xref: /openbmc/linux/mm/hugetlb.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101 
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 	if (spool->count)
105 		return false;
106 	if (spool->max_hpages != -1)
107 		return spool->used_hpages == 0;
108 	if (spool->min_hpages != -1)
109 		return spool->rsv_hpages == spool->min_hpages;
110 
111 	return true;
112 }
113 
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 						unsigned long irq_flags)
116 {
117 	spin_unlock_irqrestore(&spool->lock, irq_flags);
118 
119 	/* If no pages are used, and no other handles to the subpool
120 	 * remain, give up any reservations based on minimum size and
121 	 * free the subpool */
122 	if (subpool_is_free(spool)) {
123 		if (spool->min_hpages != -1)
124 			hugetlb_acct_memory(spool->hstate,
125 						-spool->min_hpages);
126 		kfree(spool);
127 	}
128 }
129 
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 						long min_hpages)
132 {
133 	struct hugepage_subpool *spool;
134 
135 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 	if (!spool)
137 		return NULL;
138 
139 	spin_lock_init(&spool->lock);
140 	spool->count = 1;
141 	spool->max_hpages = max_hpages;
142 	spool->hstate = h;
143 	spool->min_hpages = min_hpages;
144 
145 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 		kfree(spool);
147 		return NULL;
148 	}
149 	spool->rsv_hpages = min_hpages;
150 
151 	return spool;
152 }
153 
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&spool->lock, flags);
159 	BUG_ON(!spool->count);
160 	spool->count--;
161 	unlock_or_release_subpool(spool, flags);
162 }
163 
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 				      long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return ret;
179 
180 	spin_lock_irq(&spool->lock);
181 
182 	if (spool->max_hpages != -1) {		/* maximum size accounting */
183 		if ((spool->used_hpages + delta) <= spool->max_hpages)
184 			spool->used_hpages += delta;
185 		else {
186 			ret = -ENOMEM;
187 			goto unlock_ret;
188 		}
189 	}
190 
191 	/* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 		if (delta > spool->rsv_hpages) {
194 			/*
195 			 * Asking for more reserves than those already taken on
196 			 * behalf of subpool.  Return difference.
197 			 */
198 			ret = delta - spool->rsv_hpages;
199 			spool->rsv_hpages = 0;
200 		} else {
201 			ret = 0;	/* reserves already accounted for */
202 			spool->rsv_hpages -= delta;
203 		}
204 	}
205 
206 unlock_ret:
207 	spin_unlock_irq(&spool->lock);
208 	return ret;
209 }
210 
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 				       long delta)
219 {
220 	long ret = delta;
221 	unsigned long flags;
222 
223 	if (!spool)
224 		return delta;
225 
226 	spin_lock_irqsave(&spool->lock, flags);
227 
228 	if (spool->max_hpages != -1)		/* maximum size accounting */
229 		spool->used_hpages -= delta;
230 
231 	 /* minimum size accounting */
232 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 		if (spool->rsv_hpages + delta <= spool->min_hpages)
234 			ret = 0;
235 		else
236 			ret = spool->rsv_hpages + delta - spool->min_hpages;
237 
238 		spool->rsv_hpages += delta;
239 		if (spool->rsv_hpages > spool->min_hpages)
240 			spool->rsv_hpages = spool->min_hpages;
241 	}
242 
243 	/*
244 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 	 * quota reference, free it now.
246 	 */
247 	unlock_or_release_subpool(spool, flags);
248 
249 	return ret;
250 }
251 
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 	return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256 
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 	return subpool_inode(file_inode(vma->vm_file));
260 }
261 
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 	if (__vma_shareable_lock(vma)) {
268 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 
270 		down_read(&vma_lock->rw_sema);
271 	} else if (__vma_private_lock(vma)) {
272 		struct resv_map *resv_map = vma_resv_map(vma);
273 
274 		down_read(&resv_map->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	} else if (__vma_private_lock(vma)) {
285 		struct resv_map *resv_map = vma_resv_map(vma);
286 
287 		up_read(&resv_map->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		down_write(&vma_lock->rw_sema);
297 	} else if (__vma_private_lock(vma)) {
298 		struct resv_map *resv_map = vma_resv_map(vma);
299 
300 		down_write(&resv_map->rw_sema);
301 	}
302 }
303 
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 	if (__vma_shareable_lock(vma)) {
307 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 		up_write(&vma_lock->rw_sema);
310 	} else if (__vma_private_lock(vma)) {
311 		struct resv_map *resv_map = vma_resv_map(vma);
312 
313 		up_write(&resv_map->rw_sema);
314 	}
315 }
316 
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319 
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		return down_write_trylock(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		return down_write_trylock(&resv_map->rw_sema);
328 	}
329 
330 	return 1;
331 }
332 
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 	if (__vma_shareable_lock(vma)) {
336 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337 
338 		lockdep_assert_held(&vma_lock->rw_sema);
339 	} else if (__vma_private_lock(vma)) {
340 		struct resv_map *resv_map = vma_resv_map(vma);
341 
342 		lockdep_assert_held(&resv_map->rw_sema);
343 	}
344 }
345 
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 			struct hugetlb_vma_lock, refs);
350 
351 	kfree(vma_lock);
352 }
353 
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 	struct vm_area_struct *vma = vma_lock->vma;
357 
358 	/*
359 	 * vma_lock structure may or not be released as a result of put,
360 	 * it certainly will no longer be attached to vma so clear pointer.
361 	 * Semaphore synchronizes access to vma_lock->vma field.
362 	 */
363 	vma_lock->vma = NULL;
364 	vma->vm_private_data = NULL;
365 	up_write(&vma_lock->rw_sema);
366 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368 
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 	if (__vma_shareable_lock(vma)) {
372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373 
374 		__hugetlb_vma_unlock_write_put(vma_lock);
375 	} else if (__vma_private_lock(vma)) {
376 		struct resv_map *resv_map = vma_resv_map(vma);
377 
378 		/* no free for anon vmas, but still need to unlock */
379 		up_write(&resv_map->rw_sema);
380 	}
381 }
382 
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 	/*
386 	 * Only present in sharable vmas.
387 	 */
388 	if (!vma || !__vma_shareable_lock(vma))
389 		return;
390 
391 	if (vma->vm_private_data) {
392 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393 
394 		down_write(&vma_lock->rw_sema);
395 		__hugetlb_vma_unlock_write_put(vma_lock);
396 	}
397 }
398 
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 	struct hugetlb_vma_lock *vma_lock;
402 
403 	/* Only establish in (flags) sharable vmas */
404 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 		return;
406 
407 	/* Should never get here with non-NULL vm_private_data */
408 	if (vma->vm_private_data)
409 		return;
410 
411 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 	if (!vma_lock) {
413 		/*
414 		 * If we can not allocate structure, then vma can not
415 		 * participate in pmd sharing.  This is only a possible
416 		 * performance enhancement and memory saving issue.
417 		 * However, the lock is also used to synchronize page
418 		 * faults with truncation.  If the lock is not present,
419 		 * unlikely races could leave pages in a file past i_size
420 		 * until the file is removed.  Warn in the unlikely case of
421 		 * allocation failure.
422 		 */
423 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 		return;
425 	}
426 
427 	kref_init(&vma_lock->refs);
428 	init_rwsem(&vma_lock->rw_sema);
429 	vma_lock->vma = vma;
430 	vma->vm_private_data = vma_lock;
431 }
432 
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 	struct file_region *nrg;
440 
441 	VM_BUG_ON(resv->region_cache_count <= 0);
442 
443 	resv->region_cache_count--;
444 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 	list_del(&nrg->link);
446 
447 	nrg->from = from;
448 	nrg->to = to;
449 
450 	return nrg;
451 }
452 
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 					      struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 	nrg->reservation_counter = rg->reservation_counter;
458 	nrg->css = rg->css;
459 	if (rg->css)
460 		css_get(rg->css);
461 #endif
462 }
463 
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 						struct hstate *h,
467 						struct resv_map *resv,
468 						struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 	if (h_cg) {
472 		nrg->reservation_counter =
473 			&h_cg->rsvd_hugepage[hstate_index(h)];
474 		nrg->css = &h_cg->css;
475 		/*
476 		 * The caller will hold exactly one h_cg->css reference for the
477 		 * whole contiguous reservation region. But this area might be
478 		 * scattered when there are already some file_regions reside in
479 		 * it. As a result, many file_regions may share only one css
480 		 * reference. In order to ensure that one file_region must hold
481 		 * exactly one h_cg->css reference, we should do css_get for
482 		 * each file_region and leave the reference held by caller
483 		 * untouched.
484 		 */
485 		css_get(&h_cg->css);
486 		if (!resv->pages_per_hpage)
487 			resv->pages_per_hpage = pages_per_huge_page(h);
488 		/* pages_per_hpage should be the same for all entries in
489 		 * a resv_map.
490 		 */
491 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 	} else {
493 		nrg->reservation_counter = NULL;
494 		nrg->css = NULL;
495 	}
496 #endif
497 }
498 
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 	if (rg->css)
503 		css_put(rg->css);
504 #endif
505 }
506 
507 static bool has_same_uncharge_info(struct file_region *rg,
508 				   struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 	return rg->reservation_counter == org->reservation_counter &&
512 	       rg->css == org->css;
513 
514 #else
515 	return true;
516 #endif
517 }
518 
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 	struct file_region *nrg, *prg;
522 
523 	prg = list_prev_entry(rg, link);
524 	if (&prg->link != &resv->regions && prg->to == rg->from &&
525 	    has_same_uncharge_info(prg, rg)) {
526 		prg->to = rg->to;
527 
528 		list_del(&rg->link);
529 		put_uncharge_info(rg);
530 		kfree(rg);
531 
532 		rg = prg;
533 	}
534 
535 	nrg = list_next_entry(rg, link);
536 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 	    has_same_uncharge_info(nrg, rg)) {
538 		nrg->from = rg->from;
539 
540 		list_del(&rg->link);
541 		put_uncharge_info(rg);
542 		kfree(rg);
543 	}
544 }
545 
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 		     long *regions_needed)
550 {
551 	struct file_region *nrg;
552 
553 	if (!regions_needed) {
554 		nrg = get_file_region_entry_from_cache(map, from, to);
555 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 		list_add(&nrg->link, rg);
557 		coalesce_file_region(map, nrg);
558 	} else
559 		*regions_needed += 1;
560 
561 	return to - from;
562 }
563 
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 				     struct hugetlb_cgroup *h_cg,
574 				     struct hstate *h, long *regions_needed)
575 {
576 	long add = 0;
577 	struct list_head *head = &resv->regions;
578 	long last_accounted_offset = f;
579 	struct file_region *iter, *trg = NULL;
580 	struct list_head *rg = NULL;
581 
582 	if (regions_needed)
583 		*regions_needed = 0;
584 
585 	/* In this loop, we essentially handle an entry for the range
586 	 * [last_accounted_offset, iter->from), at every iteration, with some
587 	 * bounds checking.
588 	 */
589 	list_for_each_entry_safe(iter, trg, head, link) {
590 		/* Skip irrelevant regions that start before our range. */
591 		if (iter->from < f) {
592 			/* If this region ends after the last accounted offset,
593 			 * then we need to update last_accounted_offset.
594 			 */
595 			if (iter->to > last_accounted_offset)
596 				last_accounted_offset = iter->to;
597 			continue;
598 		}
599 
600 		/* When we find a region that starts beyond our range, we've
601 		 * finished.
602 		 */
603 		if (iter->from >= t) {
604 			rg = iter->link.prev;
605 			break;
606 		}
607 
608 		/* Add an entry for last_accounted_offset -> iter->from, and
609 		 * update last_accounted_offset.
610 		 */
611 		if (iter->from > last_accounted_offset)
612 			add += hugetlb_resv_map_add(resv, iter->link.prev,
613 						    last_accounted_offset,
614 						    iter->from, h, h_cg,
615 						    regions_needed);
616 
617 		last_accounted_offset = iter->to;
618 	}
619 
620 	/* Handle the case where our range extends beyond
621 	 * last_accounted_offset.
622 	 */
623 	if (!rg)
624 		rg = head->prev;
625 	if (last_accounted_offset < t)
626 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 					    t, h, h_cg, regions_needed);
628 
629 	return add;
630 }
631 
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635 					int regions_needed)
636 	__must_hold(&resv->lock)
637 {
638 	LIST_HEAD(allocated_regions);
639 	int to_allocate = 0, i = 0;
640 	struct file_region *trg = NULL, *rg = NULL;
641 
642 	VM_BUG_ON(regions_needed < 0);
643 
644 	/*
645 	 * Check for sufficient descriptors in the cache to accommodate
646 	 * the number of in progress add operations plus regions_needed.
647 	 *
648 	 * This is a while loop because when we drop the lock, some other call
649 	 * to region_add or region_del may have consumed some region_entries,
650 	 * so we keep looping here until we finally have enough entries for
651 	 * (adds_in_progress + regions_needed).
652 	 */
653 	while (resv->region_cache_count <
654 	       (resv->adds_in_progress + regions_needed)) {
655 		to_allocate = resv->adds_in_progress + regions_needed -
656 			      resv->region_cache_count;
657 
658 		/* At this point, we should have enough entries in the cache
659 		 * for all the existing adds_in_progress. We should only be
660 		 * needing to allocate for regions_needed.
661 		 */
662 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663 
664 		spin_unlock(&resv->lock);
665 		for (i = 0; i < to_allocate; i++) {
666 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 			if (!trg)
668 				goto out_of_memory;
669 			list_add(&trg->link, &allocated_regions);
670 		}
671 
672 		spin_lock(&resv->lock);
673 
674 		list_splice(&allocated_regions, &resv->region_cache);
675 		resv->region_cache_count += to_allocate;
676 	}
677 
678 	return 0;
679 
680 out_of_memory:
681 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 		list_del(&rg->link);
683 		kfree(rg);
684 	}
685 	return -ENOMEM;
686 }
687 
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706 		       long in_regions_needed, struct hstate *h,
707 		       struct hugetlb_cgroup *h_cg)
708 {
709 	long add = 0, actual_regions_needed = 0;
710 
711 	spin_lock(&resv->lock);
712 retry:
713 
714 	/* Count how many regions are actually needed to execute this add. */
715 	add_reservation_in_range(resv, f, t, NULL, NULL,
716 				 &actual_regions_needed);
717 
718 	/*
719 	 * Check for sufficient descriptors in the cache to accommodate
720 	 * this add operation. Note that actual_regions_needed may be greater
721 	 * than in_regions_needed, as the resv_map may have been modified since
722 	 * the region_chg call. In this case, we need to make sure that we
723 	 * allocate extra entries, such that we have enough for all the
724 	 * existing adds_in_progress, plus the excess needed for this
725 	 * operation.
726 	 */
727 	if (actual_regions_needed > in_regions_needed &&
728 	    resv->region_cache_count <
729 		    resv->adds_in_progress +
730 			    (actual_regions_needed - in_regions_needed)) {
731 		/* region_add operation of range 1 should never need to
732 		 * allocate file_region entries.
733 		 */
734 		VM_BUG_ON(t - f <= 1);
735 
736 		if (allocate_file_region_entries(
737 			    resv, actual_regions_needed - in_regions_needed)) {
738 			return -ENOMEM;
739 		}
740 
741 		goto retry;
742 	}
743 
744 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745 
746 	resv->adds_in_progress -= in_regions_needed;
747 
748 	spin_unlock(&resv->lock);
749 	return add;
750 }
751 
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773 		       long *out_regions_needed)
774 {
775 	long chg = 0;
776 
777 	spin_lock(&resv->lock);
778 
779 	/* Count how many hugepages in this range are NOT represented. */
780 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 				       out_regions_needed);
782 
783 	if (*out_regions_needed == 0)
784 		*out_regions_needed = 1;
785 
786 	if (allocate_file_region_entries(resv, *out_regions_needed))
787 		return -ENOMEM;
788 
789 	resv->adds_in_progress += *out_regions_needed;
790 
791 	spin_unlock(&resv->lock);
792 	return chg;
793 }
794 
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809 			 long regions_needed)
810 {
811 	spin_lock(&resv->lock);
812 	VM_BUG_ON(!resv->region_cache_count);
813 	resv->adds_in_progress -= regions_needed;
814 	spin_unlock(&resv->lock);
815 }
816 
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 	struct list_head *head = &resv->regions;
834 	struct file_region *rg, *trg;
835 	struct file_region *nrg = NULL;
836 	long del = 0;
837 
838 retry:
839 	spin_lock(&resv->lock);
840 	list_for_each_entry_safe(rg, trg, head, link) {
841 		/*
842 		 * Skip regions before the range to be deleted.  file_region
843 		 * ranges are normally of the form [from, to).  However, there
844 		 * may be a "placeholder" entry in the map which is of the form
845 		 * (from, to) with from == to.  Check for placeholder entries
846 		 * at the beginning of the range to be deleted.
847 		 */
848 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 			continue;
850 
851 		if (rg->from >= t)
852 			break;
853 
854 		if (f > rg->from && t < rg->to) { /* Must split region */
855 			/*
856 			 * Check for an entry in the cache before dropping
857 			 * lock and attempting allocation.
858 			 */
859 			if (!nrg &&
860 			    resv->region_cache_count > resv->adds_in_progress) {
861 				nrg = list_first_entry(&resv->region_cache,
862 							struct file_region,
863 							link);
864 				list_del(&nrg->link);
865 				resv->region_cache_count--;
866 			}
867 
868 			if (!nrg) {
869 				spin_unlock(&resv->lock);
870 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 				if (!nrg)
872 					return -ENOMEM;
873 				goto retry;
874 			}
875 
876 			del += t - f;
877 			hugetlb_cgroup_uncharge_file_region(
878 				resv, rg, t - f, false);
879 
880 			/* New entry for end of split region */
881 			nrg->from = t;
882 			nrg->to = rg->to;
883 
884 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885 
886 			INIT_LIST_HEAD(&nrg->link);
887 
888 			/* Original entry is trimmed */
889 			rg->to = f;
890 
891 			list_add(&nrg->link, &rg->link);
892 			nrg = NULL;
893 			break;
894 		}
895 
896 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 			del += rg->to - rg->from;
898 			hugetlb_cgroup_uncharge_file_region(resv, rg,
899 							    rg->to - rg->from, true);
900 			list_del(&rg->link);
901 			kfree(rg);
902 			continue;
903 		}
904 
905 		if (f <= rg->from) {	/* Trim beginning of region */
906 			hugetlb_cgroup_uncharge_file_region(resv, rg,
907 							    t - rg->from, false);
908 
909 			del += t - rg->from;
910 			rg->from = t;
911 		} else {		/* Trim end of region */
912 			hugetlb_cgroup_uncharge_file_region(resv, rg,
913 							    rg->to - f, false);
914 
915 			del += rg->to - f;
916 			rg->to = f;
917 		}
918 	}
919 
920 	spin_unlock(&resv->lock);
921 	kfree(nrg);
922 	return del;
923 }
924 
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 	struct hugepage_subpool *spool = subpool_inode(inode);
937 	long rsv_adjust;
938 	bool reserved = false;
939 
940 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 	if (rsv_adjust > 0) {
942 		struct hstate *h = hstate_inode(inode);
943 
944 		if (!hugetlb_acct_memory(h, 1))
945 			reserved = true;
946 	} else if (!rsv_adjust) {
947 		reserved = true;
948 	}
949 
950 	if (!reserved)
951 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953 
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 	struct list_head *head = &resv->regions;
961 	struct file_region *rg;
962 	long chg = 0;
963 
964 	spin_lock(&resv->lock);
965 	/* Locate each segment we overlap with, and count that overlap. */
966 	list_for_each_entry(rg, head, link) {
967 		long seg_from;
968 		long seg_to;
969 
970 		if (rg->to <= f)
971 			continue;
972 		if (rg->from >= t)
973 			break;
974 
975 		seg_from = max(rg->from, f);
976 		seg_to = min(rg->to, t);
977 
978 		chg += seg_to - seg_from;
979 	}
980 	spin_unlock(&resv->lock);
981 
982 	return chg;
983 }
984 
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, in pagecache page units; huge pages here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 			struct vm_area_struct *vma, unsigned long address)
991 {
992 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 			(vma->vm_pgoff >> huge_page_order(h));
994 }
995 
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 				     unsigned long address)
998 {
999 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002 
1003 /**
1004  * vma_kernel_pagesize - Page size granularity for this VMA.
1005  * @vma: The user mapping.
1006  *
1007  * Folios in this VMA will be aligned to, and at least the size of the
1008  * number of bytes returned by this function.
1009  *
1010  * Return: The default size of the folios allocated when backing a VMA.
1011  */
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 	if (vma->vm_ops && vma->vm_ops->pagesize)
1015 		return vma->vm_ops->pagesize(vma);
1016 	return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019 
1020 /*
1021  * Return the page size being used by the MMU to back a VMA. In the majority
1022  * of cases, the page size used by the kernel matches the MMU size. On
1023  * architectures where it differs, an architecture-specific 'strong'
1024  * version of this symbol is required.
1025  */
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 	return vma_kernel_pagesize(vma);
1029 }
1030 
1031 /*
1032  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033  * bits of the reservation map pointer, which are always clear due to
1034  * alignment.
1035  */
1036 #define HPAGE_RESV_OWNER    (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039 
1040 /*
1041  * These helpers are used to track how many pages are reserved for
1042  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043  * is guaranteed to have their future faults succeed.
1044  *
1045  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046  * the reserve counters are updated with the hugetlb_lock held. It is safe
1047  * to reset the VMA at fork() time as it is not in use yet and there is no
1048  * chance of the global counters getting corrupted as a result of the values.
1049  *
1050  * The private mapping reservation is represented in a subtly different
1051  * manner to a shared mapping.  A shared mapping has a region map associated
1052  * with the underlying file, this region map represents the backing file
1053  * pages which have ever had a reservation assigned which this persists even
1054  * after the page is instantiated.  A private mapping has a region map
1055  * associated with the original mmap which is attached to all VMAs which
1056  * reference it, this region map represents those offsets which have consumed
1057  * reservation ie. where pages have been instantiated.
1058  */
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 	return (unsigned long)vma->vm_private_data;
1062 }
1063 
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 							unsigned long value)
1066 {
1067 	vma->vm_private_data = (void *)value;
1068 }
1069 
1070 static void
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 					  struct hugetlb_cgroup *h_cg,
1073 					  struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 	if (!h_cg || !h) {
1077 		resv_map->reservation_counter = NULL;
1078 		resv_map->pages_per_hpage = 0;
1079 		resv_map->css = NULL;
1080 	} else {
1081 		resv_map->reservation_counter =
1082 			&h_cg->rsvd_hugepage[hstate_index(h)];
1083 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 		resv_map->css = &h_cg->css;
1085 	}
1086 #endif
1087 }
1088 
1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093 
1094 	if (!resv_map || !rg) {
1095 		kfree(resv_map);
1096 		kfree(rg);
1097 		return NULL;
1098 	}
1099 
1100 	kref_init(&resv_map->refs);
1101 	spin_lock_init(&resv_map->lock);
1102 	INIT_LIST_HEAD(&resv_map->regions);
1103 	init_rwsem(&resv_map->rw_sema);
1104 
1105 	resv_map->adds_in_progress = 0;
1106 	/*
1107 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 	 * fields don't do cgroup accounting. On private mappings, these will be
1109 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 	 * reservations are to be un-charged from here.
1111 	 */
1112 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113 
1114 	INIT_LIST_HEAD(&resv_map->region_cache);
1115 	list_add(&rg->link, &resv_map->region_cache);
1116 	resv_map->region_cache_count = 1;
1117 
1118 	return resv_map;
1119 }
1120 
1121 void resv_map_release(struct kref *ref)
1122 {
1123 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 	struct list_head *head = &resv_map->region_cache;
1125 	struct file_region *rg, *trg;
1126 
1127 	/* Clear out any active regions before we release the map. */
1128 	region_del(resv_map, 0, LONG_MAX);
1129 
1130 	/* ... and any entries left in the cache */
1131 	list_for_each_entry_safe(rg, trg, head, link) {
1132 		list_del(&rg->link);
1133 		kfree(rg);
1134 	}
1135 
1136 	VM_BUG_ON(resv_map->adds_in_progress);
1137 
1138 	kfree(resv_map);
1139 }
1140 
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 	/*
1144 	 * At inode evict time, i_mapping may not point to the original
1145 	 * address space within the inode.  This original address space
1146 	 * contains the pointer to the resv_map.  So, always use the
1147 	 * address space embedded within the inode.
1148 	 * The VERY common case is inode->mapping == &inode->i_data but,
1149 	 * this may not be true for device special inodes.
1150 	 */
1151 	return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153 
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	if (vma->vm_flags & VM_MAYSHARE) {
1158 		struct address_space *mapping = vma->vm_file->f_mapping;
1159 		struct inode *inode = mapping->host;
1160 
1161 		return inode_resv_map(inode);
1162 
1163 	} else {
1164 		return (struct resv_map *)(get_vma_private_data(vma) &
1165 							~HPAGE_RESV_MASK);
1166 	}
1167 }
1168 
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173 
1174 	set_vma_private_data(vma, (unsigned long)map);
1175 }
1176 
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181 
1182 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184 
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188 
1189 	return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191 
1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194 	return !(vma->vm_flags & VM_MAYSHARE) &&
1195 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198 
1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202 	/*
1203 	 * Clear vm_private_data
1204 	 * - For shared mappings this is a per-vma semaphore that may be
1205 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1206 	 *   Before clearing, make sure pointer is not associated with vma
1207 	 *   as this will leak the structure.  This is the case when called
1208 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 	 *   been called to allocate a new structure.
1210 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 	 *   not apply to children.  Faults generated by the children are
1212 	 *   not guaranteed to succeed, even if read-only.
1213 	 */
1214 	if (vma->vm_flags & VM_MAYSHARE) {
1215 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216 
1217 		if (vma_lock && vma_lock->vma != vma)
1218 			vma->vm_private_data = NULL;
1219 	} else
1220 		vma->vm_private_data = NULL;
1221 }
1222 
1223 /*
1224  * Reset and decrement one ref on hugepage private reservation.
1225  * Called with mm->mmap_lock writer semaphore held.
1226  * This function should be only used by move_vma() and operate on
1227  * same sized vma. It should never come here with last ref on the
1228  * reservation.
1229  */
1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232 	/*
1233 	 * Clear the old hugetlb private page reservation.
1234 	 * It has already been transferred to new_vma.
1235 	 *
1236 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 	 * which copies vma into new_vma and unmaps vma. After the copy
1238 	 * operation both new_vma and vma share a reference to the resv_map
1239 	 * struct, and at that point vma is about to be unmapped. We don't
1240 	 * want to return the reservation to the pool at unmap of vma because
1241 	 * the reservation still lives on in new_vma, so simply decrement the
1242 	 * ref here and remove the resv_map reference from this vma.
1243 	 */
1244 	struct resv_map *reservations = vma_resv_map(vma);
1245 
1246 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 		kref_put(&reservations->refs, resv_map_release);
1249 	}
1250 
1251 	hugetlb_dup_vma_private(vma);
1252 }
1253 
1254 /* Returns true if the VMA has associated reserve pages */
1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257 	if (vma->vm_flags & VM_NORESERVE) {
1258 		/*
1259 		 * This address is already reserved by other process(chg == 0),
1260 		 * so, we should decrement reserved count. Without decrementing,
1261 		 * reserve count remains after releasing inode, because this
1262 		 * allocated page will go into page cache and is regarded as
1263 		 * coming from reserved pool in releasing step.  Currently, we
1264 		 * don't have any other solution to deal with this situation
1265 		 * properly, so add work-around here.
1266 		 */
1267 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268 			return true;
1269 		else
1270 			return false;
1271 	}
1272 
1273 	/* Shared mappings always use reserves */
1274 	if (vma->vm_flags & VM_MAYSHARE) {
1275 		/*
1276 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1277 		 * be a region map for all pages.  The only situation where
1278 		 * there is no region map is if a hole was punched via
1279 		 * fallocate.  In this case, there really are no reserves to
1280 		 * use.  This situation is indicated if chg != 0.
1281 		 */
1282 		if (chg)
1283 			return false;
1284 		else
1285 			return true;
1286 	}
1287 
1288 	/*
1289 	 * Only the process that called mmap() has reserves for
1290 	 * private mappings.
1291 	 */
1292 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293 		/*
1294 		 * Like the shared case above, a hole punch or truncate
1295 		 * could have been performed on the private mapping.
1296 		 * Examine the value of chg to determine if reserves
1297 		 * actually exist or were previously consumed.
1298 		 * Very Subtle - The value of chg comes from a previous
1299 		 * call to vma_needs_reserves().  The reserve map for
1300 		 * private mappings has different (opposite) semantics
1301 		 * than that of shared mappings.  vma_needs_reserves()
1302 		 * has already taken this difference in semantics into
1303 		 * account.  Therefore, the meaning of chg is the same
1304 		 * as in the shared case above.  Code could easily be
1305 		 * combined, but keeping it separate draws attention to
1306 		 * subtle differences.
1307 		 */
1308 		if (chg)
1309 			return false;
1310 		else
1311 			return true;
1312 	}
1313 
1314 	return false;
1315 }
1316 
1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319 	int nid = folio_nid(folio);
1320 
1321 	lockdep_assert_held(&hugetlb_lock);
1322 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323 
1324 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 	h->free_huge_pages++;
1326 	h->free_huge_pages_node[nid]++;
1327 	folio_set_hugetlb_freed(folio);
1328 }
1329 
1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331 								int nid)
1332 {
1333 	struct folio *folio;
1334 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335 
1336 	lockdep_assert_held(&hugetlb_lock);
1337 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 		if (pin && !folio_is_longterm_pinnable(folio))
1339 			continue;
1340 
1341 		if (folio_test_hwpoison(folio))
1342 			continue;
1343 
1344 		list_move(&folio->lru, &h->hugepage_activelist);
1345 		folio_ref_unfreeze(folio, 1);
1346 		folio_clear_hugetlb_freed(folio);
1347 		h->free_huge_pages--;
1348 		h->free_huge_pages_node[nid]--;
1349 		return folio;
1350 	}
1351 
1352 	return NULL;
1353 }
1354 
1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 							int nid, nodemask_t *nmask)
1357 {
1358 	unsigned int cpuset_mems_cookie;
1359 	struct zonelist *zonelist;
1360 	struct zone *zone;
1361 	struct zoneref *z;
1362 	int node = NUMA_NO_NODE;
1363 
1364 	zonelist = node_zonelist(nid, gfp_mask);
1365 
1366 retry_cpuset:
1367 	cpuset_mems_cookie = read_mems_allowed_begin();
1368 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 		struct folio *folio;
1370 
1371 		if (!cpuset_zone_allowed(zone, gfp_mask))
1372 			continue;
1373 		/*
1374 		 * no need to ask again on the same node. Pool is node rather than
1375 		 * zone aware
1376 		 */
1377 		if (zone_to_nid(zone) == node)
1378 			continue;
1379 		node = zone_to_nid(zone);
1380 
1381 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1382 		if (folio)
1383 			return folio;
1384 	}
1385 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386 		goto retry_cpuset;
1387 
1388 	return NULL;
1389 }
1390 
1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393 	return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395 
1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 				struct vm_area_struct *vma,
1398 				unsigned long address, int avoid_reserve,
1399 				long chg)
1400 {
1401 	struct folio *folio = NULL;
1402 	struct mempolicy *mpol;
1403 	gfp_t gfp_mask;
1404 	nodemask_t *nodemask;
1405 	int nid;
1406 
1407 	/*
1408 	 * A child process with MAP_PRIVATE mappings created by their parent
1409 	 * have no page reserves. This check ensures that reservations are
1410 	 * not "stolen". The child may still get SIGKILLed
1411 	 */
1412 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 		goto err;
1414 
1415 	/* If reserves cannot be used, ensure enough pages are in the pool */
1416 	if (avoid_reserve && !available_huge_pages(h))
1417 		goto err;
1418 
1419 	gfp_mask = htlb_alloc_mask(h);
1420 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421 
1422 	if (mpol_is_preferred_many(mpol)) {
1423 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 							nid, nodemask);
1425 
1426 		/* Fallback to all nodes if page==NULL */
1427 		nodemask = NULL;
1428 	}
1429 
1430 	if (!folio)
1431 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 							nid, nodemask);
1433 
1434 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 		folio_set_hugetlb_restore_reserve(folio);
1436 		h->resv_huge_pages--;
1437 	}
1438 
1439 	mpol_cond_put(mpol);
1440 	return folio;
1441 
1442 err:
1443 	return NULL;
1444 }
1445 
1446 /*
1447  * common helper functions for hstate_next_node_to_{alloc|free}.
1448  * We may have allocated or freed a huge page based on a different
1449  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450  * be outside of *nodes_allowed.  Ensure that we use an allowed
1451  * node for alloc or free.
1452  */
1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455 	nid = next_node_in(nid, *nodes_allowed);
1456 	VM_BUG_ON(nid >= MAX_NUMNODES);
1457 
1458 	return nid;
1459 }
1460 
1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463 	if (!node_isset(nid, *nodes_allowed))
1464 		nid = next_node_allowed(nid, nodes_allowed);
1465 	return nid;
1466 }
1467 
1468 /*
1469  * returns the previously saved node ["this node"] from which to
1470  * allocate a persistent huge page for the pool and advance the
1471  * next node from which to allocate, handling wrap at end of node
1472  * mask.
1473  */
1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 					nodemask_t *nodes_allowed)
1476 {
1477 	int nid;
1478 
1479 	VM_BUG_ON(!nodes_allowed);
1480 
1481 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483 
1484 	return nid;
1485 }
1486 
1487 /*
1488  * helper for remove_pool_huge_page() - return the previously saved
1489  * node ["this node"] from which to free a huge page.  Advance the
1490  * next node id whether or not we find a free huge page to free so
1491  * that the next attempt to free addresses the next node.
1492  */
1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495 	int nid;
1496 
1497 	VM_BUG_ON(!nodes_allowed);
1498 
1499 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501 
1502 	return nid;
1503 }
1504 
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1512 	for (nr_nodes = nodes_weight(*mask);				\
1513 		nr_nodes > 0 &&						\
1514 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1515 		nr_nodes--)
1516 
1517 /* used to demote non-gigantic_huge pages as well */
1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 					unsigned int order, bool demote)
1520 {
1521 	int i;
1522 	int nr_pages = 1 << order;
1523 	struct page *p;
1524 
1525 	atomic_set(&folio->_entire_mapcount, 0);
1526 	atomic_set(&folio->_nr_pages_mapped, 0);
1527 	atomic_set(&folio->_pincount, 0);
1528 
1529 	for (i = 1; i < nr_pages; i++) {
1530 		p = folio_page(folio, i);
1531 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532 		p->mapping = NULL;
1533 		clear_compound_head(p);
1534 		if (!demote)
1535 			set_page_refcounted(p);
1536 	}
1537 
1538 	__folio_clear_head(folio);
1539 }
1540 
1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 					unsigned int order)
1543 {
1544 	__destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546 
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 					unsigned int order)
1550 {
1551 	__destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553 
1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556 	/*
1557 	 * If the page isn't allocated using the cma allocator,
1558 	 * cma_release() returns false.
1559 	 */
1560 #ifdef CONFIG_CMA
1561 	int nid = folio_nid(folio);
1562 
1563 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564 		return;
1565 #endif
1566 
1567 	free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569 
1570 #ifdef CONFIG_CONTIG_ALLOC
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 		int nid, nodemask_t *nodemask)
1573 {
1574 	struct page *page;
1575 	unsigned long nr_pages = pages_per_huge_page(h);
1576 	if (nid == NUMA_NO_NODE)
1577 		nid = numa_mem_id();
1578 
1579 #ifdef CONFIG_CMA
1580 	{
1581 		int node;
1582 
1583 		if (hugetlb_cma[nid]) {
1584 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 					huge_page_order(h), true);
1586 			if (page)
1587 				return page_folio(page);
1588 		}
1589 
1590 		if (!(gfp_mask & __GFP_THISNODE)) {
1591 			for_each_node_mask(node, *nodemask) {
1592 				if (node == nid || !hugetlb_cma[node])
1593 					continue;
1594 
1595 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 						huge_page_order(h), true);
1597 				if (page)
1598 					return page_folio(page);
1599 			}
1600 		}
1601 	}
1602 #endif
1603 
1604 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 	return page ? page_folio(page) : NULL;
1606 }
1607 
1608 #else /* !CONFIG_CONTIG_ALLOC */
1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 					int nid, nodemask_t *nodemask)
1611 {
1612 	return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615 
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 					int nid, nodemask_t *nodemask)
1619 {
1620 	return NULL;
1621 }
1622 static inline void free_gigantic_folio(struct folio *folio,
1623 						unsigned int order) { }
1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 						unsigned int order) { }
1626 #endif
1627 
1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 						struct folio *folio)
1630 {
1631 	lockdep_assert_held(&hugetlb_lock);
1632 
1633 	folio_clear_hugetlb(folio);
1634 }
1635 
1636 /*
1637  * Remove hugetlb folio from lists.
1638  * If vmemmap exists for the folio, update dtor so that the folio appears
1639  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1640  * to update dtor.
1641  *
1642  * A reference is held on the folio, except in the case of demote.
1643  *
1644  * Must be called with hugetlb lock held.
1645  */
1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 							bool adjust_surplus,
1648 							bool demote)
1649 {
1650 	int nid = folio_nid(folio);
1651 
1652 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654 
1655 	lockdep_assert_held(&hugetlb_lock);
1656 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 		return;
1658 
1659 	list_del(&folio->lru);
1660 
1661 	if (folio_test_hugetlb_freed(folio)) {
1662 		h->free_huge_pages--;
1663 		h->free_huge_pages_node[nid]--;
1664 	}
1665 	if (adjust_surplus) {
1666 		h->surplus_huge_pages--;
1667 		h->surplus_huge_pages_node[nid]--;
1668 	}
1669 
1670 	/*
1671 	 * We can only clear the hugetlb destructor after allocating vmemmap
1672 	 * pages.  Otherwise, someone (memory error handling) may try to write
1673 	 * to tail struct pages.
1674 	 */
1675 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 		__clear_hugetlb_destructor(h, folio);
1677 
1678 	 /*
1679 	  * In the case of demote we do not ref count the page as it will soon
1680 	  * be turned into a page of smaller size.
1681 	 */
1682 	if (!demote)
1683 		folio_ref_unfreeze(folio, 1);
1684 
1685 	h->nr_huge_pages--;
1686 	h->nr_huge_pages_node[nid]--;
1687 }
1688 
1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 							bool adjust_surplus)
1691 {
1692 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694 
1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 							bool adjust_surplus)
1697 {
1698 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700 
1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 			     bool adjust_surplus)
1703 {
1704 	int zeroed;
1705 	int nid = folio_nid(folio);
1706 
1707 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708 
1709 	lockdep_assert_held(&hugetlb_lock);
1710 
1711 	INIT_LIST_HEAD(&folio->lru);
1712 	h->nr_huge_pages++;
1713 	h->nr_huge_pages_node[nid]++;
1714 
1715 	if (adjust_surplus) {
1716 		h->surplus_huge_pages++;
1717 		h->surplus_huge_pages_node[nid]++;
1718 	}
1719 
1720 	folio_set_hugetlb(folio);
1721 	folio_change_private(folio, NULL);
1722 	/*
1723 	 * We have to set hugetlb_vmemmap_optimized again as above
1724 	 * folio_change_private(folio, NULL) cleared it.
1725 	 */
1726 	folio_set_hugetlb_vmemmap_optimized(folio);
1727 
1728 	/*
1729 	 * This folio is about to be managed by the hugetlb allocator and
1730 	 * should have no users.  Drop our reference, and check for others
1731 	 * just in case.
1732 	 */
1733 	zeroed = folio_put_testzero(folio);
1734 	if (unlikely(!zeroed))
1735 		/*
1736 		 * It is VERY unlikely soneone else has taken a ref
1737 		 * on the folio.  In this case, we simply return as
1738 		 * free_huge_folio() will be called when this other ref
1739 		 * is dropped.
1740 		 */
1741 		return;
1742 
1743 	arch_clear_hugepage_flags(&folio->page);
1744 	enqueue_hugetlb_folio(h, folio);
1745 }
1746 
1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 						struct folio *folio)
1749 {
1750 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1751 
1752 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1753 		return;
1754 
1755 	/*
1756 	 * If we don't know which subpages are hwpoisoned, we can't free
1757 	 * the hugepage, so it's leaked intentionally.
1758 	 */
1759 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1760 		return;
1761 
1762 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1763 		spin_lock_irq(&hugetlb_lock);
1764 		/*
1765 		 * If we cannot allocate vmemmap pages, just refuse to free the
1766 		 * page and put the page back on the hugetlb free list and treat
1767 		 * as a surplus page.
1768 		 */
1769 		add_hugetlb_folio(h, folio, true);
1770 		spin_unlock_irq(&hugetlb_lock);
1771 		return;
1772 	}
1773 
1774 	/*
1775 	 * Move PageHWPoison flag from head page to the raw error pages,
1776 	 * which makes any healthy subpages reusable.
1777 	 */
1778 	if (unlikely(folio_test_hwpoison(folio)))
1779 		folio_clear_hugetlb_hwpoison(folio);
1780 
1781 	/*
1782 	 * If vmemmap pages were allocated above, then we need to clear the
1783 	 * hugetlb destructor under the hugetlb lock.
1784 	 */
1785 	if (clear_dtor) {
1786 		spin_lock_irq(&hugetlb_lock);
1787 		__clear_hugetlb_destructor(h, folio);
1788 		spin_unlock_irq(&hugetlb_lock);
1789 	}
1790 
1791 	/*
1792 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1793 	 * need to be given back to CMA in free_gigantic_folio.
1794 	 */
1795 	if (hstate_is_gigantic(h) ||
1796 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1797 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1798 		free_gigantic_folio(folio, huge_page_order(h));
1799 	} else {
1800 		__free_pages(&folio->page, huge_page_order(h));
1801 	}
1802 }
1803 
1804 /*
1805  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1806  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1807  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1808  * the vmemmap pages.
1809  *
1810  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1811  * freed and frees them one-by-one. As the page->mapping pointer is going
1812  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1813  * structure of a lockless linked list of huge pages to be freed.
1814  */
1815 static LLIST_HEAD(hpage_freelist);
1816 
1817 static void free_hpage_workfn(struct work_struct *work)
1818 {
1819 	struct llist_node *node;
1820 
1821 	node = llist_del_all(&hpage_freelist);
1822 
1823 	while (node) {
1824 		struct page *page;
1825 		struct hstate *h;
1826 
1827 		page = container_of((struct address_space **)node,
1828 				     struct page, mapping);
1829 		node = node->next;
1830 		page->mapping = NULL;
1831 		/*
1832 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1833 		 * folio_hstate() is going to trigger because a previous call to
1834 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1835 		 * not use folio_hstate() directly.
1836 		 */
1837 		h = size_to_hstate(page_size(page));
1838 
1839 		__update_and_free_hugetlb_folio(h, page_folio(page));
1840 
1841 		cond_resched();
1842 	}
1843 }
1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1845 
1846 static inline void flush_free_hpage_work(struct hstate *h)
1847 {
1848 	if (hugetlb_vmemmap_optimizable(h))
1849 		flush_work(&free_hpage_work);
1850 }
1851 
1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1853 				 bool atomic)
1854 {
1855 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1856 		__update_and_free_hugetlb_folio(h, folio);
1857 		return;
1858 	}
1859 
1860 	/*
1861 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1862 	 *
1863 	 * Only call schedule_work() if hpage_freelist is previously
1864 	 * empty. Otherwise, schedule_work() had been called but the workfn
1865 	 * hasn't retrieved the list yet.
1866 	 */
1867 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1868 		schedule_work(&free_hpage_work);
1869 }
1870 
1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1872 {
1873 	struct page *page, *t_page;
1874 	struct folio *folio;
1875 
1876 	list_for_each_entry_safe(page, t_page, list, lru) {
1877 		folio = page_folio(page);
1878 		update_and_free_hugetlb_folio(h, folio, false);
1879 		cond_resched();
1880 	}
1881 }
1882 
1883 struct hstate *size_to_hstate(unsigned long size)
1884 {
1885 	struct hstate *h;
1886 
1887 	for_each_hstate(h) {
1888 		if (huge_page_size(h) == size)
1889 			return h;
1890 	}
1891 	return NULL;
1892 }
1893 
1894 void free_huge_folio(struct folio *folio)
1895 {
1896 	/*
1897 	 * Can't pass hstate in here because it is called from the
1898 	 * compound page destructor.
1899 	 */
1900 	struct hstate *h = folio_hstate(folio);
1901 	int nid = folio_nid(folio);
1902 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1903 	bool restore_reserve;
1904 	unsigned long flags;
1905 
1906 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1907 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1908 
1909 	hugetlb_set_folio_subpool(folio, NULL);
1910 	if (folio_test_anon(folio))
1911 		__ClearPageAnonExclusive(&folio->page);
1912 	folio->mapping = NULL;
1913 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1914 	folio_clear_hugetlb_restore_reserve(folio);
1915 
1916 	/*
1917 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1918 	 * reservation.  If the page was associated with a subpool, there
1919 	 * would have been a page reserved in the subpool before allocation
1920 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1921 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1922 	 * remove the reserved page from the subpool.
1923 	 */
1924 	if (!restore_reserve) {
1925 		/*
1926 		 * A return code of zero implies that the subpool will be
1927 		 * under its minimum size if the reservation is not restored
1928 		 * after page is free.  Therefore, force restore_reserve
1929 		 * operation.
1930 		 */
1931 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1932 			restore_reserve = true;
1933 	}
1934 
1935 	spin_lock_irqsave(&hugetlb_lock, flags);
1936 	folio_clear_hugetlb_migratable(folio);
1937 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1938 				     pages_per_huge_page(h), folio);
1939 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1940 					  pages_per_huge_page(h), folio);
1941 	if (restore_reserve)
1942 		h->resv_huge_pages++;
1943 
1944 	if (folio_test_hugetlb_temporary(folio)) {
1945 		remove_hugetlb_folio(h, folio, false);
1946 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1947 		update_and_free_hugetlb_folio(h, folio, true);
1948 	} else if (h->surplus_huge_pages_node[nid]) {
1949 		/* remove the page from active list */
1950 		remove_hugetlb_folio(h, folio, true);
1951 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1952 		update_and_free_hugetlb_folio(h, folio, true);
1953 	} else {
1954 		arch_clear_hugepage_flags(&folio->page);
1955 		enqueue_hugetlb_folio(h, folio);
1956 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1957 	}
1958 }
1959 
1960 /*
1961  * Must be called with the hugetlb lock held
1962  */
1963 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1964 {
1965 	lockdep_assert_held(&hugetlb_lock);
1966 	h->nr_huge_pages++;
1967 	h->nr_huge_pages_node[nid]++;
1968 }
1969 
1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1971 {
1972 	hugetlb_vmemmap_optimize(h, &folio->page);
1973 	INIT_LIST_HEAD(&folio->lru);
1974 	folio_set_hugetlb(folio);
1975 	hugetlb_set_folio_subpool(folio, NULL);
1976 	set_hugetlb_cgroup(folio, NULL);
1977 	set_hugetlb_cgroup_rsvd(folio, NULL);
1978 }
1979 
1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1981 {
1982 	__prep_new_hugetlb_folio(h, folio);
1983 	spin_lock_irq(&hugetlb_lock);
1984 	__prep_account_new_huge_page(h, nid);
1985 	spin_unlock_irq(&hugetlb_lock);
1986 }
1987 
1988 static bool __prep_compound_gigantic_folio(struct folio *folio,
1989 					unsigned int order, bool demote)
1990 {
1991 	int i, j;
1992 	int nr_pages = 1 << order;
1993 	struct page *p;
1994 
1995 	__folio_clear_reserved(folio);
1996 	for (i = 0; i < nr_pages; i++) {
1997 		p = folio_page(folio, i);
1998 
1999 		/*
2000 		 * For gigantic hugepages allocated through bootmem at
2001 		 * boot, it's safer to be consistent with the not-gigantic
2002 		 * hugepages and clear the PG_reserved bit from all tail pages
2003 		 * too.  Otherwise drivers using get_user_pages() to access tail
2004 		 * pages may get the reference counting wrong if they see
2005 		 * PG_reserved set on a tail page (despite the head page not
2006 		 * having PG_reserved set).  Enforcing this consistency between
2007 		 * head and tail pages allows drivers to optimize away a check
2008 		 * on the head page when they need know if put_page() is needed
2009 		 * after get_user_pages().
2010 		 */
2011 		if (i != 0)	/* head page cleared above */
2012 			__ClearPageReserved(p);
2013 		/*
2014 		 * Subtle and very unlikely
2015 		 *
2016 		 * Gigantic 'page allocators' such as memblock or cma will
2017 		 * return a set of pages with each page ref counted.  We need
2018 		 * to turn this set of pages into a compound page with tail
2019 		 * page ref counts set to zero.  Code such as speculative page
2020 		 * cache adding could take a ref on a 'to be' tail page.
2021 		 * We need to respect any increased ref count, and only set
2022 		 * the ref count to zero if count is currently 1.  If count
2023 		 * is not 1, we return an error.  An error return indicates
2024 		 * the set of pages can not be converted to a gigantic page.
2025 		 * The caller who allocated the pages should then discard the
2026 		 * pages using the appropriate free interface.
2027 		 *
2028 		 * In the case of demote, the ref count will be zero.
2029 		 */
2030 		if (!demote) {
2031 			if (!page_ref_freeze(p, 1)) {
2032 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2033 				goto out_error;
2034 			}
2035 		} else {
2036 			VM_BUG_ON_PAGE(page_count(p), p);
2037 		}
2038 		if (i != 0)
2039 			set_compound_head(p, &folio->page);
2040 	}
2041 	__folio_set_head(folio);
2042 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2043 	folio_set_order(folio, order);
2044 	atomic_set(&folio->_entire_mapcount, -1);
2045 	atomic_set(&folio->_nr_pages_mapped, 0);
2046 	atomic_set(&folio->_pincount, 0);
2047 	return true;
2048 
2049 out_error:
2050 	/* undo page modifications made above */
2051 	for (j = 0; j < i; j++) {
2052 		p = folio_page(folio, j);
2053 		if (j != 0)
2054 			clear_compound_head(p);
2055 		set_page_refcounted(p);
2056 	}
2057 	/* need to clear PG_reserved on remaining tail pages  */
2058 	for (; j < nr_pages; j++) {
2059 		p = folio_page(folio, j);
2060 		__ClearPageReserved(p);
2061 	}
2062 	return false;
2063 }
2064 
2065 static bool prep_compound_gigantic_folio(struct folio *folio,
2066 							unsigned int order)
2067 {
2068 	return __prep_compound_gigantic_folio(folio, order, false);
2069 }
2070 
2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2072 							unsigned int order)
2073 {
2074 	return __prep_compound_gigantic_folio(folio, order, true);
2075 }
2076 
2077 /*
2078  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2079  * transparent huge pages.  See the PageTransHuge() documentation for more
2080  * details.
2081  */
2082 int PageHuge(struct page *page)
2083 {
2084 	struct folio *folio;
2085 
2086 	if (!PageCompound(page))
2087 		return 0;
2088 	folio = page_folio(page);
2089 	return folio_test_hugetlb(folio);
2090 }
2091 EXPORT_SYMBOL_GPL(PageHuge);
2092 
2093 /*
2094  * Find and lock address space (mapping) in write mode.
2095  *
2096  * Upon entry, the page is locked which means that page_mapping() is
2097  * stable.  Due to locking order, we can only trylock_write.  If we can
2098  * not get the lock, simply return NULL to caller.
2099  */
2100 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2101 {
2102 	struct address_space *mapping = page_mapping(hpage);
2103 
2104 	if (!mapping)
2105 		return mapping;
2106 
2107 	if (i_mmap_trylock_write(mapping))
2108 		return mapping;
2109 
2110 	return NULL;
2111 }
2112 
2113 pgoff_t hugetlb_basepage_index(struct page *page)
2114 {
2115 	struct page *page_head = compound_head(page);
2116 	pgoff_t index = page_index(page_head);
2117 	unsigned long compound_idx;
2118 
2119 	if (compound_order(page_head) > MAX_ORDER)
2120 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2121 	else
2122 		compound_idx = page - page_head;
2123 
2124 	return (index << compound_order(page_head)) + compound_idx;
2125 }
2126 
2127 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2128 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2129 		nodemask_t *node_alloc_noretry)
2130 {
2131 	int order = huge_page_order(h);
2132 	struct page *page;
2133 	bool alloc_try_hard = true;
2134 	bool retry = true;
2135 
2136 	/*
2137 	 * By default we always try hard to allocate the page with
2138 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2139 	 * a loop (to adjust global huge page counts) and previous allocation
2140 	 * failed, do not continue to try hard on the same node.  Use the
2141 	 * node_alloc_noretry bitmap to manage this state information.
2142 	 */
2143 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2144 		alloc_try_hard = false;
2145 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2146 	if (alloc_try_hard)
2147 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2148 	if (nid == NUMA_NO_NODE)
2149 		nid = numa_mem_id();
2150 retry:
2151 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2152 
2153 	/* Freeze head page */
2154 	if (page && !page_ref_freeze(page, 1)) {
2155 		__free_pages(page, order);
2156 		if (retry) {	/* retry once */
2157 			retry = false;
2158 			goto retry;
2159 		}
2160 		/* WOW!  twice in a row. */
2161 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2162 		page = NULL;
2163 	}
2164 
2165 	/*
2166 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2167 	 * indicates an overall state change.  Clear bit so that we resume
2168 	 * normal 'try hard' allocations.
2169 	 */
2170 	if (node_alloc_noretry && page && !alloc_try_hard)
2171 		node_clear(nid, *node_alloc_noretry);
2172 
2173 	/*
2174 	 * If we tried hard to get a page but failed, set bit so that
2175 	 * subsequent attempts will not try as hard until there is an
2176 	 * overall state change.
2177 	 */
2178 	if (node_alloc_noretry && !page && alloc_try_hard)
2179 		node_set(nid, *node_alloc_noretry);
2180 
2181 	if (!page) {
2182 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2183 		return NULL;
2184 	}
2185 
2186 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2187 	return page_folio(page);
2188 }
2189 
2190 /*
2191  * Common helper to allocate a fresh hugetlb page. All specific allocators
2192  * should use this function to get new hugetlb pages
2193  *
2194  * Note that returned page is 'frozen':  ref count of head page and all tail
2195  * pages is zero.
2196  */
2197 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2198 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199 		nodemask_t *node_alloc_noretry)
2200 {
2201 	struct folio *folio;
2202 	bool retry = false;
2203 
2204 retry:
2205 	if (hstate_is_gigantic(h))
2206 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2207 	else
2208 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2209 				nid, nmask, node_alloc_noretry);
2210 	if (!folio)
2211 		return NULL;
2212 	if (hstate_is_gigantic(h)) {
2213 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2214 			/*
2215 			 * Rare failure to convert pages to compound page.
2216 			 * Free pages and try again - ONCE!
2217 			 */
2218 			free_gigantic_folio(folio, huge_page_order(h));
2219 			if (!retry) {
2220 				retry = true;
2221 				goto retry;
2222 			}
2223 			return NULL;
2224 		}
2225 	}
2226 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2227 
2228 	return folio;
2229 }
2230 
2231 /*
2232  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2233  * manner.
2234  */
2235 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2236 				nodemask_t *node_alloc_noretry)
2237 {
2238 	struct folio *folio;
2239 	int nr_nodes, node;
2240 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2241 
2242 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2243 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2244 					nodes_allowed, node_alloc_noretry);
2245 		if (folio) {
2246 			free_huge_folio(folio); /* free it into the hugepage allocator */
2247 			return 1;
2248 		}
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Remove huge page from pool from next node to free.  Attempt to keep
2256  * persistent huge pages more or less balanced over allowed nodes.
2257  * This routine only 'removes' the hugetlb page.  The caller must make
2258  * an additional call to free the page to low level allocators.
2259  * Called with hugetlb_lock locked.
2260  */
2261 static struct page *remove_pool_huge_page(struct hstate *h,
2262 						nodemask_t *nodes_allowed,
2263 						 bool acct_surplus)
2264 {
2265 	int nr_nodes, node;
2266 	struct page *page = NULL;
2267 	struct folio *folio;
2268 
2269 	lockdep_assert_held(&hugetlb_lock);
2270 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271 		/*
2272 		 * If we're returning unused surplus pages, only examine
2273 		 * nodes with surplus pages.
2274 		 */
2275 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2276 		    !list_empty(&h->hugepage_freelists[node])) {
2277 			page = list_entry(h->hugepage_freelists[node].next,
2278 					  struct page, lru);
2279 			folio = page_folio(page);
2280 			remove_hugetlb_folio(h, folio, acct_surplus);
2281 			break;
2282 		}
2283 	}
2284 
2285 	return page;
2286 }
2287 
2288 /*
2289  * Dissolve a given free hugepage into free buddy pages. This function does
2290  * nothing for in-use hugepages and non-hugepages.
2291  * This function returns values like below:
2292  *
2293  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2294  *           when the system is under memory pressure and the feature of
2295  *           freeing unused vmemmap pages associated with each hugetlb page
2296  *           is enabled.
2297  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2298  *           (allocated or reserved.)
2299  *       0:  successfully dissolved free hugepages or the page is not a
2300  *           hugepage (considered as already dissolved)
2301  */
2302 int dissolve_free_huge_page(struct page *page)
2303 {
2304 	int rc = -EBUSY;
2305 	struct folio *folio = page_folio(page);
2306 
2307 retry:
2308 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2309 	if (!folio_test_hugetlb(folio))
2310 		return 0;
2311 
2312 	spin_lock_irq(&hugetlb_lock);
2313 	if (!folio_test_hugetlb(folio)) {
2314 		rc = 0;
2315 		goto out;
2316 	}
2317 
2318 	if (!folio_ref_count(folio)) {
2319 		struct hstate *h = folio_hstate(folio);
2320 		if (!available_huge_pages(h))
2321 			goto out;
2322 
2323 		/*
2324 		 * We should make sure that the page is already on the free list
2325 		 * when it is dissolved.
2326 		 */
2327 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2328 			spin_unlock_irq(&hugetlb_lock);
2329 			cond_resched();
2330 
2331 			/*
2332 			 * Theoretically, we should return -EBUSY when we
2333 			 * encounter this race. In fact, we have a chance
2334 			 * to successfully dissolve the page if we do a
2335 			 * retry. Because the race window is quite small.
2336 			 * If we seize this opportunity, it is an optimization
2337 			 * for increasing the success rate of dissolving page.
2338 			 */
2339 			goto retry;
2340 		}
2341 
2342 		remove_hugetlb_folio(h, folio, false);
2343 		h->max_huge_pages--;
2344 		spin_unlock_irq(&hugetlb_lock);
2345 
2346 		/*
2347 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2348 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2349 		 * free the page if it can not allocate required vmemmap.  We
2350 		 * need to adjust max_huge_pages if the page is not freed.
2351 		 * Attempt to allocate vmemmmap here so that we can take
2352 		 * appropriate action on failure.
2353 		 */
2354 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2355 		if (!rc) {
2356 			update_and_free_hugetlb_folio(h, folio, false);
2357 		} else {
2358 			spin_lock_irq(&hugetlb_lock);
2359 			add_hugetlb_folio(h, folio, false);
2360 			h->max_huge_pages++;
2361 			spin_unlock_irq(&hugetlb_lock);
2362 		}
2363 
2364 		return rc;
2365 	}
2366 out:
2367 	spin_unlock_irq(&hugetlb_lock);
2368 	return rc;
2369 }
2370 
2371 /*
2372  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2373  * make specified memory blocks removable from the system.
2374  * Note that this will dissolve a free gigantic hugepage completely, if any
2375  * part of it lies within the given range.
2376  * Also note that if dissolve_free_huge_page() returns with an error, all
2377  * free hugepages that were dissolved before that error are lost.
2378  */
2379 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2380 {
2381 	unsigned long pfn;
2382 	struct page *page;
2383 	int rc = 0;
2384 	unsigned int order;
2385 	struct hstate *h;
2386 
2387 	if (!hugepages_supported())
2388 		return rc;
2389 
2390 	order = huge_page_order(&default_hstate);
2391 	for_each_hstate(h)
2392 		order = min(order, huge_page_order(h));
2393 
2394 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2395 		page = pfn_to_page(pfn);
2396 		rc = dissolve_free_huge_page(page);
2397 		if (rc)
2398 			break;
2399 	}
2400 
2401 	return rc;
2402 }
2403 
2404 /*
2405  * Allocates a fresh surplus page from the page allocator.
2406  */
2407 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2408 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2409 {
2410 	struct folio *folio = NULL;
2411 
2412 	if (hstate_is_gigantic(h))
2413 		return NULL;
2414 
2415 	spin_lock_irq(&hugetlb_lock);
2416 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2417 		goto out_unlock;
2418 	spin_unlock_irq(&hugetlb_lock);
2419 
2420 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2421 	if (!folio)
2422 		return NULL;
2423 
2424 	spin_lock_irq(&hugetlb_lock);
2425 	/*
2426 	 * We could have raced with the pool size change.
2427 	 * Double check that and simply deallocate the new page
2428 	 * if we would end up overcommiting the surpluses. Abuse
2429 	 * temporary page to workaround the nasty free_huge_folio
2430 	 * codeflow
2431 	 */
2432 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2433 		folio_set_hugetlb_temporary(folio);
2434 		spin_unlock_irq(&hugetlb_lock);
2435 		free_huge_folio(folio);
2436 		return NULL;
2437 	}
2438 
2439 	h->surplus_huge_pages++;
2440 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2441 
2442 out_unlock:
2443 	spin_unlock_irq(&hugetlb_lock);
2444 
2445 	return folio;
2446 }
2447 
2448 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2449 				     int nid, nodemask_t *nmask)
2450 {
2451 	struct folio *folio;
2452 
2453 	if (hstate_is_gigantic(h))
2454 		return NULL;
2455 
2456 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2457 	if (!folio)
2458 		return NULL;
2459 
2460 	/* fresh huge pages are frozen */
2461 	folio_ref_unfreeze(folio, 1);
2462 	/*
2463 	 * We do not account these pages as surplus because they are only
2464 	 * temporary and will be released properly on the last reference
2465 	 */
2466 	folio_set_hugetlb_temporary(folio);
2467 
2468 	return folio;
2469 }
2470 
2471 /*
2472  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2473  */
2474 static
2475 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2476 		struct vm_area_struct *vma, unsigned long addr)
2477 {
2478 	struct folio *folio = NULL;
2479 	struct mempolicy *mpol;
2480 	gfp_t gfp_mask = htlb_alloc_mask(h);
2481 	int nid;
2482 	nodemask_t *nodemask;
2483 
2484 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2485 	if (mpol_is_preferred_many(mpol)) {
2486 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2487 
2488 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2489 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2490 
2491 		/* Fallback to all nodes if page==NULL */
2492 		nodemask = NULL;
2493 	}
2494 
2495 	if (!folio)
2496 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2497 	mpol_cond_put(mpol);
2498 	return folio;
2499 }
2500 
2501 /* folio migration callback function */
2502 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2503 		nodemask_t *nmask, gfp_t gfp_mask)
2504 {
2505 	spin_lock_irq(&hugetlb_lock);
2506 	if (available_huge_pages(h)) {
2507 		struct folio *folio;
2508 
2509 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2510 						preferred_nid, nmask);
2511 		if (folio) {
2512 			spin_unlock_irq(&hugetlb_lock);
2513 			return folio;
2514 		}
2515 	}
2516 	spin_unlock_irq(&hugetlb_lock);
2517 
2518 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2519 }
2520 
2521 /* mempolicy aware migration callback */
2522 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2523 		unsigned long address)
2524 {
2525 	struct mempolicy *mpol;
2526 	nodemask_t *nodemask;
2527 	struct folio *folio;
2528 	gfp_t gfp_mask;
2529 	int node;
2530 
2531 	gfp_mask = htlb_alloc_mask(h);
2532 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2533 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2534 	mpol_cond_put(mpol);
2535 
2536 	return folio;
2537 }
2538 
2539 /*
2540  * Increase the hugetlb pool such that it can accommodate a reservation
2541  * of size 'delta'.
2542  */
2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544 	__must_hold(&hugetlb_lock)
2545 {
2546 	LIST_HEAD(surplus_list);
2547 	struct folio *folio, *tmp;
2548 	int ret;
2549 	long i;
2550 	long needed, allocated;
2551 	bool alloc_ok = true;
2552 
2553 	lockdep_assert_held(&hugetlb_lock);
2554 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2555 	if (needed <= 0) {
2556 		h->resv_huge_pages += delta;
2557 		return 0;
2558 	}
2559 
2560 	allocated = 0;
2561 
2562 	ret = -ENOMEM;
2563 retry:
2564 	spin_unlock_irq(&hugetlb_lock);
2565 	for (i = 0; i < needed; i++) {
2566 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2567 				NUMA_NO_NODE, NULL);
2568 		if (!folio) {
2569 			alloc_ok = false;
2570 			break;
2571 		}
2572 		list_add(&folio->lru, &surplus_list);
2573 		cond_resched();
2574 	}
2575 	allocated += i;
2576 
2577 	/*
2578 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2579 	 * because either resv_huge_pages or free_huge_pages may have changed.
2580 	 */
2581 	spin_lock_irq(&hugetlb_lock);
2582 	needed = (h->resv_huge_pages + delta) -
2583 			(h->free_huge_pages + allocated);
2584 	if (needed > 0) {
2585 		if (alloc_ok)
2586 			goto retry;
2587 		/*
2588 		 * We were not able to allocate enough pages to
2589 		 * satisfy the entire reservation so we free what
2590 		 * we've allocated so far.
2591 		 */
2592 		goto free;
2593 	}
2594 	/*
2595 	 * The surplus_list now contains _at_least_ the number of extra pages
2596 	 * needed to accommodate the reservation.  Add the appropriate number
2597 	 * of pages to the hugetlb pool and free the extras back to the buddy
2598 	 * allocator.  Commit the entire reservation here to prevent another
2599 	 * process from stealing the pages as they are added to the pool but
2600 	 * before they are reserved.
2601 	 */
2602 	needed += allocated;
2603 	h->resv_huge_pages += delta;
2604 	ret = 0;
2605 
2606 	/* Free the needed pages to the hugetlb pool */
2607 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2608 		if ((--needed) < 0)
2609 			break;
2610 		/* Add the page to the hugetlb allocator */
2611 		enqueue_hugetlb_folio(h, folio);
2612 	}
2613 free:
2614 	spin_unlock_irq(&hugetlb_lock);
2615 
2616 	/*
2617 	 * Free unnecessary surplus pages to the buddy allocator.
2618 	 * Pages have no ref count, call free_huge_folio directly.
2619 	 */
2620 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2621 		free_huge_folio(folio);
2622 	spin_lock_irq(&hugetlb_lock);
2623 
2624 	return ret;
2625 }
2626 
2627 /*
2628  * This routine has two main purposes:
2629  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2630  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2631  *    to the associated reservation map.
2632  * 2) Free any unused surplus pages that may have been allocated to satisfy
2633  *    the reservation.  As many as unused_resv_pages may be freed.
2634  */
2635 static void return_unused_surplus_pages(struct hstate *h,
2636 					unsigned long unused_resv_pages)
2637 {
2638 	unsigned long nr_pages;
2639 	struct page *page;
2640 	LIST_HEAD(page_list);
2641 
2642 	lockdep_assert_held(&hugetlb_lock);
2643 	/* Uncommit the reservation */
2644 	h->resv_huge_pages -= unused_resv_pages;
2645 
2646 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2647 		goto out;
2648 
2649 	/*
2650 	 * Part (or even all) of the reservation could have been backed
2651 	 * by pre-allocated pages. Only free surplus pages.
2652 	 */
2653 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2654 
2655 	/*
2656 	 * We want to release as many surplus pages as possible, spread
2657 	 * evenly across all nodes with memory. Iterate across these nodes
2658 	 * until we can no longer free unreserved surplus pages. This occurs
2659 	 * when the nodes with surplus pages have no free pages.
2660 	 * remove_pool_huge_page() will balance the freed pages across the
2661 	 * on-line nodes with memory and will handle the hstate accounting.
2662 	 */
2663 	while (nr_pages--) {
2664 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2665 		if (!page)
2666 			goto out;
2667 
2668 		list_add(&page->lru, &page_list);
2669 	}
2670 
2671 out:
2672 	spin_unlock_irq(&hugetlb_lock);
2673 	update_and_free_pages_bulk(h, &page_list);
2674 	spin_lock_irq(&hugetlb_lock);
2675 }
2676 
2677 
2678 /*
2679  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2680  * are used by the huge page allocation routines to manage reservations.
2681  *
2682  * vma_needs_reservation is called to determine if the huge page at addr
2683  * within the vma has an associated reservation.  If a reservation is
2684  * needed, the value 1 is returned.  The caller is then responsible for
2685  * managing the global reservation and subpool usage counts.  After
2686  * the huge page has been allocated, vma_commit_reservation is called
2687  * to add the page to the reservation map.  If the page allocation fails,
2688  * the reservation must be ended instead of committed.  vma_end_reservation
2689  * is called in such cases.
2690  *
2691  * In the normal case, vma_commit_reservation returns the same value
2692  * as the preceding vma_needs_reservation call.  The only time this
2693  * is not the case is if a reserve map was changed between calls.  It
2694  * is the responsibility of the caller to notice the difference and
2695  * take appropriate action.
2696  *
2697  * vma_add_reservation is used in error paths where a reservation must
2698  * be restored when a newly allocated huge page must be freed.  It is
2699  * to be called after calling vma_needs_reservation to determine if a
2700  * reservation exists.
2701  *
2702  * vma_del_reservation is used in error paths where an entry in the reserve
2703  * map was created during huge page allocation and must be removed.  It is to
2704  * be called after calling vma_needs_reservation to determine if a reservation
2705  * exists.
2706  */
2707 enum vma_resv_mode {
2708 	VMA_NEEDS_RESV,
2709 	VMA_COMMIT_RESV,
2710 	VMA_END_RESV,
2711 	VMA_ADD_RESV,
2712 	VMA_DEL_RESV,
2713 };
2714 static long __vma_reservation_common(struct hstate *h,
2715 				struct vm_area_struct *vma, unsigned long addr,
2716 				enum vma_resv_mode mode)
2717 {
2718 	struct resv_map *resv;
2719 	pgoff_t idx;
2720 	long ret;
2721 	long dummy_out_regions_needed;
2722 
2723 	resv = vma_resv_map(vma);
2724 	if (!resv)
2725 		return 1;
2726 
2727 	idx = vma_hugecache_offset(h, vma, addr);
2728 	switch (mode) {
2729 	case VMA_NEEDS_RESV:
2730 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2731 		/* We assume that vma_reservation_* routines always operate on
2732 		 * 1 page, and that adding to resv map a 1 page entry can only
2733 		 * ever require 1 region.
2734 		 */
2735 		VM_BUG_ON(dummy_out_regions_needed != 1);
2736 		break;
2737 	case VMA_COMMIT_RESV:
2738 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739 		/* region_add calls of range 1 should never fail. */
2740 		VM_BUG_ON(ret < 0);
2741 		break;
2742 	case VMA_END_RESV:
2743 		region_abort(resv, idx, idx + 1, 1);
2744 		ret = 0;
2745 		break;
2746 	case VMA_ADD_RESV:
2747 		if (vma->vm_flags & VM_MAYSHARE) {
2748 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2749 			/* region_add calls of range 1 should never fail. */
2750 			VM_BUG_ON(ret < 0);
2751 		} else {
2752 			region_abort(resv, idx, idx + 1, 1);
2753 			ret = region_del(resv, idx, idx + 1);
2754 		}
2755 		break;
2756 	case VMA_DEL_RESV:
2757 		if (vma->vm_flags & VM_MAYSHARE) {
2758 			region_abort(resv, idx, idx + 1, 1);
2759 			ret = region_del(resv, idx, idx + 1);
2760 		} else {
2761 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2762 			/* region_add calls of range 1 should never fail. */
2763 			VM_BUG_ON(ret < 0);
2764 		}
2765 		break;
2766 	default:
2767 		BUG();
2768 	}
2769 
2770 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2771 		return ret;
2772 	/*
2773 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2774 	 *
2775 	 * In most cases, reserves always exist for private mappings.
2776 	 * However, a file associated with mapping could have been
2777 	 * hole punched or truncated after reserves were consumed.
2778 	 * As subsequent fault on such a range will not use reserves.
2779 	 * Subtle - The reserve map for private mappings has the
2780 	 * opposite meaning than that of shared mappings.  If NO
2781 	 * entry is in the reserve map, it means a reservation exists.
2782 	 * If an entry exists in the reserve map, it means the
2783 	 * reservation has already been consumed.  As a result, the
2784 	 * return value of this routine is the opposite of the
2785 	 * value returned from reserve map manipulation routines above.
2786 	 */
2787 	if (ret > 0)
2788 		return 0;
2789 	if (ret == 0)
2790 		return 1;
2791 	return ret;
2792 }
2793 
2794 static long vma_needs_reservation(struct hstate *h,
2795 			struct vm_area_struct *vma, unsigned long addr)
2796 {
2797 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2798 }
2799 
2800 static long vma_commit_reservation(struct hstate *h,
2801 			struct vm_area_struct *vma, unsigned long addr)
2802 {
2803 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2804 }
2805 
2806 static void vma_end_reservation(struct hstate *h,
2807 			struct vm_area_struct *vma, unsigned long addr)
2808 {
2809 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2810 }
2811 
2812 static long vma_add_reservation(struct hstate *h,
2813 			struct vm_area_struct *vma, unsigned long addr)
2814 {
2815 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2816 }
2817 
2818 static long vma_del_reservation(struct hstate *h,
2819 			struct vm_area_struct *vma, unsigned long addr)
2820 {
2821 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2822 }
2823 
2824 /*
2825  * This routine is called to restore reservation information on error paths.
2826  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2827  * and the hugetlb mutex should remain held when calling this routine.
2828  *
2829  * It handles two specific cases:
2830  * 1) A reservation was in place and the folio consumed the reservation.
2831  *    hugetlb_restore_reserve is set in the folio.
2832  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2833  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2834  *
2835  * In case 1, free_huge_folio later in the error path will increment the
2836  * global reserve count.  But, free_huge_folio does not have enough context
2837  * to adjust the reservation map.  This case deals primarily with private
2838  * mappings.  Adjust the reserve map here to be consistent with global
2839  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2840  * reserve map indicates there is a reservation present.
2841  *
2842  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2843  */
2844 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2845 			unsigned long address, struct folio *folio)
2846 {
2847 	long rc = vma_needs_reservation(h, vma, address);
2848 
2849 	if (folio_test_hugetlb_restore_reserve(folio)) {
2850 		if (unlikely(rc < 0))
2851 			/*
2852 			 * Rare out of memory condition in reserve map
2853 			 * manipulation.  Clear hugetlb_restore_reserve so
2854 			 * that global reserve count will not be incremented
2855 			 * by free_huge_folio.  This will make it appear
2856 			 * as though the reservation for this folio was
2857 			 * consumed.  This may prevent the task from
2858 			 * faulting in the folio at a later time.  This
2859 			 * is better than inconsistent global huge page
2860 			 * accounting of reserve counts.
2861 			 */
2862 			folio_clear_hugetlb_restore_reserve(folio);
2863 		else if (rc)
2864 			(void)vma_add_reservation(h, vma, address);
2865 		else
2866 			vma_end_reservation(h, vma, address);
2867 	} else {
2868 		if (!rc) {
2869 			/*
2870 			 * This indicates there is an entry in the reserve map
2871 			 * not added by alloc_hugetlb_folio.  We know it was added
2872 			 * before the alloc_hugetlb_folio call, otherwise
2873 			 * hugetlb_restore_reserve would be set on the folio.
2874 			 * Remove the entry so that a subsequent allocation
2875 			 * does not consume a reservation.
2876 			 */
2877 			rc = vma_del_reservation(h, vma, address);
2878 			if (rc < 0)
2879 				/*
2880 				 * VERY rare out of memory condition.  Since
2881 				 * we can not delete the entry, set
2882 				 * hugetlb_restore_reserve so that the reserve
2883 				 * count will be incremented when the folio
2884 				 * is freed.  This reserve will be consumed
2885 				 * on a subsequent allocation.
2886 				 */
2887 				folio_set_hugetlb_restore_reserve(folio);
2888 		} else if (rc < 0) {
2889 			/*
2890 			 * Rare out of memory condition from
2891 			 * vma_needs_reservation call.  Memory allocation is
2892 			 * only attempted if a new entry is needed.  Therefore,
2893 			 * this implies there is not an entry in the
2894 			 * reserve map.
2895 			 *
2896 			 * For shared mappings, no entry in the map indicates
2897 			 * no reservation.  We are done.
2898 			 */
2899 			if (!(vma->vm_flags & VM_MAYSHARE))
2900 				/*
2901 				 * For private mappings, no entry indicates
2902 				 * a reservation is present.  Since we can
2903 				 * not add an entry, set hugetlb_restore_reserve
2904 				 * on the folio so reserve count will be
2905 				 * incremented when freed.  This reserve will
2906 				 * be consumed on a subsequent allocation.
2907 				 */
2908 				folio_set_hugetlb_restore_reserve(folio);
2909 		} else
2910 			/*
2911 			 * No reservation present, do nothing
2912 			 */
2913 			 vma_end_reservation(h, vma, address);
2914 	}
2915 }
2916 
2917 /*
2918  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2919  * the old one
2920  * @h: struct hstate old page belongs to
2921  * @old_folio: Old folio to dissolve
2922  * @list: List to isolate the page in case we need to
2923  * Returns 0 on success, otherwise negated error.
2924  */
2925 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2926 			struct folio *old_folio, struct list_head *list)
2927 {
2928 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2929 	int nid = folio_nid(old_folio);
2930 	struct folio *new_folio;
2931 	int ret = 0;
2932 
2933 	/*
2934 	 * Before dissolving the folio, we need to allocate a new one for the
2935 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2936 	 * by doing everything but actually updating counters and adding to
2937 	 * the pool.  This simplifies and let us do most of the processing
2938 	 * under the lock.
2939 	 */
2940 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2941 	if (!new_folio)
2942 		return -ENOMEM;
2943 	__prep_new_hugetlb_folio(h, new_folio);
2944 
2945 retry:
2946 	spin_lock_irq(&hugetlb_lock);
2947 	if (!folio_test_hugetlb(old_folio)) {
2948 		/*
2949 		 * Freed from under us. Drop new_folio too.
2950 		 */
2951 		goto free_new;
2952 	} else if (folio_ref_count(old_folio)) {
2953 		bool isolated;
2954 
2955 		/*
2956 		 * Someone has grabbed the folio, try to isolate it here.
2957 		 * Fail with -EBUSY if not possible.
2958 		 */
2959 		spin_unlock_irq(&hugetlb_lock);
2960 		isolated = isolate_hugetlb(old_folio, list);
2961 		ret = isolated ? 0 : -EBUSY;
2962 		spin_lock_irq(&hugetlb_lock);
2963 		goto free_new;
2964 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2965 		/*
2966 		 * Folio's refcount is 0 but it has not been enqueued in the
2967 		 * freelist yet. Race window is small, so we can succeed here if
2968 		 * we retry.
2969 		 */
2970 		spin_unlock_irq(&hugetlb_lock);
2971 		cond_resched();
2972 		goto retry;
2973 	} else {
2974 		/*
2975 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2976 		 * the freelist and decrease the counters. These will be
2977 		 * incremented again when calling __prep_account_new_huge_page()
2978 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2979 		 * remain stable since this happens under the lock.
2980 		 */
2981 		remove_hugetlb_folio(h, old_folio, false);
2982 
2983 		/*
2984 		 * Ref count on new_folio is already zero as it was dropped
2985 		 * earlier.  It can be directly added to the pool free list.
2986 		 */
2987 		__prep_account_new_huge_page(h, nid);
2988 		enqueue_hugetlb_folio(h, new_folio);
2989 
2990 		/*
2991 		 * Folio has been replaced, we can safely free the old one.
2992 		 */
2993 		spin_unlock_irq(&hugetlb_lock);
2994 		update_and_free_hugetlb_folio(h, old_folio, false);
2995 	}
2996 
2997 	return ret;
2998 
2999 free_new:
3000 	spin_unlock_irq(&hugetlb_lock);
3001 	/* Folio has a zero ref count, but needs a ref to be freed */
3002 	folio_ref_unfreeze(new_folio, 1);
3003 	update_and_free_hugetlb_folio(h, new_folio, false);
3004 
3005 	return ret;
3006 }
3007 
3008 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3009 {
3010 	struct hstate *h;
3011 	struct folio *folio = page_folio(page);
3012 	int ret = -EBUSY;
3013 
3014 	/*
3015 	 * The page might have been dissolved from under our feet, so make sure
3016 	 * to carefully check the state under the lock.
3017 	 * Return success when racing as if we dissolved the page ourselves.
3018 	 */
3019 	spin_lock_irq(&hugetlb_lock);
3020 	if (folio_test_hugetlb(folio)) {
3021 		h = folio_hstate(folio);
3022 	} else {
3023 		spin_unlock_irq(&hugetlb_lock);
3024 		return 0;
3025 	}
3026 	spin_unlock_irq(&hugetlb_lock);
3027 
3028 	/*
3029 	 * Fence off gigantic pages as there is a cyclic dependency between
3030 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3031 	 * of bailing out right away without further retrying.
3032 	 */
3033 	if (hstate_is_gigantic(h))
3034 		return -ENOMEM;
3035 
3036 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3037 		ret = 0;
3038 	else if (!folio_ref_count(folio))
3039 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3040 
3041 	return ret;
3042 }
3043 
3044 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3045 				    unsigned long addr, int avoid_reserve)
3046 {
3047 	struct hugepage_subpool *spool = subpool_vma(vma);
3048 	struct hstate *h = hstate_vma(vma);
3049 	struct folio *folio;
3050 	long map_chg, map_commit;
3051 	long gbl_chg;
3052 	int ret, idx;
3053 	struct hugetlb_cgroup *h_cg = NULL;
3054 	bool deferred_reserve;
3055 
3056 	idx = hstate_index(h);
3057 	/*
3058 	 * Examine the region/reserve map to determine if the process
3059 	 * has a reservation for the page to be allocated.  A return
3060 	 * code of zero indicates a reservation exists (no change).
3061 	 */
3062 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3063 	if (map_chg < 0)
3064 		return ERR_PTR(-ENOMEM);
3065 
3066 	/*
3067 	 * Processes that did not create the mapping will have no
3068 	 * reserves as indicated by the region/reserve map. Check
3069 	 * that the allocation will not exceed the subpool limit.
3070 	 * Allocations for MAP_NORESERVE mappings also need to be
3071 	 * checked against any subpool limit.
3072 	 */
3073 	if (map_chg || avoid_reserve) {
3074 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3075 		if (gbl_chg < 0) {
3076 			vma_end_reservation(h, vma, addr);
3077 			return ERR_PTR(-ENOSPC);
3078 		}
3079 
3080 		/*
3081 		 * Even though there was no reservation in the region/reserve
3082 		 * map, there could be reservations associated with the
3083 		 * subpool that can be used.  This would be indicated if the
3084 		 * return value of hugepage_subpool_get_pages() is zero.
3085 		 * However, if avoid_reserve is specified we still avoid even
3086 		 * the subpool reservations.
3087 		 */
3088 		if (avoid_reserve)
3089 			gbl_chg = 1;
3090 	}
3091 
3092 	/* If this allocation is not consuming a reservation, charge it now.
3093 	 */
3094 	deferred_reserve = map_chg || avoid_reserve;
3095 	if (deferred_reserve) {
3096 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3097 			idx, pages_per_huge_page(h), &h_cg);
3098 		if (ret)
3099 			goto out_subpool_put;
3100 	}
3101 
3102 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3103 	if (ret)
3104 		goto out_uncharge_cgroup_reservation;
3105 
3106 	spin_lock_irq(&hugetlb_lock);
3107 	/*
3108 	 * glb_chg is passed to indicate whether or not a page must be taken
3109 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3110 	 * a reservation exists for the allocation.
3111 	 */
3112 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3113 	if (!folio) {
3114 		spin_unlock_irq(&hugetlb_lock);
3115 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3116 		if (!folio)
3117 			goto out_uncharge_cgroup;
3118 		spin_lock_irq(&hugetlb_lock);
3119 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3120 			folio_set_hugetlb_restore_reserve(folio);
3121 			h->resv_huge_pages--;
3122 		}
3123 		list_add(&folio->lru, &h->hugepage_activelist);
3124 		folio_ref_unfreeze(folio, 1);
3125 		/* Fall through */
3126 	}
3127 
3128 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3129 	/* If allocation is not consuming a reservation, also store the
3130 	 * hugetlb_cgroup pointer on the page.
3131 	 */
3132 	if (deferred_reserve) {
3133 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3134 						  h_cg, folio);
3135 	}
3136 
3137 	spin_unlock_irq(&hugetlb_lock);
3138 
3139 	hugetlb_set_folio_subpool(folio, spool);
3140 
3141 	map_commit = vma_commit_reservation(h, vma, addr);
3142 	if (unlikely(map_chg > map_commit)) {
3143 		/*
3144 		 * The page was added to the reservation map between
3145 		 * vma_needs_reservation and vma_commit_reservation.
3146 		 * This indicates a race with hugetlb_reserve_pages.
3147 		 * Adjust for the subpool count incremented above AND
3148 		 * in hugetlb_reserve_pages for the same page.  Also,
3149 		 * the reservation count added in hugetlb_reserve_pages
3150 		 * no longer applies.
3151 		 */
3152 		long rsv_adjust;
3153 
3154 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3155 		hugetlb_acct_memory(h, -rsv_adjust);
3156 		if (deferred_reserve)
3157 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3158 					pages_per_huge_page(h), folio);
3159 	}
3160 	return folio;
3161 
3162 out_uncharge_cgroup:
3163 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3164 out_uncharge_cgroup_reservation:
3165 	if (deferred_reserve)
3166 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3167 						    h_cg);
3168 out_subpool_put:
3169 	if (map_chg || avoid_reserve)
3170 		hugepage_subpool_put_pages(spool, 1);
3171 	vma_end_reservation(h, vma, addr);
3172 	return ERR_PTR(-ENOSPC);
3173 }
3174 
3175 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3176 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3177 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3178 {
3179 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3180 	int nr_nodes, node;
3181 
3182 	/* do node specific alloc */
3183 	if (nid != NUMA_NO_NODE) {
3184 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3185 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186 		if (!m)
3187 			return 0;
3188 		goto found;
3189 	}
3190 	/* allocate from next node when distributing huge pages */
3191 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3192 		m = memblock_alloc_try_nid_raw(
3193 				huge_page_size(h), huge_page_size(h),
3194 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3195 		/*
3196 		 * Use the beginning of the huge page to store the
3197 		 * huge_bootmem_page struct (until gather_bootmem
3198 		 * puts them into the mem_map).
3199 		 */
3200 		if (!m)
3201 			return 0;
3202 		goto found;
3203 	}
3204 
3205 found:
3206 	/* Put them into a private list first because mem_map is not up yet */
3207 	INIT_LIST_HEAD(&m->list);
3208 	list_add(&m->list, &huge_boot_pages);
3209 	m->hstate = h;
3210 	return 1;
3211 }
3212 
3213 /*
3214  * Put bootmem huge pages into the standard lists after mem_map is up.
3215  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3216  */
3217 static void __init gather_bootmem_prealloc(void)
3218 {
3219 	struct huge_bootmem_page *m;
3220 
3221 	list_for_each_entry(m, &huge_boot_pages, list) {
3222 		struct page *page = virt_to_page(m);
3223 		struct folio *folio = page_folio(page);
3224 		struct hstate *h = m->hstate;
3225 
3226 		VM_BUG_ON(!hstate_is_gigantic(h));
3227 		WARN_ON(folio_ref_count(folio) != 1);
3228 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3229 			WARN_ON(folio_test_reserved(folio));
3230 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3231 			free_huge_folio(folio); /* add to the hugepage allocator */
3232 		} else {
3233 			/* VERY unlikely inflated ref count on a tail page */
3234 			free_gigantic_folio(folio, huge_page_order(h));
3235 		}
3236 
3237 		/*
3238 		 * We need to restore the 'stolen' pages to totalram_pages
3239 		 * in order to fix confusing memory reports from free(1) and
3240 		 * other side-effects, like CommitLimit going negative.
3241 		 */
3242 		adjust_managed_page_count(page, pages_per_huge_page(h));
3243 		cond_resched();
3244 	}
3245 }
3246 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3247 {
3248 	unsigned long i;
3249 	char buf[32];
3250 
3251 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3252 		if (hstate_is_gigantic(h)) {
3253 			if (!alloc_bootmem_huge_page(h, nid))
3254 				break;
3255 		} else {
3256 			struct folio *folio;
3257 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3258 
3259 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3260 					&node_states[N_MEMORY], NULL);
3261 			if (!folio)
3262 				break;
3263 			free_huge_folio(folio); /* free it into the hugepage allocator */
3264 		}
3265 		cond_resched();
3266 	}
3267 	if (i == h->max_huge_pages_node[nid])
3268 		return;
3269 
3270 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3271 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3272 		h->max_huge_pages_node[nid], buf, nid, i);
3273 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3274 	h->max_huge_pages_node[nid] = i;
3275 }
3276 
3277 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3278 {
3279 	unsigned long i;
3280 	nodemask_t *node_alloc_noretry;
3281 	bool node_specific_alloc = false;
3282 
3283 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3284 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3285 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3286 		return;
3287 	}
3288 
3289 	/* do node specific alloc */
3290 	for_each_online_node(i) {
3291 		if (h->max_huge_pages_node[i] > 0) {
3292 			hugetlb_hstate_alloc_pages_onenode(h, i);
3293 			node_specific_alloc = true;
3294 		}
3295 	}
3296 
3297 	if (node_specific_alloc)
3298 		return;
3299 
3300 	/* below will do all node balanced alloc */
3301 	if (!hstate_is_gigantic(h)) {
3302 		/*
3303 		 * Bit mask controlling how hard we retry per-node allocations.
3304 		 * Ignore errors as lower level routines can deal with
3305 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3306 		 * time, we are likely in bigger trouble.
3307 		 */
3308 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3309 						GFP_KERNEL);
3310 	} else {
3311 		/* allocations done at boot time */
3312 		node_alloc_noretry = NULL;
3313 	}
3314 
3315 	/* bit mask controlling how hard we retry per-node allocations */
3316 	if (node_alloc_noretry)
3317 		nodes_clear(*node_alloc_noretry);
3318 
3319 	for (i = 0; i < h->max_huge_pages; ++i) {
3320 		if (hstate_is_gigantic(h)) {
3321 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3322 				break;
3323 		} else if (!alloc_pool_huge_page(h,
3324 					 &node_states[N_MEMORY],
3325 					 node_alloc_noretry))
3326 			break;
3327 		cond_resched();
3328 	}
3329 	if (i < h->max_huge_pages) {
3330 		char buf[32];
3331 
3332 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3333 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3334 			h->max_huge_pages, buf, i);
3335 		h->max_huge_pages = i;
3336 	}
3337 	kfree(node_alloc_noretry);
3338 }
3339 
3340 static void __init hugetlb_init_hstates(void)
3341 {
3342 	struct hstate *h, *h2;
3343 
3344 	for_each_hstate(h) {
3345 		/* oversize hugepages were init'ed in early boot */
3346 		if (!hstate_is_gigantic(h))
3347 			hugetlb_hstate_alloc_pages(h);
3348 
3349 		/*
3350 		 * Set demote order for each hstate.  Note that
3351 		 * h->demote_order is initially 0.
3352 		 * - We can not demote gigantic pages if runtime freeing
3353 		 *   is not supported, so skip this.
3354 		 * - If CMA allocation is possible, we can not demote
3355 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3356 		 */
3357 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3358 			continue;
3359 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3360 			continue;
3361 		for_each_hstate(h2) {
3362 			if (h2 == h)
3363 				continue;
3364 			if (h2->order < h->order &&
3365 			    h2->order > h->demote_order)
3366 				h->demote_order = h2->order;
3367 		}
3368 	}
3369 }
3370 
3371 static void __init report_hugepages(void)
3372 {
3373 	struct hstate *h;
3374 
3375 	for_each_hstate(h) {
3376 		char buf[32];
3377 
3378 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3380 			buf, h->free_huge_pages);
3381 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3382 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3383 	}
3384 }
3385 
3386 #ifdef CONFIG_HIGHMEM
3387 static void try_to_free_low(struct hstate *h, unsigned long count,
3388 						nodemask_t *nodes_allowed)
3389 {
3390 	int i;
3391 	LIST_HEAD(page_list);
3392 
3393 	lockdep_assert_held(&hugetlb_lock);
3394 	if (hstate_is_gigantic(h))
3395 		return;
3396 
3397 	/*
3398 	 * Collect pages to be freed on a list, and free after dropping lock
3399 	 */
3400 	for_each_node_mask(i, *nodes_allowed) {
3401 		struct page *page, *next;
3402 		struct list_head *freel = &h->hugepage_freelists[i];
3403 		list_for_each_entry_safe(page, next, freel, lru) {
3404 			if (count >= h->nr_huge_pages)
3405 				goto out;
3406 			if (PageHighMem(page))
3407 				continue;
3408 			remove_hugetlb_folio(h, page_folio(page), false);
3409 			list_add(&page->lru, &page_list);
3410 		}
3411 	}
3412 
3413 out:
3414 	spin_unlock_irq(&hugetlb_lock);
3415 	update_and_free_pages_bulk(h, &page_list);
3416 	spin_lock_irq(&hugetlb_lock);
3417 }
3418 #else
3419 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3420 						nodemask_t *nodes_allowed)
3421 {
3422 }
3423 #endif
3424 
3425 /*
3426  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3427  * balanced by operating on them in a round-robin fashion.
3428  * Returns 1 if an adjustment was made.
3429  */
3430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3431 				int delta)
3432 {
3433 	int nr_nodes, node;
3434 
3435 	lockdep_assert_held(&hugetlb_lock);
3436 	VM_BUG_ON(delta != -1 && delta != 1);
3437 
3438 	if (delta < 0) {
3439 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3440 			if (h->surplus_huge_pages_node[node])
3441 				goto found;
3442 		}
3443 	} else {
3444 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3445 			if (h->surplus_huge_pages_node[node] <
3446 					h->nr_huge_pages_node[node])
3447 				goto found;
3448 		}
3449 	}
3450 	return 0;
3451 
3452 found:
3453 	h->surplus_huge_pages += delta;
3454 	h->surplus_huge_pages_node[node] += delta;
3455 	return 1;
3456 }
3457 
3458 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3459 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3460 			      nodemask_t *nodes_allowed)
3461 {
3462 	unsigned long min_count, ret;
3463 	struct page *page;
3464 	LIST_HEAD(page_list);
3465 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3466 
3467 	/*
3468 	 * Bit mask controlling how hard we retry per-node allocations.
3469 	 * If we can not allocate the bit mask, do not attempt to allocate
3470 	 * the requested huge pages.
3471 	 */
3472 	if (node_alloc_noretry)
3473 		nodes_clear(*node_alloc_noretry);
3474 	else
3475 		return -ENOMEM;
3476 
3477 	/*
3478 	 * resize_lock mutex prevents concurrent adjustments to number of
3479 	 * pages in hstate via the proc/sysfs interfaces.
3480 	 */
3481 	mutex_lock(&h->resize_lock);
3482 	flush_free_hpage_work(h);
3483 	spin_lock_irq(&hugetlb_lock);
3484 
3485 	/*
3486 	 * Check for a node specific request.
3487 	 * Changing node specific huge page count may require a corresponding
3488 	 * change to the global count.  In any case, the passed node mask
3489 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3490 	 */
3491 	if (nid != NUMA_NO_NODE) {
3492 		unsigned long old_count = count;
3493 
3494 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3495 		/*
3496 		 * User may have specified a large count value which caused the
3497 		 * above calculation to overflow.  In this case, they wanted
3498 		 * to allocate as many huge pages as possible.  Set count to
3499 		 * largest possible value to align with their intention.
3500 		 */
3501 		if (count < old_count)
3502 			count = ULONG_MAX;
3503 	}
3504 
3505 	/*
3506 	 * Gigantic pages runtime allocation depend on the capability for large
3507 	 * page range allocation.
3508 	 * If the system does not provide this feature, return an error when
3509 	 * the user tries to allocate gigantic pages but let the user free the
3510 	 * boottime allocated gigantic pages.
3511 	 */
3512 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3513 		if (count > persistent_huge_pages(h)) {
3514 			spin_unlock_irq(&hugetlb_lock);
3515 			mutex_unlock(&h->resize_lock);
3516 			NODEMASK_FREE(node_alloc_noretry);
3517 			return -EINVAL;
3518 		}
3519 		/* Fall through to decrease pool */
3520 	}
3521 
3522 	/*
3523 	 * Increase the pool size
3524 	 * First take pages out of surplus state.  Then make up the
3525 	 * remaining difference by allocating fresh huge pages.
3526 	 *
3527 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3528 	 * to convert a surplus huge page to a normal huge page. That is
3529 	 * not critical, though, it just means the overall size of the
3530 	 * pool might be one hugepage larger than it needs to be, but
3531 	 * within all the constraints specified by the sysctls.
3532 	 */
3533 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3534 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3535 			break;
3536 	}
3537 
3538 	while (count > persistent_huge_pages(h)) {
3539 		/*
3540 		 * If this allocation races such that we no longer need the
3541 		 * page, free_huge_folio will handle it by freeing the page
3542 		 * and reducing the surplus.
3543 		 */
3544 		spin_unlock_irq(&hugetlb_lock);
3545 
3546 		/* yield cpu to avoid soft lockup */
3547 		cond_resched();
3548 
3549 		ret = alloc_pool_huge_page(h, nodes_allowed,
3550 						node_alloc_noretry);
3551 		spin_lock_irq(&hugetlb_lock);
3552 		if (!ret)
3553 			goto out;
3554 
3555 		/* Bail for signals. Probably ctrl-c from user */
3556 		if (signal_pending(current))
3557 			goto out;
3558 	}
3559 
3560 	/*
3561 	 * Decrease the pool size
3562 	 * First return free pages to the buddy allocator (being careful
3563 	 * to keep enough around to satisfy reservations).  Then place
3564 	 * pages into surplus state as needed so the pool will shrink
3565 	 * to the desired size as pages become free.
3566 	 *
3567 	 * By placing pages into the surplus state independent of the
3568 	 * overcommit value, we are allowing the surplus pool size to
3569 	 * exceed overcommit. There are few sane options here. Since
3570 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3571 	 * though, we'll note that we're not allowed to exceed surplus
3572 	 * and won't grow the pool anywhere else. Not until one of the
3573 	 * sysctls are changed, or the surplus pages go out of use.
3574 	 */
3575 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3576 	min_count = max(count, min_count);
3577 	try_to_free_low(h, min_count, nodes_allowed);
3578 
3579 	/*
3580 	 * Collect pages to be removed on list without dropping lock
3581 	 */
3582 	while (min_count < persistent_huge_pages(h)) {
3583 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3584 		if (!page)
3585 			break;
3586 
3587 		list_add(&page->lru, &page_list);
3588 	}
3589 	/* free the pages after dropping lock */
3590 	spin_unlock_irq(&hugetlb_lock);
3591 	update_and_free_pages_bulk(h, &page_list);
3592 	flush_free_hpage_work(h);
3593 	spin_lock_irq(&hugetlb_lock);
3594 
3595 	while (count < persistent_huge_pages(h)) {
3596 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3597 			break;
3598 	}
3599 out:
3600 	h->max_huge_pages = persistent_huge_pages(h);
3601 	spin_unlock_irq(&hugetlb_lock);
3602 	mutex_unlock(&h->resize_lock);
3603 
3604 	NODEMASK_FREE(node_alloc_noretry);
3605 
3606 	return 0;
3607 }
3608 
3609 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3610 {
3611 	int i, nid = folio_nid(folio);
3612 	struct hstate *target_hstate;
3613 	struct page *subpage;
3614 	struct folio *inner_folio;
3615 	int rc = 0;
3616 
3617 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3618 
3619 	remove_hugetlb_folio_for_demote(h, folio, false);
3620 	spin_unlock_irq(&hugetlb_lock);
3621 
3622 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3623 	if (rc) {
3624 		/* Allocation of vmemmmap failed, we can not demote folio */
3625 		spin_lock_irq(&hugetlb_lock);
3626 		folio_ref_unfreeze(folio, 1);
3627 		add_hugetlb_folio(h, folio, false);
3628 		return rc;
3629 	}
3630 
3631 	/*
3632 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3633 	 * sizes as it will not ref count folios.
3634 	 */
3635 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3636 
3637 	/*
3638 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3639 	 * Without the mutex, pages added to target hstate could be marked
3640 	 * as surplus.
3641 	 *
3642 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3643 	 * use the convention of always taking larger size hstate mutex first.
3644 	 */
3645 	mutex_lock(&target_hstate->resize_lock);
3646 	for (i = 0; i < pages_per_huge_page(h);
3647 				i += pages_per_huge_page(target_hstate)) {
3648 		subpage = folio_page(folio, i);
3649 		inner_folio = page_folio(subpage);
3650 		if (hstate_is_gigantic(target_hstate))
3651 			prep_compound_gigantic_folio_for_demote(inner_folio,
3652 							target_hstate->order);
3653 		else
3654 			prep_compound_page(subpage, target_hstate->order);
3655 		folio_change_private(inner_folio, NULL);
3656 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3657 		free_huge_folio(inner_folio);
3658 	}
3659 	mutex_unlock(&target_hstate->resize_lock);
3660 
3661 	spin_lock_irq(&hugetlb_lock);
3662 
3663 	/*
3664 	 * Not absolutely necessary, but for consistency update max_huge_pages
3665 	 * based on pool changes for the demoted page.
3666 	 */
3667 	h->max_huge_pages--;
3668 	target_hstate->max_huge_pages +=
3669 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3670 
3671 	return rc;
3672 }
3673 
3674 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3675 	__must_hold(&hugetlb_lock)
3676 {
3677 	int nr_nodes, node;
3678 	struct folio *folio;
3679 
3680 	lockdep_assert_held(&hugetlb_lock);
3681 
3682 	/* We should never get here if no demote order */
3683 	if (!h->demote_order) {
3684 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3685 		return -EINVAL;		/* internal error */
3686 	}
3687 
3688 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3689 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3690 			if (folio_test_hwpoison(folio))
3691 				continue;
3692 			return demote_free_hugetlb_folio(h, folio);
3693 		}
3694 	}
3695 
3696 	/*
3697 	 * Only way to get here is if all pages on free lists are poisoned.
3698 	 * Return -EBUSY so that caller will not retry.
3699 	 */
3700 	return -EBUSY;
3701 }
3702 
3703 #define HSTATE_ATTR_RO(_name) \
3704 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3705 
3706 #define HSTATE_ATTR_WO(_name) \
3707 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3708 
3709 #define HSTATE_ATTR(_name) \
3710 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3711 
3712 static struct kobject *hugepages_kobj;
3713 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3714 
3715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3716 
3717 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3718 {
3719 	int i;
3720 
3721 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3722 		if (hstate_kobjs[i] == kobj) {
3723 			if (nidp)
3724 				*nidp = NUMA_NO_NODE;
3725 			return &hstates[i];
3726 		}
3727 
3728 	return kobj_to_node_hstate(kobj, nidp);
3729 }
3730 
3731 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3732 					struct kobj_attribute *attr, char *buf)
3733 {
3734 	struct hstate *h;
3735 	unsigned long nr_huge_pages;
3736 	int nid;
3737 
3738 	h = kobj_to_hstate(kobj, &nid);
3739 	if (nid == NUMA_NO_NODE)
3740 		nr_huge_pages = h->nr_huge_pages;
3741 	else
3742 		nr_huge_pages = h->nr_huge_pages_node[nid];
3743 
3744 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3745 }
3746 
3747 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3748 					   struct hstate *h, int nid,
3749 					   unsigned long count, size_t len)
3750 {
3751 	int err;
3752 	nodemask_t nodes_allowed, *n_mask;
3753 
3754 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3755 		return -EINVAL;
3756 
3757 	if (nid == NUMA_NO_NODE) {
3758 		/*
3759 		 * global hstate attribute
3760 		 */
3761 		if (!(obey_mempolicy &&
3762 				init_nodemask_of_mempolicy(&nodes_allowed)))
3763 			n_mask = &node_states[N_MEMORY];
3764 		else
3765 			n_mask = &nodes_allowed;
3766 	} else {
3767 		/*
3768 		 * Node specific request.  count adjustment happens in
3769 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3770 		 */
3771 		init_nodemask_of_node(&nodes_allowed, nid);
3772 		n_mask = &nodes_allowed;
3773 	}
3774 
3775 	err = set_max_huge_pages(h, count, nid, n_mask);
3776 
3777 	return err ? err : len;
3778 }
3779 
3780 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3781 					 struct kobject *kobj, const char *buf,
3782 					 size_t len)
3783 {
3784 	struct hstate *h;
3785 	unsigned long count;
3786 	int nid;
3787 	int err;
3788 
3789 	err = kstrtoul(buf, 10, &count);
3790 	if (err)
3791 		return err;
3792 
3793 	h = kobj_to_hstate(kobj, &nid);
3794 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3795 }
3796 
3797 static ssize_t nr_hugepages_show(struct kobject *kobj,
3798 				       struct kobj_attribute *attr, char *buf)
3799 {
3800 	return nr_hugepages_show_common(kobj, attr, buf);
3801 }
3802 
3803 static ssize_t nr_hugepages_store(struct kobject *kobj,
3804 	       struct kobj_attribute *attr, const char *buf, size_t len)
3805 {
3806 	return nr_hugepages_store_common(false, kobj, buf, len);
3807 }
3808 HSTATE_ATTR(nr_hugepages);
3809 
3810 #ifdef CONFIG_NUMA
3811 
3812 /*
3813  * hstate attribute for optionally mempolicy-based constraint on persistent
3814  * huge page alloc/free.
3815  */
3816 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3817 					   struct kobj_attribute *attr,
3818 					   char *buf)
3819 {
3820 	return nr_hugepages_show_common(kobj, attr, buf);
3821 }
3822 
3823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3824 	       struct kobj_attribute *attr, const char *buf, size_t len)
3825 {
3826 	return nr_hugepages_store_common(true, kobj, buf, len);
3827 }
3828 HSTATE_ATTR(nr_hugepages_mempolicy);
3829 #endif
3830 
3831 
3832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3833 					struct kobj_attribute *attr, char *buf)
3834 {
3835 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3836 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3837 }
3838 
3839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3840 		struct kobj_attribute *attr, const char *buf, size_t count)
3841 {
3842 	int err;
3843 	unsigned long input;
3844 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3845 
3846 	if (hstate_is_gigantic(h))
3847 		return -EINVAL;
3848 
3849 	err = kstrtoul(buf, 10, &input);
3850 	if (err)
3851 		return err;
3852 
3853 	spin_lock_irq(&hugetlb_lock);
3854 	h->nr_overcommit_huge_pages = input;
3855 	spin_unlock_irq(&hugetlb_lock);
3856 
3857 	return count;
3858 }
3859 HSTATE_ATTR(nr_overcommit_hugepages);
3860 
3861 static ssize_t free_hugepages_show(struct kobject *kobj,
3862 					struct kobj_attribute *attr, char *buf)
3863 {
3864 	struct hstate *h;
3865 	unsigned long free_huge_pages;
3866 	int nid;
3867 
3868 	h = kobj_to_hstate(kobj, &nid);
3869 	if (nid == NUMA_NO_NODE)
3870 		free_huge_pages = h->free_huge_pages;
3871 	else
3872 		free_huge_pages = h->free_huge_pages_node[nid];
3873 
3874 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3875 }
3876 HSTATE_ATTR_RO(free_hugepages);
3877 
3878 static ssize_t resv_hugepages_show(struct kobject *kobj,
3879 					struct kobj_attribute *attr, char *buf)
3880 {
3881 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3882 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3883 }
3884 HSTATE_ATTR_RO(resv_hugepages);
3885 
3886 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3887 					struct kobj_attribute *attr, char *buf)
3888 {
3889 	struct hstate *h;
3890 	unsigned long surplus_huge_pages;
3891 	int nid;
3892 
3893 	h = kobj_to_hstate(kobj, &nid);
3894 	if (nid == NUMA_NO_NODE)
3895 		surplus_huge_pages = h->surplus_huge_pages;
3896 	else
3897 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3898 
3899 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3900 }
3901 HSTATE_ATTR_RO(surplus_hugepages);
3902 
3903 static ssize_t demote_store(struct kobject *kobj,
3904 	       struct kobj_attribute *attr, const char *buf, size_t len)
3905 {
3906 	unsigned long nr_demote;
3907 	unsigned long nr_available;
3908 	nodemask_t nodes_allowed, *n_mask;
3909 	struct hstate *h;
3910 	int err;
3911 	int nid;
3912 
3913 	err = kstrtoul(buf, 10, &nr_demote);
3914 	if (err)
3915 		return err;
3916 	h = kobj_to_hstate(kobj, &nid);
3917 
3918 	if (nid != NUMA_NO_NODE) {
3919 		init_nodemask_of_node(&nodes_allowed, nid);
3920 		n_mask = &nodes_allowed;
3921 	} else {
3922 		n_mask = &node_states[N_MEMORY];
3923 	}
3924 
3925 	/* Synchronize with other sysfs operations modifying huge pages */
3926 	mutex_lock(&h->resize_lock);
3927 	spin_lock_irq(&hugetlb_lock);
3928 
3929 	while (nr_demote) {
3930 		/*
3931 		 * Check for available pages to demote each time thorough the
3932 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3933 		 */
3934 		if (nid != NUMA_NO_NODE)
3935 			nr_available = h->free_huge_pages_node[nid];
3936 		else
3937 			nr_available = h->free_huge_pages;
3938 		nr_available -= h->resv_huge_pages;
3939 		if (!nr_available)
3940 			break;
3941 
3942 		err = demote_pool_huge_page(h, n_mask);
3943 		if (err)
3944 			break;
3945 
3946 		nr_demote--;
3947 	}
3948 
3949 	spin_unlock_irq(&hugetlb_lock);
3950 	mutex_unlock(&h->resize_lock);
3951 
3952 	if (err)
3953 		return err;
3954 	return len;
3955 }
3956 HSTATE_ATTR_WO(demote);
3957 
3958 static ssize_t demote_size_show(struct kobject *kobj,
3959 					struct kobj_attribute *attr, char *buf)
3960 {
3961 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3962 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3963 
3964 	return sysfs_emit(buf, "%lukB\n", demote_size);
3965 }
3966 
3967 static ssize_t demote_size_store(struct kobject *kobj,
3968 					struct kobj_attribute *attr,
3969 					const char *buf, size_t count)
3970 {
3971 	struct hstate *h, *demote_hstate;
3972 	unsigned long demote_size;
3973 	unsigned int demote_order;
3974 
3975 	demote_size = (unsigned long)memparse(buf, NULL);
3976 
3977 	demote_hstate = size_to_hstate(demote_size);
3978 	if (!demote_hstate)
3979 		return -EINVAL;
3980 	demote_order = demote_hstate->order;
3981 	if (demote_order < HUGETLB_PAGE_ORDER)
3982 		return -EINVAL;
3983 
3984 	/* demote order must be smaller than hstate order */
3985 	h = kobj_to_hstate(kobj, NULL);
3986 	if (demote_order >= h->order)
3987 		return -EINVAL;
3988 
3989 	/* resize_lock synchronizes access to demote size and writes */
3990 	mutex_lock(&h->resize_lock);
3991 	h->demote_order = demote_order;
3992 	mutex_unlock(&h->resize_lock);
3993 
3994 	return count;
3995 }
3996 HSTATE_ATTR(demote_size);
3997 
3998 static struct attribute *hstate_attrs[] = {
3999 	&nr_hugepages_attr.attr,
4000 	&nr_overcommit_hugepages_attr.attr,
4001 	&free_hugepages_attr.attr,
4002 	&resv_hugepages_attr.attr,
4003 	&surplus_hugepages_attr.attr,
4004 #ifdef CONFIG_NUMA
4005 	&nr_hugepages_mempolicy_attr.attr,
4006 #endif
4007 	NULL,
4008 };
4009 
4010 static const struct attribute_group hstate_attr_group = {
4011 	.attrs = hstate_attrs,
4012 };
4013 
4014 static struct attribute *hstate_demote_attrs[] = {
4015 	&demote_size_attr.attr,
4016 	&demote_attr.attr,
4017 	NULL,
4018 };
4019 
4020 static const struct attribute_group hstate_demote_attr_group = {
4021 	.attrs = hstate_demote_attrs,
4022 };
4023 
4024 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4025 				    struct kobject **hstate_kobjs,
4026 				    const struct attribute_group *hstate_attr_group)
4027 {
4028 	int retval;
4029 	int hi = hstate_index(h);
4030 
4031 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4032 	if (!hstate_kobjs[hi])
4033 		return -ENOMEM;
4034 
4035 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4036 	if (retval) {
4037 		kobject_put(hstate_kobjs[hi]);
4038 		hstate_kobjs[hi] = NULL;
4039 		return retval;
4040 	}
4041 
4042 	if (h->demote_order) {
4043 		retval = sysfs_create_group(hstate_kobjs[hi],
4044 					    &hstate_demote_attr_group);
4045 		if (retval) {
4046 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4047 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4048 			kobject_put(hstate_kobjs[hi]);
4049 			hstate_kobjs[hi] = NULL;
4050 			return retval;
4051 		}
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 #ifdef CONFIG_NUMA
4058 static bool hugetlb_sysfs_initialized __ro_after_init;
4059 
4060 /*
4061  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4062  * with node devices in node_devices[] using a parallel array.  The array
4063  * index of a node device or _hstate == node id.
4064  * This is here to avoid any static dependency of the node device driver, in
4065  * the base kernel, on the hugetlb module.
4066  */
4067 struct node_hstate {
4068 	struct kobject		*hugepages_kobj;
4069 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4070 };
4071 static struct node_hstate node_hstates[MAX_NUMNODES];
4072 
4073 /*
4074  * A subset of global hstate attributes for node devices
4075  */
4076 static struct attribute *per_node_hstate_attrs[] = {
4077 	&nr_hugepages_attr.attr,
4078 	&free_hugepages_attr.attr,
4079 	&surplus_hugepages_attr.attr,
4080 	NULL,
4081 };
4082 
4083 static const struct attribute_group per_node_hstate_attr_group = {
4084 	.attrs = per_node_hstate_attrs,
4085 };
4086 
4087 /*
4088  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4089  * Returns node id via non-NULL nidp.
4090  */
4091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4092 {
4093 	int nid;
4094 
4095 	for (nid = 0; nid < nr_node_ids; nid++) {
4096 		struct node_hstate *nhs = &node_hstates[nid];
4097 		int i;
4098 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4099 			if (nhs->hstate_kobjs[i] == kobj) {
4100 				if (nidp)
4101 					*nidp = nid;
4102 				return &hstates[i];
4103 			}
4104 	}
4105 
4106 	BUG();
4107 	return NULL;
4108 }
4109 
4110 /*
4111  * Unregister hstate attributes from a single node device.
4112  * No-op if no hstate attributes attached.
4113  */
4114 void hugetlb_unregister_node(struct node *node)
4115 {
4116 	struct hstate *h;
4117 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4118 
4119 	if (!nhs->hugepages_kobj)
4120 		return;		/* no hstate attributes */
4121 
4122 	for_each_hstate(h) {
4123 		int idx = hstate_index(h);
4124 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4125 
4126 		if (!hstate_kobj)
4127 			continue;
4128 		if (h->demote_order)
4129 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4130 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4131 		kobject_put(hstate_kobj);
4132 		nhs->hstate_kobjs[idx] = NULL;
4133 	}
4134 
4135 	kobject_put(nhs->hugepages_kobj);
4136 	nhs->hugepages_kobj = NULL;
4137 }
4138 
4139 
4140 /*
4141  * Register hstate attributes for a single node device.
4142  * No-op if attributes already registered.
4143  */
4144 void hugetlb_register_node(struct node *node)
4145 {
4146 	struct hstate *h;
4147 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4148 	int err;
4149 
4150 	if (!hugetlb_sysfs_initialized)
4151 		return;
4152 
4153 	if (nhs->hugepages_kobj)
4154 		return;		/* already allocated */
4155 
4156 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4157 							&node->dev.kobj);
4158 	if (!nhs->hugepages_kobj)
4159 		return;
4160 
4161 	for_each_hstate(h) {
4162 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4163 						nhs->hstate_kobjs,
4164 						&per_node_hstate_attr_group);
4165 		if (err) {
4166 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4167 				h->name, node->dev.id);
4168 			hugetlb_unregister_node(node);
4169 			break;
4170 		}
4171 	}
4172 }
4173 
4174 /*
4175  * hugetlb init time:  register hstate attributes for all registered node
4176  * devices of nodes that have memory.  All on-line nodes should have
4177  * registered their associated device by this time.
4178  */
4179 static void __init hugetlb_register_all_nodes(void)
4180 {
4181 	int nid;
4182 
4183 	for_each_online_node(nid)
4184 		hugetlb_register_node(node_devices[nid]);
4185 }
4186 #else	/* !CONFIG_NUMA */
4187 
4188 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4189 {
4190 	BUG();
4191 	if (nidp)
4192 		*nidp = -1;
4193 	return NULL;
4194 }
4195 
4196 static void hugetlb_register_all_nodes(void) { }
4197 
4198 #endif
4199 
4200 #ifdef CONFIG_CMA
4201 static void __init hugetlb_cma_check(void);
4202 #else
4203 static inline __init void hugetlb_cma_check(void)
4204 {
4205 }
4206 #endif
4207 
4208 static void __init hugetlb_sysfs_init(void)
4209 {
4210 	struct hstate *h;
4211 	int err;
4212 
4213 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4214 	if (!hugepages_kobj)
4215 		return;
4216 
4217 	for_each_hstate(h) {
4218 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4219 					 hstate_kobjs, &hstate_attr_group);
4220 		if (err)
4221 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4222 	}
4223 
4224 #ifdef CONFIG_NUMA
4225 	hugetlb_sysfs_initialized = true;
4226 #endif
4227 	hugetlb_register_all_nodes();
4228 }
4229 
4230 #ifdef CONFIG_SYSCTL
4231 static void hugetlb_sysctl_init(void);
4232 #else
4233 static inline void hugetlb_sysctl_init(void) { }
4234 #endif
4235 
4236 static int __init hugetlb_init(void)
4237 {
4238 	int i;
4239 
4240 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4241 			__NR_HPAGEFLAGS);
4242 
4243 	if (!hugepages_supported()) {
4244 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4245 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4246 		return 0;
4247 	}
4248 
4249 	/*
4250 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4251 	 * architectures depend on setup being done here.
4252 	 */
4253 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4254 	if (!parsed_default_hugepagesz) {
4255 		/*
4256 		 * If we did not parse a default huge page size, set
4257 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4258 		 * number of huge pages for this default size was implicitly
4259 		 * specified, set that here as well.
4260 		 * Note that the implicit setting will overwrite an explicit
4261 		 * setting.  A warning will be printed in this case.
4262 		 */
4263 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4264 		if (default_hstate_max_huge_pages) {
4265 			if (default_hstate.max_huge_pages) {
4266 				char buf[32];
4267 
4268 				string_get_size(huge_page_size(&default_hstate),
4269 					1, STRING_UNITS_2, buf, 32);
4270 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4271 					default_hstate.max_huge_pages, buf);
4272 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4273 					default_hstate_max_huge_pages);
4274 			}
4275 			default_hstate.max_huge_pages =
4276 				default_hstate_max_huge_pages;
4277 
4278 			for_each_online_node(i)
4279 				default_hstate.max_huge_pages_node[i] =
4280 					default_hugepages_in_node[i];
4281 		}
4282 	}
4283 
4284 	hugetlb_cma_check();
4285 	hugetlb_init_hstates();
4286 	gather_bootmem_prealloc();
4287 	report_hugepages();
4288 
4289 	hugetlb_sysfs_init();
4290 	hugetlb_cgroup_file_init();
4291 	hugetlb_sysctl_init();
4292 
4293 #ifdef CONFIG_SMP
4294 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4295 #else
4296 	num_fault_mutexes = 1;
4297 #endif
4298 	hugetlb_fault_mutex_table =
4299 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4300 			      GFP_KERNEL);
4301 	BUG_ON(!hugetlb_fault_mutex_table);
4302 
4303 	for (i = 0; i < num_fault_mutexes; i++)
4304 		mutex_init(&hugetlb_fault_mutex_table[i]);
4305 	return 0;
4306 }
4307 subsys_initcall(hugetlb_init);
4308 
4309 /* Overwritten by architectures with more huge page sizes */
4310 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4311 {
4312 	return size == HPAGE_SIZE;
4313 }
4314 
4315 void __init hugetlb_add_hstate(unsigned int order)
4316 {
4317 	struct hstate *h;
4318 	unsigned long i;
4319 
4320 	if (size_to_hstate(PAGE_SIZE << order)) {
4321 		return;
4322 	}
4323 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4324 	BUG_ON(order == 0);
4325 	h = &hstates[hugetlb_max_hstate++];
4326 	mutex_init(&h->resize_lock);
4327 	h->order = order;
4328 	h->mask = ~(huge_page_size(h) - 1);
4329 	for (i = 0; i < MAX_NUMNODES; ++i)
4330 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4331 	INIT_LIST_HEAD(&h->hugepage_activelist);
4332 	h->next_nid_to_alloc = first_memory_node;
4333 	h->next_nid_to_free = first_memory_node;
4334 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4335 					huge_page_size(h)/SZ_1K);
4336 
4337 	parsed_hstate = h;
4338 }
4339 
4340 bool __init __weak hugetlb_node_alloc_supported(void)
4341 {
4342 	return true;
4343 }
4344 
4345 static void __init hugepages_clear_pages_in_node(void)
4346 {
4347 	if (!hugetlb_max_hstate) {
4348 		default_hstate_max_huge_pages = 0;
4349 		memset(default_hugepages_in_node, 0,
4350 			sizeof(default_hugepages_in_node));
4351 	} else {
4352 		parsed_hstate->max_huge_pages = 0;
4353 		memset(parsed_hstate->max_huge_pages_node, 0,
4354 			sizeof(parsed_hstate->max_huge_pages_node));
4355 	}
4356 }
4357 
4358 /*
4359  * hugepages command line processing
4360  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4361  * specification.  If not, ignore the hugepages value.  hugepages can also
4362  * be the first huge page command line  option in which case it implicitly
4363  * specifies the number of huge pages for the default size.
4364  */
4365 static int __init hugepages_setup(char *s)
4366 {
4367 	unsigned long *mhp;
4368 	static unsigned long *last_mhp;
4369 	int node = NUMA_NO_NODE;
4370 	int count;
4371 	unsigned long tmp;
4372 	char *p = s;
4373 
4374 	if (!parsed_valid_hugepagesz) {
4375 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4376 		parsed_valid_hugepagesz = true;
4377 		return 1;
4378 	}
4379 
4380 	/*
4381 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4382 	 * yet, so this hugepages= parameter goes to the "default hstate".
4383 	 * Otherwise, it goes with the previously parsed hugepagesz or
4384 	 * default_hugepagesz.
4385 	 */
4386 	else if (!hugetlb_max_hstate)
4387 		mhp = &default_hstate_max_huge_pages;
4388 	else
4389 		mhp = &parsed_hstate->max_huge_pages;
4390 
4391 	if (mhp == last_mhp) {
4392 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4393 		return 1;
4394 	}
4395 
4396 	while (*p) {
4397 		count = 0;
4398 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4399 			goto invalid;
4400 		/* Parameter is node format */
4401 		if (p[count] == ':') {
4402 			if (!hugetlb_node_alloc_supported()) {
4403 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4404 				return 1;
4405 			}
4406 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4407 				goto invalid;
4408 			node = array_index_nospec(tmp, MAX_NUMNODES);
4409 			p += count + 1;
4410 			/* Parse hugepages */
4411 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4412 				goto invalid;
4413 			if (!hugetlb_max_hstate)
4414 				default_hugepages_in_node[node] = tmp;
4415 			else
4416 				parsed_hstate->max_huge_pages_node[node] = tmp;
4417 			*mhp += tmp;
4418 			/* Go to parse next node*/
4419 			if (p[count] == ',')
4420 				p += count + 1;
4421 			else
4422 				break;
4423 		} else {
4424 			if (p != s)
4425 				goto invalid;
4426 			*mhp = tmp;
4427 			break;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Global state is always initialized later in hugetlb_init.
4433 	 * But we need to allocate gigantic hstates here early to still
4434 	 * use the bootmem allocator.
4435 	 */
4436 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4437 		hugetlb_hstate_alloc_pages(parsed_hstate);
4438 
4439 	last_mhp = mhp;
4440 
4441 	return 1;
4442 
4443 invalid:
4444 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4445 	hugepages_clear_pages_in_node();
4446 	return 1;
4447 }
4448 __setup("hugepages=", hugepages_setup);
4449 
4450 /*
4451  * hugepagesz command line processing
4452  * A specific huge page size can only be specified once with hugepagesz.
4453  * hugepagesz is followed by hugepages on the command line.  The global
4454  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4455  * hugepagesz argument was valid.
4456  */
4457 static int __init hugepagesz_setup(char *s)
4458 {
4459 	unsigned long size;
4460 	struct hstate *h;
4461 
4462 	parsed_valid_hugepagesz = false;
4463 	size = (unsigned long)memparse(s, NULL);
4464 
4465 	if (!arch_hugetlb_valid_size(size)) {
4466 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4467 		return 1;
4468 	}
4469 
4470 	h = size_to_hstate(size);
4471 	if (h) {
4472 		/*
4473 		 * hstate for this size already exists.  This is normally
4474 		 * an error, but is allowed if the existing hstate is the
4475 		 * default hstate.  More specifically, it is only allowed if
4476 		 * the number of huge pages for the default hstate was not
4477 		 * previously specified.
4478 		 */
4479 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4480 		    default_hstate.max_huge_pages) {
4481 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4482 			return 1;
4483 		}
4484 
4485 		/*
4486 		 * No need to call hugetlb_add_hstate() as hstate already
4487 		 * exists.  But, do set parsed_hstate so that a following
4488 		 * hugepages= parameter will be applied to this hstate.
4489 		 */
4490 		parsed_hstate = h;
4491 		parsed_valid_hugepagesz = true;
4492 		return 1;
4493 	}
4494 
4495 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496 	parsed_valid_hugepagesz = true;
4497 	return 1;
4498 }
4499 __setup("hugepagesz=", hugepagesz_setup);
4500 
4501 /*
4502  * default_hugepagesz command line input
4503  * Only one instance of default_hugepagesz allowed on command line.
4504  */
4505 static int __init default_hugepagesz_setup(char *s)
4506 {
4507 	unsigned long size;
4508 	int i;
4509 
4510 	parsed_valid_hugepagesz = false;
4511 	if (parsed_default_hugepagesz) {
4512 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4513 		return 1;
4514 	}
4515 
4516 	size = (unsigned long)memparse(s, NULL);
4517 
4518 	if (!arch_hugetlb_valid_size(size)) {
4519 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4520 		return 1;
4521 	}
4522 
4523 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4524 	parsed_valid_hugepagesz = true;
4525 	parsed_default_hugepagesz = true;
4526 	default_hstate_idx = hstate_index(size_to_hstate(size));
4527 
4528 	/*
4529 	 * The number of default huge pages (for this size) could have been
4530 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4531 	 * then default_hstate_max_huge_pages is set.  If the default huge
4532 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4533 	 * allocated here from bootmem allocator.
4534 	 */
4535 	if (default_hstate_max_huge_pages) {
4536 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4537 		for_each_online_node(i)
4538 			default_hstate.max_huge_pages_node[i] =
4539 				default_hugepages_in_node[i];
4540 		if (hstate_is_gigantic(&default_hstate))
4541 			hugetlb_hstate_alloc_pages(&default_hstate);
4542 		default_hstate_max_huge_pages = 0;
4543 	}
4544 
4545 	return 1;
4546 }
4547 __setup("default_hugepagesz=", default_hugepagesz_setup);
4548 
4549 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4550 {
4551 #ifdef CONFIG_NUMA
4552 	struct mempolicy *mpol = get_task_policy(current);
4553 
4554 	/*
4555 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4556 	 * (from policy_nodemask) specifically for hugetlb case
4557 	 */
4558 	if (mpol->mode == MPOL_BIND &&
4559 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4560 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4561 		return &mpol->nodes;
4562 #endif
4563 	return NULL;
4564 }
4565 
4566 static unsigned int allowed_mems_nr(struct hstate *h)
4567 {
4568 	int node;
4569 	unsigned int nr = 0;
4570 	nodemask_t *mbind_nodemask;
4571 	unsigned int *array = h->free_huge_pages_node;
4572 	gfp_t gfp_mask = htlb_alloc_mask(h);
4573 
4574 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4575 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4576 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4577 			nr += array[node];
4578 	}
4579 
4580 	return nr;
4581 }
4582 
4583 #ifdef CONFIG_SYSCTL
4584 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4585 					  void *buffer, size_t *length,
4586 					  loff_t *ppos, unsigned long *out)
4587 {
4588 	struct ctl_table dup_table;
4589 
4590 	/*
4591 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4592 	 * can duplicate the @table and alter the duplicate of it.
4593 	 */
4594 	dup_table = *table;
4595 	dup_table.data = out;
4596 
4597 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4598 }
4599 
4600 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4601 			 struct ctl_table *table, int write,
4602 			 void *buffer, size_t *length, loff_t *ppos)
4603 {
4604 	struct hstate *h = &default_hstate;
4605 	unsigned long tmp = h->max_huge_pages;
4606 	int ret;
4607 
4608 	if (!hugepages_supported())
4609 		return -EOPNOTSUPP;
4610 
4611 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612 					     &tmp);
4613 	if (ret)
4614 		goto out;
4615 
4616 	if (write)
4617 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4618 						  NUMA_NO_NODE, tmp, *length);
4619 out:
4620 	return ret;
4621 }
4622 
4623 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4624 			  void *buffer, size_t *length, loff_t *ppos)
4625 {
4626 
4627 	return hugetlb_sysctl_handler_common(false, table, write,
4628 							buffer, length, ppos);
4629 }
4630 
4631 #ifdef CONFIG_NUMA
4632 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4633 			  void *buffer, size_t *length, loff_t *ppos)
4634 {
4635 	return hugetlb_sysctl_handler_common(true, table, write,
4636 							buffer, length, ppos);
4637 }
4638 #endif /* CONFIG_NUMA */
4639 
4640 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4641 		void *buffer, size_t *length, loff_t *ppos)
4642 {
4643 	struct hstate *h = &default_hstate;
4644 	unsigned long tmp;
4645 	int ret;
4646 
4647 	if (!hugepages_supported())
4648 		return -EOPNOTSUPP;
4649 
4650 	tmp = h->nr_overcommit_huge_pages;
4651 
4652 	if (write && hstate_is_gigantic(h))
4653 		return -EINVAL;
4654 
4655 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4656 					     &tmp);
4657 	if (ret)
4658 		goto out;
4659 
4660 	if (write) {
4661 		spin_lock_irq(&hugetlb_lock);
4662 		h->nr_overcommit_huge_pages = tmp;
4663 		spin_unlock_irq(&hugetlb_lock);
4664 	}
4665 out:
4666 	return ret;
4667 }
4668 
4669 static struct ctl_table hugetlb_table[] = {
4670 	{
4671 		.procname	= "nr_hugepages",
4672 		.data		= NULL,
4673 		.maxlen		= sizeof(unsigned long),
4674 		.mode		= 0644,
4675 		.proc_handler	= hugetlb_sysctl_handler,
4676 	},
4677 #ifdef CONFIG_NUMA
4678 	{
4679 		.procname       = "nr_hugepages_mempolicy",
4680 		.data           = NULL,
4681 		.maxlen         = sizeof(unsigned long),
4682 		.mode           = 0644,
4683 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4684 	},
4685 #endif
4686 	{
4687 		.procname	= "hugetlb_shm_group",
4688 		.data		= &sysctl_hugetlb_shm_group,
4689 		.maxlen		= sizeof(gid_t),
4690 		.mode		= 0644,
4691 		.proc_handler	= proc_dointvec,
4692 	},
4693 	{
4694 		.procname	= "nr_overcommit_hugepages",
4695 		.data		= NULL,
4696 		.maxlen		= sizeof(unsigned long),
4697 		.mode		= 0644,
4698 		.proc_handler	= hugetlb_overcommit_handler,
4699 	},
4700 	{ }
4701 };
4702 
4703 static void hugetlb_sysctl_init(void)
4704 {
4705 	register_sysctl_init("vm", hugetlb_table);
4706 }
4707 #endif /* CONFIG_SYSCTL */
4708 
4709 void hugetlb_report_meminfo(struct seq_file *m)
4710 {
4711 	struct hstate *h;
4712 	unsigned long total = 0;
4713 
4714 	if (!hugepages_supported())
4715 		return;
4716 
4717 	for_each_hstate(h) {
4718 		unsigned long count = h->nr_huge_pages;
4719 
4720 		total += huge_page_size(h) * count;
4721 
4722 		if (h == &default_hstate)
4723 			seq_printf(m,
4724 				   "HugePages_Total:   %5lu\n"
4725 				   "HugePages_Free:    %5lu\n"
4726 				   "HugePages_Rsvd:    %5lu\n"
4727 				   "HugePages_Surp:    %5lu\n"
4728 				   "Hugepagesize:   %8lu kB\n",
4729 				   count,
4730 				   h->free_huge_pages,
4731 				   h->resv_huge_pages,
4732 				   h->surplus_huge_pages,
4733 				   huge_page_size(h) / SZ_1K);
4734 	}
4735 
4736 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4737 }
4738 
4739 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4740 {
4741 	struct hstate *h = &default_hstate;
4742 
4743 	if (!hugepages_supported())
4744 		return 0;
4745 
4746 	return sysfs_emit_at(buf, len,
4747 			     "Node %d HugePages_Total: %5u\n"
4748 			     "Node %d HugePages_Free:  %5u\n"
4749 			     "Node %d HugePages_Surp:  %5u\n",
4750 			     nid, h->nr_huge_pages_node[nid],
4751 			     nid, h->free_huge_pages_node[nid],
4752 			     nid, h->surplus_huge_pages_node[nid]);
4753 }
4754 
4755 void hugetlb_show_meminfo_node(int nid)
4756 {
4757 	struct hstate *h;
4758 
4759 	if (!hugepages_supported())
4760 		return;
4761 
4762 	for_each_hstate(h)
4763 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4764 			nid,
4765 			h->nr_huge_pages_node[nid],
4766 			h->free_huge_pages_node[nid],
4767 			h->surplus_huge_pages_node[nid],
4768 			huge_page_size(h) / SZ_1K);
4769 }
4770 
4771 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4772 {
4773 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4774 		   K(atomic_long_read(&mm->hugetlb_usage)));
4775 }
4776 
4777 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4778 unsigned long hugetlb_total_pages(void)
4779 {
4780 	struct hstate *h;
4781 	unsigned long nr_total_pages = 0;
4782 
4783 	for_each_hstate(h)
4784 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4785 	return nr_total_pages;
4786 }
4787 
4788 static int hugetlb_acct_memory(struct hstate *h, long delta)
4789 {
4790 	int ret = -ENOMEM;
4791 
4792 	if (!delta)
4793 		return 0;
4794 
4795 	spin_lock_irq(&hugetlb_lock);
4796 	/*
4797 	 * When cpuset is configured, it breaks the strict hugetlb page
4798 	 * reservation as the accounting is done on a global variable. Such
4799 	 * reservation is completely rubbish in the presence of cpuset because
4800 	 * the reservation is not checked against page availability for the
4801 	 * current cpuset. Application can still potentially OOM'ed by kernel
4802 	 * with lack of free htlb page in cpuset that the task is in.
4803 	 * Attempt to enforce strict accounting with cpuset is almost
4804 	 * impossible (or too ugly) because cpuset is too fluid that
4805 	 * task or memory node can be dynamically moved between cpusets.
4806 	 *
4807 	 * The change of semantics for shared hugetlb mapping with cpuset is
4808 	 * undesirable. However, in order to preserve some of the semantics,
4809 	 * we fall back to check against current free page availability as
4810 	 * a best attempt and hopefully to minimize the impact of changing
4811 	 * semantics that cpuset has.
4812 	 *
4813 	 * Apart from cpuset, we also have memory policy mechanism that
4814 	 * also determines from which node the kernel will allocate memory
4815 	 * in a NUMA system. So similar to cpuset, we also should consider
4816 	 * the memory policy of the current task. Similar to the description
4817 	 * above.
4818 	 */
4819 	if (delta > 0) {
4820 		if (gather_surplus_pages(h, delta) < 0)
4821 			goto out;
4822 
4823 		if (delta > allowed_mems_nr(h)) {
4824 			return_unused_surplus_pages(h, delta);
4825 			goto out;
4826 		}
4827 	}
4828 
4829 	ret = 0;
4830 	if (delta < 0)
4831 		return_unused_surplus_pages(h, (unsigned long) -delta);
4832 
4833 out:
4834 	spin_unlock_irq(&hugetlb_lock);
4835 	return ret;
4836 }
4837 
4838 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4839 {
4840 	struct resv_map *resv = vma_resv_map(vma);
4841 
4842 	/*
4843 	 * HPAGE_RESV_OWNER indicates a private mapping.
4844 	 * This new VMA should share its siblings reservation map if present.
4845 	 * The VMA will only ever have a valid reservation map pointer where
4846 	 * it is being copied for another still existing VMA.  As that VMA
4847 	 * has a reference to the reservation map it cannot disappear until
4848 	 * after this open call completes.  It is therefore safe to take a
4849 	 * new reference here without additional locking.
4850 	 */
4851 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4852 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4853 		kref_get(&resv->refs);
4854 	}
4855 
4856 	/*
4857 	 * vma_lock structure for sharable mappings is vma specific.
4858 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4859 	 * new structure.  Before clearing, make sure vma_lock is not
4860 	 * for this vma.
4861 	 */
4862 	if (vma->vm_flags & VM_MAYSHARE) {
4863 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4864 
4865 		if (vma_lock) {
4866 			if (vma_lock->vma != vma) {
4867 				vma->vm_private_data = NULL;
4868 				hugetlb_vma_lock_alloc(vma);
4869 			} else
4870 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4871 		} else
4872 			hugetlb_vma_lock_alloc(vma);
4873 	}
4874 }
4875 
4876 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4877 {
4878 	struct hstate *h = hstate_vma(vma);
4879 	struct resv_map *resv;
4880 	struct hugepage_subpool *spool = subpool_vma(vma);
4881 	unsigned long reserve, start, end;
4882 	long gbl_reserve;
4883 
4884 	hugetlb_vma_lock_free(vma);
4885 
4886 	resv = vma_resv_map(vma);
4887 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4888 		return;
4889 
4890 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4891 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4892 
4893 	reserve = (end - start) - region_count(resv, start, end);
4894 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4895 	if (reserve) {
4896 		/*
4897 		 * Decrement reserve counts.  The global reserve count may be
4898 		 * adjusted if the subpool has a minimum size.
4899 		 */
4900 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4901 		hugetlb_acct_memory(h, -gbl_reserve);
4902 	}
4903 
4904 	kref_put(&resv->refs, resv_map_release);
4905 }
4906 
4907 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4908 {
4909 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4910 		return -EINVAL;
4911 
4912 	/*
4913 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4914 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4915 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4916 	 */
4917 	if (addr & ~PUD_MASK) {
4918 		/*
4919 		 * hugetlb_vm_op_split is called right before we attempt to
4920 		 * split the VMA. We will need to unshare PMDs in the old and
4921 		 * new VMAs, so let's unshare before we split.
4922 		 */
4923 		unsigned long floor = addr & PUD_MASK;
4924 		unsigned long ceil = floor + PUD_SIZE;
4925 
4926 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4927 			hugetlb_unshare_pmds(vma, floor, ceil);
4928 	}
4929 
4930 	return 0;
4931 }
4932 
4933 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4934 {
4935 	return huge_page_size(hstate_vma(vma));
4936 }
4937 
4938 /*
4939  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4940  * handle_mm_fault() to try to instantiate regular-sized pages in the
4941  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4942  * this far.
4943  */
4944 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4945 {
4946 	BUG();
4947 	return 0;
4948 }
4949 
4950 /*
4951  * When a new function is introduced to vm_operations_struct and added
4952  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4953  * This is because under System V memory model, mappings created via
4954  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4955  * their original vm_ops are overwritten with shm_vm_ops.
4956  */
4957 const struct vm_operations_struct hugetlb_vm_ops = {
4958 	.fault = hugetlb_vm_op_fault,
4959 	.open = hugetlb_vm_op_open,
4960 	.close = hugetlb_vm_op_close,
4961 	.may_split = hugetlb_vm_op_split,
4962 	.pagesize = hugetlb_vm_op_pagesize,
4963 };
4964 
4965 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4966 				int writable)
4967 {
4968 	pte_t entry;
4969 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4970 
4971 	if (writable) {
4972 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4973 					 vma->vm_page_prot)));
4974 	} else {
4975 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4976 					   vma->vm_page_prot));
4977 	}
4978 	entry = pte_mkyoung(entry);
4979 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4980 
4981 	return entry;
4982 }
4983 
4984 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4985 				   unsigned long address, pte_t *ptep)
4986 {
4987 	pte_t entry;
4988 
4989 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4990 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4991 		update_mmu_cache(vma, address, ptep);
4992 }
4993 
4994 bool is_hugetlb_entry_migration(pte_t pte)
4995 {
4996 	swp_entry_t swp;
4997 
4998 	if (huge_pte_none(pte) || pte_present(pte))
4999 		return false;
5000 	swp = pte_to_swp_entry(pte);
5001 	if (is_migration_entry(swp))
5002 		return true;
5003 	else
5004 		return false;
5005 }
5006 
5007 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5008 {
5009 	swp_entry_t swp;
5010 
5011 	if (huge_pte_none(pte) || pte_present(pte))
5012 		return false;
5013 	swp = pte_to_swp_entry(pte);
5014 	if (is_hwpoison_entry(swp))
5015 		return true;
5016 	else
5017 		return false;
5018 }
5019 
5020 static void
5021 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5022 		      struct folio *new_folio, pte_t old, unsigned long sz)
5023 {
5024 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5025 
5026 	__folio_mark_uptodate(new_folio);
5027 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5028 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5029 		newpte = huge_pte_mkuffd_wp(newpte);
5030 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5031 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5032 	folio_set_hugetlb_migratable(new_folio);
5033 }
5034 
5035 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5036 			    struct vm_area_struct *dst_vma,
5037 			    struct vm_area_struct *src_vma)
5038 {
5039 	pte_t *src_pte, *dst_pte, entry;
5040 	struct folio *pte_folio;
5041 	unsigned long addr;
5042 	bool cow = is_cow_mapping(src_vma->vm_flags);
5043 	struct hstate *h = hstate_vma(src_vma);
5044 	unsigned long sz = huge_page_size(h);
5045 	unsigned long npages = pages_per_huge_page(h);
5046 	struct mmu_notifier_range range;
5047 	unsigned long last_addr_mask;
5048 	int ret = 0;
5049 
5050 	if (cow) {
5051 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5052 					src_vma->vm_start,
5053 					src_vma->vm_end);
5054 		mmu_notifier_invalidate_range_start(&range);
5055 		vma_assert_write_locked(src_vma);
5056 		raw_write_seqcount_begin(&src->write_protect_seq);
5057 	} else {
5058 		/*
5059 		 * For shared mappings the vma lock must be held before
5060 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5061 		 * returned ptep could go away if part of a shared pmd and
5062 		 * another thread calls huge_pmd_unshare.
5063 		 */
5064 		hugetlb_vma_lock_read(src_vma);
5065 	}
5066 
5067 	last_addr_mask = hugetlb_mask_last_page(h);
5068 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5069 		spinlock_t *src_ptl, *dst_ptl;
5070 		src_pte = hugetlb_walk(src_vma, addr, sz);
5071 		if (!src_pte) {
5072 			addr |= last_addr_mask;
5073 			continue;
5074 		}
5075 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5076 		if (!dst_pte) {
5077 			ret = -ENOMEM;
5078 			break;
5079 		}
5080 
5081 		/*
5082 		 * If the pagetables are shared don't copy or take references.
5083 		 *
5084 		 * dst_pte == src_pte is the common case of src/dest sharing.
5085 		 * However, src could have 'unshared' and dst shares with
5086 		 * another vma. So page_count of ptep page is checked instead
5087 		 * to reliably determine whether pte is shared.
5088 		 */
5089 		if (page_count(virt_to_page(dst_pte)) > 1) {
5090 			addr |= last_addr_mask;
5091 			continue;
5092 		}
5093 
5094 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5095 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5096 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5097 		entry = huge_ptep_get(src_pte);
5098 again:
5099 		if (huge_pte_none(entry)) {
5100 			/*
5101 			 * Skip if src entry none.
5102 			 */
5103 			;
5104 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5105 			if (!userfaultfd_wp(dst_vma))
5106 				entry = huge_pte_clear_uffd_wp(entry);
5107 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5108 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5109 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5110 			bool uffd_wp = pte_swp_uffd_wp(entry);
5111 
5112 			if (!is_readable_migration_entry(swp_entry) && cow) {
5113 				/*
5114 				 * COW mappings require pages in both
5115 				 * parent and child to be set to read.
5116 				 */
5117 				swp_entry = make_readable_migration_entry(
5118 							swp_offset(swp_entry));
5119 				entry = swp_entry_to_pte(swp_entry);
5120 				if (userfaultfd_wp(src_vma) && uffd_wp)
5121 					entry = pte_swp_mkuffd_wp(entry);
5122 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5123 			}
5124 			if (!userfaultfd_wp(dst_vma))
5125 				entry = huge_pte_clear_uffd_wp(entry);
5126 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5127 		} else if (unlikely(is_pte_marker(entry))) {
5128 			pte_marker marker = copy_pte_marker(
5129 				pte_to_swp_entry(entry), dst_vma);
5130 
5131 			if (marker)
5132 				set_huge_pte_at(dst, addr, dst_pte,
5133 						make_pte_marker(marker), sz);
5134 		} else {
5135 			entry = huge_ptep_get(src_pte);
5136 			pte_folio = page_folio(pte_page(entry));
5137 			folio_get(pte_folio);
5138 
5139 			/*
5140 			 * Failing to duplicate the anon rmap is a rare case
5141 			 * where we see pinned hugetlb pages while they're
5142 			 * prone to COW. We need to do the COW earlier during
5143 			 * fork.
5144 			 *
5145 			 * When pre-allocating the page or copying data, we
5146 			 * need to be without the pgtable locks since we could
5147 			 * sleep during the process.
5148 			 */
5149 			if (!folio_test_anon(pte_folio)) {
5150 				page_dup_file_rmap(&pte_folio->page, true);
5151 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5152 							  true, src_vma)) {
5153 				pte_t src_pte_old = entry;
5154 				struct folio *new_folio;
5155 
5156 				spin_unlock(src_ptl);
5157 				spin_unlock(dst_ptl);
5158 				/* Do not use reserve as it's private owned */
5159 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5160 				if (IS_ERR(new_folio)) {
5161 					folio_put(pte_folio);
5162 					ret = PTR_ERR(new_folio);
5163 					break;
5164 				}
5165 				ret = copy_user_large_folio(new_folio,
5166 							    pte_folio,
5167 							    addr, dst_vma);
5168 				folio_put(pte_folio);
5169 				if (ret) {
5170 					folio_put(new_folio);
5171 					break;
5172 				}
5173 
5174 				/* Install the new hugetlb folio if src pte stable */
5175 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5176 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5177 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178 				entry = huge_ptep_get(src_pte);
5179 				if (!pte_same(src_pte_old, entry)) {
5180 					restore_reserve_on_error(h, dst_vma, addr,
5181 								new_folio);
5182 					folio_put(new_folio);
5183 					/* huge_ptep of dst_pte won't change as in child */
5184 					goto again;
5185 				}
5186 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5187 						      new_folio, src_pte_old, sz);
5188 				spin_unlock(src_ptl);
5189 				spin_unlock(dst_ptl);
5190 				continue;
5191 			}
5192 
5193 			if (cow) {
5194 				/*
5195 				 * No need to notify as we are downgrading page
5196 				 * table protection not changing it to point
5197 				 * to a new page.
5198 				 *
5199 				 * See Documentation/mm/mmu_notifier.rst
5200 				 */
5201 				huge_ptep_set_wrprotect(src, addr, src_pte);
5202 				entry = huge_pte_wrprotect(entry);
5203 			}
5204 
5205 			if (!userfaultfd_wp(dst_vma))
5206 				entry = huge_pte_clear_uffd_wp(entry);
5207 
5208 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5209 			hugetlb_count_add(npages, dst);
5210 		}
5211 		spin_unlock(src_ptl);
5212 		spin_unlock(dst_ptl);
5213 	}
5214 
5215 	if (cow) {
5216 		raw_write_seqcount_end(&src->write_protect_seq);
5217 		mmu_notifier_invalidate_range_end(&range);
5218 	} else {
5219 		hugetlb_vma_unlock_read(src_vma);
5220 	}
5221 
5222 	return ret;
5223 }
5224 
5225 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5226 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5227 			  unsigned long sz)
5228 {
5229 	struct hstate *h = hstate_vma(vma);
5230 	struct mm_struct *mm = vma->vm_mm;
5231 	spinlock_t *src_ptl, *dst_ptl;
5232 	pte_t pte;
5233 
5234 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5235 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5236 
5237 	/*
5238 	 * We don't have to worry about the ordering of src and dst ptlocks
5239 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5240 	 */
5241 	if (src_ptl != dst_ptl)
5242 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5243 
5244 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5245 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5246 
5247 	if (src_ptl != dst_ptl)
5248 		spin_unlock(src_ptl);
5249 	spin_unlock(dst_ptl);
5250 }
5251 
5252 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5253 			     struct vm_area_struct *new_vma,
5254 			     unsigned long old_addr, unsigned long new_addr,
5255 			     unsigned long len)
5256 {
5257 	struct hstate *h = hstate_vma(vma);
5258 	struct address_space *mapping = vma->vm_file->f_mapping;
5259 	unsigned long sz = huge_page_size(h);
5260 	struct mm_struct *mm = vma->vm_mm;
5261 	unsigned long old_end = old_addr + len;
5262 	unsigned long last_addr_mask;
5263 	pte_t *src_pte, *dst_pte;
5264 	struct mmu_notifier_range range;
5265 	bool shared_pmd = false;
5266 
5267 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5268 				old_end);
5269 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5270 	/*
5271 	 * In case of shared PMDs, we should cover the maximum possible
5272 	 * range.
5273 	 */
5274 	flush_cache_range(vma, range.start, range.end);
5275 
5276 	mmu_notifier_invalidate_range_start(&range);
5277 	last_addr_mask = hugetlb_mask_last_page(h);
5278 	/* Prevent race with file truncation */
5279 	hugetlb_vma_lock_write(vma);
5280 	i_mmap_lock_write(mapping);
5281 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5282 		src_pte = hugetlb_walk(vma, old_addr, sz);
5283 		if (!src_pte) {
5284 			old_addr |= last_addr_mask;
5285 			new_addr |= last_addr_mask;
5286 			continue;
5287 		}
5288 		if (huge_pte_none(huge_ptep_get(src_pte)))
5289 			continue;
5290 
5291 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5292 			shared_pmd = true;
5293 			old_addr |= last_addr_mask;
5294 			new_addr |= last_addr_mask;
5295 			continue;
5296 		}
5297 
5298 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5299 		if (!dst_pte)
5300 			break;
5301 
5302 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5303 	}
5304 
5305 	if (shared_pmd)
5306 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5307 	else
5308 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5309 	mmu_notifier_invalidate_range_end(&range);
5310 	i_mmap_unlock_write(mapping);
5311 	hugetlb_vma_unlock_write(vma);
5312 
5313 	return len + old_addr - old_end;
5314 }
5315 
5316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5317 			    unsigned long start, unsigned long end,
5318 			    struct page *ref_page, zap_flags_t zap_flags)
5319 {
5320 	struct mm_struct *mm = vma->vm_mm;
5321 	unsigned long address;
5322 	pte_t *ptep;
5323 	pte_t pte;
5324 	spinlock_t *ptl;
5325 	struct page *page;
5326 	struct hstate *h = hstate_vma(vma);
5327 	unsigned long sz = huge_page_size(h);
5328 	unsigned long last_addr_mask;
5329 	bool force_flush = false;
5330 
5331 	WARN_ON(!is_vm_hugetlb_page(vma));
5332 	BUG_ON(start & ~huge_page_mask(h));
5333 	BUG_ON(end & ~huge_page_mask(h));
5334 
5335 	/*
5336 	 * This is a hugetlb vma, all the pte entries should point
5337 	 * to huge page.
5338 	 */
5339 	tlb_change_page_size(tlb, sz);
5340 	tlb_start_vma(tlb, vma);
5341 
5342 	last_addr_mask = hugetlb_mask_last_page(h);
5343 	address = start;
5344 	for (; address < end; address += sz) {
5345 		ptep = hugetlb_walk(vma, address, sz);
5346 		if (!ptep) {
5347 			address |= last_addr_mask;
5348 			continue;
5349 		}
5350 
5351 		ptl = huge_pte_lock(h, mm, ptep);
5352 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5353 			spin_unlock(ptl);
5354 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5355 			force_flush = true;
5356 			address |= last_addr_mask;
5357 			continue;
5358 		}
5359 
5360 		pte = huge_ptep_get(ptep);
5361 		if (huge_pte_none(pte)) {
5362 			spin_unlock(ptl);
5363 			continue;
5364 		}
5365 
5366 		/*
5367 		 * Migrating hugepage or HWPoisoned hugepage is already
5368 		 * unmapped and its refcount is dropped, so just clear pte here.
5369 		 */
5370 		if (unlikely(!pte_present(pte))) {
5371 			/*
5372 			 * If the pte was wr-protected by uffd-wp in any of the
5373 			 * swap forms, meanwhile the caller does not want to
5374 			 * drop the uffd-wp bit in this zap, then replace the
5375 			 * pte with a marker.
5376 			 */
5377 			if (pte_swp_uffd_wp_any(pte) &&
5378 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5379 				set_huge_pte_at(mm, address, ptep,
5380 						make_pte_marker(PTE_MARKER_UFFD_WP),
5381 						sz);
5382 			else
5383 				huge_pte_clear(mm, address, ptep, sz);
5384 			spin_unlock(ptl);
5385 			continue;
5386 		}
5387 
5388 		page = pte_page(pte);
5389 		/*
5390 		 * If a reference page is supplied, it is because a specific
5391 		 * page is being unmapped, not a range. Ensure the page we
5392 		 * are about to unmap is the actual page of interest.
5393 		 */
5394 		if (ref_page) {
5395 			if (page != ref_page) {
5396 				spin_unlock(ptl);
5397 				continue;
5398 			}
5399 			/*
5400 			 * Mark the VMA as having unmapped its page so that
5401 			 * future faults in this VMA will fail rather than
5402 			 * looking like data was lost
5403 			 */
5404 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5405 		}
5406 
5407 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5408 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409 		if (huge_pte_dirty(pte))
5410 			set_page_dirty(page);
5411 		/* Leave a uffd-wp pte marker if needed */
5412 		if (huge_pte_uffd_wp(pte) &&
5413 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414 			set_huge_pte_at(mm, address, ptep,
5415 					make_pte_marker(PTE_MARKER_UFFD_WP),
5416 					sz);
5417 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5418 		page_remove_rmap(page, vma, true);
5419 
5420 		spin_unlock(ptl);
5421 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5422 		/*
5423 		 * Bail out after unmapping reference page if supplied
5424 		 */
5425 		if (ref_page)
5426 			break;
5427 	}
5428 	tlb_end_vma(tlb, vma);
5429 
5430 	/*
5431 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5432 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5433 	 * guaranteed that the last refernece would not be dropped. But we must
5434 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5435 	 * dropped and the last reference to the shared PMDs page might be
5436 	 * dropped as well.
5437 	 *
5438 	 * In theory we could defer the freeing of the PMD pages as well, but
5439 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5440 	 * detect sharing, so we cannot defer the release of the page either.
5441 	 * Instead, do flush now.
5442 	 */
5443 	if (force_flush)
5444 		tlb_flush_mmu_tlbonly(tlb);
5445 }
5446 
5447 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5448 			 unsigned long *start, unsigned long *end)
5449 {
5450 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5451 		return;
5452 
5453 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5454 	hugetlb_vma_lock_write(vma);
5455 	if (vma->vm_file)
5456 		i_mmap_lock_write(vma->vm_file->f_mapping);
5457 }
5458 
5459 void __hugetlb_zap_end(struct vm_area_struct *vma,
5460 		       struct zap_details *details)
5461 {
5462 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5463 
5464 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5465 		return;
5466 
5467 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5468 		/*
5469 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5470 		 * When the vma_lock is freed, this makes the vma ineligible
5471 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5472 		 * pmd sharing.  This is important as page tables for this
5473 		 * unmapped range will be asynchrously deleted.  If the page
5474 		 * tables are shared, there will be issues when accessed by
5475 		 * someone else.
5476 		 */
5477 		__hugetlb_vma_unlock_write_free(vma);
5478 	} else {
5479 		hugetlb_vma_unlock_write(vma);
5480 	}
5481 
5482 	if (vma->vm_file)
5483 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5484 }
5485 
5486 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5487 			  unsigned long end, struct page *ref_page,
5488 			  zap_flags_t zap_flags)
5489 {
5490 	struct mmu_notifier_range range;
5491 	struct mmu_gather tlb;
5492 
5493 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5494 				start, end);
5495 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5496 	mmu_notifier_invalidate_range_start(&range);
5497 	tlb_gather_mmu(&tlb, vma->vm_mm);
5498 
5499 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5500 
5501 	mmu_notifier_invalidate_range_end(&range);
5502 	tlb_finish_mmu(&tlb);
5503 }
5504 
5505 /*
5506  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5507  * mapping it owns the reserve page for. The intention is to unmap the page
5508  * from other VMAs and let the children be SIGKILLed if they are faulting the
5509  * same region.
5510  */
5511 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5512 			      struct page *page, unsigned long address)
5513 {
5514 	struct hstate *h = hstate_vma(vma);
5515 	struct vm_area_struct *iter_vma;
5516 	struct address_space *mapping;
5517 	pgoff_t pgoff;
5518 
5519 	/*
5520 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5521 	 * from page cache lookup which is in HPAGE_SIZE units.
5522 	 */
5523 	address = address & huge_page_mask(h);
5524 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5525 			vma->vm_pgoff;
5526 	mapping = vma->vm_file->f_mapping;
5527 
5528 	/*
5529 	 * Take the mapping lock for the duration of the table walk. As
5530 	 * this mapping should be shared between all the VMAs,
5531 	 * __unmap_hugepage_range() is called as the lock is already held
5532 	 */
5533 	i_mmap_lock_write(mapping);
5534 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5535 		/* Do not unmap the current VMA */
5536 		if (iter_vma == vma)
5537 			continue;
5538 
5539 		/*
5540 		 * Shared VMAs have their own reserves and do not affect
5541 		 * MAP_PRIVATE accounting but it is possible that a shared
5542 		 * VMA is using the same page so check and skip such VMAs.
5543 		 */
5544 		if (iter_vma->vm_flags & VM_MAYSHARE)
5545 			continue;
5546 
5547 		/*
5548 		 * Unmap the page from other VMAs without their own reserves.
5549 		 * They get marked to be SIGKILLed if they fault in these
5550 		 * areas. This is because a future no-page fault on this VMA
5551 		 * could insert a zeroed page instead of the data existing
5552 		 * from the time of fork. This would look like data corruption
5553 		 */
5554 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5555 			unmap_hugepage_range(iter_vma, address,
5556 					     address + huge_page_size(h), page, 0);
5557 	}
5558 	i_mmap_unlock_write(mapping);
5559 }
5560 
5561 /*
5562  * hugetlb_wp() should be called with page lock of the original hugepage held.
5563  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5564  * cannot race with other handlers or page migration.
5565  * Keep the pte_same checks anyway to make transition from the mutex easier.
5566  */
5567 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5568 		       unsigned long address, pte_t *ptep, unsigned int flags,
5569 		       struct folio *pagecache_folio, spinlock_t *ptl)
5570 {
5571 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5572 	pte_t pte = huge_ptep_get(ptep);
5573 	struct hstate *h = hstate_vma(vma);
5574 	struct folio *old_folio;
5575 	struct folio *new_folio;
5576 	int outside_reserve = 0;
5577 	vm_fault_t ret = 0;
5578 	unsigned long haddr = address & huge_page_mask(h);
5579 	struct mmu_notifier_range range;
5580 
5581 	/*
5582 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5583 	 * handled when the uffd-wp protection is removed.
5584 	 *
5585 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5586 	 * can trigger this, because hugetlb_fault() will always resolve
5587 	 * uffd-wp bit first.
5588 	 */
5589 	if (!unshare && huge_pte_uffd_wp(pte))
5590 		return 0;
5591 
5592 	/*
5593 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5594 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5595 	 */
5596 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5597 		return VM_FAULT_SIGSEGV;
5598 
5599 	/* Let's take out MAP_SHARED mappings first. */
5600 	if (vma->vm_flags & VM_MAYSHARE) {
5601 		set_huge_ptep_writable(vma, haddr, ptep);
5602 		return 0;
5603 	}
5604 
5605 	old_folio = page_folio(pte_page(pte));
5606 
5607 	delayacct_wpcopy_start();
5608 
5609 retry_avoidcopy:
5610 	/*
5611 	 * If no-one else is actually using this page, we're the exclusive
5612 	 * owner and can reuse this page.
5613 	 */
5614 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5615 		if (!PageAnonExclusive(&old_folio->page))
5616 			page_move_anon_rmap(&old_folio->page, vma);
5617 		if (likely(!unshare))
5618 			set_huge_ptep_writable(vma, haddr, ptep);
5619 
5620 		delayacct_wpcopy_end();
5621 		return 0;
5622 	}
5623 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5624 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5625 
5626 	/*
5627 	 * If the process that created a MAP_PRIVATE mapping is about to
5628 	 * perform a COW due to a shared page count, attempt to satisfy
5629 	 * the allocation without using the existing reserves. The pagecache
5630 	 * page is used to determine if the reserve at this address was
5631 	 * consumed or not. If reserves were used, a partial faulted mapping
5632 	 * at the time of fork() could consume its reserves on COW instead
5633 	 * of the full address range.
5634 	 */
5635 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5636 			old_folio != pagecache_folio)
5637 		outside_reserve = 1;
5638 
5639 	folio_get(old_folio);
5640 
5641 	/*
5642 	 * Drop page table lock as buddy allocator may be called. It will
5643 	 * be acquired again before returning to the caller, as expected.
5644 	 */
5645 	spin_unlock(ptl);
5646 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5647 
5648 	if (IS_ERR(new_folio)) {
5649 		/*
5650 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5651 		 * it is due to references held by a child and an insufficient
5652 		 * huge page pool. To guarantee the original mappers
5653 		 * reliability, unmap the page from child processes. The child
5654 		 * may get SIGKILLed if it later faults.
5655 		 */
5656 		if (outside_reserve) {
5657 			struct address_space *mapping = vma->vm_file->f_mapping;
5658 			pgoff_t idx;
5659 			u32 hash;
5660 
5661 			folio_put(old_folio);
5662 			/*
5663 			 * Drop hugetlb_fault_mutex and vma_lock before
5664 			 * unmapping.  unmapping needs to hold vma_lock
5665 			 * in write mode.  Dropping vma_lock in read mode
5666 			 * here is OK as COW mappings do not interact with
5667 			 * PMD sharing.
5668 			 *
5669 			 * Reacquire both after unmap operation.
5670 			 */
5671 			idx = vma_hugecache_offset(h, vma, haddr);
5672 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5673 			hugetlb_vma_unlock_read(vma);
5674 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5675 
5676 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5677 
5678 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5679 			hugetlb_vma_lock_read(vma);
5680 			spin_lock(ptl);
5681 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5682 			if (likely(ptep &&
5683 				   pte_same(huge_ptep_get(ptep), pte)))
5684 				goto retry_avoidcopy;
5685 			/*
5686 			 * race occurs while re-acquiring page table
5687 			 * lock, and our job is done.
5688 			 */
5689 			delayacct_wpcopy_end();
5690 			return 0;
5691 		}
5692 
5693 		ret = vmf_error(PTR_ERR(new_folio));
5694 		goto out_release_old;
5695 	}
5696 
5697 	/*
5698 	 * When the original hugepage is shared one, it does not have
5699 	 * anon_vma prepared.
5700 	 */
5701 	if (unlikely(anon_vma_prepare(vma))) {
5702 		ret = VM_FAULT_OOM;
5703 		goto out_release_all;
5704 	}
5705 
5706 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5707 		ret = VM_FAULT_HWPOISON_LARGE;
5708 		goto out_release_all;
5709 	}
5710 	__folio_mark_uptodate(new_folio);
5711 
5712 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5713 				haddr + huge_page_size(h));
5714 	mmu_notifier_invalidate_range_start(&range);
5715 
5716 	/*
5717 	 * Retake the page table lock to check for racing updates
5718 	 * before the page tables are altered
5719 	 */
5720 	spin_lock(ptl);
5721 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5722 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5723 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5724 
5725 		/* Break COW or unshare */
5726 		huge_ptep_clear_flush(vma, haddr, ptep);
5727 		page_remove_rmap(&old_folio->page, vma, true);
5728 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5729 		if (huge_pte_uffd_wp(pte))
5730 			newpte = huge_pte_mkuffd_wp(newpte);
5731 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5732 		folio_set_hugetlb_migratable(new_folio);
5733 		/* Make the old page be freed below */
5734 		new_folio = old_folio;
5735 	}
5736 	spin_unlock(ptl);
5737 	mmu_notifier_invalidate_range_end(&range);
5738 out_release_all:
5739 	/*
5740 	 * No restore in case of successful pagetable update (Break COW or
5741 	 * unshare)
5742 	 */
5743 	if (new_folio != old_folio)
5744 		restore_reserve_on_error(h, vma, haddr, new_folio);
5745 	folio_put(new_folio);
5746 out_release_old:
5747 	folio_put(old_folio);
5748 
5749 	spin_lock(ptl); /* Caller expects lock to be held */
5750 
5751 	delayacct_wpcopy_end();
5752 	return ret;
5753 }
5754 
5755 /*
5756  * Return whether there is a pagecache page to back given address within VMA.
5757  */
5758 static bool hugetlbfs_pagecache_present(struct hstate *h,
5759 			struct vm_area_struct *vma, unsigned long address)
5760 {
5761 	struct address_space *mapping = vma->vm_file->f_mapping;
5762 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5763 	struct folio *folio;
5764 
5765 	folio = filemap_get_folio(mapping, idx);
5766 	if (IS_ERR(folio))
5767 		return false;
5768 	folio_put(folio);
5769 	return true;
5770 }
5771 
5772 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5773 			   pgoff_t idx)
5774 {
5775 	struct inode *inode = mapping->host;
5776 	struct hstate *h = hstate_inode(inode);
5777 	int err;
5778 
5779 	__folio_set_locked(folio);
5780 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5781 
5782 	if (unlikely(err)) {
5783 		__folio_clear_locked(folio);
5784 		return err;
5785 	}
5786 	folio_clear_hugetlb_restore_reserve(folio);
5787 
5788 	/*
5789 	 * mark folio dirty so that it will not be removed from cache/file
5790 	 * by non-hugetlbfs specific code paths.
5791 	 */
5792 	folio_mark_dirty(folio);
5793 
5794 	spin_lock(&inode->i_lock);
5795 	inode->i_blocks += blocks_per_huge_page(h);
5796 	spin_unlock(&inode->i_lock);
5797 	return 0;
5798 }
5799 
5800 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5801 						  struct address_space *mapping,
5802 						  pgoff_t idx,
5803 						  unsigned int flags,
5804 						  unsigned long haddr,
5805 						  unsigned long addr,
5806 						  unsigned long reason)
5807 {
5808 	u32 hash;
5809 	struct vm_fault vmf = {
5810 		.vma = vma,
5811 		.address = haddr,
5812 		.real_address = addr,
5813 		.flags = flags,
5814 
5815 		/*
5816 		 * Hard to debug if it ends up being
5817 		 * used by a callee that assumes
5818 		 * something about the other
5819 		 * uninitialized fields... same as in
5820 		 * memory.c
5821 		 */
5822 	};
5823 
5824 	/*
5825 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5826 	 * userfault. Also mmap_lock could be dropped due to handling
5827 	 * userfault, any vma operation should be careful from here.
5828 	 */
5829 	hugetlb_vma_unlock_read(vma);
5830 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5831 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5832 	return handle_userfault(&vmf, reason);
5833 }
5834 
5835 /*
5836  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5837  * false if pte changed or is changing.
5838  */
5839 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5840 			       pte_t *ptep, pte_t old_pte)
5841 {
5842 	spinlock_t *ptl;
5843 	bool same;
5844 
5845 	ptl = huge_pte_lock(h, mm, ptep);
5846 	same = pte_same(huge_ptep_get(ptep), old_pte);
5847 	spin_unlock(ptl);
5848 
5849 	return same;
5850 }
5851 
5852 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5853 			struct vm_area_struct *vma,
5854 			struct address_space *mapping, pgoff_t idx,
5855 			unsigned long address, pte_t *ptep,
5856 			pte_t old_pte, unsigned int flags)
5857 {
5858 	struct hstate *h = hstate_vma(vma);
5859 	vm_fault_t ret = VM_FAULT_SIGBUS;
5860 	int anon_rmap = 0;
5861 	unsigned long size;
5862 	struct folio *folio;
5863 	pte_t new_pte;
5864 	spinlock_t *ptl;
5865 	unsigned long haddr = address & huge_page_mask(h);
5866 	bool new_folio, new_pagecache_folio = false;
5867 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5868 
5869 	/*
5870 	 * Currently, we are forced to kill the process in the event the
5871 	 * original mapper has unmapped pages from the child due to a failed
5872 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5873 	 * be obvious.
5874 	 */
5875 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5876 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5877 			   current->pid);
5878 		goto out;
5879 	}
5880 
5881 	/*
5882 	 * Use page lock to guard against racing truncation
5883 	 * before we get page_table_lock.
5884 	 */
5885 	new_folio = false;
5886 	folio = filemap_lock_folio(mapping, idx);
5887 	if (IS_ERR(folio)) {
5888 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5889 		if (idx >= size)
5890 			goto out;
5891 		/* Check for page in userfault range */
5892 		if (userfaultfd_missing(vma)) {
5893 			/*
5894 			 * Since hugetlb_no_page() was examining pte
5895 			 * without pgtable lock, we need to re-test under
5896 			 * lock because the pte may not be stable and could
5897 			 * have changed from under us.  Try to detect
5898 			 * either changed or during-changing ptes and retry
5899 			 * properly when needed.
5900 			 *
5901 			 * Note that userfaultfd is actually fine with
5902 			 * false positives (e.g. caused by pte changed),
5903 			 * but not wrong logical events (e.g. caused by
5904 			 * reading a pte during changing).  The latter can
5905 			 * confuse the userspace, so the strictness is very
5906 			 * much preferred.  E.g., MISSING event should
5907 			 * never happen on the page after UFFDIO_COPY has
5908 			 * correctly installed the page and returned.
5909 			 */
5910 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5911 				ret = 0;
5912 				goto out;
5913 			}
5914 
5915 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5916 							haddr, address,
5917 							VM_UFFD_MISSING);
5918 		}
5919 
5920 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5921 		if (IS_ERR(folio)) {
5922 			/*
5923 			 * Returning error will result in faulting task being
5924 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5925 			 * tasks from racing to fault in the same page which
5926 			 * could result in false unable to allocate errors.
5927 			 * Page migration does not take the fault mutex, but
5928 			 * does a clear then write of pte's under page table
5929 			 * lock.  Page fault code could race with migration,
5930 			 * notice the clear pte and try to allocate a page
5931 			 * here.  Before returning error, get ptl and make
5932 			 * sure there really is no pte entry.
5933 			 */
5934 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5935 				ret = vmf_error(PTR_ERR(folio));
5936 			else
5937 				ret = 0;
5938 			goto out;
5939 		}
5940 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5941 		__folio_mark_uptodate(folio);
5942 		new_folio = true;
5943 
5944 		if (vma->vm_flags & VM_MAYSHARE) {
5945 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5946 			if (err) {
5947 				/*
5948 				 * err can't be -EEXIST which implies someone
5949 				 * else consumed the reservation since hugetlb
5950 				 * fault mutex is held when add a hugetlb page
5951 				 * to the page cache. So it's safe to call
5952 				 * restore_reserve_on_error() here.
5953 				 */
5954 				restore_reserve_on_error(h, vma, haddr, folio);
5955 				folio_put(folio);
5956 				goto out;
5957 			}
5958 			new_pagecache_folio = true;
5959 		} else {
5960 			folio_lock(folio);
5961 			if (unlikely(anon_vma_prepare(vma))) {
5962 				ret = VM_FAULT_OOM;
5963 				goto backout_unlocked;
5964 			}
5965 			anon_rmap = 1;
5966 		}
5967 	} else {
5968 		/*
5969 		 * If memory error occurs between mmap() and fault, some process
5970 		 * don't have hwpoisoned swap entry for errored virtual address.
5971 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5972 		 */
5973 		if (unlikely(folio_test_hwpoison(folio))) {
5974 			ret = VM_FAULT_HWPOISON_LARGE |
5975 				VM_FAULT_SET_HINDEX(hstate_index(h));
5976 			goto backout_unlocked;
5977 		}
5978 
5979 		/* Check for page in userfault range. */
5980 		if (userfaultfd_minor(vma)) {
5981 			folio_unlock(folio);
5982 			folio_put(folio);
5983 			/* See comment in userfaultfd_missing() block above */
5984 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5985 				ret = 0;
5986 				goto out;
5987 			}
5988 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5989 							haddr, address,
5990 							VM_UFFD_MINOR);
5991 		}
5992 	}
5993 
5994 	/*
5995 	 * If we are going to COW a private mapping later, we examine the
5996 	 * pending reservations for this page now. This will ensure that
5997 	 * any allocations necessary to record that reservation occur outside
5998 	 * the spinlock.
5999 	 */
6000 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6001 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6002 			ret = VM_FAULT_OOM;
6003 			goto backout_unlocked;
6004 		}
6005 		/* Just decrements count, does not deallocate */
6006 		vma_end_reservation(h, vma, haddr);
6007 	}
6008 
6009 	ptl = huge_pte_lock(h, mm, ptep);
6010 	ret = 0;
6011 	/* If pte changed from under us, retry */
6012 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6013 		goto backout;
6014 
6015 	if (anon_rmap)
6016 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6017 	else
6018 		page_dup_file_rmap(&folio->page, true);
6019 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6020 				&& (vma->vm_flags & VM_SHARED)));
6021 	/*
6022 	 * If this pte was previously wr-protected, keep it wr-protected even
6023 	 * if populated.
6024 	 */
6025 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6026 		new_pte = huge_pte_mkuffd_wp(new_pte);
6027 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6028 
6029 	hugetlb_count_add(pages_per_huge_page(h), mm);
6030 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6031 		/* Optimization, do the COW without a second fault */
6032 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6033 	}
6034 
6035 	spin_unlock(ptl);
6036 
6037 	/*
6038 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6039 	 * found in the pagecache may not have hugetlb_migratable if they have
6040 	 * been isolated for migration.
6041 	 */
6042 	if (new_folio)
6043 		folio_set_hugetlb_migratable(folio);
6044 
6045 	folio_unlock(folio);
6046 out:
6047 	hugetlb_vma_unlock_read(vma);
6048 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049 	return ret;
6050 
6051 backout:
6052 	spin_unlock(ptl);
6053 backout_unlocked:
6054 	if (new_folio && !new_pagecache_folio)
6055 		restore_reserve_on_error(h, vma, haddr, folio);
6056 
6057 	folio_unlock(folio);
6058 	folio_put(folio);
6059 	goto out;
6060 }
6061 
6062 #ifdef CONFIG_SMP
6063 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6064 {
6065 	unsigned long key[2];
6066 	u32 hash;
6067 
6068 	key[0] = (unsigned long) mapping;
6069 	key[1] = idx;
6070 
6071 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6072 
6073 	return hash & (num_fault_mutexes - 1);
6074 }
6075 #else
6076 /*
6077  * For uniprocessor systems we always use a single mutex, so just
6078  * return 0 and avoid the hashing overhead.
6079  */
6080 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6081 {
6082 	return 0;
6083 }
6084 #endif
6085 
6086 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6087 			unsigned long address, unsigned int flags)
6088 {
6089 	pte_t *ptep, entry;
6090 	spinlock_t *ptl;
6091 	vm_fault_t ret;
6092 	u32 hash;
6093 	pgoff_t idx;
6094 	struct folio *folio = NULL;
6095 	struct folio *pagecache_folio = NULL;
6096 	struct hstate *h = hstate_vma(vma);
6097 	struct address_space *mapping;
6098 	int need_wait_lock = 0;
6099 	unsigned long haddr = address & huge_page_mask(h);
6100 
6101 	/* TODO: Handle faults under the VMA lock */
6102 	if (flags & FAULT_FLAG_VMA_LOCK) {
6103 		vma_end_read(vma);
6104 		return VM_FAULT_RETRY;
6105 	}
6106 
6107 	/*
6108 	 * Serialize hugepage allocation and instantiation, so that we don't
6109 	 * get spurious allocation failures if two CPUs race to instantiate
6110 	 * the same page in the page cache.
6111 	 */
6112 	mapping = vma->vm_file->f_mapping;
6113 	idx = vma_hugecache_offset(h, vma, haddr);
6114 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6115 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6116 
6117 	/*
6118 	 * Acquire vma lock before calling huge_pte_alloc and hold
6119 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6120 	 * being called elsewhere and making the ptep no longer valid.
6121 	 */
6122 	hugetlb_vma_lock_read(vma);
6123 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6124 	if (!ptep) {
6125 		hugetlb_vma_unlock_read(vma);
6126 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6127 		return VM_FAULT_OOM;
6128 	}
6129 
6130 	entry = huge_ptep_get(ptep);
6131 	if (huge_pte_none_mostly(entry)) {
6132 		if (is_pte_marker(entry)) {
6133 			pte_marker marker =
6134 				pte_marker_get(pte_to_swp_entry(entry));
6135 
6136 			if (marker & PTE_MARKER_POISONED) {
6137 				ret = VM_FAULT_HWPOISON_LARGE;
6138 				goto out_mutex;
6139 			}
6140 		}
6141 
6142 		/*
6143 		 * Other PTE markers should be handled the same way as none PTE.
6144 		 *
6145 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6146 		 * mutex internally, which make us return immediately.
6147 		 */
6148 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6149 				      entry, flags);
6150 	}
6151 
6152 	ret = 0;
6153 
6154 	/*
6155 	 * entry could be a migration/hwpoison entry at this point, so this
6156 	 * check prevents the kernel from going below assuming that we have
6157 	 * an active hugepage in pagecache. This goto expects the 2nd page
6158 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6159 	 * properly handle it.
6160 	 */
6161 	if (!pte_present(entry)) {
6162 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6163 			/*
6164 			 * Release the hugetlb fault lock now, but retain
6165 			 * the vma lock, because it is needed to guard the
6166 			 * huge_pte_lockptr() later in
6167 			 * migration_entry_wait_huge(). The vma lock will
6168 			 * be released there.
6169 			 */
6170 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171 			migration_entry_wait_huge(vma, ptep);
6172 			return 0;
6173 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6174 			ret = VM_FAULT_HWPOISON_LARGE |
6175 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6176 		goto out_mutex;
6177 	}
6178 
6179 	/*
6180 	 * If we are going to COW/unshare the mapping later, we examine the
6181 	 * pending reservations for this page now. This will ensure that any
6182 	 * allocations necessary to record that reservation occur outside the
6183 	 * spinlock. Also lookup the pagecache page now as it is used to
6184 	 * determine if a reservation has been consumed.
6185 	 */
6186 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6187 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6188 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6189 			ret = VM_FAULT_OOM;
6190 			goto out_mutex;
6191 		}
6192 		/* Just decrements count, does not deallocate */
6193 		vma_end_reservation(h, vma, haddr);
6194 
6195 		pagecache_folio = filemap_lock_folio(mapping, idx);
6196 		if (IS_ERR(pagecache_folio))
6197 			pagecache_folio = NULL;
6198 	}
6199 
6200 	ptl = huge_pte_lock(h, mm, ptep);
6201 
6202 	/* Check for a racing update before calling hugetlb_wp() */
6203 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6204 		goto out_ptl;
6205 
6206 	/* Handle userfault-wp first, before trying to lock more pages */
6207 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6208 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6209 		struct vm_fault vmf = {
6210 			.vma = vma,
6211 			.address = haddr,
6212 			.real_address = address,
6213 			.flags = flags,
6214 		};
6215 
6216 		spin_unlock(ptl);
6217 		if (pagecache_folio) {
6218 			folio_unlock(pagecache_folio);
6219 			folio_put(pagecache_folio);
6220 		}
6221 		hugetlb_vma_unlock_read(vma);
6222 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6223 		return handle_userfault(&vmf, VM_UFFD_WP);
6224 	}
6225 
6226 	/*
6227 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6228 	 * pagecache_folio, so here we need take the former one
6229 	 * when folio != pagecache_folio or !pagecache_folio.
6230 	 */
6231 	folio = page_folio(pte_page(entry));
6232 	if (folio != pagecache_folio)
6233 		if (!folio_trylock(folio)) {
6234 			need_wait_lock = 1;
6235 			goto out_ptl;
6236 		}
6237 
6238 	folio_get(folio);
6239 
6240 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6241 		if (!huge_pte_write(entry)) {
6242 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6243 					 pagecache_folio, ptl);
6244 			goto out_put_page;
6245 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6246 			entry = huge_pte_mkdirty(entry);
6247 		}
6248 	}
6249 	entry = pte_mkyoung(entry);
6250 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6251 						flags & FAULT_FLAG_WRITE))
6252 		update_mmu_cache(vma, haddr, ptep);
6253 out_put_page:
6254 	if (folio != pagecache_folio)
6255 		folio_unlock(folio);
6256 	folio_put(folio);
6257 out_ptl:
6258 	spin_unlock(ptl);
6259 
6260 	if (pagecache_folio) {
6261 		folio_unlock(pagecache_folio);
6262 		folio_put(pagecache_folio);
6263 	}
6264 out_mutex:
6265 	hugetlb_vma_unlock_read(vma);
6266 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6267 	/*
6268 	 * Generally it's safe to hold refcount during waiting page lock. But
6269 	 * here we just wait to defer the next page fault to avoid busy loop and
6270 	 * the page is not used after unlocked before returning from the current
6271 	 * page fault. So we are safe from accessing freed page, even if we wait
6272 	 * here without taking refcount.
6273 	 */
6274 	if (need_wait_lock)
6275 		folio_wait_locked(folio);
6276 	return ret;
6277 }
6278 
6279 #ifdef CONFIG_USERFAULTFD
6280 /*
6281  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6282  * with modifications for hugetlb pages.
6283  */
6284 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6285 			     struct vm_area_struct *dst_vma,
6286 			     unsigned long dst_addr,
6287 			     unsigned long src_addr,
6288 			     uffd_flags_t flags,
6289 			     struct folio **foliop)
6290 {
6291 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6292 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6293 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6294 	struct hstate *h = hstate_vma(dst_vma);
6295 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6296 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6297 	unsigned long size;
6298 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6299 	pte_t _dst_pte;
6300 	spinlock_t *ptl;
6301 	int ret = -ENOMEM;
6302 	struct folio *folio;
6303 	int writable;
6304 	bool folio_in_pagecache = false;
6305 
6306 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6307 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6308 
6309 		/* Don't overwrite any existing PTEs (even markers) */
6310 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6311 			spin_unlock(ptl);
6312 			return -EEXIST;
6313 		}
6314 
6315 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6316 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6317 				huge_page_size(h));
6318 
6319 		/* No need to invalidate - it was non-present before */
6320 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6321 
6322 		spin_unlock(ptl);
6323 		return 0;
6324 	}
6325 
6326 	if (is_continue) {
6327 		ret = -EFAULT;
6328 		folio = filemap_lock_folio(mapping, idx);
6329 		if (IS_ERR(folio))
6330 			goto out;
6331 		folio_in_pagecache = true;
6332 	} else if (!*foliop) {
6333 		/* If a folio already exists, then it's UFFDIO_COPY for
6334 		 * a non-missing case. Return -EEXIST.
6335 		 */
6336 		if (vm_shared &&
6337 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6338 			ret = -EEXIST;
6339 			goto out;
6340 		}
6341 
6342 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343 		if (IS_ERR(folio)) {
6344 			ret = -ENOMEM;
6345 			goto out;
6346 		}
6347 
6348 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6349 					   false);
6350 
6351 		/* fallback to copy_from_user outside mmap_lock */
6352 		if (unlikely(ret)) {
6353 			ret = -ENOENT;
6354 			/* Free the allocated folio which may have
6355 			 * consumed a reservation.
6356 			 */
6357 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6358 			folio_put(folio);
6359 
6360 			/* Allocate a temporary folio to hold the copied
6361 			 * contents.
6362 			 */
6363 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6364 			if (!folio) {
6365 				ret = -ENOMEM;
6366 				goto out;
6367 			}
6368 			*foliop = folio;
6369 			/* Set the outparam foliop and return to the caller to
6370 			 * copy the contents outside the lock. Don't free the
6371 			 * folio.
6372 			 */
6373 			goto out;
6374 		}
6375 	} else {
6376 		if (vm_shared &&
6377 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6378 			folio_put(*foliop);
6379 			ret = -EEXIST;
6380 			*foliop = NULL;
6381 			goto out;
6382 		}
6383 
6384 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6385 		if (IS_ERR(folio)) {
6386 			folio_put(*foliop);
6387 			ret = -ENOMEM;
6388 			*foliop = NULL;
6389 			goto out;
6390 		}
6391 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6392 		folio_put(*foliop);
6393 		*foliop = NULL;
6394 		if (ret) {
6395 			folio_put(folio);
6396 			goto out;
6397 		}
6398 	}
6399 
6400 	/*
6401 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6402 	 * preceding stores to the page contents become visible before
6403 	 * the set_pte_at() write.
6404 	 */
6405 	__folio_mark_uptodate(folio);
6406 
6407 	/* Add shared, newly allocated pages to the page cache. */
6408 	if (vm_shared && !is_continue) {
6409 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6410 		ret = -EFAULT;
6411 		if (idx >= size)
6412 			goto out_release_nounlock;
6413 
6414 		/*
6415 		 * Serialization between remove_inode_hugepages() and
6416 		 * hugetlb_add_to_page_cache() below happens through the
6417 		 * hugetlb_fault_mutex_table that here must be hold by
6418 		 * the caller.
6419 		 */
6420 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6421 		if (ret)
6422 			goto out_release_nounlock;
6423 		folio_in_pagecache = true;
6424 	}
6425 
6426 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6427 
6428 	ret = -EIO;
6429 	if (folio_test_hwpoison(folio))
6430 		goto out_release_unlock;
6431 
6432 	/*
6433 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6434 	 * registered, we firstly wr-protect a none pte which has no page cache
6435 	 * page backing it, then access the page.
6436 	 */
6437 	ret = -EEXIST;
6438 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6439 		goto out_release_unlock;
6440 
6441 	if (folio_in_pagecache)
6442 		page_dup_file_rmap(&folio->page, true);
6443 	else
6444 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6445 
6446 	/*
6447 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6448 	 * with wp flag set, don't set pte write bit.
6449 	 */
6450 	if (wp_enabled || (is_continue && !vm_shared))
6451 		writable = 0;
6452 	else
6453 		writable = dst_vma->vm_flags & VM_WRITE;
6454 
6455 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6456 	/*
6457 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6458 	 * extremely important for hugetlbfs for now since swapping is not
6459 	 * supported, but we should still be clear in that this page cannot be
6460 	 * thrown away at will, even if write bit not set.
6461 	 */
6462 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6463 	_dst_pte = pte_mkyoung(_dst_pte);
6464 
6465 	if (wp_enabled)
6466 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6467 
6468 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6469 
6470 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6471 
6472 	/* No need to invalidate - it was non-present before */
6473 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6474 
6475 	spin_unlock(ptl);
6476 	if (!is_continue)
6477 		folio_set_hugetlb_migratable(folio);
6478 	if (vm_shared || is_continue)
6479 		folio_unlock(folio);
6480 	ret = 0;
6481 out:
6482 	return ret;
6483 out_release_unlock:
6484 	spin_unlock(ptl);
6485 	if (vm_shared || is_continue)
6486 		folio_unlock(folio);
6487 out_release_nounlock:
6488 	if (!folio_in_pagecache)
6489 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6490 	folio_put(folio);
6491 	goto out;
6492 }
6493 #endif /* CONFIG_USERFAULTFD */
6494 
6495 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6496 				      unsigned long address, unsigned int flags,
6497 				      unsigned int *page_mask)
6498 {
6499 	struct hstate *h = hstate_vma(vma);
6500 	struct mm_struct *mm = vma->vm_mm;
6501 	unsigned long haddr = address & huge_page_mask(h);
6502 	struct page *page = NULL;
6503 	spinlock_t *ptl;
6504 	pte_t *pte, entry;
6505 	int ret;
6506 
6507 	hugetlb_vma_lock_read(vma);
6508 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6509 	if (!pte)
6510 		goto out_unlock;
6511 
6512 	ptl = huge_pte_lock(h, mm, pte);
6513 	entry = huge_ptep_get(pte);
6514 	if (pte_present(entry)) {
6515 		page = pte_page(entry);
6516 
6517 		if (!huge_pte_write(entry)) {
6518 			if (flags & FOLL_WRITE) {
6519 				page = NULL;
6520 				goto out;
6521 			}
6522 
6523 			if (gup_must_unshare(vma, flags, page)) {
6524 				/* Tell the caller to do unsharing */
6525 				page = ERR_PTR(-EMLINK);
6526 				goto out;
6527 			}
6528 		}
6529 
6530 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6531 
6532 		/*
6533 		 * Note that page may be a sub-page, and with vmemmap
6534 		 * optimizations the page struct may be read only.
6535 		 * try_grab_page() will increase the ref count on the
6536 		 * head page, so this will be OK.
6537 		 *
6538 		 * try_grab_page() should always be able to get the page here,
6539 		 * because we hold the ptl lock and have verified pte_present().
6540 		 */
6541 		ret = try_grab_page(page, flags);
6542 
6543 		if (WARN_ON_ONCE(ret)) {
6544 			page = ERR_PTR(ret);
6545 			goto out;
6546 		}
6547 
6548 		*page_mask = (1U << huge_page_order(h)) - 1;
6549 	}
6550 out:
6551 	spin_unlock(ptl);
6552 out_unlock:
6553 	hugetlb_vma_unlock_read(vma);
6554 
6555 	/*
6556 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6557 	 * don't try to allocate a new page but just skip it.
6558 	 */
6559 	if (!page && (flags & FOLL_DUMP) &&
6560 	    !hugetlbfs_pagecache_present(h, vma, address))
6561 		page = ERR_PTR(-EFAULT);
6562 
6563 	return page;
6564 }
6565 
6566 long hugetlb_change_protection(struct vm_area_struct *vma,
6567 		unsigned long address, unsigned long end,
6568 		pgprot_t newprot, unsigned long cp_flags)
6569 {
6570 	struct mm_struct *mm = vma->vm_mm;
6571 	unsigned long start = address;
6572 	pte_t *ptep;
6573 	pte_t pte;
6574 	struct hstate *h = hstate_vma(vma);
6575 	long pages = 0, psize = huge_page_size(h);
6576 	bool shared_pmd = false;
6577 	struct mmu_notifier_range range;
6578 	unsigned long last_addr_mask;
6579 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6580 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6581 
6582 	/*
6583 	 * In the case of shared PMDs, the area to flush could be beyond
6584 	 * start/end.  Set range.start/range.end to cover the maximum possible
6585 	 * range if PMD sharing is possible.
6586 	 */
6587 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6588 				0, mm, start, end);
6589 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6590 
6591 	BUG_ON(address >= end);
6592 	flush_cache_range(vma, range.start, range.end);
6593 
6594 	mmu_notifier_invalidate_range_start(&range);
6595 	hugetlb_vma_lock_write(vma);
6596 	i_mmap_lock_write(vma->vm_file->f_mapping);
6597 	last_addr_mask = hugetlb_mask_last_page(h);
6598 	for (; address < end; address += psize) {
6599 		spinlock_t *ptl;
6600 		ptep = hugetlb_walk(vma, address, psize);
6601 		if (!ptep) {
6602 			if (!uffd_wp) {
6603 				address |= last_addr_mask;
6604 				continue;
6605 			}
6606 			/*
6607 			 * Userfaultfd wr-protect requires pgtable
6608 			 * pre-allocations to install pte markers.
6609 			 */
6610 			ptep = huge_pte_alloc(mm, vma, address, psize);
6611 			if (!ptep) {
6612 				pages = -ENOMEM;
6613 				break;
6614 			}
6615 		}
6616 		ptl = huge_pte_lock(h, mm, ptep);
6617 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6618 			/*
6619 			 * When uffd-wp is enabled on the vma, unshare
6620 			 * shouldn't happen at all.  Warn about it if it
6621 			 * happened due to some reason.
6622 			 */
6623 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6624 			pages++;
6625 			spin_unlock(ptl);
6626 			shared_pmd = true;
6627 			address |= last_addr_mask;
6628 			continue;
6629 		}
6630 		pte = huge_ptep_get(ptep);
6631 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6632 			/* Nothing to do. */
6633 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6634 			swp_entry_t entry = pte_to_swp_entry(pte);
6635 			struct page *page = pfn_swap_entry_to_page(entry);
6636 			pte_t newpte = pte;
6637 
6638 			if (is_writable_migration_entry(entry)) {
6639 				if (PageAnon(page))
6640 					entry = make_readable_exclusive_migration_entry(
6641 								swp_offset(entry));
6642 				else
6643 					entry = make_readable_migration_entry(
6644 								swp_offset(entry));
6645 				newpte = swp_entry_to_pte(entry);
6646 				pages++;
6647 			}
6648 
6649 			if (uffd_wp)
6650 				newpte = pte_swp_mkuffd_wp(newpte);
6651 			else if (uffd_wp_resolve)
6652 				newpte = pte_swp_clear_uffd_wp(newpte);
6653 			if (!pte_same(pte, newpte))
6654 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6655 		} else if (unlikely(is_pte_marker(pte))) {
6656 			/* No other markers apply for now. */
6657 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6658 			if (uffd_wp_resolve)
6659 				/* Safe to modify directly (non-present->none). */
6660 				huge_pte_clear(mm, address, ptep, psize);
6661 		} else if (!huge_pte_none(pte)) {
6662 			pte_t old_pte;
6663 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6664 
6665 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6666 			pte = huge_pte_modify(old_pte, newprot);
6667 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6668 			if (uffd_wp)
6669 				pte = huge_pte_mkuffd_wp(pte);
6670 			else if (uffd_wp_resolve)
6671 				pte = huge_pte_clear_uffd_wp(pte);
6672 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6673 			pages++;
6674 		} else {
6675 			/* None pte */
6676 			if (unlikely(uffd_wp))
6677 				/* Safe to modify directly (none->non-present). */
6678 				set_huge_pte_at(mm, address, ptep,
6679 						make_pte_marker(PTE_MARKER_UFFD_WP),
6680 						psize);
6681 		}
6682 		spin_unlock(ptl);
6683 	}
6684 	/*
6685 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6686 	 * may have cleared our pud entry and done put_page on the page table:
6687 	 * once we release i_mmap_rwsem, another task can do the final put_page
6688 	 * and that page table be reused and filled with junk.  If we actually
6689 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6690 	 */
6691 	if (shared_pmd)
6692 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6693 	else
6694 		flush_hugetlb_tlb_range(vma, start, end);
6695 	/*
6696 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6697 	 * downgrading page table protection not changing it to point to a new
6698 	 * page.
6699 	 *
6700 	 * See Documentation/mm/mmu_notifier.rst
6701 	 */
6702 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6703 	hugetlb_vma_unlock_write(vma);
6704 	mmu_notifier_invalidate_range_end(&range);
6705 
6706 	return pages > 0 ? (pages << h->order) : pages;
6707 }
6708 
6709 /* Return true if reservation was successful, false otherwise.  */
6710 bool hugetlb_reserve_pages(struct inode *inode,
6711 					long from, long to,
6712 					struct vm_area_struct *vma,
6713 					vm_flags_t vm_flags)
6714 {
6715 	long chg = -1, add = -1;
6716 	struct hstate *h = hstate_inode(inode);
6717 	struct hugepage_subpool *spool = subpool_inode(inode);
6718 	struct resv_map *resv_map;
6719 	struct hugetlb_cgroup *h_cg = NULL;
6720 	long gbl_reserve, regions_needed = 0;
6721 
6722 	/* This should never happen */
6723 	if (from > to) {
6724 		VM_WARN(1, "%s called with a negative range\n", __func__);
6725 		return false;
6726 	}
6727 
6728 	/*
6729 	 * vma specific semaphore used for pmd sharing and fault/truncation
6730 	 * synchronization
6731 	 */
6732 	hugetlb_vma_lock_alloc(vma);
6733 
6734 	/*
6735 	 * Only apply hugepage reservation if asked. At fault time, an
6736 	 * attempt will be made for VM_NORESERVE to allocate a page
6737 	 * without using reserves
6738 	 */
6739 	if (vm_flags & VM_NORESERVE)
6740 		return true;
6741 
6742 	/*
6743 	 * Shared mappings base their reservation on the number of pages that
6744 	 * are already allocated on behalf of the file. Private mappings need
6745 	 * to reserve the full area even if read-only as mprotect() may be
6746 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6747 	 */
6748 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6749 		/*
6750 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6751 		 * called for inodes for which resv_maps were created (see
6752 		 * hugetlbfs_get_inode).
6753 		 */
6754 		resv_map = inode_resv_map(inode);
6755 
6756 		chg = region_chg(resv_map, from, to, &regions_needed);
6757 	} else {
6758 		/* Private mapping. */
6759 		resv_map = resv_map_alloc();
6760 		if (!resv_map)
6761 			goto out_err;
6762 
6763 		chg = to - from;
6764 
6765 		set_vma_resv_map(vma, resv_map);
6766 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6767 	}
6768 
6769 	if (chg < 0)
6770 		goto out_err;
6771 
6772 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6773 				chg * pages_per_huge_page(h), &h_cg) < 0)
6774 		goto out_err;
6775 
6776 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6777 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6778 		 * of the resv_map.
6779 		 */
6780 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6781 	}
6782 
6783 	/*
6784 	 * There must be enough pages in the subpool for the mapping. If
6785 	 * the subpool has a minimum size, there may be some global
6786 	 * reservations already in place (gbl_reserve).
6787 	 */
6788 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6789 	if (gbl_reserve < 0)
6790 		goto out_uncharge_cgroup;
6791 
6792 	/*
6793 	 * Check enough hugepages are available for the reservation.
6794 	 * Hand the pages back to the subpool if there are not
6795 	 */
6796 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6797 		goto out_put_pages;
6798 
6799 	/*
6800 	 * Account for the reservations made. Shared mappings record regions
6801 	 * that have reservations as they are shared by multiple VMAs.
6802 	 * When the last VMA disappears, the region map says how much
6803 	 * the reservation was and the page cache tells how much of
6804 	 * the reservation was consumed. Private mappings are per-VMA and
6805 	 * only the consumed reservations are tracked. When the VMA
6806 	 * disappears, the original reservation is the VMA size and the
6807 	 * consumed reservations are stored in the map. Hence, nothing
6808 	 * else has to be done for private mappings here
6809 	 */
6810 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6811 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6812 
6813 		if (unlikely(add < 0)) {
6814 			hugetlb_acct_memory(h, -gbl_reserve);
6815 			goto out_put_pages;
6816 		} else if (unlikely(chg > add)) {
6817 			/*
6818 			 * pages in this range were added to the reserve
6819 			 * map between region_chg and region_add.  This
6820 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6821 			 * the subpool and reserve counts modified above
6822 			 * based on the difference.
6823 			 */
6824 			long rsv_adjust;
6825 
6826 			/*
6827 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6828 			 * reference to h_cg->css. See comment below for detail.
6829 			 */
6830 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6831 				hstate_index(h),
6832 				(chg - add) * pages_per_huge_page(h), h_cg);
6833 
6834 			rsv_adjust = hugepage_subpool_put_pages(spool,
6835 								chg - add);
6836 			hugetlb_acct_memory(h, -rsv_adjust);
6837 		} else if (h_cg) {
6838 			/*
6839 			 * The file_regions will hold their own reference to
6840 			 * h_cg->css. So we should release the reference held
6841 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6842 			 * done.
6843 			 */
6844 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6845 		}
6846 	}
6847 	return true;
6848 
6849 out_put_pages:
6850 	/* put back original number of pages, chg */
6851 	(void)hugepage_subpool_put_pages(spool, chg);
6852 out_uncharge_cgroup:
6853 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6854 					    chg * pages_per_huge_page(h), h_cg);
6855 out_err:
6856 	hugetlb_vma_lock_free(vma);
6857 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6858 		/* Only call region_abort if the region_chg succeeded but the
6859 		 * region_add failed or didn't run.
6860 		 */
6861 		if (chg >= 0 && add < 0)
6862 			region_abort(resv_map, from, to, regions_needed);
6863 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6864 		kref_put(&resv_map->refs, resv_map_release);
6865 		set_vma_resv_map(vma, NULL);
6866 	}
6867 	return false;
6868 }
6869 
6870 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6871 								long freed)
6872 {
6873 	struct hstate *h = hstate_inode(inode);
6874 	struct resv_map *resv_map = inode_resv_map(inode);
6875 	long chg = 0;
6876 	struct hugepage_subpool *spool = subpool_inode(inode);
6877 	long gbl_reserve;
6878 
6879 	/*
6880 	 * Since this routine can be called in the evict inode path for all
6881 	 * hugetlbfs inodes, resv_map could be NULL.
6882 	 */
6883 	if (resv_map) {
6884 		chg = region_del(resv_map, start, end);
6885 		/*
6886 		 * region_del() can fail in the rare case where a region
6887 		 * must be split and another region descriptor can not be
6888 		 * allocated.  If end == LONG_MAX, it will not fail.
6889 		 */
6890 		if (chg < 0)
6891 			return chg;
6892 	}
6893 
6894 	spin_lock(&inode->i_lock);
6895 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6896 	spin_unlock(&inode->i_lock);
6897 
6898 	/*
6899 	 * If the subpool has a minimum size, the number of global
6900 	 * reservations to be released may be adjusted.
6901 	 *
6902 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6903 	 * won't go negative.
6904 	 */
6905 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6906 	hugetlb_acct_memory(h, -gbl_reserve);
6907 
6908 	return 0;
6909 }
6910 
6911 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6912 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6913 				struct vm_area_struct *vma,
6914 				unsigned long addr, pgoff_t idx)
6915 {
6916 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6917 				svma->vm_start;
6918 	unsigned long sbase = saddr & PUD_MASK;
6919 	unsigned long s_end = sbase + PUD_SIZE;
6920 
6921 	/* Allow segments to share if only one is marked locked */
6922 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6923 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6924 
6925 	/*
6926 	 * match the virtual addresses, permission and the alignment of the
6927 	 * page table page.
6928 	 *
6929 	 * Also, vma_lock (vm_private_data) is required for sharing.
6930 	 */
6931 	if (pmd_index(addr) != pmd_index(saddr) ||
6932 	    vm_flags != svm_flags ||
6933 	    !range_in_vma(svma, sbase, s_end) ||
6934 	    !svma->vm_private_data)
6935 		return 0;
6936 
6937 	return saddr;
6938 }
6939 
6940 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6941 {
6942 	unsigned long start = addr & PUD_MASK;
6943 	unsigned long end = start + PUD_SIZE;
6944 
6945 #ifdef CONFIG_USERFAULTFD
6946 	if (uffd_disable_huge_pmd_share(vma))
6947 		return false;
6948 #endif
6949 	/*
6950 	 * check on proper vm_flags and page table alignment
6951 	 */
6952 	if (!(vma->vm_flags & VM_MAYSHARE))
6953 		return false;
6954 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6955 		return false;
6956 	if (!range_in_vma(vma, start, end))
6957 		return false;
6958 	return true;
6959 }
6960 
6961 /*
6962  * Determine if start,end range within vma could be mapped by shared pmd.
6963  * If yes, adjust start and end to cover range associated with possible
6964  * shared pmd mappings.
6965  */
6966 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6967 				unsigned long *start, unsigned long *end)
6968 {
6969 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6970 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6971 
6972 	/*
6973 	 * vma needs to span at least one aligned PUD size, and the range
6974 	 * must be at least partially within in.
6975 	 */
6976 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6977 		(*end <= v_start) || (*start >= v_end))
6978 		return;
6979 
6980 	/* Extend the range to be PUD aligned for a worst case scenario */
6981 	if (*start > v_start)
6982 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6983 
6984 	if (*end < v_end)
6985 		*end = ALIGN(*end, PUD_SIZE);
6986 }
6987 
6988 /*
6989  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6990  * and returns the corresponding pte. While this is not necessary for the
6991  * !shared pmd case because we can allocate the pmd later as well, it makes the
6992  * code much cleaner. pmd allocation is essential for the shared case because
6993  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6994  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6995  * bad pmd for sharing.
6996  */
6997 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6998 		      unsigned long addr, pud_t *pud)
6999 {
7000 	struct address_space *mapping = vma->vm_file->f_mapping;
7001 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7002 			vma->vm_pgoff;
7003 	struct vm_area_struct *svma;
7004 	unsigned long saddr;
7005 	pte_t *spte = NULL;
7006 	pte_t *pte;
7007 
7008 	i_mmap_lock_read(mapping);
7009 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7010 		if (svma == vma)
7011 			continue;
7012 
7013 		saddr = page_table_shareable(svma, vma, addr, idx);
7014 		if (saddr) {
7015 			spte = hugetlb_walk(svma, saddr,
7016 					    vma_mmu_pagesize(svma));
7017 			if (spte) {
7018 				get_page(virt_to_page(spte));
7019 				break;
7020 			}
7021 		}
7022 	}
7023 
7024 	if (!spte)
7025 		goto out;
7026 
7027 	spin_lock(&mm->page_table_lock);
7028 	if (pud_none(*pud)) {
7029 		pud_populate(mm, pud,
7030 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7031 		mm_inc_nr_pmds(mm);
7032 	} else {
7033 		put_page(virt_to_page(spte));
7034 	}
7035 	spin_unlock(&mm->page_table_lock);
7036 out:
7037 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038 	i_mmap_unlock_read(mapping);
7039 	return pte;
7040 }
7041 
7042 /*
7043  * unmap huge page backed by shared pte.
7044  *
7045  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7046  * indicated by page_count > 1, unmap is achieved by clearing pud and
7047  * decrementing the ref count. If count == 1, the pte page is not shared.
7048  *
7049  * Called with page table lock held.
7050  *
7051  * returns: 1 successfully unmapped a shared pte page
7052  *	    0 the underlying pte page is not shared, or it is the last user
7053  */
7054 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055 					unsigned long addr, pte_t *ptep)
7056 {
7057 	pgd_t *pgd = pgd_offset(mm, addr);
7058 	p4d_t *p4d = p4d_offset(pgd, addr);
7059 	pud_t *pud = pud_offset(p4d, addr);
7060 
7061 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062 	hugetlb_vma_assert_locked(vma);
7063 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064 	if (page_count(virt_to_page(ptep)) == 1)
7065 		return 0;
7066 
7067 	pud_clear(pud);
7068 	put_page(virt_to_page(ptep));
7069 	mm_dec_nr_pmds(mm);
7070 	return 1;
7071 }
7072 
7073 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7074 
7075 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076 		      unsigned long addr, pud_t *pud)
7077 {
7078 	return NULL;
7079 }
7080 
7081 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082 				unsigned long addr, pte_t *ptep)
7083 {
7084 	return 0;
7085 }
7086 
7087 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088 				unsigned long *start, unsigned long *end)
7089 {
7090 }
7091 
7092 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7093 {
7094 	return false;
7095 }
7096 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7097 
7098 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7099 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100 			unsigned long addr, unsigned long sz)
7101 {
7102 	pgd_t *pgd;
7103 	p4d_t *p4d;
7104 	pud_t *pud;
7105 	pte_t *pte = NULL;
7106 
7107 	pgd = pgd_offset(mm, addr);
7108 	p4d = p4d_alloc(mm, pgd, addr);
7109 	if (!p4d)
7110 		return NULL;
7111 	pud = pud_alloc(mm, p4d, addr);
7112 	if (pud) {
7113 		if (sz == PUD_SIZE) {
7114 			pte = (pte_t *)pud;
7115 		} else {
7116 			BUG_ON(sz != PMD_SIZE);
7117 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7118 				pte = huge_pmd_share(mm, vma, addr, pud);
7119 			else
7120 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7121 		}
7122 	}
7123 
7124 	if (pte) {
7125 		pte_t pteval = ptep_get_lockless(pte);
7126 
7127 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7128 	}
7129 
7130 	return pte;
7131 }
7132 
7133 /*
7134  * huge_pte_offset() - Walk the page table to resolve the hugepage
7135  * entry at address @addr
7136  *
7137  * Return: Pointer to page table entry (PUD or PMD) for
7138  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7139  * size @sz doesn't match the hugepage size at this level of the page
7140  * table.
7141  */
7142 pte_t *huge_pte_offset(struct mm_struct *mm,
7143 		       unsigned long addr, unsigned long sz)
7144 {
7145 	pgd_t *pgd;
7146 	p4d_t *p4d;
7147 	pud_t *pud;
7148 	pmd_t *pmd;
7149 
7150 	pgd = pgd_offset(mm, addr);
7151 	if (!pgd_present(*pgd))
7152 		return NULL;
7153 	p4d = p4d_offset(pgd, addr);
7154 	if (!p4d_present(*p4d))
7155 		return NULL;
7156 
7157 	pud = pud_offset(p4d, addr);
7158 	if (sz == PUD_SIZE)
7159 		/* must be pud huge, non-present or none */
7160 		return (pte_t *)pud;
7161 	if (!pud_present(*pud))
7162 		return NULL;
7163 	/* must have a valid entry and size to go further */
7164 
7165 	pmd = pmd_offset(pud, addr);
7166 	/* must be pmd huge, non-present or none */
7167 	return (pte_t *)pmd;
7168 }
7169 
7170 /*
7171  * Return a mask that can be used to update an address to the last huge
7172  * page in a page table page mapping size.  Used to skip non-present
7173  * page table entries when linearly scanning address ranges.  Architectures
7174  * with unique huge page to page table relationships can define their own
7175  * version of this routine.
7176  */
7177 unsigned long hugetlb_mask_last_page(struct hstate *h)
7178 {
7179 	unsigned long hp_size = huge_page_size(h);
7180 
7181 	if (hp_size == PUD_SIZE)
7182 		return P4D_SIZE - PUD_SIZE;
7183 	else if (hp_size == PMD_SIZE)
7184 		return PUD_SIZE - PMD_SIZE;
7185 	else
7186 		return 0UL;
7187 }
7188 
7189 #else
7190 
7191 /* See description above.  Architectures can provide their own version. */
7192 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7193 {
7194 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7195 	if (huge_page_size(h) == PMD_SIZE)
7196 		return PUD_SIZE - PMD_SIZE;
7197 #endif
7198 	return 0UL;
7199 }
7200 
7201 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7202 
7203 /*
7204  * These functions are overwritable if your architecture needs its own
7205  * behavior.
7206  */
7207 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7208 {
7209 	bool ret = true;
7210 
7211 	spin_lock_irq(&hugetlb_lock);
7212 	if (!folio_test_hugetlb(folio) ||
7213 	    !folio_test_hugetlb_migratable(folio) ||
7214 	    !folio_try_get(folio)) {
7215 		ret = false;
7216 		goto unlock;
7217 	}
7218 	folio_clear_hugetlb_migratable(folio);
7219 	list_move_tail(&folio->lru, list);
7220 unlock:
7221 	spin_unlock_irq(&hugetlb_lock);
7222 	return ret;
7223 }
7224 
7225 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7226 {
7227 	int ret = 0;
7228 
7229 	*hugetlb = false;
7230 	spin_lock_irq(&hugetlb_lock);
7231 	if (folio_test_hugetlb(folio)) {
7232 		*hugetlb = true;
7233 		if (folio_test_hugetlb_freed(folio))
7234 			ret = 0;
7235 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7236 			ret = folio_try_get(folio);
7237 		else
7238 			ret = -EBUSY;
7239 	}
7240 	spin_unlock_irq(&hugetlb_lock);
7241 	return ret;
7242 }
7243 
7244 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7245 				bool *migratable_cleared)
7246 {
7247 	int ret;
7248 
7249 	spin_lock_irq(&hugetlb_lock);
7250 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7251 	spin_unlock_irq(&hugetlb_lock);
7252 	return ret;
7253 }
7254 
7255 void folio_putback_active_hugetlb(struct folio *folio)
7256 {
7257 	spin_lock_irq(&hugetlb_lock);
7258 	folio_set_hugetlb_migratable(folio);
7259 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7260 	spin_unlock_irq(&hugetlb_lock);
7261 	folio_put(folio);
7262 }
7263 
7264 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7265 {
7266 	struct hstate *h = folio_hstate(old_folio);
7267 
7268 	hugetlb_cgroup_migrate(old_folio, new_folio);
7269 	set_page_owner_migrate_reason(&new_folio->page, reason);
7270 
7271 	/*
7272 	 * transfer temporary state of the new hugetlb folio. This is
7273 	 * reverse to other transitions because the newpage is going to
7274 	 * be final while the old one will be freed so it takes over
7275 	 * the temporary status.
7276 	 *
7277 	 * Also note that we have to transfer the per-node surplus state
7278 	 * here as well otherwise the global surplus count will not match
7279 	 * the per-node's.
7280 	 */
7281 	if (folio_test_hugetlb_temporary(new_folio)) {
7282 		int old_nid = folio_nid(old_folio);
7283 		int new_nid = folio_nid(new_folio);
7284 
7285 		folio_set_hugetlb_temporary(old_folio);
7286 		folio_clear_hugetlb_temporary(new_folio);
7287 
7288 
7289 		/*
7290 		 * There is no need to transfer the per-node surplus state
7291 		 * when we do not cross the node.
7292 		 */
7293 		if (new_nid == old_nid)
7294 			return;
7295 		spin_lock_irq(&hugetlb_lock);
7296 		if (h->surplus_huge_pages_node[old_nid]) {
7297 			h->surplus_huge_pages_node[old_nid]--;
7298 			h->surplus_huge_pages_node[new_nid]++;
7299 		}
7300 		spin_unlock_irq(&hugetlb_lock);
7301 	}
7302 }
7303 
7304 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7305 				   unsigned long start,
7306 				   unsigned long end)
7307 {
7308 	struct hstate *h = hstate_vma(vma);
7309 	unsigned long sz = huge_page_size(h);
7310 	struct mm_struct *mm = vma->vm_mm;
7311 	struct mmu_notifier_range range;
7312 	unsigned long address;
7313 	spinlock_t *ptl;
7314 	pte_t *ptep;
7315 
7316 	if (!(vma->vm_flags & VM_MAYSHARE))
7317 		return;
7318 
7319 	if (start >= end)
7320 		return;
7321 
7322 	flush_cache_range(vma, start, end);
7323 	/*
7324 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7325 	 * we have already done the PUD_SIZE alignment.
7326 	 */
7327 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7328 				start, end);
7329 	mmu_notifier_invalidate_range_start(&range);
7330 	hugetlb_vma_lock_write(vma);
7331 	i_mmap_lock_write(vma->vm_file->f_mapping);
7332 	for (address = start; address < end; address += PUD_SIZE) {
7333 		ptep = hugetlb_walk(vma, address, sz);
7334 		if (!ptep)
7335 			continue;
7336 		ptl = huge_pte_lock(h, mm, ptep);
7337 		huge_pmd_unshare(mm, vma, address, ptep);
7338 		spin_unlock(ptl);
7339 	}
7340 	flush_hugetlb_tlb_range(vma, start, end);
7341 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7342 	hugetlb_vma_unlock_write(vma);
7343 	/*
7344 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7345 	 * Documentation/mm/mmu_notifier.rst.
7346 	 */
7347 	mmu_notifier_invalidate_range_end(&range);
7348 }
7349 
7350 /*
7351  * This function will unconditionally remove all the shared pmd pgtable entries
7352  * within the specific vma for a hugetlbfs memory range.
7353  */
7354 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7355 {
7356 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7357 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7358 }
7359 
7360 #ifdef CONFIG_CMA
7361 static bool cma_reserve_called __initdata;
7362 
7363 static int __init cmdline_parse_hugetlb_cma(char *p)
7364 {
7365 	int nid, count = 0;
7366 	unsigned long tmp;
7367 	char *s = p;
7368 
7369 	while (*s) {
7370 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7371 			break;
7372 
7373 		if (s[count] == ':') {
7374 			if (tmp >= MAX_NUMNODES)
7375 				break;
7376 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7377 
7378 			s += count + 1;
7379 			tmp = memparse(s, &s);
7380 			hugetlb_cma_size_in_node[nid] = tmp;
7381 			hugetlb_cma_size += tmp;
7382 
7383 			/*
7384 			 * Skip the separator if have one, otherwise
7385 			 * break the parsing.
7386 			 */
7387 			if (*s == ',')
7388 				s++;
7389 			else
7390 				break;
7391 		} else {
7392 			hugetlb_cma_size = memparse(p, &p);
7393 			break;
7394 		}
7395 	}
7396 
7397 	return 0;
7398 }
7399 
7400 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7401 
7402 void __init hugetlb_cma_reserve(int order)
7403 {
7404 	unsigned long size, reserved, per_node;
7405 	bool node_specific_cma_alloc = false;
7406 	int nid;
7407 
7408 	cma_reserve_called = true;
7409 
7410 	if (!hugetlb_cma_size)
7411 		return;
7412 
7413 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7414 		if (hugetlb_cma_size_in_node[nid] == 0)
7415 			continue;
7416 
7417 		if (!node_online(nid)) {
7418 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7419 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7420 			hugetlb_cma_size_in_node[nid] = 0;
7421 			continue;
7422 		}
7423 
7424 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7425 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7426 				nid, (PAGE_SIZE << order) / SZ_1M);
7427 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7428 			hugetlb_cma_size_in_node[nid] = 0;
7429 		} else {
7430 			node_specific_cma_alloc = true;
7431 		}
7432 	}
7433 
7434 	/* Validate the CMA size again in case some invalid nodes specified. */
7435 	if (!hugetlb_cma_size)
7436 		return;
7437 
7438 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7439 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7440 			(PAGE_SIZE << order) / SZ_1M);
7441 		hugetlb_cma_size = 0;
7442 		return;
7443 	}
7444 
7445 	if (!node_specific_cma_alloc) {
7446 		/*
7447 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7448 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7449 		 */
7450 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7451 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7452 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7453 	}
7454 
7455 	reserved = 0;
7456 	for_each_online_node(nid) {
7457 		int res;
7458 		char name[CMA_MAX_NAME];
7459 
7460 		if (node_specific_cma_alloc) {
7461 			if (hugetlb_cma_size_in_node[nid] == 0)
7462 				continue;
7463 
7464 			size = hugetlb_cma_size_in_node[nid];
7465 		} else {
7466 			size = min(per_node, hugetlb_cma_size - reserved);
7467 		}
7468 
7469 		size = round_up(size, PAGE_SIZE << order);
7470 
7471 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7472 		/*
7473 		 * Note that 'order per bit' is based on smallest size that
7474 		 * may be returned to CMA allocator in the case of
7475 		 * huge page demotion.
7476 		 */
7477 		res = cma_declare_contiguous_nid(0, size, 0,
7478 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7479 						 0, false, name,
7480 						 &hugetlb_cma[nid], nid);
7481 		if (res) {
7482 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7483 				res, nid);
7484 			continue;
7485 		}
7486 
7487 		reserved += size;
7488 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7489 			size / SZ_1M, nid);
7490 
7491 		if (reserved >= hugetlb_cma_size)
7492 			break;
7493 	}
7494 
7495 	if (!reserved)
7496 		/*
7497 		 * hugetlb_cma_size is used to determine if allocations from
7498 		 * cma are possible.  Set to zero if no cma regions are set up.
7499 		 */
7500 		hugetlb_cma_size = 0;
7501 }
7502 
7503 static void __init hugetlb_cma_check(void)
7504 {
7505 	if (!hugetlb_cma_size || cma_reserve_called)
7506 		return;
7507 
7508 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7509 }
7510 
7511 #endif /* CONFIG_CMA */
7512