if (addr) { 1446 /* 1447 * Use the beginning of the huge page to store the 1448 * huge_bootmem_page struct (until gather_bootmem 1449 * puts them into the mem_map). 1450 */ 1451 m = addr; 1452 goto found; 1453 } 1454 } 1455 return 0; 1456 1457 found: 1458 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1459 /* Put them into a private list first because mem_map is not up yet */ 1460 list_add(&m->list, &huge_boot_pages); 1461 m->hstate = h; 1462 return 1; 1463 } 1464 1465 static void __init prep_compound_huge_page(struct page *page, int order) 1466 { 1467 if (unlikely(order > (MAX_ORDER - 1))) 1468 prep_compound_gigantic_page(page, order); 1469 else 1470 prep_compound_page(page, order); 1471 } 1472 1473 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1474 static void __init gather_bootmem_prealloc(void) 1475 { 1476 struct huge_bootmem_page *m; 1477 1478 list_for_each_entry(m, &huge_boot_pages, list) { 1479 struct hstate *h = m->hstate; 1480 struct page *page; 1481 1482 #ifdef CONFIG_HIGHMEM 1483 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1484 memblock_free_late(__pa(m), 1485 sizeof(struct huge_bootmem_page)); 1486 #else 1487 page = virt_to_page(m); 1488 #endif 1489 WARN_ON(page_count(page) != 1); 1490 prep_compound_huge_page(page, h->order); 1491 WARN_ON(PageReserved(page)); 1492 prep_new_huge_page(h, page, page_to_nid(page)); 1493 /* 1494 * If we had gigantic hugepages allocated at boot time, we need 1495 * to restore the 'stolen' pages to totalram_pages in order to 1496 * fix confusing memory reports from free(1) and another 1497 * side-effects, like CommitLimit going negative. 1498 */ 1499 if (hstate_is_gigantic(h)) 1500 adjust_managed_page_count(page, 1 << h->order); 1501 } 1502 } 1503 1504 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1505 { 1506 unsigned long i; 1507 1508 for (i = 0; i < h->max_huge_pages; ++i) { 1509 if (hstate_is_gigantic(h)) { 1510 if (!alloc_bootmem_huge_page(h)) 1511 break; 1512 } else if (!alloc_fresh_huge_page(h, 1513 &node_states[N_MEMORY])) 1514 break; 1515 } 1516 h->max_huge_pages = i; 1517 } 1518 1519 static void __init hugetlb_init_hstates(void) 1520 { 1521 struct hstate *h; 1522 1523 for_each_hstate(h) { 1524 /* oversize hugepages were init'ed in early boot */ 1525 if (!hstate_is_gigantic(h)) 1526 hugetlb_hstate_alloc_pages(h); 1527 } 1528 } 1529 1530 static char * __init memfmt(char *buf, unsigned long n) 1531 { 1532 if (n >= (1UL << 30)) 1533 sprintf(buf, "%lu GB", n >> 30); 1534 else if (n >= (1UL << 20)) 1535 sprintf(buf, "%lu MB", n >> 20); 1536 else 1537 sprintf(buf, "%lu KB", n >> 10); 1538 return buf; 1539 } 1540 1541 static void __init report_hugepages(void) 1542 { 1543 struct hstate *h; 1544 1545 for_each_hstate(h) { 1546 char buf[32]; 1547 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1548 memfmt(buf, huge_page_size(h)), 1549 h->free_huge_pages); 1550 } 1551 } 1552 1553 #ifdef CONFIG_HIGHMEM 1554 static void try_to_free_low(struct hstate *h, unsigned long count, 1555 nodemask_t *nodes_allowed) 1556 { 1557 int i; 1558 1559 if (hstate_is_gigantic(h)) 1560 return; 1561 1562 for_each_node_mask(i, *nodes_allowed) { 1563 struct page *page, *next; 1564 struct list_head *freel = &h->hugepage_freelists[i]; 1565 list_for_each_entry_safe(page, next, freel, lru) { 1566 if (count >= h->nr_huge_pages) 1567 return; 1568 if (PageHighMem(page)) 1569 continue; 1570 list_del(&page->lru); 1571 update_and_free_page(h, page); 1572 h->free_huge_pages--; 1573 h->free_huge_pages_node[page_to_nid(page)]--; 1574 } 1575 } 1576 } 1577 #else 1578 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1579 nodemask_t *nodes_allowed) 1580 { 1581 } 1582 #endif 1583 1584 /* 1585 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1586 * balanced by operating on them in a round-robin fashion. 1587 * Returns 1 if an adjustment was made. 1588 */ 1589 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1590 int delta) 1591 { 1592 int nr_nodes, node; 1593 1594 VM_BUG_ON(delta != -1 && delta != 1); 1595 1596 if (delta < 0) { 1597 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1598 if (h->surplus_huge_pages_node[node]) 1599 goto found; 1600 } 1601 } else { 1602 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1603 if (h->surplus_huge_pages_node[node] < 1604 h->nr_huge_pages_node[node]) 1605 goto found; 1606 } 1607 } 1608 return 0; 1609 1610 found: 1611 h->surplus_huge_pages += delta; 1612 h->surplus_huge_pages_node[node] += delta; 1613 return 1; 1614 } 1615 1616 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1617 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1618 nodemask_t *nodes_allowed) 1619 { 1620 unsigned long min_count, ret; 1621 1622 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1623 return h->max_huge_pages; 1624 1625 /* 1626 * Increase the pool size 1627 * First take pages out of surplus state. Then make up the 1628 * remaining difference by allocating fresh huge pages. 1629 * 1630 * We might race with alloc_buddy_huge_page() here and be unable 1631 * to convert a surplus huge page to a normal huge page. That is 1632 * not critical, though, it just means the overall size of the 1633 * pool might be one hugepage larger than it needs to be, but 1634 * within all the constraints specified by the sysctls. 1635 */ 1636 spin_lock(&hugetlb_lock); 1637 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1638 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1639 break; 1640 } 1641 1642 while (count > persistent_huge_pages(h)) { 1643 /* 1644 * If this allocation races such that we no longer need the 1645 * page, free_huge_page will handle it by freeing the page 1646 * and reducing the surplus. 1647 */ 1648 spin_unlock(&hugetlb_lock); 1649 if (hstate_is_gigantic(h)) 1650 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 1651 else 1652 ret = alloc_fresh_huge_page(h, nodes_allowed); 1653 spin_lock(&hugetlb_lock); 1654 if (!ret) 1655 goto out; 1656 1657 /* Bail for signals. Probably ctrl-c from user */ 1658 if (signal_pending(current)) 1659 goto out; 1660 } 1661 1662 /* 1663 * Decrease the pool size 1664 * First return free pages to the buddy allocator (being careful 1665 * to keep enough around to satisfy reservations). Then place 1666 * pages into surplus state as needed so the pool will shrink 1667 * to the desired size as pages become free. 1668 * 1669 * By placing pages into the surplus state independent of the 1670 * overcommit value, we are allowing the surplus pool size to 1671 * exceed overcommit. There are few sane options here. Since 1672 * alloc_buddy_huge_page() is checking the global counter, 1673 * though, we'll note that we're not allowed to exceed surplus 1674 * and won't grow the pool anywhere else. Not until one of the 1675 * sysctls are changed, or the surplus pages go out of use. 1676 */ 1677 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1678 min_count = max(count, min_count); 1679 try_to_free_low(h, min_count, nodes_allowed); 1680 while (min_count < persistent_huge_pages(h)) { 1681 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1682 break; 1683 cond_resched_lock(&hugetlb_lock); 1684 } 1685 while (count < persistent_huge_pages(h)) { 1686 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1687 break; 1688 } 1689 out: 1690 ret = persistent_huge_pages(h); 1691 spin_unlock(&hugetlb_lock); 1692 return ret; 1693 } 1694 1695 #define HSTATE_ATTR_RO(_name) \ 1696 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1697 1698 #define HSTATE_ATTR(_name) \ 1699 static struct kobj_attribute _name##_attr = \ 1700 __ATTR(_name, 0644, _name##_show, _name##_store) 1701 1702 static struct kobject *hugepages_kobj; 1703 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1704 1705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1706 1707 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1708 { 1709 int i; 1710 1711 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1712 if (hstate_kobjs[i] == kobj) { 1713 if (nidp) 1714 *nidp = NUMA_NO_NODE; 1715 return &hstates[i]; 1716 } 1717 1718 return kobj_to_node_hstate(kobj, nidp); 1719 } 1720 1721 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1722 struct kobj_attribute *attr, char *buf) 1723 { 1724 struct hstate *h; 1725 unsigned long nr_huge_pages; 1726 int nid; 1727 1728 h = kobj_to_hstate(kobj, &nid); 1729 if (nid == NUMA_NO_NODE) 1730 nr_huge_pages = h->nr_huge_pages; 1731 else 1732 nr_huge_pages = h->nr_huge_pages_node[nid]; 1733 1734 return sprintf(buf, "%lu\n", nr_huge_pages); 1735 } 1736 1737 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1738 struct kobject *kobj, struct kobj_attribute *attr, 1739 const char *buf, size_t len) 1740 { 1741 int err; 1742 int nid; 1743 unsigned long count; 1744 struct hstate *h; 1745 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1746 1747 err = kstrtoul(buf, 10, &count); 1748 if (err) 1749 goto out; 1750 1751 h = kobj_to_hstate(kobj, &nid); 1752 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 1753 err = -EINVAL; 1754 goto out; 1755 } 1756 1757 if (nid == NUMA_NO_NODE) { 1758 /* 1759 * global hstate attribute 1760 */ 1761 if (!(obey_mempolicy && 1762 init_nodemask_of_mempolicy(nodes_allowed))) { 1763 NODEMASK_FREE(nodes_allowed); 1764 nodes_allowed = &node_states[N_MEMORY]; 1765 } 1766 } else if (nodes_allowed) { 1767 /* 1768 * per node hstate attribute: adjust count to global, 1769 * but restrict alloc/free to the specified node. 1770 */ 1771 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1772 init_nodemask_of_node(nodes_allowed, nid); 1773 } else 1774 nodes_allowed = &node_states[N_MEMORY]; 1775 1776 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1777 1778 if (nodes_allowed != &node_states[N_MEMORY]) 1779 NODEMASK_FREE(nodes_allowed); 1780 1781 return len; 1782 out: 1783 NODEMASK_FREE(nodes_allowed); 1784 return err; 1785 } 1786 1787 static ssize_t nr_hugepages_show(struct kobject *kobj, 1788 struct kobj_attribute *attr, char *buf) 1789 { 1790 return nr_hugepages_show_common(kobj, attr, buf); 1791 } 1792 1793 static ssize_t nr_hugepages_store(struct kobject *kobj, 1794 struct kobj_attribute *attr, const char *buf, size_t len) 1795 { 1796 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1797 } 1798 HSTATE_ATTR(nr_hugepages); 1799 1800 #ifdef CONFIG_NUMA 1801 1802 /* 1803 * hstate attribute for optionally mempolicy-based constraint on persistent 1804 * huge page alloc/free. 1805 */ 1806 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1807 struct kobj_attribute *attr, char *buf) 1808 { 1809 return nr_hugepages_show_common(kobj, attr, buf); 1810 } 1811 1812 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1813 struct kobj_attribute *attr, const char *buf, size_t len) 1814 { 1815 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1816 } 1817 HSTATE_ATTR(nr_hugepages_mempolicy); 1818 #endif 1819 1820 1821 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1822 struct kobj_attribute *attr, char *buf) 1823 { 1824 struct hstate *h = kobj_to_hstate(kobj, NULL); 1825 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1826 } 1827 1828 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1829 struct kobj_attribute *attr, const char *buf, size_t count) 1830 { 1831 int err; 1832 unsigned long input; 1833 struct hstate *h = kobj_to_hstate(kobj, NULL); 1834 1835 if (hstate_is_gigantic(h)) 1836 return -EINVAL; 1837 1838 err = kstrtoul(buf, 10, &input); 1839 if (err) 1840 return err; 1841 1842 spin_lock(&hugetlb_lock); 1843 h->nr_overcommit_huge_pages = input; 1844 spin_unlock(&hugetlb_lock); 1845 1846 return count; 1847 } 1848 HSTATE_ATTR(nr_overcommit_hugepages); 1849 1850 static ssize_t free_hugepages_show(struct kobject *kobj, 1851 struct kobj_attribute *attr, char *buf) 1852 { 1853 struct hstate *h; 1854 unsigned long free_huge_pages; 1855 int nid; 1856 1857 h = kobj_to_hstate(kobj, &nid); 1858 if (nid == NUMA_NO_NODE) 1859 free_huge_pages = h->free_huge_pages; 1860 else 1861 free_huge_pages = h->free_huge_pages_node[nid]; 1862 1863 return sprintf(buf, "%lu\n", free_huge_pages); 1864 } 1865 HSTATE_ATTR_RO(free_hugepages); 1866 1867 static ssize_t resv_hugepages_show(struct kobject *kobj, 1868 struct kobj_attribute *attr, char *buf) 1869 { 1870 struct hstate *h = kobj_to_hstate(kobj, NULL); 1871 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1872 } 1873 HSTATE_ATTR_RO(resv_hugepages); 1874 1875 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1876 struct kobj_attribute *attr, char *buf) 1877 { 1878 struct hstate *h; 1879 unsigned long surplus_huge_pages; 1880 int nid; 1881 1882 h = kobj_to_hstate(kobj, &nid); 1883 if (nid == NUMA_NO_NODE) 1884 surplus_huge_pages = h->surplus_huge_pages; 1885 else 1886 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1887 1888 return sprintf(buf, "%lu\n", surplus_huge_pages); 1889 } 1890 HSTATE_ATTR_RO(surplus_hugepages); 1891 1892 static struct attribute *hstate_attrs[] = { 1893 &nr_hugepages_attr.attr, 1894 &nr_overcommit_hugepages_attr.attr, 1895 &free_hugepages_attr.attr, 1896 &resv_hugepages_attr.attr, 1897 &surplus_hugepages_attr.attr, 1898 #ifdef CONFIG_NUMA 1899 &nr_hugepages_mempolicy_attr.attr, 1900 #endif 1901 NULL, 1902 }; 1903 1904 static struct attribute_group hstate_attr_group = { 1905 .attrs = hstate_attrs, 1906 }; 1907 1908 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1909 struct kobject **hstate_kobjs, 1910 struct attribute_group *hstate_attr_group) 1911 { 1912 int retval; 1913 int hi = hstate_index(h); 1914 1915 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1916 if (!hstate_kobjs[hi]) 1917 return -ENOMEM; 1918 1919 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1920 if (retval) 1921 kobject_put(hstate_kobjs[hi]); 1922 1923 return retval; 1924 } 1925 1926 static void __init hugetlb_sysfs_init(void) 1927 { 1928 struct hstate *h; 1929 int err; 1930 1931 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1932 if (!hugepages_kobj) 1933 return; 1934 1935 for_each_hstate(h) { 1936 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1937 hstate_kobjs, &hstate_attr_group); 1938 if (err) 1939 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1940 } 1941 } 1942 1943 #ifdef CONFIG_NUMA 1944 1945 /* 1946 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1947 * with node devices in node_devices[] using a parallel array. The array 1948 * index of a node device or _hstate == node id. 1949 * This is here to avoid any static dependency of the node device driver, in 1950 * the base kernel, on the hugetlb module. 1951 */ 1952 struct node_hstate { 1953 struct kobject *hugepages_kobj; 1954 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1955 }; 1956 struct node_hstate node_hstates[MAX_NUMNODES]; 1957 1958 /* 1959 * A subset of global hstate attributes for node devices 1960 */ 1961 static struct attribute *per_node_hstate_attrs[] = { 1962 &nr_hugepages_attr.attr, 1963 &free_hugepages_attr.attr, 1964 &surplus_hugepages_attr.attr, 1965 NULL, 1966 }; 1967 1968 static struct attribute_group per_node_hstate_attr_group = { 1969 .attrs = per_node_hstate_attrs, 1970 }; 1971 1972 /* 1973 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1974 * Returns node id via non-NULL nidp. 1975 */ 1976 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1977 { 1978 int nid; 1979 1980 for (nid = 0; nid < nr_node_ids; nid++) { 1981 struct node_hstate *nhs = &node_hstates[nid]; 1982 int i; 1983 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1984 if (nhs->hstate_kobjs[i] == kobj) { 1985 if (nidp) 1986 *nidp = nid; 1987 return &hstates[i]; 1988 } 1989 } 1990 1991 BUG(); 1992 return NULL; 1993 } 1994 1995 /* 1996 * Unregister hstate attributes from a single node device. 1997 * No-op if no hstate attributes attached. 1998 */ 1999 static void hugetlb_unregister_node(struct node *node) 2000 { 2001 struct hstate *h; 2002 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2003 2004 if (!nhs->hugepages_kobj) 2005 return; /* no hstate attributes */ 2006 2007 for_each_hstate(h) { 2008 int idx = hstate_index(h); 2009 if (nhs->hstate_kobjs[idx]) { 2010 kobject_put(nhs->hstate_kobjs[idx]); 2011 nhs->hstate_kobjs[idx] = NULL; 2012 } 2013 } 2014 2015 kobject_put(nhs->hugepages_kobj); 2016 nhs->hugepages_kobj = NULL; 2017 } 2018 2019 /* 2020 * hugetlb module exit: unregister hstate attributes from node devices 2021 * that have them. 2022 */ 2023 static void hugetlb_unregister_all_nodes(void) 2024 { 2025 int nid; 2026 2027 /* 2028 * disable node device registrations. 2029 */ 2030 register_hugetlbfs_with_node(NULL, NULL); 2031 2032 /* 2033 * remove hstate attributes from any nodes that have them. 2034 */ 2035 for (nid = 0; nid < nr_node_ids; nid++) 2036 hugetlb_unregister_node(node_devices[nid]); 2037 } 2038 2039 /* 2040 * Register hstate attributes for a single node device. 2041 * No-op if attributes already registered. 2042 */ 2043 static void hugetlb_register_node(struct node *node) 2044 { 2045 struct hstate *h; 2046 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2047 int err; 2048 2049 if (nhs->hugepages_kobj) 2050 return; /* already allocated */ 2051 2052 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2053 &node->dev.kobj); 2054 if (!nhs->hugepages_kobj) 2055 return; 2056 2057 for_each_hstate(h) { 2058 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2059 nhs->hstate_kobjs, 2060 &per_node_hstate_attr_group); 2061 if (err) { 2062 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2063 h->name, node->dev.id); 2064 hugetlb_unregister_node(node); 2065 break; 2066 } 2067 } 2068 } 2069 2070 /* 2071 * hugetlb init time: register hstate attributes for all registered node 2072 * devices of nodes that have memory. All on-line nodes should have 2073 * registered their associated device by this time. 2074 */ 2075 static void hugetlb_register_all_nodes(void) 2076 { 2077 int nid; 2078 2079 for_each_node_state(nid, N_MEMORY) { 2080 struct node *node = node_devices[nid]; 2081 if (node->dev.id == nid) 2082 hugetlb_register_node(node); 2083 } 2084 2085 /* 2086 * Let the node device driver know we're here so it can 2087 * [un]register hstate attributes on node hotplug. 2088 */ 2089 register_hugetlbfs_with_node(hugetlb_register_node, 2090 hugetlb_unregister_node); 2091 } 2092 #else /* !CONFIG_NUMA */ 2093 2094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2095 { 2096 BUG(); 2097 if (nidp) 2098 *nidp = -1; 2099 return NULL; 2100 } 2101 2102 static void hugetlb_unregister_all_nodes(void) { } 2103 2104 static void hugetlb_register_all_nodes(void) { } 2105 2106 #endif 2107 2108 static void __exit hugetlb_exit(void) 2109 { 2110 struct hstate *h; 2111 2112 hugetlb_unregister_all_nodes(); 2113 2114 for_each_hstate(h) { 2115 kobject_put(hstate_kobjs[hstate_index(h)]); 2116 } 2117 2118 kobject_put(hugepages_kobj); 2119 kfree(htlb_fault_mutex_table); 2120 } 2121 module_exit(hugetlb_exit); 2122 2123 static int __init hugetlb_init(void) 2124 { 2125 int i; 2126 2127 if (!hugepages_supported()) 2128 return 0; 2129 2130 if (!size_to_hstate(default_hstate_size)) { 2131 default_hstate_size = HPAGE_SIZE; 2132 if (!size_to_hstate(default_hstate_size)) 2133 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2134 } 2135 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2136 if (default_hstate_max_huge_pages) 2137 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2138 2139 hugetlb_init_hstates(); 2140 gather_bootmem_prealloc(); 2141 report_hugepages(); 2142 2143 hugetlb_sysfs_init(); 2144 hugetlb_register_all_nodes(); 2145 hugetlb_cgroup_file_init(); 2146 2147 #ifdef CONFIG_SMP 2148 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2149 #else 2150 num_fault_mutexes = 1; 2151 #endif 2152 htlb_fault_mutex_table = 2153 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2154 BUG_ON(!htlb_fault_mutex_table); 2155 2156 for (i = 0; i < num_fault_mutexes; i++) 2157 mutex_init(&htlb_fault_mutex_table[i]); 2158 return 0; 2159 } 2160 module_init(hugetlb_init); 2161 2162 /* Should be called on processing a hugepagesz=... option */ 2163 void __init hugetlb_add_hstate(unsigned order) 2164 { 2165 struct hstate *h; 2166 unsigned long i; 2167 2168 if (size_to_hstate(PAGE_SIZE << order)) { 2169 pr_warning("hugepagesz= specified twice, ignoring\n"); 2170 return; 2171 } 2172 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2173 BUG_ON(order == 0); 2174 h = &hstates[hugetlb_max_hstate++]; 2175 h->order = order; 2176 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2177 h->nr_huge_pages = 0; 2178 h->free_huge_pages = 0; 2179 for (i = 0; i < MAX_NUMNODES; ++i) 2180 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2181 INIT_LIST_HEAD(&h->hugepage_activelist); 2182 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2183 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2184 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2185 huge_page_size(h)/1024); 2186 2187 parsed_hstate = h; 2188 } 2189 2190 static int __init hugetlb_nrpages_setup(char *s) 2191 { 2192 unsigned long *mhp; 2193 static unsigned long *last_mhp; 2194 2195 /* 2196 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2197 * so this hugepages= parameter goes to the "default hstate". 2198 */ 2199 if (!hugetlb_max_hstate) 2200 mhp = &default_hstate_max_huge_pages; 2201 else 2202 mhp = &parsed_hstate->max_huge_pages; 2203 2204 if (mhp == last_mhp) { 2205 pr_warning("hugepages= specified twice without " 2206 "interleaving hugepagesz=, ignoring\n"); 2207 return 1; 2208 } 2209 2210 if (sscanf(s, "%lu", mhp) <= 0) 2211 *mhp = 0; 2212 2213 /* 2214 * Global state is always initialized later in hugetlb_init. 2215 * But we need to allocate >= MAX_ORDER hstates here early to still 2216 * use the bootmem allocator. 2217 */ 2218 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2219 hugetlb_hstate_alloc_pages(parsed_hstate); 2220 2221 last_mhp = mhp; 2222 2223 return 1; 2224 } 2225 __setup("hugepages=", hugetlb_nrpages_setup); 2226 2227 static int __init hugetlb_default_setup(char *s) 2228 { 2229 default_hstate_size = memparse(s, &s); 2230 return 1; 2231 } 2232 __setup("default_hugepagesz=", hugetlb_default_setup); 2233 2234 static unsigned int cpuset_mems_nr(unsigned int *array) 2235 { 2236 int node; 2237 unsigned int nr = 0; 2238 2239 for_each_node_mask(node, cpuset_current_mems_allowed) 2240 nr += array[node]; 2241 2242 return nr; 2243 } 2244 2245 #ifdef CONFIG_SYSCTL 2246 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2247 struct ctl_table *table, int write, 2248 void __user *buffer, size_t *length, loff_t *ppos) 2249 { 2250 struct hstate *h = &default_hstate; 2251 unsigned long tmp; 2252 int ret; 2253 2254 if (!hugepages_supported()) 2255 return -ENOTSUPP; 2256 2257 tmp = h->max_huge_pages; 2258 2259 if (write && hstate_is_gigantic(h) && !gigantic_page_supported()) 2260 return -EINVAL; 2261 2262 table->data = &tmp; 2263 table->maxlen = sizeof(unsigned long); 2264 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2265 if (ret) 2266 goto out; 2267 2268 if (write) { 2269 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2270 GFP_KERNEL | __GFP_NORETRY); 2271 if (!(obey_mempolicy && 2272 init_nodemask_of_mempolicy(nodes_allowed))) { 2273 NODEMASK_FREE(nodes_allowed); 2274 nodes_allowed = &node_states[N_MEMORY]; 2275 } 2276 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2277 2278 if (nodes_allowed != &node_states[N_MEMORY]) 2279 NODEMASK_FREE(nodes_allowed); 2280 } 2281 out: 2282 return ret; 2283 } 2284 2285 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2286 void __user *buffer, size_t *length, loff_t *ppos) 2287 { 2288 2289 return hugetlb_sysctl_handler_common(false, table, write, 2290 buffer, length, ppos); 2291 } 2292 2293 #ifdef CONFIG_NUMA 2294 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2295 void __user *buffer, size_t *length, loff_t *ppos) 2296 { 2297 return hugetlb_sysctl_handler_common(true, table, write, 2298 buffer, length, ppos); 2299 } 2300 #endif /* CONFIG_NUMA */ 2301 2302 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2303 void __user *buffer, 2304 size_t *length, loff_t *ppos) 2305 { 2306 struct hstate *h = &default_hstate; 2307 unsigned long tmp; 2308 int ret; 2309 2310 if (!hugepages_supported()) 2311 return -ENOTSUPP; 2312 2313 tmp = h->nr_overcommit_huge_pages; 2314 2315 if (write && hstate_is_gigantic(h)) 2316 return -EINVAL; 2317 2318 table->data = &tmp; 2319 table->maxlen = sizeof(unsigned long); 2320 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2321 if (ret) 2322 goto out; 2323 2324 if (write) { 2325 spin_lock(&hugetlb_lock); 2326 h->nr_overcommit_huge_pages = tmp; 2327 spin_unlock(&hugetlb_lock); 2328 } 2329 out: 2330 return ret; 2331 } 2332 2333 #endif /* CONFIG_SYSCTL */ 2334 2335 void hugetlb_report_meminfo(struct seq_file *m) 2336 { 2337 struct hstate *h = &default_hstate; 2338 if (!hugepages_supported()) 2339 return; 2340 seq_printf(m, 2341 "HugePages_Total: %5lu\n" 2342 "HugePages_Free: %5lu\n" 2343 "HugePages_Rsvd: %5lu\n" 2344 "HugePages_Surp: %5lu\n" 2345 "Hugepagesize: %8lu kB\n", 2346 h->nr_huge_pages, 2347 h->free_huge_pages, 2348 h->resv_huge_pages, 2349 h->surplus_huge_pages, 2350 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2351 } 2352 2353 int hugetlb_report_node_meminfo(int nid, char *buf) 2354 { 2355 struct hstate *h = &default_hstate; 2356 if (!hugepages_supported()) 2357 return 0; 2358 return sprintf(buf, 2359 "Node %d HugePages_Total: %5u\n" 2360 "Node %d HugePages_Free: %5u\n" 2361 "Node %d HugePages_Surp: %5u\n", 2362 nid, h->nr_huge_pages_node[nid], 2363 nid, h->free_huge_pages_node[nid], 2364 nid, h->surplus_huge_pages_node[nid]); 2365 } 2366 2367 void hugetlb_show_meminfo(void) 2368 { 2369 struct hstate *h; 2370 int nid; 2371 2372 if (!hugepages_supported()) 2373 return; 2374 2375 for_each_node_state(nid, N_MEMORY) 2376 for_each_hstate(h) 2377 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2378 nid, 2379 h->nr_huge_pages_node[nid], 2380 h->free_huge_pages_node[nid], 2381 h->surplus_huge_pages_node[nid], 2382 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2383 } 2384 2385 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2386 unsigned long hugetlb_total_pages(void) 2387 { 2388 struct hstate *h; 2389 unsigned long nr_total_pages = 0; 2390 2391 for_each_hstate(h) 2392 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2393 return nr_total_pages; 2394 } 2395 2396 static int hugetlb_acct_memory(struct hstate *h, long delta) 2397 { 2398 int ret = -ENOMEM; 2399 2400 spin_lock(&hugetlb_lock); 2401 /* 2402 * When cpuset is configured, it breaks the strict hugetlb page 2403 * reservation as the accounting is done on a global variable. Such 2404 * reservation is completely rubbish in the presence of cpuset because 2405 * the reservation is not checked against page availability for the 2406 * current cpuset. Application can still potentially OOM'ed by kernel 2407 * with lack of free htlb page in cpuset that the task is in. 2408 * Attempt to enforce strict accounting with cpuset is almost 2409 * impossible (or too ugly) because cpuset is too fluid that 2410 * task or memory node can be dynamically moved between cpusets. 2411 * 2412 * The change of semantics for shared hugetlb mapping with cpuset is 2413 * undesirable. However, in order to preserve some of the semantics, 2414 * we fall back to check against current free page availability as 2415 * a best attempt and hopefully to minimize the impact of changing 2416 * semantics that cpuset has. 2417 */ 2418 if (delta > 0) { 2419 if (gather_surplus_pages(h, delta) < 0) 2420 goto out; 2421 2422 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2423 return_unused_surplus_pages(h, delta); 2424 goto out; 2425 } 2426 } 2427 2428 ret = 0; 2429 if (delta < 0) 2430 return_unused_surplus_pages(h, (unsigned long) -delta); 2431 2432 out: 2433 spin_unlock(&hugetlb_lock); 2434 return ret; 2435 } 2436 2437 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2438 { 2439 struct resv_map *resv = vma_resv_map(vma); 2440 2441 /* 2442 * This new VMA should share its siblings reservation map if present. 2443 * The VMA will only ever have a valid reservation map pointer where 2444 * it is being copied for another still existing VMA. As that VMA 2445 * has a reference to the reservation map it cannot disappear until 2446 * after this open call completes. It is therefore safe to take a 2447 * new reference here without additional locking. 2448 */ 2449 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2450 kref_get(&resv->refs); 2451 } 2452 2453 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2454 { 2455 struct hstate *h = hstate_vma(vma); 2456 struct resv_map *resv = vma_resv_map(vma); 2457 struct hugepage_subpool *spool = subpool_vma(vma); 2458 unsigned long reserve, start, end; 2459 2460 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2461 return; 2462 2463 start = vma_hugecache_offset(h, vma, vma->vm_start); 2464 end = vma_hugecache_offset(h, vma, vma->vm_end); 2465 2466 reserve = (end - start) - region_count(resv, start, end); 2467 2468 kref_put(&resv->refs, resv_map_release); 2469 2470 if (reserve) { 2471 hugetlb_acct_memory(h, -reserve); 2472 hugepage_subpool_put_pages(spool, reserve); 2473 } 2474 } 2475 2476 /* 2477 * We cannot handle pagefaults against hugetlb pages at all. They cause 2478 * handle_mm_fault() to try to instantiate regular-sized pages in the 2479 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2480 * this far. 2481 */ 2482 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2483 { 2484 BUG(); 2485 return 0; 2486 } 2487 2488 const struct vm_operations_struct hugetlb_vm_ops = { 2489 .fault = hugetlb_vm_op_fault, 2490 .open = hugetlb_vm_op_open, 2491 .close = hugetlb_vm_op_close, 2492 }; 2493 2494 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2495 int writable) 2496 { 2497 pte_t entry; 2498 2499 if (writable) { 2500 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2501 vma->vm_page_prot))); 2502 } else { 2503 entry = huge_pte_wrprotect(mk_huge_pte(page, 2504 vma->vm_page_prot)); 2505 } 2506 entry = pte_mkyoung(entry); 2507 entry = pte_mkhuge(entry); 2508 entry = arch_make_huge_pte(entry, vma, page, writable); 2509 2510 return entry; 2511 } 2512 2513 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2514 unsigned long address, pte_t *ptep) 2515 { 2516 pte_t entry; 2517 2518 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2519 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2520 update_mmu_cache(vma, address, ptep); 2521 } 2522 2523 static int is_hugetlb_entry_migration(pte_t pte) 2524 { 2525 swp_entry_t swp; 2526 2527 if (huge_pte_none(pte) || pte_present(pte)) 2528 return 0; 2529 swp = pte_to_swp_entry(pte); 2530 if (non_swap_entry(swp) && is_migration_entry(swp)) 2531 return 1; 2532 else 2533 return 0; 2534 } 2535 2536 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2537 { 2538 swp_entry_t swp; 2539 2540 if (huge_pte_none(pte) || pte_present(pte)) 2541 return 0; 2542 swp = pte_to_swp_entry(pte); 2543 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2544 return 1; 2545 else 2546 return 0; 2547 } 2548 2549 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2550 struct vm_area_struct *vma) 2551 { 2552 pte_t *src_pte, *dst_pte, entry; 2553 struct page *ptepage; 2554 unsigned long addr; 2555 int cow; 2556 struct hstate *h = hstate_vma(vma); 2557 unsigned long sz = huge_page_size(h); 2558 unsigned long mmun_start; /* For mmu_notifiers */ 2559 unsigned long mmun_end; /* For mmu_notifiers */ 2560 int ret = 0; 2561 2562 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2563 2564 mmun_start = vma->vm_start; 2565 mmun_end = vma->vm_end; 2566 if (cow) 2567 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 2568 2569 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2570 spinlock_t *src_ptl, *dst_ptl; 2571 src_pte = huge_pte_offset(src, addr); 2572 if (!src_pte) 2573 continue; 2574 dst_pte = huge_pte_alloc(dst, addr, sz); 2575 if (!dst_pte) { 2576 ret = -ENOMEM; 2577 break; 2578 } 2579 2580 /* If the pagetables are shared don't copy or take references */ 2581 if (dst_pte == src_pte) 2582 continue; 2583 2584 dst_ptl = huge_pte_lock(h, dst, dst_pte); 2585 src_ptl = huge_pte_lockptr(h, src, src_pte); 2586 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 2587 entry = huge_ptep_get(src_pte); 2588 if (huge_pte_none(entry)) { /* skip none entry */ 2589 ; 2590 } else if (unlikely(is_hugetlb_entry_migration(entry) || 2591 is_hugetlb_entry_hwpoisoned(entry))) { 2592 swp_entry_t swp_entry = pte_to_swp_entry(entry); 2593 2594 if (is_write_migration_entry(swp_entry) && cow) { 2595 /* 2596 * COW mappings require pages in both 2597 * parent and child to be set to read. 2598 */ 2599 make_migration_entry_read(&swp_entry); 2600 entry = swp_entry_to_pte(swp_entry); 2601 set_huge_pte_at(src, addr, src_pte, entry); 2602 } 2603 set_huge_pte_at(dst, addr, dst_pte, entry); 2604 } else { 2605 if (cow) 2606 huge_ptep_set_wrprotect(src, addr, src_pte); 2607 entry = huge_ptep_get(src_pte); 2608 ptepage = pte_page(entry); 2609 get_page(ptepage); 2610 page_dup_rmap(ptepage); 2611 set_huge_pte_at(dst, addr, dst_pte, entry); 2612 } 2613 spin_unlock(src_ptl); 2614 spin_unlock(dst_ptl); 2615 } 2616 2617 if (cow) 2618 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 2619 2620 return ret; 2621 } 2622 2623 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2624 unsigned long start, unsigned long end, 2625 struct page *ref_page) 2626 { 2627 int force_flush = 0; 2628 struct mm_struct *mm = vma->vm_mm; 2629 unsigned long address; 2630 pte_t *ptep; 2631 pte_t pte; 2632 spinlock_t *ptl; 2633 struct page *page; 2634 struct hstate *h = hstate_vma(vma); 2635 unsigned long sz = huge_page_size(h); 2636 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2637 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2638 2639 WARN_ON(!is_vm_hugetlb_page(vma)); 2640 BUG_ON(start & ~huge_page_mask(h)); 2641 BUG_ON(end & ~huge_page_mask(h)); 2642 2643 tlb_start_vma(tlb, vma); 2644 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2645 again: 2646 for (address = start; address < end; address += sz) { 2647 ptep = huge_pte_offset(mm, address); 2648 if (!ptep) 2649 continue; 2650 2651 ptl = huge_pte_lock(h, mm, ptep); 2652 if (huge_pmd_unshare(mm, &address, ptep)) 2653 goto unlock; 2654 2655 pte = huge_ptep_get(ptep); 2656 if (huge_pte_none(pte)) 2657 goto unlock; 2658 2659 /* 2660 * HWPoisoned hugepage is already unmapped and dropped reference 2661 */ 2662 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 2663 huge_pte_clear(mm, address, ptep); 2664 goto unlock; 2665 } 2666 2667 page = pte_page(pte); 2668 /* 2669 * If a reference page is supplied, it is because a specific 2670 * page is being unmapped, not a range. Ensure the page we 2671 * are about to unmap is the actual page of interest. 2672 */ 2673 if (ref_page) { 2674 if (page != ref_page) 2675 goto unlock; 2676 2677 /* 2678 * Mark the VMA as having unmapped its page so that 2679 * future faults in this VMA will fail rather than 2680 * looking like data was lost 2681 */ 2682 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2683 } 2684 2685 pte = huge_ptep_get_and_clear(mm, address, ptep); 2686 tlb_remove_tlb_entry(tlb, ptep, address); 2687 if (huge_pte_dirty(pte)) 2688 set_page_dirty(page); 2689 2690 page_remove_rmap(page); 2691 force_flush = !__tlb_remove_page(tlb, page); 2692 if (force_flush) { 2693 spin_unlock(ptl); 2694 break; 2695 } 2696 /* Bail out after unmapping reference page if supplied */ 2697 if (ref_page) { 2698 spin_unlock(ptl); 2699 break; 2700 } 2701 unlock: 2702 spin_unlock(ptl); 2703 } 2704 /* 2705 * mmu_gather ran out of room to batch pages, we break out of 2706 * the PTE lock to avoid doing the potential expensive TLB invalidate 2707 * and page-free while holding it. 2708 */ 2709 if (force_flush) { 2710 force_flush = 0; 2711 tlb_flush_mmu(tlb); 2712 if (address < end && !ref_page) 2713 goto again; 2714 } 2715 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2716 tlb_end_vma(tlb, vma); 2717 } 2718 2719 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2720 struct vm_area_struct *vma, unsigned long start, 2721 unsigned long end, struct page *ref_page) 2722 { 2723 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2724 2725 /* 2726 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2727 * test will fail on a vma being torn down, and not grab a page table 2728 * on its way out. We're lucky that the flag has such an appropriate 2729 * name, and can in fact be safely cleared here. We could clear it 2730 * before the __unmap_hugepage_range above, but all that's necessary 2731 * is to clear it before releasing the i_mmap_mutex. This works 2732 * because in the context this is called, the VMA is about to be 2733 * destroyed and the i_mmap_mutex is held. 2734 */ 2735 vma->vm_flags &= ~VM_MAYSHARE; 2736 } 2737 2738 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2739 unsigned long end, struct page *ref_page) 2740 { 2741 struct mm_struct *mm; 2742 struct mmu_gather tlb; 2743 2744 mm = vma->vm_mm; 2745 2746 tlb_gather_mmu(&tlb, mm, start, end); 2747 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2748 tlb_finish_mmu(&tlb, start, end); 2749 } 2750 2751 /* 2752 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2753 * mappping it owns the reserve page for. The intention is to unmap the page 2754 * from other VMAs and let the children be SIGKILLed if they are faulting the 2755 * same region. 2756 */ 2757 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2758 struct page *page, unsigned long address) 2759 { 2760 struct hstate *h = hstate_vma(vma); 2761 struct vm_area_struct *iter_vma; 2762 struct address_space *mapping; 2763 pgoff_t pgoff; 2764 2765 /* 2766 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2767 * from page cache lookup which is in HPAGE_SIZE units. 2768 */ 2769 address = address & huge_page_mask(h); 2770 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2771 vma->vm_pgoff; 2772 mapping = file_inode(vma->vm_file)->i_mapping; 2773 2774 /* 2775 * Take the mapping lock for the duration of the table walk. As 2776 * this mapping should be shared between all the VMAs, 2777 * __unmap_hugepage_range() is called as the lock is already held 2778 */ 2779 mutex_lock(&mapping->i_mmap_mutex); 2780 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2781 /* Do not unmap the current VMA */ 2782 if (iter_vma == vma) 2783 continue; 2784 2785 /* 2786 * Unmap the page from other VMAs without their own reserves. 2787 * They get marked to be SIGKILLed if they fault in these 2788 * areas. This is because a future no-page fault on this VMA 2789 * could insert a zeroed page instead of the data existing 2790 * from the time of fork. This would look like data corruption 2791 */ 2792 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2793 unmap_hugepage_range(iter_vma, address, 2794 address + huge_page_size(h), page); 2795 } 2796 mutex_unlock(&mapping->i_mmap_mutex); 2797 2798 return 1; 2799 } 2800 2801 /* 2802 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2803 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2804 * cannot race with other handlers or page migration. 2805 * Keep the pte_same checks anyway to make transition from the mutex easier. 2806 */ 2807 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2808 unsigned long address, pte_t *ptep, pte_t pte, 2809 struct page *pagecache_page, spinlock_t *ptl) 2810 { 2811 struct hstate *h = hstate_vma(vma); 2812 struct page *old_page, *new_page; 2813 int outside_reserve = 0; 2814 unsigned long mmun_start; /* For mmu_notifiers */ 2815 unsigned long mmun_end; /* For mmu_notifiers */ 2816 2817 old_page = pte_page(pte); 2818 2819 retry_avoidcopy: 2820 /* If no-one else is actually using this page, avoid the copy 2821 * and just make the page writable */ 2822 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 2823 page_move_anon_rmap(old_page, vma, address); 2824 set_huge_ptep_writable(vma, address, ptep); 2825 return 0; 2826 } 2827 2828 /* 2829 * If the process that created a MAP_PRIVATE mapping is about to 2830 * perform a COW due to a shared page count, attempt to satisfy 2831 * the allocation without using the existing reserves. The pagecache 2832 * page is used to determine if the reserve at this address was 2833 * consumed or not. If reserves were used, a partial faulted mapping 2834 * at the time of fork() could consume its reserves on COW instead 2835 * of the full address range. 2836 */ 2837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2838 old_page != pagecache_page) 2839 outside_reserve = 1; 2840 2841 page_cache_get(old_page); 2842 2843 /* Drop page table lock as buddy allocator may be called */ 2844 spin_unlock(ptl); 2845 new_page = alloc_huge_page(vma, address, outside_reserve); 2846 2847 if (IS_ERR(new_page)) { 2848 long err = PTR_ERR(new_page); 2849 page_cache_release(old_page); 2850 2851 /* 2852 * If a process owning a MAP_PRIVATE mapping fails to COW, 2853 * it is due to references held by a child and an insufficient 2854 * huge page pool. To guarantee the original mappers 2855 * reliability, unmap the page from child processes. The child 2856 * may get SIGKILLed if it later faults. 2857 */ 2858 if (outside_reserve) { 2859 BUG_ON(huge_pte_none(pte)); 2860 if (unmap_ref_private(mm, vma, old_page, address)) { 2861 BUG_ON(huge_pte_none(pte)); 2862 spin_lock(ptl); 2863 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2864 if (likely(ptep && 2865 pte_same(huge_ptep_get(ptep), pte))) 2866 goto retry_avoidcopy; 2867 /* 2868 * race occurs while re-acquiring page table 2869 * lock, and our job is done. 2870 */ 2871 return 0; 2872 } 2873 WARN_ON_ONCE(1); 2874 } 2875 2876 /* Caller expects lock to be held */ 2877 spin_lock(ptl); 2878 if (err == -ENOMEM) 2879 return VM_FAULT_OOM; 2880 else 2881 return VM_FAULT_SIGBUS; 2882 } 2883 2884 /* 2885 * When the original hugepage is shared one, it does not have 2886 * anon_vma prepared. 2887 */ 2888 if (unlikely(anon_vma_prepare(vma))) { 2889 page_cache_release(new_page); 2890 page_cache_release(old_page); 2891 /* Caller expects lock to be held */ 2892 spin_lock(ptl); 2893 return VM_FAULT_OOM; 2894 } 2895 2896 copy_user_huge_page(new_page, old_page, address, vma, 2897 pages_per_huge_page(h)); 2898 __SetPageUptodate(new_page); 2899 2900 mmun_start = address & huge_page_mask(h); 2901 mmun_end = mmun_start + huge_page_size(h); 2902 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2903 /* 2904 * Retake the page table lock to check for racing updates 2905 * before the page tables are altered 2906 */ 2907 spin_lock(ptl); 2908 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2909 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 2910 ClearPagePrivate(new_page); 2911 2912 /* Break COW */ 2913 huge_ptep_clear_flush(vma, address, ptep); 2914 set_huge_pte_at(mm, address, ptep, 2915 make_huge_pte(vma, new_page, 1)); 2916 page_remove_rmap(old_page); 2917 hugepage_add_new_anon_rmap(new_page, vma, address); 2918 /* Make the old page be freed below */ 2919 new_page = old_page; 2920 } 2921 spin_unlock(ptl); 2922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2923 page_cache_release(new_page); 2924 page_cache_release(old_page); 2925 2926 /* Caller expects lock to be held */ 2927 spin_lock(ptl); 2928 return 0; 2929 } 2930 2931 /* Return the pagecache page at a given address within a VMA */ 2932 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2933 struct vm_area_struct *vma, unsigned long address) 2934 { 2935 struct address_space *mapping; 2936 pgoff_t idx; 2937 2938 mapping = vma->vm_file->f_mapping; 2939 idx = vma_hugecache_offset(h, vma, address); 2940 2941 return find_lock_page(mapping, idx); 2942 } 2943 2944 /* 2945 * Return whether there is a pagecache page to back given address within VMA. 2946 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2947 */ 2948 static bool hugetlbfs_pagecache_present(struct hstate *h, 2949 struct vm_area_struct *vma, unsigned long address) 2950 { 2951 struct address_space *mapping; 2952 pgoff_t idx; 2953 struct page *page; 2954 2955 mapping = vma->vm_file->f_mapping; 2956 idx = vma_hugecache_offset(h, vma, address); 2957 2958 page = find_get_page(mapping, idx); 2959 if (page) 2960 put_page(page); 2961 return page != NULL; 2962 } 2963 2964 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2965 struct address_space *mapping, pgoff_t idx, 2966 unsigned long address, pte_t *ptep, unsigned int flags) 2967 { 2968 struct hstate *h = hstate_vma(vma); 2969 int ret = VM_FAULT_SIGBUS; 2970 int anon_rmap = 0; 2971 unsigned long size; 2972 struct page *page; 2973 pte_t new_pte; 2974 spinlock_t *ptl; 2975 2976 /* 2977 * Currently, we are forced to kill the process in the event the 2978 * original mapper has unmapped pages from the child due to a failed 2979 * COW. Warn that such a situation has occurred as it may not be obvious 2980 */ 2981 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2982 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2983 current->pid); 2984 return ret; 2985 } 2986 2987 /* 2988 * Use page lock to guard against racing truncation 2989 * before we get page_table_lock. 2990 */ 2991 retry: 2992 page = find_lock_page(mapping, idx); 2993 if (!page) { 2994 size = i_size_read(mapping->host) >> huge_page_shift(h); 2995 if (idx >= size) 2996 goto out; 2997 page = alloc_huge_page(vma, address, 0); 2998 if (IS_ERR(page)) { 2999 ret = PTR_ERR(page); 3000 if (ret == -ENOMEM) 3001 ret = VM_FAULT_OOM; 3002 else 3003 ret = VM_FAULT_SIGBUS; 3004 goto out; 3005 } 3006 clear_huge_page(page, address, pages_per_huge_page(h)); 3007 __SetPageUptodate(page); 3008 3009 if (vma->vm_flags & VM_MAYSHARE) { 3010 int err; 3011 struct inode *inode = mapping->host; 3012 3013 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3014 if (err) { 3015 put_page(page); 3016 if (err == -EEXIST) 3017 goto retry; 3018 goto out; 3019 } 3020 ClearPagePrivate(page); 3021 3022 spin_lock(&inode->i_lock); 3023 inode->i_blocks += blocks_per_huge_page(h); 3024 spin_unlock(&inode->i_lock); 3025 } else { 3026 lock_page(page); 3027 if (unlikely(anon_vma_prepare(vma))) { 3028 ret = VM_FAULT_OOM; 3029 goto backout_unlocked; 3030 } 3031 anon_rmap = 1; 3032 } 3033 } else { 3034 /* 3035 * If memory error occurs between mmap() and fault, some process 3036 * don't have hwpoisoned swap entry for errored virtual address. 3037 * So we need to block hugepage fault by PG_hwpoison bit check. 3038 */ 3039 if (unlikely(PageHWPoison(page))) { 3040 ret = VM_FAULT_HWPOISON | 3041 VM_FAULT_SET_HINDEX(hstate_index(h)); 3042 goto backout_unlocked; 3043 } 3044 } 3045 3046 /* 3047 * If we are going to COW a private mapping later, we examine the 3048 * pending reservations for this page now. This will ensure that 3049 * any allocations necessary to record that reservation occur outside 3050 * the spinlock. 3051 */ 3052 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 3053 if (vma_needs_reservation(h, vma, address) < 0) { 3054 ret = VM_FAULT_OOM; 3055 goto backout_unlocked; 3056 } 3057 3058 ptl = huge_pte_lockptr(h, mm, ptep); 3059 spin_lock(ptl); 3060 size = i_size_read(mapping->host) >> huge_page_shift(h); 3061 if (idx >= size) 3062 goto backout; 3063 3064 ret = 0; 3065 if (!huge_pte_none(huge_ptep_get(ptep))) 3066 goto backout; 3067 3068 if (anon_rmap) { 3069 ClearPagePrivate(page); 3070 hugepage_add_new_anon_rmap(page, vma, address); 3071 } else 3072 page_dup_rmap(page); 3073 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3074 && (vma->vm_flags & VM_SHARED))); 3075 set_huge_pte_at(mm, address, ptep, new_pte); 3076 3077 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3078 /* Optimization, do the COW without a second fault */ 3079 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3080 } 3081 3082 spin_unlock(ptl); 3083 unlock_page(page); 3084 out: 3085 return ret; 3086 3087 backout: 3088 spin_unlock(ptl); 3089 backout_unlocked: 3090 unlock_page(page); 3091 put_page(page); 3092 goto out; 3093 } 3094 3095 #ifdef CONFIG_SMP 3096 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3097 struct vm_area_struct *vma, 3098 struct address_space *mapping, 3099 pgoff_t idx, unsigned long address) 3100 { 3101 unsigned long key[2]; 3102 u32 hash; 3103 3104 if (vma->vm_flags & VM_SHARED) { 3105 key[0] = (unsigned long) mapping; 3106 key[1] = idx; 3107 } else { 3108 key[0] = (unsigned long) mm; 3109 key[1] = address >> huge_page_shift(h); 3110 } 3111 3112 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3113 3114 return hash & (num_fault_mutexes - 1); 3115 } 3116 #else 3117 /* 3118 * For uniprocesor systems we always use a single mutex, so just 3119 * return 0 and avoid the hashing overhead. 3120 */ 3121 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3122 struct vm_area_struct *vma, 3123 struct address_space *mapping, 3124 pgoff_t idx, unsigned long address) 3125 { 3126 return 0; 3127 } 3128 #endif 3129 3130 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3131 unsigned long address, unsigned int flags) 3132 { 3133 pte_t *ptep, entry; 3134 spinlock_t *ptl; 3135 int ret; 3136 u32 hash; 3137 pgoff_t idx; 3138 struct page *page = NULL; 3139 struct page *pagecache_page = NULL; 3140 struct hstate *h = hstate_vma(vma); 3141 struct address_space *mapping; 3142 3143 address &= huge_page_mask(h); 3144 3145 ptep = huge_pte_offset(mm, address); 3146 if (ptep) { 3147 entry = huge_ptep_get(ptep); 3148 if (unlikely(is_hugetlb_entry_migration(entry))) { 3149 migration_entry_wait_huge(vma, mm, ptep); 3150 return 0; 3151 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3152 return VM_FAULT_HWPOISON_LARGE | 3153 VM_FAULT_SET_HINDEX(hstate_index(h)); 3154 } 3155 3156 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3157 if (!ptep) 3158 return VM_FAULT_OOM; 3159 3160 mapping = vma->vm_file->f_mapping; 3161 idx = vma_hugecache_offset(h, vma, address); 3162 3163 /* 3164 * Serialize hugepage allocation and instantiation, so that we don't 3165 * get spurious allocation failures if two CPUs race to instantiate 3166 * the same page in the page cache. 3167 */ 3168 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); 3169 mutex_lock(&htlb_fault_mutex_table[hash]); 3170 3171 entry = huge_ptep_get(ptep); 3172 if (huge_pte_none(entry)) { 3173 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3174 goto out_mutex; 3175 } 3176 3177 ret = 0; 3178 3179 /* 3180 * If we are going to COW the mapping later, we examine the pending 3181 * reservations for this page now. This will ensure that any 3182 * allocations necessary to record that reservation occur outside the 3183 * spinlock. For private mappings, we also lookup the pagecache 3184 * page now as it is used to determine if a reservation has been 3185 * consumed. 3186 */ 3187 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3188 if (vma_needs_reservation(h, vma, address) < 0) { 3189 ret = VM_FAULT_OOM; 3190 goto out_mutex; 3191 } 3192 3193 if (!(vma->vm_flags & VM_MAYSHARE)) 3194 pagecache_page = hugetlbfs_pagecache_page(h, 3195 vma, address); 3196 } 3197 3198 /* 3199 * hugetlb_cow() requires page locks of pte_page(entry) and 3200 * pagecache_page, so here we need take the former one 3201 * when page != pagecache_page or !pagecache_page. 3202 * Note that locking order is always pagecache_page -> page, 3203 * so no worry about deadlock. 3204 */ 3205 page = pte_page(entry); 3206 get_page(page); 3207 if (page != pagecache_page) 3208 lock_page(page); 3209 3210 ptl = huge_pte_lockptr(h, mm, ptep); 3211 spin_lock(ptl); 3212 /* Check for a racing update before calling hugetlb_cow */ 3213 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3214 goto out_ptl; 3215 3216 3217 if (flags & FAULT_FLAG_WRITE) { 3218 if (!huge_pte_write(entry)) { 3219 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3220 pagecache_page, ptl); 3221 goto out_ptl; 3222 } 3223 entry = huge_pte_mkdirty(entry); 3224 } 3225 entry = pte_mkyoung(entry); 3226 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3227 flags & FAULT_FLAG_WRITE)) 3228 update_mmu_cache(vma, address, ptep); 3229 3230 out_ptl: 3231 spin_unlock(ptl); 3232 3233 if (pagecache_page) { 3234 unlock_page(pagecache_page); 3235 put_page(pagecache_page); 3236 } 3237 if (page != pagecache_page) 3238 unlock_page(page); 3239 put_page(page); 3240 3241 out_mutex: 3242 mutex_unlock(&htlb_fault_mutex_table[hash]); 3243 return ret; 3244 } 3245 3246 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3247 struct page **pages, struct vm_area_struct **vmas, 3248 unsigned long *position, unsigned long *nr_pages, 3249 long i, unsigned int flags) 3250 { 3251 unsigned long pfn_offset; 3252 unsigned long vaddr = *position; 3253 unsigned long remainder = *nr_pages; 3254 struct hstate *h = hstate_vma(vma); 3255 3256 while (vaddr < vma->vm_end && remainder) { 3257 pte_t *pte; 3258 spinlock_t *ptl = NULL; 3259 int absent; 3260 struct page *page; 3261 3262 /* 3263 * Some archs (sparc64, sh*) have multiple pte_ts to 3264 * each hugepage. We have to make sure we get the 3265 * first, for the page indexing below to work. 3266 * 3267 * Note that page table lock is not held when pte is null. 3268 */ 3269 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3270 if (pte) 3271 ptl = huge_pte_lock(h, mm, pte); 3272 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3273 3274 /* 3275 * When coredumping, it suits get_dump_page if we just return 3276 * an error where there's an empty slot with no huge pagecache 3277 * to back it. This way, we avoid allocating a hugepage, and 3278 * the sparse dumpfile avoids allocating disk blocks, but its 3279 * huge holes still show up with zeroes where they need to be. 3280 */ 3281 if (absent && (flags & FOLL_DUMP) && 3282 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3283 if (pte) 3284 spin_unlock(ptl); 3285 remainder = 0; 3286 break; 3287 } 3288 3289 /* 3290 * We need call hugetlb_fault for both hugepages under migration 3291 * (in which case hugetlb_fault waits for the migration,) and 3292 * hwpoisoned hugepages (in which case we need to prevent the 3293 * caller from accessing to them.) In order to do this, we use 3294 * here is_swap_pte instead of is_hugetlb_entry_migration and 3295 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3296 * both cases, and because we can't follow correct pages 3297 * directly from any kind of swap entries. 3298 */ 3299 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3300 ((flags & FOLL_WRITE) && 3301 !huge_pte_write(huge_ptep_get(pte)))) { 3302 int ret; 3303 3304 if (pte) 3305 spin_unlock(ptl); 3306 ret = hugetlb_fault(mm, vma, vaddr, 3307 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3308 if (!(ret & VM_FAULT_ERROR)) 3309 continue; 3310 3311 remainder = 0; 3312 break; 3313 } 3314 3315 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3316 page = pte_page(huge_ptep_get(pte)); 3317 same_page: 3318 if (pages) { 3319 pages[i] = mem_map_offset(page, pfn_offset); 3320 get_page_foll(pages[i]); 3321 } 3322 3323 if (vmas) 3324 vmas[i] = vma; 3325 3326 vaddr += PAGE_SIZE; 3327 ++pfn_offset; 3328 --remainder; 3329 ++i; 3330 if (vaddr < vma->vm_end && remainder && 3331 pfn_offset < pages_per_huge_page(h)) { 3332 /* 3333 * We use pfn_offset to avoid touching the pageframes 3334 * of this compound page. 3335 */ 3336 goto same_page; 3337 } 3338 spin_unlock(ptl); 3339 } 3340 *nr_pages = remainder; 3341 *position = vaddr; 3342 3343 return i ? i : -EFAULT; 3344 } 3345 3346 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3347 unsigned long address, unsigned long end, pgprot_t newprot) 3348 { 3349 struct mm_struct *mm = vma->vm_mm; 3350 unsigned long start = address; 3351 pte_t *ptep; 3352 pte_t pte; 3353 struct hstate *h = hstate_vma(vma); 3354 unsigned long pages = 0; 3355 3356 BUG_ON(address >= end); 3357 flush_cache_range(vma, address, end); 3358 3359 mmu_notifier_invalidate_range_start(mm, start, end); 3360 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3361 for (; address < end; address += huge_page_size(h)) { 3362 spinlock_t *ptl; 3363 ptep = huge_pte_offset(mm, address); 3364 if (!ptep) 3365 continue; 3366 ptl = huge_pte_lock(h, mm, ptep); 3367 if (huge_pmd_unshare(mm, &address, ptep)) { 3368 pages++; 3369 spin_unlock(ptl); 3370 continue; 3371 } 3372 if (!huge_pte_none(huge_ptep_get(ptep))) { 3373 pte = huge_ptep_get_and_clear(mm, address, ptep); 3374 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3375 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3376 set_huge_pte_at(mm, address, ptep, pte); 3377 pages++; 3378 } 3379 spin_unlock(ptl); 3380 } 3381 /* 3382 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3383 * may have cleared our pud entry and done put_page on the page table: 3384 * once we release i_mmap_mutex, another task can do the final put_page 3385 * and that page table be reused and filled with junk. 3386 */ 3387 flush_tlb_range(vma, start, end); 3388 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3389 mmu_notifier_invalidate_range_end(mm, start, end); 3390 3391 return pages << h->order; 3392 } 3393 3394 int hugetlb_reserve_pages(struct inode *inode, 3395 long from, long to, 3396 struct vm_area_struct *vma, 3397 vm_flags_t vm_flags) 3398 { 3399 long ret, chg; 3400 struct hstate *h = hstate_inode(inode); 3401 struct hugepage_subpool *spool = subpool_inode(inode); 3402 struct resv_map *resv_map; 3403 3404 /* 3405 * Only apply hugepage reservation if asked. At fault time, an 3406 * attempt will be made for VM_NORESERVE to allocate a page 3407 * without using reserves 3408 */ 3409 if (vm_flags & VM_NORESERVE) 3410 return 0; 3411 3412 /* 3413 * Shared mappings base their reservation on the number of pages that 3414 * are already allocated on behalf of the file. Private mappings need 3415 * to reserve the full area even if read-only as mprotect() may be 3416 * called to make the mapping read-write. Assume !vma is a shm mapping 3417 */ 3418 if (!vma || vma->vm_flags & VM_MAYSHARE) { 3419 resv_map = inode_resv_map(inode); 3420 3421 chg = region_chg(resv_map, from, to); 3422 3423 } else { 3424 resv_map = resv_map_alloc(); 3425 if (!resv_map) 3426 return -ENOMEM; 3427 3428 chg = to - from; 3429 3430 set_vma_resv_map(vma, resv_map); 3431 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3432 } 3433 3434 if (chg < 0) { 3435 ret = chg; 3436 goto out_err; 3437 } 3438 3439 /* There must be enough pages in the subpool for the mapping */ 3440 if (hugepage_subpool_get_pages(spool, chg)) { 3441 ret = -ENOSPC; 3442 goto out_err; 3443 } 3444 3445 /* 3446 * Check enough hugepages are available for the reservation. 3447 * Hand the pages back to the subpool if there are not 3448 */ 3449 ret = hugetlb_acct_memory(h, chg); 3450 if (ret < 0) { 3451 hugepage_subpool_put_pages(spool, chg); 3452 goto out_err; 3453 } 3454 3455 /* 3456 * Account for the reservations made. Shared mappings record regions 3457 * that have reservations as they are shared by multiple VMAs. 3458 * When the last VMA disappears, the region map says how much 3459 * the reservation was and the page cache tells how much of 3460 * the reservation was consumed. Private mappings are per-VMA and 3461 * only the consumed reservations are tracked. When the VMA 3462 * disappears, the original reservation is the VMA size and the 3463 * consumed reservations are stored in the map. Hence, nothing 3464 * else has to be done for private mappings here 3465 */ 3466 if (!vma || vma->vm_flags & VM_MAYSHARE) 3467 region_add(resv_map, from, to); 3468 return 0; 3469 out_err: 3470 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3471 kref_put(&resv_map->refs, resv_map_release); 3472 return ret; 3473 } 3474 3475 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3476 { 3477 struct hstate *h = hstate_inode(inode); 3478 struct resv_map *resv_map = inode_resv_map(inode); 3479 long chg = 0; 3480 struct hugepage_subpool *spool = subpool_inode(inode); 3481 3482 if (resv_map) 3483 chg = region_truncate(resv_map, offset); 3484 spin_lock(&inode->i_lock); 3485 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3486 spin_unlock(&inode->i_lock); 3487 3488 hugepage_subpool_put_pages(spool, (chg - freed)); 3489 hugetlb_acct_memory(h, -(chg - freed)); 3490 } 3491 3492 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3493 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3494 struct vm_area_struct *vma, 3495 unsigned long addr, pgoff_t idx) 3496 { 3497 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3498 svma->vm_start; 3499 unsigned long sbase = saddr & PUD_MASK; 3500 unsigned long s_end = sbase + PUD_SIZE; 3501 3502 /* Allow segments to share if only one is marked locked */ 3503 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3504 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3505 3506 /* 3507 * match the virtual addresses, permission and the alignment of the 3508 * page table page. 3509 */ 3510 if (pmd_index(addr) != pmd_index(saddr) || 3511 vm_flags != svm_flags || 3512 sbase < svma->vm_start || svma->vm_end < s_end) 3513 return 0; 3514 3515 return saddr; 3516 } 3517 3518 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3519 { 3520 unsigned long base = addr & PUD_MASK; 3521 unsigned long end = base + PUD_SIZE; 3522 3523 /* 3524 * check on proper vm_flags and page table alignment 3525 */ 3526 if (vma->vm_flags & VM_MAYSHARE && 3527 vma->vm_start <= base && end <= vma->vm_end) 3528 return 1; 3529 return 0; 3530 } 3531 3532 /* 3533 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3534 * and returns the corresponding pte. While this is not necessary for the 3535 * !shared pmd case because we can allocate the pmd later as well, it makes the 3536 * code much cleaner. pmd allocation is essential for the shared case because 3537 * pud has to be populated inside the same i_mmap_mutex section - otherwise 3538 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3539 * bad pmd for sharing. 3540 */ 3541 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3542 { 3543 struct vm_area_struct *vma = find_vma(mm, addr); 3544 struct address_space *mapping = vma->vm_file->f_mapping; 3545 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3546 vma->vm_pgoff; 3547 struct vm_area_struct *svma; 3548 unsigned long saddr; 3549 pte_t *spte = NULL; 3550 pte_t *pte; 3551 spinlock_t *ptl; 3552 3553 if (!vma_shareable(vma, addr)) 3554 return (pte_t *)pmd_alloc(mm, pud, addr); 3555 3556 mutex_lock(&mapping->i_mmap_mutex); 3557 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3558 if (svma == vma) 3559 continue; 3560 3561 saddr = page_table_shareable(svma, vma, addr, idx); 3562 if (saddr) { 3563 spte = huge_pte_offset(svma->vm_mm, saddr); 3564 if (spte) { 3565 get_page(virt_to_page(spte)); 3566 break; 3567 } 3568 } 3569 } 3570 3571 if (!spte) 3572 goto out; 3573 3574 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 3575 spin_lock(ptl); 3576 if (pud_none(*pud)) 3577 pud_populate(mm, pud, 3578 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3579 else 3580 put_page(virt_to_page(spte)); 3581 spin_unlock(ptl); 3582 out: 3583 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3584 mutex_unlock(&mapping->i_mmap_mutex); 3585 return pte; 3586 } 3587 3588 /* 3589 * unmap huge page backed by shared pte. 3590 * 3591 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3592 * indicated by page_count > 1, unmap is achieved by clearing pud and 3593 * decrementing the ref count. If count == 1, the pte page is not shared. 3594 * 3595 * called with page table lock held. 3596 * 3597 * returns: 1 successfully unmapped a shared pte page 3598 * 0 the underlying pte page is not shared, or it is the last user 3599 */ 3600 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3601 { 3602 pgd_t *pgd = pgd_offset(mm, *addr); 3603 pud_t *pud = pud_offset(pgd, *addr); 3604 3605 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3606 if (page_count(virt_to_page(ptep)) == 1) 3607 return 0; 3608 3609 pud_clear(pud); 3610 put_page(virt_to_page(ptep)); 3611 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3612 return 1; 3613 } 3614 #define want_pmd_share() (1) 3615 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3616 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3617 { 3618 return NULL; 3619 } 3620 #define want_pmd_share() (0) 3621 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3622 3623 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3624 pte_t *huge_pte_alloc(struct mm_struct *mm, 3625 unsigned long addr, unsigned long sz) 3626 { 3627 pgd_t *pgd; 3628 pud_t *pud; 3629 pte_t *pte = NULL; 3630 3631 pgd = pgd_offset(mm, addr); 3632 pud = pud_alloc(mm, pgd, addr); 3633 if (pud) { 3634 if (sz == PUD_SIZE) { 3635 pte = (pte_t *)pud; 3636 } else { 3637 BUG_ON(sz != PMD_SIZE); 3638 if (want_pmd_share() && pud_none(*pud)) 3639 pte = huge_pmd_share(mm, addr, pud); 3640 else 3641 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3642 } 3643 } 3644 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3645 3646 return pte; 3647 } 3648 3649 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3650 { 3651 pgd_t *pgd; 3652 pud_t *pud; 3653 pmd_t *pmd = NULL; 3654 3655 pgd = pgd_offset(mm, addr); 3656 if (pgd_present(*pgd)) { 3657 pud = pud_offset(pgd, addr); 3658 if (pud_present(*pud)) { 3659 if (pud_huge(*pud)) 3660 return (pte_t *)pud; 3661 pmd = pmd_offset(pud, addr); 3662 } 3663 } 3664 return (pte_t *) pmd; 3665 } 3666 3667 struct page * 3668 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3669 pmd_t *pmd, int write) 3670 { 3671 struct page *page; 3672 3673 page = pte_page(*(pte_t *)pmd); 3674 if (page) 3675 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 3676 return page; 3677 } 3678 3679 struct page * 3680 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3681 pud_t *pud, int write) 3682 { 3683 struct page *page; 3684 3685 page = pte_page(*(pte_t *)pud); 3686 if (page) 3687 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 3688 return page; 3689 } 3690 3691 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3692 3693 /* Can be overriden by architectures */ 3694 struct page * __weak 3695 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3696 pud_t *pud, int write) 3697 { 3698 BUG(); 3699 return NULL; 3700 } 3701 3702 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3703 3704 #ifdef CONFIG_MEMORY_FAILURE 3705 3706 /* Should be called in hugetlb_lock */ 3707 static int is_hugepage_on_freelist(struct page *hpage) 3708 { 3709 struct page *page; 3710 struct page *tmp; 3711 struct hstate *h = page_hstate(hpage); 3712 int nid = page_to_nid(hpage); 3713 3714 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3715 if (page == hpage) 3716 return 1; 3717 return 0; 3718 } 3719 3720 /* 3721 * This function is called from memory failure code. 3722 * Assume the caller holds page lock of the head page. 3723 */ 3724 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3725 { 3726 struct hstate *h = page_hstate(hpage); 3727 int nid = page_to_nid(hpage); 3728 int ret = -EBUSY; 3729 3730 spin_lock(&hugetlb_lock); 3731 if (is_hugepage_on_freelist(hpage)) { 3732 /* 3733 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3734 * but dangling hpage->lru can trigger list-debug warnings 3735 * (this happens when we call unpoison_memory() on it), 3736 * so let it point to itself with list_del_init(). 3737 */ 3738 list_del_init(&hpage->lru); 3739 set_page_refcounted(hpage); 3740 h->free_huge_pages--; 3741 h->free_huge_pages_node[nid]--; 3742 ret = 0; 3743 } 3744 spin_unlock(&hugetlb_lock); 3745 return ret; 3746 } 3747 #endif 3748 3749 bool isolate_huge_page(struct page *page, struct list_head *list) 3750 { 3751 VM_BUG_ON_PAGE(!PageHead(page), page); 3752 if (!get_page_unless_zero(page)) 3753 return false; 3754 spin_lock(&hugetlb_lock); 3755 list_move_tail(&page->lru, list); 3756 spin_unlock(&hugetlb_lock); 3757 return true; 3758 } 3759 3760 void putback_active_hugepage(struct page *page) 3761 { 3762 VM_BUG_ON_PAGE(!PageHead(page), page); 3763 spin_lock(&hugetlb_lock); 3764 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 3765 spin_unlock(&hugetlb_lock); 3766 put_page(page); 3767 } 3768 3769 bool is_hugepage_active(struct page *page) 3770 { 3771 VM_BUG_ON_PAGE(!PageHuge(page), page); 3772 /* 3773 * This function can be called for a tail page because the caller, 3774 * scan_movable_pages, scans through a given pfn-range which typically 3775 * covers one memory block. In systems using gigantic hugepage (1GB 3776 * for x86_64,) a hugepage is larger than a memory block, and we don't 3777 * support migrating such large hugepages for now, so return false 3778 * when called for tail pages. 3779 */ 3780 if (PageTail(page)) 3781 return false; 3782 /* 3783 * Refcount of a hwpoisoned hugepages is 1, but they are not active, 3784 * so we should return false for them. 3785 */ 3786 if (unlikely(PageHWPoison(page))) 3787 return false; 3788 return page_count(page) > 0; 3789 } 3790