xref: /openbmc/linux/mm/hugetlb.c (revision 39f555fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101 
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 	if (spool->count)
105 		return false;
106 	if (spool->max_hpages != -1)
107 		return spool->used_hpages == 0;
108 	if (spool->min_hpages != -1)
109 		return spool->rsv_hpages == spool->min_hpages;
110 
111 	return true;
112 }
113 
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 						unsigned long irq_flags)
116 {
117 	spin_unlock_irqrestore(&spool->lock, irq_flags);
118 
119 	/* If no pages are used, and no other handles to the subpool
120 	 * remain, give up any reservations based on minimum size and
121 	 * free the subpool */
122 	if (subpool_is_free(spool)) {
123 		if (spool->min_hpages != -1)
124 			hugetlb_acct_memory(spool->hstate,
125 						-spool->min_hpages);
126 		kfree(spool);
127 	}
128 }
129 
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 						long min_hpages)
132 {
133 	struct hugepage_subpool *spool;
134 
135 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 	if (!spool)
137 		return NULL;
138 
139 	spin_lock_init(&spool->lock);
140 	spool->count = 1;
141 	spool->max_hpages = max_hpages;
142 	spool->hstate = h;
143 	spool->min_hpages = min_hpages;
144 
145 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 		kfree(spool);
147 		return NULL;
148 	}
149 	spool->rsv_hpages = min_hpages;
150 
151 	return spool;
152 }
153 
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&spool->lock, flags);
159 	BUG_ON(!spool->count);
160 	spool->count--;
161 	unlock_or_release_subpool(spool, flags);
162 }
163 
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 				      long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return ret;
179 
180 	spin_lock_irq(&spool->lock);
181 
182 	if (spool->max_hpages != -1) {		/* maximum size accounting */
183 		if ((spool->used_hpages + delta) <= spool->max_hpages)
184 			spool->used_hpages += delta;
185 		else {
186 			ret = -ENOMEM;
187 			goto unlock_ret;
188 		}
189 	}
190 
191 	/* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 		if (delta > spool->rsv_hpages) {
194 			/*
195 			 * Asking for more reserves than those already taken on
196 			 * behalf of subpool.  Return difference.
197 			 */
198 			ret = delta - spool->rsv_hpages;
199 			spool->rsv_hpages = 0;
200 		} else {
201 			ret = 0;	/* reserves already accounted for */
202 			spool->rsv_hpages -= delta;
203 		}
204 	}
205 
206 unlock_ret:
207 	spin_unlock_irq(&spool->lock);
208 	return ret;
209 }
210 
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 				       long delta)
219 {
220 	long ret = delta;
221 	unsigned long flags;
222 
223 	if (!spool)
224 		return delta;
225 
226 	spin_lock_irqsave(&spool->lock, flags);
227 
228 	if (spool->max_hpages != -1)		/* maximum size accounting */
229 		spool->used_hpages -= delta;
230 
231 	 /* minimum size accounting */
232 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 		if (spool->rsv_hpages + delta <= spool->min_hpages)
234 			ret = 0;
235 		else
236 			ret = spool->rsv_hpages + delta - spool->min_hpages;
237 
238 		spool->rsv_hpages += delta;
239 		if (spool->rsv_hpages > spool->min_hpages)
240 			spool->rsv_hpages = spool->min_hpages;
241 	}
242 
243 	/*
244 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 	 * quota reference, free it now.
246 	 */
247 	unlock_or_release_subpool(spool, flags);
248 
249 	return ret;
250 }
251 
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 	return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256 
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 	return subpool_inode(file_inode(vma->vm_file));
260 }
261 
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 	if (__vma_shareable_lock(vma)) {
268 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 
270 		down_read(&vma_lock->rw_sema);
271 	} else if (__vma_private_lock(vma)) {
272 		struct resv_map *resv_map = vma_resv_map(vma);
273 
274 		down_read(&resv_map->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	} else if (__vma_private_lock(vma)) {
285 		struct resv_map *resv_map = vma_resv_map(vma);
286 
287 		up_read(&resv_map->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		down_write(&vma_lock->rw_sema);
297 	} else if (__vma_private_lock(vma)) {
298 		struct resv_map *resv_map = vma_resv_map(vma);
299 
300 		down_write(&resv_map->rw_sema);
301 	}
302 }
303 
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 	if (__vma_shareable_lock(vma)) {
307 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 		up_write(&vma_lock->rw_sema);
310 	} else if (__vma_private_lock(vma)) {
311 		struct resv_map *resv_map = vma_resv_map(vma);
312 
313 		up_write(&resv_map->rw_sema);
314 	}
315 }
316 
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319 
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		return down_write_trylock(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		return down_write_trylock(&resv_map->rw_sema);
328 	}
329 
330 	return 1;
331 }
332 
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 	if (__vma_shareable_lock(vma)) {
336 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337 
338 		lockdep_assert_held(&vma_lock->rw_sema);
339 	} else if (__vma_private_lock(vma)) {
340 		struct resv_map *resv_map = vma_resv_map(vma);
341 
342 		lockdep_assert_held(&resv_map->rw_sema);
343 	}
344 }
345 
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 			struct hugetlb_vma_lock, refs);
350 
351 	kfree(vma_lock);
352 }
353 
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 	struct vm_area_struct *vma = vma_lock->vma;
357 
358 	/*
359 	 * vma_lock structure may or not be released as a result of put,
360 	 * it certainly will no longer be attached to vma so clear pointer.
361 	 * Semaphore synchronizes access to vma_lock->vma field.
362 	 */
363 	vma_lock->vma = NULL;
364 	vma->vm_private_data = NULL;
365 	up_write(&vma_lock->rw_sema);
366 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368 
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 	if (__vma_shareable_lock(vma)) {
372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373 
374 		__hugetlb_vma_unlock_write_put(vma_lock);
375 	} else if (__vma_private_lock(vma)) {
376 		struct resv_map *resv_map = vma_resv_map(vma);
377 
378 		/* no free for anon vmas, but still need to unlock */
379 		up_write(&resv_map->rw_sema);
380 	}
381 }
382 
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 	/*
386 	 * Only present in sharable vmas.
387 	 */
388 	if (!vma || !__vma_shareable_lock(vma))
389 		return;
390 
391 	if (vma->vm_private_data) {
392 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393 
394 		down_write(&vma_lock->rw_sema);
395 		__hugetlb_vma_unlock_write_put(vma_lock);
396 	}
397 }
398 
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 	struct hugetlb_vma_lock *vma_lock;
402 
403 	/* Only establish in (flags) sharable vmas */
404 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 		return;
406 
407 	/* Should never get here with non-NULL vm_private_data */
408 	if (vma->vm_private_data)
409 		return;
410 
411 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 	if (!vma_lock) {
413 		/*
414 		 * If we can not allocate structure, then vma can not
415 		 * participate in pmd sharing.  This is only a possible
416 		 * performance enhancement and memory saving issue.
417 		 * However, the lock is also used to synchronize page
418 		 * faults with truncation.  If the lock is not present,
419 		 * unlikely races could leave pages in a file past i_size
420 		 * until the file is removed.  Warn in the unlikely case of
421 		 * allocation failure.
422 		 */
423 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 		return;
425 	}
426 
427 	kref_init(&vma_lock->refs);
428 	init_rwsem(&vma_lock->rw_sema);
429 	vma_lock->vma = vma;
430 	vma->vm_private_data = vma_lock;
431 }
432 
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 	struct file_region *nrg;
440 
441 	VM_BUG_ON(resv->region_cache_count <= 0);
442 
443 	resv->region_cache_count--;
444 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 	list_del(&nrg->link);
446 
447 	nrg->from = from;
448 	nrg->to = to;
449 
450 	return nrg;
451 }
452 
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 					      struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 	nrg->reservation_counter = rg->reservation_counter;
458 	nrg->css = rg->css;
459 	if (rg->css)
460 		css_get(rg->css);
461 #endif
462 }
463 
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 						struct hstate *h,
467 						struct resv_map *resv,
468 						struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 	if (h_cg) {
472 		nrg->reservation_counter =
473 			&h_cg->rsvd_hugepage[hstate_index(h)];
474 		nrg->css = &h_cg->css;
475 		/*
476 		 * The caller will hold exactly one h_cg->css reference for the
477 		 * whole contiguous reservation region. But this area might be
478 		 * scattered when there are already some file_regions reside in
479 		 * it. As a result, many file_regions may share only one css
480 		 * reference. In order to ensure that one file_region must hold
481 		 * exactly one h_cg->css reference, we should do css_get for
482 		 * each file_region and leave the reference held by caller
483 		 * untouched.
484 		 */
485 		css_get(&h_cg->css);
486 		if (!resv->pages_per_hpage)
487 			resv->pages_per_hpage = pages_per_huge_page(h);
488 		/* pages_per_hpage should be the same for all entries in
489 		 * a resv_map.
490 		 */
491 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 	} else {
493 		nrg->reservation_counter = NULL;
494 		nrg->css = NULL;
495 	}
496 #endif
497 }
498 
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 	if (rg->css)
503 		css_put(rg->css);
504 #endif
505 }
506 
507 static bool has_same_uncharge_info(struct file_region *rg,
508 				   struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 	return rg->reservation_counter == org->reservation_counter &&
512 	       rg->css == org->css;
513 
514 #else
515 	return true;
516 #endif
517 }
518 
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 	struct file_region *nrg, *prg;
522 
523 	prg = list_prev_entry(rg, link);
524 	if (&prg->link != &resv->regions && prg->to == rg->from &&
525 	    has_same_uncharge_info(prg, rg)) {
526 		prg->to = rg->to;
527 
528 		list_del(&rg->link);
529 		put_uncharge_info(rg);
530 		kfree(rg);
531 
532 		rg = prg;
533 	}
534 
535 	nrg = list_next_entry(rg, link);
536 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 	    has_same_uncharge_info(nrg, rg)) {
538 		nrg->from = rg->from;
539 
540 		list_del(&rg->link);
541 		put_uncharge_info(rg);
542 		kfree(rg);
543 	}
544 }
545 
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 		     long *regions_needed)
550 {
551 	struct file_region *nrg;
552 
553 	if (!regions_needed) {
554 		nrg = get_file_region_entry_from_cache(map, from, to);
555 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 		list_add(&nrg->link, rg);
557 		coalesce_file_region(map, nrg);
558 	} else
559 		*regions_needed += 1;
560 
561 	return to - from;
562 }
563 
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 				     struct hugetlb_cgroup *h_cg,
574 				     struct hstate *h, long *regions_needed)
575 {
576 	long add = 0;
577 	struct list_head *head = &resv->regions;
578 	long last_accounted_offset = f;
579 	struct file_region *iter, *trg = NULL;
580 	struct list_head *rg = NULL;
581 
582 	if (regions_needed)
583 		*regions_needed = 0;
584 
585 	/* In this loop, we essentially handle an entry for the range
586 	 * [last_accounted_offset, iter->from), at every iteration, with some
587 	 * bounds checking.
588 	 */
589 	list_for_each_entry_safe(iter, trg, head, link) {
590 		/* Skip irrelevant regions that start before our range. */
591 		if (iter->from < f) {
592 			/* If this region ends after the last accounted offset,
593 			 * then we need to update last_accounted_offset.
594 			 */
595 			if (iter->to > last_accounted_offset)
596 				last_accounted_offset = iter->to;
597 			continue;
598 		}
599 
600 		/* When we find a region that starts beyond our range, we've
601 		 * finished.
602 		 */
603 		if (iter->from >= t) {
604 			rg = iter->link.prev;
605 			break;
606 		}
607 
608 		/* Add an entry for last_accounted_offset -> iter->from, and
609 		 * update last_accounted_offset.
610 		 */
611 		if (iter->from > last_accounted_offset)
612 			add += hugetlb_resv_map_add(resv, iter->link.prev,
613 						    last_accounted_offset,
614 						    iter->from, h, h_cg,
615 						    regions_needed);
616 
617 		last_accounted_offset = iter->to;
618 	}
619 
620 	/* Handle the case where our range extends beyond
621 	 * last_accounted_offset.
622 	 */
623 	if (!rg)
624 		rg = head->prev;
625 	if (last_accounted_offset < t)
626 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 					    t, h, h_cg, regions_needed);
628 
629 	return add;
630 }
631 
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635 					int regions_needed)
636 	__must_hold(&resv->lock)
637 {
638 	LIST_HEAD(allocated_regions);
639 	int to_allocate = 0, i = 0;
640 	struct file_region *trg = NULL, *rg = NULL;
641 
642 	VM_BUG_ON(regions_needed < 0);
643 
644 	/*
645 	 * Check for sufficient descriptors in the cache to accommodate
646 	 * the number of in progress add operations plus regions_needed.
647 	 *
648 	 * This is a while loop because when we drop the lock, some other call
649 	 * to region_add or region_del may have consumed some region_entries,
650 	 * so we keep looping here until we finally have enough entries for
651 	 * (adds_in_progress + regions_needed).
652 	 */
653 	while (resv->region_cache_count <
654 	       (resv->adds_in_progress + regions_needed)) {
655 		to_allocate = resv->adds_in_progress + regions_needed -
656 			      resv->region_cache_count;
657 
658 		/* At this point, we should have enough entries in the cache
659 		 * for all the existing adds_in_progress. We should only be
660 		 * needing to allocate for regions_needed.
661 		 */
662 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663 
664 		spin_unlock(&resv->lock);
665 		for (i = 0; i < to_allocate; i++) {
666 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 			if (!trg)
668 				goto out_of_memory;
669 			list_add(&trg->link, &allocated_regions);
670 		}
671 
672 		spin_lock(&resv->lock);
673 
674 		list_splice(&allocated_regions, &resv->region_cache);
675 		resv->region_cache_count += to_allocate;
676 	}
677 
678 	return 0;
679 
680 out_of_memory:
681 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 		list_del(&rg->link);
683 		kfree(rg);
684 	}
685 	return -ENOMEM;
686 }
687 
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706 		       long in_regions_needed, struct hstate *h,
707 		       struct hugetlb_cgroup *h_cg)
708 {
709 	long add = 0, actual_regions_needed = 0;
710 
711 	spin_lock(&resv->lock);
712 retry:
713 
714 	/* Count how many regions are actually needed to execute this add. */
715 	add_reservation_in_range(resv, f, t, NULL, NULL,
716 				 &actual_regions_needed);
717 
718 	/*
719 	 * Check for sufficient descriptors in the cache to accommodate
720 	 * this add operation. Note that actual_regions_needed may be greater
721 	 * than in_regions_needed, as the resv_map may have been modified since
722 	 * the region_chg call. In this case, we need to make sure that we
723 	 * allocate extra entries, such that we have enough for all the
724 	 * existing adds_in_progress, plus the excess needed for this
725 	 * operation.
726 	 */
727 	if (actual_regions_needed > in_regions_needed &&
728 	    resv->region_cache_count <
729 		    resv->adds_in_progress +
730 			    (actual_regions_needed - in_regions_needed)) {
731 		/* region_add operation of range 1 should never need to
732 		 * allocate file_region entries.
733 		 */
734 		VM_BUG_ON(t - f <= 1);
735 
736 		if (allocate_file_region_entries(
737 			    resv, actual_regions_needed - in_regions_needed)) {
738 			return -ENOMEM;
739 		}
740 
741 		goto retry;
742 	}
743 
744 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745 
746 	resv->adds_in_progress -= in_regions_needed;
747 
748 	spin_unlock(&resv->lock);
749 	return add;
750 }
751 
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773 		       long *out_regions_needed)
774 {
775 	long chg = 0;
776 
777 	spin_lock(&resv->lock);
778 
779 	/* Count how many hugepages in this range are NOT represented. */
780 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 				       out_regions_needed);
782 
783 	if (*out_regions_needed == 0)
784 		*out_regions_needed = 1;
785 
786 	if (allocate_file_region_entries(resv, *out_regions_needed))
787 		return -ENOMEM;
788 
789 	resv->adds_in_progress += *out_regions_needed;
790 
791 	spin_unlock(&resv->lock);
792 	return chg;
793 }
794 
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809 			 long regions_needed)
810 {
811 	spin_lock(&resv->lock);
812 	VM_BUG_ON(!resv->region_cache_count);
813 	resv->adds_in_progress -= regions_needed;
814 	spin_unlock(&resv->lock);
815 }
816 
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 	struct list_head *head = &resv->regions;
834 	struct file_region *rg, *trg;
835 	struct file_region *nrg = NULL;
836 	long del = 0;
837 
838 retry:
839 	spin_lock(&resv->lock);
840 	list_for_each_entry_safe(rg, trg, head, link) {
841 		/*
842 		 * Skip regions before the range to be deleted.  file_region
843 		 * ranges are normally of the form [from, to).  However, there
844 		 * may be a "placeholder" entry in the map which is of the form
845 		 * (from, to) with from == to.  Check for placeholder entries
846 		 * at the beginning of the range to be deleted.
847 		 */
848 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 			continue;
850 
851 		if (rg->from >= t)
852 			break;
853 
854 		if (f > rg->from && t < rg->to) { /* Must split region */
855 			/*
856 			 * Check for an entry in the cache before dropping
857 			 * lock and attempting allocation.
858 			 */
859 			if (!nrg &&
860 			    resv->region_cache_count > resv->adds_in_progress) {
861 				nrg = list_first_entry(&resv->region_cache,
862 							struct file_region,
863 							link);
864 				list_del(&nrg->link);
865 				resv->region_cache_count--;
866 			}
867 
868 			if (!nrg) {
869 				spin_unlock(&resv->lock);
870 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 				if (!nrg)
872 					return -ENOMEM;
873 				goto retry;
874 			}
875 
876 			del += t - f;
877 			hugetlb_cgroup_uncharge_file_region(
878 				resv, rg, t - f, false);
879 
880 			/* New entry for end of split region */
881 			nrg->from = t;
882 			nrg->to = rg->to;
883 
884 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885 
886 			INIT_LIST_HEAD(&nrg->link);
887 
888 			/* Original entry is trimmed */
889 			rg->to = f;
890 
891 			list_add(&nrg->link, &rg->link);
892 			nrg = NULL;
893 			break;
894 		}
895 
896 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 			del += rg->to - rg->from;
898 			hugetlb_cgroup_uncharge_file_region(resv, rg,
899 							    rg->to - rg->from, true);
900 			list_del(&rg->link);
901 			kfree(rg);
902 			continue;
903 		}
904 
905 		if (f <= rg->from) {	/* Trim beginning of region */
906 			hugetlb_cgroup_uncharge_file_region(resv, rg,
907 							    t - rg->from, false);
908 
909 			del += t - rg->from;
910 			rg->from = t;
911 		} else {		/* Trim end of region */
912 			hugetlb_cgroup_uncharge_file_region(resv, rg,
913 							    rg->to - f, false);
914 
915 			del += rg->to - f;
916 			rg->to = f;
917 		}
918 	}
919 
920 	spin_unlock(&resv->lock);
921 	kfree(nrg);
922 	return del;
923 }
924 
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 	struct hugepage_subpool *spool = subpool_inode(inode);
937 	long rsv_adjust;
938 	bool reserved = false;
939 
940 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 	if (rsv_adjust > 0) {
942 		struct hstate *h = hstate_inode(inode);
943 
944 		if (!hugetlb_acct_memory(h, 1))
945 			reserved = true;
946 	} else if (!rsv_adjust) {
947 		reserved = true;
948 	}
949 
950 	if (!reserved)
951 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953 
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 	struct list_head *head = &resv->regions;
961 	struct file_region *rg;
962 	long chg = 0;
963 
964 	spin_lock(&resv->lock);
965 	/* Locate each segment we overlap with, and count that overlap. */
966 	list_for_each_entry(rg, head, link) {
967 		long seg_from;
968 		long seg_to;
969 
970 		if (rg->to <= f)
971 			continue;
972 		if (rg->from >= t)
973 			break;
974 
975 		seg_from = max(rg->from, f);
976 		seg_to = min(rg->to, t);
977 
978 		chg += seg_to - seg_from;
979 	}
980 	spin_unlock(&resv->lock);
981 
982 	return chg;
983 }
984 
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, in pagecache page units; huge pages here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 			struct vm_area_struct *vma, unsigned long address)
991 {
992 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 			(vma->vm_pgoff >> huge_page_order(h));
994 }
995 
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 				     unsigned long address)
998 {
999 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002 
1003 /**
1004  * vma_kernel_pagesize - Page size granularity for this VMA.
1005  * @vma: The user mapping.
1006  *
1007  * Folios in this VMA will be aligned to, and at least the size of the
1008  * number of bytes returned by this function.
1009  *
1010  * Return: The default size of the folios allocated when backing a VMA.
1011  */
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 	if (vma->vm_ops && vma->vm_ops->pagesize)
1015 		return vma->vm_ops->pagesize(vma);
1016 	return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019 
1020 /*
1021  * Return the page size being used by the MMU to back a VMA. In the majority
1022  * of cases, the page size used by the kernel matches the MMU size. On
1023  * architectures where it differs, an architecture-specific 'strong'
1024  * version of this symbol is required.
1025  */
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 	return vma_kernel_pagesize(vma);
1029 }
1030 
1031 /*
1032  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033  * bits of the reservation map pointer, which are always clear due to
1034  * alignment.
1035  */
1036 #define HPAGE_RESV_OWNER    (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039 
1040 /*
1041  * These helpers are used to track how many pages are reserved for
1042  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043  * is guaranteed to have their future faults succeed.
1044  *
1045  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046  * the reserve counters are updated with the hugetlb_lock held. It is safe
1047  * to reset the VMA at fork() time as it is not in use yet and there is no
1048  * chance of the global counters getting corrupted as a result of the values.
1049  *
1050  * The private mapping reservation is represented in a subtly different
1051  * manner to a shared mapping.  A shared mapping has a region map associated
1052  * with the underlying file, this region map represents the backing file
1053  * pages which have ever had a reservation assigned which this persists even
1054  * after the page is instantiated.  A private mapping has a region map
1055  * associated with the original mmap which is attached to all VMAs which
1056  * reference it, this region map represents those offsets which have consumed
1057  * reservation ie. where pages have been instantiated.
1058  */
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 	return (unsigned long)vma->vm_private_data;
1062 }
1063 
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 							unsigned long value)
1066 {
1067 	vma->vm_private_data = (void *)value;
1068 }
1069 
1070 static void
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 					  struct hugetlb_cgroup *h_cg,
1073 					  struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 	if (!h_cg || !h) {
1077 		resv_map->reservation_counter = NULL;
1078 		resv_map->pages_per_hpage = 0;
1079 		resv_map->css = NULL;
1080 	} else {
1081 		resv_map->reservation_counter =
1082 			&h_cg->rsvd_hugepage[hstate_index(h)];
1083 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 		resv_map->css = &h_cg->css;
1085 	}
1086 #endif
1087 }
1088 
1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093 
1094 	if (!resv_map || !rg) {
1095 		kfree(resv_map);
1096 		kfree(rg);
1097 		return NULL;
1098 	}
1099 
1100 	kref_init(&resv_map->refs);
1101 	spin_lock_init(&resv_map->lock);
1102 	INIT_LIST_HEAD(&resv_map->regions);
1103 	init_rwsem(&resv_map->rw_sema);
1104 
1105 	resv_map->adds_in_progress = 0;
1106 	/*
1107 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 	 * fields don't do cgroup accounting. On private mappings, these will be
1109 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 	 * reservations are to be un-charged from here.
1111 	 */
1112 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113 
1114 	INIT_LIST_HEAD(&resv_map->region_cache);
1115 	list_add(&rg->link, &resv_map->region_cache);
1116 	resv_map->region_cache_count = 1;
1117 
1118 	return resv_map;
1119 }
1120 
1121 void resv_map_release(struct kref *ref)
1122 {
1123 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 	struct list_head *head = &resv_map->region_cache;
1125 	struct file_region *rg, *trg;
1126 
1127 	/* Clear out any active regions before we release the map. */
1128 	region_del(resv_map, 0, LONG_MAX);
1129 
1130 	/* ... and any entries left in the cache */
1131 	list_for_each_entry_safe(rg, trg, head, link) {
1132 		list_del(&rg->link);
1133 		kfree(rg);
1134 	}
1135 
1136 	VM_BUG_ON(resv_map->adds_in_progress);
1137 
1138 	kfree(resv_map);
1139 }
1140 
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 	/*
1144 	 * At inode evict time, i_mapping may not point to the original
1145 	 * address space within the inode.  This original address space
1146 	 * contains the pointer to the resv_map.  So, always use the
1147 	 * address space embedded within the inode.
1148 	 * The VERY common case is inode->mapping == &inode->i_data but,
1149 	 * this may not be true for device special inodes.
1150 	 */
1151 	return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153 
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	if (vma->vm_flags & VM_MAYSHARE) {
1158 		struct address_space *mapping = vma->vm_file->f_mapping;
1159 		struct inode *inode = mapping->host;
1160 
1161 		return inode_resv_map(inode);
1162 
1163 	} else {
1164 		return (struct resv_map *)(get_vma_private_data(vma) &
1165 							~HPAGE_RESV_MASK);
1166 	}
1167 }
1168 
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173 
1174 	set_vma_private_data(vma, (unsigned long)map);
1175 }
1176 
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181 
1182 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184 
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188 
1189 	return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191 
1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193 {
1194 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195 	/*
1196 	 * Clear vm_private_data
1197 	 * - For shared mappings this is a per-vma semaphore that may be
1198 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1199 	 *   Before clearing, make sure pointer is not associated with vma
1200 	 *   as this will leak the structure.  This is the case when called
1201 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202 	 *   been called to allocate a new structure.
1203 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204 	 *   not apply to children.  Faults generated by the children are
1205 	 *   not guaranteed to succeed, even if read-only.
1206 	 */
1207 	if (vma->vm_flags & VM_MAYSHARE) {
1208 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209 
1210 		if (vma_lock && vma_lock->vma != vma)
1211 			vma->vm_private_data = NULL;
1212 	} else
1213 		vma->vm_private_data = NULL;
1214 }
1215 
1216 /*
1217  * Reset and decrement one ref on hugepage private reservation.
1218  * Called with mm->mmap_lock writer semaphore held.
1219  * This function should be only used by move_vma() and operate on
1220  * same sized vma. It should never come here with last ref on the
1221  * reservation.
1222  */
1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224 {
1225 	/*
1226 	 * Clear the old hugetlb private page reservation.
1227 	 * It has already been transferred to new_vma.
1228 	 *
1229 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1230 	 * which copies vma into new_vma and unmaps vma. After the copy
1231 	 * operation both new_vma and vma share a reference to the resv_map
1232 	 * struct, and at that point vma is about to be unmapped. We don't
1233 	 * want to return the reservation to the pool at unmap of vma because
1234 	 * the reservation still lives on in new_vma, so simply decrement the
1235 	 * ref here and remove the resv_map reference from this vma.
1236 	 */
1237 	struct resv_map *reservations = vma_resv_map(vma);
1238 
1239 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241 		kref_put(&reservations->refs, resv_map_release);
1242 	}
1243 
1244 	hugetlb_dup_vma_private(vma);
1245 }
1246 
1247 /* Returns true if the VMA has associated reserve pages */
1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249 {
1250 	if (vma->vm_flags & VM_NORESERVE) {
1251 		/*
1252 		 * This address is already reserved by other process(chg == 0),
1253 		 * so, we should decrement reserved count. Without decrementing,
1254 		 * reserve count remains after releasing inode, because this
1255 		 * allocated page will go into page cache and is regarded as
1256 		 * coming from reserved pool in releasing step.  Currently, we
1257 		 * don't have any other solution to deal with this situation
1258 		 * properly, so add work-around here.
1259 		 */
1260 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261 			return true;
1262 		else
1263 			return false;
1264 	}
1265 
1266 	/* Shared mappings always use reserves */
1267 	if (vma->vm_flags & VM_MAYSHARE) {
1268 		/*
1269 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1270 		 * be a region map for all pages.  The only situation where
1271 		 * there is no region map is if a hole was punched via
1272 		 * fallocate.  In this case, there really are no reserves to
1273 		 * use.  This situation is indicated if chg != 0.
1274 		 */
1275 		if (chg)
1276 			return false;
1277 		else
1278 			return true;
1279 	}
1280 
1281 	/*
1282 	 * Only the process that called mmap() has reserves for
1283 	 * private mappings.
1284 	 */
1285 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286 		/*
1287 		 * Like the shared case above, a hole punch or truncate
1288 		 * could have been performed on the private mapping.
1289 		 * Examine the value of chg to determine if reserves
1290 		 * actually exist or were previously consumed.
1291 		 * Very Subtle - The value of chg comes from a previous
1292 		 * call to vma_needs_reserves().  The reserve map for
1293 		 * private mappings has different (opposite) semantics
1294 		 * than that of shared mappings.  vma_needs_reserves()
1295 		 * has already taken this difference in semantics into
1296 		 * account.  Therefore, the meaning of chg is the same
1297 		 * as in the shared case above.  Code could easily be
1298 		 * combined, but keeping it separate draws attention to
1299 		 * subtle differences.
1300 		 */
1301 		if (chg)
1302 			return false;
1303 		else
1304 			return true;
1305 	}
1306 
1307 	return false;
1308 }
1309 
1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311 {
1312 	int nid = folio_nid(folio);
1313 
1314 	lockdep_assert_held(&hugetlb_lock);
1315 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316 
1317 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318 	h->free_huge_pages++;
1319 	h->free_huge_pages_node[nid]++;
1320 	folio_set_hugetlb_freed(folio);
1321 }
1322 
1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324 								int nid)
1325 {
1326 	struct folio *folio;
1327 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328 
1329 	lockdep_assert_held(&hugetlb_lock);
1330 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331 		if (pin && !folio_is_longterm_pinnable(folio))
1332 			continue;
1333 
1334 		if (folio_test_hwpoison(folio))
1335 			continue;
1336 
1337 		list_move(&folio->lru, &h->hugepage_activelist);
1338 		folio_ref_unfreeze(folio, 1);
1339 		folio_clear_hugetlb_freed(folio);
1340 		h->free_huge_pages--;
1341 		h->free_huge_pages_node[nid]--;
1342 		return folio;
1343 	}
1344 
1345 	return NULL;
1346 }
1347 
1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349 							int nid, nodemask_t *nmask)
1350 {
1351 	unsigned int cpuset_mems_cookie;
1352 	struct zonelist *zonelist;
1353 	struct zone *zone;
1354 	struct zoneref *z;
1355 	int node = NUMA_NO_NODE;
1356 
1357 	zonelist = node_zonelist(nid, gfp_mask);
1358 
1359 retry_cpuset:
1360 	cpuset_mems_cookie = read_mems_allowed_begin();
1361 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362 		struct folio *folio;
1363 
1364 		if (!cpuset_zone_allowed(zone, gfp_mask))
1365 			continue;
1366 		/*
1367 		 * no need to ask again on the same node. Pool is node rather than
1368 		 * zone aware
1369 		 */
1370 		if (zone_to_nid(zone) == node)
1371 			continue;
1372 		node = zone_to_nid(zone);
1373 
1374 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1375 		if (folio)
1376 			return folio;
1377 	}
1378 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379 		goto retry_cpuset;
1380 
1381 	return NULL;
1382 }
1383 
1384 static unsigned long available_huge_pages(struct hstate *h)
1385 {
1386 	return h->free_huge_pages - h->resv_huge_pages;
1387 }
1388 
1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390 				struct vm_area_struct *vma,
1391 				unsigned long address, int avoid_reserve,
1392 				long chg)
1393 {
1394 	struct folio *folio = NULL;
1395 	struct mempolicy *mpol;
1396 	gfp_t gfp_mask;
1397 	nodemask_t *nodemask;
1398 	int nid;
1399 
1400 	/*
1401 	 * A child process with MAP_PRIVATE mappings created by their parent
1402 	 * have no page reserves. This check ensures that reservations are
1403 	 * not "stolen". The child may still get SIGKILLed
1404 	 */
1405 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406 		goto err;
1407 
1408 	/* If reserves cannot be used, ensure enough pages are in the pool */
1409 	if (avoid_reserve && !available_huge_pages(h))
1410 		goto err;
1411 
1412 	gfp_mask = htlb_alloc_mask(h);
1413 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414 
1415 	if (mpol_is_preferred_many(mpol)) {
1416 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417 							nid, nodemask);
1418 
1419 		/* Fallback to all nodes if page==NULL */
1420 		nodemask = NULL;
1421 	}
1422 
1423 	if (!folio)
1424 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425 							nid, nodemask);
1426 
1427 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428 		folio_set_hugetlb_restore_reserve(folio);
1429 		h->resv_huge_pages--;
1430 	}
1431 
1432 	mpol_cond_put(mpol);
1433 	return folio;
1434 
1435 err:
1436 	return NULL;
1437 }
1438 
1439 /*
1440  * common helper functions for hstate_next_node_to_{alloc|free}.
1441  * We may have allocated or freed a huge page based on a different
1442  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443  * be outside of *nodes_allowed.  Ensure that we use an allowed
1444  * node for alloc or free.
1445  */
1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447 {
1448 	nid = next_node_in(nid, *nodes_allowed);
1449 	VM_BUG_ON(nid >= MAX_NUMNODES);
1450 
1451 	return nid;
1452 }
1453 
1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 {
1456 	if (!node_isset(nid, *nodes_allowed))
1457 		nid = next_node_allowed(nid, nodes_allowed);
1458 	return nid;
1459 }
1460 
1461 /*
1462  * returns the previously saved node ["this node"] from which to
1463  * allocate a persistent huge page for the pool and advance the
1464  * next node from which to allocate, handling wrap at end of node
1465  * mask.
1466  */
1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468 					nodemask_t *nodes_allowed)
1469 {
1470 	int nid;
1471 
1472 	VM_BUG_ON(!nodes_allowed);
1473 
1474 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476 
1477 	return nid;
1478 }
1479 
1480 /*
1481  * helper for remove_pool_huge_page() - return the previously saved
1482  * node ["this node"] from which to free a huge page.  Advance the
1483  * next node id whether or not we find a free huge page to free so
1484  * that the next attempt to free addresses the next node.
1485  */
1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487 {
1488 	int nid;
1489 
1490 	VM_BUG_ON(!nodes_allowed);
1491 
1492 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494 
1495 	return nid;
1496 }
1497 
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1499 	for (nr_nodes = nodes_weight(*mask);				\
1500 		nr_nodes > 0 &&						\
1501 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1502 		nr_nodes--)
1503 
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1505 	for (nr_nodes = nodes_weight(*mask);				\
1506 		nr_nodes > 0 &&						\
1507 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1508 		nr_nodes--)
1509 
1510 /* used to demote non-gigantic_huge pages as well */
1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512 					unsigned int order, bool demote)
1513 {
1514 	int i;
1515 	int nr_pages = 1 << order;
1516 	struct page *p;
1517 
1518 	atomic_set(&folio->_entire_mapcount, 0);
1519 	atomic_set(&folio->_nr_pages_mapped, 0);
1520 	atomic_set(&folio->_pincount, 0);
1521 
1522 	for (i = 1; i < nr_pages; i++) {
1523 		p = folio_page(folio, i);
1524 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525 		p->mapping = NULL;
1526 		clear_compound_head(p);
1527 		if (!demote)
1528 			set_page_refcounted(p);
1529 	}
1530 
1531 	__folio_clear_head(folio);
1532 }
1533 
1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535 					unsigned int order)
1536 {
1537 	__destroy_compound_gigantic_folio(folio, order, true);
1538 }
1539 
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1542 					unsigned int order)
1543 {
1544 	__destroy_compound_gigantic_folio(folio, order, false);
1545 }
1546 
1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548 {
1549 	/*
1550 	 * If the page isn't allocated using the cma allocator,
1551 	 * cma_release() returns false.
1552 	 */
1553 #ifdef CONFIG_CMA
1554 	int nid = folio_nid(folio);
1555 
1556 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557 		return;
1558 #endif
1559 
1560 	free_contig_range(folio_pfn(folio), 1 << order);
1561 }
1562 
1563 #ifdef CONFIG_CONTIG_ALLOC
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 		int nid, nodemask_t *nodemask)
1566 {
1567 	struct page *page;
1568 	unsigned long nr_pages = pages_per_huge_page(h);
1569 	if (nid == NUMA_NO_NODE)
1570 		nid = numa_mem_id();
1571 
1572 #ifdef CONFIG_CMA
1573 	{
1574 		int node;
1575 
1576 		if (hugetlb_cma[nid]) {
1577 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578 					huge_page_order(h), true);
1579 			if (page)
1580 				return page_folio(page);
1581 		}
1582 
1583 		if (!(gfp_mask & __GFP_THISNODE)) {
1584 			for_each_node_mask(node, *nodemask) {
1585 				if (node == nid || !hugetlb_cma[node])
1586 					continue;
1587 
1588 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1589 						huge_page_order(h), true);
1590 				if (page)
1591 					return page_folio(page);
1592 			}
1593 		}
1594 	}
1595 #endif
1596 
1597 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598 	return page ? page_folio(page) : NULL;
1599 }
1600 
1601 #else /* !CONFIG_CONTIG_ALLOC */
1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603 					int nid, nodemask_t *nodemask)
1604 {
1605 	return NULL;
1606 }
1607 #endif /* CONFIG_CONTIG_ALLOC */
1608 
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611 					int nid, nodemask_t *nodemask)
1612 {
1613 	return NULL;
1614 }
1615 static inline void free_gigantic_folio(struct folio *folio,
1616 						unsigned int order) { }
1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618 						unsigned int order) { }
1619 #endif
1620 
1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622 						struct folio *folio)
1623 {
1624 	lockdep_assert_held(&hugetlb_lock);
1625 
1626 	folio_clear_hugetlb(folio);
1627 }
1628 
1629 /*
1630  * Remove hugetlb folio from lists.
1631  * If vmemmap exists for the folio, update dtor so that the folio appears
1632  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1633  * to update dtor.
1634  *
1635  * A reference is held on the folio, except in the case of demote.
1636  *
1637  * Must be called with hugetlb lock held.
1638  */
1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640 							bool adjust_surplus,
1641 							bool demote)
1642 {
1643 	int nid = folio_nid(folio);
1644 
1645 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647 
1648 	lockdep_assert_held(&hugetlb_lock);
1649 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650 		return;
1651 
1652 	list_del(&folio->lru);
1653 
1654 	if (folio_test_hugetlb_freed(folio)) {
1655 		h->free_huge_pages--;
1656 		h->free_huge_pages_node[nid]--;
1657 	}
1658 	if (adjust_surplus) {
1659 		h->surplus_huge_pages--;
1660 		h->surplus_huge_pages_node[nid]--;
1661 	}
1662 
1663 	/*
1664 	 * We can only clear the hugetlb destructor after allocating vmemmap
1665 	 * pages.  Otherwise, someone (memory error handling) may try to write
1666 	 * to tail struct pages.
1667 	 */
1668 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669 		__clear_hugetlb_destructor(h, folio);
1670 
1671 	 /*
1672 	  * In the case of demote we do not ref count the page as it will soon
1673 	  * be turned into a page of smaller size.
1674 	 */
1675 	if (!demote)
1676 		folio_ref_unfreeze(folio, 1);
1677 
1678 	h->nr_huge_pages--;
1679 	h->nr_huge_pages_node[nid]--;
1680 }
1681 
1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683 							bool adjust_surplus)
1684 {
1685 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686 }
1687 
1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689 							bool adjust_surplus)
1690 {
1691 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692 }
1693 
1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695 			     bool adjust_surplus)
1696 {
1697 	int zeroed;
1698 	int nid = folio_nid(folio);
1699 
1700 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701 
1702 	lockdep_assert_held(&hugetlb_lock);
1703 
1704 	INIT_LIST_HEAD(&folio->lru);
1705 	h->nr_huge_pages++;
1706 	h->nr_huge_pages_node[nid]++;
1707 
1708 	if (adjust_surplus) {
1709 		h->surplus_huge_pages++;
1710 		h->surplus_huge_pages_node[nid]++;
1711 	}
1712 
1713 	folio_set_hugetlb(folio);
1714 	folio_change_private(folio, NULL);
1715 	/*
1716 	 * We have to set hugetlb_vmemmap_optimized again as above
1717 	 * folio_change_private(folio, NULL) cleared it.
1718 	 */
1719 	folio_set_hugetlb_vmemmap_optimized(folio);
1720 
1721 	/*
1722 	 * This folio is about to be managed by the hugetlb allocator and
1723 	 * should have no users.  Drop our reference, and check for others
1724 	 * just in case.
1725 	 */
1726 	zeroed = folio_put_testzero(folio);
1727 	if (unlikely(!zeroed))
1728 		/*
1729 		 * It is VERY unlikely soneone else has taken a ref
1730 		 * on the folio.  In this case, we simply return as
1731 		 * free_huge_folio() will be called when this other ref
1732 		 * is dropped.
1733 		 */
1734 		return;
1735 
1736 	arch_clear_hugepage_flags(&folio->page);
1737 	enqueue_hugetlb_folio(h, folio);
1738 }
1739 
1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741 						struct folio *folio)
1742 {
1743 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744 
1745 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746 		return;
1747 
1748 	/*
1749 	 * If we don't know which subpages are hwpoisoned, we can't free
1750 	 * the hugepage, so it's leaked intentionally.
1751 	 */
1752 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753 		return;
1754 
1755 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1756 		spin_lock_irq(&hugetlb_lock);
1757 		/*
1758 		 * If we cannot allocate vmemmap pages, just refuse to free the
1759 		 * page and put the page back on the hugetlb free list and treat
1760 		 * as a surplus page.
1761 		 */
1762 		add_hugetlb_folio(h, folio, true);
1763 		spin_unlock_irq(&hugetlb_lock);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Move PageHWPoison flag from head page to the raw error pages,
1769 	 * which makes any healthy subpages reusable.
1770 	 */
1771 	if (unlikely(folio_test_hwpoison(folio)))
1772 		folio_clear_hugetlb_hwpoison(folio);
1773 
1774 	/*
1775 	 * If vmemmap pages were allocated above, then we need to clear the
1776 	 * hugetlb destructor under the hugetlb lock.
1777 	 */
1778 	if (clear_dtor) {
1779 		spin_lock_irq(&hugetlb_lock);
1780 		__clear_hugetlb_destructor(h, folio);
1781 		spin_unlock_irq(&hugetlb_lock);
1782 	}
1783 
1784 	/*
1785 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1786 	 * need to be given back to CMA in free_gigantic_folio.
1787 	 */
1788 	if (hstate_is_gigantic(h) ||
1789 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1790 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1791 		free_gigantic_folio(folio, huge_page_order(h));
1792 	} else {
1793 		__free_pages(&folio->page, huge_page_order(h));
1794 	}
1795 }
1796 
1797 /*
1798  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1799  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1800  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1801  * the vmemmap pages.
1802  *
1803  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1804  * freed and frees them one-by-one. As the page->mapping pointer is going
1805  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1806  * structure of a lockless linked list of huge pages to be freed.
1807  */
1808 static LLIST_HEAD(hpage_freelist);
1809 
1810 static void free_hpage_workfn(struct work_struct *work)
1811 {
1812 	struct llist_node *node;
1813 
1814 	node = llist_del_all(&hpage_freelist);
1815 
1816 	while (node) {
1817 		struct page *page;
1818 		struct hstate *h;
1819 
1820 		page = container_of((struct address_space **)node,
1821 				     struct page, mapping);
1822 		node = node->next;
1823 		page->mapping = NULL;
1824 		/*
1825 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1826 		 * folio_hstate() is going to trigger because a previous call to
1827 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1828 		 * not use folio_hstate() directly.
1829 		 */
1830 		h = size_to_hstate(page_size(page));
1831 
1832 		__update_and_free_hugetlb_folio(h, page_folio(page));
1833 
1834 		cond_resched();
1835 	}
1836 }
1837 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1838 
1839 static inline void flush_free_hpage_work(struct hstate *h)
1840 {
1841 	if (hugetlb_vmemmap_optimizable(h))
1842 		flush_work(&free_hpage_work);
1843 }
1844 
1845 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1846 				 bool atomic)
1847 {
1848 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1849 		__update_and_free_hugetlb_folio(h, folio);
1850 		return;
1851 	}
1852 
1853 	/*
1854 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1855 	 *
1856 	 * Only call schedule_work() if hpage_freelist is previously
1857 	 * empty. Otherwise, schedule_work() had been called but the workfn
1858 	 * hasn't retrieved the list yet.
1859 	 */
1860 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1861 		schedule_work(&free_hpage_work);
1862 }
1863 
1864 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1865 {
1866 	struct page *page, *t_page;
1867 	struct folio *folio;
1868 
1869 	list_for_each_entry_safe(page, t_page, list, lru) {
1870 		folio = page_folio(page);
1871 		update_and_free_hugetlb_folio(h, folio, false);
1872 		cond_resched();
1873 	}
1874 }
1875 
1876 struct hstate *size_to_hstate(unsigned long size)
1877 {
1878 	struct hstate *h;
1879 
1880 	for_each_hstate(h) {
1881 		if (huge_page_size(h) == size)
1882 			return h;
1883 	}
1884 	return NULL;
1885 }
1886 
1887 void free_huge_folio(struct folio *folio)
1888 {
1889 	/*
1890 	 * Can't pass hstate in here because it is called from the
1891 	 * compound page destructor.
1892 	 */
1893 	struct hstate *h = folio_hstate(folio);
1894 	int nid = folio_nid(folio);
1895 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1896 	bool restore_reserve;
1897 	unsigned long flags;
1898 
1899 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1900 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1901 
1902 	hugetlb_set_folio_subpool(folio, NULL);
1903 	if (folio_test_anon(folio))
1904 		__ClearPageAnonExclusive(&folio->page);
1905 	folio->mapping = NULL;
1906 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1907 	folio_clear_hugetlb_restore_reserve(folio);
1908 
1909 	/*
1910 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1911 	 * reservation.  If the page was associated with a subpool, there
1912 	 * would have been a page reserved in the subpool before allocation
1913 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1914 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1915 	 * remove the reserved page from the subpool.
1916 	 */
1917 	if (!restore_reserve) {
1918 		/*
1919 		 * A return code of zero implies that the subpool will be
1920 		 * under its minimum size if the reservation is not restored
1921 		 * after page is free.  Therefore, force restore_reserve
1922 		 * operation.
1923 		 */
1924 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1925 			restore_reserve = true;
1926 	}
1927 
1928 	spin_lock_irqsave(&hugetlb_lock, flags);
1929 	folio_clear_hugetlb_migratable(folio);
1930 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1931 				     pages_per_huge_page(h), folio);
1932 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1933 					  pages_per_huge_page(h), folio);
1934 	if (restore_reserve)
1935 		h->resv_huge_pages++;
1936 
1937 	if (folio_test_hugetlb_temporary(folio)) {
1938 		remove_hugetlb_folio(h, folio, false);
1939 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 		update_and_free_hugetlb_folio(h, folio, true);
1941 	} else if (h->surplus_huge_pages_node[nid]) {
1942 		/* remove the page from active list */
1943 		remove_hugetlb_folio(h, folio, true);
1944 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 		update_and_free_hugetlb_folio(h, folio, true);
1946 	} else {
1947 		arch_clear_hugepage_flags(&folio->page);
1948 		enqueue_hugetlb_folio(h, folio);
1949 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1950 	}
1951 }
1952 
1953 /*
1954  * Must be called with the hugetlb lock held
1955  */
1956 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1957 {
1958 	lockdep_assert_held(&hugetlb_lock);
1959 	h->nr_huge_pages++;
1960 	h->nr_huge_pages_node[nid]++;
1961 }
1962 
1963 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1964 {
1965 	hugetlb_vmemmap_optimize(h, &folio->page);
1966 	INIT_LIST_HEAD(&folio->lru);
1967 	folio_set_hugetlb(folio);
1968 	hugetlb_set_folio_subpool(folio, NULL);
1969 	set_hugetlb_cgroup(folio, NULL);
1970 	set_hugetlb_cgroup_rsvd(folio, NULL);
1971 }
1972 
1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974 {
1975 	__prep_new_hugetlb_folio(h, folio);
1976 	spin_lock_irq(&hugetlb_lock);
1977 	__prep_account_new_huge_page(h, nid);
1978 	spin_unlock_irq(&hugetlb_lock);
1979 }
1980 
1981 static bool __prep_compound_gigantic_folio(struct folio *folio,
1982 					unsigned int order, bool demote)
1983 {
1984 	int i, j;
1985 	int nr_pages = 1 << order;
1986 	struct page *p;
1987 
1988 	__folio_clear_reserved(folio);
1989 	for (i = 0; i < nr_pages; i++) {
1990 		p = folio_page(folio, i);
1991 
1992 		/*
1993 		 * For gigantic hugepages allocated through bootmem at
1994 		 * boot, it's safer to be consistent with the not-gigantic
1995 		 * hugepages and clear the PG_reserved bit from all tail pages
1996 		 * too.  Otherwise drivers using get_user_pages() to access tail
1997 		 * pages may get the reference counting wrong if they see
1998 		 * PG_reserved set on a tail page (despite the head page not
1999 		 * having PG_reserved set).  Enforcing this consistency between
2000 		 * head and tail pages allows drivers to optimize away a check
2001 		 * on the head page when they need know if put_page() is needed
2002 		 * after get_user_pages().
2003 		 */
2004 		if (i != 0)	/* head page cleared above */
2005 			__ClearPageReserved(p);
2006 		/*
2007 		 * Subtle and very unlikely
2008 		 *
2009 		 * Gigantic 'page allocators' such as memblock or cma will
2010 		 * return a set of pages with each page ref counted.  We need
2011 		 * to turn this set of pages into a compound page with tail
2012 		 * page ref counts set to zero.  Code such as speculative page
2013 		 * cache adding could take a ref on a 'to be' tail page.
2014 		 * We need to respect any increased ref count, and only set
2015 		 * the ref count to zero if count is currently 1.  If count
2016 		 * is not 1, we return an error.  An error return indicates
2017 		 * the set of pages can not be converted to a gigantic page.
2018 		 * The caller who allocated the pages should then discard the
2019 		 * pages using the appropriate free interface.
2020 		 *
2021 		 * In the case of demote, the ref count will be zero.
2022 		 */
2023 		if (!demote) {
2024 			if (!page_ref_freeze(p, 1)) {
2025 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2026 				goto out_error;
2027 			}
2028 		} else {
2029 			VM_BUG_ON_PAGE(page_count(p), p);
2030 		}
2031 		if (i != 0)
2032 			set_compound_head(p, &folio->page);
2033 	}
2034 	__folio_set_head(folio);
2035 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2036 	folio_set_order(folio, order);
2037 	atomic_set(&folio->_entire_mapcount, -1);
2038 	atomic_set(&folio->_nr_pages_mapped, 0);
2039 	atomic_set(&folio->_pincount, 0);
2040 	return true;
2041 
2042 out_error:
2043 	/* undo page modifications made above */
2044 	for (j = 0; j < i; j++) {
2045 		p = folio_page(folio, j);
2046 		if (j != 0)
2047 			clear_compound_head(p);
2048 		set_page_refcounted(p);
2049 	}
2050 	/* need to clear PG_reserved on remaining tail pages  */
2051 	for (; j < nr_pages; j++) {
2052 		p = folio_page(folio, j);
2053 		__ClearPageReserved(p);
2054 	}
2055 	return false;
2056 }
2057 
2058 static bool prep_compound_gigantic_folio(struct folio *folio,
2059 							unsigned int order)
2060 {
2061 	return __prep_compound_gigantic_folio(folio, order, false);
2062 }
2063 
2064 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2065 							unsigned int order)
2066 {
2067 	return __prep_compound_gigantic_folio(folio, order, true);
2068 }
2069 
2070 /*
2071  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2072  * transparent huge pages.  See the PageTransHuge() documentation for more
2073  * details.
2074  */
2075 int PageHuge(struct page *page)
2076 {
2077 	struct folio *folio;
2078 
2079 	if (!PageCompound(page))
2080 		return 0;
2081 	folio = page_folio(page);
2082 	return folio_test_hugetlb(folio);
2083 }
2084 EXPORT_SYMBOL_GPL(PageHuge);
2085 
2086 /*
2087  * Find and lock address space (mapping) in write mode.
2088  *
2089  * Upon entry, the page is locked which means that page_mapping() is
2090  * stable.  Due to locking order, we can only trylock_write.  If we can
2091  * not get the lock, simply return NULL to caller.
2092  */
2093 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2094 {
2095 	struct address_space *mapping = page_mapping(hpage);
2096 
2097 	if (!mapping)
2098 		return mapping;
2099 
2100 	if (i_mmap_trylock_write(mapping))
2101 		return mapping;
2102 
2103 	return NULL;
2104 }
2105 
2106 pgoff_t hugetlb_basepage_index(struct page *page)
2107 {
2108 	struct page *page_head = compound_head(page);
2109 	pgoff_t index = page_index(page_head);
2110 	unsigned long compound_idx;
2111 
2112 	if (compound_order(page_head) > MAX_ORDER)
2113 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2114 	else
2115 		compound_idx = page - page_head;
2116 
2117 	return (index << compound_order(page_head)) + compound_idx;
2118 }
2119 
2120 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2121 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2122 		nodemask_t *node_alloc_noretry)
2123 {
2124 	int order = huge_page_order(h);
2125 	struct page *page;
2126 	bool alloc_try_hard = true;
2127 	bool retry = true;
2128 
2129 	/*
2130 	 * By default we always try hard to allocate the page with
2131 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2132 	 * a loop (to adjust global huge page counts) and previous allocation
2133 	 * failed, do not continue to try hard on the same node.  Use the
2134 	 * node_alloc_noretry bitmap to manage this state information.
2135 	 */
2136 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2137 		alloc_try_hard = false;
2138 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2139 	if (alloc_try_hard)
2140 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2141 	if (nid == NUMA_NO_NODE)
2142 		nid = numa_mem_id();
2143 retry:
2144 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2145 
2146 	/* Freeze head page */
2147 	if (page && !page_ref_freeze(page, 1)) {
2148 		__free_pages(page, order);
2149 		if (retry) {	/* retry once */
2150 			retry = false;
2151 			goto retry;
2152 		}
2153 		/* WOW!  twice in a row. */
2154 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2155 		page = NULL;
2156 	}
2157 
2158 	/*
2159 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2160 	 * indicates an overall state change.  Clear bit so that we resume
2161 	 * normal 'try hard' allocations.
2162 	 */
2163 	if (node_alloc_noretry && page && !alloc_try_hard)
2164 		node_clear(nid, *node_alloc_noretry);
2165 
2166 	/*
2167 	 * If we tried hard to get a page but failed, set bit so that
2168 	 * subsequent attempts will not try as hard until there is an
2169 	 * overall state change.
2170 	 */
2171 	if (node_alloc_noretry && !page && alloc_try_hard)
2172 		node_set(nid, *node_alloc_noretry);
2173 
2174 	if (!page) {
2175 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2176 		return NULL;
2177 	}
2178 
2179 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2180 	return page_folio(page);
2181 }
2182 
2183 /*
2184  * Common helper to allocate a fresh hugetlb page. All specific allocators
2185  * should use this function to get new hugetlb pages
2186  *
2187  * Note that returned page is 'frozen':  ref count of head page and all tail
2188  * pages is zero.
2189  */
2190 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2191 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192 		nodemask_t *node_alloc_noretry)
2193 {
2194 	struct folio *folio;
2195 	bool retry = false;
2196 
2197 retry:
2198 	if (hstate_is_gigantic(h))
2199 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2200 	else
2201 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2202 				nid, nmask, node_alloc_noretry);
2203 	if (!folio)
2204 		return NULL;
2205 	if (hstate_is_gigantic(h)) {
2206 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2207 			/*
2208 			 * Rare failure to convert pages to compound page.
2209 			 * Free pages and try again - ONCE!
2210 			 */
2211 			free_gigantic_folio(folio, huge_page_order(h));
2212 			if (!retry) {
2213 				retry = true;
2214 				goto retry;
2215 			}
2216 			return NULL;
2217 		}
2218 	}
2219 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2220 
2221 	return folio;
2222 }
2223 
2224 /*
2225  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2226  * manner.
2227  */
2228 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2229 				nodemask_t *node_alloc_noretry)
2230 {
2231 	struct folio *folio;
2232 	int nr_nodes, node;
2233 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2234 
2235 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2236 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2237 					nodes_allowed, node_alloc_noretry);
2238 		if (folio) {
2239 			free_huge_folio(folio); /* free it into the hugepage allocator */
2240 			return 1;
2241 		}
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /*
2248  * Remove huge page from pool from next node to free.  Attempt to keep
2249  * persistent huge pages more or less balanced over allowed nodes.
2250  * This routine only 'removes' the hugetlb page.  The caller must make
2251  * an additional call to free the page to low level allocators.
2252  * Called with hugetlb_lock locked.
2253  */
2254 static struct page *remove_pool_huge_page(struct hstate *h,
2255 						nodemask_t *nodes_allowed,
2256 						 bool acct_surplus)
2257 {
2258 	int nr_nodes, node;
2259 	struct page *page = NULL;
2260 	struct folio *folio;
2261 
2262 	lockdep_assert_held(&hugetlb_lock);
2263 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264 		/*
2265 		 * If we're returning unused surplus pages, only examine
2266 		 * nodes with surplus pages.
2267 		 */
2268 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2269 		    !list_empty(&h->hugepage_freelists[node])) {
2270 			page = list_entry(h->hugepage_freelists[node].next,
2271 					  struct page, lru);
2272 			folio = page_folio(page);
2273 			remove_hugetlb_folio(h, folio, acct_surplus);
2274 			break;
2275 		}
2276 	}
2277 
2278 	return page;
2279 }
2280 
2281 /*
2282  * Dissolve a given free hugepage into free buddy pages. This function does
2283  * nothing for in-use hugepages and non-hugepages.
2284  * This function returns values like below:
2285  *
2286  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2287  *           when the system is under memory pressure and the feature of
2288  *           freeing unused vmemmap pages associated with each hugetlb page
2289  *           is enabled.
2290  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2291  *           (allocated or reserved.)
2292  *       0:  successfully dissolved free hugepages or the page is not a
2293  *           hugepage (considered as already dissolved)
2294  */
2295 int dissolve_free_huge_page(struct page *page)
2296 {
2297 	int rc = -EBUSY;
2298 	struct folio *folio = page_folio(page);
2299 
2300 retry:
2301 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2302 	if (!folio_test_hugetlb(folio))
2303 		return 0;
2304 
2305 	spin_lock_irq(&hugetlb_lock);
2306 	if (!folio_test_hugetlb(folio)) {
2307 		rc = 0;
2308 		goto out;
2309 	}
2310 
2311 	if (!folio_ref_count(folio)) {
2312 		struct hstate *h = folio_hstate(folio);
2313 		if (!available_huge_pages(h))
2314 			goto out;
2315 
2316 		/*
2317 		 * We should make sure that the page is already on the free list
2318 		 * when it is dissolved.
2319 		 */
2320 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2321 			spin_unlock_irq(&hugetlb_lock);
2322 			cond_resched();
2323 
2324 			/*
2325 			 * Theoretically, we should return -EBUSY when we
2326 			 * encounter this race. In fact, we have a chance
2327 			 * to successfully dissolve the page if we do a
2328 			 * retry. Because the race window is quite small.
2329 			 * If we seize this opportunity, it is an optimization
2330 			 * for increasing the success rate of dissolving page.
2331 			 */
2332 			goto retry;
2333 		}
2334 
2335 		remove_hugetlb_folio(h, folio, false);
2336 		h->max_huge_pages--;
2337 		spin_unlock_irq(&hugetlb_lock);
2338 
2339 		/*
2340 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2341 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2342 		 * free the page if it can not allocate required vmemmap.  We
2343 		 * need to adjust max_huge_pages if the page is not freed.
2344 		 * Attempt to allocate vmemmmap here so that we can take
2345 		 * appropriate action on failure.
2346 		 */
2347 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2348 		if (!rc) {
2349 			update_and_free_hugetlb_folio(h, folio, false);
2350 		} else {
2351 			spin_lock_irq(&hugetlb_lock);
2352 			add_hugetlb_folio(h, folio, false);
2353 			h->max_huge_pages++;
2354 			spin_unlock_irq(&hugetlb_lock);
2355 		}
2356 
2357 		return rc;
2358 	}
2359 out:
2360 	spin_unlock_irq(&hugetlb_lock);
2361 	return rc;
2362 }
2363 
2364 /*
2365  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2366  * make specified memory blocks removable from the system.
2367  * Note that this will dissolve a free gigantic hugepage completely, if any
2368  * part of it lies within the given range.
2369  * Also note that if dissolve_free_huge_page() returns with an error, all
2370  * free hugepages that were dissolved before that error are lost.
2371  */
2372 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2373 {
2374 	unsigned long pfn;
2375 	struct page *page;
2376 	int rc = 0;
2377 	unsigned int order;
2378 	struct hstate *h;
2379 
2380 	if (!hugepages_supported())
2381 		return rc;
2382 
2383 	order = huge_page_order(&default_hstate);
2384 	for_each_hstate(h)
2385 		order = min(order, huge_page_order(h));
2386 
2387 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2388 		page = pfn_to_page(pfn);
2389 		rc = dissolve_free_huge_page(page);
2390 		if (rc)
2391 			break;
2392 	}
2393 
2394 	return rc;
2395 }
2396 
2397 /*
2398  * Allocates a fresh surplus page from the page allocator.
2399  */
2400 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2401 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2402 {
2403 	struct folio *folio = NULL;
2404 
2405 	if (hstate_is_gigantic(h))
2406 		return NULL;
2407 
2408 	spin_lock_irq(&hugetlb_lock);
2409 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2410 		goto out_unlock;
2411 	spin_unlock_irq(&hugetlb_lock);
2412 
2413 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2414 	if (!folio)
2415 		return NULL;
2416 
2417 	spin_lock_irq(&hugetlb_lock);
2418 	/*
2419 	 * We could have raced with the pool size change.
2420 	 * Double check that and simply deallocate the new page
2421 	 * if we would end up overcommiting the surpluses. Abuse
2422 	 * temporary page to workaround the nasty free_huge_folio
2423 	 * codeflow
2424 	 */
2425 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2426 		folio_set_hugetlb_temporary(folio);
2427 		spin_unlock_irq(&hugetlb_lock);
2428 		free_huge_folio(folio);
2429 		return NULL;
2430 	}
2431 
2432 	h->surplus_huge_pages++;
2433 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2434 
2435 out_unlock:
2436 	spin_unlock_irq(&hugetlb_lock);
2437 
2438 	return folio;
2439 }
2440 
2441 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2442 				     int nid, nodemask_t *nmask)
2443 {
2444 	struct folio *folio;
2445 
2446 	if (hstate_is_gigantic(h))
2447 		return NULL;
2448 
2449 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2450 	if (!folio)
2451 		return NULL;
2452 
2453 	/* fresh huge pages are frozen */
2454 	folio_ref_unfreeze(folio, 1);
2455 	/*
2456 	 * We do not account these pages as surplus because they are only
2457 	 * temporary and will be released properly on the last reference
2458 	 */
2459 	folio_set_hugetlb_temporary(folio);
2460 
2461 	return folio;
2462 }
2463 
2464 /*
2465  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2466  */
2467 static
2468 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2469 		struct vm_area_struct *vma, unsigned long addr)
2470 {
2471 	struct folio *folio = NULL;
2472 	struct mempolicy *mpol;
2473 	gfp_t gfp_mask = htlb_alloc_mask(h);
2474 	int nid;
2475 	nodemask_t *nodemask;
2476 
2477 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2478 	if (mpol_is_preferred_many(mpol)) {
2479 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2480 
2481 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2482 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2483 
2484 		/* Fallback to all nodes if page==NULL */
2485 		nodemask = NULL;
2486 	}
2487 
2488 	if (!folio)
2489 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2490 	mpol_cond_put(mpol);
2491 	return folio;
2492 }
2493 
2494 /* folio migration callback function */
2495 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2496 		nodemask_t *nmask, gfp_t gfp_mask)
2497 {
2498 	spin_lock_irq(&hugetlb_lock);
2499 	if (available_huge_pages(h)) {
2500 		struct folio *folio;
2501 
2502 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2503 						preferred_nid, nmask);
2504 		if (folio) {
2505 			spin_unlock_irq(&hugetlb_lock);
2506 			return folio;
2507 		}
2508 	}
2509 	spin_unlock_irq(&hugetlb_lock);
2510 
2511 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2512 }
2513 
2514 /* mempolicy aware migration callback */
2515 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2516 		unsigned long address)
2517 {
2518 	struct mempolicy *mpol;
2519 	nodemask_t *nodemask;
2520 	struct folio *folio;
2521 	gfp_t gfp_mask;
2522 	int node;
2523 
2524 	gfp_mask = htlb_alloc_mask(h);
2525 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2526 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2527 	mpol_cond_put(mpol);
2528 
2529 	return folio;
2530 }
2531 
2532 /*
2533  * Increase the hugetlb pool such that it can accommodate a reservation
2534  * of size 'delta'.
2535  */
2536 static int gather_surplus_pages(struct hstate *h, long delta)
2537 	__must_hold(&hugetlb_lock)
2538 {
2539 	LIST_HEAD(surplus_list);
2540 	struct folio *folio, *tmp;
2541 	int ret;
2542 	long i;
2543 	long needed, allocated;
2544 	bool alloc_ok = true;
2545 
2546 	lockdep_assert_held(&hugetlb_lock);
2547 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2548 	if (needed <= 0) {
2549 		h->resv_huge_pages += delta;
2550 		return 0;
2551 	}
2552 
2553 	allocated = 0;
2554 
2555 	ret = -ENOMEM;
2556 retry:
2557 	spin_unlock_irq(&hugetlb_lock);
2558 	for (i = 0; i < needed; i++) {
2559 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2560 				NUMA_NO_NODE, NULL);
2561 		if (!folio) {
2562 			alloc_ok = false;
2563 			break;
2564 		}
2565 		list_add(&folio->lru, &surplus_list);
2566 		cond_resched();
2567 	}
2568 	allocated += i;
2569 
2570 	/*
2571 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2572 	 * because either resv_huge_pages or free_huge_pages may have changed.
2573 	 */
2574 	spin_lock_irq(&hugetlb_lock);
2575 	needed = (h->resv_huge_pages + delta) -
2576 			(h->free_huge_pages + allocated);
2577 	if (needed > 0) {
2578 		if (alloc_ok)
2579 			goto retry;
2580 		/*
2581 		 * We were not able to allocate enough pages to
2582 		 * satisfy the entire reservation so we free what
2583 		 * we've allocated so far.
2584 		 */
2585 		goto free;
2586 	}
2587 	/*
2588 	 * The surplus_list now contains _at_least_ the number of extra pages
2589 	 * needed to accommodate the reservation.  Add the appropriate number
2590 	 * of pages to the hugetlb pool and free the extras back to the buddy
2591 	 * allocator.  Commit the entire reservation here to prevent another
2592 	 * process from stealing the pages as they are added to the pool but
2593 	 * before they are reserved.
2594 	 */
2595 	needed += allocated;
2596 	h->resv_huge_pages += delta;
2597 	ret = 0;
2598 
2599 	/* Free the needed pages to the hugetlb pool */
2600 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2601 		if ((--needed) < 0)
2602 			break;
2603 		/* Add the page to the hugetlb allocator */
2604 		enqueue_hugetlb_folio(h, folio);
2605 	}
2606 free:
2607 	spin_unlock_irq(&hugetlb_lock);
2608 
2609 	/*
2610 	 * Free unnecessary surplus pages to the buddy allocator.
2611 	 * Pages have no ref count, call free_huge_folio directly.
2612 	 */
2613 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2614 		free_huge_folio(folio);
2615 	spin_lock_irq(&hugetlb_lock);
2616 
2617 	return ret;
2618 }
2619 
2620 /*
2621  * This routine has two main purposes:
2622  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2623  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2624  *    to the associated reservation map.
2625  * 2) Free any unused surplus pages that may have been allocated to satisfy
2626  *    the reservation.  As many as unused_resv_pages may be freed.
2627  */
2628 static void return_unused_surplus_pages(struct hstate *h,
2629 					unsigned long unused_resv_pages)
2630 {
2631 	unsigned long nr_pages;
2632 	struct page *page;
2633 	LIST_HEAD(page_list);
2634 
2635 	lockdep_assert_held(&hugetlb_lock);
2636 	/* Uncommit the reservation */
2637 	h->resv_huge_pages -= unused_resv_pages;
2638 
2639 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2640 		goto out;
2641 
2642 	/*
2643 	 * Part (or even all) of the reservation could have been backed
2644 	 * by pre-allocated pages. Only free surplus pages.
2645 	 */
2646 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2647 
2648 	/*
2649 	 * We want to release as many surplus pages as possible, spread
2650 	 * evenly across all nodes with memory. Iterate across these nodes
2651 	 * until we can no longer free unreserved surplus pages. This occurs
2652 	 * when the nodes with surplus pages have no free pages.
2653 	 * remove_pool_huge_page() will balance the freed pages across the
2654 	 * on-line nodes with memory and will handle the hstate accounting.
2655 	 */
2656 	while (nr_pages--) {
2657 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2658 		if (!page)
2659 			goto out;
2660 
2661 		list_add(&page->lru, &page_list);
2662 	}
2663 
2664 out:
2665 	spin_unlock_irq(&hugetlb_lock);
2666 	update_and_free_pages_bulk(h, &page_list);
2667 	spin_lock_irq(&hugetlb_lock);
2668 }
2669 
2670 
2671 /*
2672  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2673  * are used by the huge page allocation routines to manage reservations.
2674  *
2675  * vma_needs_reservation is called to determine if the huge page at addr
2676  * within the vma has an associated reservation.  If a reservation is
2677  * needed, the value 1 is returned.  The caller is then responsible for
2678  * managing the global reservation and subpool usage counts.  After
2679  * the huge page has been allocated, vma_commit_reservation is called
2680  * to add the page to the reservation map.  If the page allocation fails,
2681  * the reservation must be ended instead of committed.  vma_end_reservation
2682  * is called in such cases.
2683  *
2684  * In the normal case, vma_commit_reservation returns the same value
2685  * as the preceding vma_needs_reservation call.  The only time this
2686  * is not the case is if a reserve map was changed between calls.  It
2687  * is the responsibility of the caller to notice the difference and
2688  * take appropriate action.
2689  *
2690  * vma_add_reservation is used in error paths where a reservation must
2691  * be restored when a newly allocated huge page must be freed.  It is
2692  * to be called after calling vma_needs_reservation to determine if a
2693  * reservation exists.
2694  *
2695  * vma_del_reservation is used in error paths where an entry in the reserve
2696  * map was created during huge page allocation and must be removed.  It is to
2697  * be called after calling vma_needs_reservation to determine if a reservation
2698  * exists.
2699  */
2700 enum vma_resv_mode {
2701 	VMA_NEEDS_RESV,
2702 	VMA_COMMIT_RESV,
2703 	VMA_END_RESV,
2704 	VMA_ADD_RESV,
2705 	VMA_DEL_RESV,
2706 };
2707 static long __vma_reservation_common(struct hstate *h,
2708 				struct vm_area_struct *vma, unsigned long addr,
2709 				enum vma_resv_mode mode)
2710 {
2711 	struct resv_map *resv;
2712 	pgoff_t idx;
2713 	long ret;
2714 	long dummy_out_regions_needed;
2715 
2716 	resv = vma_resv_map(vma);
2717 	if (!resv)
2718 		return 1;
2719 
2720 	idx = vma_hugecache_offset(h, vma, addr);
2721 	switch (mode) {
2722 	case VMA_NEEDS_RESV:
2723 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2724 		/* We assume that vma_reservation_* routines always operate on
2725 		 * 1 page, and that adding to resv map a 1 page entry can only
2726 		 * ever require 1 region.
2727 		 */
2728 		VM_BUG_ON(dummy_out_regions_needed != 1);
2729 		break;
2730 	case VMA_COMMIT_RESV:
2731 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 		/* region_add calls of range 1 should never fail. */
2733 		VM_BUG_ON(ret < 0);
2734 		break;
2735 	case VMA_END_RESV:
2736 		region_abort(resv, idx, idx + 1, 1);
2737 		ret = 0;
2738 		break;
2739 	case VMA_ADD_RESV:
2740 		if (vma->vm_flags & VM_MAYSHARE) {
2741 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742 			/* region_add calls of range 1 should never fail. */
2743 			VM_BUG_ON(ret < 0);
2744 		} else {
2745 			region_abort(resv, idx, idx + 1, 1);
2746 			ret = region_del(resv, idx, idx + 1);
2747 		}
2748 		break;
2749 	case VMA_DEL_RESV:
2750 		if (vma->vm_flags & VM_MAYSHARE) {
2751 			region_abort(resv, idx, idx + 1, 1);
2752 			ret = region_del(resv, idx, idx + 1);
2753 		} else {
2754 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2755 			/* region_add calls of range 1 should never fail. */
2756 			VM_BUG_ON(ret < 0);
2757 		}
2758 		break;
2759 	default:
2760 		BUG();
2761 	}
2762 
2763 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2764 		return ret;
2765 	/*
2766 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2767 	 *
2768 	 * In most cases, reserves always exist for private mappings.
2769 	 * However, a file associated with mapping could have been
2770 	 * hole punched or truncated after reserves were consumed.
2771 	 * As subsequent fault on such a range will not use reserves.
2772 	 * Subtle - The reserve map for private mappings has the
2773 	 * opposite meaning than that of shared mappings.  If NO
2774 	 * entry is in the reserve map, it means a reservation exists.
2775 	 * If an entry exists in the reserve map, it means the
2776 	 * reservation has already been consumed.  As a result, the
2777 	 * return value of this routine is the opposite of the
2778 	 * value returned from reserve map manipulation routines above.
2779 	 */
2780 	if (ret > 0)
2781 		return 0;
2782 	if (ret == 0)
2783 		return 1;
2784 	return ret;
2785 }
2786 
2787 static long vma_needs_reservation(struct hstate *h,
2788 			struct vm_area_struct *vma, unsigned long addr)
2789 {
2790 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2791 }
2792 
2793 static long vma_commit_reservation(struct hstate *h,
2794 			struct vm_area_struct *vma, unsigned long addr)
2795 {
2796 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2797 }
2798 
2799 static void vma_end_reservation(struct hstate *h,
2800 			struct vm_area_struct *vma, unsigned long addr)
2801 {
2802 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2803 }
2804 
2805 static long vma_add_reservation(struct hstate *h,
2806 			struct vm_area_struct *vma, unsigned long addr)
2807 {
2808 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2809 }
2810 
2811 static long vma_del_reservation(struct hstate *h,
2812 			struct vm_area_struct *vma, unsigned long addr)
2813 {
2814 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2815 }
2816 
2817 /*
2818  * This routine is called to restore reservation information on error paths.
2819  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2820  * and the hugetlb mutex should remain held when calling this routine.
2821  *
2822  * It handles two specific cases:
2823  * 1) A reservation was in place and the folio consumed the reservation.
2824  *    hugetlb_restore_reserve is set in the folio.
2825  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2826  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2827  *
2828  * In case 1, free_huge_folio later in the error path will increment the
2829  * global reserve count.  But, free_huge_folio does not have enough context
2830  * to adjust the reservation map.  This case deals primarily with private
2831  * mappings.  Adjust the reserve map here to be consistent with global
2832  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2833  * reserve map indicates there is a reservation present.
2834  *
2835  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2836  */
2837 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2838 			unsigned long address, struct folio *folio)
2839 {
2840 	long rc = vma_needs_reservation(h, vma, address);
2841 
2842 	if (folio_test_hugetlb_restore_reserve(folio)) {
2843 		if (unlikely(rc < 0))
2844 			/*
2845 			 * Rare out of memory condition in reserve map
2846 			 * manipulation.  Clear hugetlb_restore_reserve so
2847 			 * that global reserve count will not be incremented
2848 			 * by free_huge_folio.  This will make it appear
2849 			 * as though the reservation for this folio was
2850 			 * consumed.  This may prevent the task from
2851 			 * faulting in the folio at a later time.  This
2852 			 * is better than inconsistent global huge page
2853 			 * accounting of reserve counts.
2854 			 */
2855 			folio_clear_hugetlb_restore_reserve(folio);
2856 		else if (rc)
2857 			(void)vma_add_reservation(h, vma, address);
2858 		else
2859 			vma_end_reservation(h, vma, address);
2860 	} else {
2861 		if (!rc) {
2862 			/*
2863 			 * This indicates there is an entry in the reserve map
2864 			 * not added by alloc_hugetlb_folio.  We know it was added
2865 			 * before the alloc_hugetlb_folio call, otherwise
2866 			 * hugetlb_restore_reserve would be set on the folio.
2867 			 * Remove the entry so that a subsequent allocation
2868 			 * does not consume a reservation.
2869 			 */
2870 			rc = vma_del_reservation(h, vma, address);
2871 			if (rc < 0)
2872 				/*
2873 				 * VERY rare out of memory condition.  Since
2874 				 * we can not delete the entry, set
2875 				 * hugetlb_restore_reserve so that the reserve
2876 				 * count will be incremented when the folio
2877 				 * is freed.  This reserve will be consumed
2878 				 * on a subsequent allocation.
2879 				 */
2880 				folio_set_hugetlb_restore_reserve(folio);
2881 		} else if (rc < 0) {
2882 			/*
2883 			 * Rare out of memory condition from
2884 			 * vma_needs_reservation call.  Memory allocation is
2885 			 * only attempted if a new entry is needed.  Therefore,
2886 			 * this implies there is not an entry in the
2887 			 * reserve map.
2888 			 *
2889 			 * For shared mappings, no entry in the map indicates
2890 			 * no reservation.  We are done.
2891 			 */
2892 			if (!(vma->vm_flags & VM_MAYSHARE))
2893 				/*
2894 				 * For private mappings, no entry indicates
2895 				 * a reservation is present.  Since we can
2896 				 * not add an entry, set hugetlb_restore_reserve
2897 				 * on the folio so reserve count will be
2898 				 * incremented when freed.  This reserve will
2899 				 * be consumed on a subsequent allocation.
2900 				 */
2901 				folio_set_hugetlb_restore_reserve(folio);
2902 		} else
2903 			/*
2904 			 * No reservation present, do nothing
2905 			 */
2906 			 vma_end_reservation(h, vma, address);
2907 	}
2908 }
2909 
2910 /*
2911  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2912  * the old one
2913  * @h: struct hstate old page belongs to
2914  * @old_folio: Old folio to dissolve
2915  * @list: List to isolate the page in case we need to
2916  * Returns 0 on success, otherwise negated error.
2917  */
2918 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2919 			struct folio *old_folio, struct list_head *list)
2920 {
2921 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2922 	int nid = folio_nid(old_folio);
2923 	struct folio *new_folio;
2924 	int ret = 0;
2925 
2926 	/*
2927 	 * Before dissolving the folio, we need to allocate a new one for the
2928 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2929 	 * by doing everything but actually updating counters and adding to
2930 	 * the pool.  This simplifies and let us do most of the processing
2931 	 * under the lock.
2932 	 */
2933 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2934 	if (!new_folio)
2935 		return -ENOMEM;
2936 	__prep_new_hugetlb_folio(h, new_folio);
2937 
2938 retry:
2939 	spin_lock_irq(&hugetlb_lock);
2940 	if (!folio_test_hugetlb(old_folio)) {
2941 		/*
2942 		 * Freed from under us. Drop new_folio too.
2943 		 */
2944 		goto free_new;
2945 	} else if (folio_ref_count(old_folio)) {
2946 		bool isolated;
2947 
2948 		/*
2949 		 * Someone has grabbed the folio, try to isolate it here.
2950 		 * Fail with -EBUSY if not possible.
2951 		 */
2952 		spin_unlock_irq(&hugetlb_lock);
2953 		isolated = isolate_hugetlb(old_folio, list);
2954 		ret = isolated ? 0 : -EBUSY;
2955 		spin_lock_irq(&hugetlb_lock);
2956 		goto free_new;
2957 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2958 		/*
2959 		 * Folio's refcount is 0 but it has not been enqueued in the
2960 		 * freelist yet. Race window is small, so we can succeed here if
2961 		 * we retry.
2962 		 */
2963 		spin_unlock_irq(&hugetlb_lock);
2964 		cond_resched();
2965 		goto retry;
2966 	} else {
2967 		/*
2968 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2969 		 * the freelist and decrease the counters. These will be
2970 		 * incremented again when calling __prep_account_new_huge_page()
2971 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2972 		 * remain stable since this happens under the lock.
2973 		 */
2974 		remove_hugetlb_folio(h, old_folio, false);
2975 
2976 		/*
2977 		 * Ref count on new_folio is already zero as it was dropped
2978 		 * earlier.  It can be directly added to the pool free list.
2979 		 */
2980 		__prep_account_new_huge_page(h, nid);
2981 		enqueue_hugetlb_folio(h, new_folio);
2982 
2983 		/*
2984 		 * Folio has been replaced, we can safely free the old one.
2985 		 */
2986 		spin_unlock_irq(&hugetlb_lock);
2987 		update_and_free_hugetlb_folio(h, old_folio, false);
2988 	}
2989 
2990 	return ret;
2991 
2992 free_new:
2993 	spin_unlock_irq(&hugetlb_lock);
2994 	/* Folio has a zero ref count, but needs a ref to be freed */
2995 	folio_ref_unfreeze(new_folio, 1);
2996 	update_and_free_hugetlb_folio(h, new_folio, false);
2997 
2998 	return ret;
2999 }
3000 
3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3002 {
3003 	struct hstate *h;
3004 	struct folio *folio = page_folio(page);
3005 	int ret = -EBUSY;
3006 
3007 	/*
3008 	 * The page might have been dissolved from under our feet, so make sure
3009 	 * to carefully check the state under the lock.
3010 	 * Return success when racing as if we dissolved the page ourselves.
3011 	 */
3012 	spin_lock_irq(&hugetlb_lock);
3013 	if (folio_test_hugetlb(folio)) {
3014 		h = folio_hstate(folio);
3015 	} else {
3016 		spin_unlock_irq(&hugetlb_lock);
3017 		return 0;
3018 	}
3019 	spin_unlock_irq(&hugetlb_lock);
3020 
3021 	/*
3022 	 * Fence off gigantic pages as there is a cyclic dependency between
3023 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3024 	 * of bailing out right away without further retrying.
3025 	 */
3026 	if (hstate_is_gigantic(h))
3027 		return -ENOMEM;
3028 
3029 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3030 		ret = 0;
3031 	else if (!folio_ref_count(folio))
3032 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3033 
3034 	return ret;
3035 }
3036 
3037 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3038 				    unsigned long addr, int avoid_reserve)
3039 {
3040 	struct hugepage_subpool *spool = subpool_vma(vma);
3041 	struct hstate *h = hstate_vma(vma);
3042 	struct folio *folio;
3043 	long map_chg, map_commit;
3044 	long gbl_chg;
3045 	int ret, idx;
3046 	struct hugetlb_cgroup *h_cg = NULL;
3047 	bool deferred_reserve;
3048 
3049 	idx = hstate_index(h);
3050 	/*
3051 	 * Examine the region/reserve map to determine if the process
3052 	 * has a reservation for the page to be allocated.  A return
3053 	 * code of zero indicates a reservation exists (no change).
3054 	 */
3055 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3056 	if (map_chg < 0)
3057 		return ERR_PTR(-ENOMEM);
3058 
3059 	/*
3060 	 * Processes that did not create the mapping will have no
3061 	 * reserves as indicated by the region/reserve map. Check
3062 	 * that the allocation will not exceed the subpool limit.
3063 	 * Allocations for MAP_NORESERVE mappings also need to be
3064 	 * checked against any subpool limit.
3065 	 */
3066 	if (map_chg || avoid_reserve) {
3067 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3068 		if (gbl_chg < 0) {
3069 			vma_end_reservation(h, vma, addr);
3070 			return ERR_PTR(-ENOSPC);
3071 		}
3072 
3073 		/*
3074 		 * Even though there was no reservation in the region/reserve
3075 		 * map, there could be reservations associated with the
3076 		 * subpool that can be used.  This would be indicated if the
3077 		 * return value of hugepage_subpool_get_pages() is zero.
3078 		 * However, if avoid_reserve is specified we still avoid even
3079 		 * the subpool reservations.
3080 		 */
3081 		if (avoid_reserve)
3082 			gbl_chg = 1;
3083 	}
3084 
3085 	/* If this allocation is not consuming a reservation, charge it now.
3086 	 */
3087 	deferred_reserve = map_chg || avoid_reserve;
3088 	if (deferred_reserve) {
3089 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3090 			idx, pages_per_huge_page(h), &h_cg);
3091 		if (ret)
3092 			goto out_subpool_put;
3093 	}
3094 
3095 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3096 	if (ret)
3097 		goto out_uncharge_cgroup_reservation;
3098 
3099 	spin_lock_irq(&hugetlb_lock);
3100 	/*
3101 	 * glb_chg is passed to indicate whether or not a page must be taken
3102 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3103 	 * a reservation exists for the allocation.
3104 	 */
3105 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3106 	if (!folio) {
3107 		spin_unlock_irq(&hugetlb_lock);
3108 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3109 		if (!folio)
3110 			goto out_uncharge_cgroup;
3111 		spin_lock_irq(&hugetlb_lock);
3112 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3113 			folio_set_hugetlb_restore_reserve(folio);
3114 			h->resv_huge_pages--;
3115 		}
3116 		list_add(&folio->lru, &h->hugepage_activelist);
3117 		folio_ref_unfreeze(folio, 1);
3118 		/* Fall through */
3119 	}
3120 
3121 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3122 	/* If allocation is not consuming a reservation, also store the
3123 	 * hugetlb_cgroup pointer on the page.
3124 	 */
3125 	if (deferred_reserve) {
3126 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3127 						  h_cg, folio);
3128 	}
3129 
3130 	spin_unlock_irq(&hugetlb_lock);
3131 
3132 	hugetlb_set_folio_subpool(folio, spool);
3133 
3134 	map_commit = vma_commit_reservation(h, vma, addr);
3135 	if (unlikely(map_chg > map_commit)) {
3136 		/*
3137 		 * The page was added to the reservation map between
3138 		 * vma_needs_reservation and vma_commit_reservation.
3139 		 * This indicates a race with hugetlb_reserve_pages.
3140 		 * Adjust for the subpool count incremented above AND
3141 		 * in hugetlb_reserve_pages for the same page.  Also,
3142 		 * the reservation count added in hugetlb_reserve_pages
3143 		 * no longer applies.
3144 		 */
3145 		long rsv_adjust;
3146 
3147 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3148 		hugetlb_acct_memory(h, -rsv_adjust);
3149 		if (deferred_reserve)
3150 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3151 					pages_per_huge_page(h), folio);
3152 	}
3153 	return folio;
3154 
3155 out_uncharge_cgroup:
3156 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3157 out_uncharge_cgroup_reservation:
3158 	if (deferred_reserve)
3159 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3160 						    h_cg);
3161 out_subpool_put:
3162 	if (map_chg || avoid_reserve)
3163 		hugepage_subpool_put_pages(spool, 1);
3164 	vma_end_reservation(h, vma, addr);
3165 	return ERR_PTR(-ENOSPC);
3166 }
3167 
3168 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3169 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3171 {
3172 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3173 	int nr_nodes, node;
3174 
3175 	/* do node specific alloc */
3176 	if (nid != NUMA_NO_NODE) {
3177 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3178 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3179 		if (!m)
3180 			return 0;
3181 		goto found;
3182 	}
3183 	/* allocate from next node when distributing huge pages */
3184 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3185 		m = memblock_alloc_try_nid_raw(
3186 				huge_page_size(h), huge_page_size(h),
3187 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3188 		/*
3189 		 * Use the beginning of the huge page to store the
3190 		 * huge_bootmem_page struct (until gather_bootmem
3191 		 * puts them into the mem_map).
3192 		 */
3193 		if (!m)
3194 			return 0;
3195 		goto found;
3196 	}
3197 
3198 found:
3199 	/* Put them into a private list first because mem_map is not up yet */
3200 	INIT_LIST_HEAD(&m->list);
3201 	list_add(&m->list, &huge_boot_pages);
3202 	m->hstate = h;
3203 	return 1;
3204 }
3205 
3206 /*
3207  * Put bootmem huge pages into the standard lists after mem_map is up.
3208  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3209  */
3210 static void __init gather_bootmem_prealloc(void)
3211 {
3212 	struct huge_bootmem_page *m;
3213 
3214 	list_for_each_entry(m, &huge_boot_pages, list) {
3215 		struct page *page = virt_to_page(m);
3216 		struct folio *folio = page_folio(page);
3217 		struct hstate *h = m->hstate;
3218 
3219 		VM_BUG_ON(!hstate_is_gigantic(h));
3220 		WARN_ON(folio_ref_count(folio) != 1);
3221 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3222 			WARN_ON(folio_test_reserved(folio));
3223 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3224 			free_huge_folio(folio); /* add to the hugepage allocator */
3225 		} else {
3226 			/* VERY unlikely inflated ref count on a tail page */
3227 			free_gigantic_folio(folio, huge_page_order(h));
3228 		}
3229 
3230 		/*
3231 		 * We need to restore the 'stolen' pages to totalram_pages
3232 		 * in order to fix confusing memory reports from free(1) and
3233 		 * other side-effects, like CommitLimit going negative.
3234 		 */
3235 		adjust_managed_page_count(page, pages_per_huge_page(h));
3236 		cond_resched();
3237 	}
3238 }
3239 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3240 {
3241 	unsigned long i;
3242 	char buf[32];
3243 
3244 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3245 		if (hstate_is_gigantic(h)) {
3246 			if (!alloc_bootmem_huge_page(h, nid))
3247 				break;
3248 		} else {
3249 			struct folio *folio;
3250 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3251 
3252 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3253 					&node_states[N_MEMORY], NULL);
3254 			if (!folio)
3255 				break;
3256 			free_huge_folio(folio); /* free it into the hugepage allocator */
3257 		}
3258 		cond_resched();
3259 	}
3260 	if (i == h->max_huge_pages_node[nid])
3261 		return;
3262 
3263 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3264 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3265 		h->max_huge_pages_node[nid], buf, nid, i);
3266 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3267 	h->max_huge_pages_node[nid] = i;
3268 }
3269 
3270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3271 {
3272 	unsigned long i;
3273 	nodemask_t *node_alloc_noretry;
3274 	bool node_specific_alloc = false;
3275 
3276 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3277 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3278 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3279 		return;
3280 	}
3281 
3282 	/* do node specific alloc */
3283 	for_each_online_node(i) {
3284 		if (h->max_huge_pages_node[i] > 0) {
3285 			hugetlb_hstate_alloc_pages_onenode(h, i);
3286 			node_specific_alloc = true;
3287 		}
3288 	}
3289 
3290 	if (node_specific_alloc)
3291 		return;
3292 
3293 	/* below will do all node balanced alloc */
3294 	if (!hstate_is_gigantic(h)) {
3295 		/*
3296 		 * Bit mask controlling how hard we retry per-node allocations.
3297 		 * Ignore errors as lower level routines can deal with
3298 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3299 		 * time, we are likely in bigger trouble.
3300 		 */
3301 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3302 						GFP_KERNEL);
3303 	} else {
3304 		/* allocations done at boot time */
3305 		node_alloc_noretry = NULL;
3306 	}
3307 
3308 	/* bit mask controlling how hard we retry per-node allocations */
3309 	if (node_alloc_noretry)
3310 		nodes_clear(*node_alloc_noretry);
3311 
3312 	for (i = 0; i < h->max_huge_pages; ++i) {
3313 		if (hstate_is_gigantic(h)) {
3314 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3315 				break;
3316 		} else if (!alloc_pool_huge_page(h,
3317 					 &node_states[N_MEMORY],
3318 					 node_alloc_noretry))
3319 			break;
3320 		cond_resched();
3321 	}
3322 	if (i < h->max_huge_pages) {
3323 		char buf[32];
3324 
3325 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3326 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3327 			h->max_huge_pages, buf, i);
3328 		h->max_huge_pages = i;
3329 	}
3330 	kfree(node_alloc_noretry);
3331 }
3332 
3333 static void __init hugetlb_init_hstates(void)
3334 {
3335 	struct hstate *h, *h2;
3336 
3337 	for_each_hstate(h) {
3338 		/* oversize hugepages were init'ed in early boot */
3339 		if (!hstate_is_gigantic(h))
3340 			hugetlb_hstate_alloc_pages(h);
3341 
3342 		/*
3343 		 * Set demote order for each hstate.  Note that
3344 		 * h->demote_order is initially 0.
3345 		 * - We can not demote gigantic pages if runtime freeing
3346 		 *   is not supported, so skip this.
3347 		 * - If CMA allocation is possible, we can not demote
3348 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3349 		 */
3350 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3351 			continue;
3352 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3353 			continue;
3354 		for_each_hstate(h2) {
3355 			if (h2 == h)
3356 				continue;
3357 			if (h2->order < h->order &&
3358 			    h2->order > h->demote_order)
3359 				h->demote_order = h2->order;
3360 		}
3361 	}
3362 }
3363 
3364 static void __init report_hugepages(void)
3365 {
3366 	struct hstate *h;
3367 
3368 	for_each_hstate(h) {
3369 		char buf[32];
3370 
3371 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3372 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3373 			buf, h->free_huge_pages);
3374 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3375 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3376 	}
3377 }
3378 
3379 #ifdef CONFIG_HIGHMEM
3380 static void try_to_free_low(struct hstate *h, unsigned long count,
3381 						nodemask_t *nodes_allowed)
3382 {
3383 	int i;
3384 	LIST_HEAD(page_list);
3385 
3386 	lockdep_assert_held(&hugetlb_lock);
3387 	if (hstate_is_gigantic(h))
3388 		return;
3389 
3390 	/*
3391 	 * Collect pages to be freed on a list, and free after dropping lock
3392 	 */
3393 	for_each_node_mask(i, *nodes_allowed) {
3394 		struct page *page, *next;
3395 		struct list_head *freel = &h->hugepage_freelists[i];
3396 		list_for_each_entry_safe(page, next, freel, lru) {
3397 			if (count >= h->nr_huge_pages)
3398 				goto out;
3399 			if (PageHighMem(page))
3400 				continue;
3401 			remove_hugetlb_folio(h, page_folio(page), false);
3402 			list_add(&page->lru, &page_list);
3403 		}
3404 	}
3405 
3406 out:
3407 	spin_unlock_irq(&hugetlb_lock);
3408 	update_and_free_pages_bulk(h, &page_list);
3409 	spin_lock_irq(&hugetlb_lock);
3410 }
3411 #else
3412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3413 						nodemask_t *nodes_allowed)
3414 {
3415 }
3416 #endif
3417 
3418 /*
3419  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3420  * balanced by operating on them in a round-robin fashion.
3421  * Returns 1 if an adjustment was made.
3422  */
3423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3424 				int delta)
3425 {
3426 	int nr_nodes, node;
3427 
3428 	lockdep_assert_held(&hugetlb_lock);
3429 	VM_BUG_ON(delta != -1 && delta != 1);
3430 
3431 	if (delta < 0) {
3432 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3433 			if (h->surplus_huge_pages_node[node])
3434 				goto found;
3435 		}
3436 	} else {
3437 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3438 			if (h->surplus_huge_pages_node[node] <
3439 					h->nr_huge_pages_node[node])
3440 				goto found;
3441 		}
3442 	}
3443 	return 0;
3444 
3445 found:
3446 	h->surplus_huge_pages += delta;
3447 	h->surplus_huge_pages_node[node] += delta;
3448 	return 1;
3449 }
3450 
3451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3452 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3453 			      nodemask_t *nodes_allowed)
3454 {
3455 	unsigned long min_count, ret;
3456 	struct page *page;
3457 	LIST_HEAD(page_list);
3458 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3459 
3460 	/*
3461 	 * Bit mask controlling how hard we retry per-node allocations.
3462 	 * If we can not allocate the bit mask, do not attempt to allocate
3463 	 * the requested huge pages.
3464 	 */
3465 	if (node_alloc_noretry)
3466 		nodes_clear(*node_alloc_noretry);
3467 	else
3468 		return -ENOMEM;
3469 
3470 	/*
3471 	 * resize_lock mutex prevents concurrent adjustments to number of
3472 	 * pages in hstate via the proc/sysfs interfaces.
3473 	 */
3474 	mutex_lock(&h->resize_lock);
3475 	flush_free_hpage_work(h);
3476 	spin_lock_irq(&hugetlb_lock);
3477 
3478 	/*
3479 	 * Check for a node specific request.
3480 	 * Changing node specific huge page count may require a corresponding
3481 	 * change to the global count.  In any case, the passed node mask
3482 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3483 	 */
3484 	if (nid != NUMA_NO_NODE) {
3485 		unsigned long old_count = count;
3486 
3487 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3488 		/*
3489 		 * User may have specified a large count value which caused the
3490 		 * above calculation to overflow.  In this case, they wanted
3491 		 * to allocate as many huge pages as possible.  Set count to
3492 		 * largest possible value to align with their intention.
3493 		 */
3494 		if (count < old_count)
3495 			count = ULONG_MAX;
3496 	}
3497 
3498 	/*
3499 	 * Gigantic pages runtime allocation depend on the capability for large
3500 	 * page range allocation.
3501 	 * If the system does not provide this feature, return an error when
3502 	 * the user tries to allocate gigantic pages but let the user free the
3503 	 * boottime allocated gigantic pages.
3504 	 */
3505 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3506 		if (count > persistent_huge_pages(h)) {
3507 			spin_unlock_irq(&hugetlb_lock);
3508 			mutex_unlock(&h->resize_lock);
3509 			NODEMASK_FREE(node_alloc_noretry);
3510 			return -EINVAL;
3511 		}
3512 		/* Fall through to decrease pool */
3513 	}
3514 
3515 	/*
3516 	 * Increase the pool size
3517 	 * First take pages out of surplus state.  Then make up the
3518 	 * remaining difference by allocating fresh huge pages.
3519 	 *
3520 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3521 	 * to convert a surplus huge page to a normal huge page. That is
3522 	 * not critical, though, it just means the overall size of the
3523 	 * pool might be one hugepage larger than it needs to be, but
3524 	 * within all the constraints specified by the sysctls.
3525 	 */
3526 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3527 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3528 			break;
3529 	}
3530 
3531 	while (count > persistent_huge_pages(h)) {
3532 		/*
3533 		 * If this allocation races such that we no longer need the
3534 		 * page, free_huge_folio will handle it by freeing the page
3535 		 * and reducing the surplus.
3536 		 */
3537 		spin_unlock_irq(&hugetlb_lock);
3538 
3539 		/* yield cpu to avoid soft lockup */
3540 		cond_resched();
3541 
3542 		ret = alloc_pool_huge_page(h, nodes_allowed,
3543 						node_alloc_noretry);
3544 		spin_lock_irq(&hugetlb_lock);
3545 		if (!ret)
3546 			goto out;
3547 
3548 		/* Bail for signals. Probably ctrl-c from user */
3549 		if (signal_pending(current))
3550 			goto out;
3551 	}
3552 
3553 	/*
3554 	 * Decrease the pool size
3555 	 * First return free pages to the buddy allocator (being careful
3556 	 * to keep enough around to satisfy reservations).  Then place
3557 	 * pages into surplus state as needed so the pool will shrink
3558 	 * to the desired size as pages become free.
3559 	 *
3560 	 * By placing pages into the surplus state independent of the
3561 	 * overcommit value, we are allowing the surplus pool size to
3562 	 * exceed overcommit. There are few sane options here. Since
3563 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3564 	 * though, we'll note that we're not allowed to exceed surplus
3565 	 * and won't grow the pool anywhere else. Not until one of the
3566 	 * sysctls are changed, or the surplus pages go out of use.
3567 	 */
3568 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3569 	min_count = max(count, min_count);
3570 	try_to_free_low(h, min_count, nodes_allowed);
3571 
3572 	/*
3573 	 * Collect pages to be removed on list without dropping lock
3574 	 */
3575 	while (min_count < persistent_huge_pages(h)) {
3576 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3577 		if (!page)
3578 			break;
3579 
3580 		list_add(&page->lru, &page_list);
3581 	}
3582 	/* free the pages after dropping lock */
3583 	spin_unlock_irq(&hugetlb_lock);
3584 	update_and_free_pages_bulk(h, &page_list);
3585 	flush_free_hpage_work(h);
3586 	spin_lock_irq(&hugetlb_lock);
3587 
3588 	while (count < persistent_huge_pages(h)) {
3589 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3590 			break;
3591 	}
3592 out:
3593 	h->max_huge_pages = persistent_huge_pages(h);
3594 	spin_unlock_irq(&hugetlb_lock);
3595 	mutex_unlock(&h->resize_lock);
3596 
3597 	NODEMASK_FREE(node_alloc_noretry);
3598 
3599 	return 0;
3600 }
3601 
3602 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3603 {
3604 	int i, nid = folio_nid(folio);
3605 	struct hstate *target_hstate;
3606 	struct page *subpage;
3607 	struct folio *inner_folio;
3608 	int rc = 0;
3609 
3610 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3611 
3612 	remove_hugetlb_folio_for_demote(h, folio, false);
3613 	spin_unlock_irq(&hugetlb_lock);
3614 
3615 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3616 	if (rc) {
3617 		/* Allocation of vmemmmap failed, we can not demote folio */
3618 		spin_lock_irq(&hugetlb_lock);
3619 		folio_ref_unfreeze(folio, 1);
3620 		add_hugetlb_folio(h, folio, false);
3621 		return rc;
3622 	}
3623 
3624 	/*
3625 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3626 	 * sizes as it will not ref count folios.
3627 	 */
3628 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3629 
3630 	/*
3631 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3632 	 * Without the mutex, pages added to target hstate could be marked
3633 	 * as surplus.
3634 	 *
3635 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3636 	 * use the convention of always taking larger size hstate mutex first.
3637 	 */
3638 	mutex_lock(&target_hstate->resize_lock);
3639 	for (i = 0; i < pages_per_huge_page(h);
3640 				i += pages_per_huge_page(target_hstate)) {
3641 		subpage = folio_page(folio, i);
3642 		inner_folio = page_folio(subpage);
3643 		if (hstate_is_gigantic(target_hstate))
3644 			prep_compound_gigantic_folio_for_demote(inner_folio,
3645 							target_hstate->order);
3646 		else
3647 			prep_compound_page(subpage, target_hstate->order);
3648 		folio_change_private(inner_folio, NULL);
3649 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3650 		free_huge_folio(inner_folio);
3651 	}
3652 	mutex_unlock(&target_hstate->resize_lock);
3653 
3654 	spin_lock_irq(&hugetlb_lock);
3655 
3656 	/*
3657 	 * Not absolutely necessary, but for consistency update max_huge_pages
3658 	 * based on pool changes for the demoted page.
3659 	 */
3660 	h->max_huge_pages--;
3661 	target_hstate->max_huge_pages +=
3662 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3663 
3664 	return rc;
3665 }
3666 
3667 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3668 	__must_hold(&hugetlb_lock)
3669 {
3670 	int nr_nodes, node;
3671 	struct folio *folio;
3672 
3673 	lockdep_assert_held(&hugetlb_lock);
3674 
3675 	/* We should never get here if no demote order */
3676 	if (!h->demote_order) {
3677 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3678 		return -EINVAL;		/* internal error */
3679 	}
3680 
3681 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3682 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3683 			if (folio_test_hwpoison(folio))
3684 				continue;
3685 			return demote_free_hugetlb_folio(h, folio);
3686 		}
3687 	}
3688 
3689 	/*
3690 	 * Only way to get here is if all pages on free lists are poisoned.
3691 	 * Return -EBUSY so that caller will not retry.
3692 	 */
3693 	return -EBUSY;
3694 }
3695 
3696 #define HSTATE_ATTR_RO(_name) \
3697 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3698 
3699 #define HSTATE_ATTR_WO(_name) \
3700 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3701 
3702 #define HSTATE_ATTR(_name) \
3703 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3704 
3705 static struct kobject *hugepages_kobj;
3706 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3707 
3708 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3709 
3710 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3711 {
3712 	int i;
3713 
3714 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3715 		if (hstate_kobjs[i] == kobj) {
3716 			if (nidp)
3717 				*nidp = NUMA_NO_NODE;
3718 			return &hstates[i];
3719 		}
3720 
3721 	return kobj_to_node_hstate(kobj, nidp);
3722 }
3723 
3724 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3725 					struct kobj_attribute *attr, char *buf)
3726 {
3727 	struct hstate *h;
3728 	unsigned long nr_huge_pages;
3729 	int nid;
3730 
3731 	h = kobj_to_hstate(kobj, &nid);
3732 	if (nid == NUMA_NO_NODE)
3733 		nr_huge_pages = h->nr_huge_pages;
3734 	else
3735 		nr_huge_pages = h->nr_huge_pages_node[nid];
3736 
3737 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3738 }
3739 
3740 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3741 					   struct hstate *h, int nid,
3742 					   unsigned long count, size_t len)
3743 {
3744 	int err;
3745 	nodemask_t nodes_allowed, *n_mask;
3746 
3747 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3748 		return -EINVAL;
3749 
3750 	if (nid == NUMA_NO_NODE) {
3751 		/*
3752 		 * global hstate attribute
3753 		 */
3754 		if (!(obey_mempolicy &&
3755 				init_nodemask_of_mempolicy(&nodes_allowed)))
3756 			n_mask = &node_states[N_MEMORY];
3757 		else
3758 			n_mask = &nodes_allowed;
3759 	} else {
3760 		/*
3761 		 * Node specific request.  count adjustment happens in
3762 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3763 		 */
3764 		init_nodemask_of_node(&nodes_allowed, nid);
3765 		n_mask = &nodes_allowed;
3766 	}
3767 
3768 	err = set_max_huge_pages(h, count, nid, n_mask);
3769 
3770 	return err ? err : len;
3771 }
3772 
3773 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3774 					 struct kobject *kobj, const char *buf,
3775 					 size_t len)
3776 {
3777 	struct hstate *h;
3778 	unsigned long count;
3779 	int nid;
3780 	int err;
3781 
3782 	err = kstrtoul(buf, 10, &count);
3783 	if (err)
3784 		return err;
3785 
3786 	h = kobj_to_hstate(kobj, &nid);
3787 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3788 }
3789 
3790 static ssize_t nr_hugepages_show(struct kobject *kobj,
3791 				       struct kobj_attribute *attr, char *buf)
3792 {
3793 	return nr_hugepages_show_common(kobj, attr, buf);
3794 }
3795 
3796 static ssize_t nr_hugepages_store(struct kobject *kobj,
3797 	       struct kobj_attribute *attr, const char *buf, size_t len)
3798 {
3799 	return nr_hugepages_store_common(false, kobj, buf, len);
3800 }
3801 HSTATE_ATTR(nr_hugepages);
3802 
3803 #ifdef CONFIG_NUMA
3804 
3805 /*
3806  * hstate attribute for optionally mempolicy-based constraint on persistent
3807  * huge page alloc/free.
3808  */
3809 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3810 					   struct kobj_attribute *attr,
3811 					   char *buf)
3812 {
3813 	return nr_hugepages_show_common(kobj, attr, buf);
3814 }
3815 
3816 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3817 	       struct kobj_attribute *attr, const char *buf, size_t len)
3818 {
3819 	return nr_hugepages_store_common(true, kobj, buf, len);
3820 }
3821 HSTATE_ATTR(nr_hugepages_mempolicy);
3822 #endif
3823 
3824 
3825 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3826 					struct kobj_attribute *attr, char *buf)
3827 {
3828 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3829 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3830 }
3831 
3832 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3833 		struct kobj_attribute *attr, const char *buf, size_t count)
3834 {
3835 	int err;
3836 	unsigned long input;
3837 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3838 
3839 	if (hstate_is_gigantic(h))
3840 		return -EINVAL;
3841 
3842 	err = kstrtoul(buf, 10, &input);
3843 	if (err)
3844 		return err;
3845 
3846 	spin_lock_irq(&hugetlb_lock);
3847 	h->nr_overcommit_huge_pages = input;
3848 	spin_unlock_irq(&hugetlb_lock);
3849 
3850 	return count;
3851 }
3852 HSTATE_ATTR(nr_overcommit_hugepages);
3853 
3854 static ssize_t free_hugepages_show(struct kobject *kobj,
3855 					struct kobj_attribute *attr, char *buf)
3856 {
3857 	struct hstate *h;
3858 	unsigned long free_huge_pages;
3859 	int nid;
3860 
3861 	h = kobj_to_hstate(kobj, &nid);
3862 	if (nid == NUMA_NO_NODE)
3863 		free_huge_pages = h->free_huge_pages;
3864 	else
3865 		free_huge_pages = h->free_huge_pages_node[nid];
3866 
3867 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3868 }
3869 HSTATE_ATTR_RO(free_hugepages);
3870 
3871 static ssize_t resv_hugepages_show(struct kobject *kobj,
3872 					struct kobj_attribute *attr, char *buf)
3873 {
3874 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3875 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3876 }
3877 HSTATE_ATTR_RO(resv_hugepages);
3878 
3879 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3880 					struct kobj_attribute *attr, char *buf)
3881 {
3882 	struct hstate *h;
3883 	unsigned long surplus_huge_pages;
3884 	int nid;
3885 
3886 	h = kobj_to_hstate(kobj, &nid);
3887 	if (nid == NUMA_NO_NODE)
3888 		surplus_huge_pages = h->surplus_huge_pages;
3889 	else
3890 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3891 
3892 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3893 }
3894 HSTATE_ATTR_RO(surplus_hugepages);
3895 
3896 static ssize_t demote_store(struct kobject *kobj,
3897 	       struct kobj_attribute *attr, const char *buf, size_t len)
3898 {
3899 	unsigned long nr_demote;
3900 	unsigned long nr_available;
3901 	nodemask_t nodes_allowed, *n_mask;
3902 	struct hstate *h;
3903 	int err;
3904 	int nid;
3905 
3906 	err = kstrtoul(buf, 10, &nr_demote);
3907 	if (err)
3908 		return err;
3909 	h = kobj_to_hstate(kobj, &nid);
3910 
3911 	if (nid != NUMA_NO_NODE) {
3912 		init_nodemask_of_node(&nodes_allowed, nid);
3913 		n_mask = &nodes_allowed;
3914 	} else {
3915 		n_mask = &node_states[N_MEMORY];
3916 	}
3917 
3918 	/* Synchronize with other sysfs operations modifying huge pages */
3919 	mutex_lock(&h->resize_lock);
3920 	spin_lock_irq(&hugetlb_lock);
3921 
3922 	while (nr_demote) {
3923 		/*
3924 		 * Check for available pages to demote each time thorough the
3925 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3926 		 */
3927 		if (nid != NUMA_NO_NODE)
3928 			nr_available = h->free_huge_pages_node[nid];
3929 		else
3930 			nr_available = h->free_huge_pages;
3931 		nr_available -= h->resv_huge_pages;
3932 		if (!nr_available)
3933 			break;
3934 
3935 		err = demote_pool_huge_page(h, n_mask);
3936 		if (err)
3937 			break;
3938 
3939 		nr_demote--;
3940 	}
3941 
3942 	spin_unlock_irq(&hugetlb_lock);
3943 	mutex_unlock(&h->resize_lock);
3944 
3945 	if (err)
3946 		return err;
3947 	return len;
3948 }
3949 HSTATE_ATTR_WO(demote);
3950 
3951 static ssize_t demote_size_show(struct kobject *kobj,
3952 					struct kobj_attribute *attr, char *buf)
3953 {
3954 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3955 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3956 
3957 	return sysfs_emit(buf, "%lukB\n", demote_size);
3958 }
3959 
3960 static ssize_t demote_size_store(struct kobject *kobj,
3961 					struct kobj_attribute *attr,
3962 					const char *buf, size_t count)
3963 {
3964 	struct hstate *h, *demote_hstate;
3965 	unsigned long demote_size;
3966 	unsigned int demote_order;
3967 
3968 	demote_size = (unsigned long)memparse(buf, NULL);
3969 
3970 	demote_hstate = size_to_hstate(demote_size);
3971 	if (!demote_hstate)
3972 		return -EINVAL;
3973 	demote_order = demote_hstate->order;
3974 	if (demote_order < HUGETLB_PAGE_ORDER)
3975 		return -EINVAL;
3976 
3977 	/* demote order must be smaller than hstate order */
3978 	h = kobj_to_hstate(kobj, NULL);
3979 	if (demote_order >= h->order)
3980 		return -EINVAL;
3981 
3982 	/* resize_lock synchronizes access to demote size and writes */
3983 	mutex_lock(&h->resize_lock);
3984 	h->demote_order = demote_order;
3985 	mutex_unlock(&h->resize_lock);
3986 
3987 	return count;
3988 }
3989 HSTATE_ATTR(demote_size);
3990 
3991 static struct attribute *hstate_attrs[] = {
3992 	&nr_hugepages_attr.attr,
3993 	&nr_overcommit_hugepages_attr.attr,
3994 	&free_hugepages_attr.attr,
3995 	&resv_hugepages_attr.attr,
3996 	&surplus_hugepages_attr.attr,
3997 #ifdef CONFIG_NUMA
3998 	&nr_hugepages_mempolicy_attr.attr,
3999 #endif
4000 	NULL,
4001 };
4002 
4003 static const struct attribute_group hstate_attr_group = {
4004 	.attrs = hstate_attrs,
4005 };
4006 
4007 static struct attribute *hstate_demote_attrs[] = {
4008 	&demote_size_attr.attr,
4009 	&demote_attr.attr,
4010 	NULL,
4011 };
4012 
4013 static const struct attribute_group hstate_demote_attr_group = {
4014 	.attrs = hstate_demote_attrs,
4015 };
4016 
4017 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4018 				    struct kobject **hstate_kobjs,
4019 				    const struct attribute_group *hstate_attr_group)
4020 {
4021 	int retval;
4022 	int hi = hstate_index(h);
4023 
4024 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4025 	if (!hstate_kobjs[hi])
4026 		return -ENOMEM;
4027 
4028 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4029 	if (retval) {
4030 		kobject_put(hstate_kobjs[hi]);
4031 		hstate_kobjs[hi] = NULL;
4032 		return retval;
4033 	}
4034 
4035 	if (h->demote_order) {
4036 		retval = sysfs_create_group(hstate_kobjs[hi],
4037 					    &hstate_demote_attr_group);
4038 		if (retval) {
4039 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4040 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4041 			kobject_put(hstate_kobjs[hi]);
4042 			hstate_kobjs[hi] = NULL;
4043 			return retval;
4044 		}
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 #ifdef CONFIG_NUMA
4051 static bool hugetlb_sysfs_initialized __ro_after_init;
4052 
4053 /*
4054  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4055  * with node devices in node_devices[] using a parallel array.  The array
4056  * index of a node device or _hstate == node id.
4057  * This is here to avoid any static dependency of the node device driver, in
4058  * the base kernel, on the hugetlb module.
4059  */
4060 struct node_hstate {
4061 	struct kobject		*hugepages_kobj;
4062 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4063 };
4064 static struct node_hstate node_hstates[MAX_NUMNODES];
4065 
4066 /*
4067  * A subset of global hstate attributes for node devices
4068  */
4069 static struct attribute *per_node_hstate_attrs[] = {
4070 	&nr_hugepages_attr.attr,
4071 	&free_hugepages_attr.attr,
4072 	&surplus_hugepages_attr.attr,
4073 	NULL,
4074 };
4075 
4076 static const struct attribute_group per_node_hstate_attr_group = {
4077 	.attrs = per_node_hstate_attrs,
4078 };
4079 
4080 /*
4081  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4082  * Returns node id via non-NULL nidp.
4083  */
4084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4085 {
4086 	int nid;
4087 
4088 	for (nid = 0; nid < nr_node_ids; nid++) {
4089 		struct node_hstate *nhs = &node_hstates[nid];
4090 		int i;
4091 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4092 			if (nhs->hstate_kobjs[i] == kobj) {
4093 				if (nidp)
4094 					*nidp = nid;
4095 				return &hstates[i];
4096 			}
4097 	}
4098 
4099 	BUG();
4100 	return NULL;
4101 }
4102 
4103 /*
4104  * Unregister hstate attributes from a single node device.
4105  * No-op if no hstate attributes attached.
4106  */
4107 void hugetlb_unregister_node(struct node *node)
4108 {
4109 	struct hstate *h;
4110 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4111 
4112 	if (!nhs->hugepages_kobj)
4113 		return;		/* no hstate attributes */
4114 
4115 	for_each_hstate(h) {
4116 		int idx = hstate_index(h);
4117 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4118 
4119 		if (!hstate_kobj)
4120 			continue;
4121 		if (h->demote_order)
4122 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4123 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4124 		kobject_put(hstate_kobj);
4125 		nhs->hstate_kobjs[idx] = NULL;
4126 	}
4127 
4128 	kobject_put(nhs->hugepages_kobj);
4129 	nhs->hugepages_kobj = NULL;
4130 }
4131 
4132 
4133 /*
4134  * Register hstate attributes for a single node device.
4135  * No-op if attributes already registered.
4136  */
4137 void hugetlb_register_node(struct node *node)
4138 {
4139 	struct hstate *h;
4140 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4141 	int err;
4142 
4143 	if (!hugetlb_sysfs_initialized)
4144 		return;
4145 
4146 	if (nhs->hugepages_kobj)
4147 		return;		/* already allocated */
4148 
4149 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4150 							&node->dev.kobj);
4151 	if (!nhs->hugepages_kobj)
4152 		return;
4153 
4154 	for_each_hstate(h) {
4155 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4156 						nhs->hstate_kobjs,
4157 						&per_node_hstate_attr_group);
4158 		if (err) {
4159 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4160 				h->name, node->dev.id);
4161 			hugetlb_unregister_node(node);
4162 			break;
4163 		}
4164 	}
4165 }
4166 
4167 /*
4168  * hugetlb init time:  register hstate attributes for all registered node
4169  * devices of nodes that have memory.  All on-line nodes should have
4170  * registered their associated device by this time.
4171  */
4172 static void __init hugetlb_register_all_nodes(void)
4173 {
4174 	int nid;
4175 
4176 	for_each_online_node(nid)
4177 		hugetlb_register_node(node_devices[nid]);
4178 }
4179 #else	/* !CONFIG_NUMA */
4180 
4181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4182 {
4183 	BUG();
4184 	if (nidp)
4185 		*nidp = -1;
4186 	return NULL;
4187 }
4188 
4189 static void hugetlb_register_all_nodes(void) { }
4190 
4191 #endif
4192 
4193 #ifdef CONFIG_CMA
4194 static void __init hugetlb_cma_check(void);
4195 #else
4196 static inline __init void hugetlb_cma_check(void)
4197 {
4198 }
4199 #endif
4200 
4201 static void __init hugetlb_sysfs_init(void)
4202 {
4203 	struct hstate *h;
4204 	int err;
4205 
4206 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4207 	if (!hugepages_kobj)
4208 		return;
4209 
4210 	for_each_hstate(h) {
4211 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4212 					 hstate_kobjs, &hstate_attr_group);
4213 		if (err)
4214 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4215 	}
4216 
4217 #ifdef CONFIG_NUMA
4218 	hugetlb_sysfs_initialized = true;
4219 #endif
4220 	hugetlb_register_all_nodes();
4221 }
4222 
4223 #ifdef CONFIG_SYSCTL
4224 static void hugetlb_sysctl_init(void);
4225 #else
4226 static inline void hugetlb_sysctl_init(void) { }
4227 #endif
4228 
4229 static int __init hugetlb_init(void)
4230 {
4231 	int i;
4232 
4233 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4234 			__NR_HPAGEFLAGS);
4235 
4236 	if (!hugepages_supported()) {
4237 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4238 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4239 		return 0;
4240 	}
4241 
4242 	/*
4243 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4244 	 * architectures depend on setup being done here.
4245 	 */
4246 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4247 	if (!parsed_default_hugepagesz) {
4248 		/*
4249 		 * If we did not parse a default huge page size, set
4250 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4251 		 * number of huge pages for this default size was implicitly
4252 		 * specified, set that here as well.
4253 		 * Note that the implicit setting will overwrite an explicit
4254 		 * setting.  A warning will be printed in this case.
4255 		 */
4256 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4257 		if (default_hstate_max_huge_pages) {
4258 			if (default_hstate.max_huge_pages) {
4259 				char buf[32];
4260 
4261 				string_get_size(huge_page_size(&default_hstate),
4262 					1, STRING_UNITS_2, buf, 32);
4263 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4264 					default_hstate.max_huge_pages, buf);
4265 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4266 					default_hstate_max_huge_pages);
4267 			}
4268 			default_hstate.max_huge_pages =
4269 				default_hstate_max_huge_pages;
4270 
4271 			for_each_online_node(i)
4272 				default_hstate.max_huge_pages_node[i] =
4273 					default_hugepages_in_node[i];
4274 		}
4275 	}
4276 
4277 	hugetlb_cma_check();
4278 	hugetlb_init_hstates();
4279 	gather_bootmem_prealloc();
4280 	report_hugepages();
4281 
4282 	hugetlb_sysfs_init();
4283 	hugetlb_cgroup_file_init();
4284 	hugetlb_sysctl_init();
4285 
4286 #ifdef CONFIG_SMP
4287 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4288 #else
4289 	num_fault_mutexes = 1;
4290 #endif
4291 	hugetlb_fault_mutex_table =
4292 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4293 			      GFP_KERNEL);
4294 	BUG_ON(!hugetlb_fault_mutex_table);
4295 
4296 	for (i = 0; i < num_fault_mutexes; i++)
4297 		mutex_init(&hugetlb_fault_mutex_table[i]);
4298 	return 0;
4299 }
4300 subsys_initcall(hugetlb_init);
4301 
4302 /* Overwritten by architectures with more huge page sizes */
4303 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4304 {
4305 	return size == HPAGE_SIZE;
4306 }
4307 
4308 void __init hugetlb_add_hstate(unsigned int order)
4309 {
4310 	struct hstate *h;
4311 	unsigned long i;
4312 
4313 	if (size_to_hstate(PAGE_SIZE << order)) {
4314 		return;
4315 	}
4316 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4317 	BUG_ON(order == 0);
4318 	h = &hstates[hugetlb_max_hstate++];
4319 	mutex_init(&h->resize_lock);
4320 	h->order = order;
4321 	h->mask = ~(huge_page_size(h) - 1);
4322 	for (i = 0; i < MAX_NUMNODES; ++i)
4323 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4324 	INIT_LIST_HEAD(&h->hugepage_activelist);
4325 	h->next_nid_to_alloc = first_memory_node;
4326 	h->next_nid_to_free = first_memory_node;
4327 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4328 					huge_page_size(h)/SZ_1K);
4329 
4330 	parsed_hstate = h;
4331 }
4332 
4333 bool __init __weak hugetlb_node_alloc_supported(void)
4334 {
4335 	return true;
4336 }
4337 
4338 static void __init hugepages_clear_pages_in_node(void)
4339 {
4340 	if (!hugetlb_max_hstate) {
4341 		default_hstate_max_huge_pages = 0;
4342 		memset(default_hugepages_in_node, 0,
4343 			sizeof(default_hugepages_in_node));
4344 	} else {
4345 		parsed_hstate->max_huge_pages = 0;
4346 		memset(parsed_hstate->max_huge_pages_node, 0,
4347 			sizeof(parsed_hstate->max_huge_pages_node));
4348 	}
4349 }
4350 
4351 /*
4352  * hugepages command line processing
4353  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4354  * specification.  If not, ignore the hugepages value.  hugepages can also
4355  * be the first huge page command line  option in which case it implicitly
4356  * specifies the number of huge pages for the default size.
4357  */
4358 static int __init hugepages_setup(char *s)
4359 {
4360 	unsigned long *mhp;
4361 	static unsigned long *last_mhp;
4362 	int node = NUMA_NO_NODE;
4363 	int count;
4364 	unsigned long tmp;
4365 	char *p = s;
4366 
4367 	if (!parsed_valid_hugepagesz) {
4368 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4369 		parsed_valid_hugepagesz = true;
4370 		return 1;
4371 	}
4372 
4373 	/*
4374 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4375 	 * yet, so this hugepages= parameter goes to the "default hstate".
4376 	 * Otherwise, it goes with the previously parsed hugepagesz or
4377 	 * default_hugepagesz.
4378 	 */
4379 	else if (!hugetlb_max_hstate)
4380 		mhp = &default_hstate_max_huge_pages;
4381 	else
4382 		mhp = &parsed_hstate->max_huge_pages;
4383 
4384 	if (mhp == last_mhp) {
4385 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4386 		return 1;
4387 	}
4388 
4389 	while (*p) {
4390 		count = 0;
4391 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4392 			goto invalid;
4393 		/* Parameter is node format */
4394 		if (p[count] == ':') {
4395 			if (!hugetlb_node_alloc_supported()) {
4396 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4397 				return 1;
4398 			}
4399 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4400 				goto invalid;
4401 			node = array_index_nospec(tmp, MAX_NUMNODES);
4402 			p += count + 1;
4403 			/* Parse hugepages */
4404 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4405 				goto invalid;
4406 			if (!hugetlb_max_hstate)
4407 				default_hugepages_in_node[node] = tmp;
4408 			else
4409 				parsed_hstate->max_huge_pages_node[node] = tmp;
4410 			*mhp += tmp;
4411 			/* Go to parse next node*/
4412 			if (p[count] == ',')
4413 				p += count + 1;
4414 			else
4415 				break;
4416 		} else {
4417 			if (p != s)
4418 				goto invalid;
4419 			*mhp = tmp;
4420 			break;
4421 		}
4422 	}
4423 
4424 	/*
4425 	 * Global state is always initialized later in hugetlb_init.
4426 	 * But we need to allocate gigantic hstates here early to still
4427 	 * use the bootmem allocator.
4428 	 */
4429 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4430 		hugetlb_hstate_alloc_pages(parsed_hstate);
4431 
4432 	last_mhp = mhp;
4433 
4434 	return 1;
4435 
4436 invalid:
4437 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4438 	hugepages_clear_pages_in_node();
4439 	return 1;
4440 }
4441 __setup("hugepages=", hugepages_setup);
4442 
4443 /*
4444  * hugepagesz command line processing
4445  * A specific huge page size can only be specified once with hugepagesz.
4446  * hugepagesz is followed by hugepages on the command line.  The global
4447  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4448  * hugepagesz argument was valid.
4449  */
4450 static int __init hugepagesz_setup(char *s)
4451 {
4452 	unsigned long size;
4453 	struct hstate *h;
4454 
4455 	parsed_valid_hugepagesz = false;
4456 	size = (unsigned long)memparse(s, NULL);
4457 
4458 	if (!arch_hugetlb_valid_size(size)) {
4459 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4460 		return 1;
4461 	}
4462 
4463 	h = size_to_hstate(size);
4464 	if (h) {
4465 		/*
4466 		 * hstate for this size already exists.  This is normally
4467 		 * an error, but is allowed if the existing hstate is the
4468 		 * default hstate.  More specifically, it is only allowed if
4469 		 * the number of huge pages for the default hstate was not
4470 		 * previously specified.
4471 		 */
4472 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4473 		    default_hstate.max_huge_pages) {
4474 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4475 			return 1;
4476 		}
4477 
4478 		/*
4479 		 * No need to call hugetlb_add_hstate() as hstate already
4480 		 * exists.  But, do set parsed_hstate so that a following
4481 		 * hugepages= parameter will be applied to this hstate.
4482 		 */
4483 		parsed_hstate = h;
4484 		parsed_valid_hugepagesz = true;
4485 		return 1;
4486 	}
4487 
4488 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489 	parsed_valid_hugepagesz = true;
4490 	return 1;
4491 }
4492 __setup("hugepagesz=", hugepagesz_setup);
4493 
4494 /*
4495  * default_hugepagesz command line input
4496  * Only one instance of default_hugepagesz allowed on command line.
4497  */
4498 static int __init default_hugepagesz_setup(char *s)
4499 {
4500 	unsigned long size;
4501 	int i;
4502 
4503 	parsed_valid_hugepagesz = false;
4504 	if (parsed_default_hugepagesz) {
4505 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4506 		return 1;
4507 	}
4508 
4509 	size = (unsigned long)memparse(s, NULL);
4510 
4511 	if (!arch_hugetlb_valid_size(size)) {
4512 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4513 		return 1;
4514 	}
4515 
4516 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4517 	parsed_valid_hugepagesz = true;
4518 	parsed_default_hugepagesz = true;
4519 	default_hstate_idx = hstate_index(size_to_hstate(size));
4520 
4521 	/*
4522 	 * The number of default huge pages (for this size) could have been
4523 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4524 	 * then default_hstate_max_huge_pages is set.  If the default huge
4525 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4526 	 * allocated here from bootmem allocator.
4527 	 */
4528 	if (default_hstate_max_huge_pages) {
4529 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4530 		for_each_online_node(i)
4531 			default_hstate.max_huge_pages_node[i] =
4532 				default_hugepages_in_node[i];
4533 		if (hstate_is_gigantic(&default_hstate))
4534 			hugetlb_hstate_alloc_pages(&default_hstate);
4535 		default_hstate_max_huge_pages = 0;
4536 	}
4537 
4538 	return 1;
4539 }
4540 __setup("default_hugepagesz=", default_hugepagesz_setup);
4541 
4542 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4543 {
4544 #ifdef CONFIG_NUMA
4545 	struct mempolicy *mpol = get_task_policy(current);
4546 
4547 	/*
4548 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4549 	 * (from policy_nodemask) specifically for hugetlb case
4550 	 */
4551 	if (mpol->mode == MPOL_BIND &&
4552 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4553 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4554 		return &mpol->nodes;
4555 #endif
4556 	return NULL;
4557 }
4558 
4559 static unsigned int allowed_mems_nr(struct hstate *h)
4560 {
4561 	int node;
4562 	unsigned int nr = 0;
4563 	nodemask_t *mbind_nodemask;
4564 	unsigned int *array = h->free_huge_pages_node;
4565 	gfp_t gfp_mask = htlb_alloc_mask(h);
4566 
4567 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4568 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4569 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4570 			nr += array[node];
4571 	}
4572 
4573 	return nr;
4574 }
4575 
4576 #ifdef CONFIG_SYSCTL
4577 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4578 					  void *buffer, size_t *length,
4579 					  loff_t *ppos, unsigned long *out)
4580 {
4581 	struct ctl_table dup_table;
4582 
4583 	/*
4584 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4585 	 * can duplicate the @table and alter the duplicate of it.
4586 	 */
4587 	dup_table = *table;
4588 	dup_table.data = out;
4589 
4590 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4591 }
4592 
4593 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4594 			 struct ctl_table *table, int write,
4595 			 void *buffer, size_t *length, loff_t *ppos)
4596 {
4597 	struct hstate *h = &default_hstate;
4598 	unsigned long tmp = h->max_huge_pages;
4599 	int ret;
4600 
4601 	if (!hugepages_supported())
4602 		return -EOPNOTSUPP;
4603 
4604 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4605 					     &tmp);
4606 	if (ret)
4607 		goto out;
4608 
4609 	if (write)
4610 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4611 						  NUMA_NO_NODE, tmp, *length);
4612 out:
4613 	return ret;
4614 }
4615 
4616 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4617 			  void *buffer, size_t *length, loff_t *ppos)
4618 {
4619 
4620 	return hugetlb_sysctl_handler_common(false, table, write,
4621 							buffer, length, ppos);
4622 }
4623 
4624 #ifdef CONFIG_NUMA
4625 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4626 			  void *buffer, size_t *length, loff_t *ppos)
4627 {
4628 	return hugetlb_sysctl_handler_common(true, table, write,
4629 							buffer, length, ppos);
4630 }
4631 #endif /* CONFIG_NUMA */
4632 
4633 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4634 		void *buffer, size_t *length, loff_t *ppos)
4635 {
4636 	struct hstate *h = &default_hstate;
4637 	unsigned long tmp;
4638 	int ret;
4639 
4640 	if (!hugepages_supported())
4641 		return -EOPNOTSUPP;
4642 
4643 	tmp = h->nr_overcommit_huge_pages;
4644 
4645 	if (write && hstate_is_gigantic(h))
4646 		return -EINVAL;
4647 
4648 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4649 					     &tmp);
4650 	if (ret)
4651 		goto out;
4652 
4653 	if (write) {
4654 		spin_lock_irq(&hugetlb_lock);
4655 		h->nr_overcommit_huge_pages = tmp;
4656 		spin_unlock_irq(&hugetlb_lock);
4657 	}
4658 out:
4659 	return ret;
4660 }
4661 
4662 static struct ctl_table hugetlb_table[] = {
4663 	{
4664 		.procname	= "nr_hugepages",
4665 		.data		= NULL,
4666 		.maxlen		= sizeof(unsigned long),
4667 		.mode		= 0644,
4668 		.proc_handler	= hugetlb_sysctl_handler,
4669 	},
4670 #ifdef CONFIG_NUMA
4671 	{
4672 		.procname       = "nr_hugepages_mempolicy",
4673 		.data           = NULL,
4674 		.maxlen         = sizeof(unsigned long),
4675 		.mode           = 0644,
4676 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4677 	},
4678 #endif
4679 	{
4680 		.procname	= "hugetlb_shm_group",
4681 		.data		= &sysctl_hugetlb_shm_group,
4682 		.maxlen		= sizeof(gid_t),
4683 		.mode		= 0644,
4684 		.proc_handler	= proc_dointvec,
4685 	},
4686 	{
4687 		.procname	= "nr_overcommit_hugepages",
4688 		.data		= NULL,
4689 		.maxlen		= sizeof(unsigned long),
4690 		.mode		= 0644,
4691 		.proc_handler	= hugetlb_overcommit_handler,
4692 	},
4693 	{ }
4694 };
4695 
4696 static void hugetlb_sysctl_init(void)
4697 {
4698 	register_sysctl_init("vm", hugetlb_table);
4699 }
4700 #endif /* CONFIG_SYSCTL */
4701 
4702 void hugetlb_report_meminfo(struct seq_file *m)
4703 {
4704 	struct hstate *h;
4705 	unsigned long total = 0;
4706 
4707 	if (!hugepages_supported())
4708 		return;
4709 
4710 	for_each_hstate(h) {
4711 		unsigned long count = h->nr_huge_pages;
4712 
4713 		total += huge_page_size(h) * count;
4714 
4715 		if (h == &default_hstate)
4716 			seq_printf(m,
4717 				   "HugePages_Total:   %5lu\n"
4718 				   "HugePages_Free:    %5lu\n"
4719 				   "HugePages_Rsvd:    %5lu\n"
4720 				   "HugePages_Surp:    %5lu\n"
4721 				   "Hugepagesize:   %8lu kB\n",
4722 				   count,
4723 				   h->free_huge_pages,
4724 				   h->resv_huge_pages,
4725 				   h->surplus_huge_pages,
4726 				   huge_page_size(h) / SZ_1K);
4727 	}
4728 
4729 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4730 }
4731 
4732 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4733 {
4734 	struct hstate *h = &default_hstate;
4735 
4736 	if (!hugepages_supported())
4737 		return 0;
4738 
4739 	return sysfs_emit_at(buf, len,
4740 			     "Node %d HugePages_Total: %5u\n"
4741 			     "Node %d HugePages_Free:  %5u\n"
4742 			     "Node %d HugePages_Surp:  %5u\n",
4743 			     nid, h->nr_huge_pages_node[nid],
4744 			     nid, h->free_huge_pages_node[nid],
4745 			     nid, h->surplus_huge_pages_node[nid]);
4746 }
4747 
4748 void hugetlb_show_meminfo_node(int nid)
4749 {
4750 	struct hstate *h;
4751 
4752 	if (!hugepages_supported())
4753 		return;
4754 
4755 	for_each_hstate(h)
4756 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4757 			nid,
4758 			h->nr_huge_pages_node[nid],
4759 			h->free_huge_pages_node[nid],
4760 			h->surplus_huge_pages_node[nid],
4761 			huge_page_size(h) / SZ_1K);
4762 }
4763 
4764 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4765 {
4766 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4767 		   K(atomic_long_read(&mm->hugetlb_usage)));
4768 }
4769 
4770 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4771 unsigned long hugetlb_total_pages(void)
4772 {
4773 	struct hstate *h;
4774 	unsigned long nr_total_pages = 0;
4775 
4776 	for_each_hstate(h)
4777 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4778 	return nr_total_pages;
4779 }
4780 
4781 static int hugetlb_acct_memory(struct hstate *h, long delta)
4782 {
4783 	int ret = -ENOMEM;
4784 
4785 	if (!delta)
4786 		return 0;
4787 
4788 	spin_lock_irq(&hugetlb_lock);
4789 	/*
4790 	 * When cpuset is configured, it breaks the strict hugetlb page
4791 	 * reservation as the accounting is done on a global variable. Such
4792 	 * reservation is completely rubbish in the presence of cpuset because
4793 	 * the reservation is not checked against page availability for the
4794 	 * current cpuset. Application can still potentially OOM'ed by kernel
4795 	 * with lack of free htlb page in cpuset that the task is in.
4796 	 * Attempt to enforce strict accounting with cpuset is almost
4797 	 * impossible (or too ugly) because cpuset is too fluid that
4798 	 * task or memory node can be dynamically moved between cpusets.
4799 	 *
4800 	 * The change of semantics for shared hugetlb mapping with cpuset is
4801 	 * undesirable. However, in order to preserve some of the semantics,
4802 	 * we fall back to check against current free page availability as
4803 	 * a best attempt and hopefully to minimize the impact of changing
4804 	 * semantics that cpuset has.
4805 	 *
4806 	 * Apart from cpuset, we also have memory policy mechanism that
4807 	 * also determines from which node the kernel will allocate memory
4808 	 * in a NUMA system. So similar to cpuset, we also should consider
4809 	 * the memory policy of the current task. Similar to the description
4810 	 * above.
4811 	 */
4812 	if (delta > 0) {
4813 		if (gather_surplus_pages(h, delta) < 0)
4814 			goto out;
4815 
4816 		if (delta > allowed_mems_nr(h)) {
4817 			return_unused_surplus_pages(h, delta);
4818 			goto out;
4819 		}
4820 	}
4821 
4822 	ret = 0;
4823 	if (delta < 0)
4824 		return_unused_surplus_pages(h, (unsigned long) -delta);
4825 
4826 out:
4827 	spin_unlock_irq(&hugetlb_lock);
4828 	return ret;
4829 }
4830 
4831 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4832 {
4833 	struct resv_map *resv = vma_resv_map(vma);
4834 
4835 	/*
4836 	 * HPAGE_RESV_OWNER indicates a private mapping.
4837 	 * This new VMA should share its siblings reservation map if present.
4838 	 * The VMA will only ever have a valid reservation map pointer where
4839 	 * it is being copied for another still existing VMA.  As that VMA
4840 	 * has a reference to the reservation map it cannot disappear until
4841 	 * after this open call completes.  It is therefore safe to take a
4842 	 * new reference here without additional locking.
4843 	 */
4844 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4845 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4846 		kref_get(&resv->refs);
4847 	}
4848 
4849 	/*
4850 	 * vma_lock structure for sharable mappings is vma specific.
4851 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4852 	 * new structure.  Before clearing, make sure vma_lock is not
4853 	 * for this vma.
4854 	 */
4855 	if (vma->vm_flags & VM_MAYSHARE) {
4856 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4857 
4858 		if (vma_lock) {
4859 			if (vma_lock->vma != vma) {
4860 				vma->vm_private_data = NULL;
4861 				hugetlb_vma_lock_alloc(vma);
4862 			} else
4863 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4864 		} else
4865 			hugetlb_vma_lock_alloc(vma);
4866 	}
4867 }
4868 
4869 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4870 {
4871 	struct hstate *h = hstate_vma(vma);
4872 	struct resv_map *resv;
4873 	struct hugepage_subpool *spool = subpool_vma(vma);
4874 	unsigned long reserve, start, end;
4875 	long gbl_reserve;
4876 
4877 	hugetlb_vma_lock_free(vma);
4878 
4879 	resv = vma_resv_map(vma);
4880 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4881 		return;
4882 
4883 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4884 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4885 
4886 	reserve = (end - start) - region_count(resv, start, end);
4887 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4888 	if (reserve) {
4889 		/*
4890 		 * Decrement reserve counts.  The global reserve count may be
4891 		 * adjusted if the subpool has a minimum size.
4892 		 */
4893 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4894 		hugetlb_acct_memory(h, -gbl_reserve);
4895 	}
4896 
4897 	kref_put(&resv->refs, resv_map_release);
4898 }
4899 
4900 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4901 {
4902 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4903 		return -EINVAL;
4904 
4905 	/*
4906 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4907 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4908 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4909 	 */
4910 	if (addr & ~PUD_MASK) {
4911 		/*
4912 		 * hugetlb_vm_op_split is called right before we attempt to
4913 		 * split the VMA. We will need to unshare PMDs in the old and
4914 		 * new VMAs, so let's unshare before we split.
4915 		 */
4916 		unsigned long floor = addr & PUD_MASK;
4917 		unsigned long ceil = floor + PUD_SIZE;
4918 
4919 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4920 			hugetlb_unshare_pmds(vma, floor, ceil);
4921 	}
4922 
4923 	return 0;
4924 }
4925 
4926 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4927 {
4928 	return huge_page_size(hstate_vma(vma));
4929 }
4930 
4931 /*
4932  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4933  * handle_mm_fault() to try to instantiate regular-sized pages in the
4934  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4935  * this far.
4936  */
4937 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4938 {
4939 	BUG();
4940 	return 0;
4941 }
4942 
4943 /*
4944  * When a new function is introduced to vm_operations_struct and added
4945  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4946  * This is because under System V memory model, mappings created via
4947  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4948  * their original vm_ops are overwritten with shm_vm_ops.
4949  */
4950 const struct vm_operations_struct hugetlb_vm_ops = {
4951 	.fault = hugetlb_vm_op_fault,
4952 	.open = hugetlb_vm_op_open,
4953 	.close = hugetlb_vm_op_close,
4954 	.may_split = hugetlb_vm_op_split,
4955 	.pagesize = hugetlb_vm_op_pagesize,
4956 };
4957 
4958 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4959 				int writable)
4960 {
4961 	pte_t entry;
4962 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4963 
4964 	if (writable) {
4965 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4966 					 vma->vm_page_prot)));
4967 	} else {
4968 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4969 					   vma->vm_page_prot));
4970 	}
4971 	entry = pte_mkyoung(entry);
4972 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4973 
4974 	return entry;
4975 }
4976 
4977 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4978 				   unsigned long address, pte_t *ptep)
4979 {
4980 	pte_t entry;
4981 
4982 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4983 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4984 		update_mmu_cache(vma, address, ptep);
4985 }
4986 
4987 bool is_hugetlb_entry_migration(pte_t pte)
4988 {
4989 	swp_entry_t swp;
4990 
4991 	if (huge_pte_none(pte) || pte_present(pte))
4992 		return false;
4993 	swp = pte_to_swp_entry(pte);
4994 	if (is_migration_entry(swp))
4995 		return true;
4996 	else
4997 		return false;
4998 }
4999 
5000 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5001 {
5002 	swp_entry_t swp;
5003 
5004 	if (huge_pte_none(pte) || pte_present(pte))
5005 		return false;
5006 	swp = pte_to_swp_entry(pte);
5007 	if (is_hwpoison_entry(swp))
5008 		return true;
5009 	else
5010 		return false;
5011 }
5012 
5013 static void
5014 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5015 		      struct folio *new_folio, pte_t old, unsigned long sz)
5016 {
5017 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5018 
5019 	__folio_mark_uptodate(new_folio);
5020 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5021 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5022 		newpte = huge_pte_mkuffd_wp(newpte);
5023 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5024 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5025 	folio_set_hugetlb_migratable(new_folio);
5026 }
5027 
5028 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5029 			    struct vm_area_struct *dst_vma,
5030 			    struct vm_area_struct *src_vma)
5031 {
5032 	pte_t *src_pte, *dst_pte, entry;
5033 	struct folio *pte_folio;
5034 	unsigned long addr;
5035 	bool cow = is_cow_mapping(src_vma->vm_flags);
5036 	struct hstate *h = hstate_vma(src_vma);
5037 	unsigned long sz = huge_page_size(h);
5038 	unsigned long npages = pages_per_huge_page(h);
5039 	struct mmu_notifier_range range;
5040 	unsigned long last_addr_mask;
5041 	int ret = 0;
5042 
5043 	if (cow) {
5044 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5045 					src_vma->vm_start,
5046 					src_vma->vm_end);
5047 		mmu_notifier_invalidate_range_start(&range);
5048 		vma_assert_write_locked(src_vma);
5049 		raw_write_seqcount_begin(&src->write_protect_seq);
5050 	} else {
5051 		/*
5052 		 * For shared mappings the vma lock must be held before
5053 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5054 		 * returned ptep could go away if part of a shared pmd and
5055 		 * another thread calls huge_pmd_unshare.
5056 		 */
5057 		hugetlb_vma_lock_read(src_vma);
5058 	}
5059 
5060 	last_addr_mask = hugetlb_mask_last_page(h);
5061 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5062 		spinlock_t *src_ptl, *dst_ptl;
5063 		src_pte = hugetlb_walk(src_vma, addr, sz);
5064 		if (!src_pte) {
5065 			addr |= last_addr_mask;
5066 			continue;
5067 		}
5068 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5069 		if (!dst_pte) {
5070 			ret = -ENOMEM;
5071 			break;
5072 		}
5073 
5074 		/*
5075 		 * If the pagetables are shared don't copy or take references.
5076 		 *
5077 		 * dst_pte == src_pte is the common case of src/dest sharing.
5078 		 * However, src could have 'unshared' and dst shares with
5079 		 * another vma. So page_count of ptep page is checked instead
5080 		 * to reliably determine whether pte is shared.
5081 		 */
5082 		if (page_count(virt_to_page(dst_pte)) > 1) {
5083 			addr |= last_addr_mask;
5084 			continue;
5085 		}
5086 
5087 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5088 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5089 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5090 		entry = huge_ptep_get(src_pte);
5091 again:
5092 		if (huge_pte_none(entry)) {
5093 			/*
5094 			 * Skip if src entry none.
5095 			 */
5096 			;
5097 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5098 			if (!userfaultfd_wp(dst_vma))
5099 				entry = huge_pte_clear_uffd_wp(entry);
5100 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5101 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5102 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5103 			bool uffd_wp = pte_swp_uffd_wp(entry);
5104 
5105 			if (!is_readable_migration_entry(swp_entry) && cow) {
5106 				/*
5107 				 * COW mappings require pages in both
5108 				 * parent and child to be set to read.
5109 				 */
5110 				swp_entry = make_readable_migration_entry(
5111 							swp_offset(swp_entry));
5112 				entry = swp_entry_to_pte(swp_entry);
5113 				if (userfaultfd_wp(src_vma) && uffd_wp)
5114 					entry = pte_swp_mkuffd_wp(entry);
5115 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5116 			}
5117 			if (!userfaultfd_wp(dst_vma))
5118 				entry = huge_pte_clear_uffd_wp(entry);
5119 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5120 		} else if (unlikely(is_pte_marker(entry))) {
5121 			pte_marker marker = copy_pte_marker(
5122 				pte_to_swp_entry(entry), dst_vma);
5123 
5124 			if (marker)
5125 				set_huge_pte_at(dst, addr, dst_pte,
5126 						make_pte_marker(marker), sz);
5127 		} else {
5128 			entry = huge_ptep_get(src_pte);
5129 			pte_folio = page_folio(pte_page(entry));
5130 			folio_get(pte_folio);
5131 
5132 			/*
5133 			 * Failing to duplicate the anon rmap is a rare case
5134 			 * where we see pinned hugetlb pages while they're
5135 			 * prone to COW. We need to do the COW earlier during
5136 			 * fork.
5137 			 *
5138 			 * When pre-allocating the page or copying data, we
5139 			 * need to be without the pgtable locks since we could
5140 			 * sleep during the process.
5141 			 */
5142 			if (!folio_test_anon(pte_folio)) {
5143 				page_dup_file_rmap(&pte_folio->page, true);
5144 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5145 							  true, src_vma)) {
5146 				pte_t src_pte_old = entry;
5147 				struct folio *new_folio;
5148 
5149 				spin_unlock(src_ptl);
5150 				spin_unlock(dst_ptl);
5151 				/* Do not use reserve as it's private owned */
5152 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5153 				if (IS_ERR(new_folio)) {
5154 					folio_put(pte_folio);
5155 					ret = PTR_ERR(new_folio);
5156 					break;
5157 				}
5158 				ret = copy_user_large_folio(new_folio,
5159 							    pte_folio,
5160 							    addr, dst_vma);
5161 				folio_put(pte_folio);
5162 				if (ret) {
5163 					folio_put(new_folio);
5164 					break;
5165 				}
5166 
5167 				/* Install the new hugetlb folio if src pte stable */
5168 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5169 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5170 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5171 				entry = huge_ptep_get(src_pte);
5172 				if (!pte_same(src_pte_old, entry)) {
5173 					restore_reserve_on_error(h, dst_vma, addr,
5174 								new_folio);
5175 					folio_put(new_folio);
5176 					/* huge_ptep of dst_pte won't change as in child */
5177 					goto again;
5178 				}
5179 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5180 						      new_folio, src_pte_old, sz);
5181 				spin_unlock(src_ptl);
5182 				spin_unlock(dst_ptl);
5183 				continue;
5184 			}
5185 
5186 			if (cow) {
5187 				/*
5188 				 * No need to notify as we are downgrading page
5189 				 * table protection not changing it to point
5190 				 * to a new page.
5191 				 *
5192 				 * See Documentation/mm/mmu_notifier.rst
5193 				 */
5194 				huge_ptep_set_wrprotect(src, addr, src_pte);
5195 				entry = huge_pte_wrprotect(entry);
5196 			}
5197 
5198 			if (!userfaultfd_wp(dst_vma))
5199 				entry = huge_pte_clear_uffd_wp(entry);
5200 
5201 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5202 			hugetlb_count_add(npages, dst);
5203 		}
5204 		spin_unlock(src_ptl);
5205 		spin_unlock(dst_ptl);
5206 	}
5207 
5208 	if (cow) {
5209 		raw_write_seqcount_end(&src->write_protect_seq);
5210 		mmu_notifier_invalidate_range_end(&range);
5211 	} else {
5212 		hugetlb_vma_unlock_read(src_vma);
5213 	}
5214 
5215 	return ret;
5216 }
5217 
5218 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5219 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5220 			  unsigned long sz)
5221 {
5222 	struct hstate *h = hstate_vma(vma);
5223 	struct mm_struct *mm = vma->vm_mm;
5224 	spinlock_t *src_ptl, *dst_ptl;
5225 	pte_t pte;
5226 
5227 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5228 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5229 
5230 	/*
5231 	 * We don't have to worry about the ordering of src and dst ptlocks
5232 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5233 	 */
5234 	if (src_ptl != dst_ptl)
5235 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5236 
5237 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5238 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5239 
5240 	if (src_ptl != dst_ptl)
5241 		spin_unlock(src_ptl);
5242 	spin_unlock(dst_ptl);
5243 }
5244 
5245 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5246 			     struct vm_area_struct *new_vma,
5247 			     unsigned long old_addr, unsigned long new_addr,
5248 			     unsigned long len)
5249 {
5250 	struct hstate *h = hstate_vma(vma);
5251 	struct address_space *mapping = vma->vm_file->f_mapping;
5252 	unsigned long sz = huge_page_size(h);
5253 	struct mm_struct *mm = vma->vm_mm;
5254 	unsigned long old_end = old_addr + len;
5255 	unsigned long last_addr_mask;
5256 	pte_t *src_pte, *dst_pte;
5257 	struct mmu_notifier_range range;
5258 	bool shared_pmd = false;
5259 
5260 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5261 				old_end);
5262 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5263 	/*
5264 	 * In case of shared PMDs, we should cover the maximum possible
5265 	 * range.
5266 	 */
5267 	flush_cache_range(vma, range.start, range.end);
5268 
5269 	mmu_notifier_invalidate_range_start(&range);
5270 	last_addr_mask = hugetlb_mask_last_page(h);
5271 	/* Prevent race with file truncation */
5272 	hugetlb_vma_lock_write(vma);
5273 	i_mmap_lock_write(mapping);
5274 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5275 		src_pte = hugetlb_walk(vma, old_addr, sz);
5276 		if (!src_pte) {
5277 			old_addr |= last_addr_mask;
5278 			new_addr |= last_addr_mask;
5279 			continue;
5280 		}
5281 		if (huge_pte_none(huge_ptep_get(src_pte)))
5282 			continue;
5283 
5284 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5285 			shared_pmd = true;
5286 			old_addr |= last_addr_mask;
5287 			new_addr |= last_addr_mask;
5288 			continue;
5289 		}
5290 
5291 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5292 		if (!dst_pte)
5293 			break;
5294 
5295 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5296 	}
5297 
5298 	if (shared_pmd)
5299 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5300 	else
5301 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5302 	mmu_notifier_invalidate_range_end(&range);
5303 	i_mmap_unlock_write(mapping);
5304 	hugetlb_vma_unlock_write(vma);
5305 
5306 	return len + old_addr - old_end;
5307 }
5308 
5309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5310 			    unsigned long start, unsigned long end,
5311 			    struct page *ref_page, zap_flags_t zap_flags)
5312 {
5313 	struct mm_struct *mm = vma->vm_mm;
5314 	unsigned long address;
5315 	pte_t *ptep;
5316 	pte_t pte;
5317 	spinlock_t *ptl;
5318 	struct page *page;
5319 	struct hstate *h = hstate_vma(vma);
5320 	unsigned long sz = huge_page_size(h);
5321 	unsigned long last_addr_mask;
5322 	bool force_flush = false;
5323 
5324 	WARN_ON(!is_vm_hugetlb_page(vma));
5325 	BUG_ON(start & ~huge_page_mask(h));
5326 	BUG_ON(end & ~huge_page_mask(h));
5327 
5328 	/*
5329 	 * This is a hugetlb vma, all the pte entries should point
5330 	 * to huge page.
5331 	 */
5332 	tlb_change_page_size(tlb, sz);
5333 	tlb_start_vma(tlb, vma);
5334 
5335 	last_addr_mask = hugetlb_mask_last_page(h);
5336 	address = start;
5337 	for (; address < end; address += sz) {
5338 		ptep = hugetlb_walk(vma, address, sz);
5339 		if (!ptep) {
5340 			address |= last_addr_mask;
5341 			continue;
5342 		}
5343 
5344 		ptl = huge_pte_lock(h, mm, ptep);
5345 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5346 			spin_unlock(ptl);
5347 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5348 			force_flush = true;
5349 			address |= last_addr_mask;
5350 			continue;
5351 		}
5352 
5353 		pte = huge_ptep_get(ptep);
5354 		if (huge_pte_none(pte)) {
5355 			spin_unlock(ptl);
5356 			continue;
5357 		}
5358 
5359 		/*
5360 		 * Migrating hugepage or HWPoisoned hugepage is already
5361 		 * unmapped and its refcount is dropped, so just clear pte here.
5362 		 */
5363 		if (unlikely(!pte_present(pte))) {
5364 			/*
5365 			 * If the pte was wr-protected by uffd-wp in any of the
5366 			 * swap forms, meanwhile the caller does not want to
5367 			 * drop the uffd-wp bit in this zap, then replace the
5368 			 * pte with a marker.
5369 			 */
5370 			if (pte_swp_uffd_wp_any(pte) &&
5371 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5372 				set_huge_pte_at(mm, address, ptep,
5373 						make_pte_marker(PTE_MARKER_UFFD_WP),
5374 						sz);
5375 			else
5376 				huge_pte_clear(mm, address, ptep, sz);
5377 			spin_unlock(ptl);
5378 			continue;
5379 		}
5380 
5381 		page = pte_page(pte);
5382 		/*
5383 		 * If a reference page is supplied, it is because a specific
5384 		 * page is being unmapped, not a range. Ensure the page we
5385 		 * are about to unmap is the actual page of interest.
5386 		 */
5387 		if (ref_page) {
5388 			if (page != ref_page) {
5389 				spin_unlock(ptl);
5390 				continue;
5391 			}
5392 			/*
5393 			 * Mark the VMA as having unmapped its page so that
5394 			 * future faults in this VMA will fail rather than
5395 			 * looking like data was lost
5396 			 */
5397 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5398 		}
5399 
5400 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5401 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5402 		if (huge_pte_dirty(pte))
5403 			set_page_dirty(page);
5404 		/* Leave a uffd-wp pte marker if needed */
5405 		if (huge_pte_uffd_wp(pte) &&
5406 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5407 			set_huge_pte_at(mm, address, ptep,
5408 					make_pte_marker(PTE_MARKER_UFFD_WP),
5409 					sz);
5410 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5411 		page_remove_rmap(page, vma, true);
5412 
5413 		spin_unlock(ptl);
5414 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5415 		/*
5416 		 * Bail out after unmapping reference page if supplied
5417 		 */
5418 		if (ref_page)
5419 			break;
5420 	}
5421 	tlb_end_vma(tlb, vma);
5422 
5423 	/*
5424 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5425 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5426 	 * guaranteed that the last refernece would not be dropped. But we must
5427 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5428 	 * dropped and the last reference to the shared PMDs page might be
5429 	 * dropped as well.
5430 	 *
5431 	 * In theory we could defer the freeing of the PMD pages as well, but
5432 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5433 	 * detect sharing, so we cannot defer the release of the page either.
5434 	 * Instead, do flush now.
5435 	 */
5436 	if (force_flush)
5437 		tlb_flush_mmu_tlbonly(tlb);
5438 }
5439 
5440 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5441 			 unsigned long *start, unsigned long *end)
5442 {
5443 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5444 		return;
5445 
5446 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5447 	hugetlb_vma_lock_write(vma);
5448 	if (vma->vm_file)
5449 		i_mmap_lock_write(vma->vm_file->f_mapping);
5450 }
5451 
5452 void __hugetlb_zap_end(struct vm_area_struct *vma,
5453 		       struct zap_details *details)
5454 {
5455 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5456 
5457 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5458 		return;
5459 
5460 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5461 		/*
5462 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5463 		 * When the vma_lock is freed, this makes the vma ineligible
5464 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5465 		 * pmd sharing.  This is important as page tables for this
5466 		 * unmapped range will be asynchrously deleted.  If the page
5467 		 * tables are shared, there will be issues when accessed by
5468 		 * someone else.
5469 		 */
5470 		__hugetlb_vma_unlock_write_free(vma);
5471 	} else {
5472 		hugetlb_vma_unlock_write(vma);
5473 	}
5474 
5475 	if (vma->vm_file)
5476 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5477 }
5478 
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480 			  unsigned long end, struct page *ref_page,
5481 			  zap_flags_t zap_flags)
5482 {
5483 	struct mmu_notifier_range range;
5484 	struct mmu_gather tlb;
5485 
5486 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5487 				start, end);
5488 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489 	mmu_notifier_invalidate_range_start(&range);
5490 	tlb_gather_mmu(&tlb, vma->vm_mm);
5491 
5492 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5493 
5494 	mmu_notifier_invalidate_range_end(&range);
5495 	tlb_finish_mmu(&tlb);
5496 }
5497 
5498 /*
5499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500  * mapping it owns the reserve page for. The intention is to unmap the page
5501  * from other VMAs and let the children be SIGKILLed if they are faulting the
5502  * same region.
5503  */
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505 			      struct page *page, unsigned long address)
5506 {
5507 	struct hstate *h = hstate_vma(vma);
5508 	struct vm_area_struct *iter_vma;
5509 	struct address_space *mapping;
5510 	pgoff_t pgoff;
5511 
5512 	/*
5513 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514 	 * from page cache lookup which is in HPAGE_SIZE units.
5515 	 */
5516 	address = address & huge_page_mask(h);
5517 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5518 			vma->vm_pgoff;
5519 	mapping = vma->vm_file->f_mapping;
5520 
5521 	/*
5522 	 * Take the mapping lock for the duration of the table walk. As
5523 	 * this mapping should be shared between all the VMAs,
5524 	 * __unmap_hugepage_range() is called as the lock is already held
5525 	 */
5526 	i_mmap_lock_write(mapping);
5527 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528 		/* Do not unmap the current VMA */
5529 		if (iter_vma == vma)
5530 			continue;
5531 
5532 		/*
5533 		 * Shared VMAs have their own reserves and do not affect
5534 		 * MAP_PRIVATE accounting but it is possible that a shared
5535 		 * VMA is using the same page so check and skip such VMAs.
5536 		 */
5537 		if (iter_vma->vm_flags & VM_MAYSHARE)
5538 			continue;
5539 
5540 		/*
5541 		 * Unmap the page from other VMAs without their own reserves.
5542 		 * They get marked to be SIGKILLed if they fault in these
5543 		 * areas. This is because a future no-page fault on this VMA
5544 		 * could insert a zeroed page instead of the data existing
5545 		 * from the time of fork. This would look like data corruption
5546 		 */
5547 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548 			unmap_hugepage_range(iter_vma, address,
5549 					     address + huge_page_size(h), page, 0);
5550 	}
5551 	i_mmap_unlock_write(mapping);
5552 }
5553 
5554 /*
5555  * hugetlb_wp() should be called with page lock of the original hugepage held.
5556  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557  * cannot race with other handlers or page migration.
5558  * Keep the pte_same checks anyway to make transition from the mutex easier.
5559  */
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561 		       unsigned long address, pte_t *ptep, unsigned int flags,
5562 		       struct folio *pagecache_folio, spinlock_t *ptl)
5563 {
5564 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565 	pte_t pte = huge_ptep_get(ptep);
5566 	struct hstate *h = hstate_vma(vma);
5567 	struct folio *old_folio;
5568 	struct folio *new_folio;
5569 	int outside_reserve = 0;
5570 	vm_fault_t ret = 0;
5571 	unsigned long haddr = address & huge_page_mask(h);
5572 	struct mmu_notifier_range range;
5573 
5574 	/*
5575 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5576 	 * handled when the uffd-wp protection is removed.
5577 	 *
5578 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5579 	 * can trigger this, because hugetlb_fault() will always resolve
5580 	 * uffd-wp bit first.
5581 	 */
5582 	if (!unshare && huge_pte_uffd_wp(pte))
5583 		return 0;
5584 
5585 	/*
5586 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5588 	 */
5589 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590 		return VM_FAULT_SIGSEGV;
5591 
5592 	/* Let's take out MAP_SHARED mappings first. */
5593 	if (vma->vm_flags & VM_MAYSHARE) {
5594 		set_huge_ptep_writable(vma, haddr, ptep);
5595 		return 0;
5596 	}
5597 
5598 	old_folio = page_folio(pte_page(pte));
5599 
5600 	delayacct_wpcopy_start();
5601 
5602 retry_avoidcopy:
5603 	/*
5604 	 * If no-one else is actually using this page, we're the exclusive
5605 	 * owner and can reuse this page.
5606 	 */
5607 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608 		if (!PageAnonExclusive(&old_folio->page))
5609 			page_move_anon_rmap(&old_folio->page, vma);
5610 		if (likely(!unshare))
5611 			set_huge_ptep_writable(vma, haddr, ptep);
5612 
5613 		delayacct_wpcopy_end();
5614 		return 0;
5615 	}
5616 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5618 
5619 	/*
5620 	 * If the process that created a MAP_PRIVATE mapping is about to
5621 	 * perform a COW due to a shared page count, attempt to satisfy
5622 	 * the allocation without using the existing reserves. The pagecache
5623 	 * page is used to determine if the reserve at this address was
5624 	 * consumed or not. If reserves were used, a partial faulted mapping
5625 	 * at the time of fork() could consume its reserves on COW instead
5626 	 * of the full address range.
5627 	 */
5628 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629 			old_folio != pagecache_folio)
5630 		outside_reserve = 1;
5631 
5632 	folio_get(old_folio);
5633 
5634 	/*
5635 	 * Drop page table lock as buddy allocator may be called. It will
5636 	 * be acquired again before returning to the caller, as expected.
5637 	 */
5638 	spin_unlock(ptl);
5639 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5640 
5641 	if (IS_ERR(new_folio)) {
5642 		/*
5643 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5644 		 * it is due to references held by a child and an insufficient
5645 		 * huge page pool. To guarantee the original mappers
5646 		 * reliability, unmap the page from child processes. The child
5647 		 * may get SIGKILLed if it later faults.
5648 		 */
5649 		if (outside_reserve) {
5650 			struct address_space *mapping = vma->vm_file->f_mapping;
5651 			pgoff_t idx;
5652 			u32 hash;
5653 
5654 			folio_put(old_folio);
5655 			/*
5656 			 * Drop hugetlb_fault_mutex and vma_lock before
5657 			 * unmapping.  unmapping needs to hold vma_lock
5658 			 * in write mode.  Dropping vma_lock in read mode
5659 			 * here is OK as COW mappings do not interact with
5660 			 * PMD sharing.
5661 			 *
5662 			 * Reacquire both after unmap operation.
5663 			 */
5664 			idx = vma_hugecache_offset(h, vma, haddr);
5665 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5666 			hugetlb_vma_unlock_read(vma);
5667 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5668 
5669 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5670 
5671 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672 			hugetlb_vma_lock_read(vma);
5673 			spin_lock(ptl);
5674 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5675 			if (likely(ptep &&
5676 				   pte_same(huge_ptep_get(ptep), pte)))
5677 				goto retry_avoidcopy;
5678 			/*
5679 			 * race occurs while re-acquiring page table
5680 			 * lock, and our job is done.
5681 			 */
5682 			delayacct_wpcopy_end();
5683 			return 0;
5684 		}
5685 
5686 		ret = vmf_error(PTR_ERR(new_folio));
5687 		goto out_release_old;
5688 	}
5689 
5690 	/*
5691 	 * When the original hugepage is shared one, it does not have
5692 	 * anon_vma prepared.
5693 	 */
5694 	if (unlikely(anon_vma_prepare(vma))) {
5695 		ret = VM_FAULT_OOM;
5696 		goto out_release_all;
5697 	}
5698 
5699 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700 		ret = VM_FAULT_HWPOISON_LARGE;
5701 		goto out_release_all;
5702 	}
5703 	__folio_mark_uptodate(new_folio);
5704 
5705 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706 				haddr + huge_page_size(h));
5707 	mmu_notifier_invalidate_range_start(&range);
5708 
5709 	/*
5710 	 * Retake the page table lock to check for racing updates
5711 	 * before the page tables are altered
5712 	 */
5713 	spin_lock(ptl);
5714 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5717 
5718 		/* Break COW or unshare */
5719 		huge_ptep_clear_flush(vma, haddr, ptep);
5720 		page_remove_rmap(&old_folio->page, vma, true);
5721 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5722 		if (huge_pte_uffd_wp(pte))
5723 			newpte = huge_pte_mkuffd_wp(newpte);
5724 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5725 		folio_set_hugetlb_migratable(new_folio);
5726 		/* Make the old page be freed below */
5727 		new_folio = old_folio;
5728 	}
5729 	spin_unlock(ptl);
5730 	mmu_notifier_invalidate_range_end(&range);
5731 out_release_all:
5732 	/*
5733 	 * No restore in case of successful pagetable update (Break COW or
5734 	 * unshare)
5735 	 */
5736 	if (new_folio != old_folio)
5737 		restore_reserve_on_error(h, vma, haddr, new_folio);
5738 	folio_put(new_folio);
5739 out_release_old:
5740 	folio_put(old_folio);
5741 
5742 	spin_lock(ptl); /* Caller expects lock to be held */
5743 
5744 	delayacct_wpcopy_end();
5745 	return ret;
5746 }
5747 
5748 /*
5749  * Return whether there is a pagecache page to back given address within VMA.
5750  */
5751 static bool hugetlbfs_pagecache_present(struct hstate *h,
5752 			struct vm_area_struct *vma, unsigned long address)
5753 {
5754 	struct address_space *mapping = vma->vm_file->f_mapping;
5755 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5756 	struct folio *folio;
5757 
5758 	folio = filemap_get_folio(mapping, idx);
5759 	if (IS_ERR(folio))
5760 		return false;
5761 	folio_put(folio);
5762 	return true;
5763 }
5764 
5765 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5766 			   pgoff_t idx)
5767 {
5768 	struct inode *inode = mapping->host;
5769 	struct hstate *h = hstate_inode(inode);
5770 	int err;
5771 
5772 	__folio_set_locked(folio);
5773 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5774 
5775 	if (unlikely(err)) {
5776 		__folio_clear_locked(folio);
5777 		return err;
5778 	}
5779 	folio_clear_hugetlb_restore_reserve(folio);
5780 
5781 	/*
5782 	 * mark folio dirty so that it will not be removed from cache/file
5783 	 * by non-hugetlbfs specific code paths.
5784 	 */
5785 	folio_mark_dirty(folio);
5786 
5787 	spin_lock(&inode->i_lock);
5788 	inode->i_blocks += blocks_per_huge_page(h);
5789 	spin_unlock(&inode->i_lock);
5790 	return 0;
5791 }
5792 
5793 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5794 						  struct address_space *mapping,
5795 						  pgoff_t idx,
5796 						  unsigned int flags,
5797 						  unsigned long haddr,
5798 						  unsigned long addr,
5799 						  unsigned long reason)
5800 {
5801 	u32 hash;
5802 	struct vm_fault vmf = {
5803 		.vma = vma,
5804 		.address = haddr,
5805 		.real_address = addr,
5806 		.flags = flags,
5807 
5808 		/*
5809 		 * Hard to debug if it ends up being
5810 		 * used by a callee that assumes
5811 		 * something about the other
5812 		 * uninitialized fields... same as in
5813 		 * memory.c
5814 		 */
5815 	};
5816 
5817 	/*
5818 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5819 	 * userfault. Also mmap_lock could be dropped due to handling
5820 	 * userfault, any vma operation should be careful from here.
5821 	 */
5822 	hugetlb_vma_unlock_read(vma);
5823 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5824 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5825 	return handle_userfault(&vmf, reason);
5826 }
5827 
5828 /*
5829  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5830  * false if pte changed or is changing.
5831  */
5832 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5833 			       pte_t *ptep, pte_t old_pte)
5834 {
5835 	spinlock_t *ptl;
5836 	bool same;
5837 
5838 	ptl = huge_pte_lock(h, mm, ptep);
5839 	same = pte_same(huge_ptep_get(ptep), old_pte);
5840 	spin_unlock(ptl);
5841 
5842 	return same;
5843 }
5844 
5845 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5846 			struct vm_area_struct *vma,
5847 			struct address_space *mapping, pgoff_t idx,
5848 			unsigned long address, pte_t *ptep,
5849 			pte_t old_pte, unsigned int flags)
5850 {
5851 	struct hstate *h = hstate_vma(vma);
5852 	vm_fault_t ret = VM_FAULT_SIGBUS;
5853 	int anon_rmap = 0;
5854 	unsigned long size;
5855 	struct folio *folio;
5856 	pte_t new_pte;
5857 	spinlock_t *ptl;
5858 	unsigned long haddr = address & huge_page_mask(h);
5859 	bool new_folio, new_pagecache_folio = false;
5860 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5861 
5862 	/*
5863 	 * Currently, we are forced to kill the process in the event the
5864 	 * original mapper has unmapped pages from the child due to a failed
5865 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5866 	 * be obvious.
5867 	 */
5868 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5869 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5870 			   current->pid);
5871 		goto out;
5872 	}
5873 
5874 	/*
5875 	 * Use page lock to guard against racing truncation
5876 	 * before we get page_table_lock.
5877 	 */
5878 	new_folio = false;
5879 	folio = filemap_lock_folio(mapping, idx);
5880 	if (IS_ERR(folio)) {
5881 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5882 		if (idx >= size)
5883 			goto out;
5884 		/* Check for page in userfault range */
5885 		if (userfaultfd_missing(vma)) {
5886 			/*
5887 			 * Since hugetlb_no_page() was examining pte
5888 			 * without pgtable lock, we need to re-test under
5889 			 * lock because the pte may not be stable and could
5890 			 * have changed from under us.  Try to detect
5891 			 * either changed or during-changing ptes and retry
5892 			 * properly when needed.
5893 			 *
5894 			 * Note that userfaultfd is actually fine with
5895 			 * false positives (e.g. caused by pte changed),
5896 			 * but not wrong logical events (e.g. caused by
5897 			 * reading a pte during changing).  The latter can
5898 			 * confuse the userspace, so the strictness is very
5899 			 * much preferred.  E.g., MISSING event should
5900 			 * never happen on the page after UFFDIO_COPY has
5901 			 * correctly installed the page and returned.
5902 			 */
5903 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5904 				ret = 0;
5905 				goto out;
5906 			}
5907 
5908 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5909 							haddr, address,
5910 							VM_UFFD_MISSING);
5911 		}
5912 
5913 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5914 		if (IS_ERR(folio)) {
5915 			/*
5916 			 * Returning error will result in faulting task being
5917 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5918 			 * tasks from racing to fault in the same page which
5919 			 * could result in false unable to allocate errors.
5920 			 * Page migration does not take the fault mutex, but
5921 			 * does a clear then write of pte's under page table
5922 			 * lock.  Page fault code could race with migration,
5923 			 * notice the clear pte and try to allocate a page
5924 			 * here.  Before returning error, get ptl and make
5925 			 * sure there really is no pte entry.
5926 			 */
5927 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5928 				ret = vmf_error(PTR_ERR(folio));
5929 			else
5930 				ret = 0;
5931 			goto out;
5932 		}
5933 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5934 		__folio_mark_uptodate(folio);
5935 		new_folio = true;
5936 
5937 		if (vma->vm_flags & VM_MAYSHARE) {
5938 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5939 			if (err) {
5940 				/*
5941 				 * err can't be -EEXIST which implies someone
5942 				 * else consumed the reservation since hugetlb
5943 				 * fault mutex is held when add a hugetlb page
5944 				 * to the page cache. So it's safe to call
5945 				 * restore_reserve_on_error() here.
5946 				 */
5947 				restore_reserve_on_error(h, vma, haddr, folio);
5948 				folio_put(folio);
5949 				goto out;
5950 			}
5951 			new_pagecache_folio = true;
5952 		} else {
5953 			folio_lock(folio);
5954 			if (unlikely(anon_vma_prepare(vma))) {
5955 				ret = VM_FAULT_OOM;
5956 				goto backout_unlocked;
5957 			}
5958 			anon_rmap = 1;
5959 		}
5960 	} else {
5961 		/*
5962 		 * If memory error occurs between mmap() and fault, some process
5963 		 * don't have hwpoisoned swap entry for errored virtual address.
5964 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5965 		 */
5966 		if (unlikely(folio_test_hwpoison(folio))) {
5967 			ret = VM_FAULT_HWPOISON_LARGE |
5968 				VM_FAULT_SET_HINDEX(hstate_index(h));
5969 			goto backout_unlocked;
5970 		}
5971 
5972 		/* Check for page in userfault range. */
5973 		if (userfaultfd_minor(vma)) {
5974 			folio_unlock(folio);
5975 			folio_put(folio);
5976 			/* See comment in userfaultfd_missing() block above */
5977 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5978 				ret = 0;
5979 				goto out;
5980 			}
5981 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5982 							haddr, address,
5983 							VM_UFFD_MINOR);
5984 		}
5985 	}
5986 
5987 	/*
5988 	 * If we are going to COW a private mapping later, we examine the
5989 	 * pending reservations for this page now. This will ensure that
5990 	 * any allocations necessary to record that reservation occur outside
5991 	 * the spinlock.
5992 	 */
5993 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5994 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5995 			ret = VM_FAULT_OOM;
5996 			goto backout_unlocked;
5997 		}
5998 		/* Just decrements count, does not deallocate */
5999 		vma_end_reservation(h, vma, haddr);
6000 	}
6001 
6002 	ptl = huge_pte_lock(h, mm, ptep);
6003 	ret = 0;
6004 	/* If pte changed from under us, retry */
6005 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6006 		goto backout;
6007 
6008 	if (anon_rmap)
6009 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6010 	else
6011 		page_dup_file_rmap(&folio->page, true);
6012 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6013 				&& (vma->vm_flags & VM_SHARED)));
6014 	/*
6015 	 * If this pte was previously wr-protected, keep it wr-protected even
6016 	 * if populated.
6017 	 */
6018 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6019 		new_pte = huge_pte_mkuffd_wp(new_pte);
6020 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6021 
6022 	hugetlb_count_add(pages_per_huge_page(h), mm);
6023 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6024 		/* Optimization, do the COW without a second fault */
6025 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6026 	}
6027 
6028 	spin_unlock(ptl);
6029 
6030 	/*
6031 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6032 	 * found in the pagecache may not have hugetlb_migratable if they have
6033 	 * been isolated for migration.
6034 	 */
6035 	if (new_folio)
6036 		folio_set_hugetlb_migratable(folio);
6037 
6038 	folio_unlock(folio);
6039 out:
6040 	hugetlb_vma_unlock_read(vma);
6041 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6042 	return ret;
6043 
6044 backout:
6045 	spin_unlock(ptl);
6046 backout_unlocked:
6047 	if (new_folio && !new_pagecache_folio)
6048 		restore_reserve_on_error(h, vma, haddr, folio);
6049 
6050 	folio_unlock(folio);
6051 	folio_put(folio);
6052 	goto out;
6053 }
6054 
6055 #ifdef CONFIG_SMP
6056 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6057 {
6058 	unsigned long key[2];
6059 	u32 hash;
6060 
6061 	key[0] = (unsigned long) mapping;
6062 	key[1] = idx;
6063 
6064 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6065 
6066 	return hash & (num_fault_mutexes - 1);
6067 }
6068 #else
6069 /*
6070  * For uniprocessor systems we always use a single mutex, so just
6071  * return 0 and avoid the hashing overhead.
6072  */
6073 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6074 {
6075 	return 0;
6076 }
6077 #endif
6078 
6079 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6080 			unsigned long address, unsigned int flags)
6081 {
6082 	pte_t *ptep, entry;
6083 	spinlock_t *ptl;
6084 	vm_fault_t ret;
6085 	u32 hash;
6086 	pgoff_t idx;
6087 	struct folio *folio = NULL;
6088 	struct folio *pagecache_folio = NULL;
6089 	struct hstate *h = hstate_vma(vma);
6090 	struct address_space *mapping;
6091 	int need_wait_lock = 0;
6092 	unsigned long haddr = address & huge_page_mask(h);
6093 
6094 	/* TODO: Handle faults under the VMA lock */
6095 	if (flags & FAULT_FLAG_VMA_LOCK) {
6096 		vma_end_read(vma);
6097 		return VM_FAULT_RETRY;
6098 	}
6099 
6100 	/*
6101 	 * Serialize hugepage allocation and instantiation, so that we don't
6102 	 * get spurious allocation failures if two CPUs race to instantiate
6103 	 * the same page in the page cache.
6104 	 */
6105 	mapping = vma->vm_file->f_mapping;
6106 	idx = vma_hugecache_offset(h, vma, haddr);
6107 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6108 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6109 
6110 	/*
6111 	 * Acquire vma lock before calling huge_pte_alloc and hold
6112 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6113 	 * being called elsewhere and making the ptep no longer valid.
6114 	 */
6115 	hugetlb_vma_lock_read(vma);
6116 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6117 	if (!ptep) {
6118 		hugetlb_vma_unlock_read(vma);
6119 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6120 		return VM_FAULT_OOM;
6121 	}
6122 
6123 	entry = huge_ptep_get(ptep);
6124 	if (huge_pte_none_mostly(entry)) {
6125 		if (is_pte_marker(entry)) {
6126 			pte_marker marker =
6127 				pte_marker_get(pte_to_swp_entry(entry));
6128 
6129 			if (marker & PTE_MARKER_POISONED) {
6130 				ret = VM_FAULT_HWPOISON_LARGE;
6131 				goto out_mutex;
6132 			}
6133 		}
6134 
6135 		/*
6136 		 * Other PTE markers should be handled the same way as none PTE.
6137 		 *
6138 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6139 		 * mutex internally, which make us return immediately.
6140 		 */
6141 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6142 				      entry, flags);
6143 	}
6144 
6145 	ret = 0;
6146 
6147 	/*
6148 	 * entry could be a migration/hwpoison entry at this point, so this
6149 	 * check prevents the kernel from going below assuming that we have
6150 	 * an active hugepage in pagecache. This goto expects the 2nd page
6151 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6152 	 * properly handle it.
6153 	 */
6154 	if (!pte_present(entry)) {
6155 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6156 			/*
6157 			 * Release the hugetlb fault lock now, but retain
6158 			 * the vma lock, because it is needed to guard the
6159 			 * huge_pte_lockptr() later in
6160 			 * migration_entry_wait_huge(). The vma lock will
6161 			 * be released there.
6162 			 */
6163 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6164 			migration_entry_wait_huge(vma, ptep);
6165 			return 0;
6166 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6167 			ret = VM_FAULT_HWPOISON_LARGE |
6168 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6169 		goto out_mutex;
6170 	}
6171 
6172 	/*
6173 	 * If we are going to COW/unshare the mapping later, we examine the
6174 	 * pending reservations for this page now. This will ensure that any
6175 	 * allocations necessary to record that reservation occur outside the
6176 	 * spinlock. Also lookup the pagecache page now as it is used to
6177 	 * determine if a reservation has been consumed.
6178 	 */
6179 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6180 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6181 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6182 			ret = VM_FAULT_OOM;
6183 			goto out_mutex;
6184 		}
6185 		/* Just decrements count, does not deallocate */
6186 		vma_end_reservation(h, vma, haddr);
6187 
6188 		pagecache_folio = filemap_lock_folio(mapping, idx);
6189 		if (IS_ERR(pagecache_folio))
6190 			pagecache_folio = NULL;
6191 	}
6192 
6193 	ptl = huge_pte_lock(h, mm, ptep);
6194 
6195 	/* Check for a racing update before calling hugetlb_wp() */
6196 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6197 		goto out_ptl;
6198 
6199 	/* Handle userfault-wp first, before trying to lock more pages */
6200 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6201 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6202 		struct vm_fault vmf = {
6203 			.vma = vma,
6204 			.address = haddr,
6205 			.real_address = address,
6206 			.flags = flags,
6207 		};
6208 
6209 		spin_unlock(ptl);
6210 		if (pagecache_folio) {
6211 			folio_unlock(pagecache_folio);
6212 			folio_put(pagecache_folio);
6213 		}
6214 		hugetlb_vma_unlock_read(vma);
6215 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6216 		return handle_userfault(&vmf, VM_UFFD_WP);
6217 	}
6218 
6219 	/*
6220 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6221 	 * pagecache_folio, so here we need take the former one
6222 	 * when folio != pagecache_folio or !pagecache_folio.
6223 	 */
6224 	folio = page_folio(pte_page(entry));
6225 	if (folio != pagecache_folio)
6226 		if (!folio_trylock(folio)) {
6227 			need_wait_lock = 1;
6228 			goto out_ptl;
6229 		}
6230 
6231 	folio_get(folio);
6232 
6233 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6234 		if (!huge_pte_write(entry)) {
6235 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6236 					 pagecache_folio, ptl);
6237 			goto out_put_page;
6238 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6239 			entry = huge_pte_mkdirty(entry);
6240 		}
6241 	}
6242 	entry = pte_mkyoung(entry);
6243 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6244 						flags & FAULT_FLAG_WRITE))
6245 		update_mmu_cache(vma, haddr, ptep);
6246 out_put_page:
6247 	if (folio != pagecache_folio)
6248 		folio_unlock(folio);
6249 	folio_put(folio);
6250 out_ptl:
6251 	spin_unlock(ptl);
6252 
6253 	if (pagecache_folio) {
6254 		folio_unlock(pagecache_folio);
6255 		folio_put(pagecache_folio);
6256 	}
6257 out_mutex:
6258 	hugetlb_vma_unlock_read(vma);
6259 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260 	/*
6261 	 * Generally it's safe to hold refcount during waiting page lock. But
6262 	 * here we just wait to defer the next page fault to avoid busy loop and
6263 	 * the page is not used after unlocked before returning from the current
6264 	 * page fault. So we are safe from accessing freed page, even if we wait
6265 	 * here without taking refcount.
6266 	 */
6267 	if (need_wait_lock)
6268 		folio_wait_locked(folio);
6269 	return ret;
6270 }
6271 
6272 #ifdef CONFIG_USERFAULTFD
6273 /*
6274  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6275  * with modifications for hugetlb pages.
6276  */
6277 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6278 			     struct vm_area_struct *dst_vma,
6279 			     unsigned long dst_addr,
6280 			     unsigned long src_addr,
6281 			     uffd_flags_t flags,
6282 			     struct folio **foliop)
6283 {
6284 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6285 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6286 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6287 	struct hstate *h = hstate_vma(dst_vma);
6288 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6289 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6290 	unsigned long size;
6291 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6292 	pte_t _dst_pte;
6293 	spinlock_t *ptl;
6294 	int ret = -ENOMEM;
6295 	struct folio *folio;
6296 	int writable;
6297 	bool folio_in_pagecache = false;
6298 
6299 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6300 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6301 
6302 		/* Don't overwrite any existing PTEs (even markers) */
6303 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6304 			spin_unlock(ptl);
6305 			return -EEXIST;
6306 		}
6307 
6308 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6309 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6310 				huge_page_size(h));
6311 
6312 		/* No need to invalidate - it was non-present before */
6313 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6314 
6315 		spin_unlock(ptl);
6316 		return 0;
6317 	}
6318 
6319 	if (is_continue) {
6320 		ret = -EFAULT;
6321 		folio = filemap_lock_folio(mapping, idx);
6322 		if (IS_ERR(folio))
6323 			goto out;
6324 		folio_in_pagecache = true;
6325 	} else if (!*foliop) {
6326 		/* If a folio already exists, then it's UFFDIO_COPY for
6327 		 * a non-missing case. Return -EEXIST.
6328 		 */
6329 		if (vm_shared &&
6330 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6331 			ret = -EEXIST;
6332 			goto out;
6333 		}
6334 
6335 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6336 		if (IS_ERR(folio)) {
6337 			ret = -ENOMEM;
6338 			goto out;
6339 		}
6340 
6341 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6342 					   false);
6343 
6344 		/* fallback to copy_from_user outside mmap_lock */
6345 		if (unlikely(ret)) {
6346 			ret = -ENOENT;
6347 			/* Free the allocated folio which may have
6348 			 * consumed a reservation.
6349 			 */
6350 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6351 			folio_put(folio);
6352 
6353 			/* Allocate a temporary folio to hold the copied
6354 			 * contents.
6355 			 */
6356 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6357 			if (!folio) {
6358 				ret = -ENOMEM;
6359 				goto out;
6360 			}
6361 			*foliop = folio;
6362 			/* Set the outparam foliop and return to the caller to
6363 			 * copy the contents outside the lock. Don't free the
6364 			 * folio.
6365 			 */
6366 			goto out;
6367 		}
6368 	} else {
6369 		if (vm_shared &&
6370 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6371 			folio_put(*foliop);
6372 			ret = -EEXIST;
6373 			*foliop = NULL;
6374 			goto out;
6375 		}
6376 
6377 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6378 		if (IS_ERR(folio)) {
6379 			folio_put(*foliop);
6380 			ret = -ENOMEM;
6381 			*foliop = NULL;
6382 			goto out;
6383 		}
6384 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6385 		folio_put(*foliop);
6386 		*foliop = NULL;
6387 		if (ret) {
6388 			folio_put(folio);
6389 			goto out;
6390 		}
6391 	}
6392 
6393 	/*
6394 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6395 	 * preceding stores to the page contents become visible before
6396 	 * the set_pte_at() write.
6397 	 */
6398 	__folio_mark_uptodate(folio);
6399 
6400 	/* Add shared, newly allocated pages to the page cache. */
6401 	if (vm_shared && !is_continue) {
6402 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6403 		ret = -EFAULT;
6404 		if (idx >= size)
6405 			goto out_release_nounlock;
6406 
6407 		/*
6408 		 * Serialization between remove_inode_hugepages() and
6409 		 * hugetlb_add_to_page_cache() below happens through the
6410 		 * hugetlb_fault_mutex_table that here must be hold by
6411 		 * the caller.
6412 		 */
6413 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6414 		if (ret)
6415 			goto out_release_nounlock;
6416 		folio_in_pagecache = true;
6417 	}
6418 
6419 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6420 
6421 	ret = -EIO;
6422 	if (folio_test_hwpoison(folio))
6423 		goto out_release_unlock;
6424 
6425 	/*
6426 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6427 	 * registered, we firstly wr-protect a none pte which has no page cache
6428 	 * page backing it, then access the page.
6429 	 */
6430 	ret = -EEXIST;
6431 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6432 		goto out_release_unlock;
6433 
6434 	if (folio_in_pagecache)
6435 		page_dup_file_rmap(&folio->page, true);
6436 	else
6437 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6438 
6439 	/*
6440 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6441 	 * with wp flag set, don't set pte write bit.
6442 	 */
6443 	if (wp_enabled || (is_continue && !vm_shared))
6444 		writable = 0;
6445 	else
6446 		writable = dst_vma->vm_flags & VM_WRITE;
6447 
6448 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6449 	/*
6450 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6451 	 * extremely important for hugetlbfs for now since swapping is not
6452 	 * supported, but we should still be clear in that this page cannot be
6453 	 * thrown away at will, even if write bit not set.
6454 	 */
6455 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6456 	_dst_pte = pte_mkyoung(_dst_pte);
6457 
6458 	if (wp_enabled)
6459 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6460 
6461 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6462 
6463 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6464 
6465 	/* No need to invalidate - it was non-present before */
6466 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6467 
6468 	spin_unlock(ptl);
6469 	if (!is_continue)
6470 		folio_set_hugetlb_migratable(folio);
6471 	if (vm_shared || is_continue)
6472 		folio_unlock(folio);
6473 	ret = 0;
6474 out:
6475 	return ret;
6476 out_release_unlock:
6477 	spin_unlock(ptl);
6478 	if (vm_shared || is_continue)
6479 		folio_unlock(folio);
6480 out_release_nounlock:
6481 	if (!folio_in_pagecache)
6482 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6483 	folio_put(folio);
6484 	goto out;
6485 }
6486 #endif /* CONFIG_USERFAULTFD */
6487 
6488 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6489 				      unsigned long address, unsigned int flags,
6490 				      unsigned int *page_mask)
6491 {
6492 	struct hstate *h = hstate_vma(vma);
6493 	struct mm_struct *mm = vma->vm_mm;
6494 	unsigned long haddr = address & huge_page_mask(h);
6495 	struct page *page = NULL;
6496 	spinlock_t *ptl;
6497 	pte_t *pte, entry;
6498 	int ret;
6499 
6500 	hugetlb_vma_lock_read(vma);
6501 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6502 	if (!pte)
6503 		goto out_unlock;
6504 
6505 	ptl = huge_pte_lock(h, mm, pte);
6506 	entry = huge_ptep_get(pte);
6507 	if (pte_present(entry)) {
6508 		page = pte_page(entry);
6509 
6510 		if (!huge_pte_write(entry)) {
6511 			if (flags & FOLL_WRITE) {
6512 				page = NULL;
6513 				goto out;
6514 			}
6515 
6516 			if (gup_must_unshare(vma, flags, page)) {
6517 				/* Tell the caller to do unsharing */
6518 				page = ERR_PTR(-EMLINK);
6519 				goto out;
6520 			}
6521 		}
6522 
6523 		page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6524 
6525 		/*
6526 		 * Note that page may be a sub-page, and with vmemmap
6527 		 * optimizations the page struct may be read only.
6528 		 * try_grab_page() will increase the ref count on the
6529 		 * head page, so this will be OK.
6530 		 *
6531 		 * try_grab_page() should always be able to get the page here,
6532 		 * because we hold the ptl lock and have verified pte_present().
6533 		 */
6534 		ret = try_grab_page(page, flags);
6535 
6536 		if (WARN_ON_ONCE(ret)) {
6537 			page = ERR_PTR(ret);
6538 			goto out;
6539 		}
6540 
6541 		*page_mask = (1U << huge_page_order(h)) - 1;
6542 	}
6543 out:
6544 	spin_unlock(ptl);
6545 out_unlock:
6546 	hugetlb_vma_unlock_read(vma);
6547 
6548 	/*
6549 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6550 	 * don't try to allocate a new page but just skip it.
6551 	 */
6552 	if (!page && (flags & FOLL_DUMP) &&
6553 	    !hugetlbfs_pagecache_present(h, vma, address))
6554 		page = ERR_PTR(-EFAULT);
6555 
6556 	return page;
6557 }
6558 
6559 long hugetlb_change_protection(struct vm_area_struct *vma,
6560 		unsigned long address, unsigned long end,
6561 		pgprot_t newprot, unsigned long cp_flags)
6562 {
6563 	struct mm_struct *mm = vma->vm_mm;
6564 	unsigned long start = address;
6565 	pte_t *ptep;
6566 	pte_t pte;
6567 	struct hstate *h = hstate_vma(vma);
6568 	long pages = 0, psize = huge_page_size(h);
6569 	bool shared_pmd = false;
6570 	struct mmu_notifier_range range;
6571 	unsigned long last_addr_mask;
6572 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6573 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6574 
6575 	/*
6576 	 * In the case of shared PMDs, the area to flush could be beyond
6577 	 * start/end.  Set range.start/range.end to cover the maximum possible
6578 	 * range if PMD sharing is possible.
6579 	 */
6580 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6581 				0, mm, start, end);
6582 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6583 
6584 	BUG_ON(address >= end);
6585 	flush_cache_range(vma, range.start, range.end);
6586 
6587 	mmu_notifier_invalidate_range_start(&range);
6588 	hugetlb_vma_lock_write(vma);
6589 	i_mmap_lock_write(vma->vm_file->f_mapping);
6590 	last_addr_mask = hugetlb_mask_last_page(h);
6591 	for (; address < end; address += psize) {
6592 		spinlock_t *ptl;
6593 		ptep = hugetlb_walk(vma, address, psize);
6594 		if (!ptep) {
6595 			if (!uffd_wp) {
6596 				address |= last_addr_mask;
6597 				continue;
6598 			}
6599 			/*
6600 			 * Userfaultfd wr-protect requires pgtable
6601 			 * pre-allocations to install pte markers.
6602 			 */
6603 			ptep = huge_pte_alloc(mm, vma, address, psize);
6604 			if (!ptep) {
6605 				pages = -ENOMEM;
6606 				break;
6607 			}
6608 		}
6609 		ptl = huge_pte_lock(h, mm, ptep);
6610 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6611 			/*
6612 			 * When uffd-wp is enabled on the vma, unshare
6613 			 * shouldn't happen at all.  Warn about it if it
6614 			 * happened due to some reason.
6615 			 */
6616 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6617 			pages++;
6618 			spin_unlock(ptl);
6619 			shared_pmd = true;
6620 			address |= last_addr_mask;
6621 			continue;
6622 		}
6623 		pte = huge_ptep_get(ptep);
6624 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6625 			/* Nothing to do. */
6626 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6627 			swp_entry_t entry = pte_to_swp_entry(pte);
6628 			struct page *page = pfn_swap_entry_to_page(entry);
6629 			pte_t newpte = pte;
6630 
6631 			if (is_writable_migration_entry(entry)) {
6632 				if (PageAnon(page))
6633 					entry = make_readable_exclusive_migration_entry(
6634 								swp_offset(entry));
6635 				else
6636 					entry = make_readable_migration_entry(
6637 								swp_offset(entry));
6638 				newpte = swp_entry_to_pte(entry);
6639 				pages++;
6640 			}
6641 
6642 			if (uffd_wp)
6643 				newpte = pte_swp_mkuffd_wp(newpte);
6644 			else if (uffd_wp_resolve)
6645 				newpte = pte_swp_clear_uffd_wp(newpte);
6646 			if (!pte_same(pte, newpte))
6647 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6648 		} else if (unlikely(is_pte_marker(pte))) {
6649 			/* No other markers apply for now. */
6650 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6651 			if (uffd_wp_resolve)
6652 				/* Safe to modify directly (non-present->none). */
6653 				huge_pte_clear(mm, address, ptep, psize);
6654 		} else if (!huge_pte_none(pte)) {
6655 			pte_t old_pte;
6656 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6657 
6658 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6659 			pte = huge_pte_modify(old_pte, newprot);
6660 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6661 			if (uffd_wp)
6662 				pte = huge_pte_mkuffd_wp(pte);
6663 			else if (uffd_wp_resolve)
6664 				pte = huge_pte_clear_uffd_wp(pte);
6665 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6666 			pages++;
6667 		} else {
6668 			/* None pte */
6669 			if (unlikely(uffd_wp))
6670 				/* Safe to modify directly (none->non-present). */
6671 				set_huge_pte_at(mm, address, ptep,
6672 						make_pte_marker(PTE_MARKER_UFFD_WP),
6673 						psize);
6674 		}
6675 		spin_unlock(ptl);
6676 	}
6677 	/*
6678 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6679 	 * may have cleared our pud entry and done put_page on the page table:
6680 	 * once we release i_mmap_rwsem, another task can do the final put_page
6681 	 * and that page table be reused and filled with junk.  If we actually
6682 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6683 	 */
6684 	if (shared_pmd)
6685 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6686 	else
6687 		flush_hugetlb_tlb_range(vma, start, end);
6688 	/*
6689 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6690 	 * downgrading page table protection not changing it to point to a new
6691 	 * page.
6692 	 *
6693 	 * See Documentation/mm/mmu_notifier.rst
6694 	 */
6695 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6696 	hugetlb_vma_unlock_write(vma);
6697 	mmu_notifier_invalidate_range_end(&range);
6698 
6699 	return pages > 0 ? (pages << h->order) : pages;
6700 }
6701 
6702 /* Return true if reservation was successful, false otherwise.  */
6703 bool hugetlb_reserve_pages(struct inode *inode,
6704 					long from, long to,
6705 					struct vm_area_struct *vma,
6706 					vm_flags_t vm_flags)
6707 {
6708 	long chg = -1, add = -1;
6709 	struct hstate *h = hstate_inode(inode);
6710 	struct hugepage_subpool *spool = subpool_inode(inode);
6711 	struct resv_map *resv_map;
6712 	struct hugetlb_cgroup *h_cg = NULL;
6713 	long gbl_reserve, regions_needed = 0;
6714 
6715 	/* This should never happen */
6716 	if (from > to) {
6717 		VM_WARN(1, "%s called with a negative range\n", __func__);
6718 		return false;
6719 	}
6720 
6721 	/*
6722 	 * vma specific semaphore used for pmd sharing and fault/truncation
6723 	 * synchronization
6724 	 */
6725 	hugetlb_vma_lock_alloc(vma);
6726 
6727 	/*
6728 	 * Only apply hugepage reservation if asked. At fault time, an
6729 	 * attempt will be made for VM_NORESERVE to allocate a page
6730 	 * without using reserves
6731 	 */
6732 	if (vm_flags & VM_NORESERVE)
6733 		return true;
6734 
6735 	/*
6736 	 * Shared mappings base their reservation on the number of pages that
6737 	 * are already allocated on behalf of the file. Private mappings need
6738 	 * to reserve the full area even if read-only as mprotect() may be
6739 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6740 	 */
6741 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6742 		/*
6743 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6744 		 * called for inodes for which resv_maps were created (see
6745 		 * hugetlbfs_get_inode).
6746 		 */
6747 		resv_map = inode_resv_map(inode);
6748 
6749 		chg = region_chg(resv_map, from, to, &regions_needed);
6750 	} else {
6751 		/* Private mapping. */
6752 		resv_map = resv_map_alloc();
6753 		if (!resv_map)
6754 			goto out_err;
6755 
6756 		chg = to - from;
6757 
6758 		set_vma_resv_map(vma, resv_map);
6759 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6760 	}
6761 
6762 	if (chg < 0)
6763 		goto out_err;
6764 
6765 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6766 				chg * pages_per_huge_page(h), &h_cg) < 0)
6767 		goto out_err;
6768 
6769 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6770 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6771 		 * of the resv_map.
6772 		 */
6773 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6774 	}
6775 
6776 	/*
6777 	 * There must be enough pages in the subpool for the mapping. If
6778 	 * the subpool has a minimum size, there may be some global
6779 	 * reservations already in place (gbl_reserve).
6780 	 */
6781 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6782 	if (gbl_reserve < 0)
6783 		goto out_uncharge_cgroup;
6784 
6785 	/*
6786 	 * Check enough hugepages are available for the reservation.
6787 	 * Hand the pages back to the subpool if there are not
6788 	 */
6789 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6790 		goto out_put_pages;
6791 
6792 	/*
6793 	 * Account for the reservations made. Shared mappings record regions
6794 	 * that have reservations as they are shared by multiple VMAs.
6795 	 * When the last VMA disappears, the region map says how much
6796 	 * the reservation was and the page cache tells how much of
6797 	 * the reservation was consumed. Private mappings are per-VMA and
6798 	 * only the consumed reservations are tracked. When the VMA
6799 	 * disappears, the original reservation is the VMA size and the
6800 	 * consumed reservations are stored in the map. Hence, nothing
6801 	 * else has to be done for private mappings here
6802 	 */
6803 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6804 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6805 
6806 		if (unlikely(add < 0)) {
6807 			hugetlb_acct_memory(h, -gbl_reserve);
6808 			goto out_put_pages;
6809 		} else if (unlikely(chg > add)) {
6810 			/*
6811 			 * pages in this range were added to the reserve
6812 			 * map between region_chg and region_add.  This
6813 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6814 			 * the subpool and reserve counts modified above
6815 			 * based on the difference.
6816 			 */
6817 			long rsv_adjust;
6818 
6819 			/*
6820 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6821 			 * reference to h_cg->css. See comment below for detail.
6822 			 */
6823 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6824 				hstate_index(h),
6825 				(chg - add) * pages_per_huge_page(h), h_cg);
6826 
6827 			rsv_adjust = hugepage_subpool_put_pages(spool,
6828 								chg - add);
6829 			hugetlb_acct_memory(h, -rsv_adjust);
6830 		} else if (h_cg) {
6831 			/*
6832 			 * The file_regions will hold their own reference to
6833 			 * h_cg->css. So we should release the reference held
6834 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6835 			 * done.
6836 			 */
6837 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6838 		}
6839 	}
6840 	return true;
6841 
6842 out_put_pages:
6843 	/* put back original number of pages, chg */
6844 	(void)hugepage_subpool_put_pages(spool, chg);
6845 out_uncharge_cgroup:
6846 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6847 					    chg * pages_per_huge_page(h), h_cg);
6848 out_err:
6849 	hugetlb_vma_lock_free(vma);
6850 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6851 		/* Only call region_abort if the region_chg succeeded but the
6852 		 * region_add failed or didn't run.
6853 		 */
6854 		if (chg >= 0 && add < 0)
6855 			region_abort(resv_map, from, to, regions_needed);
6856 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6857 		kref_put(&resv_map->refs, resv_map_release);
6858 		set_vma_resv_map(vma, NULL);
6859 	}
6860 	return false;
6861 }
6862 
6863 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6864 								long freed)
6865 {
6866 	struct hstate *h = hstate_inode(inode);
6867 	struct resv_map *resv_map = inode_resv_map(inode);
6868 	long chg = 0;
6869 	struct hugepage_subpool *spool = subpool_inode(inode);
6870 	long gbl_reserve;
6871 
6872 	/*
6873 	 * Since this routine can be called in the evict inode path for all
6874 	 * hugetlbfs inodes, resv_map could be NULL.
6875 	 */
6876 	if (resv_map) {
6877 		chg = region_del(resv_map, start, end);
6878 		/*
6879 		 * region_del() can fail in the rare case where a region
6880 		 * must be split and another region descriptor can not be
6881 		 * allocated.  If end == LONG_MAX, it will not fail.
6882 		 */
6883 		if (chg < 0)
6884 			return chg;
6885 	}
6886 
6887 	spin_lock(&inode->i_lock);
6888 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6889 	spin_unlock(&inode->i_lock);
6890 
6891 	/*
6892 	 * If the subpool has a minimum size, the number of global
6893 	 * reservations to be released may be adjusted.
6894 	 *
6895 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6896 	 * won't go negative.
6897 	 */
6898 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6899 	hugetlb_acct_memory(h, -gbl_reserve);
6900 
6901 	return 0;
6902 }
6903 
6904 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6905 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6906 				struct vm_area_struct *vma,
6907 				unsigned long addr, pgoff_t idx)
6908 {
6909 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6910 				svma->vm_start;
6911 	unsigned long sbase = saddr & PUD_MASK;
6912 	unsigned long s_end = sbase + PUD_SIZE;
6913 
6914 	/* Allow segments to share if only one is marked locked */
6915 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6916 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6917 
6918 	/*
6919 	 * match the virtual addresses, permission and the alignment of the
6920 	 * page table page.
6921 	 *
6922 	 * Also, vma_lock (vm_private_data) is required for sharing.
6923 	 */
6924 	if (pmd_index(addr) != pmd_index(saddr) ||
6925 	    vm_flags != svm_flags ||
6926 	    !range_in_vma(svma, sbase, s_end) ||
6927 	    !svma->vm_private_data)
6928 		return 0;
6929 
6930 	return saddr;
6931 }
6932 
6933 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6934 {
6935 	unsigned long start = addr & PUD_MASK;
6936 	unsigned long end = start + PUD_SIZE;
6937 
6938 #ifdef CONFIG_USERFAULTFD
6939 	if (uffd_disable_huge_pmd_share(vma))
6940 		return false;
6941 #endif
6942 	/*
6943 	 * check on proper vm_flags and page table alignment
6944 	 */
6945 	if (!(vma->vm_flags & VM_MAYSHARE))
6946 		return false;
6947 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6948 		return false;
6949 	if (!range_in_vma(vma, start, end))
6950 		return false;
6951 	return true;
6952 }
6953 
6954 /*
6955  * Determine if start,end range within vma could be mapped by shared pmd.
6956  * If yes, adjust start and end to cover range associated with possible
6957  * shared pmd mappings.
6958  */
6959 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6960 				unsigned long *start, unsigned long *end)
6961 {
6962 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6963 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6964 
6965 	/*
6966 	 * vma needs to span at least one aligned PUD size, and the range
6967 	 * must be at least partially within in.
6968 	 */
6969 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6970 		(*end <= v_start) || (*start >= v_end))
6971 		return;
6972 
6973 	/* Extend the range to be PUD aligned for a worst case scenario */
6974 	if (*start > v_start)
6975 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6976 
6977 	if (*end < v_end)
6978 		*end = ALIGN(*end, PUD_SIZE);
6979 }
6980 
6981 /*
6982  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6983  * and returns the corresponding pte. While this is not necessary for the
6984  * !shared pmd case because we can allocate the pmd later as well, it makes the
6985  * code much cleaner. pmd allocation is essential for the shared case because
6986  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6987  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6988  * bad pmd for sharing.
6989  */
6990 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6991 		      unsigned long addr, pud_t *pud)
6992 {
6993 	struct address_space *mapping = vma->vm_file->f_mapping;
6994 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6995 			vma->vm_pgoff;
6996 	struct vm_area_struct *svma;
6997 	unsigned long saddr;
6998 	pte_t *spte = NULL;
6999 	pte_t *pte;
7000 
7001 	i_mmap_lock_read(mapping);
7002 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7003 		if (svma == vma)
7004 			continue;
7005 
7006 		saddr = page_table_shareable(svma, vma, addr, idx);
7007 		if (saddr) {
7008 			spte = hugetlb_walk(svma, saddr,
7009 					    vma_mmu_pagesize(svma));
7010 			if (spte) {
7011 				get_page(virt_to_page(spte));
7012 				break;
7013 			}
7014 		}
7015 	}
7016 
7017 	if (!spte)
7018 		goto out;
7019 
7020 	spin_lock(&mm->page_table_lock);
7021 	if (pud_none(*pud)) {
7022 		pud_populate(mm, pud,
7023 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7024 		mm_inc_nr_pmds(mm);
7025 	} else {
7026 		put_page(virt_to_page(spte));
7027 	}
7028 	spin_unlock(&mm->page_table_lock);
7029 out:
7030 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7031 	i_mmap_unlock_read(mapping);
7032 	return pte;
7033 }
7034 
7035 /*
7036  * unmap huge page backed by shared pte.
7037  *
7038  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7039  * indicated by page_count > 1, unmap is achieved by clearing pud and
7040  * decrementing the ref count. If count == 1, the pte page is not shared.
7041  *
7042  * Called with page table lock held.
7043  *
7044  * returns: 1 successfully unmapped a shared pte page
7045  *	    0 the underlying pte page is not shared, or it is the last user
7046  */
7047 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7048 					unsigned long addr, pte_t *ptep)
7049 {
7050 	pgd_t *pgd = pgd_offset(mm, addr);
7051 	p4d_t *p4d = p4d_offset(pgd, addr);
7052 	pud_t *pud = pud_offset(p4d, addr);
7053 
7054 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7055 	hugetlb_vma_assert_locked(vma);
7056 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7057 	if (page_count(virt_to_page(ptep)) == 1)
7058 		return 0;
7059 
7060 	pud_clear(pud);
7061 	put_page(virt_to_page(ptep));
7062 	mm_dec_nr_pmds(mm);
7063 	return 1;
7064 }
7065 
7066 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7067 
7068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7069 		      unsigned long addr, pud_t *pud)
7070 {
7071 	return NULL;
7072 }
7073 
7074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7075 				unsigned long addr, pte_t *ptep)
7076 {
7077 	return 0;
7078 }
7079 
7080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7081 				unsigned long *start, unsigned long *end)
7082 {
7083 }
7084 
7085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7086 {
7087 	return false;
7088 }
7089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7090 
7091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7093 			unsigned long addr, unsigned long sz)
7094 {
7095 	pgd_t *pgd;
7096 	p4d_t *p4d;
7097 	pud_t *pud;
7098 	pte_t *pte = NULL;
7099 
7100 	pgd = pgd_offset(mm, addr);
7101 	p4d = p4d_alloc(mm, pgd, addr);
7102 	if (!p4d)
7103 		return NULL;
7104 	pud = pud_alloc(mm, p4d, addr);
7105 	if (pud) {
7106 		if (sz == PUD_SIZE) {
7107 			pte = (pte_t *)pud;
7108 		} else {
7109 			BUG_ON(sz != PMD_SIZE);
7110 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7111 				pte = huge_pmd_share(mm, vma, addr, pud);
7112 			else
7113 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7114 		}
7115 	}
7116 
7117 	if (pte) {
7118 		pte_t pteval = ptep_get_lockless(pte);
7119 
7120 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7121 	}
7122 
7123 	return pte;
7124 }
7125 
7126 /*
7127  * huge_pte_offset() - Walk the page table to resolve the hugepage
7128  * entry at address @addr
7129  *
7130  * Return: Pointer to page table entry (PUD or PMD) for
7131  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7132  * size @sz doesn't match the hugepage size at this level of the page
7133  * table.
7134  */
7135 pte_t *huge_pte_offset(struct mm_struct *mm,
7136 		       unsigned long addr, unsigned long sz)
7137 {
7138 	pgd_t *pgd;
7139 	p4d_t *p4d;
7140 	pud_t *pud;
7141 	pmd_t *pmd;
7142 
7143 	pgd = pgd_offset(mm, addr);
7144 	if (!pgd_present(*pgd))
7145 		return NULL;
7146 	p4d = p4d_offset(pgd, addr);
7147 	if (!p4d_present(*p4d))
7148 		return NULL;
7149 
7150 	pud = pud_offset(p4d, addr);
7151 	if (sz == PUD_SIZE)
7152 		/* must be pud huge, non-present or none */
7153 		return (pte_t *)pud;
7154 	if (!pud_present(*pud))
7155 		return NULL;
7156 	/* must have a valid entry and size to go further */
7157 
7158 	pmd = pmd_offset(pud, addr);
7159 	/* must be pmd huge, non-present or none */
7160 	return (pte_t *)pmd;
7161 }
7162 
7163 /*
7164  * Return a mask that can be used to update an address to the last huge
7165  * page in a page table page mapping size.  Used to skip non-present
7166  * page table entries when linearly scanning address ranges.  Architectures
7167  * with unique huge page to page table relationships can define their own
7168  * version of this routine.
7169  */
7170 unsigned long hugetlb_mask_last_page(struct hstate *h)
7171 {
7172 	unsigned long hp_size = huge_page_size(h);
7173 
7174 	if (hp_size == PUD_SIZE)
7175 		return P4D_SIZE - PUD_SIZE;
7176 	else if (hp_size == PMD_SIZE)
7177 		return PUD_SIZE - PMD_SIZE;
7178 	else
7179 		return 0UL;
7180 }
7181 
7182 #else
7183 
7184 /* See description above.  Architectures can provide their own version. */
7185 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7186 {
7187 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7188 	if (huge_page_size(h) == PMD_SIZE)
7189 		return PUD_SIZE - PMD_SIZE;
7190 #endif
7191 	return 0UL;
7192 }
7193 
7194 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7195 
7196 /*
7197  * These functions are overwritable if your architecture needs its own
7198  * behavior.
7199  */
7200 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7201 {
7202 	bool ret = true;
7203 
7204 	spin_lock_irq(&hugetlb_lock);
7205 	if (!folio_test_hugetlb(folio) ||
7206 	    !folio_test_hugetlb_migratable(folio) ||
7207 	    !folio_try_get(folio)) {
7208 		ret = false;
7209 		goto unlock;
7210 	}
7211 	folio_clear_hugetlb_migratable(folio);
7212 	list_move_tail(&folio->lru, list);
7213 unlock:
7214 	spin_unlock_irq(&hugetlb_lock);
7215 	return ret;
7216 }
7217 
7218 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7219 {
7220 	int ret = 0;
7221 
7222 	*hugetlb = false;
7223 	spin_lock_irq(&hugetlb_lock);
7224 	if (folio_test_hugetlb(folio)) {
7225 		*hugetlb = true;
7226 		if (folio_test_hugetlb_freed(folio))
7227 			ret = 0;
7228 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7229 			ret = folio_try_get(folio);
7230 		else
7231 			ret = -EBUSY;
7232 	}
7233 	spin_unlock_irq(&hugetlb_lock);
7234 	return ret;
7235 }
7236 
7237 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7238 				bool *migratable_cleared)
7239 {
7240 	int ret;
7241 
7242 	spin_lock_irq(&hugetlb_lock);
7243 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7244 	spin_unlock_irq(&hugetlb_lock);
7245 	return ret;
7246 }
7247 
7248 void folio_putback_active_hugetlb(struct folio *folio)
7249 {
7250 	spin_lock_irq(&hugetlb_lock);
7251 	folio_set_hugetlb_migratable(folio);
7252 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7253 	spin_unlock_irq(&hugetlb_lock);
7254 	folio_put(folio);
7255 }
7256 
7257 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7258 {
7259 	struct hstate *h = folio_hstate(old_folio);
7260 
7261 	hugetlb_cgroup_migrate(old_folio, new_folio);
7262 	set_page_owner_migrate_reason(&new_folio->page, reason);
7263 
7264 	/*
7265 	 * transfer temporary state of the new hugetlb folio. This is
7266 	 * reverse to other transitions because the newpage is going to
7267 	 * be final while the old one will be freed so it takes over
7268 	 * the temporary status.
7269 	 *
7270 	 * Also note that we have to transfer the per-node surplus state
7271 	 * here as well otherwise the global surplus count will not match
7272 	 * the per-node's.
7273 	 */
7274 	if (folio_test_hugetlb_temporary(new_folio)) {
7275 		int old_nid = folio_nid(old_folio);
7276 		int new_nid = folio_nid(new_folio);
7277 
7278 		folio_set_hugetlb_temporary(old_folio);
7279 		folio_clear_hugetlb_temporary(new_folio);
7280 
7281 
7282 		/*
7283 		 * There is no need to transfer the per-node surplus state
7284 		 * when we do not cross the node.
7285 		 */
7286 		if (new_nid == old_nid)
7287 			return;
7288 		spin_lock_irq(&hugetlb_lock);
7289 		if (h->surplus_huge_pages_node[old_nid]) {
7290 			h->surplus_huge_pages_node[old_nid]--;
7291 			h->surplus_huge_pages_node[new_nid]++;
7292 		}
7293 		spin_unlock_irq(&hugetlb_lock);
7294 	}
7295 }
7296 
7297 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7298 				   unsigned long start,
7299 				   unsigned long end)
7300 {
7301 	struct hstate *h = hstate_vma(vma);
7302 	unsigned long sz = huge_page_size(h);
7303 	struct mm_struct *mm = vma->vm_mm;
7304 	struct mmu_notifier_range range;
7305 	unsigned long address;
7306 	spinlock_t *ptl;
7307 	pte_t *ptep;
7308 
7309 	if (!(vma->vm_flags & VM_MAYSHARE))
7310 		return;
7311 
7312 	if (start >= end)
7313 		return;
7314 
7315 	flush_cache_range(vma, start, end);
7316 	/*
7317 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7318 	 * we have already done the PUD_SIZE alignment.
7319 	 */
7320 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7321 				start, end);
7322 	mmu_notifier_invalidate_range_start(&range);
7323 	hugetlb_vma_lock_write(vma);
7324 	i_mmap_lock_write(vma->vm_file->f_mapping);
7325 	for (address = start; address < end; address += PUD_SIZE) {
7326 		ptep = hugetlb_walk(vma, address, sz);
7327 		if (!ptep)
7328 			continue;
7329 		ptl = huge_pte_lock(h, mm, ptep);
7330 		huge_pmd_unshare(mm, vma, address, ptep);
7331 		spin_unlock(ptl);
7332 	}
7333 	flush_hugetlb_tlb_range(vma, start, end);
7334 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7335 	hugetlb_vma_unlock_write(vma);
7336 	/*
7337 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7338 	 * Documentation/mm/mmu_notifier.rst.
7339 	 */
7340 	mmu_notifier_invalidate_range_end(&range);
7341 }
7342 
7343 /*
7344  * This function will unconditionally remove all the shared pmd pgtable entries
7345  * within the specific vma for a hugetlbfs memory range.
7346  */
7347 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7348 {
7349 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7350 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7351 }
7352 
7353 #ifdef CONFIG_CMA
7354 static bool cma_reserve_called __initdata;
7355 
7356 static int __init cmdline_parse_hugetlb_cma(char *p)
7357 {
7358 	int nid, count = 0;
7359 	unsigned long tmp;
7360 	char *s = p;
7361 
7362 	while (*s) {
7363 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7364 			break;
7365 
7366 		if (s[count] == ':') {
7367 			if (tmp >= MAX_NUMNODES)
7368 				break;
7369 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7370 
7371 			s += count + 1;
7372 			tmp = memparse(s, &s);
7373 			hugetlb_cma_size_in_node[nid] = tmp;
7374 			hugetlb_cma_size += tmp;
7375 
7376 			/*
7377 			 * Skip the separator if have one, otherwise
7378 			 * break the parsing.
7379 			 */
7380 			if (*s == ',')
7381 				s++;
7382 			else
7383 				break;
7384 		} else {
7385 			hugetlb_cma_size = memparse(p, &p);
7386 			break;
7387 		}
7388 	}
7389 
7390 	return 0;
7391 }
7392 
7393 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7394 
7395 void __init hugetlb_cma_reserve(int order)
7396 {
7397 	unsigned long size, reserved, per_node;
7398 	bool node_specific_cma_alloc = false;
7399 	int nid;
7400 
7401 	cma_reserve_called = true;
7402 
7403 	if (!hugetlb_cma_size)
7404 		return;
7405 
7406 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7407 		if (hugetlb_cma_size_in_node[nid] == 0)
7408 			continue;
7409 
7410 		if (!node_online(nid)) {
7411 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7412 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7413 			hugetlb_cma_size_in_node[nid] = 0;
7414 			continue;
7415 		}
7416 
7417 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7418 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7419 				nid, (PAGE_SIZE << order) / SZ_1M);
7420 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7421 			hugetlb_cma_size_in_node[nid] = 0;
7422 		} else {
7423 			node_specific_cma_alloc = true;
7424 		}
7425 	}
7426 
7427 	/* Validate the CMA size again in case some invalid nodes specified. */
7428 	if (!hugetlb_cma_size)
7429 		return;
7430 
7431 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7432 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7433 			(PAGE_SIZE << order) / SZ_1M);
7434 		hugetlb_cma_size = 0;
7435 		return;
7436 	}
7437 
7438 	if (!node_specific_cma_alloc) {
7439 		/*
7440 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7441 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7442 		 */
7443 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7444 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7445 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7446 	}
7447 
7448 	reserved = 0;
7449 	for_each_online_node(nid) {
7450 		int res;
7451 		char name[CMA_MAX_NAME];
7452 
7453 		if (node_specific_cma_alloc) {
7454 			if (hugetlb_cma_size_in_node[nid] == 0)
7455 				continue;
7456 
7457 			size = hugetlb_cma_size_in_node[nid];
7458 		} else {
7459 			size = min(per_node, hugetlb_cma_size - reserved);
7460 		}
7461 
7462 		size = round_up(size, PAGE_SIZE << order);
7463 
7464 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7465 		/*
7466 		 * Note that 'order per bit' is based on smallest size that
7467 		 * may be returned to CMA allocator in the case of
7468 		 * huge page demotion.
7469 		 */
7470 		res = cma_declare_contiguous_nid(0, size, 0,
7471 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7472 						 0, false, name,
7473 						 &hugetlb_cma[nid], nid);
7474 		if (res) {
7475 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7476 				res, nid);
7477 			continue;
7478 		}
7479 
7480 		reserved += size;
7481 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7482 			size / SZ_1M, nid);
7483 
7484 		if (reserved >= hugetlb_cma_size)
7485 			break;
7486 	}
7487 
7488 	if (!reserved)
7489 		/*
7490 		 * hugetlb_cma_size is used to determine if allocations from
7491 		 * cma are possible.  Set to zero if no cma regions are set up.
7492 		 */
7493 		hugetlb_cma_size = 0;
7494 }
7495 
7496 static void __init hugetlb_cma_check(void)
7497 {
7498 	if (!hugetlb_cma_size || cma_reserve_called)
7499 		return;
7500 
7501 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7502 }
7503 
7504 #endif /* CONFIG_CMA */
7505