1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 EXPORT_SYMBOL_GPL(linear_hugepage_index); 631 632 /* 633 * Return the size of the pages allocated when backing a VMA. In the majority 634 * cases this will be same size as used by the page table entries. 635 */ 636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 637 { 638 struct hstate *hstate; 639 640 if (!is_vm_hugetlb_page(vma)) 641 return PAGE_SIZE; 642 643 hstate = hstate_vma(vma); 644 645 return 1UL << huge_page_shift(hstate); 646 } 647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 648 649 /* 650 * Return the page size being used by the MMU to back a VMA. In the majority 651 * of cases, the page size used by the kernel matches the MMU size. On 652 * architectures where it differs, an architecture-specific version of this 653 * function is required. 654 */ 655 #ifndef vma_mmu_pagesize 656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 657 { 658 return vma_kernel_pagesize(vma); 659 } 660 #endif 661 662 /* 663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 664 * bits of the reservation map pointer, which are always clear due to 665 * alignment. 666 */ 667 #define HPAGE_RESV_OWNER (1UL << 0) 668 #define HPAGE_RESV_UNMAPPED (1UL << 1) 669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 670 671 /* 672 * These helpers are used to track how many pages are reserved for 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 674 * is guaranteed to have their future faults succeed. 675 * 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 677 * the reserve counters are updated with the hugetlb_lock held. It is safe 678 * to reset the VMA at fork() time as it is not in use yet and there is no 679 * chance of the global counters getting corrupted as a result of the values. 680 * 681 * The private mapping reservation is represented in a subtly different 682 * manner to a shared mapping. A shared mapping has a region map associated 683 * with the underlying file, this region map represents the backing file 684 * pages which have ever had a reservation assigned which this persists even 685 * after the page is instantiated. A private mapping has a region map 686 * associated with the original mmap which is attached to all VMAs which 687 * reference it, this region map represents those offsets which have consumed 688 * reservation ie. where pages have been instantiated. 689 */ 690 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 691 { 692 return (unsigned long)vma->vm_private_data; 693 } 694 695 static void set_vma_private_data(struct vm_area_struct *vma, 696 unsigned long value) 697 { 698 vma->vm_private_data = (void *)value; 699 } 700 701 struct resv_map *resv_map_alloc(void) 702 { 703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 705 706 if (!resv_map || !rg) { 707 kfree(resv_map); 708 kfree(rg); 709 return NULL; 710 } 711 712 kref_init(&resv_map->refs); 713 spin_lock_init(&resv_map->lock); 714 INIT_LIST_HEAD(&resv_map->regions); 715 716 resv_map->adds_in_progress = 0; 717 718 INIT_LIST_HEAD(&resv_map->region_cache); 719 list_add(&rg->link, &resv_map->region_cache); 720 resv_map->region_cache_count = 1; 721 722 return resv_map; 723 } 724 725 void resv_map_release(struct kref *ref) 726 { 727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 728 struct list_head *head = &resv_map->region_cache; 729 struct file_region *rg, *trg; 730 731 /* Clear out any active regions before we release the map. */ 732 region_del(resv_map, 0, LONG_MAX); 733 734 /* ... and any entries left in the cache */ 735 list_for_each_entry_safe(rg, trg, head, link) { 736 list_del(&rg->link); 737 kfree(rg); 738 } 739 740 VM_BUG_ON(resv_map->adds_in_progress); 741 742 kfree(resv_map); 743 } 744 745 static inline struct resv_map *inode_resv_map(struct inode *inode) 746 { 747 return inode->i_mapping->private_data; 748 } 749 750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (vma->vm_flags & VM_MAYSHARE) { 754 struct address_space *mapping = vma->vm_file->f_mapping; 755 struct inode *inode = mapping->host; 756 757 return inode_resv_map(inode); 758 759 } else { 760 return (struct resv_map *)(get_vma_private_data(vma) & 761 ~HPAGE_RESV_MASK); 762 } 763 } 764 765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 766 { 767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 769 770 set_vma_private_data(vma, (get_vma_private_data(vma) & 771 HPAGE_RESV_MASK) | (unsigned long)map); 772 } 773 774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 775 { 776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 778 779 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 780 } 781 782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 783 { 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 785 786 return (get_vma_private_data(vma) & flag) != 0; 787 } 788 789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 791 { 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 793 if (!(vma->vm_flags & VM_MAYSHARE)) 794 vma->vm_private_data = (void *)0; 795 } 796 797 /* Returns true if the VMA has associated reserve pages */ 798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 799 { 800 if (vma->vm_flags & VM_NORESERVE) { 801 /* 802 * This address is already reserved by other process(chg == 0), 803 * so, we should decrement reserved count. Without decrementing, 804 * reserve count remains after releasing inode, because this 805 * allocated page will go into page cache and is regarded as 806 * coming from reserved pool in releasing step. Currently, we 807 * don't have any other solution to deal with this situation 808 * properly, so add work-around here. 809 */ 810 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 811 return true; 812 else 813 return false; 814 } 815 816 /* Shared mappings always use reserves */ 817 if (vma->vm_flags & VM_MAYSHARE) { 818 /* 819 * We know VM_NORESERVE is not set. Therefore, there SHOULD 820 * be a region map for all pages. The only situation where 821 * there is no region map is if a hole was punched via 822 * fallocate. In this case, there really are no reverves to 823 * use. This situation is indicated if chg != 0. 824 */ 825 if (chg) 826 return false; 827 else 828 return true; 829 } 830 831 /* 832 * Only the process that called mmap() has reserves for 833 * private mappings. 834 */ 835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 836 return true; 837 838 return false; 839 } 840 841 static void enqueue_huge_page(struct hstate *h, struct page *page) 842 { 843 int nid = page_to_nid(page); 844 list_move(&page->lru, &h->hugepage_freelists[nid]); 845 h->free_huge_pages++; 846 h->free_huge_pages_node[nid]++; 847 } 848 849 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 850 { 851 struct page *page; 852 853 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 854 if (!is_migrate_isolate_page(page)) 855 break; 856 /* 857 * if 'non-isolated free hugepage' not found on the list, 858 * the allocation fails. 859 */ 860 if (&h->hugepage_freelists[nid] == &page->lru) 861 return NULL; 862 list_move(&page->lru, &h->hugepage_activelist); 863 set_page_refcounted(page); 864 h->free_huge_pages--; 865 h->free_huge_pages_node[nid]--; 866 return page; 867 } 868 869 /* Movability of hugepages depends on migration support. */ 870 static inline gfp_t htlb_alloc_mask(struct hstate *h) 871 { 872 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 873 return GFP_HIGHUSER_MOVABLE; 874 else 875 return GFP_HIGHUSER; 876 } 877 878 static struct page *dequeue_huge_page_vma(struct hstate *h, 879 struct vm_area_struct *vma, 880 unsigned long address, int avoid_reserve, 881 long chg) 882 { 883 struct page *page = NULL; 884 struct mempolicy *mpol; 885 nodemask_t *nodemask; 886 struct zonelist *zonelist; 887 struct zone *zone; 888 struct zoneref *z; 889 unsigned int cpuset_mems_cookie; 890 891 /* 892 * A child process with MAP_PRIVATE mappings created by their parent 893 * have no page reserves. This check ensures that reservations are 894 * not "stolen". The child may still get SIGKILLed 895 */ 896 if (!vma_has_reserves(vma, chg) && 897 h->free_huge_pages - h->resv_huge_pages == 0) 898 goto err; 899 900 /* If reserves cannot be used, ensure enough pages are in the pool */ 901 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 902 goto err; 903 904 retry_cpuset: 905 cpuset_mems_cookie = read_mems_allowed_begin(); 906 zonelist = huge_zonelist(vma, address, 907 htlb_alloc_mask(h), &mpol, &nodemask); 908 909 for_each_zone_zonelist_nodemask(zone, z, zonelist, 910 MAX_NR_ZONES - 1, nodemask) { 911 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 912 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 913 if (page) { 914 if (avoid_reserve) 915 break; 916 if (!vma_has_reserves(vma, chg)) 917 break; 918 919 SetPagePrivate(page); 920 h->resv_huge_pages--; 921 break; 922 } 923 } 924 } 925 926 mpol_cond_put(mpol); 927 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 928 goto retry_cpuset; 929 return page; 930 931 err: 932 return NULL; 933 } 934 935 /* 936 * common helper functions for hstate_next_node_to_{alloc|free}. 937 * We may have allocated or freed a huge page based on a different 938 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 939 * be outside of *nodes_allowed. Ensure that we use an allowed 940 * node for alloc or free. 941 */ 942 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 943 { 944 nid = next_node_in(nid, *nodes_allowed); 945 VM_BUG_ON(nid >= MAX_NUMNODES); 946 947 return nid; 948 } 949 950 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 951 { 952 if (!node_isset(nid, *nodes_allowed)) 953 nid = next_node_allowed(nid, nodes_allowed); 954 return nid; 955 } 956 957 /* 958 * returns the previously saved node ["this node"] from which to 959 * allocate a persistent huge page for the pool and advance the 960 * next node from which to allocate, handling wrap at end of node 961 * mask. 962 */ 963 static int hstate_next_node_to_alloc(struct hstate *h, 964 nodemask_t *nodes_allowed) 965 { 966 int nid; 967 968 VM_BUG_ON(!nodes_allowed); 969 970 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 971 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 972 973 return nid; 974 } 975 976 /* 977 * helper for free_pool_huge_page() - return the previously saved 978 * node ["this node"] from which to free a huge page. Advance the 979 * next node id whether or not we find a free huge page to free so 980 * that the next attempt to free addresses the next node. 981 */ 982 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 983 { 984 int nid; 985 986 VM_BUG_ON(!nodes_allowed); 987 988 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 989 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 990 991 return nid; 992 } 993 994 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 995 for (nr_nodes = nodes_weight(*mask); \ 996 nr_nodes > 0 && \ 997 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 998 nr_nodes--) 999 1000 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1001 for (nr_nodes = nodes_weight(*mask); \ 1002 nr_nodes > 0 && \ 1003 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1004 nr_nodes--) 1005 1006 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)) 1007 static void destroy_compound_gigantic_page(struct page *page, 1008 unsigned int order) 1009 { 1010 int i; 1011 int nr_pages = 1 << order; 1012 struct page *p = page + 1; 1013 1014 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1015 clear_compound_head(p); 1016 set_page_refcounted(p); 1017 } 1018 1019 set_compound_order(page, 0); 1020 __ClearPageHead(page); 1021 } 1022 1023 static void free_gigantic_page(struct page *page, unsigned int order) 1024 { 1025 free_contig_range(page_to_pfn(page), 1 << order); 1026 } 1027 1028 static int __alloc_gigantic_page(unsigned long start_pfn, 1029 unsigned long nr_pages) 1030 { 1031 unsigned long end_pfn = start_pfn + nr_pages; 1032 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1033 } 1034 1035 static bool pfn_range_valid_gigantic(struct zone *z, 1036 unsigned long start_pfn, unsigned long nr_pages) 1037 { 1038 unsigned long i, end_pfn = start_pfn + nr_pages; 1039 struct page *page; 1040 1041 for (i = start_pfn; i < end_pfn; i++) { 1042 if (!pfn_valid(i)) 1043 return false; 1044 1045 page = pfn_to_page(i); 1046 1047 if (page_zone(page) != z) 1048 return false; 1049 1050 if (PageReserved(page)) 1051 return false; 1052 1053 if (page_count(page) > 0) 1054 return false; 1055 1056 if (PageHuge(page)) 1057 return false; 1058 } 1059 1060 return true; 1061 } 1062 1063 static bool zone_spans_last_pfn(const struct zone *zone, 1064 unsigned long start_pfn, unsigned long nr_pages) 1065 { 1066 unsigned long last_pfn = start_pfn + nr_pages - 1; 1067 return zone_spans_pfn(zone, last_pfn); 1068 } 1069 1070 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1071 { 1072 unsigned long nr_pages = 1 << order; 1073 unsigned long ret, pfn, flags; 1074 struct zone *z; 1075 1076 z = NODE_DATA(nid)->node_zones; 1077 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1078 spin_lock_irqsave(&z->lock, flags); 1079 1080 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1081 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1082 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1083 /* 1084 * We release the zone lock here because 1085 * alloc_contig_range() will also lock the zone 1086 * at some point. If there's an allocation 1087 * spinning on this lock, it may win the race 1088 * and cause alloc_contig_range() to fail... 1089 */ 1090 spin_unlock_irqrestore(&z->lock, flags); 1091 ret = __alloc_gigantic_page(pfn, nr_pages); 1092 if (!ret) 1093 return pfn_to_page(pfn); 1094 spin_lock_irqsave(&z->lock, flags); 1095 } 1096 pfn += nr_pages; 1097 } 1098 1099 spin_unlock_irqrestore(&z->lock, flags); 1100 } 1101 1102 return NULL; 1103 } 1104 1105 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1106 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1107 1108 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1109 { 1110 struct page *page; 1111 1112 page = alloc_gigantic_page(nid, huge_page_order(h)); 1113 if (page) { 1114 prep_compound_gigantic_page(page, huge_page_order(h)); 1115 prep_new_huge_page(h, page, nid); 1116 } 1117 1118 return page; 1119 } 1120 1121 static int alloc_fresh_gigantic_page(struct hstate *h, 1122 nodemask_t *nodes_allowed) 1123 { 1124 struct page *page = NULL; 1125 int nr_nodes, node; 1126 1127 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1128 page = alloc_fresh_gigantic_page_node(h, node); 1129 if (page) 1130 return 1; 1131 } 1132 1133 return 0; 1134 } 1135 1136 static inline bool gigantic_page_supported(void) { return true; } 1137 #else 1138 static inline bool gigantic_page_supported(void) { return false; } 1139 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1140 static inline void destroy_compound_gigantic_page(struct page *page, 1141 unsigned int order) { } 1142 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1143 nodemask_t *nodes_allowed) { return 0; } 1144 #endif 1145 1146 static void update_and_free_page(struct hstate *h, struct page *page) 1147 { 1148 int i; 1149 1150 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1151 return; 1152 1153 h->nr_huge_pages--; 1154 h->nr_huge_pages_node[page_to_nid(page)]--; 1155 for (i = 0; i < pages_per_huge_page(h); i++) { 1156 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1157 1 << PG_referenced | 1 << PG_dirty | 1158 1 << PG_active | 1 << PG_private | 1159 1 << PG_writeback); 1160 } 1161 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1162 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1163 set_page_refcounted(page); 1164 if (hstate_is_gigantic(h)) { 1165 destroy_compound_gigantic_page(page, huge_page_order(h)); 1166 free_gigantic_page(page, huge_page_order(h)); 1167 } else { 1168 __free_pages(page, huge_page_order(h)); 1169 } 1170 } 1171 1172 struct hstate *size_to_hstate(unsigned long size) 1173 { 1174 struct hstate *h; 1175 1176 for_each_hstate(h) { 1177 if (huge_page_size(h) == size) 1178 return h; 1179 } 1180 return NULL; 1181 } 1182 1183 /* 1184 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1185 * to hstate->hugepage_activelist.) 1186 * 1187 * This function can be called for tail pages, but never returns true for them. 1188 */ 1189 bool page_huge_active(struct page *page) 1190 { 1191 VM_BUG_ON_PAGE(!PageHuge(page), page); 1192 return PageHead(page) && PagePrivate(&page[1]); 1193 } 1194 1195 /* never called for tail page */ 1196 static void set_page_huge_active(struct page *page) 1197 { 1198 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1199 SetPagePrivate(&page[1]); 1200 } 1201 1202 static void clear_page_huge_active(struct page *page) 1203 { 1204 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1205 ClearPagePrivate(&page[1]); 1206 } 1207 1208 void free_huge_page(struct page *page) 1209 { 1210 /* 1211 * Can't pass hstate in here because it is called from the 1212 * compound page destructor. 1213 */ 1214 struct hstate *h = page_hstate(page); 1215 int nid = page_to_nid(page); 1216 struct hugepage_subpool *spool = 1217 (struct hugepage_subpool *)page_private(page); 1218 bool restore_reserve; 1219 1220 set_page_private(page, 0); 1221 page->mapping = NULL; 1222 VM_BUG_ON_PAGE(page_count(page), page); 1223 VM_BUG_ON_PAGE(page_mapcount(page), page); 1224 restore_reserve = PagePrivate(page); 1225 ClearPagePrivate(page); 1226 1227 /* 1228 * A return code of zero implies that the subpool will be under its 1229 * minimum size if the reservation is not restored after page is free. 1230 * Therefore, force restore_reserve operation. 1231 */ 1232 if (hugepage_subpool_put_pages(spool, 1) == 0) 1233 restore_reserve = true; 1234 1235 spin_lock(&hugetlb_lock); 1236 clear_page_huge_active(page); 1237 hugetlb_cgroup_uncharge_page(hstate_index(h), 1238 pages_per_huge_page(h), page); 1239 if (restore_reserve) 1240 h->resv_huge_pages++; 1241 1242 if (h->surplus_huge_pages_node[nid]) { 1243 /* remove the page from active list */ 1244 list_del(&page->lru); 1245 update_and_free_page(h, page); 1246 h->surplus_huge_pages--; 1247 h->surplus_huge_pages_node[nid]--; 1248 } else { 1249 arch_clear_hugepage_flags(page); 1250 enqueue_huge_page(h, page); 1251 } 1252 spin_unlock(&hugetlb_lock); 1253 } 1254 1255 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1256 { 1257 INIT_LIST_HEAD(&page->lru); 1258 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1259 spin_lock(&hugetlb_lock); 1260 set_hugetlb_cgroup(page, NULL); 1261 h->nr_huge_pages++; 1262 h->nr_huge_pages_node[nid]++; 1263 spin_unlock(&hugetlb_lock); 1264 put_page(page); /* free it into the hugepage allocator */ 1265 } 1266 1267 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1268 { 1269 int i; 1270 int nr_pages = 1 << order; 1271 struct page *p = page + 1; 1272 1273 /* we rely on prep_new_huge_page to set the destructor */ 1274 set_compound_order(page, order); 1275 __ClearPageReserved(page); 1276 __SetPageHead(page); 1277 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1278 /* 1279 * For gigantic hugepages allocated through bootmem at 1280 * boot, it's safer to be consistent with the not-gigantic 1281 * hugepages and clear the PG_reserved bit from all tail pages 1282 * too. Otherwse drivers using get_user_pages() to access tail 1283 * pages may get the reference counting wrong if they see 1284 * PG_reserved set on a tail page (despite the head page not 1285 * having PG_reserved set). Enforcing this consistency between 1286 * head and tail pages allows drivers to optimize away a check 1287 * on the head page when they need know if put_page() is needed 1288 * after get_user_pages(). 1289 */ 1290 __ClearPageReserved(p); 1291 set_page_count(p, 0); 1292 set_compound_head(p, page); 1293 } 1294 atomic_set(compound_mapcount_ptr(page), -1); 1295 } 1296 1297 /* 1298 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1299 * transparent huge pages. See the PageTransHuge() documentation for more 1300 * details. 1301 */ 1302 int PageHuge(struct page *page) 1303 { 1304 if (!PageCompound(page)) 1305 return 0; 1306 1307 page = compound_head(page); 1308 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1309 } 1310 EXPORT_SYMBOL_GPL(PageHuge); 1311 1312 /* 1313 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1314 * normal or transparent huge pages. 1315 */ 1316 int PageHeadHuge(struct page *page_head) 1317 { 1318 if (!PageHead(page_head)) 1319 return 0; 1320 1321 return get_compound_page_dtor(page_head) == free_huge_page; 1322 } 1323 1324 pgoff_t __basepage_index(struct page *page) 1325 { 1326 struct page *page_head = compound_head(page); 1327 pgoff_t index = page_index(page_head); 1328 unsigned long compound_idx; 1329 1330 if (!PageHuge(page_head)) 1331 return page_index(page); 1332 1333 if (compound_order(page_head) >= MAX_ORDER) 1334 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1335 else 1336 compound_idx = page - page_head; 1337 1338 return (index << compound_order(page_head)) + compound_idx; 1339 } 1340 1341 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1342 { 1343 struct page *page; 1344 1345 page = __alloc_pages_node(nid, 1346 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1347 __GFP_REPEAT|__GFP_NOWARN, 1348 huge_page_order(h)); 1349 if (page) { 1350 prep_new_huge_page(h, page, nid); 1351 } 1352 1353 return page; 1354 } 1355 1356 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1357 { 1358 struct page *page; 1359 int nr_nodes, node; 1360 int ret = 0; 1361 1362 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1363 page = alloc_fresh_huge_page_node(h, node); 1364 if (page) { 1365 ret = 1; 1366 break; 1367 } 1368 } 1369 1370 if (ret) 1371 count_vm_event(HTLB_BUDDY_PGALLOC); 1372 else 1373 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1374 1375 return ret; 1376 } 1377 1378 /* 1379 * Free huge page from pool from next node to free. 1380 * Attempt to keep persistent huge pages more or less 1381 * balanced over allowed nodes. 1382 * Called with hugetlb_lock locked. 1383 */ 1384 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1385 bool acct_surplus) 1386 { 1387 int nr_nodes, node; 1388 int ret = 0; 1389 1390 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1391 /* 1392 * If we're returning unused surplus pages, only examine 1393 * nodes with surplus pages. 1394 */ 1395 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1396 !list_empty(&h->hugepage_freelists[node])) { 1397 struct page *page = 1398 list_entry(h->hugepage_freelists[node].next, 1399 struct page, lru); 1400 list_del(&page->lru); 1401 h->free_huge_pages--; 1402 h->free_huge_pages_node[node]--; 1403 if (acct_surplus) { 1404 h->surplus_huge_pages--; 1405 h->surplus_huge_pages_node[node]--; 1406 } 1407 update_and_free_page(h, page); 1408 ret = 1; 1409 break; 1410 } 1411 } 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * Dissolve a given free hugepage into free buddy pages. This function does 1418 * nothing for in-use (including surplus) hugepages. 1419 */ 1420 static void dissolve_free_huge_page(struct page *page) 1421 { 1422 spin_lock(&hugetlb_lock); 1423 if (PageHuge(page) && !page_count(page)) { 1424 struct hstate *h = page_hstate(page); 1425 int nid = page_to_nid(page); 1426 list_del(&page->lru); 1427 h->free_huge_pages--; 1428 h->free_huge_pages_node[nid]--; 1429 update_and_free_page(h, page); 1430 } 1431 spin_unlock(&hugetlb_lock); 1432 } 1433 1434 /* 1435 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1436 * make specified memory blocks removable from the system. 1437 * Note that start_pfn should aligned with (minimum) hugepage size. 1438 */ 1439 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1440 { 1441 unsigned long pfn; 1442 1443 if (!hugepages_supported()) 1444 return; 1445 1446 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1447 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1448 dissolve_free_huge_page(pfn_to_page(pfn)); 1449 } 1450 1451 /* 1452 * There are 3 ways this can get called: 1453 * 1. With vma+addr: we use the VMA's memory policy 1454 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1455 * page from any node, and let the buddy allocator itself figure 1456 * it out. 1457 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1458 * strictly from 'nid' 1459 */ 1460 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1461 struct vm_area_struct *vma, unsigned long addr, int nid) 1462 { 1463 int order = huge_page_order(h); 1464 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1465 unsigned int cpuset_mems_cookie; 1466 1467 /* 1468 * We need a VMA to get a memory policy. If we do not 1469 * have one, we use the 'nid' argument. 1470 * 1471 * The mempolicy stuff below has some non-inlined bits 1472 * and calls ->vm_ops. That makes it hard to optimize at 1473 * compile-time, even when NUMA is off and it does 1474 * nothing. This helps the compiler optimize it out. 1475 */ 1476 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1477 /* 1478 * If a specific node is requested, make sure to 1479 * get memory from there, but only when a node 1480 * is explicitly specified. 1481 */ 1482 if (nid != NUMA_NO_NODE) 1483 gfp |= __GFP_THISNODE; 1484 /* 1485 * Make sure to call something that can handle 1486 * nid=NUMA_NO_NODE 1487 */ 1488 return alloc_pages_node(nid, gfp, order); 1489 } 1490 1491 /* 1492 * OK, so we have a VMA. Fetch the mempolicy and try to 1493 * allocate a huge page with it. We will only reach this 1494 * when CONFIG_NUMA=y. 1495 */ 1496 do { 1497 struct page *page; 1498 struct mempolicy *mpol; 1499 struct zonelist *zl; 1500 nodemask_t *nodemask; 1501 1502 cpuset_mems_cookie = read_mems_allowed_begin(); 1503 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1504 mpol_cond_put(mpol); 1505 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1506 if (page) 1507 return page; 1508 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1509 1510 return NULL; 1511 } 1512 1513 /* 1514 * There are two ways to allocate a huge page: 1515 * 1. When you have a VMA and an address (like a fault) 1516 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1517 * 1518 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1519 * this case which signifies that the allocation should be done with 1520 * respect for the VMA's memory policy. 1521 * 1522 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1523 * implies that memory policies will not be taken in to account. 1524 */ 1525 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1526 struct vm_area_struct *vma, unsigned long addr, int nid) 1527 { 1528 struct page *page; 1529 unsigned int r_nid; 1530 1531 if (hstate_is_gigantic(h)) 1532 return NULL; 1533 1534 /* 1535 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1536 * This makes sure the caller is picking _one_ of the modes with which 1537 * we can call this function, not both. 1538 */ 1539 if (vma || (addr != -1)) { 1540 VM_WARN_ON_ONCE(addr == -1); 1541 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1542 } 1543 /* 1544 * Assume we will successfully allocate the surplus page to 1545 * prevent racing processes from causing the surplus to exceed 1546 * overcommit 1547 * 1548 * This however introduces a different race, where a process B 1549 * tries to grow the static hugepage pool while alloc_pages() is 1550 * called by process A. B will only examine the per-node 1551 * counters in determining if surplus huge pages can be 1552 * converted to normal huge pages in adjust_pool_surplus(). A 1553 * won't be able to increment the per-node counter, until the 1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1555 * no more huge pages can be converted from surplus to normal 1556 * state (and doesn't try to convert again). Thus, we have a 1557 * case where a surplus huge page exists, the pool is grown, and 1558 * the surplus huge page still exists after, even though it 1559 * should just have been converted to a normal huge page. This 1560 * does not leak memory, though, as the hugepage will be freed 1561 * once it is out of use. It also does not allow the counters to 1562 * go out of whack in adjust_pool_surplus() as we don't modify 1563 * the node values until we've gotten the hugepage and only the 1564 * per-node value is checked there. 1565 */ 1566 spin_lock(&hugetlb_lock); 1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1568 spin_unlock(&hugetlb_lock); 1569 return NULL; 1570 } else { 1571 h->nr_huge_pages++; 1572 h->surplus_huge_pages++; 1573 } 1574 spin_unlock(&hugetlb_lock); 1575 1576 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1577 1578 spin_lock(&hugetlb_lock); 1579 if (page) { 1580 INIT_LIST_HEAD(&page->lru); 1581 r_nid = page_to_nid(page); 1582 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1583 set_hugetlb_cgroup(page, NULL); 1584 /* 1585 * We incremented the global counters already 1586 */ 1587 h->nr_huge_pages_node[r_nid]++; 1588 h->surplus_huge_pages_node[r_nid]++; 1589 __count_vm_event(HTLB_BUDDY_PGALLOC); 1590 } else { 1591 h->nr_huge_pages--; 1592 h->surplus_huge_pages--; 1593 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1594 } 1595 spin_unlock(&hugetlb_lock); 1596 1597 return page; 1598 } 1599 1600 /* 1601 * Allocate a huge page from 'nid'. Note, 'nid' may be 1602 * NUMA_NO_NODE, which means that it may be allocated 1603 * anywhere. 1604 */ 1605 static 1606 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1607 { 1608 unsigned long addr = -1; 1609 1610 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1611 } 1612 1613 /* 1614 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1615 */ 1616 static 1617 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1618 struct vm_area_struct *vma, unsigned long addr) 1619 { 1620 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1621 } 1622 1623 /* 1624 * This allocation function is useful in the context where vma is irrelevant. 1625 * E.g. soft-offlining uses this function because it only cares physical 1626 * address of error page. 1627 */ 1628 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1629 { 1630 struct page *page = NULL; 1631 1632 spin_lock(&hugetlb_lock); 1633 if (h->free_huge_pages - h->resv_huge_pages > 0) 1634 page = dequeue_huge_page_node(h, nid); 1635 spin_unlock(&hugetlb_lock); 1636 1637 if (!page) 1638 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1639 1640 return page; 1641 } 1642 1643 /* 1644 * Increase the hugetlb pool such that it can accommodate a reservation 1645 * of size 'delta'. 1646 */ 1647 static int gather_surplus_pages(struct hstate *h, int delta) 1648 { 1649 struct list_head surplus_list; 1650 struct page *page, *tmp; 1651 int ret, i; 1652 int needed, allocated; 1653 bool alloc_ok = true; 1654 1655 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1656 if (needed <= 0) { 1657 h->resv_huge_pages += delta; 1658 return 0; 1659 } 1660 1661 allocated = 0; 1662 INIT_LIST_HEAD(&surplus_list); 1663 1664 ret = -ENOMEM; 1665 retry: 1666 spin_unlock(&hugetlb_lock); 1667 for (i = 0; i < needed; i++) { 1668 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1669 if (!page) { 1670 alloc_ok = false; 1671 break; 1672 } 1673 list_add(&page->lru, &surplus_list); 1674 } 1675 allocated += i; 1676 1677 /* 1678 * After retaking hugetlb_lock, we need to recalculate 'needed' 1679 * because either resv_huge_pages or free_huge_pages may have changed. 1680 */ 1681 spin_lock(&hugetlb_lock); 1682 needed = (h->resv_huge_pages + delta) - 1683 (h->free_huge_pages + allocated); 1684 if (needed > 0) { 1685 if (alloc_ok) 1686 goto retry; 1687 /* 1688 * We were not able to allocate enough pages to 1689 * satisfy the entire reservation so we free what 1690 * we've allocated so far. 1691 */ 1692 goto free; 1693 } 1694 /* 1695 * The surplus_list now contains _at_least_ the number of extra pages 1696 * needed to accommodate the reservation. Add the appropriate number 1697 * of pages to the hugetlb pool and free the extras back to the buddy 1698 * allocator. Commit the entire reservation here to prevent another 1699 * process from stealing the pages as they are added to the pool but 1700 * before they are reserved. 1701 */ 1702 needed += allocated; 1703 h->resv_huge_pages += delta; 1704 ret = 0; 1705 1706 /* Free the needed pages to the hugetlb pool */ 1707 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1708 if ((--needed) < 0) 1709 break; 1710 /* 1711 * This page is now managed by the hugetlb allocator and has 1712 * no users -- drop the buddy allocator's reference. 1713 */ 1714 put_page_testzero(page); 1715 VM_BUG_ON_PAGE(page_count(page), page); 1716 enqueue_huge_page(h, page); 1717 } 1718 free: 1719 spin_unlock(&hugetlb_lock); 1720 1721 /* Free unnecessary surplus pages to the buddy allocator */ 1722 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1723 put_page(page); 1724 spin_lock(&hugetlb_lock); 1725 1726 return ret; 1727 } 1728 1729 /* 1730 * When releasing a hugetlb pool reservation, any surplus pages that were 1731 * allocated to satisfy the reservation must be explicitly freed if they were 1732 * never used. 1733 * Called with hugetlb_lock held. 1734 */ 1735 static void return_unused_surplus_pages(struct hstate *h, 1736 unsigned long unused_resv_pages) 1737 { 1738 unsigned long nr_pages; 1739 1740 /* Uncommit the reservation */ 1741 h->resv_huge_pages -= unused_resv_pages; 1742 1743 /* Cannot return gigantic pages currently */ 1744 if (hstate_is_gigantic(h)) 1745 return; 1746 1747 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1748 1749 /* 1750 * We want to release as many surplus pages as possible, spread 1751 * evenly across all nodes with memory. Iterate across these nodes 1752 * until we can no longer free unreserved surplus pages. This occurs 1753 * when the nodes with surplus pages have no free pages. 1754 * free_pool_huge_page() will balance the the freed pages across the 1755 * on-line nodes with memory and will handle the hstate accounting. 1756 */ 1757 while (nr_pages--) { 1758 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1759 break; 1760 cond_resched_lock(&hugetlb_lock); 1761 } 1762 } 1763 1764 1765 /* 1766 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1767 * are used by the huge page allocation routines to manage reservations. 1768 * 1769 * vma_needs_reservation is called to determine if the huge page at addr 1770 * within the vma has an associated reservation. If a reservation is 1771 * needed, the value 1 is returned. The caller is then responsible for 1772 * managing the global reservation and subpool usage counts. After 1773 * the huge page has been allocated, vma_commit_reservation is called 1774 * to add the page to the reservation map. If the page allocation fails, 1775 * the reservation must be ended instead of committed. vma_end_reservation 1776 * is called in such cases. 1777 * 1778 * In the normal case, vma_commit_reservation returns the same value 1779 * as the preceding vma_needs_reservation call. The only time this 1780 * is not the case is if a reserve map was changed between calls. It 1781 * is the responsibility of the caller to notice the difference and 1782 * take appropriate action. 1783 */ 1784 enum vma_resv_mode { 1785 VMA_NEEDS_RESV, 1786 VMA_COMMIT_RESV, 1787 VMA_END_RESV, 1788 }; 1789 static long __vma_reservation_common(struct hstate *h, 1790 struct vm_area_struct *vma, unsigned long addr, 1791 enum vma_resv_mode mode) 1792 { 1793 struct resv_map *resv; 1794 pgoff_t idx; 1795 long ret; 1796 1797 resv = vma_resv_map(vma); 1798 if (!resv) 1799 return 1; 1800 1801 idx = vma_hugecache_offset(h, vma, addr); 1802 switch (mode) { 1803 case VMA_NEEDS_RESV: 1804 ret = region_chg(resv, idx, idx + 1); 1805 break; 1806 case VMA_COMMIT_RESV: 1807 ret = region_add(resv, idx, idx + 1); 1808 break; 1809 case VMA_END_RESV: 1810 region_abort(resv, idx, idx + 1); 1811 ret = 0; 1812 break; 1813 default: 1814 BUG(); 1815 } 1816 1817 if (vma->vm_flags & VM_MAYSHARE) 1818 return ret; 1819 else 1820 return ret < 0 ? ret : 0; 1821 } 1822 1823 static long vma_needs_reservation(struct hstate *h, 1824 struct vm_area_struct *vma, unsigned long addr) 1825 { 1826 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1827 } 1828 1829 static long vma_commit_reservation(struct hstate *h, 1830 struct vm_area_struct *vma, unsigned long addr) 1831 { 1832 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1833 } 1834 1835 static void vma_end_reservation(struct hstate *h, 1836 struct vm_area_struct *vma, unsigned long addr) 1837 { 1838 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1839 } 1840 1841 struct page *alloc_huge_page(struct vm_area_struct *vma, 1842 unsigned long addr, int avoid_reserve) 1843 { 1844 struct hugepage_subpool *spool = subpool_vma(vma); 1845 struct hstate *h = hstate_vma(vma); 1846 struct page *page; 1847 long map_chg, map_commit; 1848 long gbl_chg; 1849 int ret, idx; 1850 struct hugetlb_cgroup *h_cg; 1851 1852 idx = hstate_index(h); 1853 /* 1854 * Examine the region/reserve map to determine if the process 1855 * has a reservation for the page to be allocated. A return 1856 * code of zero indicates a reservation exists (no change). 1857 */ 1858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1859 if (map_chg < 0) 1860 return ERR_PTR(-ENOMEM); 1861 1862 /* 1863 * Processes that did not create the mapping will have no 1864 * reserves as indicated by the region/reserve map. Check 1865 * that the allocation will not exceed the subpool limit. 1866 * Allocations for MAP_NORESERVE mappings also need to be 1867 * checked against any subpool limit. 1868 */ 1869 if (map_chg || avoid_reserve) { 1870 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1871 if (gbl_chg < 0) { 1872 vma_end_reservation(h, vma, addr); 1873 return ERR_PTR(-ENOSPC); 1874 } 1875 1876 /* 1877 * Even though there was no reservation in the region/reserve 1878 * map, there could be reservations associated with the 1879 * subpool that can be used. This would be indicated if the 1880 * return value of hugepage_subpool_get_pages() is zero. 1881 * However, if avoid_reserve is specified we still avoid even 1882 * the subpool reservations. 1883 */ 1884 if (avoid_reserve) 1885 gbl_chg = 1; 1886 } 1887 1888 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1889 if (ret) 1890 goto out_subpool_put; 1891 1892 spin_lock(&hugetlb_lock); 1893 /* 1894 * glb_chg is passed to indicate whether or not a page must be taken 1895 * from the global free pool (global change). gbl_chg == 0 indicates 1896 * a reservation exists for the allocation. 1897 */ 1898 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1899 if (!page) { 1900 spin_unlock(&hugetlb_lock); 1901 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1902 if (!page) 1903 goto out_uncharge_cgroup; 1904 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1905 SetPagePrivate(page); 1906 h->resv_huge_pages--; 1907 } 1908 spin_lock(&hugetlb_lock); 1909 list_move(&page->lru, &h->hugepage_activelist); 1910 /* Fall through */ 1911 } 1912 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1913 spin_unlock(&hugetlb_lock); 1914 1915 set_page_private(page, (unsigned long)spool); 1916 1917 map_commit = vma_commit_reservation(h, vma, addr); 1918 if (unlikely(map_chg > map_commit)) { 1919 /* 1920 * The page was added to the reservation map between 1921 * vma_needs_reservation and vma_commit_reservation. 1922 * This indicates a race with hugetlb_reserve_pages. 1923 * Adjust for the subpool count incremented above AND 1924 * in hugetlb_reserve_pages for the same page. Also, 1925 * the reservation count added in hugetlb_reserve_pages 1926 * no longer applies. 1927 */ 1928 long rsv_adjust; 1929 1930 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1931 hugetlb_acct_memory(h, -rsv_adjust); 1932 } 1933 return page; 1934 1935 out_uncharge_cgroup: 1936 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1937 out_subpool_put: 1938 if (map_chg || avoid_reserve) 1939 hugepage_subpool_put_pages(spool, 1); 1940 vma_end_reservation(h, vma, addr); 1941 return ERR_PTR(-ENOSPC); 1942 } 1943 1944 /* 1945 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1946 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1947 * where no ERR_VALUE is expected to be returned. 1948 */ 1949 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1950 unsigned long addr, int avoid_reserve) 1951 { 1952 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1953 if (IS_ERR(page)) 1954 page = NULL; 1955 return page; 1956 } 1957 1958 int __weak alloc_bootmem_huge_page(struct hstate *h) 1959 { 1960 struct huge_bootmem_page *m; 1961 int nr_nodes, node; 1962 1963 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1964 void *addr; 1965 1966 addr = memblock_virt_alloc_try_nid_nopanic( 1967 huge_page_size(h), huge_page_size(h), 1968 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1969 if (addr) { 1970 /* 1971 * Use the beginning of the huge page to store the 1972 * huge_bootmem_page struct (until gather_bootmem 1973 * puts them into the mem_map). 1974 */ 1975 m = addr; 1976 goto found; 1977 } 1978 } 1979 return 0; 1980 1981 found: 1982 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1983 /* Put them into a private list first because mem_map is not up yet */ 1984 list_add(&m->list, &huge_boot_pages); 1985 m->hstate = h; 1986 return 1; 1987 } 1988 1989 static void __init prep_compound_huge_page(struct page *page, 1990 unsigned int order) 1991 { 1992 if (unlikely(order > (MAX_ORDER - 1))) 1993 prep_compound_gigantic_page(page, order); 1994 else 1995 prep_compound_page(page, order); 1996 } 1997 1998 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1999 static void __init gather_bootmem_prealloc(void) 2000 { 2001 struct huge_bootmem_page *m; 2002 2003 list_for_each_entry(m, &huge_boot_pages, list) { 2004 struct hstate *h = m->hstate; 2005 struct page *page; 2006 2007 #ifdef CONFIG_HIGHMEM 2008 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2009 memblock_free_late(__pa(m), 2010 sizeof(struct huge_bootmem_page)); 2011 #else 2012 page = virt_to_page(m); 2013 #endif 2014 WARN_ON(page_count(page) != 1); 2015 prep_compound_huge_page(page, h->order); 2016 WARN_ON(PageReserved(page)); 2017 prep_new_huge_page(h, page, page_to_nid(page)); 2018 /* 2019 * If we had gigantic hugepages allocated at boot time, we need 2020 * to restore the 'stolen' pages to totalram_pages in order to 2021 * fix confusing memory reports from free(1) and another 2022 * side-effects, like CommitLimit going negative. 2023 */ 2024 if (hstate_is_gigantic(h)) 2025 adjust_managed_page_count(page, 1 << h->order); 2026 } 2027 } 2028 2029 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2030 { 2031 unsigned long i; 2032 2033 for (i = 0; i < h->max_huge_pages; ++i) { 2034 if (hstate_is_gigantic(h)) { 2035 if (!alloc_bootmem_huge_page(h)) 2036 break; 2037 } else if (!alloc_fresh_huge_page(h, 2038 &node_states[N_MEMORY])) 2039 break; 2040 } 2041 h->max_huge_pages = i; 2042 } 2043 2044 static void __init hugetlb_init_hstates(void) 2045 { 2046 struct hstate *h; 2047 2048 for_each_hstate(h) { 2049 if (minimum_order > huge_page_order(h)) 2050 minimum_order = huge_page_order(h); 2051 2052 /* oversize hugepages were init'ed in early boot */ 2053 if (!hstate_is_gigantic(h)) 2054 hugetlb_hstate_alloc_pages(h); 2055 } 2056 VM_BUG_ON(minimum_order == UINT_MAX); 2057 } 2058 2059 static char * __init memfmt(char *buf, unsigned long n) 2060 { 2061 if (n >= (1UL << 30)) 2062 sprintf(buf, "%lu GB", n >> 30); 2063 else if (n >= (1UL << 20)) 2064 sprintf(buf, "%lu MB", n >> 20); 2065 else 2066 sprintf(buf, "%lu KB", n >> 10); 2067 return buf; 2068 } 2069 2070 static void __init report_hugepages(void) 2071 { 2072 struct hstate *h; 2073 2074 for_each_hstate(h) { 2075 char buf[32]; 2076 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2077 memfmt(buf, huge_page_size(h)), 2078 h->free_huge_pages); 2079 } 2080 } 2081 2082 #ifdef CONFIG_HIGHMEM 2083 static void try_to_free_low(struct hstate *h, unsigned long count, 2084 nodemask_t *nodes_allowed) 2085 { 2086 int i; 2087 2088 if (hstate_is_gigantic(h)) 2089 return; 2090 2091 for_each_node_mask(i, *nodes_allowed) { 2092 struct page *page, *next; 2093 struct list_head *freel = &h->hugepage_freelists[i]; 2094 list_for_each_entry_safe(page, next, freel, lru) { 2095 if (count >= h->nr_huge_pages) 2096 return; 2097 if (PageHighMem(page)) 2098 continue; 2099 list_del(&page->lru); 2100 update_and_free_page(h, page); 2101 h->free_huge_pages--; 2102 h->free_huge_pages_node[page_to_nid(page)]--; 2103 } 2104 } 2105 } 2106 #else 2107 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2108 nodemask_t *nodes_allowed) 2109 { 2110 } 2111 #endif 2112 2113 /* 2114 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2115 * balanced by operating on them in a round-robin fashion. 2116 * Returns 1 if an adjustment was made. 2117 */ 2118 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2119 int delta) 2120 { 2121 int nr_nodes, node; 2122 2123 VM_BUG_ON(delta != -1 && delta != 1); 2124 2125 if (delta < 0) { 2126 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2127 if (h->surplus_huge_pages_node[node]) 2128 goto found; 2129 } 2130 } else { 2131 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2132 if (h->surplus_huge_pages_node[node] < 2133 h->nr_huge_pages_node[node]) 2134 goto found; 2135 } 2136 } 2137 return 0; 2138 2139 found: 2140 h->surplus_huge_pages += delta; 2141 h->surplus_huge_pages_node[node] += delta; 2142 return 1; 2143 } 2144 2145 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2146 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2147 nodemask_t *nodes_allowed) 2148 { 2149 unsigned long min_count, ret; 2150 2151 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2152 return h->max_huge_pages; 2153 2154 /* 2155 * Increase the pool size 2156 * First take pages out of surplus state. Then make up the 2157 * remaining difference by allocating fresh huge pages. 2158 * 2159 * We might race with __alloc_buddy_huge_page() here and be unable 2160 * to convert a surplus huge page to a normal huge page. That is 2161 * not critical, though, it just means the overall size of the 2162 * pool might be one hugepage larger than it needs to be, but 2163 * within all the constraints specified by the sysctls. 2164 */ 2165 spin_lock(&hugetlb_lock); 2166 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2167 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2168 break; 2169 } 2170 2171 while (count > persistent_huge_pages(h)) { 2172 /* 2173 * If this allocation races such that we no longer need the 2174 * page, free_huge_page will handle it by freeing the page 2175 * and reducing the surplus. 2176 */ 2177 spin_unlock(&hugetlb_lock); 2178 if (hstate_is_gigantic(h)) 2179 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2180 else 2181 ret = alloc_fresh_huge_page(h, nodes_allowed); 2182 spin_lock(&hugetlb_lock); 2183 if (!ret) 2184 goto out; 2185 2186 /* Bail for signals. Probably ctrl-c from user */ 2187 if (signal_pending(current)) 2188 goto out; 2189 } 2190 2191 /* 2192 * Decrease the pool size 2193 * First return free pages to the buddy allocator (being careful 2194 * to keep enough around to satisfy reservations). Then place 2195 * pages into surplus state as needed so the pool will shrink 2196 * to the desired size as pages become free. 2197 * 2198 * By placing pages into the surplus state independent of the 2199 * overcommit value, we are allowing the surplus pool size to 2200 * exceed overcommit. There are few sane options here. Since 2201 * __alloc_buddy_huge_page() is checking the global counter, 2202 * though, we'll note that we're not allowed to exceed surplus 2203 * and won't grow the pool anywhere else. Not until one of the 2204 * sysctls are changed, or the surplus pages go out of use. 2205 */ 2206 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2207 min_count = max(count, min_count); 2208 try_to_free_low(h, min_count, nodes_allowed); 2209 while (min_count < persistent_huge_pages(h)) { 2210 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2211 break; 2212 cond_resched_lock(&hugetlb_lock); 2213 } 2214 while (count < persistent_huge_pages(h)) { 2215 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2216 break; 2217 } 2218 out: 2219 ret = persistent_huge_pages(h); 2220 spin_unlock(&hugetlb_lock); 2221 return ret; 2222 } 2223 2224 #define HSTATE_ATTR_RO(_name) \ 2225 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2226 2227 #define HSTATE_ATTR(_name) \ 2228 static struct kobj_attribute _name##_attr = \ 2229 __ATTR(_name, 0644, _name##_show, _name##_store) 2230 2231 static struct kobject *hugepages_kobj; 2232 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2233 2234 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2235 2236 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2237 { 2238 int i; 2239 2240 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2241 if (hstate_kobjs[i] == kobj) { 2242 if (nidp) 2243 *nidp = NUMA_NO_NODE; 2244 return &hstates[i]; 2245 } 2246 2247 return kobj_to_node_hstate(kobj, nidp); 2248 } 2249 2250 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2251 struct kobj_attribute *attr, char *buf) 2252 { 2253 struct hstate *h; 2254 unsigned long nr_huge_pages; 2255 int nid; 2256 2257 h = kobj_to_hstate(kobj, &nid); 2258 if (nid == NUMA_NO_NODE) 2259 nr_huge_pages = h->nr_huge_pages; 2260 else 2261 nr_huge_pages = h->nr_huge_pages_node[nid]; 2262 2263 return sprintf(buf, "%lu\n", nr_huge_pages); 2264 } 2265 2266 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2267 struct hstate *h, int nid, 2268 unsigned long count, size_t len) 2269 { 2270 int err; 2271 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2272 2273 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2274 err = -EINVAL; 2275 goto out; 2276 } 2277 2278 if (nid == NUMA_NO_NODE) { 2279 /* 2280 * global hstate attribute 2281 */ 2282 if (!(obey_mempolicy && 2283 init_nodemask_of_mempolicy(nodes_allowed))) { 2284 NODEMASK_FREE(nodes_allowed); 2285 nodes_allowed = &node_states[N_MEMORY]; 2286 } 2287 } else if (nodes_allowed) { 2288 /* 2289 * per node hstate attribute: adjust count to global, 2290 * but restrict alloc/free to the specified node. 2291 */ 2292 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2293 init_nodemask_of_node(nodes_allowed, nid); 2294 } else 2295 nodes_allowed = &node_states[N_MEMORY]; 2296 2297 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2298 2299 if (nodes_allowed != &node_states[N_MEMORY]) 2300 NODEMASK_FREE(nodes_allowed); 2301 2302 return len; 2303 out: 2304 NODEMASK_FREE(nodes_allowed); 2305 return err; 2306 } 2307 2308 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2309 struct kobject *kobj, const char *buf, 2310 size_t len) 2311 { 2312 struct hstate *h; 2313 unsigned long count; 2314 int nid; 2315 int err; 2316 2317 err = kstrtoul(buf, 10, &count); 2318 if (err) 2319 return err; 2320 2321 h = kobj_to_hstate(kobj, &nid); 2322 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2323 } 2324 2325 static ssize_t nr_hugepages_show(struct kobject *kobj, 2326 struct kobj_attribute *attr, char *buf) 2327 { 2328 return nr_hugepages_show_common(kobj, attr, buf); 2329 } 2330 2331 static ssize_t nr_hugepages_store(struct kobject *kobj, 2332 struct kobj_attribute *attr, const char *buf, size_t len) 2333 { 2334 return nr_hugepages_store_common(false, kobj, buf, len); 2335 } 2336 HSTATE_ATTR(nr_hugepages); 2337 2338 #ifdef CONFIG_NUMA 2339 2340 /* 2341 * hstate attribute for optionally mempolicy-based constraint on persistent 2342 * huge page alloc/free. 2343 */ 2344 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2345 struct kobj_attribute *attr, char *buf) 2346 { 2347 return nr_hugepages_show_common(kobj, attr, buf); 2348 } 2349 2350 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2351 struct kobj_attribute *attr, const char *buf, size_t len) 2352 { 2353 return nr_hugepages_store_common(true, kobj, buf, len); 2354 } 2355 HSTATE_ATTR(nr_hugepages_mempolicy); 2356 #endif 2357 2358 2359 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2360 struct kobj_attribute *attr, char *buf) 2361 { 2362 struct hstate *h = kobj_to_hstate(kobj, NULL); 2363 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2364 } 2365 2366 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2367 struct kobj_attribute *attr, const char *buf, size_t count) 2368 { 2369 int err; 2370 unsigned long input; 2371 struct hstate *h = kobj_to_hstate(kobj, NULL); 2372 2373 if (hstate_is_gigantic(h)) 2374 return -EINVAL; 2375 2376 err = kstrtoul(buf, 10, &input); 2377 if (err) 2378 return err; 2379 2380 spin_lock(&hugetlb_lock); 2381 h->nr_overcommit_huge_pages = input; 2382 spin_unlock(&hugetlb_lock); 2383 2384 return count; 2385 } 2386 HSTATE_ATTR(nr_overcommit_hugepages); 2387 2388 static ssize_t free_hugepages_show(struct kobject *kobj, 2389 struct kobj_attribute *attr, char *buf) 2390 { 2391 struct hstate *h; 2392 unsigned long free_huge_pages; 2393 int nid; 2394 2395 h = kobj_to_hstate(kobj, &nid); 2396 if (nid == NUMA_NO_NODE) 2397 free_huge_pages = h->free_huge_pages; 2398 else 2399 free_huge_pages = h->free_huge_pages_node[nid]; 2400 2401 return sprintf(buf, "%lu\n", free_huge_pages); 2402 } 2403 HSTATE_ATTR_RO(free_hugepages); 2404 2405 static ssize_t resv_hugepages_show(struct kobject *kobj, 2406 struct kobj_attribute *attr, char *buf) 2407 { 2408 struct hstate *h = kobj_to_hstate(kobj, NULL); 2409 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2410 } 2411 HSTATE_ATTR_RO(resv_hugepages); 2412 2413 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2414 struct kobj_attribute *attr, char *buf) 2415 { 2416 struct hstate *h; 2417 unsigned long surplus_huge_pages; 2418 int nid; 2419 2420 h = kobj_to_hstate(kobj, &nid); 2421 if (nid == NUMA_NO_NODE) 2422 surplus_huge_pages = h->surplus_huge_pages; 2423 else 2424 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2425 2426 return sprintf(buf, "%lu\n", surplus_huge_pages); 2427 } 2428 HSTATE_ATTR_RO(surplus_hugepages); 2429 2430 static struct attribute *hstate_attrs[] = { 2431 &nr_hugepages_attr.attr, 2432 &nr_overcommit_hugepages_attr.attr, 2433 &free_hugepages_attr.attr, 2434 &resv_hugepages_attr.attr, 2435 &surplus_hugepages_attr.attr, 2436 #ifdef CONFIG_NUMA 2437 &nr_hugepages_mempolicy_attr.attr, 2438 #endif 2439 NULL, 2440 }; 2441 2442 static struct attribute_group hstate_attr_group = { 2443 .attrs = hstate_attrs, 2444 }; 2445 2446 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2447 struct kobject **hstate_kobjs, 2448 struct attribute_group *hstate_attr_group) 2449 { 2450 int retval; 2451 int hi = hstate_index(h); 2452 2453 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2454 if (!hstate_kobjs[hi]) 2455 return -ENOMEM; 2456 2457 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2458 if (retval) 2459 kobject_put(hstate_kobjs[hi]); 2460 2461 return retval; 2462 } 2463 2464 static void __init hugetlb_sysfs_init(void) 2465 { 2466 struct hstate *h; 2467 int err; 2468 2469 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2470 if (!hugepages_kobj) 2471 return; 2472 2473 for_each_hstate(h) { 2474 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2475 hstate_kobjs, &hstate_attr_group); 2476 if (err) 2477 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2478 } 2479 } 2480 2481 #ifdef CONFIG_NUMA 2482 2483 /* 2484 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2485 * with node devices in node_devices[] using a parallel array. The array 2486 * index of a node device or _hstate == node id. 2487 * This is here to avoid any static dependency of the node device driver, in 2488 * the base kernel, on the hugetlb module. 2489 */ 2490 struct node_hstate { 2491 struct kobject *hugepages_kobj; 2492 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2493 }; 2494 static struct node_hstate node_hstates[MAX_NUMNODES]; 2495 2496 /* 2497 * A subset of global hstate attributes for node devices 2498 */ 2499 static struct attribute *per_node_hstate_attrs[] = { 2500 &nr_hugepages_attr.attr, 2501 &free_hugepages_attr.attr, 2502 &surplus_hugepages_attr.attr, 2503 NULL, 2504 }; 2505 2506 static struct attribute_group per_node_hstate_attr_group = { 2507 .attrs = per_node_hstate_attrs, 2508 }; 2509 2510 /* 2511 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2512 * Returns node id via non-NULL nidp. 2513 */ 2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2515 { 2516 int nid; 2517 2518 for (nid = 0; nid < nr_node_ids; nid++) { 2519 struct node_hstate *nhs = &node_hstates[nid]; 2520 int i; 2521 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2522 if (nhs->hstate_kobjs[i] == kobj) { 2523 if (nidp) 2524 *nidp = nid; 2525 return &hstates[i]; 2526 } 2527 } 2528 2529 BUG(); 2530 return NULL; 2531 } 2532 2533 /* 2534 * Unregister hstate attributes from a single node device. 2535 * No-op if no hstate attributes attached. 2536 */ 2537 static void hugetlb_unregister_node(struct node *node) 2538 { 2539 struct hstate *h; 2540 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2541 2542 if (!nhs->hugepages_kobj) 2543 return; /* no hstate attributes */ 2544 2545 for_each_hstate(h) { 2546 int idx = hstate_index(h); 2547 if (nhs->hstate_kobjs[idx]) { 2548 kobject_put(nhs->hstate_kobjs[idx]); 2549 nhs->hstate_kobjs[idx] = NULL; 2550 } 2551 } 2552 2553 kobject_put(nhs->hugepages_kobj); 2554 nhs->hugepages_kobj = NULL; 2555 } 2556 2557 2558 /* 2559 * Register hstate attributes for a single node device. 2560 * No-op if attributes already registered. 2561 */ 2562 static void hugetlb_register_node(struct node *node) 2563 { 2564 struct hstate *h; 2565 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2566 int err; 2567 2568 if (nhs->hugepages_kobj) 2569 return; /* already allocated */ 2570 2571 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2572 &node->dev.kobj); 2573 if (!nhs->hugepages_kobj) 2574 return; 2575 2576 for_each_hstate(h) { 2577 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2578 nhs->hstate_kobjs, 2579 &per_node_hstate_attr_group); 2580 if (err) { 2581 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2582 h->name, node->dev.id); 2583 hugetlb_unregister_node(node); 2584 break; 2585 } 2586 } 2587 } 2588 2589 /* 2590 * hugetlb init time: register hstate attributes for all registered node 2591 * devices of nodes that have memory. All on-line nodes should have 2592 * registered their associated device by this time. 2593 */ 2594 static void __init hugetlb_register_all_nodes(void) 2595 { 2596 int nid; 2597 2598 for_each_node_state(nid, N_MEMORY) { 2599 struct node *node = node_devices[nid]; 2600 if (node->dev.id == nid) 2601 hugetlb_register_node(node); 2602 } 2603 2604 /* 2605 * Let the node device driver know we're here so it can 2606 * [un]register hstate attributes on node hotplug. 2607 */ 2608 register_hugetlbfs_with_node(hugetlb_register_node, 2609 hugetlb_unregister_node); 2610 } 2611 #else /* !CONFIG_NUMA */ 2612 2613 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2614 { 2615 BUG(); 2616 if (nidp) 2617 *nidp = -1; 2618 return NULL; 2619 } 2620 2621 static void hugetlb_register_all_nodes(void) { } 2622 2623 #endif 2624 2625 static int __init hugetlb_init(void) 2626 { 2627 int i; 2628 2629 if (!hugepages_supported()) 2630 return 0; 2631 2632 if (!size_to_hstate(default_hstate_size)) { 2633 default_hstate_size = HPAGE_SIZE; 2634 if (!size_to_hstate(default_hstate_size)) 2635 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2636 } 2637 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2638 if (default_hstate_max_huge_pages) { 2639 if (!default_hstate.max_huge_pages) 2640 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2641 } 2642 2643 hugetlb_init_hstates(); 2644 gather_bootmem_prealloc(); 2645 report_hugepages(); 2646 2647 hugetlb_sysfs_init(); 2648 hugetlb_register_all_nodes(); 2649 hugetlb_cgroup_file_init(); 2650 2651 #ifdef CONFIG_SMP 2652 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2653 #else 2654 num_fault_mutexes = 1; 2655 #endif 2656 hugetlb_fault_mutex_table = 2657 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2658 BUG_ON(!hugetlb_fault_mutex_table); 2659 2660 for (i = 0; i < num_fault_mutexes; i++) 2661 mutex_init(&hugetlb_fault_mutex_table[i]); 2662 return 0; 2663 } 2664 subsys_initcall(hugetlb_init); 2665 2666 /* Should be called on processing a hugepagesz=... option */ 2667 void __init hugetlb_bad_size(void) 2668 { 2669 parsed_valid_hugepagesz = false; 2670 } 2671 2672 void __init hugetlb_add_hstate(unsigned int order) 2673 { 2674 struct hstate *h; 2675 unsigned long i; 2676 2677 if (size_to_hstate(PAGE_SIZE << order)) { 2678 pr_warn("hugepagesz= specified twice, ignoring\n"); 2679 return; 2680 } 2681 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2682 BUG_ON(order == 0); 2683 h = &hstates[hugetlb_max_hstate++]; 2684 h->order = order; 2685 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2686 h->nr_huge_pages = 0; 2687 h->free_huge_pages = 0; 2688 for (i = 0; i < MAX_NUMNODES; ++i) 2689 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2690 INIT_LIST_HEAD(&h->hugepage_activelist); 2691 h->next_nid_to_alloc = first_memory_node; 2692 h->next_nid_to_free = first_memory_node; 2693 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2694 huge_page_size(h)/1024); 2695 2696 parsed_hstate = h; 2697 } 2698 2699 static int __init hugetlb_nrpages_setup(char *s) 2700 { 2701 unsigned long *mhp; 2702 static unsigned long *last_mhp; 2703 2704 if (!parsed_valid_hugepagesz) { 2705 pr_warn("hugepages = %s preceded by " 2706 "an unsupported hugepagesz, ignoring\n", s); 2707 parsed_valid_hugepagesz = true; 2708 return 1; 2709 } 2710 /* 2711 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2712 * so this hugepages= parameter goes to the "default hstate". 2713 */ 2714 else if (!hugetlb_max_hstate) 2715 mhp = &default_hstate_max_huge_pages; 2716 else 2717 mhp = &parsed_hstate->max_huge_pages; 2718 2719 if (mhp == last_mhp) { 2720 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2721 return 1; 2722 } 2723 2724 if (sscanf(s, "%lu", mhp) <= 0) 2725 *mhp = 0; 2726 2727 /* 2728 * Global state is always initialized later in hugetlb_init. 2729 * But we need to allocate >= MAX_ORDER hstates here early to still 2730 * use the bootmem allocator. 2731 */ 2732 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2733 hugetlb_hstate_alloc_pages(parsed_hstate); 2734 2735 last_mhp = mhp; 2736 2737 return 1; 2738 } 2739 __setup("hugepages=", hugetlb_nrpages_setup); 2740 2741 static int __init hugetlb_default_setup(char *s) 2742 { 2743 default_hstate_size = memparse(s, &s); 2744 return 1; 2745 } 2746 __setup("default_hugepagesz=", hugetlb_default_setup); 2747 2748 static unsigned int cpuset_mems_nr(unsigned int *array) 2749 { 2750 int node; 2751 unsigned int nr = 0; 2752 2753 for_each_node_mask(node, cpuset_current_mems_allowed) 2754 nr += array[node]; 2755 2756 return nr; 2757 } 2758 2759 #ifdef CONFIG_SYSCTL 2760 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2761 struct ctl_table *table, int write, 2762 void __user *buffer, size_t *length, loff_t *ppos) 2763 { 2764 struct hstate *h = &default_hstate; 2765 unsigned long tmp = h->max_huge_pages; 2766 int ret; 2767 2768 if (!hugepages_supported()) 2769 return -EOPNOTSUPP; 2770 2771 table->data = &tmp; 2772 table->maxlen = sizeof(unsigned long); 2773 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2774 if (ret) 2775 goto out; 2776 2777 if (write) 2778 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2779 NUMA_NO_NODE, tmp, *length); 2780 out: 2781 return ret; 2782 } 2783 2784 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2785 void __user *buffer, size_t *length, loff_t *ppos) 2786 { 2787 2788 return hugetlb_sysctl_handler_common(false, table, write, 2789 buffer, length, ppos); 2790 } 2791 2792 #ifdef CONFIG_NUMA 2793 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2794 void __user *buffer, size_t *length, loff_t *ppos) 2795 { 2796 return hugetlb_sysctl_handler_common(true, table, write, 2797 buffer, length, ppos); 2798 } 2799 #endif /* CONFIG_NUMA */ 2800 2801 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2802 void __user *buffer, 2803 size_t *length, loff_t *ppos) 2804 { 2805 struct hstate *h = &default_hstate; 2806 unsigned long tmp; 2807 int ret; 2808 2809 if (!hugepages_supported()) 2810 return -EOPNOTSUPP; 2811 2812 tmp = h->nr_overcommit_huge_pages; 2813 2814 if (write && hstate_is_gigantic(h)) 2815 return -EINVAL; 2816 2817 table->data = &tmp; 2818 table->maxlen = sizeof(unsigned long); 2819 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2820 if (ret) 2821 goto out; 2822 2823 if (write) { 2824 spin_lock(&hugetlb_lock); 2825 h->nr_overcommit_huge_pages = tmp; 2826 spin_unlock(&hugetlb_lock); 2827 } 2828 out: 2829 return ret; 2830 } 2831 2832 #endif /* CONFIG_SYSCTL */ 2833 2834 void hugetlb_report_meminfo(struct seq_file *m) 2835 { 2836 struct hstate *h = &default_hstate; 2837 if (!hugepages_supported()) 2838 return; 2839 seq_printf(m, 2840 "HugePages_Total: %5lu\n" 2841 "HugePages_Free: %5lu\n" 2842 "HugePages_Rsvd: %5lu\n" 2843 "HugePages_Surp: %5lu\n" 2844 "Hugepagesize: %8lu kB\n", 2845 h->nr_huge_pages, 2846 h->free_huge_pages, 2847 h->resv_huge_pages, 2848 h->surplus_huge_pages, 2849 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2850 } 2851 2852 int hugetlb_report_node_meminfo(int nid, char *buf) 2853 { 2854 struct hstate *h = &default_hstate; 2855 if (!hugepages_supported()) 2856 return 0; 2857 return sprintf(buf, 2858 "Node %d HugePages_Total: %5u\n" 2859 "Node %d HugePages_Free: %5u\n" 2860 "Node %d HugePages_Surp: %5u\n", 2861 nid, h->nr_huge_pages_node[nid], 2862 nid, h->free_huge_pages_node[nid], 2863 nid, h->surplus_huge_pages_node[nid]); 2864 } 2865 2866 void hugetlb_show_meminfo(void) 2867 { 2868 struct hstate *h; 2869 int nid; 2870 2871 if (!hugepages_supported()) 2872 return; 2873 2874 for_each_node_state(nid, N_MEMORY) 2875 for_each_hstate(h) 2876 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2877 nid, 2878 h->nr_huge_pages_node[nid], 2879 h->free_huge_pages_node[nid], 2880 h->surplus_huge_pages_node[nid], 2881 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2882 } 2883 2884 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2885 { 2886 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2887 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2888 } 2889 2890 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2891 unsigned long hugetlb_total_pages(void) 2892 { 2893 struct hstate *h; 2894 unsigned long nr_total_pages = 0; 2895 2896 for_each_hstate(h) 2897 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2898 return nr_total_pages; 2899 } 2900 2901 static int hugetlb_acct_memory(struct hstate *h, long delta) 2902 { 2903 int ret = -ENOMEM; 2904 2905 spin_lock(&hugetlb_lock); 2906 /* 2907 * When cpuset is configured, it breaks the strict hugetlb page 2908 * reservation as the accounting is done on a global variable. Such 2909 * reservation is completely rubbish in the presence of cpuset because 2910 * the reservation is not checked against page availability for the 2911 * current cpuset. Application can still potentially OOM'ed by kernel 2912 * with lack of free htlb page in cpuset that the task is in. 2913 * Attempt to enforce strict accounting with cpuset is almost 2914 * impossible (or too ugly) because cpuset is too fluid that 2915 * task or memory node can be dynamically moved between cpusets. 2916 * 2917 * The change of semantics for shared hugetlb mapping with cpuset is 2918 * undesirable. However, in order to preserve some of the semantics, 2919 * we fall back to check against current free page availability as 2920 * a best attempt and hopefully to minimize the impact of changing 2921 * semantics that cpuset has. 2922 */ 2923 if (delta > 0) { 2924 if (gather_surplus_pages(h, delta) < 0) 2925 goto out; 2926 2927 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2928 return_unused_surplus_pages(h, delta); 2929 goto out; 2930 } 2931 } 2932 2933 ret = 0; 2934 if (delta < 0) 2935 return_unused_surplus_pages(h, (unsigned long) -delta); 2936 2937 out: 2938 spin_unlock(&hugetlb_lock); 2939 return ret; 2940 } 2941 2942 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2943 { 2944 struct resv_map *resv = vma_resv_map(vma); 2945 2946 /* 2947 * This new VMA should share its siblings reservation map if present. 2948 * The VMA will only ever have a valid reservation map pointer where 2949 * it is being copied for another still existing VMA. As that VMA 2950 * has a reference to the reservation map it cannot disappear until 2951 * after this open call completes. It is therefore safe to take a 2952 * new reference here without additional locking. 2953 */ 2954 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2955 kref_get(&resv->refs); 2956 } 2957 2958 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2959 { 2960 struct hstate *h = hstate_vma(vma); 2961 struct resv_map *resv = vma_resv_map(vma); 2962 struct hugepage_subpool *spool = subpool_vma(vma); 2963 unsigned long reserve, start, end; 2964 long gbl_reserve; 2965 2966 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2967 return; 2968 2969 start = vma_hugecache_offset(h, vma, vma->vm_start); 2970 end = vma_hugecache_offset(h, vma, vma->vm_end); 2971 2972 reserve = (end - start) - region_count(resv, start, end); 2973 2974 kref_put(&resv->refs, resv_map_release); 2975 2976 if (reserve) { 2977 /* 2978 * Decrement reserve counts. The global reserve count may be 2979 * adjusted if the subpool has a minimum size. 2980 */ 2981 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 2982 hugetlb_acct_memory(h, -gbl_reserve); 2983 } 2984 } 2985 2986 /* 2987 * We cannot handle pagefaults against hugetlb pages at all. They cause 2988 * handle_mm_fault() to try to instantiate regular-sized pages in the 2989 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2990 * this far. 2991 */ 2992 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2993 { 2994 BUG(); 2995 return 0; 2996 } 2997 2998 const struct vm_operations_struct hugetlb_vm_ops = { 2999 .fault = hugetlb_vm_op_fault, 3000 .open = hugetlb_vm_op_open, 3001 .close = hugetlb_vm_op_close, 3002 }; 3003 3004 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3005 int writable) 3006 { 3007 pte_t entry; 3008 3009 if (writable) { 3010 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3011 vma->vm_page_prot))); 3012 } else { 3013 entry = huge_pte_wrprotect(mk_huge_pte(page, 3014 vma->vm_page_prot)); 3015 } 3016 entry = pte_mkyoung(entry); 3017 entry = pte_mkhuge(entry); 3018 entry = arch_make_huge_pte(entry, vma, page, writable); 3019 3020 return entry; 3021 } 3022 3023 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3024 unsigned long address, pte_t *ptep) 3025 { 3026 pte_t entry; 3027 3028 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3029 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3030 update_mmu_cache(vma, address, ptep); 3031 } 3032 3033 static int is_hugetlb_entry_migration(pte_t pte) 3034 { 3035 swp_entry_t swp; 3036 3037 if (huge_pte_none(pte) || pte_present(pte)) 3038 return 0; 3039 swp = pte_to_swp_entry(pte); 3040 if (non_swap_entry(swp) && is_migration_entry(swp)) 3041 return 1; 3042 else 3043 return 0; 3044 } 3045 3046 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3047 { 3048 swp_entry_t swp; 3049 3050 if (huge_pte_none(pte) || pte_present(pte)) 3051 return 0; 3052 swp = pte_to_swp_entry(pte); 3053 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3054 return 1; 3055 else 3056 return 0; 3057 } 3058 3059 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3060 struct vm_area_struct *vma) 3061 { 3062 pte_t *src_pte, *dst_pte, entry; 3063 struct page *ptepage; 3064 unsigned long addr; 3065 int cow; 3066 struct hstate *h = hstate_vma(vma); 3067 unsigned long sz = huge_page_size(h); 3068 unsigned long mmun_start; /* For mmu_notifiers */ 3069 unsigned long mmun_end; /* For mmu_notifiers */ 3070 int ret = 0; 3071 3072 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3073 3074 mmun_start = vma->vm_start; 3075 mmun_end = vma->vm_end; 3076 if (cow) 3077 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3078 3079 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3080 spinlock_t *src_ptl, *dst_ptl; 3081 src_pte = huge_pte_offset(src, addr); 3082 if (!src_pte) 3083 continue; 3084 dst_pte = huge_pte_alloc(dst, addr, sz); 3085 if (!dst_pte) { 3086 ret = -ENOMEM; 3087 break; 3088 } 3089 3090 /* If the pagetables are shared don't copy or take references */ 3091 if (dst_pte == src_pte) 3092 continue; 3093 3094 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3095 src_ptl = huge_pte_lockptr(h, src, src_pte); 3096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3097 entry = huge_ptep_get(src_pte); 3098 if (huge_pte_none(entry)) { /* skip none entry */ 3099 ; 3100 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3101 is_hugetlb_entry_hwpoisoned(entry))) { 3102 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3103 3104 if (is_write_migration_entry(swp_entry) && cow) { 3105 /* 3106 * COW mappings require pages in both 3107 * parent and child to be set to read. 3108 */ 3109 make_migration_entry_read(&swp_entry); 3110 entry = swp_entry_to_pte(swp_entry); 3111 set_huge_pte_at(src, addr, src_pte, entry); 3112 } 3113 set_huge_pte_at(dst, addr, dst_pte, entry); 3114 } else { 3115 if (cow) { 3116 huge_ptep_set_wrprotect(src, addr, src_pte); 3117 mmu_notifier_invalidate_range(src, mmun_start, 3118 mmun_end); 3119 } 3120 entry = huge_ptep_get(src_pte); 3121 ptepage = pte_page(entry); 3122 get_page(ptepage); 3123 page_dup_rmap(ptepage, true); 3124 set_huge_pte_at(dst, addr, dst_pte, entry); 3125 hugetlb_count_add(pages_per_huge_page(h), dst); 3126 } 3127 spin_unlock(src_ptl); 3128 spin_unlock(dst_ptl); 3129 } 3130 3131 if (cow) 3132 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3133 3134 return ret; 3135 } 3136 3137 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3138 unsigned long start, unsigned long end, 3139 struct page *ref_page) 3140 { 3141 int force_flush = 0; 3142 struct mm_struct *mm = vma->vm_mm; 3143 unsigned long address; 3144 pte_t *ptep; 3145 pte_t pte; 3146 spinlock_t *ptl; 3147 struct page *page; 3148 struct hstate *h = hstate_vma(vma); 3149 unsigned long sz = huge_page_size(h); 3150 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3151 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3152 3153 WARN_ON(!is_vm_hugetlb_page(vma)); 3154 BUG_ON(start & ~huge_page_mask(h)); 3155 BUG_ON(end & ~huge_page_mask(h)); 3156 3157 tlb_start_vma(tlb, vma); 3158 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3159 address = start; 3160 again: 3161 for (; address < end; address += sz) { 3162 ptep = huge_pte_offset(mm, address); 3163 if (!ptep) 3164 continue; 3165 3166 ptl = huge_pte_lock(h, mm, ptep); 3167 if (huge_pmd_unshare(mm, &address, ptep)) 3168 goto unlock; 3169 3170 pte = huge_ptep_get(ptep); 3171 if (huge_pte_none(pte)) 3172 goto unlock; 3173 3174 /* 3175 * Migrating hugepage or HWPoisoned hugepage is already 3176 * unmapped and its refcount is dropped, so just clear pte here. 3177 */ 3178 if (unlikely(!pte_present(pte))) { 3179 huge_pte_clear(mm, address, ptep); 3180 goto unlock; 3181 } 3182 3183 page = pte_page(pte); 3184 /* 3185 * If a reference page is supplied, it is because a specific 3186 * page is being unmapped, not a range. Ensure the page we 3187 * are about to unmap is the actual page of interest. 3188 */ 3189 if (ref_page) { 3190 if (page != ref_page) 3191 goto unlock; 3192 3193 /* 3194 * Mark the VMA as having unmapped its page so that 3195 * future faults in this VMA will fail rather than 3196 * looking like data was lost 3197 */ 3198 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3199 } 3200 3201 pte = huge_ptep_get_and_clear(mm, address, ptep); 3202 tlb_remove_tlb_entry(tlb, ptep, address); 3203 if (huge_pte_dirty(pte)) 3204 set_page_dirty(page); 3205 3206 hugetlb_count_sub(pages_per_huge_page(h), mm); 3207 page_remove_rmap(page, true); 3208 force_flush = !__tlb_remove_page(tlb, page); 3209 if (force_flush) { 3210 address += sz; 3211 spin_unlock(ptl); 3212 break; 3213 } 3214 /* Bail out after unmapping reference page if supplied */ 3215 if (ref_page) { 3216 spin_unlock(ptl); 3217 break; 3218 } 3219 unlock: 3220 spin_unlock(ptl); 3221 } 3222 /* 3223 * mmu_gather ran out of room to batch pages, we break out of 3224 * the PTE lock to avoid doing the potential expensive TLB invalidate 3225 * and page-free while holding it. 3226 */ 3227 if (force_flush) { 3228 force_flush = 0; 3229 tlb_flush_mmu(tlb); 3230 if (address < end && !ref_page) 3231 goto again; 3232 } 3233 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3234 tlb_end_vma(tlb, vma); 3235 } 3236 3237 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3238 struct vm_area_struct *vma, unsigned long start, 3239 unsigned long end, struct page *ref_page) 3240 { 3241 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3242 3243 /* 3244 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3245 * test will fail on a vma being torn down, and not grab a page table 3246 * on its way out. We're lucky that the flag has such an appropriate 3247 * name, and can in fact be safely cleared here. We could clear it 3248 * before the __unmap_hugepage_range above, but all that's necessary 3249 * is to clear it before releasing the i_mmap_rwsem. This works 3250 * because in the context this is called, the VMA is about to be 3251 * destroyed and the i_mmap_rwsem is held. 3252 */ 3253 vma->vm_flags &= ~VM_MAYSHARE; 3254 } 3255 3256 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3257 unsigned long end, struct page *ref_page) 3258 { 3259 struct mm_struct *mm; 3260 struct mmu_gather tlb; 3261 3262 mm = vma->vm_mm; 3263 3264 tlb_gather_mmu(&tlb, mm, start, end); 3265 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3266 tlb_finish_mmu(&tlb, start, end); 3267 } 3268 3269 /* 3270 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3271 * mappping it owns the reserve page for. The intention is to unmap the page 3272 * from other VMAs and let the children be SIGKILLed if they are faulting the 3273 * same region. 3274 */ 3275 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3276 struct page *page, unsigned long address) 3277 { 3278 struct hstate *h = hstate_vma(vma); 3279 struct vm_area_struct *iter_vma; 3280 struct address_space *mapping; 3281 pgoff_t pgoff; 3282 3283 /* 3284 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3285 * from page cache lookup which is in HPAGE_SIZE units. 3286 */ 3287 address = address & huge_page_mask(h); 3288 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3289 vma->vm_pgoff; 3290 mapping = file_inode(vma->vm_file)->i_mapping; 3291 3292 /* 3293 * Take the mapping lock for the duration of the table walk. As 3294 * this mapping should be shared between all the VMAs, 3295 * __unmap_hugepage_range() is called as the lock is already held 3296 */ 3297 i_mmap_lock_write(mapping); 3298 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3299 /* Do not unmap the current VMA */ 3300 if (iter_vma == vma) 3301 continue; 3302 3303 /* 3304 * Shared VMAs have their own reserves and do not affect 3305 * MAP_PRIVATE accounting but it is possible that a shared 3306 * VMA is using the same page so check and skip such VMAs. 3307 */ 3308 if (iter_vma->vm_flags & VM_MAYSHARE) 3309 continue; 3310 3311 /* 3312 * Unmap the page from other VMAs without their own reserves. 3313 * They get marked to be SIGKILLed if they fault in these 3314 * areas. This is because a future no-page fault on this VMA 3315 * could insert a zeroed page instead of the data existing 3316 * from the time of fork. This would look like data corruption 3317 */ 3318 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3319 unmap_hugepage_range(iter_vma, address, 3320 address + huge_page_size(h), page); 3321 } 3322 i_mmap_unlock_write(mapping); 3323 } 3324 3325 /* 3326 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3327 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3328 * cannot race with other handlers or page migration. 3329 * Keep the pte_same checks anyway to make transition from the mutex easier. 3330 */ 3331 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3332 unsigned long address, pte_t *ptep, pte_t pte, 3333 struct page *pagecache_page, spinlock_t *ptl) 3334 { 3335 struct hstate *h = hstate_vma(vma); 3336 struct page *old_page, *new_page; 3337 int ret = 0, outside_reserve = 0; 3338 unsigned long mmun_start; /* For mmu_notifiers */ 3339 unsigned long mmun_end; /* For mmu_notifiers */ 3340 3341 old_page = pte_page(pte); 3342 3343 retry_avoidcopy: 3344 /* If no-one else is actually using this page, avoid the copy 3345 * and just make the page writable */ 3346 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3347 page_move_anon_rmap(old_page, vma, address); 3348 set_huge_ptep_writable(vma, address, ptep); 3349 return 0; 3350 } 3351 3352 /* 3353 * If the process that created a MAP_PRIVATE mapping is about to 3354 * perform a COW due to a shared page count, attempt to satisfy 3355 * the allocation without using the existing reserves. The pagecache 3356 * page is used to determine if the reserve at this address was 3357 * consumed or not. If reserves were used, a partial faulted mapping 3358 * at the time of fork() could consume its reserves on COW instead 3359 * of the full address range. 3360 */ 3361 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3362 old_page != pagecache_page) 3363 outside_reserve = 1; 3364 3365 get_page(old_page); 3366 3367 /* 3368 * Drop page table lock as buddy allocator may be called. It will 3369 * be acquired again before returning to the caller, as expected. 3370 */ 3371 spin_unlock(ptl); 3372 new_page = alloc_huge_page(vma, address, outside_reserve); 3373 3374 if (IS_ERR(new_page)) { 3375 /* 3376 * If a process owning a MAP_PRIVATE mapping fails to COW, 3377 * it is due to references held by a child and an insufficient 3378 * huge page pool. To guarantee the original mappers 3379 * reliability, unmap the page from child processes. The child 3380 * may get SIGKILLed if it later faults. 3381 */ 3382 if (outside_reserve) { 3383 put_page(old_page); 3384 BUG_ON(huge_pte_none(pte)); 3385 unmap_ref_private(mm, vma, old_page, address); 3386 BUG_ON(huge_pte_none(pte)); 3387 spin_lock(ptl); 3388 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3389 if (likely(ptep && 3390 pte_same(huge_ptep_get(ptep), pte))) 3391 goto retry_avoidcopy; 3392 /* 3393 * race occurs while re-acquiring page table 3394 * lock, and our job is done. 3395 */ 3396 return 0; 3397 } 3398 3399 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3400 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3401 goto out_release_old; 3402 } 3403 3404 /* 3405 * When the original hugepage is shared one, it does not have 3406 * anon_vma prepared. 3407 */ 3408 if (unlikely(anon_vma_prepare(vma))) { 3409 ret = VM_FAULT_OOM; 3410 goto out_release_all; 3411 } 3412 3413 copy_user_huge_page(new_page, old_page, address, vma, 3414 pages_per_huge_page(h)); 3415 __SetPageUptodate(new_page); 3416 set_page_huge_active(new_page); 3417 3418 mmun_start = address & huge_page_mask(h); 3419 mmun_end = mmun_start + huge_page_size(h); 3420 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3421 3422 /* 3423 * Retake the page table lock to check for racing updates 3424 * before the page tables are altered 3425 */ 3426 spin_lock(ptl); 3427 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3428 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3429 ClearPagePrivate(new_page); 3430 3431 /* Break COW */ 3432 huge_ptep_clear_flush(vma, address, ptep); 3433 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3434 set_huge_pte_at(mm, address, ptep, 3435 make_huge_pte(vma, new_page, 1)); 3436 page_remove_rmap(old_page, true); 3437 hugepage_add_new_anon_rmap(new_page, vma, address); 3438 /* Make the old page be freed below */ 3439 new_page = old_page; 3440 } 3441 spin_unlock(ptl); 3442 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3443 out_release_all: 3444 put_page(new_page); 3445 out_release_old: 3446 put_page(old_page); 3447 3448 spin_lock(ptl); /* Caller expects lock to be held */ 3449 return ret; 3450 } 3451 3452 /* Return the pagecache page at a given address within a VMA */ 3453 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3454 struct vm_area_struct *vma, unsigned long address) 3455 { 3456 struct address_space *mapping; 3457 pgoff_t idx; 3458 3459 mapping = vma->vm_file->f_mapping; 3460 idx = vma_hugecache_offset(h, vma, address); 3461 3462 return find_lock_page(mapping, idx); 3463 } 3464 3465 /* 3466 * Return whether there is a pagecache page to back given address within VMA. 3467 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3468 */ 3469 static bool hugetlbfs_pagecache_present(struct hstate *h, 3470 struct vm_area_struct *vma, unsigned long address) 3471 { 3472 struct address_space *mapping; 3473 pgoff_t idx; 3474 struct page *page; 3475 3476 mapping = vma->vm_file->f_mapping; 3477 idx = vma_hugecache_offset(h, vma, address); 3478 3479 page = find_get_page(mapping, idx); 3480 if (page) 3481 put_page(page); 3482 return page != NULL; 3483 } 3484 3485 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3486 pgoff_t idx) 3487 { 3488 struct inode *inode = mapping->host; 3489 struct hstate *h = hstate_inode(inode); 3490 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3491 3492 if (err) 3493 return err; 3494 ClearPagePrivate(page); 3495 3496 spin_lock(&inode->i_lock); 3497 inode->i_blocks += blocks_per_huge_page(h); 3498 spin_unlock(&inode->i_lock); 3499 return 0; 3500 } 3501 3502 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3503 struct address_space *mapping, pgoff_t idx, 3504 unsigned long address, pte_t *ptep, unsigned int flags) 3505 { 3506 struct hstate *h = hstate_vma(vma); 3507 int ret = VM_FAULT_SIGBUS; 3508 int anon_rmap = 0; 3509 unsigned long size; 3510 struct page *page; 3511 pte_t new_pte; 3512 spinlock_t *ptl; 3513 3514 /* 3515 * Currently, we are forced to kill the process in the event the 3516 * original mapper has unmapped pages from the child due to a failed 3517 * COW. Warn that such a situation has occurred as it may not be obvious 3518 */ 3519 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3520 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3521 current->pid); 3522 return ret; 3523 } 3524 3525 /* 3526 * Use page lock to guard against racing truncation 3527 * before we get page_table_lock. 3528 */ 3529 retry: 3530 page = find_lock_page(mapping, idx); 3531 if (!page) { 3532 size = i_size_read(mapping->host) >> huge_page_shift(h); 3533 if (idx >= size) 3534 goto out; 3535 page = alloc_huge_page(vma, address, 0); 3536 if (IS_ERR(page)) { 3537 ret = PTR_ERR(page); 3538 if (ret == -ENOMEM) 3539 ret = VM_FAULT_OOM; 3540 else 3541 ret = VM_FAULT_SIGBUS; 3542 goto out; 3543 } 3544 clear_huge_page(page, address, pages_per_huge_page(h)); 3545 __SetPageUptodate(page); 3546 set_page_huge_active(page); 3547 3548 if (vma->vm_flags & VM_MAYSHARE) { 3549 int err = huge_add_to_page_cache(page, mapping, idx); 3550 if (err) { 3551 put_page(page); 3552 if (err == -EEXIST) 3553 goto retry; 3554 goto out; 3555 } 3556 } else { 3557 lock_page(page); 3558 if (unlikely(anon_vma_prepare(vma))) { 3559 ret = VM_FAULT_OOM; 3560 goto backout_unlocked; 3561 } 3562 anon_rmap = 1; 3563 } 3564 } else { 3565 /* 3566 * If memory error occurs between mmap() and fault, some process 3567 * don't have hwpoisoned swap entry for errored virtual address. 3568 * So we need to block hugepage fault by PG_hwpoison bit check. 3569 */ 3570 if (unlikely(PageHWPoison(page))) { 3571 ret = VM_FAULT_HWPOISON | 3572 VM_FAULT_SET_HINDEX(hstate_index(h)); 3573 goto backout_unlocked; 3574 } 3575 } 3576 3577 /* 3578 * If we are going to COW a private mapping later, we examine the 3579 * pending reservations for this page now. This will ensure that 3580 * any allocations necessary to record that reservation occur outside 3581 * the spinlock. 3582 */ 3583 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3584 if (vma_needs_reservation(h, vma, address) < 0) { 3585 ret = VM_FAULT_OOM; 3586 goto backout_unlocked; 3587 } 3588 /* Just decrements count, does not deallocate */ 3589 vma_end_reservation(h, vma, address); 3590 } 3591 3592 ptl = huge_pte_lockptr(h, mm, ptep); 3593 spin_lock(ptl); 3594 size = i_size_read(mapping->host) >> huge_page_shift(h); 3595 if (idx >= size) 3596 goto backout; 3597 3598 ret = 0; 3599 if (!huge_pte_none(huge_ptep_get(ptep))) 3600 goto backout; 3601 3602 if (anon_rmap) { 3603 ClearPagePrivate(page); 3604 hugepage_add_new_anon_rmap(page, vma, address); 3605 } else 3606 page_dup_rmap(page, true); 3607 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3608 && (vma->vm_flags & VM_SHARED))); 3609 set_huge_pte_at(mm, address, ptep, new_pte); 3610 3611 hugetlb_count_add(pages_per_huge_page(h), mm); 3612 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3613 /* Optimization, do the COW without a second fault */ 3614 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3615 } 3616 3617 spin_unlock(ptl); 3618 unlock_page(page); 3619 out: 3620 return ret; 3621 3622 backout: 3623 spin_unlock(ptl); 3624 backout_unlocked: 3625 unlock_page(page); 3626 put_page(page); 3627 goto out; 3628 } 3629 3630 #ifdef CONFIG_SMP 3631 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3632 struct vm_area_struct *vma, 3633 struct address_space *mapping, 3634 pgoff_t idx, unsigned long address) 3635 { 3636 unsigned long key[2]; 3637 u32 hash; 3638 3639 if (vma->vm_flags & VM_SHARED) { 3640 key[0] = (unsigned long) mapping; 3641 key[1] = idx; 3642 } else { 3643 key[0] = (unsigned long) mm; 3644 key[1] = address >> huge_page_shift(h); 3645 } 3646 3647 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3648 3649 return hash & (num_fault_mutexes - 1); 3650 } 3651 #else 3652 /* 3653 * For uniprocesor systems we always use a single mutex, so just 3654 * return 0 and avoid the hashing overhead. 3655 */ 3656 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3657 struct vm_area_struct *vma, 3658 struct address_space *mapping, 3659 pgoff_t idx, unsigned long address) 3660 { 3661 return 0; 3662 } 3663 #endif 3664 3665 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3666 unsigned long address, unsigned int flags) 3667 { 3668 pte_t *ptep, entry; 3669 spinlock_t *ptl; 3670 int ret; 3671 u32 hash; 3672 pgoff_t idx; 3673 struct page *page = NULL; 3674 struct page *pagecache_page = NULL; 3675 struct hstate *h = hstate_vma(vma); 3676 struct address_space *mapping; 3677 int need_wait_lock = 0; 3678 3679 address &= huge_page_mask(h); 3680 3681 ptep = huge_pte_offset(mm, address); 3682 if (ptep) { 3683 entry = huge_ptep_get(ptep); 3684 if (unlikely(is_hugetlb_entry_migration(entry))) { 3685 migration_entry_wait_huge(vma, mm, ptep); 3686 return 0; 3687 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3688 return VM_FAULT_HWPOISON_LARGE | 3689 VM_FAULT_SET_HINDEX(hstate_index(h)); 3690 } else { 3691 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3692 if (!ptep) 3693 return VM_FAULT_OOM; 3694 } 3695 3696 mapping = vma->vm_file->f_mapping; 3697 idx = vma_hugecache_offset(h, vma, address); 3698 3699 /* 3700 * Serialize hugepage allocation and instantiation, so that we don't 3701 * get spurious allocation failures if two CPUs race to instantiate 3702 * the same page in the page cache. 3703 */ 3704 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3705 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3706 3707 entry = huge_ptep_get(ptep); 3708 if (huge_pte_none(entry)) { 3709 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3710 goto out_mutex; 3711 } 3712 3713 ret = 0; 3714 3715 /* 3716 * entry could be a migration/hwpoison entry at this point, so this 3717 * check prevents the kernel from going below assuming that we have 3718 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3719 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3720 * handle it. 3721 */ 3722 if (!pte_present(entry)) 3723 goto out_mutex; 3724 3725 /* 3726 * If we are going to COW the mapping later, we examine the pending 3727 * reservations for this page now. This will ensure that any 3728 * allocations necessary to record that reservation occur outside the 3729 * spinlock. For private mappings, we also lookup the pagecache 3730 * page now as it is used to determine if a reservation has been 3731 * consumed. 3732 */ 3733 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3734 if (vma_needs_reservation(h, vma, address) < 0) { 3735 ret = VM_FAULT_OOM; 3736 goto out_mutex; 3737 } 3738 /* Just decrements count, does not deallocate */ 3739 vma_end_reservation(h, vma, address); 3740 3741 if (!(vma->vm_flags & VM_MAYSHARE)) 3742 pagecache_page = hugetlbfs_pagecache_page(h, 3743 vma, address); 3744 } 3745 3746 ptl = huge_pte_lock(h, mm, ptep); 3747 3748 /* Check for a racing update before calling hugetlb_cow */ 3749 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3750 goto out_ptl; 3751 3752 /* 3753 * hugetlb_cow() requires page locks of pte_page(entry) and 3754 * pagecache_page, so here we need take the former one 3755 * when page != pagecache_page or !pagecache_page. 3756 */ 3757 page = pte_page(entry); 3758 if (page != pagecache_page) 3759 if (!trylock_page(page)) { 3760 need_wait_lock = 1; 3761 goto out_ptl; 3762 } 3763 3764 get_page(page); 3765 3766 if (flags & FAULT_FLAG_WRITE) { 3767 if (!huge_pte_write(entry)) { 3768 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3769 pagecache_page, ptl); 3770 goto out_put_page; 3771 } 3772 entry = huge_pte_mkdirty(entry); 3773 } 3774 entry = pte_mkyoung(entry); 3775 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3776 flags & FAULT_FLAG_WRITE)) 3777 update_mmu_cache(vma, address, ptep); 3778 out_put_page: 3779 if (page != pagecache_page) 3780 unlock_page(page); 3781 put_page(page); 3782 out_ptl: 3783 spin_unlock(ptl); 3784 3785 if (pagecache_page) { 3786 unlock_page(pagecache_page); 3787 put_page(pagecache_page); 3788 } 3789 out_mutex: 3790 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3791 /* 3792 * Generally it's safe to hold refcount during waiting page lock. But 3793 * here we just wait to defer the next page fault to avoid busy loop and 3794 * the page is not used after unlocked before returning from the current 3795 * page fault. So we are safe from accessing freed page, even if we wait 3796 * here without taking refcount. 3797 */ 3798 if (need_wait_lock) 3799 wait_on_page_locked(page); 3800 return ret; 3801 } 3802 3803 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3804 struct page **pages, struct vm_area_struct **vmas, 3805 unsigned long *position, unsigned long *nr_pages, 3806 long i, unsigned int flags) 3807 { 3808 unsigned long pfn_offset; 3809 unsigned long vaddr = *position; 3810 unsigned long remainder = *nr_pages; 3811 struct hstate *h = hstate_vma(vma); 3812 3813 while (vaddr < vma->vm_end && remainder) { 3814 pte_t *pte; 3815 spinlock_t *ptl = NULL; 3816 int absent; 3817 struct page *page; 3818 3819 /* 3820 * If we have a pending SIGKILL, don't keep faulting pages and 3821 * potentially allocating memory. 3822 */ 3823 if (unlikely(fatal_signal_pending(current))) { 3824 remainder = 0; 3825 break; 3826 } 3827 3828 /* 3829 * Some archs (sparc64, sh*) have multiple pte_ts to 3830 * each hugepage. We have to make sure we get the 3831 * first, for the page indexing below to work. 3832 * 3833 * Note that page table lock is not held when pte is null. 3834 */ 3835 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3836 if (pte) 3837 ptl = huge_pte_lock(h, mm, pte); 3838 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3839 3840 /* 3841 * When coredumping, it suits get_dump_page if we just return 3842 * an error where there's an empty slot with no huge pagecache 3843 * to back it. This way, we avoid allocating a hugepage, and 3844 * the sparse dumpfile avoids allocating disk blocks, but its 3845 * huge holes still show up with zeroes where they need to be. 3846 */ 3847 if (absent && (flags & FOLL_DUMP) && 3848 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3849 if (pte) 3850 spin_unlock(ptl); 3851 remainder = 0; 3852 break; 3853 } 3854 3855 /* 3856 * We need call hugetlb_fault for both hugepages under migration 3857 * (in which case hugetlb_fault waits for the migration,) and 3858 * hwpoisoned hugepages (in which case we need to prevent the 3859 * caller from accessing to them.) In order to do this, we use 3860 * here is_swap_pte instead of is_hugetlb_entry_migration and 3861 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3862 * both cases, and because we can't follow correct pages 3863 * directly from any kind of swap entries. 3864 */ 3865 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3866 ((flags & FOLL_WRITE) && 3867 !huge_pte_write(huge_ptep_get(pte)))) { 3868 int ret; 3869 3870 if (pte) 3871 spin_unlock(ptl); 3872 ret = hugetlb_fault(mm, vma, vaddr, 3873 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3874 if (!(ret & VM_FAULT_ERROR)) 3875 continue; 3876 3877 remainder = 0; 3878 break; 3879 } 3880 3881 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3882 page = pte_page(huge_ptep_get(pte)); 3883 same_page: 3884 if (pages) { 3885 pages[i] = mem_map_offset(page, pfn_offset); 3886 get_page(pages[i]); 3887 } 3888 3889 if (vmas) 3890 vmas[i] = vma; 3891 3892 vaddr += PAGE_SIZE; 3893 ++pfn_offset; 3894 --remainder; 3895 ++i; 3896 if (vaddr < vma->vm_end && remainder && 3897 pfn_offset < pages_per_huge_page(h)) { 3898 /* 3899 * We use pfn_offset to avoid touching the pageframes 3900 * of this compound page. 3901 */ 3902 goto same_page; 3903 } 3904 spin_unlock(ptl); 3905 } 3906 *nr_pages = remainder; 3907 *position = vaddr; 3908 3909 return i ? i : -EFAULT; 3910 } 3911 3912 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3913 unsigned long address, unsigned long end, pgprot_t newprot) 3914 { 3915 struct mm_struct *mm = vma->vm_mm; 3916 unsigned long start = address; 3917 pte_t *ptep; 3918 pte_t pte; 3919 struct hstate *h = hstate_vma(vma); 3920 unsigned long pages = 0; 3921 3922 BUG_ON(address >= end); 3923 flush_cache_range(vma, address, end); 3924 3925 mmu_notifier_invalidate_range_start(mm, start, end); 3926 i_mmap_lock_write(vma->vm_file->f_mapping); 3927 for (; address < end; address += huge_page_size(h)) { 3928 spinlock_t *ptl; 3929 ptep = huge_pte_offset(mm, address); 3930 if (!ptep) 3931 continue; 3932 ptl = huge_pte_lock(h, mm, ptep); 3933 if (huge_pmd_unshare(mm, &address, ptep)) { 3934 pages++; 3935 spin_unlock(ptl); 3936 continue; 3937 } 3938 pte = huge_ptep_get(ptep); 3939 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3940 spin_unlock(ptl); 3941 continue; 3942 } 3943 if (unlikely(is_hugetlb_entry_migration(pte))) { 3944 swp_entry_t entry = pte_to_swp_entry(pte); 3945 3946 if (is_write_migration_entry(entry)) { 3947 pte_t newpte; 3948 3949 make_migration_entry_read(&entry); 3950 newpte = swp_entry_to_pte(entry); 3951 set_huge_pte_at(mm, address, ptep, newpte); 3952 pages++; 3953 } 3954 spin_unlock(ptl); 3955 continue; 3956 } 3957 if (!huge_pte_none(pte)) { 3958 pte = huge_ptep_get_and_clear(mm, address, ptep); 3959 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3960 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3961 set_huge_pte_at(mm, address, ptep, pte); 3962 pages++; 3963 } 3964 spin_unlock(ptl); 3965 } 3966 /* 3967 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3968 * may have cleared our pud entry and done put_page on the page table: 3969 * once we release i_mmap_rwsem, another task can do the final put_page 3970 * and that page table be reused and filled with junk. 3971 */ 3972 flush_tlb_range(vma, start, end); 3973 mmu_notifier_invalidate_range(mm, start, end); 3974 i_mmap_unlock_write(vma->vm_file->f_mapping); 3975 mmu_notifier_invalidate_range_end(mm, start, end); 3976 3977 return pages << h->order; 3978 } 3979 3980 int hugetlb_reserve_pages(struct inode *inode, 3981 long from, long to, 3982 struct vm_area_struct *vma, 3983 vm_flags_t vm_flags) 3984 { 3985 long ret, chg; 3986 struct hstate *h = hstate_inode(inode); 3987 struct hugepage_subpool *spool = subpool_inode(inode); 3988 struct resv_map *resv_map; 3989 long gbl_reserve; 3990 3991 /* 3992 * Only apply hugepage reservation if asked. At fault time, an 3993 * attempt will be made for VM_NORESERVE to allocate a page 3994 * without using reserves 3995 */ 3996 if (vm_flags & VM_NORESERVE) 3997 return 0; 3998 3999 /* 4000 * Shared mappings base their reservation on the number of pages that 4001 * are already allocated on behalf of the file. Private mappings need 4002 * to reserve the full area even if read-only as mprotect() may be 4003 * called to make the mapping read-write. Assume !vma is a shm mapping 4004 */ 4005 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4006 resv_map = inode_resv_map(inode); 4007 4008 chg = region_chg(resv_map, from, to); 4009 4010 } else { 4011 resv_map = resv_map_alloc(); 4012 if (!resv_map) 4013 return -ENOMEM; 4014 4015 chg = to - from; 4016 4017 set_vma_resv_map(vma, resv_map); 4018 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4019 } 4020 4021 if (chg < 0) { 4022 ret = chg; 4023 goto out_err; 4024 } 4025 4026 /* 4027 * There must be enough pages in the subpool for the mapping. If 4028 * the subpool has a minimum size, there may be some global 4029 * reservations already in place (gbl_reserve). 4030 */ 4031 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4032 if (gbl_reserve < 0) { 4033 ret = -ENOSPC; 4034 goto out_err; 4035 } 4036 4037 /* 4038 * Check enough hugepages are available for the reservation. 4039 * Hand the pages back to the subpool if there are not 4040 */ 4041 ret = hugetlb_acct_memory(h, gbl_reserve); 4042 if (ret < 0) { 4043 /* put back original number of pages, chg */ 4044 (void)hugepage_subpool_put_pages(spool, chg); 4045 goto out_err; 4046 } 4047 4048 /* 4049 * Account for the reservations made. Shared mappings record regions 4050 * that have reservations as they are shared by multiple VMAs. 4051 * When the last VMA disappears, the region map says how much 4052 * the reservation was and the page cache tells how much of 4053 * the reservation was consumed. Private mappings are per-VMA and 4054 * only the consumed reservations are tracked. When the VMA 4055 * disappears, the original reservation is the VMA size and the 4056 * consumed reservations are stored in the map. Hence, nothing 4057 * else has to be done for private mappings here 4058 */ 4059 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4060 long add = region_add(resv_map, from, to); 4061 4062 if (unlikely(chg > add)) { 4063 /* 4064 * pages in this range were added to the reserve 4065 * map between region_chg and region_add. This 4066 * indicates a race with alloc_huge_page. Adjust 4067 * the subpool and reserve counts modified above 4068 * based on the difference. 4069 */ 4070 long rsv_adjust; 4071 4072 rsv_adjust = hugepage_subpool_put_pages(spool, 4073 chg - add); 4074 hugetlb_acct_memory(h, -rsv_adjust); 4075 } 4076 } 4077 return 0; 4078 out_err: 4079 if (!vma || vma->vm_flags & VM_MAYSHARE) 4080 region_abort(resv_map, from, to); 4081 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4082 kref_put(&resv_map->refs, resv_map_release); 4083 return ret; 4084 } 4085 4086 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4087 long freed) 4088 { 4089 struct hstate *h = hstate_inode(inode); 4090 struct resv_map *resv_map = inode_resv_map(inode); 4091 long chg = 0; 4092 struct hugepage_subpool *spool = subpool_inode(inode); 4093 long gbl_reserve; 4094 4095 if (resv_map) { 4096 chg = region_del(resv_map, start, end); 4097 /* 4098 * region_del() can fail in the rare case where a region 4099 * must be split and another region descriptor can not be 4100 * allocated. If end == LONG_MAX, it will not fail. 4101 */ 4102 if (chg < 0) 4103 return chg; 4104 } 4105 4106 spin_lock(&inode->i_lock); 4107 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4108 spin_unlock(&inode->i_lock); 4109 4110 /* 4111 * If the subpool has a minimum size, the number of global 4112 * reservations to be released may be adjusted. 4113 */ 4114 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4115 hugetlb_acct_memory(h, -gbl_reserve); 4116 4117 return 0; 4118 } 4119 4120 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4121 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4122 struct vm_area_struct *vma, 4123 unsigned long addr, pgoff_t idx) 4124 { 4125 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4126 svma->vm_start; 4127 unsigned long sbase = saddr & PUD_MASK; 4128 unsigned long s_end = sbase + PUD_SIZE; 4129 4130 /* Allow segments to share if only one is marked locked */ 4131 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4132 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4133 4134 /* 4135 * match the virtual addresses, permission and the alignment of the 4136 * page table page. 4137 */ 4138 if (pmd_index(addr) != pmd_index(saddr) || 4139 vm_flags != svm_flags || 4140 sbase < svma->vm_start || svma->vm_end < s_end) 4141 return 0; 4142 4143 return saddr; 4144 } 4145 4146 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4147 { 4148 unsigned long base = addr & PUD_MASK; 4149 unsigned long end = base + PUD_SIZE; 4150 4151 /* 4152 * check on proper vm_flags and page table alignment 4153 */ 4154 if (vma->vm_flags & VM_MAYSHARE && 4155 vma->vm_start <= base && end <= vma->vm_end) 4156 return true; 4157 return false; 4158 } 4159 4160 /* 4161 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4162 * and returns the corresponding pte. While this is not necessary for the 4163 * !shared pmd case because we can allocate the pmd later as well, it makes the 4164 * code much cleaner. pmd allocation is essential for the shared case because 4165 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4166 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4167 * bad pmd for sharing. 4168 */ 4169 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4170 { 4171 struct vm_area_struct *vma = find_vma(mm, addr); 4172 struct address_space *mapping = vma->vm_file->f_mapping; 4173 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4174 vma->vm_pgoff; 4175 struct vm_area_struct *svma; 4176 unsigned long saddr; 4177 pte_t *spte = NULL; 4178 pte_t *pte; 4179 spinlock_t *ptl; 4180 4181 if (!vma_shareable(vma, addr)) 4182 return (pte_t *)pmd_alloc(mm, pud, addr); 4183 4184 i_mmap_lock_write(mapping); 4185 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4186 if (svma == vma) 4187 continue; 4188 4189 saddr = page_table_shareable(svma, vma, addr, idx); 4190 if (saddr) { 4191 spte = huge_pte_offset(svma->vm_mm, saddr); 4192 if (spte) { 4193 mm_inc_nr_pmds(mm); 4194 get_page(virt_to_page(spte)); 4195 break; 4196 } 4197 } 4198 } 4199 4200 if (!spte) 4201 goto out; 4202 4203 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4204 spin_lock(ptl); 4205 if (pud_none(*pud)) { 4206 pud_populate(mm, pud, 4207 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4208 } else { 4209 put_page(virt_to_page(spte)); 4210 mm_inc_nr_pmds(mm); 4211 } 4212 spin_unlock(ptl); 4213 out: 4214 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4215 i_mmap_unlock_write(mapping); 4216 return pte; 4217 } 4218 4219 /* 4220 * unmap huge page backed by shared pte. 4221 * 4222 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4223 * indicated by page_count > 1, unmap is achieved by clearing pud and 4224 * decrementing the ref count. If count == 1, the pte page is not shared. 4225 * 4226 * called with page table lock held. 4227 * 4228 * returns: 1 successfully unmapped a shared pte page 4229 * 0 the underlying pte page is not shared, or it is the last user 4230 */ 4231 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4232 { 4233 pgd_t *pgd = pgd_offset(mm, *addr); 4234 pud_t *pud = pud_offset(pgd, *addr); 4235 4236 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4237 if (page_count(virt_to_page(ptep)) == 1) 4238 return 0; 4239 4240 pud_clear(pud); 4241 put_page(virt_to_page(ptep)); 4242 mm_dec_nr_pmds(mm); 4243 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4244 return 1; 4245 } 4246 #define want_pmd_share() (1) 4247 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4248 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4249 { 4250 return NULL; 4251 } 4252 4253 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4254 { 4255 return 0; 4256 } 4257 #define want_pmd_share() (0) 4258 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4259 4260 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4261 pte_t *huge_pte_alloc(struct mm_struct *mm, 4262 unsigned long addr, unsigned long sz) 4263 { 4264 pgd_t *pgd; 4265 pud_t *pud; 4266 pte_t *pte = NULL; 4267 4268 pgd = pgd_offset(mm, addr); 4269 pud = pud_alloc(mm, pgd, addr); 4270 if (pud) { 4271 if (sz == PUD_SIZE) { 4272 pte = (pte_t *)pud; 4273 } else { 4274 BUG_ON(sz != PMD_SIZE); 4275 if (want_pmd_share() && pud_none(*pud)) 4276 pte = huge_pmd_share(mm, addr, pud); 4277 else 4278 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4279 } 4280 } 4281 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4282 4283 return pte; 4284 } 4285 4286 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4287 { 4288 pgd_t *pgd; 4289 pud_t *pud; 4290 pmd_t *pmd = NULL; 4291 4292 pgd = pgd_offset(mm, addr); 4293 if (pgd_present(*pgd)) { 4294 pud = pud_offset(pgd, addr); 4295 if (pud_present(*pud)) { 4296 if (pud_huge(*pud)) 4297 return (pte_t *)pud; 4298 pmd = pmd_offset(pud, addr); 4299 } 4300 } 4301 return (pte_t *) pmd; 4302 } 4303 4304 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4305 4306 /* 4307 * These functions are overwritable if your architecture needs its own 4308 * behavior. 4309 */ 4310 struct page * __weak 4311 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4312 int write) 4313 { 4314 return ERR_PTR(-EINVAL); 4315 } 4316 4317 struct page * __weak 4318 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4319 pmd_t *pmd, int flags) 4320 { 4321 struct page *page = NULL; 4322 spinlock_t *ptl; 4323 retry: 4324 ptl = pmd_lockptr(mm, pmd); 4325 spin_lock(ptl); 4326 /* 4327 * make sure that the address range covered by this pmd is not 4328 * unmapped from other threads. 4329 */ 4330 if (!pmd_huge(*pmd)) 4331 goto out; 4332 if (pmd_present(*pmd)) { 4333 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4334 if (flags & FOLL_GET) 4335 get_page(page); 4336 } else { 4337 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4338 spin_unlock(ptl); 4339 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4340 goto retry; 4341 } 4342 /* 4343 * hwpoisoned entry is treated as no_page_table in 4344 * follow_page_mask(). 4345 */ 4346 } 4347 out: 4348 spin_unlock(ptl); 4349 return page; 4350 } 4351 4352 struct page * __weak 4353 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4354 pud_t *pud, int flags) 4355 { 4356 if (flags & FOLL_GET) 4357 return NULL; 4358 4359 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4360 } 4361 4362 #ifdef CONFIG_MEMORY_FAILURE 4363 4364 /* 4365 * This function is called from memory failure code. 4366 * Assume the caller holds page lock of the head page. 4367 */ 4368 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4369 { 4370 struct hstate *h = page_hstate(hpage); 4371 int nid = page_to_nid(hpage); 4372 int ret = -EBUSY; 4373 4374 spin_lock(&hugetlb_lock); 4375 /* 4376 * Just checking !page_huge_active is not enough, because that could be 4377 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4378 */ 4379 if (!page_huge_active(hpage) && !page_count(hpage)) { 4380 /* 4381 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4382 * but dangling hpage->lru can trigger list-debug warnings 4383 * (this happens when we call unpoison_memory() on it), 4384 * so let it point to itself with list_del_init(). 4385 */ 4386 list_del_init(&hpage->lru); 4387 set_page_refcounted(hpage); 4388 h->free_huge_pages--; 4389 h->free_huge_pages_node[nid]--; 4390 ret = 0; 4391 } 4392 spin_unlock(&hugetlb_lock); 4393 return ret; 4394 } 4395 #endif 4396 4397 bool isolate_huge_page(struct page *page, struct list_head *list) 4398 { 4399 bool ret = true; 4400 4401 VM_BUG_ON_PAGE(!PageHead(page), page); 4402 spin_lock(&hugetlb_lock); 4403 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4404 ret = false; 4405 goto unlock; 4406 } 4407 clear_page_huge_active(page); 4408 list_move_tail(&page->lru, list); 4409 unlock: 4410 spin_unlock(&hugetlb_lock); 4411 return ret; 4412 } 4413 4414 void putback_active_hugepage(struct page *page) 4415 { 4416 VM_BUG_ON_PAGE(!PageHead(page), page); 4417 spin_lock(&hugetlb_lock); 4418 set_page_huge_active(page); 4419 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4420 spin_unlock(&hugetlb_lock); 4421 put_page(page); 4422 } 4423