1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <linux/io.h> 28 29 #include <linux/hugetlb.h> 30 #include <linux/node.h> 31 #include "internal.h" 32 33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 35 unsigned long hugepages_treat_as_movable; 36 37 static int max_hstate; 38 unsigned int default_hstate_idx; 39 struct hstate hstates[HUGE_MAX_HSTATE]; 40 41 __initdata LIST_HEAD(huge_boot_pages); 42 43 /* for command line parsing */ 44 static struct hstate * __initdata parsed_hstate; 45 static unsigned long __initdata default_hstate_max_huge_pages; 46 static unsigned long __initdata default_hstate_size; 47 48 #define for_each_hstate(h) \ 49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 50 51 /* 52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 53 */ 54 static DEFINE_SPINLOCK(hugetlb_lock); 55 56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 57 { 58 bool free = (spool->count == 0) && (spool->used_hpages == 0); 59 60 spin_unlock(&spool->lock); 61 62 /* If no pages are used, and no other handles to the subpool 63 * remain, free the subpool the subpool remain */ 64 if (free) 65 kfree(spool); 66 } 67 68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 69 { 70 struct hugepage_subpool *spool; 71 72 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 73 if (!spool) 74 return NULL; 75 76 spin_lock_init(&spool->lock); 77 spool->count = 1; 78 spool->max_hpages = nr_blocks; 79 spool->used_hpages = 0; 80 81 return spool; 82 } 83 84 void hugepage_put_subpool(struct hugepage_subpool *spool) 85 { 86 spin_lock(&spool->lock); 87 BUG_ON(!spool->count); 88 spool->count--; 89 unlock_or_release_subpool(spool); 90 } 91 92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 93 long delta) 94 { 95 int ret = 0; 96 97 if (!spool) 98 return 0; 99 100 spin_lock(&spool->lock); 101 if ((spool->used_hpages + delta) <= spool->max_hpages) { 102 spool->used_hpages += delta; 103 } else { 104 ret = -ENOMEM; 105 } 106 spin_unlock(&spool->lock); 107 108 return ret; 109 } 110 111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 112 long delta) 113 { 114 if (!spool) 115 return; 116 117 spin_lock(&spool->lock); 118 spool->used_hpages -= delta; 119 /* If hugetlbfs_put_super couldn't free spool due to 120 * an outstanding quota reference, free it now. */ 121 unlock_or_release_subpool(spool); 122 } 123 124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 125 { 126 return HUGETLBFS_SB(inode->i_sb)->spool; 127 } 128 129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 130 { 131 return subpool_inode(vma->vm_file->f_dentry->d_inode); 132 } 133 134 /* 135 * Region tracking -- allows tracking of reservations and instantiated pages 136 * across the pages in a mapping. 137 * 138 * The region data structures are protected by a combination of the mmap_sem 139 * and the hugetlb_instantion_mutex. To access or modify a region the caller 140 * must either hold the mmap_sem for write, or the mmap_sem for read and 141 * the hugetlb_instantiation mutex: 142 * 143 * down_write(&mm->mmap_sem); 144 * or 145 * down_read(&mm->mmap_sem); 146 * mutex_lock(&hugetlb_instantiation_mutex); 147 */ 148 struct file_region { 149 struct list_head link; 150 long from; 151 long to; 152 }; 153 154 static long region_add(struct list_head *head, long f, long t) 155 { 156 struct file_region *rg, *nrg, *trg; 157 158 /* Locate the region we are either in or before. */ 159 list_for_each_entry(rg, head, link) 160 if (f <= rg->to) 161 break; 162 163 /* Round our left edge to the current segment if it encloses us. */ 164 if (f > rg->from) 165 f = rg->from; 166 167 /* Check for and consume any regions we now overlap with. */ 168 nrg = rg; 169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 170 if (&rg->link == head) 171 break; 172 if (rg->from > t) 173 break; 174 175 /* If this area reaches higher then extend our area to 176 * include it completely. If this is not the first area 177 * which we intend to reuse, free it. */ 178 if (rg->to > t) 179 t = rg->to; 180 if (rg != nrg) { 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 } 185 nrg->from = f; 186 nrg->to = t; 187 return 0; 188 } 189 190 static long region_chg(struct list_head *head, long f, long t) 191 { 192 struct file_region *rg, *nrg; 193 long chg = 0; 194 195 /* Locate the region we are before or in. */ 196 list_for_each_entry(rg, head, link) 197 if (f <= rg->to) 198 break; 199 200 /* If we are below the current region then a new region is required. 201 * Subtle, allocate a new region at the position but make it zero 202 * size such that we can guarantee to record the reservation. */ 203 if (&rg->link == head || t < rg->from) { 204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 205 if (!nrg) 206 return -ENOMEM; 207 nrg->from = f; 208 nrg->to = f; 209 INIT_LIST_HEAD(&nrg->link); 210 list_add(&nrg->link, rg->link.prev); 211 212 return t - f; 213 } 214 215 /* Round our left edge to the current segment if it encloses us. */ 216 if (f > rg->from) 217 f = rg->from; 218 chg = t - f; 219 220 /* Check for and consume any regions we now overlap with. */ 221 list_for_each_entry(rg, rg->link.prev, link) { 222 if (&rg->link == head) 223 break; 224 if (rg->from > t) 225 return chg; 226 227 /* We overlap with this area, if it extends further than 228 * us then we must extend ourselves. Account for its 229 * existing reservation. */ 230 if (rg->to > t) { 231 chg += rg->to - t; 232 t = rg->to; 233 } 234 chg -= rg->to - rg->from; 235 } 236 return chg; 237 } 238 239 static long region_truncate(struct list_head *head, long end) 240 { 241 struct file_region *rg, *trg; 242 long chg = 0; 243 244 /* Locate the region we are either in or before. */ 245 list_for_each_entry(rg, head, link) 246 if (end <= rg->to) 247 break; 248 if (&rg->link == head) 249 return 0; 250 251 /* If we are in the middle of a region then adjust it. */ 252 if (end > rg->from) { 253 chg = rg->to - end; 254 rg->to = end; 255 rg = list_entry(rg->link.next, typeof(*rg), link); 256 } 257 258 /* Drop any remaining regions. */ 259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 260 if (&rg->link == head) 261 break; 262 chg += rg->to - rg->from; 263 list_del(&rg->link); 264 kfree(rg); 265 } 266 return chg; 267 } 268 269 static long region_count(struct list_head *head, long f, long t) 270 { 271 struct file_region *rg; 272 long chg = 0; 273 274 /* Locate each segment we overlap with, and count that overlap. */ 275 list_for_each_entry(rg, head, link) { 276 long seg_from; 277 long seg_to; 278 279 if (rg->to <= f) 280 continue; 281 if (rg->from >= t) 282 break; 283 284 seg_from = max(rg->from, f); 285 seg_to = min(rg->to, t); 286 287 chg += seg_to - seg_from; 288 } 289 290 return chg; 291 } 292 293 /* 294 * Convert the address within this vma to the page offset within 295 * the mapping, in pagecache page units; huge pages here. 296 */ 297 static pgoff_t vma_hugecache_offset(struct hstate *h, 298 struct vm_area_struct *vma, unsigned long address) 299 { 300 return ((address - vma->vm_start) >> huge_page_shift(h)) + 301 (vma->vm_pgoff >> huge_page_order(h)); 302 } 303 304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 305 unsigned long address) 306 { 307 return vma_hugecache_offset(hstate_vma(vma), vma, address); 308 } 309 310 /* 311 * Return the size of the pages allocated when backing a VMA. In the majority 312 * cases this will be same size as used by the page table entries. 313 */ 314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 315 { 316 struct hstate *hstate; 317 318 if (!is_vm_hugetlb_page(vma)) 319 return PAGE_SIZE; 320 321 hstate = hstate_vma(vma); 322 323 return 1UL << (hstate->order + PAGE_SHIFT); 324 } 325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 326 327 /* 328 * Return the page size being used by the MMU to back a VMA. In the majority 329 * of cases, the page size used by the kernel matches the MMU size. On 330 * architectures where it differs, an architecture-specific version of this 331 * function is required. 332 */ 333 #ifndef vma_mmu_pagesize 334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 335 { 336 return vma_kernel_pagesize(vma); 337 } 338 #endif 339 340 /* 341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 342 * bits of the reservation map pointer, which are always clear due to 343 * alignment. 344 */ 345 #define HPAGE_RESV_OWNER (1UL << 0) 346 #define HPAGE_RESV_UNMAPPED (1UL << 1) 347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 348 349 /* 350 * These helpers are used to track how many pages are reserved for 351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 352 * is guaranteed to have their future faults succeed. 353 * 354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 355 * the reserve counters are updated with the hugetlb_lock held. It is safe 356 * to reset the VMA at fork() time as it is not in use yet and there is no 357 * chance of the global counters getting corrupted as a result of the values. 358 * 359 * The private mapping reservation is represented in a subtly different 360 * manner to a shared mapping. A shared mapping has a region map associated 361 * with the underlying file, this region map represents the backing file 362 * pages which have ever had a reservation assigned which this persists even 363 * after the page is instantiated. A private mapping has a region map 364 * associated with the original mmap which is attached to all VMAs which 365 * reference it, this region map represents those offsets which have consumed 366 * reservation ie. where pages have been instantiated. 367 */ 368 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 369 { 370 return (unsigned long)vma->vm_private_data; 371 } 372 373 static void set_vma_private_data(struct vm_area_struct *vma, 374 unsigned long value) 375 { 376 vma->vm_private_data = (void *)value; 377 } 378 379 struct resv_map { 380 struct kref refs; 381 struct list_head regions; 382 }; 383 384 static struct resv_map *resv_map_alloc(void) 385 { 386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 387 if (!resv_map) 388 return NULL; 389 390 kref_init(&resv_map->refs); 391 INIT_LIST_HEAD(&resv_map->regions); 392 393 return resv_map; 394 } 395 396 static void resv_map_release(struct kref *ref) 397 { 398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 399 400 /* Clear out any active regions before we release the map. */ 401 region_truncate(&resv_map->regions, 0); 402 kfree(resv_map); 403 } 404 405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 406 { 407 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 408 if (!(vma->vm_flags & VM_MAYSHARE)) 409 return (struct resv_map *)(get_vma_private_data(vma) & 410 ~HPAGE_RESV_MASK); 411 return NULL; 412 } 413 414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 415 { 416 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 418 419 set_vma_private_data(vma, (get_vma_private_data(vma) & 420 HPAGE_RESV_MASK) | (unsigned long)map); 421 } 422 423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 424 { 425 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 427 428 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 429 } 430 431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 432 { 433 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 434 435 return (get_vma_private_data(vma) & flag) != 0; 436 } 437 438 /* Decrement the reserved pages in the hugepage pool by one */ 439 static void decrement_hugepage_resv_vma(struct hstate *h, 440 struct vm_area_struct *vma) 441 { 442 if (vma->vm_flags & VM_NORESERVE) 443 return; 444 445 if (vma->vm_flags & VM_MAYSHARE) { 446 /* Shared mappings always use reserves */ 447 h->resv_huge_pages--; 448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 449 /* 450 * Only the process that called mmap() has reserves for 451 * private mappings. 452 */ 453 h->resv_huge_pages--; 454 } 455 } 456 457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 459 { 460 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 461 if (!(vma->vm_flags & VM_MAYSHARE)) 462 vma->vm_private_data = (void *)0; 463 } 464 465 /* Returns true if the VMA has associated reserve pages */ 466 static int vma_has_reserves(struct vm_area_struct *vma) 467 { 468 if (vma->vm_flags & VM_MAYSHARE) 469 return 1; 470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 471 return 1; 472 return 0; 473 } 474 475 static void copy_gigantic_page(struct page *dst, struct page *src) 476 { 477 int i; 478 struct hstate *h = page_hstate(src); 479 struct page *dst_base = dst; 480 struct page *src_base = src; 481 482 for (i = 0; i < pages_per_huge_page(h); ) { 483 cond_resched(); 484 copy_highpage(dst, src); 485 486 i++; 487 dst = mem_map_next(dst, dst_base, i); 488 src = mem_map_next(src, src_base, i); 489 } 490 } 491 492 void copy_huge_page(struct page *dst, struct page *src) 493 { 494 int i; 495 struct hstate *h = page_hstate(src); 496 497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 498 copy_gigantic_page(dst, src); 499 return; 500 } 501 502 might_sleep(); 503 for (i = 0; i < pages_per_huge_page(h); i++) { 504 cond_resched(); 505 copy_highpage(dst + i, src + i); 506 } 507 } 508 509 static void enqueue_huge_page(struct hstate *h, struct page *page) 510 { 511 int nid = page_to_nid(page); 512 list_add(&page->lru, &h->hugepage_freelists[nid]); 513 h->free_huge_pages++; 514 h->free_huge_pages_node[nid]++; 515 } 516 517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 518 { 519 struct page *page; 520 521 if (list_empty(&h->hugepage_freelists[nid])) 522 return NULL; 523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); 524 list_del(&page->lru); 525 set_page_refcounted(page); 526 h->free_huge_pages--; 527 h->free_huge_pages_node[nid]--; 528 return page; 529 } 530 531 static struct page *dequeue_huge_page_vma(struct hstate *h, 532 struct vm_area_struct *vma, 533 unsigned long address, int avoid_reserve) 534 { 535 struct page *page = NULL; 536 struct mempolicy *mpol; 537 nodemask_t *nodemask; 538 struct zonelist *zonelist; 539 struct zone *zone; 540 struct zoneref *z; 541 unsigned int cpuset_mems_cookie; 542 543 retry_cpuset: 544 cpuset_mems_cookie = get_mems_allowed(); 545 zonelist = huge_zonelist(vma, address, 546 htlb_alloc_mask, &mpol, &nodemask); 547 /* 548 * A child process with MAP_PRIVATE mappings created by their parent 549 * have no page reserves. This check ensures that reservations are 550 * not "stolen". The child may still get SIGKILLed 551 */ 552 if (!vma_has_reserves(vma) && 553 h->free_huge_pages - h->resv_huge_pages == 0) 554 goto err; 555 556 /* If reserves cannot be used, ensure enough pages are in the pool */ 557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 558 goto err; 559 560 for_each_zone_zonelist_nodemask(zone, z, zonelist, 561 MAX_NR_ZONES - 1, nodemask) { 562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { 563 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 564 if (page) { 565 if (!avoid_reserve) 566 decrement_hugepage_resv_vma(h, vma); 567 break; 568 } 569 } 570 } 571 572 mpol_cond_put(mpol); 573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 574 goto retry_cpuset; 575 return page; 576 577 err: 578 mpol_cond_put(mpol); 579 return NULL; 580 } 581 582 static void update_and_free_page(struct hstate *h, struct page *page) 583 { 584 int i; 585 586 VM_BUG_ON(h->order >= MAX_ORDER); 587 588 h->nr_huge_pages--; 589 h->nr_huge_pages_node[page_to_nid(page)]--; 590 for (i = 0; i < pages_per_huge_page(h); i++) { 591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 592 1 << PG_referenced | 1 << PG_dirty | 593 1 << PG_active | 1 << PG_reserved | 594 1 << PG_private | 1 << PG_writeback); 595 } 596 set_compound_page_dtor(page, NULL); 597 set_page_refcounted(page); 598 arch_release_hugepage(page); 599 __free_pages(page, huge_page_order(h)); 600 } 601 602 struct hstate *size_to_hstate(unsigned long size) 603 { 604 struct hstate *h; 605 606 for_each_hstate(h) { 607 if (huge_page_size(h) == size) 608 return h; 609 } 610 return NULL; 611 } 612 613 static void free_huge_page(struct page *page) 614 { 615 /* 616 * Can't pass hstate in here because it is called from the 617 * compound page destructor. 618 */ 619 struct hstate *h = page_hstate(page); 620 int nid = page_to_nid(page); 621 struct hugepage_subpool *spool = 622 (struct hugepage_subpool *)page_private(page); 623 624 set_page_private(page, 0); 625 page->mapping = NULL; 626 BUG_ON(page_count(page)); 627 BUG_ON(page_mapcount(page)); 628 INIT_LIST_HEAD(&page->lru); 629 630 spin_lock(&hugetlb_lock); 631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 632 update_and_free_page(h, page); 633 h->surplus_huge_pages--; 634 h->surplus_huge_pages_node[nid]--; 635 } else { 636 enqueue_huge_page(h, page); 637 } 638 spin_unlock(&hugetlb_lock); 639 hugepage_subpool_put_pages(spool, 1); 640 } 641 642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 643 { 644 set_compound_page_dtor(page, free_huge_page); 645 spin_lock(&hugetlb_lock); 646 h->nr_huge_pages++; 647 h->nr_huge_pages_node[nid]++; 648 spin_unlock(&hugetlb_lock); 649 put_page(page); /* free it into the hugepage allocator */ 650 } 651 652 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 653 { 654 int i; 655 int nr_pages = 1 << order; 656 struct page *p = page + 1; 657 658 /* we rely on prep_new_huge_page to set the destructor */ 659 set_compound_order(page, order); 660 __SetPageHead(page); 661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 662 __SetPageTail(p); 663 set_page_count(p, 0); 664 p->first_page = page; 665 } 666 } 667 668 int PageHuge(struct page *page) 669 { 670 compound_page_dtor *dtor; 671 672 if (!PageCompound(page)) 673 return 0; 674 675 page = compound_head(page); 676 dtor = get_compound_page_dtor(page); 677 678 return dtor == free_huge_page; 679 } 680 EXPORT_SYMBOL_GPL(PageHuge); 681 682 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 683 { 684 struct page *page; 685 686 if (h->order >= MAX_ORDER) 687 return NULL; 688 689 page = alloc_pages_exact_node(nid, 690 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 691 __GFP_REPEAT|__GFP_NOWARN, 692 huge_page_order(h)); 693 if (page) { 694 if (arch_prepare_hugepage(page)) { 695 __free_pages(page, huge_page_order(h)); 696 return NULL; 697 } 698 prep_new_huge_page(h, page, nid); 699 } 700 701 return page; 702 } 703 704 /* 705 * common helper functions for hstate_next_node_to_{alloc|free}. 706 * We may have allocated or freed a huge page based on a different 707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 708 * be outside of *nodes_allowed. Ensure that we use an allowed 709 * node for alloc or free. 710 */ 711 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 712 { 713 nid = next_node(nid, *nodes_allowed); 714 if (nid == MAX_NUMNODES) 715 nid = first_node(*nodes_allowed); 716 VM_BUG_ON(nid >= MAX_NUMNODES); 717 718 return nid; 719 } 720 721 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 722 { 723 if (!node_isset(nid, *nodes_allowed)) 724 nid = next_node_allowed(nid, nodes_allowed); 725 return nid; 726 } 727 728 /* 729 * returns the previously saved node ["this node"] from which to 730 * allocate a persistent huge page for the pool and advance the 731 * next node from which to allocate, handling wrap at end of node 732 * mask. 733 */ 734 static int hstate_next_node_to_alloc(struct hstate *h, 735 nodemask_t *nodes_allowed) 736 { 737 int nid; 738 739 VM_BUG_ON(!nodes_allowed); 740 741 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 742 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 743 744 return nid; 745 } 746 747 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 748 { 749 struct page *page; 750 int start_nid; 751 int next_nid; 752 int ret = 0; 753 754 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 755 next_nid = start_nid; 756 757 do { 758 page = alloc_fresh_huge_page_node(h, next_nid); 759 if (page) { 760 ret = 1; 761 break; 762 } 763 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 764 } while (next_nid != start_nid); 765 766 if (ret) 767 count_vm_event(HTLB_BUDDY_PGALLOC); 768 else 769 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 770 771 return ret; 772 } 773 774 /* 775 * helper for free_pool_huge_page() - return the previously saved 776 * node ["this node"] from which to free a huge page. Advance the 777 * next node id whether or not we find a free huge page to free so 778 * that the next attempt to free addresses the next node. 779 */ 780 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 781 { 782 int nid; 783 784 VM_BUG_ON(!nodes_allowed); 785 786 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 787 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 788 789 return nid; 790 } 791 792 /* 793 * Free huge page from pool from next node to free. 794 * Attempt to keep persistent huge pages more or less 795 * balanced over allowed nodes. 796 * Called with hugetlb_lock locked. 797 */ 798 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 799 bool acct_surplus) 800 { 801 int start_nid; 802 int next_nid; 803 int ret = 0; 804 805 start_nid = hstate_next_node_to_free(h, nodes_allowed); 806 next_nid = start_nid; 807 808 do { 809 /* 810 * If we're returning unused surplus pages, only examine 811 * nodes with surplus pages. 812 */ 813 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 814 !list_empty(&h->hugepage_freelists[next_nid])) { 815 struct page *page = 816 list_entry(h->hugepage_freelists[next_nid].next, 817 struct page, lru); 818 list_del(&page->lru); 819 h->free_huge_pages--; 820 h->free_huge_pages_node[next_nid]--; 821 if (acct_surplus) { 822 h->surplus_huge_pages--; 823 h->surplus_huge_pages_node[next_nid]--; 824 } 825 update_and_free_page(h, page); 826 ret = 1; 827 break; 828 } 829 next_nid = hstate_next_node_to_free(h, nodes_allowed); 830 } while (next_nid != start_nid); 831 832 return ret; 833 } 834 835 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 836 { 837 struct page *page; 838 unsigned int r_nid; 839 840 if (h->order >= MAX_ORDER) 841 return NULL; 842 843 /* 844 * Assume we will successfully allocate the surplus page to 845 * prevent racing processes from causing the surplus to exceed 846 * overcommit 847 * 848 * This however introduces a different race, where a process B 849 * tries to grow the static hugepage pool while alloc_pages() is 850 * called by process A. B will only examine the per-node 851 * counters in determining if surplus huge pages can be 852 * converted to normal huge pages in adjust_pool_surplus(). A 853 * won't be able to increment the per-node counter, until the 854 * lock is dropped by B, but B doesn't drop hugetlb_lock until 855 * no more huge pages can be converted from surplus to normal 856 * state (and doesn't try to convert again). Thus, we have a 857 * case where a surplus huge page exists, the pool is grown, and 858 * the surplus huge page still exists after, even though it 859 * should just have been converted to a normal huge page. This 860 * does not leak memory, though, as the hugepage will be freed 861 * once it is out of use. It also does not allow the counters to 862 * go out of whack in adjust_pool_surplus() as we don't modify 863 * the node values until we've gotten the hugepage and only the 864 * per-node value is checked there. 865 */ 866 spin_lock(&hugetlb_lock); 867 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 868 spin_unlock(&hugetlb_lock); 869 return NULL; 870 } else { 871 h->nr_huge_pages++; 872 h->surplus_huge_pages++; 873 } 874 spin_unlock(&hugetlb_lock); 875 876 if (nid == NUMA_NO_NODE) 877 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 878 __GFP_REPEAT|__GFP_NOWARN, 879 huge_page_order(h)); 880 else 881 page = alloc_pages_exact_node(nid, 882 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 883 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 884 885 if (page && arch_prepare_hugepage(page)) { 886 __free_pages(page, huge_page_order(h)); 887 page = NULL; 888 } 889 890 spin_lock(&hugetlb_lock); 891 if (page) { 892 r_nid = page_to_nid(page); 893 set_compound_page_dtor(page, free_huge_page); 894 /* 895 * We incremented the global counters already 896 */ 897 h->nr_huge_pages_node[r_nid]++; 898 h->surplus_huge_pages_node[r_nid]++; 899 __count_vm_event(HTLB_BUDDY_PGALLOC); 900 } else { 901 h->nr_huge_pages--; 902 h->surplus_huge_pages--; 903 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 904 } 905 spin_unlock(&hugetlb_lock); 906 907 return page; 908 } 909 910 /* 911 * This allocation function is useful in the context where vma is irrelevant. 912 * E.g. soft-offlining uses this function because it only cares physical 913 * address of error page. 914 */ 915 struct page *alloc_huge_page_node(struct hstate *h, int nid) 916 { 917 struct page *page; 918 919 spin_lock(&hugetlb_lock); 920 page = dequeue_huge_page_node(h, nid); 921 spin_unlock(&hugetlb_lock); 922 923 if (!page) 924 page = alloc_buddy_huge_page(h, nid); 925 926 return page; 927 } 928 929 /* 930 * Increase the hugetlb pool such that it can accommodate a reservation 931 * of size 'delta'. 932 */ 933 static int gather_surplus_pages(struct hstate *h, int delta) 934 { 935 struct list_head surplus_list; 936 struct page *page, *tmp; 937 int ret, i; 938 int needed, allocated; 939 bool alloc_ok = true; 940 941 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 942 if (needed <= 0) { 943 h->resv_huge_pages += delta; 944 return 0; 945 } 946 947 allocated = 0; 948 INIT_LIST_HEAD(&surplus_list); 949 950 ret = -ENOMEM; 951 retry: 952 spin_unlock(&hugetlb_lock); 953 for (i = 0; i < needed; i++) { 954 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 955 if (!page) { 956 alloc_ok = false; 957 break; 958 } 959 list_add(&page->lru, &surplus_list); 960 } 961 allocated += i; 962 963 /* 964 * After retaking hugetlb_lock, we need to recalculate 'needed' 965 * because either resv_huge_pages or free_huge_pages may have changed. 966 */ 967 spin_lock(&hugetlb_lock); 968 needed = (h->resv_huge_pages + delta) - 969 (h->free_huge_pages + allocated); 970 if (needed > 0) { 971 if (alloc_ok) 972 goto retry; 973 /* 974 * We were not able to allocate enough pages to 975 * satisfy the entire reservation so we free what 976 * we've allocated so far. 977 */ 978 goto free; 979 } 980 /* 981 * The surplus_list now contains _at_least_ the number of extra pages 982 * needed to accommodate the reservation. Add the appropriate number 983 * of pages to the hugetlb pool and free the extras back to the buddy 984 * allocator. Commit the entire reservation here to prevent another 985 * process from stealing the pages as they are added to the pool but 986 * before they are reserved. 987 */ 988 needed += allocated; 989 h->resv_huge_pages += delta; 990 ret = 0; 991 992 /* Free the needed pages to the hugetlb pool */ 993 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 994 if ((--needed) < 0) 995 break; 996 list_del(&page->lru); 997 /* 998 * This page is now managed by the hugetlb allocator and has 999 * no users -- drop the buddy allocator's reference. 1000 */ 1001 put_page_testzero(page); 1002 VM_BUG_ON(page_count(page)); 1003 enqueue_huge_page(h, page); 1004 } 1005 free: 1006 spin_unlock(&hugetlb_lock); 1007 1008 /* Free unnecessary surplus pages to the buddy allocator */ 1009 if (!list_empty(&surplus_list)) { 1010 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1011 list_del(&page->lru); 1012 put_page(page); 1013 } 1014 } 1015 spin_lock(&hugetlb_lock); 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * When releasing a hugetlb pool reservation, any surplus pages that were 1022 * allocated to satisfy the reservation must be explicitly freed if they were 1023 * never used. 1024 * Called with hugetlb_lock held. 1025 */ 1026 static void return_unused_surplus_pages(struct hstate *h, 1027 unsigned long unused_resv_pages) 1028 { 1029 unsigned long nr_pages; 1030 1031 /* Uncommit the reservation */ 1032 h->resv_huge_pages -= unused_resv_pages; 1033 1034 /* Cannot return gigantic pages currently */ 1035 if (h->order >= MAX_ORDER) 1036 return; 1037 1038 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1039 1040 /* 1041 * We want to release as many surplus pages as possible, spread 1042 * evenly across all nodes with memory. Iterate across these nodes 1043 * until we can no longer free unreserved surplus pages. This occurs 1044 * when the nodes with surplus pages have no free pages. 1045 * free_pool_huge_page() will balance the the freed pages across the 1046 * on-line nodes with memory and will handle the hstate accounting. 1047 */ 1048 while (nr_pages--) { 1049 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) 1050 break; 1051 } 1052 } 1053 1054 /* 1055 * Determine if the huge page at addr within the vma has an associated 1056 * reservation. Where it does not we will need to logically increase 1057 * reservation and actually increase subpool usage before an allocation 1058 * can occur. Where any new reservation would be required the 1059 * reservation change is prepared, but not committed. Once the page 1060 * has been allocated from the subpool and instantiated the change should 1061 * be committed via vma_commit_reservation. No action is required on 1062 * failure. 1063 */ 1064 static long vma_needs_reservation(struct hstate *h, 1065 struct vm_area_struct *vma, unsigned long addr) 1066 { 1067 struct address_space *mapping = vma->vm_file->f_mapping; 1068 struct inode *inode = mapping->host; 1069 1070 if (vma->vm_flags & VM_MAYSHARE) { 1071 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1072 return region_chg(&inode->i_mapping->private_list, 1073 idx, idx + 1); 1074 1075 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1076 return 1; 1077 1078 } else { 1079 long err; 1080 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1081 struct resv_map *reservations = vma_resv_map(vma); 1082 1083 err = region_chg(&reservations->regions, idx, idx + 1); 1084 if (err < 0) 1085 return err; 1086 return 0; 1087 } 1088 } 1089 static void vma_commit_reservation(struct hstate *h, 1090 struct vm_area_struct *vma, unsigned long addr) 1091 { 1092 struct address_space *mapping = vma->vm_file->f_mapping; 1093 struct inode *inode = mapping->host; 1094 1095 if (vma->vm_flags & VM_MAYSHARE) { 1096 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1097 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1098 1099 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1100 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1101 struct resv_map *reservations = vma_resv_map(vma); 1102 1103 /* Mark this page used in the map. */ 1104 region_add(&reservations->regions, idx, idx + 1); 1105 } 1106 } 1107 1108 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1109 unsigned long addr, int avoid_reserve) 1110 { 1111 struct hugepage_subpool *spool = subpool_vma(vma); 1112 struct hstate *h = hstate_vma(vma); 1113 struct page *page; 1114 long chg; 1115 1116 /* 1117 * Processes that did not create the mapping will have no 1118 * reserves and will not have accounted against subpool 1119 * limit. Check that the subpool limit can be made before 1120 * satisfying the allocation MAP_NORESERVE mappings may also 1121 * need pages and subpool limit allocated allocated if no reserve 1122 * mapping overlaps. 1123 */ 1124 chg = vma_needs_reservation(h, vma, addr); 1125 if (chg < 0) 1126 return ERR_PTR(-VM_FAULT_OOM); 1127 if (chg) 1128 if (hugepage_subpool_get_pages(spool, chg)) 1129 return ERR_PTR(-VM_FAULT_SIGBUS); 1130 1131 spin_lock(&hugetlb_lock); 1132 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1133 spin_unlock(&hugetlb_lock); 1134 1135 if (!page) { 1136 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1137 if (!page) { 1138 hugepage_subpool_put_pages(spool, chg); 1139 return ERR_PTR(-VM_FAULT_SIGBUS); 1140 } 1141 } 1142 1143 set_page_private(page, (unsigned long)spool); 1144 1145 vma_commit_reservation(h, vma, addr); 1146 1147 return page; 1148 } 1149 1150 int __weak alloc_bootmem_huge_page(struct hstate *h) 1151 { 1152 struct huge_bootmem_page *m; 1153 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 1154 1155 while (nr_nodes) { 1156 void *addr; 1157 1158 addr = __alloc_bootmem_node_nopanic( 1159 NODE_DATA(hstate_next_node_to_alloc(h, 1160 &node_states[N_HIGH_MEMORY])), 1161 huge_page_size(h), huge_page_size(h), 0); 1162 1163 if (addr) { 1164 /* 1165 * Use the beginning of the huge page to store the 1166 * huge_bootmem_page struct (until gather_bootmem 1167 * puts them into the mem_map). 1168 */ 1169 m = addr; 1170 goto found; 1171 } 1172 nr_nodes--; 1173 } 1174 return 0; 1175 1176 found: 1177 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1178 /* Put them into a private list first because mem_map is not up yet */ 1179 list_add(&m->list, &huge_boot_pages); 1180 m->hstate = h; 1181 return 1; 1182 } 1183 1184 static void prep_compound_huge_page(struct page *page, int order) 1185 { 1186 if (unlikely(order > (MAX_ORDER - 1))) 1187 prep_compound_gigantic_page(page, order); 1188 else 1189 prep_compound_page(page, order); 1190 } 1191 1192 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1193 static void __init gather_bootmem_prealloc(void) 1194 { 1195 struct huge_bootmem_page *m; 1196 1197 list_for_each_entry(m, &huge_boot_pages, list) { 1198 struct hstate *h = m->hstate; 1199 struct page *page; 1200 1201 #ifdef CONFIG_HIGHMEM 1202 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1203 free_bootmem_late((unsigned long)m, 1204 sizeof(struct huge_bootmem_page)); 1205 #else 1206 page = virt_to_page(m); 1207 #endif 1208 __ClearPageReserved(page); 1209 WARN_ON(page_count(page) != 1); 1210 prep_compound_huge_page(page, h->order); 1211 prep_new_huge_page(h, page, page_to_nid(page)); 1212 /* 1213 * If we had gigantic hugepages allocated at boot time, we need 1214 * to restore the 'stolen' pages to totalram_pages in order to 1215 * fix confusing memory reports from free(1) and another 1216 * side-effects, like CommitLimit going negative. 1217 */ 1218 if (h->order > (MAX_ORDER - 1)) 1219 totalram_pages += 1 << h->order; 1220 } 1221 } 1222 1223 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1224 { 1225 unsigned long i; 1226 1227 for (i = 0; i < h->max_huge_pages; ++i) { 1228 if (h->order >= MAX_ORDER) { 1229 if (!alloc_bootmem_huge_page(h)) 1230 break; 1231 } else if (!alloc_fresh_huge_page(h, 1232 &node_states[N_HIGH_MEMORY])) 1233 break; 1234 } 1235 h->max_huge_pages = i; 1236 } 1237 1238 static void __init hugetlb_init_hstates(void) 1239 { 1240 struct hstate *h; 1241 1242 for_each_hstate(h) { 1243 /* oversize hugepages were init'ed in early boot */ 1244 if (h->order < MAX_ORDER) 1245 hugetlb_hstate_alloc_pages(h); 1246 } 1247 } 1248 1249 static char * __init memfmt(char *buf, unsigned long n) 1250 { 1251 if (n >= (1UL << 30)) 1252 sprintf(buf, "%lu GB", n >> 30); 1253 else if (n >= (1UL << 20)) 1254 sprintf(buf, "%lu MB", n >> 20); 1255 else 1256 sprintf(buf, "%lu KB", n >> 10); 1257 return buf; 1258 } 1259 1260 static void __init report_hugepages(void) 1261 { 1262 struct hstate *h; 1263 1264 for_each_hstate(h) { 1265 char buf[32]; 1266 printk(KERN_INFO "HugeTLB registered %s page size, " 1267 "pre-allocated %ld pages\n", 1268 memfmt(buf, huge_page_size(h)), 1269 h->free_huge_pages); 1270 } 1271 } 1272 1273 #ifdef CONFIG_HIGHMEM 1274 static void try_to_free_low(struct hstate *h, unsigned long count, 1275 nodemask_t *nodes_allowed) 1276 { 1277 int i; 1278 1279 if (h->order >= MAX_ORDER) 1280 return; 1281 1282 for_each_node_mask(i, *nodes_allowed) { 1283 struct page *page, *next; 1284 struct list_head *freel = &h->hugepage_freelists[i]; 1285 list_for_each_entry_safe(page, next, freel, lru) { 1286 if (count >= h->nr_huge_pages) 1287 return; 1288 if (PageHighMem(page)) 1289 continue; 1290 list_del(&page->lru); 1291 update_and_free_page(h, page); 1292 h->free_huge_pages--; 1293 h->free_huge_pages_node[page_to_nid(page)]--; 1294 } 1295 } 1296 } 1297 #else 1298 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1299 nodemask_t *nodes_allowed) 1300 { 1301 } 1302 #endif 1303 1304 /* 1305 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1306 * balanced by operating on them in a round-robin fashion. 1307 * Returns 1 if an adjustment was made. 1308 */ 1309 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1310 int delta) 1311 { 1312 int start_nid, next_nid; 1313 int ret = 0; 1314 1315 VM_BUG_ON(delta != -1 && delta != 1); 1316 1317 if (delta < 0) 1318 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1319 else 1320 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1321 next_nid = start_nid; 1322 1323 do { 1324 int nid = next_nid; 1325 if (delta < 0) { 1326 /* 1327 * To shrink on this node, there must be a surplus page 1328 */ 1329 if (!h->surplus_huge_pages_node[nid]) { 1330 next_nid = hstate_next_node_to_alloc(h, 1331 nodes_allowed); 1332 continue; 1333 } 1334 } 1335 if (delta > 0) { 1336 /* 1337 * Surplus cannot exceed the total number of pages 1338 */ 1339 if (h->surplus_huge_pages_node[nid] >= 1340 h->nr_huge_pages_node[nid]) { 1341 next_nid = hstate_next_node_to_free(h, 1342 nodes_allowed); 1343 continue; 1344 } 1345 } 1346 1347 h->surplus_huge_pages += delta; 1348 h->surplus_huge_pages_node[nid] += delta; 1349 ret = 1; 1350 break; 1351 } while (next_nid != start_nid); 1352 1353 return ret; 1354 } 1355 1356 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1357 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1358 nodemask_t *nodes_allowed) 1359 { 1360 unsigned long min_count, ret; 1361 1362 if (h->order >= MAX_ORDER) 1363 return h->max_huge_pages; 1364 1365 /* 1366 * Increase the pool size 1367 * First take pages out of surplus state. Then make up the 1368 * remaining difference by allocating fresh huge pages. 1369 * 1370 * We might race with alloc_buddy_huge_page() here and be unable 1371 * to convert a surplus huge page to a normal huge page. That is 1372 * not critical, though, it just means the overall size of the 1373 * pool might be one hugepage larger than it needs to be, but 1374 * within all the constraints specified by the sysctls. 1375 */ 1376 spin_lock(&hugetlb_lock); 1377 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1378 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1379 break; 1380 } 1381 1382 while (count > persistent_huge_pages(h)) { 1383 /* 1384 * If this allocation races such that we no longer need the 1385 * page, free_huge_page will handle it by freeing the page 1386 * and reducing the surplus. 1387 */ 1388 spin_unlock(&hugetlb_lock); 1389 ret = alloc_fresh_huge_page(h, nodes_allowed); 1390 spin_lock(&hugetlb_lock); 1391 if (!ret) 1392 goto out; 1393 1394 /* Bail for signals. Probably ctrl-c from user */ 1395 if (signal_pending(current)) 1396 goto out; 1397 } 1398 1399 /* 1400 * Decrease the pool size 1401 * First return free pages to the buddy allocator (being careful 1402 * to keep enough around to satisfy reservations). Then place 1403 * pages into surplus state as needed so the pool will shrink 1404 * to the desired size as pages become free. 1405 * 1406 * By placing pages into the surplus state independent of the 1407 * overcommit value, we are allowing the surplus pool size to 1408 * exceed overcommit. There are few sane options here. Since 1409 * alloc_buddy_huge_page() is checking the global counter, 1410 * though, we'll note that we're not allowed to exceed surplus 1411 * and won't grow the pool anywhere else. Not until one of the 1412 * sysctls are changed, or the surplus pages go out of use. 1413 */ 1414 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1415 min_count = max(count, min_count); 1416 try_to_free_low(h, min_count, nodes_allowed); 1417 while (min_count < persistent_huge_pages(h)) { 1418 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1419 break; 1420 } 1421 while (count < persistent_huge_pages(h)) { 1422 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1423 break; 1424 } 1425 out: 1426 ret = persistent_huge_pages(h); 1427 spin_unlock(&hugetlb_lock); 1428 return ret; 1429 } 1430 1431 #define HSTATE_ATTR_RO(_name) \ 1432 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1433 1434 #define HSTATE_ATTR(_name) \ 1435 static struct kobj_attribute _name##_attr = \ 1436 __ATTR(_name, 0644, _name##_show, _name##_store) 1437 1438 static struct kobject *hugepages_kobj; 1439 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1440 1441 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1442 1443 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1444 { 1445 int i; 1446 1447 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1448 if (hstate_kobjs[i] == kobj) { 1449 if (nidp) 1450 *nidp = NUMA_NO_NODE; 1451 return &hstates[i]; 1452 } 1453 1454 return kobj_to_node_hstate(kobj, nidp); 1455 } 1456 1457 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1458 struct kobj_attribute *attr, char *buf) 1459 { 1460 struct hstate *h; 1461 unsigned long nr_huge_pages; 1462 int nid; 1463 1464 h = kobj_to_hstate(kobj, &nid); 1465 if (nid == NUMA_NO_NODE) 1466 nr_huge_pages = h->nr_huge_pages; 1467 else 1468 nr_huge_pages = h->nr_huge_pages_node[nid]; 1469 1470 return sprintf(buf, "%lu\n", nr_huge_pages); 1471 } 1472 1473 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1474 struct kobject *kobj, struct kobj_attribute *attr, 1475 const char *buf, size_t len) 1476 { 1477 int err; 1478 int nid; 1479 unsigned long count; 1480 struct hstate *h; 1481 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1482 1483 err = strict_strtoul(buf, 10, &count); 1484 if (err) 1485 goto out; 1486 1487 h = kobj_to_hstate(kobj, &nid); 1488 if (h->order >= MAX_ORDER) { 1489 err = -EINVAL; 1490 goto out; 1491 } 1492 1493 if (nid == NUMA_NO_NODE) { 1494 /* 1495 * global hstate attribute 1496 */ 1497 if (!(obey_mempolicy && 1498 init_nodemask_of_mempolicy(nodes_allowed))) { 1499 NODEMASK_FREE(nodes_allowed); 1500 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1501 } 1502 } else if (nodes_allowed) { 1503 /* 1504 * per node hstate attribute: adjust count to global, 1505 * but restrict alloc/free to the specified node. 1506 */ 1507 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1508 init_nodemask_of_node(nodes_allowed, nid); 1509 } else 1510 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1511 1512 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1513 1514 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1515 NODEMASK_FREE(nodes_allowed); 1516 1517 return len; 1518 out: 1519 NODEMASK_FREE(nodes_allowed); 1520 return err; 1521 } 1522 1523 static ssize_t nr_hugepages_show(struct kobject *kobj, 1524 struct kobj_attribute *attr, char *buf) 1525 { 1526 return nr_hugepages_show_common(kobj, attr, buf); 1527 } 1528 1529 static ssize_t nr_hugepages_store(struct kobject *kobj, 1530 struct kobj_attribute *attr, const char *buf, size_t len) 1531 { 1532 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1533 } 1534 HSTATE_ATTR(nr_hugepages); 1535 1536 #ifdef CONFIG_NUMA 1537 1538 /* 1539 * hstate attribute for optionally mempolicy-based constraint on persistent 1540 * huge page alloc/free. 1541 */ 1542 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1543 struct kobj_attribute *attr, char *buf) 1544 { 1545 return nr_hugepages_show_common(kobj, attr, buf); 1546 } 1547 1548 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1549 struct kobj_attribute *attr, const char *buf, size_t len) 1550 { 1551 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1552 } 1553 HSTATE_ATTR(nr_hugepages_mempolicy); 1554 #endif 1555 1556 1557 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1558 struct kobj_attribute *attr, char *buf) 1559 { 1560 struct hstate *h = kobj_to_hstate(kobj, NULL); 1561 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1562 } 1563 1564 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1565 struct kobj_attribute *attr, const char *buf, size_t count) 1566 { 1567 int err; 1568 unsigned long input; 1569 struct hstate *h = kobj_to_hstate(kobj, NULL); 1570 1571 if (h->order >= MAX_ORDER) 1572 return -EINVAL; 1573 1574 err = strict_strtoul(buf, 10, &input); 1575 if (err) 1576 return err; 1577 1578 spin_lock(&hugetlb_lock); 1579 h->nr_overcommit_huge_pages = input; 1580 spin_unlock(&hugetlb_lock); 1581 1582 return count; 1583 } 1584 HSTATE_ATTR(nr_overcommit_hugepages); 1585 1586 static ssize_t free_hugepages_show(struct kobject *kobj, 1587 struct kobj_attribute *attr, char *buf) 1588 { 1589 struct hstate *h; 1590 unsigned long free_huge_pages; 1591 int nid; 1592 1593 h = kobj_to_hstate(kobj, &nid); 1594 if (nid == NUMA_NO_NODE) 1595 free_huge_pages = h->free_huge_pages; 1596 else 1597 free_huge_pages = h->free_huge_pages_node[nid]; 1598 1599 return sprintf(buf, "%lu\n", free_huge_pages); 1600 } 1601 HSTATE_ATTR_RO(free_hugepages); 1602 1603 static ssize_t resv_hugepages_show(struct kobject *kobj, 1604 struct kobj_attribute *attr, char *buf) 1605 { 1606 struct hstate *h = kobj_to_hstate(kobj, NULL); 1607 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1608 } 1609 HSTATE_ATTR_RO(resv_hugepages); 1610 1611 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1612 struct kobj_attribute *attr, char *buf) 1613 { 1614 struct hstate *h; 1615 unsigned long surplus_huge_pages; 1616 int nid; 1617 1618 h = kobj_to_hstate(kobj, &nid); 1619 if (nid == NUMA_NO_NODE) 1620 surplus_huge_pages = h->surplus_huge_pages; 1621 else 1622 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1623 1624 return sprintf(buf, "%lu\n", surplus_huge_pages); 1625 } 1626 HSTATE_ATTR_RO(surplus_hugepages); 1627 1628 static struct attribute *hstate_attrs[] = { 1629 &nr_hugepages_attr.attr, 1630 &nr_overcommit_hugepages_attr.attr, 1631 &free_hugepages_attr.attr, 1632 &resv_hugepages_attr.attr, 1633 &surplus_hugepages_attr.attr, 1634 #ifdef CONFIG_NUMA 1635 &nr_hugepages_mempolicy_attr.attr, 1636 #endif 1637 NULL, 1638 }; 1639 1640 static struct attribute_group hstate_attr_group = { 1641 .attrs = hstate_attrs, 1642 }; 1643 1644 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1645 struct kobject **hstate_kobjs, 1646 struct attribute_group *hstate_attr_group) 1647 { 1648 int retval; 1649 int hi = h - hstates; 1650 1651 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1652 if (!hstate_kobjs[hi]) 1653 return -ENOMEM; 1654 1655 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1656 if (retval) 1657 kobject_put(hstate_kobjs[hi]); 1658 1659 return retval; 1660 } 1661 1662 static void __init hugetlb_sysfs_init(void) 1663 { 1664 struct hstate *h; 1665 int err; 1666 1667 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1668 if (!hugepages_kobj) 1669 return; 1670 1671 for_each_hstate(h) { 1672 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1673 hstate_kobjs, &hstate_attr_group); 1674 if (err) 1675 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1676 h->name); 1677 } 1678 } 1679 1680 #ifdef CONFIG_NUMA 1681 1682 /* 1683 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1684 * with node devices in node_devices[] using a parallel array. The array 1685 * index of a node device or _hstate == node id. 1686 * This is here to avoid any static dependency of the node device driver, in 1687 * the base kernel, on the hugetlb module. 1688 */ 1689 struct node_hstate { 1690 struct kobject *hugepages_kobj; 1691 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1692 }; 1693 struct node_hstate node_hstates[MAX_NUMNODES]; 1694 1695 /* 1696 * A subset of global hstate attributes for node devices 1697 */ 1698 static struct attribute *per_node_hstate_attrs[] = { 1699 &nr_hugepages_attr.attr, 1700 &free_hugepages_attr.attr, 1701 &surplus_hugepages_attr.attr, 1702 NULL, 1703 }; 1704 1705 static struct attribute_group per_node_hstate_attr_group = { 1706 .attrs = per_node_hstate_attrs, 1707 }; 1708 1709 /* 1710 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1711 * Returns node id via non-NULL nidp. 1712 */ 1713 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1714 { 1715 int nid; 1716 1717 for (nid = 0; nid < nr_node_ids; nid++) { 1718 struct node_hstate *nhs = &node_hstates[nid]; 1719 int i; 1720 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1721 if (nhs->hstate_kobjs[i] == kobj) { 1722 if (nidp) 1723 *nidp = nid; 1724 return &hstates[i]; 1725 } 1726 } 1727 1728 BUG(); 1729 return NULL; 1730 } 1731 1732 /* 1733 * Unregister hstate attributes from a single node device. 1734 * No-op if no hstate attributes attached. 1735 */ 1736 void hugetlb_unregister_node(struct node *node) 1737 { 1738 struct hstate *h; 1739 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1740 1741 if (!nhs->hugepages_kobj) 1742 return; /* no hstate attributes */ 1743 1744 for_each_hstate(h) 1745 if (nhs->hstate_kobjs[h - hstates]) { 1746 kobject_put(nhs->hstate_kobjs[h - hstates]); 1747 nhs->hstate_kobjs[h - hstates] = NULL; 1748 } 1749 1750 kobject_put(nhs->hugepages_kobj); 1751 nhs->hugepages_kobj = NULL; 1752 } 1753 1754 /* 1755 * hugetlb module exit: unregister hstate attributes from node devices 1756 * that have them. 1757 */ 1758 static void hugetlb_unregister_all_nodes(void) 1759 { 1760 int nid; 1761 1762 /* 1763 * disable node device registrations. 1764 */ 1765 register_hugetlbfs_with_node(NULL, NULL); 1766 1767 /* 1768 * remove hstate attributes from any nodes that have them. 1769 */ 1770 for (nid = 0; nid < nr_node_ids; nid++) 1771 hugetlb_unregister_node(&node_devices[nid]); 1772 } 1773 1774 /* 1775 * Register hstate attributes for a single node device. 1776 * No-op if attributes already registered. 1777 */ 1778 void hugetlb_register_node(struct node *node) 1779 { 1780 struct hstate *h; 1781 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1782 int err; 1783 1784 if (nhs->hugepages_kobj) 1785 return; /* already allocated */ 1786 1787 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1788 &node->dev.kobj); 1789 if (!nhs->hugepages_kobj) 1790 return; 1791 1792 for_each_hstate(h) { 1793 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1794 nhs->hstate_kobjs, 1795 &per_node_hstate_attr_group); 1796 if (err) { 1797 printk(KERN_ERR "Hugetlb: Unable to add hstate %s" 1798 " for node %d\n", 1799 h->name, node->dev.id); 1800 hugetlb_unregister_node(node); 1801 break; 1802 } 1803 } 1804 } 1805 1806 /* 1807 * hugetlb init time: register hstate attributes for all registered node 1808 * devices of nodes that have memory. All on-line nodes should have 1809 * registered their associated device by this time. 1810 */ 1811 static void hugetlb_register_all_nodes(void) 1812 { 1813 int nid; 1814 1815 for_each_node_state(nid, N_HIGH_MEMORY) { 1816 struct node *node = &node_devices[nid]; 1817 if (node->dev.id == nid) 1818 hugetlb_register_node(node); 1819 } 1820 1821 /* 1822 * Let the node device driver know we're here so it can 1823 * [un]register hstate attributes on node hotplug. 1824 */ 1825 register_hugetlbfs_with_node(hugetlb_register_node, 1826 hugetlb_unregister_node); 1827 } 1828 #else /* !CONFIG_NUMA */ 1829 1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1831 { 1832 BUG(); 1833 if (nidp) 1834 *nidp = -1; 1835 return NULL; 1836 } 1837 1838 static void hugetlb_unregister_all_nodes(void) { } 1839 1840 static void hugetlb_register_all_nodes(void) { } 1841 1842 #endif 1843 1844 static void __exit hugetlb_exit(void) 1845 { 1846 struct hstate *h; 1847 1848 hugetlb_unregister_all_nodes(); 1849 1850 for_each_hstate(h) { 1851 kobject_put(hstate_kobjs[h - hstates]); 1852 } 1853 1854 kobject_put(hugepages_kobj); 1855 } 1856 module_exit(hugetlb_exit); 1857 1858 static int __init hugetlb_init(void) 1859 { 1860 /* Some platform decide whether they support huge pages at boot 1861 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1862 * there is no such support 1863 */ 1864 if (HPAGE_SHIFT == 0) 1865 return 0; 1866 1867 if (!size_to_hstate(default_hstate_size)) { 1868 default_hstate_size = HPAGE_SIZE; 1869 if (!size_to_hstate(default_hstate_size)) 1870 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1871 } 1872 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1873 if (default_hstate_max_huge_pages) 1874 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1875 1876 hugetlb_init_hstates(); 1877 1878 gather_bootmem_prealloc(); 1879 1880 report_hugepages(); 1881 1882 hugetlb_sysfs_init(); 1883 1884 hugetlb_register_all_nodes(); 1885 1886 return 0; 1887 } 1888 module_init(hugetlb_init); 1889 1890 /* Should be called on processing a hugepagesz=... option */ 1891 void __init hugetlb_add_hstate(unsigned order) 1892 { 1893 struct hstate *h; 1894 unsigned long i; 1895 1896 if (size_to_hstate(PAGE_SIZE << order)) { 1897 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1898 return; 1899 } 1900 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1901 BUG_ON(order == 0); 1902 h = &hstates[max_hstate++]; 1903 h->order = order; 1904 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1905 h->nr_huge_pages = 0; 1906 h->free_huge_pages = 0; 1907 for (i = 0; i < MAX_NUMNODES; ++i) 1908 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1909 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); 1910 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); 1911 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1912 huge_page_size(h)/1024); 1913 1914 parsed_hstate = h; 1915 } 1916 1917 static int __init hugetlb_nrpages_setup(char *s) 1918 { 1919 unsigned long *mhp; 1920 static unsigned long *last_mhp; 1921 1922 /* 1923 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1924 * so this hugepages= parameter goes to the "default hstate". 1925 */ 1926 if (!max_hstate) 1927 mhp = &default_hstate_max_huge_pages; 1928 else 1929 mhp = &parsed_hstate->max_huge_pages; 1930 1931 if (mhp == last_mhp) { 1932 printk(KERN_WARNING "hugepages= specified twice without " 1933 "interleaving hugepagesz=, ignoring\n"); 1934 return 1; 1935 } 1936 1937 if (sscanf(s, "%lu", mhp) <= 0) 1938 *mhp = 0; 1939 1940 /* 1941 * Global state is always initialized later in hugetlb_init. 1942 * But we need to allocate >= MAX_ORDER hstates here early to still 1943 * use the bootmem allocator. 1944 */ 1945 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1946 hugetlb_hstate_alloc_pages(parsed_hstate); 1947 1948 last_mhp = mhp; 1949 1950 return 1; 1951 } 1952 __setup("hugepages=", hugetlb_nrpages_setup); 1953 1954 static int __init hugetlb_default_setup(char *s) 1955 { 1956 default_hstate_size = memparse(s, &s); 1957 return 1; 1958 } 1959 __setup("default_hugepagesz=", hugetlb_default_setup); 1960 1961 static unsigned int cpuset_mems_nr(unsigned int *array) 1962 { 1963 int node; 1964 unsigned int nr = 0; 1965 1966 for_each_node_mask(node, cpuset_current_mems_allowed) 1967 nr += array[node]; 1968 1969 return nr; 1970 } 1971 1972 #ifdef CONFIG_SYSCTL 1973 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 1974 struct ctl_table *table, int write, 1975 void __user *buffer, size_t *length, loff_t *ppos) 1976 { 1977 struct hstate *h = &default_hstate; 1978 unsigned long tmp; 1979 int ret; 1980 1981 tmp = h->max_huge_pages; 1982 1983 if (write && h->order >= MAX_ORDER) 1984 return -EINVAL; 1985 1986 table->data = &tmp; 1987 table->maxlen = sizeof(unsigned long); 1988 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 1989 if (ret) 1990 goto out; 1991 1992 if (write) { 1993 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 1994 GFP_KERNEL | __GFP_NORETRY); 1995 if (!(obey_mempolicy && 1996 init_nodemask_of_mempolicy(nodes_allowed))) { 1997 NODEMASK_FREE(nodes_allowed); 1998 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1999 } 2000 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2001 2002 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 2003 NODEMASK_FREE(nodes_allowed); 2004 } 2005 out: 2006 return ret; 2007 } 2008 2009 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2010 void __user *buffer, size_t *length, loff_t *ppos) 2011 { 2012 2013 return hugetlb_sysctl_handler_common(false, table, write, 2014 buffer, length, ppos); 2015 } 2016 2017 #ifdef CONFIG_NUMA 2018 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2019 void __user *buffer, size_t *length, loff_t *ppos) 2020 { 2021 return hugetlb_sysctl_handler_common(true, table, write, 2022 buffer, length, ppos); 2023 } 2024 #endif /* CONFIG_NUMA */ 2025 2026 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 2027 void __user *buffer, 2028 size_t *length, loff_t *ppos) 2029 { 2030 proc_dointvec(table, write, buffer, length, ppos); 2031 if (hugepages_treat_as_movable) 2032 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 2033 else 2034 htlb_alloc_mask = GFP_HIGHUSER; 2035 return 0; 2036 } 2037 2038 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2039 void __user *buffer, 2040 size_t *length, loff_t *ppos) 2041 { 2042 struct hstate *h = &default_hstate; 2043 unsigned long tmp; 2044 int ret; 2045 2046 tmp = h->nr_overcommit_huge_pages; 2047 2048 if (write && h->order >= MAX_ORDER) 2049 return -EINVAL; 2050 2051 table->data = &tmp; 2052 table->maxlen = sizeof(unsigned long); 2053 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2054 if (ret) 2055 goto out; 2056 2057 if (write) { 2058 spin_lock(&hugetlb_lock); 2059 h->nr_overcommit_huge_pages = tmp; 2060 spin_unlock(&hugetlb_lock); 2061 } 2062 out: 2063 return ret; 2064 } 2065 2066 #endif /* CONFIG_SYSCTL */ 2067 2068 void hugetlb_report_meminfo(struct seq_file *m) 2069 { 2070 struct hstate *h = &default_hstate; 2071 seq_printf(m, 2072 "HugePages_Total: %5lu\n" 2073 "HugePages_Free: %5lu\n" 2074 "HugePages_Rsvd: %5lu\n" 2075 "HugePages_Surp: %5lu\n" 2076 "Hugepagesize: %8lu kB\n", 2077 h->nr_huge_pages, 2078 h->free_huge_pages, 2079 h->resv_huge_pages, 2080 h->surplus_huge_pages, 2081 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2082 } 2083 2084 int hugetlb_report_node_meminfo(int nid, char *buf) 2085 { 2086 struct hstate *h = &default_hstate; 2087 return sprintf(buf, 2088 "Node %d HugePages_Total: %5u\n" 2089 "Node %d HugePages_Free: %5u\n" 2090 "Node %d HugePages_Surp: %5u\n", 2091 nid, h->nr_huge_pages_node[nid], 2092 nid, h->free_huge_pages_node[nid], 2093 nid, h->surplus_huge_pages_node[nid]); 2094 } 2095 2096 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2097 unsigned long hugetlb_total_pages(void) 2098 { 2099 struct hstate *h = &default_hstate; 2100 return h->nr_huge_pages * pages_per_huge_page(h); 2101 } 2102 2103 static int hugetlb_acct_memory(struct hstate *h, long delta) 2104 { 2105 int ret = -ENOMEM; 2106 2107 spin_lock(&hugetlb_lock); 2108 /* 2109 * When cpuset is configured, it breaks the strict hugetlb page 2110 * reservation as the accounting is done on a global variable. Such 2111 * reservation is completely rubbish in the presence of cpuset because 2112 * the reservation is not checked against page availability for the 2113 * current cpuset. Application can still potentially OOM'ed by kernel 2114 * with lack of free htlb page in cpuset that the task is in. 2115 * Attempt to enforce strict accounting with cpuset is almost 2116 * impossible (or too ugly) because cpuset is too fluid that 2117 * task or memory node can be dynamically moved between cpusets. 2118 * 2119 * The change of semantics for shared hugetlb mapping with cpuset is 2120 * undesirable. However, in order to preserve some of the semantics, 2121 * we fall back to check against current free page availability as 2122 * a best attempt and hopefully to minimize the impact of changing 2123 * semantics that cpuset has. 2124 */ 2125 if (delta > 0) { 2126 if (gather_surplus_pages(h, delta) < 0) 2127 goto out; 2128 2129 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2130 return_unused_surplus_pages(h, delta); 2131 goto out; 2132 } 2133 } 2134 2135 ret = 0; 2136 if (delta < 0) 2137 return_unused_surplus_pages(h, (unsigned long) -delta); 2138 2139 out: 2140 spin_unlock(&hugetlb_lock); 2141 return ret; 2142 } 2143 2144 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2145 { 2146 struct resv_map *reservations = vma_resv_map(vma); 2147 2148 /* 2149 * This new VMA should share its siblings reservation map if present. 2150 * The VMA will only ever have a valid reservation map pointer where 2151 * it is being copied for another still existing VMA. As that VMA 2152 * has a reference to the reservation map it cannot disappear until 2153 * after this open call completes. It is therefore safe to take a 2154 * new reference here without additional locking. 2155 */ 2156 if (reservations) 2157 kref_get(&reservations->refs); 2158 } 2159 2160 static void resv_map_put(struct vm_area_struct *vma) 2161 { 2162 struct resv_map *reservations = vma_resv_map(vma); 2163 2164 if (!reservations) 2165 return; 2166 kref_put(&reservations->refs, resv_map_release); 2167 } 2168 2169 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2170 { 2171 struct hstate *h = hstate_vma(vma); 2172 struct resv_map *reservations = vma_resv_map(vma); 2173 struct hugepage_subpool *spool = subpool_vma(vma); 2174 unsigned long reserve; 2175 unsigned long start; 2176 unsigned long end; 2177 2178 if (reservations) { 2179 start = vma_hugecache_offset(h, vma, vma->vm_start); 2180 end = vma_hugecache_offset(h, vma, vma->vm_end); 2181 2182 reserve = (end - start) - 2183 region_count(&reservations->regions, start, end); 2184 2185 resv_map_put(vma); 2186 2187 if (reserve) { 2188 hugetlb_acct_memory(h, -reserve); 2189 hugepage_subpool_put_pages(spool, reserve); 2190 } 2191 } 2192 } 2193 2194 /* 2195 * We cannot handle pagefaults against hugetlb pages at all. They cause 2196 * handle_mm_fault() to try to instantiate regular-sized pages in the 2197 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2198 * this far. 2199 */ 2200 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2201 { 2202 BUG(); 2203 return 0; 2204 } 2205 2206 const struct vm_operations_struct hugetlb_vm_ops = { 2207 .fault = hugetlb_vm_op_fault, 2208 .open = hugetlb_vm_op_open, 2209 .close = hugetlb_vm_op_close, 2210 }; 2211 2212 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2213 int writable) 2214 { 2215 pte_t entry; 2216 2217 if (writable) { 2218 entry = 2219 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 2220 } else { 2221 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 2222 } 2223 entry = pte_mkyoung(entry); 2224 entry = pte_mkhuge(entry); 2225 entry = arch_make_huge_pte(entry, vma, page, writable); 2226 2227 return entry; 2228 } 2229 2230 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2231 unsigned long address, pte_t *ptep) 2232 { 2233 pte_t entry; 2234 2235 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 2236 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2237 update_mmu_cache(vma, address, ptep); 2238 } 2239 2240 2241 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2242 struct vm_area_struct *vma) 2243 { 2244 pte_t *src_pte, *dst_pte, entry; 2245 struct page *ptepage; 2246 unsigned long addr; 2247 int cow; 2248 struct hstate *h = hstate_vma(vma); 2249 unsigned long sz = huge_page_size(h); 2250 2251 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2252 2253 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2254 src_pte = huge_pte_offset(src, addr); 2255 if (!src_pte) 2256 continue; 2257 dst_pte = huge_pte_alloc(dst, addr, sz); 2258 if (!dst_pte) 2259 goto nomem; 2260 2261 /* If the pagetables are shared don't copy or take references */ 2262 if (dst_pte == src_pte) 2263 continue; 2264 2265 spin_lock(&dst->page_table_lock); 2266 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2267 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2268 if (cow) 2269 huge_ptep_set_wrprotect(src, addr, src_pte); 2270 entry = huge_ptep_get(src_pte); 2271 ptepage = pte_page(entry); 2272 get_page(ptepage); 2273 page_dup_rmap(ptepage); 2274 set_huge_pte_at(dst, addr, dst_pte, entry); 2275 } 2276 spin_unlock(&src->page_table_lock); 2277 spin_unlock(&dst->page_table_lock); 2278 } 2279 return 0; 2280 2281 nomem: 2282 return -ENOMEM; 2283 } 2284 2285 static int is_hugetlb_entry_migration(pte_t pte) 2286 { 2287 swp_entry_t swp; 2288 2289 if (huge_pte_none(pte) || pte_present(pte)) 2290 return 0; 2291 swp = pte_to_swp_entry(pte); 2292 if (non_swap_entry(swp) && is_migration_entry(swp)) 2293 return 1; 2294 else 2295 return 0; 2296 } 2297 2298 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2299 { 2300 swp_entry_t swp; 2301 2302 if (huge_pte_none(pte) || pte_present(pte)) 2303 return 0; 2304 swp = pte_to_swp_entry(pte); 2305 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2306 return 1; 2307 else 2308 return 0; 2309 } 2310 2311 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2312 unsigned long end, struct page *ref_page) 2313 { 2314 struct mm_struct *mm = vma->vm_mm; 2315 unsigned long address; 2316 pte_t *ptep; 2317 pte_t pte; 2318 struct page *page; 2319 struct page *tmp; 2320 struct hstate *h = hstate_vma(vma); 2321 unsigned long sz = huge_page_size(h); 2322 2323 /* 2324 * A page gathering list, protected by per file i_mmap_mutex. The 2325 * lock is used to avoid list corruption from multiple unmapping 2326 * of the same page since we are using page->lru. 2327 */ 2328 LIST_HEAD(page_list); 2329 2330 WARN_ON(!is_vm_hugetlb_page(vma)); 2331 BUG_ON(start & ~huge_page_mask(h)); 2332 BUG_ON(end & ~huge_page_mask(h)); 2333 2334 mmu_notifier_invalidate_range_start(mm, start, end); 2335 spin_lock(&mm->page_table_lock); 2336 for (address = start; address < end; address += sz) { 2337 ptep = huge_pte_offset(mm, address); 2338 if (!ptep) 2339 continue; 2340 2341 if (huge_pmd_unshare(mm, &address, ptep)) 2342 continue; 2343 2344 pte = huge_ptep_get(ptep); 2345 if (huge_pte_none(pte)) 2346 continue; 2347 2348 /* 2349 * HWPoisoned hugepage is already unmapped and dropped reference 2350 */ 2351 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) 2352 continue; 2353 2354 page = pte_page(pte); 2355 /* 2356 * If a reference page is supplied, it is because a specific 2357 * page is being unmapped, not a range. Ensure the page we 2358 * are about to unmap is the actual page of interest. 2359 */ 2360 if (ref_page) { 2361 if (page != ref_page) 2362 continue; 2363 2364 /* 2365 * Mark the VMA as having unmapped its page so that 2366 * future faults in this VMA will fail rather than 2367 * looking like data was lost 2368 */ 2369 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2370 } 2371 2372 pte = huge_ptep_get_and_clear(mm, address, ptep); 2373 if (pte_dirty(pte)) 2374 set_page_dirty(page); 2375 list_add(&page->lru, &page_list); 2376 2377 /* Bail out after unmapping reference page if supplied */ 2378 if (ref_page) 2379 break; 2380 } 2381 flush_tlb_range(vma, start, end); 2382 spin_unlock(&mm->page_table_lock); 2383 mmu_notifier_invalidate_range_end(mm, start, end); 2384 list_for_each_entry_safe(page, tmp, &page_list, lru) { 2385 page_remove_rmap(page); 2386 list_del(&page->lru); 2387 put_page(page); 2388 } 2389 } 2390 2391 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2392 unsigned long end, struct page *ref_page) 2393 { 2394 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 2395 __unmap_hugepage_range(vma, start, end, ref_page); 2396 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 2397 } 2398 2399 /* 2400 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2401 * mappping it owns the reserve page for. The intention is to unmap the page 2402 * from other VMAs and let the children be SIGKILLed if they are faulting the 2403 * same region. 2404 */ 2405 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2406 struct page *page, unsigned long address) 2407 { 2408 struct hstate *h = hstate_vma(vma); 2409 struct vm_area_struct *iter_vma; 2410 struct address_space *mapping; 2411 struct prio_tree_iter iter; 2412 pgoff_t pgoff; 2413 2414 /* 2415 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2416 * from page cache lookup which is in HPAGE_SIZE units. 2417 */ 2418 address = address & huge_page_mask(h); 2419 pgoff = vma_hugecache_offset(h, vma, address); 2420 mapping = vma->vm_file->f_dentry->d_inode->i_mapping; 2421 2422 /* 2423 * Take the mapping lock for the duration of the table walk. As 2424 * this mapping should be shared between all the VMAs, 2425 * __unmap_hugepage_range() is called as the lock is already held 2426 */ 2427 mutex_lock(&mapping->i_mmap_mutex); 2428 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 2429 /* Do not unmap the current VMA */ 2430 if (iter_vma == vma) 2431 continue; 2432 2433 /* 2434 * Unmap the page from other VMAs without their own reserves. 2435 * They get marked to be SIGKILLed if they fault in these 2436 * areas. This is because a future no-page fault on this VMA 2437 * could insert a zeroed page instead of the data existing 2438 * from the time of fork. This would look like data corruption 2439 */ 2440 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2441 __unmap_hugepage_range(iter_vma, 2442 address, address + huge_page_size(h), 2443 page); 2444 } 2445 mutex_unlock(&mapping->i_mmap_mutex); 2446 2447 return 1; 2448 } 2449 2450 /* 2451 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2452 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2453 * cannot race with other handlers or page migration. 2454 * Keep the pte_same checks anyway to make transition from the mutex easier. 2455 */ 2456 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2457 unsigned long address, pte_t *ptep, pte_t pte, 2458 struct page *pagecache_page) 2459 { 2460 struct hstate *h = hstate_vma(vma); 2461 struct page *old_page, *new_page; 2462 int avoidcopy; 2463 int outside_reserve = 0; 2464 2465 old_page = pte_page(pte); 2466 2467 retry_avoidcopy: 2468 /* If no-one else is actually using this page, avoid the copy 2469 * and just make the page writable */ 2470 avoidcopy = (page_mapcount(old_page) == 1); 2471 if (avoidcopy) { 2472 if (PageAnon(old_page)) 2473 page_move_anon_rmap(old_page, vma, address); 2474 set_huge_ptep_writable(vma, address, ptep); 2475 return 0; 2476 } 2477 2478 /* 2479 * If the process that created a MAP_PRIVATE mapping is about to 2480 * perform a COW due to a shared page count, attempt to satisfy 2481 * the allocation without using the existing reserves. The pagecache 2482 * page is used to determine if the reserve at this address was 2483 * consumed or not. If reserves were used, a partial faulted mapping 2484 * at the time of fork() could consume its reserves on COW instead 2485 * of the full address range. 2486 */ 2487 if (!(vma->vm_flags & VM_MAYSHARE) && 2488 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2489 old_page != pagecache_page) 2490 outside_reserve = 1; 2491 2492 page_cache_get(old_page); 2493 2494 /* Drop page_table_lock as buddy allocator may be called */ 2495 spin_unlock(&mm->page_table_lock); 2496 new_page = alloc_huge_page(vma, address, outside_reserve); 2497 2498 if (IS_ERR(new_page)) { 2499 page_cache_release(old_page); 2500 2501 /* 2502 * If a process owning a MAP_PRIVATE mapping fails to COW, 2503 * it is due to references held by a child and an insufficient 2504 * huge page pool. To guarantee the original mappers 2505 * reliability, unmap the page from child processes. The child 2506 * may get SIGKILLed if it later faults. 2507 */ 2508 if (outside_reserve) { 2509 BUG_ON(huge_pte_none(pte)); 2510 if (unmap_ref_private(mm, vma, old_page, address)) { 2511 BUG_ON(huge_pte_none(pte)); 2512 spin_lock(&mm->page_table_lock); 2513 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2514 if (likely(pte_same(huge_ptep_get(ptep), pte))) 2515 goto retry_avoidcopy; 2516 /* 2517 * race occurs while re-acquiring page_table_lock, and 2518 * our job is done. 2519 */ 2520 return 0; 2521 } 2522 WARN_ON_ONCE(1); 2523 } 2524 2525 /* Caller expects lock to be held */ 2526 spin_lock(&mm->page_table_lock); 2527 return -PTR_ERR(new_page); 2528 } 2529 2530 /* 2531 * When the original hugepage is shared one, it does not have 2532 * anon_vma prepared. 2533 */ 2534 if (unlikely(anon_vma_prepare(vma))) { 2535 page_cache_release(new_page); 2536 page_cache_release(old_page); 2537 /* Caller expects lock to be held */ 2538 spin_lock(&mm->page_table_lock); 2539 return VM_FAULT_OOM; 2540 } 2541 2542 copy_user_huge_page(new_page, old_page, address, vma, 2543 pages_per_huge_page(h)); 2544 __SetPageUptodate(new_page); 2545 2546 /* 2547 * Retake the page_table_lock to check for racing updates 2548 * before the page tables are altered 2549 */ 2550 spin_lock(&mm->page_table_lock); 2551 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2552 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2553 /* Break COW */ 2554 mmu_notifier_invalidate_range_start(mm, 2555 address & huge_page_mask(h), 2556 (address & huge_page_mask(h)) + huge_page_size(h)); 2557 huge_ptep_clear_flush(vma, address, ptep); 2558 set_huge_pte_at(mm, address, ptep, 2559 make_huge_pte(vma, new_page, 1)); 2560 page_remove_rmap(old_page); 2561 hugepage_add_new_anon_rmap(new_page, vma, address); 2562 /* Make the old page be freed below */ 2563 new_page = old_page; 2564 mmu_notifier_invalidate_range_end(mm, 2565 address & huge_page_mask(h), 2566 (address & huge_page_mask(h)) + huge_page_size(h)); 2567 } 2568 page_cache_release(new_page); 2569 page_cache_release(old_page); 2570 return 0; 2571 } 2572 2573 /* Return the pagecache page at a given address within a VMA */ 2574 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2575 struct vm_area_struct *vma, unsigned long address) 2576 { 2577 struct address_space *mapping; 2578 pgoff_t idx; 2579 2580 mapping = vma->vm_file->f_mapping; 2581 idx = vma_hugecache_offset(h, vma, address); 2582 2583 return find_lock_page(mapping, idx); 2584 } 2585 2586 /* 2587 * Return whether there is a pagecache page to back given address within VMA. 2588 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2589 */ 2590 static bool hugetlbfs_pagecache_present(struct hstate *h, 2591 struct vm_area_struct *vma, unsigned long address) 2592 { 2593 struct address_space *mapping; 2594 pgoff_t idx; 2595 struct page *page; 2596 2597 mapping = vma->vm_file->f_mapping; 2598 idx = vma_hugecache_offset(h, vma, address); 2599 2600 page = find_get_page(mapping, idx); 2601 if (page) 2602 put_page(page); 2603 return page != NULL; 2604 } 2605 2606 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2607 unsigned long address, pte_t *ptep, unsigned int flags) 2608 { 2609 struct hstate *h = hstate_vma(vma); 2610 int ret = VM_FAULT_SIGBUS; 2611 int anon_rmap = 0; 2612 pgoff_t idx; 2613 unsigned long size; 2614 struct page *page; 2615 struct address_space *mapping; 2616 pte_t new_pte; 2617 2618 /* 2619 * Currently, we are forced to kill the process in the event the 2620 * original mapper has unmapped pages from the child due to a failed 2621 * COW. Warn that such a situation has occurred as it may not be obvious 2622 */ 2623 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2624 printk(KERN_WARNING 2625 "PID %d killed due to inadequate hugepage pool\n", 2626 current->pid); 2627 return ret; 2628 } 2629 2630 mapping = vma->vm_file->f_mapping; 2631 idx = vma_hugecache_offset(h, vma, address); 2632 2633 /* 2634 * Use page lock to guard against racing truncation 2635 * before we get page_table_lock. 2636 */ 2637 retry: 2638 page = find_lock_page(mapping, idx); 2639 if (!page) { 2640 size = i_size_read(mapping->host) >> huge_page_shift(h); 2641 if (idx >= size) 2642 goto out; 2643 page = alloc_huge_page(vma, address, 0); 2644 if (IS_ERR(page)) { 2645 ret = -PTR_ERR(page); 2646 goto out; 2647 } 2648 clear_huge_page(page, address, pages_per_huge_page(h)); 2649 __SetPageUptodate(page); 2650 2651 if (vma->vm_flags & VM_MAYSHARE) { 2652 int err; 2653 struct inode *inode = mapping->host; 2654 2655 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2656 if (err) { 2657 put_page(page); 2658 if (err == -EEXIST) 2659 goto retry; 2660 goto out; 2661 } 2662 2663 spin_lock(&inode->i_lock); 2664 inode->i_blocks += blocks_per_huge_page(h); 2665 spin_unlock(&inode->i_lock); 2666 } else { 2667 lock_page(page); 2668 if (unlikely(anon_vma_prepare(vma))) { 2669 ret = VM_FAULT_OOM; 2670 goto backout_unlocked; 2671 } 2672 anon_rmap = 1; 2673 } 2674 } else { 2675 /* 2676 * If memory error occurs between mmap() and fault, some process 2677 * don't have hwpoisoned swap entry for errored virtual address. 2678 * So we need to block hugepage fault by PG_hwpoison bit check. 2679 */ 2680 if (unlikely(PageHWPoison(page))) { 2681 ret = VM_FAULT_HWPOISON | 2682 VM_FAULT_SET_HINDEX(h - hstates); 2683 goto backout_unlocked; 2684 } 2685 } 2686 2687 /* 2688 * If we are going to COW a private mapping later, we examine the 2689 * pending reservations for this page now. This will ensure that 2690 * any allocations necessary to record that reservation occur outside 2691 * the spinlock. 2692 */ 2693 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2694 if (vma_needs_reservation(h, vma, address) < 0) { 2695 ret = VM_FAULT_OOM; 2696 goto backout_unlocked; 2697 } 2698 2699 spin_lock(&mm->page_table_lock); 2700 size = i_size_read(mapping->host) >> huge_page_shift(h); 2701 if (idx >= size) 2702 goto backout; 2703 2704 ret = 0; 2705 if (!huge_pte_none(huge_ptep_get(ptep))) 2706 goto backout; 2707 2708 if (anon_rmap) 2709 hugepage_add_new_anon_rmap(page, vma, address); 2710 else 2711 page_dup_rmap(page); 2712 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2713 && (vma->vm_flags & VM_SHARED))); 2714 set_huge_pte_at(mm, address, ptep, new_pte); 2715 2716 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2717 /* Optimization, do the COW without a second fault */ 2718 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2719 } 2720 2721 spin_unlock(&mm->page_table_lock); 2722 unlock_page(page); 2723 out: 2724 return ret; 2725 2726 backout: 2727 spin_unlock(&mm->page_table_lock); 2728 backout_unlocked: 2729 unlock_page(page); 2730 put_page(page); 2731 goto out; 2732 } 2733 2734 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2735 unsigned long address, unsigned int flags) 2736 { 2737 pte_t *ptep; 2738 pte_t entry; 2739 int ret; 2740 struct page *page = NULL; 2741 struct page *pagecache_page = NULL; 2742 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2743 struct hstate *h = hstate_vma(vma); 2744 2745 address &= huge_page_mask(h); 2746 2747 ptep = huge_pte_offset(mm, address); 2748 if (ptep) { 2749 entry = huge_ptep_get(ptep); 2750 if (unlikely(is_hugetlb_entry_migration(entry))) { 2751 migration_entry_wait(mm, (pmd_t *)ptep, address); 2752 return 0; 2753 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2754 return VM_FAULT_HWPOISON_LARGE | 2755 VM_FAULT_SET_HINDEX(h - hstates); 2756 } 2757 2758 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2759 if (!ptep) 2760 return VM_FAULT_OOM; 2761 2762 /* 2763 * Serialize hugepage allocation and instantiation, so that we don't 2764 * get spurious allocation failures if two CPUs race to instantiate 2765 * the same page in the page cache. 2766 */ 2767 mutex_lock(&hugetlb_instantiation_mutex); 2768 entry = huge_ptep_get(ptep); 2769 if (huge_pte_none(entry)) { 2770 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2771 goto out_mutex; 2772 } 2773 2774 ret = 0; 2775 2776 /* 2777 * If we are going to COW the mapping later, we examine the pending 2778 * reservations for this page now. This will ensure that any 2779 * allocations necessary to record that reservation occur outside the 2780 * spinlock. For private mappings, we also lookup the pagecache 2781 * page now as it is used to determine if a reservation has been 2782 * consumed. 2783 */ 2784 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2785 if (vma_needs_reservation(h, vma, address) < 0) { 2786 ret = VM_FAULT_OOM; 2787 goto out_mutex; 2788 } 2789 2790 if (!(vma->vm_flags & VM_MAYSHARE)) 2791 pagecache_page = hugetlbfs_pagecache_page(h, 2792 vma, address); 2793 } 2794 2795 /* 2796 * hugetlb_cow() requires page locks of pte_page(entry) and 2797 * pagecache_page, so here we need take the former one 2798 * when page != pagecache_page or !pagecache_page. 2799 * Note that locking order is always pagecache_page -> page, 2800 * so no worry about deadlock. 2801 */ 2802 page = pte_page(entry); 2803 get_page(page); 2804 if (page != pagecache_page) 2805 lock_page(page); 2806 2807 spin_lock(&mm->page_table_lock); 2808 /* Check for a racing update before calling hugetlb_cow */ 2809 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2810 goto out_page_table_lock; 2811 2812 2813 if (flags & FAULT_FLAG_WRITE) { 2814 if (!pte_write(entry)) { 2815 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2816 pagecache_page); 2817 goto out_page_table_lock; 2818 } 2819 entry = pte_mkdirty(entry); 2820 } 2821 entry = pte_mkyoung(entry); 2822 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2823 flags & FAULT_FLAG_WRITE)) 2824 update_mmu_cache(vma, address, ptep); 2825 2826 out_page_table_lock: 2827 spin_unlock(&mm->page_table_lock); 2828 2829 if (pagecache_page) { 2830 unlock_page(pagecache_page); 2831 put_page(pagecache_page); 2832 } 2833 if (page != pagecache_page) 2834 unlock_page(page); 2835 put_page(page); 2836 2837 out_mutex: 2838 mutex_unlock(&hugetlb_instantiation_mutex); 2839 2840 return ret; 2841 } 2842 2843 /* Can be overriden by architectures */ 2844 __attribute__((weak)) struct page * 2845 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2846 pud_t *pud, int write) 2847 { 2848 BUG(); 2849 return NULL; 2850 } 2851 2852 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2853 struct page **pages, struct vm_area_struct **vmas, 2854 unsigned long *position, int *length, int i, 2855 unsigned int flags) 2856 { 2857 unsigned long pfn_offset; 2858 unsigned long vaddr = *position; 2859 int remainder = *length; 2860 struct hstate *h = hstate_vma(vma); 2861 2862 spin_lock(&mm->page_table_lock); 2863 while (vaddr < vma->vm_end && remainder) { 2864 pte_t *pte; 2865 int absent; 2866 struct page *page; 2867 2868 /* 2869 * Some archs (sparc64, sh*) have multiple pte_ts to 2870 * each hugepage. We have to make sure we get the 2871 * first, for the page indexing below to work. 2872 */ 2873 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2874 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2875 2876 /* 2877 * When coredumping, it suits get_dump_page if we just return 2878 * an error where there's an empty slot with no huge pagecache 2879 * to back it. This way, we avoid allocating a hugepage, and 2880 * the sparse dumpfile avoids allocating disk blocks, but its 2881 * huge holes still show up with zeroes where they need to be. 2882 */ 2883 if (absent && (flags & FOLL_DUMP) && 2884 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2885 remainder = 0; 2886 break; 2887 } 2888 2889 if (absent || 2890 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { 2891 int ret; 2892 2893 spin_unlock(&mm->page_table_lock); 2894 ret = hugetlb_fault(mm, vma, vaddr, 2895 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 2896 spin_lock(&mm->page_table_lock); 2897 if (!(ret & VM_FAULT_ERROR)) 2898 continue; 2899 2900 remainder = 0; 2901 break; 2902 } 2903 2904 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2905 page = pte_page(huge_ptep_get(pte)); 2906 same_page: 2907 if (pages) { 2908 pages[i] = mem_map_offset(page, pfn_offset); 2909 get_page(pages[i]); 2910 } 2911 2912 if (vmas) 2913 vmas[i] = vma; 2914 2915 vaddr += PAGE_SIZE; 2916 ++pfn_offset; 2917 --remainder; 2918 ++i; 2919 if (vaddr < vma->vm_end && remainder && 2920 pfn_offset < pages_per_huge_page(h)) { 2921 /* 2922 * We use pfn_offset to avoid touching the pageframes 2923 * of this compound page. 2924 */ 2925 goto same_page; 2926 } 2927 } 2928 spin_unlock(&mm->page_table_lock); 2929 *length = remainder; 2930 *position = vaddr; 2931 2932 return i ? i : -EFAULT; 2933 } 2934 2935 void hugetlb_change_protection(struct vm_area_struct *vma, 2936 unsigned long address, unsigned long end, pgprot_t newprot) 2937 { 2938 struct mm_struct *mm = vma->vm_mm; 2939 unsigned long start = address; 2940 pte_t *ptep; 2941 pte_t pte; 2942 struct hstate *h = hstate_vma(vma); 2943 2944 BUG_ON(address >= end); 2945 flush_cache_range(vma, address, end); 2946 2947 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 2948 spin_lock(&mm->page_table_lock); 2949 for (; address < end; address += huge_page_size(h)) { 2950 ptep = huge_pte_offset(mm, address); 2951 if (!ptep) 2952 continue; 2953 if (huge_pmd_unshare(mm, &address, ptep)) 2954 continue; 2955 if (!huge_pte_none(huge_ptep_get(ptep))) { 2956 pte = huge_ptep_get_and_clear(mm, address, ptep); 2957 pte = pte_mkhuge(pte_modify(pte, newprot)); 2958 set_huge_pte_at(mm, address, ptep, pte); 2959 } 2960 } 2961 spin_unlock(&mm->page_table_lock); 2962 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 2963 2964 flush_tlb_range(vma, start, end); 2965 } 2966 2967 int hugetlb_reserve_pages(struct inode *inode, 2968 long from, long to, 2969 struct vm_area_struct *vma, 2970 vm_flags_t vm_flags) 2971 { 2972 long ret, chg; 2973 struct hstate *h = hstate_inode(inode); 2974 struct hugepage_subpool *spool = subpool_inode(inode); 2975 2976 /* 2977 * Only apply hugepage reservation if asked. At fault time, an 2978 * attempt will be made for VM_NORESERVE to allocate a page 2979 * without using reserves 2980 */ 2981 if (vm_flags & VM_NORESERVE) 2982 return 0; 2983 2984 /* 2985 * Shared mappings base their reservation on the number of pages that 2986 * are already allocated on behalf of the file. Private mappings need 2987 * to reserve the full area even if read-only as mprotect() may be 2988 * called to make the mapping read-write. Assume !vma is a shm mapping 2989 */ 2990 if (!vma || vma->vm_flags & VM_MAYSHARE) 2991 chg = region_chg(&inode->i_mapping->private_list, from, to); 2992 else { 2993 struct resv_map *resv_map = resv_map_alloc(); 2994 if (!resv_map) 2995 return -ENOMEM; 2996 2997 chg = to - from; 2998 2999 set_vma_resv_map(vma, resv_map); 3000 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3001 } 3002 3003 if (chg < 0) { 3004 ret = chg; 3005 goto out_err; 3006 } 3007 3008 /* There must be enough pages in the subpool for the mapping */ 3009 if (hugepage_subpool_get_pages(spool, chg)) { 3010 ret = -ENOSPC; 3011 goto out_err; 3012 } 3013 3014 /* 3015 * Check enough hugepages are available for the reservation. 3016 * Hand the pages back to the subpool if there are not 3017 */ 3018 ret = hugetlb_acct_memory(h, chg); 3019 if (ret < 0) { 3020 hugepage_subpool_put_pages(spool, chg); 3021 goto out_err; 3022 } 3023 3024 /* 3025 * Account for the reservations made. Shared mappings record regions 3026 * that have reservations as they are shared by multiple VMAs. 3027 * When the last VMA disappears, the region map says how much 3028 * the reservation was and the page cache tells how much of 3029 * the reservation was consumed. Private mappings are per-VMA and 3030 * only the consumed reservations are tracked. When the VMA 3031 * disappears, the original reservation is the VMA size and the 3032 * consumed reservations are stored in the map. Hence, nothing 3033 * else has to be done for private mappings here 3034 */ 3035 if (!vma || vma->vm_flags & VM_MAYSHARE) 3036 region_add(&inode->i_mapping->private_list, from, to); 3037 return 0; 3038 out_err: 3039 if (vma) 3040 resv_map_put(vma); 3041 return ret; 3042 } 3043 3044 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3045 { 3046 struct hstate *h = hstate_inode(inode); 3047 long chg = region_truncate(&inode->i_mapping->private_list, offset); 3048 struct hugepage_subpool *spool = subpool_inode(inode); 3049 3050 spin_lock(&inode->i_lock); 3051 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3052 spin_unlock(&inode->i_lock); 3053 3054 hugepage_subpool_put_pages(spool, (chg - freed)); 3055 hugetlb_acct_memory(h, -(chg - freed)); 3056 } 3057 3058 #ifdef CONFIG_MEMORY_FAILURE 3059 3060 /* Should be called in hugetlb_lock */ 3061 static int is_hugepage_on_freelist(struct page *hpage) 3062 { 3063 struct page *page; 3064 struct page *tmp; 3065 struct hstate *h = page_hstate(hpage); 3066 int nid = page_to_nid(hpage); 3067 3068 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3069 if (page == hpage) 3070 return 1; 3071 return 0; 3072 } 3073 3074 /* 3075 * This function is called from memory failure code. 3076 * Assume the caller holds page lock of the head page. 3077 */ 3078 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3079 { 3080 struct hstate *h = page_hstate(hpage); 3081 int nid = page_to_nid(hpage); 3082 int ret = -EBUSY; 3083 3084 spin_lock(&hugetlb_lock); 3085 if (is_hugepage_on_freelist(hpage)) { 3086 list_del(&hpage->lru); 3087 set_page_refcounted(hpage); 3088 h->free_huge_pages--; 3089 h->free_huge_pages_node[nid]--; 3090 ret = 0; 3091 } 3092 spin_unlock(&hugetlb_lock); 3093 return ret; 3094 } 3095 #endif 3096