1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 21 #include <asm/page.h> 22 #include <asm/pgtable.h> 23 #include <asm/io.h> 24 25 #include <linux/hugetlb.h> 26 #include "internal.h" 27 28 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 29 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 30 unsigned long hugepages_treat_as_movable; 31 32 static int max_hstate; 33 unsigned int default_hstate_idx; 34 struct hstate hstates[HUGE_MAX_HSTATE]; 35 36 __initdata LIST_HEAD(huge_boot_pages); 37 38 /* for command line parsing */ 39 static struct hstate * __initdata parsed_hstate; 40 static unsigned long __initdata default_hstate_max_huge_pages; 41 static unsigned long __initdata default_hstate_size; 42 43 #define for_each_hstate(h) \ 44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 45 46 /* 47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 48 */ 49 static DEFINE_SPINLOCK(hugetlb_lock); 50 51 /* 52 * Region tracking -- allows tracking of reservations and instantiated pages 53 * across the pages in a mapping. 54 * 55 * The region data structures are protected by a combination of the mmap_sem 56 * and the hugetlb_instantion_mutex. To access or modify a region the caller 57 * must either hold the mmap_sem for write, or the mmap_sem for read and 58 * the hugetlb_instantiation mutex: 59 * 60 * down_write(&mm->mmap_sem); 61 * or 62 * down_read(&mm->mmap_sem); 63 * mutex_lock(&hugetlb_instantiation_mutex); 64 */ 65 struct file_region { 66 struct list_head link; 67 long from; 68 long to; 69 }; 70 71 static long region_add(struct list_head *head, long f, long t) 72 { 73 struct file_region *rg, *nrg, *trg; 74 75 /* Locate the region we are either in or before. */ 76 list_for_each_entry(rg, head, link) 77 if (f <= rg->to) 78 break; 79 80 /* Round our left edge to the current segment if it encloses us. */ 81 if (f > rg->from) 82 f = rg->from; 83 84 /* Check for and consume any regions we now overlap with. */ 85 nrg = rg; 86 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 87 if (&rg->link == head) 88 break; 89 if (rg->from > t) 90 break; 91 92 /* If this area reaches higher then extend our area to 93 * include it completely. If this is not the first area 94 * which we intend to reuse, free it. */ 95 if (rg->to > t) 96 t = rg->to; 97 if (rg != nrg) { 98 list_del(&rg->link); 99 kfree(rg); 100 } 101 } 102 nrg->from = f; 103 nrg->to = t; 104 return 0; 105 } 106 107 static long region_chg(struct list_head *head, long f, long t) 108 { 109 struct file_region *rg, *nrg; 110 long chg = 0; 111 112 /* Locate the region we are before or in. */ 113 list_for_each_entry(rg, head, link) 114 if (f <= rg->to) 115 break; 116 117 /* If we are below the current region then a new region is required. 118 * Subtle, allocate a new region at the position but make it zero 119 * size such that we can guarantee to record the reservation. */ 120 if (&rg->link == head || t < rg->from) { 121 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 122 if (!nrg) 123 return -ENOMEM; 124 nrg->from = f; 125 nrg->to = f; 126 INIT_LIST_HEAD(&nrg->link); 127 list_add(&nrg->link, rg->link.prev); 128 129 return t - f; 130 } 131 132 /* Round our left edge to the current segment if it encloses us. */ 133 if (f > rg->from) 134 f = rg->from; 135 chg = t - f; 136 137 /* Check for and consume any regions we now overlap with. */ 138 list_for_each_entry(rg, rg->link.prev, link) { 139 if (&rg->link == head) 140 break; 141 if (rg->from > t) 142 return chg; 143 144 /* We overlap with this area, if it extends futher than 145 * us then we must extend ourselves. Account for its 146 * existing reservation. */ 147 if (rg->to > t) { 148 chg += rg->to - t; 149 t = rg->to; 150 } 151 chg -= rg->to - rg->from; 152 } 153 return chg; 154 } 155 156 static long region_truncate(struct list_head *head, long end) 157 { 158 struct file_region *rg, *trg; 159 long chg = 0; 160 161 /* Locate the region we are either in or before. */ 162 list_for_each_entry(rg, head, link) 163 if (end <= rg->to) 164 break; 165 if (&rg->link == head) 166 return 0; 167 168 /* If we are in the middle of a region then adjust it. */ 169 if (end > rg->from) { 170 chg = rg->to - end; 171 rg->to = end; 172 rg = list_entry(rg->link.next, typeof(*rg), link); 173 } 174 175 /* Drop any remaining regions. */ 176 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 177 if (&rg->link == head) 178 break; 179 chg += rg->to - rg->from; 180 list_del(&rg->link); 181 kfree(rg); 182 } 183 return chg; 184 } 185 186 static long region_count(struct list_head *head, long f, long t) 187 { 188 struct file_region *rg; 189 long chg = 0; 190 191 /* Locate each segment we overlap with, and count that overlap. */ 192 list_for_each_entry(rg, head, link) { 193 int seg_from; 194 int seg_to; 195 196 if (rg->to <= f) 197 continue; 198 if (rg->from >= t) 199 break; 200 201 seg_from = max(rg->from, f); 202 seg_to = min(rg->to, t); 203 204 chg += seg_to - seg_from; 205 } 206 207 return chg; 208 } 209 210 /* 211 * Convert the address within this vma to the page offset within 212 * the mapping, in pagecache page units; huge pages here. 213 */ 214 static pgoff_t vma_hugecache_offset(struct hstate *h, 215 struct vm_area_struct *vma, unsigned long address) 216 { 217 return ((address - vma->vm_start) >> huge_page_shift(h)) + 218 (vma->vm_pgoff >> huge_page_order(h)); 219 } 220 221 /* 222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 223 * bits of the reservation map pointer, which are always clear due to 224 * alignment. 225 */ 226 #define HPAGE_RESV_OWNER (1UL << 0) 227 #define HPAGE_RESV_UNMAPPED (1UL << 1) 228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 229 230 /* 231 * These helpers are used to track how many pages are reserved for 232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 233 * is guaranteed to have their future faults succeed. 234 * 235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 236 * the reserve counters are updated with the hugetlb_lock held. It is safe 237 * to reset the VMA at fork() time as it is not in use yet and there is no 238 * chance of the global counters getting corrupted as a result of the values. 239 * 240 * The private mapping reservation is represented in a subtly different 241 * manner to a shared mapping. A shared mapping has a region map associated 242 * with the underlying file, this region map represents the backing file 243 * pages which have ever had a reservation assigned which this persists even 244 * after the page is instantiated. A private mapping has a region map 245 * associated with the original mmap which is attached to all VMAs which 246 * reference it, this region map represents those offsets which have consumed 247 * reservation ie. where pages have been instantiated. 248 */ 249 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 250 { 251 return (unsigned long)vma->vm_private_data; 252 } 253 254 static void set_vma_private_data(struct vm_area_struct *vma, 255 unsigned long value) 256 { 257 vma->vm_private_data = (void *)value; 258 } 259 260 struct resv_map { 261 struct kref refs; 262 struct list_head regions; 263 }; 264 265 struct resv_map *resv_map_alloc(void) 266 { 267 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 268 if (!resv_map) 269 return NULL; 270 271 kref_init(&resv_map->refs); 272 INIT_LIST_HEAD(&resv_map->regions); 273 274 return resv_map; 275 } 276 277 void resv_map_release(struct kref *ref) 278 { 279 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 280 281 /* Clear out any active regions before we release the map. */ 282 region_truncate(&resv_map->regions, 0); 283 kfree(resv_map); 284 } 285 286 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 287 { 288 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 289 if (!(vma->vm_flags & VM_SHARED)) 290 return (struct resv_map *)(get_vma_private_data(vma) & 291 ~HPAGE_RESV_MASK); 292 return 0; 293 } 294 295 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 296 { 297 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 298 VM_BUG_ON(vma->vm_flags & VM_SHARED); 299 300 set_vma_private_data(vma, (get_vma_private_data(vma) & 301 HPAGE_RESV_MASK) | (unsigned long)map); 302 } 303 304 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 305 { 306 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 307 VM_BUG_ON(vma->vm_flags & VM_SHARED); 308 309 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 310 } 311 312 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 313 { 314 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 315 316 return (get_vma_private_data(vma) & flag) != 0; 317 } 318 319 /* Decrement the reserved pages in the hugepage pool by one */ 320 static void decrement_hugepage_resv_vma(struct hstate *h, 321 struct vm_area_struct *vma) 322 { 323 if (vma->vm_flags & VM_NORESERVE) 324 return; 325 326 if (vma->vm_flags & VM_SHARED) { 327 /* Shared mappings always use reserves */ 328 h->resv_huge_pages--; 329 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 330 /* 331 * Only the process that called mmap() has reserves for 332 * private mappings. 333 */ 334 h->resv_huge_pages--; 335 } 336 } 337 338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 339 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 340 { 341 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 342 if (!(vma->vm_flags & VM_SHARED)) 343 vma->vm_private_data = (void *)0; 344 } 345 346 /* Returns true if the VMA has associated reserve pages */ 347 static int vma_has_reserves(struct vm_area_struct *vma) 348 { 349 if (vma->vm_flags & VM_SHARED) 350 return 1; 351 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 352 return 1; 353 return 0; 354 } 355 356 static void clear_huge_page(struct page *page, 357 unsigned long addr, unsigned long sz) 358 { 359 int i; 360 361 might_sleep(); 362 for (i = 0; i < sz/PAGE_SIZE; i++) { 363 cond_resched(); 364 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 365 } 366 } 367 368 static void copy_huge_page(struct page *dst, struct page *src, 369 unsigned long addr, struct vm_area_struct *vma) 370 { 371 int i; 372 struct hstate *h = hstate_vma(vma); 373 374 might_sleep(); 375 for (i = 0; i < pages_per_huge_page(h); i++) { 376 cond_resched(); 377 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 378 } 379 } 380 381 static void enqueue_huge_page(struct hstate *h, struct page *page) 382 { 383 int nid = page_to_nid(page); 384 list_add(&page->lru, &h->hugepage_freelists[nid]); 385 h->free_huge_pages++; 386 h->free_huge_pages_node[nid]++; 387 } 388 389 static struct page *dequeue_huge_page(struct hstate *h) 390 { 391 int nid; 392 struct page *page = NULL; 393 394 for (nid = 0; nid < MAX_NUMNODES; ++nid) { 395 if (!list_empty(&h->hugepage_freelists[nid])) { 396 page = list_entry(h->hugepage_freelists[nid].next, 397 struct page, lru); 398 list_del(&page->lru); 399 h->free_huge_pages--; 400 h->free_huge_pages_node[nid]--; 401 break; 402 } 403 } 404 return page; 405 } 406 407 static struct page *dequeue_huge_page_vma(struct hstate *h, 408 struct vm_area_struct *vma, 409 unsigned long address, int avoid_reserve) 410 { 411 int nid; 412 struct page *page = NULL; 413 struct mempolicy *mpol; 414 nodemask_t *nodemask; 415 struct zonelist *zonelist = huge_zonelist(vma, address, 416 htlb_alloc_mask, &mpol, &nodemask); 417 struct zone *zone; 418 struct zoneref *z; 419 420 /* 421 * A child process with MAP_PRIVATE mappings created by their parent 422 * have no page reserves. This check ensures that reservations are 423 * not "stolen". The child may still get SIGKILLed 424 */ 425 if (!vma_has_reserves(vma) && 426 h->free_huge_pages - h->resv_huge_pages == 0) 427 return NULL; 428 429 /* If reserves cannot be used, ensure enough pages are in the pool */ 430 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 431 return NULL; 432 433 for_each_zone_zonelist_nodemask(zone, z, zonelist, 434 MAX_NR_ZONES - 1, nodemask) { 435 nid = zone_to_nid(zone); 436 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 437 !list_empty(&h->hugepage_freelists[nid])) { 438 page = list_entry(h->hugepage_freelists[nid].next, 439 struct page, lru); 440 list_del(&page->lru); 441 h->free_huge_pages--; 442 h->free_huge_pages_node[nid]--; 443 444 if (!avoid_reserve) 445 decrement_hugepage_resv_vma(h, vma); 446 447 break; 448 } 449 } 450 mpol_cond_put(mpol); 451 return page; 452 } 453 454 static void update_and_free_page(struct hstate *h, struct page *page) 455 { 456 int i; 457 458 h->nr_huge_pages--; 459 h->nr_huge_pages_node[page_to_nid(page)]--; 460 for (i = 0; i < pages_per_huge_page(h); i++) { 461 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 462 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 463 1 << PG_private | 1<< PG_writeback); 464 } 465 set_compound_page_dtor(page, NULL); 466 set_page_refcounted(page); 467 arch_release_hugepage(page); 468 __free_pages(page, huge_page_order(h)); 469 } 470 471 struct hstate *size_to_hstate(unsigned long size) 472 { 473 struct hstate *h; 474 475 for_each_hstate(h) { 476 if (huge_page_size(h) == size) 477 return h; 478 } 479 return NULL; 480 } 481 482 static void free_huge_page(struct page *page) 483 { 484 /* 485 * Can't pass hstate in here because it is called from the 486 * compound page destructor. 487 */ 488 struct hstate *h = page_hstate(page); 489 int nid = page_to_nid(page); 490 struct address_space *mapping; 491 492 mapping = (struct address_space *) page_private(page); 493 set_page_private(page, 0); 494 BUG_ON(page_count(page)); 495 INIT_LIST_HEAD(&page->lru); 496 497 spin_lock(&hugetlb_lock); 498 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 499 update_and_free_page(h, page); 500 h->surplus_huge_pages--; 501 h->surplus_huge_pages_node[nid]--; 502 } else { 503 enqueue_huge_page(h, page); 504 } 505 spin_unlock(&hugetlb_lock); 506 if (mapping) 507 hugetlb_put_quota(mapping, 1); 508 } 509 510 /* 511 * Increment or decrement surplus_huge_pages. Keep node-specific counters 512 * balanced by operating on them in a round-robin fashion. 513 * Returns 1 if an adjustment was made. 514 */ 515 static int adjust_pool_surplus(struct hstate *h, int delta) 516 { 517 static int prev_nid; 518 int nid = prev_nid; 519 int ret = 0; 520 521 VM_BUG_ON(delta != -1 && delta != 1); 522 do { 523 nid = next_node(nid, node_online_map); 524 if (nid == MAX_NUMNODES) 525 nid = first_node(node_online_map); 526 527 /* To shrink on this node, there must be a surplus page */ 528 if (delta < 0 && !h->surplus_huge_pages_node[nid]) 529 continue; 530 /* Surplus cannot exceed the total number of pages */ 531 if (delta > 0 && h->surplus_huge_pages_node[nid] >= 532 h->nr_huge_pages_node[nid]) 533 continue; 534 535 h->surplus_huge_pages += delta; 536 h->surplus_huge_pages_node[nid] += delta; 537 ret = 1; 538 break; 539 } while (nid != prev_nid); 540 541 prev_nid = nid; 542 return ret; 543 } 544 545 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 546 { 547 set_compound_page_dtor(page, free_huge_page); 548 spin_lock(&hugetlb_lock); 549 h->nr_huge_pages++; 550 h->nr_huge_pages_node[nid]++; 551 spin_unlock(&hugetlb_lock); 552 put_page(page); /* free it into the hugepage allocator */ 553 } 554 555 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 556 { 557 struct page *page; 558 559 if (h->order >= MAX_ORDER) 560 return NULL; 561 562 page = alloc_pages_node(nid, 563 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 564 __GFP_REPEAT|__GFP_NOWARN, 565 huge_page_order(h)); 566 if (page) { 567 if (arch_prepare_hugepage(page)) { 568 __free_pages(page, huge_page_order(h)); 569 return NULL; 570 } 571 prep_new_huge_page(h, page, nid); 572 } 573 574 return page; 575 } 576 577 /* 578 * Use a helper variable to find the next node and then 579 * copy it back to hugetlb_next_nid afterwards: 580 * otherwise there's a window in which a racer might 581 * pass invalid nid MAX_NUMNODES to alloc_pages_node. 582 * But we don't need to use a spin_lock here: it really 583 * doesn't matter if occasionally a racer chooses the 584 * same nid as we do. Move nid forward in the mask even 585 * if we just successfully allocated a hugepage so that 586 * the next caller gets hugepages on the next node. 587 */ 588 static int hstate_next_node(struct hstate *h) 589 { 590 int next_nid; 591 next_nid = next_node(h->hugetlb_next_nid, node_online_map); 592 if (next_nid == MAX_NUMNODES) 593 next_nid = first_node(node_online_map); 594 h->hugetlb_next_nid = next_nid; 595 return next_nid; 596 } 597 598 static int alloc_fresh_huge_page(struct hstate *h) 599 { 600 struct page *page; 601 int start_nid; 602 int next_nid; 603 int ret = 0; 604 605 start_nid = h->hugetlb_next_nid; 606 607 do { 608 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); 609 if (page) 610 ret = 1; 611 next_nid = hstate_next_node(h); 612 } while (!page && h->hugetlb_next_nid != start_nid); 613 614 if (ret) 615 count_vm_event(HTLB_BUDDY_PGALLOC); 616 else 617 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 618 619 return ret; 620 } 621 622 static struct page *alloc_buddy_huge_page(struct hstate *h, 623 struct vm_area_struct *vma, unsigned long address) 624 { 625 struct page *page; 626 unsigned int nid; 627 628 if (h->order >= MAX_ORDER) 629 return NULL; 630 631 /* 632 * Assume we will successfully allocate the surplus page to 633 * prevent racing processes from causing the surplus to exceed 634 * overcommit 635 * 636 * This however introduces a different race, where a process B 637 * tries to grow the static hugepage pool while alloc_pages() is 638 * called by process A. B will only examine the per-node 639 * counters in determining if surplus huge pages can be 640 * converted to normal huge pages in adjust_pool_surplus(). A 641 * won't be able to increment the per-node counter, until the 642 * lock is dropped by B, but B doesn't drop hugetlb_lock until 643 * no more huge pages can be converted from surplus to normal 644 * state (and doesn't try to convert again). Thus, we have a 645 * case where a surplus huge page exists, the pool is grown, and 646 * the surplus huge page still exists after, even though it 647 * should just have been converted to a normal huge page. This 648 * does not leak memory, though, as the hugepage will be freed 649 * once it is out of use. It also does not allow the counters to 650 * go out of whack in adjust_pool_surplus() as we don't modify 651 * the node values until we've gotten the hugepage and only the 652 * per-node value is checked there. 653 */ 654 spin_lock(&hugetlb_lock); 655 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 656 spin_unlock(&hugetlb_lock); 657 return NULL; 658 } else { 659 h->nr_huge_pages++; 660 h->surplus_huge_pages++; 661 } 662 spin_unlock(&hugetlb_lock); 663 664 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 665 __GFP_REPEAT|__GFP_NOWARN, 666 huge_page_order(h)); 667 668 if (page && arch_prepare_hugepage(page)) { 669 __free_pages(page, huge_page_order(h)); 670 return NULL; 671 } 672 673 spin_lock(&hugetlb_lock); 674 if (page) { 675 /* 676 * This page is now managed by the hugetlb allocator and has 677 * no users -- drop the buddy allocator's reference. 678 */ 679 put_page_testzero(page); 680 VM_BUG_ON(page_count(page)); 681 nid = page_to_nid(page); 682 set_compound_page_dtor(page, free_huge_page); 683 /* 684 * We incremented the global counters already 685 */ 686 h->nr_huge_pages_node[nid]++; 687 h->surplus_huge_pages_node[nid]++; 688 __count_vm_event(HTLB_BUDDY_PGALLOC); 689 } else { 690 h->nr_huge_pages--; 691 h->surplus_huge_pages--; 692 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 693 } 694 spin_unlock(&hugetlb_lock); 695 696 return page; 697 } 698 699 /* 700 * Increase the hugetlb pool such that it can accomodate a reservation 701 * of size 'delta'. 702 */ 703 static int gather_surplus_pages(struct hstate *h, int delta) 704 { 705 struct list_head surplus_list; 706 struct page *page, *tmp; 707 int ret, i; 708 int needed, allocated; 709 710 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 711 if (needed <= 0) { 712 h->resv_huge_pages += delta; 713 return 0; 714 } 715 716 allocated = 0; 717 INIT_LIST_HEAD(&surplus_list); 718 719 ret = -ENOMEM; 720 retry: 721 spin_unlock(&hugetlb_lock); 722 for (i = 0; i < needed; i++) { 723 page = alloc_buddy_huge_page(h, NULL, 0); 724 if (!page) { 725 /* 726 * We were not able to allocate enough pages to 727 * satisfy the entire reservation so we free what 728 * we've allocated so far. 729 */ 730 spin_lock(&hugetlb_lock); 731 needed = 0; 732 goto free; 733 } 734 735 list_add(&page->lru, &surplus_list); 736 } 737 allocated += needed; 738 739 /* 740 * After retaking hugetlb_lock, we need to recalculate 'needed' 741 * because either resv_huge_pages or free_huge_pages may have changed. 742 */ 743 spin_lock(&hugetlb_lock); 744 needed = (h->resv_huge_pages + delta) - 745 (h->free_huge_pages + allocated); 746 if (needed > 0) 747 goto retry; 748 749 /* 750 * The surplus_list now contains _at_least_ the number of extra pages 751 * needed to accomodate the reservation. Add the appropriate number 752 * of pages to the hugetlb pool and free the extras back to the buddy 753 * allocator. Commit the entire reservation here to prevent another 754 * process from stealing the pages as they are added to the pool but 755 * before they are reserved. 756 */ 757 needed += allocated; 758 h->resv_huge_pages += delta; 759 ret = 0; 760 free: 761 /* Free the needed pages to the hugetlb pool */ 762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 763 if ((--needed) < 0) 764 break; 765 list_del(&page->lru); 766 enqueue_huge_page(h, page); 767 } 768 769 /* Free unnecessary surplus pages to the buddy allocator */ 770 if (!list_empty(&surplus_list)) { 771 spin_unlock(&hugetlb_lock); 772 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 773 list_del(&page->lru); 774 /* 775 * The page has a reference count of zero already, so 776 * call free_huge_page directly instead of using 777 * put_page. This must be done with hugetlb_lock 778 * unlocked which is safe because free_huge_page takes 779 * hugetlb_lock before deciding how to free the page. 780 */ 781 free_huge_page(page); 782 } 783 spin_lock(&hugetlb_lock); 784 } 785 786 return ret; 787 } 788 789 /* 790 * When releasing a hugetlb pool reservation, any surplus pages that were 791 * allocated to satisfy the reservation must be explicitly freed if they were 792 * never used. 793 */ 794 static void return_unused_surplus_pages(struct hstate *h, 795 unsigned long unused_resv_pages) 796 { 797 static int nid = -1; 798 struct page *page; 799 unsigned long nr_pages; 800 801 /* 802 * We want to release as many surplus pages as possible, spread 803 * evenly across all nodes. Iterate across all nodes until we 804 * can no longer free unreserved surplus pages. This occurs when 805 * the nodes with surplus pages have no free pages. 806 */ 807 unsigned long remaining_iterations = num_online_nodes(); 808 809 /* Uncommit the reservation */ 810 h->resv_huge_pages -= unused_resv_pages; 811 812 /* Cannot return gigantic pages currently */ 813 if (h->order >= MAX_ORDER) 814 return; 815 816 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 817 818 while (remaining_iterations-- && nr_pages) { 819 nid = next_node(nid, node_online_map); 820 if (nid == MAX_NUMNODES) 821 nid = first_node(node_online_map); 822 823 if (!h->surplus_huge_pages_node[nid]) 824 continue; 825 826 if (!list_empty(&h->hugepage_freelists[nid])) { 827 page = list_entry(h->hugepage_freelists[nid].next, 828 struct page, lru); 829 list_del(&page->lru); 830 update_and_free_page(h, page); 831 h->free_huge_pages--; 832 h->free_huge_pages_node[nid]--; 833 h->surplus_huge_pages--; 834 h->surplus_huge_pages_node[nid]--; 835 nr_pages--; 836 remaining_iterations = num_online_nodes(); 837 } 838 } 839 } 840 841 /* 842 * Determine if the huge page at addr within the vma has an associated 843 * reservation. Where it does not we will need to logically increase 844 * reservation and actually increase quota before an allocation can occur. 845 * Where any new reservation would be required the reservation change is 846 * prepared, but not committed. Once the page has been quota'd allocated 847 * an instantiated the change should be committed via vma_commit_reservation. 848 * No action is required on failure. 849 */ 850 static int vma_needs_reservation(struct hstate *h, 851 struct vm_area_struct *vma, unsigned long addr) 852 { 853 struct address_space *mapping = vma->vm_file->f_mapping; 854 struct inode *inode = mapping->host; 855 856 if (vma->vm_flags & VM_SHARED) { 857 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 858 return region_chg(&inode->i_mapping->private_list, 859 idx, idx + 1); 860 861 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 862 return 1; 863 864 } else { 865 int err; 866 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 867 struct resv_map *reservations = vma_resv_map(vma); 868 869 err = region_chg(&reservations->regions, idx, idx + 1); 870 if (err < 0) 871 return err; 872 return 0; 873 } 874 } 875 static void vma_commit_reservation(struct hstate *h, 876 struct vm_area_struct *vma, unsigned long addr) 877 { 878 struct address_space *mapping = vma->vm_file->f_mapping; 879 struct inode *inode = mapping->host; 880 881 if (vma->vm_flags & VM_SHARED) { 882 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 883 region_add(&inode->i_mapping->private_list, idx, idx + 1); 884 885 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 886 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 887 struct resv_map *reservations = vma_resv_map(vma); 888 889 /* Mark this page used in the map. */ 890 region_add(&reservations->regions, idx, idx + 1); 891 } 892 } 893 894 static struct page *alloc_huge_page(struct vm_area_struct *vma, 895 unsigned long addr, int avoid_reserve) 896 { 897 struct hstate *h = hstate_vma(vma); 898 struct page *page; 899 struct address_space *mapping = vma->vm_file->f_mapping; 900 struct inode *inode = mapping->host; 901 unsigned int chg; 902 903 /* 904 * Processes that did not create the mapping will have no reserves and 905 * will not have accounted against quota. Check that the quota can be 906 * made before satisfying the allocation 907 * MAP_NORESERVE mappings may also need pages and quota allocated 908 * if no reserve mapping overlaps. 909 */ 910 chg = vma_needs_reservation(h, vma, addr); 911 if (chg < 0) 912 return ERR_PTR(chg); 913 if (chg) 914 if (hugetlb_get_quota(inode->i_mapping, chg)) 915 return ERR_PTR(-ENOSPC); 916 917 spin_lock(&hugetlb_lock); 918 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 919 spin_unlock(&hugetlb_lock); 920 921 if (!page) { 922 page = alloc_buddy_huge_page(h, vma, addr); 923 if (!page) { 924 hugetlb_put_quota(inode->i_mapping, chg); 925 return ERR_PTR(-VM_FAULT_OOM); 926 } 927 } 928 929 set_page_refcounted(page); 930 set_page_private(page, (unsigned long) mapping); 931 932 vma_commit_reservation(h, vma, addr); 933 934 return page; 935 } 936 937 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) 938 { 939 struct huge_bootmem_page *m; 940 int nr_nodes = nodes_weight(node_online_map); 941 942 while (nr_nodes) { 943 void *addr; 944 945 addr = __alloc_bootmem_node_nopanic( 946 NODE_DATA(h->hugetlb_next_nid), 947 huge_page_size(h), huge_page_size(h), 0); 948 949 if (addr) { 950 /* 951 * Use the beginning of the huge page to store the 952 * huge_bootmem_page struct (until gather_bootmem 953 * puts them into the mem_map). 954 */ 955 m = addr; 956 if (m) 957 goto found; 958 } 959 hstate_next_node(h); 960 nr_nodes--; 961 } 962 return 0; 963 964 found: 965 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 966 /* Put them into a private list first because mem_map is not up yet */ 967 list_add(&m->list, &huge_boot_pages); 968 m->hstate = h; 969 return 1; 970 } 971 972 /* Put bootmem huge pages into the standard lists after mem_map is up */ 973 static void __init gather_bootmem_prealloc(void) 974 { 975 struct huge_bootmem_page *m; 976 977 list_for_each_entry(m, &huge_boot_pages, list) { 978 struct page *page = virt_to_page(m); 979 struct hstate *h = m->hstate; 980 __ClearPageReserved(page); 981 WARN_ON(page_count(page) != 1); 982 prep_compound_page(page, h->order); 983 prep_new_huge_page(h, page, page_to_nid(page)); 984 } 985 } 986 987 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 988 { 989 unsigned long i; 990 991 for (i = 0; i < h->max_huge_pages; ++i) { 992 if (h->order >= MAX_ORDER) { 993 if (!alloc_bootmem_huge_page(h)) 994 break; 995 } else if (!alloc_fresh_huge_page(h)) 996 break; 997 } 998 h->max_huge_pages = i; 999 } 1000 1001 static void __init hugetlb_init_hstates(void) 1002 { 1003 struct hstate *h; 1004 1005 for_each_hstate(h) { 1006 /* oversize hugepages were init'ed in early boot */ 1007 if (h->order < MAX_ORDER) 1008 hugetlb_hstate_alloc_pages(h); 1009 } 1010 } 1011 1012 static char * __init memfmt(char *buf, unsigned long n) 1013 { 1014 if (n >= (1UL << 30)) 1015 sprintf(buf, "%lu GB", n >> 30); 1016 else if (n >= (1UL << 20)) 1017 sprintf(buf, "%lu MB", n >> 20); 1018 else 1019 sprintf(buf, "%lu KB", n >> 10); 1020 return buf; 1021 } 1022 1023 static void __init report_hugepages(void) 1024 { 1025 struct hstate *h; 1026 1027 for_each_hstate(h) { 1028 char buf[32]; 1029 printk(KERN_INFO "HugeTLB registered %s page size, " 1030 "pre-allocated %ld pages\n", 1031 memfmt(buf, huge_page_size(h)), 1032 h->free_huge_pages); 1033 } 1034 } 1035 1036 #ifdef CONFIG_HIGHMEM 1037 static void try_to_free_low(struct hstate *h, unsigned long count) 1038 { 1039 int i; 1040 1041 if (h->order >= MAX_ORDER) 1042 return; 1043 1044 for (i = 0; i < MAX_NUMNODES; ++i) { 1045 struct page *page, *next; 1046 struct list_head *freel = &h->hugepage_freelists[i]; 1047 list_for_each_entry_safe(page, next, freel, lru) { 1048 if (count >= h->nr_huge_pages) 1049 return; 1050 if (PageHighMem(page)) 1051 continue; 1052 list_del(&page->lru); 1053 update_and_free_page(h, page); 1054 h->free_huge_pages--; 1055 h->free_huge_pages_node[page_to_nid(page)]--; 1056 } 1057 } 1058 } 1059 #else 1060 static inline void try_to_free_low(struct hstate *h, unsigned long count) 1061 { 1062 } 1063 #endif 1064 1065 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1066 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) 1067 { 1068 unsigned long min_count, ret; 1069 1070 if (h->order >= MAX_ORDER) 1071 return h->max_huge_pages; 1072 1073 /* 1074 * Increase the pool size 1075 * First take pages out of surplus state. Then make up the 1076 * remaining difference by allocating fresh huge pages. 1077 * 1078 * We might race with alloc_buddy_huge_page() here and be unable 1079 * to convert a surplus huge page to a normal huge page. That is 1080 * not critical, though, it just means the overall size of the 1081 * pool might be one hugepage larger than it needs to be, but 1082 * within all the constraints specified by the sysctls. 1083 */ 1084 spin_lock(&hugetlb_lock); 1085 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1086 if (!adjust_pool_surplus(h, -1)) 1087 break; 1088 } 1089 1090 while (count > persistent_huge_pages(h)) { 1091 /* 1092 * If this allocation races such that we no longer need the 1093 * page, free_huge_page will handle it by freeing the page 1094 * and reducing the surplus. 1095 */ 1096 spin_unlock(&hugetlb_lock); 1097 ret = alloc_fresh_huge_page(h); 1098 spin_lock(&hugetlb_lock); 1099 if (!ret) 1100 goto out; 1101 1102 } 1103 1104 /* 1105 * Decrease the pool size 1106 * First return free pages to the buddy allocator (being careful 1107 * to keep enough around to satisfy reservations). Then place 1108 * pages into surplus state as needed so the pool will shrink 1109 * to the desired size as pages become free. 1110 * 1111 * By placing pages into the surplus state independent of the 1112 * overcommit value, we are allowing the surplus pool size to 1113 * exceed overcommit. There are few sane options here. Since 1114 * alloc_buddy_huge_page() is checking the global counter, 1115 * though, we'll note that we're not allowed to exceed surplus 1116 * and won't grow the pool anywhere else. Not until one of the 1117 * sysctls are changed, or the surplus pages go out of use. 1118 */ 1119 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1120 min_count = max(count, min_count); 1121 try_to_free_low(h, min_count); 1122 while (min_count < persistent_huge_pages(h)) { 1123 struct page *page = dequeue_huge_page(h); 1124 if (!page) 1125 break; 1126 update_and_free_page(h, page); 1127 } 1128 while (count < persistent_huge_pages(h)) { 1129 if (!adjust_pool_surplus(h, 1)) 1130 break; 1131 } 1132 out: 1133 ret = persistent_huge_pages(h); 1134 spin_unlock(&hugetlb_lock); 1135 return ret; 1136 } 1137 1138 #define HSTATE_ATTR_RO(_name) \ 1139 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1140 1141 #define HSTATE_ATTR(_name) \ 1142 static struct kobj_attribute _name##_attr = \ 1143 __ATTR(_name, 0644, _name##_show, _name##_store) 1144 1145 static struct kobject *hugepages_kobj; 1146 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1147 1148 static struct hstate *kobj_to_hstate(struct kobject *kobj) 1149 { 1150 int i; 1151 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1152 if (hstate_kobjs[i] == kobj) 1153 return &hstates[i]; 1154 BUG(); 1155 return NULL; 1156 } 1157 1158 static ssize_t nr_hugepages_show(struct kobject *kobj, 1159 struct kobj_attribute *attr, char *buf) 1160 { 1161 struct hstate *h = kobj_to_hstate(kobj); 1162 return sprintf(buf, "%lu\n", h->nr_huge_pages); 1163 } 1164 static ssize_t nr_hugepages_store(struct kobject *kobj, 1165 struct kobj_attribute *attr, const char *buf, size_t count) 1166 { 1167 int err; 1168 unsigned long input; 1169 struct hstate *h = kobj_to_hstate(kobj); 1170 1171 err = strict_strtoul(buf, 10, &input); 1172 if (err) 1173 return 0; 1174 1175 h->max_huge_pages = set_max_huge_pages(h, input); 1176 1177 return count; 1178 } 1179 HSTATE_ATTR(nr_hugepages); 1180 1181 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1182 struct kobj_attribute *attr, char *buf) 1183 { 1184 struct hstate *h = kobj_to_hstate(kobj); 1185 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1186 } 1187 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1188 struct kobj_attribute *attr, const char *buf, size_t count) 1189 { 1190 int err; 1191 unsigned long input; 1192 struct hstate *h = kobj_to_hstate(kobj); 1193 1194 err = strict_strtoul(buf, 10, &input); 1195 if (err) 1196 return 0; 1197 1198 spin_lock(&hugetlb_lock); 1199 h->nr_overcommit_huge_pages = input; 1200 spin_unlock(&hugetlb_lock); 1201 1202 return count; 1203 } 1204 HSTATE_ATTR(nr_overcommit_hugepages); 1205 1206 static ssize_t free_hugepages_show(struct kobject *kobj, 1207 struct kobj_attribute *attr, char *buf) 1208 { 1209 struct hstate *h = kobj_to_hstate(kobj); 1210 return sprintf(buf, "%lu\n", h->free_huge_pages); 1211 } 1212 HSTATE_ATTR_RO(free_hugepages); 1213 1214 static ssize_t resv_hugepages_show(struct kobject *kobj, 1215 struct kobj_attribute *attr, char *buf) 1216 { 1217 struct hstate *h = kobj_to_hstate(kobj); 1218 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1219 } 1220 HSTATE_ATTR_RO(resv_hugepages); 1221 1222 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1223 struct kobj_attribute *attr, char *buf) 1224 { 1225 struct hstate *h = kobj_to_hstate(kobj); 1226 return sprintf(buf, "%lu\n", h->surplus_huge_pages); 1227 } 1228 HSTATE_ATTR_RO(surplus_hugepages); 1229 1230 static struct attribute *hstate_attrs[] = { 1231 &nr_hugepages_attr.attr, 1232 &nr_overcommit_hugepages_attr.attr, 1233 &free_hugepages_attr.attr, 1234 &resv_hugepages_attr.attr, 1235 &surplus_hugepages_attr.attr, 1236 NULL, 1237 }; 1238 1239 static struct attribute_group hstate_attr_group = { 1240 .attrs = hstate_attrs, 1241 }; 1242 1243 static int __init hugetlb_sysfs_add_hstate(struct hstate *h) 1244 { 1245 int retval; 1246 1247 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, 1248 hugepages_kobj); 1249 if (!hstate_kobjs[h - hstates]) 1250 return -ENOMEM; 1251 1252 retval = sysfs_create_group(hstate_kobjs[h - hstates], 1253 &hstate_attr_group); 1254 if (retval) 1255 kobject_put(hstate_kobjs[h - hstates]); 1256 1257 return retval; 1258 } 1259 1260 static void __init hugetlb_sysfs_init(void) 1261 { 1262 struct hstate *h; 1263 int err; 1264 1265 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1266 if (!hugepages_kobj) 1267 return; 1268 1269 for_each_hstate(h) { 1270 err = hugetlb_sysfs_add_hstate(h); 1271 if (err) 1272 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1273 h->name); 1274 } 1275 } 1276 1277 static void __exit hugetlb_exit(void) 1278 { 1279 struct hstate *h; 1280 1281 for_each_hstate(h) { 1282 kobject_put(hstate_kobjs[h - hstates]); 1283 } 1284 1285 kobject_put(hugepages_kobj); 1286 } 1287 module_exit(hugetlb_exit); 1288 1289 static int __init hugetlb_init(void) 1290 { 1291 /* Some platform decide whether they support huge pages at boot 1292 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1293 * there is no such support 1294 */ 1295 if (HPAGE_SHIFT == 0) 1296 return 0; 1297 1298 if (!size_to_hstate(default_hstate_size)) { 1299 default_hstate_size = HPAGE_SIZE; 1300 if (!size_to_hstate(default_hstate_size)) 1301 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1302 } 1303 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1304 if (default_hstate_max_huge_pages) 1305 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1306 1307 hugetlb_init_hstates(); 1308 1309 gather_bootmem_prealloc(); 1310 1311 report_hugepages(); 1312 1313 hugetlb_sysfs_init(); 1314 1315 return 0; 1316 } 1317 module_init(hugetlb_init); 1318 1319 /* Should be called on processing a hugepagesz=... option */ 1320 void __init hugetlb_add_hstate(unsigned order) 1321 { 1322 struct hstate *h; 1323 unsigned long i; 1324 1325 if (size_to_hstate(PAGE_SIZE << order)) { 1326 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1327 return; 1328 } 1329 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1330 BUG_ON(order == 0); 1331 h = &hstates[max_hstate++]; 1332 h->order = order; 1333 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1334 h->nr_huge_pages = 0; 1335 h->free_huge_pages = 0; 1336 for (i = 0; i < MAX_NUMNODES; ++i) 1337 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1338 h->hugetlb_next_nid = first_node(node_online_map); 1339 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1340 huge_page_size(h)/1024); 1341 1342 parsed_hstate = h; 1343 } 1344 1345 static int __init hugetlb_nrpages_setup(char *s) 1346 { 1347 unsigned long *mhp; 1348 static unsigned long *last_mhp; 1349 1350 /* 1351 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1352 * so this hugepages= parameter goes to the "default hstate". 1353 */ 1354 if (!max_hstate) 1355 mhp = &default_hstate_max_huge_pages; 1356 else 1357 mhp = &parsed_hstate->max_huge_pages; 1358 1359 if (mhp == last_mhp) { 1360 printk(KERN_WARNING "hugepages= specified twice without " 1361 "interleaving hugepagesz=, ignoring\n"); 1362 return 1; 1363 } 1364 1365 if (sscanf(s, "%lu", mhp) <= 0) 1366 *mhp = 0; 1367 1368 /* 1369 * Global state is always initialized later in hugetlb_init. 1370 * But we need to allocate >= MAX_ORDER hstates here early to still 1371 * use the bootmem allocator. 1372 */ 1373 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1374 hugetlb_hstate_alloc_pages(parsed_hstate); 1375 1376 last_mhp = mhp; 1377 1378 return 1; 1379 } 1380 __setup("hugepages=", hugetlb_nrpages_setup); 1381 1382 static int __init hugetlb_default_setup(char *s) 1383 { 1384 default_hstate_size = memparse(s, &s); 1385 return 1; 1386 } 1387 __setup("default_hugepagesz=", hugetlb_default_setup); 1388 1389 static unsigned int cpuset_mems_nr(unsigned int *array) 1390 { 1391 int node; 1392 unsigned int nr = 0; 1393 1394 for_each_node_mask(node, cpuset_current_mems_allowed) 1395 nr += array[node]; 1396 1397 return nr; 1398 } 1399 1400 #ifdef CONFIG_SYSCTL 1401 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1402 struct file *file, void __user *buffer, 1403 size_t *length, loff_t *ppos) 1404 { 1405 struct hstate *h = &default_hstate; 1406 unsigned long tmp; 1407 1408 if (!write) 1409 tmp = h->max_huge_pages; 1410 1411 table->data = &tmp; 1412 table->maxlen = sizeof(unsigned long); 1413 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1414 1415 if (write) 1416 h->max_huge_pages = set_max_huge_pages(h, tmp); 1417 1418 return 0; 1419 } 1420 1421 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1422 struct file *file, void __user *buffer, 1423 size_t *length, loff_t *ppos) 1424 { 1425 proc_dointvec(table, write, file, buffer, length, ppos); 1426 if (hugepages_treat_as_movable) 1427 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1428 else 1429 htlb_alloc_mask = GFP_HIGHUSER; 1430 return 0; 1431 } 1432 1433 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1434 struct file *file, void __user *buffer, 1435 size_t *length, loff_t *ppos) 1436 { 1437 struct hstate *h = &default_hstate; 1438 unsigned long tmp; 1439 1440 if (!write) 1441 tmp = h->nr_overcommit_huge_pages; 1442 1443 table->data = &tmp; 1444 table->maxlen = sizeof(unsigned long); 1445 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1446 1447 if (write) { 1448 spin_lock(&hugetlb_lock); 1449 h->nr_overcommit_huge_pages = tmp; 1450 spin_unlock(&hugetlb_lock); 1451 } 1452 1453 return 0; 1454 } 1455 1456 #endif /* CONFIG_SYSCTL */ 1457 1458 int hugetlb_report_meminfo(char *buf) 1459 { 1460 struct hstate *h = &default_hstate; 1461 return sprintf(buf, 1462 "HugePages_Total: %5lu\n" 1463 "HugePages_Free: %5lu\n" 1464 "HugePages_Rsvd: %5lu\n" 1465 "HugePages_Surp: %5lu\n" 1466 "Hugepagesize: %5lu kB\n", 1467 h->nr_huge_pages, 1468 h->free_huge_pages, 1469 h->resv_huge_pages, 1470 h->surplus_huge_pages, 1471 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1472 } 1473 1474 int hugetlb_report_node_meminfo(int nid, char *buf) 1475 { 1476 struct hstate *h = &default_hstate; 1477 return sprintf(buf, 1478 "Node %d HugePages_Total: %5u\n" 1479 "Node %d HugePages_Free: %5u\n" 1480 "Node %d HugePages_Surp: %5u\n", 1481 nid, h->nr_huge_pages_node[nid], 1482 nid, h->free_huge_pages_node[nid], 1483 nid, h->surplus_huge_pages_node[nid]); 1484 } 1485 1486 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1487 unsigned long hugetlb_total_pages(void) 1488 { 1489 struct hstate *h = &default_hstate; 1490 return h->nr_huge_pages * pages_per_huge_page(h); 1491 } 1492 1493 static int hugetlb_acct_memory(struct hstate *h, long delta) 1494 { 1495 int ret = -ENOMEM; 1496 1497 spin_lock(&hugetlb_lock); 1498 /* 1499 * When cpuset is configured, it breaks the strict hugetlb page 1500 * reservation as the accounting is done on a global variable. Such 1501 * reservation is completely rubbish in the presence of cpuset because 1502 * the reservation is not checked against page availability for the 1503 * current cpuset. Application can still potentially OOM'ed by kernel 1504 * with lack of free htlb page in cpuset that the task is in. 1505 * Attempt to enforce strict accounting with cpuset is almost 1506 * impossible (or too ugly) because cpuset is too fluid that 1507 * task or memory node can be dynamically moved between cpusets. 1508 * 1509 * The change of semantics for shared hugetlb mapping with cpuset is 1510 * undesirable. However, in order to preserve some of the semantics, 1511 * we fall back to check against current free page availability as 1512 * a best attempt and hopefully to minimize the impact of changing 1513 * semantics that cpuset has. 1514 */ 1515 if (delta > 0) { 1516 if (gather_surplus_pages(h, delta) < 0) 1517 goto out; 1518 1519 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 1520 return_unused_surplus_pages(h, delta); 1521 goto out; 1522 } 1523 } 1524 1525 ret = 0; 1526 if (delta < 0) 1527 return_unused_surplus_pages(h, (unsigned long) -delta); 1528 1529 out: 1530 spin_unlock(&hugetlb_lock); 1531 return ret; 1532 } 1533 1534 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 1535 { 1536 struct resv_map *reservations = vma_resv_map(vma); 1537 1538 /* 1539 * This new VMA should share its siblings reservation map if present. 1540 * The VMA will only ever have a valid reservation map pointer where 1541 * it is being copied for another still existing VMA. As that VMA 1542 * has a reference to the reservation map it cannot dissappear until 1543 * after this open call completes. It is therefore safe to take a 1544 * new reference here without additional locking. 1545 */ 1546 if (reservations) 1547 kref_get(&reservations->refs); 1548 } 1549 1550 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 1551 { 1552 struct hstate *h = hstate_vma(vma); 1553 struct resv_map *reservations = vma_resv_map(vma); 1554 unsigned long reserve; 1555 unsigned long start; 1556 unsigned long end; 1557 1558 if (reservations) { 1559 start = vma_hugecache_offset(h, vma, vma->vm_start); 1560 end = vma_hugecache_offset(h, vma, vma->vm_end); 1561 1562 reserve = (end - start) - 1563 region_count(&reservations->regions, start, end); 1564 1565 kref_put(&reservations->refs, resv_map_release); 1566 1567 if (reserve) { 1568 hugetlb_acct_memory(h, -reserve); 1569 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 1570 } 1571 } 1572 } 1573 1574 /* 1575 * We cannot handle pagefaults against hugetlb pages at all. They cause 1576 * handle_mm_fault() to try to instantiate regular-sized pages in the 1577 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 1578 * this far. 1579 */ 1580 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1581 { 1582 BUG(); 1583 return 0; 1584 } 1585 1586 struct vm_operations_struct hugetlb_vm_ops = { 1587 .fault = hugetlb_vm_op_fault, 1588 .open = hugetlb_vm_op_open, 1589 .close = hugetlb_vm_op_close, 1590 }; 1591 1592 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 1593 int writable) 1594 { 1595 pte_t entry; 1596 1597 if (writable) { 1598 entry = 1599 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 1600 } else { 1601 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 1602 } 1603 entry = pte_mkyoung(entry); 1604 entry = pte_mkhuge(entry); 1605 1606 return entry; 1607 } 1608 1609 static void set_huge_ptep_writable(struct vm_area_struct *vma, 1610 unsigned long address, pte_t *ptep) 1611 { 1612 pte_t entry; 1613 1614 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 1615 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 1616 update_mmu_cache(vma, address, entry); 1617 } 1618 } 1619 1620 1621 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 1622 struct vm_area_struct *vma) 1623 { 1624 pte_t *src_pte, *dst_pte, entry; 1625 struct page *ptepage; 1626 unsigned long addr; 1627 int cow; 1628 struct hstate *h = hstate_vma(vma); 1629 unsigned long sz = huge_page_size(h); 1630 1631 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1632 1633 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 1634 src_pte = huge_pte_offset(src, addr); 1635 if (!src_pte) 1636 continue; 1637 dst_pte = huge_pte_alloc(dst, addr, sz); 1638 if (!dst_pte) 1639 goto nomem; 1640 1641 /* If the pagetables are shared don't copy or take references */ 1642 if (dst_pte == src_pte) 1643 continue; 1644 1645 spin_lock(&dst->page_table_lock); 1646 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 1647 if (!huge_pte_none(huge_ptep_get(src_pte))) { 1648 if (cow) 1649 huge_ptep_set_wrprotect(src, addr, src_pte); 1650 entry = huge_ptep_get(src_pte); 1651 ptepage = pte_page(entry); 1652 get_page(ptepage); 1653 set_huge_pte_at(dst, addr, dst_pte, entry); 1654 } 1655 spin_unlock(&src->page_table_lock); 1656 spin_unlock(&dst->page_table_lock); 1657 } 1658 return 0; 1659 1660 nomem: 1661 return -ENOMEM; 1662 } 1663 1664 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1665 unsigned long end, struct page *ref_page) 1666 { 1667 struct mm_struct *mm = vma->vm_mm; 1668 unsigned long address; 1669 pte_t *ptep; 1670 pte_t pte; 1671 struct page *page; 1672 struct page *tmp; 1673 struct hstate *h = hstate_vma(vma); 1674 unsigned long sz = huge_page_size(h); 1675 1676 /* 1677 * A page gathering list, protected by per file i_mmap_lock. The 1678 * lock is used to avoid list corruption from multiple unmapping 1679 * of the same page since we are using page->lru. 1680 */ 1681 LIST_HEAD(page_list); 1682 1683 WARN_ON(!is_vm_hugetlb_page(vma)); 1684 BUG_ON(start & ~huge_page_mask(h)); 1685 BUG_ON(end & ~huge_page_mask(h)); 1686 1687 mmu_notifier_invalidate_range_start(mm, start, end); 1688 spin_lock(&mm->page_table_lock); 1689 for (address = start; address < end; address += sz) { 1690 ptep = huge_pte_offset(mm, address); 1691 if (!ptep) 1692 continue; 1693 1694 if (huge_pmd_unshare(mm, &address, ptep)) 1695 continue; 1696 1697 /* 1698 * If a reference page is supplied, it is because a specific 1699 * page is being unmapped, not a range. Ensure the page we 1700 * are about to unmap is the actual page of interest. 1701 */ 1702 if (ref_page) { 1703 pte = huge_ptep_get(ptep); 1704 if (huge_pte_none(pte)) 1705 continue; 1706 page = pte_page(pte); 1707 if (page != ref_page) 1708 continue; 1709 1710 /* 1711 * Mark the VMA as having unmapped its page so that 1712 * future faults in this VMA will fail rather than 1713 * looking like data was lost 1714 */ 1715 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 1716 } 1717 1718 pte = huge_ptep_get_and_clear(mm, address, ptep); 1719 if (huge_pte_none(pte)) 1720 continue; 1721 1722 page = pte_page(pte); 1723 if (pte_dirty(pte)) 1724 set_page_dirty(page); 1725 list_add(&page->lru, &page_list); 1726 } 1727 spin_unlock(&mm->page_table_lock); 1728 flush_tlb_range(vma, start, end); 1729 mmu_notifier_invalidate_range_end(mm, start, end); 1730 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1731 list_del(&page->lru); 1732 put_page(page); 1733 } 1734 } 1735 1736 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1737 unsigned long end, struct page *ref_page) 1738 { 1739 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 1740 __unmap_hugepage_range(vma, start, end, ref_page); 1741 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 1742 } 1743 1744 /* 1745 * This is called when the original mapper is failing to COW a MAP_PRIVATE 1746 * mappping it owns the reserve page for. The intention is to unmap the page 1747 * from other VMAs and let the children be SIGKILLed if they are faulting the 1748 * same region. 1749 */ 1750 int unmap_ref_private(struct mm_struct *mm, 1751 struct vm_area_struct *vma, 1752 struct page *page, 1753 unsigned long address) 1754 { 1755 struct vm_area_struct *iter_vma; 1756 struct address_space *mapping; 1757 struct prio_tree_iter iter; 1758 pgoff_t pgoff; 1759 1760 /* 1761 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 1762 * from page cache lookup which is in HPAGE_SIZE units. 1763 */ 1764 address = address & huge_page_mask(hstate_vma(vma)); 1765 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 1766 + (vma->vm_pgoff >> PAGE_SHIFT); 1767 mapping = (struct address_space *)page_private(page); 1768 1769 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1770 /* Do not unmap the current VMA */ 1771 if (iter_vma == vma) 1772 continue; 1773 1774 /* 1775 * Unmap the page from other VMAs without their own reserves. 1776 * They get marked to be SIGKILLed if they fault in these 1777 * areas. This is because a future no-page fault on this VMA 1778 * could insert a zeroed page instead of the data existing 1779 * from the time of fork. This would look like data corruption 1780 */ 1781 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 1782 unmap_hugepage_range(iter_vma, 1783 address, address + HPAGE_SIZE, 1784 page); 1785 } 1786 1787 return 1; 1788 } 1789 1790 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 1791 unsigned long address, pte_t *ptep, pte_t pte, 1792 struct page *pagecache_page) 1793 { 1794 struct hstate *h = hstate_vma(vma); 1795 struct page *old_page, *new_page; 1796 int avoidcopy; 1797 int outside_reserve = 0; 1798 1799 old_page = pte_page(pte); 1800 1801 retry_avoidcopy: 1802 /* If no-one else is actually using this page, avoid the copy 1803 * and just make the page writable */ 1804 avoidcopy = (page_count(old_page) == 1); 1805 if (avoidcopy) { 1806 set_huge_ptep_writable(vma, address, ptep); 1807 return 0; 1808 } 1809 1810 /* 1811 * If the process that created a MAP_PRIVATE mapping is about to 1812 * perform a COW due to a shared page count, attempt to satisfy 1813 * the allocation without using the existing reserves. The pagecache 1814 * page is used to determine if the reserve at this address was 1815 * consumed or not. If reserves were used, a partial faulted mapping 1816 * at the time of fork() could consume its reserves on COW instead 1817 * of the full address range. 1818 */ 1819 if (!(vma->vm_flags & VM_SHARED) && 1820 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 1821 old_page != pagecache_page) 1822 outside_reserve = 1; 1823 1824 page_cache_get(old_page); 1825 new_page = alloc_huge_page(vma, address, outside_reserve); 1826 1827 if (IS_ERR(new_page)) { 1828 page_cache_release(old_page); 1829 1830 /* 1831 * If a process owning a MAP_PRIVATE mapping fails to COW, 1832 * it is due to references held by a child and an insufficient 1833 * huge page pool. To guarantee the original mappers 1834 * reliability, unmap the page from child processes. The child 1835 * may get SIGKILLed if it later faults. 1836 */ 1837 if (outside_reserve) { 1838 BUG_ON(huge_pte_none(pte)); 1839 if (unmap_ref_private(mm, vma, old_page, address)) { 1840 BUG_ON(page_count(old_page) != 1); 1841 BUG_ON(huge_pte_none(pte)); 1842 goto retry_avoidcopy; 1843 } 1844 WARN_ON_ONCE(1); 1845 } 1846 1847 return -PTR_ERR(new_page); 1848 } 1849 1850 spin_unlock(&mm->page_table_lock); 1851 copy_huge_page(new_page, old_page, address, vma); 1852 __SetPageUptodate(new_page); 1853 spin_lock(&mm->page_table_lock); 1854 1855 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 1856 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 1857 /* Break COW */ 1858 huge_ptep_clear_flush(vma, address, ptep); 1859 set_huge_pte_at(mm, address, ptep, 1860 make_huge_pte(vma, new_page, 1)); 1861 /* Make the old page be freed below */ 1862 new_page = old_page; 1863 } 1864 page_cache_release(new_page); 1865 page_cache_release(old_page); 1866 return 0; 1867 } 1868 1869 /* Return the pagecache page at a given address within a VMA */ 1870 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 1871 struct vm_area_struct *vma, unsigned long address) 1872 { 1873 struct address_space *mapping; 1874 pgoff_t idx; 1875 1876 mapping = vma->vm_file->f_mapping; 1877 idx = vma_hugecache_offset(h, vma, address); 1878 1879 return find_lock_page(mapping, idx); 1880 } 1881 1882 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1883 unsigned long address, pte_t *ptep, int write_access) 1884 { 1885 struct hstate *h = hstate_vma(vma); 1886 int ret = VM_FAULT_SIGBUS; 1887 pgoff_t idx; 1888 unsigned long size; 1889 struct page *page; 1890 struct address_space *mapping; 1891 pte_t new_pte; 1892 1893 /* 1894 * Currently, we are forced to kill the process in the event the 1895 * original mapper has unmapped pages from the child due to a failed 1896 * COW. Warn that such a situation has occured as it may not be obvious 1897 */ 1898 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 1899 printk(KERN_WARNING 1900 "PID %d killed due to inadequate hugepage pool\n", 1901 current->pid); 1902 return ret; 1903 } 1904 1905 mapping = vma->vm_file->f_mapping; 1906 idx = vma_hugecache_offset(h, vma, address); 1907 1908 /* 1909 * Use page lock to guard against racing truncation 1910 * before we get page_table_lock. 1911 */ 1912 retry: 1913 page = find_lock_page(mapping, idx); 1914 if (!page) { 1915 size = i_size_read(mapping->host) >> huge_page_shift(h); 1916 if (idx >= size) 1917 goto out; 1918 page = alloc_huge_page(vma, address, 0); 1919 if (IS_ERR(page)) { 1920 ret = -PTR_ERR(page); 1921 goto out; 1922 } 1923 clear_huge_page(page, address, huge_page_size(h)); 1924 __SetPageUptodate(page); 1925 1926 if (vma->vm_flags & VM_SHARED) { 1927 int err; 1928 struct inode *inode = mapping->host; 1929 1930 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 1931 if (err) { 1932 put_page(page); 1933 if (err == -EEXIST) 1934 goto retry; 1935 goto out; 1936 } 1937 1938 spin_lock(&inode->i_lock); 1939 inode->i_blocks += blocks_per_huge_page(h); 1940 spin_unlock(&inode->i_lock); 1941 } else 1942 lock_page(page); 1943 } 1944 1945 /* 1946 * If we are going to COW a private mapping later, we examine the 1947 * pending reservations for this page now. This will ensure that 1948 * any allocations necessary to record that reservation occur outside 1949 * the spinlock. 1950 */ 1951 if (write_access && !(vma->vm_flags & VM_SHARED)) 1952 if (vma_needs_reservation(h, vma, address) < 0) { 1953 ret = VM_FAULT_OOM; 1954 goto backout_unlocked; 1955 } 1956 1957 spin_lock(&mm->page_table_lock); 1958 size = i_size_read(mapping->host) >> huge_page_shift(h); 1959 if (idx >= size) 1960 goto backout; 1961 1962 ret = 0; 1963 if (!huge_pte_none(huge_ptep_get(ptep))) 1964 goto backout; 1965 1966 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 1967 && (vma->vm_flags & VM_SHARED))); 1968 set_huge_pte_at(mm, address, ptep, new_pte); 1969 1970 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1971 /* Optimization, do the COW without a second fault */ 1972 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 1973 } 1974 1975 spin_unlock(&mm->page_table_lock); 1976 unlock_page(page); 1977 out: 1978 return ret; 1979 1980 backout: 1981 spin_unlock(&mm->page_table_lock); 1982 backout_unlocked: 1983 unlock_page(page); 1984 put_page(page); 1985 goto out; 1986 } 1987 1988 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1989 unsigned long address, int write_access) 1990 { 1991 pte_t *ptep; 1992 pte_t entry; 1993 int ret; 1994 struct page *pagecache_page = NULL; 1995 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 1996 struct hstate *h = hstate_vma(vma); 1997 1998 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 1999 if (!ptep) 2000 return VM_FAULT_OOM; 2001 2002 /* 2003 * Serialize hugepage allocation and instantiation, so that we don't 2004 * get spurious allocation failures if two CPUs race to instantiate 2005 * the same page in the page cache. 2006 */ 2007 mutex_lock(&hugetlb_instantiation_mutex); 2008 entry = huge_ptep_get(ptep); 2009 if (huge_pte_none(entry)) { 2010 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 2011 goto out_unlock; 2012 } 2013 2014 ret = 0; 2015 2016 /* 2017 * If we are going to COW the mapping later, we examine the pending 2018 * reservations for this page now. This will ensure that any 2019 * allocations necessary to record that reservation occur outside the 2020 * spinlock. For private mappings, we also lookup the pagecache 2021 * page now as it is used to determine if a reservation has been 2022 * consumed. 2023 */ 2024 if (write_access && !pte_write(entry)) { 2025 if (vma_needs_reservation(h, vma, address) < 0) { 2026 ret = VM_FAULT_OOM; 2027 goto out_unlock; 2028 } 2029 2030 if (!(vma->vm_flags & VM_SHARED)) 2031 pagecache_page = hugetlbfs_pagecache_page(h, 2032 vma, address); 2033 } 2034 2035 spin_lock(&mm->page_table_lock); 2036 /* Check for a racing update before calling hugetlb_cow */ 2037 if (likely(pte_same(entry, huge_ptep_get(ptep)))) 2038 if (write_access && !pte_write(entry)) 2039 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2040 pagecache_page); 2041 spin_unlock(&mm->page_table_lock); 2042 2043 if (pagecache_page) { 2044 unlock_page(pagecache_page); 2045 put_page(pagecache_page); 2046 } 2047 2048 out_unlock: 2049 mutex_unlock(&hugetlb_instantiation_mutex); 2050 2051 return ret; 2052 } 2053 2054 /* Can be overriden by architectures */ 2055 __attribute__((weak)) struct page * 2056 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2057 pud_t *pud, int write) 2058 { 2059 BUG(); 2060 return NULL; 2061 } 2062 2063 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2064 struct page **pages, struct vm_area_struct **vmas, 2065 unsigned long *position, int *length, int i, 2066 int write) 2067 { 2068 unsigned long pfn_offset; 2069 unsigned long vaddr = *position; 2070 int remainder = *length; 2071 struct hstate *h = hstate_vma(vma); 2072 2073 spin_lock(&mm->page_table_lock); 2074 while (vaddr < vma->vm_end && remainder) { 2075 pte_t *pte; 2076 struct page *page; 2077 2078 /* 2079 * Some archs (sparc64, sh*) have multiple pte_ts to 2080 * each hugepage. We have to make * sure we get the 2081 * first, for the page indexing below to work. 2082 */ 2083 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2084 2085 if (!pte || huge_pte_none(huge_ptep_get(pte)) || 2086 (write && !pte_write(huge_ptep_get(pte)))) { 2087 int ret; 2088 2089 spin_unlock(&mm->page_table_lock); 2090 ret = hugetlb_fault(mm, vma, vaddr, write); 2091 spin_lock(&mm->page_table_lock); 2092 if (!(ret & VM_FAULT_ERROR)) 2093 continue; 2094 2095 remainder = 0; 2096 if (!i) 2097 i = -EFAULT; 2098 break; 2099 } 2100 2101 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2102 page = pte_page(huge_ptep_get(pte)); 2103 same_page: 2104 if (pages) { 2105 get_page(page); 2106 pages[i] = page + pfn_offset; 2107 } 2108 2109 if (vmas) 2110 vmas[i] = vma; 2111 2112 vaddr += PAGE_SIZE; 2113 ++pfn_offset; 2114 --remainder; 2115 ++i; 2116 if (vaddr < vma->vm_end && remainder && 2117 pfn_offset < pages_per_huge_page(h)) { 2118 /* 2119 * We use pfn_offset to avoid touching the pageframes 2120 * of this compound page. 2121 */ 2122 goto same_page; 2123 } 2124 } 2125 spin_unlock(&mm->page_table_lock); 2126 *length = remainder; 2127 *position = vaddr; 2128 2129 return i; 2130 } 2131 2132 void hugetlb_change_protection(struct vm_area_struct *vma, 2133 unsigned long address, unsigned long end, pgprot_t newprot) 2134 { 2135 struct mm_struct *mm = vma->vm_mm; 2136 unsigned long start = address; 2137 pte_t *ptep; 2138 pte_t pte; 2139 struct hstate *h = hstate_vma(vma); 2140 2141 BUG_ON(address >= end); 2142 flush_cache_range(vma, address, end); 2143 2144 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2145 spin_lock(&mm->page_table_lock); 2146 for (; address < end; address += huge_page_size(h)) { 2147 ptep = huge_pte_offset(mm, address); 2148 if (!ptep) 2149 continue; 2150 if (huge_pmd_unshare(mm, &address, ptep)) 2151 continue; 2152 if (!huge_pte_none(huge_ptep_get(ptep))) { 2153 pte = huge_ptep_get_and_clear(mm, address, ptep); 2154 pte = pte_mkhuge(pte_modify(pte, newprot)); 2155 set_huge_pte_at(mm, address, ptep, pte); 2156 } 2157 } 2158 spin_unlock(&mm->page_table_lock); 2159 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2160 2161 flush_tlb_range(vma, start, end); 2162 } 2163 2164 int hugetlb_reserve_pages(struct inode *inode, 2165 long from, long to, 2166 struct vm_area_struct *vma) 2167 { 2168 long ret, chg; 2169 struct hstate *h = hstate_inode(inode); 2170 2171 if (vma && vma->vm_flags & VM_NORESERVE) 2172 return 0; 2173 2174 /* 2175 * Shared mappings base their reservation on the number of pages that 2176 * are already allocated on behalf of the file. Private mappings need 2177 * to reserve the full area even if read-only as mprotect() may be 2178 * called to make the mapping read-write. Assume !vma is a shm mapping 2179 */ 2180 if (!vma || vma->vm_flags & VM_SHARED) 2181 chg = region_chg(&inode->i_mapping->private_list, from, to); 2182 else { 2183 struct resv_map *resv_map = resv_map_alloc(); 2184 if (!resv_map) 2185 return -ENOMEM; 2186 2187 chg = to - from; 2188 2189 set_vma_resv_map(vma, resv_map); 2190 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2191 } 2192 2193 if (chg < 0) 2194 return chg; 2195 2196 if (hugetlb_get_quota(inode->i_mapping, chg)) 2197 return -ENOSPC; 2198 ret = hugetlb_acct_memory(h, chg); 2199 if (ret < 0) { 2200 hugetlb_put_quota(inode->i_mapping, chg); 2201 return ret; 2202 } 2203 if (!vma || vma->vm_flags & VM_SHARED) 2204 region_add(&inode->i_mapping->private_list, from, to); 2205 return 0; 2206 } 2207 2208 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2209 { 2210 struct hstate *h = hstate_inode(inode); 2211 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2212 2213 spin_lock(&inode->i_lock); 2214 inode->i_blocks -= blocks_per_huge_page(h); 2215 spin_unlock(&inode->i_lock); 2216 2217 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2218 hugetlb_acct_memory(h, -(chg - freed)); 2219 } 2220