1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 /* Forward declaration */ 83 static int hugetlb_acct_memory(struct hstate *h, long delta); 84 85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 86 { 87 bool free = (spool->count == 0) && (spool->used_hpages == 0); 88 89 spin_unlock(&spool->lock); 90 91 /* If no pages are used, and no other handles to the subpool 92 * remain, give up any reservations based on minimum size and 93 * free the subpool */ 94 if (free) { 95 if (spool->min_hpages != -1) 96 hugetlb_acct_memory(spool->hstate, 97 -spool->min_hpages); 98 kfree(spool); 99 } 100 } 101 102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 103 long min_hpages) 104 { 105 struct hugepage_subpool *spool; 106 107 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 108 if (!spool) 109 return NULL; 110 111 spin_lock_init(&spool->lock); 112 spool->count = 1; 113 spool->max_hpages = max_hpages; 114 spool->hstate = h; 115 spool->min_hpages = min_hpages; 116 117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 118 kfree(spool); 119 return NULL; 120 } 121 spool->rsv_hpages = min_hpages; 122 123 return spool; 124 } 125 126 void hugepage_put_subpool(struct hugepage_subpool *spool) 127 { 128 spin_lock(&spool->lock); 129 BUG_ON(!spool->count); 130 spool->count--; 131 unlock_or_release_subpool(spool); 132 } 133 134 /* 135 * Subpool accounting for allocating and reserving pages. 136 * Return -ENOMEM if there are not enough resources to satisfy the 137 * request. Otherwise, return the number of pages by which the 138 * global pools must be adjusted (upward). The returned value may 139 * only be different than the passed value (delta) in the case where 140 * a subpool minimum size must be maintained. 141 */ 142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 143 long delta) 144 { 145 long ret = delta; 146 147 if (!spool) 148 return ret; 149 150 spin_lock(&spool->lock); 151 152 if (spool->max_hpages != -1) { /* maximum size accounting */ 153 if ((spool->used_hpages + delta) <= spool->max_hpages) 154 spool->used_hpages += delta; 155 else { 156 ret = -ENOMEM; 157 goto unlock_ret; 158 } 159 } 160 161 /* minimum size accounting */ 162 if (spool->min_hpages != -1 && spool->rsv_hpages) { 163 if (delta > spool->rsv_hpages) { 164 /* 165 * Asking for more reserves than those already taken on 166 * behalf of subpool. Return difference. 167 */ 168 ret = delta - spool->rsv_hpages; 169 spool->rsv_hpages = 0; 170 } else { 171 ret = 0; /* reserves already accounted for */ 172 spool->rsv_hpages -= delta; 173 } 174 } 175 176 unlock_ret: 177 spin_unlock(&spool->lock); 178 return ret; 179 } 180 181 /* 182 * Subpool accounting for freeing and unreserving pages. 183 * Return the number of global page reservations that must be dropped. 184 * The return value may only be different than the passed value (delta) 185 * in the case where a subpool minimum size must be maintained. 186 */ 187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 188 long delta) 189 { 190 long ret = delta; 191 192 if (!spool) 193 return delta; 194 195 spin_lock(&spool->lock); 196 197 if (spool->max_hpages != -1) /* maximum size accounting */ 198 spool->used_hpages -= delta; 199 200 /* minimum size accounting */ 201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 202 if (spool->rsv_hpages + delta <= spool->min_hpages) 203 ret = 0; 204 else 205 ret = spool->rsv_hpages + delta - spool->min_hpages; 206 207 spool->rsv_hpages += delta; 208 if (spool->rsv_hpages > spool->min_hpages) 209 spool->rsv_hpages = spool->min_hpages; 210 } 211 212 /* 213 * If hugetlbfs_put_super couldn't free spool due to an outstanding 214 * quota reference, free it now. 215 */ 216 unlock_or_release_subpool(spool); 217 218 return ret; 219 } 220 221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 222 { 223 return HUGETLBFS_SB(inode->i_sb)->spool; 224 } 225 226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 227 { 228 return subpool_inode(file_inode(vma->vm_file)); 229 } 230 231 /* Helper that removes a struct file_region from the resv_map cache and returns 232 * it for use. 233 */ 234 static struct file_region * 235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 236 { 237 struct file_region *nrg = NULL; 238 239 VM_BUG_ON(resv->region_cache_count <= 0); 240 241 resv->region_cache_count--; 242 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 243 VM_BUG_ON(!nrg); 244 list_del(&nrg->link); 245 246 nrg->from = from; 247 nrg->to = to; 248 249 return nrg; 250 } 251 252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 253 struct file_region *rg) 254 { 255 #ifdef CONFIG_CGROUP_HUGETLB 256 nrg->reservation_counter = rg->reservation_counter; 257 nrg->css = rg->css; 258 if (rg->css) 259 css_get(rg->css); 260 #endif 261 } 262 263 /* Helper that records hugetlb_cgroup uncharge info. */ 264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 265 struct hstate *h, 266 struct resv_map *resv, 267 struct file_region *nrg) 268 { 269 #ifdef CONFIG_CGROUP_HUGETLB 270 if (h_cg) { 271 nrg->reservation_counter = 272 &h_cg->rsvd_hugepage[hstate_index(h)]; 273 nrg->css = &h_cg->css; 274 if (!resv->pages_per_hpage) 275 resv->pages_per_hpage = pages_per_huge_page(h); 276 /* pages_per_hpage should be the same for all entries in 277 * a resv_map. 278 */ 279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 280 } else { 281 nrg->reservation_counter = NULL; 282 nrg->css = NULL; 283 } 284 #endif 285 } 286 287 static bool has_same_uncharge_info(struct file_region *rg, 288 struct file_region *org) 289 { 290 #ifdef CONFIG_CGROUP_HUGETLB 291 return rg && org && 292 rg->reservation_counter == org->reservation_counter && 293 rg->css == org->css; 294 295 #else 296 return true; 297 #endif 298 } 299 300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 301 { 302 struct file_region *nrg = NULL, *prg = NULL; 303 304 prg = list_prev_entry(rg, link); 305 if (&prg->link != &resv->regions && prg->to == rg->from && 306 has_same_uncharge_info(prg, rg)) { 307 prg->to = rg->to; 308 309 list_del(&rg->link); 310 kfree(rg); 311 312 coalesce_file_region(resv, prg); 313 return; 314 } 315 316 nrg = list_next_entry(rg, link); 317 if (&nrg->link != &resv->regions && nrg->from == rg->to && 318 has_same_uncharge_info(nrg, rg)) { 319 nrg->from = rg->from; 320 321 list_del(&rg->link); 322 kfree(rg); 323 324 coalesce_file_region(resv, nrg); 325 return; 326 } 327 } 328 329 /* Must be called with resv->lock held. Calling this with count_only == true 330 * will count the number of pages to be added but will not modify the linked 331 * list. If regions_needed != NULL and count_only == true, then regions_needed 332 * will indicate the number of file_regions needed in the cache to carry out to 333 * add the regions for this range. 334 */ 335 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 336 struct hugetlb_cgroup *h_cg, 337 struct hstate *h, long *regions_needed, 338 bool count_only) 339 { 340 long add = 0; 341 struct list_head *head = &resv->regions; 342 long last_accounted_offset = f; 343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 344 345 if (regions_needed) 346 *regions_needed = 0; 347 348 /* In this loop, we essentially handle an entry for the range 349 * [last_accounted_offset, rg->from), at every iteration, with some 350 * bounds checking. 351 */ 352 list_for_each_entry_safe(rg, trg, head, link) { 353 /* Skip irrelevant regions that start before our range. */ 354 if (rg->from < f) { 355 /* If this region ends after the last accounted offset, 356 * then we need to update last_accounted_offset. 357 */ 358 if (rg->to > last_accounted_offset) 359 last_accounted_offset = rg->to; 360 continue; 361 } 362 363 /* When we find a region that starts beyond our range, we've 364 * finished. 365 */ 366 if (rg->from > t) 367 break; 368 369 /* Add an entry for last_accounted_offset -> rg->from, and 370 * update last_accounted_offset. 371 */ 372 if (rg->from > last_accounted_offset) { 373 add += rg->from - last_accounted_offset; 374 if (!count_only) { 375 nrg = get_file_region_entry_from_cache( 376 resv, last_accounted_offset, rg->from); 377 record_hugetlb_cgroup_uncharge_info(h_cg, h, 378 resv, nrg); 379 list_add(&nrg->link, rg->link.prev); 380 coalesce_file_region(resv, nrg); 381 } else if (regions_needed) 382 *regions_needed += 1; 383 } 384 385 last_accounted_offset = rg->to; 386 } 387 388 /* Handle the case where our range extends beyond 389 * last_accounted_offset. 390 */ 391 if (last_accounted_offset < t) { 392 add += t - last_accounted_offset; 393 if (!count_only) { 394 nrg = get_file_region_entry_from_cache( 395 resv, last_accounted_offset, t); 396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 397 list_add(&nrg->link, rg->link.prev); 398 coalesce_file_region(resv, nrg); 399 } else if (regions_needed) 400 *regions_needed += 1; 401 } 402 403 VM_BUG_ON(add < 0); 404 return add; 405 } 406 407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 408 */ 409 static int allocate_file_region_entries(struct resv_map *resv, 410 int regions_needed) 411 __must_hold(&resv->lock) 412 { 413 struct list_head allocated_regions; 414 int to_allocate = 0, i = 0; 415 struct file_region *trg = NULL, *rg = NULL; 416 417 VM_BUG_ON(regions_needed < 0); 418 419 INIT_LIST_HEAD(&allocated_regions); 420 421 /* 422 * Check for sufficient descriptors in the cache to accommodate 423 * the number of in progress add operations plus regions_needed. 424 * 425 * This is a while loop because when we drop the lock, some other call 426 * to region_add or region_del may have consumed some region_entries, 427 * so we keep looping here until we finally have enough entries for 428 * (adds_in_progress + regions_needed). 429 */ 430 while (resv->region_cache_count < 431 (resv->adds_in_progress + regions_needed)) { 432 to_allocate = resv->adds_in_progress + regions_needed - 433 resv->region_cache_count; 434 435 /* At this point, we should have enough entries in the cache 436 * for all the existings adds_in_progress. We should only be 437 * needing to allocate for regions_needed. 438 */ 439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 440 441 spin_unlock(&resv->lock); 442 for (i = 0; i < to_allocate; i++) { 443 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 444 if (!trg) 445 goto out_of_memory; 446 list_add(&trg->link, &allocated_regions); 447 } 448 449 spin_lock(&resv->lock); 450 451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 452 list_del(&rg->link); 453 list_add(&rg->link, &resv->region_cache); 454 resv->region_cache_count++; 455 } 456 } 457 458 return 0; 459 460 out_of_memory: 461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 462 list_del(&rg->link); 463 kfree(rg); 464 } 465 return -ENOMEM; 466 } 467 468 /* 469 * Add the huge page range represented by [f, t) to the reserve 470 * map. Regions will be taken from the cache to fill in this range. 471 * Sufficient regions should exist in the cache due to the previous 472 * call to region_chg with the same range, but in some cases the cache will not 473 * have sufficient entries due to races with other code doing region_add or 474 * region_del. The extra needed entries will be allocated. 475 * 476 * regions_needed is the out value provided by a previous call to region_chg. 477 * 478 * Return the number of new huge pages added to the map. This number is greater 479 * than or equal to zero. If file_region entries needed to be allocated for 480 * this operation and we were not able to allocate, it returns -ENOMEM. 481 * region_add of regions of length 1 never allocate file_regions and cannot 482 * fail; region_chg will always allocate at least 1 entry and a region_add for 483 * 1 page will only require at most 1 entry. 484 */ 485 static long region_add(struct resv_map *resv, long f, long t, 486 long in_regions_needed, struct hstate *h, 487 struct hugetlb_cgroup *h_cg) 488 { 489 long add = 0, actual_regions_needed = 0; 490 491 spin_lock(&resv->lock); 492 retry: 493 494 /* Count how many regions are actually needed to execute this add. */ 495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed, 496 true); 497 498 /* 499 * Check for sufficient descriptors in the cache to accommodate 500 * this add operation. Note that actual_regions_needed may be greater 501 * than in_regions_needed, as the resv_map may have been modified since 502 * the region_chg call. In this case, we need to make sure that we 503 * allocate extra entries, such that we have enough for all the 504 * existing adds_in_progress, plus the excess needed for this 505 * operation. 506 */ 507 if (actual_regions_needed > in_regions_needed && 508 resv->region_cache_count < 509 resv->adds_in_progress + 510 (actual_regions_needed - in_regions_needed)) { 511 /* region_add operation of range 1 should never need to 512 * allocate file_region entries. 513 */ 514 VM_BUG_ON(t - f <= 1); 515 516 if (allocate_file_region_entries( 517 resv, actual_regions_needed - in_regions_needed)) { 518 return -ENOMEM; 519 } 520 521 goto retry; 522 } 523 524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false); 525 526 resv->adds_in_progress -= in_regions_needed; 527 528 spin_unlock(&resv->lock); 529 VM_BUG_ON(add < 0); 530 return add; 531 } 532 533 /* 534 * Examine the existing reserve map and determine how many 535 * huge pages in the specified range [f, t) are NOT currently 536 * represented. This routine is called before a subsequent 537 * call to region_add that will actually modify the reserve 538 * map to add the specified range [f, t). region_chg does 539 * not change the number of huge pages represented by the 540 * map. A number of new file_region structures is added to the cache as a 541 * placeholder, for the subsequent region_add call to use. At least 1 542 * file_region structure is added. 543 * 544 * out_regions_needed is the number of regions added to the 545 * resv->adds_in_progress. This value needs to be provided to a follow up call 546 * to region_add or region_abort for proper accounting. 547 * 548 * Returns the number of huge pages that need to be added to the existing 549 * reservation map for the range [f, t). This number is greater or equal to 550 * zero. -ENOMEM is returned if a new file_region structure or cache entry 551 * is needed and can not be allocated. 552 */ 553 static long region_chg(struct resv_map *resv, long f, long t, 554 long *out_regions_needed) 555 { 556 long chg = 0; 557 558 spin_lock(&resv->lock); 559 560 /* Count how many hugepages in this range are NOT respresented. */ 561 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 562 out_regions_needed, true); 563 564 if (*out_regions_needed == 0) 565 *out_regions_needed = 1; 566 567 if (allocate_file_region_entries(resv, *out_regions_needed)) 568 return -ENOMEM; 569 570 resv->adds_in_progress += *out_regions_needed; 571 572 spin_unlock(&resv->lock); 573 return chg; 574 } 575 576 /* 577 * Abort the in progress add operation. The adds_in_progress field 578 * of the resv_map keeps track of the operations in progress between 579 * calls to region_chg and region_add. Operations are sometimes 580 * aborted after the call to region_chg. In such cases, region_abort 581 * is called to decrement the adds_in_progress counter. regions_needed 582 * is the value returned by the region_chg call, it is used to decrement 583 * the adds_in_progress counter. 584 * 585 * NOTE: The range arguments [f, t) are not needed or used in this 586 * routine. They are kept to make reading the calling code easier as 587 * arguments will match the associated region_chg call. 588 */ 589 static void region_abort(struct resv_map *resv, long f, long t, 590 long regions_needed) 591 { 592 spin_lock(&resv->lock); 593 VM_BUG_ON(!resv->region_cache_count); 594 resv->adds_in_progress -= regions_needed; 595 spin_unlock(&resv->lock); 596 } 597 598 /* 599 * Delete the specified range [f, t) from the reserve map. If the 600 * t parameter is LONG_MAX, this indicates that ALL regions after f 601 * should be deleted. Locate the regions which intersect [f, t) 602 * and either trim, delete or split the existing regions. 603 * 604 * Returns the number of huge pages deleted from the reserve map. 605 * In the normal case, the return value is zero or more. In the 606 * case where a region must be split, a new region descriptor must 607 * be allocated. If the allocation fails, -ENOMEM will be returned. 608 * NOTE: If the parameter t == LONG_MAX, then we will never split 609 * a region and possibly return -ENOMEM. Callers specifying 610 * t == LONG_MAX do not need to check for -ENOMEM error. 611 */ 612 static long region_del(struct resv_map *resv, long f, long t) 613 { 614 struct list_head *head = &resv->regions; 615 struct file_region *rg, *trg; 616 struct file_region *nrg = NULL; 617 long del = 0; 618 619 retry: 620 spin_lock(&resv->lock); 621 list_for_each_entry_safe(rg, trg, head, link) { 622 /* 623 * Skip regions before the range to be deleted. file_region 624 * ranges are normally of the form [from, to). However, there 625 * may be a "placeholder" entry in the map which is of the form 626 * (from, to) with from == to. Check for placeholder entries 627 * at the beginning of the range to be deleted. 628 */ 629 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 630 continue; 631 632 if (rg->from >= t) 633 break; 634 635 if (f > rg->from && t < rg->to) { /* Must split region */ 636 /* 637 * Check for an entry in the cache before dropping 638 * lock and attempting allocation. 639 */ 640 if (!nrg && 641 resv->region_cache_count > resv->adds_in_progress) { 642 nrg = list_first_entry(&resv->region_cache, 643 struct file_region, 644 link); 645 list_del(&nrg->link); 646 resv->region_cache_count--; 647 } 648 649 if (!nrg) { 650 spin_unlock(&resv->lock); 651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 652 if (!nrg) 653 return -ENOMEM; 654 goto retry; 655 } 656 657 del += t - f; 658 659 /* New entry for end of split region */ 660 nrg->from = t; 661 nrg->to = rg->to; 662 663 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 664 665 INIT_LIST_HEAD(&nrg->link); 666 667 /* Original entry is trimmed */ 668 rg->to = f; 669 670 hugetlb_cgroup_uncharge_file_region( 671 resv, rg, nrg->to - nrg->from); 672 673 list_add(&nrg->link, &rg->link); 674 nrg = NULL; 675 break; 676 } 677 678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 679 del += rg->to - rg->from; 680 hugetlb_cgroup_uncharge_file_region(resv, rg, 681 rg->to - rg->from); 682 list_del(&rg->link); 683 kfree(rg); 684 continue; 685 } 686 687 if (f <= rg->from) { /* Trim beginning of region */ 688 del += t - rg->from; 689 rg->from = t; 690 691 hugetlb_cgroup_uncharge_file_region(resv, rg, 692 t - rg->from); 693 } else { /* Trim end of region */ 694 del += rg->to - f; 695 rg->to = f; 696 697 hugetlb_cgroup_uncharge_file_region(resv, rg, 698 rg->to - f); 699 } 700 } 701 702 spin_unlock(&resv->lock); 703 kfree(nrg); 704 return del; 705 } 706 707 /* 708 * A rare out of memory error was encountered which prevented removal of 709 * the reserve map region for a page. The huge page itself was free'ed 710 * and removed from the page cache. This routine will adjust the subpool 711 * usage count, and the global reserve count if needed. By incrementing 712 * these counts, the reserve map entry which could not be deleted will 713 * appear as a "reserved" entry instead of simply dangling with incorrect 714 * counts. 715 */ 716 void hugetlb_fix_reserve_counts(struct inode *inode) 717 { 718 struct hugepage_subpool *spool = subpool_inode(inode); 719 long rsv_adjust; 720 721 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 722 if (rsv_adjust) { 723 struct hstate *h = hstate_inode(inode); 724 725 hugetlb_acct_memory(h, 1); 726 } 727 } 728 729 /* 730 * Count and return the number of huge pages in the reserve map 731 * that intersect with the range [f, t). 732 */ 733 static long region_count(struct resv_map *resv, long f, long t) 734 { 735 struct list_head *head = &resv->regions; 736 struct file_region *rg; 737 long chg = 0; 738 739 spin_lock(&resv->lock); 740 /* Locate each segment we overlap with, and count that overlap. */ 741 list_for_each_entry(rg, head, link) { 742 long seg_from; 743 long seg_to; 744 745 if (rg->to <= f) 746 continue; 747 if (rg->from >= t) 748 break; 749 750 seg_from = max(rg->from, f); 751 seg_to = min(rg->to, t); 752 753 chg += seg_to - seg_from; 754 } 755 spin_unlock(&resv->lock); 756 757 return chg; 758 } 759 760 /* 761 * Convert the address within this vma to the page offset within 762 * the mapping, in pagecache page units; huge pages here. 763 */ 764 static pgoff_t vma_hugecache_offset(struct hstate *h, 765 struct vm_area_struct *vma, unsigned long address) 766 { 767 return ((address - vma->vm_start) >> huge_page_shift(h)) + 768 (vma->vm_pgoff >> huge_page_order(h)); 769 } 770 771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 772 unsigned long address) 773 { 774 return vma_hugecache_offset(hstate_vma(vma), vma, address); 775 } 776 EXPORT_SYMBOL_GPL(linear_hugepage_index); 777 778 /* 779 * Return the size of the pages allocated when backing a VMA. In the majority 780 * cases this will be same size as used by the page table entries. 781 */ 782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 783 { 784 if (vma->vm_ops && vma->vm_ops->pagesize) 785 return vma->vm_ops->pagesize(vma); 786 return PAGE_SIZE; 787 } 788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 789 790 /* 791 * Return the page size being used by the MMU to back a VMA. In the majority 792 * of cases, the page size used by the kernel matches the MMU size. On 793 * architectures where it differs, an architecture-specific 'strong' 794 * version of this symbol is required. 795 */ 796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 797 { 798 return vma_kernel_pagesize(vma); 799 } 800 801 /* 802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 803 * bits of the reservation map pointer, which are always clear due to 804 * alignment. 805 */ 806 #define HPAGE_RESV_OWNER (1UL << 0) 807 #define HPAGE_RESV_UNMAPPED (1UL << 1) 808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 809 810 /* 811 * These helpers are used to track how many pages are reserved for 812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 813 * is guaranteed to have their future faults succeed. 814 * 815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 816 * the reserve counters are updated with the hugetlb_lock held. It is safe 817 * to reset the VMA at fork() time as it is not in use yet and there is no 818 * chance of the global counters getting corrupted as a result of the values. 819 * 820 * The private mapping reservation is represented in a subtly different 821 * manner to a shared mapping. A shared mapping has a region map associated 822 * with the underlying file, this region map represents the backing file 823 * pages which have ever had a reservation assigned which this persists even 824 * after the page is instantiated. A private mapping has a region map 825 * associated with the original mmap which is attached to all VMAs which 826 * reference it, this region map represents those offsets which have consumed 827 * reservation ie. where pages have been instantiated. 828 */ 829 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 830 { 831 return (unsigned long)vma->vm_private_data; 832 } 833 834 static void set_vma_private_data(struct vm_area_struct *vma, 835 unsigned long value) 836 { 837 vma->vm_private_data = (void *)value; 838 } 839 840 static void 841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 842 struct hugetlb_cgroup *h_cg, 843 struct hstate *h) 844 { 845 #ifdef CONFIG_CGROUP_HUGETLB 846 if (!h_cg || !h) { 847 resv_map->reservation_counter = NULL; 848 resv_map->pages_per_hpage = 0; 849 resv_map->css = NULL; 850 } else { 851 resv_map->reservation_counter = 852 &h_cg->rsvd_hugepage[hstate_index(h)]; 853 resv_map->pages_per_hpage = pages_per_huge_page(h); 854 resv_map->css = &h_cg->css; 855 } 856 #endif 857 } 858 859 struct resv_map *resv_map_alloc(void) 860 { 861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 863 864 if (!resv_map || !rg) { 865 kfree(resv_map); 866 kfree(rg); 867 return NULL; 868 } 869 870 kref_init(&resv_map->refs); 871 spin_lock_init(&resv_map->lock); 872 INIT_LIST_HEAD(&resv_map->regions); 873 874 resv_map->adds_in_progress = 0; 875 /* 876 * Initialize these to 0. On shared mappings, 0's here indicate these 877 * fields don't do cgroup accounting. On private mappings, these will be 878 * re-initialized to the proper values, to indicate that hugetlb cgroup 879 * reservations are to be un-charged from here. 880 */ 881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 882 883 INIT_LIST_HEAD(&resv_map->region_cache); 884 list_add(&rg->link, &resv_map->region_cache); 885 resv_map->region_cache_count = 1; 886 887 return resv_map; 888 } 889 890 void resv_map_release(struct kref *ref) 891 { 892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 893 struct list_head *head = &resv_map->region_cache; 894 struct file_region *rg, *trg; 895 896 /* Clear out any active regions before we release the map. */ 897 region_del(resv_map, 0, LONG_MAX); 898 899 /* ... and any entries left in the cache */ 900 list_for_each_entry_safe(rg, trg, head, link) { 901 list_del(&rg->link); 902 kfree(rg); 903 } 904 905 VM_BUG_ON(resv_map->adds_in_progress); 906 907 kfree(resv_map); 908 } 909 910 static inline struct resv_map *inode_resv_map(struct inode *inode) 911 { 912 /* 913 * At inode evict time, i_mapping may not point to the original 914 * address space within the inode. This original address space 915 * contains the pointer to the resv_map. So, always use the 916 * address space embedded within the inode. 917 * The VERY common case is inode->mapping == &inode->i_data but, 918 * this may not be true for device special inodes. 919 */ 920 return (struct resv_map *)(&inode->i_data)->private_data; 921 } 922 923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 924 { 925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 926 if (vma->vm_flags & VM_MAYSHARE) { 927 struct address_space *mapping = vma->vm_file->f_mapping; 928 struct inode *inode = mapping->host; 929 930 return inode_resv_map(inode); 931 932 } else { 933 return (struct resv_map *)(get_vma_private_data(vma) & 934 ~HPAGE_RESV_MASK); 935 } 936 } 937 938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 939 { 940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 942 943 set_vma_private_data(vma, (get_vma_private_data(vma) & 944 HPAGE_RESV_MASK) | (unsigned long)map); 945 } 946 947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 948 { 949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 951 952 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 953 } 954 955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 956 { 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 958 959 return (get_vma_private_data(vma) & flag) != 0; 960 } 961 962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 964 { 965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 966 if (!(vma->vm_flags & VM_MAYSHARE)) 967 vma->vm_private_data = (void *)0; 968 } 969 970 /* Returns true if the VMA has associated reserve pages */ 971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 972 { 973 if (vma->vm_flags & VM_NORESERVE) { 974 /* 975 * This address is already reserved by other process(chg == 0), 976 * so, we should decrement reserved count. Without decrementing, 977 * reserve count remains after releasing inode, because this 978 * allocated page will go into page cache and is regarded as 979 * coming from reserved pool in releasing step. Currently, we 980 * don't have any other solution to deal with this situation 981 * properly, so add work-around here. 982 */ 983 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 984 return true; 985 else 986 return false; 987 } 988 989 /* Shared mappings always use reserves */ 990 if (vma->vm_flags & VM_MAYSHARE) { 991 /* 992 * We know VM_NORESERVE is not set. Therefore, there SHOULD 993 * be a region map for all pages. The only situation where 994 * there is no region map is if a hole was punched via 995 * fallocate. In this case, there really are no reserves to 996 * use. This situation is indicated if chg != 0. 997 */ 998 if (chg) 999 return false; 1000 else 1001 return true; 1002 } 1003 1004 /* 1005 * Only the process that called mmap() has reserves for 1006 * private mappings. 1007 */ 1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1009 /* 1010 * Like the shared case above, a hole punch or truncate 1011 * could have been performed on the private mapping. 1012 * Examine the value of chg to determine if reserves 1013 * actually exist or were previously consumed. 1014 * Very Subtle - The value of chg comes from a previous 1015 * call to vma_needs_reserves(). The reserve map for 1016 * private mappings has different (opposite) semantics 1017 * than that of shared mappings. vma_needs_reserves() 1018 * has already taken this difference in semantics into 1019 * account. Therefore, the meaning of chg is the same 1020 * as in the shared case above. Code could easily be 1021 * combined, but keeping it separate draws attention to 1022 * subtle differences. 1023 */ 1024 if (chg) 1025 return false; 1026 else 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 static void enqueue_huge_page(struct hstate *h, struct page *page) 1034 { 1035 int nid = page_to_nid(page); 1036 list_move(&page->lru, &h->hugepage_freelists[nid]); 1037 h->free_huge_pages++; 1038 h->free_huge_pages_node[nid]++; 1039 } 1040 1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1042 { 1043 struct page *page; 1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1045 1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1047 if (nocma && is_migrate_cma_page(page)) 1048 continue; 1049 1050 if (!PageHWPoison(page)) 1051 break; 1052 } 1053 1054 /* 1055 * if 'non-isolated free hugepage' not found on the list, 1056 * the allocation fails. 1057 */ 1058 if (&h->hugepage_freelists[nid] == &page->lru) 1059 return NULL; 1060 list_move(&page->lru, &h->hugepage_activelist); 1061 set_page_refcounted(page); 1062 h->free_huge_pages--; 1063 h->free_huge_pages_node[nid]--; 1064 return page; 1065 } 1066 1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1068 nodemask_t *nmask) 1069 { 1070 unsigned int cpuset_mems_cookie; 1071 struct zonelist *zonelist; 1072 struct zone *zone; 1073 struct zoneref *z; 1074 int node = NUMA_NO_NODE; 1075 1076 zonelist = node_zonelist(nid, gfp_mask); 1077 1078 retry_cpuset: 1079 cpuset_mems_cookie = read_mems_allowed_begin(); 1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1081 struct page *page; 1082 1083 if (!cpuset_zone_allowed(zone, gfp_mask)) 1084 continue; 1085 /* 1086 * no need to ask again on the same node. Pool is node rather than 1087 * zone aware 1088 */ 1089 if (zone_to_nid(zone) == node) 1090 continue; 1091 node = zone_to_nid(zone); 1092 1093 page = dequeue_huge_page_node_exact(h, node); 1094 if (page) 1095 return page; 1096 } 1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1098 goto retry_cpuset; 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_vma(struct hstate *h, 1104 struct vm_area_struct *vma, 1105 unsigned long address, int avoid_reserve, 1106 long chg) 1107 { 1108 struct page *page; 1109 struct mempolicy *mpol; 1110 gfp_t gfp_mask; 1111 nodemask_t *nodemask; 1112 int nid; 1113 1114 /* 1115 * A child process with MAP_PRIVATE mappings created by their parent 1116 * have no page reserves. This check ensures that reservations are 1117 * not "stolen". The child may still get SIGKILLed 1118 */ 1119 if (!vma_has_reserves(vma, chg) && 1120 h->free_huge_pages - h->resv_huge_pages == 0) 1121 goto err; 1122 1123 /* If reserves cannot be used, ensure enough pages are in the pool */ 1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1125 goto err; 1126 1127 gfp_mask = htlb_alloc_mask(h); 1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1131 SetPagePrivate(page); 1132 h->resv_huge_pages--; 1133 } 1134 1135 mpol_cond_put(mpol); 1136 return page; 1137 1138 err: 1139 return NULL; 1140 } 1141 1142 /* 1143 * common helper functions for hstate_next_node_to_{alloc|free}. 1144 * We may have allocated or freed a huge page based on a different 1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1146 * be outside of *nodes_allowed. Ensure that we use an allowed 1147 * node for alloc or free. 1148 */ 1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1150 { 1151 nid = next_node_in(nid, *nodes_allowed); 1152 VM_BUG_ON(nid >= MAX_NUMNODES); 1153 1154 return nid; 1155 } 1156 1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1158 { 1159 if (!node_isset(nid, *nodes_allowed)) 1160 nid = next_node_allowed(nid, nodes_allowed); 1161 return nid; 1162 } 1163 1164 /* 1165 * returns the previously saved node ["this node"] from which to 1166 * allocate a persistent huge page for the pool and advance the 1167 * next node from which to allocate, handling wrap at end of node 1168 * mask. 1169 */ 1170 static int hstate_next_node_to_alloc(struct hstate *h, 1171 nodemask_t *nodes_allowed) 1172 { 1173 int nid; 1174 1175 VM_BUG_ON(!nodes_allowed); 1176 1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1179 1180 return nid; 1181 } 1182 1183 /* 1184 * helper for free_pool_huge_page() - return the previously saved 1185 * node ["this node"] from which to free a huge page. Advance the 1186 * next node id whether or not we find a free huge page to free so 1187 * that the next attempt to free addresses the next node. 1188 */ 1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1190 { 1191 int nid; 1192 1193 VM_BUG_ON(!nodes_allowed); 1194 1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1197 1198 return nid; 1199 } 1200 1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1202 for (nr_nodes = nodes_weight(*mask); \ 1203 nr_nodes > 0 && \ 1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1205 nr_nodes--) 1206 1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1208 for (nr_nodes = nodes_weight(*mask); \ 1209 nr_nodes > 0 && \ 1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1211 nr_nodes--) 1212 1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1214 static void destroy_compound_gigantic_page(struct page *page, 1215 unsigned int order) 1216 { 1217 int i; 1218 int nr_pages = 1 << order; 1219 struct page *p = page + 1; 1220 1221 atomic_set(compound_mapcount_ptr(page), 0); 1222 if (hpage_pincount_available(page)) 1223 atomic_set(compound_pincount_ptr(page), 0); 1224 1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1226 clear_compound_head(p); 1227 set_page_refcounted(p); 1228 } 1229 1230 set_compound_order(page, 0); 1231 __ClearPageHead(page); 1232 } 1233 1234 static void free_gigantic_page(struct page *page, unsigned int order) 1235 { 1236 /* 1237 * If the page isn't allocated using the cma allocator, 1238 * cma_release() returns false. 1239 */ 1240 #ifdef CONFIG_CMA 1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1242 return; 1243 #endif 1244 1245 free_contig_range(page_to_pfn(page), 1 << order); 1246 } 1247 1248 #ifdef CONFIG_CONTIG_ALLOC 1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1250 int nid, nodemask_t *nodemask) 1251 { 1252 unsigned long nr_pages = 1UL << huge_page_order(h); 1253 if (nid == NUMA_NO_NODE) 1254 nid = numa_mem_id(); 1255 1256 #ifdef CONFIG_CMA 1257 { 1258 struct page *page; 1259 int node; 1260 1261 if (hugetlb_cma[nid]) { 1262 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1263 huge_page_order(h), true); 1264 if (page) 1265 return page; 1266 } 1267 1268 if (!(gfp_mask & __GFP_THISNODE)) { 1269 for_each_node_mask(node, *nodemask) { 1270 if (node == nid || !hugetlb_cma[node]) 1271 continue; 1272 1273 page = cma_alloc(hugetlb_cma[node], nr_pages, 1274 huge_page_order(h), true); 1275 if (page) 1276 return page; 1277 } 1278 } 1279 } 1280 #endif 1281 1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1283 } 1284 1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1287 #else /* !CONFIG_CONTIG_ALLOC */ 1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1289 int nid, nodemask_t *nodemask) 1290 { 1291 return NULL; 1292 } 1293 #endif /* CONFIG_CONTIG_ALLOC */ 1294 1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1297 int nid, nodemask_t *nodemask) 1298 { 1299 return NULL; 1300 } 1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1302 static inline void destroy_compound_gigantic_page(struct page *page, 1303 unsigned int order) { } 1304 #endif 1305 1306 static void update_and_free_page(struct hstate *h, struct page *page) 1307 { 1308 int i; 1309 1310 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1311 return; 1312 1313 h->nr_huge_pages--; 1314 h->nr_huge_pages_node[page_to_nid(page)]--; 1315 for (i = 0; i < pages_per_huge_page(h); i++) { 1316 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1317 1 << PG_referenced | 1 << PG_dirty | 1318 1 << PG_active | 1 << PG_private | 1319 1 << PG_writeback); 1320 } 1321 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1322 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1323 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1324 set_page_refcounted(page); 1325 if (hstate_is_gigantic(h)) { 1326 /* 1327 * Temporarily drop the hugetlb_lock, because 1328 * we might block in free_gigantic_page(). 1329 */ 1330 spin_unlock(&hugetlb_lock); 1331 destroy_compound_gigantic_page(page, huge_page_order(h)); 1332 free_gigantic_page(page, huge_page_order(h)); 1333 spin_lock(&hugetlb_lock); 1334 } else { 1335 __free_pages(page, huge_page_order(h)); 1336 } 1337 } 1338 1339 struct hstate *size_to_hstate(unsigned long size) 1340 { 1341 struct hstate *h; 1342 1343 for_each_hstate(h) { 1344 if (huge_page_size(h) == size) 1345 return h; 1346 } 1347 return NULL; 1348 } 1349 1350 /* 1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1352 * to hstate->hugepage_activelist.) 1353 * 1354 * This function can be called for tail pages, but never returns true for them. 1355 */ 1356 bool page_huge_active(struct page *page) 1357 { 1358 VM_BUG_ON_PAGE(!PageHuge(page), page); 1359 return PageHead(page) && PagePrivate(&page[1]); 1360 } 1361 1362 /* never called for tail page */ 1363 static void set_page_huge_active(struct page *page) 1364 { 1365 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1366 SetPagePrivate(&page[1]); 1367 } 1368 1369 static void clear_page_huge_active(struct page *page) 1370 { 1371 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1372 ClearPagePrivate(&page[1]); 1373 } 1374 1375 /* 1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1377 * code 1378 */ 1379 static inline bool PageHugeTemporary(struct page *page) 1380 { 1381 if (!PageHuge(page)) 1382 return false; 1383 1384 return (unsigned long)page[2].mapping == -1U; 1385 } 1386 1387 static inline void SetPageHugeTemporary(struct page *page) 1388 { 1389 page[2].mapping = (void *)-1U; 1390 } 1391 1392 static inline void ClearPageHugeTemporary(struct page *page) 1393 { 1394 page[2].mapping = NULL; 1395 } 1396 1397 static void __free_huge_page(struct page *page) 1398 { 1399 /* 1400 * Can't pass hstate in here because it is called from the 1401 * compound page destructor. 1402 */ 1403 struct hstate *h = page_hstate(page); 1404 int nid = page_to_nid(page); 1405 struct hugepage_subpool *spool = 1406 (struct hugepage_subpool *)page_private(page); 1407 bool restore_reserve; 1408 1409 VM_BUG_ON_PAGE(page_count(page), page); 1410 VM_BUG_ON_PAGE(page_mapcount(page), page); 1411 1412 set_page_private(page, 0); 1413 page->mapping = NULL; 1414 restore_reserve = PagePrivate(page); 1415 ClearPagePrivate(page); 1416 1417 /* 1418 * If PagePrivate() was set on page, page allocation consumed a 1419 * reservation. If the page was associated with a subpool, there 1420 * would have been a page reserved in the subpool before allocation 1421 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1422 * reservtion, do not call hugepage_subpool_put_pages() as this will 1423 * remove the reserved page from the subpool. 1424 */ 1425 if (!restore_reserve) { 1426 /* 1427 * A return code of zero implies that the subpool will be 1428 * under its minimum size if the reservation is not restored 1429 * after page is free. Therefore, force restore_reserve 1430 * operation. 1431 */ 1432 if (hugepage_subpool_put_pages(spool, 1) == 0) 1433 restore_reserve = true; 1434 } 1435 1436 spin_lock(&hugetlb_lock); 1437 clear_page_huge_active(page); 1438 hugetlb_cgroup_uncharge_page(hstate_index(h), 1439 pages_per_huge_page(h), page); 1440 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1441 pages_per_huge_page(h), page); 1442 if (restore_reserve) 1443 h->resv_huge_pages++; 1444 1445 if (PageHugeTemporary(page)) { 1446 list_del(&page->lru); 1447 ClearPageHugeTemporary(page); 1448 update_and_free_page(h, page); 1449 } else if (h->surplus_huge_pages_node[nid]) { 1450 /* remove the page from active list */ 1451 list_del(&page->lru); 1452 update_and_free_page(h, page); 1453 h->surplus_huge_pages--; 1454 h->surplus_huge_pages_node[nid]--; 1455 } else { 1456 arch_clear_hugepage_flags(page); 1457 enqueue_huge_page(h, page); 1458 } 1459 spin_unlock(&hugetlb_lock); 1460 } 1461 1462 /* 1463 * As free_huge_page() can be called from a non-task context, we have 1464 * to defer the actual freeing in a workqueue to prevent potential 1465 * hugetlb_lock deadlock. 1466 * 1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1468 * be freed and frees them one-by-one. As the page->mapping pointer is 1469 * going to be cleared in __free_huge_page() anyway, it is reused as the 1470 * llist_node structure of a lockless linked list of huge pages to be freed. 1471 */ 1472 static LLIST_HEAD(hpage_freelist); 1473 1474 static void free_hpage_workfn(struct work_struct *work) 1475 { 1476 struct llist_node *node; 1477 struct page *page; 1478 1479 node = llist_del_all(&hpage_freelist); 1480 1481 while (node) { 1482 page = container_of((struct address_space **)node, 1483 struct page, mapping); 1484 node = node->next; 1485 __free_huge_page(page); 1486 } 1487 } 1488 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1489 1490 void free_huge_page(struct page *page) 1491 { 1492 /* 1493 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1494 */ 1495 if (!in_task()) { 1496 /* 1497 * Only call schedule_work() if hpage_freelist is previously 1498 * empty. Otherwise, schedule_work() had been called but the 1499 * workfn hasn't retrieved the list yet. 1500 */ 1501 if (llist_add((struct llist_node *)&page->mapping, 1502 &hpage_freelist)) 1503 schedule_work(&free_hpage_work); 1504 return; 1505 } 1506 1507 __free_huge_page(page); 1508 } 1509 1510 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1511 { 1512 INIT_LIST_HEAD(&page->lru); 1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1514 spin_lock(&hugetlb_lock); 1515 set_hugetlb_cgroup(page, NULL); 1516 set_hugetlb_cgroup_rsvd(page, NULL); 1517 h->nr_huge_pages++; 1518 h->nr_huge_pages_node[nid]++; 1519 spin_unlock(&hugetlb_lock); 1520 } 1521 1522 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1523 { 1524 int i; 1525 int nr_pages = 1 << order; 1526 struct page *p = page + 1; 1527 1528 /* we rely on prep_new_huge_page to set the destructor */ 1529 set_compound_order(page, order); 1530 __ClearPageReserved(page); 1531 __SetPageHead(page); 1532 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1533 /* 1534 * For gigantic hugepages allocated through bootmem at 1535 * boot, it's safer to be consistent with the not-gigantic 1536 * hugepages and clear the PG_reserved bit from all tail pages 1537 * too. Otherwise drivers using get_user_pages() to access tail 1538 * pages may get the reference counting wrong if they see 1539 * PG_reserved set on a tail page (despite the head page not 1540 * having PG_reserved set). Enforcing this consistency between 1541 * head and tail pages allows drivers to optimize away a check 1542 * on the head page when they need know if put_page() is needed 1543 * after get_user_pages(). 1544 */ 1545 __ClearPageReserved(p); 1546 set_page_count(p, 0); 1547 set_compound_head(p, page); 1548 } 1549 atomic_set(compound_mapcount_ptr(page), -1); 1550 1551 if (hpage_pincount_available(page)) 1552 atomic_set(compound_pincount_ptr(page), 0); 1553 } 1554 1555 /* 1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1557 * transparent huge pages. See the PageTransHuge() documentation for more 1558 * details. 1559 */ 1560 int PageHuge(struct page *page) 1561 { 1562 if (!PageCompound(page)) 1563 return 0; 1564 1565 page = compound_head(page); 1566 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1567 } 1568 EXPORT_SYMBOL_GPL(PageHuge); 1569 1570 /* 1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1572 * normal or transparent huge pages. 1573 */ 1574 int PageHeadHuge(struct page *page_head) 1575 { 1576 if (!PageHead(page_head)) 1577 return 0; 1578 1579 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1580 } 1581 1582 /* 1583 * Find address_space associated with hugetlbfs page. 1584 * Upon entry page is locked and page 'was' mapped although mapped state 1585 * could change. If necessary, use anon_vma to find vma and associated 1586 * address space. The returned mapping may be stale, but it can not be 1587 * invalid as page lock (which is held) is required to destroy mapping. 1588 */ 1589 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) 1590 { 1591 struct anon_vma *anon_vma; 1592 pgoff_t pgoff_start, pgoff_end; 1593 struct anon_vma_chain *avc; 1594 struct address_space *mapping = page_mapping(hpage); 1595 1596 /* Simple file based mapping */ 1597 if (mapping) 1598 return mapping; 1599 1600 /* 1601 * Even anonymous hugetlbfs mappings are associated with an 1602 * underlying hugetlbfs file (see hugetlb_file_setup in mmap 1603 * code). Find a vma associated with the anonymous vma, and 1604 * use the file pointer to get address_space. 1605 */ 1606 anon_vma = page_lock_anon_vma_read(hpage); 1607 if (!anon_vma) 1608 return mapping; /* NULL */ 1609 1610 /* Use first found vma */ 1611 pgoff_start = page_to_pgoff(hpage); 1612 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1; 1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1614 pgoff_start, pgoff_end) { 1615 struct vm_area_struct *vma = avc->vma; 1616 1617 mapping = vma->vm_file->f_mapping; 1618 break; 1619 } 1620 1621 anon_vma_unlock_read(anon_vma); 1622 return mapping; 1623 } 1624 1625 /* 1626 * Find and lock address space (mapping) in write mode. 1627 * 1628 * Upon entry, the page is locked which allows us to find the mapping 1629 * even in the case of an anon page. However, locking order dictates 1630 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs 1631 * specific. So, we first try to lock the sema while still holding the 1632 * page lock. If this works, great! If not, then we need to drop the 1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of 1634 * course, need to revalidate state along the way. 1635 */ 1636 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1637 { 1638 struct address_space *mapping, *mapping2; 1639 1640 mapping = _get_hugetlb_page_mapping(hpage); 1641 retry: 1642 if (!mapping) 1643 return mapping; 1644 1645 /* 1646 * If no contention, take lock and return 1647 */ 1648 if (i_mmap_trylock_write(mapping)) 1649 return mapping; 1650 1651 /* 1652 * Must drop page lock and wait on mapping sema. 1653 * Note: Once page lock is dropped, mapping could become invalid. 1654 * As a hack, increase map count until we lock page again. 1655 */ 1656 atomic_inc(&hpage->_mapcount); 1657 unlock_page(hpage); 1658 i_mmap_lock_write(mapping); 1659 lock_page(hpage); 1660 atomic_add_negative(-1, &hpage->_mapcount); 1661 1662 /* verify page is still mapped */ 1663 if (!page_mapped(hpage)) { 1664 i_mmap_unlock_write(mapping); 1665 return NULL; 1666 } 1667 1668 /* 1669 * Get address space again and verify it is the same one 1670 * we locked. If not, drop lock and retry. 1671 */ 1672 mapping2 = _get_hugetlb_page_mapping(hpage); 1673 if (mapping2 != mapping) { 1674 i_mmap_unlock_write(mapping); 1675 mapping = mapping2; 1676 goto retry; 1677 } 1678 1679 return mapping; 1680 } 1681 1682 pgoff_t __basepage_index(struct page *page) 1683 { 1684 struct page *page_head = compound_head(page); 1685 pgoff_t index = page_index(page_head); 1686 unsigned long compound_idx; 1687 1688 if (!PageHuge(page_head)) 1689 return page_index(page); 1690 1691 if (compound_order(page_head) >= MAX_ORDER) 1692 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1693 else 1694 compound_idx = page - page_head; 1695 1696 return (index << compound_order(page_head)) + compound_idx; 1697 } 1698 1699 static struct page *alloc_buddy_huge_page(struct hstate *h, 1700 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1701 nodemask_t *node_alloc_noretry) 1702 { 1703 int order = huge_page_order(h); 1704 struct page *page; 1705 bool alloc_try_hard = true; 1706 1707 /* 1708 * By default we always try hard to allocate the page with 1709 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1710 * a loop (to adjust global huge page counts) and previous allocation 1711 * failed, do not continue to try hard on the same node. Use the 1712 * node_alloc_noretry bitmap to manage this state information. 1713 */ 1714 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1715 alloc_try_hard = false; 1716 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1717 if (alloc_try_hard) 1718 gfp_mask |= __GFP_RETRY_MAYFAIL; 1719 if (nid == NUMA_NO_NODE) 1720 nid = numa_mem_id(); 1721 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1722 if (page) 1723 __count_vm_event(HTLB_BUDDY_PGALLOC); 1724 else 1725 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1726 1727 /* 1728 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1729 * indicates an overall state change. Clear bit so that we resume 1730 * normal 'try hard' allocations. 1731 */ 1732 if (node_alloc_noretry && page && !alloc_try_hard) 1733 node_clear(nid, *node_alloc_noretry); 1734 1735 /* 1736 * If we tried hard to get a page but failed, set bit so that 1737 * subsequent attempts will not try as hard until there is an 1738 * overall state change. 1739 */ 1740 if (node_alloc_noretry && !page && alloc_try_hard) 1741 node_set(nid, *node_alloc_noretry); 1742 1743 return page; 1744 } 1745 1746 /* 1747 * Common helper to allocate a fresh hugetlb page. All specific allocators 1748 * should use this function to get new hugetlb pages 1749 */ 1750 static struct page *alloc_fresh_huge_page(struct hstate *h, 1751 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1752 nodemask_t *node_alloc_noretry) 1753 { 1754 struct page *page; 1755 1756 if (hstate_is_gigantic(h)) 1757 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1758 else 1759 page = alloc_buddy_huge_page(h, gfp_mask, 1760 nid, nmask, node_alloc_noretry); 1761 if (!page) 1762 return NULL; 1763 1764 if (hstate_is_gigantic(h)) 1765 prep_compound_gigantic_page(page, huge_page_order(h)); 1766 prep_new_huge_page(h, page, page_to_nid(page)); 1767 1768 return page; 1769 } 1770 1771 /* 1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1773 * manner. 1774 */ 1775 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1776 nodemask_t *node_alloc_noretry) 1777 { 1778 struct page *page; 1779 int nr_nodes, node; 1780 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1781 1782 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1783 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1784 node_alloc_noretry); 1785 if (page) 1786 break; 1787 } 1788 1789 if (!page) 1790 return 0; 1791 1792 put_page(page); /* free it into the hugepage allocator */ 1793 1794 return 1; 1795 } 1796 1797 /* 1798 * Free huge page from pool from next node to free. 1799 * Attempt to keep persistent huge pages more or less 1800 * balanced over allowed nodes. 1801 * Called with hugetlb_lock locked. 1802 */ 1803 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1804 bool acct_surplus) 1805 { 1806 int nr_nodes, node; 1807 int ret = 0; 1808 1809 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1810 /* 1811 * If we're returning unused surplus pages, only examine 1812 * nodes with surplus pages. 1813 */ 1814 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1815 !list_empty(&h->hugepage_freelists[node])) { 1816 struct page *page = 1817 list_entry(h->hugepage_freelists[node].next, 1818 struct page, lru); 1819 list_del(&page->lru); 1820 h->free_huge_pages--; 1821 h->free_huge_pages_node[node]--; 1822 if (acct_surplus) { 1823 h->surplus_huge_pages--; 1824 h->surplus_huge_pages_node[node]--; 1825 } 1826 update_and_free_page(h, page); 1827 ret = 1; 1828 break; 1829 } 1830 } 1831 1832 return ret; 1833 } 1834 1835 /* 1836 * Dissolve a given free hugepage into free buddy pages. This function does 1837 * nothing for in-use hugepages and non-hugepages. 1838 * This function returns values like below: 1839 * 1840 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1841 * (allocated or reserved.) 1842 * 0: successfully dissolved free hugepages or the page is not a 1843 * hugepage (considered as already dissolved) 1844 */ 1845 int dissolve_free_huge_page(struct page *page) 1846 { 1847 int rc = -EBUSY; 1848 1849 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1850 if (!PageHuge(page)) 1851 return 0; 1852 1853 spin_lock(&hugetlb_lock); 1854 if (!PageHuge(page)) { 1855 rc = 0; 1856 goto out; 1857 } 1858 1859 if (!page_count(page)) { 1860 struct page *head = compound_head(page); 1861 struct hstate *h = page_hstate(head); 1862 int nid = page_to_nid(head); 1863 if (h->free_huge_pages - h->resv_huge_pages == 0) 1864 goto out; 1865 /* 1866 * Move PageHWPoison flag from head page to the raw error page, 1867 * which makes any subpages rather than the error page reusable. 1868 */ 1869 if (PageHWPoison(head) && page != head) { 1870 SetPageHWPoison(page); 1871 ClearPageHWPoison(head); 1872 } 1873 list_del(&head->lru); 1874 h->free_huge_pages--; 1875 h->free_huge_pages_node[nid]--; 1876 h->max_huge_pages--; 1877 update_and_free_page(h, head); 1878 rc = 0; 1879 } 1880 out: 1881 spin_unlock(&hugetlb_lock); 1882 return rc; 1883 } 1884 1885 /* 1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1887 * make specified memory blocks removable from the system. 1888 * Note that this will dissolve a free gigantic hugepage completely, if any 1889 * part of it lies within the given range. 1890 * Also note that if dissolve_free_huge_page() returns with an error, all 1891 * free hugepages that were dissolved before that error are lost. 1892 */ 1893 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1894 { 1895 unsigned long pfn; 1896 struct page *page; 1897 int rc = 0; 1898 1899 if (!hugepages_supported()) 1900 return rc; 1901 1902 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1903 page = pfn_to_page(pfn); 1904 rc = dissolve_free_huge_page(page); 1905 if (rc) 1906 break; 1907 } 1908 1909 return rc; 1910 } 1911 1912 /* 1913 * Allocates a fresh surplus page from the page allocator. 1914 */ 1915 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1916 int nid, nodemask_t *nmask) 1917 { 1918 struct page *page = NULL; 1919 1920 if (hstate_is_gigantic(h)) 1921 return NULL; 1922 1923 spin_lock(&hugetlb_lock); 1924 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1925 goto out_unlock; 1926 spin_unlock(&hugetlb_lock); 1927 1928 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1929 if (!page) 1930 return NULL; 1931 1932 spin_lock(&hugetlb_lock); 1933 /* 1934 * We could have raced with the pool size change. 1935 * Double check that and simply deallocate the new page 1936 * if we would end up overcommiting the surpluses. Abuse 1937 * temporary page to workaround the nasty free_huge_page 1938 * codeflow 1939 */ 1940 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1941 SetPageHugeTemporary(page); 1942 spin_unlock(&hugetlb_lock); 1943 put_page(page); 1944 return NULL; 1945 } else { 1946 h->surplus_huge_pages++; 1947 h->surplus_huge_pages_node[page_to_nid(page)]++; 1948 } 1949 1950 out_unlock: 1951 spin_unlock(&hugetlb_lock); 1952 1953 return page; 1954 } 1955 1956 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1957 int nid, nodemask_t *nmask) 1958 { 1959 struct page *page; 1960 1961 if (hstate_is_gigantic(h)) 1962 return NULL; 1963 1964 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1965 if (!page) 1966 return NULL; 1967 1968 /* 1969 * We do not account these pages as surplus because they are only 1970 * temporary and will be released properly on the last reference 1971 */ 1972 SetPageHugeTemporary(page); 1973 1974 return page; 1975 } 1976 1977 /* 1978 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1979 */ 1980 static 1981 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1982 struct vm_area_struct *vma, unsigned long addr) 1983 { 1984 struct page *page; 1985 struct mempolicy *mpol; 1986 gfp_t gfp_mask = htlb_alloc_mask(h); 1987 int nid; 1988 nodemask_t *nodemask; 1989 1990 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1991 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1992 mpol_cond_put(mpol); 1993 1994 return page; 1995 } 1996 1997 /* page migration callback function */ 1998 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1999 nodemask_t *nmask, gfp_t gfp_mask) 2000 { 2001 spin_lock(&hugetlb_lock); 2002 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2003 struct page *page; 2004 2005 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2006 if (page) { 2007 spin_unlock(&hugetlb_lock); 2008 return page; 2009 } 2010 } 2011 spin_unlock(&hugetlb_lock); 2012 2013 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2014 } 2015 2016 /* mempolicy aware migration callback */ 2017 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2018 unsigned long address) 2019 { 2020 struct mempolicy *mpol; 2021 nodemask_t *nodemask; 2022 struct page *page; 2023 gfp_t gfp_mask; 2024 int node; 2025 2026 gfp_mask = htlb_alloc_mask(h); 2027 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2028 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2029 mpol_cond_put(mpol); 2030 2031 return page; 2032 } 2033 2034 /* 2035 * Increase the hugetlb pool such that it can accommodate a reservation 2036 * of size 'delta'. 2037 */ 2038 static int gather_surplus_pages(struct hstate *h, int delta) 2039 __must_hold(&hugetlb_lock) 2040 { 2041 struct list_head surplus_list; 2042 struct page *page, *tmp; 2043 int ret, i; 2044 int needed, allocated; 2045 bool alloc_ok = true; 2046 2047 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2048 if (needed <= 0) { 2049 h->resv_huge_pages += delta; 2050 return 0; 2051 } 2052 2053 allocated = 0; 2054 INIT_LIST_HEAD(&surplus_list); 2055 2056 ret = -ENOMEM; 2057 retry: 2058 spin_unlock(&hugetlb_lock); 2059 for (i = 0; i < needed; i++) { 2060 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2061 NUMA_NO_NODE, NULL); 2062 if (!page) { 2063 alloc_ok = false; 2064 break; 2065 } 2066 list_add(&page->lru, &surplus_list); 2067 cond_resched(); 2068 } 2069 allocated += i; 2070 2071 /* 2072 * After retaking hugetlb_lock, we need to recalculate 'needed' 2073 * because either resv_huge_pages or free_huge_pages may have changed. 2074 */ 2075 spin_lock(&hugetlb_lock); 2076 needed = (h->resv_huge_pages + delta) - 2077 (h->free_huge_pages + allocated); 2078 if (needed > 0) { 2079 if (alloc_ok) 2080 goto retry; 2081 /* 2082 * We were not able to allocate enough pages to 2083 * satisfy the entire reservation so we free what 2084 * we've allocated so far. 2085 */ 2086 goto free; 2087 } 2088 /* 2089 * The surplus_list now contains _at_least_ the number of extra pages 2090 * needed to accommodate the reservation. Add the appropriate number 2091 * of pages to the hugetlb pool and free the extras back to the buddy 2092 * allocator. Commit the entire reservation here to prevent another 2093 * process from stealing the pages as they are added to the pool but 2094 * before they are reserved. 2095 */ 2096 needed += allocated; 2097 h->resv_huge_pages += delta; 2098 ret = 0; 2099 2100 /* Free the needed pages to the hugetlb pool */ 2101 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2102 if ((--needed) < 0) 2103 break; 2104 /* 2105 * This page is now managed by the hugetlb allocator and has 2106 * no users -- drop the buddy allocator's reference. 2107 */ 2108 put_page_testzero(page); 2109 VM_BUG_ON_PAGE(page_count(page), page); 2110 enqueue_huge_page(h, page); 2111 } 2112 free: 2113 spin_unlock(&hugetlb_lock); 2114 2115 /* Free unnecessary surplus pages to the buddy allocator */ 2116 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2117 put_page(page); 2118 spin_lock(&hugetlb_lock); 2119 2120 return ret; 2121 } 2122 2123 /* 2124 * This routine has two main purposes: 2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2126 * in unused_resv_pages. This corresponds to the prior adjustments made 2127 * to the associated reservation map. 2128 * 2) Free any unused surplus pages that may have been allocated to satisfy 2129 * the reservation. As many as unused_resv_pages may be freed. 2130 * 2131 * Called with hugetlb_lock held. However, the lock could be dropped (and 2132 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2133 * we must make sure nobody else can claim pages we are in the process of 2134 * freeing. Do this by ensuring resv_huge_page always is greater than the 2135 * number of huge pages we plan to free when dropping the lock. 2136 */ 2137 static void return_unused_surplus_pages(struct hstate *h, 2138 unsigned long unused_resv_pages) 2139 { 2140 unsigned long nr_pages; 2141 2142 /* Cannot return gigantic pages currently */ 2143 if (hstate_is_gigantic(h)) 2144 goto out; 2145 2146 /* 2147 * Part (or even all) of the reservation could have been backed 2148 * by pre-allocated pages. Only free surplus pages. 2149 */ 2150 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2151 2152 /* 2153 * We want to release as many surplus pages as possible, spread 2154 * evenly across all nodes with memory. Iterate across these nodes 2155 * until we can no longer free unreserved surplus pages. This occurs 2156 * when the nodes with surplus pages have no free pages. 2157 * free_pool_huge_page() will balance the freed pages across the 2158 * on-line nodes with memory and will handle the hstate accounting. 2159 * 2160 * Note that we decrement resv_huge_pages as we free the pages. If 2161 * we drop the lock, resv_huge_pages will still be sufficiently large 2162 * to cover subsequent pages we may free. 2163 */ 2164 while (nr_pages--) { 2165 h->resv_huge_pages--; 2166 unused_resv_pages--; 2167 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2168 goto out; 2169 cond_resched_lock(&hugetlb_lock); 2170 } 2171 2172 out: 2173 /* Fully uncommit the reservation */ 2174 h->resv_huge_pages -= unused_resv_pages; 2175 } 2176 2177 2178 /* 2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2180 * are used by the huge page allocation routines to manage reservations. 2181 * 2182 * vma_needs_reservation is called to determine if the huge page at addr 2183 * within the vma has an associated reservation. If a reservation is 2184 * needed, the value 1 is returned. The caller is then responsible for 2185 * managing the global reservation and subpool usage counts. After 2186 * the huge page has been allocated, vma_commit_reservation is called 2187 * to add the page to the reservation map. If the page allocation fails, 2188 * the reservation must be ended instead of committed. vma_end_reservation 2189 * is called in such cases. 2190 * 2191 * In the normal case, vma_commit_reservation returns the same value 2192 * as the preceding vma_needs_reservation call. The only time this 2193 * is not the case is if a reserve map was changed between calls. It 2194 * is the responsibility of the caller to notice the difference and 2195 * take appropriate action. 2196 * 2197 * vma_add_reservation is used in error paths where a reservation must 2198 * be restored when a newly allocated huge page must be freed. It is 2199 * to be called after calling vma_needs_reservation to determine if a 2200 * reservation exists. 2201 */ 2202 enum vma_resv_mode { 2203 VMA_NEEDS_RESV, 2204 VMA_COMMIT_RESV, 2205 VMA_END_RESV, 2206 VMA_ADD_RESV, 2207 }; 2208 static long __vma_reservation_common(struct hstate *h, 2209 struct vm_area_struct *vma, unsigned long addr, 2210 enum vma_resv_mode mode) 2211 { 2212 struct resv_map *resv; 2213 pgoff_t idx; 2214 long ret; 2215 long dummy_out_regions_needed; 2216 2217 resv = vma_resv_map(vma); 2218 if (!resv) 2219 return 1; 2220 2221 idx = vma_hugecache_offset(h, vma, addr); 2222 switch (mode) { 2223 case VMA_NEEDS_RESV: 2224 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2225 /* We assume that vma_reservation_* routines always operate on 2226 * 1 page, and that adding to resv map a 1 page entry can only 2227 * ever require 1 region. 2228 */ 2229 VM_BUG_ON(dummy_out_regions_needed != 1); 2230 break; 2231 case VMA_COMMIT_RESV: 2232 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2233 /* region_add calls of range 1 should never fail. */ 2234 VM_BUG_ON(ret < 0); 2235 break; 2236 case VMA_END_RESV: 2237 region_abort(resv, idx, idx + 1, 1); 2238 ret = 0; 2239 break; 2240 case VMA_ADD_RESV: 2241 if (vma->vm_flags & VM_MAYSHARE) { 2242 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2243 /* region_add calls of range 1 should never fail. */ 2244 VM_BUG_ON(ret < 0); 2245 } else { 2246 region_abort(resv, idx, idx + 1, 1); 2247 ret = region_del(resv, idx, idx + 1); 2248 } 2249 break; 2250 default: 2251 BUG(); 2252 } 2253 2254 if (vma->vm_flags & VM_MAYSHARE) 2255 return ret; 2256 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2257 /* 2258 * In most cases, reserves always exist for private mappings. 2259 * However, a file associated with mapping could have been 2260 * hole punched or truncated after reserves were consumed. 2261 * As subsequent fault on such a range will not use reserves. 2262 * Subtle - The reserve map for private mappings has the 2263 * opposite meaning than that of shared mappings. If NO 2264 * entry is in the reserve map, it means a reservation exists. 2265 * If an entry exists in the reserve map, it means the 2266 * reservation has already been consumed. As a result, the 2267 * return value of this routine is the opposite of the 2268 * value returned from reserve map manipulation routines above. 2269 */ 2270 if (ret) 2271 return 0; 2272 else 2273 return 1; 2274 } 2275 else 2276 return ret < 0 ? ret : 0; 2277 } 2278 2279 static long vma_needs_reservation(struct hstate *h, 2280 struct vm_area_struct *vma, unsigned long addr) 2281 { 2282 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2283 } 2284 2285 static long vma_commit_reservation(struct hstate *h, 2286 struct vm_area_struct *vma, unsigned long addr) 2287 { 2288 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2289 } 2290 2291 static void vma_end_reservation(struct hstate *h, 2292 struct vm_area_struct *vma, unsigned long addr) 2293 { 2294 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2295 } 2296 2297 static long vma_add_reservation(struct hstate *h, 2298 struct vm_area_struct *vma, unsigned long addr) 2299 { 2300 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2301 } 2302 2303 /* 2304 * This routine is called to restore a reservation on error paths. In the 2305 * specific error paths, a huge page was allocated (via alloc_huge_page) 2306 * and is about to be freed. If a reservation for the page existed, 2307 * alloc_huge_page would have consumed the reservation and set PagePrivate 2308 * in the newly allocated page. When the page is freed via free_huge_page, 2309 * the global reservation count will be incremented if PagePrivate is set. 2310 * However, free_huge_page can not adjust the reserve map. Adjust the 2311 * reserve map here to be consistent with global reserve count adjustments 2312 * to be made by free_huge_page. 2313 */ 2314 static void restore_reserve_on_error(struct hstate *h, 2315 struct vm_area_struct *vma, unsigned long address, 2316 struct page *page) 2317 { 2318 if (unlikely(PagePrivate(page))) { 2319 long rc = vma_needs_reservation(h, vma, address); 2320 2321 if (unlikely(rc < 0)) { 2322 /* 2323 * Rare out of memory condition in reserve map 2324 * manipulation. Clear PagePrivate so that 2325 * global reserve count will not be incremented 2326 * by free_huge_page. This will make it appear 2327 * as though the reservation for this page was 2328 * consumed. This may prevent the task from 2329 * faulting in the page at a later time. This 2330 * is better than inconsistent global huge page 2331 * accounting of reserve counts. 2332 */ 2333 ClearPagePrivate(page); 2334 } else if (rc) { 2335 rc = vma_add_reservation(h, vma, address); 2336 if (unlikely(rc < 0)) 2337 /* 2338 * See above comment about rare out of 2339 * memory condition. 2340 */ 2341 ClearPagePrivate(page); 2342 } else 2343 vma_end_reservation(h, vma, address); 2344 } 2345 } 2346 2347 struct page *alloc_huge_page(struct vm_area_struct *vma, 2348 unsigned long addr, int avoid_reserve) 2349 { 2350 struct hugepage_subpool *spool = subpool_vma(vma); 2351 struct hstate *h = hstate_vma(vma); 2352 struct page *page; 2353 long map_chg, map_commit; 2354 long gbl_chg; 2355 int ret, idx; 2356 struct hugetlb_cgroup *h_cg; 2357 bool deferred_reserve; 2358 2359 idx = hstate_index(h); 2360 /* 2361 * Examine the region/reserve map to determine if the process 2362 * has a reservation for the page to be allocated. A return 2363 * code of zero indicates a reservation exists (no change). 2364 */ 2365 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2366 if (map_chg < 0) 2367 return ERR_PTR(-ENOMEM); 2368 2369 /* 2370 * Processes that did not create the mapping will have no 2371 * reserves as indicated by the region/reserve map. Check 2372 * that the allocation will not exceed the subpool limit. 2373 * Allocations for MAP_NORESERVE mappings also need to be 2374 * checked against any subpool limit. 2375 */ 2376 if (map_chg || avoid_reserve) { 2377 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2378 if (gbl_chg < 0) { 2379 vma_end_reservation(h, vma, addr); 2380 return ERR_PTR(-ENOSPC); 2381 } 2382 2383 /* 2384 * Even though there was no reservation in the region/reserve 2385 * map, there could be reservations associated with the 2386 * subpool that can be used. This would be indicated if the 2387 * return value of hugepage_subpool_get_pages() is zero. 2388 * However, if avoid_reserve is specified we still avoid even 2389 * the subpool reservations. 2390 */ 2391 if (avoid_reserve) 2392 gbl_chg = 1; 2393 } 2394 2395 /* If this allocation is not consuming a reservation, charge it now. 2396 */ 2397 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2398 if (deferred_reserve) { 2399 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2400 idx, pages_per_huge_page(h), &h_cg); 2401 if (ret) 2402 goto out_subpool_put; 2403 } 2404 2405 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2406 if (ret) 2407 goto out_uncharge_cgroup_reservation; 2408 2409 spin_lock(&hugetlb_lock); 2410 /* 2411 * glb_chg is passed to indicate whether or not a page must be taken 2412 * from the global free pool (global change). gbl_chg == 0 indicates 2413 * a reservation exists for the allocation. 2414 */ 2415 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2416 if (!page) { 2417 spin_unlock(&hugetlb_lock); 2418 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2419 if (!page) 2420 goto out_uncharge_cgroup; 2421 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2422 SetPagePrivate(page); 2423 h->resv_huge_pages--; 2424 } 2425 spin_lock(&hugetlb_lock); 2426 list_move(&page->lru, &h->hugepage_activelist); 2427 /* Fall through */ 2428 } 2429 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2430 /* If allocation is not consuming a reservation, also store the 2431 * hugetlb_cgroup pointer on the page. 2432 */ 2433 if (deferred_reserve) { 2434 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2435 h_cg, page); 2436 } 2437 2438 spin_unlock(&hugetlb_lock); 2439 2440 set_page_private(page, (unsigned long)spool); 2441 2442 map_commit = vma_commit_reservation(h, vma, addr); 2443 if (unlikely(map_chg > map_commit)) { 2444 /* 2445 * The page was added to the reservation map between 2446 * vma_needs_reservation and vma_commit_reservation. 2447 * This indicates a race with hugetlb_reserve_pages. 2448 * Adjust for the subpool count incremented above AND 2449 * in hugetlb_reserve_pages for the same page. Also, 2450 * the reservation count added in hugetlb_reserve_pages 2451 * no longer applies. 2452 */ 2453 long rsv_adjust; 2454 2455 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2456 hugetlb_acct_memory(h, -rsv_adjust); 2457 } 2458 return page; 2459 2460 out_uncharge_cgroup: 2461 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2462 out_uncharge_cgroup_reservation: 2463 if (deferred_reserve) 2464 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2465 h_cg); 2466 out_subpool_put: 2467 if (map_chg || avoid_reserve) 2468 hugepage_subpool_put_pages(spool, 1); 2469 vma_end_reservation(h, vma, addr); 2470 return ERR_PTR(-ENOSPC); 2471 } 2472 2473 int alloc_bootmem_huge_page(struct hstate *h) 2474 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2475 int __alloc_bootmem_huge_page(struct hstate *h) 2476 { 2477 struct huge_bootmem_page *m; 2478 int nr_nodes, node; 2479 2480 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2481 void *addr; 2482 2483 addr = memblock_alloc_try_nid_raw( 2484 huge_page_size(h), huge_page_size(h), 2485 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2486 if (addr) { 2487 /* 2488 * Use the beginning of the huge page to store the 2489 * huge_bootmem_page struct (until gather_bootmem 2490 * puts them into the mem_map). 2491 */ 2492 m = addr; 2493 goto found; 2494 } 2495 } 2496 return 0; 2497 2498 found: 2499 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2500 /* Put them into a private list first because mem_map is not up yet */ 2501 INIT_LIST_HEAD(&m->list); 2502 list_add(&m->list, &huge_boot_pages); 2503 m->hstate = h; 2504 return 1; 2505 } 2506 2507 static void __init prep_compound_huge_page(struct page *page, 2508 unsigned int order) 2509 { 2510 if (unlikely(order > (MAX_ORDER - 1))) 2511 prep_compound_gigantic_page(page, order); 2512 else 2513 prep_compound_page(page, order); 2514 } 2515 2516 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2517 static void __init gather_bootmem_prealloc(void) 2518 { 2519 struct huge_bootmem_page *m; 2520 2521 list_for_each_entry(m, &huge_boot_pages, list) { 2522 struct page *page = virt_to_page(m); 2523 struct hstate *h = m->hstate; 2524 2525 WARN_ON(page_count(page) != 1); 2526 prep_compound_huge_page(page, h->order); 2527 WARN_ON(PageReserved(page)); 2528 prep_new_huge_page(h, page, page_to_nid(page)); 2529 put_page(page); /* free it into the hugepage allocator */ 2530 2531 /* 2532 * If we had gigantic hugepages allocated at boot time, we need 2533 * to restore the 'stolen' pages to totalram_pages in order to 2534 * fix confusing memory reports from free(1) and another 2535 * side-effects, like CommitLimit going negative. 2536 */ 2537 if (hstate_is_gigantic(h)) 2538 adjust_managed_page_count(page, 1 << h->order); 2539 cond_resched(); 2540 } 2541 } 2542 2543 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2544 { 2545 unsigned long i; 2546 nodemask_t *node_alloc_noretry; 2547 2548 if (!hstate_is_gigantic(h)) { 2549 /* 2550 * Bit mask controlling how hard we retry per-node allocations. 2551 * Ignore errors as lower level routines can deal with 2552 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2553 * time, we are likely in bigger trouble. 2554 */ 2555 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2556 GFP_KERNEL); 2557 } else { 2558 /* allocations done at boot time */ 2559 node_alloc_noretry = NULL; 2560 } 2561 2562 /* bit mask controlling how hard we retry per-node allocations */ 2563 if (node_alloc_noretry) 2564 nodes_clear(*node_alloc_noretry); 2565 2566 for (i = 0; i < h->max_huge_pages; ++i) { 2567 if (hstate_is_gigantic(h)) { 2568 if (hugetlb_cma_size) { 2569 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2570 break; 2571 } 2572 if (!alloc_bootmem_huge_page(h)) 2573 break; 2574 } else if (!alloc_pool_huge_page(h, 2575 &node_states[N_MEMORY], 2576 node_alloc_noretry)) 2577 break; 2578 cond_resched(); 2579 } 2580 if (i < h->max_huge_pages) { 2581 char buf[32]; 2582 2583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2585 h->max_huge_pages, buf, i); 2586 h->max_huge_pages = i; 2587 } 2588 2589 kfree(node_alloc_noretry); 2590 } 2591 2592 static void __init hugetlb_init_hstates(void) 2593 { 2594 struct hstate *h; 2595 2596 for_each_hstate(h) { 2597 if (minimum_order > huge_page_order(h)) 2598 minimum_order = huge_page_order(h); 2599 2600 /* oversize hugepages were init'ed in early boot */ 2601 if (!hstate_is_gigantic(h)) 2602 hugetlb_hstate_alloc_pages(h); 2603 } 2604 VM_BUG_ON(minimum_order == UINT_MAX); 2605 } 2606 2607 static void __init report_hugepages(void) 2608 { 2609 struct hstate *h; 2610 2611 for_each_hstate(h) { 2612 char buf[32]; 2613 2614 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2615 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2616 buf, h->free_huge_pages); 2617 } 2618 } 2619 2620 #ifdef CONFIG_HIGHMEM 2621 static void try_to_free_low(struct hstate *h, unsigned long count, 2622 nodemask_t *nodes_allowed) 2623 { 2624 int i; 2625 2626 if (hstate_is_gigantic(h)) 2627 return; 2628 2629 for_each_node_mask(i, *nodes_allowed) { 2630 struct page *page, *next; 2631 struct list_head *freel = &h->hugepage_freelists[i]; 2632 list_for_each_entry_safe(page, next, freel, lru) { 2633 if (count >= h->nr_huge_pages) 2634 return; 2635 if (PageHighMem(page)) 2636 continue; 2637 list_del(&page->lru); 2638 update_and_free_page(h, page); 2639 h->free_huge_pages--; 2640 h->free_huge_pages_node[page_to_nid(page)]--; 2641 } 2642 } 2643 } 2644 #else 2645 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2646 nodemask_t *nodes_allowed) 2647 { 2648 } 2649 #endif 2650 2651 /* 2652 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2653 * balanced by operating on them in a round-robin fashion. 2654 * Returns 1 if an adjustment was made. 2655 */ 2656 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2657 int delta) 2658 { 2659 int nr_nodes, node; 2660 2661 VM_BUG_ON(delta != -1 && delta != 1); 2662 2663 if (delta < 0) { 2664 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2665 if (h->surplus_huge_pages_node[node]) 2666 goto found; 2667 } 2668 } else { 2669 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2670 if (h->surplus_huge_pages_node[node] < 2671 h->nr_huge_pages_node[node]) 2672 goto found; 2673 } 2674 } 2675 return 0; 2676 2677 found: 2678 h->surplus_huge_pages += delta; 2679 h->surplus_huge_pages_node[node] += delta; 2680 return 1; 2681 } 2682 2683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2685 nodemask_t *nodes_allowed) 2686 { 2687 unsigned long min_count, ret; 2688 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2689 2690 /* 2691 * Bit mask controlling how hard we retry per-node allocations. 2692 * If we can not allocate the bit mask, do not attempt to allocate 2693 * the requested huge pages. 2694 */ 2695 if (node_alloc_noretry) 2696 nodes_clear(*node_alloc_noretry); 2697 else 2698 return -ENOMEM; 2699 2700 spin_lock(&hugetlb_lock); 2701 2702 /* 2703 * Check for a node specific request. 2704 * Changing node specific huge page count may require a corresponding 2705 * change to the global count. In any case, the passed node mask 2706 * (nodes_allowed) will restrict alloc/free to the specified node. 2707 */ 2708 if (nid != NUMA_NO_NODE) { 2709 unsigned long old_count = count; 2710 2711 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2712 /* 2713 * User may have specified a large count value which caused the 2714 * above calculation to overflow. In this case, they wanted 2715 * to allocate as many huge pages as possible. Set count to 2716 * largest possible value to align with their intention. 2717 */ 2718 if (count < old_count) 2719 count = ULONG_MAX; 2720 } 2721 2722 /* 2723 * Gigantic pages runtime allocation depend on the capability for large 2724 * page range allocation. 2725 * If the system does not provide this feature, return an error when 2726 * the user tries to allocate gigantic pages but let the user free the 2727 * boottime allocated gigantic pages. 2728 */ 2729 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2730 if (count > persistent_huge_pages(h)) { 2731 spin_unlock(&hugetlb_lock); 2732 NODEMASK_FREE(node_alloc_noretry); 2733 return -EINVAL; 2734 } 2735 /* Fall through to decrease pool */ 2736 } 2737 2738 /* 2739 * Increase the pool size 2740 * First take pages out of surplus state. Then make up the 2741 * remaining difference by allocating fresh huge pages. 2742 * 2743 * We might race with alloc_surplus_huge_page() here and be unable 2744 * to convert a surplus huge page to a normal huge page. That is 2745 * not critical, though, it just means the overall size of the 2746 * pool might be one hugepage larger than it needs to be, but 2747 * within all the constraints specified by the sysctls. 2748 */ 2749 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2750 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2751 break; 2752 } 2753 2754 while (count > persistent_huge_pages(h)) { 2755 /* 2756 * If this allocation races such that we no longer need the 2757 * page, free_huge_page will handle it by freeing the page 2758 * and reducing the surplus. 2759 */ 2760 spin_unlock(&hugetlb_lock); 2761 2762 /* yield cpu to avoid soft lockup */ 2763 cond_resched(); 2764 2765 ret = alloc_pool_huge_page(h, nodes_allowed, 2766 node_alloc_noretry); 2767 spin_lock(&hugetlb_lock); 2768 if (!ret) 2769 goto out; 2770 2771 /* Bail for signals. Probably ctrl-c from user */ 2772 if (signal_pending(current)) 2773 goto out; 2774 } 2775 2776 /* 2777 * Decrease the pool size 2778 * First return free pages to the buddy allocator (being careful 2779 * to keep enough around to satisfy reservations). Then place 2780 * pages into surplus state as needed so the pool will shrink 2781 * to the desired size as pages become free. 2782 * 2783 * By placing pages into the surplus state independent of the 2784 * overcommit value, we are allowing the surplus pool size to 2785 * exceed overcommit. There are few sane options here. Since 2786 * alloc_surplus_huge_page() is checking the global counter, 2787 * though, we'll note that we're not allowed to exceed surplus 2788 * and won't grow the pool anywhere else. Not until one of the 2789 * sysctls are changed, or the surplus pages go out of use. 2790 */ 2791 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2792 min_count = max(count, min_count); 2793 try_to_free_low(h, min_count, nodes_allowed); 2794 while (min_count < persistent_huge_pages(h)) { 2795 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2796 break; 2797 cond_resched_lock(&hugetlb_lock); 2798 } 2799 while (count < persistent_huge_pages(h)) { 2800 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2801 break; 2802 } 2803 out: 2804 h->max_huge_pages = persistent_huge_pages(h); 2805 spin_unlock(&hugetlb_lock); 2806 2807 NODEMASK_FREE(node_alloc_noretry); 2808 2809 return 0; 2810 } 2811 2812 #define HSTATE_ATTR_RO(_name) \ 2813 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2814 2815 #define HSTATE_ATTR(_name) \ 2816 static struct kobj_attribute _name##_attr = \ 2817 __ATTR(_name, 0644, _name##_show, _name##_store) 2818 2819 static struct kobject *hugepages_kobj; 2820 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2821 2822 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2823 2824 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2825 { 2826 int i; 2827 2828 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2829 if (hstate_kobjs[i] == kobj) { 2830 if (nidp) 2831 *nidp = NUMA_NO_NODE; 2832 return &hstates[i]; 2833 } 2834 2835 return kobj_to_node_hstate(kobj, nidp); 2836 } 2837 2838 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2839 struct kobj_attribute *attr, char *buf) 2840 { 2841 struct hstate *h; 2842 unsigned long nr_huge_pages; 2843 int nid; 2844 2845 h = kobj_to_hstate(kobj, &nid); 2846 if (nid == NUMA_NO_NODE) 2847 nr_huge_pages = h->nr_huge_pages; 2848 else 2849 nr_huge_pages = h->nr_huge_pages_node[nid]; 2850 2851 return sprintf(buf, "%lu\n", nr_huge_pages); 2852 } 2853 2854 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2855 struct hstate *h, int nid, 2856 unsigned long count, size_t len) 2857 { 2858 int err; 2859 nodemask_t nodes_allowed, *n_mask; 2860 2861 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2862 return -EINVAL; 2863 2864 if (nid == NUMA_NO_NODE) { 2865 /* 2866 * global hstate attribute 2867 */ 2868 if (!(obey_mempolicy && 2869 init_nodemask_of_mempolicy(&nodes_allowed))) 2870 n_mask = &node_states[N_MEMORY]; 2871 else 2872 n_mask = &nodes_allowed; 2873 } else { 2874 /* 2875 * Node specific request. count adjustment happens in 2876 * set_max_huge_pages() after acquiring hugetlb_lock. 2877 */ 2878 init_nodemask_of_node(&nodes_allowed, nid); 2879 n_mask = &nodes_allowed; 2880 } 2881 2882 err = set_max_huge_pages(h, count, nid, n_mask); 2883 2884 return err ? err : len; 2885 } 2886 2887 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2888 struct kobject *kobj, const char *buf, 2889 size_t len) 2890 { 2891 struct hstate *h; 2892 unsigned long count; 2893 int nid; 2894 int err; 2895 2896 err = kstrtoul(buf, 10, &count); 2897 if (err) 2898 return err; 2899 2900 h = kobj_to_hstate(kobj, &nid); 2901 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2902 } 2903 2904 static ssize_t nr_hugepages_show(struct kobject *kobj, 2905 struct kobj_attribute *attr, char *buf) 2906 { 2907 return nr_hugepages_show_common(kobj, attr, buf); 2908 } 2909 2910 static ssize_t nr_hugepages_store(struct kobject *kobj, 2911 struct kobj_attribute *attr, const char *buf, size_t len) 2912 { 2913 return nr_hugepages_store_common(false, kobj, buf, len); 2914 } 2915 HSTATE_ATTR(nr_hugepages); 2916 2917 #ifdef CONFIG_NUMA 2918 2919 /* 2920 * hstate attribute for optionally mempolicy-based constraint on persistent 2921 * huge page alloc/free. 2922 */ 2923 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2924 struct kobj_attribute *attr, char *buf) 2925 { 2926 return nr_hugepages_show_common(kobj, attr, buf); 2927 } 2928 2929 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2930 struct kobj_attribute *attr, const char *buf, size_t len) 2931 { 2932 return nr_hugepages_store_common(true, kobj, buf, len); 2933 } 2934 HSTATE_ATTR(nr_hugepages_mempolicy); 2935 #endif 2936 2937 2938 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2939 struct kobj_attribute *attr, char *buf) 2940 { 2941 struct hstate *h = kobj_to_hstate(kobj, NULL); 2942 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2943 } 2944 2945 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2946 struct kobj_attribute *attr, const char *buf, size_t count) 2947 { 2948 int err; 2949 unsigned long input; 2950 struct hstate *h = kobj_to_hstate(kobj, NULL); 2951 2952 if (hstate_is_gigantic(h)) 2953 return -EINVAL; 2954 2955 err = kstrtoul(buf, 10, &input); 2956 if (err) 2957 return err; 2958 2959 spin_lock(&hugetlb_lock); 2960 h->nr_overcommit_huge_pages = input; 2961 spin_unlock(&hugetlb_lock); 2962 2963 return count; 2964 } 2965 HSTATE_ATTR(nr_overcommit_hugepages); 2966 2967 static ssize_t free_hugepages_show(struct kobject *kobj, 2968 struct kobj_attribute *attr, char *buf) 2969 { 2970 struct hstate *h; 2971 unsigned long free_huge_pages; 2972 int nid; 2973 2974 h = kobj_to_hstate(kobj, &nid); 2975 if (nid == NUMA_NO_NODE) 2976 free_huge_pages = h->free_huge_pages; 2977 else 2978 free_huge_pages = h->free_huge_pages_node[nid]; 2979 2980 return sprintf(buf, "%lu\n", free_huge_pages); 2981 } 2982 HSTATE_ATTR_RO(free_hugepages); 2983 2984 static ssize_t resv_hugepages_show(struct kobject *kobj, 2985 struct kobj_attribute *attr, char *buf) 2986 { 2987 struct hstate *h = kobj_to_hstate(kobj, NULL); 2988 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2989 } 2990 HSTATE_ATTR_RO(resv_hugepages); 2991 2992 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2993 struct kobj_attribute *attr, char *buf) 2994 { 2995 struct hstate *h; 2996 unsigned long surplus_huge_pages; 2997 int nid; 2998 2999 h = kobj_to_hstate(kobj, &nid); 3000 if (nid == NUMA_NO_NODE) 3001 surplus_huge_pages = h->surplus_huge_pages; 3002 else 3003 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3004 3005 return sprintf(buf, "%lu\n", surplus_huge_pages); 3006 } 3007 HSTATE_ATTR_RO(surplus_hugepages); 3008 3009 static struct attribute *hstate_attrs[] = { 3010 &nr_hugepages_attr.attr, 3011 &nr_overcommit_hugepages_attr.attr, 3012 &free_hugepages_attr.attr, 3013 &resv_hugepages_attr.attr, 3014 &surplus_hugepages_attr.attr, 3015 #ifdef CONFIG_NUMA 3016 &nr_hugepages_mempolicy_attr.attr, 3017 #endif 3018 NULL, 3019 }; 3020 3021 static const struct attribute_group hstate_attr_group = { 3022 .attrs = hstate_attrs, 3023 }; 3024 3025 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3026 struct kobject **hstate_kobjs, 3027 const struct attribute_group *hstate_attr_group) 3028 { 3029 int retval; 3030 int hi = hstate_index(h); 3031 3032 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3033 if (!hstate_kobjs[hi]) 3034 return -ENOMEM; 3035 3036 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3037 if (retval) 3038 kobject_put(hstate_kobjs[hi]); 3039 3040 return retval; 3041 } 3042 3043 static void __init hugetlb_sysfs_init(void) 3044 { 3045 struct hstate *h; 3046 int err; 3047 3048 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3049 if (!hugepages_kobj) 3050 return; 3051 3052 for_each_hstate(h) { 3053 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3054 hstate_kobjs, &hstate_attr_group); 3055 if (err) 3056 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3057 } 3058 } 3059 3060 #ifdef CONFIG_NUMA 3061 3062 /* 3063 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3064 * with node devices in node_devices[] using a parallel array. The array 3065 * index of a node device or _hstate == node id. 3066 * This is here to avoid any static dependency of the node device driver, in 3067 * the base kernel, on the hugetlb module. 3068 */ 3069 struct node_hstate { 3070 struct kobject *hugepages_kobj; 3071 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3072 }; 3073 static struct node_hstate node_hstates[MAX_NUMNODES]; 3074 3075 /* 3076 * A subset of global hstate attributes for node devices 3077 */ 3078 static struct attribute *per_node_hstate_attrs[] = { 3079 &nr_hugepages_attr.attr, 3080 &free_hugepages_attr.attr, 3081 &surplus_hugepages_attr.attr, 3082 NULL, 3083 }; 3084 3085 static const struct attribute_group per_node_hstate_attr_group = { 3086 .attrs = per_node_hstate_attrs, 3087 }; 3088 3089 /* 3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3091 * Returns node id via non-NULL nidp. 3092 */ 3093 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3094 { 3095 int nid; 3096 3097 for (nid = 0; nid < nr_node_ids; nid++) { 3098 struct node_hstate *nhs = &node_hstates[nid]; 3099 int i; 3100 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3101 if (nhs->hstate_kobjs[i] == kobj) { 3102 if (nidp) 3103 *nidp = nid; 3104 return &hstates[i]; 3105 } 3106 } 3107 3108 BUG(); 3109 return NULL; 3110 } 3111 3112 /* 3113 * Unregister hstate attributes from a single node device. 3114 * No-op if no hstate attributes attached. 3115 */ 3116 static void hugetlb_unregister_node(struct node *node) 3117 { 3118 struct hstate *h; 3119 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3120 3121 if (!nhs->hugepages_kobj) 3122 return; /* no hstate attributes */ 3123 3124 for_each_hstate(h) { 3125 int idx = hstate_index(h); 3126 if (nhs->hstate_kobjs[idx]) { 3127 kobject_put(nhs->hstate_kobjs[idx]); 3128 nhs->hstate_kobjs[idx] = NULL; 3129 } 3130 } 3131 3132 kobject_put(nhs->hugepages_kobj); 3133 nhs->hugepages_kobj = NULL; 3134 } 3135 3136 3137 /* 3138 * Register hstate attributes for a single node device. 3139 * No-op if attributes already registered. 3140 */ 3141 static void hugetlb_register_node(struct node *node) 3142 { 3143 struct hstate *h; 3144 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3145 int err; 3146 3147 if (nhs->hugepages_kobj) 3148 return; /* already allocated */ 3149 3150 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3151 &node->dev.kobj); 3152 if (!nhs->hugepages_kobj) 3153 return; 3154 3155 for_each_hstate(h) { 3156 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3157 nhs->hstate_kobjs, 3158 &per_node_hstate_attr_group); 3159 if (err) { 3160 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3161 h->name, node->dev.id); 3162 hugetlb_unregister_node(node); 3163 break; 3164 } 3165 } 3166 } 3167 3168 /* 3169 * hugetlb init time: register hstate attributes for all registered node 3170 * devices of nodes that have memory. All on-line nodes should have 3171 * registered their associated device by this time. 3172 */ 3173 static void __init hugetlb_register_all_nodes(void) 3174 { 3175 int nid; 3176 3177 for_each_node_state(nid, N_MEMORY) { 3178 struct node *node = node_devices[nid]; 3179 if (node->dev.id == nid) 3180 hugetlb_register_node(node); 3181 } 3182 3183 /* 3184 * Let the node device driver know we're here so it can 3185 * [un]register hstate attributes on node hotplug. 3186 */ 3187 register_hugetlbfs_with_node(hugetlb_register_node, 3188 hugetlb_unregister_node); 3189 } 3190 #else /* !CONFIG_NUMA */ 3191 3192 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3193 { 3194 BUG(); 3195 if (nidp) 3196 *nidp = -1; 3197 return NULL; 3198 } 3199 3200 static void hugetlb_register_all_nodes(void) { } 3201 3202 #endif 3203 3204 static int __init hugetlb_init(void) 3205 { 3206 int i; 3207 3208 if (!hugepages_supported()) { 3209 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3211 return 0; 3212 } 3213 3214 /* 3215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3216 * architectures depend on setup being done here. 3217 */ 3218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3219 if (!parsed_default_hugepagesz) { 3220 /* 3221 * If we did not parse a default huge page size, set 3222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3223 * number of huge pages for this default size was implicitly 3224 * specified, set that here as well. 3225 * Note that the implicit setting will overwrite an explicit 3226 * setting. A warning will be printed in this case. 3227 */ 3228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3229 if (default_hstate_max_huge_pages) { 3230 if (default_hstate.max_huge_pages) { 3231 char buf[32]; 3232 3233 string_get_size(huge_page_size(&default_hstate), 3234 1, STRING_UNITS_2, buf, 32); 3235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3236 default_hstate.max_huge_pages, buf); 3237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3238 default_hstate_max_huge_pages); 3239 } 3240 default_hstate.max_huge_pages = 3241 default_hstate_max_huge_pages; 3242 } 3243 } 3244 3245 hugetlb_cma_check(); 3246 hugetlb_init_hstates(); 3247 gather_bootmem_prealloc(); 3248 report_hugepages(); 3249 3250 hugetlb_sysfs_init(); 3251 hugetlb_register_all_nodes(); 3252 hugetlb_cgroup_file_init(); 3253 3254 #ifdef CONFIG_SMP 3255 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3256 #else 3257 num_fault_mutexes = 1; 3258 #endif 3259 hugetlb_fault_mutex_table = 3260 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3261 GFP_KERNEL); 3262 BUG_ON(!hugetlb_fault_mutex_table); 3263 3264 for (i = 0; i < num_fault_mutexes; i++) 3265 mutex_init(&hugetlb_fault_mutex_table[i]); 3266 return 0; 3267 } 3268 subsys_initcall(hugetlb_init); 3269 3270 /* Overwritten by architectures with more huge page sizes */ 3271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3272 { 3273 return size == HPAGE_SIZE; 3274 } 3275 3276 void __init hugetlb_add_hstate(unsigned int order) 3277 { 3278 struct hstate *h; 3279 unsigned long i; 3280 3281 if (size_to_hstate(PAGE_SIZE << order)) { 3282 return; 3283 } 3284 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3285 BUG_ON(order == 0); 3286 h = &hstates[hugetlb_max_hstate++]; 3287 h->order = order; 3288 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3289 h->nr_huge_pages = 0; 3290 h->free_huge_pages = 0; 3291 for (i = 0; i < MAX_NUMNODES; ++i) 3292 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3293 INIT_LIST_HEAD(&h->hugepage_activelist); 3294 h->next_nid_to_alloc = first_memory_node; 3295 h->next_nid_to_free = first_memory_node; 3296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3297 huge_page_size(h)/1024); 3298 3299 parsed_hstate = h; 3300 } 3301 3302 /* 3303 * hugepages command line processing 3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3305 * specification. If not, ignore the hugepages value. hugepages can also 3306 * be the first huge page command line option in which case it implicitly 3307 * specifies the number of huge pages for the default size. 3308 */ 3309 static int __init hugepages_setup(char *s) 3310 { 3311 unsigned long *mhp; 3312 static unsigned long *last_mhp; 3313 3314 if (!parsed_valid_hugepagesz) { 3315 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3316 parsed_valid_hugepagesz = true; 3317 return 0; 3318 } 3319 3320 /* 3321 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3322 * yet, so this hugepages= parameter goes to the "default hstate". 3323 * Otherwise, it goes with the previously parsed hugepagesz or 3324 * default_hugepagesz. 3325 */ 3326 else if (!hugetlb_max_hstate) 3327 mhp = &default_hstate_max_huge_pages; 3328 else 3329 mhp = &parsed_hstate->max_huge_pages; 3330 3331 if (mhp == last_mhp) { 3332 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3333 return 0; 3334 } 3335 3336 if (sscanf(s, "%lu", mhp) <= 0) 3337 *mhp = 0; 3338 3339 /* 3340 * Global state is always initialized later in hugetlb_init. 3341 * But we need to allocate >= MAX_ORDER hstates here early to still 3342 * use the bootmem allocator. 3343 */ 3344 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3345 hugetlb_hstate_alloc_pages(parsed_hstate); 3346 3347 last_mhp = mhp; 3348 3349 return 1; 3350 } 3351 __setup("hugepages=", hugepages_setup); 3352 3353 /* 3354 * hugepagesz command line processing 3355 * A specific huge page size can only be specified once with hugepagesz. 3356 * hugepagesz is followed by hugepages on the command line. The global 3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3358 * hugepagesz argument was valid. 3359 */ 3360 static int __init hugepagesz_setup(char *s) 3361 { 3362 unsigned long size; 3363 struct hstate *h; 3364 3365 parsed_valid_hugepagesz = false; 3366 size = (unsigned long)memparse(s, NULL); 3367 3368 if (!arch_hugetlb_valid_size(size)) { 3369 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3370 return 0; 3371 } 3372 3373 h = size_to_hstate(size); 3374 if (h) { 3375 /* 3376 * hstate for this size already exists. This is normally 3377 * an error, but is allowed if the existing hstate is the 3378 * default hstate. More specifically, it is only allowed if 3379 * the number of huge pages for the default hstate was not 3380 * previously specified. 3381 */ 3382 if (!parsed_default_hugepagesz || h != &default_hstate || 3383 default_hstate.max_huge_pages) { 3384 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3385 return 0; 3386 } 3387 3388 /* 3389 * No need to call hugetlb_add_hstate() as hstate already 3390 * exists. But, do set parsed_hstate so that a following 3391 * hugepages= parameter will be applied to this hstate. 3392 */ 3393 parsed_hstate = h; 3394 parsed_valid_hugepagesz = true; 3395 return 1; 3396 } 3397 3398 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3399 parsed_valid_hugepagesz = true; 3400 return 1; 3401 } 3402 __setup("hugepagesz=", hugepagesz_setup); 3403 3404 /* 3405 * default_hugepagesz command line input 3406 * Only one instance of default_hugepagesz allowed on command line. 3407 */ 3408 static int __init default_hugepagesz_setup(char *s) 3409 { 3410 unsigned long size; 3411 3412 parsed_valid_hugepagesz = false; 3413 if (parsed_default_hugepagesz) { 3414 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3415 return 0; 3416 } 3417 3418 size = (unsigned long)memparse(s, NULL); 3419 3420 if (!arch_hugetlb_valid_size(size)) { 3421 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3422 return 0; 3423 } 3424 3425 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3426 parsed_valid_hugepagesz = true; 3427 parsed_default_hugepagesz = true; 3428 default_hstate_idx = hstate_index(size_to_hstate(size)); 3429 3430 /* 3431 * The number of default huge pages (for this size) could have been 3432 * specified as the first hugetlb parameter: hugepages=X. If so, 3433 * then default_hstate_max_huge_pages is set. If the default huge 3434 * page size is gigantic (>= MAX_ORDER), then the pages must be 3435 * allocated here from bootmem allocator. 3436 */ 3437 if (default_hstate_max_huge_pages) { 3438 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3439 if (hstate_is_gigantic(&default_hstate)) 3440 hugetlb_hstate_alloc_pages(&default_hstate); 3441 default_hstate_max_huge_pages = 0; 3442 } 3443 3444 return 1; 3445 } 3446 __setup("default_hugepagesz=", default_hugepagesz_setup); 3447 3448 static unsigned int allowed_mems_nr(struct hstate *h) 3449 { 3450 int node; 3451 unsigned int nr = 0; 3452 nodemask_t *mpol_allowed; 3453 unsigned int *array = h->free_huge_pages_node; 3454 gfp_t gfp_mask = htlb_alloc_mask(h); 3455 3456 mpol_allowed = policy_nodemask_current(gfp_mask); 3457 3458 for_each_node_mask(node, cpuset_current_mems_allowed) { 3459 if (!mpol_allowed || 3460 (mpol_allowed && node_isset(node, *mpol_allowed))) 3461 nr += array[node]; 3462 } 3463 3464 return nr; 3465 } 3466 3467 #ifdef CONFIG_SYSCTL 3468 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3469 void *buffer, size_t *length, 3470 loff_t *ppos, unsigned long *out) 3471 { 3472 struct ctl_table dup_table; 3473 3474 /* 3475 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3476 * can duplicate the @table and alter the duplicate of it. 3477 */ 3478 dup_table = *table; 3479 dup_table.data = out; 3480 3481 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3482 } 3483 3484 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3485 struct ctl_table *table, int write, 3486 void *buffer, size_t *length, loff_t *ppos) 3487 { 3488 struct hstate *h = &default_hstate; 3489 unsigned long tmp = h->max_huge_pages; 3490 int ret; 3491 3492 if (!hugepages_supported()) 3493 return -EOPNOTSUPP; 3494 3495 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3496 &tmp); 3497 if (ret) 3498 goto out; 3499 3500 if (write) 3501 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3502 NUMA_NO_NODE, tmp, *length); 3503 out: 3504 return ret; 3505 } 3506 3507 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3508 void *buffer, size_t *length, loff_t *ppos) 3509 { 3510 3511 return hugetlb_sysctl_handler_common(false, table, write, 3512 buffer, length, ppos); 3513 } 3514 3515 #ifdef CONFIG_NUMA 3516 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3517 void *buffer, size_t *length, loff_t *ppos) 3518 { 3519 return hugetlb_sysctl_handler_common(true, table, write, 3520 buffer, length, ppos); 3521 } 3522 #endif /* CONFIG_NUMA */ 3523 3524 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3525 void *buffer, size_t *length, loff_t *ppos) 3526 { 3527 struct hstate *h = &default_hstate; 3528 unsigned long tmp; 3529 int ret; 3530 3531 if (!hugepages_supported()) 3532 return -EOPNOTSUPP; 3533 3534 tmp = h->nr_overcommit_huge_pages; 3535 3536 if (write && hstate_is_gigantic(h)) 3537 return -EINVAL; 3538 3539 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3540 &tmp); 3541 if (ret) 3542 goto out; 3543 3544 if (write) { 3545 spin_lock(&hugetlb_lock); 3546 h->nr_overcommit_huge_pages = tmp; 3547 spin_unlock(&hugetlb_lock); 3548 } 3549 out: 3550 return ret; 3551 } 3552 3553 #endif /* CONFIG_SYSCTL */ 3554 3555 void hugetlb_report_meminfo(struct seq_file *m) 3556 { 3557 struct hstate *h; 3558 unsigned long total = 0; 3559 3560 if (!hugepages_supported()) 3561 return; 3562 3563 for_each_hstate(h) { 3564 unsigned long count = h->nr_huge_pages; 3565 3566 total += (PAGE_SIZE << huge_page_order(h)) * count; 3567 3568 if (h == &default_hstate) 3569 seq_printf(m, 3570 "HugePages_Total: %5lu\n" 3571 "HugePages_Free: %5lu\n" 3572 "HugePages_Rsvd: %5lu\n" 3573 "HugePages_Surp: %5lu\n" 3574 "Hugepagesize: %8lu kB\n", 3575 count, 3576 h->free_huge_pages, 3577 h->resv_huge_pages, 3578 h->surplus_huge_pages, 3579 (PAGE_SIZE << huge_page_order(h)) / 1024); 3580 } 3581 3582 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3583 } 3584 3585 int hugetlb_report_node_meminfo(int nid, char *buf) 3586 { 3587 struct hstate *h = &default_hstate; 3588 if (!hugepages_supported()) 3589 return 0; 3590 return sprintf(buf, 3591 "Node %d HugePages_Total: %5u\n" 3592 "Node %d HugePages_Free: %5u\n" 3593 "Node %d HugePages_Surp: %5u\n", 3594 nid, h->nr_huge_pages_node[nid], 3595 nid, h->free_huge_pages_node[nid], 3596 nid, h->surplus_huge_pages_node[nid]); 3597 } 3598 3599 void hugetlb_show_meminfo(void) 3600 { 3601 struct hstate *h; 3602 int nid; 3603 3604 if (!hugepages_supported()) 3605 return; 3606 3607 for_each_node_state(nid, N_MEMORY) 3608 for_each_hstate(h) 3609 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3610 nid, 3611 h->nr_huge_pages_node[nid], 3612 h->free_huge_pages_node[nid], 3613 h->surplus_huge_pages_node[nid], 3614 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3615 } 3616 3617 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3618 { 3619 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3620 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3621 } 3622 3623 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3624 unsigned long hugetlb_total_pages(void) 3625 { 3626 struct hstate *h; 3627 unsigned long nr_total_pages = 0; 3628 3629 for_each_hstate(h) 3630 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3631 return nr_total_pages; 3632 } 3633 3634 static int hugetlb_acct_memory(struct hstate *h, long delta) 3635 { 3636 int ret = -ENOMEM; 3637 3638 spin_lock(&hugetlb_lock); 3639 /* 3640 * When cpuset is configured, it breaks the strict hugetlb page 3641 * reservation as the accounting is done on a global variable. Such 3642 * reservation is completely rubbish in the presence of cpuset because 3643 * the reservation is not checked against page availability for the 3644 * current cpuset. Application can still potentially OOM'ed by kernel 3645 * with lack of free htlb page in cpuset that the task is in. 3646 * Attempt to enforce strict accounting with cpuset is almost 3647 * impossible (or too ugly) because cpuset is too fluid that 3648 * task or memory node can be dynamically moved between cpusets. 3649 * 3650 * The change of semantics for shared hugetlb mapping with cpuset is 3651 * undesirable. However, in order to preserve some of the semantics, 3652 * we fall back to check against current free page availability as 3653 * a best attempt and hopefully to minimize the impact of changing 3654 * semantics that cpuset has. 3655 * 3656 * Apart from cpuset, we also have memory policy mechanism that 3657 * also determines from which node the kernel will allocate memory 3658 * in a NUMA system. So similar to cpuset, we also should consider 3659 * the memory policy of the current task. Similar to the description 3660 * above. 3661 */ 3662 if (delta > 0) { 3663 if (gather_surplus_pages(h, delta) < 0) 3664 goto out; 3665 3666 if (delta > allowed_mems_nr(h)) { 3667 return_unused_surplus_pages(h, delta); 3668 goto out; 3669 } 3670 } 3671 3672 ret = 0; 3673 if (delta < 0) 3674 return_unused_surplus_pages(h, (unsigned long) -delta); 3675 3676 out: 3677 spin_unlock(&hugetlb_lock); 3678 return ret; 3679 } 3680 3681 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3682 { 3683 struct resv_map *resv = vma_resv_map(vma); 3684 3685 /* 3686 * This new VMA should share its siblings reservation map if present. 3687 * The VMA will only ever have a valid reservation map pointer where 3688 * it is being copied for another still existing VMA. As that VMA 3689 * has a reference to the reservation map it cannot disappear until 3690 * after this open call completes. It is therefore safe to take a 3691 * new reference here without additional locking. 3692 */ 3693 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3694 kref_get(&resv->refs); 3695 } 3696 3697 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3698 { 3699 struct hstate *h = hstate_vma(vma); 3700 struct resv_map *resv = vma_resv_map(vma); 3701 struct hugepage_subpool *spool = subpool_vma(vma); 3702 unsigned long reserve, start, end; 3703 long gbl_reserve; 3704 3705 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3706 return; 3707 3708 start = vma_hugecache_offset(h, vma, vma->vm_start); 3709 end = vma_hugecache_offset(h, vma, vma->vm_end); 3710 3711 reserve = (end - start) - region_count(resv, start, end); 3712 hugetlb_cgroup_uncharge_counter(resv, start, end); 3713 if (reserve) { 3714 /* 3715 * Decrement reserve counts. The global reserve count may be 3716 * adjusted if the subpool has a minimum size. 3717 */ 3718 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3719 hugetlb_acct_memory(h, -gbl_reserve); 3720 } 3721 3722 kref_put(&resv->refs, resv_map_release); 3723 } 3724 3725 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3726 { 3727 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3728 return -EINVAL; 3729 return 0; 3730 } 3731 3732 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3733 { 3734 struct hstate *hstate = hstate_vma(vma); 3735 3736 return 1UL << huge_page_shift(hstate); 3737 } 3738 3739 /* 3740 * We cannot handle pagefaults against hugetlb pages at all. They cause 3741 * handle_mm_fault() to try to instantiate regular-sized pages in the 3742 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3743 * this far. 3744 */ 3745 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3746 { 3747 BUG(); 3748 return 0; 3749 } 3750 3751 /* 3752 * When a new function is introduced to vm_operations_struct and added 3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3754 * This is because under System V memory model, mappings created via 3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3756 * their original vm_ops are overwritten with shm_vm_ops. 3757 */ 3758 const struct vm_operations_struct hugetlb_vm_ops = { 3759 .fault = hugetlb_vm_op_fault, 3760 .open = hugetlb_vm_op_open, 3761 .close = hugetlb_vm_op_close, 3762 .split = hugetlb_vm_op_split, 3763 .pagesize = hugetlb_vm_op_pagesize, 3764 }; 3765 3766 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3767 int writable) 3768 { 3769 pte_t entry; 3770 3771 if (writable) { 3772 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3773 vma->vm_page_prot))); 3774 } else { 3775 entry = huge_pte_wrprotect(mk_huge_pte(page, 3776 vma->vm_page_prot)); 3777 } 3778 entry = pte_mkyoung(entry); 3779 entry = pte_mkhuge(entry); 3780 entry = arch_make_huge_pte(entry, vma, page, writable); 3781 3782 return entry; 3783 } 3784 3785 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3786 unsigned long address, pte_t *ptep) 3787 { 3788 pte_t entry; 3789 3790 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3791 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3792 update_mmu_cache(vma, address, ptep); 3793 } 3794 3795 bool is_hugetlb_entry_migration(pte_t pte) 3796 { 3797 swp_entry_t swp; 3798 3799 if (huge_pte_none(pte) || pte_present(pte)) 3800 return false; 3801 swp = pte_to_swp_entry(pte); 3802 if (non_swap_entry(swp) && is_migration_entry(swp)) 3803 return true; 3804 else 3805 return false; 3806 } 3807 3808 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3809 { 3810 swp_entry_t swp; 3811 3812 if (huge_pte_none(pte) || pte_present(pte)) 3813 return 0; 3814 swp = pte_to_swp_entry(pte); 3815 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3816 return 1; 3817 else 3818 return 0; 3819 } 3820 3821 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3822 struct vm_area_struct *vma) 3823 { 3824 pte_t *src_pte, *dst_pte, entry, dst_entry; 3825 struct page *ptepage; 3826 unsigned long addr; 3827 int cow; 3828 struct hstate *h = hstate_vma(vma); 3829 unsigned long sz = huge_page_size(h); 3830 struct address_space *mapping = vma->vm_file->f_mapping; 3831 struct mmu_notifier_range range; 3832 int ret = 0; 3833 3834 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3835 3836 if (cow) { 3837 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3838 vma->vm_start, 3839 vma->vm_end); 3840 mmu_notifier_invalidate_range_start(&range); 3841 } else { 3842 /* 3843 * For shared mappings i_mmap_rwsem must be held to call 3844 * huge_pte_alloc, otherwise the returned ptep could go 3845 * away if part of a shared pmd and another thread calls 3846 * huge_pmd_unshare. 3847 */ 3848 i_mmap_lock_read(mapping); 3849 } 3850 3851 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3852 spinlock_t *src_ptl, *dst_ptl; 3853 src_pte = huge_pte_offset(src, addr, sz); 3854 if (!src_pte) 3855 continue; 3856 dst_pte = huge_pte_alloc(dst, addr, sz); 3857 if (!dst_pte) { 3858 ret = -ENOMEM; 3859 break; 3860 } 3861 3862 /* 3863 * If the pagetables are shared don't copy or take references. 3864 * dst_pte == src_pte is the common case of src/dest sharing. 3865 * 3866 * However, src could have 'unshared' and dst shares with 3867 * another vma. If dst_pte !none, this implies sharing. 3868 * Check here before taking page table lock, and once again 3869 * after taking the lock below. 3870 */ 3871 dst_entry = huge_ptep_get(dst_pte); 3872 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3873 continue; 3874 3875 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3876 src_ptl = huge_pte_lockptr(h, src, src_pte); 3877 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3878 entry = huge_ptep_get(src_pte); 3879 dst_entry = huge_ptep_get(dst_pte); 3880 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3881 /* 3882 * Skip if src entry none. Also, skip in the 3883 * unlikely case dst entry !none as this implies 3884 * sharing with another vma. 3885 */ 3886 ; 3887 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3888 is_hugetlb_entry_hwpoisoned(entry))) { 3889 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3890 3891 if (is_write_migration_entry(swp_entry) && cow) { 3892 /* 3893 * COW mappings require pages in both 3894 * parent and child to be set to read. 3895 */ 3896 make_migration_entry_read(&swp_entry); 3897 entry = swp_entry_to_pte(swp_entry); 3898 set_huge_swap_pte_at(src, addr, src_pte, 3899 entry, sz); 3900 } 3901 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3902 } else { 3903 if (cow) { 3904 /* 3905 * No need to notify as we are downgrading page 3906 * table protection not changing it to point 3907 * to a new page. 3908 * 3909 * See Documentation/vm/mmu_notifier.rst 3910 */ 3911 huge_ptep_set_wrprotect(src, addr, src_pte); 3912 } 3913 entry = huge_ptep_get(src_pte); 3914 ptepage = pte_page(entry); 3915 get_page(ptepage); 3916 page_dup_rmap(ptepage, true); 3917 set_huge_pte_at(dst, addr, dst_pte, entry); 3918 hugetlb_count_add(pages_per_huge_page(h), dst); 3919 } 3920 spin_unlock(src_ptl); 3921 spin_unlock(dst_ptl); 3922 } 3923 3924 if (cow) 3925 mmu_notifier_invalidate_range_end(&range); 3926 else 3927 i_mmap_unlock_read(mapping); 3928 3929 return ret; 3930 } 3931 3932 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3933 unsigned long start, unsigned long end, 3934 struct page *ref_page) 3935 { 3936 struct mm_struct *mm = vma->vm_mm; 3937 unsigned long address; 3938 pte_t *ptep; 3939 pte_t pte; 3940 spinlock_t *ptl; 3941 struct page *page; 3942 struct hstate *h = hstate_vma(vma); 3943 unsigned long sz = huge_page_size(h); 3944 struct mmu_notifier_range range; 3945 3946 WARN_ON(!is_vm_hugetlb_page(vma)); 3947 BUG_ON(start & ~huge_page_mask(h)); 3948 BUG_ON(end & ~huge_page_mask(h)); 3949 3950 /* 3951 * This is a hugetlb vma, all the pte entries should point 3952 * to huge page. 3953 */ 3954 tlb_change_page_size(tlb, sz); 3955 tlb_start_vma(tlb, vma); 3956 3957 /* 3958 * If sharing possible, alert mmu notifiers of worst case. 3959 */ 3960 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3961 end); 3962 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3963 mmu_notifier_invalidate_range_start(&range); 3964 address = start; 3965 for (; address < end; address += sz) { 3966 ptep = huge_pte_offset(mm, address, sz); 3967 if (!ptep) 3968 continue; 3969 3970 ptl = huge_pte_lock(h, mm, ptep); 3971 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3972 spin_unlock(ptl); 3973 /* 3974 * We just unmapped a page of PMDs by clearing a PUD. 3975 * The caller's TLB flush range should cover this area. 3976 */ 3977 continue; 3978 } 3979 3980 pte = huge_ptep_get(ptep); 3981 if (huge_pte_none(pte)) { 3982 spin_unlock(ptl); 3983 continue; 3984 } 3985 3986 /* 3987 * Migrating hugepage or HWPoisoned hugepage is already 3988 * unmapped and its refcount is dropped, so just clear pte here. 3989 */ 3990 if (unlikely(!pte_present(pte))) { 3991 huge_pte_clear(mm, address, ptep, sz); 3992 spin_unlock(ptl); 3993 continue; 3994 } 3995 3996 page = pte_page(pte); 3997 /* 3998 * If a reference page is supplied, it is because a specific 3999 * page is being unmapped, not a range. Ensure the page we 4000 * are about to unmap is the actual page of interest. 4001 */ 4002 if (ref_page) { 4003 if (page != ref_page) { 4004 spin_unlock(ptl); 4005 continue; 4006 } 4007 /* 4008 * Mark the VMA as having unmapped its page so that 4009 * future faults in this VMA will fail rather than 4010 * looking like data was lost 4011 */ 4012 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4013 } 4014 4015 pte = huge_ptep_get_and_clear(mm, address, ptep); 4016 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4017 if (huge_pte_dirty(pte)) 4018 set_page_dirty(page); 4019 4020 hugetlb_count_sub(pages_per_huge_page(h), mm); 4021 page_remove_rmap(page, true); 4022 4023 spin_unlock(ptl); 4024 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4025 /* 4026 * Bail out after unmapping reference page if supplied 4027 */ 4028 if (ref_page) 4029 break; 4030 } 4031 mmu_notifier_invalidate_range_end(&range); 4032 tlb_end_vma(tlb, vma); 4033 } 4034 4035 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4036 struct vm_area_struct *vma, unsigned long start, 4037 unsigned long end, struct page *ref_page) 4038 { 4039 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4040 4041 /* 4042 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4043 * test will fail on a vma being torn down, and not grab a page table 4044 * on its way out. We're lucky that the flag has such an appropriate 4045 * name, and can in fact be safely cleared here. We could clear it 4046 * before the __unmap_hugepage_range above, but all that's necessary 4047 * is to clear it before releasing the i_mmap_rwsem. This works 4048 * because in the context this is called, the VMA is about to be 4049 * destroyed and the i_mmap_rwsem is held. 4050 */ 4051 vma->vm_flags &= ~VM_MAYSHARE; 4052 } 4053 4054 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4055 unsigned long end, struct page *ref_page) 4056 { 4057 struct mm_struct *mm; 4058 struct mmu_gather tlb; 4059 unsigned long tlb_start = start; 4060 unsigned long tlb_end = end; 4061 4062 /* 4063 * If shared PMDs were possibly used within this vma range, adjust 4064 * start/end for worst case tlb flushing. 4065 * Note that we can not be sure if PMDs are shared until we try to 4066 * unmap pages. However, we want to make sure TLB flushing covers 4067 * the largest possible range. 4068 */ 4069 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4070 4071 mm = vma->vm_mm; 4072 4073 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4074 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4075 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4076 } 4077 4078 /* 4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4080 * mappping it owns the reserve page for. The intention is to unmap the page 4081 * from other VMAs and let the children be SIGKILLed if they are faulting the 4082 * same region. 4083 */ 4084 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4085 struct page *page, unsigned long address) 4086 { 4087 struct hstate *h = hstate_vma(vma); 4088 struct vm_area_struct *iter_vma; 4089 struct address_space *mapping; 4090 pgoff_t pgoff; 4091 4092 /* 4093 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4094 * from page cache lookup which is in HPAGE_SIZE units. 4095 */ 4096 address = address & huge_page_mask(h); 4097 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4098 vma->vm_pgoff; 4099 mapping = vma->vm_file->f_mapping; 4100 4101 /* 4102 * Take the mapping lock for the duration of the table walk. As 4103 * this mapping should be shared between all the VMAs, 4104 * __unmap_hugepage_range() is called as the lock is already held 4105 */ 4106 i_mmap_lock_write(mapping); 4107 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4108 /* Do not unmap the current VMA */ 4109 if (iter_vma == vma) 4110 continue; 4111 4112 /* 4113 * Shared VMAs have their own reserves and do not affect 4114 * MAP_PRIVATE accounting but it is possible that a shared 4115 * VMA is using the same page so check and skip such VMAs. 4116 */ 4117 if (iter_vma->vm_flags & VM_MAYSHARE) 4118 continue; 4119 4120 /* 4121 * Unmap the page from other VMAs without their own reserves. 4122 * They get marked to be SIGKILLed if they fault in these 4123 * areas. This is because a future no-page fault on this VMA 4124 * could insert a zeroed page instead of the data existing 4125 * from the time of fork. This would look like data corruption 4126 */ 4127 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4128 unmap_hugepage_range(iter_vma, address, 4129 address + huge_page_size(h), page); 4130 } 4131 i_mmap_unlock_write(mapping); 4132 } 4133 4134 /* 4135 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4137 * cannot race with other handlers or page migration. 4138 * Keep the pte_same checks anyway to make transition from the mutex easier. 4139 */ 4140 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4141 unsigned long address, pte_t *ptep, 4142 struct page *pagecache_page, spinlock_t *ptl) 4143 { 4144 pte_t pte; 4145 struct hstate *h = hstate_vma(vma); 4146 struct page *old_page, *new_page; 4147 int outside_reserve = 0; 4148 vm_fault_t ret = 0; 4149 unsigned long haddr = address & huge_page_mask(h); 4150 struct mmu_notifier_range range; 4151 4152 pte = huge_ptep_get(ptep); 4153 old_page = pte_page(pte); 4154 4155 retry_avoidcopy: 4156 /* If no-one else is actually using this page, avoid the copy 4157 * and just make the page writable */ 4158 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4159 page_move_anon_rmap(old_page, vma); 4160 set_huge_ptep_writable(vma, haddr, ptep); 4161 return 0; 4162 } 4163 4164 /* 4165 * If the process that created a MAP_PRIVATE mapping is about to 4166 * perform a COW due to a shared page count, attempt to satisfy 4167 * the allocation without using the existing reserves. The pagecache 4168 * page is used to determine if the reserve at this address was 4169 * consumed or not. If reserves were used, a partial faulted mapping 4170 * at the time of fork() could consume its reserves on COW instead 4171 * of the full address range. 4172 */ 4173 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4174 old_page != pagecache_page) 4175 outside_reserve = 1; 4176 4177 get_page(old_page); 4178 4179 /* 4180 * Drop page table lock as buddy allocator may be called. It will 4181 * be acquired again before returning to the caller, as expected. 4182 */ 4183 spin_unlock(ptl); 4184 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4185 4186 if (IS_ERR(new_page)) { 4187 /* 4188 * If a process owning a MAP_PRIVATE mapping fails to COW, 4189 * it is due to references held by a child and an insufficient 4190 * huge page pool. To guarantee the original mappers 4191 * reliability, unmap the page from child processes. The child 4192 * may get SIGKILLed if it later faults. 4193 */ 4194 if (outside_reserve) { 4195 put_page(old_page); 4196 BUG_ON(huge_pte_none(pte)); 4197 unmap_ref_private(mm, vma, old_page, haddr); 4198 BUG_ON(huge_pte_none(pte)); 4199 spin_lock(ptl); 4200 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4201 if (likely(ptep && 4202 pte_same(huge_ptep_get(ptep), pte))) 4203 goto retry_avoidcopy; 4204 /* 4205 * race occurs while re-acquiring page table 4206 * lock, and our job is done. 4207 */ 4208 return 0; 4209 } 4210 4211 ret = vmf_error(PTR_ERR(new_page)); 4212 goto out_release_old; 4213 } 4214 4215 /* 4216 * When the original hugepage is shared one, it does not have 4217 * anon_vma prepared. 4218 */ 4219 if (unlikely(anon_vma_prepare(vma))) { 4220 ret = VM_FAULT_OOM; 4221 goto out_release_all; 4222 } 4223 4224 copy_user_huge_page(new_page, old_page, address, vma, 4225 pages_per_huge_page(h)); 4226 __SetPageUptodate(new_page); 4227 4228 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4229 haddr + huge_page_size(h)); 4230 mmu_notifier_invalidate_range_start(&range); 4231 4232 /* 4233 * Retake the page table lock to check for racing updates 4234 * before the page tables are altered 4235 */ 4236 spin_lock(ptl); 4237 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4238 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4239 ClearPagePrivate(new_page); 4240 4241 /* Break COW */ 4242 huge_ptep_clear_flush(vma, haddr, ptep); 4243 mmu_notifier_invalidate_range(mm, range.start, range.end); 4244 set_huge_pte_at(mm, haddr, ptep, 4245 make_huge_pte(vma, new_page, 1)); 4246 page_remove_rmap(old_page, true); 4247 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4248 set_page_huge_active(new_page); 4249 /* Make the old page be freed below */ 4250 new_page = old_page; 4251 } 4252 spin_unlock(ptl); 4253 mmu_notifier_invalidate_range_end(&range); 4254 out_release_all: 4255 restore_reserve_on_error(h, vma, haddr, new_page); 4256 put_page(new_page); 4257 out_release_old: 4258 put_page(old_page); 4259 4260 spin_lock(ptl); /* Caller expects lock to be held */ 4261 return ret; 4262 } 4263 4264 /* Return the pagecache page at a given address within a VMA */ 4265 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4266 struct vm_area_struct *vma, unsigned long address) 4267 { 4268 struct address_space *mapping; 4269 pgoff_t idx; 4270 4271 mapping = vma->vm_file->f_mapping; 4272 idx = vma_hugecache_offset(h, vma, address); 4273 4274 return find_lock_page(mapping, idx); 4275 } 4276 4277 /* 4278 * Return whether there is a pagecache page to back given address within VMA. 4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4280 */ 4281 static bool hugetlbfs_pagecache_present(struct hstate *h, 4282 struct vm_area_struct *vma, unsigned long address) 4283 { 4284 struct address_space *mapping; 4285 pgoff_t idx; 4286 struct page *page; 4287 4288 mapping = vma->vm_file->f_mapping; 4289 idx = vma_hugecache_offset(h, vma, address); 4290 4291 page = find_get_page(mapping, idx); 4292 if (page) 4293 put_page(page); 4294 return page != NULL; 4295 } 4296 4297 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4298 pgoff_t idx) 4299 { 4300 struct inode *inode = mapping->host; 4301 struct hstate *h = hstate_inode(inode); 4302 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4303 4304 if (err) 4305 return err; 4306 ClearPagePrivate(page); 4307 4308 /* 4309 * set page dirty so that it will not be removed from cache/file 4310 * by non-hugetlbfs specific code paths. 4311 */ 4312 set_page_dirty(page); 4313 4314 spin_lock(&inode->i_lock); 4315 inode->i_blocks += blocks_per_huge_page(h); 4316 spin_unlock(&inode->i_lock); 4317 return 0; 4318 } 4319 4320 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4321 struct vm_area_struct *vma, 4322 struct address_space *mapping, pgoff_t idx, 4323 unsigned long address, pte_t *ptep, unsigned int flags) 4324 { 4325 struct hstate *h = hstate_vma(vma); 4326 vm_fault_t ret = VM_FAULT_SIGBUS; 4327 int anon_rmap = 0; 4328 unsigned long size; 4329 struct page *page; 4330 pte_t new_pte; 4331 spinlock_t *ptl; 4332 unsigned long haddr = address & huge_page_mask(h); 4333 bool new_page = false; 4334 4335 /* 4336 * Currently, we are forced to kill the process in the event the 4337 * original mapper has unmapped pages from the child due to a failed 4338 * COW. Warn that such a situation has occurred as it may not be obvious 4339 */ 4340 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4341 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4342 current->pid); 4343 return ret; 4344 } 4345 4346 /* 4347 * We can not race with truncation due to holding i_mmap_rwsem. 4348 * i_size is modified when holding i_mmap_rwsem, so check here 4349 * once for faults beyond end of file. 4350 */ 4351 size = i_size_read(mapping->host) >> huge_page_shift(h); 4352 if (idx >= size) 4353 goto out; 4354 4355 retry: 4356 page = find_lock_page(mapping, idx); 4357 if (!page) { 4358 /* 4359 * Check for page in userfault range 4360 */ 4361 if (userfaultfd_missing(vma)) { 4362 u32 hash; 4363 struct vm_fault vmf = { 4364 .vma = vma, 4365 .address = haddr, 4366 .flags = flags, 4367 /* 4368 * Hard to debug if it ends up being 4369 * used by a callee that assumes 4370 * something about the other 4371 * uninitialized fields... same as in 4372 * memory.c 4373 */ 4374 }; 4375 4376 /* 4377 * hugetlb_fault_mutex and i_mmap_rwsem must be 4378 * dropped before handling userfault. Reacquire 4379 * after handling fault to make calling code simpler. 4380 */ 4381 hash = hugetlb_fault_mutex_hash(mapping, idx); 4382 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4383 i_mmap_unlock_read(mapping); 4384 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4385 i_mmap_lock_read(mapping); 4386 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4387 goto out; 4388 } 4389 4390 page = alloc_huge_page(vma, haddr, 0); 4391 if (IS_ERR(page)) { 4392 /* 4393 * Returning error will result in faulting task being 4394 * sent SIGBUS. The hugetlb fault mutex prevents two 4395 * tasks from racing to fault in the same page which 4396 * could result in false unable to allocate errors. 4397 * Page migration does not take the fault mutex, but 4398 * does a clear then write of pte's under page table 4399 * lock. Page fault code could race with migration, 4400 * notice the clear pte and try to allocate a page 4401 * here. Before returning error, get ptl and make 4402 * sure there really is no pte entry. 4403 */ 4404 ptl = huge_pte_lock(h, mm, ptep); 4405 if (!huge_pte_none(huge_ptep_get(ptep))) { 4406 ret = 0; 4407 spin_unlock(ptl); 4408 goto out; 4409 } 4410 spin_unlock(ptl); 4411 ret = vmf_error(PTR_ERR(page)); 4412 goto out; 4413 } 4414 clear_huge_page(page, address, pages_per_huge_page(h)); 4415 __SetPageUptodate(page); 4416 new_page = true; 4417 4418 if (vma->vm_flags & VM_MAYSHARE) { 4419 int err = huge_add_to_page_cache(page, mapping, idx); 4420 if (err) { 4421 put_page(page); 4422 if (err == -EEXIST) 4423 goto retry; 4424 goto out; 4425 } 4426 } else { 4427 lock_page(page); 4428 if (unlikely(anon_vma_prepare(vma))) { 4429 ret = VM_FAULT_OOM; 4430 goto backout_unlocked; 4431 } 4432 anon_rmap = 1; 4433 } 4434 } else { 4435 /* 4436 * If memory error occurs between mmap() and fault, some process 4437 * don't have hwpoisoned swap entry for errored virtual address. 4438 * So we need to block hugepage fault by PG_hwpoison bit check. 4439 */ 4440 if (unlikely(PageHWPoison(page))) { 4441 ret = VM_FAULT_HWPOISON | 4442 VM_FAULT_SET_HINDEX(hstate_index(h)); 4443 goto backout_unlocked; 4444 } 4445 } 4446 4447 /* 4448 * If we are going to COW a private mapping later, we examine the 4449 * pending reservations for this page now. This will ensure that 4450 * any allocations necessary to record that reservation occur outside 4451 * the spinlock. 4452 */ 4453 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4454 if (vma_needs_reservation(h, vma, haddr) < 0) { 4455 ret = VM_FAULT_OOM; 4456 goto backout_unlocked; 4457 } 4458 /* Just decrements count, does not deallocate */ 4459 vma_end_reservation(h, vma, haddr); 4460 } 4461 4462 ptl = huge_pte_lock(h, mm, ptep); 4463 ret = 0; 4464 if (!huge_pte_none(huge_ptep_get(ptep))) 4465 goto backout; 4466 4467 if (anon_rmap) { 4468 ClearPagePrivate(page); 4469 hugepage_add_new_anon_rmap(page, vma, haddr); 4470 } else 4471 page_dup_rmap(page, true); 4472 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4473 && (vma->vm_flags & VM_SHARED))); 4474 set_huge_pte_at(mm, haddr, ptep, new_pte); 4475 4476 hugetlb_count_add(pages_per_huge_page(h), mm); 4477 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4478 /* Optimization, do the COW without a second fault */ 4479 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4480 } 4481 4482 spin_unlock(ptl); 4483 4484 /* 4485 * Only make newly allocated pages active. Existing pages found 4486 * in the pagecache could be !page_huge_active() if they have been 4487 * isolated for migration. 4488 */ 4489 if (new_page) 4490 set_page_huge_active(page); 4491 4492 unlock_page(page); 4493 out: 4494 return ret; 4495 4496 backout: 4497 spin_unlock(ptl); 4498 backout_unlocked: 4499 unlock_page(page); 4500 restore_reserve_on_error(h, vma, haddr, page); 4501 put_page(page); 4502 goto out; 4503 } 4504 4505 #ifdef CONFIG_SMP 4506 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4507 { 4508 unsigned long key[2]; 4509 u32 hash; 4510 4511 key[0] = (unsigned long) mapping; 4512 key[1] = idx; 4513 4514 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4515 4516 return hash & (num_fault_mutexes - 1); 4517 } 4518 #else 4519 /* 4520 * For uniprocesor systems we always use a single mutex, so just 4521 * return 0 and avoid the hashing overhead. 4522 */ 4523 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4524 { 4525 return 0; 4526 } 4527 #endif 4528 4529 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4530 unsigned long address, unsigned int flags) 4531 { 4532 pte_t *ptep, entry; 4533 spinlock_t *ptl; 4534 vm_fault_t ret; 4535 u32 hash; 4536 pgoff_t idx; 4537 struct page *page = NULL; 4538 struct page *pagecache_page = NULL; 4539 struct hstate *h = hstate_vma(vma); 4540 struct address_space *mapping; 4541 int need_wait_lock = 0; 4542 unsigned long haddr = address & huge_page_mask(h); 4543 4544 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4545 if (ptep) { 4546 /* 4547 * Since we hold no locks, ptep could be stale. That is 4548 * OK as we are only making decisions based on content and 4549 * not actually modifying content here. 4550 */ 4551 entry = huge_ptep_get(ptep); 4552 if (unlikely(is_hugetlb_entry_migration(entry))) { 4553 migration_entry_wait_huge(vma, mm, ptep); 4554 return 0; 4555 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4556 return VM_FAULT_HWPOISON_LARGE | 4557 VM_FAULT_SET_HINDEX(hstate_index(h)); 4558 } 4559 4560 /* 4561 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4562 * until finished with ptep. This serves two purposes: 4563 * 1) It prevents huge_pmd_unshare from being called elsewhere 4564 * and making the ptep no longer valid. 4565 * 2) It synchronizes us with i_size modifications during truncation. 4566 * 4567 * ptep could have already be assigned via huge_pte_offset. That 4568 * is OK, as huge_pte_alloc will return the same value unless 4569 * something has changed. 4570 */ 4571 mapping = vma->vm_file->f_mapping; 4572 i_mmap_lock_read(mapping); 4573 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4574 if (!ptep) { 4575 i_mmap_unlock_read(mapping); 4576 return VM_FAULT_OOM; 4577 } 4578 4579 /* 4580 * Serialize hugepage allocation and instantiation, so that we don't 4581 * get spurious allocation failures if two CPUs race to instantiate 4582 * the same page in the page cache. 4583 */ 4584 idx = vma_hugecache_offset(h, vma, haddr); 4585 hash = hugetlb_fault_mutex_hash(mapping, idx); 4586 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4587 4588 entry = huge_ptep_get(ptep); 4589 if (huge_pte_none(entry)) { 4590 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4591 goto out_mutex; 4592 } 4593 4594 ret = 0; 4595 4596 /* 4597 * entry could be a migration/hwpoison entry at this point, so this 4598 * check prevents the kernel from going below assuming that we have 4599 * an active hugepage in pagecache. This goto expects the 2nd page 4600 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4601 * properly handle it. 4602 */ 4603 if (!pte_present(entry)) 4604 goto out_mutex; 4605 4606 /* 4607 * If we are going to COW the mapping later, we examine the pending 4608 * reservations for this page now. This will ensure that any 4609 * allocations necessary to record that reservation occur outside the 4610 * spinlock. For private mappings, we also lookup the pagecache 4611 * page now as it is used to determine if a reservation has been 4612 * consumed. 4613 */ 4614 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4615 if (vma_needs_reservation(h, vma, haddr) < 0) { 4616 ret = VM_FAULT_OOM; 4617 goto out_mutex; 4618 } 4619 /* Just decrements count, does not deallocate */ 4620 vma_end_reservation(h, vma, haddr); 4621 4622 if (!(vma->vm_flags & VM_MAYSHARE)) 4623 pagecache_page = hugetlbfs_pagecache_page(h, 4624 vma, haddr); 4625 } 4626 4627 ptl = huge_pte_lock(h, mm, ptep); 4628 4629 /* Check for a racing update before calling hugetlb_cow */ 4630 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4631 goto out_ptl; 4632 4633 /* 4634 * hugetlb_cow() requires page locks of pte_page(entry) and 4635 * pagecache_page, so here we need take the former one 4636 * when page != pagecache_page or !pagecache_page. 4637 */ 4638 page = pte_page(entry); 4639 if (page != pagecache_page) 4640 if (!trylock_page(page)) { 4641 need_wait_lock = 1; 4642 goto out_ptl; 4643 } 4644 4645 get_page(page); 4646 4647 if (flags & FAULT_FLAG_WRITE) { 4648 if (!huge_pte_write(entry)) { 4649 ret = hugetlb_cow(mm, vma, address, ptep, 4650 pagecache_page, ptl); 4651 goto out_put_page; 4652 } 4653 entry = huge_pte_mkdirty(entry); 4654 } 4655 entry = pte_mkyoung(entry); 4656 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4657 flags & FAULT_FLAG_WRITE)) 4658 update_mmu_cache(vma, haddr, ptep); 4659 out_put_page: 4660 if (page != pagecache_page) 4661 unlock_page(page); 4662 put_page(page); 4663 out_ptl: 4664 spin_unlock(ptl); 4665 4666 if (pagecache_page) { 4667 unlock_page(pagecache_page); 4668 put_page(pagecache_page); 4669 } 4670 out_mutex: 4671 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4672 i_mmap_unlock_read(mapping); 4673 /* 4674 * Generally it's safe to hold refcount during waiting page lock. But 4675 * here we just wait to defer the next page fault to avoid busy loop and 4676 * the page is not used after unlocked before returning from the current 4677 * page fault. So we are safe from accessing freed page, even if we wait 4678 * here without taking refcount. 4679 */ 4680 if (need_wait_lock) 4681 wait_on_page_locked(page); 4682 return ret; 4683 } 4684 4685 /* 4686 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4687 * modifications for huge pages. 4688 */ 4689 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4690 pte_t *dst_pte, 4691 struct vm_area_struct *dst_vma, 4692 unsigned long dst_addr, 4693 unsigned long src_addr, 4694 struct page **pagep) 4695 { 4696 struct address_space *mapping; 4697 pgoff_t idx; 4698 unsigned long size; 4699 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4700 struct hstate *h = hstate_vma(dst_vma); 4701 pte_t _dst_pte; 4702 spinlock_t *ptl; 4703 int ret; 4704 struct page *page; 4705 4706 if (!*pagep) { 4707 ret = -ENOMEM; 4708 page = alloc_huge_page(dst_vma, dst_addr, 0); 4709 if (IS_ERR(page)) 4710 goto out; 4711 4712 ret = copy_huge_page_from_user(page, 4713 (const void __user *) src_addr, 4714 pages_per_huge_page(h), false); 4715 4716 /* fallback to copy_from_user outside mmap_lock */ 4717 if (unlikely(ret)) { 4718 ret = -ENOENT; 4719 *pagep = page; 4720 /* don't free the page */ 4721 goto out; 4722 } 4723 } else { 4724 page = *pagep; 4725 *pagep = NULL; 4726 } 4727 4728 /* 4729 * The memory barrier inside __SetPageUptodate makes sure that 4730 * preceding stores to the page contents become visible before 4731 * the set_pte_at() write. 4732 */ 4733 __SetPageUptodate(page); 4734 4735 mapping = dst_vma->vm_file->f_mapping; 4736 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4737 4738 /* 4739 * If shared, add to page cache 4740 */ 4741 if (vm_shared) { 4742 size = i_size_read(mapping->host) >> huge_page_shift(h); 4743 ret = -EFAULT; 4744 if (idx >= size) 4745 goto out_release_nounlock; 4746 4747 /* 4748 * Serialization between remove_inode_hugepages() and 4749 * huge_add_to_page_cache() below happens through the 4750 * hugetlb_fault_mutex_table that here must be hold by 4751 * the caller. 4752 */ 4753 ret = huge_add_to_page_cache(page, mapping, idx); 4754 if (ret) 4755 goto out_release_nounlock; 4756 } 4757 4758 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4759 spin_lock(ptl); 4760 4761 /* 4762 * Recheck the i_size after holding PT lock to make sure not 4763 * to leave any page mapped (as page_mapped()) beyond the end 4764 * of the i_size (remove_inode_hugepages() is strict about 4765 * enforcing that). If we bail out here, we'll also leave a 4766 * page in the radix tree in the vm_shared case beyond the end 4767 * of the i_size, but remove_inode_hugepages() will take care 4768 * of it as soon as we drop the hugetlb_fault_mutex_table. 4769 */ 4770 size = i_size_read(mapping->host) >> huge_page_shift(h); 4771 ret = -EFAULT; 4772 if (idx >= size) 4773 goto out_release_unlock; 4774 4775 ret = -EEXIST; 4776 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4777 goto out_release_unlock; 4778 4779 if (vm_shared) { 4780 page_dup_rmap(page, true); 4781 } else { 4782 ClearPagePrivate(page); 4783 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4784 } 4785 4786 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4787 if (dst_vma->vm_flags & VM_WRITE) 4788 _dst_pte = huge_pte_mkdirty(_dst_pte); 4789 _dst_pte = pte_mkyoung(_dst_pte); 4790 4791 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4792 4793 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4794 dst_vma->vm_flags & VM_WRITE); 4795 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4796 4797 /* No need to invalidate - it was non-present before */ 4798 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4799 4800 spin_unlock(ptl); 4801 set_page_huge_active(page); 4802 if (vm_shared) 4803 unlock_page(page); 4804 ret = 0; 4805 out: 4806 return ret; 4807 out_release_unlock: 4808 spin_unlock(ptl); 4809 if (vm_shared) 4810 unlock_page(page); 4811 out_release_nounlock: 4812 put_page(page); 4813 goto out; 4814 } 4815 4816 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4817 struct page **pages, struct vm_area_struct **vmas, 4818 unsigned long *position, unsigned long *nr_pages, 4819 long i, unsigned int flags, int *locked) 4820 { 4821 unsigned long pfn_offset; 4822 unsigned long vaddr = *position; 4823 unsigned long remainder = *nr_pages; 4824 struct hstate *h = hstate_vma(vma); 4825 int err = -EFAULT; 4826 4827 while (vaddr < vma->vm_end && remainder) { 4828 pte_t *pte; 4829 spinlock_t *ptl = NULL; 4830 int absent; 4831 struct page *page; 4832 4833 /* 4834 * If we have a pending SIGKILL, don't keep faulting pages and 4835 * potentially allocating memory. 4836 */ 4837 if (fatal_signal_pending(current)) { 4838 remainder = 0; 4839 break; 4840 } 4841 4842 /* 4843 * Some archs (sparc64, sh*) have multiple pte_ts to 4844 * each hugepage. We have to make sure we get the 4845 * first, for the page indexing below to work. 4846 * 4847 * Note that page table lock is not held when pte is null. 4848 */ 4849 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4850 huge_page_size(h)); 4851 if (pte) 4852 ptl = huge_pte_lock(h, mm, pte); 4853 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4854 4855 /* 4856 * When coredumping, it suits get_dump_page if we just return 4857 * an error where there's an empty slot with no huge pagecache 4858 * to back it. This way, we avoid allocating a hugepage, and 4859 * the sparse dumpfile avoids allocating disk blocks, but its 4860 * huge holes still show up with zeroes where they need to be. 4861 */ 4862 if (absent && (flags & FOLL_DUMP) && 4863 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4864 if (pte) 4865 spin_unlock(ptl); 4866 remainder = 0; 4867 break; 4868 } 4869 4870 /* 4871 * We need call hugetlb_fault for both hugepages under migration 4872 * (in which case hugetlb_fault waits for the migration,) and 4873 * hwpoisoned hugepages (in which case we need to prevent the 4874 * caller from accessing to them.) In order to do this, we use 4875 * here is_swap_pte instead of is_hugetlb_entry_migration and 4876 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4877 * both cases, and because we can't follow correct pages 4878 * directly from any kind of swap entries. 4879 */ 4880 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4881 ((flags & FOLL_WRITE) && 4882 !huge_pte_write(huge_ptep_get(pte)))) { 4883 vm_fault_t ret; 4884 unsigned int fault_flags = 0; 4885 4886 if (pte) 4887 spin_unlock(ptl); 4888 if (flags & FOLL_WRITE) 4889 fault_flags |= FAULT_FLAG_WRITE; 4890 if (locked) 4891 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4892 FAULT_FLAG_KILLABLE; 4893 if (flags & FOLL_NOWAIT) 4894 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4895 FAULT_FLAG_RETRY_NOWAIT; 4896 if (flags & FOLL_TRIED) { 4897 /* 4898 * Note: FAULT_FLAG_ALLOW_RETRY and 4899 * FAULT_FLAG_TRIED can co-exist 4900 */ 4901 fault_flags |= FAULT_FLAG_TRIED; 4902 } 4903 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4904 if (ret & VM_FAULT_ERROR) { 4905 err = vm_fault_to_errno(ret, flags); 4906 remainder = 0; 4907 break; 4908 } 4909 if (ret & VM_FAULT_RETRY) { 4910 if (locked && 4911 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4912 *locked = 0; 4913 *nr_pages = 0; 4914 /* 4915 * VM_FAULT_RETRY must not return an 4916 * error, it will return zero 4917 * instead. 4918 * 4919 * No need to update "position" as the 4920 * caller will not check it after 4921 * *nr_pages is set to 0. 4922 */ 4923 return i; 4924 } 4925 continue; 4926 } 4927 4928 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4929 page = pte_page(huge_ptep_get(pte)); 4930 4931 /* 4932 * If subpage information not requested, update counters 4933 * and skip the same_page loop below. 4934 */ 4935 if (!pages && !vmas && !pfn_offset && 4936 (vaddr + huge_page_size(h) < vma->vm_end) && 4937 (remainder >= pages_per_huge_page(h))) { 4938 vaddr += huge_page_size(h); 4939 remainder -= pages_per_huge_page(h); 4940 i += pages_per_huge_page(h); 4941 spin_unlock(ptl); 4942 continue; 4943 } 4944 4945 same_page: 4946 if (pages) { 4947 pages[i] = mem_map_offset(page, pfn_offset); 4948 /* 4949 * try_grab_page() should always succeed here, because: 4950 * a) we hold the ptl lock, and b) we've just checked 4951 * that the huge page is present in the page tables. If 4952 * the huge page is present, then the tail pages must 4953 * also be present. The ptl prevents the head page and 4954 * tail pages from being rearranged in any way. So this 4955 * page must be available at this point, unless the page 4956 * refcount overflowed: 4957 */ 4958 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4959 spin_unlock(ptl); 4960 remainder = 0; 4961 err = -ENOMEM; 4962 break; 4963 } 4964 } 4965 4966 if (vmas) 4967 vmas[i] = vma; 4968 4969 vaddr += PAGE_SIZE; 4970 ++pfn_offset; 4971 --remainder; 4972 ++i; 4973 if (vaddr < vma->vm_end && remainder && 4974 pfn_offset < pages_per_huge_page(h)) { 4975 /* 4976 * We use pfn_offset to avoid touching the pageframes 4977 * of this compound page. 4978 */ 4979 goto same_page; 4980 } 4981 spin_unlock(ptl); 4982 } 4983 *nr_pages = remainder; 4984 /* 4985 * setting position is actually required only if remainder is 4986 * not zero but it's faster not to add a "if (remainder)" 4987 * branch. 4988 */ 4989 *position = vaddr; 4990 4991 return i ? i : err; 4992 } 4993 4994 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4995 /* 4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4997 * implement this. 4998 */ 4999 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 5000 #endif 5001 5002 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5003 unsigned long address, unsigned long end, pgprot_t newprot) 5004 { 5005 struct mm_struct *mm = vma->vm_mm; 5006 unsigned long start = address; 5007 pte_t *ptep; 5008 pte_t pte; 5009 struct hstate *h = hstate_vma(vma); 5010 unsigned long pages = 0; 5011 bool shared_pmd = false; 5012 struct mmu_notifier_range range; 5013 5014 /* 5015 * In the case of shared PMDs, the area to flush could be beyond 5016 * start/end. Set range.start/range.end to cover the maximum possible 5017 * range if PMD sharing is possible. 5018 */ 5019 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5020 0, vma, mm, start, end); 5021 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5022 5023 BUG_ON(address >= end); 5024 flush_cache_range(vma, range.start, range.end); 5025 5026 mmu_notifier_invalidate_range_start(&range); 5027 i_mmap_lock_write(vma->vm_file->f_mapping); 5028 for (; address < end; address += huge_page_size(h)) { 5029 spinlock_t *ptl; 5030 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5031 if (!ptep) 5032 continue; 5033 ptl = huge_pte_lock(h, mm, ptep); 5034 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5035 pages++; 5036 spin_unlock(ptl); 5037 shared_pmd = true; 5038 continue; 5039 } 5040 pte = huge_ptep_get(ptep); 5041 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5042 spin_unlock(ptl); 5043 continue; 5044 } 5045 if (unlikely(is_hugetlb_entry_migration(pte))) { 5046 swp_entry_t entry = pte_to_swp_entry(pte); 5047 5048 if (is_write_migration_entry(entry)) { 5049 pte_t newpte; 5050 5051 make_migration_entry_read(&entry); 5052 newpte = swp_entry_to_pte(entry); 5053 set_huge_swap_pte_at(mm, address, ptep, 5054 newpte, huge_page_size(h)); 5055 pages++; 5056 } 5057 spin_unlock(ptl); 5058 continue; 5059 } 5060 if (!huge_pte_none(pte)) { 5061 pte_t old_pte; 5062 5063 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5064 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5065 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5066 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5067 pages++; 5068 } 5069 spin_unlock(ptl); 5070 } 5071 /* 5072 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5073 * may have cleared our pud entry and done put_page on the page table: 5074 * once we release i_mmap_rwsem, another task can do the final put_page 5075 * and that page table be reused and filled with junk. If we actually 5076 * did unshare a page of pmds, flush the range corresponding to the pud. 5077 */ 5078 if (shared_pmd) 5079 flush_hugetlb_tlb_range(vma, range.start, range.end); 5080 else 5081 flush_hugetlb_tlb_range(vma, start, end); 5082 /* 5083 * No need to call mmu_notifier_invalidate_range() we are downgrading 5084 * page table protection not changing it to point to a new page. 5085 * 5086 * See Documentation/vm/mmu_notifier.rst 5087 */ 5088 i_mmap_unlock_write(vma->vm_file->f_mapping); 5089 mmu_notifier_invalidate_range_end(&range); 5090 5091 return pages << h->order; 5092 } 5093 5094 int hugetlb_reserve_pages(struct inode *inode, 5095 long from, long to, 5096 struct vm_area_struct *vma, 5097 vm_flags_t vm_flags) 5098 { 5099 long ret, chg, add = -1; 5100 struct hstate *h = hstate_inode(inode); 5101 struct hugepage_subpool *spool = subpool_inode(inode); 5102 struct resv_map *resv_map; 5103 struct hugetlb_cgroup *h_cg = NULL; 5104 long gbl_reserve, regions_needed = 0; 5105 5106 /* This should never happen */ 5107 if (from > to) { 5108 VM_WARN(1, "%s called with a negative range\n", __func__); 5109 return -EINVAL; 5110 } 5111 5112 /* 5113 * Only apply hugepage reservation if asked. At fault time, an 5114 * attempt will be made for VM_NORESERVE to allocate a page 5115 * without using reserves 5116 */ 5117 if (vm_flags & VM_NORESERVE) 5118 return 0; 5119 5120 /* 5121 * Shared mappings base their reservation on the number of pages that 5122 * are already allocated on behalf of the file. Private mappings need 5123 * to reserve the full area even if read-only as mprotect() may be 5124 * called to make the mapping read-write. Assume !vma is a shm mapping 5125 */ 5126 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5127 /* 5128 * resv_map can not be NULL as hugetlb_reserve_pages is only 5129 * called for inodes for which resv_maps were created (see 5130 * hugetlbfs_get_inode). 5131 */ 5132 resv_map = inode_resv_map(inode); 5133 5134 chg = region_chg(resv_map, from, to, ®ions_needed); 5135 5136 } else { 5137 /* Private mapping. */ 5138 resv_map = resv_map_alloc(); 5139 if (!resv_map) 5140 return -ENOMEM; 5141 5142 chg = to - from; 5143 5144 set_vma_resv_map(vma, resv_map); 5145 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5146 } 5147 5148 if (chg < 0) { 5149 ret = chg; 5150 goto out_err; 5151 } 5152 5153 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5154 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5155 5156 if (ret < 0) { 5157 ret = -ENOMEM; 5158 goto out_err; 5159 } 5160 5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5163 * of the resv_map. 5164 */ 5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5166 } 5167 5168 /* 5169 * There must be enough pages in the subpool for the mapping. If 5170 * the subpool has a minimum size, there may be some global 5171 * reservations already in place (gbl_reserve). 5172 */ 5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5174 if (gbl_reserve < 0) { 5175 ret = -ENOSPC; 5176 goto out_uncharge_cgroup; 5177 } 5178 5179 /* 5180 * Check enough hugepages are available for the reservation. 5181 * Hand the pages back to the subpool if there are not 5182 */ 5183 ret = hugetlb_acct_memory(h, gbl_reserve); 5184 if (ret < 0) { 5185 goto out_put_pages; 5186 } 5187 5188 /* 5189 * Account for the reservations made. Shared mappings record regions 5190 * that have reservations as they are shared by multiple VMAs. 5191 * When the last VMA disappears, the region map says how much 5192 * the reservation was and the page cache tells how much of 5193 * the reservation was consumed. Private mappings are per-VMA and 5194 * only the consumed reservations are tracked. When the VMA 5195 * disappears, the original reservation is the VMA size and the 5196 * consumed reservations are stored in the map. Hence, nothing 5197 * else has to be done for private mappings here 5198 */ 5199 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5200 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5201 5202 if (unlikely(add < 0)) { 5203 hugetlb_acct_memory(h, -gbl_reserve); 5204 goto out_put_pages; 5205 } else if (unlikely(chg > add)) { 5206 /* 5207 * pages in this range were added to the reserve 5208 * map between region_chg and region_add. This 5209 * indicates a race with alloc_huge_page. Adjust 5210 * the subpool and reserve counts modified above 5211 * based on the difference. 5212 */ 5213 long rsv_adjust; 5214 5215 hugetlb_cgroup_uncharge_cgroup_rsvd( 5216 hstate_index(h), 5217 (chg - add) * pages_per_huge_page(h), h_cg); 5218 5219 rsv_adjust = hugepage_subpool_put_pages(spool, 5220 chg - add); 5221 hugetlb_acct_memory(h, -rsv_adjust); 5222 } 5223 } 5224 return 0; 5225 out_put_pages: 5226 /* put back original number of pages, chg */ 5227 (void)hugepage_subpool_put_pages(spool, chg); 5228 out_uncharge_cgroup: 5229 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5230 chg * pages_per_huge_page(h), h_cg); 5231 out_err: 5232 if (!vma || vma->vm_flags & VM_MAYSHARE) 5233 /* Only call region_abort if the region_chg succeeded but the 5234 * region_add failed or didn't run. 5235 */ 5236 if (chg >= 0 && add < 0) 5237 region_abort(resv_map, from, to, regions_needed); 5238 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5239 kref_put(&resv_map->refs, resv_map_release); 5240 return ret; 5241 } 5242 5243 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5244 long freed) 5245 { 5246 struct hstate *h = hstate_inode(inode); 5247 struct resv_map *resv_map = inode_resv_map(inode); 5248 long chg = 0; 5249 struct hugepage_subpool *spool = subpool_inode(inode); 5250 long gbl_reserve; 5251 5252 /* 5253 * Since this routine can be called in the evict inode path for all 5254 * hugetlbfs inodes, resv_map could be NULL. 5255 */ 5256 if (resv_map) { 5257 chg = region_del(resv_map, start, end); 5258 /* 5259 * region_del() can fail in the rare case where a region 5260 * must be split and another region descriptor can not be 5261 * allocated. If end == LONG_MAX, it will not fail. 5262 */ 5263 if (chg < 0) 5264 return chg; 5265 } 5266 5267 spin_lock(&inode->i_lock); 5268 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5269 spin_unlock(&inode->i_lock); 5270 5271 /* 5272 * If the subpool has a minimum size, the number of global 5273 * reservations to be released may be adjusted. 5274 */ 5275 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5276 hugetlb_acct_memory(h, -gbl_reserve); 5277 5278 return 0; 5279 } 5280 5281 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5282 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5283 struct vm_area_struct *vma, 5284 unsigned long addr, pgoff_t idx) 5285 { 5286 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5287 svma->vm_start; 5288 unsigned long sbase = saddr & PUD_MASK; 5289 unsigned long s_end = sbase + PUD_SIZE; 5290 5291 /* Allow segments to share if only one is marked locked */ 5292 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5293 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5294 5295 /* 5296 * match the virtual addresses, permission and the alignment of the 5297 * page table page. 5298 */ 5299 if (pmd_index(addr) != pmd_index(saddr) || 5300 vm_flags != svm_flags || 5301 sbase < svma->vm_start || svma->vm_end < s_end) 5302 return 0; 5303 5304 return saddr; 5305 } 5306 5307 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5308 { 5309 unsigned long base = addr & PUD_MASK; 5310 unsigned long end = base + PUD_SIZE; 5311 5312 /* 5313 * check on proper vm_flags and page table alignment 5314 */ 5315 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5316 return true; 5317 return false; 5318 } 5319 5320 /* 5321 * Determine if start,end range within vma could be mapped by shared pmd. 5322 * If yes, adjust start and end to cover range associated with possible 5323 * shared pmd mappings. 5324 */ 5325 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5326 unsigned long *start, unsigned long *end) 5327 { 5328 unsigned long a_start, a_end; 5329 5330 if (!(vma->vm_flags & VM_MAYSHARE)) 5331 return; 5332 5333 /* Extend the range to be PUD aligned for a worst case scenario */ 5334 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5335 a_end = ALIGN(*end, PUD_SIZE); 5336 5337 /* 5338 * Intersect the range with the vma range, since pmd sharing won't be 5339 * across vma after all 5340 */ 5341 *start = max(vma->vm_start, a_start); 5342 *end = min(vma->vm_end, a_end); 5343 } 5344 5345 /* 5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5347 * and returns the corresponding pte. While this is not necessary for the 5348 * !shared pmd case because we can allocate the pmd later as well, it makes the 5349 * code much cleaner. 5350 * 5351 * This routine must be called with i_mmap_rwsem held in at least read mode. 5352 * For hugetlbfs, this prevents removal of any page table entries associated 5353 * with the address space. This is important as we are setting up sharing 5354 * based on existing page table entries (mappings). 5355 */ 5356 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5357 { 5358 struct vm_area_struct *vma = find_vma(mm, addr); 5359 struct address_space *mapping = vma->vm_file->f_mapping; 5360 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5361 vma->vm_pgoff; 5362 struct vm_area_struct *svma; 5363 unsigned long saddr; 5364 pte_t *spte = NULL; 5365 pte_t *pte; 5366 spinlock_t *ptl; 5367 5368 if (!vma_shareable(vma, addr)) 5369 return (pte_t *)pmd_alloc(mm, pud, addr); 5370 5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5372 if (svma == vma) 5373 continue; 5374 5375 saddr = page_table_shareable(svma, vma, addr, idx); 5376 if (saddr) { 5377 spte = huge_pte_offset(svma->vm_mm, saddr, 5378 vma_mmu_pagesize(svma)); 5379 if (spte) { 5380 get_page(virt_to_page(spte)); 5381 break; 5382 } 5383 } 5384 } 5385 5386 if (!spte) 5387 goto out; 5388 5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5390 if (pud_none(*pud)) { 5391 pud_populate(mm, pud, 5392 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5393 mm_inc_nr_pmds(mm); 5394 } else { 5395 put_page(virt_to_page(spte)); 5396 } 5397 spin_unlock(ptl); 5398 out: 5399 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5400 return pte; 5401 } 5402 5403 /* 5404 * unmap huge page backed by shared pte. 5405 * 5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5407 * indicated by page_count > 1, unmap is achieved by clearing pud and 5408 * decrementing the ref count. If count == 1, the pte page is not shared. 5409 * 5410 * Called with page table lock held and i_mmap_rwsem held in write mode. 5411 * 5412 * returns: 1 successfully unmapped a shared pte page 5413 * 0 the underlying pte page is not shared, or it is the last user 5414 */ 5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5416 unsigned long *addr, pte_t *ptep) 5417 { 5418 pgd_t *pgd = pgd_offset(mm, *addr); 5419 p4d_t *p4d = p4d_offset(pgd, *addr); 5420 pud_t *pud = pud_offset(p4d, *addr); 5421 5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5423 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5424 if (page_count(virt_to_page(ptep)) == 1) 5425 return 0; 5426 5427 pud_clear(pud); 5428 put_page(virt_to_page(ptep)); 5429 mm_dec_nr_pmds(mm); 5430 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5431 return 1; 5432 } 5433 #define want_pmd_share() (1) 5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5436 { 5437 return NULL; 5438 } 5439 5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5441 unsigned long *addr, pte_t *ptep) 5442 { 5443 return 0; 5444 } 5445 5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5447 unsigned long *start, unsigned long *end) 5448 { 5449 } 5450 #define want_pmd_share() (0) 5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5452 5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5454 pte_t *huge_pte_alloc(struct mm_struct *mm, 5455 unsigned long addr, unsigned long sz) 5456 { 5457 pgd_t *pgd; 5458 p4d_t *p4d; 5459 pud_t *pud; 5460 pte_t *pte = NULL; 5461 5462 pgd = pgd_offset(mm, addr); 5463 p4d = p4d_alloc(mm, pgd, addr); 5464 if (!p4d) 5465 return NULL; 5466 pud = pud_alloc(mm, p4d, addr); 5467 if (pud) { 5468 if (sz == PUD_SIZE) { 5469 pte = (pte_t *)pud; 5470 } else { 5471 BUG_ON(sz != PMD_SIZE); 5472 if (want_pmd_share() && pud_none(*pud)) 5473 pte = huge_pmd_share(mm, addr, pud); 5474 else 5475 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5476 } 5477 } 5478 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5479 5480 return pte; 5481 } 5482 5483 /* 5484 * huge_pte_offset() - Walk the page table to resolve the hugepage 5485 * entry at address @addr 5486 * 5487 * Return: Pointer to page table entry (PUD or PMD) for 5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5489 * size @sz doesn't match the hugepage size at this level of the page 5490 * table. 5491 */ 5492 pte_t *huge_pte_offset(struct mm_struct *mm, 5493 unsigned long addr, unsigned long sz) 5494 { 5495 pgd_t *pgd; 5496 p4d_t *p4d; 5497 pud_t *pud; 5498 pmd_t *pmd; 5499 5500 pgd = pgd_offset(mm, addr); 5501 if (!pgd_present(*pgd)) 5502 return NULL; 5503 p4d = p4d_offset(pgd, addr); 5504 if (!p4d_present(*p4d)) 5505 return NULL; 5506 5507 pud = pud_offset(p4d, addr); 5508 if (sz == PUD_SIZE) 5509 /* must be pud huge, non-present or none */ 5510 return (pte_t *)pud; 5511 if (!pud_present(*pud)) 5512 return NULL; 5513 /* must have a valid entry and size to go further */ 5514 5515 pmd = pmd_offset(pud, addr); 5516 /* must be pmd huge, non-present or none */ 5517 return (pte_t *)pmd; 5518 } 5519 5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5521 5522 /* 5523 * These functions are overwritable if your architecture needs its own 5524 * behavior. 5525 */ 5526 struct page * __weak 5527 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5528 int write) 5529 { 5530 return ERR_PTR(-EINVAL); 5531 } 5532 5533 struct page * __weak 5534 follow_huge_pd(struct vm_area_struct *vma, 5535 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5536 { 5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5538 return NULL; 5539 } 5540 5541 struct page * __weak 5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5543 pmd_t *pmd, int flags) 5544 { 5545 struct page *page = NULL; 5546 spinlock_t *ptl; 5547 pte_t pte; 5548 5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5550 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5551 (FOLL_PIN | FOLL_GET))) 5552 return NULL; 5553 5554 retry: 5555 ptl = pmd_lockptr(mm, pmd); 5556 spin_lock(ptl); 5557 /* 5558 * make sure that the address range covered by this pmd is not 5559 * unmapped from other threads. 5560 */ 5561 if (!pmd_huge(*pmd)) 5562 goto out; 5563 pte = huge_ptep_get((pte_t *)pmd); 5564 if (pte_present(pte)) { 5565 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5566 /* 5567 * try_grab_page() should always succeed here, because: a) we 5568 * hold the pmd (ptl) lock, and b) we've just checked that the 5569 * huge pmd (head) page is present in the page tables. The ptl 5570 * prevents the head page and tail pages from being rearranged 5571 * in any way. So this page must be available at this point, 5572 * unless the page refcount overflowed: 5573 */ 5574 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5575 page = NULL; 5576 goto out; 5577 } 5578 } else { 5579 if (is_hugetlb_entry_migration(pte)) { 5580 spin_unlock(ptl); 5581 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5582 goto retry; 5583 } 5584 /* 5585 * hwpoisoned entry is treated as no_page_table in 5586 * follow_page_mask(). 5587 */ 5588 } 5589 out: 5590 spin_unlock(ptl); 5591 return page; 5592 } 5593 5594 struct page * __weak 5595 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5596 pud_t *pud, int flags) 5597 { 5598 if (flags & (FOLL_GET | FOLL_PIN)) 5599 return NULL; 5600 5601 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5602 } 5603 5604 struct page * __weak 5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5606 { 5607 if (flags & (FOLL_GET | FOLL_PIN)) 5608 return NULL; 5609 5610 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5611 } 5612 5613 bool isolate_huge_page(struct page *page, struct list_head *list) 5614 { 5615 bool ret = true; 5616 5617 VM_BUG_ON_PAGE(!PageHead(page), page); 5618 spin_lock(&hugetlb_lock); 5619 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5620 ret = false; 5621 goto unlock; 5622 } 5623 clear_page_huge_active(page); 5624 list_move_tail(&page->lru, list); 5625 unlock: 5626 spin_unlock(&hugetlb_lock); 5627 return ret; 5628 } 5629 5630 void putback_active_hugepage(struct page *page) 5631 { 5632 VM_BUG_ON_PAGE(!PageHead(page), page); 5633 spin_lock(&hugetlb_lock); 5634 set_page_huge_active(page); 5635 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5636 spin_unlock(&hugetlb_lock); 5637 put_page(page); 5638 } 5639 5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5641 { 5642 struct hstate *h = page_hstate(oldpage); 5643 5644 hugetlb_cgroup_migrate(oldpage, newpage); 5645 set_page_owner_migrate_reason(newpage, reason); 5646 5647 /* 5648 * transfer temporary state of the new huge page. This is 5649 * reverse to other transitions because the newpage is going to 5650 * be final while the old one will be freed so it takes over 5651 * the temporary status. 5652 * 5653 * Also note that we have to transfer the per-node surplus state 5654 * here as well otherwise the global surplus count will not match 5655 * the per-node's. 5656 */ 5657 if (PageHugeTemporary(newpage)) { 5658 int old_nid = page_to_nid(oldpage); 5659 int new_nid = page_to_nid(newpage); 5660 5661 SetPageHugeTemporary(oldpage); 5662 ClearPageHugeTemporary(newpage); 5663 5664 spin_lock(&hugetlb_lock); 5665 if (h->surplus_huge_pages_node[old_nid]) { 5666 h->surplus_huge_pages_node[old_nid]--; 5667 h->surplus_huge_pages_node[new_nid]++; 5668 } 5669 spin_unlock(&hugetlb_lock); 5670 } 5671 } 5672 5673 #ifdef CONFIG_CMA 5674 static bool cma_reserve_called __initdata; 5675 5676 static int __init cmdline_parse_hugetlb_cma(char *p) 5677 { 5678 hugetlb_cma_size = memparse(p, &p); 5679 return 0; 5680 } 5681 5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5683 5684 void __init hugetlb_cma_reserve(int order) 5685 { 5686 unsigned long size, reserved, per_node; 5687 int nid; 5688 5689 cma_reserve_called = true; 5690 5691 if (!hugetlb_cma_size) 5692 return; 5693 5694 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5696 (PAGE_SIZE << order) / SZ_1M); 5697 return; 5698 } 5699 5700 /* 5701 * If 3 GB area is requested on a machine with 4 numa nodes, 5702 * let's allocate 1 GB on first three nodes and ignore the last one. 5703 */ 5704 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5706 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5707 5708 reserved = 0; 5709 for_each_node_state(nid, N_ONLINE) { 5710 int res; 5711 char name[20]; 5712 5713 size = min(per_node, hugetlb_cma_size - reserved); 5714 size = round_up(size, PAGE_SIZE << order); 5715 5716 snprintf(name, 20, "hugetlb%d", nid); 5717 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5718 0, false, name, 5719 &hugetlb_cma[nid], nid); 5720 if (res) { 5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5722 res, nid); 5723 continue; 5724 } 5725 5726 reserved += size; 5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5728 size / SZ_1M, nid); 5729 5730 if (reserved >= hugetlb_cma_size) 5731 break; 5732 } 5733 } 5734 5735 void __init hugetlb_cma_check(void) 5736 { 5737 if (!hugetlb_cma_size || cma_reserve_called) 5738 return; 5739 5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5741 } 5742 5743 #endif /* CONFIG_CMA */ 5744