xref: /openbmc/linux/mm/hugetlb.c (revision 36aa1e67)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265 	if (__vma_shareable_lock(vma)) {
266 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267 
268 		down_read(&vma_lock->rw_sema);
269 	}
270 }
271 
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274 	if (__vma_shareable_lock(vma)) {
275 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276 
277 		up_read(&vma_lock->rw_sema);
278 	}
279 }
280 
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		down_write(&vma_lock->rw_sema);
287 	}
288 }
289 
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292 	if (__vma_shareable_lock(vma)) {
293 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294 
295 		up_write(&vma_lock->rw_sema);
296 	}
297 }
298 
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302 
303 	if (!__vma_shareable_lock(vma))
304 		return 1;
305 
306 	return down_write_trylock(&vma_lock->rw_sema);
307 }
308 
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311 	if (__vma_shareable_lock(vma)) {
312 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313 
314 		lockdep_assert_held(&vma_lock->rw_sema);
315 	}
316 }
317 
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 			struct hugetlb_vma_lock, refs);
322 
323 	kfree(vma_lock);
324 }
325 
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328 	struct vm_area_struct *vma = vma_lock->vma;
329 
330 	/*
331 	 * vma_lock structure may or not be released as a result of put,
332 	 * it certainly will no longer be attached to vma so clear pointer.
333 	 * Semaphore synchronizes access to vma_lock->vma field.
334 	 */
335 	vma_lock->vma = NULL;
336 	vma->vm_private_data = NULL;
337 	up_write(&vma_lock->rw_sema);
338 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340 
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343 	if (__vma_shareable_lock(vma)) {
344 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345 
346 		__hugetlb_vma_unlock_write_put(vma_lock);
347 	}
348 }
349 
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352 	/*
353 	 * Only present in sharable vmas.
354 	 */
355 	if (!vma || !__vma_shareable_lock(vma))
356 		return;
357 
358 	if (vma->vm_private_data) {
359 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360 
361 		down_write(&vma_lock->rw_sema);
362 		__hugetlb_vma_unlock_write_put(vma_lock);
363 	}
364 }
365 
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368 	struct hugetlb_vma_lock *vma_lock;
369 
370 	/* Only establish in (flags) sharable vmas */
371 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 		return;
373 
374 	/* Should never get here with non-NULL vm_private_data */
375 	if (vma->vm_private_data)
376 		return;
377 
378 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 	if (!vma_lock) {
380 		/*
381 		 * If we can not allocate structure, then vma can not
382 		 * participate in pmd sharing.  This is only a possible
383 		 * performance enhancement and memory saving issue.
384 		 * However, the lock is also used to synchronize page
385 		 * faults with truncation.  If the lock is not present,
386 		 * unlikely races could leave pages in a file past i_size
387 		 * until the file is removed.  Warn in the unlikely case of
388 		 * allocation failure.
389 		 */
390 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 		return;
392 	}
393 
394 	kref_init(&vma_lock->refs);
395 	init_rwsem(&vma_lock->rw_sema);
396 	vma_lock->vma = vma;
397 	vma->vm_private_data = vma_lock;
398 }
399 
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406 	struct file_region *nrg;
407 
408 	VM_BUG_ON(resv->region_cache_count <= 0);
409 
410 	resv->region_cache_count--;
411 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 	list_del(&nrg->link);
413 
414 	nrg->from = from;
415 	nrg->to = to;
416 
417 	return nrg;
418 }
419 
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 					      struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424 	nrg->reservation_counter = rg->reservation_counter;
425 	nrg->css = rg->css;
426 	if (rg->css)
427 		css_get(rg->css);
428 #endif
429 }
430 
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 						struct hstate *h,
434 						struct resv_map *resv,
435 						struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438 	if (h_cg) {
439 		nrg->reservation_counter =
440 			&h_cg->rsvd_hugepage[hstate_index(h)];
441 		nrg->css = &h_cg->css;
442 		/*
443 		 * The caller will hold exactly one h_cg->css reference for the
444 		 * whole contiguous reservation region. But this area might be
445 		 * scattered when there are already some file_regions reside in
446 		 * it. As a result, many file_regions may share only one css
447 		 * reference. In order to ensure that one file_region must hold
448 		 * exactly one h_cg->css reference, we should do css_get for
449 		 * each file_region and leave the reference held by caller
450 		 * untouched.
451 		 */
452 		css_get(&h_cg->css);
453 		if (!resv->pages_per_hpage)
454 			resv->pages_per_hpage = pages_per_huge_page(h);
455 		/* pages_per_hpage should be the same for all entries in
456 		 * a resv_map.
457 		 */
458 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 	} else {
460 		nrg->reservation_counter = NULL;
461 		nrg->css = NULL;
462 	}
463 #endif
464 }
465 
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469 	if (rg->css)
470 		css_put(rg->css);
471 #endif
472 }
473 
474 static bool has_same_uncharge_info(struct file_region *rg,
475 				   struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478 	return rg->reservation_counter == org->reservation_counter &&
479 	       rg->css == org->css;
480 
481 #else
482 	return true;
483 #endif
484 }
485 
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488 	struct file_region *nrg, *prg;
489 
490 	prg = list_prev_entry(rg, link);
491 	if (&prg->link != &resv->regions && prg->to == rg->from &&
492 	    has_same_uncharge_info(prg, rg)) {
493 		prg->to = rg->to;
494 
495 		list_del(&rg->link);
496 		put_uncharge_info(rg);
497 		kfree(rg);
498 
499 		rg = prg;
500 	}
501 
502 	nrg = list_next_entry(rg, link);
503 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 	    has_same_uncharge_info(nrg, rg)) {
505 		nrg->from = rg->from;
506 
507 		list_del(&rg->link);
508 		put_uncharge_info(rg);
509 		kfree(rg);
510 	}
511 }
512 
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 		     long *regions_needed)
517 {
518 	struct file_region *nrg;
519 
520 	if (!regions_needed) {
521 		nrg = get_file_region_entry_from_cache(map, from, to);
522 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 		list_add(&nrg->link, rg);
524 		coalesce_file_region(map, nrg);
525 	} else
526 		*regions_needed += 1;
527 
528 	return to - from;
529 }
530 
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 				     struct hugetlb_cgroup *h_cg,
541 				     struct hstate *h, long *regions_needed)
542 {
543 	long add = 0;
544 	struct list_head *head = &resv->regions;
545 	long last_accounted_offset = f;
546 	struct file_region *iter, *trg = NULL;
547 	struct list_head *rg = NULL;
548 
549 	if (regions_needed)
550 		*regions_needed = 0;
551 
552 	/* In this loop, we essentially handle an entry for the range
553 	 * [last_accounted_offset, iter->from), at every iteration, with some
554 	 * bounds checking.
555 	 */
556 	list_for_each_entry_safe(iter, trg, head, link) {
557 		/* Skip irrelevant regions that start before our range. */
558 		if (iter->from < f) {
559 			/* If this region ends after the last accounted offset,
560 			 * then we need to update last_accounted_offset.
561 			 */
562 			if (iter->to > last_accounted_offset)
563 				last_accounted_offset = iter->to;
564 			continue;
565 		}
566 
567 		/* When we find a region that starts beyond our range, we've
568 		 * finished.
569 		 */
570 		if (iter->from >= t) {
571 			rg = iter->link.prev;
572 			break;
573 		}
574 
575 		/* Add an entry for last_accounted_offset -> iter->from, and
576 		 * update last_accounted_offset.
577 		 */
578 		if (iter->from > last_accounted_offset)
579 			add += hugetlb_resv_map_add(resv, iter->link.prev,
580 						    last_accounted_offset,
581 						    iter->from, h, h_cg,
582 						    regions_needed);
583 
584 		last_accounted_offset = iter->to;
585 	}
586 
587 	/* Handle the case where our range extends beyond
588 	 * last_accounted_offset.
589 	 */
590 	if (!rg)
591 		rg = head->prev;
592 	if (last_accounted_offset < t)
593 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 					    t, h, h_cg, regions_needed);
595 
596 	return add;
597 }
598 
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602 					int regions_needed)
603 	__must_hold(&resv->lock)
604 {
605 	LIST_HEAD(allocated_regions);
606 	int to_allocate = 0, i = 0;
607 	struct file_region *trg = NULL, *rg = NULL;
608 
609 	VM_BUG_ON(regions_needed < 0);
610 
611 	/*
612 	 * Check for sufficient descriptors in the cache to accommodate
613 	 * the number of in progress add operations plus regions_needed.
614 	 *
615 	 * This is a while loop because when we drop the lock, some other call
616 	 * to region_add or region_del may have consumed some region_entries,
617 	 * so we keep looping here until we finally have enough entries for
618 	 * (adds_in_progress + regions_needed).
619 	 */
620 	while (resv->region_cache_count <
621 	       (resv->adds_in_progress + regions_needed)) {
622 		to_allocate = resv->adds_in_progress + regions_needed -
623 			      resv->region_cache_count;
624 
625 		/* At this point, we should have enough entries in the cache
626 		 * for all the existing adds_in_progress. We should only be
627 		 * needing to allocate for regions_needed.
628 		 */
629 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630 
631 		spin_unlock(&resv->lock);
632 		for (i = 0; i < to_allocate; i++) {
633 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 			if (!trg)
635 				goto out_of_memory;
636 			list_add(&trg->link, &allocated_regions);
637 		}
638 
639 		spin_lock(&resv->lock);
640 
641 		list_splice(&allocated_regions, &resv->region_cache);
642 		resv->region_cache_count += to_allocate;
643 	}
644 
645 	return 0;
646 
647 out_of_memory:
648 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 		list_del(&rg->link);
650 		kfree(rg);
651 	}
652 	return -ENOMEM;
653 }
654 
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673 		       long in_regions_needed, struct hstate *h,
674 		       struct hugetlb_cgroup *h_cg)
675 {
676 	long add = 0, actual_regions_needed = 0;
677 
678 	spin_lock(&resv->lock);
679 retry:
680 
681 	/* Count how many regions are actually needed to execute this add. */
682 	add_reservation_in_range(resv, f, t, NULL, NULL,
683 				 &actual_regions_needed);
684 
685 	/*
686 	 * Check for sufficient descriptors in the cache to accommodate
687 	 * this add operation. Note that actual_regions_needed may be greater
688 	 * than in_regions_needed, as the resv_map may have been modified since
689 	 * the region_chg call. In this case, we need to make sure that we
690 	 * allocate extra entries, such that we have enough for all the
691 	 * existing adds_in_progress, plus the excess needed for this
692 	 * operation.
693 	 */
694 	if (actual_regions_needed > in_regions_needed &&
695 	    resv->region_cache_count <
696 		    resv->adds_in_progress +
697 			    (actual_regions_needed - in_regions_needed)) {
698 		/* region_add operation of range 1 should never need to
699 		 * allocate file_region entries.
700 		 */
701 		VM_BUG_ON(t - f <= 1);
702 
703 		if (allocate_file_region_entries(
704 			    resv, actual_regions_needed - in_regions_needed)) {
705 			return -ENOMEM;
706 		}
707 
708 		goto retry;
709 	}
710 
711 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712 
713 	resv->adds_in_progress -= in_regions_needed;
714 
715 	spin_unlock(&resv->lock);
716 	return add;
717 }
718 
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740 		       long *out_regions_needed)
741 {
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 
746 	/* Count how many hugepages in this range are NOT represented. */
747 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 				       out_regions_needed);
749 
750 	if (*out_regions_needed == 0)
751 		*out_regions_needed = 1;
752 
753 	if (allocate_file_region_entries(resv, *out_regions_needed))
754 		return -ENOMEM;
755 
756 	resv->adds_in_progress += *out_regions_needed;
757 
758 	spin_unlock(&resv->lock);
759 	return chg;
760 }
761 
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776 			 long regions_needed)
777 {
778 	spin_lock(&resv->lock);
779 	VM_BUG_ON(!resv->region_cache_count);
780 	resv->adds_in_progress -= regions_needed;
781 	spin_unlock(&resv->lock);
782 }
783 
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800 	struct list_head *head = &resv->regions;
801 	struct file_region *rg, *trg;
802 	struct file_region *nrg = NULL;
803 	long del = 0;
804 
805 retry:
806 	spin_lock(&resv->lock);
807 	list_for_each_entry_safe(rg, trg, head, link) {
808 		/*
809 		 * Skip regions before the range to be deleted.  file_region
810 		 * ranges are normally of the form [from, to).  However, there
811 		 * may be a "placeholder" entry in the map which is of the form
812 		 * (from, to) with from == to.  Check for placeholder entries
813 		 * at the beginning of the range to be deleted.
814 		 */
815 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 			continue;
817 
818 		if (rg->from >= t)
819 			break;
820 
821 		if (f > rg->from && t < rg->to) { /* Must split region */
822 			/*
823 			 * Check for an entry in the cache before dropping
824 			 * lock and attempting allocation.
825 			 */
826 			if (!nrg &&
827 			    resv->region_cache_count > resv->adds_in_progress) {
828 				nrg = list_first_entry(&resv->region_cache,
829 							struct file_region,
830 							link);
831 				list_del(&nrg->link);
832 				resv->region_cache_count--;
833 			}
834 
835 			if (!nrg) {
836 				spin_unlock(&resv->lock);
837 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 				if (!nrg)
839 					return -ENOMEM;
840 				goto retry;
841 			}
842 
843 			del += t - f;
844 			hugetlb_cgroup_uncharge_file_region(
845 				resv, rg, t - f, false);
846 
847 			/* New entry for end of split region */
848 			nrg->from = t;
849 			nrg->to = rg->to;
850 
851 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852 
853 			INIT_LIST_HEAD(&nrg->link);
854 
855 			/* Original entry is trimmed */
856 			rg->to = f;
857 
858 			list_add(&nrg->link, &rg->link);
859 			nrg = NULL;
860 			break;
861 		}
862 
863 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 			del += rg->to - rg->from;
865 			hugetlb_cgroup_uncharge_file_region(resv, rg,
866 							    rg->to - rg->from, true);
867 			list_del(&rg->link);
868 			kfree(rg);
869 			continue;
870 		}
871 
872 		if (f <= rg->from) {	/* Trim beginning of region */
873 			hugetlb_cgroup_uncharge_file_region(resv, rg,
874 							    t - rg->from, false);
875 
876 			del += t - rg->from;
877 			rg->from = t;
878 		} else {		/* Trim end of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    rg->to - f, false);
881 
882 			del += rg->to - f;
883 			rg->to = f;
884 		}
885 	}
886 
887 	spin_unlock(&resv->lock);
888 	kfree(nrg);
889 	return del;
890 }
891 
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903 	struct hugepage_subpool *spool = subpool_inode(inode);
904 	long rsv_adjust;
905 	bool reserved = false;
906 
907 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 	if (rsv_adjust > 0) {
909 		struct hstate *h = hstate_inode(inode);
910 
911 		if (!hugetlb_acct_memory(h, 1))
912 			reserved = true;
913 	} else if (!rsv_adjust) {
914 		reserved = true;
915 	}
916 
917 	if (!reserved)
918 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920 
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927 	struct list_head *head = &resv->regions;
928 	struct file_region *rg;
929 	long chg = 0;
930 
931 	spin_lock(&resv->lock);
932 	/* Locate each segment we overlap with, and count that overlap. */
933 	list_for_each_entry(rg, head, link) {
934 		long seg_from;
935 		long seg_to;
936 
937 		if (rg->to <= f)
938 			continue;
939 		if (rg->from >= t)
940 			break;
941 
942 		seg_from = max(rg->from, f);
943 		seg_to = min(rg->to, t);
944 
945 		chg += seg_to - seg_from;
946 	}
947 	spin_unlock(&resv->lock);
948 
949 	return chg;
950 }
951 
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 			struct vm_area_struct *vma, unsigned long address)
958 {
959 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 			(vma->vm_pgoff >> huge_page_order(h));
961 }
962 
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 				     unsigned long address)
965 {
966 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969 
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976 	if (vma->vm_ops && vma->vm_ops->pagesize)
977 		return vma->vm_ops->pagesize(vma);
978 	return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981 
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990 	return vma_kernel_pagesize(vma);
991 }
992 
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001 
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023 	return (unsigned long)vma->vm_private_data;
1024 }
1025 
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 							unsigned long value)
1028 {
1029 	vma->vm_private_data = (void *)value;
1030 }
1031 
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 					  struct hugetlb_cgroup *h_cg,
1035 					  struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038 	if (!h_cg || !h) {
1039 		resv_map->reservation_counter = NULL;
1040 		resv_map->pages_per_hpage = 0;
1041 		resv_map->css = NULL;
1042 	} else {
1043 		resv_map->reservation_counter =
1044 			&h_cg->rsvd_hugepage[hstate_index(h)];
1045 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 		resv_map->css = &h_cg->css;
1047 	}
1048 #endif
1049 }
1050 
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055 
1056 	if (!resv_map || !rg) {
1057 		kfree(resv_map);
1058 		kfree(rg);
1059 		return NULL;
1060 	}
1061 
1062 	kref_init(&resv_map->refs);
1063 	spin_lock_init(&resv_map->lock);
1064 	INIT_LIST_HEAD(&resv_map->regions);
1065 
1066 	resv_map->adds_in_progress = 0;
1067 	/*
1068 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 	 * fields don't do cgroup accounting. On private mappings, these will be
1070 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 	 * reservations are to be un-charged from here.
1072 	 */
1073 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074 
1075 	INIT_LIST_HEAD(&resv_map->region_cache);
1076 	list_add(&rg->link, &resv_map->region_cache);
1077 	resv_map->region_cache_count = 1;
1078 
1079 	return resv_map;
1080 }
1081 
1082 void resv_map_release(struct kref *ref)
1083 {
1084 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 	struct list_head *head = &resv_map->region_cache;
1086 	struct file_region *rg, *trg;
1087 
1088 	/* Clear out any active regions before we release the map. */
1089 	region_del(resv_map, 0, LONG_MAX);
1090 
1091 	/* ... and any entries left in the cache */
1092 	list_for_each_entry_safe(rg, trg, head, link) {
1093 		list_del(&rg->link);
1094 		kfree(rg);
1095 	}
1096 
1097 	VM_BUG_ON(resv_map->adds_in_progress);
1098 
1099 	kfree(resv_map);
1100 }
1101 
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104 	/*
1105 	 * At inode evict time, i_mapping may not point to the original
1106 	 * address space within the inode.  This original address space
1107 	 * contains the pointer to the resv_map.  So, always use the
1108 	 * address space embedded within the inode.
1109 	 * The VERY common case is inode->mapping == &inode->i_data but,
1110 	 * this may not be true for device special inodes.
1111 	 */
1112 	return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114 
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 	if (vma->vm_flags & VM_MAYSHARE) {
1119 		struct address_space *mapping = vma->vm_file->f_mapping;
1120 		struct inode *inode = mapping->host;
1121 
1122 		return inode_resv_map(inode);
1123 
1124 	} else {
1125 		return (struct resv_map *)(get_vma_private_data(vma) &
1126 							~HPAGE_RESV_MASK);
1127 	}
1128 }
1129 
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134 
1135 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 				HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138 
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143 
1144 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146 
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 
1151 	return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153 
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	/*
1158 	 * Clear vm_private_data
1159 	 * - For shared mappings this is a per-vma semaphore that may be
1160 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1161 	 *   Before clearing, make sure pointer is not associated with vma
1162 	 *   as this will leak the structure.  This is the case when called
1163 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 	 *   been called to allocate a new structure.
1165 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 	 *   not apply to children.  Faults generated by the children are
1167 	 *   not guaranteed to succeed, even if read-only.
1168 	 */
1169 	if (vma->vm_flags & VM_MAYSHARE) {
1170 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171 
1172 		if (vma_lock && vma_lock->vma != vma)
1173 			vma->vm_private_data = NULL;
1174 	} else
1175 		vma->vm_private_data = NULL;
1176 }
1177 
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * Clear the old hugetlb private page reservation.
1189 	 * It has already been transferred to new_vma.
1190 	 *
1191 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 	 * which copies vma into new_vma and unmaps vma. After the copy
1193 	 * operation both new_vma and vma share a reference to the resv_map
1194 	 * struct, and at that point vma is about to be unmapped. We don't
1195 	 * want to return the reservation to the pool at unmap of vma because
1196 	 * the reservation still lives on in new_vma, so simply decrement the
1197 	 * ref here and remove the resv_map reference from this vma.
1198 	 */
1199 	struct resv_map *reservations = vma_resv_map(vma);
1200 
1201 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 		kref_put(&reservations->refs, resv_map_release);
1204 	}
1205 
1206 	hugetlb_dup_vma_private(vma);
1207 }
1208 
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212 	if (vma->vm_flags & VM_NORESERVE) {
1213 		/*
1214 		 * This address is already reserved by other process(chg == 0),
1215 		 * so, we should decrement reserved count. Without decrementing,
1216 		 * reserve count remains after releasing inode, because this
1217 		 * allocated page will go into page cache and is regarded as
1218 		 * coming from reserved pool in releasing step.  Currently, we
1219 		 * don't have any other solution to deal with this situation
1220 		 * properly, so add work-around here.
1221 		 */
1222 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 			return true;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	/* Shared mappings always use reserves */
1229 	if (vma->vm_flags & VM_MAYSHARE) {
1230 		/*
1231 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232 		 * be a region map for all pages.  The only situation where
1233 		 * there is no region map is if a hole was punched via
1234 		 * fallocate.  In this case, there really are no reserves to
1235 		 * use.  This situation is indicated if chg != 0.
1236 		 */
1237 		if (chg)
1238 			return false;
1239 		else
1240 			return true;
1241 	}
1242 
1243 	/*
1244 	 * Only the process that called mmap() has reserves for
1245 	 * private mappings.
1246 	 */
1247 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 		/*
1249 		 * Like the shared case above, a hole punch or truncate
1250 		 * could have been performed on the private mapping.
1251 		 * Examine the value of chg to determine if reserves
1252 		 * actually exist or were previously consumed.
1253 		 * Very Subtle - The value of chg comes from a previous
1254 		 * call to vma_needs_reserves().  The reserve map for
1255 		 * private mappings has different (opposite) semantics
1256 		 * than that of shared mappings.  vma_needs_reserves()
1257 		 * has already taken this difference in semantics into
1258 		 * account.  Therefore, the meaning of chg is the same
1259 		 * as in the shared case above.  Code could easily be
1260 		 * combined, but keeping it separate draws attention to
1261 		 * subtle differences.
1262 		 */
1263 		if (chg)
1264 			return false;
1265 		else
1266 			return true;
1267 	}
1268 
1269 	return false;
1270 }
1271 
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274 	int nid = folio_nid(folio);
1275 
1276 	lockdep_assert_held(&hugetlb_lock);
1277 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278 
1279 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 	h->free_huge_pages++;
1281 	h->free_huge_pages_node[nid]++;
1282 	folio_set_hugetlb_freed(folio);
1283 }
1284 
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 								int nid)
1287 {
1288 	struct folio *folio;
1289 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290 
1291 	lockdep_assert_held(&hugetlb_lock);
1292 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 		if (pin && !folio_is_longterm_pinnable(folio))
1294 			continue;
1295 
1296 		if (folio_test_hwpoison(folio))
1297 			continue;
1298 
1299 		list_move(&folio->lru, &h->hugepage_activelist);
1300 		folio_ref_unfreeze(folio, 1);
1301 		folio_clear_hugetlb_freed(folio);
1302 		h->free_huge_pages--;
1303 		h->free_huge_pages_node[nid]--;
1304 		return folio;
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 							int nid, nodemask_t *nmask)
1312 {
1313 	unsigned int cpuset_mems_cookie;
1314 	struct zonelist *zonelist;
1315 	struct zone *zone;
1316 	struct zoneref *z;
1317 	int node = NUMA_NO_NODE;
1318 
1319 	zonelist = node_zonelist(nid, gfp_mask);
1320 
1321 retry_cpuset:
1322 	cpuset_mems_cookie = read_mems_allowed_begin();
1323 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 		struct folio *folio;
1325 
1326 		if (!cpuset_zone_allowed(zone, gfp_mask))
1327 			continue;
1328 		/*
1329 		 * no need to ask again on the same node. Pool is node rather than
1330 		 * zone aware
1331 		 */
1332 		if (zone_to_nid(zone) == node)
1333 			continue;
1334 		node = zone_to_nid(zone);
1335 
1336 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 		if (folio)
1338 			return folio;
1339 	}
1340 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 		goto retry_cpuset;
1342 
1343 	return NULL;
1344 }
1345 
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348 	return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350 
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 				struct vm_area_struct *vma,
1353 				unsigned long address, int avoid_reserve,
1354 				long chg)
1355 {
1356 	struct folio *folio = NULL;
1357 	struct mempolicy *mpol;
1358 	gfp_t gfp_mask;
1359 	nodemask_t *nodemask;
1360 	int nid;
1361 
1362 	/*
1363 	 * A child process with MAP_PRIVATE mappings created by their parent
1364 	 * have no page reserves. This check ensures that reservations are
1365 	 * not "stolen". The child may still get SIGKILLed
1366 	 */
1367 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 		goto err;
1369 
1370 	/* If reserves cannot be used, ensure enough pages are in the pool */
1371 	if (avoid_reserve && !available_huge_pages(h))
1372 		goto err;
1373 
1374 	gfp_mask = htlb_alloc_mask(h);
1375 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376 
1377 	if (mpol_is_preferred_many(mpol)) {
1378 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 							nid, nodemask);
1380 
1381 		/* Fallback to all nodes if page==NULL */
1382 		nodemask = NULL;
1383 	}
1384 
1385 	if (!folio)
1386 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 							nid, nodemask);
1388 
1389 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 		folio_set_hugetlb_restore_reserve(folio);
1391 		h->resv_huge_pages--;
1392 	}
1393 
1394 	mpol_cond_put(mpol);
1395 	return folio;
1396 
1397 err:
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410 	nid = next_node_in(nid, *nodes_allowed);
1411 	VM_BUG_ON(nid >= MAX_NUMNODES);
1412 
1413 	return nid;
1414 }
1415 
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418 	if (!node_isset(nid, *nodes_allowed))
1419 		nid = next_node_allowed(nid, nodes_allowed);
1420 	return nid;
1421 }
1422 
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 					nodemask_t *nodes_allowed)
1431 {
1432 	int nid;
1433 
1434 	VM_BUG_ON(!nodes_allowed);
1435 
1436 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438 
1439 	return nid;
1440 }
1441 
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450 	int nid;
1451 
1452 	VM_BUG_ON(!nodes_allowed);
1453 
1454 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456 
1457 	return nid;
1458 }
1459 
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1461 	for (nr_nodes = nodes_weight(*mask);				\
1462 		nr_nodes > 0 &&						\
1463 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1464 		nr_nodes--)
1465 
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 					unsigned int order, bool demote)
1475 {
1476 	int i;
1477 	int nr_pages = 1 << order;
1478 	struct page *p;
1479 
1480 	atomic_set(&folio->_entire_mapcount, 0);
1481 	atomic_set(&folio->_nr_pages_mapped, 0);
1482 	atomic_set(&folio->_pincount, 0);
1483 
1484 	for (i = 1; i < nr_pages; i++) {
1485 		p = folio_page(folio, i);
1486 		p->mapping = NULL;
1487 		clear_compound_head(p);
1488 		if (!demote)
1489 			set_page_refcounted(p);
1490 	}
1491 
1492 	folio_set_order(folio, 0);
1493 	__folio_clear_head(folio);
1494 }
1495 
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 					unsigned int order)
1498 {
1499 	__destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501 
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504 					unsigned int order)
1505 {
1506 	__destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508 
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511 	/*
1512 	 * If the page isn't allocated using the cma allocator,
1513 	 * cma_release() returns false.
1514 	 */
1515 #ifdef CONFIG_CMA
1516 	int nid = folio_nid(folio);
1517 
1518 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 		return;
1520 #endif
1521 
1522 	free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524 
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 		int nid, nodemask_t *nodemask)
1528 {
1529 	struct page *page;
1530 	unsigned long nr_pages = pages_per_huge_page(h);
1531 	if (nid == NUMA_NO_NODE)
1532 		nid = numa_mem_id();
1533 
1534 #ifdef CONFIG_CMA
1535 	{
1536 		int node;
1537 
1538 		if (hugetlb_cma[nid]) {
1539 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 					huge_page_order(h), true);
1541 			if (page)
1542 				return page_folio(page);
1543 		}
1544 
1545 		if (!(gfp_mask & __GFP_THISNODE)) {
1546 			for_each_node_mask(node, *nodemask) {
1547 				if (node == nid || !hugetlb_cma[node])
1548 					continue;
1549 
1550 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 						huge_page_order(h), true);
1552 				if (page)
1553 					return page_folio(page);
1554 			}
1555 		}
1556 	}
1557 #endif
1558 
1559 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 	return page ? page_folio(page) : NULL;
1561 }
1562 
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 					int nid, nodemask_t *nodemask)
1566 {
1567 	return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570 
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 					int nid, nodemask_t *nodemask)
1574 {
1575 	return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 						unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 						unsigned int order) { }
1581 #endif
1582 
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 							bool adjust_surplus,
1593 							bool demote)
1594 {
1595 	int nid = folio_nid(folio);
1596 
1597 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599 
1600 	lockdep_assert_held(&hugetlb_lock);
1601 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602 		return;
1603 
1604 	list_del(&folio->lru);
1605 
1606 	if (folio_test_hugetlb_freed(folio)) {
1607 		h->free_huge_pages--;
1608 		h->free_huge_pages_node[nid]--;
1609 	}
1610 	if (adjust_surplus) {
1611 		h->surplus_huge_pages--;
1612 		h->surplus_huge_pages_node[nid]--;
1613 	}
1614 
1615 	/*
1616 	 * Very subtle
1617 	 *
1618 	 * For non-gigantic pages set the destructor to the normal compound
1619 	 * page dtor.  This is needed in case someone takes an additional
1620 	 * temporary ref to the page, and freeing is delayed until they drop
1621 	 * their reference.
1622 	 *
1623 	 * For gigantic pages set the destructor to the null dtor.  This
1624 	 * destructor will never be called.  Before freeing the gigantic
1625 	 * page destroy_compound_gigantic_folio will turn the folio into a
1626 	 * simple group of pages.  After this the destructor does not
1627 	 * apply.
1628 	 *
1629 	 * This handles the case where more than one ref is held when and
1630 	 * after update_and_free_hugetlb_folio is called.
1631 	 *
1632 	 * In the case of demote we do not ref count the page as it will soon
1633 	 * be turned into a page of smaller size.
1634 	 */
1635 	if (!demote)
1636 		folio_ref_unfreeze(folio, 1);
1637 	if (hstate_is_gigantic(h))
1638 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 	else
1640 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641 
1642 	h->nr_huge_pages--;
1643 	h->nr_huge_pages_node[nid]--;
1644 }
1645 
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 							bool adjust_surplus)
1648 {
1649 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651 
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 							bool adjust_surplus)
1654 {
1655 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657 
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 			     bool adjust_surplus)
1660 {
1661 	int zeroed;
1662 	int nid = folio_nid(folio);
1663 
1664 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665 
1666 	lockdep_assert_held(&hugetlb_lock);
1667 
1668 	INIT_LIST_HEAD(&folio->lru);
1669 	h->nr_huge_pages++;
1670 	h->nr_huge_pages_node[nid]++;
1671 
1672 	if (adjust_surplus) {
1673 		h->surplus_huge_pages++;
1674 		h->surplus_huge_pages_node[nid]++;
1675 	}
1676 
1677 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 	folio_change_private(folio, NULL);
1679 	/*
1680 	 * We have to set hugetlb_vmemmap_optimized again as above
1681 	 * folio_change_private(folio, NULL) cleared it.
1682 	 */
1683 	folio_set_hugetlb_vmemmap_optimized(folio);
1684 
1685 	/*
1686 	 * This folio is about to be managed by the hugetlb allocator and
1687 	 * should have no users.  Drop our reference, and check for others
1688 	 * just in case.
1689 	 */
1690 	zeroed = folio_put_testzero(folio);
1691 	if (unlikely(!zeroed))
1692 		/*
1693 		 * It is VERY unlikely soneone else has taken a ref on
1694 		 * the page.  In this case, we simply return as the
1695 		 * hugetlb destructor (free_huge_page) will be called
1696 		 * when this other ref is dropped.
1697 		 */
1698 		return;
1699 
1700 	arch_clear_hugepage_flags(&folio->page);
1701 	enqueue_hugetlb_folio(h, folio);
1702 }
1703 
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 						struct folio *folio)
1706 {
1707 	int i;
1708 	struct page *subpage;
1709 
1710 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 		return;
1712 
1713 	/*
1714 	 * If we don't know which subpages are hwpoisoned, we can't free
1715 	 * the hugepage, so it's leaked intentionally.
1716 	 */
1717 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718 		return;
1719 
1720 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 		spin_lock_irq(&hugetlb_lock);
1722 		/*
1723 		 * If we cannot allocate vmemmap pages, just refuse to free the
1724 		 * page and put the page back on the hugetlb free list and treat
1725 		 * as a surplus page.
1726 		 */
1727 		add_hugetlb_folio(h, folio, true);
1728 		spin_unlock_irq(&hugetlb_lock);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * Move PageHWPoison flag from head page to the raw error pages,
1734 	 * which makes any healthy subpages reusable.
1735 	 */
1736 	if (unlikely(folio_test_hwpoison(folio)))
1737 		folio_clear_hugetlb_hwpoison(folio);
1738 
1739 	for (i = 0; i < pages_per_huge_page(h); i++) {
1740 		subpage = folio_page(folio, i);
1741 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 				1 << PG_referenced | 1 << PG_dirty |
1743 				1 << PG_active | 1 << PG_private |
1744 				1 << PG_writeback);
1745 	}
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_folio.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 		free_gigantic_folio(folio, huge_page_order(h));
1755 	} else {
1756 		__free_pages(&folio->page, huge_page_order(h));
1757 	}
1758 }
1759 
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772 
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775 	struct llist_node *node;
1776 
1777 	node = llist_del_all(&hpage_freelist);
1778 
1779 	while (node) {
1780 		struct page *page;
1781 		struct hstate *h;
1782 
1783 		page = container_of((struct address_space **)node,
1784 				     struct page, mapping);
1785 		node = node->next;
1786 		page->mapping = NULL;
1787 		/*
1788 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 		 * is going to trigger because a previous call to
1790 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792 		 * directly.
1793 		 */
1794 		h = size_to_hstate(page_size(page));
1795 
1796 		__update_and_free_hugetlb_folio(h, page_folio(page));
1797 
1798 		cond_resched();
1799 	}
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802 
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805 	if (hugetlb_vmemmap_optimizable(h))
1806 		flush_work(&free_hpage_work);
1807 }
1808 
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 				 bool atomic)
1811 {
1812 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 		__update_and_free_hugetlb_folio(h, folio);
1814 		return;
1815 	}
1816 
1817 	/*
1818 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 	 *
1820 	 * Only call schedule_work() if hpage_freelist is previously
1821 	 * empty. Otherwise, schedule_work() had been called but the workfn
1822 	 * hasn't retrieved the list yet.
1823 	 */
1824 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 		schedule_work(&free_hpage_work);
1826 }
1827 
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830 	struct page *page, *t_page;
1831 	struct folio *folio;
1832 
1833 	list_for_each_entry_safe(page, t_page, list, lru) {
1834 		folio = page_folio(page);
1835 		update_and_free_hugetlb_folio(h, folio, false);
1836 		cond_resched();
1837 	}
1838 }
1839 
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842 	struct hstate *h;
1843 
1844 	for_each_hstate(h) {
1845 		if (huge_page_size(h) == size)
1846 			return h;
1847 	}
1848 	return NULL;
1849 }
1850 
1851 void free_huge_page(struct page *page)
1852 {
1853 	/*
1854 	 * Can't pass hstate in here because it is called from the
1855 	 * compound page destructor.
1856 	 */
1857 	struct folio *folio = page_folio(page);
1858 	struct hstate *h = folio_hstate(folio);
1859 	int nid = folio_nid(folio);
1860 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 	bool restore_reserve;
1862 	unsigned long flags;
1863 
1864 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866 
1867 	hugetlb_set_folio_subpool(folio, NULL);
1868 	if (folio_test_anon(folio))
1869 		__ClearPageAnonExclusive(&folio->page);
1870 	folio->mapping = NULL;
1871 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 	folio_clear_hugetlb_restore_reserve(folio);
1873 
1874 	/*
1875 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 	 * reservation.  If the page was associated with a subpool, there
1877 	 * would have been a page reserved in the subpool before allocation
1878 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 	 * remove the reserved page from the subpool.
1881 	 */
1882 	if (!restore_reserve) {
1883 		/*
1884 		 * A return code of zero implies that the subpool will be
1885 		 * under its minimum size if the reservation is not restored
1886 		 * after page is free.  Therefore, force restore_reserve
1887 		 * operation.
1888 		 */
1889 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 			restore_reserve = true;
1891 	}
1892 
1893 	spin_lock_irqsave(&hugetlb_lock, flags);
1894 	folio_clear_hugetlb_migratable(folio);
1895 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 				     pages_per_huge_page(h), folio);
1897 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 					  pages_per_huge_page(h), folio);
1899 	if (restore_reserve)
1900 		h->resv_huge_pages++;
1901 
1902 	if (folio_test_hugetlb_temporary(folio)) {
1903 		remove_hugetlb_folio(h, folio, false);
1904 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 		update_and_free_hugetlb_folio(h, folio, true);
1906 	} else if (h->surplus_huge_pages_node[nid]) {
1907 		/* remove the page from active list */
1908 		remove_hugetlb_folio(h, folio, true);
1909 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 		update_and_free_hugetlb_folio(h, folio, true);
1911 	} else {
1912 		arch_clear_hugepage_flags(page);
1913 		enqueue_hugetlb_folio(h, folio);
1914 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1915 	}
1916 }
1917 
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923 	lockdep_assert_held(&hugetlb_lock);
1924 	h->nr_huge_pages++;
1925 	h->nr_huge_pages_node[nid]++;
1926 }
1927 
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930 	hugetlb_vmemmap_optimize(h, &folio->page);
1931 	INIT_LIST_HEAD(&folio->lru);
1932 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 	hugetlb_set_folio_subpool(folio, NULL);
1934 	set_hugetlb_cgroup(folio, NULL);
1935 	set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937 
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940 	__prep_new_hugetlb_folio(h, folio);
1941 	spin_lock_irq(&hugetlb_lock);
1942 	__prep_account_new_huge_page(h, nid);
1943 	spin_unlock_irq(&hugetlb_lock);
1944 }
1945 
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 					unsigned int order, bool demote)
1948 {
1949 	int i, j;
1950 	int nr_pages = 1 << order;
1951 	struct page *p;
1952 
1953 	__folio_clear_reserved(folio);
1954 	__folio_set_head(folio);
1955 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1956 	folio_set_order(folio, order);
1957 	for (i = 0; i < nr_pages; i++) {
1958 		p = folio_page(folio, i);
1959 
1960 		/*
1961 		 * For gigantic hugepages allocated through bootmem at
1962 		 * boot, it's safer to be consistent with the not-gigantic
1963 		 * hugepages and clear the PG_reserved bit from all tail pages
1964 		 * too.  Otherwise drivers using get_user_pages() to access tail
1965 		 * pages may get the reference counting wrong if they see
1966 		 * PG_reserved set on a tail page (despite the head page not
1967 		 * having PG_reserved set).  Enforcing this consistency between
1968 		 * head and tail pages allows drivers to optimize away a check
1969 		 * on the head page when they need know if put_page() is needed
1970 		 * after get_user_pages().
1971 		 */
1972 		if (i != 0)	/* head page cleared above */
1973 			__ClearPageReserved(p);
1974 		/*
1975 		 * Subtle and very unlikely
1976 		 *
1977 		 * Gigantic 'page allocators' such as memblock or cma will
1978 		 * return a set of pages with each page ref counted.  We need
1979 		 * to turn this set of pages into a compound page with tail
1980 		 * page ref counts set to zero.  Code such as speculative page
1981 		 * cache adding could take a ref on a 'to be' tail page.
1982 		 * We need to respect any increased ref count, and only set
1983 		 * the ref count to zero if count is currently 1.  If count
1984 		 * is not 1, we return an error.  An error return indicates
1985 		 * the set of pages can not be converted to a gigantic page.
1986 		 * The caller who allocated the pages should then discard the
1987 		 * pages using the appropriate free interface.
1988 		 *
1989 		 * In the case of demote, the ref count will be zero.
1990 		 */
1991 		if (!demote) {
1992 			if (!page_ref_freeze(p, 1)) {
1993 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 				goto out_error;
1995 			}
1996 		} else {
1997 			VM_BUG_ON_PAGE(page_count(p), p);
1998 		}
1999 		if (i != 0)
2000 			set_compound_head(p, &folio->page);
2001 	}
2002 	atomic_set(&folio->_entire_mapcount, -1);
2003 	atomic_set(&folio->_nr_pages_mapped, 0);
2004 	atomic_set(&folio->_pincount, 0);
2005 	return true;
2006 
2007 out_error:
2008 	/* undo page modifications made above */
2009 	for (j = 0; j < i; j++) {
2010 		p = folio_page(folio, j);
2011 		if (j != 0)
2012 			clear_compound_head(p);
2013 		set_page_refcounted(p);
2014 	}
2015 	/* need to clear PG_reserved on remaining tail pages  */
2016 	for (; j < nr_pages; j++) {
2017 		p = folio_page(folio, j);
2018 		__ClearPageReserved(p);
2019 	}
2020 	folio_set_order(folio, 0);
2021 	__folio_clear_head(folio);
2022 	return false;
2023 }
2024 
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2026 							unsigned int order)
2027 {
2028 	return __prep_compound_gigantic_folio(folio, order, false);
2029 }
2030 
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032 							unsigned int order)
2033 {
2034 	return __prep_compound_gigantic_folio(folio, order, true);
2035 }
2036 
2037 /*
2038  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039  * transparent huge pages.  See the PageTransHuge() documentation for more
2040  * details.
2041  */
2042 int PageHuge(struct page *page)
2043 {
2044 	struct folio *folio;
2045 
2046 	if (!PageCompound(page))
2047 		return 0;
2048 	folio = page_folio(page);
2049 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052 
2053 /*
2054  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055  * normal or transparent huge pages.
2056  */
2057 int PageHeadHuge(struct page *page_head)
2058 {
2059 	struct folio *folio = (struct folio *)page_head;
2060 	if (!folio_test_large(folio))
2061 		return 0;
2062 
2063 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2064 }
2065 EXPORT_SYMBOL_GPL(PageHeadHuge);
2066 
2067 /*
2068  * Find and lock address space (mapping) in write mode.
2069  *
2070  * Upon entry, the page is locked which means that page_mapping() is
2071  * stable.  Due to locking order, we can only trylock_write.  If we can
2072  * not get the lock, simply return NULL to caller.
2073  */
2074 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2075 {
2076 	struct address_space *mapping = page_mapping(hpage);
2077 
2078 	if (!mapping)
2079 		return mapping;
2080 
2081 	if (i_mmap_trylock_write(mapping))
2082 		return mapping;
2083 
2084 	return NULL;
2085 }
2086 
2087 pgoff_t hugetlb_basepage_index(struct page *page)
2088 {
2089 	struct page *page_head = compound_head(page);
2090 	pgoff_t index = page_index(page_head);
2091 	unsigned long compound_idx;
2092 
2093 	if (compound_order(page_head) >= MAX_ORDER)
2094 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2095 	else
2096 		compound_idx = page - page_head;
2097 
2098 	return (index << compound_order(page_head)) + compound_idx;
2099 }
2100 
2101 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2102 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2103 		nodemask_t *node_alloc_noretry)
2104 {
2105 	int order = huge_page_order(h);
2106 	struct page *page;
2107 	bool alloc_try_hard = true;
2108 	bool retry = true;
2109 
2110 	/*
2111 	 * By default we always try hard to allocate the page with
2112 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2113 	 * a loop (to adjust global huge page counts) and previous allocation
2114 	 * failed, do not continue to try hard on the same node.  Use the
2115 	 * node_alloc_noretry bitmap to manage this state information.
2116 	 */
2117 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2118 		alloc_try_hard = false;
2119 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2120 	if (alloc_try_hard)
2121 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2122 	if (nid == NUMA_NO_NODE)
2123 		nid = numa_mem_id();
2124 retry:
2125 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2126 
2127 	/* Freeze head page */
2128 	if (page && !page_ref_freeze(page, 1)) {
2129 		__free_pages(page, order);
2130 		if (retry) {	/* retry once */
2131 			retry = false;
2132 			goto retry;
2133 		}
2134 		/* WOW!  twice in a row. */
2135 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2136 		page = NULL;
2137 	}
2138 
2139 	/*
2140 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141 	 * indicates an overall state change.  Clear bit so that we resume
2142 	 * normal 'try hard' allocations.
2143 	 */
2144 	if (node_alloc_noretry && page && !alloc_try_hard)
2145 		node_clear(nid, *node_alloc_noretry);
2146 
2147 	/*
2148 	 * If we tried hard to get a page but failed, set bit so that
2149 	 * subsequent attempts will not try as hard until there is an
2150 	 * overall state change.
2151 	 */
2152 	if (node_alloc_noretry && !page && alloc_try_hard)
2153 		node_set(nid, *node_alloc_noretry);
2154 
2155 	if (!page) {
2156 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2157 		return NULL;
2158 	}
2159 
2160 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2161 	return page_folio(page);
2162 }
2163 
2164 /*
2165  * Common helper to allocate a fresh hugetlb page. All specific allocators
2166  * should use this function to get new hugetlb pages
2167  *
2168  * Note that returned page is 'frozen':  ref count of head page and all tail
2169  * pages is zero.
2170  */
2171 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2172 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2173 		nodemask_t *node_alloc_noretry)
2174 {
2175 	struct folio *folio;
2176 	bool retry = false;
2177 
2178 retry:
2179 	if (hstate_is_gigantic(h))
2180 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2181 	else
2182 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2183 				nid, nmask, node_alloc_noretry);
2184 	if (!folio)
2185 		return NULL;
2186 	if (hstate_is_gigantic(h)) {
2187 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2188 			/*
2189 			 * Rare failure to convert pages to compound page.
2190 			 * Free pages and try again - ONCE!
2191 			 */
2192 			free_gigantic_folio(folio, huge_page_order(h));
2193 			if (!retry) {
2194 				retry = true;
2195 				goto retry;
2196 			}
2197 			return NULL;
2198 		}
2199 	}
2200 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2201 
2202 	return folio;
2203 }
2204 
2205 /*
2206  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2207  * manner.
2208  */
2209 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2210 				nodemask_t *node_alloc_noretry)
2211 {
2212 	struct folio *folio;
2213 	int nr_nodes, node;
2214 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2215 
2216 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2217 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2218 					nodes_allowed, node_alloc_noretry);
2219 		if (folio) {
2220 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2221 			return 1;
2222 		}
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Remove huge page from pool from next node to free.  Attempt to keep
2230  * persistent huge pages more or less balanced over allowed nodes.
2231  * This routine only 'removes' the hugetlb page.  The caller must make
2232  * an additional call to free the page to low level allocators.
2233  * Called with hugetlb_lock locked.
2234  */
2235 static struct page *remove_pool_huge_page(struct hstate *h,
2236 						nodemask_t *nodes_allowed,
2237 						 bool acct_surplus)
2238 {
2239 	int nr_nodes, node;
2240 	struct page *page = NULL;
2241 	struct folio *folio;
2242 
2243 	lockdep_assert_held(&hugetlb_lock);
2244 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2245 		/*
2246 		 * If we're returning unused surplus pages, only examine
2247 		 * nodes with surplus pages.
2248 		 */
2249 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2250 		    !list_empty(&h->hugepage_freelists[node])) {
2251 			page = list_entry(h->hugepage_freelists[node].next,
2252 					  struct page, lru);
2253 			folio = page_folio(page);
2254 			remove_hugetlb_folio(h, folio, acct_surplus);
2255 			break;
2256 		}
2257 	}
2258 
2259 	return page;
2260 }
2261 
2262 /*
2263  * Dissolve a given free hugepage into free buddy pages. This function does
2264  * nothing for in-use hugepages and non-hugepages.
2265  * This function returns values like below:
2266  *
2267  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2268  *           when the system is under memory pressure and the feature of
2269  *           freeing unused vmemmap pages associated with each hugetlb page
2270  *           is enabled.
2271  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2272  *           (allocated or reserved.)
2273  *       0:  successfully dissolved free hugepages or the page is not a
2274  *           hugepage (considered as already dissolved)
2275  */
2276 int dissolve_free_huge_page(struct page *page)
2277 {
2278 	int rc = -EBUSY;
2279 	struct folio *folio = page_folio(page);
2280 
2281 retry:
2282 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2283 	if (!folio_test_hugetlb(folio))
2284 		return 0;
2285 
2286 	spin_lock_irq(&hugetlb_lock);
2287 	if (!folio_test_hugetlb(folio)) {
2288 		rc = 0;
2289 		goto out;
2290 	}
2291 
2292 	if (!folio_ref_count(folio)) {
2293 		struct hstate *h = folio_hstate(folio);
2294 		if (!available_huge_pages(h))
2295 			goto out;
2296 
2297 		/*
2298 		 * We should make sure that the page is already on the free list
2299 		 * when it is dissolved.
2300 		 */
2301 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2302 			spin_unlock_irq(&hugetlb_lock);
2303 			cond_resched();
2304 
2305 			/*
2306 			 * Theoretically, we should return -EBUSY when we
2307 			 * encounter this race. In fact, we have a chance
2308 			 * to successfully dissolve the page if we do a
2309 			 * retry. Because the race window is quite small.
2310 			 * If we seize this opportunity, it is an optimization
2311 			 * for increasing the success rate of dissolving page.
2312 			 */
2313 			goto retry;
2314 		}
2315 
2316 		remove_hugetlb_folio(h, folio, false);
2317 		h->max_huge_pages--;
2318 		spin_unlock_irq(&hugetlb_lock);
2319 
2320 		/*
2321 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2322 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2323 		 * free the page if it can not allocate required vmemmap.  We
2324 		 * need to adjust max_huge_pages if the page is not freed.
2325 		 * Attempt to allocate vmemmmap here so that we can take
2326 		 * appropriate action on failure.
2327 		 */
2328 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2329 		if (!rc) {
2330 			update_and_free_hugetlb_folio(h, folio, false);
2331 		} else {
2332 			spin_lock_irq(&hugetlb_lock);
2333 			add_hugetlb_folio(h, folio, false);
2334 			h->max_huge_pages++;
2335 			spin_unlock_irq(&hugetlb_lock);
2336 		}
2337 
2338 		return rc;
2339 	}
2340 out:
2341 	spin_unlock_irq(&hugetlb_lock);
2342 	return rc;
2343 }
2344 
2345 /*
2346  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2347  * make specified memory blocks removable from the system.
2348  * Note that this will dissolve a free gigantic hugepage completely, if any
2349  * part of it lies within the given range.
2350  * Also note that if dissolve_free_huge_page() returns with an error, all
2351  * free hugepages that were dissolved before that error are lost.
2352  */
2353 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2354 {
2355 	unsigned long pfn;
2356 	struct page *page;
2357 	int rc = 0;
2358 	unsigned int order;
2359 	struct hstate *h;
2360 
2361 	if (!hugepages_supported())
2362 		return rc;
2363 
2364 	order = huge_page_order(&default_hstate);
2365 	for_each_hstate(h)
2366 		order = min(order, huge_page_order(h));
2367 
2368 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2369 		page = pfn_to_page(pfn);
2370 		rc = dissolve_free_huge_page(page);
2371 		if (rc)
2372 			break;
2373 	}
2374 
2375 	return rc;
2376 }
2377 
2378 /*
2379  * Allocates a fresh surplus page from the page allocator.
2380  */
2381 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2382 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2383 {
2384 	struct folio *folio = NULL;
2385 
2386 	if (hstate_is_gigantic(h))
2387 		return NULL;
2388 
2389 	spin_lock_irq(&hugetlb_lock);
2390 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2391 		goto out_unlock;
2392 	spin_unlock_irq(&hugetlb_lock);
2393 
2394 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2395 	if (!folio)
2396 		return NULL;
2397 
2398 	spin_lock_irq(&hugetlb_lock);
2399 	/*
2400 	 * We could have raced with the pool size change.
2401 	 * Double check that and simply deallocate the new page
2402 	 * if we would end up overcommiting the surpluses. Abuse
2403 	 * temporary page to workaround the nasty free_huge_page
2404 	 * codeflow
2405 	 */
2406 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2407 		folio_set_hugetlb_temporary(folio);
2408 		spin_unlock_irq(&hugetlb_lock);
2409 		free_huge_page(&folio->page);
2410 		return NULL;
2411 	}
2412 
2413 	h->surplus_huge_pages++;
2414 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2415 
2416 out_unlock:
2417 	spin_unlock_irq(&hugetlb_lock);
2418 
2419 	return folio;
2420 }
2421 
2422 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2423 				     int nid, nodemask_t *nmask)
2424 {
2425 	struct folio *folio;
2426 
2427 	if (hstate_is_gigantic(h))
2428 		return NULL;
2429 
2430 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2431 	if (!folio)
2432 		return NULL;
2433 
2434 	/* fresh huge pages are frozen */
2435 	folio_ref_unfreeze(folio, 1);
2436 	/*
2437 	 * We do not account these pages as surplus because they are only
2438 	 * temporary and will be released properly on the last reference
2439 	 */
2440 	folio_set_hugetlb_temporary(folio);
2441 
2442 	return folio;
2443 }
2444 
2445 /*
2446  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2447  */
2448 static
2449 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2450 		struct vm_area_struct *vma, unsigned long addr)
2451 {
2452 	struct folio *folio = NULL;
2453 	struct mempolicy *mpol;
2454 	gfp_t gfp_mask = htlb_alloc_mask(h);
2455 	int nid;
2456 	nodemask_t *nodemask;
2457 
2458 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2459 	if (mpol_is_preferred_many(mpol)) {
2460 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2461 
2462 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2463 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2464 
2465 		/* Fallback to all nodes if page==NULL */
2466 		nodemask = NULL;
2467 	}
2468 
2469 	if (!folio)
2470 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2471 	mpol_cond_put(mpol);
2472 	return folio;
2473 }
2474 
2475 /* folio migration callback function */
2476 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2477 		nodemask_t *nmask, gfp_t gfp_mask)
2478 {
2479 	spin_lock_irq(&hugetlb_lock);
2480 	if (available_huge_pages(h)) {
2481 		struct folio *folio;
2482 
2483 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2484 						preferred_nid, nmask);
2485 		if (folio) {
2486 			spin_unlock_irq(&hugetlb_lock);
2487 			return folio;
2488 		}
2489 	}
2490 	spin_unlock_irq(&hugetlb_lock);
2491 
2492 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2493 }
2494 
2495 /* mempolicy aware migration callback */
2496 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2497 		unsigned long address)
2498 {
2499 	struct mempolicy *mpol;
2500 	nodemask_t *nodemask;
2501 	struct folio *folio;
2502 	gfp_t gfp_mask;
2503 	int node;
2504 
2505 	gfp_mask = htlb_alloc_mask(h);
2506 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2508 	mpol_cond_put(mpol);
2509 
2510 	return folio;
2511 }
2512 
2513 /*
2514  * Increase the hugetlb pool such that it can accommodate a reservation
2515  * of size 'delta'.
2516  */
2517 static int gather_surplus_pages(struct hstate *h, long delta)
2518 	__must_hold(&hugetlb_lock)
2519 {
2520 	LIST_HEAD(surplus_list);
2521 	struct folio *folio;
2522 	struct page *page, *tmp;
2523 	int ret;
2524 	long i;
2525 	long needed, allocated;
2526 	bool alloc_ok = true;
2527 
2528 	lockdep_assert_held(&hugetlb_lock);
2529 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2530 	if (needed <= 0) {
2531 		h->resv_huge_pages += delta;
2532 		return 0;
2533 	}
2534 
2535 	allocated = 0;
2536 
2537 	ret = -ENOMEM;
2538 retry:
2539 	spin_unlock_irq(&hugetlb_lock);
2540 	for (i = 0; i < needed; i++) {
2541 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2542 				NUMA_NO_NODE, NULL);
2543 		if (!folio) {
2544 			alloc_ok = false;
2545 			break;
2546 		}
2547 		list_add(&folio->lru, &surplus_list);
2548 		cond_resched();
2549 	}
2550 	allocated += i;
2551 
2552 	/*
2553 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2554 	 * because either resv_huge_pages or free_huge_pages may have changed.
2555 	 */
2556 	spin_lock_irq(&hugetlb_lock);
2557 	needed = (h->resv_huge_pages + delta) -
2558 			(h->free_huge_pages + allocated);
2559 	if (needed > 0) {
2560 		if (alloc_ok)
2561 			goto retry;
2562 		/*
2563 		 * We were not able to allocate enough pages to
2564 		 * satisfy the entire reservation so we free what
2565 		 * we've allocated so far.
2566 		 */
2567 		goto free;
2568 	}
2569 	/*
2570 	 * The surplus_list now contains _at_least_ the number of extra pages
2571 	 * needed to accommodate the reservation.  Add the appropriate number
2572 	 * of pages to the hugetlb pool and free the extras back to the buddy
2573 	 * allocator.  Commit the entire reservation here to prevent another
2574 	 * process from stealing the pages as they are added to the pool but
2575 	 * before they are reserved.
2576 	 */
2577 	needed += allocated;
2578 	h->resv_huge_pages += delta;
2579 	ret = 0;
2580 
2581 	/* Free the needed pages to the hugetlb pool */
2582 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2583 		if ((--needed) < 0)
2584 			break;
2585 		/* Add the page to the hugetlb allocator */
2586 		enqueue_hugetlb_folio(h, page_folio(page));
2587 	}
2588 free:
2589 	spin_unlock_irq(&hugetlb_lock);
2590 
2591 	/*
2592 	 * Free unnecessary surplus pages to the buddy allocator.
2593 	 * Pages have no ref count, call free_huge_page directly.
2594 	 */
2595 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2596 		free_huge_page(page);
2597 	spin_lock_irq(&hugetlb_lock);
2598 
2599 	return ret;
2600 }
2601 
2602 /*
2603  * This routine has two main purposes:
2604  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2605  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2606  *    to the associated reservation map.
2607  * 2) Free any unused surplus pages that may have been allocated to satisfy
2608  *    the reservation.  As many as unused_resv_pages may be freed.
2609  */
2610 static void return_unused_surplus_pages(struct hstate *h,
2611 					unsigned long unused_resv_pages)
2612 {
2613 	unsigned long nr_pages;
2614 	struct page *page;
2615 	LIST_HEAD(page_list);
2616 
2617 	lockdep_assert_held(&hugetlb_lock);
2618 	/* Uncommit the reservation */
2619 	h->resv_huge_pages -= unused_resv_pages;
2620 
2621 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2622 		goto out;
2623 
2624 	/*
2625 	 * Part (or even all) of the reservation could have been backed
2626 	 * by pre-allocated pages. Only free surplus pages.
2627 	 */
2628 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2629 
2630 	/*
2631 	 * We want to release as many surplus pages as possible, spread
2632 	 * evenly across all nodes with memory. Iterate across these nodes
2633 	 * until we can no longer free unreserved surplus pages. This occurs
2634 	 * when the nodes with surplus pages have no free pages.
2635 	 * remove_pool_huge_page() will balance the freed pages across the
2636 	 * on-line nodes with memory and will handle the hstate accounting.
2637 	 */
2638 	while (nr_pages--) {
2639 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2640 		if (!page)
2641 			goto out;
2642 
2643 		list_add(&page->lru, &page_list);
2644 	}
2645 
2646 out:
2647 	spin_unlock_irq(&hugetlb_lock);
2648 	update_and_free_pages_bulk(h, &page_list);
2649 	spin_lock_irq(&hugetlb_lock);
2650 }
2651 
2652 
2653 /*
2654  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2655  * are used by the huge page allocation routines to manage reservations.
2656  *
2657  * vma_needs_reservation is called to determine if the huge page at addr
2658  * within the vma has an associated reservation.  If a reservation is
2659  * needed, the value 1 is returned.  The caller is then responsible for
2660  * managing the global reservation and subpool usage counts.  After
2661  * the huge page has been allocated, vma_commit_reservation is called
2662  * to add the page to the reservation map.  If the page allocation fails,
2663  * the reservation must be ended instead of committed.  vma_end_reservation
2664  * is called in such cases.
2665  *
2666  * In the normal case, vma_commit_reservation returns the same value
2667  * as the preceding vma_needs_reservation call.  The only time this
2668  * is not the case is if a reserve map was changed between calls.  It
2669  * is the responsibility of the caller to notice the difference and
2670  * take appropriate action.
2671  *
2672  * vma_add_reservation is used in error paths where a reservation must
2673  * be restored when a newly allocated huge page must be freed.  It is
2674  * to be called after calling vma_needs_reservation to determine if a
2675  * reservation exists.
2676  *
2677  * vma_del_reservation is used in error paths where an entry in the reserve
2678  * map was created during huge page allocation and must be removed.  It is to
2679  * be called after calling vma_needs_reservation to determine if a reservation
2680  * exists.
2681  */
2682 enum vma_resv_mode {
2683 	VMA_NEEDS_RESV,
2684 	VMA_COMMIT_RESV,
2685 	VMA_END_RESV,
2686 	VMA_ADD_RESV,
2687 	VMA_DEL_RESV,
2688 };
2689 static long __vma_reservation_common(struct hstate *h,
2690 				struct vm_area_struct *vma, unsigned long addr,
2691 				enum vma_resv_mode mode)
2692 {
2693 	struct resv_map *resv;
2694 	pgoff_t idx;
2695 	long ret;
2696 	long dummy_out_regions_needed;
2697 
2698 	resv = vma_resv_map(vma);
2699 	if (!resv)
2700 		return 1;
2701 
2702 	idx = vma_hugecache_offset(h, vma, addr);
2703 	switch (mode) {
2704 	case VMA_NEEDS_RESV:
2705 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2706 		/* We assume that vma_reservation_* routines always operate on
2707 		 * 1 page, and that adding to resv map a 1 page entry can only
2708 		 * ever require 1 region.
2709 		 */
2710 		VM_BUG_ON(dummy_out_regions_needed != 1);
2711 		break;
2712 	case VMA_COMMIT_RESV:
2713 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2714 		/* region_add calls of range 1 should never fail. */
2715 		VM_BUG_ON(ret < 0);
2716 		break;
2717 	case VMA_END_RESV:
2718 		region_abort(resv, idx, idx + 1, 1);
2719 		ret = 0;
2720 		break;
2721 	case VMA_ADD_RESV:
2722 		if (vma->vm_flags & VM_MAYSHARE) {
2723 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2724 			/* region_add calls of range 1 should never fail. */
2725 			VM_BUG_ON(ret < 0);
2726 		} else {
2727 			region_abort(resv, idx, idx + 1, 1);
2728 			ret = region_del(resv, idx, idx + 1);
2729 		}
2730 		break;
2731 	case VMA_DEL_RESV:
2732 		if (vma->vm_flags & VM_MAYSHARE) {
2733 			region_abort(resv, idx, idx + 1, 1);
2734 			ret = region_del(resv, idx, idx + 1);
2735 		} else {
2736 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2737 			/* region_add calls of range 1 should never fail. */
2738 			VM_BUG_ON(ret < 0);
2739 		}
2740 		break;
2741 	default:
2742 		BUG();
2743 	}
2744 
2745 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2746 		return ret;
2747 	/*
2748 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2749 	 *
2750 	 * In most cases, reserves always exist for private mappings.
2751 	 * However, a file associated with mapping could have been
2752 	 * hole punched or truncated after reserves were consumed.
2753 	 * As subsequent fault on such a range will not use reserves.
2754 	 * Subtle - The reserve map for private mappings has the
2755 	 * opposite meaning than that of shared mappings.  If NO
2756 	 * entry is in the reserve map, it means a reservation exists.
2757 	 * If an entry exists in the reserve map, it means the
2758 	 * reservation has already been consumed.  As a result, the
2759 	 * return value of this routine is the opposite of the
2760 	 * value returned from reserve map manipulation routines above.
2761 	 */
2762 	if (ret > 0)
2763 		return 0;
2764 	if (ret == 0)
2765 		return 1;
2766 	return ret;
2767 }
2768 
2769 static long vma_needs_reservation(struct hstate *h,
2770 			struct vm_area_struct *vma, unsigned long addr)
2771 {
2772 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2773 }
2774 
2775 static long vma_commit_reservation(struct hstate *h,
2776 			struct vm_area_struct *vma, unsigned long addr)
2777 {
2778 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2779 }
2780 
2781 static void vma_end_reservation(struct hstate *h,
2782 			struct vm_area_struct *vma, unsigned long addr)
2783 {
2784 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2785 }
2786 
2787 static long vma_add_reservation(struct hstate *h,
2788 			struct vm_area_struct *vma, unsigned long addr)
2789 {
2790 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2791 }
2792 
2793 static long vma_del_reservation(struct hstate *h,
2794 			struct vm_area_struct *vma, unsigned long addr)
2795 {
2796 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2797 }
2798 
2799 /*
2800  * This routine is called to restore reservation information on error paths.
2801  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2802  * and the hugetlb mutex should remain held when calling this routine.
2803  *
2804  * It handles two specific cases:
2805  * 1) A reservation was in place and the folio consumed the reservation.
2806  *    hugetlb_restore_reserve is set in the folio.
2807  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2808  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2809  *
2810  * In case 1, free_huge_page later in the error path will increment the
2811  * global reserve count.  But, free_huge_page does not have enough context
2812  * to adjust the reservation map.  This case deals primarily with private
2813  * mappings.  Adjust the reserve map here to be consistent with global
2814  * reserve count adjustments to be made by free_huge_page.  Make sure the
2815  * reserve map indicates there is a reservation present.
2816  *
2817  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2818  */
2819 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2820 			unsigned long address, struct folio *folio)
2821 {
2822 	long rc = vma_needs_reservation(h, vma, address);
2823 
2824 	if (folio_test_hugetlb_restore_reserve(folio)) {
2825 		if (unlikely(rc < 0))
2826 			/*
2827 			 * Rare out of memory condition in reserve map
2828 			 * manipulation.  Clear hugetlb_restore_reserve so
2829 			 * that global reserve count will not be incremented
2830 			 * by free_huge_page.  This will make it appear
2831 			 * as though the reservation for this folio was
2832 			 * consumed.  This may prevent the task from
2833 			 * faulting in the folio at a later time.  This
2834 			 * is better than inconsistent global huge page
2835 			 * accounting of reserve counts.
2836 			 */
2837 			folio_clear_hugetlb_restore_reserve(folio);
2838 		else if (rc)
2839 			(void)vma_add_reservation(h, vma, address);
2840 		else
2841 			vma_end_reservation(h, vma, address);
2842 	} else {
2843 		if (!rc) {
2844 			/*
2845 			 * This indicates there is an entry in the reserve map
2846 			 * not added by alloc_hugetlb_folio.  We know it was added
2847 			 * before the alloc_hugetlb_folio call, otherwise
2848 			 * hugetlb_restore_reserve would be set on the folio.
2849 			 * Remove the entry so that a subsequent allocation
2850 			 * does not consume a reservation.
2851 			 */
2852 			rc = vma_del_reservation(h, vma, address);
2853 			if (rc < 0)
2854 				/*
2855 				 * VERY rare out of memory condition.  Since
2856 				 * we can not delete the entry, set
2857 				 * hugetlb_restore_reserve so that the reserve
2858 				 * count will be incremented when the folio
2859 				 * is freed.  This reserve will be consumed
2860 				 * on a subsequent allocation.
2861 				 */
2862 				folio_set_hugetlb_restore_reserve(folio);
2863 		} else if (rc < 0) {
2864 			/*
2865 			 * Rare out of memory condition from
2866 			 * vma_needs_reservation call.  Memory allocation is
2867 			 * only attempted if a new entry is needed.  Therefore,
2868 			 * this implies there is not an entry in the
2869 			 * reserve map.
2870 			 *
2871 			 * For shared mappings, no entry in the map indicates
2872 			 * no reservation.  We are done.
2873 			 */
2874 			if (!(vma->vm_flags & VM_MAYSHARE))
2875 				/*
2876 				 * For private mappings, no entry indicates
2877 				 * a reservation is present.  Since we can
2878 				 * not add an entry, set hugetlb_restore_reserve
2879 				 * on the folio so reserve count will be
2880 				 * incremented when freed.  This reserve will
2881 				 * be consumed on a subsequent allocation.
2882 				 */
2883 				folio_set_hugetlb_restore_reserve(folio);
2884 		} else
2885 			/*
2886 			 * No reservation present, do nothing
2887 			 */
2888 			 vma_end_reservation(h, vma, address);
2889 	}
2890 }
2891 
2892 /*
2893  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2894  * the old one
2895  * @h: struct hstate old page belongs to
2896  * @old_folio: Old folio to dissolve
2897  * @list: List to isolate the page in case we need to
2898  * Returns 0 on success, otherwise negated error.
2899  */
2900 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2901 			struct folio *old_folio, struct list_head *list)
2902 {
2903 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2904 	int nid = folio_nid(old_folio);
2905 	struct folio *new_folio;
2906 	int ret = 0;
2907 
2908 	/*
2909 	 * Before dissolving the folio, we need to allocate a new one for the
2910 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2911 	 * by doing everything but actually updating counters and adding to
2912 	 * the pool.  This simplifies and let us do most of the processing
2913 	 * under the lock.
2914 	 */
2915 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2916 	if (!new_folio)
2917 		return -ENOMEM;
2918 	__prep_new_hugetlb_folio(h, new_folio);
2919 
2920 retry:
2921 	spin_lock_irq(&hugetlb_lock);
2922 	if (!folio_test_hugetlb(old_folio)) {
2923 		/*
2924 		 * Freed from under us. Drop new_folio too.
2925 		 */
2926 		goto free_new;
2927 	} else if (folio_ref_count(old_folio)) {
2928 		/*
2929 		 * Someone has grabbed the folio, try to isolate it here.
2930 		 * Fail with -EBUSY if not possible.
2931 		 */
2932 		spin_unlock_irq(&hugetlb_lock);
2933 		ret = isolate_hugetlb(old_folio, list);
2934 		spin_lock_irq(&hugetlb_lock);
2935 		goto free_new;
2936 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2937 		/*
2938 		 * Folio's refcount is 0 but it has not been enqueued in the
2939 		 * freelist yet. Race window is small, so we can succeed here if
2940 		 * we retry.
2941 		 */
2942 		spin_unlock_irq(&hugetlb_lock);
2943 		cond_resched();
2944 		goto retry;
2945 	} else {
2946 		/*
2947 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2948 		 * the freelist and decrease the counters. These will be
2949 		 * incremented again when calling __prep_account_new_huge_page()
2950 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2951 		 * remain stable since this happens under the lock.
2952 		 */
2953 		remove_hugetlb_folio(h, old_folio, false);
2954 
2955 		/*
2956 		 * Ref count on new_folio is already zero as it was dropped
2957 		 * earlier.  It can be directly added to the pool free list.
2958 		 */
2959 		__prep_account_new_huge_page(h, nid);
2960 		enqueue_hugetlb_folio(h, new_folio);
2961 
2962 		/*
2963 		 * Folio has been replaced, we can safely free the old one.
2964 		 */
2965 		spin_unlock_irq(&hugetlb_lock);
2966 		update_and_free_hugetlb_folio(h, old_folio, false);
2967 	}
2968 
2969 	return ret;
2970 
2971 free_new:
2972 	spin_unlock_irq(&hugetlb_lock);
2973 	/* Folio has a zero ref count, but needs a ref to be freed */
2974 	folio_ref_unfreeze(new_folio, 1);
2975 	update_and_free_hugetlb_folio(h, new_folio, false);
2976 
2977 	return ret;
2978 }
2979 
2980 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2981 {
2982 	struct hstate *h;
2983 	struct folio *folio = page_folio(page);
2984 	int ret = -EBUSY;
2985 
2986 	/*
2987 	 * The page might have been dissolved from under our feet, so make sure
2988 	 * to carefully check the state under the lock.
2989 	 * Return success when racing as if we dissolved the page ourselves.
2990 	 */
2991 	spin_lock_irq(&hugetlb_lock);
2992 	if (folio_test_hugetlb(folio)) {
2993 		h = folio_hstate(folio);
2994 	} else {
2995 		spin_unlock_irq(&hugetlb_lock);
2996 		return 0;
2997 	}
2998 	spin_unlock_irq(&hugetlb_lock);
2999 
3000 	/*
3001 	 * Fence off gigantic pages as there is a cyclic dependency between
3002 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3003 	 * of bailing out right away without further retrying.
3004 	 */
3005 	if (hstate_is_gigantic(h))
3006 		return -ENOMEM;
3007 
3008 	if (folio_ref_count(folio) && !isolate_hugetlb(folio, list))
3009 		ret = 0;
3010 	else if (!folio_ref_count(folio))
3011 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3012 
3013 	return ret;
3014 }
3015 
3016 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3017 				    unsigned long addr, int avoid_reserve)
3018 {
3019 	struct hugepage_subpool *spool = subpool_vma(vma);
3020 	struct hstate *h = hstate_vma(vma);
3021 	struct folio *folio;
3022 	long map_chg, map_commit;
3023 	long gbl_chg;
3024 	int ret, idx;
3025 	struct hugetlb_cgroup *h_cg = NULL;
3026 	bool deferred_reserve;
3027 
3028 	idx = hstate_index(h);
3029 	/*
3030 	 * Examine the region/reserve map to determine if the process
3031 	 * has a reservation for the page to be allocated.  A return
3032 	 * code of zero indicates a reservation exists (no change).
3033 	 */
3034 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035 	if (map_chg < 0)
3036 		return ERR_PTR(-ENOMEM);
3037 
3038 	/*
3039 	 * Processes that did not create the mapping will have no
3040 	 * reserves as indicated by the region/reserve map. Check
3041 	 * that the allocation will not exceed the subpool limit.
3042 	 * Allocations for MAP_NORESERVE mappings also need to be
3043 	 * checked against any subpool limit.
3044 	 */
3045 	if (map_chg || avoid_reserve) {
3046 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047 		if (gbl_chg < 0) {
3048 			vma_end_reservation(h, vma, addr);
3049 			return ERR_PTR(-ENOSPC);
3050 		}
3051 
3052 		/*
3053 		 * Even though there was no reservation in the region/reserve
3054 		 * map, there could be reservations associated with the
3055 		 * subpool that can be used.  This would be indicated if the
3056 		 * return value of hugepage_subpool_get_pages() is zero.
3057 		 * However, if avoid_reserve is specified we still avoid even
3058 		 * the subpool reservations.
3059 		 */
3060 		if (avoid_reserve)
3061 			gbl_chg = 1;
3062 	}
3063 
3064 	/* If this allocation is not consuming a reservation, charge it now.
3065 	 */
3066 	deferred_reserve = map_chg || avoid_reserve;
3067 	if (deferred_reserve) {
3068 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069 			idx, pages_per_huge_page(h), &h_cg);
3070 		if (ret)
3071 			goto out_subpool_put;
3072 	}
3073 
3074 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075 	if (ret)
3076 		goto out_uncharge_cgroup_reservation;
3077 
3078 	spin_lock_irq(&hugetlb_lock);
3079 	/*
3080 	 * glb_chg is passed to indicate whether or not a page must be taken
3081 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3082 	 * a reservation exists for the allocation.
3083 	 */
3084 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085 	if (!folio) {
3086 		spin_unlock_irq(&hugetlb_lock);
3087 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3088 		if (!folio)
3089 			goto out_uncharge_cgroup;
3090 		spin_lock_irq(&hugetlb_lock);
3091 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092 			folio_set_hugetlb_restore_reserve(folio);
3093 			h->resv_huge_pages--;
3094 		}
3095 		list_add(&folio->lru, &h->hugepage_activelist);
3096 		folio_ref_unfreeze(folio, 1);
3097 		/* Fall through */
3098 	}
3099 
3100 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3101 	/* If allocation is not consuming a reservation, also store the
3102 	 * hugetlb_cgroup pointer on the page.
3103 	 */
3104 	if (deferred_reserve) {
3105 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106 						  h_cg, folio);
3107 	}
3108 
3109 	spin_unlock_irq(&hugetlb_lock);
3110 
3111 	hugetlb_set_folio_subpool(folio, spool);
3112 
3113 	map_commit = vma_commit_reservation(h, vma, addr);
3114 	if (unlikely(map_chg > map_commit)) {
3115 		/*
3116 		 * The page was added to the reservation map between
3117 		 * vma_needs_reservation and vma_commit_reservation.
3118 		 * This indicates a race with hugetlb_reserve_pages.
3119 		 * Adjust for the subpool count incremented above AND
3120 		 * in hugetlb_reserve_pages for the same page.  Also,
3121 		 * the reservation count added in hugetlb_reserve_pages
3122 		 * no longer applies.
3123 		 */
3124 		long rsv_adjust;
3125 
3126 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127 		hugetlb_acct_memory(h, -rsv_adjust);
3128 		if (deferred_reserve)
3129 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130 					pages_per_huge_page(h), folio);
3131 	}
3132 	return folio;
3133 
3134 out_uncharge_cgroup:
3135 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136 out_uncharge_cgroup_reservation:
3137 	if (deferred_reserve)
3138 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 						    h_cg);
3140 out_subpool_put:
3141 	if (map_chg || avoid_reserve)
3142 		hugepage_subpool_put_pages(spool, 1);
3143 	vma_end_reservation(h, vma, addr);
3144 	return ERR_PTR(-ENOSPC);
3145 }
3146 
3147 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150 {
3151 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 	int nr_nodes, node;
3153 
3154 	/* do node specific alloc */
3155 	if (nid != NUMA_NO_NODE) {
3156 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 		if (!m)
3159 			return 0;
3160 		goto found;
3161 	}
3162 	/* allocate from next node when distributing huge pages */
3163 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164 		m = memblock_alloc_try_nid_raw(
3165 				huge_page_size(h), huge_page_size(h),
3166 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 		/*
3168 		 * Use the beginning of the huge page to store the
3169 		 * huge_bootmem_page struct (until gather_bootmem
3170 		 * puts them into the mem_map).
3171 		 */
3172 		if (!m)
3173 			return 0;
3174 		goto found;
3175 	}
3176 
3177 found:
3178 	/* Put them into a private list first because mem_map is not up yet */
3179 	INIT_LIST_HEAD(&m->list);
3180 	list_add(&m->list, &huge_boot_pages);
3181 	m->hstate = h;
3182 	return 1;
3183 }
3184 
3185 /*
3186  * Put bootmem huge pages into the standard lists after mem_map is up.
3187  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188  */
3189 static void __init gather_bootmem_prealloc(void)
3190 {
3191 	struct huge_bootmem_page *m;
3192 
3193 	list_for_each_entry(m, &huge_boot_pages, list) {
3194 		struct page *page = virt_to_page(m);
3195 		struct folio *folio = page_folio(page);
3196 		struct hstate *h = m->hstate;
3197 
3198 		VM_BUG_ON(!hstate_is_gigantic(h));
3199 		WARN_ON(folio_ref_count(folio) != 1);
3200 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201 			WARN_ON(folio_test_reserved(folio));
3202 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203 			free_huge_page(page); /* add to the hugepage allocator */
3204 		} else {
3205 			/* VERY unlikely inflated ref count on a tail page */
3206 			free_gigantic_folio(folio, huge_page_order(h));
3207 		}
3208 
3209 		/*
3210 		 * We need to restore the 'stolen' pages to totalram_pages
3211 		 * in order to fix confusing memory reports from free(1) and
3212 		 * other side-effects, like CommitLimit going negative.
3213 		 */
3214 		adjust_managed_page_count(page, pages_per_huge_page(h));
3215 		cond_resched();
3216 	}
3217 }
3218 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219 {
3220 	unsigned long i;
3221 	char buf[32];
3222 
3223 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224 		if (hstate_is_gigantic(h)) {
3225 			if (!alloc_bootmem_huge_page(h, nid))
3226 				break;
3227 		} else {
3228 			struct folio *folio;
3229 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230 
3231 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232 					&node_states[N_MEMORY], NULL);
3233 			if (!folio)
3234 				break;
3235 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236 		}
3237 		cond_resched();
3238 	}
3239 	if (i == h->max_huge_pages_node[nid])
3240 		return;
3241 
3242 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3244 		h->max_huge_pages_node[nid], buf, nid, i);
3245 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246 	h->max_huge_pages_node[nid] = i;
3247 }
3248 
3249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250 {
3251 	unsigned long i;
3252 	nodemask_t *node_alloc_noretry;
3253 	bool node_specific_alloc = false;
3254 
3255 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258 		return;
3259 	}
3260 
3261 	/* do node specific alloc */
3262 	for_each_online_node(i) {
3263 		if (h->max_huge_pages_node[i] > 0) {
3264 			hugetlb_hstate_alloc_pages_onenode(h, i);
3265 			node_specific_alloc = true;
3266 		}
3267 	}
3268 
3269 	if (node_specific_alloc)
3270 		return;
3271 
3272 	/* below will do all node balanced alloc */
3273 	if (!hstate_is_gigantic(h)) {
3274 		/*
3275 		 * Bit mask controlling how hard we retry per-node allocations.
3276 		 * Ignore errors as lower level routines can deal with
3277 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3278 		 * time, we are likely in bigger trouble.
3279 		 */
3280 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 						GFP_KERNEL);
3282 	} else {
3283 		/* allocations done at boot time */
3284 		node_alloc_noretry = NULL;
3285 	}
3286 
3287 	/* bit mask controlling how hard we retry per-node allocations */
3288 	if (node_alloc_noretry)
3289 		nodes_clear(*node_alloc_noretry);
3290 
3291 	for (i = 0; i < h->max_huge_pages; ++i) {
3292 		if (hstate_is_gigantic(h)) {
3293 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294 				break;
3295 		} else if (!alloc_pool_huge_page(h,
3296 					 &node_states[N_MEMORY],
3297 					 node_alloc_noretry))
3298 			break;
3299 		cond_resched();
3300 	}
3301 	if (i < h->max_huge_pages) {
3302 		char buf[32];
3303 
3304 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3306 			h->max_huge_pages, buf, i);
3307 		h->max_huge_pages = i;
3308 	}
3309 	kfree(node_alloc_noretry);
3310 }
3311 
3312 static void __init hugetlb_init_hstates(void)
3313 {
3314 	struct hstate *h, *h2;
3315 
3316 	for_each_hstate(h) {
3317 		/* oversize hugepages were init'ed in early boot */
3318 		if (!hstate_is_gigantic(h))
3319 			hugetlb_hstate_alloc_pages(h);
3320 
3321 		/*
3322 		 * Set demote order for each hstate.  Note that
3323 		 * h->demote_order is initially 0.
3324 		 * - We can not demote gigantic pages if runtime freeing
3325 		 *   is not supported, so skip this.
3326 		 * - If CMA allocation is possible, we can not demote
3327 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3328 		 */
3329 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330 			continue;
3331 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332 			continue;
3333 		for_each_hstate(h2) {
3334 			if (h2 == h)
3335 				continue;
3336 			if (h2->order < h->order &&
3337 			    h2->order > h->demote_order)
3338 				h->demote_order = h2->order;
3339 		}
3340 	}
3341 }
3342 
3343 static void __init report_hugepages(void)
3344 {
3345 	struct hstate *h;
3346 
3347 	for_each_hstate(h) {
3348 		char buf[32];
3349 
3350 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352 			buf, h->free_huge_pages);
3353 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355 	}
3356 }
3357 
3358 #ifdef CONFIG_HIGHMEM
3359 static void try_to_free_low(struct hstate *h, unsigned long count,
3360 						nodemask_t *nodes_allowed)
3361 {
3362 	int i;
3363 	LIST_HEAD(page_list);
3364 
3365 	lockdep_assert_held(&hugetlb_lock);
3366 	if (hstate_is_gigantic(h))
3367 		return;
3368 
3369 	/*
3370 	 * Collect pages to be freed on a list, and free after dropping lock
3371 	 */
3372 	for_each_node_mask(i, *nodes_allowed) {
3373 		struct page *page, *next;
3374 		struct list_head *freel = &h->hugepage_freelists[i];
3375 		list_for_each_entry_safe(page, next, freel, lru) {
3376 			if (count >= h->nr_huge_pages)
3377 				goto out;
3378 			if (PageHighMem(page))
3379 				continue;
3380 			remove_hugetlb_folio(h, page_folio(page), false);
3381 			list_add(&page->lru, &page_list);
3382 		}
3383 	}
3384 
3385 out:
3386 	spin_unlock_irq(&hugetlb_lock);
3387 	update_and_free_pages_bulk(h, &page_list);
3388 	spin_lock_irq(&hugetlb_lock);
3389 }
3390 #else
3391 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392 						nodemask_t *nodes_allowed)
3393 {
3394 }
3395 #endif
3396 
3397 /*
3398  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3399  * balanced by operating on them in a round-robin fashion.
3400  * Returns 1 if an adjustment was made.
3401  */
3402 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 				int delta)
3404 {
3405 	int nr_nodes, node;
3406 
3407 	lockdep_assert_held(&hugetlb_lock);
3408 	VM_BUG_ON(delta != -1 && delta != 1);
3409 
3410 	if (delta < 0) {
3411 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412 			if (h->surplus_huge_pages_node[node])
3413 				goto found;
3414 		}
3415 	} else {
3416 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417 			if (h->surplus_huge_pages_node[node] <
3418 					h->nr_huge_pages_node[node])
3419 				goto found;
3420 		}
3421 	}
3422 	return 0;
3423 
3424 found:
3425 	h->surplus_huge_pages += delta;
3426 	h->surplus_huge_pages_node[node] += delta;
3427 	return 1;
3428 }
3429 
3430 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432 			      nodemask_t *nodes_allowed)
3433 {
3434 	unsigned long min_count, ret;
3435 	struct page *page;
3436 	LIST_HEAD(page_list);
3437 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438 
3439 	/*
3440 	 * Bit mask controlling how hard we retry per-node allocations.
3441 	 * If we can not allocate the bit mask, do not attempt to allocate
3442 	 * the requested huge pages.
3443 	 */
3444 	if (node_alloc_noretry)
3445 		nodes_clear(*node_alloc_noretry);
3446 	else
3447 		return -ENOMEM;
3448 
3449 	/*
3450 	 * resize_lock mutex prevents concurrent adjustments to number of
3451 	 * pages in hstate via the proc/sysfs interfaces.
3452 	 */
3453 	mutex_lock(&h->resize_lock);
3454 	flush_free_hpage_work(h);
3455 	spin_lock_irq(&hugetlb_lock);
3456 
3457 	/*
3458 	 * Check for a node specific request.
3459 	 * Changing node specific huge page count may require a corresponding
3460 	 * change to the global count.  In any case, the passed node mask
3461 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3462 	 */
3463 	if (nid != NUMA_NO_NODE) {
3464 		unsigned long old_count = count;
3465 
3466 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467 		/*
3468 		 * User may have specified a large count value which caused the
3469 		 * above calculation to overflow.  In this case, they wanted
3470 		 * to allocate as many huge pages as possible.  Set count to
3471 		 * largest possible value to align with their intention.
3472 		 */
3473 		if (count < old_count)
3474 			count = ULONG_MAX;
3475 	}
3476 
3477 	/*
3478 	 * Gigantic pages runtime allocation depend on the capability for large
3479 	 * page range allocation.
3480 	 * If the system does not provide this feature, return an error when
3481 	 * the user tries to allocate gigantic pages but let the user free the
3482 	 * boottime allocated gigantic pages.
3483 	 */
3484 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485 		if (count > persistent_huge_pages(h)) {
3486 			spin_unlock_irq(&hugetlb_lock);
3487 			mutex_unlock(&h->resize_lock);
3488 			NODEMASK_FREE(node_alloc_noretry);
3489 			return -EINVAL;
3490 		}
3491 		/* Fall through to decrease pool */
3492 	}
3493 
3494 	/*
3495 	 * Increase the pool size
3496 	 * First take pages out of surplus state.  Then make up the
3497 	 * remaining difference by allocating fresh huge pages.
3498 	 *
3499 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3500 	 * to convert a surplus huge page to a normal huge page. That is
3501 	 * not critical, though, it just means the overall size of the
3502 	 * pool might be one hugepage larger than it needs to be, but
3503 	 * within all the constraints specified by the sysctls.
3504 	 */
3505 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507 			break;
3508 	}
3509 
3510 	while (count > persistent_huge_pages(h)) {
3511 		/*
3512 		 * If this allocation races such that we no longer need the
3513 		 * page, free_huge_page will handle it by freeing the page
3514 		 * and reducing the surplus.
3515 		 */
3516 		spin_unlock_irq(&hugetlb_lock);
3517 
3518 		/* yield cpu to avoid soft lockup */
3519 		cond_resched();
3520 
3521 		ret = alloc_pool_huge_page(h, nodes_allowed,
3522 						node_alloc_noretry);
3523 		spin_lock_irq(&hugetlb_lock);
3524 		if (!ret)
3525 			goto out;
3526 
3527 		/* Bail for signals. Probably ctrl-c from user */
3528 		if (signal_pending(current))
3529 			goto out;
3530 	}
3531 
3532 	/*
3533 	 * Decrease the pool size
3534 	 * First return free pages to the buddy allocator (being careful
3535 	 * to keep enough around to satisfy reservations).  Then place
3536 	 * pages into surplus state as needed so the pool will shrink
3537 	 * to the desired size as pages become free.
3538 	 *
3539 	 * By placing pages into the surplus state independent of the
3540 	 * overcommit value, we are allowing the surplus pool size to
3541 	 * exceed overcommit. There are few sane options here. Since
3542 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3543 	 * though, we'll note that we're not allowed to exceed surplus
3544 	 * and won't grow the pool anywhere else. Not until one of the
3545 	 * sysctls are changed, or the surplus pages go out of use.
3546 	 */
3547 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548 	min_count = max(count, min_count);
3549 	try_to_free_low(h, min_count, nodes_allowed);
3550 
3551 	/*
3552 	 * Collect pages to be removed on list without dropping lock
3553 	 */
3554 	while (min_count < persistent_huge_pages(h)) {
3555 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3556 		if (!page)
3557 			break;
3558 
3559 		list_add(&page->lru, &page_list);
3560 	}
3561 	/* free the pages after dropping lock */
3562 	spin_unlock_irq(&hugetlb_lock);
3563 	update_and_free_pages_bulk(h, &page_list);
3564 	flush_free_hpage_work(h);
3565 	spin_lock_irq(&hugetlb_lock);
3566 
3567 	while (count < persistent_huge_pages(h)) {
3568 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569 			break;
3570 	}
3571 out:
3572 	h->max_huge_pages = persistent_huge_pages(h);
3573 	spin_unlock_irq(&hugetlb_lock);
3574 	mutex_unlock(&h->resize_lock);
3575 
3576 	NODEMASK_FREE(node_alloc_noretry);
3577 
3578 	return 0;
3579 }
3580 
3581 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3582 {
3583 	int i, nid = folio_nid(folio);
3584 	struct hstate *target_hstate;
3585 	struct page *subpage;
3586 	struct folio *inner_folio;
3587 	int rc = 0;
3588 
3589 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590 
3591 	remove_hugetlb_folio_for_demote(h, folio, false);
3592 	spin_unlock_irq(&hugetlb_lock);
3593 
3594 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3595 	if (rc) {
3596 		/* Allocation of vmemmmap failed, we can not demote folio */
3597 		spin_lock_irq(&hugetlb_lock);
3598 		folio_ref_unfreeze(folio, 1);
3599 		add_hugetlb_folio(h, folio, false);
3600 		return rc;
3601 	}
3602 
3603 	/*
3604 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605 	 * sizes as it will not ref count folios.
3606 	 */
3607 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608 
3609 	/*
3610 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611 	 * Without the mutex, pages added to target hstate could be marked
3612 	 * as surplus.
3613 	 *
3614 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3615 	 * use the convention of always taking larger size hstate mutex first.
3616 	 */
3617 	mutex_lock(&target_hstate->resize_lock);
3618 	for (i = 0; i < pages_per_huge_page(h);
3619 				i += pages_per_huge_page(target_hstate)) {
3620 		subpage = folio_page(folio, i);
3621 		inner_folio = page_folio(subpage);
3622 		if (hstate_is_gigantic(target_hstate))
3623 			prep_compound_gigantic_folio_for_demote(inner_folio,
3624 							target_hstate->order);
3625 		else
3626 			prep_compound_page(subpage, target_hstate->order);
3627 		folio_change_private(inner_folio, NULL);
3628 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3629 		free_huge_page(subpage);
3630 	}
3631 	mutex_unlock(&target_hstate->resize_lock);
3632 
3633 	spin_lock_irq(&hugetlb_lock);
3634 
3635 	/*
3636 	 * Not absolutely necessary, but for consistency update max_huge_pages
3637 	 * based on pool changes for the demoted page.
3638 	 */
3639 	h->max_huge_pages--;
3640 	target_hstate->max_huge_pages +=
3641 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642 
3643 	return rc;
3644 }
3645 
3646 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647 	__must_hold(&hugetlb_lock)
3648 {
3649 	int nr_nodes, node;
3650 	struct folio *folio;
3651 
3652 	lockdep_assert_held(&hugetlb_lock);
3653 
3654 	/* We should never get here if no demote order */
3655 	if (!h->demote_order) {
3656 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657 		return -EINVAL;		/* internal error */
3658 	}
3659 
3660 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3662 			if (folio_test_hwpoison(folio))
3663 				continue;
3664 			return demote_free_hugetlb_folio(h, folio);
3665 		}
3666 	}
3667 
3668 	/*
3669 	 * Only way to get here is if all pages on free lists are poisoned.
3670 	 * Return -EBUSY so that caller will not retry.
3671 	 */
3672 	return -EBUSY;
3673 }
3674 
3675 #define HSTATE_ATTR_RO(_name) \
3676 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3677 
3678 #define HSTATE_ATTR_WO(_name) \
3679 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3680 
3681 #define HSTATE_ATTR(_name) \
3682 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3683 
3684 static struct kobject *hugepages_kobj;
3685 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3686 
3687 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3688 
3689 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3690 {
3691 	int i;
3692 
3693 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3694 		if (hstate_kobjs[i] == kobj) {
3695 			if (nidp)
3696 				*nidp = NUMA_NO_NODE;
3697 			return &hstates[i];
3698 		}
3699 
3700 	return kobj_to_node_hstate(kobj, nidp);
3701 }
3702 
3703 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3704 					struct kobj_attribute *attr, char *buf)
3705 {
3706 	struct hstate *h;
3707 	unsigned long nr_huge_pages;
3708 	int nid;
3709 
3710 	h = kobj_to_hstate(kobj, &nid);
3711 	if (nid == NUMA_NO_NODE)
3712 		nr_huge_pages = h->nr_huge_pages;
3713 	else
3714 		nr_huge_pages = h->nr_huge_pages_node[nid];
3715 
3716 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3717 }
3718 
3719 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3720 					   struct hstate *h, int nid,
3721 					   unsigned long count, size_t len)
3722 {
3723 	int err;
3724 	nodemask_t nodes_allowed, *n_mask;
3725 
3726 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3727 		return -EINVAL;
3728 
3729 	if (nid == NUMA_NO_NODE) {
3730 		/*
3731 		 * global hstate attribute
3732 		 */
3733 		if (!(obey_mempolicy &&
3734 				init_nodemask_of_mempolicy(&nodes_allowed)))
3735 			n_mask = &node_states[N_MEMORY];
3736 		else
3737 			n_mask = &nodes_allowed;
3738 	} else {
3739 		/*
3740 		 * Node specific request.  count adjustment happens in
3741 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3742 		 */
3743 		init_nodemask_of_node(&nodes_allowed, nid);
3744 		n_mask = &nodes_allowed;
3745 	}
3746 
3747 	err = set_max_huge_pages(h, count, nid, n_mask);
3748 
3749 	return err ? err : len;
3750 }
3751 
3752 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3753 					 struct kobject *kobj, const char *buf,
3754 					 size_t len)
3755 {
3756 	struct hstate *h;
3757 	unsigned long count;
3758 	int nid;
3759 	int err;
3760 
3761 	err = kstrtoul(buf, 10, &count);
3762 	if (err)
3763 		return err;
3764 
3765 	h = kobj_to_hstate(kobj, &nid);
3766 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3767 }
3768 
3769 static ssize_t nr_hugepages_show(struct kobject *kobj,
3770 				       struct kobj_attribute *attr, char *buf)
3771 {
3772 	return nr_hugepages_show_common(kobj, attr, buf);
3773 }
3774 
3775 static ssize_t nr_hugepages_store(struct kobject *kobj,
3776 	       struct kobj_attribute *attr, const char *buf, size_t len)
3777 {
3778 	return nr_hugepages_store_common(false, kobj, buf, len);
3779 }
3780 HSTATE_ATTR(nr_hugepages);
3781 
3782 #ifdef CONFIG_NUMA
3783 
3784 /*
3785  * hstate attribute for optionally mempolicy-based constraint on persistent
3786  * huge page alloc/free.
3787  */
3788 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3789 					   struct kobj_attribute *attr,
3790 					   char *buf)
3791 {
3792 	return nr_hugepages_show_common(kobj, attr, buf);
3793 }
3794 
3795 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3796 	       struct kobj_attribute *attr, const char *buf, size_t len)
3797 {
3798 	return nr_hugepages_store_common(true, kobj, buf, len);
3799 }
3800 HSTATE_ATTR(nr_hugepages_mempolicy);
3801 #endif
3802 
3803 
3804 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3805 					struct kobj_attribute *attr, char *buf)
3806 {
3807 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3808 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3809 }
3810 
3811 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3812 		struct kobj_attribute *attr, const char *buf, size_t count)
3813 {
3814 	int err;
3815 	unsigned long input;
3816 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3817 
3818 	if (hstate_is_gigantic(h))
3819 		return -EINVAL;
3820 
3821 	err = kstrtoul(buf, 10, &input);
3822 	if (err)
3823 		return err;
3824 
3825 	spin_lock_irq(&hugetlb_lock);
3826 	h->nr_overcommit_huge_pages = input;
3827 	spin_unlock_irq(&hugetlb_lock);
3828 
3829 	return count;
3830 }
3831 HSTATE_ATTR(nr_overcommit_hugepages);
3832 
3833 static ssize_t free_hugepages_show(struct kobject *kobj,
3834 					struct kobj_attribute *attr, char *buf)
3835 {
3836 	struct hstate *h;
3837 	unsigned long free_huge_pages;
3838 	int nid;
3839 
3840 	h = kobj_to_hstate(kobj, &nid);
3841 	if (nid == NUMA_NO_NODE)
3842 		free_huge_pages = h->free_huge_pages;
3843 	else
3844 		free_huge_pages = h->free_huge_pages_node[nid];
3845 
3846 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3847 }
3848 HSTATE_ATTR_RO(free_hugepages);
3849 
3850 static ssize_t resv_hugepages_show(struct kobject *kobj,
3851 					struct kobj_attribute *attr, char *buf)
3852 {
3853 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3854 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3855 }
3856 HSTATE_ATTR_RO(resv_hugepages);
3857 
3858 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3859 					struct kobj_attribute *attr, char *buf)
3860 {
3861 	struct hstate *h;
3862 	unsigned long surplus_huge_pages;
3863 	int nid;
3864 
3865 	h = kobj_to_hstate(kobj, &nid);
3866 	if (nid == NUMA_NO_NODE)
3867 		surplus_huge_pages = h->surplus_huge_pages;
3868 	else
3869 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3870 
3871 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3872 }
3873 HSTATE_ATTR_RO(surplus_hugepages);
3874 
3875 static ssize_t demote_store(struct kobject *kobj,
3876 	       struct kobj_attribute *attr, const char *buf, size_t len)
3877 {
3878 	unsigned long nr_demote;
3879 	unsigned long nr_available;
3880 	nodemask_t nodes_allowed, *n_mask;
3881 	struct hstate *h;
3882 	int err;
3883 	int nid;
3884 
3885 	err = kstrtoul(buf, 10, &nr_demote);
3886 	if (err)
3887 		return err;
3888 	h = kobj_to_hstate(kobj, &nid);
3889 
3890 	if (nid != NUMA_NO_NODE) {
3891 		init_nodemask_of_node(&nodes_allowed, nid);
3892 		n_mask = &nodes_allowed;
3893 	} else {
3894 		n_mask = &node_states[N_MEMORY];
3895 	}
3896 
3897 	/* Synchronize with other sysfs operations modifying huge pages */
3898 	mutex_lock(&h->resize_lock);
3899 	spin_lock_irq(&hugetlb_lock);
3900 
3901 	while (nr_demote) {
3902 		/*
3903 		 * Check for available pages to demote each time thorough the
3904 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3905 		 */
3906 		if (nid != NUMA_NO_NODE)
3907 			nr_available = h->free_huge_pages_node[nid];
3908 		else
3909 			nr_available = h->free_huge_pages;
3910 		nr_available -= h->resv_huge_pages;
3911 		if (!nr_available)
3912 			break;
3913 
3914 		err = demote_pool_huge_page(h, n_mask);
3915 		if (err)
3916 			break;
3917 
3918 		nr_demote--;
3919 	}
3920 
3921 	spin_unlock_irq(&hugetlb_lock);
3922 	mutex_unlock(&h->resize_lock);
3923 
3924 	if (err)
3925 		return err;
3926 	return len;
3927 }
3928 HSTATE_ATTR_WO(demote);
3929 
3930 static ssize_t demote_size_show(struct kobject *kobj,
3931 					struct kobj_attribute *attr, char *buf)
3932 {
3933 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3934 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3935 
3936 	return sysfs_emit(buf, "%lukB\n", demote_size);
3937 }
3938 
3939 static ssize_t demote_size_store(struct kobject *kobj,
3940 					struct kobj_attribute *attr,
3941 					const char *buf, size_t count)
3942 {
3943 	struct hstate *h, *demote_hstate;
3944 	unsigned long demote_size;
3945 	unsigned int demote_order;
3946 
3947 	demote_size = (unsigned long)memparse(buf, NULL);
3948 
3949 	demote_hstate = size_to_hstate(demote_size);
3950 	if (!demote_hstate)
3951 		return -EINVAL;
3952 	demote_order = demote_hstate->order;
3953 	if (demote_order < HUGETLB_PAGE_ORDER)
3954 		return -EINVAL;
3955 
3956 	/* demote order must be smaller than hstate order */
3957 	h = kobj_to_hstate(kobj, NULL);
3958 	if (demote_order >= h->order)
3959 		return -EINVAL;
3960 
3961 	/* resize_lock synchronizes access to demote size and writes */
3962 	mutex_lock(&h->resize_lock);
3963 	h->demote_order = demote_order;
3964 	mutex_unlock(&h->resize_lock);
3965 
3966 	return count;
3967 }
3968 HSTATE_ATTR(demote_size);
3969 
3970 static struct attribute *hstate_attrs[] = {
3971 	&nr_hugepages_attr.attr,
3972 	&nr_overcommit_hugepages_attr.attr,
3973 	&free_hugepages_attr.attr,
3974 	&resv_hugepages_attr.attr,
3975 	&surplus_hugepages_attr.attr,
3976 #ifdef CONFIG_NUMA
3977 	&nr_hugepages_mempolicy_attr.attr,
3978 #endif
3979 	NULL,
3980 };
3981 
3982 static const struct attribute_group hstate_attr_group = {
3983 	.attrs = hstate_attrs,
3984 };
3985 
3986 static struct attribute *hstate_demote_attrs[] = {
3987 	&demote_size_attr.attr,
3988 	&demote_attr.attr,
3989 	NULL,
3990 };
3991 
3992 static const struct attribute_group hstate_demote_attr_group = {
3993 	.attrs = hstate_demote_attrs,
3994 };
3995 
3996 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3997 				    struct kobject **hstate_kobjs,
3998 				    const struct attribute_group *hstate_attr_group)
3999 {
4000 	int retval;
4001 	int hi = hstate_index(h);
4002 
4003 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4004 	if (!hstate_kobjs[hi])
4005 		return -ENOMEM;
4006 
4007 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4008 	if (retval) {
4009 		kobject_put(hstate_kobjs[hi]);
4010 		hstate_kobjs[hi] = NULL;
4011 		return retval;
4012 	}
4013 
4014 	if (h->demote_order) {
4015 		retval = sysfs_create_group(hstate_kobjs[hi],
4016 					    &hstate_demote_attr_group);
4017 		if (retval) {
4018 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4019 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4020 			kobject_put(hstate_kobjs[hi]);
4021 			hstate_kobjs[hi] = NULL;
4022 			return retval;
4023 		}
4024 	}
4025 
4026 	return 0;
4027 }
4028 
4029 #ifdef CONFIG_NUMA
4030 static bool hugetlb_sysfs_initialized __ro_after_init;
4031 
4032 /*
4033  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4034  * with node devices in node_devices[] using a parallel array.  The array
4035  * index of a node device or _hstate == node id.
4036  * This is here to avoid any static dependency of the node device driver, in
4037  * the base kernel, on the hugetlb module.
4038  */
4039 struct node_hstate {
4040 	struct kobject		*hugepages_kobj;
4041 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4042 };
4043 static struct node_hstate node_hstates[MAX_NUMNODES];
4044 
4045 /*
4046  * A subset of global hstate attributes for node devices
4047  */
4048 static struct attribute *per_node_hstate_attrs[] = {
4049 	&nr_hugepages_attr.attr,
4050 	&free_hugepages_attr.attr,
4051 	&surplus_hugepages_attr.attr,
4052 	NULL,
4053 };
4054 
4055 static const struct attribute_group per_node_hstate_attr_group = {
4056 	.attrs = per_node_hstate_attrs,
4057 };
4058 
4059 /*
4060  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4061  * Returns node id via non-NULL nidp.
4062  */
4063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4064 {
4065 	int nid;
4066 
4067 	for (nid = 0; nid < nr_node_ids; nid++) {
4068 		struct node_hstate *nhs = &node_hstates[nid];
4069 		int i;
4070 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4071 			if (nhs->hstate_kobjs[i] == kobj) {
4072 				if (nidp)
4073 					*nidp = nid;
4074 				return &hstates[i];
4075 			}
4076 	}
4077 
4078 	BUG();
4079 	return NULL;
4080 }
4081 
4082 /*
4083  * Unregister hstate attributes from a single node device.
4084  * No-op if no hstate attributes attached.
4085  */
4086 void hugetlb_unregister_node(struct node *node)
4087 {
4088 	struct hstate *h;
4089 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4090 
4091 	if (!nhs->hugepages_kobj)
4092 		return;		/* no hstate attributes */
4093 
4094 	for_each_hstate(h) {
4095 		int idx = hstate_index(h);
4096 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4097 
4098 		if (!hstate_kobj)
4099 			continue;
4100 		if (h->demote_order)
4101 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4102 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4103 		kobject_put(hstate_kobj);
4104 		nhs->hstate_kobjs[idx] = NULL;
4105 	}
4106 
4107 	kobject_put(nhs->hugepages_kobj);
4108 	nhs->hugepages_kobj = NULL;
4109 }
4110 
4111 
4112 /*
4113  * Register hstate attributes for a single node device.
4114  * No-op if attributes already registered.
4115  */
4116 void hugetlb_register_node(struct node *node)
4117 {
4118 	struct hstate *h;
4119 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4120 	int err;
4121 
4122 	if (!hugetlb_sysfs_initialized)
4123 		return;
4124 
4125 	if (nhs->hugepages_kobj)
4126 		return;		/* already allocated */
4127 
4128 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4129 							&node->dev.kobj);
4130 	if (!nhs->hugepages_kobj)
4131 		return;
4132 
4133 	for_each_hstate(h) {
4134 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4135 						nhs->hstate_kobjs,
4136 						&per_node_hstate_attr_group);
4137 		if (err) {
4138 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4139 				h->name, node->dev.id);
4140 			hugetlb_unregister_node(node);
4141 			break;
4142 		}
4143 	}
4144 }
4145 
4146 /*
4147  * hugetlb init time:  register hstate attributes for all registered node
4148  * devices of nodes that have memory.  All on-line nodes should have
4149  * registered their associated device by this time.
4150  */
4151 static void __init hugetlb_register_all_nodes(void)
4152 {
4153 	int nid;
4154 
4155 	for_each_online_node(nid)
4156 		hugetlb_register_node(node_devices[nid]);
4157 }
4158 #else	/* !CONFIG_NUMA */
4159 
4160 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4161 {
4162 	BUG();
4163 	if (nidp)
4164 		*nidp = -1;
4165 	return NULL;
4166 }
4167 
4168 static void hugetlb_register_all_nodes(void) { }
4169 
4170 #endif
4171 
4172 #ifdef CONFIG_CMA
4173 static void __init hugetlb_cma_check(void);
4174 #else
4175 static inline __init void hugetlb_cma_check(void)
4176 {
4177 }
4178 #endif
4179 
4180 static void __init hugetlb_sysfs_init(void)
4181 {
4182 	struct hstate *h;
4183 	int err;
4184 
4185 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4186 	if (!hugepages_kobj)
4187 		return;
4188 
4189 	for_each_hstate(h) {
4190 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4191 					 hstate_kobjs, &hstate_attr_group);
4192 		if (err)
4193 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4194 	}
4195 
4196 #ifdef CONFIG_NUMA
4197 	hugetlb_sysfs_initialized = true;
4198 #endif
4199 	hugetlb_register_all_nodes();
4200 }
4201 
4202 static int __init hugetlb_init(void)
4203 {
4204 	int i;
4205 
4206 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4207 			__NR_HPAGEFLAGS);
4208 
4209 	if (!hugepages_supported()) {
4210 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4211 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4212 		return 0;
4213 	}
4214 
4215 	/*
4216 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4217 	 * architectures depend on setup being done here.
4218 	 */
4219 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4220 	if (!parsed_default_hugepagesz) {
4221 		/*
4222 		 * If we did not parse a default huge page size, set
4223 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4224 		 * number of huge pages for this default size was implicitly
4225 		 * specified, set that here as well.
4226 		 * Note that the implicit setting will overwrite an explicit
4227 		 * setting.  A warning will be printed in this case.
4228 		 */
4229 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4230 		if (default_hstate_max_huge_pages) {
4231 			if (default_hstate.max_huge_pages) {
4232 				char buf[32];
4233 
4234 				string_get_size(huge_page_size(&default_hstate),
4235 					1, STRING_UNITS_2, buf, 32);
4236 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4237 					default_hstate.max_huge_pages, buf);
4238 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4239 					default_hstate_max_huge_pages);
4240 			}
4241 			default_hstate.max_huge_pages =
4242 				default_hstate_max_huge_pages;
4243 
4244 			for_each_online_node(i)
4245 				default_hstate.max_huge_pages_node[i] =
4246 					default_hugepages_in_node[i];
4247 		}
4248 	}
4249 
4250 	hugetlb_cma_check();
4251 	hugetlb_init_hstates();
4252 	gather_bootmem_prealloc();
4253 	report_hugepages();
4254 
4255 	hugetlb_sysfs_init();
4256 	hugetlb_cgroup_file_init();
4257 
4258 #ifdef CONFIG_SMP
4259 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4260 #else
4261 	num_fault_mutexes = 1;
4262 #endif
4263 	hugetlb_fault_mutex_table =
4264 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4265 			      GFP_KERNEL);
4266 	BUG_ON(!hugetlb_fault_mutex_table);
4267 
4268 	for (i = 0; i < num_fault_mutexes; i++)
4269 		mutex_init(&hugetlb_fault_mutex_table[i]);
4270 	return 0;
4271 }
4272 subsys_initcall(hugetlb_init);
4273 
4274 /* Overwritten by architectures with more huge page sizes */
4275 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4276 {
4277 	return size == HPAGE_SIZE;
4278 }
4279 
4280 void __init hugetlb_add_hstate(unsigned int order)
4281 {
4282 	struct hstate *h;
4283 	unsigned long i;
4284 
4285 	if (size_to_hstate(PAGE_SIZE << order)) {
4286 		return;
4287 	}
4288 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4289 	BUG_ON(order == 0);
4290 	h = &hstates[hugetlb_max_hstate++];
4291 	mutex_init(&h->resize_lock);
4292 	h->order = order;
4293 	h->mask = ~(huge_page_size(h) - 1);
4294 	for (i = 0; i < MAX_NUMNODES; ++i)
4295 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4296 	INIT_LIST_HEAD(&h->hugepage_activelist);
4297 	h->next_nid_to_alloc = first_memory_node;
4298 	h->next_nid_to_free = first_memory_node;
4299 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4300 					huge_page_size(h)/SZ_1K);
4301 
4302 	parsed_hstate = h;
4303 }
4304 
4305 bool __init __weak hugetlb_node_alloc_supported(void)
4306 {
4307 	return true;
4308 }
4309 
4310 static void __init hugepages_clear_pages_in_node(void)
4311 {
4312 	if (!hugetlb_max_hstate) {
4313 		default_hstate_max_huge_pages = 0;
4314 		memset(default_hugepages_in_node, 0,
4315 			sizeof(default_hugepages_in_node));
4316 	} else {
4317 		parsed_hstate->max_huge_pages = 0;
4318 		memset(parsed_hstate->max_huge_pages_node, 0,
4319 			sizeof(parsed_hstate->max_huge_pages_node));
4320 	}
4321 }
4322 
4323 /*
4324  * hugepages command line processing
4325  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4326  * specification.  If not, ignore the hugepages value.  hugepages can also
4327  * be the first huge page command line  option in which case it implicitly
4328  * specifies the number of huge pages for the default size.
4329  */
4330 static int __init hugepages_setup(char *s)
4331 {
4332 	unsigned long *mhp;
4333 	static unsigned long *last_mhp;
4334 	int node = NUMA_NO_NODE;
4335 	int count;
4336 	unsigned long tmp;
4337 	char *p = s;
4338 
4339 	if (!parsed_valid_hugepagesz) {
4340 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4341 		parsed_valid_hugepagesz = true;
4342 		return 1;
4343 	}
4344 
4345 	/*
4346 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4347 	 * yet, so this hugepages= parameter goes to the "default hstate".
4348 	 * Otherwise, it goes with the previously parsed hugepagesz or
4349 	 * default_hugepagesz.
4350 	 */
4351 	else if (!hugetlb_max_hstate)
4352 		mhp = &default_hstate_max_huge_pages;
4353 	else
4354 		mhp = &parsed_hstate->max_huge_pages;
4355 
4356 	if (mhp == last_mhp) {
4357 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4358 		return 1;
4359 	}
4360 
4361 	while (*p) {
4362 		count = 0;
4363 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4364 			goto invalid;
4365 		/* Parameter is node format */
4366 		if (p[count] == ':') {
4367 			if (!hugetlb_node_alloc_supported()) {
4368 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4369 				return 1;
4370 			}
4371 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4372 				goto invalid;
4373 			node = array_index_nospec(tmp, MAX_NUMNODES);
4374 			p += count + 1;
4375 			/* Parse hugepages */
4376 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4377 				goto invalid;
4378 			if (!hugetlb_max_hstate)
4379 				default_hugepages_in_node[node] = tmp;
4380 			else
4381 				parsed_hstate->max_huge_pages_node[node] = tmp;
4382 			*mhp += tmp;
4383 			/* Go to parse next node*/
4384 			if (p[count] == ',')
4385 				p += count + 1;
4386 			else
4387 				break;
4388 		} else {
4389 			if (p != s)
4390 				goto invalid;
4391 			*mhp = tmp;
4392 			break;
4393 		}
4394 	}
4395 
4396 	/*
4397 	 * Global state is always initialized later in hugetlb_init.
4398 	 * But we need to allocate gigantic hstates here early to still
4399 	 * use the bootmem allocator.
4400 	 */
4401 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4402 		hugetlb_hstate_alloc_pages(parsed_hstate);
4403 
4404 	last_mhp = mhp;
4405 
4406 	return 1;
4407 
4408 invalid:
4409 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4410 	hugepages_clear_pages_in_node();
4411 	return 1;
4412 }
4413 __setup("hugepages=", hugepages_setup);
4414 
4415 /*
4416  * hugepagesz command line processing
4417  * A specific huge page size can only be specified once with hugepagesz.
4418  * hugepagesz is followed by hugepages on the command line.  The global
4419  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4420  * hugepagesz argument was valid.
4421  */
4422 static int __init hugepagesz_setup(char *s)
4423 {
4424 	unsigned long size;
4425 	struct hstate *h;
4426 
4427 	parsed_valid_hugepagesz = false;
4428 	size = (unsigned long)memparse(s, NULL);
4429 
4430 	if (!arch_hugetlb_valid_size(size)) {
4431 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4432 		return 1;
4433 	}
4434 
4435 	h = size_to_hstate(size);
4436 	if (h) {
4437 		/*
4438 		 * hstate for this size already exists.  This is normally
4439 		 * an error, but is allowed if the existing hstate is the
4440 		 * default hstate.  More specifically, it is only allowed if
4441 		 * the number of huge pages for the default hstate was not
4442 		 * previously specified.
4443 		 */
4444 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4445 		    default_hstate.max_huge_pages) {
4446 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4447 			return 1;
4448 		}
4449 
4450 		/*
4451 		 * No need to call hugetlb_add_hstate() as hstate already
4452 		 * exists.  But, do set parsed_hstate so that a following
4453 		 * hugepages= parameter will be applied to this hstate.
4454 		 */
4455 		parsed_hstate = h;
4456 		parsed_valid_hugepagesz = true;
4457 		return 1;
4458 	}
4459 
4460 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4461 	parsed_valid_hugepagesz = true;
4462 	return 1;
4463 }
4464 __setup("hugepagesz=", hugepagesz_setup);
4465 
4466 /*
4467  * default_hugepagesz command line input
4468  * Only one instance of default_hugepagesz allowed on command line.
4469  */
4470 static int __init default_hugepagesz_setup(char *s)
4471 {
4472 	unsigned long size;
4473 	int i;
4474 
4475 	parsed_valid_hugepagesz = false;
4476 	if (parsed_default_hugepagesz) {
4477 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4478 		return 1;
4479 	}
4480 
4481 	size = (unsigned long)memparse(s, NULL);
4482 
4483 	if (!arch_hugetlb_valid_size(size)) {
4484 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4485 		return 1;
4486 	}
4487 
4488 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489 	parsed_valid_hugepagesz = true;
4490 	parsed_default_hugepagesz = true;
4491 	default_hstate_idx = hstate_index(size_to_hstate(size));
4492 
4493 	/*
4494 	 * The number of default huge pages (for this size) could have been
4495 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4496 	 * then default_hstate_max_huge_pages is set.  If the default huge
4497 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4498 	 * allocated here from bootmem allocator.
4499 	 */
4500 	if (default_hstate_max_huge_pages) {
4501 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4502 		for_each_online_node(i)
4503 			default_hstate.max_huge_pages_node[i] =
4504 				default_hugepages_in_node[i];
4505 		if (hstate_is_gigantic(&default_hstate))
4506 			hugetlb_hstate_alloc_pages(&default_hstate);
4507 		default_hstate_max_huge_pages = 0;
4508 	}
4509 
4510 	return 1;
4511 }
4512 __setup("default_hugepagesz=", default_hugepagesz_setup);
4513 
4514 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4515 {
4516 #ifdef CONFIG_NUMA
4517 	struct mempolicy *mpol = get_task_policy(current);
4518 
4519 	/*
4520 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4521 	 * (from policy_nodemask) specifically for hugetlb case
4522 	 */
4523 	if (mpol->mode == MPOL_BIND &&
4524 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4525 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4526 		return &mpol->nodes;
4527 #endif
4528 	return NULL;
4529 }
4530 
4531 static unsigned int allowed_mems_nr(struct hstate *h)
4532 {
4533 	int node;
4534 	unsigned int nr = 0;
4535 	nodemask_t *mbind_nodemask;
4536 	unsigned int *array = h->free_huge_pages_node;
4537 	gfp_t gfp_mask = htlb_alloc_mask(h);
4538 
4539 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4540 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4541 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4542 			nr += array[node];
4543 	}
4544 
4545 	return nr;
4546 }
4547 
4548 #ifdef CONFIG_SYSCTL
4549 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4550 					  void *buffer, size_t *length,
4551 					  loff_t *ppos, unsigned long *out)
4552 {
4553 	struct ctl_table dup_table;
4554 
4555 	/*
4556 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4557 	 * can duplicate the @table and alter the duplicate of it.
4558 	 */
4559 	dup_table = *table;
4560 	dup_table.data = out;
4561 
4562 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4563 }
4564 
4565 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4566 			 struct ctl_table *table, int write,
4567 			 void *buffer, size_t *length, loff_t *ppos)
4568 {
4569 	struct hstate *h = &default_hstate;
4570 	unsigned long tmp = h->max_huge_pages;
4571 	int ret;
4572 
4573 	if (!hugepages_supported())
4574 		return -EOPNOTSUPP;
4575 
4576 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4577 					     &tmp);
4578 	if (ret)
4579 		goto out;
4580 
4581 	if (write)
4582 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4583 						  NUMA_NO_NODE, tmp, *length);
4584 out:
4585 	return ret;
4586 }
4587 
4588 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4589 			  void *buffer, size_t *length, loff_t *ppos)
4590 {
4591 
4592 	return hugetlb_sysctl_handler_common(false, table, write,
4593 							buffer, length, ppos);
4594 }
4595 
4596 #ifdef CONFIG_NUMA
4597 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4598 			  void *buffer, size_t *length, loff_t *ppos)
4599 {
4600 	return hugetlb_sysctl_handler_common(true, table, write,
4601 							buffer, length, ppos);
4602 }
4603 #endif /* CONFIG_NUMA */
4604 
4605 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4606 		void *buffer, size_t *length, loff_t *ppos)
4607 {
4608 	struct hstate *h = &default_hstate;
4609 	unsigned long tmp;
4610 	int ret;
4611 
4612 	if (!hugepages_supported())
4613 		return -EOPNOTSUPP;
4614 
4615 	tmp = h->nr_overcommit_huge_pages;
4616 
4617 	if (write && hstate_is_gigantic(h))
4618 		return -EINVAL;
4619 
4620 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4621 					     &tmp);
4622 	if (ret)
4623 		goto out;
4624 
4625 	if (write) {
4626 		spin_lock_irq(&hugetlb_lock);
4627 		h->nr_overcommit_huge_pages = tmp;
4628 		spin_unlock_irq(&hugetlb_lock);
4629 	}
4630 out:
4631 	return ret;
4632 }
4633 
4634 #endif /* CONFIG_SYSCTL */
4635 
4636 void hugetlb_report_meminfo(struct seq_file *m)
4637 {
4638 	struct hstate *h;
4639 	unsigned long total = 0;
4640 
4641 	if (!hugepages_supported())
4642 		return;
4643 
4644 	for_each_hstate(h) {
4645 		unsigned long count = h->nr_huge_pages;
4646 
4647 		total += huge_page_size(h) * count;
4648 
4649 		if (h == &default_hstate)
4650 			seq_printf(m,
4651 				   "HugePages_Total:   %5lu\n"
4652 				   "HugePages_Free:    %5lu\n"
4653 				   "HugePages_Rsvd:    %5lu\n"
4654 				   "HugePages_Surp:    %5lu\n"
4655 				   "Hugepagesize:   %8lu kB\n",
4656 				   count,
4657 				   h->free_huge_pages,
4658 				   h->resv_huge_pages,
4659 				   h->surplus_huge_pages,
4660 				   huge_page_size(h) / SZ_1K);
4661 	}
4662 
4663 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4664 }
4665 
4666 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4667 {
4668 	struct hstate *h = &default_hstate;
4669 
4670 	if (!hugepages_supported())
4671 		return 0;
4672 
4673 	return sysfs_emit_at(buf, len,
4674 			     "Node %d HugePages_Total: %5u\n"
4675 			     "Node %d HugePages_Free:  %5u\n"
4676 			     "Node %d HugePages_Surp:  %5u\n",
4677 			     nid, h->nr_huge_pages_node[nid],
4678 			     nid, h->free_huge_pages_node[nid],
4679 			     nid, h->surplus_huge_pages_node[nid]);
4680 }
4681 
4682 void hugetlb_show_meminfo_node(int nid)
4683 {
4684 	struct hstate *h;
4685 
4686 	if (!hugepages_supported())
4687 		return;
4688 
4689 	for_each_hstate(h)
4690 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4691 			nid,
4692 			h->nr_huge_pages_node[nid],
4693 			h->free_huge_pages_node[nid],
4694 			h->surplus_huge_pages_node[nid],
4695 			huge_page_size(h) / SZ_1K);
4696 }
4697 
4698 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4699 {
4700 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4701 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4702 }
4703 
4704 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4705 unsigned long hugetlb_total_pages(void)
4706 {
4707 	struct hstate *h;
4708 	unsigned long nr_total_pages = 0;
4709 
4710 	for_each_hstate(h)
4711 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4712 	return nr_total_pages;
4713 }
4714 
4715 static int hugetlb_acct_memory(struct hstate *h, long delta)
4716 {
4717 	int ret = -ENOMEM;
4718 
4719 	if (!delta)
4720 		return 0;
4721 
4722 	spin_lock_irq(&hugetlb_lock);
4723 	/*
4724 	 * When cpuset is configured, it breaks the strict hugetlb page
4725 	 * reservation as the accounting is done on a global variable. Such
4726 	 * reservation is completely rubbish in the presence of cpuset because
4727 	 * the reservation is not checked against page availability for the
4728 	 * current cpuset. Application can still potentially OOM'ed by kernel
4729 	 * with lack of free htlb page in cpuset that the task is in.
4730 	 * Attempt to enforce strict accounting with cpuset is almost
4731 	 * impossible (or too ugly) because cpuset is too fluid that
4732 	 * task or memory node can be dynamically moved between cpusets.
4733 	 *
4734 	 * The change of semantics for shared hugetlb mapping with cpuset is
4735 	 * undesirable. However, in order to preserve some of the semantics,
4736 	 * we fall back to check against current free page availability as
4737 	 * a best attempt and hopefully to minimize the impact of changing
4738 	 * semantics that cpuset has.
4739 	 *
4740 	 * Apart from cpuset, we also have memory policy mechanism that
4741 	 * also determines from which node the kernel will allocate memory
4742 	 * in a NUMA system. So similar to cpuset, we also should consider
4743 	 * the memory policy of the current task. Similar to the description
4744 	 * above.
4745 	 */
4746 	if (delta > 0) {
4747 		if (gather_surplus_pages(h, delta) < 0)
4748 			goto out;
4749 
4750 		if (delta > allowed_mems_nr(h)) {
4751 			return_unused_surplus_pages(h, delta);
4752 			goto out;
4753 		}
4754 	}
4755 
4756 	ret = 0;
4757 	if (delta < 0)
4758 		return_unused_surplus_pages(h, (unsigned long) -delta);
4759 
4760 out:
4761 	spin_unlock_irq(&hugetlb_lock);
4762 	return ret;
4763 }
4764 
4765 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4766 {
4767 	struct resv_map *resv = vma_resv_map(vma);
4768 
4769 	/*
4770 	 * HPAGE_RESV_OWNER indicates a private mapping.
4771 	 * This new VMA should share its siblings reservation map if present.
4772 	 * The VMA will only ever have a valid reservation map pointer where
4773 	 * it is being copied for another still existing VMA.  As that VMA
4774 	 * has a reference to the reservation map it cannot disappear until
4775 	 * after this open call completes.  It is therefore safe to take a
4776 	 * new reference here without additional locking.
4777 	 */
4778 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4779 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4780 		kref_get(&resv->refs);
4781 	}
4782 
4783 	/*
4784 	 * vma_lock structure for sharable mappings is vma specific.
4785 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4786 	 * new structure.  Before clearing, make sure vma_lock is not
4787 	 * for this vma.
4788 	 */
4789 	if (vma->vm_flags & VM_MAYSHARE) {
4790 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4791 
4792 		if (vma_lock) {
4793 			if (vma_lock->vma != vma) {
4794 				vma->vm_private_data = NULL;
4795 				hugetlb_vma_lock_alloc(vma);
4796 			} else
4797 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4798 		} else
4799 			hugetlb_vma_lock_alloc(vma);
4800 	}
4801 }
4802 
4803 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4804 {
4805 	struct hstate *h = hstate_vma(vma);
4806 	struct resv_map *resv;
4807 	struct hugepage_subpool *spool = subpool_vma(vma);
4808 	unsigned long reserve, start, end;
4809 	long gbl_reserve;
4810 
4811 	hugetlb_vma_lock_free(vma);
4812 
4813 	resv = vma_resv_map(vma);
4814 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4815 		return;
4816 
4817 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4818 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4819 
4820 	reserve = (end - start) - region_count(resv, start, end);
4821 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4822 	if (reserve) {
4823 		/*
4824 		 * Decrement reserve counts.  The global reserve count may be
4825 		 * adjusted if the subpool has a minimum size.
4826 		 */
4827 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4828 		hugetlb_acct_memory(h, -gbl_reserve);
4829 	}
4830 
4831 	kref_put(&resv->refs, resv_map_release);
4832 }
4833 
4834 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4835 {
4836 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4837 		return -EINVAL;
4838 
4839 	/*
4840 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4841 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4842 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4843 	 */
4844 	if (addr & ~PUD_MASK) {
4845 		/*
4846 		 * hugetlb_vm_op_split is called right before we attempt to
4847 		 * split the VMA. We will need to unshare PMDs in the old and
4848 		 * new VMAs, so let's unshare before we split.
4849 		 */
4850 		unsigned long floor = addr & PUD_MASK;
4851 		unsigned long ceil = floor + PUD_SIZE;
4852 
4853 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4854 			hugetlb_unshare_pmds(vma, floor, ceil);
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4861 {
4862 	return huge_page_size(hstate_vma(vma));
4863 }
4864 
4865 /*
4866  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4867  * handle_mm_fault() to try to instantiate regular-sized pages in the
4868  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4869  * this far.
4870  */
4871 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4872 {
4873 	BUG();
4874 	return 0;
4875 }
4876 
4877 /*
4878  * When a new function is introduced to vm_operations_struct and added
4879  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4880  * This is because under System V memory model, mappings created via
4881  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4882  * their original vm_ops are overwritten with shm_vm_ops.
4883  */
4884 const struct vm_operations_struct hugetlb_vm_ops = {
4885 	.fault = hugetlb_vm_op_fault,
4886 	.open = hugetlb_vm_op_open,
4887 	.close = hugetlb_vm_op_close,
4888 	.may_split = hugetlb_vm_op_split,
4889 	.pagesize = hugetlb_vm_op_pagesize,
4890 };
4891 
4892 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4893 				int writable)
4894 {
4895 	pte_t entry;
4896 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4897 
4898 	if (writable) {
4899 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4900 					 vma->vm_page_prot)));
4901 	} else {
4902 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4903 					   vma->vm_page_prot));
4904 	}
4905 	entry = pte_mkyoung(entry);
4906 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4907 
4908 	return entry;
4909 }
4910 
4911 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4912 				   unsigned long address, pte_t *ptep)
4913 {
4914 	pte_t entry;
4915 
4916 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4917 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4918 		update_mmu_cache(vma, address, ptep);
4919 }
4920 
4921 bool is_hugetlb_entry_migration(pte_t pte)
4922 {
4923 	swp_entry_t swp;
4924 
4925 	if (huge_pte_none(pte) || pte_present(pte))
4926 		return false;
4927 	swp = pte_to_swp_entry(pte);
4928 	if (is_migration_entry(swp))
4929 		return true;
4930 	else
4931 		return false;
4932 }
4933 
4934 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4935 {
4936 	swp_entry_t swp;
4937 
4938 	if (huge_pte_none(pte) || pte_present(pte))
4939 		return false;
4940 	swp = pte_to_swp_entry(pte);
4941 	if (is_hwpoison_entry(swp))
4942 		return true;
4943 	else
4944 		return false;
4945 }
4946 
4947 static void
4948 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4949 		     struct folio *new_folio)
4950 {
4951 	__folio_mark_uptodate(new_folio);
4952 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
4953 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1));
4954 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4955 	folio_set_hugetlb_migratable(new_folio);
4956 }
4957 
4958 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4959 			    struct vm_area_struct *dst_vma,
4960 			    struct vm_area_struct *src_vma)
4961 {
4962 	pte_t *src_pte, *dst_pte, entry;
4963 	struct page *ptepage;
4964 	unsigned long addr;
4965 	bool cow = is_cow_mapping(src_vma->vm_flags);
4966 	struct hstate *h = hstate_vma(src_vma);
4967 	unsigned long sz = huge_page_size(h);
4968 	unsigned long npages = pages_per_huge_page(h);
4969 	struct mmu_notifier_range range;
4970 	unsigned long last_addr_mask;
4971 	int ret = 0;
4972 
4973 	if (cow) {
4974 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4975 					src_vma->vm_start,
4976 					src_vma->vm_end);
4977 		mmu_notifier_invalidate_range_start(&range);
4978 		mmap_assert_write_locked(src);
4979 		raw_write_seqcount_begin(&src->write_protect_seq);
4980 	} else {
4981 		/*
4982 		 * For shared mappings the vma lock must be held before
4983 		 * calling hugetlb_walk() in the src vma. Otherwise, the
4984 		 * returned ptep could go away if part of a shared pmd and
4985 		 * another thread calls huge_pmd_unshare.
4986 		 */
4987 		hugetlb_vma_lock_read(src_vma);
4988 	}
4989 
4990 	last_addr_mask = hugetlb_mask_last_page(h);
4991 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4992 		spinlock_t *src_ptl, *dst_ptl;
4993 		src_pte = hugetlb_walk(src_vma, addr, sz);
4994 		if (!src_pte) {
4995 			addr |= last_addr_mask;
4996 			continue;
4997 		}
4998 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4999 		if (!dst_pte) {
5000 			ret = -ENOMEM;
5001 			break;
5002 		}
5003 
5004 		/*
5005 		 * If the pagetables are shared don't copy or take references.
5006 		 *
5007 		 * dst_pte == src_pte is the common case of src/dest sharing.
5008 		 * However, src could have 'unshared' and dst shares with
5009 		 * another vma. So page_count of ptep page is checked instead
5010 		 * to reliably determine whether pte is shared.
5011 		 */
5012 		if (page_count(virt_to_page(dst_pte)) > 1) {
5013 			addr |= last_addr_mask;
5014 			continue;
5015 		}
5016 
5017 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5018 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5019 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5020 		entry = huge_ptep_get(src_pte);
5021 again:
5022 		if (huge_pte_none(entry)) {
5023 			/*
5024 			 * Skip if src entry none.
5025 			 */
5026 			;
5027 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5028 			bool uffd_wp = huge_pte_uffd_wp(entry);
5029 
5030 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5031 				entry = huge_pte_clear_uffd_wp(entry);
5032 			set_huge_pte_at(dst, addr, dst_pte, entry);
5033 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5034 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5035 			bool uffd_wp = huge_pte_uffd_wp(entry);
5036 
5037 			if (!is_readable_migration_entry(swp_entry) && cow) {
5038 				/*
5039 				 * COW mappings require pages in both
5040 				 * parent and child to be set to read.
5041 				 */
5042 				swp_entry = make_readable_migration_entry(
5043 							swp_offset(swp_entry));
5044 				entry = swp_entry_to_pte(swp_entry);
5045 				if (userfaultfd_wp(src_vma) && uffd_wp)
5046 					entry = huge_pte_mkuffd_wp(entry);
5047 				set_huge_pte_at(src, addr, src_pte, entry);
5048 			}
5049 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5050 				entry = huge_pte_clear_uffd_wp(entry);
5051 			set_huge_pte_at(dst, addr, dst_pte, entry);
5052 		} else if (unlikely(is_pte_marker(entry))) {
5053 			/* No swap on hugetlb */
5054 			WARN_ON_ONCE(
5055 			    is_swapin_error_entry(pte_to_swp_entry(entry)));
5056 			/*
5057 			 * We copy the pte marker only if the dst vma has
5058 			 * uffd-wp enabled.
5059 			 */
5060 			if (userfaultfd_wp(dst_vma))
5061 				set_huge_pte_at(dst, addr, dst_pte, entry);
5062 		} else {
5063 			entry = huge_ptep_get(src_pte);
5064 			ptepage = pte_page(entry);
5065 			get_page(ptepage);
5066 
5067 			/*
5068 			 * Failing to duplicate the anon rmap is a rare case
5069 			 * where we see pinned hugetlb pages while they're
5070 			 * prone to COW. We need to do the COW earlier during
5071 			 * fork.
5072 			 *
5073 			 * When pre-allocating the page or copying data, we
5074 			 * need to be without the pgtable locks since we could
5075 			 * sleep during the process.
5076 			 */
5077 			if (!PageAnon(ptepage)) {
5078 				page_dup_file_rmap(ptepage, true);
5079 			} else if (page_try_dup_anon_rmap(ptepage, true,
5080 							  src_vma)) {
5081 				pte_t src_pte_old = entry;
5082 				struct folio *new_folio;
5083 
5084 				spin_unlock(src_ptl);
5085 				spin_unlock(dst_ptl);
5086 				/* Do not use reserve as it's private owned */
5087 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5088 				if (IS_ERR(new_folio)) {
5089 					put_page(ptepage);
5090 					ret = PTR_ERR(new_folio);
5091 					break;
5092 				}
5093 				copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma,
5094 						    npages);
5095 				put_page(ptepage);
5096 
5097 				/* Install the new hugetlb folio if src pte stable */
5098 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5099 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5100 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5101 				entry = huge_ptep_get(src_pte);
5102 				if (!pte_same(src_pte_old, entry)) {
5103 					restore_reserve_on_error(h, dst_vma, addr,
5104 								new_folio);
5105 					folio_put(new_folio);
5106 					/* huge_ptep of dst_pte won't change as in child */
5107 					goto again;
5108 				}
5109 				hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio);
5110 				spin_unlock(src_ptl);
5111 				spin_unlock(dst_ptl);
5112 				continue;
5113 			}
5114 
5115 			if (cow) {
5116 				/*
5117 				 * No need to notify as we are downgrading page
5118 				 * table protection not changing it to point
5119 				 * to a new page.
5120 				 *
5121 				 * See Documentation/mm/mmu_notifier.rst
5122 				 */
5123 				huge_ptep_set_wrprotect(src, addr, src_pte);
5124 				entry = huge_pte_wrprotect(entry);
5125 			}
5126 
5127 			set_huge_pte_at(dst, addr, dst_pte, entry);
5128 			hugetlb_count_add(npages, dst);
5129 		}
5130 		spin_unlock(src_ptl);
5131 		spin_unlock(dst_ptl);
5132 	}
5133 
5134 	if (cow) {
5135 		raw_write_seqcount_end(&src->write_protect_seq);
5136 		mmu_notifier_invalidate_range_end(&range);
5137 	} else {
5138 		hugetlb_vma_unlock_read(src_vma);
5139 	}
5140 
5141 	return ret;
5142 }
5143 
5144 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5145 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5146 {
5147 	struct hstate *h = hstate_vma(vma);
5148 	struct mm_struct *mm = vma->vm_mm;
5149 	spinlock_t *src_ptl, *dst_ptl;
5150 	pte_t pte;
5151 
5152 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5153 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5154 
5155 	/*
5156 	 * We don't have to worry about the ordering of src and dst ptlocks
5157 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5158 	 */
5159 	if (src_ptl != dst_ptl)
5160 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5161 
5162 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5163 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5164 
5165 	if (src_ptl != dst_ptl)
5166 		spin_unlock(src_ptl);
5167 	spin_unlock(dst_ptl);
5168 }
5169 
5170 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5171 			     struct vm_area_struct *new_vma,
5172 			     unsigned long old_addr, unsigned long new_addr,
5173 			     unsigned long len)
5174 {
5175 	struct hstate *h = hstate_vma(vma);
5176 	struct address_space *mapping = vma->vm_file->f_mapping;
5177 	unsigned long sz = huge_page_size(h);
5178 	struct mm_struct *mm = vma->vm_mm;
5179 	unsigned long old_end = old_addr + len;
5180 	unsigned long last_addr_mask;
5181 	pte_t *src_pte, *dst_pte;
5182 	struct mmu_notifier_range range;
5183 	bool shared_pmd = false;
5184 
5185 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5186 				old_end);
5187 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5188 	/*
5189 	 * In case of shared PMDs, we should cover the maximum possible
5190 	 * range.
5191 	 */
5192 	flush_cache_range(vma, range.start, range.end);
5193 
5194 	mmu_notifier_invalidate_range_start(&range);
5195 	last_addr_mask = hugetlb_mask_last_page(h);
5196 	/* Prevent race with file truncation */
5197 	hugetlb_vma_lock_write(vma);
5198 	i_mmap_lock_write(mapping);
5199 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5200 		src_pte = hugetlb_walk(vma, old_addr, sz);
5201 		if (!src_pte) {
5202 			old_addr |= last_addr_mask;
5203 			new_addr |= last_addr_mask;
5204 			continue;
5205 		}
5206 		if (huge_pte_none(huge_ptep_get(src_pte)))
5207 			continue;
5208 
5209 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5210 			shared_pmd = true;
5211 			old_addr |= last_addr_mask;
5212 			new_addr |= last_addr_mask;
5213 			continue;
5214 		}
5215 
5216 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5217 		if (!dst_pte)
5218 			break;
5219 
5220 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5221 	}
5222 
5223 	if (shared_pmd)
5224 		flush_tlb_range(vma, range.start, range.end);
5225 	else
5226 		flush_tlb_range(vma, old_end - len, old_end);
5227 	mmu_notifier_invalidate_range_end(&range);
5228 	i_mmap_unlock_write(mapping);
5229 	hugetlb_vma_unlock_write(vma);
5230 
5231 	return len + old_addr - old_end;
5232 }
5233 
5234 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5235 				   unsigned long start, unsigned long end,
5236 				   struct page *ref_page, zap_flags_t zap_flags)
5237 {
5238 	struct mm_struct *mm = vma->vm_mm;
5239 	unsigned long address;
5240 	pte_t *ptep;
5241 	pte_t pte;
5242 	spinlock_t *ptl;
5243 	struct page *page;
5244 	struct hstate *h = hstate_vma(vma);
5245 	unsigned long sz = huge_page_size(h);
5246 	unsigned long last_addr_mask;
5247 	bool force_flush = false;
5248 
5249 	WARN_ON(!is_vm_hugetlb_page(vma));
5250 	BUG_ON(start & ~huge_page_mask(h));
5251 	BUG_ON(end & ~huge_page_mask(h));
5252 
5253 	/*
5254 	 * This is a hugetlb vma, all the pte entries should point
5255 	 * to huge page.
5256 	 */
5257 	tlb_change_page_size(tlb, sz);
5258 	tlb_start_vma(tlb, vma);
5259 
5260 	last_addr_mask = hugetlb_mask_last_page(h);
5261 	address = start;
5262 	for (; address < end; address += sz) {
5263 		ptep = hugetlb_walk(vma, address, sz);
5264 		if (!ptep) {
5265 			address |= last_addr_mask;
5266 			continue;
5267 		}
5268 
5269 		ptl = huge_pte_lock(h, mm, ptep);
5270 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5271 			spin_unlock(ptl);
5272 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5273 			force_flush = true;
5274 			address |= last_addr_mask;
5275 			continue;
5276 		}
5277 
5278 		pte = huge_ptep_get(ptep);
5279 		if (huge_pte_none(pte)) {
5280 			spin_unlock(ptl);
5281 			continue;
5282 		}
5283 
5284 		/*
5285 		 * Migrating hugepage or HWPoisoned hugepage is already
5286 		 * unmapped and its refcount is dropped, so just clear pte here.
5287 		 */
5288 		if (unlikely(!pte_present(pte))) {
5289 			/*
5290 			 * If the pte was wr-protected by uffd-wp in any of the
5291 			 * swap forms, meanwhile the caller does not want to
5292 			 * drop the uffd-wp bit in this zap, then replace the
5293 			 * pte with a marker.
5294 			 */
5295 			if (pte_swp_uffd_wp_any(pte) &&
5296 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5297 				set_huge_pte_at(mm, address, ptep,
5298 						make_pte_marker(PTE_MARKER_UFFD_WP));
5299 			else
5300 				huge_pte_clear(mm, address, ptep, sz);
5301 			spin_unlock(ptl);
5302 			continue;
5303 		}
5304 
5305 		page = pte_page(pte);
5306 		/*
5307 		 * If a reference page is supplied, it is because a specific
5308 		 * page is being unmapped, not a range. Ensure the page we
5309 		 * are about to unmap is the actual page of interest.
5310 		 */
5311 		if (ref_page) {
5312 			if (page != ref_page) {
5313 				spin_unlock(ptl);
5314 				continue;
5315 			}
5316 			/*
5317 			 * Mark the VMA as having unmapped its page so that
5318 			 * future faults in this VMA will fail rather than
5319 			 * looking like data was lost
5320 			 */
5321 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5322 		}
5323 
5324 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5325 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5326 		if (huge_pte_dirty(pte))
5327 			set_page_dirty(page);
5328 		/* Leave a uffd-wp pte marker if needed */
5329 		if (huge_pte_uffd_wp(pte) &&
5330 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5331 			set_huge_pte_at(mm, address, ptep,
5332 					make_pte_marker(PTE_MARKER_UFFD_WP));
5333 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5334 		page_remove_rmap(page, vma, true);
5335 
5336 		spin_unlock(ptl);
5337 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5338 		/*
5339 		 * Bail out after unmapping reference page if supplied
5340 		 */
5341 		if (ref_page)
5342 			break;
5343 	}
5344 	tlb_end_vma(tlb, vma);
5345 
5346 	/*
5347 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5348 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5349 	 * guaranteed that the last refernece would not be dropped. But we must
5350 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5351 	 * dropped and the last reference to the shared PMDs page might be
5352 	 * dropped as well.
5353 	 *
5354 	 * In theory we could defer the freeing of the PMD pages as well, but
5355 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5356 	 * detect sharing, so we cannot defer the release of the page either.
5357 	 * Instead, do flush now.
5358 	 */
5359 	if (force_flush)
5360 		tlb_flush_mmu_tlbonly(tlb);
5361 }
5362 
5363 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5364 			  struct vm_area_struct *vma, unsigned long start,
5365 			  unsigned long end, struct page *ref_page,
5366 			  zap_flags_t zap_flags)
5367 {
5368 	hugetlb_vma_lock_write(vma);
5369 	i_mmap_lock_write(vma->vm_file->f_mapping);
5370 
5371 	/* mmu notification performed in caller */
5372 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5373 
5374 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5375 		/*
5376 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5377 		 * When the vma_lock is freed, this makes the vma ineligible
5378 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5379 		 * pmd sharing.  This is important as page tables for this
5380 		 * unmapped range will be asynchrously deleted.  If the page
5381 		 * tables are shared, there will be issues when accessed by
5382 		 * someone else.
5383 		 */
5384 		__hugetlb_vma_unlock_write_free(vma);
5385 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5386 	} else {
5387 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5388 		hugetlb_vma_unlock_write(vma);
5389 	}
5390 }
5391 
5392 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5393 			  unsigned long end, struct page *ref_page,
5394 			  zap_flags_t zap_flags)
5395 {
5396 	struct mmu_notifier_range range;
5397 	struct mmu_gather tlb;
5398 
5399 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5400 				start, end);
5401 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5402 	mmu_notifier_invalidate_range_start(&range);
5403 	tlb_gather_mmu(&tlb, vma->vm_mm);
5404 
5405 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5406 
5407 	mmu_notifier_invalidate_range_end(&range);
5408 	tlb_finish_mmu(&tlb);
5409 }
5410 
5411 /*
5412  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5413  * mapping it owns the reserve page for. The intention is to unmap the page
5414  * from other VMAs and let the children be SIGKILLed if they are faulting the
5415  * same region.
5416  */
5417 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5418 			      struct page *page, unsigned long address)
5419 {
5420 	struct hstate *h = hstate_vma(vma);
5421 	struct vm_area_struct *iter_vma;
5422 	struct address_space *mapping;
5423 	pgoff_t pgoff;
5424 
5425 	/*
5426 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5427 	 * from page cache lookup which is in HPAGE_SIZE units.
5428 	 */
5429 	address = address & huge_page_mask(h);
5430 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5431 			vma->vm_pgoff;
5432 	mapping = vma->vm_file->f_mapping;
5433 
5434 	/*
5435 	 * Take the mapping lock for the duration of the table walk. As
5436 	 * this mapping should be shared between all the VMAs,
5437 	 * __unmap_hugepage_range() is called as the lock is already held
5438 	 */
5439 	i_mmap_lock_write(mapping);
5440 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5441 		/* Do not unmap the current VMA */
5442 		if (iter_vma == vma)
5443 			continue;
5444 
5445 		/*
5446 		 * Shared VMAs have their own reserves and do not affect
5447 		 * MAP_PRIVATE accounting but it is possible that a shared
5448 		 * VMA is using the same page so check and skip such VMAs.
5449 		 */
5450 		if (iter_vma->vm_flags & VM_MAYSHARE)
5451 			continue;
5452 
5453 		/*
5454 		 * Unmap the page from other VMAs without their own reserves.
5455 		 * They get marked to be SIGKILLed if they fault in these
5456 		 * areas. This is because a future no-page fault on this VMA
5457 		 * could insert a zeroed page instead of the data existing
5458 		 * from the time of fork. This would look like data corruption
5459 		 */
5460 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5461 			unmap_hugepage_range(iter_vma, address,
5462 					     address + huge_page_size(h), page, 0);
5463 	}
5464 	i_mmap_unlock_write(mapping);
5465 }
5466 
5467 /*
5468  * hugetlb_wp() should be called with page lock of the original hugepage held.
5469  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5470  * cannot race with other handlers or page migration.
5471  * Keep the pte_same checks anyway to make transition from the mutex easier.
5472  */
5473 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5474 		       unsigned long address, pte_t *ptep, unsigned int flags,
5475 		       struct folio *pagecache_folio, spinlock_t *ptl)
5476 {
5477 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5478 	pte_t pte;
5479 	struct hstate *h = hstate_vma(vma);
5480 	struct page *old_page;
5481 	struct folio *new_folio;
5482 	int outside_reserve = 0;
5483 	vm_fault_t ret = 0;
5484 	unsigned long haddr = address & huge_page_mask(h);
5485 	struct mmu_notifier_range range;
5486 
5487 	/*
5488 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5489 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5490 	 */
5491 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5492 		return VM_FAULT_SIGSEGV;
5493 
5494 	/* Let's take out MAP_SHARED mappings first. */
5495 	if (vma->vm_flags & VM_MAYSHARE) {
5496 		set_huge_ptep_writable(vma, haddr, ptep);
5497 		return 0;
5498 	}
5499 
5500 	pte = huge_ptep_get(ptep);
5501 	old_page = pte_page(pte);
5502 
5503 	delayacct_wpcopy_start();
5504 
5505 retry_avoidcopy:
5506 	/*
5507 	 * If no-one else is actually using this page, we're the exclusive
5508 	 * owner and can reuse this page.
5509 	 */
5510 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5511 		if (!PageAnonExclusive(old_page))
5512 			page_move_anon_rmap(old_page, vma);
5513 		if (likely(!unshare))
5514 			set_huge_ptep_writable(vma, haddr, ptep);
5515 
5516 		delayacct_wpcopy_end();
5517 		return 0;
5518 	}
5519 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5520 		       old_page);
5521 
5522 	/*
5523 	 * If the process that created a MAP_PRIVATE mapping is about to
5524 	 * perform a COW due to a shared page count, attempt to satisfy
5525 	 * the allocation without using the existing reserves. The pagecache
5526 	 * page is used to determine if the reserve at this address was
5527 	 * consumed or not. If reserves were used, a partial faulted mapping
5528 	 * at the time of fork() could consume its reserves on COW instead
5529 	 * of the full address range.
5530 	 */
5531 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5532 			page_folio(old_page) != pagecache_folio)
5533 		outside_reserve = 1;
5534 
5535 	get_page(old_page);
5536 
5537 	/*
5538 	 * Drop page table lock as buddy allocator may be called. It will
5539 	 * be acquired again before returning to the caller, as expected.
5540 	 */
5541 	spin_unlock(ptl);
5542 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5543 
5544 	if (IS_ERR(new_folio)) {
5545 		/*
5546 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5547 		 * it is due to references held by a child and an insufficient
5548 		 * huge page pool. To guarantee the original mappers
5549 		 * reliability, unmap the page from child processes. The child
5550 		 * may get SIGKILLed if it later faults.
5551 		 */
5552 		if (outside_reserve) {
5553 			struct address_space *mapping = vma->vm_file->f_mapping;
5554 			pgoff_t idx;
5555 			u32 hash;
5556 
5557 			put_page(old_page);
5558 			/*
5559 			 * Drop hugetlb_fault_mutex and vma_lock before
5560 			 * unmapping.  unmapping needs to hold vma_lock
5561 			 * in write mode.  Dropping vma_lock in read mode
5562 			 * here is OK as COW mappings do not interact with
5563 			 * PMD sharing.
5564 			 *
5565 			 * Reacquire both after unmap operation.
5566 			 */
5567 			idx = vma_hugecache_offset(h, vma, haddr);
5568 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5569 			hugetlb_vma_unlock_read(vma);
5570 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5571 
5572 			unmap_ref_private(mm, vma, old_page, haddr);
5573 
5574 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5575 			hugetlb_vma_lock_read(vma);
5576 			spin_lock(ptl);
5577 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5578 			if (likely(ptep &&
5579 				   pte_same(huge_ptep_get(ptep), pte)))
5580 				goto retry_avoidcopy;
5581 			/*
5582 			 * race occurs while re-acquiring page table
5583 			 * lock, and our job is done.
5584 			 */
5585 			delayacct_wpcopy_end();
5586 			return 0;
5587 		}
5588 
5589 		ret = vmf_error(PTR_ERR(new_folio));
5590 		goto out_release_old;
5591 	}
5592 
5593 	/*
5594 	 * When the original hugepage is shared one, it does not have
5595 	 * anon_vma prepared.
5596 	 */
5597 	if (unlikely(anon_vma_prepare(vma))) {
5598 		ret = VM_FAULT_OOM;
5599 		goto out_release_all;
5600 	}
5601 
5602 	copy_user_huge_page(&new_folio->page, old_page, address, vma,
5603 			    pages_per_huge_page(h));
5604 	__folio_mark_uptodate(new_folio);
5605 
5606 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5607 				haddr + huge_page_size(h));
5608 	mmu_notifier_invalidate_range_start(&range);
5609 
5610 	/*
5611 	 * Retake the page table lock to check for racing updates
5612 	 * before the page tables are altered
5613 	 */
5614 	spin_lock(ptl);
5615 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5616 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5617 		/* Break COW or unshare */
5618 		huge_ptep_clear_flush(vma, haddr, ptep);
5619 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5620 		page_remove_rmap(old_page, vma, true);
5621 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5622 		set_huge_pte_at(mm, haddr, ptep,
5623 				make_huge_pte(vma, &new_folio->page, !unshare));
5624 		folio_set_hugetlb_migratable(new_folio);
5625 		/* Make the old page be freed below */
5626 		new_folio = page_folio(old_page);
5627 	}
5628 	spin_unlock(ptl);
5629 	mmu_notifier_invalidate_range_end(&range);
5630 out_release_all:
5631 	/*
5632 	 * No restore in case of successful pagetable update (Break COW or
5633 	 * unshare)
5634 	 */
5635 	if (new_folio != page_folio(old_page))
5636 		restore_reserve_on_error(h, vma, haddr, new_folio);
5637 	folio_put(new_folio);
5638 out_release_old:
5639 	put_page(old_page);
5640 
5641 	spin_lock(ptl); /* Caller expects lock to be held */
5642 
5643 	delayacct_wpcopy_end();
5644 	return ret;
5645 }
5646 
5647 /*
5648  * Return whether there is a pagecache page to back given address within VMA.
5649  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5650  */
5651 static bool hugetlbfs_pagecache_present(struct hstate *h,
5652 			struct vm_area_struct *vma, unsigned long address)
5653 {
5654 	struct address_space *mapping = vma->vm_file->f_mapping;
5655 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5656 	bool present;
5657 
5658 	rcu_read_lock();
5659 	present = page_cache_next_miss(mapping, idx, 1) != idx;
5660 	rcu_read_unlock();
5661 
5662 	return present;
5663 }
5664 
5665 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5666 			   pgoff_t idx)
5667 {
5668 	struct inode *inode = mapping->host;
5669 	struct hstate *h = hstate_inode(inode);
5670 	int err;
5671 
5672 	__folio_set_locked(folio);
5673 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5674 
5675 	if (unlikely(err)) {
5676 		__folio_clear_locked(folio);
5677 		return err;
5678 	}
5679 	folio_clear_hugetlb_restore_reserve(folio);
5680 
5681 	/*
5682 	 * mark folio dirty so that it will not be removed from cache/file
5683 	 * by non-hugetlbfs specific code paths.
5684 	 */
5685 	folio_mark_dirty(folio);
5686 
5687 	spin_lock(&inode->i_lock);
5688 	inode->i_blocks += blocks_per_huge_page(h);
5689 	spin_unlock(&inode->i_lock);
5690 	return 0;
5691 }
5692 
5693 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5694 						  struct address_space *mapping,
5695 						  pgoff_t idx,
5696 						  unsigned int flags,
5697 						  unsigned long haddr,
5698 						  unsigned long addr,
5699 						  unsigned long reason)
5700 {
5701 	u32 hash;
5702 	struct vm_fault vmf = {
5703 		.vma = vma,
5704 		.address = haddr,
5705 		.real_address = addr,
5706 		.flags = flags,
5707 
5708 		/*
5709 		 * Hard to debug if it ends up being
5710 		 * used by a callee that assumes
5711 		 * something about the other
5712 		 * uninitialized fields... same as in
5713 		 * memory.c
5714 		 */
5715 	};
5716 
5717 	/*
5718 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5719 	 * userfault. Also mmap_lock could be dropped due to handling
5720 	 * userfault, any vma operation should be careful from here.
5721 	 */
5722 	hugetlb_vma_unlock_read(vma);
5723 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5724 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5725 	return handle_userfault(&vmf, reason);
5726 }
5727 
5728 /*
5729  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5730  * false if pte changed or is changing.
5731  */
5732 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5733 			       pte_t *ptep, pte_t old_pte)
5734 {
5735 	spinlock_t *ptl;
5736 	bool same;
5737 
5738 	ptl = huge_pte_lock(h, mm, ptep);
5739 	same = pte_same(huge_ptep_get(ptep), old_pte);
5740 	spin_unlock(ptl);
5741 
5742 	return same;
5743 }
5744 
5745 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5746 			struct vm_area_struct *vma,
5747 			struct address_space *mapping, pgoff_t idx,
5748 			unsigned long address, pte_t *ptep,
5749 			pte_t old_pte, unsigned int flags)
5750 {
5751 	struct hstate *h = hstate_vma(vma);
5752 	vm_fault_t ret = VM_FAULT_SIGBUS;
5753 	int anon_rmap = 0;
5754 	unsigned long size;
5755 	struct folio *folio;
5756 	pte_t new_pte;
5757 	spinlock_t *ptl;
5758 	unsigned long haddr = address & huge_page_mask(h);
5759 	bool new_folio, new_pagecache_folio = false;
5760 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5761 
5762 	/*
5763 	 * Currently, we are forced to kill the process in the event the
5764 	 * original mapper has unmapped pages from the child due to a failed
5765 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5766 	 * be obvious.
5767 	 */
5768 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5769 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5770 			   current->pid);
5771 		goto out;
5772 	}
5773 
5774 	/*
5775 	 * Use page lock to guard against racing truncation
5776 	 * before we get page_table_lock.
5777 	 */
5778 	new_folio = false;
5779 	folio = filemap_lock_folio(mapping, idx);
5780 	if (!folio) {
5781 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5782 		if (idx >= size)
5783 			goto out;
5784 		/* Check for page in userfault range */
5785 		if (userfaultfd_missing(vma)) {
5786 			/*
5787 			 * Since hugetlb_no_page() was examining pte
5788 			 * without pgtable lock, we need to re-test under
5789 			 * lock because the pte may not be stable and could
5790 			 * have changed from under us.  Try to detect
5791 			 * either changed or during-changing ptes and retry
5792 			 * properly when needed.
5793 			 *
5794 			 * Note that userfaultfd is actually fine with
5795 			 * false positives (e.g. caused by pte changed),
5796 			 * but not wrong logical events (e.g. caused by
5797 			 * reading a pte during changing).  The latter can
5798 			 * confuse the userspace, so the strictness is very
5799 			 * much preferred.  E.g., MISSING event should
5800 			 * never happen on the page after UFFDIO_COPY has
5801 			 * correctly installed the page and returned.
5802 			 */
5803 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5804 				ret = 0;
5805 				goto out;
5806 			}
5807 
5808 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5809 							haddr, address,
5810 							VM_UFFD_MISSING);
5811 		}
5812 
5813 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5814 		if (IS_ERR(folio)) {
5815 			/*
5816 			 * Returning error will result in faulting task being
5817 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5818 			 * tasks from racing to fault in the same page which
5819 			 * could result in false unable to allocate errors.
5820 			 * Page migration does not take the fault mutex, but
5821 			 * does a clear then write of pte's under page table
5822 			 * lock.  Page fault code could race with migration,
5823 			 * notice the clear pte and try to allocate a page
5824 			 * here.  Before returning error, get ptl and make
5825 			 * sure there really is no pte entry.
5826 			 */
5827 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5828 				ret = vmf_error(PTR_ERR(folio));
5829 			else
5830 				ret = 0;
5831 			goto out;
5832 		}
5833 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5834 		__folio_mark_uptodate(folio);
5835 		new_folio = true;
5836 
5837 		if (vma->vm_flags & VM_MAYSHARE) {
5838 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5839 			if (err) {
5840 				/*
5841 				 * err can't be -EEXIST which implies someone
5842 				 * else consumed the reservation since hugetlb
5843 				 * fault mutex is held when add a hugetlb page
5844 				 * to the page cache. So it's safe to call
5845 				 * restore_reserve_on_error() here.
5846 				 */
5847 				restore_reserve_on_error(h, vma, haddr, folio);
5848 				folio_put(folio);
5849 				goto out;
5850 			}
5851 			new_pagecache_folio = true;
5852 		} else {
5853 			folio_lock(folio);
5854 			if (unlikely(anon_vma_prepare(vma))) {
5855 				ret = VM_FAULT_OOM;
5856 				goto backout_unlocked;
5857 			}
5858 			anon_rmap = 1;
5859 		}
5860 	} else {
5861 		/*
5862 		 * If memory error occurs between mmap() and fault, some process
5863 		 * don't have hwpoisoned swap entry for errored virtual address.
5864 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5865 		 */
5866 		if (unlikely(folio_test_hwpoison(folio))) {
5867 			ret = VM_FAULT_HWPOISON_LARGE |
5868 				VM_FAULT_SET_HINDEX(hstate_index(h));
5869 			goto backout_unlocked;
5870 		}
5871 
5872 		/* Check for page in userfault range. */
5873 		if (userfaultfd_minor(vma)) {
5874 			folio_unlock(folio);
5875 			folio_put(folio);
5876 			/* See comment in userfaultfd_missing() block above */
5877 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5878 				ret = 0;
5879 				goto out;
5880 			}
5881 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5882 							haddr, address,
5883 							VM_UFFD_MINOR);
5884 		}
5885 	}
5886 
5887 	/*
5888 	 * If we are going to COW a private mapping later, we examine the
5889 	 * pending reservations for this page now. This will ensure that
5890 	 * any allocations necessary to record that reservation occur outside
5891 	 * the spinlock.
5892 	 */
5893 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5894 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5895 			ret = VM_FAULT_OOM;
5896 			goto backout_unlocked;
5897 		}
5898 		/* Just decrements count, does not deallocate */
5899 		vma_end_reservation(h, vma, haddr);
5900 	}
5901 
5902 	ptl = huge_pte_lock(h, mm, ptep);
5903 	ret = 0;
5904 	/* If pte changed from under us, retry */
5905 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5906 		goto backout;
5907 
5908 	if (anon_rmap)
5909 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5910 	else
5911 		page_dup_file_rmap(&folio->page, true);
5912 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5913 				&& (vma->vm_flags & VM_SHARED)));
5914 	/*
5915 	 * If this pte was previously wr-protected, keep it wr-protected even
5916 	 * if populated.
5917 	 */
5918 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5919 		new_pte = huge_pte_mkuffd_wp(new_pte);
5920 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5921 
5922 	hugetlb_count_add(pages_per_huge_page(h), mm);
5923 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5924 		/* Optimization, do the COW without a second fault */
5925 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5926 	}
5927 
5928 	spin_unlock(ptl);
5929 
5930 	/*
5931 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5932 	 * found in the pagecache may not have hugetlb_migratable if they have
5933 	 * been isolated for migration.
5934 	 */
5935 	if (new_folio)
5936 		folio_set_hugetlb_migratable(folio);
5937 
5938 	folio_unlock(folio);
5939 out:
5940 	hugetlb_vma_unlock_read(vma);
5941 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5942 	return ret;
5943 
5944 backout:
5945 	spin_unlock(ptl);
5946 backout_unlocked:
5947 	if (new_folio && !new_pagecache_folio)
5948 		restore_reserve_on_error(h, vma, haddr, folio);
5949 
5950 	folio_unlock(folio);
5951 	folio_put(folio);
5952 	goto out;
5953 }
5954 
5955 #ifdef CONFIG_SMP
5956 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5957 {
5958 	unsigned long key[2];
5959 	u32 hash;
5960 
5961 	key[0] = (unsigned long) mapping;
5962 	key[1] = idx;
5963 
5964 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5965 
5966 	return hash & (num_fault_mutexes - 1);
5967 }
5968 #else
5969 /*
5970  * For uniprocessor systems we always use a single mutex, so just
5971  * return 0 and avoid the hashing overhead.
5972  */
5973 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5974 {
5975 	return 0;
5976 }
5977 #endif
5978 
5979 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5980 			unsigned long address, unsigned int flags)
5981 {
5982 	pte_t *ptep, entry;
5983 	spinlock_t *ptl;
5984 	vm_fault_t ret;
5985 	u32 hash;
5986 	pgoff_t idx;
5987 	struct page *page = NULL;
5988 	struct folio *pagecache_folio = NULL;
5989 	struct hstate *h = hstate_vma(vma);
5990 	struct address_space *mapping;
5991 	int need_wait_lock = 0;
5992 	unsigned long haddr = address & huge_page_mask(h);
5993 
5994 	/*
5995 	 * Serialize hugepage allocation and instantiation, so that we don't
5996 	 * get spurious allocation failures if two CPUs race to instantiate
5997 	 * the same page in the page cache.
5998 	 */
5999 	mapping = vma->vm_file->f_mapping;
6000 	idx = vma_hugecache_offset(h, vma, haddr);
6001 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6002 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6003 
6004 	/*
6005 	 * Acquire vma lock before calling huge_pte_alloc and hold
6006 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6007 	 * being called elsewhere and making the ptep no longer valid.
6008 	 */
6009 	hugetlb_vma_lock_read(vma);
6010 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6011 	if (!ptep) {
6012 		hugetlb_vma_unlock_read(vma);
6013 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6014 		return VM_FAULT_OOM;
6015 	}
6016 
6017 	entry = huge_ptep_get(ptep);
6018 	/* PTE markers should be handled the same way as none pte */
6019 	if (huge_pte_none_mostly(entry))
6020 		/*
6021 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6022 		 * mutex internally, which make us return immediately.
6023 		 */
6024 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6025 				      entry, flags);
6026 
6027 	ret = 0;
6028 
6029 	/*
6030 	 * entry could be a migration/hwpoison entry at this point, so this
6031 	 * check prevents the kernel from going below assuming that we have
6032 	 * an active hugepage in pagecache. This goto expects the 2nd page
6033 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6034 	 * properly handle it.
6035 	 */
6036 	if (!pte_present(entry)) {
6037 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6038 			/*
6039 			 * Release the hugetlb fault lock now, but retain
6040 			 * the vma lock, because it is needed to guard the
6041 			 * huge_pte_lockptr() later in
6042 			 * migration_entry_wait_huge(). The vma lock will
6043 			 * be released there.
6044 			 */
6045 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6046 			migration_entry_wait_huge(vma, ptep);
6047 			return 0;
6048 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6049 			ret = VM_FAULT_HWPOISON_LARGE |
6050 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6051 		goto out_mutex;
6052 	}
6053 
6054 	/*
6055 	 * If we are going to COW/unshare the mapping later, we examine the
6056 	 * pending reservations for this page now. This will ensure that any
6057 	 * allocations necessary to record that reservation occur outside the
6058 	 * spinlock. Also lookup the pagecache page now as it is used to
6059 	 * determine if a reservation has been consumed.
6060 	 */
6061 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6062 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6063 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6064 			ret = VM_FAULT_OOM;
6065 			goto out_mutex;
6066 		}
6067 		/* Just decrements count, does not deallocate */
6068 		vma_end_reservation(h, vma, haddr);
6069 
6070 		pagecache_folio = filemap_lock_folio(mapping, idx);
6071 	}
6072 
6073 	ptl = huge_pte_lock(h, mm, ptep);
6074 
6075 	/* Check for a racing update before calling hugetlb_wp() */
6076 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6077 		goto out_ptl;
6078 
6079 	/* Handle userfault-wp first, before trying to lock more pages */
6080 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6081 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6082 		struct vm_fault vmf = {
6083 			.vma = vma,
6084 			.address = haddr,
6085 			.real_address = address,
6086 			.flags = flags,
6087 		};
6088 
6089 		spin_unlock(ptl);
6090 		if (pagecache_folio) {
6091 			folio_unlock(pagecache_folio);
6092 			folio_put(pagecache_folio);
6093 		}
6094 		hugetlb_vma_unlock_read(vma);
6095 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6096 		return handle_userfault(&vmf, VM_UFFD_WP);
6097 	}
6098 
6099 	/*
6100 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6101 	 * pagecache_folio, so here we need take the former one
6102 	 * when page != pagecache_folio or !pagecache_folio.
6103 	 */
6104 	page = pte_page(entry);
6105 	if (page_folio(page) != pagecache_folio)
6106 		if (!trylock_page(page)) {
6107 			need_wait_lock = 1;
6108 			goto out_ptl;
6109 		}
6110 
6111 	get_page(page);
6112 
6113 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6114 		if (!huge_pte_write(entry)) {
6115 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6116 					 pagecache_folio, ptl);
6117 			goto out_put_page;
6118 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6119 			entry = huge_pte_mkdirty(entry);
6120 		}
6121 	}
6122 	entry = pte_mkyoung(entry);
6123 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6124 						flags & FAULT_FLAG_WRITE))
6125 		update_mmu_cache(vma, haddr, ptep);
6126 out_put_page:
6127 	if (page_folio(page) != pagecache_folio)
6128 		unlock_page(page);
6129 	put_page(page);
6130 out_ptl:
6131 	spin_unlock(ptl);
6132 
6133 	if (pagecache_folio) {
6134 		folio_unlock(pagecache_folio);
6135 		folio_put(pagecache_folio);
6136 	}
6137 out_mutex:
6138 	hugetlb_vma_unlock_read(vma);
6139 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6140 	/*
6141 	 * Generally it's safe to hold refcount during waiting page lock. But
6142 	 * here we just wait to defer the next page fault to avoid busy loop and
6143 	 * the page is not used after unlocked before returning from the current
6144 	 * page fault. So we are safe from accessing freed page, even if we wait
6145 	 * here without taking refcount.
6146 	 */
6147 	if (need_wait_lock)
6148 		wait_on_page_locked(page);
6149 	return ret;
6150 }
6151 
6152 #ifdef CONFIG_USERFAULTFD
6153 /*
6154  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6155  * modifications for huge pages.
6156  */
6157 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6158 			    pte_t *dst_pte,
6159 			    struct vm_area_struct *dst_vma,
6160 			    unsigned long dst_addr,
6161 			    unsigned long src_addr,
6162 			    enum mcopy_atomic_mode mode,
6163 			    struct page **pagep,
6164 			    bool wp_copy)
6165 {
6166 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6167 	struct hstate *h = hstate_vma(dst_vma);
6168 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6169 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6170 	unsigned long size;
6171 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6172 	pte_t _dst_pte;
6173 	spinlock_t *ptl;
6174 	int ret = -ENOMEM;
6175 	struct folio *folio;
6176 	int writable;
6177 	bool folio_in_pagecache = false;
6178 
6179 	if (is_continue) {
6180 		ret = -EFAULT;
6181 		folio = filemap_lock_folio(mapping, idx);
6182 		if (!folio)
6183 			goto out;
6184 		folio_in_pagecache = true;
6185 	} else if (!*pagep) {
6186 		/* If a page already exists, then it's UFFDIO_COPY for
6187 		 * a non-missing case. Return -EEXIST.
6188 		 */
6189 		if (vm_shared &&
6190 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6191 			ret = -EEXIST;
6192 			goto out;
6193 		}
6194 
6195 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6196 		if (IS_ERR(folio)) {
6197 			ret = -ENOMEM;
6198 			goto out;
6199 		}
6200 
6201 		ret = copy_huge_page_from_user(&folio->page,
6202 						(const void __user *) src_addr,
6203 						pages_per_huge_page(h), false);
6204 
6205 		/* fallback to copy_from_user outside mmap_lock */
6206 		if (unlikely(ret)) {
6207 			ret = -ENOENT;
6208 			/* Free the allocated folio which may have
6209 			 * consumed a reservation.
6210 			 */
6211 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6212 			folio_put(folio);
6213 
6214 			/* Allocate a temporary folio to hold the copied
6215 			 * contents.
6216 			 */
6217 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6218 			if (!folio) {
6219 				ret = -ENOMEM;
6220 				goto out;
6221 			}
6222 			*pagep = &folio->page;
6223 			/* Set the outparam pagep and return to the caller to
6224 			 * copy the contents outside the lock. Don't free the
6225 			 * page.
6226 			 */
6227 			goto out;
6228 		}
6229 	} else {
6230 		if (vm_shared &&
6231 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6232 			put_page(*pagep);
6233 			ret = -EEXIST;
6234 			*pagep = NULL;
6235 			goto out;
6236 		}
6237 
6238 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6239 		if (IS_ERR(folio)) {
6240 			put_page(*pagep);
6241 			ret = -ENOMEM;
6242 			*pagep = NULL;
6243 			goto out;
6244 		}
6245 		copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma,
6246 				    pages_per_huge_page(h));
6247 		put_page(*pagep);
6248 		*pagep = NULL;
6249 	}
6250 
6251 	/*
6252 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6253 	 * preceding stores to the page contents become visible before
6254 	 * the set_pte_at() write.
6255 	 */
6256 	__folio_mark_uptodate(folio);
6257 
6258 	/* Add shared, newly allocated pages to the page cache. */
6259 	if (vm_shared && !is_continue) {
6260 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6261 		ret = -EFAULT;
6262 		if (idx >= size)
6263 			goto out_release_nounlock;
6264 
6265 		/*
6266 		 * Serialization between remove_inode_hugepages() and
6267 		 * hugetlb_add_to_page_cache() below happens through the
6268 		 * hugetlb_fault_mutex_table that here must be hold by
6269 		 * the caller.
6270 		 */
6271 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6272 		if (ret)
6273 			goto out_release_nounlock;
6274 		folio_in_pagecache = true;
6275 	}
6276 
6277 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6278 
6279 	ret = -EIO;
6280 	if (folio_test_hwpoison(folio))
6281 		goto out_release_unlock;
6282 
6283 	/*
6284 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6285 	 * registered, we firstly wr-protect a none pte which has no page cache
6286 	 * page backing it, then access the page.
6287 	 */
6288 	ret = -EEXIST;
6289 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6290 		goto out_release_unlock;
6291 
6292 	if (folio_in_pagecache)
6293 		page_dup_file_rmap(&folio->page, true);
6294 	else
6295 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6296 
6297 	/*
6298 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6299 	 * with wp flag set, don't set pte write bit.
6300 	 */
6301 	if (wp_copy || (is_continue && !vm_shared))
6302 		writable = 0;
6303 	else
6304 		writable = dst_vma->vm_flags & VM_WRITE;
6305 
6306 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6307 	/*
6308 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6309 	 * extremely important for hugetlbfs for now since swapping is not
6310 	 * supported, but we should still be clear in that this page cannot be
6311 	 * thrown away at will, even if write bit not set.
6312 	 */
6313 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6314 	_dst_pte = pte_mkyoung(_dst_pte);
6315 
6316 	if (wp_copy)
6317 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6318 
6319 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6320 
6321 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6322 
6323 	/* No need to invalidate - it was non-present before */
6324 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6325 
6326 	spin_unlock(ptl);
6327 	if (!is_continue)
6328 		folio_set_hugetlb_migratable(folio);
6329 	if (vm_shared || is_continue)
6330 		folio_unlock(folio);
6331 	ret = 0;
6332 out:
6333 	return ret;
6334 out_release_unlock:
6335 	spin_unlock(ptl);
6336 	if (vm_shared || is_continue)
6337 		folio_unlock(folio);
6338 out_release_nounlock:
6339 	if (!folio_in_pagecache)
6340 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6341 	folio_put(folio);
6342 	goto out;
6343 }
6344 #endif /* CONFIG_USERFAULTFD */
6345 
6346 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6347 				 int refs, struct page **pages,
6348 				 struct vm_area_struct **vmas)
6349 {
6350 	int nr;
6351 
6352 	for (nr = 0; nr < refs; nr++) {
6353 		if (likely(pages))
6354 			pages[nr] = nth_page(page, nr);
6355 		if (vmas)
6356 			vmas[nr] = vma;
6357 	}
6358 }
6359 
6360 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6361 					       unsigned int flags, pte_t *pte,
6362 					       bool *unshare)
6363 {
6364 	pte_t pteval = huge_ptep_get(pte);
6365 
6366 	*unshare = false;
6367 	if (is_swap_pte(pteval))
6368 		return true;
6369 	if (huge_pte_write(pteval))
6370 		return false;
6371 	if (flags & FOLL_WRITE)
6372 		return true;
6373 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6374 		*unshare = true;
6375 		return true;
6376 	}
6377 	return false;
6378 }
6379 
6380 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6381 				unsigned long address, unsigned int flags)
6382 {
6383 	struct hstate *h = hstate_vma(vma);
6384 	struct mm_struct *mm = vma->vm_mm;
6385 	unsigned long haddr = address & huge_page_mask(h);
6386 	struct page *page = NULL;
6387 	spinlock_t *ptl;
6388 	pte_t *pte, entry;
6389 
6390 	/*
6391 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6392 	 * follow_hugetlb_page().
6393 	 */
6394 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6395 		return NULL;
6396 
6397 	hugetlb_vma_lock_read(vma);
6398 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6399 	if (!pte)
6400 		goto out_unlock;
6401 
6402 	ptl = huge_pte_lock(h, mm, pte);
6403 	entry = huge_ptep_get(pte);
6404 	if (pte_present(entry)) {
6405 		page = pte_page(entry) +
6406 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6407 		/*
6408 		 * Note that page may be a sub-page, and with vmemmap
6409 		 * optimizations the page struct may be read only.
6410 		 * try_grab_page() will increase the ref count on the
6411 		 * head page, so this will be OK.
6412 		 *
6413 		 * try_grab_page() should always be able to get the page here,
6414 		 * because we hold the ptl lock and have verified pte_present().
6415 		 */
6416 		if (try_grab_page(page, flags)) {
6417 			page = NULL;
6418 			goto out;
6419 		}
6420 	}
6421 out:
6422 	spin_unlock(ptl);
6423 out_unlock:
6424 	hugetlb_vma_unlock_read(vma);
6425 	return page;
6426 }
6427 
6428 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6429 			 struct page **pages, struct vm_area_struct **vmas,
6430 			 unsigned long *position, unsigned long *nr_pages,
6431 			 long i, unsigned int flags, int *locked)
6432 {
6433 	unsigned long pfn_offset;
6434 	unsigned long vaddr = *position;
6435 	unsigned long remainder = *nr_pages;
6436 	struct hstate *h = hstate_vma(vma);
6437 	int err = -EFAULT, refs;
6438 
6439 	while (vaddr < vma->vm_end && remainder) {
6440 		pte_t *pte;
6441 		spinlock_t *ptl = NULL;
6442 		bool unshare = false;
6443 		int absent;
6444 		struct page *page;
6445 
6446 		/*
6447 		 * If we have a pending SIGKILL, don't keep faulting pages and
6448 		 * potentially allocating memory.
6449 		 */
6450 		if (fatal_signal_pending(current)) {
6451 			remainder = 0;
6452 			break;
6453 		}
6454 
6455 		hugetlb_vma_lock_read(vma);
6456 		/*
6457 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6458 		 * each hugepage.  We have to make sure we get the
6459 		 * first, for the page indexing below to work.
6460 		 *
6461 		 * Note that page table lock is not held when pte is null.
6462 		 */
6463 		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6464 				   huge_page_size(h));
6465 		if (pte)
6466 			ptl = huge_pte_lock(h, mm, pte);
6467 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6468 
6469 		/*
6470 		 * When coredumping, it suits get_dump_page if we just return
6471 		 * an error where there's an empty slot with no huge pagecache
6472 		 * to back it.  This way, we avoid allocating a hugepage, and
6473 		 * the sparse dumpfile avoids allocating disk blocks, but its
6474 		 * huge holes still show up with zeroes where they need to be.
6475 		 */
6476 		if (absent && (flags & FOLL_DUMP) &&
6477 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6478 			if (pte)
6479 				spin_unlock(ptl);
6480 			hugetlb_vma_unlock_read(vma);
6481 			remainder = 0;
6482 			break;
6483 		}
6484 
6485 		/*
6486 		 * We need call hugetlb_fault for both hugepages under migration
6487 		 * (in which case hugetlb_fault waits for the migration,) and
6488 		 * hwpoisoned hugepages (in which case we need to prevent the
6489 		 * caller from accessing to them.) In order to do this, we use
6490 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6491 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6492 		 * both cases, and because we can't follow correct pages
6493 		 * directly from any kind of swap entries.
6494 		 */
6495 		if (absent ||
6496 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6497 			vm_fault_t ret;
6498 			unsigned int fault_flags = 0;
6499 
6500 			if (pte)
6501 				spin_unlock(ptl);
6502 			hugetlb_vma_unlock_read(vma);
6503 
6504 			if (flags & FOLL_WRITE)
6505 				fault_flags |= FAULT_FLAG_WRITE;
6506 			else if (unshare)
6507 				fault_flags |= FAULT_FLAG_UNSHARE;
6508 			if (locked) {
6509 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6510 					FAULT_FLAG_KILLABLE;
6511 				if (flags & FOLL_INTERRUPTIBLE)
6512 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6513 			}
6514 			if (flags & FOLL_NOWAIT)
6515 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6516 					FAULT_FLAG_RETRY_NOWAIT;
6517 			if (flags & FOLL_TRIED) {
6518 				/*
6519 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6520 				 * FAULT_FLAG_TRIED can co-exist
6521 				 */
6522 				fault_flags |= FAULT_FLAG_TRIED;
6523 			}
6524 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6525 			if (ret & VM_FAULT_ERROR) {
6526 				err = vm_fault_to_errno(ret, flags);
6527 				remainder = 0;
6528 				break;
6529 			}
6530 			if (ret & VM_FAULT_RETRY) {
6531 				if (locked &&
6532 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6533 					*locked = 0;
6534 				*nr_pages = 0;
6535 				/*
6536 				 * VM_FAULT_RETRY must not return an
6537 				 * error, it will return zero
6538 				 * instead.
6539 				 *
6540 				 * No need to update "position" as the
6541 				 * caller will not check it after
6542 				 * *nr_pages is set to 0.
6543 				 */
6544 				return i;
6545 			}
6546 			continue;
6547 		}
6548 
6549 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6550 		page = pte_page(huge_ptep_get(pte));
6551 
6552 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6553 			       !PageAnonExclusive(page), page);
6554 
6555 		/*
6556 		 * If subpage information not requested, update counters
6557 		 * and skip the same_page loop below.
6558 		 */
6559 		if (!pages && !vmas && !pfn_offset &&
6560 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6561 		    (remainder >= pages_per_huge_page(h))) {
6562 			vaddr += huge_page_size(h);
6563 			remainder -= pages_per_huge_page(h);
6564 			i += pages_per_huge_page(h);
6565 			spin_unlock(ptl);
6566 			hugetlb_vma_unlock_read(vma);
6567 			continue;
6568 		}
6569 
6570 		/* vaddr may not be aligned to PAGE_SIZE */
6571 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6572 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6573 
6574 		if (pages || vmas)
6575 			record_subpages_vmas(nth_page(page, pfn_offset),
6576 					     vma, refs,
6577 					     likely(pages) ? pages + i : NULL,
6578 					     vmas ? vmas + i : NULL);
6579 
6580 		if (pages) {
6581 			/*
6582 			 * try_grab_folio() should always succeed here,
6583 			 * because: a) we hold the ptl lock, and b) we've just
6584 			 * checked that the huge page is present in the page
6585 			 * tables. If the huge page is present, then the tail
6586 			 * pages must also be present. The ptl prevents the
6587 			 * head page and tail pages from being rearranged in
6588 			 * any way. As this is hugetlb, the pages will never
6589 			 * be p2pdma or not longterm pinable. So this page
6590 			 * must be available at this point, unless the page
6591 			 * refcount overflowed:
6592 			 */
6593 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6594 							 flags))) {
6595 				spin_unlock(ptl);
6596 				hugetlb_vma_unlock_read(vma);
6597 				remainder = 0;
6598 				err = -ENOMEM;
6599 				break;
6600 			}
6601 		}
6602 
6603 		vaddr += (refs << PAGE_SHIFT);
6604 		remainder -= refs;
6605 		i += refs;
6606 
6607 		spin_unlock(ptl);
6608 		hugetlb_vma_unlock_read(vma);
6609 	}
6610 	*nr_pages = remainder;
6611 	/*
6612 	 * setting position is actually required only if remainder is
6613 	 * not zero but it's faster not to add a "if (remainder)"
6614 	 * branch.
6615 	 */
6616 	*position = vaddr;
6617 
6618 	return i ? i : err;
6619 }
6620 
6621 long hugetlb_change_protection(struct vm_area_struct *vma,
6622 		unsigned long address, unsigned long end,
6623 		pgprot_t newprot, unsigned long cp_flags)
6624 {
6625 	struct mm_struct *mm = vma->vm_mm;
6626 	unsigned long start = address;
6627 	pte_t *ptep;
6628 	pte_t pte;
6629 	struct hstate *h = hstate_vma(vma);
6630 	long pages = 0, psize = huge_page_size(h);
6631 	bool shared_pmd = false;
6632 	struct mmu_notifier_range range;
6633 	unsigned long last_addr_mask;
6634 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6635 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6636 
6637 	/*
6638 	 * In the case of shared PMDs, the area to flush could be beyond
6639 	 * start/end.  Set range.start/range.end to cover the maximum possible
6640 	 * range if PMD sharing is possible.
6641 	 */
6642 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6643 				0, mm, start, end);
6644 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6645 
6646 	BUG_ON(address >= end);
6647 	flush_cache_range(vma, range.start, range.end);
6648 
6649 	mmu_notifier_invalidate_range_start(&range);
6650 	hugetlb_vma_lock_write(vma);
6651 	i_mmap_lock_write(vma->vm_file->f_mapping);
6652 	last_addr_mask = hugetlb_mask_last_page(h);
6653 	for (; address < end; address += psize) {
6654 		spinlock_t *ptl;
6655 		ptep = hugetlb_walk(vma, address, psize);
6656 		if (!ptep) {
6657 			if (!uffd_wp) {
6658 				address |= last_addr_mask;
6659 				continue;
6660 			}
6661 			/*
6662 			 * Userfaultfd wr-protect requires pgtable
6663 			 * pre-allocations to install pte markers.
6664 			 */
6665 			ptep = huge_pte_alloc(mm, vma, address, psize);
6666 			if (!ptep) {
6667 				pages = -ENOMEM;
6668 				break;
6669 			}
6670 		}
6671 		ptl = huge_pte_lock(h, mm, ptep);
6672 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6673 			/*
6674 			 * When uffd-wp is enabled on the vma, unshare
6675 			 * shouldn't happen at all.  Warn about it if it
6676 			 * happened due to some reason.
6677 			 */
6678 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6679 			pages++;
6680 			spin_unlock(ptl);
6681 			shared_pmd = true;
6682 			address |= last_addr_mask;
6683 			continue;
6684 		}
6685 		pte = huge_ptep_get(ptep);
6686 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6687 			/* Nothing to do. */
6688 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6689 			swp_entry_t entry = pte_to_swp_entry(pte);
6690 			struct page *page = pfn_swap_entry_to_page(entry);
6691 			pte_t newpte = pte;
6692 
6693 			if (is_writable_migration_entry(entry)) {
6694 				if (PageAnon(page))
6695 					entry = make_readable_exclusive_migration_entry(
6696 								swp_offset(entry));
6697 				else
6698 					entry = make_readable_migration_entry(
6699 								swp_offset(entry));
6700 				newpte = swp_entry_to_pte(entry);
6701 				pages++;
6702 			}
6703 
6704 			if (uffd_wp)
6705 				newpte = pte_swp_mkuffd_wp(newpte);
6706 			else if (uffd_wp_resolve)
6707 				newpte = pte_swp_clear_uffd_wp(newpte);
6708 			if (!pte_same(pte, newpte))
6709 				set_huge_pte_at(mm, address, ptep, newpte);
6710 		} else if (unlikely(is_pte_marker(pte))) {
6711 			/* No other markers apply for now. */
6712 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6713 			if (uffd_wp_resolve)
6714 				/* Safe to modify directly (non-present->none). */
6715 				huge_pte_clear(mm, address, ptep, psize);
6716 		} else if (!huge_pte_none(pte)) {
6717 			pte_t old_pte;
6718 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6719 
6720 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6721 			pte = huge_pte_modify(old_pte, newprot);
6722 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6723 			if (uffd_wp)
6724 				pte = huge_pte_mkuffd_wp(pte);
6725 			else if (uffd_wp_resolve)
6726 				pte = huge_pte_clear_uffd_wp(pte);
6727 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6728 			pages++;
6729 		} else {
6730 			/* None pte */
6731 			if (unlikely(uffd_wp))
6732 				/* Safe to modify directly (none->non-present). */
6733 				set_huge_pte_at(mm, address, ptep,
6734 						make_pte_marker(PTE_MARKER_UFFD_WP));
6735 		}
6736 		spin_unlock(ptl);
6737 	}
6738 	/*
6739 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6740 	 * may have cleared our pud entry and done put_page on the page table:
6741 	 * once we release i_mmap_rwsem, another task can do the final put_page
6742 	 * and that page table be reused and filled with junk.  If we actually
6743 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6744 	 */
6745 	if (shared_pmd)
6746 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6747 	else
6748 		flush_hugetlb_tlb_range(vma, start, end);
6749 	/*
6750 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6751 	 * page table protection not changing it to point to a new page.
6752 	 *
6753 	 * See Documentation/mm/mmu_notifier.rst
6754 	 */
6755 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6756 	hugetlb_vma_unlock_write(vma);
6757 	mmu_notifier_invalidate_range_end(&range);
6758 
6759 	return pages > 0 ? (pages << h->order) : pages;
6760 }
6761 
6762 /* Return true if reservation was successful, false otherwise.  */
6763 bool hugetlb_reserve_pages(struct inode *inode,
6764 					long from, long to,
6765 					struct vm_area_struct *vma,
6766 					vm_flags_t vm_flags)
6767 {
6768 	long chg = -1, add = -1;
6769 	struct hstate *h = hstate_inode(inode);
6770 	struct hugepage_subpool *spool = subpool_inode(inode);
6771 	struct resv_map *resv_map;
6772 	struct hugetlb_cgroup *h_cg = NULL;
6773 	long gbl_reserve, regions_needed = 0;
6774 
6775 	/* This should never happen */
6776 	if (from > to) {
6777 		VM_WARN(1, "%s called with a negative range\n", __func__);
6778 		return false;
6779 	}
6780 
6781 	/*
6782 	 * vma specific semaphore used for pmd sharing and fault/truncation
6783 	 * synchronization
6784 	 */
6785 	hugetlb_vma_lock_alloc(vma);
6786 
6787 	/*
6788 	 * Only apply hugepage reservation if asked. At fault time, an
6789 	 * attempt will be made for VM_NORESERVE to allocate a page
6790 	 * without using reserves
6791 	 */
6792 	if (vm_flags & VM_NORESERVE)
6793 		return true;
6794 
6795 	/*
6796 	 * Shared mappings base their reservation on the number of pages that
6797 	 * are already allocated on behalf of the file. Private mappings need
6798 	 * to reserve the full area even if read-only as mprotect() may be
6799 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6800 	 */
6801 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6802 		/*
6803 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6804 		 * called for inodes for which resv_maps were created (see
6805 		 * hugetlbfs_get_inode).
6806 		 */
6807 		resv_map = inode_resv_map(inode);
6808 
6809 		chg = region_chg(resv_map, from, to, &regions_needed);
6810 	} else {
6811 		/* Private mapping. */
6812 		resv_map = resv_map_alloc();
6813 		if (!resv_map)
6814 			goto out_err;
6815 
6816 		chg = to - from;
6817 
6818 		set_vma_resv_map(vma, resv_map);
6819 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6820 	}
6821 
6822 	if (chg < 0)
6823 		goto out_err;
6824 
6825 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6826 				chg * pages_per_huge_page(h), &h_cg) < 0)
6827 		goto out_err;
6828 
6829 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6830 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6831 		 * of the resv_map.
6832 		 */
6833 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6834 	}
6835 
6836 	/*
6837 	 * There must be enough pages in the subpool for the mapping. If
6838 	 * the subpool has a minimum size, there may be some global
6839 	 * reservations already in place (gbl_reserve).
6840 	 */
6841 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6842 	if (gbl_reserve < 0)
6843 		goto out_uncharge_cgroup;
6844 
6845 	/*
6846 	 * Check enough hugepages are available for the reservation.
6847 	 * Hand the pages back to the subpool if there are not
6848 	 */
6849 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6850 		goto out_put_pages;
6851 
6852 	/*
6853 	 * Account for the reservations made. Shared mappings record regions
6854 	 * that have reservations as they are shared by multiple VMAs.
6855 	 * When the last VMA disappears, the region map says how much
6856 	 * the reservation was and the page cache tells how much of
6857 	 * the reservation was consumed. Private mappings are per-VMA and
6858 	 * only the consumed reservations are tracked. When the VMA
6859 	 * disappears, the original reservation is the VMA size and the
6860 	 * consumed reservations are stored in the map. Hence, nothing
6861 	 * else has to be done for private mappings here
6862 	 */
6863 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6864 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6865 
6866 		if (unlikely(add < 0)) {
6867 			hugetlb_acct_memory(h, -gbl_reserve);
6868 			goto out_put_pages;
6869 		} else if (unlikely(chg > add)) {
6870 			/*
6871 			 * pages in this range were added to the reserve
6872 			 * map between region_chg and region_add.  This
6873 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6874 			 * the subpool and reserve counts modified above
6875 			 * based on the difference.
6876 			 */
6877 			long rsv_adjust;
6878 
6879 			/*
6880 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6881 			 * reference to h_cg->css. See comment below for detail.
6882 			 */
6883 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6884 				hstate_index(h),
6885 				(chg - add) * pages_per_huge_page(h), h_cg);
6886 
6887 			rsv_adjust = hugepage_subpool_put_pages(spool,
6888 								chg - add);
6889 			hugetlb_acct_memory(h, -rsv_adjust);
6890 		} else if (h_cg) {
6891 			/*
6892 			 * The file_regions will hold their own reference to
6893 			 * h_cg->css. So we should release the reference held
6894 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6895 			 * done.
6896 			 */
6897 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6898 		}
6899 	}
6900 	return true;
6901 
6902 out_put_pages:
6903 	/* put back original number of pages, chg */
6904 	(void)hugepage_subpool_put_pages(spool, chg);
6905 out_uncharge_cgroup:
6906 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6907 					    chg * pages_per_huge_page(h), h_cg);
6908 out_err:
6909 	hugetlb_vma_lock_free(vma);
6910 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6911 		/* Only call region_abort if the region_chg succeeded but the
6912 		 * region_add failed or didn't run.
6913 		 */
6914 		if (chg >= 0 && add < 0)
6915 			region_abort(resv_map, from, to, regions_needed);
6916 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6917 		kref_put(&resv_map->refs, resv_map_release);
6918 	return false;
6919 }
6920 
6921 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6922 								long freed)
6923 {
6924 	struct hstate *h = hstate_inode(inode);
6925 	struct resv_map *resv_map = inode_resv_map(inode);
6926 	long chg = 0;
6927 	struct hugepage_subpool *spool = subpool_inode(inode);
6928 	long gbl_reserve;
6929 
6930 	/*
6931 	 * Since this routine can be called in the evict inode path for all
6932 	 * hugetlbfs inodes, resv_map could be NULL.
6933 	 */
6934 	if (resv_map) {
6935 		chg = region_del(resv_map, start, end);
6936 		/*
6937 		 * region_del() can fail in the rare case where a region
6938 		 * must be split and another region descriptor can not be
6939 		 * allocated.  If end == LONG_MAX, it will not fail.
6940 		 */
6941 		if (chg < 0)
6942 			return chg;
6943 	}
6944 
6945 	spin_lock(&inode->i_lock);
6946 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6947 	spin_unlock(&inode->i_lock);
6948 
6949 	/*
6950 	 * If the subpool has a minimum size, the number of global
6951 	 * reservations to be released may be adjusted.
6952 	 *
6953 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6954 	 * won't go negative.
6955 	 */
6956 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6957 	hugetlb_acct_memory(h, -gbl_reserve);
6958 
6959 	return 0;
6960 }
6961 
6962 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6963 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6964 				struct vm_area_struct *vma,
6965 				unsigned long addr, pgoff_t idx)
6966 {
6967 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6968 				svma->vm_start;
6969 	unsigned long sbase = saddr & PUD_MASK;
6970 	unsigned long s_end = sbase + PUD_SIZE;
6971 
6972 	/* Allow segments to share if only one is marked locked */
6973 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6974 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6975 
6976 	/*
6977 	 * match the virtual addresses, permission and the alignment of the
6978 	 * page table page.
6979 	 *
6980 	 * Also, vma_lock (vm_private_data) is required for sharing.
6981 	 */
6982 	if (pmd_index(addr) != pmd_index(saddr) ||
6983 	    vm_flags != svm_flags ||
6984 	    !range_in_vma(svma, sbase, s_end) ||
6985 	    !svma->vm_private_data)
6986 		return 0;
6987 
6988 	return saddr;
6989 }
6990 
6991 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6992 {
6993 	unsigned long start = addr & PUD_MASK;
6994 	unsigned long end = start + PUD_SIZE;
6995 
6996 #ifdef CONFIG_USERFAULTFD
6997 	if (uffd_disable_huge_pmd_share(vma))
6998 		return false;
6999 #endif
7000 	/*
7001 	 * check on proper vm_flags and page table alignment
7002 	 */
7003 	if (!(vma->vm_flags & VM_MAYSHARE))
7004 		return false;
7005 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7006 		return false;
7007 	if (!range_in_vma(vma, start, end))
7008 		return false;
7009 	return true;
7010 }
7011 
7012 /*
7013  * Determine if start,end range within vma could be mapped by shared pmd.
7014  * If yes, adjust start and end to cover range associated with possible
7015  * shared pmd mappings.
7016  */
7017 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7018 				unsigned long *start, unsigned long *end)
7019 {
7020 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7021 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7022 
7023 	/*
7024 	 * vma needs to span at least one aligned PUD size, and the range
7025 	 * must be at least partially within in.
7026 	 */
7027 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7028 		(*end <= v_start) || (*start >= v_end))
7029 		return;
7030 
7031 	/* Extend the range to be PUD aligned for a worst case scenario */
7032 	if (*start > v_start)
7033 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7034 
7035 	if (*end < v_end)
7036 		*end = ALIGN(*end, PUD_SIZE);
7037 }
7038 
7039 /*
7040  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7041  * and returns the corresponding pte. While this is not necessary for the
7042  * !shared pmd case because we can allocate the pmd later as well, it makes the
7043  * code much cleaner. pmd allocation is essential for the shared case because
7044  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7045  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7046  * bad pmd for sharing.
7047  */
7048 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7049 		      unsigned long addr, pud_t *pud)
7050 {
7051 	struct address_space *mapping = vma->vm_file->f_mapping;
7052 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7053 			vma->vm_pgoff;
7054 	struct vm_area_struct *svma;
7055 	unsigned long saddr;
7056 	pte_t *spte = NULL;
7057 	pte_t *pte;
7058 	spinlock_t *ptl;
7059 
7060 	i_mmap_lock_read(mapping);
7061 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7062 		if (svma == vma)
7063 			continue;
7064 
7065 		saddr = page_table_shareable(svma, vma, addr, idx);
7066 		if (saddr) {
7067 			spte = hugetlb_walk(svma, saddr,
7068 					    vma_mmu_pagesize(svma));
7069 			if (spte) {
7070 				get_page(virt_to_page(spte));
7071 				break;
7072 			}
7073 		}
7074 	}
7075 
7076 	if (!spte)
7077 		goto out;
7078 
7079 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7080 	if (pud_none(*pud)) {
7081 		pud_populate(mm, pud,
7082 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7083 		mm_inc_nr_pmds(mm);
7084 	} else {
7085 		put_page(virt_to_page(spte));
7086 	}
7087 	spin_unlock(ptl);
7088 out:
7089 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7090 	i_mmap_unlock_read(mapping);
7091 	return pte;
7092 }
7093 
7094 /*
7095  * unmap huge page backed by shared pte.
7096  *
7097  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7098  * indicated by page_count > 1, unmap is achieved by clearing pud and
7099  * decrementing the ref count. If count == 1, the pte page is not shared.
7100  *
7101  * Called with page table lock held.
7102  *
7103  * returns: 1 successfully unmapped a shared pte page
7104  *	    0 the underlying pte page is not shared, or it is the last user
7105  */
7106 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7107 					unsigned long addr, pte_t *ptep)
7108 {
7109 	pgd_t *pgd = pgd_offset(mm, addr);
7110 	p4d_t *p4d = p4d_offset(pgd, addr);
7111 	pud_t *pud = pud_offset(p4d, addr);
7112 
7113 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7114 	hugetlb_vma_assert_locked(vma);
7115 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7116 	if (page_count(virt_to_page(ptep)) == 1)
7117 		return 0;
7118 
7119 	pud_clear(pud);
7120 	put_page(virt_to_page(ptep));
7121 	mm_dec_nr_pmds(mm);
7122 	return 1;
7123 }
7124 
7125 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7126 
7127 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7128 		      unsigned long addr, pud_t *pud)
7129 {
7130 	return NULL;
7131 }
7132 
7133 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7134 				unsigned long addr, pte_t *ptep)
7135 {
7136 	return 0;
7137 }
7138 
7139 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7140 				unsigned long *start, unsigned long *end)
7141 {
7142 }
7143 
7144 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7145 {
7146 	return false;
7147 }
7148 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7149 
7150 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7151 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7152 			unsigned long addr, unsigned long sz)
7153 {
7154 	pgd_t *pgd;
7155 	p4d_t *p4d;
7156 	pud_t *pud;
7157 	pte_t *pte = NULL;
7158 
7159 	pgd = pgd_offset(mm, addr);
7160 	p4d = p4d_alloc(mm, pgd, addr);
7161 	if (!p4d)
7162 		return NULL;
7163 	pud = pud_alloc(mm, p4d, addr);
7164 	if (pud) {
7165 		if (sz == PUD_SIZE) {
7166 			pte = (pte_t *)pud;
7167 		} else {
7168 			BUG_ON(sz != PMD_SIZE);
7169 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7170 				pte = huge_pmd_share(mm, vma, addr, pud);
7171 			else
7172 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7173 		}
7174 	}
7175 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7176 
7177 	return pte;
7178 }
7179 
7180 /*
7181  * huge_pte_offset() - Walk the page table to resolve the hugepage
7182  * entry at address @addr
7183  *
7184  * Return: Pointer to page table entry (PUD or PMD) for
7185  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7186  * size @sz doesn't match the hugepage size at this level of the page
7187  * table.
7188  */
7189 pte_t *huge_pte_offset(struct mm_struct *mm,
7190 		       unsigned long addr, unsigned long sz)
7191 {
7192 	pgd_t *pgd;
7193 	p4d_t *p4d;
7194 	pud_t *pud;
7195 	pmd_t *pmd;
7196 
7197 	pgd = pgd_offset(mm, addr);
7198 	if (!pgd_present(*pgd))
7199 		return NULL;
7200 	p4d = p4d_offset(pgd, addr);
7201 	if (!p4d_present(*p4d))
7202 		return NULL;
7203 
7204 	pud = pud_offset(p4d, addr);
7205 	if (sz == PUD_SIZE)
7206 		/* must be pud huge, non-present or none */
7207 		return (pte_t *)pud;
7208 	if (!pud_present(*pud))
7209 		return NULL;
7210 	/* must have a valid entry and size to go further */
7211 
7212 	pmd = pmd_offset(pud, addr);
7213 	/* must be pmd huge, non-present or none */
7214 	return (pte_t *)pmd;
7215 }
7216 
7217 /*
7218  * Return a mask that can be used to update an address to the last huge
7219  * page in a page table page mapping size.  Used to skip non-present
7220  * page table entries when linearly scanning address ranges.  Architectures
7221  * with unique huge page to page table relationships can define their own
7222  * version of this routine.
7223  */
7224 unsigned long hugetlb_mask_last_page(struct hstate *h)
7225 {
7226 	unsigned long hp_size = huge_page_size(h);
7227 
7228 	if (hp_size == PUD_SIZE)
7229 		return P4D_SIZE - PUD_SIZE;
7230 	else if (hp_size == PMD_SIZE)
7231 		return PUD_SIZE - PMD_SIZE;
7232 	else
7233 		return 0UL;
7234 }
7235 
7236 #else
7237 
7238 /* See description above.  Architectures can provide their own version. */
7239 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7240 {
7241 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7242 	if (huge_page_size(h) == PMD_SIZE)
7243 		return PUD_SIZE - PMD_SIZE;
7244 #endif
7245 	return 0UL;
7246 }
7247 
7248 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7249 
7250 /*
7251  * These functions are overwritable if your architecture needs its own
7252  * behavior.
7253  */
7254 int isolate_hugetlb(struct folio *folio, struct list_head *list)
7255 {
7256 	int ret = 0;
7257 
7258 	spin_lock_irq(&hugetlb_lock);
7259 	if (!folio_test_hugetlb(folio) ||
7260 	    !folio_test_hugetlb_migratable(folio) ||
7261 	    !folio_try_get(folio)) {
7262 		ret = -EBUSY;
7263 		goto unlock;
7264 	}
7265 	folio_clear_hugetlb_migratable(folio);
7266 	list_move_tail(&folio->lru, list);
7267 unlock:
7268 	spin_unlock_irq(&hugetlb_lock);
7269 	return ret;
7270 }
7271 
7272 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7273 {
7274 	int ret = 0;
7275 
7276 	*hugetlb = false;
7277 	spin_lock_irq(&hugetlb_lock);
7278 	if (folio_test_hugetlb(folio)) {
7279 		*hugetlb = true;
7280 		if (folio_test_hugetlb_freed(folio))
7281 			ret = 0;
7282 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7283 			ret = folio_try_get(folio);
7284 		else
7285 			ret = -EBUSY;
7286 	}
7287 	spin_unlock_irq(&hugetlb_lock);
7288 	return ret;
7289 }
7290 
7291 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7292 				bool *migratable_cleared)
7293 {
7294 	int ret;
7295 
7296 	spin_lock_irq(&hugetlb_lock);
7297 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7298 	spin_unlock_irq(&hugetlb_lock);
7299 	return ret;
7300 }
7301 
7302 void folio_putback_active_hugetlb(struct folio *folio)
7303 {
7304 	spin_lock_irq(&hugetlb_lock);
7305 	folio_set_hugetlb_migratable(folio);
7306 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7307 	spin_unlock_irq(&hugetlb_lock);
7308 	folio_put(folio);
7309 }
7310 
7311 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7312 {
7313 	struct hstate *h = folio_hstate(old_folio);
7314 
7315 	hugetlb_cgroup_migrate(old_folio, new_folio);
7316 	set_page_owner_migrate_reason(&new_folio->page, reason);
7317 
7318 	/*
7319 	 * transfer temporary state of the new hugetlb folio. This is
7320 	 * reverse to other transitions because the newpage is going to
7321 	 * be final while the old one will be freed so it takes over
7322 	 * the temporary status.
7323 	 *
7324 	 * Also note that we have to transfer the per-node surplus state
7325 	 * here as well otherwise the global surplus count will not match
7326 	 * the per-node's.
7327 	 */
7328 	if (folio_test_hugetlb_temporary(new_folio)) {
7329 		int old_nid = folio_nid(old_folio);
7330 		int new_nid = folio_nid(new_folio);
7331 
7332 		folio_set_hugetlb_temporary(old_folio);
7333 		folio_clear_hugetlb_temporary(new_folio);
7334 
7335 
7336 		/*
7337 		 * There is no need to transfer the per-node surplus state
7338 		 * when we do not cross the node.
7339 		 */
7340 		if (new_nid == old_nid)
7341 			return;
7342 		spin_lock_irq(&hugetlb_lock);
7343 		if (h->surplus_huge_pages_node[old_nid]) {
7344 			h->surplus_huge_pages_node[old_nid]--;
7345 			h->surplus_huge_pages_node[new_nid]++;
7346 		}
7347 		spin_unlock_irq(&hugetlb_lock);
7348 	}
7349 }
7350 
7351 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7352 				   unsigned long start,
7353 				   unsigned long end)
7354 {
7355 	struct hstate *h = hstate_vma(vma);
7356 	unsigned long sz = huge_page_size(h);
7357 	struct mm_struct *mm = vma->vm_mm;
7358 	struct mmu_notifier_range range;
7359 	unsigned long address;
7360 	spinlock_t *ptl;
7361 	pte_t *ptep;
7362 
7363 	if (!(vma->vm_flags & VM_MAYSHARE))
7364 		return;
7365 
7366 	if (start >= end)
7367 		return;
7368 
7369 	flush_cache_range(vma, start, end);
7370 	/*
7371 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7372 	 * we have already done the PUD_SIZE alignment.
7373 	 */
7374 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7375 				start, end);
7376 	mmu_notifier_invalidate_range_start(&range);
7377 	hugetlb_vma_lock_write(vma);
7378 	i_mmap_lock_write(vma->vm_file->f_mapping);
7379 	for (address = start; address < end; address += PUD_SIZE) {
7380 		ptep = hugetlb_walk(vma, address, sz);
7381 		if (!ptep)
7382 			continue;
7383 		ptl = huge_pte_lock(h, mm, ptep);
7384 		huge_pmd_unshare(mm, vma, address, ptep);
7385 		spin_unlock(ptl);
7386 	}
7387 	flush_hugetlb_tlb_range(vma, start, end);
7388 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7389 	hugetlb_vma_unlock_write(vma);
7390 	/*
7391 	 * No need to call mmu_notifier_invalidate_range(), see
7392 	 * Documentation/mm/mmu_notifier.rst.
7393 	 */
7394 	mmu_notifier_invalidate_range_end(&range);
7395 }
7396 
7397 /*
7398  * This function will unconditionally remove all the shared pmd pgtable entries
7399  * within the specific vma for a hugetlbfs memory range.
7400  */
7401 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7402 {
7403 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7404 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7405 }
7406 
7407 #ifdef CONFIG_CMA
7408 static bool cma_reserve_called __initdata;
7409 
7410 static int __init cmdline_parse_hugetlb_cma(char *p)
7411 {
7412 	int nid, count = 0;
7413 	unsigned long tmp;
7414 	char *s = p;
7415 
7416 	while (*s) {
7417 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7418 			break;
7419 
7420 		if (s[count] == ':') {
7421 			if (tmp >= MAX_NUMNODES)
7422 				break;
7423 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7424 
7425 			s += count + 1;
7426 			tmp = memparse(s, &s);
7427 			hugetlb_cma_size_in_node[nid] = tmp;
7428 			hugetlb_cma_size += tmp;
7429 
7430 			/*
7431 			 * Skip the separator if have one, otherwise
7432 			 * break the parsing.
7433 			 */
7434 			if (*s == ',')
7435 				s++;
7436 			else
7437 				break;
7438 		} else {
7439 			hugetlb_cma_size = memparse(p, &p);
7440 			break;
7441 		}
7442 	}
7443 
7444 	return 0;
7445 }
7446 
7447 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7448 
7449 void __init hugetlb_cma_reserve(int order)
7450 {
7451 	unsigned long size, reserved, per_node;
7452 	bool node_specific_cma_alloc = false;
7453 	int nid;
7454 
7455 	cma_reserve_called = true;
7456 
7457 	if (!hugetlb_cma_size)
7458 		return;
7459 
7460 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7461 		if (hugetlb_cma_size_in_node[nid] == 0)
7462 			continue;
7463 
7464 		if (!node_online(nid)) {
7465 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7466 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7467 			hugetlb_cma_size_in_node[nid] = 0;
7468 			continue;
7469 		}
7470 
7471 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7472 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7473 				nid, (PAGE_SIZE << order) / SZ_1M);
7474 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7475 			hugetlb_cma_size_in_node[nid] = 0;
7476 		} else {
7477 			node_specific_cma_alloc = true;
7478 		}
7479 	}
7480 
7481 	/* Validate the CMA size again in case some invalid nodes specified. */
7482 	if (!hugetlb_cma_size)
7483 		return;
7484 
7485 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7486 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7487 			(PAGE_SIZE << order) / SZ_1M);
7488 		hugetlb_cma_size = 0;
7489 		return;
7490 	}
7491 
7492 	if (!node_specific_cma_alloc) {
7493 		/*
7494 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7495 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7496 		 */
7497 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7498 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7499 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7500 	}
7501 
7502 	reserved = 0;
7503 	for_each_online_node(nid) {
7504 		int res;
7505 		char name[CMA_MAX_NAME];
7506 
7507 		if (node_specific_cma_alloc) {
7508 			if (hugetlb_cma_size_in_node[nid] == 0)
7509 				continue;
7510 
7511 			size = hugetlb_cma_size_in_node[nid];
7512 		} else {
7513 			size = min(per_node, hugetlb_cma_size - reserved);
7514 		}
7515 
7516 		size = round_up(size, PAGE_SIZE << order);
7517 
7518 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7519 		/*
7520 		 * Note that 'order per bit' is based on smallest size that
7521 		 * may be returned to CMA allocator in the case of
7522 		 * huge page demotion.
7523 		 */
7524 		res = cma_declare_contiguous_nid(0, size, 0,
7525 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7526 						 0, false, name,
7527 						 &hugetlb_cma[nid], nid);
7528 		if (res) {
7529 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7530 				res, nid);
7531 			continue;
7532 		}
7533 
7534 		reserved += size;
7535 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7536 			size / SZ_1M, nid);
7537 
7538 		if (reserved >= hugetlb_cma_size)
7539 			break;
7540 	}
7541 
7542 	if (!reserved)
7543 		/*
7544 		 * hugetlb_cma_size is used to determine if allocations from
7545 		 * cma are possible.  Set to zero if no cma regions are set up.
7546 		 */
7547 		hugetlb_cma_size = 0;
7548 }
7549 
7550 static void __init hugetlb_cma_check(void)
7551 {
7552 	if (!hugetlb_cma_size || cma_reserve_called)
7553 		return;
7554 
7555 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7556 }
7557 
7558 #endif /* CONFIG_CMA */
7559