xref: /openbmc/linux/mm/hugetlb.c (revision 454a00c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103 	if (spool->count)
104 		return false;
105 	if (spool->max_hpages != -1)
106 		return spool->used_hpages == 0;
107 	if (spool->min_hpages != -1)
108 		return spool->rsv_hpages == spool->min_hpages;
109 
110 	return true;
111 }
112 
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 						unsigned long irq_flags)
115 {
116 	spin_unlock_irqrestore(&spool->lock, irq_flags);
117 
118 	/* If no pages are used, and no other handles to the subpool
119 	 * remain, give up any reservations based on minimum size and
120 	 * free the subpool */
121 	if (subpool_is_free(spool)) {
122 		if (spool->min_hpages != -1)
123 			hugetlb_acct_memory(spool->hstate,
124 						-spool->min_hpages);
125 		kfree(spool);
126 	}
127 }
128 
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130 						long min_hpages)
131 {
132 	struct hugepage_subpool *spool;
133 
134 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 	if (!spool)
136 		return NULL;
137 
138 	spin_lock_init(&spool->lock);
139 	spool->count = 1;
140 	spool->max_hpages = max_hpages;
141 	spool->hstate = h;
142 	spool->min_hpages = min_hpages;
143 
144 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 		kfree(spool);
146 		return NULL;
147 	}
148 	spool->rsv_hpages = min_hpages;
149 
150 	return spool;
151 }
152 
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&spool->lock, flags);
158 	BUG_ON(!spool->count);
159 	spool->count--;
160 	unlock_or_release_subpool(spool, flags);
161 }
162 
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172 				      long delta)
173 {
174 	long ret = delta;
175 
176 	if (!spool)
177 		return ret;
178 
179 	spin_lock_irq(&spool->lock);
180 
181 	if (spool->max_hpages != -1) {		/* maximum size accounting */
182 		if ((spool->used_hpages + delta) <= spool->max_hpages)
183 			spool->used_hpages += delta;
184 		else {
185 			ret = -ENOMEM;
186 			goto unlock_ret;
187 		}
188 	}
189 
190 	/* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 		if (delta > spool->rsv_hpages) {
193 			/*
194 			 * Asking for more reserves than those already taken on
195 			 * behalf of subpool.  Return difference.
196 			 */
197 			ret = delta - spool->rsv_hpages;
198 			spool->rsv_hpages = 0;
199 		} else {
200 			ret = 0;	/* reserves already accounted for */
201 			spool->rsv_hpages -= delta;
202 		}
203 	}
204 
205 unlock_ret:
206 	spin_unlock_irq(&spool->lock);
207 	return ret;
208 }
209 
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217 				       long delta)
218 {
219 	long ret = delta;
220 	unsigned long flags;
221 
222 	if (!spool)
223 		return delta;
224 
225 	spin_lock_irqsave(&spool->lock, flags);
226 
227 	if (spool->max_hpages != -1)		/* maximum size accounting */
228 		spool->used_hpages -= delta;
229 
230 	 /* minimum size accounting */
231 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 		if (spool->rsv_hpages + delta <= spool->min_hpages)
233 			ret = 0;
234 		else
235 			ret = spool->rsv_hpages + delta - spool->min_hpages;
236 
237 		spool->rsv_hpages += delta;
238 		if (spool->rsv_hpages > spool->min_hpages)
239 			spool->rsv_hpages = spool->min_hpages;
240 	}
241 
242 	/*
243 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 	 * quota reference, free it now.
245 	 */
246 	unlock_or_release_subpool(spool, flags);
247 
248 	return ret;
249 }
250 
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253 	return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255 
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258 	return subpool_inode(file_inode(vma->vm_file));
259 }
260 
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266 	if (__vma_shareable_lock(vma)) {
267 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 
269 		down_read(&vma_lock->rw_sema);
270 	}
271 }
272 
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275 	if (__vma_shareable_lock(vma)) {
276 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 
278 		up_read(&vma_lock->rw_sema);
279 	}
280 }
281 
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284 	if (__vma_shareable_lock(vma)) {
285 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 
287 		down_write(&vma_lock->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		up_write(&vma_lock->rw_sema);
297 	}
298 }
299 
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 	if (!__vma_shareable_lock(vma))
305 		return 1;
306 
307 	return down_write_trylock(&vma_lock->rw_sema);
308 }
309 
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312 	if (__vma_shareable_lock(vma)) {
313 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 
315 		lockdep_assert_held(&vma_lock->rw_sema);
316 	}
317 }
318 
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 			struct hugetlb_vma_lock, refs);
323 
324 	kfree(vma_lock);
325 }
326 
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329 	struct vm_area_struct *vma = vma_lock->vma;
330 
331 	/*
332 	 * vma_lock structure may or not be released as a result of put,
333 	 * it certainly will no longer be attached to vma so clear pointer.
334 	 * Semaphore synchronizes access to vma_lock->vma field.
335 	 */
336 	vma_lock->vma = NULL;
337 	vma->vm_private_data = NULL;
338 	up_write(&vma_lock->rw_sema);
339 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341 
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344 	if (__vma_shareable_lock(vma)) {
345 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 
347 		__hugetlb_vma_unlock_write_put(vma_lock);
348 	}
349 }
350 
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353 	/*
354 	 * Only present in sharable vmas.
355 	 */
356 	if (!vma || !__vma_shareable_lock(vma))
357 		return;
358 
359 	if (vma->vm_private_data) {
360 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 
362 		down_write(&vma_lock->rw_sema);
363 		__hugetlb_vma_unlock_write_put(vma_lock);
364 	}
365 }
366 
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369 	struct hugetlb_vma_lock *vma_lock;
370 
371 	/* Only establish in (flags) sharable vmas */
372 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373 		return;
374 
375 	/* Should never get here with non-NULL vm_private_data */
376 	if (vma->vm_private_data)
377 		return;
378 
379 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380 	if (!vma_lock) {
381 		/*
382 		 * If we can not allocate structure, then vma can not
383 		 * participate in pmd sharing.  This is only a possible
384 		 * performance enhancement and memory saving issue.
385 		 * However, the lock is also used to synchronize page
386 		 * faults with truncation.  If the lock is not present,
387 		 * unlikely races could leave pages in a file past i_size
388 		 * until the file is removed.  Warn in the unlikely case of
389 		 * allocation failure.
390 		 */
391 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392 		return;
393 	}
394 
395 	kref_init(&vma_lock->refs);
396 	init_rwsem(&vma_lock->rw_sema);
397 	vma_lock->vma = vma;
398 	vma->vm_private_data = vma_lock;
399 }
400 
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407 	struct file_region *nrg;
408 
409 	VM_BUG_ON(resv->region_cache_count <= 0);
410 
411 	resv->region_cache_count--;
412 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 	list_del(&nrg->link);
414 
415 	nrg->from = from;
416 	nrg->to = to;
417 
418 	return nrg;
419 }
420 
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 					      struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425 	nrg->reservation_counter = rg->reservation_counter;
426 	nrg->css = rg->css;
427 	if (rg->css)
428 		css_get(rg->css);
429 #endif
430 }
431 
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 						struct hstate *h,
435 						struct resv_map *resv,
436 						struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439 	if (h_cg) {
440 		nrg->reservation_counter =
441 			&h_cg->rsvd_hugepage[hstate_index(h)];
442 		nrg->css = &h_cg->css;
443 		/*
444 		 * The caller will hold exactly one h_cg->css reference for the
445 		 * whole contiguous reservation region. But this area might be
446 		 * scattered when there are already some file_regions reside in
447 		 * it. As a result, many file_regions may share only one css
448 		 * reference. In order to ensure that one file_region must hold
449 		 * exactly one h_cg->css reference, we should do css_get for
450 		 * each file_region and leave the reference held by caller
451 		 * untouched.
452 		 */
453 		css_get(&h_cg->css);
454 		if (!resv->pages_per_hpage)
455 			resv->pages_per_hpage = pages_per_huge_page(h);
456 		/* pages_per_hpage should be the same for all entries in
457 		 * a resv_map.
458 		 */
459 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 	} else {
461 		nrg->reservation_counter = NULL;
462 		nrg->css = NULL;
463 	}
464 #endif
465 }
466 
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470 	if (rg->css)
471 		css_put(rg->css);
472 #endif
473 }
474 
475 static bool has_same_uncharge_info(struct file_region *rg,
476 				   struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479 	return rg->reservation_counter == org->reservation_counter &&
480 	       rg->css == org->css;
481 
482 #else
483 	return true;
484 #endif
485 }
486 
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489 	struct file_region *nrg, *prg;
490 
491 	prg = list_prev_entry(rg, link);
492 	if (&prg->link != &resv->regions && prg->to == rg->from &&
493 	    has_same_uncharge_info(prg, rg)) {
494 		prg->to = rg->to;
495 
496 		list_del(&rg->link);
497 		put_uncharge_info(rg);
498 		kfree(rg);
499 
500 		rg = prg;
501 	}
502 
503 	nrg = list_next_entry(rg, link);
504 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 	    has_same_uncharge_info(nrg, rg)) {
506 		nrg->from = rg->from;
507 
508 		list_del(&rg->link);
509 		put_uncharge_info(rg);
510 		kfree(rg);
511 	}
512 }
513 
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 		     long *regions_needed)
518 {
519 	struct file_region *nrg;
520 
521 	if (!regions_needed) {
522 		nrg = get_file_region_entry_from_cache(map, from, to);
523 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 		list_add(&nrg->link, rg);
525 		coalesce_file_region(map, nrg);
526 	} else
527 		*regions_needed += 1;
528 
529 	return to - from;
530 }
531 
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 				     struct hugetlb_cgroup *h_cg,
542 				     struct hstate *h, long *regions_needed)
543 {
544 	long add = 0;
545 	struct list_head *head = &resv->regions;
546 	long last_accounted_offset = f;
547 	struct file_region *iter, *trg = NULL;
548 	struct list_head *rg = NULL;
549 
550 	if (regions_needed)
551 		*regions_needed = 0;
552 
553 	/* In this loop, we essentially handle an entry for the range
554 	 * [last_accounted_offset, iter->from), at every iteration, with some
555 	 * bounds checking.
556 	 */
557 	list_for_each_entry_safe(iter, trg, head, link) {
558 		/* Skip irrelevant regions that start before our range. */
559 		if (iter->from < f) {
560 			/* If this region ends after the last accounted offset,
561 			 * then we need to update last_accounted_offset.
562 			 */
563 			if (iter->to > last_accounted_offset)
564 				last_accounted_offset = iter->to;
565 			continue;
566 		}
567 
568 		/* When we find a region that starts beyond our range, we've
569 		 * finished.
570 		 */
571 		if (iter->from >= t) {
572 			rg = iter->link.prev;
573 			break;
574 		}
575 
576 		/* Add an entry for last_accounted_offset -> iter->from, and
577 		 * update last_accounted_offset.
578 		 */
579 		if (iter->from > last_accounted_offset)
580 			add += hugetlb_resv_map_add(resv, iter->link.prev,
581 						    last_accounted_offset,
582 						    iter->from, h, h_cg,
583 						    regions_needed);
584 
585 		last_accounted_offset = iter->to;
586 	}
587 
588 	/* Handle the case where our range extends beyond
589 	 * last_accounted_offset.
590 	 */
591 	if (!rg)
592 		rg = head->prev;
593 	if (last_accounted_offset < t)
594 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 					    t, h, h_cg, regions_needed);
596 
597 	return add;
598 }
599 
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603 					int regions_needed)
604 	__must_hold(&resv->lock)
605 {
606 	LIST_HEAD(allocated_regions);
607 	int to_allocate = 0, i = 0;
608 	struct file_region *trg = NULL, *rg = NULL;
609 
610 	VM_BUG_ON(regions_needed < 0);
611 
612 	/*
613 	 * Check for sufficient descriptors in the cache to accommodate
614 	 * the number of in progress add operations plus regions_needed.
615 	 *
616 	 * This is a while loop because when we drop the lock, some other call
617 	 * to region_add or region_del may have consumed some region_entries,
618 	 * so we keep looping here until we finally have enough entries for
619 	 * (adds_in_progress + regions_needed).
620 	 */
621 	while (resv->region_cache_count <
622 	       (resv->adds_in_progress + regions_needed)) {
623 		to_allocate = resv->adds_in_progress + regions_needed -
624 			      resv->region_cache_count;
625 
626 		/* At this point, we should have enough entries in the cache
627 		 * for all the existing adds_in_progress. We should only be
628 		 * needing to allocate for regions_needed.
629 		 */
630 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 
632 		spin_unlock(&resv->lock);
633 		for (i = 0; i < to_allocate; i++) {
634 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635 			if (!trg)
636 				goto out_of_memory;
637 			list_add(&trg->link, &allocated_regions);
638 		}
639 
640 		spin_lock(&resv->lock);
641 
642 		list_splice(&allocated_regions, &resv->region_cache);
643 		resv->region_cache_count += to_allocate;
644 	}
645 
646 	return 0;
647 
648 out_of_memory:
649 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650 		list_del(&rg->link);
651 		kfree(rg);
652 	}
653 	return -ENOMEM;
654 }
655 
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674 		       long in_regions_needed, struct hstate *h,
675 		       struct hugetlb_cgroup *h_cg)
676 {
677 	long add = 0, actual_regions_needed = 0;
678 
679 	spin_lock(&resv->lock);
680 retry:
681 
682 	/* Count how many regions are actually needed to execute this add. */
683 	add_reservation_in_range(resv, f, t, NULL, NULL,
684 				 &actual_regions_needed);
685 
686 	/*
687 	 * Check for sufficient descriptors in the cache to accommodate
688 	 * this add operation. Note that actual_regions_needed may be greater
689 	 * than in_regions_needed, as the resv_map may have been modified since
690 	 * the region_chg call. In this case, we need to make sure that we
691 	 * allocate extra entries, such that we have enough for all the
692 	 * existing adds_in_progress, plus the excess needed for this
693 	 * operation.
694 	 */
695 	if (actual_regions_needed > in_regions_needed &&
696 	    resv->region_cache_count <
697 		    resv->adds_in_progress +
698 			    (actual_regions_needed - in_regions_needed)) {
699 		/* region_add operation of range 1 should never need to
700 		 * allocate file_region entries.
701 		 */
702 		VM_BUG_ON(t - f <= 1);
703 
704 		if (allocate_file_region_entries(
705 			    resv, actual_regions_needed - in_regions_needed)) {
706 			return -ENOMEM;
707 		}
708 
709 		goto retry;
710 	}
711 
712 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 
714 	resv->adds_in_progress -= in_regions_needed;
715 
716 	spin_unlock(&resv->lock);
717 	return add;
718 }
719 
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741 		       long *out_regions_needed)
742 {
743 	long chg = 0;
744 
745 	spin_lock(&resv->lock);
746 
747 	/* Count how many hugepages in this range are NOT represented. */
748 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749 				       out_regions_needed);
750 
751 	if (*out_regions_needed == 0)
752 		*out_regions_needed = 1;
753 
754 	if (allocate_file_region_entries(resv, *out_regions_needed))
755 		return -ENOMEM;
756 
757 	resv->adds_in_progress += *out_regions_needed;
758 
759 	spin_unlock(&resv->lock);
760 	return chg;
761 }
762 
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777 			 long regions_needed)
778 {
779 	spin_lock(&resv->lock);
780 	VM_BUG_ON(!resv->region_cache_count);
781 	resv->adds_in_progress -= regions_needed;
782 	spin_unlock(&resv->lock);
783 }
784 
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801 	struct list_head *head = &resv->regions;
802 	struct file_region *rg, *trg;
803 	struct file_region *nrg = NULL;
804 	long del = 0;
805 
806 retry:
807 	spin_lock(&resv->lock);
808 	list_for_each_entry_safe(rg, trg, head, link) {
809 		/*
810 		 * Skip regions before the range to be deleted.  file_region
811 		 * ranges are normally of the form [from, to).  However, there
812 		 * may be a "placeholder" entry in the map which is of the form
813 		 * (from, to) with from == to.  Check for placeholder entries
814 		 * at the beginning of the range to be deleted.
815 		 */
816 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817 			continue;
818 
819 		if (rg->from >= t)
820 			break;
821 
822 		if (f > rg->from && t < rg->to) { /* Must split region */
823 			/*
824 			 * Check for an entry in the cache before dropping
825 			 * lock and attempting allocation.
826 			 */
827 			if (!nrg &&
828 			    resv->region_cache_count > resv->adds_in_progress) {
829 				nrg = list_first_entry(&resv->region_cache,
830 							struct file_region,
831 							link);
832 				list_del(&nrg->link);
833 				resv->region_cache_count--;
834 			}
835 
836 			if (!nrg) {
837 				spin_unlock(&resv->lock);
838 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839 				if (!nrg)
840 					return -ENOMEM;
841 				goto retry;
842 			}
843 
844 			del += t - f;
845 			hugetlb_cgroup_uncharge_file_region(
846 				resv, rg, t - f, false);
847 
848 			/* New entry for end of split region */
849 			nrg->from = t;
850 			nrg->to = rg->to;
851 
852 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 
854 			INIT_LIST_HEAD(&nrg->link);
855 
856 			/* Original entry is trimmed */
857 			rg->to = f;
858 
859 			list_add(&nrg->link, &rg->link);
860 			nrg = NULL;
861 			break;
862 		}
863 
864 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 			del += rg->to - rg->from;
866 			hugetlb_cgroup_uncharge_file_region(resv, rg,
867 							    rg->to - rg->from, true);
868 			list_del(&rg->link);
869 			kfree(rg);
870 			continue;
871 		}
872 
873 		if (f <= rg->from) {	/* Trim beginning of region */
874 			hugetlb_cgroup_uncharge_file_region(resv, rg,
875 							    t - rg->from, false);
876 
877 			del += t - rg->from;
878 			rg->from = t;
879 		} else {		/* Trim end of region */
880 			hugetlb_cgroup_uncharge_file_region(resv, rg,
881 							    rg->to - f, false);
882 
883 			del += rg->to - f;
884 			rg->to = f;
885 		}
886 	}
887 
888 	spin_unlock(&resv->lock);
889 	kfree(nrg);
890 	return del;
891 }
892 
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904 	struct hugepage_subpool *spool = subpool_inode(inode);
905 	long rsv_adjust;
906 	bool reserved = false;
907 
908 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 	if (rsv_adjust > 0) {
910 		struct hstate *h = hstate_inode(inode);
911 
912 		if (!hugetlb_acct_memory(h, 1))
913 			reserved = true;
914 	} else if (!rsv_adjust) {
915 		reserved = true;
916 	}
917 
918 	if (!reserved)
919 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921 
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928 	struct list_head *head = &resv->regions;
929 	struct file_region *rg;
930 	long chg = 0;
931 
932 	spin_lock(&resv->lock);
933 	/* Locate each segment we overlap with, and count that overlap. */
934 	list_for_each_entry(rg, head, link) {
935 		long seg_from;
936 		long seg_to;
937 
938 		if (rg->to <= f)
939 			continue;
940 		if (rg->from >= t)
941 			break;
942 
943 		seg_from = max(rg->from, f);
944 		seg_to = min(rg->to, t);
945 
946 		chg += seg_to - seg_from;
947 	}
948 	spin_unlock(&resv->lock);
949 
950 	return chg;
951 }
952 
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 			struct vm_area_struct *vma, unsigned long address)
959 {
960 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 			(vma->vm_pgoff >> huge_page_order(h));
962 }
963 
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 				     unsigned long address)
966 {
967 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970 
971 /*
972  * Return the size of the pages allocated when backing a VMA. In the majority
973  * cases this will be same size as used by the page table entries.
974  */
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 {
977 	if (vma->vm_ops && vma->vm_ops->pagesize)
978 		return vma->vm_ops->pagesize(vma);
979 	return PAGE_SIZE;
980 }
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
982 
983 /*
984  * Return the page size being used by the MMU to back a VMA. In the majority
985  * of cases, the page size used by the kernel matches the MMU size. On
986  * architectures where it differs, an architecture-specific 'strong'
987  * version of this symbol is required.
988  */
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 {
991 	return vma_kernel_pagesize(vma);
992 }
993 
994 /*
995  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
996  * bits of the reservation map pointer, which are always clear due to
997  * alignment.
998  */
999 #define HPAGE_RESV_OWNER    (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1002 
1003 /*
1004  * These helpers are used to track how many pages are reserved for
1005  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006  * is guaranteed to have their future faults succeed.
1007  *
1008  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009  * the reserve counters are updated with the hugetlb_lock held. It is safe
1010  * to reset the VMA at fork() time as it is not in use yet and there is no
1011  * chance of the global counters getting corrupted as a result of the values.
1012  *
1013  * The private mapping reservation is represented in a subtly different
1014  * manner to a shared mapping.  A shared mapping has a region map associated
1015  * with the underlying file, this region map represents the backing file
1016  * pages which have ever had a reservation assigned which this persists even
1017  * after the page is instantiated.  A private mapping has a region map
1018  * associated with the original mmap which is attached to all VMAs which
1019  * reference it, this region map represents those offsets which have consumed
1020  * reservation ie. where pages have been instantiated.
1021  */
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 {
1024 	return (unsigned long)vma->vm_private_data;
1025 }
1026 
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028 							unsigned long value)
1029 {
1030 	vma->vm_private_data = (void *)value;
1031 }
1032 
1033 static void
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035 					  struct hugetlb_cgroup *h_cg,
1036 					  struct hstate *h)
1037 {
1038 #ifdef CONFIG_CGROUP_HUGETLB
1039 	if (!h_cg || !h) {
1040 		resv_map->reservation_counter = NULL;
1041 		resv_map->pages_per_hpage = 0;
1042 		resv_map->css = NULL;
1043 	} else {
1044 		resv_map->reservation_counter =
1045 			&h_cg->rsvd_hugepage[hstate_index(h)];
1046 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1047 		resv_map->css = &h_cg->css;
1048 	}
1049 #endif
1050 }
1051 
1052 struct resv_map *resv_map_alloc(void)
1053 {
1054 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 
1057 	if (!resv_map || !rg) {
1058 		kfree(resv_map);
1059 		kfree(rg);
1060 		return NULL;
1061 	}
1062 
1063 	kref_init(&resv_map->refs);
1064 	spin_lock_init(&resv_map->lock);
1065 	INIT_LIST_HEAD(&resv_map->regions);
1066 
1067 	resv_map->adds_in_progress = 0;
1068 	/*
1069 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1070 	 * fields don't do cgroup accounting. On private mappings, these will be
1071 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1072 	 * reservations are to be un-charged from here.
1073 	 */
1074 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 
1076 	INIT_LIST_HEAD(&resv_map->region_cache);
1077 	list_add(&rg->link, &resv_map->region_cache);
1078 	resv_map->region_cache_count = 1;
1079 
1080 	return resv_map;
1081 }
1082 
1083 void resv_map_release(struct kref *ref)
1084 {
1085 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086 	struct list_head *head = &resv_map->region_cache;
1087 	struct file_region *rg, *trg;
1088 
1089 	/* Clear out any active regions before we release the map. */
1090 	region_del(resv_map, 0, LONG_MAX);
1091 
1092 	/* ... and any entries left in the cache */
1093 	list_for_each_entry_safe(rg, trg, head, link) {
1094 		list_del(&rg->link);
1095 		kfree(rg);
1096 	}
1097 
1098 	VM_BUG_ON(resv_map->adds_in_progress);
1099 
1100 	kfree(resv_map);
1101 }
1102 
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1104 {
1105 	/*
1106 	 * At inode evict time, i_mapping may not point to the original
1107 	 * address space within the inode.  This original address space
1108 	 * contains the pointer to the resv_map.  So, always use the
1109 	 * address space embedded within the inode.
1110 	 * The VERY common case is inode->mapping == &inode->i_data but,
1111 	 * this may not be true for device special inodes.
1112 	 */
1113 	return (struct resv_map *)(&inode->i_data)->private_data;
1114 }
1115 
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 {
1118 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119 	if (vma->vm_flags & VM_MAYSHARE) {
1120 		struct address_space *mapping = vma->vm_file->f_mapping;
1121 		struct inode *inode = mapping->host;
1122 
1123 		return inode_resv_map(inode);
1124 
1125 	} else {
1126 		return (struct resv_map *)(get_vma_private_data(vma) &
1127 							~HPAGE_RESV_MASK);
1128 	}
1129 }
1130 
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 {
1133 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 
1136 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1137 				HPAGE_RESV_MASK) | (unsigned long)map);
1138 }
1139 
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 {
1142 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 
1145 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1146 }
1147 
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 
1152 	return (get_vma_private_data(vma) & flag) != 0;
1153 }
1154 
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 {
1157 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 	/*
1159 	 * Clear vm_private_data
1160 	 * - For shared mappings this is a per-vma semaphore that may be
1161 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1162 	 *   Before clearing, make sure pointer is not associated with vma
1163 	 *   as this will leak the structure.  This is the case when called
1164 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165 	 *   been called to allocate a new structure.
1166 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1167 	 *   not apply to children.  Faults generated by the children are
1168 	 *   not guaranteed to succeed, even if read-only.
1169 	 */
1170 	if (vma->vm_flags & VM_MAYSHARE) {
1171 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 
1173 		if (vma_lock && vma_lock->vma != vma)
1174 			vma->vm_private_data = NULL;
1175 	} else
1176 		vma->vm_private_data = NULL;
1177 }
1178 
1179 /*
1180  * Reset and decrement one ref on hugepage private reservation.
1181  * Called with mm->mmap_lock writer semaphore held.
1182  * This function should be only used by move_vma() and operate on
1183  * same sized vma. It should never come here with last ref on the
1184  * reservation.
1185  */
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1187 {
1188 	/*
1189 	 * Clear the old hugetlb private page reservation.
1190 	 * It has already been transferred to new_vma.
1191 	 *
1192 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1193 	 * which copies vma into new_vma and unmaps vma. After the copy
1194 	 * operation both new_vma and vma share a reference to the resv_map
1195 	 * struct, and at that point vma is about to be unmapped. We don't
1196 	 * want to return the reservation to the pool at unmap of vma because
1197 	 * the reservation still lives on in new_vma, so simply decrement the
1198 	 * ref here and remove the resv_map reference from this vma.
1199 	 */
1200 	struct resv_map *reservations = vma_resv_map(vma);
1201 
1202 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204 		kref_put(&reservations->refs, resv_map_release);
1205 	}
1206 
1207 	hugetlb_dup_vma_private(vma);
1208 }
1209 
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 {
1213 	if (vma->vm_flags & VM_NORESERVE) {
1214 		/*
1215 		 * This address is already reserved by other process(chg == 0),
1216 		 * so, we should decrement reserved count. Without decrementing,
1217 		 * reserve count remains after releasing inode, because this
1218 		 * allocated page will go into page cache and is regarded as
1219 		 * coming from reserved pool in releasing step.  Currently, we
1220 		 * don't have any other solution to deal with this situation
1221 		 * properly, so add work-around here.
1222 		 */
1223 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1224 			return true;
1225 		else
1226 			return false;
1227 	}
1228 
1229 	/* Shared mappings always use reserves */
1230 	if (vma->vm_flags & VM_MAYSHARE) {
1231 		/*
1232 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1233 		 * be a region map for all pages.  The only situation where
1234 		 * there is no region map is if a hole was punched via
1235 		 * fallocate.  In this case, there really are no reserves to
1236 		 * use.  This situation is indicated if chg != 0.
1237 		 */
1238 		if (chg)
1239 			return false;
1240 		else
1241 			return true;
1242 	}
1243 
1244 	/*
1245 	 * Only the process that called mmap() has reserves for
1246 	 * private mappings.
1247 	 */
1248 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 		/*
1250 		 * Like the shared case above, a hole punch or truncate
1251 		 * could have been performed on the private mapping.
1252 		 * Examine the value of chg to determine if reserves
1253 		 * actually exist or were previously consumed.
1254 		 * Very Subtle - The value of chg comes from a previous
1255 		 * call to vma_needs_reserves().  The reserve map for
1256 		 * private mappings has different (opposite) semantics
1257 		 * than that of shared mappings.  vma_needs_reserves()
1258 		 * has already taken this difference in semantics into
1259 		 * account.  Therefore, the meaning of chg is the same
1260 		 * as in the shared case above.  Code could easily be
1261 		 * combined, but keeping it separate draws attention to
1262 		 * subtle differences.
1263 		 */
1264 		if (chg)
1265 			return false;
1266 		else
1267 			return true;
1268 	}
1269 
1270 	return false;
1271 }
1272 
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 {
1275 	int nid = folio_nid(folio);
1276 
1277 	lockdep_assert_held(&hugetlb_lock);
1278 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 
1280 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281 	h->free_huge_pages++;
1282 	h->free_huge_pages_node[nid]++;
1283 	folio_set_hugetlb_freed(folio);
1284 }
1285 
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1287 								int nid)
1288 {
1289 	struct folio *folio;
1290 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 
1292 	lockdep_assert_held(&hugetlb_lock);
1293 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294 		if (pin && !folio_is_longterm_pinnable(folio))
1295 			continue;
1296 
1297 		if (folio_test_hwpoison(folio))
1298 			continue;
1299 
1300 		list_move(&folio->lru, &h->hugepage_activelist);
1301 		folio_ref_unfreeze(folio, 1);
1302 		folio_clear_hugetlb_freed(folio);
1303 		h->free_huge_pages--;
1304 		h->free_huge_pages_node[nid]--;
1305 		return folio;
1306 	}
1307 
1308 	return NULL;
1309 }
1310 
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312 							int nid, nodemask_t *nmask)
1313 {
1314 	unsigned int cpuset_mems_cookie;
1315 	struct zonelist *zonelist;
1316 	struct zone *zone;
1317 	struct zoneref *z;
1318 	int node = NUMA_NO_NODE;
1319 
1320 	zonelist = node_zonelist(nid, gfp_mask);
1321 
1322 retry_cpuset:
1323 	cpuset_mems_cookie = read_mems_allowed_begin();
1324 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325 		struct folio *folio;
1326 
1327 		if (!cpuset_zone_allowed(zone, gfp_mask))
1328 			continue;
1329 		/*
1330 		 * no need to ask again on the same node. Pool is node rather than
1331 		 * zone aware
1332 		 */
1333 		if (zone_to_nid(zone) == node)
1334 			continue;
1335 		node = zone_to_nid(zone);
1336 
1337 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1338 		if (folio)
1339 			return folio;
1340 	}
1341 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1342 		goto retry_cpuset;
1343 
1344 	return NULL;
1345 }
1346 
1347 static unsigned long available_huge_pages(struct hstate *h)
1348 {
1349 	return h->free_huge_pages - h->resv_huge_pages;
1350 }
1351 
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353 				struct vm_area_struct *vma,
1354 				unsigned long address, int avoid_reserve,
1355 				long chg)
1356 {
1357 	struct folio *folio = NULL;
1358 	struct mempolicy *mpol;
1359 	gfp_t gfp_mask;
1360 	nodemask_t *nodemask;
1361 	int nid;
1362 
1363 	/*
1364 	 * A child process with MAP_PRIVATE mappings created by their parent
1365 	 * have no page reserves. This check ensures that reservations are
1366 	 * not "stolen". The child may still get SIGKILLed
1367 	 */
1368 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369 		goto err;
1370 
1371 	/* If reserves cannot be used, ensure enough pages are in the pool */
1372 	if (avoid_reserve && !available_huge_pages(h))
1373 		goto err;
1374 
1375 	gfp_mask = htlb_alloc_mask(h);
1376 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 
1378 	if (mpol_is_preferred_many(mpol)) {
1379 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1380 							nid, nodemask);
1381 
1382 		/* Fallback to all nodes if page==NULL */
1383 		nodemask = NULL;
1384 	}
1385 
1386 	if (!folio)
1387 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1388 							nid, nodemask);
1389 
1390 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 		folio_set_hugetlb_restore_reserve(folio);
1392 		h->resv_huge_pages--;
1393 	}
1394 
1395 	mpol_cond_put(mpol);
1396 	return folio;
1397 
1398 err:
1399 	return NULL;
1400 }
1401 
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411 	nid = next_node_in(nid, *nodes_allowed);
1412 	VM_BUG_ON(nid >= MAX_NUMNODES);
1413 
1414 	return nid;
1415 }
1416 
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419 	if (!node_isset(nid, *nodes_allowed))
1420 		nid = next_node_allowed(nid, nodes_allowed);
1421 	return nid;
1422 }
1423 
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 					nodemask_t *nodes_allowed)
1432 {
1433 	int nid;
1434 
1435 	VM_BUG_ON(!nodes_allowed);
1436 
1437 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439 
1440 	return nid;
1441 }
1442 
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451 	int nid;
1452 
1453 	VM_BUG_ON(!nodes_allowed);
1454 
1455 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457 
1458 	return nid;
1459 }
1460 
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1462 	for (nr_nodes = nodes_weight(*mask);				\
1463 		nr_nodes > 0 &&						\
1464 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1465 		nr_nodes--)
1466 
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1468 	for (nr_nodes = nodes_weight(*mask);				\
1469 		nr_nodes > 0 &&						\
1470 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1471 		nr_nodes--)
1472 
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 					unsigned int order, bool demote)
1476 {
1477 	int i;
1478 	int nr_pages = 1 << order;
1479 	struct page *p;
1480 
1481 	atomic_set(&folio->_entire_mapcount, 0);
1482 	atomic_set(&folio->_nr_pages_mapped, 0);
1483 	atomic_set(&folio->_pincount, 0);
1484 
1485 	for (i = 1; i < nr_pages; i++) {
1486 		p = folio_page(folio, i);
1487 		p->mapping = NULL;
1488 		clear_compound_head(p);
1489 		if (!demote)
1490 			set_page_refcounted(p);
1491 	}
1492 
1493 	__folio_clear_head(folio);
1494 }
1495 
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 					unsigned int order)
1498 {
1499 	__destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501 
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504 					unsigned int order)
1505 {
1506 	__destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508 
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511 	/*
1512 	 * If the page isn't allocated using the cma allocator,
1513 	 * cma_release() returns false.
1514 	 */
1515 #ifdef CONFIG_CMA
1516 	int nid = folio_nid(folio);
1517 
1518 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 		return;
1520 #endif
1521 
1522 	free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524 
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 		int nid, nodemask_t *nodemask)
1528 {
1529 	struct page *page;
1530 	unsigned long nr_pages = pages_per_huge_page(h);
1531 	if (nid == NUMA_NO_NODE)
1532 		nid = numa_mem_id();
1533 
1534 #ifdef CONFIG_CMA
1535 	{
1536 		int node;
1537 
1538 		if (hugetlb_cma[nid]) {
1539 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 					huge_page_order(h), true);
1541 			if (page)
1542 				return page_folio(page);
1543 		}
1544 
1545 		if (!(gfp_mask & __GFP_THISNODE)) {
1546 			for_each_node_mask(node, *nodemask) {
1547 				if (node == nid || !hugetlb_cma[node])
1548 					continue;
1549 
1550 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 						huge_page_order(h), true);
1552 				if (page)
1553 					return page_folio(page);
1554 			}
1555 		}
1556 	}
1557 #endif
1558 
1559 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 	return page ? page_folio(page) : NULL;
1561 }
1562 
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 					int nid, nodemask_t *nodemask)
1566 {
1567 	return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570 
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 					int nid, nodemask_t *nodemask)
1574 {
1575 	return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 						unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 						unsigned int order) { }
1581 #endif
1582 
1583 static inline void __clear_hugetlb_destructor(struct hstate *h,
1584 						struct folio *folio)
1585 {
1586 	lockdep_assert_held(&hugetlb_lock);
1587 
1588 	/*
1589 	 * Very subtle
1590 	 *
1591 	 * For non-gigantic pages set the destructor to the normal compound
1592 	 * page dtor.  This is needed in case someone takes an additional
1593 	 * temporary ref to the page, and freeing is delayed until they drop
1594 	 * their reference.
1595 	 *
1596 	 * For gigantic pages set the destructor to the null dtor.  This
1597 	 * destructor will never be called.  Before freeing the gigantic
1598 	 * page destroy_compound_gigantic_folio will turn the folio into a
1599 	 * simple group of pages.  After this the destructor does not
1600 	 * apply.
1601 	 *
1602 	 */
1603 	if (hstate_is_gigantic(h))
1604 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1605 	else
1606 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1607 }
1608 
1609 /*
1610  * Remove hugetlb folio from lists.
1611  * If vmemmap exists for the folio, update dtor so that the folio appears
1612  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1613  * to update dtor.
1614  *
1615  * A reference is held on the folio, except in the case of demote.
1616  *
1617  * Must be called with hugetlb lock held.
1618  */
1619 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1620 							bool adjust_surplus,
1621 							bool demote)
1622 {
1623 	int nid = folio_nid(folio);
1624 
1625 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1626 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1627 
1628 	lockdep_assert_held(&hugetlb_lock);
1629 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1630 		return;
1631 
1632 	list_del(&folio->lru);
1633 
1634 	if (folio_test_hugetlb_freed(folio)) {
1635 		h->free_huge_pages--;
1636 		h->free_huge_pages_node[nid]--;
1637 	}
1638 	if (adjust_surplus) {
1639 		h->surplus_huge_pages--;
1640 		h->surplus_huge_pages_node[nid]--;
1641 	}
1642 
1643 	/*
1644 	 * We can only clear the hugetlb destructor after allocating vmemmap
1645 	 * pages.  Otherwise, someone (memory error handling) may try to write
1646 	 * to tail struct pages.
1647 	 */
1648 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1649 		__clear_hugetlb_destructor(h, folio);
1650 
1651 	 /*
1652 	  * In the case of demote we do not ref count the page as it will soon
1653 	  * be turned into a page of smaller size.
1654 	 */
1655 	if (!demote)
1656 		folio_ref_unfreeze(folio, 1);
1657 
1658 	h->nr_huge_pages--;
1659 	h->nr_huge_pages_node[nid]--;
1660 }
1661 
1662 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1663 							bool adjust_surplus)
1664 {
1665 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1666 }
1667 
1668 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1669 							bool adjust_surplus)
1670 {
1671 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1672 }
1673 
1674 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1675 			     bool adjust_surplus)
1676 {
1677 	int zeroed;
1678 	int nid = folio_nid(folio);
1679 
1680 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1681 
1682 	lockdep_assert_held(&hugetlb_lock);
1683 
1684 	INIT_LIST_HEAD(&folio->lru);
1685 	h->nr_huge_pages++;
1686 	h->nr_huge_pages_node[nid]++;
1687 
1688 	if (adjust_surplus) {
1689 		h->surplus_huge_pages++;
1690 		h->surplus_huge_pages_node[nid]++;
1691 	}
1692 
1693 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1694 	folio_change_private(folio, NULL);
1695 	/*
1696 	 * We have to set hugetlb_vmemmap_optimized again as above
1697 	 * folio_change_private(folio, NULL) cleared it.
1698 	 */
1699 	folio_set_hugetlb_vmemmap_optimized(folio);
1700 
1701 	/*
1702 	 * This folio is about to be managed by the hugetlb allocator and
1703 	 * should have no users.  Drop our reference, and check for others
1704 	 * just in case.
1705 	 */
1706 	zeroed = folio_put_testzero(folio);
1707 	if (unlikely(!zeroed))
1708 		/*
1709 		 * It is VERY unlikely soneone else has taken a ref
1710 		 * on the folio.  In this case, we simply return as
1711 		 * free_huge_folio() will be called when this other ref
1712 		 * is dropped.
1713 		 */
1714 		return;
1715 
1716 	arch_clear_hugepage_flags(&folio->page);
1717 	enqueue_hugetlb_folio(h, folio);
1718 }
1719 
1720 static void __update_and_free_hugetlb_folio(struct hstate *h,
1721 						struct folio *folio)
1722 {
1723 	int i;
1724 	struct page *subpage;
1725 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1726 
1727 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1728 		return;
1729 
1730 	/*
1731 	 * If we don't know which subpages are hwpoisoned, we can't free
1732 	 * the hugepage, so it's leaked intentionally.
1733 	 */
1734 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1735 		return;
1736 
1737 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1738 		spin_lock_irq(&hugetlb_lock);
1739 		/*
1740 		 * If we cannot allocate vmemmap pages, just refuse to free the
1741 		 * page and put the page back on the hugetlb free list and treat
1742 		 * as a surplus page.
1743 		 */
1744 		add_hugetlb_folio(h, folio, true);
1745 		spin_unlock_irq(&hugetlb_lock);
1746 		return;
1747 	}
1748 
1749 	/*
1750 	 * Move PageHWPoison flag from head page to the raw error pages,
1751 	 * which makes any healthy subpages reusable.
1752 	 */
1753 	if (unlikely(folio_test_hwpoison(folio)))
1754 		folio_clear_hugetlb_hwpoison(folio);
1755 
1756 	/*
1757 	 * If vmemmap pages were allocated above, then we need to clear the
1758 	 * hugetlb destructor under the hugetlb lock.
1759 	 */
1760 	if (clear_dtor) {
1761 		spin_lock_irq(&hugetlb_lock);
1762 		__clear_hugetlb_destructor(h, folio);
1763 		spin_unlock_irq(&hugetlb_lock);
1764 	}
1765 
1766 	for (i = 0; i < pages_per_huge_page(h); i++) {
1767 		subpage = folio_page(folio, i);
1768 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1769 				1 << PG_referenced | 1 << PG_dirty |
1770 				1 << PG_active | 1 << PG_private |
1771 				1 << PG_writeback);
1772 	}
1773 
1774 	/*
1775 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1776 	 * need to be given back to CMA in free_gigantic_folio.
1777 	 */
1778 	if (hstate_is_gigantic(h) ||
1779 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1780 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1781 		free_gigantic_folio(folio, huge_page_order(h));
1782 	} else {
1783 		__free_pages(&folio->page, huge_page_order(h));
1784 	}
1785 }
1786 
1787 /*
1788  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1789  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1790  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1791  * the vmemmap pages.
1792  *
1793  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1794  * freed and frees them one-by-one. As the page->mapping pointer is going
1795  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1796  * structure of a lockless linked list of huge pages to be freed.
1797  */
1798 static LLIST_HEAD(hpage_freelist);
1799 
1800 static void free_hpage_workfn(struct work_struct *work)
1801 {
1802 	struct llist_node *node;
1803 
1804 	node = llist_del_all(&hpage_freelist);
1805 
1806 	while (node) {
1807 		struct page *page;
1808 		struct hstate *h;
1809 
1810 		page = container_of((struct address_space **)node,
1811 				     struct page, mapping);
1812 		node = node->next;
1813 		page->mapping = NULL;
1814 		/*
1815 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1816 		 * folio_hstate() is going to trigger because a previous call to
1817 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1818 		 * (folio, NULL_COMPOUND_DTOR), so do not use folio_hstate()
1819 		 * directly.
1820 		 */
1821 		h = size_to_hstate(page_size(page));
1822 
1823 		__update_and_free_hugetlb_folio(h, page_folio(page));
1824 
1825 		cond_resched();
1826 	}
1827 }
1828 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1829 
1830 static inline void flush_free_hpage_work(struct hstate *h)
1831 {
1832 	if (hugetlb_vmemmap_optimizable(h))
1833 		flush_work(&free_hpage_work);
1834 }
1835 
1836 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1837 				 bool atomic)
1838 {
1839 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1840 		__update_and_free_hugetlb_folio(h, folio);
1841 		return;
1842 	}
1843 
1844 	/*
1845 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1846 	 *
1847 	 * Only call schedule_work() if hpage_freelist is previously
1848 	 * empty. Otherwise, schedule_work() had been called but the workfn
1849 	 * hasn't retrieved the list yet.
1850 	 */
1851 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1852 		schedule_work(&free_hpage_work);
1853 }
1854 
1855 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1856 {
1857 	struct page *page, *t_page;
1858 	struct folio *folio;
1859 
1860 	list_for_each_entry_safe(page, t_page, list, lru) {
1861 		folio = page_folio(page);
1862 		update_and_free_hugetlb_folio(h, folio, false);
1863 		cond_resched();
1864 	}
1865 }
1866 
1867 struct hstate *size_to_hstate(unsigned long size)
1868 {
1869 	struct hstate *h;
1870 
1871 	for_each_hstate(h) {
1872 		if (huge_page_size(h) == size)
1873 			return h;
1874 	}
1875 	return NULL;
1876 }
1877 
1878 void free_huge_folio(struct folio *folio)
1879 {
1880 	/*
1881 	 * Can't pass hstate in here because it is called from the
1882 	 * compound page destructor.
1883 	 */
1884 	struct hstate *h = folio_hstate(folio);
1885 	int nid = folio_nid(folio);
1886 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1887 	bool restore_reserve;
1888 	unsigned long flags;
1889 
1890 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1891 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1892 
1893 	hugetlb_set_folio_subpool(folio, NULL);
1894 	if (folio_test_anon(folio))
1895 		__ClearPageAnonExclusive(&folio->page);
1896 	folio->mapping = NULL;
1897 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1898 	folio_clear_hugetlb_restore_reserve(folio);
1899 
1900 	/*
1901 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1902 	 * reservation.  If the page was associated with a subpool, there
1903 	 * would have been a page reserved in the subpool before allocation
1904 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1905 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1906 	 * remove the reserved page from the subpool.
1907 	 */
1908 	if (!restore_reserve) {
1909 		/*
1910 		 * A return code of zero implies that the subpool will be
1911 		 * under its minimum size if the reservation is not restored
1912 		 * after page is free.  Therefore, force restore_reserve
1913 		 * operation.
1914 		 */
1915 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1916 			restore_reserve = true;
1917 	}
1918 
1919 	spin_lock_irqsave(&hugetlb_lock, flags);
1920 	folio_clear_hugetlb_migratable(folio);
1921 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1922 				     pages_per_huge_page(h), folio);
1923 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1924 					  pages_per_huge_page(h), folio);
1925 	if (restore_reserve)
1926 		h->resv_huge_pages++;
1927 
1928 	if (folio_test_hugetlb_temporary(folio)) {
1929 		remove_hugetlb_folio(h, folio, false);
1930 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1931 		update_and_free_hugetlb_folio(h, folio, true);
1932 	} else if (h->surplus_huge_pages_node[nid]) {
1933 		/* remove the page from active list */
1934 		remove_hugetlb_folio(h, folio, true);
1935 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 		update_and_free_hugetlb_folio(h, folio, true);
1937 	} else {
1938 		arch_clear_hugepage_flags(&folio->page);
1939 		enqueue_hugetlb_folio(h, folio);
1940 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1941 	}
1942 }
1943 
1944 /*
1945  * Must be called with the hugetlb lock held
1946  */
1947 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1948 {
1949 	lockdep_assert_held(&hugetlb_lock);
1950 	h->nr_huge_pages++;
1951 	h->nr_huge_pages_node[nid]++;
1952 }
1953 
1954 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955 {
1956 	hugetlb_vmemmap_optimize(h, &folio->page);
1957 	INIT_LIST_HEAD(&folio->lru);
1958 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1959 	hugetlb_set_folio_subpool(folio, NULL);
1960 	set_hugetlb_cgroup(folio, NULL);
1961 	set_hugetlb_cgroup_rsvd(folio, NULL);
1962 }
1963 
1964 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1965 {
1966 	__prep_new_hugetlb_folio(h, folio);
1967 	spin_lock_irq(&hugetlb_lock);
1968 	__prep_account_new_huge_page(h, nid);
1969 	spin_unlock_irq(&hugetlb_lock);
1970 }
1971 
1972 static bool __prep_compound_gigantic_folio(struct folio *folio,
1973 					unsigned int order, bool demote)
1974 {
1975 	int i, j;
1976 	int nr_pages = 1 << order;
1977 	struct page *p;
1978 
1979 	__folio_clear_reserved(folio);
1980 	for (i = 0; i < nr_pages; i++) {
1981 		p = folio_page(folio, i);
1982 
1983 		/*
1984 		 * For gigantic hugepages allocated through bootmem at
1985 		 * boot, it's safer to be consistent with the not-gigantic
1986 		 * hugepages and clear the PG_reserved bit from all tail pages
1987 		 * too.  Otherwise drivers using get_user_pages() to access tail
1988 		 * pages may get the reference counting wrong if they see
1989 		 * PG_reserved set on a tail page (despite the head page not
1990 		 * having PG_reserved set).  Enforcing this consistency between
1991 		 * head and tail pages allows drivers to optimize away a check
1992 		 * on the head page when they need know if put_page() is needed
1993 		 * after get_user_pages().
1994 		 */
1995 		if (i != 0)	/* head page cleared above */
1996 			__ClearPageReserved(p);
1997 		/*
1998 		 * Subtle and very unlikely
1999 		 *
2000 		 * Gigantic 'page allocators' such as memblock or cma will
2001 		 * return a set of pages with each page ref counted.  We need
2002 		 * to turn this set of pages into a compound page with tail
2003 		 * page ref counts set to zero.  Code such as speculative page
2004 		 * cache adding could take a ref on a 'to be' tail page.
2005 		 * We need to respect any increased ref count, and only set
2006 		 * the ref count to zero if count is currently 1.  If count
2007 		 * is not 1, we return an error.  An error return indicates
2008 		 * the set of pages can not be converted to a gigantic page.
2009 		 * The caller who allocated the pages should then discard the
2010 		 * pages using the appropriate free interface.
2011 		 *
2012 		 * In the case of demote, the ref count will be zero.
2013 		 */
2014 		if (!demote) {
2015 			if (!page_ref_freeze(p, 1)) {
2016 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2017 				goto out_error;
2018 			}
2019 		} else {
2020 			VM_BUG_ON_PAGE(page_count(p), p);
2021 		}
2022 		if (i != 0)
2023 			set_compound_head(p, &folio->page);
2024 	}
2025 	__folio_set_head(folio);
2026 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2027 	folio_set_order(folio, order);
2028 	atomic_set(&folio->_entire_mapcount, -1);
2029 	atomic_set(&folio->_nr_pages_mapped, 0);
2030 	atomic_set(&folio->_pincount, 0);
2031 	return true;
2032 
2033 out_error:
2034 	/* undo page modifications made above */
2035 	for (j = 0; j < i; j++) {
2036 		p = folio_page(folio, j);
2037 		if (j != 0)
2038 			clear_compound_head(p);
2039 		set_page_refcounted(p);
2040 	}
2041 	/* need to clear PG_reserved on remaining tail pages  */
2042 	for (; j < nr_pages; j++) {
2043 		p = folio_page(folio, j);
2044 		__ClearPageReserved(p);
2045 	}
2046 	return false;
2047 }
2048 
2049 static bool prep_compound_gigantic_folio(struct folio *folio,
2050 							unsigned int order)
2051 {
2052 	return __prep_compound_gigantic_folio(folio, order, false);
2053 }
2054 
2055 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2056 							unsigned int order)
2057 {
2058 	return __prep_compound_gigantic_folio(folio, order, true);
2059 }
2060 
2061 /*
2062  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2063  * transparent huge pages.  See the PageTransHuge() documentation for more
2064  * details.
2065  */
2066 int PageHuge(struct page *page)
2067 {
2068 	struct folio *folio;
2069 
2070 	if (!PageCompound(page))
2071 		return 0;
2072 	folio = page_folio(page);
2073 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2074 }
2075 EXPORT_SYMBOL_GPL(PageHuge);
2076 
2077 /**
2078  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2079  * @folio: The folio to test.
2080  *
2081  * Context: Any context.  Caller should have a reference on the folio to
2082  * prevent it from being turned into a tail page.
2083  * Return: True for hugetlbfs folios, false for anon folios or folios
2084  * belonging to other filesystems.
2085  */
2086 bool folio_test_hugetlb(struct folio *folio)
2087 {
2088 	if (!folio_test_large(folio))
2089 		return false;
2090 
2091 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2092 }
2093 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2094 
2095 /*
2096  * Find and lock address space (mapping) in write mode.
2097  *
2098  * Upon entry, the page is locked which means that page_mapping() is
2099  * stable.  Due to locking order, we can only trylock_write.  If we can
2100  * not get the lock, simply return NULL to caller.
2101  */
2102 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2103 {
2104 	struct address_space *mapping = page_mapping(hpage);
2105 
2106 	if (!mapping)
2107 		return mapping;
2108 
2109 	if (i_mmap_trylock_write(mapping))
2110 		return mapping;
2111 
2112 	return NULL;
2113 }
2114 
2115 pgoff_t hugetlb_basepage_index(struct page *page)
2116 {
2117 	struct page *page_head = compound_head(page);
2118 	pgoff_t index = page_index(page_head);
2119 	unsigned long compound_idx;
2120 
2121 	if (compound_order(page_head) > MAX_ORDER)
2122 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2123 	else
2124 		compound_idx = page - page_head;
2125 
2126 	return (index << compound_order(page_head)) + compound_idx;
2127 }
2128 
2129 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2130 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2131 		nodemask_t *node_alloc_noretry)
2132 {
2133 	int order = huge_page_order(h);
2134 	struct page *page;
2135 	bool alloc_try_hard = true;
2136 	bool retry = true;
2137 
2138 	/*
2139 	 * By default we always try hard to allocate the page with
2140 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2141 	 * a loop (to adjust global huge page counts) and previous allocation
2142 	 * failed, do not continue to try hard on the same node.  Use the
2143 	 * node_alloc_noretry bitmap to manage this state information.
2144 	 */
2145 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2146 		alloc_try_hard = false;
2147 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2148 	if (alloc_try_hard)
2149 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2150 	if (nid == NUMA_NO_NODE)
2151 		nid = numa_mem_id();
2152 retry:
2153 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2154 
2155 	/* Freeze head page */
2156 	if (page && !page_ref_freeze(page, 1)) {
2157 		__free_pages(page, order);
2158 		if (retry) {	/* retry once */
2159 			retry = false;
2160 			goto retry;
2161 		}
2162 		/* WOW!  twice in a row. */
2163 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2164 		page = NULL;
2165 	}
2166 
2167 	/*
2168 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2169 	 * indicates an overall state change.  Clear bit so that we resume
2170 	 * normal 'try hard' allocations.
2171 	 */
2172 	if (node_alloc_noretry && page && !alloc_try_hard)
2173 		node_clear(nid, *node_alloc_noretry);
2174 
2175 	/*
2176 	 * If we tried hard to get a page but failed, set bit so that
2177 	 * subsequent attempts will not try as hard until there is an
2178 	 * overall state change.
2179 	 */
2180 	if (node_alloc_noretry && !page && alloc_try_hard)
2181 		node_set(nid, *node_alloc_noretry);
2182 
2183 	if (!page) {
2184 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2185 		return NULL;
2186 	}
2187 
2188 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2189 	return page_folio(page);
2190 }
2191 
2192 /*
2193  * Common helper to allocate a fresh hugetlb page. All specific allocators
2194  * should use this function to get new hugetlb pages
2195  *
2196  * Note that returned page is 'frozen':  ref count of head page and all tail
2197  * pages is zero.
2198  */
2199 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2200 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2201 		nodemask_t *node_alloc_noretry)
2202 {
2203 	struct folio *folio;
2204 	bool retry = false;
2205 
2206 retry:
2207 	if (hstate_is_gigantic(h))
2208 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2209 	else
2210 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2211 				nid, nmask, node_alloc_noretry);
2212 	if (!folio)
2213 		return NULL;
2214 	if (hstate_is_gigantic(h)) {
2215 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2216 			/*
2217 			 * Rare failure to convert pages to compound page.
2218 			 * Free pages and try again - ONCE!
2219 			 */
2220 			free_gigantic_folio(folio, huge_page_order(h));
2221 			if (!retry) {
2222 				retry = true;
2223 				goto retry;
2224 			}
2225 			return NULL;
2226 		}
2227 	}
2228 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2229 
2230 	return folio;
2231 }
2232 
2233 /*
2234  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2235  * manner.
2236  */
2237 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2238 				nodemask_t *node_alloc_noretry)
2239 {
2240 	struct folio *folio;
2241 	int nr_nodes, node;
2242 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2243 
2244 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2245 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2246 					nodes_allowed, node_alloc_noretry);
2247 		if (folio) {
2248 			free_huge_folio(folio); /* free it into the hugepage allocator */
2249 			return 1;
2250 		}
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 /*
2257  * Remove huge page from pool from next node to free.  Attempt to keep
2258  * persistent huge pages more or less balanced over allowed nodes.
2259  * This routine only 'removes' the hugetlb page.  The caller must make
2260  * an additional call to free the page to low level allocators.
2261  * Called with hugetlb_lock locked.
2262  */
2263 static struct page *remove_pool_huge_page(struct hstate *h,
2264 						nodemask_t *nodes_allowed,
2265 						 bool acct_surplus)
2266 {
2267 	int nr_nodes, node;
2268 	struct page *page = NULL;
2269 	struct folio *folio;
2270 
2271 	lockdep_assert_held(&hugetlb_lock);
2272 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2273 		/*
2274 		 * If we're returning unused surplus pages, only examine
2275 		 * nodes with surplus pages.
2276 		 */
2277 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2278 		    !list_empty(&h->hugepage_freelists[node])) {
2279 			page = list_entry(h->hugepage_freelists[node].next,
2280 					  struct page, lru);
2281 			folio = page_folio(page);
2282 			remove_hugetlb_folio(h, folio, acct_surplus);
2283 			break;
2284 		}
2285 	}
2286 
2287 	return page;
2288 }
2289 
2290 /*
2291  * Dissolve a given free hugepage into free buddy pages. This function does
2292  * nothing for in-use hugepages and non-hugepages.
2293  * This function returns values like below:
2294  *
2295  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2296  *           when the system is under memory pressure and the feature of
2297  *           freeing unused vmemmap pages associated with each hugetlb page
2298  *           is enabled.
2299  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2300  *           (allocated or reserved.)
2301  *       0:  successfully dissolved free hugepages or the page is not a
2302  *           hugepage (considered as already dissolved)
2303  */
2304 int dissolve_free_huge_page(struct page *page)
2305 {
2306 	int rc = -EBUSY;
2307 	struct folio *folio = page_folio(page);
2308 
2309 retry:
2310 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2311 	if (!folio_test_hugetlb(folio))
2312 		return 0;
2313 
2314 	spin_lock_irq(&hugetlb_lock);
2315 	if (!folio_test_hugetlb(folio)) {
2316 		rc = 0;
2317 		goto out;
2318 	}
2319 
2320 	if (!folio_ref_count(folio)) {
2321 		struct hstate *h = folio_hstate(folio);
2322 		if (!available_huge_pages(h))
2323 			goto out;
2324 
2325 		/*
2326 		 * We should make sure that the page is already on the free list
2327 		 * when it is dissolved.
2328 		 */
2329 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2330 			spin_unlock_irq(&hugetlb_lock);
2331 			cond_resched();
2332 
2333 			/*
2334 			 * Theoretically, we should return -EBUSY when we
2335 			 * encounter this race. In fact, we have a chance
2336 			 * to successfully dissolve the page if we do a
2337 			 * retry. Because the race window is quite small.
2338 			 * If we seize this opportunity, it is an optimization
2339 			 * for increasing the success rate of dissolving page.
2340 			 */
2341 			goto retry;
2342 		}
2343 
2344 		remove_hugetlb_folio(h, folio, false);
2345 		h->max_huge_pages--;
2346 		spin_unlock_irq(&hugetlb_lock);
2347 
2348 		/*
2349 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2350 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2351 		 * free the page if it can not allocate required vmemmap.  We
2352 		 * need to adjust max_huge_pages if the page is not freed.
2353 		 * Attempt to allocate vmemmmap here so that we can take
2354 		 * appropriate action on failure.
2355 		 */
2356 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2357 		if (!rc) {
2358 			update_and_free_hugetlb_folio(h, folio, false);
2359 		} else {
2360 			spin_lock_irq(&hugetlb_lock);
2361 			add_hugetlb_folio(h, folio, false);
2362 			h->max_huge_pages++;
2363 			spin_unlock_irq(&hugetlb_lock);
2364 		}
2365 
2366 		return rc;
2367 	}
2368 out:
2369 	spin_unlock_irq(&hugetlb_lock);
2370 	return rc;
2371 }
2372 
2373 /*
2374  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2375  * make specified memory blocks removable from the system.
2376  * Note that this will dissolve a free gigantic hugepage completely, if any
2377  * part of it lies within the given range.
2378  * Also note that if dissolve_free_huge_page() returns with an error, all
2379  * free hugepages that were dissolved before that error are lost.
2380  */
2381 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2382 {
2383 	unsigned long pfn;
2384 	struct page *page;
2385 	int rc = 0;
2386 	unsigned int order;
2387 	struct hstate *h;
2388 
2389 	if (!hugepages_supported())
2390 		return rc;
2391 
2392 	order = huge_page_order(&default_hstate);
2393 	for_each_hstate(h)
2394 		order = min(order, huge_page_order(h));
2395 
2396 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2397 		page = pfn_to_page(pfn);
2398 		rc = dissolve_free_huge_page(page);
2399 		if (rc)
2400 			break;
2401 	}
2402 
2403 	return rc;
2404 }
2405 
2406 /*
2407  * Allocates a fresh surplus page from the page allocator.
2408  */
2409 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2410 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2411 {
2412 	struct folio *folio = NULL;
2413 
2414 	if (hstate_is_gigantic(h))
2415 		return NULL;
2416 
2417 	spin_lock_irq(&hugetlb_lock);
2418 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2419 		goto out_unlock;
2420 	spin_unlock_irq(&hugetlb_lock);
2421 
2422 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2423 	if (!folio)
2424 		return NULL;
2425 
2426 	spin_lock_irq(&hugetlb_lock);
2427 	/*
2428 	 * We could have raced with the pool size change.
2429 	 * Double check that and simply deallocate the new page
2430 	 * if we would end up overcommiting the surpluses. Abuse
2431 	 * temporary page to workaround the nasty free_huge_folio
2432 	 * codeflow
2433 	 */
2434 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2435 		folio_set_hugetlb_temporary(folio);
2436 		spin_unlock_irq(&hugetlb_lock);
2437 		free_huge_folio(folio);
2438 		return NULL;
2439 	}
2440 
2441 	h->surplus_huge_pages++;
2442 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2443 
2444 out_unlock:
2445 	spin_unlock_irq(&hugetlb_lock);
2446 
2447 	return folio;
2448 }
2449 
2450 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2451 				     int nid, nodemask_t *nmask)
2452 {
2453 	struct folio *folio;
2454 
2455 	if (hstate_is_gigantic(h))
2456 		return NULL;
2457 
2458 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2459 	if (!folio)
2460 		return NULL;
2461 
2462 	/* fresh huge pages are frozen */
2463 	folio_ref_unfreeze(folio, 1);
2464 	/*
2465 	 * We do not account these pages as surplus because they are only
2466 	 * temporary and will be released properly on the last reference
2467 	 */
2468 	folio_set_hugetlb_temporary(folio);
2469 
2470 	return folio;
2471 }
2472 
2473 /*
2474  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2475  */
2476 static
2477 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2478 		struct vm_area_struct *vma, unsigned long addr)
2479 {
2480 	struct folio *folio = NULL;
2481 	struct mempolicy *mpol;
2482 	gfp_t gfp_mask = htlb_alloc_mask(h);
2483 	int nid;
2484 	nodemask_t *nodemask;
2485 
2486 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2487 	if (mpol_is_preferred_many(mpol)) {
2488 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2489 
2490 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2491 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2492 
2493 		/* Fallback to all nodes if page==NULL */
2494 		nodemask = NULL;
2495 	}
2496 
2497 	if (!folio)
2498 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2499 	mpol_cond_put(mpol);
2500 	return folio;
2501 }
2502 
2503 /* folio migration callback function */
2504 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2505 		nodemask_t *nmask, gfp_t gfp_mask)
2506 {
2507 	spin_lock_irq(&hugetlb_lock);
2508 	if (available_huge_pages(h)) {
2509 		struct folio *folio;
2510 
2511 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2512 						preferred_nid, nmask);
2513 		if (folio) {
2514 			spin_unlock_irq(&hugetlb_lock);
2515 			return folio;
2516 		}
2517 	}
2518 	spin_unlock_irq(&hugetlb_lock);
2519 
2520 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2521 }
2522 
2523 /* mempolicy aware migration callback */
2524 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2525 		unsigned long address)
2526 {
2527 	struct mempolicy *mpol;
2528 	nodemask_t *nodemask;
2529 	struct folio *folio;
2530 	gfp_t gfp_mask;
2531 	int node;
2532 
2533 	gfp_mask = htlb_alloc_mask(h);
2534 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2535 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2536 	mpol_cond_put(mpol);
2537 
2538 	return folio;
2539 }
2540 
2541 /*
2542  * Increase the hugetlb pool such that it can accommodate a reservation
2543  * of size 'delta'.
2544  */
2545 static int gather_surplus_pages(struct hstate *h, long delta)
2546 	__must_hold(&hugetlb_lock)
2547 {
2548 	LIST_HEAD(surplus_list);
2549 	struct folio *folio, *tmp;
2550 	int ret;
2551 	long i;
2552 	long needed, allocated;
2553 	bool alloc_ok = true;
2554 
2555 	lockdep_assert_held(&hugetlb_lock);
2556 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2557 	if (needed <= 0) {
2558 		h->resv_huge_pages += delta;
2559 		return 0;
2560 	}
2561 
2562 	allocated = 0;
2563 
2564 	ret = -ENOMEM;
2565 retry:
2566 	spin_unlock_irq(&hugetlb_lock);
2567 	for (i = 0; i < needed; i++) {
2568 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2569 				NUMA_NO_NODE, NULL);
2570 		if (!folio) {
2571 			alloc_ok = false;
2572 			break;
2573 		}
2574 		list_add(&folio->lru, &surplus_list);
2575 		cond_resched();
2576 	}
2577 	allocated += i;
2578 
2579 	/*
2580 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2581 	 * because either resv_huge_pages or free_huge_pages may have changed.
2582 	 */
2583 	spin_lock_irq(&hugetlb_lock);
2584 	needed = (h->resv_huge_pages + delta) -
2585 			(h->free_huge_pages + allocated);
2586 	if (needed > 0) {
2587 		if (alloc_ok)
2588 			goto retry;
2589 		/*
2590 		 * We were not able to allocate enough pages to
2591 		 * satisfy the entire reservation so we free what
2592 		 * we've allocated so far.
2593 		 */
2594 		goto free;
2595 	}
2596 	/*
2597 	 * The surplus_list now contains _at_least_ the number of extra pages
2598 	 * needed to accommodate the reservation.  Add the appropriate number
2599 	 * of pages to the hugetlb pool and free the extras back to the buddy
2600 	 * allocator.  Commit the entire reservation here to prevent another
2601 	 * process from stealing the pages as they are added to the pool but
2602 	 * before they are reserved.
2603 	 */
2604 	needed += allocated;
2605 	h->resv_huge_pages += delta;
2606 	ret = 0;
2607 
2608 	/* Free the needed pages to the hugetlb pool */
2609 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2610 		if ((--needed) < 0)
2611 			break;
2612 		/* Add the page to the hugetlb allocator */
2613 		enqueue_hugetlb_folio(h, folio);
2614 	}
2615 free:
2616 	spin_unlock_irq(&hugetlb_lock);
2617 
2618 	/*
2619 	 * Free unnecessary surplus pages to the buddy allocator.
2620 	 * Pages have no ref count, call free_huge_folio directly.
2621 	 */
2622 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2623 		free_huge_folio(folio);
2624 	spin_lock_irq(&hugetlb_lock);
2625 
2626 	return ret;
2627 }
2628 
2629 /*
2630  * This routine has two main purposes:
2631  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2632  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2633  *    to the associated reservation map.
2634  * 2) Free any unused surplus pages that may have been allocated to satisfy
2635  *    the reservation.  As many as unused_resv_pages may be freed.
2636  */
2637 static void return_unused_surplus_pages(struct hstate *h,
2638 					unsigned long unused_resv_pages)
2639 {
2640 	unsigned long nr_pages;
2641 	struct page *page;
2642 	LIST_HEAD(page_list);
2643 
2644 	lockdep_assert_held(&hugetlb_lock);
2645 	/* Uncommit the reservation */
2646 	h->resv_huge_pages -= unused_resv_pages;
2647 
2648 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2649 		goto out;
2650 
2651 	/*
2652 	 * Part (or even all) of the reservation could have been backed
2653 	 * by pre-allocated pages. Only free surplus pages.
2654 	 */
2655 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2656 
2657 	/*
2658 	 * We want to release as many surplus pages as possible, spread
2659 	 * evenly across all nodes with memory. Iterate across these nodes
2660 	 * until we can no longer free unreserved surplus pages. This occurs
2661 	 * when the nodes with surplus pages have no free pages.
2662 	 * remove_pool_huge_page() will balance the freed pages across the
2663 	 * on-line nodes with memory and will handle the hstate accounting.
2664 	 */
2665 	while (nr_pages--) {
2666 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2667 		if (!page)
2668 			goto out;
2669 
2670 		list_add(&page->lru, &page_list);
2671 	}
2672 
2673 out:
2674 	spin_unlock_irq(&hugetlb_lock);
2675 	update_and_free_pages_bulk(h, &page_list);
2676 	spin_lock_irq(&hugetlb_lock);
2677 }
2678 
2679 
2680 /*
2681  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2682  * are used by the huge page allocation routines to manage reservations.
2683  *
2684  * vma_needs_reservation is called to determine if the huge page at addr
2685  * within the vma has an associated reservation.  If a reservation is
2686  * needed, the value 1 is returned.  The caller is then responsible for
2687  * managing the global reservation and subpool usage counts.  After
2688  * the huge page has been allocated, vma_commit_reservation is called
2689  * to add the page to the reservation map.  If the page allocation fails,
2690  * the reservation must be ended instead of committed.  vma_end_reservation
2691  * is called in such cases.
2692  *
2693  * In the normal case, vma_commit_reservation returns the same value
2694  * as the preceding vma_needs_reservation call.  The only time this
2695  * is not the case is if a reserve map was changed between calls.  It
2696  * is the responsibility of the caller to notice the difference and
2697  * take appropriate action.
2698  *
2699  * vma_add_reservation is used in error paths where a reservation must
2700  * be restored when a newly allocated huge page must be freed.  It is
2701  * to be called after calling vma_needs_reservation to determine if a
2702  * reservation exists.
2703  *
2704  * vma_del_reservation is used in error paths where an entry in the reserve
2705  * map was created during huge page allocation and must be removed.  It is to
2706  * be called after calling vma_needs_reservation to determine if a reservation
2707  * exists.
2708  */
2709 enum vma_resv_mode {
2710 	VMA_NEEDS_RESV,
2711 	VMA_COMMIT_RESV,
2712 	VMA_END_RESV,
2713 	VMA_ADD_RESV,
2714 	VMA_DEL_RESV,
2715 };
2716 static long __vma_reservation_common(struct hstate *h,
2717 				struct vm_area_struct *vma, unsigned long addr,
2718 				enum vma_resv_mode mode)
2719 {
2720 	struct resv_map *resv;
2721 	pgoff_t idx;
2722 	long ret;
2723 	long dummy_out_regions_needed;
2724 
2725 	resv = vma_resv_map(vma);
2726 	if (!resv)
2727 		return 1;
2728 
2729 	idx = vma_hugecache_offset(h, vma, addr);
2730 	switch (mode) {
2731 	case VMA_NEEDS_RESV:
2732 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2733 		/* We assume that vma_reservation_* routines always operate on
2734 		 * 1 page, and that adding to resv map a 1 page entry can only
2735 		 * ever require 1 region.
2736 		 */
2737 		VM_BUG_ON(dummy_out_regions_needed != 1);
2738 		break;
2739 	case VMA_COMMIT_RESV:
2740 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2741 		/* region_add calls of range 1 should never fail. */
2742 		VM_BUG_ON(ret < 0);
2743 		break;
2744 	case VMA_END_RESV:
2745 		region_abort(resv, idx, idx + 1, 1);
2746 		ret = 0;
2747 		break;
2748 	case VMA_ADD_RESV:
2749 		if (vma->vm_flags & VM_MAYSHARE) {
2750 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2751 			/* region_add calls of range 1 should never fail. */
2752 			VM_BUG_ON(ret < 0);
2753 		} else {
2754 			region_abort(resv, idx, idx + 1, 1);
2755 			ret = region_del(resv, idx, idx + 1);
2756 		}
2757 		break;
2758 	case VMA_DEL_RESV:
2759 		if (vma->vm_flags & VM_MAYSHARE) {
2760 			region_abort(resv, idx, idx + 1, 1);
2761 			ret = region_del(resv, idx, idx + 1);
2762 		} else {
2763 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2764 			/* region_add calls of range 1 should never fail. */
2765 			VM_BUG_ON(ret < 0);
2766 		}
2767 		break;
2768 	default:
2769 		BUG();
2770 	}
2771 
2772 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2773 		return ret;
2774 	/*
2775 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2776 	 *
2777 	 * In most cases, reserves always exist for private mappings.
2778 	 * However, a file associated with mapping could have been
2779 	 * hole punched or truncated after reserves were consumed.
2780 	 * As subsequent fault on such a range will not use reserves.
2781 	 * Subtle - The reserve map for private mappings has the
2782 	 * opposite meaning than that of shared mappings.  If NO
2783 	 * entry is in the reserve map, it means a reservation exists.
2784 	 * If an entry exists in the reserve map, it means the
2785 	 * reservation has already been consumed.  As a result, the
2786 	 * return value of this routine is the opposite of the
2787 	 * value returned from reserve map manipulation routines above.
2788 	 */
2789 	if (ret > 0)
2790 		return 0;
2791 	if (ret == 0)
2792 		return 1;
2793 	return ret;
2794 }
2795 
2796 static long vma_needs_reservation(struct hstate *h,
2797 			struct vm_area_struct *vma, unsigned long addr)
2798 {
2799 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2800 }
2801 
2802 static long vma_commit_reservation(struct hstate *h,
2803 			struct vm_area_struct *vma, unsigned long addr)
2804 {
2805 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2806 }
2807 
2808 static void vma_end_reservation(struct hstate *h,
2809 			struct vm_area_struct *vma, unsigned long addr)
2810 {
2811 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2812 }
2813 
2814 static long vma_add_reservation(struct hstate *h,
2815 			struct vm_area_struct *vma, unsigned long addr)
2816 {
2817 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2818 }
2819 
2820 static long vma_del_reservation(struct hstate *h,
2821 			struct vm_area_struct *vma, unsigned long addr)
2822 {
2823 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2824 }
2825 
2826 /*
2827  * This routine is called to restore reservation information on error paths.
2828  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2829  * and the hugetlb mutex should remain held when calling this routine.
2830  *
2831  * It handles two specific cases:
2832  * 1) A reservation was in place and the folio consumed the reservation.
2833  *    hugetlb_restore_reserve is set in the folio.
2834  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2835  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2836  *
2837  * In case 1, free_huge_folio later in the error path will increment the
2838  * global reserve count.  But, free_huge_folio does not have enough context
2839  * to adjust the reservation map.  This case deals primarily with private
2840  * mappings.  Adjust the reserve map here to be consistent with global
2841  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2842  * reserve map indicates there is a reservation present.
2843  *
2844  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2845  */
2846 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2847 			unsigned long address, struct folio *folio)
2848 {
2849 	long rc = vma_needs_reservation(h, vma, address);
2850 
2851 	if (folio_test_hugetlb_restore_reserve(folio)) {
2852 		if (unlikely(rc < 0))
2853 			/*
2854 			 * Rare out of memory condition in reserve map
2855 			 * manipulation.  Clear hugetlb_restore_reserve so
2856 			 * that global reserve count will not be incremented
2857 			 * by free_huge_folio.  This will make it appear
2858 			 * as though the reservation for this folio was
2859 			 * consumed.  This may prevent the task from
2860 			 * faulting in the folio at a later time.  This
2861 			 * is better than inconsistent global huge page
2862 			 * accounting of reserve counts.
2863 			 */
2864 			folio_clear_hugetlb_restore_reserve(folio);
2865 		else if (rc)
2866 			(void)vma_add_reservation(h, vma, address);
2867 		else
2868 			vma_end_reservation(h, vma, address);
2869 	} else {
2870 		if (!rc) {
2871 			/*
2872 			 * This indicates there is an entry in the reserve map
2873 			 * not added by alloc_hugetlb_folio.  We know it was added
2874 			 * before the alloc_hugetlb_folio call, otherwise
2875 			 * hugetlb_restore_reserve would be set on the folio.
2876 			 * Remove the entry so that a subsequent allocation
2877 			 * does not consume a reservation.
2878 			 */
2879 			rc = vma_del_reservation(h, vma, address);
2880 			if (rc < 0)
2881 				/*
2882 				 * VERY rare out of memory condition.  Since
2883 				 * we can not delete the entry, set
2884 				 * hugetlb_restore_reserve so that the reserve
2885 				 * count will be incremented when the folio
2886 				 * is freed.  This reserve will be consumed
2887 				 * on a subsequent allocation.
2888 				 */
2889 				folio_set_hugetlb_restore_reserve(folio);
2890 		} else if (rc < 0) {
2891 			/*
2892 			 * Rare out of memory condition from
2893 			 * vma_needs_reservation call.  Memory allocation is
2894 			 * only attempted if a new entry is needed.  Therefore,
2895 			 * this implies there is not an entry in the
2896 			 * reserve map.
2897 			 *
2898 			 * For shared mappings, no entry in the map indicates
2899 			 * no reservation.  We are done.
2900 			 */
2901 			if (!(vma->vm_flags & VM_MAYSHARE))
2902 				/*
2903 				 * For private mappings, no entry indicates
2904 				 * a reservation is present.  Since we can
2905 				 * not add an entry, set hugetlb_restore_reserve
2906 				 * on the folio so reserve count will be
2907 				 * incremented when freed.  This reserve will
2908 				 * be consumed on a subsequent allocation.
2909 				 */
2910 				folio_set_hugetlb_restore_reserve(folio);
2911 		} else
2912 			/*
2913 			 * No reservation present, do nothing
2914 			 */
2915 			 vma_end_reservation(h, vma, address);
2916 	}
2917 }
2918 
2919 /*
2920  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2921  * the old one
2922  * @h: struct hstate old page belongs to
2923  * @old_folio: Old folio to dissolve
2924  * @list: List to isolate the page in case we need to
2925  * Returns 0 on success, otherwise negated error.
2926  */
2927 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2928 			struct folio *old_folio, struct list_head *list)
2929 {
2930 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2931 	int nid = folio_nid(old_folio);
2932 	struct folio *new_folio;
2933 	int ret = 0;
2934 
2935 	/*
2936 	 * Before dissolving the folio, we need to allocate a new one for the
2937 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2938 	 * by doing everything but actually updating counters and adding to
2939 	 * the pool.  This simplifies and let us do most of the processing
2940 	 * under the lock.
2941 	 */
2942 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2943 	if (!new_folio)
2944 		return -ENOMEM;
2945 	__prep_new_hugetlb_folio(h, new_folio);
2946 
2947 retry:
2948 	spin_lock_irq(&hugetlb_lock);
2949 	if (!folio_test_hugetlb(old_folio)) {
2950 		/*
2951 		 * Freed from under us. Drop new_folio too.
2952 		 */
2953 		goto free_new;
2954 	} else if (folio_ref_count(old_folio)) {
2955 		bool isolated;
2956 
2957 		/*
2958 		 * Someone has grabbed the folio, try to isolate it here.
2959 		 * Fail with -EBUSY if not possible.
2960 		 */
2961 		spin_unlock_irq(&hugetlb_lock);
2962 		isolated = isolate_hugetlb(old_folio, list);
2963 		ret = isolated ? 0 : -EBUSY;
2964 		spin_lock_irq(&hugetlb_lock);
2965 		goto free_new;
2966 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2967 		/*
2968 		 * Folio's refcount is 0 but it has not been enqueued in the
2969 		 * freelist yet. Race window is small, so we can succeed here if
2970 		 * we retry.
2971 		 */
2972 		spin_unlock_irq(&hugetlb_lock);
2973 		cond_resched();
2974 		goto retry;
2975 	} else {
2976 		/*
2977 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2978 		 * the freelist and decrease the counters. These will be
2979 		 * incremented again when calling __prep_account_new_huge_page()
2980 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2981 		 * remain stable since this happens under the lock.
2982 		 */
2983 		remove_hugetlb_folio(h, old_folio, false);
2984 
2985 		/*
2986 		 * Ref count on new_folio is already zero as it was dropped
2987 		 * earlier.  It can be directly added to the pool free list.
2988 		 */
2989 		__prep_account_new_huge_page(h, nid);
2990 		enqueue_hugetlb_folio(h, new_folio);
2991 
2992 		/*
2993 		 * Folio has been replaced, we can safely free the old one.
2994 		 */
2995 		spin_unlock_irq(&hugetlb_lock);
2996 		update_and_free_hugetlb_folio(h, old_folio, false);
2997 	}
2998 
2999 	return ret;
3000 
3001 free_new:
3002 	spin_unlock_irq(&hugetlb_lock);
3003 	/* Folio has a zero ref count, but needs a ref to be freed */
3004 	folio_ref_unfreeze(new_folio, 1);
3005 	update_and_free_hugetlb_folio(h, new_folio, false);
3006 
3007 	return ret;
3008 }
3009 
3010 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3011 {
3012 	struct hstate *h;
3013 	struct folio *folio = page_folio(page);
3014 	int ret = -EBUSY;
3015 
3016 	/*
3017 	 * The page might have been dissolved from under our feet, so make sure
3018 	 * to carefully check the state under the lock.
3019 	 * Return success when racing as if we dissolved the page ourselves.
3020 	 */
3021 	spin_lock_irq(&hugetlb_lock);
3022 	if (folio_test_hugetlb(folio)) {
3023 		h = folio_hstate(folio);
3024 	} else {
3025 		spin_unlock_irq(&hugetlb_lock);
3026 		return 0;
3027 	}
3028 	spin_unlock_irq(&hugetlb_lock);
3029 
3030 	/*
3031 	 * Fence off gigantic pages as there is a cyclic dependency between
3032 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3033 	 * of bailing out right away without further retrying.
3034 	 */
3035 	if (hstate_is_gigantic(h))
3036 		return -ENOMEM;
3037 
3038 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3039 		ret = 0;
3040 	else if (!folio_ref_count(folio))
3041 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3042 
3043 	return ret;
3044 }
3045 
3046 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3047 				    unsigned long addr, int avoid_reserve)
3048 {
3049 	struct hugepage_subpool *spool = subpool_vma(vma);
3050 	struct hstate *h = hstate_vma(vma);
3051 	struct folio *folio;
3052 	long map_chg, map_commit;
3053 	long gbl_chg;
3054 	int ret, idx;
3055 	struct hugetlb_cgroup *h_cg = NULL;
3056 	bool deferred_reserve;
3057 
3058 	idx = hstate_index(h);
3059 	/*
3060 	 * Examine the region/reserve map to determine if the process
3061 	 * has a reservation for the page to be allocated.  A return
3062 	 * code of zero indicates a reservation exists (no change).
3063 	 */
3064 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3065 	if (map_chg < 0)
3066 		return ERR_PTR(-ENOMEM);
3067 
3068 	/*
3069 	 * Processes that did not create the mapping will have no
3070 	 * reserves as indicated by the region/reserve map. Check
3071 	 * that the allocation will not exceed the subpool limit.
3072 	 * Allocations for MAP_NORESERVE mappings also need to be
3073 	 * checked against any subpool limit.
3074 	 */
3075 	if (map_chg || avoid_reserve) {
3076 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3077 		if (gbl_chg < 0) {
3078 			vma_end_reservation(h, vma, addr);
3079 			return ERR_PTR(-ENOSPC);
3080 		}
3081 
3082 		/*
3083 		 * Even though there was no reservation in the region/reserve
3084 		 * map, there could be reservations associated with the
3085 		 * subpool that can be used.  This would be indicated if the
3086 		 * return value of hugepage_subpool_get_pages() is zero.
3087 		 * However, if avoid_reserve is specified we still avoid even
3088 		 * the subpool reservations.
3089 		 */
3090 		if (avoid_reserve)
3091 			gbl_chg = 1;
3092 	}
3093 
3094 	/* If this allocation is not consuming a reservation, charge it now.
3095 	 */
3096 	deferred_reserve = map_chg || avoid_reserve;
3097 	if (deferred_reserve) {
3098 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3099 			idx, pages_per_huge_page(h), &h_cg);
3100 		if (ret)
3101 			goto out_subpool_put;
3102 	}
3103 
3104 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3105 	if (ret)
3106 		goto out_uncharge_cgroup_reservation;
3107 
3108 	spin_lock_irq(&hugetlb_lock);
3109 	/*
3110 	 * glb_chg is passed to indicate whether or not a page must be taken
3111 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3112 	 * a reservation exists for the allocation.
3113 	 */
3114 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3115 	if (!folio) {
3116 		spin_unlock_irq(&hugetlb_lock);
3117 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3118 		if (!folio)
3119 			goto out_uncharge_cgroup;
3120 		spin_lock_irq(&hugetlb_lock);
3121 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3122 			folio_set_hugetlb_restore_reserve(folio);
3123 			h->resv_huge_pages--;
3124 		}
3125 		list_add(&folio->lru, &h->hugepage_activelist);
3126 		folio_ref_unfreeze(folio, 1);
3127 		/* Fall through */
3128 	}
3129 
3130 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3131 	/* If allocation is not consuming a reservation, also store the
3132 	 * hugetlb_cgroup pointer on the page.
3133 	 */
3134 	if (deferred_reserve) {
3135 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3136 						  h_cg, folio);
3137 	}
3138 
3139 	spin_unlock_irq(&hugetlb_lock);
3140 
3141 	hugetlb_set_folio_subpool(folio, spool);
3142 
3143 	map_commit = vma_commit_reservation(h, vma, addr);
3144 	if (unlikely(map_chg > map_commit)) {
3145 		/*
3146 		 * The page was added to the reservation map between
3147 		 * vma_needs_reservation and vma_commit_reservation.
3148 		 * This indicates a race with hugetlb_reserve_pages.
3149 		 * Adjust for the subpool count incremented above AND
3150 		 * in hugetlb_reserve_pages for the same page.  Also,
3151 		 * the reservation count added in hugetlb_reserve_pages
3152 		 * no longer applies.
3153 		 */
3154 		long rsv_adjust;
3155 
3156 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3157 		hugetlb_acct_memory(h, -rsv_adjust);
3158 		if (deferred_reserve)
3159 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3160 					pages_per_huge_page(h), folio);
3161 	}
3162 	return folio;
3163 
3164 out_uncharge_cgroup:
3165 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3166 out_uncharge_cgroup_reservation:
3167 	if (deferred_reserve)
3168 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3169 						    h_cg);
3170 out_subpool_put:
3171 	if (map_chg || avoid_reserve)
3172 		hugepage_subpool_put_pages(spool, 1);
3173 	vma_end_reservation(h, vma, addr);
3174 	return ERR_PTR(-ENOSPC);
3175 }
3176 
3177 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3178 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3179 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3180 {
3181 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3182 	int nr_nodes, node;
3183 
3184 	/* do node specific alloc */
3185 	if (nid != NUMA_NO_NODE) {
3186 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3187 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3188 		if (!m)
3189 			return 0;
3190 		goto found;
3191 	}
3192 	/* allocate from next node when distributing huge pages */
3193 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3194 		m = memblock_alloc_try_nid_raw(
3195 				huge_page_size(h), huge_page_size(h),
3196 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3197 		/*
3198 		 * Use the beginning of the huge page to store the
3199 		 * huge_bootmem_page struct (until gather_bootmem
3200 		 * puts them into the mem_map).
3201 		 */
3202 		if (!m)
3203 			return 0;
3204 		goto found;
3205 	}
3206 
3207 found:
3208 	/* Put them into a private list first because mem_map is not up yet */
3209 	INIT_LIST_HEAD(&m->list);
3210 	list_add(&m->list, &huge_boot_pages);
3211 	m->hstate = h;
3212 	return 1;
3213 }
3214 
3215 /*
3216  * Put bootmem huge pages into the standard lists after mem_map is up.
3217  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3218  */
3219 static void __init gather_bootmem_prealloc(void)
3220 {
3221 	struct huge_bootmem_page *m;
3222 
3223 	list_for_each_entry(m, &huge_boot_pages, list) {
3224 		struct page *page = virt_to_page(m);
3225 		struct folio *folio = page_folio(page);
3226 		struct hstate *h = m->hstate;
3227 
3228 		VM_BUG_ON(!hstate_is_gigantic(h));
3229 		WARN_ON(folio_ref_count(folio) != 1);
3230 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3231 			WARN_ON(folio_test_reserved(folio));
3232 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3233 			free_huge_folio(folio); /* add to the hugepage allocator */
3234 		} else {
3235 			/* VERY unlikely inflated ref count on a tail page */
3236 			free_gigantic_folio(folio, huge_page_order(h));
3237 		}
3238 
3239 		/*
3240 		 * We need to restore the 'stolen' pages to totalram_pages
3241 		 * in order to fix confusing memory reports from free(1) and
3242 		 * other side-effects, like CommitLimit going negative.
3243 		 */
3244 		adjust_managed_page_count(page, pages_per_huge_page(h));
3245 		cond_resched();
3246 	}
3247 }
3248 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3249 {
3250 	unsigned long i;
3251 	char buf[32];
3252 
3253 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3254 		if (hstate_is_gigantic(h)) {
3255 			if (!alloc_bootmem_huge_page(h, nid))
3256 				break;
3257 		} else {
3258 			struct folio *folio;
3259 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3260 
3261 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3262 					&node_states[N_MEMORY], NULL);
3263 			if (!folio)
3264 				break;
3265 			free_huge_folio(folio); /* free it into the hugepage allocator */
3266 		}
3267 		cond_resched();
3268 	}
3269 	if (i == h->max_huge_pages_node[nid])
3270 		return;
3271 
3272 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3273 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3274 		h->max_huge_pages_node[nid], buf, nid, i);
3275 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3276 	h->max_huge_pages_node[nid] = i;
3277 }
3278 
3279 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3280 {
3281 	unsigned long i;
3282 	nodemask_t *node_alloc_noretry;
3283 	bool node_specific_alloc = false;
3284 
3285 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3286 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3287 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3288 		return;
3289 	}
3290 
3291 	/* do node specific alloc */
3292 	for_each_online_node(i) {
3293 		if (h->max_huge_pages_node[i] > 0) {
3294 			hugetlb_hstate_alloc_pages_onenode(h, i);
3295 			node_specific_alloc = true;
3296 		}
3297 	}
3298 
3299 	if (node_specific_alloc)
3300 		return;
3301 
3302 	/* below will do all node balanced alloc */
3303 	if (!hstate_is_gigantic(h)) {
3304 		/*
3305 		 * Bit mask controlling how hard we retry per-node allocations.
3306 		 * Ignore errors as lower level routines can deal with
3307 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3308 		 * time, we are likely in bigger trouble.
3309 		 */
3310 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3311 						GFP_KERNEL);
3312 	} else {
3313 		/* allocations done at boot time */
3314 		node_alloc_noretry = NULL;
3315 	}
3316 
3317 	/* bit mask controlling how hard we retry per-node allocations */
3318 	if (node_alloc_noretry)
3319 		nodes_clear(*node_alloc_noretry);
3320 
3321 	for (i = 0; i < h->max_huge_pages; ++i) {
3322 		if (hstate_is_gigantic(h)) {
3323 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3324 				break;
3325 		} else if (!alloc_pool_huge_page(h,
3326 					 &node_states[N_MEMORY],
3327 					 node_alloc_noretry))
3328 			break;
3329 		cond_resched();
3330 	}
3331 	if (i < h->max_huge_pages) {
3332 		char buf[32];
3333 
3334 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3335 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3336 			h->max_huge_pages, buf, i);
3337 		h->max_huge_pages = i;
3338 	}
3339 	kfree(node_alloc_noretry);
3340 }
3341 
3342 static void __init hugetlb_init_hstates(void)
3343 {
3344 	struct hstate *h, *h2;
3345 
3346 	for_each_hstate(h) {
3347 		/* oversize hugepages were init'ed in early boot */
3348 		if (!hstate_is_gigantic(h))
3349 			hugetlb_hstate_alloc_pages(h);
3350 
3351 		/*
3352 		 * Set demote order for each hstate.  Note that
3353 		 * h->demote_order is initially 0.
3354 		 * - We can not demote gigantic pages if runtime freeing
3355 		 *   is not supported, so skip this.
3356 		 * - If CMA allocation is possible, we can not demote
3357 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3358 		 */
3359 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3360 			continue;
3361 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3362 			continue;
3363 		for_each_hstate(h2) {
3364 			if (h2 == h)
3365 				continue;
3366 			if (h2->order < h->order &&
3367 			    h2->order > h->demote_order)
3368 				h->demote_order = h2->order;
3369 		}
3370 	}
3371 }
3372 
3373 static void __init report_hugepages(void)
3374 {
3375 	struct hstate *h;
3376 
3377 	for_each_hstate(h) {
3378 		char buf[32];
3379 
3380 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3381 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3382 			buf, h->free_huge_pages);
3383 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3384 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3385 	}
3386 }
3387 
3388 #ifdef CONFIG_HIGHMEM
3389 static void try_to_free_low(struct hstate *h, unsigned long count,
3390 						nodemask_t *nodes_allowed)
3391 {
3392 	int i;
3393 	LIST_HEAD(page_list);
3394 
3395 	lockdep_assert_held(&hugetlb_lock);
3396 	if (hstate_is_gigantic(h))
3397 		return;
3398 
3399 	/*
3400 	 * Collect pages to be freed on a list, and free after dropping lock
3401 	 */
3402 	for_each_node_mask(i, *nodes_allowed) {
3403 		struct page *page, *next;
3404 		struct list_head *freel = &h->hugepage_freelists[i];
3405 		list_for_each_entry_safe(page, next, freel, lru) {
3406 			if (count >= h->nr_huge_pages)
3407 				goto out;
3408 			if (PageHighMem(page))
3409 				continue;
3410 			remove_hugetlb_folio(h, page_folio(page), false);
3411 			list_add(&page->lru, &page_list);
3412 		}
3413 	}
3414 
3415 out:
3416 	spin_unlock_irq(&hugetlb_lock);
3417 	update_and_free_pages_bulk(h, &page_list);
3418 	spin_lock_irq(&hugetlb_lock);
3419 }
3420 #else
3421 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3422 						nodemask_t *nodes_allowed)
3423 {
3424 }
3425 #endif
3426 
3427 /*
3428  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3429  * balanced by operating on them in a round-robin fashion.
3430  * Returns 1 if an adjustment was made.
3431  */
3432 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3433 				int delta)
3434 {
3435 	int nr_nodes, node;
3436 
3437 	lockdep_assert_held(&hugetlb_lock);
3438 	VM_BUG_ON(delta != -1 && delta != 1);
3439 
3440 	if (delta < 0) {
3441 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3442 			if (h->surplus_huge_pages_node[node])
3443 				goto found;
3444 		}
3445 	} else {
3446 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3447 			if (h->surplus_huge_pages_node[node] <
3448 					h->nr_huge_pages_node[node])
3449 				goto found;
3450 		}
3451 	}
3452 	return 0;
3453 
3454 found:
3455 	h->surplus_huge_pages += delta;
3456 	h->surplus_huge_pages_node[node] += delta;
3457 	return 1;
3458 }
3459 
3460 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3461 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3462 			      nodemask_t *nodes_allowed)
3463 {
3464 	unsigned long min_count, ret;
3465 	struct page *page;
3466 	LIST_HEAD(page_list);
3467 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3468 
3469 	/*
3470 	 * Bit mask controlling how hard we retry per-node allocations.
3471 	 * If we can not allocate the bit mask, do not attempt to allocate
3472 	 * the requested huge pages.
3473 	 */
3474 	if (node_alloc_noretry)
3475 		nodes_clear(*node_alloc_noretry);
3476 	else
3477 		return -ENOMEM;
3478 
3479 	/*
3480 	 * resize_lock mutex prevents concurrent adjustments to number of
3481 	 * pages in hstate via the proc/sysfs interfaces.
3482 	 */
3483 	mutex_lock(&h->resize_lock);
3484 	flush_free_hpage_work(h);
3485 	spin_lock_irq(&hugetlb_lock);
3486 
3487 	/*
3488 	 * Check for a node specific request.
3489 	 * Changing node specific huge page count may require a corresponding
3490 	 * change to the global count.  In any case, the passed node mask
3491 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3492 	 */
3493 	if (nid != NUMA_NO_NODE) {
3494 		unsigned long old_count = count;
3495 
3496 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3497 		/*
3498 		 * User may have specified a large count value which caused the
3499 		 * above calculation to overflow.  In this case, they wanted
3500 		 * to allocate as many huge pages as possible.  Set count to
3501 		 * largest possible value to align with their intention.
3502 		 */
3503 		if (count < old_count)
3504 			count = ULONG_MAX;
3505 	}
3506 
3507 	/*
3508 	 * Gigantic pages runtime allocation depend on the capability for large
3509 	 * page range allocation.
3510 	 * If the system does not provide this feature, return an error when
3511 	 * the user tries to allocate gigantic pages but let the user free the
3512 	 * boottime allocated gigantic pages.
3513 	 */
3514 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3515 		if (count > persistent_huge_pages(h)) {
3516 			spin_unlock_irq(&hugetlb_lock);
3517 			mutex_unlock(&h->resize_lock);
3518 			NODEMASK_FREE(node_alloc_noretry);
3519 			return -EINVAL;
3520 		}
3521 		/* Fall through to decrease pool */
3522 	}
3523 
3524 	/*
3525 	 * Increase the pool size
3526 	 * First take pages out of surplus state.  Then make up the
3527 	 * remaining difference by allocating fresh huge pages.
3528 	 *
3529 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3530 	 * to convert a surplus huge page to a normal huge page. That is
3531 	 * not critical, though, it just means the overall size of the
3532 	 * pool might be one hugepage larger than it needs to be, but
3533 	 * within all the constraints specified by the sysctls.
3534 	 */
3535 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3536 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3537 			break;
3538 	}
3539 
3540 	while (count > persistent_huge_pages(h)) {
3541 		/*
3542 		 * If this allocation races such that we no longer need the
3543 		 * page, free_huge_folio will handle it by freeing the page
3544 		 * and reducing the surplus.
3545 		 */
3546 		spin_unlock_irq(&hugetlb_lock);
3547 
3548 		/* yield cpu to avoid soft lockup */
3549 		cond_resched();
3550 
3551 		ret = alloc_pool_huge_page(h, nodes_allowed,
3552 						node_alloc_noretry);
3553 		spin_lock_irq(&hugetlb_lock);
3554 		if (!ret)
3555 			goto out;
3556 
3557 		/* Bail for signals. Probably ctrl-c from user */
3558 		if (signal_pending(current))
3559 			goto out;
3560 	}
3561 
3562 	/*
3563 	 * Decrease the pool size
3564 	 * First return free pages to the buddy allocator (being careful
3565 	 * to keep enough around to satisfy reservations).  Then place
3566 	 * pages into surplus state as needed so the pool will shrink
3567 	 * to the desired size as pages become free.
3568 	 *
3569 	 * By placing pages into the surplus state independent of the
3570 	 * overcommit value, we are allowing the surplus pool size to
3571 	 * exceed overcommit. There are few sane options here. Since
3572 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3573 	 * though, we'll note that we're not allowed to exceed surplus
3574 	 * and won't grow the pool anywhere else. Not until one of the
3575 	 * sysctls are changed, or the surplus pages go out of use.
3576 	 */
3577 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3578 	min_count = max(count, min_count);
3579 	try_to_free_low(h, min_count, nodes_allowed);
3580 
3581 	/*
3582 	 * Collect pages to be removed on list without dropping lock
3583 	 */
3584 	while (min_count < persistent_huge_pages(h)) {
3585 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3586 		if (!page)
3587 			break;
3588 
3589 		list_add(&page->lru, &page_list);
3590 	}
3591 	/* free the pages after dropping lock */
3592 	spin_unlock_irq(&hugetlb_lock);
3593 	update_and_free_pages_bulk(h, &page_list);
3594 	flush_free_hpage_work(h);
3595 	spin_lock_irq(&hugetlb_lock);
3596 
3597 	while (count < persistent_huge_pages(h)) {
3598 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3599 			break;
3600 	}
3601 out:
3602 	h->max_huge_pages = persistent_huge_pages(h);
3603 	spin_unlock_irq(&hugetlb_lock);
3604 	mutex_unlock(&h->resize_lock);
3605 
3606 	NODEMASK_FREE(node_alloc_noretry);
3607 
3608 	return 0;
3609 }
3610 
3611 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3612 {
3613 	int i, nid = folio_nid(folio);
3614 	struct hstate *target_hstate;
3615 	struct page *subpage;
3616 	struct folio *inner_folio;
3617 	int rc = 0;
3618 
3619 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3620 
3621 	remove_hugetlb_folio_for_demote(h, folio, false);
3622 	spin_unlock_irq(&hugetlb_lock);
3623 
3624 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3625 	if (rc) {
3626 		/* Allocation of vmemmmap failed, we can not demote folio */
3627 		spin_lock_irq(&hugetlb_lock);
3628 		folio_ref_unfreeze(folio, 1);
3629 		add_hugetlb_folio(h, folio, false);
3630 		return rc;
3631 	}
3632 
3633 	/*
3634 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3635 	 * sizes as it will not ref count folios.
3636 	 */
3637 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3638 
3639 	/*
3640 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3641 	 * Without the mutex, pages added to target hstate could be marked
3642 	 * as surplus.
3643 	 *
3644 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3645 	 * use the convention of always taking larger size hstate mutex first.
3646 	 */
3647 	mutex_lock(&target_hstate->resize_lock);
3648 	for (i = 0; i < pages_per_huge_page(h);
3649 				i += pages_per_huge_page(target_hstate)) {
3650 		subpage = folio_page(folio, i);
3651 		inner_folio = page_folio(subpage);
3652 		if (hstate_is_gigantic(target_hstate))
3653 			prep_compound_gigantic_folio_for_demote(inner_folio,
3654 							target_hstate->order);
3655 		else
3656 			prep_compound_page(subpage, target_hstate->order);
3657 		folio_change_private(inner_folio, NULL);
3658 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3659 		free_huge_folio(inner_folio);
3660 	}
3661 	mutex_unlock(&target_hstate->resize_lock);
3662 
3663 	spin_lock_irq(&hugetlb_lock);
3664 
3665 	/*
3666 	 * Not absolutely necessary, but for consistency update max_huge_pages
3667 	 * based on pool changes for the demoted page.
3668 	 */
3669 	h->max_huge_pages--;
3670 	target_hstate->max_huge_pages +=
3671 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3672 
3673 	return rc;
3674 }
3675 
3676 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3677 	__must_hold(&hugetlb_lock)
3678 {
3679 	int nr_nodes, node;
3680 	struct folio *folio;
3681 
3682 	lockdep_assert_held(&hugetlb_lock);
3683 
3684 	/* We should never get here if no demote order */
3685 	if (!h->demote_order) {
3686 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3687 		return -EINVAL;		/* internal error */
3688 	}
3689 
3690 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3691 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3692 			if (folio_test_hwpoison(folio))
3693 				continue;
3694 			return demote_free_hugetlb_folio(h, folio);
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * Only way to get here is if all pages on free lists are poisoned.
3700 	 * Return -EBUSY so that caller will not retry.
3701 	 */
3702 	return -EBUSY;
3703 }
3704 
3705 #define HSTATE_ATTR_RO(_name) \
3706 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3707 
3708 #define HSTATE_ATTR_WO(_name) \
3709 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3710 
3711 #define HSTATE_ATTR(_name) \
3712 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3713 
3714 static struct kobject *hugepages_kobj;
3715 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3716 
3717 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3718 
3719 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3720 {
3721 	int i;
3722 
3723 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3724 		if (hstate_kobjs[i] == kobj) {
3725 			if (nidp)
3726 				*nidp = NUMA_NO_NODE;
3727 			return &hstates[i];
3728 		}
3729 
3730 	return kobj_to_node_hstate(kobj, nidp);
3731 }
3732 
3733 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3734 					struct kobj_attribute *attr, char *buf)
3735 {
3736 	struct hstate *h;
3737 	unsigned long nr_huge_pages;
3738 	int nid;
3739 
3740 	h = kobj_to_hstate(kobj, &nid);
3741 	if (nid == NUMA_NO_NODE)
3742 		nr_huge_pages = h->nr_huge_pages;
3743 	else
3744 		nr_huge_pages = h->nr_huge_pages_node[nid];
3745 
3746 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3747 }
3748 
3749 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3750 					   struct hstate *h, int nid,
3751 					   unsigned long count, size_t len)
3752 {
3753 	int err;
3754 	nodemask_t nodes_allowed, *n_mask;
3755 
3756 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3757 		return -EINVAL;
3758 
3759 	if (nid == NUMA_NO_NODE) {
3760 		/*
3761 		 * global hstate attribute
3762 		 */
3763 		if (!(obey_mempolicy &&
3764 				init_nodemask_of_mempolicy(&nodes_allowed)))
3765 			n_mask = &node_states[N_MEMORY];
3766 		else
3767 			n_mask = &nodes_allowed;
3768 	} else {
3769 		/*
3770 		 * Node specific request.  count adjustment happens in
3771 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3772 		 */
3773 		init_nodemask_of_node(&nodes_allowed, nid);
3774 		n_mask = &nodes_allowed;
3775 	}
3776 
3777 	err = set_max_huge_pages(h, count, nid, n_mask);
3778 
3779 	return err ? err : len;
3780 }
3781 
3782 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3783 					 struct kobject *kobj, const char *buf,
3784 					 size_t len)
3785 {
3786 	struct hstate *h;
3787 	unsigned long count;
3788 	int nid;
3789 	int err;
3790 
3791 	err = kstrtoul(buf, 10, &count);
3792 	if (err)
3793 		return err;
3794 
3795 	h = kobj_to_hstate(kobj, &nid);
3796 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3797 }
3798 
3799 static ssize_t nr_hugepages_show(struct kobject *kobj,
3800 				       struct kobj_attribute *attr, char *buf)
3801 {
3802 	return nr_hugepages_show_common(kobj, attr, buf);
3803 }
3804 
3805 static ssize_t nr_hugepages_store(struct kobject *kobj,
3806 	       struct kobj_attribute *attr, const char *buf, size_t len)
3807 {
3808 	return nr_hugepages_store_common(false, kobj, buf, len);
3809 }
3810 HSTATE_ATTR(nr_hugepages);
3811 
3812 #ifdef CONFIG_NUMA
3813 
3814 /*
3815  * hstate attribute for optionally mempolicy-based constraint on persistent
3816  * huge page alloc/free.
3817  */
3818 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3819 					   struct kobj_attribute *attr,
3820 					   char *buf)
3821 {
3822 	return nr_hugepages_show_common(kobj, attr, buf);
3823 }
3824 
3825 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3826 	       struct kobj_attribute *attr, const char *buf, size_t len)
3827 {
3828 	return nr_hugepages_store_common(true, kobj, buf, len);
3829 }
3830 HSTATE_ATTR(nr_hugepages_mempolicy);
3831 #endif
3832 
3833 
3834 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3835 					struct kobj_attribute *attr, char *buf)
3836 {
3837 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3838 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3839 }
3840 
3841 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3842 		struct kobj_attribute *attr, const char *buf, size_t count)
3843 {
3844 	int err;
3845 	unsigned long input;
3846 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3847 
3848 	if (hstate_is_gigantic(h))
3849 		return -EINVAL;
3850 
3851 	err = kstrtoul(buf, 10, &input);
3852 	if (err)
3853 		return err;
3854 
3855 	spin_lock_irq(&hugetlb_lock);
3856 	h->nr_overcommit_huge_pages = input;
3857 	spin_unlock_irq(&hugetlb_lock);
3858 
3859 	return count;
3860 }
3861 HSTATE_ATTR(nr_overcommit_hugepages);
3862 
3863 static ssize_t free_hugepages_show(struct kobject *kobj,
3864 					struct kobj_attribute *attr, char *buf)
3865 {
3866 	struct hstate *h;
3867 	unsigned long free_huge_pages;
3868 	int nid;
3869 
3870 	h = kobj_to_hstate(kobj, &nid);
3871 	if (nid == NUMA_NO_NODE)
3872 		free_huge_pages = h->free_huge_pages;
3873 	else
3874 		free_huge_pages = h->free_huge_pages_node[nid];
3875 
3876 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3877 }
3878 HSTATE_ATTR_RO(free_hugepages);
3879 
3880 static ssize_t resv_hugepages_show(struct kobject *kobj,
3881 					struct kobj_attribute *attr, char *buf)
3882 {
3883 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3884 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3885 }
3886 HSTATE_ATTR_RO(resv_hugepages);
3887 
3888 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3889 					struct kobj_attribute *attr, char *buf)
3890 {
3891 	struct hstate *h;
3892 	unsigned long surplus_huge_pages;
3893 	int nid;
3894 
3895 	h = kobj_to_hstate(kobj, &nid);
3896 	if (nid == NUMA_NO_NODE)
3897 		surplus_huge_pages = h->surplus_huge_pages;
3898 	else
3899 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3900 
3901 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3902 }
3903 HSTATE_ATTR_RO(surplus_hugepages);
3904 
3905 static ssize_t demote_store(struct kobject *kobj,
3906 	       struct kobj_attribute *attr, const char *buf, size_t len)
3907 {
3908 	unsigned long nr_demote;
3909 	unsigned long nr_available;
3910 	nodemask_t nodes_allowed, *n_mask;
3911 	struct hstate *h;
3912 	int err;
3913 	int nid;
3914 
3915 	err = kstrtoul(buf, 10, &nr_demote);
3916 	if (err)
3917 		return err;
3918 	h = kobj_to_hstate(kobj, &nid);
3919 
3920 	if (nid != NUMA_NO_NODE) {
3921 		init_nodemask_of_node(&nodes_allowed, nid);
3922 		n_mask = &nodes_allowed;
3923 	} else {
3924 		n_mask = &node_states[N_MEMORY];
3925 	}
3926 
3927 	/* Synchronize with other sysfs operations modifying huge pages */
3928 	mutex_lock(&h->resize_lock);
3929 	spin_lock_irq(&hugetlb_lock);
3930 
3931 	while (nr_demote) {
3932 		/*
3933 		 * Check for available pages to demote each time thorough the
3934 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3935 		 */
3936 		if (nid != NUMA_NO_NODE)
3937 			nr_available = h->free_huge_pages_node[nid];
3938 		else
3939 			nr_available = h->free_huge_pages;
3940 		nr_available -= h->resv_huge_pages;
3941 		if (!nr_available)
3942 			break;
3943 
3944 		err = demote_pool_huge_page(h, n_mask);
3945 		if (err)
3946 			break;
3947 
3948 		nr_demote--;
3949 	}
3950 
3951 	spin_unlock_irq(&hugetlb_lock);
3952 	mutex_unlock(&h->resize_lock);
3953 
3954 	if (err)
3955 		return err;
3956 	return len;
3957 }
3958 HSTATE_ATTR_WO(demote);
3959 
3960 static ssize_t demote_size_show(struct kobject *kobj,
3961 					struct kobj_attribute *attr, char *buf)
3962 {
3963 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3964 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3965 
3966 	return sysfs_emit(buf, "%lukB\n", demote_size);
3967 }
3968 
3969 static ssize_t demote_size_store(struct kobject *kobj,
3970 					struct kobj_attribute *attr,
3971 					const char *buf, size_t count)
3972 {
3973 	struct hstate *h, *demote_hstate;
3974 	unsigned long demote_size;
3975 	unsigned int demote_order;
3976 
3977 	demote_size = (unsigned long)memparse(buf, NULL);
3978 
3979 	demote_hstate = size_to_hstate(demote_size);
3980 	if (!demote_hstate)
3981 		return -EINVAL;
3982 	demote_order = demote_hstate->order;
3983 	if (demote_order < HUGETLB_PAGE_ORDER)
3984 		return -EINVAL;
3985 
3986 	/* demote order must be smaller than hstate order */
3987 	h = kobj_to_hstate(kobj, NULL);
3988 	if (demote_order >= h->order)
3989 		return -EINVAL;
3990 
3991 	/* resize_lock synchronizes access to demote size and writes */
3992 	mutex_lock(&h->resize_lock);
3993 	h->demote_order = demote_order;
3994 	mutex_unlock(&h->resize_lock);
3995 
3996 	return count;
3997 }
3998 HSTATE_ATTR(demote_size);
3999 
4000 static struct attribute *hstate_attrs[] = {
4001 	&nr_hugepages_attr.attr,
4002 	&nr_overcommit_hugepages_attr.attr,
4003 	&free_hugepages_attr.attr,
4004 	&resv_hugepages_attr.attr,
4005 	&surplus_hugepages_attr.attr,
4006 #ifdef CONFIG_NUMA
4007 	&nr_hugepages_mempolicy_attr.attr,
4008 #endif
4009 	NULL,
4010 };
4011 
4012 static const struct attribute_group hstate_attr_group = {
4013 	.attrs = hstate_attrs,
4014 };
4015 
4016 static struct attribute *hstate_demote_attrs[] = {
4017 	&demote_size_attr.attr,
4018 	&demote_attr.attr,
4019 	NULL,
4020 };
4021 
4022 static const struct attribute_group hstate_demote_attr_group = {
4023 	.attrs = hstate_demote_attrs,
4024 };
4025 
4026 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4027 				    struct kobject **hstate_kobjs,
4028 				    const struct attribute_group *hstate_attr_group)
4029 {
4030 	int retval;
4031 	int hi = hstate_index(h);
4032 
4033 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4034 	if (!hstate_kobjs[hi])
4035 		return -ENOMEM;
4036 
4037 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4038 	if (retval) {
4039 		kobject_put(hstate_kobjs[hi]);
4040 		hstate_kobjs[hi] = NULL;
4041 		return retval;
4042 	}
4043 
4044 	if (h->demote_order) {
4045 		retval = sysfs_create_group(hstate_kobjs[hi],
4046 					    &hstate_demote_attr_group);
4047 		if (retval) {
4048 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4049 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4050 			kobject_put(hstate_kobjs[hi]);
4051 			hstate_kobjs[hi] = NULL;
4052 			return retval;
4053 		}
4054 	}
4055 
4056 	return 0;
4057 }
4058 
4059 #ifdef CONFIG_NUMA
4060 static bool hugetlb_sysfs_initialized __ro_after_init;
4061 
4062 /*
4063  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4064  * with node devices in node_devices[] using a parallel array.  The array
4065  * index of a node device or _hstate == node id.
4066  * This is here to avoid any static dependency of the node device driver, in
4067  * the base kernel, on the hugetlb module.
4068  */
4069 struct node_hstate {
4070 	struct kobject		*hugepages_kobj;
4071 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4072 };
4073 static struct node_hstate node_hstates[MAX_NUMNODES];
4074 
4075 /*
4076  * A subset of global hstate attributes for node devices
4077  */
4078 static struct attribute *per_node_hstate_attrs[] = {
4079 	&nr_hugepages_attr.attr,
4080 	&free_hugepages_attr.attr,
4081 	&surplus_hugepages_attr.attr,
4082 	NULL,
4083 };
4084 
4085 static const struct attribute_group per_node_hstate_attr_group = {
4086 	.attrs = per_node_hstate_attrs,
4087 };
4088 
4089 /*
4090  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4091  * Returns node id via non-NULL nidp.
4092  */
4093 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4094 {
4095 	int nid;
4096 
4097 	for (nid = 0; nid < nr_node_ids; nid++) {
4098 		struct node_hstate *nhs = &node_hstates[nid];
4099 		int i;
4100 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4101 			if (nhs->hstate_kobjs[i] == kobj) {
4102 				if (nidp)
4103 					*nidp = nid;
4104 				return &hstates[i];
4105 			}
4106 	}
4107 
4108 	BUG();
4109 	return NULL;
4110 }
4111 
4112 /*
4113  * Unregister hstate attributes from a single node device.
4114  * No-op if no hstate attributes attached.
4115  */
4116 void hugetlb_unregister_node(struct node *node)
4117 {
4118 	struct hstate *h;
4119 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4120 
4121 	if (!nhs->hugepages_kobj)
4122 		return;		/* no hstate attributes */
4123 
4124 	for_each_hstate(h) {
4125 		int idx = hstate_index(h);
4126 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4127 
4128 		if (!hstate_kobj)
4129 			continue;
4130 		if (h->demote_order)
4131 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4132 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4133 		kobject_put(hstate_kobj);
4134 		nhs->hstate_kobjs[idx] = NULL;
4135 	}
4136 
4137 	kobject_put(nhs->hugepages_kobj);
4138 	nhs->hugepages_kobj = NULL;
4139 }
4140 
4141 
4142 /*
4143  * Register hstate attributes for a single node device.
4144  * No-op if attributes already registered.
4145  */
4146 void hugetlb_register_node(struct node *node)
4147 {
4148 	struct hstate *h;
4149 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4150 	int err;
4151 
4152 	if (!hugetlb_sysfs_initialized)
4153 		return;
4154 
4155 	if (nhs->hugepages_kobj)
4156 		return;		/* already allocated */
4157 
4158 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4159 							&node->dev.kobj);
4160 	if (!nhs->hugepages_kobj)
4161 		return;
4162 
4163 	for_each_hstate(h) {
4164 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4165 						nhs->hstate_kobjs,
4166 						&per_node_hstate_attr_group);
4167 		if (err) {
4168 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4169 				h->name, node->dev.id);
4170 			hugetlb_unregister_node(node);
4171 			break;
4172 		}
4173 	}
4174 }
4175 
4176 /*
4177  * hugetlb init time:  register hstate attributes for all registered node
4178  * devices of nodes that have memory.  All on-line nodes should have
4179  * registered their associated device by this time.
4180  */
4181 static void __init hugetlb_register_all_nodes(void)
4182 {
4183 	int nid;
4184 
4185 	for_each_online_node(nid)
4186 		hugetlb_register_node(node_devices[nid]);
4187 }
4188 #else	/* !CONFIG_NUMA */
4189 
4190 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4191 {
4192 	BUG();
4193 	if (nidp)
4194 		*nidp = -1;
4195 	return NULL;
4196 }
4197 
4198 static void hugetlb_register_all_nodes(void) { }
4199 
4200 #endif
4201 
4202 #ifdef CONFIG_CMA
4203 static void __init hugetlb_cma_check(void);
4204 #else
4205 static inline __init void hugetlb_cma_check(void)
4206 {
4207 }
4208 #endif
4209 
4210 static void __init hugetlb_sysfs_init(void)
4211 {
4212 	struct hstate *h;
4213 	int err;
4214 
4215 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4216 	if (!hugepages_kobj)
4217 		return;
4218 
4219 	for_each_hstate(h) {
4220 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4221 					 hstate_kobjs, &hstate_attr_group);
4222 		if (err)
4223 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4224 	}
4225 
4226 #ifdef CONFIG_NUMA
4227 	hugetlb_sysfs_initialized = true;
4228 #endif
4229 	hugetlb_register_all_nodes();
4230 }
4231 
4232 #ifdef CONFIG_SYSCTL
4233 static void hugetlb_sysctl_init(void);
4234 #else
4235 static inline void hugetlb_sysctl_init(void) { }
4236 #endif
4237 
4238 static int __init hugetlb_init(void)
4239 {
4240 	int i;
4241 
4242 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4243 			__NR_HPAGEFLAGS);
4244 
4245 	if (!hugepages_supported()) {
4246 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4247 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4248 		return 0;
4249 	}
4250 
4251 	/*
4252 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4253 	 * architectures depend on setup being done here.
4254 	 */
4255 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4256 	if (!parsed_default_hugepagesz) {
4257 		/*
4258 		 * If we did not parse a default huge page size, set
4259 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4260 		 * number of huge pages for this default size was implicitly
4261 		 * specified, set that here as well.
4262 		 * Note that the implicit setting will overwrite an explicit
4263 		 * setting.  A warning will be printed in this case.
4264 		 */
4265 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4266 		if (default_hstate_max_huge_pages) {
4267 			if (default_hstate.max_huge_pages) {
4268 				char buf[32];
4269 
4270 				string_get_size(huge_page_size(&default_hstate),
4271 					1, STRING_UNITS_2, buf, 32);
4272 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4273 					default_hstate.max_huge_pages, buf);
4274 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4275 					default_hstate_max_huge_pages);
4276 			}
4277 			default_hstate.max_huge_pages =
4278 				default_hstate_max_huge_pages;
4279 
4280 			for_each_online_node(i)
4281 				default_hstate.max_huge_pages_node[i] =
4282 					default_hugepages_in_node[i];
4283 		}
4284 	}
4285 
4286 	hugetlb_cma_check();
4287 	hugetlb_init_hstates();
4288 	gather_bootmem_prealloc();
4289 	report_hugepages();
4290 
4291 	hugetlb_sysfs_init();
4292 	hugetlb_cgroup_file_init();
4293 	hugetlb_sysctl_init();
4294 
4295 #ifdef CONFIG_SMP
4296 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4297 #else
4298 	num_fault_mutexes = 1;
4299 #endif
4300 	hugetlb_fault_mutex_table =
4301 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4302 			      GFP_KERNEL);
4303 	BUG_ON(!hugetlb_fault_mutex_table);
4304 
4305 	for (i = 0; i < num_fault_mutexes; i++)
4306 		mutex_init(&hugetlb_fault_mutex_table[i]);
4307 	return 0;
4308 }
4309 subsys_initcall(hugetlb_init);
4310 
4311 /* Overwritten by architectures with more huge page sizes */
4312 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4313 {
4314 	return size == HPAGE_SIZE;
4315 }
4316 
4317 void __init hugetlb_add_hstate(unsigned int order)
4318 {
4319 	struct hstate *h;
4320 	unsigned long i;
4321 
4322 	if (size_to_hstate(PAGE_SIZE << order)) {
4323 		return;
4324 	}
4325 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4326 	BUG_ON(order == 0);
4327 	h = &hstates[hugetlb_max_hstate++];
4328 	mutex_init(&h->resize_lock);
4329 	h->order = order;
4330 	h->mask = ~(huge_page_size(h) - 1);
4331 	for (i = 0; i < MAX_NUMNODES; ++i)
4332 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4333 	INIT_LIST_HEAD(&h->hugepage_activelist);
4334 	h->next_nid_to_alloc = first_memory_node;
4335 	h->next_nid_to_free = first_memory_node;
4336 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4337 					huge_page_size(h)/SZ_1K);
4338 
4339 	parsed_hstate = h;
4340 }
4341 
4342 bool __init __weak hugetlb_node_alloc_supported(void)
4343 {
4344 	return true;
4345 }
4346 
4347 static void __init hugepages_clear_pages_in_node(void)
4348 {
4349 	if (!hugetlb_max_hstate) {
4350 		default_hstate_max_huge_pages = 0;
4351 		memset(default_hugepages_in_node, 0,
4352 			sizeof(default_hugepages_in_node));
4353 	} else {
4354 		parsed_hstate->max_huge_pages = 0;
4355 		memset(parsed_hstate->max_huge_pages_node, 0,
4356 			sizeof(parsed_hstate->max_huge_pages_node));
4357 	}
4358 }
4359 
4360 /*
4361  * hugepages command line processing
4362  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4363  * specification.  If not, ignore the hugepages value.  hugepages can also
4364  * be the first huge page command line  option in which case it implicitly
4365  * specifies the number of huge pages for the default size.
4366  */
4367 static int __init hugepages_setup(char *s)
4368 {
4369 	unsigned long *mhp;
4370 	static unsigned long *last_mhp;
4371 	int node = NUMA_NO_NODE;
4372 	int count;
4373 	unsigned long tmp;
4374 	char *p = s;
4375 
4376 	if (!parsed_valid_hugepagesz) {
4377 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4378 		parsed_valid_hugepagesz = true;
4379 		return 1;
4380 	}
4381 
4382 	/*
4383 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4384 	 * yet, so this hugepages= parameter goes to the "default hstate".
4385 	 * Otherwise, it goes with the previously parsed hugepagesz or
4386 	 * default_hugepagesz.
4387 	 */
4388 	else if (!hugetlb_max_hstate)
4389 		mhp = &default_hstate_max_huge_pages;
4390 	else
4391 		mhp = &parsed_hstate->max_huge_pages;
4392 
4393 	if (mhp == last_mhp) {
4394 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4395 		return 1;
4396 	}
4397 
4398 	while (*p) {
4399 		count = 0;
4400 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4401 			goto invalid;
4402 		/* Parameter is node format */
4403 		if (p[count] == ':') {
4404 			if (!hugetlb_node_alloc_supported()) {
4405 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4406 				return 1;
4407 			}
4408 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4409 				goto invalid;
4410 			node = array_index_nospec(tmp, MAX_NUMNODES);
4411 			p += count + 1;
4412 			/* Parse hugepages */
4413 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4414 				goto invalid;
4415 			if (!hugetlb_max_hstate)
4416 				default_hugepages_in_node[node] = tmp;
4417 			else
4418 				parsed_hstate->max_huge_pages_node[node] = tmp;
4419 			*mhp += tmp;
4420 			/* Go to parse next node*/
4421 			if (p[count] == ',')
4422 				p += count + 1;
4423 			else
4424 				break;
4425 		} else {
4426 			if (p != s)
4427 				goto invalid;
4428 			*mhp = tmp;
4429 			break;
4430 		}
4431 	}
4432 
4433 	/*
4434 	 * Global state is always initialized later in hugetlb_init.
4435 	 * But we need to allocate gigantic hstates here early to still
4436 	 * use the bootmem allocator.
4437 	 */
4438 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4439 		hugetlb_hstate_alloc_pages(parsed_hstate);
4440 
4441 	last_mhp = mhp;
4442 
4443 	return 1;
4444 
4445 invalid:
4446 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4447 	hugepages_clear_pages_in_node();
4448 	return 1;
4449 }
4450 __setup("hugepages=", hugepages_setup);
4451 
4452 /*
4453  * hugepagesz command line processing
4454  * A specific huge page size can only be specified once with hugepagesz.
4455  * hugepagesz is followed by hugepages on the command line.  The global
4456  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4457  * hugepagesz argument was valid.
4458  */
4459 static int __init hugepagesz_setup(char *s)
4460 {
4461 	unsigned long size;
4462 	struct hstate *h;
4463 
4464 	parsed_valid_hugepagesz = false;
4465 	size = (unsigned long)memparse(s, NULL);
4466 
4467 	if (!arch_hugetlb_valid_size(size)) {
4468 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4469 		return 1;
4470 	}
4471 
4472 	h = size_to_hstate(size);
4473 	if (h) {
4474 		/*
4475 		 * hstate for this size already exists.  This is normally
4476 		 * an error, but is allowed if the existing hstate is the
4477 		 * default hstate.  More specifically, it is only allowed if
4478 		 * the number of huge pages for the default hstate was not
4479 		 * previously specified.
4480 		 */
4481 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4482 		    default_hstate.max_huge_pages) {
4483 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4484 			return 1;
4485 		}
4486 
4487 		/*
4488 		 * No need to call hugetlb_add_hstate() as hstate already
4489 		 * exists.  But, do set parsed_hstate so that a following
4490 		 * hugepages= parameter will be applied to this hstate.
4491 		 */
4492 		parsed_hstate = h;
4493 		parsed_valid_hugepagesz = true;
4494 		return 1;
4495 	}
4496 
4497 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4498 	parsed_valid_hugepagesz = true;
4499 	return 1;
4500 }
4501 __setup("hugepagesz=", hugepagesz_setup);
4502 
4503 /*
4504  * default_hugepagesz command line input
4505  * Only one instance of default_hugepagesz allowed on command line.
4506  */
4507 static int __init default_hugepagesz_setup(char *s)
4508 {
4509 	unsigned long size;
4510 	int i;
4511 
4512 	parsed_valid_hugepagesz = false;
4513 	if (parsed_default_hugepagesz) {
4514 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4515 		return 1;
4516 	}
4517 
4518 	size = (unsigned long)memparse(s, NULL);
4519 
4520 	if (!arch_hugetlb_valid_size(size)) {
4521 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4522 		return 1;
4523 	}
4524 
4525 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4526 	parsed_valid_hugepagesz = true;
4527 	parsed_default_hugepagesz = true;
4528 	default_hstate_idx = hstate_index(size_to_hstate(size));
4529 
4530 	/*
4531 	 * The number of default huge pages (for this size) could have been
4532 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4533 	 * then default_hstate_max_huge_pages is set.  If the default huge
4534 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4535 	 * allocated here from bootmem allocator.
4536 	 */
4537 	if (default_hstate_max_huge_pages) {
4538 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4539 		for_each_online_node(i)
4540 			default_hstate.max_huge_pages_node[i] =
4541 				default_hugepages_in_node[i];
4542 		if (hstate_is_gigantic(&default_hstate))
4543 			hugetlb_hstate_alloc_pages(&default_hstate);
4544 		default_hstate_max_huge_pages = 0;
4545 	}
4546 
4547 	return 1;
4548 }
4549 __setup("default_hugepagesz=", default_hugepagesz_setup);
4550 
4551 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4552 {
4553 #ifdef CONFIG_NUMA
4554 	struct mempolicy *mpol = get_task_policy(current);
4555 
4556 	/*
4557 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4558 	 * (from policy_nodemask) specifically for hugetlb case
4559 	 */
4560 	if (mpol->mode == MPOL_BIND &&
4561 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4562 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4563 		return &mpol->nodes;
4564 #endif
4565 	return NULL;
4566 }
4567 
4568 static unsigned int allowed_mems_nr(struct hstate *h)
4569 {
4570 	int node;
4571 	unsigned int nr = 0;
4572 	nodemask_t *mbind_nodemask;
4573 	unsigned int *array = h->free_huge_pages_node;
4574 	gfp_t gfp_mask = htlb_alloc_mask(h);
4575 
4576 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4577 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4578 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4579 			nr += array[node];
4580 	}
4581 
4582 	return nr;
4583 }
4584 
4585 #ifdef CONFIG_SYSCTL
4586 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4587 					  void *buffer, size_t *length,
4588 					  loff_t *ppos, unsigned long *out)
4589 {
4590 	struct ctl_table dup_table;
4591 
4592 	/*
4593 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4594 	 * can duplicate the @table and alter the duplicate of it.
4595 	 */
4596 	dup_table = *table;
4597 	dup_table.data = out;
4598 
4599 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4600 }
4601 
4602 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4603 			 struct ctl_table *table, int write,
4604 			 void *buffer, size_t *length, loff_t *ppos)
4605 {
4606 	struct hstate *h = &default_hstate;
4607 	unsigned long tmp = h->max_huge_pages;
4608 	int ret;
4609 
4610 	if (!hugepages_supported())
4611 		return -EOPNOTSUPP;
4612 
4613 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4614 					     &tmp);
4615 	if (ret)
4616 		goto out;
4617 
4618 	if (write)
4619 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4620 						  NUMA_NO_NODE, tmp, *length);
4621 out:
4622 	return ret;
4623 }
4624 
4625 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4626 			  void *buffer, size_t *length, loff_t *ppos)
4627 {
4628 
4629 	return hugetlb_sysctl_handler_common(false, table, write,
4630 							buffer, length, ppos);
4631 }
4632 
4633 #ifdef CONFIG_NUMA
4634 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4635 			  void *buffer, size_t *length, loff_t *ppos)
4636 {
4637 	return hugetlb_sysctl_handler_common(true, table, write,
4638 							buffer, length, ppos);
4639 }
4640 #endif /* CONFIG_NUMA */
4641 
4642 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4643 		void *buffer, size_t *length, loff_t *ppos)
4644 {
4645 	struct hstate *h = &default_hstate;
4646 	unsigned long tmp;
4647 	int ret;
4648 
4649 	if (!hugepages_supported())
4650 		return -EOPNOTSUPP;
4651 
4652 	tmp = h->nr_overcommit_huge_pages;
4653 
4654 	if (write && hstate_is_gigantic(h))
4655 		return -EINVAL;
4656 
4657 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4658 					     &tmp);
4659 	if (ret)
4660 		goto out;
4661 
4662 	if (write) {
4663 		spin_lock_irq(&hugetlb_lock);
4664 		h->nr_overcommit_huge_pages = tmp;
4665 		spin_unlock_irq(&hugetlb_lock);
4666 	}
4667 out:
4668 	return ret;
4669 }
4670 
4671 static struct ctl_table hugetlb_table[] = {
4672 	{
4673 		.procname	= "nr_hugepages",
4674 		.data		= NULL,
4675 		.maxlen		= sizeof(unsigned long),
4676 		.mode		= 0644,
4677 		.proc_handler	= hugetlb_sysctl_handler,
4678 	},
4679 #ifdef CONFIG_NUMA
4680 	{
4681 		.procname       = "nr_hugepages_mempolicy",
4682 		.data           = NULL,
4683 		.maxlen         = sizeof(unsigned long),
4684 		.mode           = 0644,
4685 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4686 	},
4687 #endif
4688 	{
4689 		.procname	= "hugetlb_shm_group",
4690 		.data		= &sysctl_hugetlb_shm_group,
4691 		.maxlen		= sizeof(gid_t),
4692 		.mode		= 0644,
4693 		.proc_handler	= proc_dointvec,
4694 	},
4695 	{
4696 		.procname	= "nr_overcommit_hugepages",
4697 		.data		= NULL,
4698 		.maxlen		= sizeof(unsigned long),
4699 		.mode		= 0644,
4700 		.proc_handler	= hugetlb_overcommit_handler,
4701 	},
4702 	{ }
4703 };
4704 
4705 static void hugetlb_sysctl_init(void)
4706 {
4707 	register_sysctl_init("vm", hugetlb_table);
4708 }
4709 #endif /* CONFIG_SYSCTL */
4710 
4711 void hugetlb_report_meminfo(struct seq_file *m)
4712 {
4713 	struct hstate *h;
4714 	unsigned long total = 0;
4715 
4716 	if (!hugepages_supported())
4717 		return;
4718 
4719 	for_each_hstate(h) {
4720 		unsigned long count = h->nr_huge_pages;
4721 
4722 		total += huge_page_size(h) * count;
4723 
4724 		if (h == &default_hstate)
4725 			seq_printf(m,
4726 				   "HugePages_Total:   %5lu\n"
4727 				   "HugePages_Free:    %5lu\n"
4728 				   "HugePages_Rsvd:    %5lu\n"
4729 				   "HugePages_Surp:    %5lu\n"
4730 				   "Hugepagesize:   %8lu kB\n",
4731 				   count,
4732 				   h->free_huge_pages,
4733 				   h->resv_huge_pages,
4734 				   h->surplus_huge_pages,
4735 				   huge_page_size(h) / SZ_1K);
4736 	}
4737 
4738 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4739 }
4740 
4741 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4742 {
4743 	struct hstate *h = &default_hstate;
4744 
4745 	if (!hugepages_supported())
4746 		return 0;
4747 
4748 	return sysfs_emit_at(buf, len,
4749 			     "Node %d HugePages_Total: %5u\n"
4750 			     "Node %d HugePages_Free:  %5u\n"
4751 			     "Node %d HugePages_Surp:  %5u\n",
4752 			     nid, h->nr_huge_pages_node[nid],
4753 			     nid, h->free_huge_pages_node[nid],
4754 			     nid, h->surplus_huge_pages_node[nid]);
4755 }
4756 
4757 void hugetlb_show_meminfo_node(int nid)
4758 {
4759 	struct hstate *h;
4760 
4761 	if (!hugepages_supported())
4762 		return;
4763 
4764 	for_each_hstate(h)
4765 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4766 			nid,
4767 			h->nr_huge_pages_node[nid],
4768 			h->free_huge_pages_node[nid],
4769 			h->surplus_huge_pages_node[nid],
4770 			huge_page_size(h) / SZ_1K);
4771 }
4772 
4773 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4774 {
4775 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4776 		   K(atomic_long_read(&mm->hugetlb_usage)));
4777 }
4778 
4779 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4780 unsigned long hugetlb_total_pages(void)
4781 {
4782 	struct hstate *h;
4783 	unsigned long nr_total_pages = 0;
4784 
4785 	for_each_hstate(h)
4786 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4787 	return nr_total_pages;
4788 }
4789 
4790 static int hugetlb_acct_memory(struct hstate *h, long delta)
4791 {
4792 	int ret = -ENOMEM;
4793 
4794 	if (!delta)
4795 		return 0;
4796 
4797 	spin_lock_irq(&hugetlb_lock);
4798 	/*
4799 	 * When cpuset is configured, it breaks the strict hugetlb page
4800 	 * reservation as the accounting is done on a global variable. Such
4801 	 * reservation is completely rubbish in the presence of cpuset because
4802 	 * the reservation is not checked against page availability for the
4803 	 * current cpuset. Application can still potentially OOM'ed by kernel
4804 	 * with lack of free htlb page in cpuset that the task is in.
4805 	 * Attempt to enforce strict accounting with cpuset is almost
4806 	 * impossible (or too ugly) because cpuset is too fluid that
4807 	 * task or memory node can be dynamically moved between cpusets.
4808 	 *
4809 	 * The change of semantics for shared hugetlb mapping with cpuset is
4810 	 * undesirable. However, in order to preserve some of the semantics,
4811 	 * we fall back to check against current free page availability as
4812 	 * a best attempt and hopefully to minimize the impact of changing
4813 	 * semantics that cpuset has.
4814 	 *
4815 	 * Apart from cpuset, we also have memory policy mechanism that
4816 	 * also determines from which node the kernel will allocate memory
4817 	 * in a NUMA system. So similar to cpuset, we also should consider
4818 	 * the memory policy of the current task. Similar to the description
4819 	 * above.
4820 	 */
4821 	if (delta > 0) {
4822 		if (gather_surplus_pages(h, delta) < 0)
4823 			goto out;
4824 
4825 		if (delta > allowed_mems_nr(h)) {
4826 			return_unused_surplus_pages(h, delta);
4827 			goto out;
4828 		}
4829 	}
4830 
4831 	ret = 0;
4832 	if (delta < 0)
4833 		return_unused_surplus_pages(h, (unsigned long) -delta);
4834 
4835 out:
4836 	spin_unlock_irq(&hugetlb_lock);
4837 	return ret;
4838 }
4839 
4840 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4841 {
4842 	struct resv_map *resv = vma_resv_map(vma);
4843 
4844 	/*
4845 	 * HPAGE_RESV_OWNER indicates a private mapping.
4846 	 * This new VMA should share its siblings reservation map if present.
4847 	 * The VMA will only ever have a valid reservation map pointer where
4848 	 * it is being copied for another still existing VMA.  As that VMA
4849 	 * has a reference to the reservation map it cannot disappear until
4850 	 * after this open call completes.  It is therefore safe to take a
4851 	 * new reference here without additional locking.
4852 	 */
4853 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4854 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4855 		kref_get(&resv->refs);
4856 	}
4857 
4858 	/*
4859 	 * vma_lock structure for sharable mappings is vma specific.
4860 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4861 	 * new structure.  Before clearing, make sure vma_lock is not
4862 	 * for this vma.
4863 	 */
4864 	if (vma->vm_flags & VM_MAYSHARE) {
4865 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4866 
4867 		if (vma_lock) {
4868 			if (vma_lock->vma != vma) {
4869 				vma->vm_private_data = NULL;
4870 				hugetlb_vma_lock_alloc(vma);
4871 			} else
4872 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4873 		} else
4874 			hugetlb_vma_lock_alloc(vma);
4875 	}
4876 }
4877 
4878 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4879 {
4880 	struct hstate *h = hstate_vma(vma);
4881 	struct resv_map *resv;
4882 	struct hugepage_subpool *spool = subpool_vma(vma);
4883 	unsigned long reserve, start, end;
4884 	long gbl_reserve;
4885 
4886 	hugetlb_vma_lock_free(vma);
4887 
4888 	resv = vma_resv_map(vma);
4889 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4890 		return;
4891 
4892 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4893 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4894 
4895 	reserve = (end - start) - region_count(resv, start, end);
4896 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4897 	if (reserve) {
4898 		/*
4899 		 * Decrement reserve counts.  The global reserve count may be
4900 		 * adjusted if the subpool has a minimum size.
4901 		 */
4902 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4903 		hugetlb_acct_memory(h, -gbl_reserve);
4904 	}
4905 
4906 	kref_put(&resv->refs, resv_map_release);
4907 }
4908 
4909 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4910 {
4911 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4912 		return -EINVAL;
4913 
4914 	/*
4915 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4916 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4917 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4918 	 */
4919 	if (addr & ~PUD_MASK) {
4920 		/*
4921 		 * hugetlb_vm_op_split is called right before we attempt to
4922 		 * split the VMA. We will need to unshare PMDs in the old and
4923 		 * new VMAs, so let's unshare before we split.
4924 		 */
4925 		unsigned long floor = addr & PUD_MASK;
4926 		unsigned long ceil = floor + PUD_SIZE;
4927 
4928 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4929 			hugetlb_unshare_pmds(vma, floor, ceil);
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4936 {
4937 	return huge_page_size(hstate_vma(vma));
4938 }
4939 
4940 /*
4941  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4942  * handle_mm_fault() to try to instantiate regular-sized pages in the
4943  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4944  * this far.
4945  */
4946 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4947 {
4948 	BUG();
4949 	return 0;
4950 }
4951 
4952 /*
4953  * When a new function is introduced to vm_operations_struct and added
4954  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4955  * This is because under System V memory model, mappings created via
4956  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4957  * their original vm_ops are overwritten with shm_vm_ops.
4958  */
4959 const struct vm_operations_struct hugetlb_vm_ops = {
4960 	.fault = hugetlb_vm_op_fault,
4961 	.open = hugetlb_vm_op_open,
4962 	.close = hugetlb_vm_op_close,
4963 	.may_split = hugetlb_vm_op_split,
4964 	.pagesize = hugetlb_vm_op_pagesize,
4965 };
4966 
4967 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4968 				int writable)
4969 {
4970 	pte_t entry;
4971 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4972 
4973 	if (writable) {
4974 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4975 					 vma->vm_page_prot)));
4976 	} else {
4977 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4978 					   vma->vm_page_prot));
4979 	}
4980 	entry = pte_mkyoung(entry);
4981 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4982 
4983 	return entry;
4984 }
4985 
4986 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4987 				   unsigned long address, pte_t *ptep)
4988 {
4989 	pte_t entry;
4990 
4991 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4992 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4993 		update_mmu_cache(vma, address, ptep);
4994 }
4995 
4996 bool is_hugetlb_entry_migration(pte_t pte)
4997 {
4998 	swp_entry_t swp;
4999 
5000 	if (huge_pte_none(pte) || pte_present(pte))
5001 		return false;
5002 	swp = pte_to_swp_entry(pte);
5003 	if (is_migration_entry(swp))
5004 		return true;
5005 	else
5006 		return false;
5007 }
5008 
5009 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5010 {
5011 	swp_entry_t swp;
5012 
5013 	if (huge_pte_none(pte) || pte_present(pte))
5014 		return false;
5015 	swp = pte_to_swp_entry(pte);
5016 	if (is_hwpoison_entry(swp))
5017 		return true;
5018 	else
5019 		return false;
5020 }
5021 
5022 static void
5023 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5024 		      struct folio *new_folio, pte_t old)
5025 {
5026 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5027 
5028 	__folio_mark_uptodate(new_folio);
5029 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5030 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5031 		newpte = huge_pte_mkuffd_wp(newpte);
5032 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5033 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5034 	folio_set_hugetlb_migratable(new_folio);
5035 }
5036 
5037 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5038 			    struct vm_area_struct *dst_vma,
5039 			    struct vm_area_struct *src_vma)
5040 {
5041 	pte_t *src_pte, *dst_pte, entry;
5042 	struct folio *pte_folio;
5043 	unsigned long addr;
5044 	bool cow = is_cow_mapping(src_vma->vm_flags);
5045 	struct hstate *h = hstate_vma(src_vma);
5046 	unsigned long sz = huge_page_size(h);
5047 	unsigned long npages = pages_per_huge_page(h);
5048 	struct mmu_notifier_range range;
5049 	unsigned long last_addr_mask;
5050 	int ret = 0;
5051 
5052 	if (cow) {
5053 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5054 					src_vma->vm_start,
5055 					src_vma->vm_end);
5056 		mmu_notifier_invalidate_range_start(&range);
5057 		vma_assert_write_locked(src_vma);
5058 		raw_write_seqcount_begin(&src->write_protect_seq);
5059 	} else {
5060 		/*
5061 		 * For shared mappings the vma lock must be held before
5062 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5063 		 * returned ptep could go away if part of a shared pmd and
5064 		 * another thread calls huge_pmd_unshare.
5065 		 */
5066 		hugetlb_vma_lock_read(src_vma);
5067 	}
5068 
5069 	last_addr_mask = hugetlb_mask_last_page(h);
5070 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5071 		spinlock_t *src_ptl, *dst_ptl;
5072 		src_pte = hugetlb_walk(src_vma, addr, sz);
5073 		if (!src_pte) {
5074 			addr |= last_addr_mask;
5075 			continue;
5076 		}
5077 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5078 		if (!dst_pte) {
5079 			ret = -ENOMEM;
5080 			break;
5081 		}
5082 
5083 		/*
5084 		 * If the pagetables are shared don't copy or take references.
5085 		 *
5086 		 * dst_pte == src_pte is the common case of src/dest sharing.
5087 		 * However, src could have 'unshared' and dst shares with
5088 		 * another vma. So page_count of ptep page is checked instead
5089 		 * to reliably determine whether pte is shared.
5090 		 */
5091 		if (page_count(virt_to_page(dst_pte)) > 1) {
5092 			addr |= last_addr_mask;
5093 			continue;
5094 		}
5095 
5096 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5097 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5098 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5099 		entry = huge_ptep_get(src_pte);
5100 again:
5101 		if (huge_pte_none(entry)) {
5102 			/*
5103 			 * Skip if src entry none.
5104 			 */
5105 			;
5106 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5107 			if (!userfaultfd_wp(dst_vma))
5108 				entry = huge_pte_clear_uffd_wp(entry);
5109 			set_huge_pte_at(dst, addr, dst_pte, entry);
5110 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5111 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5112 			bool uffd_wp = pte_swp_uffd_wp(entry);
5113 
5114 			if (!is_readable_migration_entry(swp_entry) && cow) {
5115 				/*
5116 				 * COW mappings require pages in both
5117 				 * parent and child to be set to read.
5118 				 */
5119 				swp_entry = make_readable_migration_entry(
5120 							swp_offset(swp_entry));
5121 				entry = swp_entry_to_pte(swp_entry);
5122 				if (userfaultfd_wp(src_vma) && uffd_wp)
5123 					entry = pte_swp_mkuffd_wp(entry);
5124 				set_huge_pte_at(src, addr, src_pte, entry);
5125 			}
5126 			if (!userfaultfd_wp(dst_vma))
5127 				entry = huge_pte_clear_uffd_wp(entry);
5128 			set_huge_pte_at(dst, addr, dst_pte, entry);
5129 		} else if (unlikely(is_pte_marker(entry))) {
5130 			pte_marker marker = copy_pte_marker(
5131 				pte_to_swp_entry(entry), dst_vma);
5132 
5133 			if (marker)
5134 				set_huge_pte_at(dst, addr, dst_pte,
5135 						make_pte_marker(marker));
5136 		} else {
5137 			entry = huge_ptep_get(src_pte);
5138 			pte_folio = page_folio(pte_page(entry));
5139 			folio_get(pte_folio);
5140 
5141 			/*
5142 			 * Failing to duplicate the anon rmap is a rare case
5143 			 * where we see pinned hugetlb pages while they're
5144 			 * prone to COW. We need to do the COW earlier during
5145 			 * fork.
5146 			 *
5147 			 * When pre-allocating the page or copying data, we
5148 			 * need to be without the pgtable locks since we could
5149 			 * sleep during the process.
5150 			 */
5151 			if (!folio_test_anon(pte_folio)) {
5152 				page_dup_file_rmap(&pte_folio->page, true);
5153 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5154 							  true, src_vma)) {
5155 				pte_t src_pte_old = entry;
5156 				struct folio *new_folio;
5157 
5158 				spin_unlock(src_ptl);
5159 				spin_unlock(dst_ptl);
5160 				/* Do not use reserve as it's private owned */
5161 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5162 				if (IS_ERR(new_folio)) {
5163 					folio_put(pte_folio);
5164 					ret = PTR_ERR(new_folio);
5165 					break;
5166 				}
5167 				ret = copy_user_large_folio(new_folio,
5168 							    pte_folio,
5169 							    addr, dst_vma);
5170 				folio_put(pte_folio);
5171 				if (ret) {
5172 					folio_put(new_folio);
5173 					break;
5174 				}
5175 
5176 				/* Install the new hugetlb folio if src pte stable */
5177 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5178 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5179 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5180 				entry = huge_ptep_get(src_pte);
5181 				if (!pte_same(src_pte_old, entry)) {
5182 					restore_reserve_on_error(h, dst_vma, addr,
5183 								new_folio);
5184 					folio_put(new_folio);
5185 					/* huge_ptep of dst_pte won't change as in child */
5186 					goto again;
5187 				}
5188 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5189 						      new_folio, src_pte_old);
5190 				spin_unlock(src_ptl);
5191 				spin_unlock(dst_ptl);
5192 				continue;
5193 			}
5194 
5195 			if (cow) {
5196 				/*
5197 				 * No need to notify as we are downgrading page
5198 				 * table protection not changing it to point
5199 				 * to a new page.
5200 				 *
5201 				 * See Documentation/mm/mmu_notifier.rst
5202 				 */
5203 				huge_ptep_set_wrprotect(src, addr, src_pte);
5204 				entry = huge_pte_wrprotect(entry);
5205 			}
5206 
5207 			if (!userfaultfd_wp(dst_vma))
5208 				entry = huge_pte_clear_uffd_wp(entry);
5209 
5210 			set_huge_pte_at(dst, addr, dst_pte, entry);
5211 			hugetlb_count_add(npages, dst);
5212 		}
5213 		spin_unlock(src_ptl);
5214 		spin_unlock(dst_ptl);
5215 	}
5216 
5217 	if (cow) {
5218 		raw_write_seqcount_end(&src->write_protect_seq);
5219 		mmu_notifier_invalidate_range_end(&range);
5220 	} else {
5221 		hugetlb_vma_unlock_read(src_vma);
5222 	}
5223 
5224 	return ret;
5225 }
5226 
5227 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5228 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5229 {
5230 	struct hstate *h = hstate_vma(vma);
5231 	struct mm_struct *mm = vma->vm_mm;
5232 	spinlock_t *src_ptl, *dst_ptl;
5233 	pte_t pte;
5234 
5235 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5236 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5237 
5238 	/*
5239 	 * We don't have to worry about the ordering of src and dst ptlocks
5240 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5241 	 */
5242 	if (src_ptl != dst_ptl)
5243 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5244 
5245 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5246 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5247 
5248 	if (src_ptl != dst_ptl)
5249 		spin_unlock(src_ptl);
5250 	spin_unlock(dst_ptl);
5251 }
5252 
5253 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5254 			     struct vm_area_struct *new_vma,
5255 			     unsigned long old_addr, unsigned long new_addr,
5256 			     unsigned long len)
5257 {
5258 	struct hstate *h = hstate_vma(vma);
5259 	struct address_space *mapping = vma->vm_file->f_mapping;
5260 	unsigned long sz = huge_page_size(h);
5261 	struct mm_struct *mm = vma->vm_mm;
5262 	unsigned long old_end = old_addr + len;
5263 	unsigned long last_addr_mask;
5264 	pte_t *src_pte, *dst_pte;
5265 	struct mmu_notifier_range range;
5266 	bool shared_pmd = false;
5267 
5268 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5269 				old_end);
5270 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5271 	/*
5272 	 * In case of shared PMDs, we should cover the maximum possible
5273 	 * range.
5274 	 */
5275 	flush_cache_range(vma, range.start, range.end);
5276 
5277 	mmu_notifier_invalidate_range_start(&range);
5278 	last_addr_mask = hugetlb_mask_last_page(h);
5279 	/* Prevent race with file truncation */
5280 	hugetlb_vma_lock_write(vma);
5281 	i_mmap_lock_write(mapping);
5282 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5283 		src_pte = hugetlb_walk(vma, old_addr, sz);
5284 		if (!src_pte) {
5285 			old_addr |= last_addr_mask;
5286 			new_addr |= last_addr_mask;
5287 			continue;
5288 		}
5289 		if (huge_pte_none(huge_ptep_get(src_pte)))
5290 			continue;
5291 
5292 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5293 			shared_pmd = true;
5294 			old_addr |= last_addr_mask;
5295 			new_addr |= last_addr_mask;
5296 			continue;
5297 		}
5298 
5299 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5300 		if (!dst_pte)
5301 			break;
5302 
5303 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5304 	}
5305 
5306 	if (shared_pmd)
5307 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5308 	else
5309 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5310 	mmu_notifier_invalidate_range_end(&range);
5311 	i_mmap_unlock_write(mapping);
5312 	hugetlb_vma_unlock_write(vma);
5313 
5314 	return len + old_addr - old_end;
5315 }
5316 
5317 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5318 				   unsigned long start, unsigned long end,
5319 				   struct page *ref_page, zap_flags_t zap_flags)
5320 {
5321 	struct mm_struct *mm = vma->vm_mm;
5322 	unsigned long address;
5323 	pte_t *ptep;
5324 	pte_t pte;
5325 	spinlock_t *ptl;
5326 	struct page *page;
5327 	struct hstate *h = hstate_vma(vma);
5328 	unsigned long sz = huge_page_size(h);
5329 	unsigned long last_addr_mask;
5330 	bool force_flush = false;
5331 
5332 	WARN_ON(!is_vm_hugetlb_page(vma));
5333 	BUG_ON(start & ~huge_page_mask(h));
5334 	BUG_ON(end & ~huge_page_mask(h));
5335 
5336 	/*
5337 	 * This is a hugetlb vma, all the pte entries should point
5338 	 * to huge page.
5339 	 */
5340 	tlb_change_page_size(tlb, sz);
5341 	tlb_start_vma(tlb, vma);
5342 
5343 	last_addr_mask = hugetlb_mask_last_page(h);
5344 	address = start;
5345 	for (; address < end; address += sz) {
5346 		ptep = hugetlb_walk(vma, address, sz);
5347 		if (!ptep) {
5348 			address |= last_addr_mask;
5349 			continue;
5350 		}
5351 
5352 		ptl = huge_pte_lock(h, mm, ptep);
5353 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5354 			spin_unlock(ptl);
5355 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5356 			force_flush = true;
5357 			address |= last_addr_mask;
5358 			continue;
5359 		}
5360 
5361 		pte = huge_ptep_get(ptep);
5362 		if (huge_pte_none(pte)) {
5363 			spin_unlock(ptl);
5364 			continue;
5365 		}
5366 
5367 		/*
5368 		 * Migrating hugepage or HWPoisoned hugepage is already
5369 		 * unmapped and its refcount is dropped, so just clear pte here.
5370 		 */
5371 		if (unlikely(!pte_present(pte))) {
5372 			/*
5373 			 * If the pte was wr-protected by uffd-wp in any of the
5374 			 * swap forms, meanwhile the caller does not want to
5375 			 * drop the uffd-wp bit in this zap, then replace the
5376 			 * pte with a marker.
5377 			 */
5378 			if (pte_swp_uffd_wp_any(pte) &&
5379 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5380 				set_huge_pte_at(mm, address, ptep,
5381 						make_pte_marker(PTE_MARKER_UFFD_WP));
5382 			else
5383 				huge_pte_clear(mm, address, ptep, sz);
5384 			spin_unlock(ptl);
5385 			continue;
5386 		}
5387 
5388 		page = pte_page(pte);
5389 		/*
5390 		 * If a reference page is supplied, it is because a specific
5391 		 * page is being unmapped, not a range. Ensure the page we
5392 		 * are about to unmap is the actual page of interest.
5393 		 */
5394 		if (ref_page) {
5395 			if (page != ref_page) {
5396 				spin_unlock(ptl);
5397 				continue;
5398 			}
5399 			/*
5400 			 * Mark the VMA as having unmapped its page so that
5401 			 * future faults in this VMA will fail rather than
5402 			 * looking like data was lost
5403 			 */
5404 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5405 		}
5406 
5407 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5408 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409 		if (huge_pte_dirty(pte))
5410 			set_page_dirty(page);
5411 		/* Leave a uffd-wp pte marker if needed */
5412 		if (huge_pte_uffd_wp(pte) &&
5413 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414 			set_huge_pte_at(mm, address, ptep,
5415 					make_pte_marker(PTE_MARKER_UFFD_WP));
5416 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5417 		page_remove_rmap(page, vma, true);
5418 
5419 		spin_unlock(ptl);
5420 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5421 		/*
5422 		 * Bail out after unmapping reference page if supplied
5423 		 */
5424 		if (ref_page)
5425 			break;
5426 	}
5427 	tlb_end_vma(tlb, vma);
5428 
5429 	/*
5430 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5431 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5432 	 * guaranteed that the last refernece would not be dropped. But we must
5433 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5434 	 * dropped and the last reference to the shared PMDs page might be
5435 	 * dropped as well.
5436 	 *
5437 	 * In theory we could defer the freeing of the PMD pages as well, but
5438 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5439 	 * detect sharing, so we cannot defer the release of the page either.
5440 	 * Instead, do flush now.
5441 	 */
5442 	if (force_flush)
5443 		tlb_flush_mmu_tlbonly(tlb);
5444 }
5445 
5446 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5447 			  struct vm_area_struct *vma, unsigned long start,
5448 			  unsigned long end, struct page *ref_page,
5449 			  zap_flags_t zap_flags)
5450 {
5451 	hugetlb_vma_lock_write(vma);
5452 	i_mmap_lock_write(vma->vm_file->f_mapping);
5453 
5454 	/* mmu notification performed in caller */
5455 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5456 
5457 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5458 		/*
5459 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5460 		 * When the vma_lock is freed, this makes the vma ineligible
5461 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5462 		 * pmd sharing.  This is important as page tables for this
5463 		 * unmapped range will be asynchrously deleted.  If the page
5464 		 * tables are shared, there will be issues when accessed by
5465 		 * someone else.
5466 		 */
5467 		__hugetlb_vma_unlock_write_free(vma);
5468 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5469 	} else {
5470 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5471 		hugetlb_vma_unlock_write(vma);
5472 	}
5473 }
5474 
5475 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5476 			  unsigned long end, struct page *ref_page,
5477 			  zap_flags_t zap_flags)
5478 {
5479 	struct mmu_notifier_range range;
5480 	struct mmu_gather tlb;
5481 
5482 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5483 				start, end);
5484 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5485 	mmu_notifier_invalidate_range_start(&range);
5486 	tlb_gather_mmu(&tlb, vma->vm_mm);
5487 
5488 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5489 
5490 	mmu_notifier_invalidate_range_end(&range);
5491 	tlb_finish_mmu(&tlb);
5492 }
5493 
5494 /*
5495  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5496  * mapping it owns the reserve page for. The intention is to unmap the page
5497  * from other VMAs and let the children be SIGKILLed if they are faulting the
5498  * same region.
5499  */
5500 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5501 			      struct page *page, unsigned long address)
5502 {
5503 	struct hstate *h = hstate_vma(vma);
5504 	struct vm_area_struct *iter_vma;
5505 	struct address_space *mapping;
5506 	pgoff_t pgoff;
5507 
5508 	/*
5509 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5510 	 * from page cache lookup which is in HPAGE_SIZE units.
5511 	 */
5512 	address = address & huge_page_mask(h);
5513 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5514 			vma->vm_pgoff;
5515 	mapping = vma->vm_file->f_mapping;
5516 
5517 	/*
5518 	 * Take the mapping lock for the duration of the table walk. As
5519 	 * this mapping should be shared between all the VMAs,
5520 	 * __unmap_hugepage_range() is called as the lock is already held
5521 	 */
5522 	i_mmap_lock_write(mapping);
5523 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5524 		/* Do not unmap the current VMA */
5525 		if (iter_vma == vma)
5526 			continue;
5527 
5528 		/*
5529 		 * Shared VMAs have their own reserves and do not affect
5530 		 * MAP_PRIVATE accounting but it is possible that a shared
5531 		 * VMA is using the same page so check and skip such VMAs.
5532 		 */
5533 		if (iter_vma->vm_flags & VM_MAYSHARE)
5534 			continue;
5535 
5536 		/*
5537 		 * Unmap the page from other VMAs without their own reserves.
5538 		 * They get marked to be SIGKILLed if they fault in these
5539 		 * areas. This is because a future no-page fault on this VMA
5540 		 * could insert a zeroed page instead of the data existing
5541 		 * from the time of fork. This would look like data corruption
5542 		 */
5543 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5544 			unmap_hugepage_range(iter_vma, address,
5545 					     address + huge_page_size(h), page, 0);
5546 	}
5547 	i_mmap_unlock_write(mapping);
5548 }
5549 
5550 /*
5551  * hugetlb_wp() should be called with page lock of the original hugepage held.
5552  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5553  * cannot race with other handlers or page migration.
5554  * Keep the pte_same checks anyway to make transition from the mutex easier.
5555  */
5556 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5557 		       unsigned long address, pte_t *ptep, unsigned int flags,
5558 		       struct folio *pagecache_folio, spinlock_t *ptl)
5559 {
5560 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5561 	pte_t pte = huge_ptep_get(ptep);
5562 	struct hstate *h = hstate_vma(vma);
5563 	struct folio *old_folio;
5564 	struct folio *new_folio;
5565 	int outside_reserve = 0;
5566 	vm_fault_t ret = 0;
5567 	unsigned long haddr = address & huge_page_mask(h);
5568 	struct mmu_notifier_range range;
5569 
5570 	/*
5571 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5572 	 * handled when the uffd-wp protection is removed.
5573 	 *
5574 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5575 	 * can trigger this, because hugetlb_fault() will always resolve
5576 	 * uffd-wp bit first.
5577 	 */
5578 	if (!unshare && huge_pte_uffd_wp(pte))
5579 		return 0;
5580 
5581 	/*
5582 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5583 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5584 	 */
5585 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5586 		return VM_FAULT_SIGSEGV;
5587 
5588 	/* Let's take out MAP_SHARED mappings first. */
5589 	if (vma->vm_flags & VM_MAYSHARE) {
5590 		set_huge_ptep_writable(vma, haddr, ptep);
5591 		return 0;
5592 	}
5593 
5594 	old_folio = page_folio(pte_page(pte));
5595 
5596 	delayacct_wpcopy_start();
5597 
5598 retry_avoidcopy:
5599 	/*
5600 	 * If no-one else is actually using this page, we're the exclusive
5601 	 * owner and can reuse this page.
5602 	 */
5603 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5604 		if (!PageAnonExclusive(&old_folio->page))
5605 			page_move_anon_rmap(&old_folio->page, vma);
5606 		if (likely(!unshare))
5607 			set_huge_ptep_writable(vma, haddr, ptep);
5608 
5609 		delayacct_wpcopy_end();
5610 		return 0;
5611 	}
5612 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5613 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5614 
5615 	/*
5616 	 * If the process that created a MAP_PRIVATE mapping is about to
5617 	 * perform a COW due to a shared page count, attempt to satisfy
5618 	 * the allocation without using the existing reserves. The pagecache
5619 	 * page is used to determine if the reserve at this address was
5620 	 * consumed or not. If reserves were used, a partial faulted mapping
5621 	 * at the time of fork() could consume its reserves on COW instead
5622 	 * of the full address range.
5623 	 */
5624 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5625 			old_folio != pagecache_folio)
5626 		outside_reserve = 1;
5627 
5628 	folio_get(old_folio);
5629 
5630 	/*
5631 	 * Drop page table lock as buddy allocator may be called. It will
5632 	 * be acquired again before returning to the caller, as expected.
5633 	 */
5634 	spin_unlock(ptl);
5635 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5636 
5637 	if (IS_ERR(new_folio)) {
5638 		/*
5639 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5640 		 * it is due to references held by a child and an insufficient
5641 		 * huge page pool. To guarantee the original mappers
5642 		 * reliability, unmap the page from child processes. The child
5643 		 * may get SIGKILLed if it later faults.
5644 		 */
5645 		if (outside_reserve) {
5646 			struct address_space *mapping = vma->vm_file->f_mapping;
5647 			pgoff_t idx;
5648 			u32 hash;
5649 
5650 			folio_put(old_folio);
5651 			/*
5652 			 * Drop hugetlb_fault_mutex and vma_lock before
5653 			 * unmapping.  unmapping needs to hold vma_lock
5654 			 * in write mode.  Dropping vma_lock in read mode
5655 			 * here is OK as COW mappings do not interact with
5656 			 * PMD sharing.
5657 			 *
5658 			 * Reacquire both after unmap operation.
5659 			 */
5660 			idx = vma_hugecache_offset(h, vma, haddr);
5661 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5662 			hugetlb_vma_unlock_read(vma);
5663 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5664 
5665 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5666 
5667 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5668 			hugetlb_vma_lock_read(vma);
5669 			spin_lock(ptl);
5670 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5671 			if (likely(ptep &&
5672 				   pte_same(huge_ptep_get(ptep), pte)))
5673 				goto retry_avoidcopy;
5674 			/*
5675 			 * race occurs while re-acquiring page table
5676 			 * lock, and our job is done.
5677 			 */
5678 			delayacct_wpcopy_end();
5679 			return 0;
5680 		}
5681 
5682 		ret = vmf_error(PTR_ERR(new_folio));
5683 		goto out_release_old;
5684 	}
5685 
5686 	/*
5687 	 * When the original hugepage is shared one, it does not have
5688 	 * anon_vma prepared.
5689 	 */
5690 	if (unlikely(anon_vma_prepare(vma))) {
5691 		ret = VM_FAULT_OOM;
5692 		goto out_release_all;
5693 	}
5694 
5695 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5696 		ret = VM_FAULT_HWPOISON_LARGE;
5697 		goto out_release_all;
5698 	}
5699 	__folio_mark_uptodate(new_folio);
5700 
5701 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5702 				haddr + huge_page_size(h));
5703 	mmu_notifier_invalidate_range_start(&range);
5704 
5705 	/*
5706 	 * Retake the page table lock to check for racing updates
5707 	 * before the page tables are altered
5708 	 */
5709 	spin_lock(ptl);
5710 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5711 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5712 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5713 
5714 		/* Break COW or unshare */
5715 		huge_ptep_clear_flush(vma, haddr, ptep);
5716 		page_remove_rmap(&old_folio->page, vma, true);
5717 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5718 		if (huge_pte_uffd_wp(pte))
5719 			newpte = huge_pte_mkuffd_wp(newpte);
5720 		set_huge_pte_at(mm, haddr, ptep, newpte);
5721 		folio_set_hugetlb_migratable(new_folio);
5722 		/* Make the old page be freed below */
5723 		new_folio = old_folio;
5724 	}
5725 	spin_unlock(ptl);
5726 	mmu_notifier_invalidate_range_end(&range);
5727 out_release_all:
5728 	/*
5729 	 * No restore in case of successful pagetable update (Break COW or
5730 	 * unshare)
5731 	 */
5732 	if (new_folio != old_folio)
5733 		restore_reserve_on_error(h, vma, haddr, new_folio);
5734 	folio_put(new_folio);
5735 out_release_old:
5736 	folio_put(old_folio);
5737 
5738 	spin_lock(ptl); /* Caller expects lock to be held */
5739 
5740 	delayacct_wpcopy_end();
5741 	return ret;
5742 }
5743 
5744 /*
5745  * Return whether there is a pagecache page to back given address within VMA.
5746  */
5747 static bool hugetlbfs_pagecache_present(struct hstate *h,
5748 			struct vm_area_struct *vma, unsigned long address)
5749 {
5750 	struct address_space *mapping = vma->vm_file->f_mapping;
5751 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5752 	struct folio *folio;
5753 
5754 	folio = filemap_get_folio(mapping, idx);
5755 	if (IS_ERR(folio))
5756 		return false;
5757 	folio_put(folio);
5758 	return true;
5759 }
5760 
5761 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5762 			   pgoff_t idx)
5763 {
5764 	struct inode *inode = mapping->host;
5765 	struct hstate *h = hstate_inode(inode);
5766 	int err;
5767 
5768 	__folio_set_locked(folio);
5769 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5770 
5771 	if (unlikely(err)) {
5772 		__folio_clear_locked(folio);
5773 		return err;
5774 	}
5775 	folio_clear_hugetlb_restore_reserve(folio);
5776 
5777 	/*
5778 	 * mark folio dirty so that it will not be removed from cache/file
5779 	 * by non-hugetlbfs specific code paths.
5780 	 */
5781 	folio_mark_dirty(folio);
5782 
5783 	spin_lock(&inode->i_lock);
5784 	inode->i_blocks += blocks_per_huge_page(h);
5785 	spin_unlock(&inode->i_lock);
5786 	return 0;
5787 }
5788 
5789 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5790 						  struct address_space *mapping,
5791 						  pgoff_t idx,
5792 						  unsigned int flags,
5793 						  unsigned long haddr,
5794 						  unsigned long addr,
5795 						  unsigned long reason)
5796 {
5797 	u32 hash;
5798 	struct vm_fault vmf = {
5799 		.vma = vma,
5800 		.address = haddr,
5801 		.real_address = addr,
5802 		.flags = flags,
5803 
5804 		/*
5805 		 * Hard to debug if it ends up being
5806 		 * used by a callee that assumes
5807 		 * something about the other
5808 		 * uninitialized fields... same as in
5809 		 * memory.c
5810 		 */
5811 	};
5812 
5813 	/*
5814 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5815 	 * userfault. Also mmap_lock could be dropped due to handling
5816 	 * userfault, any vma operation should be careful from here.
5817 	 */
5818 	hugetlb_vma_unlock_read(vma);
5819 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5820 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5821 	return handle_userfault(&vmf, reason);
5822 }
5823 
5824 /*
5825  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5826  * false if pte changed or is changing.
5827  */
5828 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5829 			       pte_t *ptep, pte_t old_pte)
5830 {
5831 	spinlock_t *ptl;
5832 	bool same;
5833 
5834 	ptl = huge_pte_lock(h, mm, ptep);
5835 	same = pte_same(huge_ptep_get(ptep), old_pte);
5836 	spin_unlock(ptl);
5837 
5838 	return same;
5839 }
5840 
5841 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5842 			struct vm_area_struct *vma,
5843 			struct address_space *mapping, pgoff_t idx,
5844 			unsigned long address, pte_t *ptep,
5845 			pte_t old_pte, unsigned int flags)
5846 {
5847 	struct hstate *h = hstate_vma(vma);
5848 	vm_fault_t ret = VM_FAULT_SIGBUS;
5849 	int anon_rmap = 0;
5850 	unsigned long size;
5851 	struct folio *folio;
5852 	pte_t new_pte;
5853 	spinlock_t *ptl;
5854 	unsigned long haddr = address & huge_page_mask(h);
5855 	bool new_folio, new_pagecache_folio = false;
5856 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5857 
5858 	/*
5859 	 * Currently, we are forced to kill the process in the event the
5860 	 * original mapper has unmapped pages from the child due to a failed
5861 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5862 	 * be obvious.
5863 	 */
5864 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5865 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5866 			   current->pid);
5867 		goto out;
5868 	}
5869 
5870 	/*
5871 	 * Use page lock to guard against racing truncation
5872 	 * before we get page_table_lock.
5873 	 */
5874 	new_folio = false;
5875 	folio = filemap_lock_folio(mapping, idx);
5876 	if (IS_ERR(folio)) {
5877 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5878 		if (idx >= size)
5879 			goto out;
5880 		/* Check for page in userfault range */
5881 		if (userfaultfd_missing(vma)) {
5882 			/*
5883 			 * Since hugetlb_no_page() was examining pte
5884 			 * without pgtable lock, we need to re-test under
5885 			 * lock because the pte may not be stable and could
5886 			 * have changed from under us.  Try to detect
5887 			 * either changed or during-changing ptes and retry
5888 			 * properly when needed.
5889 			 *
5890 			 * Note that userfaultfd is actually fine with
5891 			 * false positives (e.g. caused by pte changed),
5892 			 * but not wrong logical events (e.g. caused by
5893 			 * reading a pte during changing).  The latter can
5894 			 * confuse the userspace, so the strictness is very
5895 			 * much preferred.  E.g., MISSING event should
5896 			 * never happen on the page after UFFDIO_COPY has
5897 			 * correctly installed the page and returned.
5898 			 */
5899 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5900 				ret = 0;
5901 				goto out;
5902 			}
5903 
5904 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5905 							haddr, address,
5906 							VM_UFFD_MISSING);
5907 		}
5908 
5909 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5910 		if (IS_ERR(folio)) {
5911 			/*
5912 			 * Returning error will result in faulting task being
5913 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5914 			 * tasks from racing to fault in the same page which
5915 			 * could result in false unable to allocate errors.
5916 			 * Page migration does not take the fault mutex, but
5917 			 * does a clear then write of pte's under page table
5918 			 * lock.  Page fault code could race with migration,
5919 			 * notice the clear pte and try to allocate a page
5920 			 * here.  Before returning error, get ptl and make
5921 			 * sure there really is no pte entry.
5922 			 */
5923 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5924 				ret = vmf_error(PTR_ERR(folio));
5925 			else
5926 				ret = 0;
5927 			goto out;
5928 		}
5929 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5930 		__folio_mark_uptodate(folio);
5931 		new_folio = true;
5932 
5933 		if (vma->vm_flags & VM_MAYSHARE) {
5934 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5935 			if (err) {
5936 				/*
5937 				 * err can't be -EEXIST which implies someone
5938 				 * else consumed the reservation since hugetlb
5939 				 * fault mutex is held when add a hugetlb page
5940 				 * to the page cache. So it's safe to call
5941 				 * restore_reserve_on_error() here.
5942 				 */
5943 				restore_reserve_on_error(h, vma, haddr, folio);
5944 				folio_put(folio);
5945 				goto out;
5946 			}
5947 			new_pagecache_folio = true;
5948 		} else {
5949 			folio_lock(folio);
5950 			if (unlikely(anon_vma_prepare(vma))) {
5951 				ret = VM_FAULT_OOM;
5952 				goto backout_unlocked;
5953 			}
5954 			anon_rmap = 1;
5955 		}
5956 	} else {
5957 		/*
5958 		 * If memory error occurs between mmap() and fault, some process
5959 		 * don't have hwpoisoned swap entry for errored virtual address.
5960 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5961 		 */
5962 		if (unlikely(folio_test_hwpoison(folio))) {
5963 			ret = VM_FAULT_HWPOISON_LARGE |
5964 				VM_FAULT_SET_HINDEX(hstate_index(h));
5965 			goto backout_unlocked;
5966 		}
5967 
5968 		/* Check for page in userfault range. */
5969 		if (userfaultfd_minor(vma)) {
5970 			folio_unlock(folio);
5971 			folio_put(folio);
5972 			/* See comment in userfaultfd_missing() block above */
5973 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5974 				ret = 0;
5975 				goto out;
5976 			}
5977 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5978 							haddr, address,
5979 							VM_UFFD_MINOR);
5980 		}
5981 	}
5982 
5983 	/*
5984 	 * If we are going to COW a private mapping later, we examine the
5985 	 * pending reservations for this page now. This will ensure that
5986 	 * any allocations necessary to record that reservation occur outside
5987 	 * the spinlock.
5988 	 */
5989 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5990 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5991 			ret = VM_FAULT_OOM;
5992 			goto backout_unlocked;
5993 		}
5994 		/* Just decrements count, does not deallocate */
5995 		vma_end_reservation(h, vma, haddr);
5996 	}
5997 
5998 	ptl = huge_pte_lock(h, mm, ptep);
5999 	ret = 0;
6000 	/* If pte changed from under us, retry */
6001 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6002 		goto backout;
6003 
6004 	if (anon_rmap)
6005 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6006 	else
6007 		page_dup_file_rmap(&folio->page, true);
6008 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6009 				&& (vma->vm_flags & VM_SHARED)));
6010 	/*
6011 	 * If this pte was previously wr-protected, keep it wr-protected even
6012 	 * if populated.
6013 	 */
6014 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6015 		new_pte = huge_pte_mkuffd_wp(new_pte);
6016 	set_huge_pte_at(mm, haddr, ptep, new_pte);
6017 
6018 	hugetlb_count_add(pages_per_huge_page(h), mm);
6019 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6020 		/* Optimization, do the COW without a second fault */
6021 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6022 	}
6023 
6024 	spin_unlock(ptl);
6025 
6026 	/*
6027 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6028 	 * found in the pagecache may not have hugetlb_migratable if they have
6029 	 * been isolated for migration.
6030 	 */
6031 	if (new_folio)
6032 		folio_set_hugetlb_migratable(folio);
6033 
6034 	folio_unlock(folio);
6035 out:
6036 	hugetlb_vma_unlock_read(vma);
6037 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6038 	return ret;
6039 
6040 backout:
6041 	spin_unlock(ptl);
6042 backout_unlocked:
6043 	if (new_folio && !new_pagecache_folio)
6044 		restore_reserve_on_error(h, vma, haddr, folio);
6045 
6046 	folio_unlock(folio);
6047 	folio_put(folio);
6048 	goto out;
6049 }
6050 
6051 #ifdef CONFIG_SMP
6052 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6053 {
6054 	unsigned long key[2];
6055 	u32 hash;
6056 
6057 	key[0] = (unsigned long) mapping;
6058 	key[1] = idx;
6059 
6060 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6061 
6062 	return hash & (num_fault_mutexes - 1);
6063 }
6064 #else
6065 /*
6066  * For uniprocessor systems we always use a single mutex, so just
6067  * return 0 and avoid the hashing overhead.
6068  */
6069 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6070 {
6071 	return 0;
6072 }
6073 #endif
6074 
6075 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6076 			unsigned long address, unsigned int flags)
6077 {
6078 	pte_t *ptep, entry;
6079 	spinlock_t *ptl;
6080 	vm_fault_t ret;
6081 	u32 hash;
6082 	pgoff_t idx;
6083 	struct folio *folio = NULL;
6084 	struct folio *pagecache_folio = NULL;
6085 	struct hstate *h = hstate_vma(vma);
6086 	struct address_space *mapping;
6087 	int need_wait_lock = 0;
6088 	unsigned long haddr = address & huge_page_mask(h);
6089 
6090 	/* TODO: Handle faults under the VMA lock */
6091 	if (flags & FAULT_FLAG_VMA_LOCK) {
6092 		vma_end_read(vma);
6093 		return VM_FAULT_RETRY;
6094 	}
6095 
6096 	/*
6097 	 * Serialize hugepage allocation and instantiation, so that we don't
6098 	 * get spurious allocation failures if two CPUs race to instantiate
6099 	 * the same page in the page cache.
6100 	 */
6101 	mapping = vma->vm_file->f_mapping;
6102 	idx = vma_hugecache_offset(h, vma, haddr);
6103 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6104 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6105 
6106 	/*
6107 	 * Acquire vma lock before calling huge_pte_alloc and hold
6108 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6109 	 * being called elsewhere and making the ptep no longer valid.
6110 	 */
6111 	hugetlb_vma_lock_read(vma);
6112 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6113 	if (!ptep) {
6114 		hugetlb_vma_unlock_read(vma);
6115 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6116 		return VM_FAULT_OOM;
6117 	}
6118 
6119 	entry = huge_ptep_get(ptep);
6120 	if (huge_pte_none_mostly(entry)) {
6121 		if (is_pte_marker(entry)) {
6122 			pte_marker marker =
6123 				pte_marker_get(pte_to_swp_entry(entry));
6124 
6125 			if (marker & PTE_MARKER_POISONED) {
6126 				ret = VM_FAULT_HWPOISON_LARGE;
6127 				goto out_mutex;
6128 			}
6129 		}
6130 
6131 		/*
6132 		 * Other PTE markers should be handled the same way as none PTE.
6133 		 *
6134 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6135 		 * mutex internally, which make us return immediately.
6136 		 */
6137 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6138 				      entry, flags);
6139 	}
6140 
6141 	ret = 0;
6142 
6143 	/*
6144 	 * entry could be a migration/hwpoison entry at this point, so this
6145 	 * check prevents the kernel from going below assuming that we have
6146 	 * an active hugepage in pagecache. This goto expects the 2nd page
6147 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6148 	 * properly handle it.
6149 	 */
6150 	if (!pte_present(entry)) {
6151 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6152 			/*
6153 			 * Release the hugetlb fault lock now, but retain
6154 			 * the vma lock, because it is needed to guard the
6155 			 * huge_pte_lockptr() later in
6156 			 * migration_entry_wait_huge(). The vma lock will
6157 			 * be released there.
6158 			 */
6159 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6160 			migration_entry_wait_huge(vma, ptep);
6161 			return 0;
6162 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6163 			ret = VM_FAULT_HWPOISON_LARGE |
6164 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6165 		goto out_mutex;
6166 	}
6167 
6168 	/*
6169 	 * If we are going to COW/unshare the mapping later, we examine the
6170 	 * pending reservations for this page now. This will ensure that any
6171 	 * allocations necessary to record that reservation occur outside the
6172 	 * spinlock. Also lookup the pagecache page now as it is used to
6173 	 * determine if a reservation has been consumed.
6174 	 */
6175 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6176 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6177 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6178 			ret = VM_FAULT_OOM;
6179 			goto out_mutex;
6180 		}
6181 		/* Just decrements count, does not deallocate */
6182 		vma_end_reservation(h, vma, haddr);
6183 
6184 		pagecache_folio = filemap_lock_folio(mapping, idx);
6185 		if (IS_ERR(pagecache_folio))
6186 			pagecache_folio = NULL;
6187 	}
6188 
6189 	ptl = huge_pte_lock(h, mm, ptep);
6190 
6191 	/* Check for a racing update before calling hugetlb_wp() */
6192 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6193 		goto out_ptl;
6194 
6195 	/* Handle userfault-wp first, before trying to lock more pages */
6196 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6197 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6198 		struct vm_fault vmf = {
6199 			.vma = vma,
6200 			.address = haddr,
6201 			.real_address = address,
6202 			.flags = flags,
6203 		};
6204 
6205 		spin_unlock(ptl);
6206 		if (pagecache_folio) {
6207 			folio_unlock(pagecache_folio);
6208 			folio_put(pagecache_folio);
6209 		}
6210 		hugetlb_vma_unlock_read(vma);
6211 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6212 		return handle_userfault(&vmf, VM_UFFD_WP);
6213 	}
6214 
6215 	/*
6216 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6217 	 * pagecache_folio, so here we need take the former one
6218 	 * when folio != pagecache_folio or !pagecache_folio.
6219 	 */
6220 	folio = page_folio(pte_page(entry));
6221 	if (folio != pagecache_folio)
6222 		if (!folio_trylock(folio)) {
6223 			need_wait_lock = 1;
6224 			goto out_ptl;
6225 		}
6226 
6227 	folio_get(folio);
6228 
6229 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6230 		if (!huge_pte_write(entry)) {
6231 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6232 					 pagecache_folio, ptl);
6233 			goto out_put_page;
6234 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6235 			entry = huge_pte_mkdirty(entry);
6236 		}
6237 	}
6238 	entry = pte_mkyoung(entry);
6239 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6240 						flags & FAULT_FLAG_WRITE))
6241 		update_mmu_cache(vma, haddr, ptep);
6242 out_put_page:
6243 	if (folio != pagecache_folio)
6244 		folio_unlock(folio);
6245 	folio_put(folio);
6246 out_ptl:
6247 	spin_unlock(ptl);
6248 
6249 	if (pagecache_folio) {
6250 		folio_unlock(pagecache_folio);
6251 		folio_put(pagecache_folio);
6252 	}
6253 out_mutex:
6254 	hugetlb_vma_unlock_read(vma);
6255 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6256 	/*
6257 	 * Generally it's safe to hold refcount during waiting page lock. But
6258 	 * here we just wait to defer the next page fault to avoid busy loop and
6259 	 * the page is not used after unlocked before returning from the current
6260 	 * page fault. So we are safe from accessing freed page, even if we wait
6261 	 * here without taking refcount.
6262 	 */
6263 	if (need_wait_lock)
6264 		folio_wait_locked(folio);
6265 	return ret;
6266 }
6267 
6268 #ifdef CONFIG_USERFAULTFD
6269 /*
6270  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6271  * with modifications for hugetlb pages.
6272  */
6273 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6274 			     struct vm_area_struct *dst_vma,
6275 			     unsigned long dst_addr,
6276 			     unsigned long src_addr,
6277 			     uffd_flags_t flags,
6278 			     struct folio **foliop)
6279 {
6280 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6281 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6282 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6283 	struct hstate *h = hstate_vma(dst_vma);
6284 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6285 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6286 	unsigned long size;
6287 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6288 	pte_t _dst_pte;
6289 	spinlock_t *ptl;
6290 	int ret = -ENOMEM;
6291 	struct folio *folio;
6292 	int writable;
6293 	bool folio_in_pagecache = false;
6294 
6295 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6296 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6297 
6298 		/* Don't overwrite any existing PTEs (even markers) */
6299 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6300 			spin_unlock(ptl);
6301 			return -EEXIST;
6302 		}
6303 
6304 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6305 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6306 
6307 		/* No need to invalidate - it was non-present before */
6308 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6309 
6310 		spin_unlock(ptl);
6311 		return 0;
6312 	}
6313 
6314 	if (is_continue) {
6315 		ret = -EFAULT;
6316 		folio = filemap_lock_folio(mapping, idx);
6317 		if (IS_ERR(folio))
6318 			goto out;
6319 		folio_in_pagecache = true;
6320 	} else if (!*foliop) {
6321 		/* If a folio already exists, then it's UFFDIO_COPY for
6322 		 * a non-missing case. Return -EEXIST.
6323 		 */
6324 		if (vm_shared &&
6325 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6326 			ret = -EEXIST;
6327 			goto out;
6328 		}
6329 
6330 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6331 		if (IS_ERR(folio)) {
6332 			ret = -ENOMEM;
6333 			goto out;
6334 		}
6335 
6336 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6337 					   false);
6338 
6339 		/* fallback to copy_from_user outside mmap_lock */
6340 		if (unlikely(ret)) {
6341 			ret = -ENOENT;
6342 			/* Free the allocated folio which may have
6343 			 * consumed a reservation.
6344 			 */
6345 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6346 			folio_put(folio);
6347 
6348 			/* Allocate a temporary folio to hold the copied
6349 			 * contents.
6350 			 */
6351 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6352 			if (!folio) {
6353 				ret = -ENOMEM;
6354 				goto out;
6355 			}
6356 			*foliop = folio;
6357 			/* Set the outparam foliop and return to the caller to
6358 			 * copy the contents outside the lock. Don't free the
6359 			 * folio.
6360 			 */
6361 			goto out;
6362 		}
6363 	} else {
6364 		if (vm_shared &&
6365 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6366 			folio_put(*foliop);
6367 			ret = -EEXIST;
6368 			*foliop = NULL;
6369 			goto out;
6370 		}
6371 
6372 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6373 		if (IS_ERR(folio)) {
6374 			folio_put(*foliop);
6375 			ret = -ENOMEM;
6376 			*foliop = NULL;
6377 			goto out;
6378 		}
6379 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6380 		folio_put(*foliop);
6381 		*foliop = NULL;
6382 		if (ret) {
6383 			folio_put(folio);
6384 			goto out;
6385 		}
6386 	}
6387 
6388 	/*
6389 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6390 	 * preceding stores to the page contents become visible before
6391 	 * the set_pte_at() write.
6392 	 */
6393 	__folio_mark_uptodate(folio);
6394 
6395 	/* Add shared, newly allocated pages to the page cache. */
6396 	if (vm_shared && !is_continue) {
6397 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6398 		ret = -EFAULT;
6399 		if (idx >= size)
6400 			goto out_release_nounlock;
6401 
6402 		/*
6403 		 * Serialization between remove_inode_hugepages() and
6404 		 * hugetlb_add_to_page_cache() below happens through the
6405 		 * hugetlb_fault_mutex_table that here must be hold by
6406 		 * the caller.
6407 		 */
6408 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6409 		if (ret)
6410 			goto out_release_nounlock;
6411 		folio_in_pagecache = true;
6412 	}
6413 
6414 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6415 
6416 	ret = -EIO;
6417 	if (folio_test_hwpoison(folio))
6418 		goto out_release_unlock;
6419 
6420 	/*
6421 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6422 	 * registered, we firstly wr-protect a none pte which has no page cache
6423 	 * page backing it, then access the page.
6424 	 */
6425 	ret = -EEXIST;
6426 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6427 		goto out_release_unlock;
6428 
6429 	if (folio_in_pagecache)
6430 		page_dup_file_rmap(&folio->page, true);
6431 	else
6432 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6433 
6434 	/*
6435 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6436 	 * with wp flag set, don't set pte write bit.
6437 	 */
6438 	if (wp_enabled || (is_continue && !vm_shared))
6439 		writable = 0;
6440 	else
6441 		writable = dst_vma->vm_flags & VM_WRITE;
6442 
6443 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6444 	/*
6445 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6446 	 * extremely important for hugetlbfs for now since swapping is not
6447 	 * supported, but we should still be clear in that this page cannot be
6448 	 * thrown away at will, even if write bit not set.
6449 	 */
6450 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6451 	_dst_pte = pte_mkyoung(_dst_pte);
6452 
6453 	if (wp_enabled)
6454 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6455 
6456 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6457 
6458 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6459 
6460 	/* No need to invalidate - it was non-present before */
6461 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6462 
6463 	spin_unlock(ptl);
6464 	if (!is_continue)
6465 		folio_set_hugetlb_migratable(folio);
6466 	if (vm_shared || is_continue)
6467 		folio_unlock(folio);
6468 	ret = 0;
6469 out:
6470 	return ret;
6471 out_release_unlock:
6472 	spin_unlock(ptl);
6473 	if (vm_shared || is_continue)
6474 		folio_unlock(folio);
6475 out_release_nounlock:
6476 	if (!folio_in_pagecache)
6477 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6478 	folio_put(folio);
6479 	goto out;
6480 }
6481 #endif /* CONFIG_USERFAULTFD */
6482 
6483 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6484 				      unsigned long address, unsigned int flags,
6485 				      unsigned int *page_mask)
6486 {
6487 	struct hstate *h = hstate_vma(vma);
6488 	struct mm_struct *mm = vma->vm_mm;
6489 	unsigned long haddr = address & huge_page_mask(h);
6490 	struct page *page = NULL;
6491 	spinlock_t *ptl;
6492 	pte_t *pte, entry;
6493 	int ret;
6494 
6495 	hugetlb_vma_lock_read(vma);
6496 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6497 	if (!pte)
6498 		goto out_unlock;
6499 
6500 	ptl = huge_pte_lock(h, mm, pte);
6501 	entry = huge_ptep_get(pte);
6502 	if (pte_present(entry)) {
6503 		page = pte_page(entry);
6504 
6505 		if (!huge_pte_write(entry)) {
6506 			if (flags & FOLL_WRITE) {
6507 				page = NULL;
6508 				goto out;
6509 			}
6510 
6511 			if (gup_must_unshare(vma, flags, page)) {
6512 				/* Tell the caller to do unsharing */
6513 				page = ERR_PTR(-EMLINK);
6514 				goto out;
6515 			}
6516 		}
6517 
6518 		page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6519 
6520 		/*
6521 		 * Note that page may be a sub-page, and with vmemmap
6522 		 * optimizations the page struct may be read only.
6523 		 * try_grab_page() will increase the ref count on the
6524 		 * head page, so this will be OK.
6525 		 *
6526 		 * try_grab_page() should always be able to get the page here,
6527 		 * because we hold the ptl lock and have verified pte_present().
6528 		 */
6529 		ret = try_grab_page(page, flags);
6530 
6531 		if (WARN_ON_ONCE(ret)) {
6532 			page = ERR_PTR(ret);
6533 			goto out;
6534 		}
6535 
6536 		*page_mask = (1U << huge_page_order(h)) - 1;
6537 	}
6538 out:
6539 	spin_unlock(ptl);
6540 out_unlock:
6541 	hugetlb_vma_unlock_read(vma);
6542 
6543 	/*
6544 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6545 	 * don't try to allocate a new page but just skip it.
6546 	 */
6547 	if (!page && (flags & FOLL_DUMP) &&
6548 	    !hugetlbfs_pagecache_present(h, vma, address))
6549 		page = ERR_PTR(-EFAULT);
6550 
6551 	return page;
6552 }
6553 
6554 long hugetlb_change_protection(struct vm_area_struct *vma,
6555 		unsigned long address, unsigned long end,
6556 		pgprot_t newprot, unsigned long cp_flags)
6557 {
6558 	struct mm_struct *mm = vma->vm_mm;
6559 	unsigned long start = address;
6560 	pte_t *ptep;
6561 	pte_t pte;
6562 	struct hstate *h = hstate_vma(vma);
6563 	long pages = 0, psize = huge_page_size(h);
6564 	bool shared_pmd = false;
6565 	struct mmu_notifier_range range;
6566 	unsigned long last_addr_mask;
6567 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6568 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6569 
6570 	/*
6571 	 * In the case of shared PMDs, the area to flush could be beyond
6572 	 * start/end.  Set range.start/range.end to cover the maximum possible
6573 	 * range if PMD sharing is possible.
6574 	 */
6575 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6576 				0, mm, start, end);
6577 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6578 
6579 	BUG_ON(address >= end);
6580 	flush_cache_range(vma, range.start, range.end);
6581 
6582 	mmu_notifier_invalidate_range_start(&range);
6583 	hugetlb_vma_lock_write(vma);
6584 	i_mmap_lock_write(vma->vm_file->f_mapping);
6585 	last_addr_mask = hugetlb_mask_last_page(h);
6586 	for (; address < end; address += psize) {
6587 		spinlock_t *ptl;
6588 		ptep = hugetlb_walk(vma, address, psize);
6589 		if (!ptep) {
6590 			if (!uffd_wp) {
6591 				address |= last_addr_mask;
6592 				continue;
6593 			}
6594 			/*
6595 			 * Userfaultfd wr-protect requires pgtable
6596 			 * pre-allocations to install pte markers.
6597 			 */
6598 			ptep = huge_pte_alloc(mm, vma, address, psize);
6599 			if (!ptep) {
6600 				pages = -ENOMEM;
6601 				break;
6602 			}
6603 		}
6604 		ptl = huge_pte_lock(h, mm, ptep);
6605 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6606 			/*
6607 			 * When uffd-wp is enabled on the vma, unshare
6608 			 * shouldn't happen at all.  Warn about it if it
6609 			 * happened due to some reason.
6610 			 */
6611 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6612 			pages++;
6613 			spin_unlock(ptl);
6614 			shared_pmd = true;
6615 			address |= last_addr_mask;
6616 			continue;
6617 		}
6618 		pte = huge_ptep_get(ptep);
6619 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6620 			/* Nothing to do. */
6621 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6622 			swp_entry_t entry = pte_to_swp_entry(pte);
6623 			struct page *page = pfn_swap_entry_to_page(entry);
6624 			pte_t newpte = pte;
6625 
6626 			if (is_writable_migration_entry(entry)) {
6627 				if (PageAnon(page))
6628 					entry = make_readable_exclusive_migration_entry(
6629 								swp_offset(entry));
6630 				else
6631 					entry = make_readable_migration_entry(
6632 								swp_offset(entry));
6633 				newpte = swp_entry_to_pte(entry);
6634 				pages++;
6635 			}
6636 
6637 			if (uffd_wp)
6638 				newpte = pte_swp_mkuffd_wp(newpte);
6639 			else if (uffd_wp_resolve)
6640 				newpte = pte_swp_clear_uffd_wp(newpte);
6641 			if (!pte_same(pte, newpte))
6642 				set_huge_pte_at(mm, address, ptep, newpte);
6643 		} else if (unlikely(is_pte_marker(pte))) {
6644 			/* No other markers apply for now. */
6645 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6646 			if (uffd_wp_resolve)
6647 				/* Safe to modify directly (non-present->none). */
6648 				huge_pte_clear(mm, address, ptep, psize);
6649 		} else if (!huge_pte_none(pte)) {
6650 			pte_t old_pte;
6651 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6652 
6653 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6654 			pte = huge_pte_modify(old_pte, newprot);
6655 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6656 			if (uffd_wp)
6657 				pte = huge_pte_mkuffd_wp(pte);
6658 			else if (uffd_wp_resolve)
6659 				pte = huge_pte_clear_uffd_wp(pte);
6660 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6661 			pages++;
6662 		} else {
6663 			/* None pte */
6664 			if (unlikely(uffd_wp))
6665 				/* Safe to modify directly (none->non-present). */
6666 				set_huge_pte_at(mm, address, ptep,
6667 						make_pte_marker(PTE_MARKER_UFFD_WP));
6668 		}
6669 		spin_unlock(ptl);
6670 	}
6671 	/*
6672 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6673 	 * may have cleared our pud entry and done put_page on the page table:
6674 	 * once we release i_mmap_rwsem, another task can do the final put_page
6675 	 * and that page table be reused and filled with junk.  If we actually
6676 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6677 	 */
6678 	if (shared_pmd)
6679 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6680 	else
6681 		flush_hugetlb_tlb_range(vma, start, end);
6682 	/*
6683 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6684 	 * downgrading page table protection not changing it to point to a new
6685 	 * page.
6686 	 *
6687 	 * See Documentation/mm/mmu_notifier.rst
6688 	 */
6689 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6690 	hugetlb_vma_unlock_write(vma);
6691 	mmu_notifier_invalidate_range_end(&range);
6692 
6693 	return pages > 0 ? (pages << h->order) : pages;
6694 }
6695 
6696 /* Return true if reservation was successful, false otherwise.  */
6697 bool hugetlb_reserve_pages(struct inode *inode,
6698 					long from, long to,
6699 					struct vm_area_struct *vma,
6700 					vm_flags_t vm_flags)
6701 {
6702 	long chg = -1, add = -1;
6703 	struct hstate *h = hstate_inode(inode);
6704 	struct hugepage_subpool *spool = subpool_inode(inode);
6705 	struct resv_map *resv_map;
6706 	struct hugetlb_cgroup *h_cg = NULL;
6707 	long gbl_reserve, regions_needed = 0;
6708 
6709 	/* This should never happen */
6710 	if (from > to) {
6711 		VM_WARN(1, "%s called with a negative range\n", __func__);
6712 		return false;
6713 	}
6714 
6715 	/*
6716 	 * vma specific semaphore used for pmd sharing and fault/truncation
6717 	 * synchronization
6718 	 */
6719 	hugetlb_vma_lock_alloc(vma);
6720 
6721 	/*
6722 	 * Only apply hugepage reservation if asked. At fault time, an
6723 	 * attempt will be made for VM_NORESERVE to allocate a page
6724 	 * without using reserves
6725 	 */
6726 	if (vm_flags & VM_NORESERVE)
6727 		return true;
6728 
6729 	/*
6730 	 * Shared mappings base their reservation on the number of pages that
6731 	 * are already allocated on behalf of the file. Private mappings need
6732 	 * to reserve the full area even if read-only as mprotect() may be
6733 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6734 	 */
6735 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6736 		/*
6737 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6738 		 * called for inodes for which resv_maps were created (see
6739 		 * hugetlbfs_get_inode).
6740 		 */
6741 		resv_map = inode_resv_map(inode);
6742 
6743 		chg = region_chg(resv_map, from, to, &regions_needed);
6744 	} else {
6745 		/* Private mapping. */
6746 		resv_map = resv_map_alloc();
6747 		if (!resv_map)
6748 			goto out_err;
6749 
6750 		chg = to - from;
6751 
6752 		set_vma_resv_map(vma, resv_map);
6753 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6754 	}
6755 
6756 	if (chg < 0)
6757 		goto out_err;
6758 
6759 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6760 				chg * pages_per_huge_page(h), &h_cg) < 0)
6761 		goto out_err;
6762 
6763 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6764 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6765 		 * of the resv_map.
6766 		 */
6767 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6768 	}
6769 
6770 	/*
6771 	 * There must be enough pages in the subpool for the mapping. If
6772 	 * the subpool has a minimum size, there may be some global
6773 	 * reservations already in place (gbl_reserve).
6774 	 */
6775 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6776 	if (gbl_reserve < 0)
6777 		goto out_uncharge_cgroup;
6778 
6779 	/*
6780 	 * Check enough hugepages are available for the reservation.
6781 	 * Hand the pages back to the subpool if there are not
6782 	 */
6783 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6784 		goto out_put_pages;
6785 
6786 	/*
6787 	 * Account for the reservations made. Shared mappings record regions
6788 	 * that have reservations as they are shared by multiple VMAs.
6789 	 * When the last VMA disappears, the region map says how much
6790 	 * the reservation was and the page cache tells how much of
6791 	 * the reservation was consumed. Private mappings are per-VMA and
6792 	 * only the consumed reservations are tracked. When the VMA
6793 	 * disappears, the original reservation is the VMA size and the
6794 	 * consumed reservations are stored in the map. Hence, nothing
6795 	 * else has to be done for private mappings here
6796 	 */
6797 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6798 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6799 
6800 		if (unlikely(add < 0)) {
6801 			hugetlb_acct_memory(h, -gbl_reserve);
6802 			goto out_put_pages;
6803 		} else if (unlikely(chg > add)) {
6804 			/*
6805 			 * pages in this range were added to the reserve
6806 			 * map between region_chg and region_add.  This
6807 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6808 			 * the subpool and reserve counts modified above
6809 			 * based on the difference.
6810 			 */
6811 			long rsv_adjust;
6812 
6813 			/*
6814 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6815 			 * reference to h_cg->css. See comment below for detail.
6816 			 */
6817 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6818 				hstate_index(h),
6819 				(chg - add) * pages_per_huge_page(h), h_cg);
6820 
6821 			rsv_adjust = hugepage_subpool_put_pages(spool,
6822 								chg - add);
6823 			hugetlb_acct_memory(h, -rsv_adjust);
6824 		} else if (h_cg) {
6825 			/*
6826 			 * The file_regions will hold their own reference to
6827 			 * h_cg->css. So we should release the reference held
6828 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6829 			 * done.
6830 			 */
6831 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6832 		}
6833 	}
6834 	return true;
6835 
6836 out_put_pages:
6837 	/* put back original number of pages, chg */
6838 	(void)hugepage_subpool_put_pages(spool, chg);
6839 out_uncharge_cgroup:
6840 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6841 					    chg * pages_per_huge_page(h), h_cg);
6842 out_err:
6843 	hugetlb_vma_lock_free(vma);
6844 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6845 		/* Only call region_abort if the region_chg succeeded but the
6846 		 * region_add failed or didn't run.
6847 		 */
6848 		if (chg >= 0 && add < 0)
6849 			region_abort(resv_map, from, to, regions_needed);
6850 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6851 		kref_put(&resv_map->refs, resv_map_release);
6852 	return false;
6853 }
6854 
6855 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6856 								long freed)
6857 {
6858 	struct hstate *h = hstate_inode(inode);
6859 	struct resv_map *resv_map = inode_resv_map(inode);
6860 	long chg = 0;
6861 	struct hugepage_subpool *spool = subpool_inode(inode);
6862 	long gbl_reserve;
6863 
6864 	/*
6865 	 * Since this routine can be called in the evict inode path for all
6866 	 * hugetlbfs inodes, resv_map could be NULL.
6867 	 */
6868 	if (resv_map) {
6869 		chg = region_del(resv_map, start, end);
6870 		/*
6871 		 * region_del() can fail in the rare case where a region
6872 		 * must be split and another region descriptor can not be
6873 		 * allocated.  If end == LONG_MAX, it will not fail.
6874 		 */
6875 		if (chg < 0)
6876 			return chg;
6877 	}
6878 
6879 	spin_lock(&inode->i_lock);
6880 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6881 	spin_unlock(&inode->i_lock);
6882 
6883 	/*
6884 	 * If the subpool has a minimum size, the number of global
6885 	 * reservations to be released may be adjusted.
6886 	 *
6887 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6888 	 * won't go negative.
6889 	 */
6890 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6891 	hugetlb_acct_memory(h, -gbl_reserve);
6892 
6893 	return 0;
6894 }
6895 
6896 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6897 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6898 				struct vm_area_struct *vma,
6899 				unsigned long addr, pgoff_t idx)
6900 {
6901 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6902 				svma->vm_start;
6903 	unsigned long sbase = saddr & PUD_MASK;
6904 	unsigned long s_end = sbase + PUD_SIZE;
6905 
6906 	/* Allow segments to share if only one is marked locked */
6907 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6908 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6909 
6910 	/*
6911 	 * match the virtual addresses, permission and the alignment of the
6912 	 * page table page.
6913 	 *
6914 	 * Also, vma_lock (vm_private_data) is required for sharing.
6915 	 */
6916 	if (pmd_index(addr) != pmd_index(saddr) ||
6917 	    vm_flags != svm_flags ||
6918 	    !range_in_vma(svma, sbase, s_end) ||
6919 	    !svma->vm_private_data)
6920 		return 0;
6921 
6922 	return saddr;
6923 }
6924 
6925 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6926 {
6927 	unsigned long start = addr & PUD_MASK;
6928 	unsigned long end = start + PUD_SIZE;
6929 
6930 #ifdef CONFIG_USERFAULTFD
6931 	if (uffd_disable_huge_pmd_share(vma))
6932 		return false;
6933 #endif
6934 	/*
6935 	 * check on proper vm_flags and page table alignment
6936 	 */
6937 	if (!(vma->vm_flags & VM_MAYSHARE))
6938 		return false;
6939 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6940 		return false;
6941 	if (!range_in_vma(vma, start, end))
6942 		return false;
6943 	return true;
6944 }
6945 
6946 /*
6947  * Determine if start,end range within vma could be mapped by shared pmd.
6948  * If yes, adjust start and end to cover range associated with possible
6949  * shared pmd mappings.
6950  */
6951 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6952 				unsigned long *start, unsigned long *end)
6953 {
6954 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6955 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6956 
6957 	/*
6958 	 * vma needs to span at least one aligned PUD size, and the range
6959 	 * must be at least partially within in.
6960 	 */
6961 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6962 		(*end <= v_start) || (*start >= v_end))
6963 		return;
6964 
6965 	/* Extend the range to be PUD aligned for a worst case scenario */
6966 	if (*start > v_start)
6967 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6968 
6969 	if (*end < v_end)
6970 		*end = ALIGN(*end, PUD_SIZE);
6971 }
6972 
6973 /*
6974  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6975  * and returns the corresponding pte. While this is not necessary for the
6976  * !shared pmd case because we can allocate the pmd later as well, it makes the
6977  * code much cleaner. pmd allocation is essential for the shared case because
6978  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6979  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6980  * bad pmd for sharing.
6981  */
6982 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6983 		      unsigned long addr, pud_t *pud)
6984 {
6985 	struct address_space *mapping = vma->vm_file->f_mapping;
6986 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6987 			vma->vm_pgoff;
6988 	struct vm_area_struct *svma;
6989 	unsigned long saddr;
6990 	pte_t *spte = NULL;
6991 	pte_t *pte;
6992 
6993 	i_mmap_lock_read(mapping);
6994 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6995 		if (svma == vma)
6996 			continue;
6997 
6998 		saddr = page_table_shareable(svma, vma, addr, idx);
6999 		if (saddr) {
7000 			spte = hugetlb_walk(svma, saddr,
7001 					    vma_mmu_pagesize(svma));
7002 			if (spte) {
7003 				get_page(virt_to_page(spte));
7004 				break;
7005 			}
7006 		}
7007 	}
7008 
7009 	if (!spte)
7010 		goto out;
7011 
7012 	spin_lock(&mm->page_table_lock);
7013 	if (pud_none(*pud)) {
7014 		pud_populate(mm, pud,
7015 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7016 		mm_inc_nr_pmds(mm);
7017 	} else {
7018 		put_page(virt_to_page(spte));
7019 	}
7020 	spin_unlock(&mm->page_table_lock);
7021 out:
7022 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7023 	i_mmap_unlock_read(mapping);
7024 	return pte;
7025 }
7026 
7027 /*
7028  * unmap huge page backed by shared pte.
7029  *
7030  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7031  * indicated by page_count > 1, unmap is achieved by clearing pud and
7032  * decrementing the ref count. If count == 1, the pte page is not shared.
7033  *
7034  * Called with page table lock held.
7035  *
7036  * returns: 1 successfully unmapped a shared pte page
7037  *	    0 the underlying pte page is not shared, or it is the last user
7038  */
7039 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7040 					unsigned long addr, pte_t *ptep)
7041 {
7042 	pgd_t *pgd = pgd_offset(mm, addr);
7043 	p4d_t *p4d = p4d_offset(pgd, addr);
7044 	pud_t *pud = pud_offset(p4d, addr);
7045 
7046 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7047 	hugetlb_vma_assert_locked(vma);
7048 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7049 	if (page_count(virt_to_page(ptep)) == 1)
7050 		return 0;
7051 
7052 	pud_clear(pud);
7053 	put_page(virt_to_page(ptep));
7054 	mm_dec_nr_pmds(mm);
7055 	return 1;
7056 }
7057 
7058 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7059 
7060 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7061 		      unsigned long addr, pud_t *pud)
7062 {
7063 	return NULL;
7064 }
7065 
7066 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7067 				unsigned long addr, pte_t *ptep)
7068 {
7069 	return 0;
7070 }
7071 
7072 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7073 				unsigned long *start, unsigned long *end)
7074 {
7075 }
7076 
7077 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7078 {
7079 	return false;
7080 }
7081 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7082 
7083 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7084 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7085 			unsigned long addr, unsigned long sz)
7086 {
7087 	pgd_t *pgd;
7088 	p4d_t *p4d;
7089 	pud_t *pud;
7090 	pte_t *pte = NULL;
7091 
7092 	pgd = pgd_offset(mm, addr);
7093 	p4d = p4d_alloc(mm, pgd, addr);
7094 	if (!p4d)
7095 		return NULL;
7096 	pud = pud_alloc(mm, p4d, addr);
7097 	if (pud) {
7098 		if (sz == PUD_SIZE) {
7099 			pte = (pte_t *)pud;
7100 		} else {
7101 			BUG_ON(sz != PMD_SIZE);
7102 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7103 				pte = huge_pmd_share(mm, vma, addr, pud);
7104 			else
7105 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7106 		}
7107 	}
7108 
7109 	if (pte) {
7110 		pte_t pteval = ptep_get_lockless(pte);
7111 
7112 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7113 	}
7114 
7115 	return pte;
7116 }
7117 
7118 /*
7119  * huge_pte_offset() - Walk the page table to resolve the hugepage
7120  * entry at address @addr
7121  *
7122  * Return: Pointer to page table entry (PUD or PMD) for
7123  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7124  * size @sz doesn't match the hugepage size at this level of the page
7125  * table.
7126  */
7127 pte_t *huge_pte_offset(struct mm_struct *mm,
7128 		       unsigned long addr, unsigned long sz)
7129 {
7130 	pgd_t *pgd;
7131 	p4d_t *p4d;
7132 	pud_t *pud;
7133 	pmd_t *pmd;
7134 
7135 	pgd = pgd_offset(mm, addr);
7136 	if (!pgd_present(*pgd))
7137 		return NULL;
7138 	p4d = p4d_offset(pgd, addr);
7139 	if (!p4d_present(*p4d))
7140 		return NULL;
7141 
7142 	pud = pud_offset(p4d, addr);
7143 	if (sz == PUD_SIZE)
7144 		/* must be pud huge, non-present or none */
7145 		return (pte_t *)pud;
7146 	if (!pud_present(*pud))
7147 		return NULL;
7148 	/* must have a valid entry and size to go further */
7149 
7150 	pmd = pmd_offset(pud, addr);
7151 	/* must be pmd huge, non-present or none */
7152 	return (pte_t *)pmd;
7153 }
7154 
7155 /*
7156  * Return a mask that can be used to update an address to the last huge
7157  * page in a page table page mapping size.  Used to skip non-present
7158  * page table entries when linearly scanning address ranges.  Architectures
7159  * with unique huge page to page table relationships can define their own
7160  * version of this routine.
7161  */
7162 unsigned long hugetlb_mask_last_page(struct hstate *h)
7163 {
7164 	unsigned long hp_size = huge_page_size(h);
7165 
7166 	if (hp_size == PUD_SIZE)
7167 		return P4D_SIZE - PUD_SIZE;
7168 	else if (hp_size == PMD_SIZE)
7169 		return PUD_SIZE - PMD_SIZE;
7170 	else
7171 		return 0UL;
7172 }
7173 
7174 #else
7175 
7176 /* See description above.  Architectures can provide their own version. */
7177 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7178 {
7179 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7180 	if (huge_page_size(h) == PMD_SIZE)
7181 		return PUD_SIZE - PMD_SIZE;
7182 #endif
7183 	return 0UL;
7184 }
7185 
7186 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7187 
7188 /*
7189  * These functions are overwritable if your architecture needs its own
7190  * behavior.
7191  */
7192 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7193 {
7194 	bool ret = true;
7195 
7196 	spin_lock_irq(&hugetlb_lock);
7197 	if (!folio_test_hugetlb(folio) ||
7198 	    !folio_test_hugetlb_migratable(folio) ||
7199 	    !folio_try_get(folio)) {
7200 		ret = false;
7201 		goto unlock;
7202 	}
7203 	folio_clear_hugetlb_migratable(folio);
7204 	list_move_tail(&folio->lru, list);
7205 unlock:
7206 	spin_unlock_irq(&hugetlb_lock);
7207 	return ret;
7208 }
7209 
7210 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7211 {
7212 	int ret = 0;
7213 
7214 	*hugetlb = false;
7215 	spin_lock_irq(&hugetlb_lock);
7216 	if (folio_test_hugetlb(folio)) {
7217 		*hugetlb = true;
7218 		if (folio_test_hugetlb_freed(folio))
7219 			ret = 0;
7220 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7221 			ret = folio_try_get(folio);
7222 		else
7223 			ret = -EBUSY;
7224 	}
7225 	spin_unlock_irq(&hugetlb_lock);
7226 	return ret;
7227 }
7228 
7229 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7230 				bool *migratable_cleared)
7231 {
7232 	int ret;
7233 
7234 	spin_lock_irq(&hugetlb_lock);
7235 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7236 	spin_unlock_irq(&hugetlb_lock);
7237 	return ret;
7238 }
7239 
7240 void folio_putback_active_hugetlb(struct folio *folio)
7241 {
7242 	spin_lock_irq(&hugetlb_lock);
7243 	folio_set_hugetlb_migratable(folio);
7244 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7245 	spin_unlock_irq(&hugetlb_lock);
7246 	folio_put(folio);
7247 }
7248 
7249 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7250 {
7251 	struct hstate *h = folio_hstate(old_folio);
7252 
7253 	hugetlb_cgroup_migrate(old_folio, new_folio);
7254 	set_page_owner_migrate_reason(&new_folio->page, reason);
7255 
7256 	/*
7257 	 * transfer temporary state of the new hugetlb folio. This is
7258 	 * reverse to other transitions because the newpage is going to
7259 	 * be final while the old one will be freed so it takes over
7260 	 * the temporary status.
7261 	 *
7262 	 * Also note that we have to transfer the per-node surplus state
7263 	 * here as well otherwise the global surplus count will not match
7264 	 * the per-node's.
7265 	 */
7266 	if (folio_test_hugetlb_temporary(new_folio)) {
7267 		int old_nid = folio_nid(old_folio);
7268 		int new_nid = folio_nid(new_folio);
7269 
7270 		folio_set_hugetlb_temporary(old_folio);
7271 		folio_clear_hugetlb_temporary(new_folio);
7272 
7273 
7274 		/*
7275 		 * There is no need to transfer the per-node surplus state
7276 		 * when we do not cross the node.
7277 		 */
7278 		if (new_nid == old_nid)
7279 			return;
7280 		spin_lock_irq(&hugetlb_lock);
7281 		if (h->surplus_huge_pages_node[old_nid]) {
7282 			h->surplus_huge_pages_node[old_nid]--;
7283 			h->surplus_huge_pages_node[new_nid]++;
7284 		}
7285 		spin_unlock_irq(&hugetlb_lock);
7286 	}
7287 }
7288 
7289 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7290 				   unsigned long start,
7291 				   unsigned long end)
7292 {
7293 	struct hstate *h = hstate_vma(vma);
7294 	unsigned long sz = huge_page_size(h);
7295 	struct mm_struct *mm = vma->vm_mm;
7296 	struct mmu_notifier_range range;
7297 	unsigned long address;
7298 	spinlock_t *ptl;
7299 	pte_t *ptep;
7300 
7301 	if (!(vma->vm_flags & VM_MAYSHARE))
7302 		return;
7303 
7304 	if (start >= end)
7305 		return;
7306 
7307 	flush_cache_range(vma, start, end);
7308 	/*
7309 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7310 	 * we have already done the PUD_SIZE alignment.
7311 	 */
7312 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7313 				start, end);
7314 	mmu_notifier_invalidate_range_start(&range);
7315 	hugetlb_vma_lock_write(vma);
7316 	i_mmap_lock_write(vma->vm_file->f_mapping);
7317 	for (address = start; address < end; address += PUD_SIZE) {
7318 		ptep = hugetlb_walk(vma, address, sz);
7319 		if (!ptep)
7320 			continue;
7321 		ptl = huge_pte_lock(h, mm, ptep);
7322 		huge_pmd_unshare(mm, vma, address, ptep);
7323 		spin_unlock(ptl);
7324 	}
7325 	flush_hugetlb_tlb_range(vma, start, end);
7326 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7327 	hugetlb_vma_unlock_write(vma);
7328 	/*
7329 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7330 	 * Documentation/mm/mmu_notifier.rst.
7331 	 */
7332 	mmu_notifier_invalidate_range_end(&range);
7333 }
7334 
7335 /*
7336  * This function will unconditionally remove all the shared pmd pgtable entries
7337  * within the specific vma for a hugetlbfs memory range.
7338  */
7339 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7340 {
7341 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7342 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7343 }
7344 
7345 #ifdef CONFIG_CMA
7346 static bool cma_reserve_called __initdata;
7347 
7348 static int __init cmdline_parse_hugetlb_cma(char *p)
7349 {
7350 	int nid, count = 0;
7351 	unsigned long tmp;
7352 	char *s = p;
7353 
7354 	while (*s) {
7355 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7356 			break;
7357 
7358 		if (s[count] == ':') {
7359 			if (tmp >= MAX_NUMNODES)
7360 				break;
7361 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7362 
7363 			s += count + 1;
7364 			tmp = memparse(s, &s);
7365 			hugetlb_cma_size_in_node[nid] = tmp;
7366 			hugetlb_cma_size += tmp;
7367 
7368 			/*
7369 			 * Skip the separator if have one, otherwise
7370 			 * break the parsing.
7371 			 */
7372 			if (*s == ',')
7373 				s++;
7374 			else
7375 				break;
7376 		} else {
7377 			hugetlb_cma_size = memparse(p, &p);
7378 			break;
7379 		}
7380 	}
7381 
7382 	return 0;
7383 }
7384 
7385 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7386 
7387 void __init hugetlb_cma_reserve(int order)
7388 {
7389 	unsigned long size, reserved, per_node;
7390 	bool node_specific_cma_alloc = false;
7391 	int nid;
7392 
7393 	cma_reserve_called = true;
7394 
7395 	if (!hugetlb_cma_size)
7396 		return;
7397 
7398 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7399 		if (hugetlb_cma_size_in_node[nid] == 0)
7400 			continue;
7401 
7402 		if (!node_online(nid)) {
7403 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7404 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7405 			hugetlb_cma_size_in_node[nid] = 0;
7406 			continue;
7407 		}
7408 
7409 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7410 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7411 				nid, (PAGE_SIZE << order) / SZ_1M);
7412 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7413 			hugetlb_cma_size_in_node[nid] = 0;
7414 		} else {
7415 			node_specific_cma_alloc = true;
7416 		}
7417 	}
7418 
7419 	/* Validate the CMA size again in case some invalid nodes specified. */
7420 	if (!hugetlb_cma_size)
7421 		return;
7422 
7423 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7424 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7425 			(PAGE_SIZE << order) / SZ_1M);
7426 		hugetlb_cma_size = 0;
7427 		return;
7428 	}
7429 
7430 	if (!node_specific_cma_alloc) {
7431 		/*
7432 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7433 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7434 		 */
7435 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7436 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7437 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7438 	}
7439 
7440 	reserved = 0;
7441 	for_each_online_node(nid) {
7442 		int res;
7443 		char name[CMA_MAX_NAME];
7444 
7445 		if (node_specific_cma_alloc) {
7446 			if (hugetlb_cma_size_in_node[nid] == 0)
7447 				continue;
7448 
7449 			size = hugetlb_cma_size_in_node[nid];
7450 		} else {
7451 			size = min(per_node, hugetlb_cma_size - reserved);
7452 		}
7453 
7454 		size = round_up(size, PAGE_SIZE << order);
7455 
7456 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7457 		/*
7458 		 * Note that 'order per bit' is based on smallest size that
7459 		 * may be returned to CMA allocator in the case of
7460 		 * huge page demotion.
7461 		 */
7462 		res = cma_declare_contiguous_nid(0, size, 0,
7463 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7464 						 0, false, name,
7465 						 &hugetlb_cma[nid], nid);
7466 		if (res) {
7467 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7468 				res, nid);
7469 			continue;
7470 		}
7471 
7472 		reserved += size;
7473 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7474 			size / SZ_1M, nid);
7475 
7476 		if (reserved >= hugetlb_cma_size)
7477 			break;
7478 	}
7479 
7480 	if (!reserved)
7481 		/*
7482 		 * hugetlb_cma_size is used to determine if allocations from
7483 		 * cma are possible.  Set to zero if no cma regions are set up.
7484 		 */
7485 		hugetlb_cma_size = 0;
7486 }
7487 
7488 static void __init hugetlb_cma_check(void)
7489 {
7490 	if (!hugetlb_cma_size || cma_reserve_called)
7491 		return;
7492 
7493 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7494 }
7495 
7496 #endif /* CONFIG_CMA */
7497