xref: /openbmc/linux/mm/hugetlb.c (revision 3805e6a1)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (restore_reserve && rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631 
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638 	struct hstate *hstate;
639 
640 	if (!is_vm_hugetlb_page(vma))
641 		return PAGE_SIZE;
642 
643 	hstate = hstate_vma(vma);
644 
645 	return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658 	return vma_kernel_pagesize(vma);
659 }
660 #endif
661 
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692 	return (unsigned long)vma->vm_private_data;
693 }
694 
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 							unsigned long value)
697 {
698 	vma->vm_private_data = (void *)value;
699 }
700 
701 struct resv_map *resv_map_alloc(void)
702 {
703 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705 
706 	if (!resv_map || !rg) {
707 		kfree(resv_map);
708 		kfree(rg);
709 		return NULL;
710 	}
711 
712 	kref_init(&resv_map->refs);
713 	spin_lock_init(&resv_map->lock);
714 	INIT_LIST_HEAD(&resv_map->regions);
715 
716 	resv_map->adds_in_progress = 0;
717 
718 	INIT_LIST_HEAD(&resv_map->region_cache);
719 	list_add(&rg->link, &resv_map->region_cache);
720 	resv_map->region_cache_count = 1;
721 
722 	return resv_map;
723 }
724 
725 void resv_map_release(struct kref *ref)
726 {
727 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 	struct list_head *head = &resv_map->region_cache;
729 	struct file_region *rg, *trg;
730 
731 	/* Clear out any active regions before we release the map. */
732 	region_del(resv_map, 0, LONG_MAX);
733 
734 	/* ... and any entries left in the cache */
735 	list_for_each_entry_safe(rg, trg, head, link) {
736 		list_del(&rg->link);
737 		kfree(rg);
738 	}
739 
740 	VM_BUG_ON(resv_map->adds_in_progress);
741 
742 	kfree(resv_map);
743 }
744 
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747 	return inode->i_mapping->private_data;
748 }
749 
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (vma->vm_flags & VM_MAYSHARE) {
754 		struct address_space *mapping = vma->vm_file->f_mapping;
755 		struct inode *inode = mapping->host;
756 
757 		return inode_resv_map(inode);
758 
759 	} else {
760 		return (struct resv_map *)(get_vma_private_data(vma) &
761 							~HPAGE_RESV_MASK);
762 	}
763 }
764 
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769 
770 	set_vma_private_data(vma, (get_vma_private_data(vma) &
771 				HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773 
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 
779 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781 
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 
786 	return (get_vma_private_data(vma) & flag) != 0;
787 }
788 
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 	if (!(vma->vm_flags & VM_MAYSHARE))
794 		vma->vm_private_data = (void *)0;
795 }
796 
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800 	if (vma->vm_flags & VM_NORESERVE) {
801 		/*
802 		 * This address is already reserved by other process(chg == 0),
803 		 * so, we should decrement reserved count. Without decrementing,
804 		 * reserve count remains after releasing inode, because this
805 		 * allocated page will go into page cache and is regarded as
806 		 * coming from reserved pool in releasing step.  Currently, we
807 		 * don't have any other solution to deal with this situation
808 		 * properly, so add work-around here.
809 		 */
810 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 			return true;
812 		else
813 			return false;
814 	}
815 
816 	/* Shared mappings always use reserves */
817 	if (vma->vm_flags & VM_MAYSHARE) {
818 		/*
819 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820 		 * be a region map for all pages.  The only situation where
821 		 * there is no region map is if a hole was punched via
822 		 * fallocate.  In this case, there really are no reverves to
823 		 * use.  This situation is indicated if chg != 0.
824 		 */
825 		if (chg)
826 			return false;
827 		else
828 			return true;
829 	}
830 
831 	/*
832 	 * Only the process that called mmap() has reserves for
833 	 * private mappings.
834 	 */
835 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
836 		return true;
837 
838 	return false;
839 }
840 
841 static void enqueue_huge_page(struct hstate *h, struct page *page)
842 {
843 	int nid = page_to_nid(page);
844 	list_move(&page->lru, &h->hugepage_freelists[nid]);
845 	h->free_huge_pages++;
846 	h->free_huge_pages_node[nid]++;
847 }
848 
849 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
850 {
851 	struct page *page;
852 
853 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
854 		if (!is_migrate_isolate_page(page))
855 			break;
856 	/*
857 	 * if 'non-isolated free hugepage' not found on the list,
858 	 * the allocation fails.
859 	 */
860 	if (&h->hugepage_freelists[nid] == &page->lru)
861 		return NULL;
862 	list_move(&page->lru, &h->hugepage_activelist);
863 	set_page_refcounted(page);
864 	h->free_huge_pages--;
865 	h->free_huge_pages_node[nid]--;
866 	return page;
867 }
868 
869 /* Movability of hugepages depends on migration support. */
870 static inline gfp_t htlb_alloc_mask(struct hstate *h)
871 {
872 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
873 		return GFP_HIGHUSER_MOVABLE;
874 	else
875 		return GFP_HIGHUSER;
876 }
877 
878 static struct page *dequeue_huge_page_vma(struct hstate *h,
879 				struct vm_area_struct *vma,
880 				unsigned long address, int avoid_reserve,
881 				long chg)
882 {
883 	struct page *page = NULL;
884 	struct mempolicy *mpol;
885 	nodemask_t *nodemask;
886 	struct zonelist *zonelist;
887 	struct zone *zone;
888 	struct zoneref *z;
889 	unsigned int cpuset_mems_cookie;
890 
891 	/*
892 	 * A child process with MAP_PRIVATE mappings created by their parent
893 	 * have no page reserves. This check ensures that reservations are
894 	 * not "stolen". The child may still get SIGKILLed
895 	 */
896 	if (!vma_has_reserves(vma, chg) &&
897 			h->free_huge_pages - h->resv_huge_pages == 0)
898 		goto err;
899 
900 	/* If reserves cannot be used, ensure enough pages are in the pool */
901 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
902 		goto err;
903 
904 retry_cpuset:
905 	cpuset_mems_cookie = read_mems_allowed_begin();
906 	zonelist = huge_zonelist(vma, address,
907 					htlb_alloc_mask(h), &mpol, &nodemask);
908 
909 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
910 						MAX_NR_ZONES - 1, nodemask) {
911 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
912 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
913 			if (page) {
914 				if (avoid_reserve)
915 					break;
916 				if (!vma_has_reserves(vma, chg))
917 					break;
918 
919 				SetPagePrivate(page);
920 				h->resv_huge_pages--;
921 				break;
922 			}
923 		}
924 	}
925 
926 	mpol_cond_put(mpol);
927 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
928 		goto retry_cpuset;
929 	return page;
930 
931 err:
932 	return NULL;
933 }
934 
935 /*
936  * common helper functions for hstate_next_node_to_{alloc|free}.
937  * We may have allocated or freed a huge page based on a different
938  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
939  * be outside of *nodes_allowed.  Ensure that we use an allowed
940  * node for alloc or free.
941  */
942 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
943 {
944 	nid = next_node_in(nid, *nodes_allowed);
945 	VM_BUG_ON(nid >= MAX_NUMNODES);
946 
947 	return nid;
948 }
949 
950 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
951 {
952 	if (!node_isset(nid, *nodes_allowed))
953 		nid = next_node_allowed(nid, nodes_allowed);
954 	return nid;
955 }
956 
957 /*
958  * returns the previously saved node ["this node"] from which to
959  * allocate a persistent huge page for the pool and advance the
960  * next node from which to allocate, handling wrap at end of node
961  * mask.
962  */
963 static int hstate_next_node_to_alloc(struct hstate *h,
964 					nodemask_t *nodes_allowed)
965 {
966 	int nid;
967 
968 	VM_BUG_ON(!nodes_allowed);
969 
970 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
971 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
972 
973 	return nid;
974 }
975 
976 /*
977  * helper for free_pool_huge_page() - return the previously saved
978  * node ["this node"] from which to free a huge page.  Advance the
979  * next node id whether or not we find a free huge page to free so
980  * that the next attempt to free addresses the next node.
981  */
982 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
983 {
984 	int nid;
985 
986 	VM_BUG_ON(!nodes_allowed);
987 
988 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
989 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
990 
991 	return nid;
992 }
993 
994 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
995 	for (nr_nodes = nodes_weight(*mask);				\
996 		nr_nodes > 0 &&						\
997 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
998 		nr_nodes--)
999 
1000 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1001 	for (nr_nodes = nodes_weight(*mask);				\
1002 		nr_nodes > 0 &&						\
1003 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1004 		nr_nodes--)
1005 
1006 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1007 static void destroy_compound_gigantic_page(struct page *page,
1008 					unsigned int order)
1009 {
1010 	int i;
1011 	int nr_pages = 1 << order;
1012 	struct page *p = page + 1;
1013 
1014 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1015 		clear_compound_head(p);
1016 		set_page_refcounted(p);
1017 	}
1018 
1019 	set_compound_order(page, 0);
1020 	__ClearPageHead(page);
1021 }
1022 
1023 static void free_gigantic_page(struct page *page, unsigned int order)
1024 {
1025 	free_contig_range(page_to_pfn(page), 1 << order);
1026 }
1027 
1028 static int __alloc_gigantic_page(unsigned long start_pfn,
1029 				unsigned long nr_pages)
1030 {
1031 	unsigned long end_pfn = start_pfn + nr_pages;
1032 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1033 }
1034 
1035 static bool pfn_range_valid_gigantic(struct zone *z,
1036 			unsigned long start_pfn, unsigned long nr_pages)
1037 {
1038 	unsigned long i, end_pfn = start_pfn + nr_pages;
1039 	struct page *page;
1040 
1041 	for (i = start_pfn; i < end_pfn; i++) {
1042 		if (!pfn_valid(i))
1043 			return false;
1044 
1045 		page = pfn_to_page(i);
1046 
1047 		if (page_zone(page) != z)
1048 			return false;
1049 
1050 		if (PageReserved(page))
1051 			return false;
1052 
1053 		if (page_count(page) > 0)
1054 			return false;
1055 
1056 		if (PageHuge(page))
1057 			return false;
1058 	}
1059 
1060 	return true;
1061 }
1062 
1063 static bool zone_spans_last_pfn(const struct zone *zone,
1064 			unsigned long start_pfn, unsigned long nr_pages)
1065 {
1066 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1067 	return zone_spans_pfn(zone, last_pfn);
1068 }
1069 
1070 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1071 {
1072 	unsigned long nr_pages = 1 << order;
1073 	unsigned long ret, pfn, flags;
1074 	struct zone *z;
1075 
1076 	z = NODE_DATA(nid)->node_zones;
1077 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1078 		spin_lock_irqsave(&z->lock, flags);
1079 
1080 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1081 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1082 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1083 				/*
1084 				 * We release the zone lock here because
1085 				 * alloc_contig_range() will also lock the zone
1086 				 * at some point. If there's an allocation
1087 				 * spinning on this lock, it may win the race
1088 				 * and cause alloc_contig_range() to fail...
1089 				 */
1090 				spin_unlock_irqrestore(&z->lock, flags);
1091 				ret = __alloc_gigantic_page(pfn, nr_pages);
1092 				if (!ret)
1093 					return pfn_to_page(pfn);
1094 				spin_lock_irqsave(&z->lock, flags);
1095 			}
1096 			pfn += nr_pages;
1097 		}
1098 
1099 		spin_unlock_irqrestore(&z->lock, flags);
1100 	}
1101 
1102 	return NULL;
1103 }
1104 
1105 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1106 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1107 
1108 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1109 {
1110 	struct page *page;
1111 
1112 	page = alloc_gigantic_page(nid, huge_page_order(h));
1113 	if (page) {
1114 		prep_compound_gigantic_page(page, huge_page_order(h));
1115 		prep_new_huge_page(h, page, nid);
1116 	}
1117 
1118 	return page;
1119 }
1120 
1121 static int alloc_fresh_gigantic_page(struct hstate *h,
1122 				nodemask_t *nodes_allowed)
1123 {
1124 	struct page *page = NULL;
1125 	int nr_nodes, node;
1126 
1127 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1128 		page = alloc_fresh_gigantic_page_node(h, node);
1129 		if (page)
1130 			return 1;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static inline bool gigantic_page_supported(void) { return true; }
1137 #else
1138 static inline bool gigantic_page_supported(void) { return false; }
1139 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1140 static inline void destroy_compound_gigantic_page(struct page *page,
1141 						unsigned int order) { }
1142 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1143 					nodemask_t *nodes_allowed) { return 0; }
1144 #endif
1145 
1146 static void update_and_free_page(struct hstate *h, struct page *page)
1147 {
1148 	int i;
1149 
1150 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1151 		return;
1152 
1153 	h->nr_huge_pages--;
1154 	h->nr_huge_pages_node[page_to_nid(page)]--;
1155 	for (i = 0; i < pages_per_huge_page(h); i++) {
1156 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1157 				1 << PG_referenced | 1 << PG_dirty |
1158 				1 << PG_active | 1 << PG_private |
1159 				1 << PG_writeback);
1160 	}
1161 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1162 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1163 	set_page_refcounted(page);
1164 	if (hstate_is_gigantic(h)) {
1165 		destroy_compound_gigantic_page(page, huge_page_order(h));
1166 		free_gigantic_page(page, huge_page_order(h));
1167 	} else {
1168 		__free_pages(page, huge_page_order(h));
1169 	}
1170 }
1171 
1172 struct hstate *size_to_hstate(unsigned long size)
1173 {
1174 	struct hstate *h;
1175 
1176 	for_each_hstate(h) {
1177 		if (huge_page_size(h) == size)
1178 			return h;
1179 	}
1180 	return NULL;
1181 }
1182 
1183 /*
1184  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1185  * to hstate->hugepage_activelist.)
1186  *
1187  * This function can be called for tail pages, but never returns true for them.
1188  */
1189 bool page_huge_active(struct page *page)
1190 {
1191 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1192 	return PageHead(page) && PagePrivate(&page[1]);
1193 }
1194 
1195 /* never called for tail page */
1196 static void set_page_huge_active(struct page *page)
1197 {
1198 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1199 	SetPagePrivate(&page[1]);
1200 }
1201 
1202 static void clear_page_huge_active(struct page *page)
1203 {
1204 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1205 	ClearPagePrivate(&page[1]);
1206 }
1207 
1208 void free_huge_page(struct page *page)
1209 {
1210 	/*
1211 	 * Can't pass hstate in here because it is called from the
1212 	 * compound page destructor.
1213 	 */
1214 	struct hstate *h = page_hstate(page);
1215 	int nid = page_to_nid(page);
1216 	struct hugepage_subpool *spool =
1217 		(struct hugepage_subpool *)page_private(page);
1218 	bool restore_reserve;
1219 
1220 	set_page_private(page, 0);
1221 	page->mapping = NULL;
1222 	VM_BUG_ON_PAGE(page_count(page), page);
1223 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1224 	restore_reserve = PagePrivate(page);
1225 	ClearPagePrivate(page);
1226 
1227 	/*
1228 	 * A return code of zero implies that the subpool will be under its
1229 	 * minimum size if the reservation is not restored after page is free.
1230 	 * Therefore, force restore_reserve operation.
1231 	 */
1232 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1233 		restore_reserve = true;
1234 
1235 	spin_lock(&hugetlb_lock);
1236 	clear_page_huge_active(page);
1237 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1238 				     pages_per_huge_page(h), page);
1239 	if (restore_reserve)
1240 		h->resv_huge_pages++;
1241 
1242 	if (h->surplus_huge_pages_node[nid]) {
1243 		/* remove the page from active list */
1244 		list_del(&page->lru);
1245 		update_and_free_page(h, page);
1246 		h->surplus_huge_pages--;
1247 		h->surplus_huge_pages_node[nid]--;
1248 	} else {
1249 		arch_clear_hugepage_flags(page);
1250 		enqueue_huge_page(h, page);
1251 	}
1252 	spin_unlock(&hugetlb_lock);
1253 }
1254 
1255 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1256 {
1257 	INIT_LIST_HEAD(&page->lru);
1258 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1259 	spin_lock(&hugetlb_lock);
1260 	set_hugetlb_cgroup(page, NULL);
1261 	h->nr_huge_pages++;
1262 	h->nr_huge_pages_node[nid]++;
1263 	spin_unlock(&hugetlb_lock);
1264 	put_page(page); /* free it into the hugepage allocator */
1265 }
1266 
1267 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1268 {
1269 	int i;
1270 	int nr_pages = 1 << order;
1271 	struct page *p = page + 1;
1272 
1273 	/* we rely on prep_new_huge_page to set the destructor */
1274 	set_compound_order(page, order);
1275 	__ClearPageReserved(page);
1276 	__SetPageHead(page);
1277 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1278 		/*
1279 		 * For gigantic hugepages allocated through bootmem at
1280 		 * boot, it's safer to be consistent with the not-gigantic
1281 		 * hugepages and clear the PG_reserved bit from all tail pages
1282 		 * too.  Otherwse drivers using get_user_pages() to access tail
1283 		 * pages may get the reference counting wrong if they see
1284 		 * PG_reserved set on a tail page (despite the head page not
1285 		 * having PG_reserved set).  Enforcing this consistency between
1286 		 * head and tail pages allows drivers to optimize away a check
1287 		 * on the head page when they need know if put_page() is needed
1288 		 * after get_user_pages().
1289 		 */
1290 		__ClearPageReserved(p);
1291 		set_page_count(p, 0);
1292 		set_compound_head(p, page);
1293 	}
1294 	atomic_set(compound_mapcount_ptr(page), -1);
1295 }
1296 
1297 /*
1298  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1299  * transparent huge pages.  See the PageTransHuge() documentation for more
1300  * details.
1301  */
1302 int PageHuge(struct page *page)
1303 {
1304 	if (!PageCompound(page))
1305 		return 0;
1306 
1307 	page = compound_head(page);
1308 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1309 }
1310 EXPORT_SYMBOL_GPL(PageHuge);
1311 
1312 /*
1313  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1314  * normal or transparent huge pages.
1315  */
1316 int PageHeadHuge(struct page *page_head)
1317 {
1318 	if (!PageHead(page_head))
1319 		return 0;
1320 
1321 	return get_compound_page_dtor(page_head) == free_huge_page;
1322 }
1323 
1324 pgoff_t __basepage_index(struct page *page)
1325 {
1326 	struct page *page_head = compound_head(page);
1327 	pgoff_t index = page_index(page_head);
1328 	unsigned long compound_idx;
1329 
1330 	if (!PageHuge(page_head))
1331 		return page_index(page);
1332 
1333 	if (compound_order(page_head) >= MAX_ORDER)
1334 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1335 	else
1336 		compound_idx = page - page_head;
1337 
1338 	return (index << compound_order(page_head)) + compound_idx;
1339 }
1340 
1341 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1342 {
1343 	struct page *page;
1344 
1345 	page = __alloc_pages_node(nid,
1346 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1347 						__GFP_REPEAT|__GFP_NOWARN,
1348 		huge_page_order(h));
1349 	if (page) {
1350 		prep_new_huge_page(h, page, nid);
1351 	}
1352 
1353 	return page;
1354 }
1355 
1356 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1357 {
1358 	struct page *page;
1359 	int nr_nodes, node;
1360 	int ret = 0;
1361 
1362 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1363 		page = alloc_fresh_huge_page_node(h, node);
1364 		if (page) {
1365 			ret = 1;
1366 			break;
1367 		}
1368 	}
1369 
1370 	if (ret)
1371 		count_vm_event(HTLB_BUDDY_PGALLOC);
1372 	else
1373 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1374 
1375 	return ret;
1376 }
1377 
1378 /*
1379  * Free huge page from pool from next node to free.
1380  * Attempt to keep persistent huge pages more or less
1381  * balanced over allowed nodes.
1382  * Called with hugetlb_lock locked.
1383  */
1384 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1385 							 bool acct_surplus)
1386 {
1387 	int nr_nodes, node;
1388 	int ret = 0;
1389 
1390 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1391 		/*
1392 		 * If we're returning unused surplus pages, only examine
1393 		 * nodes with surplus pages.
1394 		 */
1395 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1396 		    !list_empty(&h->hugepage_freelists[node])) {
1397 			struct page *page =
1398 				list_entry(h->hugepage_freelists[node].next,
1399 					  struct page, lru);
1400 			list_del(&page->lru);
1401 			h->free_huge_pages--;
1402 			h->free_huge_pages_node[node]--;
1403 			if (acct_surplus) {
1404 				h->surplus_huge_pages--;
1405 				h->surplus_huge_pages_node[node]--;
1406 			}
1407 			update_and_free_page(h, page);
1408 			ret = 1;
1409 			break;
1410 		}
1411 	}
1412 
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Dissolve a given free hugepage into free buddy pages. This function does
1418  * nothing for in-use (including surplus) hugepages.
1419  */
1420 static void dissolve_free_huge_page(struct page *page)
1421 {
1422 	spin_lock(&hugetlb_lock);
1423 	if (PageHuge(page) && !page_count(page)) {
1424 		struct hstate *h = page_hstate(page);
1425 		int nid = page_to_nid(page);
1426 		list_del(&page->lru);
1427 		h->free_huge_pages--;
1428 		h->free_huge_pages_node[nid]--;
1429 		update_and_free_page(h, page);
1430 	}
1431 	spin_unlock(&hugetlb_lock);
1432 }
1433 
1434 /*
1435  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1436  * make specified memory blocks removable from the system.
1437  * Note that start_pfn should aligned with (minimum) hugepage size.
1438  */
1439 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1440 {
1441 	unsigned long pfn;
1442 
1443 	if (!hugepages_supported())
1444 		return;
1445 
1446 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1447 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1448 		dissolve_free_huge_page(pfn_to_page(pfn));
1449 }
1450 
1451 /*
1452  * There are 3 ways this can get called:
1453  * 1. With vma+addr: we use the VMA's memory policy
1454  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1455  *    page from any node, and let the buddy allocator itself figure
1456  *    it out.
1457  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1458  *    strictly from 'nid'
1459  */
1460 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1461 		struct vm_area_struct *vma, unsigned long addr, int nid)
1462 {
1463 	int order = huge_page_order(h);
1464 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1465 	unsigned int cpuset_mems_cookie;
1466 
1467 	/*
1468 	 * We need a VMA to get a memory policy.  If we do not
1469 	 * have one, we use the 'nid' argument.
1470 	 *
1471 	 * The mempolicy stuff below has some non-inlined bits
1472 	 * and calls ->vm_ops.  That makes it hard to optimize at
1473 	 * compile-time, even when NUMA is off and it does
1474 	 * nothing.  This helps the compiler optimize it out.
1475 	 */
1476 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1477 		/*
1478 		 * If a specific node is requested, make sure to
1479 		 * get memory from there, but only when a node
1480 		 * is explicitly specified.
1481 		 */
1482 		if (nid != NUMA_NO_NODE)
1483 			gfp |= __GFP_THISNODE;
1484 		/*
1485 		 * Make sure to call something that can handle
1486 		 * nid=NUMA_NO_NODE
1487 		 */
1488 		return alloc_pages_node(nid, gfp, order);
1489 	}
1490 
1491 	/*
1492 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1493 	 * allocate a huge page with it.  We will only reach this
1494 	 * when CONFIG_NUMA=y.
1495 	 */
1496 	do {
1497 		struct page *page;
1498 		struct mempolicy *mpol;
1499 		struct zonelist *zl;
1500 		nodemask_t *nodemask;
1501 
1502 		cpuset_mems_cookie = read_mems_allowed_begin();
1503 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1504 		mpol_cond_put(mpol);
1505 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1506 		if (page)
1507 			return page;
1508 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1509 
1510 	return NULL;
1511 }
1512 
1513 /*
1514  * There are two ways to allocate a huge page:
1515  * 1. When you have a VMA and an address (like a fault)
1516  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1517  *
1518  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1519  * this case which signifies that the allocation should be done with
1520  * respect for the VMA's memory policy.
1521  *
1522  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1523  * implies that memory policies will not be taken in to account.
1524  */
1525 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1526 		struct vm_area_struct *vma, unsigned long addr, int nid)
1527 {
1528 	struct page *page;
1529 	unsigned int r_nid;
1530 
1531 	if (hstate_is_gigantic(h))
1532 		return NULL;
1533 
1534 	/*
1535 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1536 	 * This makes sure the caller is picking _one_ of the modes with which
1537 	 * we can call this function, not both.
1538 	 */
1539 	if (vma || (addr != -1)) {
1540 		VM_WARN_ON_ONCE(addr == -1);
1541 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1542 	}
1543 	/*
1544 	 * Assume we will successfully allocate the surplus page to
1545 	 * prevent racing processes from causing the surplus to exceed
1546 	 * overcommit
1547 	 *
1548 	 * This however introduces a different race, where a process B
1549 	 * tries to grow the static hugepage pool while alloc_pages() is
1550 	 * called by process A. B will only examine the per-node
1551 	 * counters in determining if surplus huge pages can be
1552 	 * converted to normal huge pages in adjust_pool_surplus(). A
1553 	 * won't be able to increment the per-node counter, until the
1554 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 	 * no more huge pages can be converted from surplus to normal
1556 	 * state (and doesn't try to convert again). Thus, we have a
1557 	 * case where a surplus huge page exists, the pool is grown, and
1558 	 * the surplus huge page still exists after, even though it
1559 	 * should just have been converted to a normal huge page. This
1560 	 * does not leak memory, though, as the hugepage will be freed
1561 	 * once it is out of use. It also does not allow the counters to
1562 	 * go out of whack in adjust_pool_surplus() as we don't modify
1563 	 * the node values until we've gotten the hugepage and only the
1564 	 * per-node value is checked there.
1565 	 */
1566 	spin_lock(&hugetlb_lock);
1567 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 		spin_unlock(&hugetlb_lock);
1569 		return NULL;
1570 	} else {
1571 		h->nr_huge_pages++;
1572 		h->surplus_huge_pages++;
1573 	}
1574 	spin_unlock(&hugetlb_lock);
1575 
1576 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1577 
1578 	spin_lock(&hugetlb_lock);
1579 	if (page) {
1580 		INIT_LIST_HEAD(&page->lru);
1581 		r_nid = page_to_nid(page);
1582 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583 		set_hugetlb_cgroup(page, NULL);
1584 		/*
1585 		 * We incremented the global counters already
1586 		 */
1587 		h->nr_huge_pages_node[r_nid]++;
1588 		h->surplus_huge_pages_node[r_nid]++;
1589 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1590 	} else {
1591 		h->nr_huge_pages--;
1592 		h->surplus_huge_pages--;
1593 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1594 	}
1595 	spin_unlock(&hugetlb_lock);
1596 
1597 	return page;
1598 }
1599 
1600 /*
1601  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1602  * NUMA_NO_NODE, which means that it may be allocated
1603  * anywhere.
1604  */
1605 static
1606 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1607 {
1608 	unsigned long addr = -1;
1609 
1610 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1611 }
1612 
1613 /*
1614  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1615  */
1616 static
1617 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1618 		struct vm_area_struct *vma, unsigned long addr)
1619 {
1620 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1621 }
1622 
1623 /*
1624  * This allocation function is useful in the context where vma is irrelevant.
1625  * E.g. soft-offlining uses this function because it only cares physical
1626  * address of error page.
1627  */
1628 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1629 {
1630 	struct page *page = NULL;
1631 
1632 	spin_lock(&hugetlb_lock);
1633 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1634 		page = dequeue_huge_page_node(h, nid);
1635 	spin_unlock(&hugetlb_lock);
1636 
1637 	if (!page)
1638 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1639 
1640 	return page;
1641 }
1642 
1643 /*
1644  * Increase the hugetlb pool such that it can accommodate a reservation
1645  * of size 'delta'.
1646  */
1647 static int gather_surplus_pages(struct hstate *h, int delta)
1648 {
1649 	struct list_head surplus_list;
1650 	struct page *page, *tmp;
1651 	int ret, i;
1652 	int needed, allocated;
1653 	bool alloc_ok = true;
1654 
1655 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1656 	if (needed <= 0) {
1657 		h->resv_huge_pages += delta;
1658 		return 0;
1659 	}
1660 
1661 	allocated = 0;
1662 	INIT_LIST_HEAD(&surplus_list);
1663 
1664 	ret = -ENOMEM;
1665 retry:
1666 	spin_unlock(&hugetlb_lock);
1667 	for (i = 0; i < needed; i++) {
1668 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1669 		if (!page) {
1670 			alloc_ok = false;
1671 			break;
1672 		}
1673 		list_add(&page->lru, &surplus_list);
1674 	}
1675 	allocated += i;
1676 
1677 	/*
1678 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1679 	 * because either resv_huge_pages or free_huge_pages may have changed.
1680 	 */
1681 	spin_lock(&hugetlb_lock);
1682 	needed = (h->resv_huge_pages + delta) -
1683 			(h->free_huge_pages + allocated);
1684 	if (needed > 0) {
1685 		if (alloc_ok)
1686 			goto retry;
1687 		/*
1688 		 * We were not able to allocate enough pages to
1689 		 * satisfy the entire reservation so we free what
1690 		 * we've allocated so far.
1691 		 */
1692 		goto free;
1693 	}
1694 	/*
1695 	 * The surplus_list now contains _at_least_ the number of extra pages
1696 	 * needed to accommodate the reservation.  Add the appropriate number
1697 	 * of pages to the hugetlb pool and free the extras back to the buddy
1698 	 * allocator.  Commit the entire reservation here to prevent another
1699 	 * process from stealing the pages as they are added to the pool but
1700 	 * before they are reserved.
1701 	 */
1702 	needed += allocated;
1703 	h->resv_huge_pages += delta;
1704 	ret = 0;
1705 
1706 	/* Free the needed pages to the hugetlb pool */
1707 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1708 		if ((--needed) < 0)
1709 			break;
1710 		/*
1711 		 * This page is now managed by the hugetlb allocator and has
1712 		 * no users -- drop the buddy allocator's reference.
1713 		 */
1714 		put_page_testzero(page);
1715 		VM_BUG_ON_PAGE(page_count(page), page);
1716 		enqueue_huge_page(h, page);
1717 	}
1718 free:
1719 	spin_unlock(&hugetlb_lock);
1720 
1721 	/* Free unnecessary surplus pages to the buddy allocator */
1722 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1723 		put_page(page);
1724 	spin_lock(&hugetlb_lock);
1725 
1726 	return ret;
1727 }
1728 
1729 /*
1730  * When releasing a hugetlb pool reservation, any surplus pages that were
1731  * allocated to satisfy the reservation must be explicitly freed if they were
1732  * never used.
1733  * Called with hugetlb_lock held.
1734  */
1735 static void return_unused_surplus_pages(struct hstate *h,
1736 					unsigned long unused_resv_pages)
1737 {
1738 	unsigned long nr_pages;
1739 
1740 	/* Uncommit the reservation */
1741 	h->resv_huge_pages -= unused_resv_pages;
1742 
1743 	/* Cannot return gigantic pages currently */
1744 	if (hstate_is_gigantic(h))
1745 		return;
1746 
1747 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1748 
1749 	/*
1750 	 * We want to release as many surplus pages as possible, spread
1751 	 * evenly across all nodes with memory. Iterate across these nodes
1752 	 * until we can no longer free unreserved surplus pages. This occurs
1753 	 * when the nodes with surplus pages have no free pages.
1754 	 * free_pool_huge_page() will balance the the freed pages across the
1755 	 * on-line nodes with memory and will handle the hstate accounting.
1756 	 */
1757 	while (nr_pages--) {
1758 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1759 			break;
1760 		cond_resched_lock(&hugetlb_lock);
1761 	}
1762 }
1763 
1764 
1765 /*
1766  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1767  * are used by the huge page allocation routines to manage reservations.
1768  *
1769  * vma_needs_reservation is called to determine if the huge page at addr
1770  * within the vma has an associated reservation.  If a reservation is
1771  * needed, the value 1 is returned.  The caller is then responsible for
1772  * managing the global reservation and subpool usage counts.  After
1773  * the huge page has been allocated, vma_commit_reservation is called
1774  * to add the page to the reservation map.  If the page allocation fails,
1775  * the reservation must be ended instead of committed.  vma_end_reservation
1776  * is called in such cases.
1777  *
1778  * In the normal case, vma_commit_reservation returns the same value
1779  * as the preceding vma_needs_reservation call.  The only time this
1780  * is not the case is if a reserve map was changed between calls.  It
1781  * is the responsibility of the caller to notice the difference and
1782  * take appropriate action.
1783  */
1784 enum vma_resv_mode {
1785 	VMA_NEEDS_RESV,
1786 	VMA_COMMIT_RESV,
1787 	VMA_END_RESV,
1788 };
1789 static long __vma_reservation_common(struct hstate *h,
1790 				struct vm_area_struct *vma, unsigned long addr,
1791 				enum vma_resv_mode mode)
1792 {
1793 	struct resv_map *resv;
1794 	pgoff_t idx;
1795 	long ret;
1796 
1797 	resv = vma_resv_map(vma);
1798 	if (!resv)
1799 		return 1;
1800 
1801 	idx = vma_hugecache_offset(h, vma, addr);
1802 	switch (mode) {
1803 	case VMA_NEEDS_RESV:
1804 		ret = region_chg(resv, idx, idx + 1);
1805 		break;
1806 	case VMA_COMMIT_RESV:
1807 		ret = region_add(resv, idx, idx + 1);
1808 		break;
1809 	case VMA_END_RESV:
1810 		region_abort(resv, idx, idx + 1);
1811 		ret = 0;
1812 		break;
1813 	default:
1814 		BUG();
1815 	}
1816 
1817 	if (vma->vm_flags & VM_MAYSHARE)
1818 		return ret;
1819 	else
1820 		return ret < 0 ? ret : 0;
1821 }
1822 
1823 static long vma_needs_reservation(struct hstate *h,
1824 			struct vm_area_struct *vma, unsigned long addr)
1825 {
1826 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1827 }
1828 
1829 static long vma_commit_reservation(struct hstate *h,
1830 			struct vm_area_struct *vma, unsigned long addr)
1831 {
1832 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1833 }
1834 
1835 static void vma_end_reservation(struct hstate *h,
1836 			struct vm_area_struct *vma, unsigned long addr)
1837 {
1838 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1839 }
1840 
1841 struct page *alloc_huge_page(struct vm_area_struct *vma,
1842 				    unsigned long addr, int avoid_reserve)
1843 {
1844 	struct hugepage_subpool *spool = subpool_vma(vma);
1845 	struct hstate *h = hstate_vma(vma);
1846 	struct page *page;
1847 	long map_chg, map_commit;
1848 	long gbl_chg;
1849 	int ret, idx;
1850 	struct hugetlb_cgroup *h_cg;
1851 
1852 	idx = hstate_index(h);
1853 	/*
1854 	 * Examine the region/reserve map to determine if the process
1855 	 * has a reservation for the page to be allocated.  A return
1856 	 * code of zero indicates a reservation exists (no change).
1857 	 */
1858 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1859 	if (map_chg < 0)
1860 		return ERR_PTR(-ENOMEM);
1861 
1862 	/*
1863 	 * Processes that did not create the mapping will have no
1864 	 * reserves as indicated by the region/reserve map. Check
1865 	 * that the allocation will not exceed the subpool limit.
1866 	 * Allocations for MAP_NORESERVE mappings also need to be
1867 	 * checked against any subpool limit.
1868 	 */
1869 	if (map_chg || avoid_reserve) {
1870 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1871 		if (gbl_chg < 0) {
1872 			vma_end_reservation(h, vma, addr);
1873 			return ERR_PTR(-ENOSPC);
1874 		}
1875 
1876 		/*
1877 		 * Even though there was no reservation in the region/reserve
1878 		 * map, there could be reservations associated with the
1879 		 * subpool that can be used.  This would be indicated if the
1880 		 * return value of hugepage_subpool_get_pages() is zero.
1881 		 * However, if avoid_reserve is specified we still avoid even
1882 		 * the subpool reservations.
1883 		 */
1884 		if (avoid_reserve)
1885 			gbl_chg = 1;
1886 	}
1887 
1888 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1889 	if (ret)
1890 		goto out_subpool_put;
1891 
1892 	spin_lock(&hugetlb_lock);
1893 	/*
1894 	 * glb_chg is passed to indicate whether or not a page must be taken
1895 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1896 	 * a reservation exists for the allocation.
1897 	 */
1898 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1899 	if (!page) {
1900 		spin_unlock(&hugetlb_lock);
1901 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1902 		if (!page)
1903 			goto out_uncharge_cgroup;
1904 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1905 			SetPagePrivate(page);
1906 			h->resv_huge_pages--;
1907 		}
1908 		spin_lock(&hugetlb_lock);
1909 		list_move(&page->lru, &h->hugepage_activelist);
1910 		/* Fall through */
1911 	}
1912 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1913 	spin_unlock(&hugetlb_lock);
1914 
1915 	set_page_private(page, (unsigned long)spool);
1916 
1917 	map_commit = vma_commit_reservation(h, vma, addr);
1918 	if (unlikely(map_chg > map_commit)) {
1919 		/*
1920 		 * The page was added to the reservation map between
1921 		 * vma_needs_reservation and vma_commit_reservation.
1922 		 * This indicates a race with hugetlb_reserve_pages.
1923 		 * Adjust for the subpool count incremented above AND
1924 		 * in hugetlb_reserve_pages for the same page.  Also,
1925 		 * the reservation count added in hugetlb_reserve_pages
1926 		 * no longer applies.
1927 		 */
1928 		long rsv_adjust;
1929 
1930 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1931 		hugetlb_acct_memory(h, -rsv_adjust);
1932 	}
1933 	return page;
1934 
1935 out_uncharge_cgroup:
1936 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1937 out_subpool_put:
1938 	if (map_chg || avoid_reserve)
1939 		hugepage_subpool_put_pages(spool, 1);
1940 	vma_end_reservation(h, vma, addr);
1941 	return ERR_PTR(-ENOSPC);
1942 }
1943 
1944 /*
1945  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1946  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1947  * where no ERR_VALUE is expected to be returned.
1948  */
1949 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1950 				unsigned long addr, int avoid_reserve)
1951 {
1952 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1953 	if (IS_ERR(page))
1954 		page = NULL;
1955 	return page;
1956 }
1957 
1958 int __weak alloc_bootmem_huge_page(struct hstate *h)
1959 {
1960 	struct huge_bootmem_page *m;
1961 	int nr_nodes, node;
1962 
1963 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1964 		void *addr;
1965 
1966 		addr = memblock_virt_alloc_try_nid_nopanic(
1967 				huge_page_size(h), huge_page_size(h),
1968 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1969 		if (addr) {
1970 			/*
1971 			 * Use the beginning of the huge page to store the
1972 			 * huge_bootmem_page struct (until gather_bootmem
1973 			 * puts them into the mem_map).
1974 			 */
1975 			m = addr;
1976 			goto found;
1977 		}
1978 	}
1979 	return 0;
1980 
1981 found:
1982 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1983 	/* Put them into a private list first because mem_map is not up yet */
1984 	list_add(&m->list, &huge_boot_pages);
1985 	m->hstate = h;
1986 	return 1;
1987 }
1988 
1989 static void __init prep_compound_huge_page(struct page *page,
1990 		unsigned int order)
1991 {
1992 	if (unlikely(order > (MAX_ORDER - 1)))
1993 		prep_compound_gigantic_page(page, order);
1994 	else
1995 		prep_compound_page(page, order);
1996 }
1997 
1998 /* Put bootmem huge pages into the standard lists after mem_map is up */
1999 static void __init gather_bootmem_prealloc(void)
2000 {
2001 	struct huge_bootmem_page *m;
2002 
2003 	list_for_each_entry(m, &huge_boot_pages, list) {
2004 		struct hstate *h = m->hstate;
2005 		struct page *page;
2006 
2007 #ifdef CONFIG_HIGHMEM
2008 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2009 		memblock_free_late(__pa(m),
2010 				   sizeof(struct huge_bootmem_page));
2011 #else
2012 		page = virt_to_page(m);
2013 #endif
2014 		WARN_ON(page_count(page) != 1);
2015 		prep_compound_huge_page(page, h->order);
2016 		WARN_ON(PageReserved(page));
2017 		prep_new_huge_page(h, page, page_to_nid(page));
2018 		/*
2019 		 * If we had gigantic hugepages allocated at boot time, we need
2020 		 * to restore the 'stolen' pages to totalram_pages in order to
2021 		 * fix confusing memory reports from free(1) and another
2022 		 * side-effects, like CommitLimit going negative.
2023 		 */
2024 		if (hstate_is_gigantic(h))
2025 			adjust_managed_page_count(page, 1 << h->order);
2026 	}
2027 }
2028 
2029 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2030 {
2031 	unsigned long i;
2032 
2033 	for (i = 0; i < h->max_huge_pages; ++i) {
2034 		if (hstate_is_gigantic(h)) {
2035 			if (!alloc_bootmem_huge_page(h))
2036 				break;
2037 		} else if (!alloc_fresh_huge_page(h,
2038 					 &node_states[N_MEMORY]))
2039 			break;
2040 	}
2041 	h->max_huge_pages = i;
2042 }
2043 
2044 static void __init hugetlb_init_hstates(void)
2045 {
2046 	struct hstate *h;
2047 
2048 	for_each_hstate(h) {
2049 		if (minimum_order > huge_page_order(h))
2050 			minimum_order = huge_page_order(h);
2051 
2052 		/* oversize hugepages were init'ed in early boot */
2053 		if (!hstate_is_gigantic(h))
2054 			hugetlb_hstate_alloc_pages(h);
2055 	}
2056 	VM_BUG_ON(minimum_order == UINT_MAX);
2057 }
2058 
2059 static char * __init memfmt(char *buf, unsigned long n)
2060 {
2061 	if (n >= (1UL << 30))
2062 		sprintf(buf, "%lu GB", n >> 30);
2063 	else if (n >= (1UL << 20))
2064 		sprintf(buf, "%lu MB", n >> 20);
2065 	else
2066 		sprintf(buf, "%lu KB", n >> 10);
2067 	return buf;
2068 }
2069 
2070 static void __init report_hugepages(void)
2071 {
2072 	struct hstate *h;
2073 
2074 	for_each_hstate(h) {
2075 		char buf[32];
2076 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2077 			memfmt(buf, huge_page_size(h)),
2078 			h->free_huge_pages);
2079 	}
2080 }
2081 
2082 #ifdef CONFIG_HIGHMEM
2083 static void try_to_free_low(struct hstate *h, unsigned long count,
2084 						nodemask_t *nodes_allowed)
2085 {
2086 	int i;
2087 
2088 	if (hstate_is_gigantic(h))
2089 		return;
2090 
2091 	for_each_node_mask(i, *nodes_allowed) {
2092 		struct page *page, *next;
2093 		struct list_head *freel = &h->hugepage_freelists[i];
2094 		list_for_each_entry_safe(page, next, freel, lru) {
2095 			if (count >= h->nr_huge_pages)
2096 				return;
2097 			if (PageHighMem(page))
2098 				continue;
2099 			list_del(&page->lru);
2100 			update_and_free_page(h, page);
2101 			h->free_huge_pages--;
2102 			h->free_huge_pages_node[page_to_nid(page)]--;
2103 		}
2104 	}
2105 }
2106 #else
2107 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2108 						nodemask_t *nodes_allowed)
2109 {
2110 }
2111 #endif
2112 
2113 /*
2114  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2115  * balanced by operating on them in a round-robin fashion.
2116  * Returns 1 if an adjustment was made.
2117  */
2118 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2119 				int delta)
2120 {
2121 	int nr_nodes, node;
2122 
2123 	VM_BUG_ON(delta != -1 && delta != 1);
2124 
2125 	if (delta < 0) {
2126 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2127 			if (h->surplus_huge_pages_node[node])
2128 				goto found;
2129 		}
2130 	} else {
2131 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2132 			if (h->surplus_huge_pages_node[node] <
2133 					h->nr_huge_pages_node[node])
2134 				goto found;
2135 		}
2136 	}
2137 	return 0;
2138 
2139 found:
2140 	h->surplus_huge_pages += delta;
2141 	h->surplus_huge_pages_node[node] += delta;
2142 	return 1;
2143 }
2144 
2145 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2146 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2147 						nodemask_t *nodes_allowed)
2148 {
2149 	unsigned long min_count, ret;
2150 
2151 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2152 		return h->max_huge_pages;
2153 
2154 	/*
2155 	 * Increase the pool size
2156 	 * First take pages out of surplus state.  Then make up the
2157 	 * remaining difference by allocating fresh huge pages.
2158 	 *
2159 	 * We might race with __alloc_buddy_huge_page() here and be unable
2160 	 * to convert a surplus huge page to a normal huge page. That is
2161 	 * not critical, though, it just means the overall size of the
2162 	 * pool might be one hugepage larger than it needs to be, but
2163 	 * within all the constraints specified by the sysctls.
2164 	 */
2165 	spin_lock(&hugetlb_lock);
2166 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2167 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2168 			break;
2169 	}
2170 
2171 	while (count > persistent_huge_pages(h)) {
2172 		/*
2173 		 * If this allocation races such that we no longer need the
2174 		 * page, free_huge_page will handle it by freeing the page
2175 		 * and reducing the surplus.
2176 		 */
2177 		spin_unlock(&hugetlb_lock);
2178 		if (hstate_is_gigantic(h))
2179 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2180 		else
2181 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2182 		spin_lock(&hugetlb_lock);
2183 		if (!ret)
2184 			goto out;
2185 
2186 		/* Bail for signals. Probably ctrl-c from user */
2187 		if (signal_pending(current))
2188 			goto out;
2189 	}
2190 
2191 	/*
2192 	 * Decrease the pool size
2193 	 * First return free pages to the buddy allocator (being careful
2194 	 * to keep enough around to satisfy reservations).  Then place
2195 	 * pages into surplus state as needed so the pool will shrink
2196 	 * to the desired size as pages become free.
2197 	 *
2198 	 * By placing pages into the surplus state independent of the
2199 	 * overcommit value, we are allowing the surplus pool size to
2200 	 * exceed overcommit. There are few sane options here. Since
2201 	 * __alloc_buddy_huge_page() is checking the global counter,
2202 	 * though, we'll note that we're not allowed to exceed surplus
2203 	 * and won't grow the pool anywhere else. Not until one of the
2204 	 * sysctls are changed, or the surplus pages go out of use.
2205 	 */
2206 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2207 	min_count = max(count, min_count);
2208 	try_to_free_low(h, min_count, nodes_allowed);
2209 	while (min_count < persistent_huge_pages(h)) {
2210 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2211 			break;
2212 		cond_resched_lock(&hugetlb_lock);
2213 	}
2214 	while (count < persistent_huge_pages(h)) {
2215 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2216 			break;
2217 	}
2218 out:
2219 	ret = persistent_huge_pages(h);
2220 	spin_unlock(&hugetlb_lock);
2221 	return ret;
2222 }
2223 
2224 #define HSTATE_ATTR_RO(_name) \
2225 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2226 
2227 #define HSTATE_ATTR(_name) \
2228 	static struct kobj_attribute _name##_attr = \
2229 		__ATTR(_name, 0644, _name##_show, _name##_store)
2230 
2231 static struct kobject *hugepages_kobj;
2232 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2233 
2234 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2235 
2236 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2237 {
2238 	int i;
2239 
2240 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2241 		if (hstate_kobjs[i] == kobj) {
2242 			if (nidp)
2243 				*nidp = NUMA_NO_NODE;
2244 			return &hstates[i];
2245 		}
2246 
2247 	return kobj_to_node_hstate(kobj, nidp);
2248 }
2249 
2250 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2251 					struct kobj_attribute *attr, char *buf)
2252 {
2253 	struct hstate *h;
2254 	unsigned long nr_huge_pages;
2255 	int nid;
2256 
2257 	h = kobj_to_hstate(kobj, &nid);
2258 	if (nid == NUMA_NO_NODE)
2259 		nr_huge_pages = h->nr_huge_pages;
2260 	else
2261 		nr_huge_pages = h->nr_huge_pages_node[nid];
2262 
2263 	return sprintf(buf, "%lu\n", nr_huge_pages);
2264 }
2265 
2266 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2267 					   struct hstate *h, int nid,
2268 					   unsigned long count, size_t len)
2269 {
2270 	int err;
2271 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2272 
2273 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2274 		err = -EINVAL;
2275 		goto out;
2276 	}
2277 
2278 	if (nid == NUMA_NO_NODE) {
2279 		/*
2280 		 * global hstate attribute
2281 		 */
2282 		if (!(obey_mempolicy &&
2283 				init_nodemask_of_mempolicy(nodes_allowed))) {
2284 			NODEMASK_FREE(nodes_allowed);
2285 			nodes_allowed = &node_states[N_MEMORY];
2286 		}
2287 	} else if (nodes_allowed) {
2288 		/*
2289 		 * per node hstate attribute: adjust count to global,
2290 		 * but restrict alloc/free to the specified node.
2291 		 */
2292 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2293 		init_nodemask_of_node(nodes_allowed, nid);
2294 	} else
2295 		nodes_allowed = &node_states[N_MEMORY];
2296 
2297 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2298 
2299 	if (nodes_allowed != &node_states[N_MEMORY])
2300 		NODEMASK_FREE(nodes_allowed);
2301 
2302 	return len;
2303 out:
2304 	NODEMASK_FREE(nodes_allowed);
2305 	return err;
2306 }
2307 
2308 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2309 					 struct kobject *kobj, const char *buf,
2310 					 size_t len)
2311 {
2312 	struct hstate *h;
2313 	unsigned long count;
2314 	int nid;
2315 	int err;
2316 
2317 	err = kstrtoul(buf, 10, &count);
2318 	if (err)
2319 		return err;
2320 
2321 	h = kobj_to_hstate(kobj, &nid);
2322 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2323 }
2324 
2325 static ssize_t nr_hugepages_show(struct kobject *kobj,
2326 				       struct kobj_attribute *attr, char *buf)
2327 {
2328 	return nr_hugepages_show_common(kobj, attr, buf);
2329 }
2330 
2331 static ssize_t nr_hugepages_store(struct kobject *kobj,
2332 	       struct kobj_attribute *attr, const char *buf, size_t len)
2333 {
2334 	return nr_hugepages_store_common(false, kobj, buf, len);
2335 }
2336 HSTATE_ATTR(nr_hugepages);
2337 
2338 #ifdef CONFIG_NUMA
2339 
2340 /*
2341  * hstate attribute for optionally mempolicy-based constraint on persistent
2342  * huge page alloc/free.
2343  */
2344 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2345 				       struct kobj_attribute *attr, char *buf)
2346 {
2347 	return nr_hugepages_show_common(kobj, attr, buf);
2348 }
2349 
2350 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2351 	       struct kobj_attribute *attr, const char *buf, size_t len)
2352 {
2353 	return nr_hugepages_store_common(true, kobj, buf, len);
2354 }
2355 HSTATE_ATTR(nr_hugepages_mempolicy);
2356 #endif
2357 
2358 
2359 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2360 					struct kobj_attribute *attr, char *buf)
2361 {
2362 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2363 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2364 }
2365 
2366 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2367 		struct kobj_attribute *attr, const char *buf, size_t count)
2368 {
2369 	int err;
2370 	unsigned long input;
2371 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2372 
2373 	if (hstate_is_gigantic(h))
2374 		return -EINVAL;
2375 
2376 	err = kstrtoul(buf, 10, &input);
2377 	if (err)
2378 		return err;
2379 
2380 	spin_lock(&hugetlb_lock);
2381 	h->nr_overcommit_huge_pages = input;
2382 	spin_unlock(&hugetlb_lock);
2383 
2384 	return count;
2385 }
2386 HSTATE_ATTR(nr_overcommit_hugepages);
2387 
2388 static ssize_t free_hugepages_show(struct kobject *kobj,
2389 					struct kobj_attribute *attr, char *buf)
2390 {
2391 	struct hstate *h;
2392 	unsigned long free_huge_pages;
2393 	int nid;
2394 
2395 	h = kobj_to_hstate(kobj, &nid);
2396 	if (nid == NUMA_NO_NODE)
2397 		free_huge_pages = h->free_huge_pages;
2398 	else
2399 		free_huge_pages = h->free_huge_pages_node[nid];
2400 
2401 	return sprintf(buf, "%lu\n", free_huge_pages);
2402 }
2403 HSTATE_ATTR_RO(free_hugepages);
2404 
2405 static ssize_t resv_hugepages_show(struct kobject *kobj,
2406 					struct kobj_attribute *attr, char *buf)
2407 {
2408 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2409 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2410 }
2411 HSTATE_ATTR_RO(resv_hugepages);
2412 
2413 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2414 					struct kobj_attribute *attr, char *buf)
2415 {
2416 	struct hstate *h;
2417 	unsigned long surplus_huge_pages;
2418 	int nid;
2419 
2420 	h = kobj_to_hstate(kobj, &nid);
2421 	if (nid == NUMA_NO_NODE)
2422 		surplus_huge_pages = h->surplus_huge_pages;
2423 	else
2424 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2425 
2426 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2427 }
2428 HSTATE_ATTR_RO(surplus_hugepages);
2429 
2430 static struct attribute *hstate_attrs[] = {
2431 	&nr_hugepages_attr.attr,
2432 	&nr_overcommit_hugepages_attr.attr,
2433 	&free_hugepages_attr.attr,
2434 	&resv_hugepages_attr.attr,
2435 	&surplus_hugepages_attr.attr,
2436 #ifdef CONFIG_NUMA
2437 	&nr_hugepages_mempolicy_attr.attr,
2438 #endif
2439 	NULL,
2440 };
2441 
2442 static struct attribute_group hstate_attr_group = {
2443 	.attrs = hstate_attrs,
2444 };
2445 
2446 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2447 				    struct kobject **hstate_kobjs,
2448 				    struct attribute_group *hstate_attr_group)
2449 {
2450 	int retval;
2451 	int hi = hstate_index(h);
2452 
2453 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2454 	if (!hstate_kobjs[hi])
2455 		return -ENOMEM;
2456 
2457 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2458 	if (retval)
2459 		kobject_put(hstate_kobjs[hi]);
2460 
2461 	return retval;
2462 }
2463 
2464 static void __init hugetlb_sysfs_init(void)
2465 {
2466 	struct hstate *h;
2467 	int err;
2468 
2469 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2470 	if (!hugepages_kobj)
2471 		return;
2472 
2473 	for_each_hstate(h) {
2474 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2475 					 hstate_kobjs, &hstate_attr_group);
2476 		if (err)
2477 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2478 	}
2479 }
2480 
2481 #ifdef CONFIG_NUMA
2482 
2483 /*
2484  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2485  * with node devices in node_devices[] using a parallel array.  The array
2486  * index of a node device or _hstate == node id.
2487  * This is here to avoid any static dependency of the node device driver, in
2488  * the base kernel, on the hugetlb module.
2489  */
2490 struct node_hstate {
2491 	struct kobject		*hugepages_kobj;
2492 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2493 };
2494 static struct node_hstate node_hstates[MAX_NUMNODES];
2495 
2496 /*
2497  * A subset of global hstate attributes for node devices
2498  */
2499 static struct attribute *per_node_hstate_attrs[] = {
2500 	&nr_hugepages_attr.attr,
2501 	&free_hugepages_attr.attr,
2502 	&surplus_hugepages_attr.attr,
2503 	NULL,
2504 };
2505 
2506 static struct attribute_group per_node_hstate_attr_group = {
2507 	.attrs = per_node_hstate_attrs,
2508 };
2509 
2510 /*
2511  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2512  * Returns node id via non-NULL nidp.
2513  */
2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2515 {
2516 	int nid;
2517 
2518 	for (nid = 0; nid < nr_node_ids; nid++) {
2519 		struct node_hstate *nhs = &node_hstates[nid];
2520 		int i;
2521 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2522 			if (nhs->hstate_kobjs[i] == kobj) {
2523 				if (nidp)
2524 					*nidp = nid;
2525 				return &hstates[i];
2526 			}
2527 	}
2528 
2529 	BUG();
2530 	return NULL;
2531 }
2532 
2533 /*
2534  * Unregister hstate attributes from a single node device.
2535  * No-op if no hstate attributes attached.
2536  */
2537 static void hugetlb_unregister_node(struct node *node)
2538 {
2539 	struct hstate *h;
2540 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2541 
2542 	if (!nhs->hugepages_kobj)
2543 		return;		/* no hstate attributes */
2544 
2545 	for_each_hstate(h) {
2546 		int idx = hstate_index(h);
2547 		if (nhs->hstate_kobjs[idx]) {
2548 			kobject_put(nhs->hstate_kobjs[idx]);
2549 			nhs->hstate_kobjs[idx] = NULL;
2550 		}
2551 	}
2552 
2553 	kobject_put(nhs->hugepages_kobj);
2554 	nhs->hugepages_kobj = NULL;
2555 }
2556 
2557 
2558 /*
2559  * Register hstate attributes for a single node device.
2560  * No-op if attributes already registered.
2561  */
2562 static void hugetlb_register_node(struct node *node)
2563 {
2564 	struct hstate *h;
2565 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2566 	int err;
2567 
2568 	if (nhs->hugepages_kobj)
2569 		return;		/* already allocated */
2570 
2571 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2572 							&node->dev.kobj);
2573 	if (!nhs->hugepages_kobj)
2574 		return;
2575 
2576 	for_each_hstate(h) {
2577 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2578 						nhs->hstate_kobjs,
2579 						&per_node_hstate_attr_group);
2580 		if (err) {
2581 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2582 				h->name, node->dev.id);
2583 			hugetlb_unregister_node(node);
2584 			break;
2585 		}
2586 	}
2587 }
2588 
2589 /*
2590  * hugetlb init time:  register hstate attributes for all registered node
2591  * devices of nodes that have memory.  All on-line nodes should have
2592  * registered their associated device by this time.
2593  */
2594 static void __init hugetlb_register_all_nodes(void)
2595 {
2596 	int nid;
2597 
2598 	for_each_node_state(nid, N_MEMORY) {
2599 		struct node *node = node_devices[nid];
2600 		if (node->dev.id == nid)
2601 			hugetlb_register_node(node);
2602 	}
2603 
2604 	/*
2605 	 * Let the node device driver know we're here so it can
2606 	 * [un]register hstate attributes on node hotplug.
2607 	 */
2608 	register_hugetlbfs_with_node(hugetlb_register_node,
2609 				     hugetlb_unregister_node);
2610 }
2611 #else	/* !CONFIG_NUMA */
2612 
2613 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2614 {
2615 	BUG();
2616 	if (nidp)
2617 		*nidp = -1;
2618 	return NULL;
2619 }
2620 
2621 static void hugetlb_register_all_nodes(void) { }
2622 
2623 #endif
2624 
2625 static int __init hugetlb_init(void)
2626 {
2627 	int i;
2628 
2629 	if (!hugepages_supported())
2630 		return 0;
2631 
2632 	if (!size_to_hstate(default_hstate_size)) {
2633 		default_hstate_size = HPAGE_SIZE;
2634 		if (!size_to_hstate(default_hstate_size))
2635 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2636 	}
2637 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2638 	if (default_hstate_max_huge_pages) {
2639 		if (!default_hstate.max_huge_pages)
2640 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2641 	}
2642 
2643 	hugetlb_init_hstates();
2644 	gather_bootmem_prealloc();
2645 	report_hugepages();
2646 
2647 	hugetlb_sysfs_init();
2648 	hugetlb_register_all_nodes();
2649 	hugetlb_cgroup_file_init();
2650 
2651 #ifdef CONFIG_SMP
2652 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2653 #else
2654 	num_fault_mutexes = 1;
2655 #endif
2656 	hugetlb_fault_mutex_table =
2657 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2658 	BUG_ON(!hugetlb_fault_mutex_table);
2659 
2660 	for (i = 0; i < num_fault_mutexes; i++)
2661 		mutex_init(&hugetlb_fault_mutex_table[i]);
2662 	return 0;
2663 }
2664 subsys_initcall(hugetlb_init);
2665 
2666 /* Should be called on processing a hugepagesz=... option */
2667 void __init hugetlb_bad_size(void)
2668 {
2669 	parsed_valid_hugepagesz = false;
2670 }
2671 
2672 void __init hugetlb_add_hstate(unsigned int order)
2673 {
2674 	struct hstate *h;
2675 	unsigned long i;
2676 
2677 	if (size_to_hstate(PAGE_SIZE << order)) {
2678 		pr_warn("hugepagesz= specified twice, ignoring\n");
2679 		return;
2680 	}
2681 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2682 	BUG_ON(order == 0);
2683 	h = &hstates[hugetlb_max_hstate++];
2684 	h->order = order;
2685 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2686 	h->nr_huge_pages = 0;
2687 	h->free_huge_pages = 0;
2688 	for (i = 0; i < MAX_NUMNODES; ++i)
2689 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2690 	INIT_LIST_HEAD(&h->hugepage_activelist);
2691 	h->next_nid_to_alloc = first_memory_node;
2692 	h->next_nid_to_free = first_memory_node;
2693 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2694 					huge_page_size(h)/1024);
2695 
2696 	parsed_hstate = h;
2697 }
2698 
2699 static int __init hugetlb_nrpages_setup(char *s)
2700 {
2701 	unsigned long *mhp;
2702 	static unsigned long *last_mhp;
2703 
2704 	if (!parsed_valid_hugepagesz) {
2705 		pr_warn("hugepages = %s preceded by "
2706 			"an unsupported hugepagesz, ignoring\n", s);
2707 		parsed_valid_hugepagesz = true;
2708 		return 1;
2709 	}
2710 	/*
2711 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712 	 * so this hugepages= parameter goes to the "default hstate".
2713 	 */
2714 	else if (!hugetlb_max_hstate)
2715 		mhp = &default_hstate_max_huge_pages;
2716 	else
2717 		mhp = &parsed_hstate->max_huge_pages;
2718 
2719 	if (mhp == last_mhp) {
2720 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2721 		return 1;
2722 	}
2723 
2724 	if (sscanf(s, "%lu", mhp) <= 0)
2725 		*mhp = 0;
2726 
2727 	/*
2728 	 * Global state is always initialized later in hugetlb_init.
2729 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2730 	 * use the bootmem allocator.
2731 	 */
2732 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2733 		hugetlb_hstate_alloc_pages(parsed_hstate);
2734 
2735 	last_mhp = mhp;
2736 
2737 	return 1;
2738 }
2739 __setup("hugepages=", hugetlb_nrpages_setup);
2740 
2741 static int __init hugetlb_default_setup(char *s)
2742 {
2743 	default_hstate_size = memparse(s, &s);
2744 	return 1;
2745 }
2746 __setup("default_hugepagesz=", hugetlb_default_setup);
2747 
2748 static unsigned int cpuset_mems_nr(unsigned int *array)
2749 {
2750 	int node;
2751 	unsigned int nr = 0;
2752 
2753 	for_each_node_mask(node, cpuset_current_mems_allowed)
2754 		nr += array[node];
2755 
2756 	return nr;
2757 }
2758 
2759 #ifdef CONFIG_SYSCTL
2760 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2761 			 struct ctl_table *table, int write,
2762 			 void __user *buffer, size_t *length, loff_t *ppos)
2763 {
2764 	struct hstate *h = &default_hstate;
2765 	unsigned long tmp = h->max_huge_pages;
2766 	int ret;
2767 
2768 	if (!hugepages_supported())
2769 		return -EOPNOTSUPP;
2770 
2771 	table->data = &tmp;
2772 	table->maxlen = sizeof(unsigned long);
2773 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2774 	if (ret)
2775 		goto out;
2776 
2777 	if (write)
2778 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2779 						  NUMA_NO_NODE, tmp, *length);
2780 out:
2781 	return ret;
2782 }
2783 
2784 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2785 			  void __user *buffer, size_t *length, loff_t *ppos)
2786 {
2787 
2788 	return hugetlb_sysctl_handler_common(false, table, write,
2789 							buffer, length, ppos);
2790 }
2791 
2792 #ifdef CONFIG_NUMA
2793 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2794 			  void __user *buffer, size_t *length, loff_t *ppos)
2795 {
2796 	return hugetlb_sysctl_handler_common(true, table, write,
2797 							buffer, length, ppos);
2798 }
2799 #endif /* CONFIG_NUMA */
2800 
2801 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2802 			void __user *buffer,
2803 			size_t *length, loff_t *ppos)
2804 {
2805 	struct hstate *h = &default_hstate;
2806 	unsigned long tmp;
2807 	int ret;
2808 
2809 	if (!hugepages_supported())
2810 		return -EOPNOTSUPP;
2811 
2812 	tmp = h->nr_overcommit_huge_pages;
2813 
2814 	if (write && hstate_is_gigantic(h))
2815 		return -EINVAL;
2816 
2817 	table->data = &tmp;
2818 	table->maxlen = sizeof(unsigned long);
2819 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2820 	if (ret)
2821 		goto out;
2822 
2823 	if (write) {
2824 		spin_lock(&hugetlb_lock);
2825 		h->nr_overcommit_huge_pages = tmp;
2826 		spin_unlock(&hugetlb_lock);
2827 	}
2828 out:
2829 	return ret;
2830 }
2831 
2832 #endif /* CONFIG_SYSCTL */
2833 
2834 void hugetlb_report_meminfo(struct seq_file *m)
2835 {
2836 	struct hstate *h = &default_hstate;
2837 	if (!hugepages_supported())
2838 		return;
2839 	seq_printf(m,
2840 			"HugePages_Total:   %5lu\n"
2841 			"HugePages_Free:    %5lu\n"
2842 			"HugePages_Rsvd:    %5lu\n"
2843 			"HugePages_Surp:    %5lu\n"
2844 			"Hugepagesize:   %8lu kB\n",
2845 			h->nr_huge_pages,
2846 			h->free_huge_pages,
2847 			h->resv_huge_pages,
2848 			h->surplus_huge_pages,
2849 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2850 }
2851 
2852 int hugetlb_report_node_meminfo(int nid, char *buf)
2853 {
2854 	struct hstate *h = &default_hstate;
2855 	if (!hugepages_supported())
2856 		return 0;
2857 	return sprintf(buf,
2858 		"Node %d HugePages_Total: %5u\n"
2859 		"Node %d HugePages_Free:  %5u\n"
2860 		"Node %d HugePages_Surp:  %5u\n",
2861 		nid, h->nr_huge_pages_node[nid],
2862 		nid, h->free_huge_pages_node[nid],
2863 		nid, h->surplus_huge_pages_node[nid]);
2864 }
2865 
2866 void hugetlb_show_meminfo(void)
2867 {
2868 	struct hstate *h;
2869 	int nid;
2870 
2871 	if (!hugepages_supported())
2872 		return;
2873 
2874 	for_each_node_state(nid, N_MEMORY)
2875 		for_each_hstate(h)
2876 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2877 				nid,
2878 				h->nr_huge_pages_node[nid],
2879 				h->free_huge_pages_node[nid],
2880 				h->surplus_huge_pages_node[nid],
2881 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2882 }
2883 
2884 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2885 {
2886 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2887 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2888 }
2889 
2890 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2891 unsigned long hugetlb_total_pages(void)
2892 {
2893 	struct hstate *h;
2894 	unsigned long nr_total_pages = 0;
2895 
2896 	for_each_hstate(h)
2897 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2898 	return nr_total_pages;
2899 }
2900 
2901 static int hugetlb_acct_memory(struct hstate *h, long delta)
2902 {
2903 	int ret = -ENOMEM;
2904 
2905 	spin_lock(&hugetlb_lock);
2906 	/*
2907 	 * When cpuset is configured, it breaks the strict hugetlb page
2908 	 * reservation as the accounting is done on a global variable. Such
2909 	 * reservation is completely rubbish in the presence of cpuset because
2910 	 * the reservation is not checked against page availability for the
2911 	 * current cpuset. Application can still potentially OOM'ed by kernel
2912 	 * with lack of free htlb page in cpuset that the task is in.
2913 	 * Attempt to enforce strict accounting with cpuset is almost
2914 	 * impossible (or too ugly) because cpuset is too fluid that
2915 	 * task or memory node can be dynamically moved between cpusets.
2916 	 *
2917 	 * The change of semantics for shared hugetlb mapping with cpuset is
2918 	 * undesirable. However, in order to preserve some of the semantics,
2919 	 * we fall back to check against current free page availability as
2920 	 * a best attempt and hopefully to minimize the impact of changing
2921 	 * semantics that cpuset has.
2922 	 */
2923 	if (delta > 0) {
2924 		if (gather_surplus_pages(h, delta) < 0)
2925 			goto out;
2926 
2927 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2928 			return_unused_surplus_pages(h, delta);
2929 			goto out;
2930 		}
2931 	}
2932 
2933 	ret = 0;
2934 	if (delta < 0)
2935 		return_unused_surplus_pages(h, (unsigned long) -delta);
2936 
2937 out:
2938 	spin_unlock(&hugetlb_lock);
2939 	return ret;
2940 }
2941 
2942 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2943 {
2944 	struct resv_map *resv = vma_resv_map(vma);
2945 
2946 	/*
2947 	 * This new VMA should share its siblings reservation map if present.
2948 	 * The VMA will only ever have a valid reservation map pointer where
2949 	 * it is being copied for another still existing VMA.  As that VMA
2950 	 * has a reference to the reservation map it cannot disappear until
2951 	 * after this open call completes.  It is therefore safe to take a
2952 	 * new reference here without additional locking.
2953 	 */
2954 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2955 		kref_get(&resv->refs);
2956 }
2957 
2958 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2959 {
2960 	struct hstate *h = hstate_vma(vma);
2961 	struct resv_map *resv = vma_resv_map(vma);
2962 	struct hugepage_subpool *spool = subpool_vma(vma);
2963 	unsigned long reserve, start, end;
2964 	long gbl_reserve;
2965 
2966 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2967 		return;
2968 
2969 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2970 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2971 
2972 	reserve = (end - start) - region_count(resv, start, end);
2973 
2974 	kref_put(&resv->refs, resv_map_release);
2975 
2976 	if (reserve) {
2977 		/*
2978 		 * Decrement reserve counts.  The global reserve count may be
2979 		 * adjusted if the subpool has a minimum size.
2980 		 */
2981 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2982 		hugetlb_acct_memory(h, -gbl_reserve);
2983 	}
2984 }
2985 
2986 /*
2987  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2988  * handle_mm_fault() to try to instantiate regular-sized pages in the
2989  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2990  * this far.
2991  */
2992 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2993 {
2994 	BUG();
2995 	return 0;
2996 }
2997 
2998 const struct vm_operations_struct hugetlb_vm_ops = {
2999 	.fault = hugetlb_vm_op_fault,
3000 	.open = hugetlb_vm_op_open,
3001 	.close = hugetlb_vm_op_close,
3002 };
3003 
3004 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3005 				int writable)
3006 {
3007 	pte_t entry;
3008 
3009 	if (writable) {
3010 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3011 					 vma->vm_page_prot)));
3012 	} else {
3013 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3014 					   vma->vm_page_prot));
3015 	}
3016 	entry = pte_mkyoung(entry);
3017 	entry = pte_mkhuge(entry);
3018 	entry = arch_make_huge_pte(entry, vma, page, writable);
3019 
3020 	return entry;
3021 }
3022 
3023 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3024 				   unsigned long address, pte_t *ptep)
3025 {
3026 	pte_t entry;
3027 
3028 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3029 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3030 		update_mmu_cache(vma, address, ptep);
3031 }
3032 
3033 static int is_hugetlb_entry_migration(pte_t pte)
3034 {
3035 	swp_entry_t swp;
3036 
3037 	if (huge_pte_none(pte) || pte_present(pte))
3038 		return 0;
3039 	swp = pte_to_swp_entry(pte);
3040 	if (non_swap_entry(swp) && is_migration_entry(swp))
3041 		return 1;
3042 	else
3043 		return 0;
3044 }
3045 
3046 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3047 {
3048 	swp_entry_t swp;
3049 
3050 	if (huge_pte_none(pte) || pte_present(pte))
3051 		return 0;
3052 	swp = pte_to_swp_entry(pte);
3053 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3054 		return 1;
3055 	else
3056 		return 0;
3057 }
3058 
3059 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3060 			    struct vm_area_struct *vma)
3061 {
3062 	pte_t *src_pte, *dst_pte, entry;
3063 	struct page *ptepage;
3064 	unsigned long addr;
3065 	int cow;
3066 	struct hstate *h = hstate_vma(vma);
3067 	unsigned long sz = huge_page_size(h);
3068 	unsigned long mmun_start;	/* For mmu_notifiers */
3069 	unsigned long mmun_end;		/* For mmu_notifiers */
3070 	int ret = 0;
3071 
3072 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3073 
3074 	mmun_start = vma->vm_start;
3075 	mmun_end = vma->vm_end;
3076 	if (cow)
3077 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3078 
3079 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3080 		spinlock_t *src_ptl, *dst_ptl;
3081 		src_pte = huge_pte_offset(src, addr);
3082 		if (!src_pte)
3083 			continue;
3084 		dst_pte = huge_pte_alloc(dst, addr, sz);
3085 		if (!dst_pte) {
3086 			ret = -ENOMEM;
3087 			break;
3088 		}
3089 
3090 		/* If the pagetables are shared don't copy or take references */
3091 		if (dst_pte == src_pte)
3092 			continue;
3093 
3094 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3095 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3096 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3097 		entry = huge_ptep_get(src_pte);
3098 		if (huge_pte_none(entry)) { /* skip none entry */
3099 			;
3100 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3101 				    is_hugetlb_entry_hwpoisoned(entry))) {
3102 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3103 
3104 			if (is_write_migration_entry(swp_entry) && cow) {
3105 				/*
3106 				 * COW mappings require pages in both
3107 				 * parent and child to be set to read.
3108 				 */
3109 				make_migration_entry_read(&swp_entry);
3110 				entry = swp_entry_to_pte(swp_entry);
3111 				set_huge_pte_at(src, addr, src_pte, entry);
3112 			}
3113 			set_huge_pte_at(dst, addr, dst_pte, entry);
3114 		} else {
3115 			if (cow) {
3116 				huge_ptep_set_wrprotect(src, addr, src_pte);
3117 				mmu_notifier_invalidate_range(src, mmun_start,
3118 								   mmun_end);
3119 			}
3120 			entry = huge_ptep_get(src_pte);
3121 			ptepage = pte_page(entry);
3122 			get_page(ptepage);
3123 			page_dup_rmap(ptepage, true);
3124 			set_huge_pte_at(dst, addr, dst_pte, entry);
3125 			hugetlb_count_add(pages_per_huge_page(h), dst);
3126 		}
3127 		spin_unlock(src_ptl);
3128 		spin_unlock(dst_ptl);
3129 	}
3130 
3131 	if (cow)
3132 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3133 
3134 	return ret;
3135 }
3136 
3137 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3138 			    unsigned long start, unsigned long end,
3139 			    struct page *ref_page)
3140 {
3141 	int force_flush = 0;
3142 	struct mm_struct *mm = vma->vm_mm;
3143 	unsigned long address;
3144 	pte_t *ptep;
3145 	pte_t pte;
3146 	spinlock_t *ptl;
3147 	struct page *page;
3148 	struct hstate *h = hstate_vma(vma);
3149 	unsigned long sz = huge_page_size(h);
3150 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3151 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3152 
3153 	WARN_ON(!is_vm_hugetlb_page(vma));
3154 	BUG_ON(start & ~huge_page_mask(h));
3155 	BUG_ON(end & ~huge_page_mask(h));
3156 
3157 	tlb_start_vma(tlb, vma);
3158 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3159 	address = start;
3160 again:
3161 	for (; address < end; address += sz) {
3162 		ptep = huge_pte_offset(mm, address);
3163 		if (!ptep)
3164 			continue;
3165 
3166 		ptl = huge_pte_lock(h, mm, ptep);
3167 		if (huge_pmd_unshare(mm, &address, ptep))
3168 			goto unlock;
3169 
3170 		pte = huge_ptep_get(ptep);
3171 		if (huge_pte_none(pte))
3172 			goto unlock;
3173 
3174 		/*
3175 		 * Migrating hugepage or HWPoisoned hugepage is already
3176 		 * unmapped and its refcount is dropped, so just clear pte here.
3177 		 */
3178 		if (unlikely(!pte_present(pte))) {
3179 			huge_pte_clear(mm, address, ptep);
3180 			goto unlock;
3181 		}
3182 
3183 		page = pte_page(pte);
3184 		/*
3185 		 * If a reference page is supplied, it is because a specific
3186 		 * page is being unmapped, not a range. Ensure the page we
3187 		 * are about to unmap is the actual page of interest.
3188 		 */
3189 		if (ref_page) {
3190 			if (page != ref_page)
3191 				goto unlock;
3192 
3193 			/*
3194 			 * Mark the VMA as having unmapped its page so that
3195 			 * future faults in this VMA will fail rather than
3196 			 * looking like data was lost
3197 			 */
3198 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3199 		}
3200 
3201 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3202 		tlb_remove_tlb_entry(tlb, ptep, address);
3203 		if (huge_pte_dirty(pte))
3204 			set_page_dirty(page);
3205 
3206 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3207 		page_remove_rmap(page, true);
3208 		force_flush = !__tlb_remove_page(tlb, page);
3209 		if (force_flush) {
3210 			address += sz;
3211 			spin_unlock(ptl);
3212 			break;
3213 		}
3214 		/* Bail out after unmapping reference page if supplied */
3215 		if (ref_page) {
3216 			spin_unlock(ptl);
3217 			break;
3218 		}
3219 unlock:
3220 		spin_unlock(ptl);
3221 	}
3222 	/*
3223 	 * mmu_gather ran out of room to batch pages, we break out of
3224 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3225 	 * and page-free while holding it.
3226 	 */
3227 	if (force_flush) {
3228 		force_flush = 0;
3229 		tlb_flush_mmu(tlb);
3230 		if (address < end && !ref_page)
3231 			goto again;
3232 	}
3233 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3234 	tlb_end_vma(tlb, vma);
3235 }
3236 
3237 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3238 			  struct vm_area_struct *vma, unsigned long start,
3239 			  unsigned long end, struct page *ref_page)
3240 {
3241 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3242 
3243 	/*
3244 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3245 	 * test will fail on a vma being torn down, and not grab a page table
3246 	 * on its way out.  We're lucky that the flag has such an appropriate
3247 	 * name, and can in fact be safely cleared here. We could clear it
3248 	 * before the __unmap_hugepage_range above, but all that's necessary
3249 	 * is to clear it before releasing the i_mmap_rwsem. This works
3250 	 * because in the context this is called, the VMA is about to be
3251 	 * destroyed and the i_mmap_rwsem is held.
3252 	 */
3253 	vma->vm_flags &= ~VM_MAYSHARE;
3254 }
3255 
3256 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3257 			  unsigned long end, struct page *ref_page)
3258 {
3259 	struct mm_struct *mm;
3260 	struct mmu_gather tlb;
3261 
3262 	mm = vma->vm_mm;
3263 
3264 	tlb_gather_mmu(&tlb, mm, start, end);
3265 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3266 	tlb_finish_mmu(&tlb, start, end);
3267 }
3268 
3269 /*
3270  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3271  * mappping it owns the reserve page for. The intention is to unmap the page
3272  * from other VMAs and let the children be SIGKILLed if they are faulting the
3273  * same region.
3274  */
3275 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3276 			      struct page *page, unsigned long address)
3277 {
3278 	struct hstate *h = hstate_vma(vma);
3279 	struct vm_area_struct *iter_vma;
3280 	struct address_space *mapping;
3281 	pgoff_t pgoff;
3282 
3283 	/*
3284 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3285 	 * from page cache lookup which is in HPAGE_SIZE units.
3286 	 */
3287 	address = address & huge_page_mask(h);
3288 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3289 			vma->vm_pgoff;
3290 	mapping = file_inode(vma->vm_file)->i_mapping;
3291 
3292 	/*
3293 	 * Take the mapping lock for the duration of the table walk. As
3294 	 * this mapping should be shared between all the VMAs,
3295 	 * __unmap_hugepage_range() is called as the lock is already held
3296 	 */
3297 	i_mmap_lock_write(mapping);
3298 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3299 		/* Do not unmap the current VMA */
3300 		if (iter_vma == vma)
3301 			continue;
3302 
3303 		/*
3304 		 * Shared VMAs have their own reserves and do not affect
3305 		 * MAP_PRIVATE accounting but it is possible that a shared
3306 		 * VMA is using the same page so check and skip such VMAs.
3307 		 */
3308 		if (iter_vma->vm_flags & VM_MAYSHARE)
3309 			continue;
3310 
3311 		/*
3312 		 * Unmap the page from other VMAs without their own reserves.
3313 		 * They get marked to be SIGKILLed if they fault in these
3314 		 * areas. This is because a future no-page fault on this VMA
3315 		 * could insert a zeroed page instead of the data existing
3316 		 * from the time of fork. This would look like data corruption
3317 		 */
3318 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3319 			unmap_hugepage_range(iter_vma, address,
3320 					     address + huge_page_size(h), page);
3321 	}
3322 	i_mmap_unlock_write(mapping);
3323 }
3324 
3325 /*
3326  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3327  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3328  * cannot race with other handlers or page migration.
3329  * Keep the pte_same checks anyway to make transition from the mutex easier.
3330  */
3331 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3332 			unsigned long address, pte_t *ptep, pte_t pte,
3333 			struct page *pagecache_page, spinlock_t *ptl)
3334 {
3335 	struct hstate *h = hstate_vma(vma);
3336 	struct page *old_page, *new_page;
3337 	int ret = 0, outside_reserve = 0;
3338 	unsigned long mmun_start;	/* For mmu_notifiers */
3339 	unsigned long mmun_end;		/* For mmu_notifiers */
3340 
3341 	old_page = pte_page(pte);
3342 
3343 retry_avoidcopy:
3344 	/* If no-one else is actually using this page, avoid the copy
3345 	 * and just make the page writable */
3346 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3347 		page_move_anon_rmap(old_page, vma, address);
3348 		set_huge_ptep_writable(vma, address, ptep);
3349 		return 0;
3350 	}
3351 
3352 	/*
3353 	 * If the process that created a MAP_PRIVATE mapping is about to
3354 	 * perform a COW due to a shared page count, attempt to satisfy
3355 	 * the allocation without using the existing reserves. The pagecache
3356 	 * page is used to determine if the reserve at this address was
3357 	 * consumed or not. If reserves were used, a partial faulted mapping
3358 	 * at the time of fork() could consume its reserves on COW instead
3359 	 * of the full address range.
3360 	 */
3361 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3362 			old_page != pagecache_page)
3363 		outside_reserve = 1;
3364 
3365 	get_page(old_page);
3366 
3367 	/*
3368 	 * Drop page table lock as buddy allocator may be called. It will
3369 	 * be acquired again before returning to the caller, as expected.
3370 	 */
3371 	spin_unlock(ptl);
3372 	new_page = alloc_huge_page(vma, address, outside_reserve);
3373 
3374 	if (IS_ERR(new_page)) {
3375 		/*
3376 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3377 		 * it is due to references held by a child and an insufficient
3378 		 * huge page pool. To guarantee the original mappers
3379 		 * reliability, unmap the page from child processes. The child
3380 		 * may get SIGKILLed if it later faults.
3381 		 */
3382 		if (outside_reserve) {
3383 			put_page(old_page);
3384 			BUG_ON(huge_pte_none(pte));
3385 			unmap_ref_private(mm, vma, old_page, address);
3386 			BUG_ON(huge_pte_none(pte));
3387 			spin_lock(ptl);
3388 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3389 			if (likely(ptep &&
3390 				   pte_same(huge_ptep_get(ptep), pte)))
3391 				goto retry_avoidcopy;
3392 			/*
3393 			 * race occurs while re-acquiring page table
3394 			 * lock, and our job is done.
3395 			 */
3396 			return 0;
3397 		}
3398 
3399 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3400 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3401 		goto out_release_old;
3402 	}
3403 
3404 	/*
3405 	 * When the original hugepage is shared one, it does not have
3406 	 * anon_vma prepared.
3407 	 */
3408 	if (unlikely(anon_vma_prepare(vma))) {
3409 		ret = VM_FAULT_OOM;
3410 		goto out_release_all;
3411 	}
3412 
3413 	copy_user_huge_page(new_page, old_page, address, vma,
3414 			    pages_per_huge_page(h));
3415 	__SetPageUptodate(new_page);
3416 	set_page_huge_active(new_page);
3417 
3418 	mmun_start = address & huge_page_mask(h);
3419 	mmun_end = mmun_start + huge_page_size(h);
3420 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3421 
3422 	/*
3423 	 * Retake the page table lock to check for racing updates
3424 	 * before the page tables are altered
3425 	 */
3426 	spin_lock(ptl);
3427 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3428 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3429 		ClearPagePrivate(new_page);
3430 
3431 		/* Break COW */
3432 		huge_ptep_clear_flush(vma, address, ptep);
3433 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3434 		set_huge_pte_at(mm, address, ptep,
3435 				make_huge_pte(vma, new_page, 1));
3436 		page_remove_rmap(old_page, true);
3437 		hugepage_add_new_anon_rmap(new_page, vma, address);
3438 		/* Make the old page be freed below */
3439 		new_page = old_page;
3440 	}
3441 	spin_unlock(ptl);
3442 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3443 out_release_all:
3444 	put_page(new_page);
3445 out_release_old:
3446 	put_page(old_page);
3447 
3448 	spin_lock(ptl); /* Caller expects lock to be held */
3449 	return ret;
3450 }
3451 
3452 /* Return the pagecache page at a given address within a VMA */
3453 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3454 			struct vm_area_struct *vma, unsigned long address)
3455 {
3456 	struct address_space *mapping;
3457 	pgoff_t idx;
3458 
3459 	mapping = vma->vm_file->f_mapping;
3460 	idx = vma_hugecache_offset(h, vma, address);
3461 
3462 	return find_lock_page(mapping, idx);
3463 }
3464 
3465 /*
3466  * Return whether there is a pagecache page to back given address within VMA.
3467  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3468  */
3469 static bool hugetlbfs_pagecache_present(struct hstate *h,
3470 			struct vm_area_struct *vma, unsigned long address)
3471 {
3472 	struct address_space *mapping;
3473 	pgoff_t idx;
3474 	struct page *page;
3475 
3476 	mapping = vma->vm_file->f_mapping;
3477 	idx = vma_hugecache_offset(h, vma, address);
3478 
3479 	page = find_get_page(mapping, idx);
3480 	if (page)
3481 		put_page(page);
3482 	return page != NULL;
3483 }
3484 
3485 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3486 			   pgoff_t idx)
3487 {
3488 	struct inode *inode = mapping->host;
3489 	struct hstate *h = hstate_inode(inode);
3490 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3491 
3492 	if (err)
3493 		return err;
3494 	ClearPagePrivate(page);
3495 
3496 	spin_lock(&inode->i_lock);
3497 	inode->i_blocks += blocks_per_huge_page(h);
3498 	spin_unlock(&inode->i_lock);
3499 	return 0;
3500 }
3501 
3502 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3503 			   struct address_space *mapping, pgoff_t idx,
3504 			   unsigned long address, pte_t *ptep, unsigned int flags)
3505 {
3506 	struct hstate *h = hstate_vma(vma);
3507 	int ret = VM_FAULT_SIGBUS;
3508 	int anon_rmap = 0;
3509 	unsigned long size;
3510 	struct page *page;
3511 	pte_t new_pte;
3512 	spinlock_t *ptl;
3513 
3514 	/*
3515 	 * Currently, we are forced to kill the process in the event the
3516 	 * original mapper has unmapped pages from the child due to a failed
3517 	 * COW. Warn that such a situation has occurred as it may not be obvious
3518 	 */
3519 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3520 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3521 			   current->pid);
3522 		return ret;
3523 	}
3524 
3525 	/*
3526 	 * Use page lock to guard against racing truncation
3527 	 * before we get page_table_lock.
3528 	 */
3529 retry:
3530 	page = find_lock_page(mapping, idx);
3531 	if (!page) {
3532 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3533 		if (idx >= size)
3534 			goto out;
3535 		page = alloc_huge_page(vma, address, 0);
3536 		if (IS_ERR(page)) {
3537 			ret = PTR_ERR(page);
3538 			if (ret == -ENOMEM)
3539 				ret = VM_FAULT_OOM;
3540 			else
3541 				ret = VM_FAULT_SIGBUS;
3542 			goto out;
3543 		}
3544 		clear_huge_page(page, address, pages_per_huge_page(h));
3545 		__SetPageUptodate(page);
3546 		set_page_huge_active(page);
3547 
3548 		if (vma->vm_flags & VM_MAYSHARE) {
3549 			int err = huge_add_to_page_cache(page, mapping, idx);
3550 			if (err) {
3551 				put_page(page);
3552 				if (err == -EEXIST)
3553 					goto retry;
3554 				goto out;
3555 			}
3556 		} else {
3557 			lock_page(page);
3558 			if (unlikely(anon_vma_prepare(vma))) {
3559 				ret = VM_FAULT_OOM;
3560 				goto backout_unlocked;
3561 			}
3562 			anon_rmap = 1;
3563 		}
3564 	} else {
3565 		/*
3566 		 * If memory error occurs between mmap() and fault, some process
3567 		 * don't have hwpoisoned swap entry for errored virtual address.
3568 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3569 		 */
3570 		if (unlikely(PageHWPoison(page))) {
3571 			ret = VM_FAULT_HWPOISON |
3572 				VM_FAULT_SET_HINDEX(hstate_index(h));
3573 			goto backout_unlocked;
3574 		}
3575 	}
3576 
3577 	/*
3578 	 * If we are going to COW a private mapping later, we examine the
3579 	 * pending reservations for this page now. This will ensure that
3580 	 * any allocations necessary to record that reservation occur outside
3581 	 * the spinlock.
3582 	 */
3583 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3584 		if (vma_needs_reservation(h, vma, address) < 0) {
3585 			ret = VM_FAULT_OOM;
3586 			goto backout_unlocked;
3587 		}
3588 		/* Just decrements count, does not deallocate */
3589 		vma_end_reservation(h, vma, address);
3590 	}
3591 
3592 	ptl = huge_pte_lockptr(h, mm, ptep);
3593 	spin_lock(ptl);
3594 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3595 	if (idx >= size)
3596 		goto backout;
3597 
3598 	ret = 0;
3599 	if (!huge_pte_none(huge_ptep_get(ptep)))
3600 		goto backout;
3601 
3602 	if (anon_rmap) {
3603 		ClearPagePrivate(page);
3604 		hugepage_add_new_anon_rmap(page, vma, address);
3605 	} else
3606 		page_dup_rmap(page, true);
3607 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3608 				&& (vma->vm_flags & VM_SHARED)));
3609 	set_huge_pte_at(mm, address, ptep, new_pte);
3610 
3611 	hugetlb_count_add(pages_per_huge_page(h), mm);
3612 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3613 		/* Optimization, do the COW without a second fault */
3614 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3615 	}
3616 
3617 	spin_unlock(ptl);
3618 	unlock_page(page);
3619 out:
3620 	return ret;
3621 
3622 backout:
3623 	spin_unlock(ptl);
3624 backout_unlocked:
3625 	unlock_page(page);
3626 	put_page(page);
3627 	goto out;
3628 }
3629 
3630 #ifdef CONFIG_SMP
3631 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3632 			    struct vm_area_struct *vma,
3633 			    struct address_space *mapping,
3634 			    pgoff_t idx, unsigned long address)
3635 {
3636 	unsigned long key[2];
3637 	u32 hash;
3638 
3639 	if (vma->vm_flags & VM_SHARED) {
3640 		key[0] = (unsigned long) mapping;
3641 		key[1] = idx;
3642 	} else {
3643 		key[0] = (unsigned long) mm;
3644 		key[1] = address >> huge_page_shift(h);
3645 	}
3646 
3647 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3648 
3649 	return hash & (num_fault_mutexes - 1);
3650 }
3651 #else
3652 /*
3653  * For uniprocesor systems we always use a single mutex, so just
3654  * return 0 and avoid the hashing overhead.
3655  */
3656 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3657 			    struct vm_area_struct *vma,
3658 			    struct address_space *mapping,
3659 			    pgoff_t idx, unsigned long address)
3660 {
3661 	return 0;
3662 }
3663 #endif
3664 
3665 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3666 			unsigned long address, unsigned int flags)
3667 {
3668 	pte_t *ptep, entry;
3669 	spinlock_t *ptl;
3670 	int ret;
3671 	u32 hash;
3672 	pgoff_t idx;
3673 	struct page *page = NULL;
3674 	struct page *pagecache_page = NULL;
3675 	struct hstate *h = hstate_vma(vma);
3676 	struct address_space *mapping;
3677 	int need_wait_lock = 0;
3678 
3679 	address &= huge_page_mask(h);
3680 
3681 	ptep = huge_pte_offset(mm, address);
3682 	if (ptep) {
3683 		entry = huge_ptep_get(ptep);
3684 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3685 			migration_entry_wait_huge(vma, mm, ptep);
3686 			return 0;
3687 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3688 			return VM_FAULT_HWPOISON_LARGE |
3689 				VM_FAULT_SET_HINDEX(hstate_index(h));
3690 	} else {
3691 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3692 		if (!ptep)
3693 			return VM_FAULT_OOM;
3694 	}
3695 
3696 	mapping = vma->vm_file->f_mapping;
3697 	idx = vma_hugecache_offset(h, vma, address);
3698 
3699 	/*
3700 	 * Serialize hugepage allocation and instantiation, so that we don't
3701 	 * get spurious allocation failures if two CPUs race to instantiate
3702 	 * the same page in the page cache.
3703 	 */
3704 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3705 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3706 
3707 	entry = huge_ptep_get(ptep);
3708 	if (huge_pte_none(entry)) {
3709 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3710 		goto out_mutex;
3711 	}
3712 
3713 	ret = 0;
3714 
3715 	/*
3716 	 * entry could be a migration/hwpoison entry at this point, so this
3717 	 * check prevents the kernel from going below assuming that we have
3718 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3719 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3720 	 * handle it.
3721 	 */
3722 	if (!pte_present(entry))
3723 		goto out_mutex;
3724 
3725 	/*
3726 	 * If we are going to COW the mapping later, we examine the pending
3727 	 * reservations for this page now. This will ensure that any
3728 	 * allocations necessary to record that reservation occur outside the
3729 	 * spinlock. For private mappings, we also lookup the pagecache
3730 	 * page now as it is used to determine if a reservation has been
3731 	 * consumed.
3732 	 */
3733 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3734 		if (vma_needs_reservation(h, vma, address) < 0) {
3735 			ret = VM_FAULT_OOM;
3736 			goto out_mutex;
3737 		}
3738 		/* Just decrements count, does not deallocate */
3739 		vma_end_reservation(h, vma, address);
3740 
3741 		if (!(vma->vm_flags & VM_MAYSHARE))
3742 			pagecache_page = hugetlbfs_pagecache_page(h,
3743 								vma, address);
3744 	}
3745 
3746 	ptl = huge_pte_lock(h, mm, ptep);
3747 
3748 	/* Check for a racing update before calling hugetlb_cow */
3749 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3750 		goto out_ptl;
3751 
3752 	/*
3753 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3754 	 * pagecache_page, so here we need take the former one
3755 	 * when page != pagecache_page or !pagecache_page.
3756 	 */
3757 	page = pte_page(entry);
3758 	if (page != pagecache_page)
3759 		if (!trylock_page(page)) {
3760 			need_wait_lock = 1;
3761 			goto out_ptl;
3762 		}
3763 
3764 	get_page(page);
3765 
3766 	if (flags & FAULT_FLAG_WRITE) {
3767 		if (!huge_pte_write(entry)) {
3768 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3769 					pagecache_page, ptl);
3770 			goto out_put_page;
3771 		}
3772 		entry = huge_pte_mkdirty(entry);
3773 	}
3774 	entry = pte_mkyoung(entry);
3775 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3776 						flags & FAULT_FLAG_WRITE))
3777 		update_mmu_cache(vma, address, ptep);
3778 out_put_page:
3779 	if (page != pagecache_page)
3780 		unlock_page(page);
3781 	put_page(page);
3782 out_ptl:
3783 	spin_unlock(ptl);
3784 
3785 	if (pagecache_page) {
3786 		unlock_page(pagecache_page);
3787 		put_page(pagecache_page);
3788 	}
3789 out_mutex:
3790 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3791 	/*
3792 	 * Generally it's safe to hold refcount during waiting page lock. But
3793 	 * here we just wait to defer the next page fault to avoid busy loop and
3794 	 * the page is not used after unlocked before returning from the current
3795 	 * page fault. So we are safe from accessing freed page, even if we wait
3796 	 * here without taking refcount.
3797 	 */
3798 	if (need_wait_lock)
3799 		wait_on_page_locked(page);
3800 	return ret;
3801 }
3802 
3803 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3804 			 struct page **pages, struct vm_area_struct **vmas,
3805 			 unsigned long *position, unsigned long *nr_pages,
3806 			 long i, unsigned int flags)
3807 {
3808 	unsigned long pfn_offset;
3809 	unsigned long vaddr = *position;
3810 	unsigned long remainder = *nr_pages;
3811 	struct hstate *h = hstate_vma(vma);
3812 
3813 	while (vaddr < vma->vm_end && remainder) {
3814 		pte_t *pte;
3815 		spinlock_t *ptl = NULL;
3816 		int absent;
3817 		struct page *page;
3818 
3819 		/*
3820 		 * If we have a pending SIGKILL, don't keep faulting pages and
3821 		 * potentially allocating memory.
3822 		 */
3823 		if (unlikely(fatal_signal_pending(current))) {
3824 			remainder = 0;
3825 			break;
3826 		}
3827 
3828 		/*
3829 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3830 		 * each hugepage.  We have to make sure we get the
3831 		 * first, for the page indexing below to work.
3832 		 *
3833 		 * Note that page table lock is not held when pte is null.
3834 		 */
3835 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3836 		if (pte)
3837 			ptl = huge_pte_lock(h, mm, pte);
3838 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3839 
3840 		/*
3841 		 * When coredumping, it suits get_dump_page if we just return
3842 		 * an error where there's an empty slot with no huge pagecache
3843 		 * to back it.  This way, we avoid allocating a hugepage, and
3844 		 * the sparse dumpfile avoids allocating disk blocks, but its
3845 		 * huge holes still show up with zeroes where they need to be.
3846 		 */
3847 		if (absent && (flags & FOLL_DUMP) &&
3848 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3849 			if (pte)
3850 				spin_unlock(ptl);
3851 			remainder = 0;
3852 			break;
3853 		}
3854 
3855 		/*
3856 		 * We need call hugetlb_fault for both hugepages under migration
3857 		 * (in which case hugetlb_fault waits for the migration,) and
3858 		 * hwpoisoned hugepages (in which case we need to prevent the
3859 		 * caller from accessing to them.) In order to do this, we use
3860 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3861 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3862 		 * both cases, and because we can't follow correct pages
3863 		 * directly from any kind of swap entries.
3864 		 */
3865 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3866 		    ((flags & FOLL_WRITE) &&
3867 		      !huge_pte_write(huge_ptep_get(pte)))) {
3868 			int ret;
3869 
3870 			if (pte)
3871 				spin_unlock(ptl);
3872 			ret = hugetlb_fault(mm, vma, vaddr,
3873 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3874 			if (!(ret & VM_FAULT_ERROR))
3875 				continue;
3876 
3877 			remainder = 0;
3878 			break;
3879 		}
3880 
3881 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3882 		page = pte_page(huge_ptep_get(pte));
3883 same_page:
3884 		if (pages) {
3885 			pages[i] = mem_map_offset(page, pfn_offset);
3886 			get_page(pages[i]);
3887 		}
3888 
3889 		if (vmas)
3890 			vmas[i] = vma;
3891 
3892 		vaddr += PAGE_SIZE;
3893 		++pfn_offset;
3894 		--remainder;
3895 		++i;
3896 		if (vaddr < vma->vm_end && remainder &&
3897 				pfn_offset < pages_per_huge_page(h)) {
3898 			/*
3899 			 * We use pfn_offset to avoid touching the pageframes
3900 			 * of this compound page.
3901 			 */
3902 			goto same_page;
3903 		}
3904 		spin_unlock(ptl);
3905 	}
3906 	*nr_pages = remainder;
3907 	*position = vaddr;
3908 
3909 	return i ? i : -EFAULT;
3910 }
3911 
3912 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3913 		unsigned long address, unsigned long end, pgprot_t newprot)
3914 {
3915 	struct mm_struct *mm = vma->vm_mm;
3916 	unsigned long start = address;
3917 	pte_t *ptep;
3918 	pte_t pte;
3919 	struct hstate *h = hstate_vma(vma);
3920 	unsigned long pages = 0;
3921 
3922 	BUG_ON(address >= end);
3923 	flush_cache_range(vma, address, end);
3924 
3925 	mmu_notifier_invalidate_range_start(mm, start, end);
3926 	i_mmap_lock_write(vma->vm_file->f_mapping);
3927 	for (; address < end; address += huge_page_size(h)) {
3928 		spinlock_t *ptl;
3929 		ptep = huge_pte_offset(mm, address);
3930 		if (!ptep)
3931 			continue;
3932 		ptl = huge_pte_lock(h, mm, ptep);
3933 		if (huge_pmd_unshare(mm, &address, ptep)) {
3934 			pages++;
3935 			spin_unlock(ptl);
3936 			continue;
3937 		}
3938 		pte = huge_ptep_get(ptep);
3939 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3940 			spin_unlock(ptl);
3941 			continue;
3942 		}
3943 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3944 			swp_entry_t entry = pte_to_swp_entry(pte);
3945 
3946 			if (is_write_migration_entry(entry)) {
3947 				pte_t newpte;
3948 
3949 				make_migration_entry_read(&entry);
3950 				newpte = swp_entry_to_pte(entry);
3951 				set_huge_pte_at(mm, address, ptep, newpte);
3952 				pages++;
3953 			}
3954 			spin_unlock(ptl);
3955 			continue;
3956 		}
3957 		if (!huge_pte_none(pte)) {
3958 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3959 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3960 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3961 			set_huge_pte_at(mm, address, ptep, pte);
3962 			pages++;
3963 		}
3964 		spin_unlock(ptl);
3965 	}
3966 	/*
3967 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3968 	 * may have cleared our pud entry and done put_page on the page table:
3969 	 * once we release i_mmap_rwsem, another task can do the final put_page
3970 	 * and that page table be reused and filled with junk.
3971 	 */
3972 	flush_tlb_range(vma, start, end);
3973 	mmu_notifier_invalidate_range(mm, start, end);
3974 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3975 	mmu_notifier_invalidate_range_end(mm, start, end);
3976 
3977 	return pages << h->order;
3978 }
3979 
3980 int hugetlb_reserve_pages(struct inode *inode,
3981 					long from, long to,
3982 					struct vm_area_struct *vma,
3983 					vm_flags_t vm_flags)
3984 {
3985 	long ret, chg;
3986 	struct hstate *h = hstate_inode(inode);
3987 	struct hugepage_subpool *spool = subpool_inode(inode);
3988 	struct resv_map *resv_map;
3989 	long gbl_reserve;
3990 
3991 	/*
3992 	 * Only apply hugepage reservation if asked. At fault time, an
3993 	 * attempt will be made for VM_NORESERVE to allocate a page
3994 	 * without using reserves
3995 	 */
3996 	if (vm_flags & VM_NORESERVE)
3997 		return 0;
3998 
3999 	/*
4000 	 * Shared mappings base their reservation on the number of pages that
4001 	 * are already allocated on behalf of the file. Private mappings need
4002 	 * to reserve the full area even if read-only as mprotect() may be
4003 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4004 	 */
4005 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4006 		resv_map = inode_resv_map(inode);
4007 
4008 		chg = region_chg(resv_map, from, to);
4009 
4010 	} else {
4011 		resv_map = resv_map_alloc();
4012 		if (!resv_map)
4013 			return -ENOMEM;
4014 
4015 		chg = to - from;
4016 
4017 		set_vma_resv_map(vma, resv_map);
4018 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4019 	}
4020 
4021 	if (chg < 0) {
4022 		ret = chg;
4023 		goto out_err;
4024 	}
4025 
4026 	/*
4027 	 * There must be enough pages in the subpool for the mapping. If
4028 	 * the subpool has a minimum size, there may be some global
4029 	 * reservations already in place (gbl_reserve).
4030 	 */
4031 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4032 	if (gbl_reserve < 0) {
4033 		ret = -ENOSPC;
4034 		goto out_err;
4035 	}
4036 
4037 	/*
4038 	 * Check enough hugepages are available for the reservation.
4039 	 * Hand the pages back to the subpool if there are not
4040 	 */
4041 	ret = hugetlb_acct_memory(h, gbl_reserve);
4042 	if (ret < 0) {
4043 		/* put back original number of pages, chg */
4044 		(void)hugepage_subpool_put_pages(spool, chg);
4045 		goto out_err;
4046 	}
4047 
4048 	/*
4049 	 * Account for the reservations made. Shared mappings record regions
4050 	 * that have reservations as they are shared by multiple VMAs.
4051 	 * When the last VMA disappears, the region map says how much
4052 	 * the reservation was and the page cache tells how much of
4053 	 * the reservation was consumed. Private mappings are per-VMA and
4054 	 * only the consumed reservations are tracked. When the VMA
4055 	 * disappears, the original reservation is the VMA size and the
4056 	 * consumed reservations are stored in the map. Hence, nothing
4057 	 * else has to be done for private mappings here
4058 	 */
4059 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4060 		long add = region_add(resv_map, from, to);
4061 
4062 		if (unlikely(chg > add)) {
4063 			/*
4064 			 * pages in this range were added to the reserve
4065 			 * map between region_chg and region_add.  This
4066 			 * indicates a race with alloc_huge_page.  Adjust
4067 			 * the subpool and reserve counts modified above
4068 			 * based on the difference.
4069 			 */
4070 			long rsv_adjust;
4071 
4072 			rsv_adjust = hugepage_subpool_put_pages(spool,
4073 								chg - add);
4074 			hugetlb_acct_memory(h, -rsv_adjust);
4075 		}
4076 	}
4077 	return 0;
4078 out_err:
4079 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4080 		region_abort(resv_map, from, to);
4081 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4082 		kref_put(&resv_map->refs, resv_map_release);
4083 	return ret;
4084 }
4085 
4086 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4087 								long freed)
4088 {
4089 	struct hstate *h = hstate_inode(inode);
4090 	struct resv_map *resv_map = inode_resv_map(inode);
4091 	long chg = 0;
4092 	struct hugepage_subpool *spool = subpool_inode(inode);
4093 	long gbl_reserve;
4094 
4095 	if (resv_map) {
4096 		chg = region_del(resv_map, start, end);
4097 		/*
4098 		 * region_del() can fail in the rare case where a region
4099 		 * must be split and another region descriptor can not be
4100 		 * allocated.  If end == LONG_MAX, it will not fail.
4101 		 */
4102 		if (chg < 0)
4103 			return chg;
4104 	}
4105 
4106 	spin_lock(&inode->i_lock);
4107 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4108 	spin_unlock(&inode->i_lock);
4109 
4110 	/*
4111 	 * If the subpool has a minimum size, the number of global
4112 	 * reservations to be released may be adjusted.
4113 	 */
4114 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4115 	hugetlb_acct_memory(h, -gbl_reserve);
4116 
4117 	return 0;
4118 }
4119 
4120 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4121 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4122 				struct vm_area_struct *vma,
4123 				unsigned long addr, pgoff_t idx)
4124 {
4125 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4126 				svma->vm_start;
4127 	unsigned long sbase = saddr & PUD_MASK;
4128 	unsigned long s_end = sbase + PUD_SIZE;
4129 
4130 	/* Allow segments to share if only one is marked locked */
4131 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4132 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4133 
4134 	/*
4135 	 * match the virtual addresses, permission and the alignment of the
4136 	 * page table page.
4137 	 */
4138 	if (pmd_index(addr) != pmd_index(saddr) ||
4139 	    vm_flags != svm_flags ||
4140 	    sbase < svma->vm_start || svma->vm_end < s_end)
4141 		return 0;
4142 
4143 	return saddr;
4144 }
4145 
4146 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4147 {
4148 	unsigned long base = addr & PUD_MASK;
4149 	unsigned long end = base + PUD_SIZE;
4150 
4151 	/*
4152 	 * check on proper vm_flags and page table alignment
4153 	 */
4154 	if (vma->vm_flags & VM_MAYSHARE &&
4155 	    vma->vm_start <= base && end <= vma->vm_end)
4156 		return true;
4157 	return false;
4158 }
4159 
4160 /*
4161  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4162  * and returns the corresponding pte. While this is not necessary for the
4163  * !shared pmd case because we can allocate the pmd later as well, it makes the
4164  * code much cleaner. pmd allocation is essential for the shared case because
4165  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4166  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4167  * bad pmd for sharing.
4168  */
4169 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4170 {
4171 	struct vm_area_struct *vma = find_vma(mm, addr);
4172 	struct address_space *mapping = vma->vm_file->f_mapping;
4173 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4174 			vma->vm_pgoff;
4175 	struct vm_area_struct *svma;
4176 	unsigned long saddr;
4177 	pte_t *spte = NULL;
4178 	pte_t *pte;
4179 	spinlock_t *ptl;
4180 
4181 	if (!vma_shareable(vma, addr))
4182 		return (pte_t *)pmd_alloc(mm, pud, addr);
4183 
4184 	i_mmap_lock_write(mapping);
4185 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4186 		if (svma == vma)
4187 			continue;
4188 
4189 		saddr = page_table_shareable(svma, vma, addr, idx);
4190 		if (saddr) {
4191 			spte = huge_pte_offset(svma->vm_mm, saddr);
4192 			if (spte) {
4193 				mm_inc_nr_pmds(mm);
4194 				get_page(virt_to_page(spte));
4195 				break;
4196 			}
4197 		}
4198 	}
4199 
4200 	if (!spte)
4201 		goto out;
4202 
4203 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4204 	spin_lock(ptl);
4205 	if (pud_none(*pud)) {
4206 		pud_populate(mm, pud,
4207 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4208 	} else {
4209 		put_page(virt_to_page(spte));
4210 		mm_inc_nr_pmds(mm);
4211 	}
4212 	spin_unlock(ptl);
4213 out:
4214 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4215 	i_mmap_unlock_write(mapping);
4216 	return pte;
4217 }
4218 
4219 /*
4220  * unmap huge page backed by shared pte.
4221  *
4222  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4223  * indicated by page_count > 1, unmap is achieved by clearing pud and
4224  * decrementing the ref count. If count == 1, the pte page is not shared.
4225  *
4226  * called with page table lock held.
4227  *
4228  * returns: 1 successfully unmapped a shared pte page
4229  *	    0 the underlying pte page is not shared, or it is the last user
4230  */
4231 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4232 {
4233 	pgd_t *pgd = pgd_offset(mm, *addr);
4234 	pud_t *pud = pud_offset(pgd, *addr);
4235 
4236 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4237 	if (page_count(virt_to_page(ptep)) == 1)
4238 		return 0;
4239 
4240 	pud_clear(pud);
4241 	put_page(virt_to_page(ptep));
4242 	mm_dec_nr_pmds(mm);
4243 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4244 	return 1;
4245 }
4246 #define want_pmd_share()	(1)
4247 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4248 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4249 {
4250 	return NULL;
4251 }
4252 
4253 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4254 {
4255 	return 0;
4256 }
4257 #define want_pmd_share()	(0)
4258 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4259 
4260 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4261 pte_t *huge_pte_alloc(struct mm_struct *mm,
4262 			unsigned long addr, unsigned long sz)
4263 {
4264 	pgd_t *pgd;
4265 	pud_t *pud;
4266 	pte_t *pte = NULL;
4267 
4268 	pgd = pgd_offset(mm, addr);
4269 	pud = pud_alloc(mm, pgd, addr);
4270 	if (pud) {
4271 		if (sz == PUD_SIZE) {
4272 			pte = (pte_t *)pud;
4273 		} else {
4274 			BUG_ON(sz != PMD_SIZE);
4275 			if (want_pmd_share() && pud_none(*pud))
4276 				pte = huge_pmd_share(mm, addr, pud);
4277 			else
4278 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4279 		}
4280 	}
4281 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4282 
4283 	return pte;
4284 }
4285 
4286 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4287 {
4288 	pgd_t *pgd;
4289 	pud_t *pud;
4290 	pmd_t *pmd = NULL;
4291 
4292 	pgd = pgd_offset(mm, addr);
4293 	if (pgd_present(*pgd)) {
4294 		pud = pud_offset(pgd, addr);
4295 		if (pud_present(*pud)) {
4296 			if (pud_huge(*pud))
4297 				return (pte_t *)pud;
4298 			pmd = pmd_offset(pud, addr);
4299 		}
4300 	}
4301 	return (pte_t *) pmd;
4302 }
4303 
4304 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4305 
4306 /*
4307  * These functions are overwritable if your architecture needs its own
4308  * behavior.
4309  */
4310 struct page * __weak
4311 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4312 			      int write)
4313 {
4314 	return ERR_PTR(-EINVAL);
4315 }
4316 
4317 struct page * __weak
4318 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4319 		pmd_t *pmd, int flags)
4320 {
4321 	struct page *page = NULL;
4322 	spinlock_t *ptl;
4323 retry:
4324 	ptl = pmd_lockptr(mm, pmd);
4325 	spin_lock(ptl);
4326 	/*
4327 	 * make sure that the address range covered by this pmd is not
4328 	 * unmapped from other threads.
4329 	 */
4330 	if (!pmd_huge(*pmd))
4331 		goto out;
4332 	if (pmd_present(*pmd)) {
4333 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4334 		if (flags & FOLL_GET)
4335 			get_page(page);
4336 	} else {
4337 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4338 			spin_unlock(ptl);
4339 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4340 			goto retry;
4341 		}
4342 		/*
4343 		 * hwpoisoned entry is treated as no_page_table in
4344 		 * follow_page_mask().
4345 		 */
4346 	}
4347 out:
4348 	spin_unlock(ptl);
4349 	return page;
4350 }
4351 
4352 struct page * __weak
4353 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4354 		pud_t *pud, int flags)
4355 {
4356 	if (flags & FOLL_GET)
4357 		return NULL;
4358 
4359 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4360 }
4361 
4362 #ifdef CONFIG_MEMORY_FAILURE
4363 
4364 /*
4365  * This function is called from memory failure code.
4366  * Assume the caller holds page lock of the head page.
4367  */
4368 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4369 {
4370 	struct hstate *h = page_hstate(hpage);
4371 	int nid = page_to_nid(hpage);
4372 	int ret = -EBUSY;
4373 
4374 	spin_lock(&hugetlb_lock);
4375 	/*
4376 	 * Just checking !page_huge_active is not enough, because that could be
4377 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4378 	 */
4379 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4380 		/*
4381 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4382 		 * but dangling hpage->lru can trigger list-debug warnings
4383 		 * (this happens when we call unpoison_memory() on it),
4384 		 * so let it point to itself with list_del_init().
4385 		 */
4386 		list_del_init(&hpage->lru);
4387 		set_page_refcounted(hpage);
4388 		h->free_huge_pages--;
4389 		h->free_huge_pages_node[nid]--;
4390 		ret = 0;
4391 	}
4392 	spin_unlock(&hugetlb_lock);
4393 	return ret;
4394 }
4395 #endif
4396 
4397 bool isolate_huge_page(struct page *page, struct list_head *list)
4398 {
4399 	bool ret = true;
4400 
4401 	VM_BUG_ON_PAGE(!PageHead(page), page);
4402 	spin_lock(&hugetlb_lock);
4403 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4404 		ret = false;
4405 		goto unlock;
4406 	}
4407 	clear_page_huge_active(page);
4408 	list_move_tail(&page->lru, list);
4409 unlock:
4410 	spin_unlock(&hugetlb_lock);
4411 	return ret;
4412 }
4413 
4414 void putback_active_hugepage(struct page *page)
4415 {
4416 	VM_BUG_ON_PAGE(!PageHead(page), page);
4417 	spin_lock(&hugetlb_lock);
4418 	set_page_huge_active(page);
4419 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4420 	spin_unlock(&hugetlb_lock);
4421 	put_page(page);
4422 }
4423