xref: /openbmc/linux/mm/hugetlb.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 	if (spool->count)
88 		return false;
89 	if (spool->max_hpages != -1)
90 		return spool->used_hpages == 0;
91 	if (spool->min_hpages != -1)
92 		return spool->rsv_hpages == spool->min_hpages;
93 
94 	return true;
95 }
96 
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99 	spin_unlock(&spool->lock);
100 
101 	/* If no pages are used, and no other handles to the subpool
102 	 * remain, give up any reservations based on minimum size and
103 	 * free the subpool */
104 	if (subpool_is_free(spool)) {
105 		if (spool->min_hpages != -1)
106 			hugetlb_acct_memory(spool->hstate,
107 						-spool->min_hpages);
108 		kfree(spool);
109 	}
110 }
111 
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 						long min_hpages)
114 {
115 	struct hugepage_subpool *spool;
116 
117 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 	if (!spool)
119 		return NULL;
120 
121 	spin_lock_init(&spool->lock);
122 	spool->count = 1;
123 	spool->max_hpages = max_hpages;
124 	spool->hstate = h;
125 	spool->min_hpages = min_hpages;
126 
127 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 		kfree(spool);
129 		return NULL;
130 	}
131 	spool->rsv_hpages = min_hpages;
132 
133 	return spool;
134 }
135 
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 	spin_lock(&spool->lock);
139 	BUG_ON(!spool->count);
140 	spool->count--;
141 	unlock_or_release_subpool(spool);
142 }
143 
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153 				      long delta)
154 {
155 	long ret = delta;
156 
157 	if (!spool)
158 		return ret;
159 
160 	spin_lock(&spool->lock);
161 
162 	if (spool->max_hpages != -1) {		/* maximum size accounting */
163 		if ((spool->used_hpages + delta) <= spool->max_hpages)
164 			spool->used_hpages += delta;
165 		else {
166 			ret = -ENOMEM;
167 			goto unlock_ret;
168 		}
169 	}
170 
171 	/* minimum size accounting */
172 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 		if (delta > spool->rsv_hpages) {
174 			/*
175 			 * Asking for more reserves than those already taken on
176 			 * behalf of subpool.  Return difference.
177 			 */
178 			ret = delta - spool->rsv_hpages;
179 			spool->rsv_hpages = 0;
180 		} else {
181 			ret = 0;	/* reserves already accounted for */
182 			spool->rsv_hpages -= delta;
183 		}
184 	}
185 
186 unlock_ret:
187 	spin_unlock(&spool->lock);
188 	return ret;
189 }
190 
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198 				       long delta)
199 {
200 	long ret = delta;
201 
202 	if (!spool)
203 		return delta;
204 
205 	spin_lock(&spool->lock);
206 
207 	if (spool->max_hpages != -1)		/* maximum size accounting */
208 		spool->used_hpages -= delta;
209 
210 	 /* minimum size accounting */
211 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 		if (spool->rsv_hpages + delta <= spool->min_hpages)
213 			ret = 0;
214 		else
215 			ret = spool->rsv_hpages + delta - spool->min_hpages;
216 
217 		spool->rsv_hpages += delta;
218 		if (spool->rsv_hpages > spool->min_hpages)
219 			spool->rsv_hpages = spool->min_hpages;
220 	}
221 
222 	/*
223 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 	 * quota reference, free it now.
225 	 */
226 	unlock_or_release_subpool(spool);
227 
228 	return ret;
229 }
230 
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233 	return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235 
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238 	return subpool_inode(file_inode(vma->vm_file));
239 }
240 
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247 	struct file_region *nrg = NULL;
248 
249 	VM_BUG_ON(resv->region_cache_count <= 0);
250 
251 	resv->region_cache_count--;
252 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253 	list_del(&nrg->link);
254 
255 	nrg->from = from;
256 	nrg->to = to;
257 
258 	return nrg;
259 }
260 
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 					      struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 	nrg->reservation_counter = rg->reservation_counter;
266 	nrg->css = rg->css;
267 	if (rg->css)
268 		css_get(rg->css);
269 #endif
270 }
271 
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 						struct hstate *h,
275 						struct resv_map *resv,
276 						struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279 	if (h_cg) {
280 		nrg->reservation_counter =
281 			&h_cg->rsvd_hugepage[hstate_index(h)];
282 		nrg->css = &h_cg->css;
283 		if (!resv->pages_per_hpage)
284 			resv->pages_per_hpage = pages_per_huge_page(h);
285 		/* pages_per_hpage should be the same for all entries in
286 		 * a resv_map.
287 		 */
288 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
289 	} else {
290 		nrg->reservation_counter = NULL;
291 		nrg->css = NULL;
292 	}
293 #endif
294 }
295 
296 static bool has_same_uncharge_info(struct file_region *rg,
297 				   struct file_region *org)
298 {
299 #ifdef CONFIG_CGROUP_HUGETLB
300 	return rg && org &&
301 	       rg->reservation_counter == org->reservation_counter &&
302 	       rg->css == org->css;
303 
304 #else
305 	return true;
306 #endif
307 }
308 
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
310 {
311 	struct file_region *nrg = NULL, *prg = NULL;
312 
313 	prg = list_prev_entry(rg, link);
314 	if (&prg->link != &resv->regions && prg->to == rg->from &&
315 	    has_same_uncharge_info(prg, rg)) {
316 		prg->to = rg->to;
317 
318 		list_del(&rg->link);
319 		kfree(rg);
320 
321 		rg = prg;
322 	}
323 
324 	nrg = list_next_entry(rg, link);
325 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326 	    has_same_uncharge_info(nrg, rg)) {
327 		nrg->from = rg->from;
328 
329 		list_del(&rg->link);
330 		kfree(rg);
331 	}
332 }
333 
334 /*
335  * Must be called with resv->lock held.
336  *
337  * Calling this with regions_needed != NULL will count the number of pages
338  * to be added but will not modify the linked list. And regions_needed will
339  * indicate the number of file_regions needed in the cache to carry out to add
340  * the regions for this range.
341  */
342 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
343 				     struct hugetlb_cgroup *h_cg,
344 				     struct hstate *h, long *regions_needed)
345 {
346 	long add = 0;
347 	struct list_head *head = &resv->regions;
348 	long last_accounted_offset = f;
349 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
350 
351 	if (regions_needed)
352 		*regions_needed = 0;
353 
354 	/* In this loop, we essentially handle an entry for the range
355 	 * [last_accounted_offset, rg->from), at every iteration, with some
356 	 * bounds checking.
357 	 */
358 	list_for_each_entry_safe(rg, trg, head, link) {
359 		/* Skip irrelevant regions that start before our range. */
360 		if (rg->from < f) {
361 			/* If this region ends after the last accounted offset,
362 			 * then we need to update last_accounted_offset.
363 			 */
364 			if (rg->to > last_accounted_offset)
365 				last_accounted_offset = rg->to;
366 			continue;
367 		}
368 
369 		/* When we find a region that starts beyond our range, we've
370 		 * finished.
371 		 */
372 		if (rg->from > t)
373 			break;
374 
375 		/* Add an entry for last_accounted_offset -> rg->from, and
376 		 * update last_accounted_offset.
377 		 */
378 		if (rg->from > last_accounted_offset) {
379 			add += rg->from - last_accounted_offset;
380 			if (!regions_needed) {
381 				nrg = get_file_region_entry_from_cache(
382 					resv, last_accounted_offset, rg->from);
383 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
384 								    resv, nrg);
385 				list_add(&nrg->link, rg->link.prev);
386 				coalesce_file_region(resv, nrg);
387 			} else
388 				*regions_needed += 1;
389 		}
390 
391 		last_accounted_offset = rg->to;
392 	}
393 
394 	/* Handle the case where our range extends beyond
395 	 * last_accounted_offset.
396 	 */
397 	if (last_accounted_offset < t) {
398 		add += t - last_accounted_offset;
399 		if (!regions_needed) {
400 			nrg = get_file_region_entry_from_cache(
401 				resv, last_accounted_offset, t);
402 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
403 			list_add(&nrg->link, rg->link.prev);
404 			coalesce_file_region(resv, nrg);
405 		} else
406 			*regions_needed += 1;
407 	}
408 
409 	VM_BUG_ON(add < 0);
410 	return add;
411 }
412 
413 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
414  */
415 static int allocate_file_region_entries(struct resv_map *resv,
416 					int regions_needed)
417 	__must_hold(&resv->lock)
418 {
419 	struct list_head allocated_regions;
420 	int to_allocate = 0, i = 0;
421 	struct file_region *trg = NULL, *rg = NULL;
422 
423 	VM_BUG_ON(regions_needed < 0);
424 
425 	INIT_LIST_HEAD(&allocated_regions);
426 
427 	/*
428 	 * Check for sufficient descriptors in the cache to accommodate
429 	 * the number of in progress add operations plus regions_needed.
430 	 *
431 	 * This is a while loop because when we drop the lock, some other call
432 	 * to region_add or region_del may have consumed some region_entries,
433 	 * so we keep looping here until we finally have enough entries for
434 	 * (adds_in_progress + regions_needed).
435 	 */
436 	while (resv->region_cache_count <
437 	       (resv->adds_in_progress + regions_needed)) {
438 		to_allocate = resv->adds_in_progress + regions_needed -
439 			      resv->region_cache_count;
440 
441 		/* At this point, we should have enough entries in the cache
442 		 * for all the existings adds_in_progress. We should only be
443 		 * needing to allocate for regions_needed.
444 		 */
445 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
446 
447 		spin_unlock(&resv->lock);
448 		for (i = 0; i < to_allocate; i++) {
449 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
450 			if (!trg)
451 				goto out_of_memory;
452 			list_add(&trg->link, &allocated_regions);
453 		}
454 
455 		spin_lock(&resv->lock);
456 
457 		list_splice(&allocated_regions, &resv->region_cache);
458 		resv->region_cache_count += to_allocate;
459 	}
460 
461 	return 0;
462 
463 out_of_memory:
464 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
465 		list_del(&rg->link);
466 		kfree(rg);
467 	}
468 	return -ENOMEM;
469 }
470 
471 /*
472  * Add the huge page range represented by [f, t) to the reserve
473  * map.  Regions will be taken from the cache to fill in this range.
474  * Sufficient regions should exist in the cache due to the previous
475  * call to region_chg with the same range, but in some cases the cache will not
476  * have sufficient entries due to races with other code doing region_add or
477  * region_del.  The extra needed entries will be allocated.
478  *
479  * regions_needed is the out value provided by a previous call to region_chg.
480  *
481  * Return the number of new huge pages added to the map.  This number is greater
482  * than or equal to zero.  If file_region entries needed to be allocated for
483  * this operation and we were not able to allocate, it returns -ENOMEM.
484  * region_add of regions of length 1 never allocate file_regions and cannot
485  * fail; region_chg will always allocate at least 1 entry and a region_add for
486  * 1 page will only require at most 1 entry.
487  */
488 static long region_add(struct resv_map *resv, long f, long t,
489 		       long in_regions_needed, struct hstate *h,
490 		       struct hugetlb_cgroup *h_cg)
491 {
492 	long add = 0, actual_regions_needed = 0;
493 
494 	spin_lock(&resv->lock);
495 retry:
496 
497 	/* Count how many regions are actually needed to execute this add. */
498 	add_reservation_in_range(resv, f, t, NULL, NULL,
499 				 &actual_regions_needed);
500 
501 	/*
502 	 * Check for sufficient descriptors in the cache to accommodate
503 	 * this add operation. Note that actual_regions_needed may be greater
504 	 * than in_regions_needed, as the resv_map may have been modified since
505 	 * the region_chg call. In this case, we need to make sure that we
506 	 * allocate extra entries, such that we have enough for all the
507 	 * existing adds_in_progress, plus the excess needed for this
508 	 * operation.
509 	 */
510 	if (actual_regions_needed > in_regions_needed &&
511 	    resv->region_cache_count <
512 		    resv->adds_in_progress +
513 			    (actual_regions_needed - in_regions_needed)) {
514 		/* region_add operation of range 1 should never need to
515 		 * allocate file_region entries.
516 		 */
517 		VM_BUG_ON(t - f <= 1);
518 
519 		if (allocate_file_region_entries(
520 			    resv, actual_regions_needed - in_regions_needed)) {
521 			return -ENOMEM;
522 		}
523 
524 		goto retry;
525 	}
526 
527 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
528 
529 	resv->adds_in_progress -= in_regions_needed;
530 
531 	spin_unlock(&resv->lock);
532 	VM_BUG_ON(add < 0);
533 	return add;
534 }
535 
536 /*
537  * Examine the existing reserve map and determine how many
538  * huge pages in the specified range [f, t) are NOT currently
539  * represented.  This routine is called before a subsequent
540  * call to region_add that will actually modify the reserve
541  * map to add the specified range [f, t).  region_chg does
542  * not change the number of huge pages represented by the
543  * map.  A number of new file_region structures is added to the cache as a
544  * placeholder, for the subsequent region_add call to use. At least 1
545  * file_region structure is added.
546  *
547  * out_regions_needed is the number of regions added to the
548  * resv->adds_in_progress.  This value needs to be provided to a follow up call
549  * to region_add or region_abort for proper accounting.
550  *
551  * Returns the number of huge pages that need to be added to the existing
552  * reservation map for the range [f, t).  This number is greater or equal to
553  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
554  * is needed and can not be allocated.
555  */
556 static long region_chg(struct resv_map *resv, long f, long t,
557 		       long *out_regions_needed)
558 {
559 	long chg = 0;
560 
561 	spin_lock(&resv->lock);
562 
563 	/* Count how many hugepages in this range are NOT represented. */
564 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
565 				       out_regions_needed);
566 
567 	if (*out_regions_needed == 0)
568 		*out_regions_needed = 1;
569 
570 	if (allocate_file_region_entries(resv, *out_regions_needed))
571 		return -ENOMEM;
572 
573 	resv->adds_in_progress += *out_regions_needed;
574 
575 	spin_unlock(&resv->lock);
576 	return chg;
577 }
578 
579 /*
580  * Abort the in progress add operation.  The adds_in_progress field
581  * of the resv_map keeps track of the operations in progress between
582  * calls to region_chg and region_add.  Operations are sometimes
583  * aborted after the call to region_chg.  In such cases, region_abort
584  * is called to decrement the adds_in_progress counter. regions_needed
585  * is the value returned by the region_chg call, it is used to decrement
586  * the adds_in_progress counter.
587  *
588  * NOTE: The range arguments [f, t) are not needed or used in this
589  * routine.  They are kept to make reading the calling code easier as
590  * arguments will match the associated region_chg call.
591  */
592 static void region_abort(struct resv_map *resv, long f, long t,
593 			 long regions_needed)
594 {
595 	spin_lock(&resv->lock);
596 	VM_BUG_ON(!resv->region_cache_count);
597 	resv->adds_in_progress -= regions_needed;
598 	spin_unlock(&resv->lock);
599 }
600 
601 /*
602  * Delete the specified range [f, t) from the reserve map.  If the
603  * t parameter is LONG_MAX, this indicates that ALL regions after f
604  * should be deleted.  Locate the regions which intersect [f, t)
605  * and either trim, delete or split the existing regions.
606  *
607  * Returns the number of huge pages deleted from the reserve map.
608  * In the normal case, the return value is zero or more.  In the
609  * case where a region must be split, a new region descriptor must
610  * be allocated.  If the allocation fails, -ENOMEM will be returned.
611  * NOTE: If the parameter t == LONG_MAX, then we will never split
612  * a region and possibly return -ENOMEM.  Callers specifying
613  * t == LONG_MAX do not need to check for -ENOMEM error.
614  */
615 static long region_del(struct resv_map *resv, long f, long t)
616 {
617 	struct list_head *head = &resv->regions;
618 	struct file_region *rg, *trg;
619 	struct file_region *nrg = NULL;
620 	long del = 0;
621 
622 retry:
623 	spin_lock(&resv->lock);
624 	list_for_each_entry_safe(rg, trg, head, link) {
625 		/*
626 		 * Skip regions before the range to be deleted.  file_region
627 		 * ranges are normally of the form [from, to).  However, there
628 		 * may be a "placeholder" entry in the map which is of the form
629 		 * (from, to) with from == to.  Check for placeholder entries
630 		 * at the beginning of the range to be deleted.
631 		 */
632 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
633 			continue;
634 
635 		if (rg->from >= t)
636 			break;
637 
638 		if (f > rg->from && t < rg->to) { /* Must split region */
639 			/*
640 			 * Check for an entry in the cache before dropping
641 			 * lock and attempting allocation.
642 			 */
643 			if (!nrg &&
644 			    resv->region_cache_count > resv->adds_in_progress) {
645 				nrg = list_first_entry(&resv->region_cache,
646 							struct file_region,
647 							link);
648 				list_del(&nrg->link);
649 				resv->region_cache_count--;
650 			}
651 
652 			if (!nrg) {
653 				spin_unlock(&resv->lock);
654 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
655 				if (!nrg)
656 					return -ENOMEM;
657 				goto retry;
658 			}
659 
660 			del += t - f;
661 			hugetlb_cgroup_uncharge_file_region(
662 				resv, rg, t - f);
663 
664 			/* New entry for end of split region */
665 			nrg->from = t;
666 			nrg->to = rg->to;
667 
668 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
669 
670 			INIT_LIST_HEAD(&nrg->link);
671 
672 			/* Original entry is trimmed */
673 			rg->to = f;
674 
675 			list_add(&nrg->link, &rg->link);
676 			nrg = NULL;
677 			break;
678 		}
679 
680 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
681 			del += rg->to - rg->from;
682 			hugetlb_cgroup_uncharge_file_region(resv, rg,
683 							    rg->to - rg->from);
684 			list_del(&rg->link);
685 			kfree(rg);
686 			continue;
687 		}
688 
689 		if (f <= rg->from) {	/* Trim beginning of region */
690 			hugetlb_cgroup_uncharge_file_region(resv, rg,
691 							    t - rg->from);
692 
693 			del += t - rg->from;
694 			rg->from = t;
695 		} else {		/* Trim end of region */
696 			hugetlb_cgroup_uncharge_file_region(resv, rg,
697 							    rg->to - f);
698 
699 			del += rg->to - f;
700 			rg->to = f;
701 		}
702 	}
703 
704 	spin_unlock(&resv->lock);
705 	kfree(nrg);
706 	return del;
707 }
708 
709 /*
710  * A rare out of memory error was encountered which prevented removal of
711  * the reserve map region for a page.  The huge page itself was free'ed
712  * and removed from the page cache.  This routine will adjust the subpool
713  * usage count, and the global reserve count if needed.  By incrementing
714  * these counts, the reserve map entry which could not be deleted will
715  * appear as a "reserved" entry instead of simply dangling with incorrect
716  * counts.
717  */
718 void hugetlb_fix_reserve_counts(struct inode *inode)
719 {
720 	struct hugepage_subpool *spool = subpool_inode(inode);
721 	long rsv_adjust;
722 
723 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
724 	if (rsv_adjust) {
725 		struct hstate *h = hstate_inode(inode);
726 
727 		hugetlb_acct_memory(h, 1);
728 	}
729 }
730 
731 /*
732  * Count and return the number of huge pages in the reserve map
733  * that intersect with the range [f, t).
734  */
735 static long region_count(struct resv_map *resv, long f, long t)
736 {
737 	struct list_head *head = &resv->regions;
738 	struct file_region *rg;
739 	long chg = 0;
740 
741 	spin_lock(&resv->lock);
742 	/* Locate each segment we overlap with, and count that overlap. */
743 	list_for_each_entry(rg, head, link) {
744 		long seg_from;
745 		long seg_to;
746 
747 		if (rg->to <= f)
748 			continue;
749 		if (rg->from >= t)
750 			break;
751 
752 		seg_from = max(rg->from, f);
753 		seg_to = min(rg->to, t);
754 
755 		chg += seg_to - seg_from;
756 	}
757 	spin_unlock(&resv->lock);
758 
759 	return chg;
760 }
761 
762 /*
763  * Convert the address within this vma to the page offset within
764  * the mapping, in pagecache page units; huge pages here.
765  */
766 static pgoff_t vma_hugecache_offset(struct hstate *h,
767 			struct vm_area_struct *vma, unsigned long address)
768 {
769 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
770 			(vma->vm_pgoff >> huge_page_order(h));
771 }
772 
773 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
774 				     unsigned long address)
775 {
776 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
777 }
778 EXPORT_SYMBOL_GPL(linear_hugepage_index);
779 
780 /*
781  * Return the size of the pages allocated when backing a VMA. In the majority
782  * cases this will be same size as used by the page table entries.
783  */
784 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
785 {
786 	if (vma->vm_ops && vma->vm_ops->pagesize)
787 		return vma->vm_ops->pagesize(vma);
788 	return PAGE_SIZE;
789 }
790 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
791 
792 /*
793  * Return the page size being used by the MMU to back a VMA. In the majority
794  * of cases, the page size used by the kernel matches the MMU size. On
795  * architectures where it differs, an architecture-specific 'strong'
796  * version of this symbol is required.
797  */
798 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
799 {
800 	return vma_kernel_pagesize(vma);
801 }
802 
803 /*
804  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
805  * bits of the reservation map pointer, which are always clear due to
806  * alignment.
807  */
808 #define HPAGE_RESV_OWNER    (1UL << 0)
809 #define HPAGE_RESV_UNMAPPED (1UL << 1)
810 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811 
812 /*
813  * These helpers are used to track how many pages are reserved for
814  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
815  * is guaranteed to have their future faults succeed.
816  *
817  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
818  * the reserve counters are updated with the hugetlb_lock held. It is safe
819  * to reset the VMA at fork() time as it is not in use yet and there is no
820  * chance of the global counters getting corrupted as a result of the values.
821  *
822  * The private mapping reservation is represented in a subtly different
823  * manner to a shared mapping.  A shared mapping has a region map associated
824  * with the underlying file, this region map represents the backing file
825  * pages which have ever had a reservation assigned which this persists even
826  * after the page is instantiated.  A private mapping has a region map
827  * associated with the original mmap which is attached to all VMAs which
828  * reference it, this region map represents those offsets which have consumed
829  * reservation ie. where pages have been instantiated.
830  */
831 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
832 {
833 	return (unsigned long)vma->vm_private_data;
834 }
835 
836 static void set_vma_private_data(struct vm_area_struct *vma,
837 							unsigned long value)
838 {
839 	vma->vm_private_data = (void *)value;
840 }
841 
842 static void
843 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
844 					  struct hugetlb_cgroup *h_cg,
845 					  struct hstate *h)
846 {
847 #ifdef CONFIG_CGROUP_HUGETLB
848 	if (!h_cg || !h) {
849 		resv_map->reservation_counter = NULL;
850 		resv_map->pages_per_hpage = 0;
851 		resv_map->css = NULL;
852 	} else {
853 		resv_map->reservation_counter =
854 			&h_cg->rsvd_hugepage[hstate_index(h)];
855 		resv_map->pages_per_hpage = pages_per_huge_page(h);
856 		resv_map->css = &h_cg->css;
857 	}
858 #endif
859 }
860 
861 struct resv_map *resv_map_alloc(void)
862 {
863 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
864 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
865 
866 	if (!resv_map || !rg) {
867 		kfree(resv_map);
868 		kfree(rg);
869 		return NULL;
870 	}
871 
872 	kref_init(&resv_map->refs);
873 	spin_lock_init(&resv_map->lock);
874 	INIT_LIST_HEAD(&resv_map->regions);
875 
876 	resv_map->adds_in_progress = 0;
877 	/*
878 	 * Initialize these to 0. On shared mappings, 0's here indicate these
879 	 * fields don't do cgroup accounting. On private mappings, these will be
880 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
881 	 * reservations are to be un-charged from here.
882 	 */
883 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
884 
885 	INIT_LIST_HEAD(&resv_map->region_cache);
886 	list_add(&rg->link, &resv_map->region_cache);
887 	resv_map->region_cache_count = 1;
888 
889 	return resv_map;
890 }
891 
892 void resv_map_release(struct kref *ref)
893 {
894 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
895 	struct list_head *head = &resv_map->region_cache;
896 	struct file_region *rg, *trg;
897 
898 	/* Clear out any active regions before we release the map. */
899 	region_del(resv_map, 0, LONG_MAX);
900 
901 	/* ... and any entries left in the cache */
902 	list_for_each_entry_safe(rg, trg, head, link) {
903 		list_del(&rg->link);
904 		kfree(rg);
905 	}
906 
907 	VM_BUG_ON(resv_map->adds_in_progress);
908 
909 	kfree(resv_map);
910 }
911 
912 static inline struct resv_map *inode_resv_map(struct inode *inode)
913 {
914 	/*
915 	 * At inode evict time, i_mapping may not point to the original
916 	 * address space within the inode.  This original address space
917 	 * contains the pointer to the resv_map.  So, always use the
918 	 * address space embedded within the inode.
919 	 * The VERY common case is inode->mapping == &inode->i_data but,
920 	 * this may not be true for device special inodes.
921 	 */
922 	return (struct resv_map *)(&inode->i_data)->private_data;
923 }
924 
925 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
926 {
927 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
928 	if (vma->vm_flags & VM_MAYSHARE) {
929 		struct address_space *mapping = vma->vm_file->f_mapping;
930 		struct inode *inode = mapping->host;
931 
932 		return inode_resv_map(inode);
933 
934 	} else {
935 		return (struct resv_map *)(get_vma_private_data(vma) &
936 							~HPAGE_RESV_MASK);
937 	}
938 }
939 
940 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
941 {
942 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944 
945 	set_vma_private_data(vma, (get_vma_private_data(vma) &
946 				HPAGE_RESV_MASK) | (unsigned long)map);
947 }
948 
949 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
950 {
951 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
952 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
953 
954 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
955 }
956 
957 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
958 {
959 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960 
961 	return (get_vma_private_data(vma) & flag) != 0;
962 }
963 
964 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
965 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
966 {
967 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
968 	if (!(vma->vm_flags & VM_MAYSHARE))
969 		vma->vm_private_data = (void *)0;
970 }
971 
972 /* Returns true if the VMA has associated reserve pages */
973 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
974 {
975 	if (vma->vm_flags & VM_NORESERVE) {
976 		/*
977 		 * This address is already reserved by other process(chg == 0),
978 		 * so, we should decrement reserved count. Without decrementing,
979 		 * reserve count remains after releasing inode, because this
980 		 * allocated page will go into page cache and is regarded as
981 		 * coming from reserved pool in releasing step.  Currently, we
982 		 * don't have any other solution to deal with this situation
983 		 * properly, so add work-around here.
984 		 */
985 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
986 			return true;
987 		else
988 			return false;
989 	}
990 
991 	/* Shared mappings always use reserves */
992 	if (vma->vm_flags & VM_MAYSHARE) {
993 		/*
994 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
995 		 * be a region map for all pages.  The only situation where
996 		 * there is no region map is if a hole was punched via
997 		 * fallocate.  In this case, there really are no reserves to
998 		 * use.  This situation is indicated if chg != 0.
999 		 */
1000 		if (chg)
1001 			return false;
1002 		else
1003 			return true;
1004 	}
1005 
1006 	/*
1007 	 * Only the process that called mmap() has reserves for
1008 	 * private mappings.
1009 	 */
1010 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011 		/*
1012 		 * Like the shared case above, a hole punch or truncate
1013 		 * could have been performed on the private mapping.
1014 		 * Examine the value of chg to determine if reserves
1015 		 * actually exist or were previously consumed.
1016 		 * Very Subtle - The value of chg comes from a previous
1017 		 * call to vma_needs_reserves().  The reserve map for
1018 		 * private mappings has different (opposite) semantics
1019 		 * than that of shared mappings.  vma_needs_reserves()
1020 		 * has already taken this difference in semantics into
1021 		 * account.  Therefore, the meaning of chg is the same
1022 		 * as in the shared case above.  Code could easily be
1023 		 * combined, but keeping it separate draws attention to
1024 		 * subtle differences.
1025 		 */
1026 		if (chg)
1027 			return false;
1028 		else
1029 			return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 static void enqueue_huge_page(struct hstate *h, struct page *page)
1036 {
1037 	int nid = page_to_nid(page);
1038 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1039 	h->free_huge_pages++;
1040 	h->free_huge_pages_node[nid]++;
1041 	SetHPageFreed(page);
1042 }
1043 
1044 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1045 {
1046 	struct page *page;
1047 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1048 
1049 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1050 		if (nocma && is_migrate_cma_page(page))
1051 			continue;
1052 
1053 		if (PageHWPoison(page))
1054 			continue;
1055 
1056 		list_move(&page->lru, &h->hugepage_activelist);
1057 		set_page_refcounted(page);
1058 		ClearHPageFreed(page);
1059 		h->free_huge_pages--;
1060 		h->free_huge_pages_node[nid]--;
1061 		return page;
1062 	}
1063 
1064 	return NULL;
1065 }
1066 
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 		nodemask_t *nmask)
1069 {
1070 	unsigned int cpuset_mems_cookie;
1071 	struct zonelist *zonelist;
1072 	struct zone *zone;
1073 	struct zoneref *z;
1074 	int node = NUMA_NO_NODE;
1075 
1076 	zonelist = node_zonelist(nid, gfp_mask);
1077 
1078 retry_cpuset:
1079 	cpuset_mems_cookie = read_mems_allowed_begin();
1080 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 		struct page *page;
1082 
1083 		if (!cpuset_zone_allowed(zone, gfp_mask))
1084 			continue;
1085 		/*
1086 		 * no need to ask again on the same node. Pool is node rather than
1087 		 * zone aware
1088 		 */
1089 		if (zone_to_nid(zone) == node)
1090 			continue;
1091 		node = zone_to_nid(zone);
1092 
1093 		page = dequeue_huge_page_node_exact(h, node);
1094 		if (page)
1095 			return page;
1096 	}
1097 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 		goto retry_cpuset;
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 				struct vm_area_struct *vma,
1105 				unsigned long address, int avoid_reserve,
1106 				long chg)
1107 {
1108 	struct page *page;
1109 	struct mempolicy *mpol;
1110 	gfp_t gfp_mask;
1111 	nodemask_t *nodemask;
1112 	int nid;
1113 
1114 	/*
1115 	 * A child process with MAP_PRIVATE mappings created by their parent
1116 	 * have no page reserves. This check ensures that reservations are
1117 	 * not "stolen". The child may still get SIGKILLed
1118 	 */
1119 	if (!vma_has_reserves(vma, chg) &&
1120 			h->free_huge_pages - h->resv_huge_pages == 0)
1121 		goto err;
1122 
1123 	/* If reserves cannot be used, ensure enough pages are in the pool */
1124 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 		goto err;
1126 
1127 	gfp_mask = htlb_alloc_mask(h);
1128 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 		SetHPageRestoreReserve(page);
1132 		h->resv_huge_pages--;
1133 	}
1134 
1135 	mpol_cond_put(mpol);
1136 	return page;
1137 
1138 err:
1139 	return NULL;
1140 }
1141 
1142 /*
1143  * common helper functions for hstate_next_node_to_{alloc|free}.
1144  * We may have allocated or freed a huge page based on a different
1145  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146  * be outside of *nodes_allowed.  Ensure that we use an allowed
1147  * node for alloc or free.
1148  */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151 	nid = next_node_in(nid, *nodes_allowed);
1152 	VM_BUG_ON(nid >= MAX_NUMNODES);
1153 
1154 	return nid;
1155 }
1156 
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159 	if (!node_isset(nid, *nodes_allowed))
1160 		nid = next_node_allowed(nid, nodes_allowed);
1161 	return nid;
1162 }
1163 
1164 /*
1165  * returns the previously saved node ["this node"] from which to
1166  * allocate a persistent huge page for the pool and advance the
1167  * next node from which to allocate, handling wrap at end of node
1168  * mask.
1169  */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 					nodemask_t *nodes_allowed)
1172 {
1173 	int nid;
1174 
1175 	VM_BUG_ON(!nodes_allowed);
1176 
1177 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179 
1180 	return nid;
1181 }
1182 
1183 /*
1184  * helper for free_pool_huge_page() - return the previously saved
1185  * node ["this node"] from which to free a huge page.  Advance the
1186  * next node id whether or not we find a free huge page to free so
1187  * that the next attempt to free addresses the next node.
1188  */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191 	int nid;
1192 
1193 	VM_BUG_ON(!nodes_allowed);
1194 
1195 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197 
1198 	return nid;
1199 }
1200 
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202 	for (nr_nodes = nodes_weight(*mask);				\
1203 		nr_nodes > 0 &&						\
1204 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205 		nr_nodes--)
1206 
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208 	for (nr_nodes = nodes_weight(*mask);				\
1209 		nr_nodes > 0 &&						\
1210 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211 		nr_nodes--)
1212 
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 					unsigned int order)
1216 {
1217 	int i;
1218 	int nr_pages = 1 << order;
1219 	struct page *p = page + 1;
1220 
1221 	atomic_set(compound_mapcount_ptr(page), 0);
1222 	atomic_set(compound_pincount_ptr(page), 0);
1223 
1224 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225 		clear_compound_head(p);
1226 		set_page_refcounted(p);
1227 	}
1228 
1229 	set_compound_order(page, 0);
1230 	page[1].compound_nr = 0;
1231 	__ClearPageHead(page);
1232 }
1233 
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236 	/*
1237 	 * If the page isn't allocated using the cma allocator,
1238 	 * cma_release() returns false.
1239 	 */
1240 #ifdef CONFIG_CMA
1241 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 		return;
1243 #endif
1244 
1245 	free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247 
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 		int nid, nodemask_t *nodemask)
1251 {
1252 	unsigned long nr_pages = 1UL << huge_page_order(h);
1253 	if (nid == NUMA_NO_NODE)
1254 		nid = numa_mem_id();
1255 
1256 #ifdef CONFIG_CMA
1257 	{
1258 		struct page *page;
1259 		int node;
1260 
1261 		if (hugetlb_cma[nid]) {
1262 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 					huge_page_order(h), true);
1264 			if (page)
1265 				return page;
1266 		}
1267 
1268 		if (!(gfp_mask & __GFP_THISNODE)) {
1269 			for_each_node_mask(node, *nodemask) {
1270 				if (node == nid || !hugetlb_cma[node])
1271 					continue;
1272 
1273 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 						huge_page_order(h), true);
1275 				if (page)
1276 					return page;
1277 			}
1278 		}
1279 	}
1280 #endif
1281 
1282 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 }
1284 
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 					int nid, nodemask_t *nodemask)
1290 {
1291 	return NULL;
1292 }
1293 #endif /* CONFIG_CONTIG_ALLOC */
1294 
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 					int nid, nodemask_t *nodemask)
1298 {
1299 	return NULL;
1300 }
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303 						unsigned int order) { }
1304 #endif
1305 
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1307 {
1308 	int i;
1309 	struct page *subpage = page;
1310 
1311 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1312 		return;
1313 
1314 	h->nr_huge_pages--;
1315 	h->nr_huge_pages_node[page_to_nid(page)]--;
1316 	for (i = 0; i < pages_per_huge_page(h);
1317 	     i++, subpage = mem_map_next(subpage, page, i)) {
1318 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1319 				1 << PG_referenced | 1 << PG_dirty |
1320 				1 << PG_active | 1 << PG_private |
1321 				1 << PG_writeback);
1322 	}
1323 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1324 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1325 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1326 	set_page_refcounted(page);
1327 	if (hstate_is_gigantic(h)) {
1328 		/*
1329 		 * Temporarily drop the hugetlb_lock, because
1330 		 * we might block in free_gigantic_page().
1331 		 */
1332 		spin_unlock(&hugetlb_lock);
1333 		destroy_compound_gigantic_page(page, huge_page_order(h));
1334 		free_gigantic_page(page, huge_page_order(h));
1335 		spin_lock(&hugetlb_lock);
1336 	} else {
1337 		__free_pages(page, huge_page_order(h));
1338 	}
1339 }
1340 
1341 struct hstate *size_to_hstate(unsigned long size)
1342 {
1343 	struct hstate *h;
1344 
1345 	for_each_hstate(h) {
1346 		if (huge_page_size(h) == size)
1347 			return h;
1348 	}
1349 	return NULL;
1350 }
1351 
1352 static void __free_huge_page(struct page *page)
1353 {
1354 	/*
1355 	 * Can't pass hstate in here because it is called from the
1356 	 * compound page destructor.
1357 	 */
1358 	struct hstate *h = page_hstate(page);
1359 	int nid = page_to_nid(page);
1360 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1361 	bool restore_reserve;
1362 
1363 	VM_BUG_ON_PAGE(page_count(page), page);
1364 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1365 
1366 	hugetlb_set_page_subpool(page, NULL);
1367 	page->mapping = NULL;
1368 	restore_reserve = HPageRestoreReserve(page);
1369 	ClearHPageRestoreReserve(page);
1370 
1371 	/*
1372 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1373 	 * reservation.  If the page was associated with a subpool, there
1374 	 * would have been a page reserved in the subpool before allocation
1375 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1376 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1377 	 * remove the reserved page from the subpool.
1378 	 */
1379 	if (!restore_reserve) {
1380 		/*
1381 		 * A return code of zero implies that the subpool will be
1382 		 * under its minimum size if the reservation is not restored
1383 		 * after page is free.  Therefore, force restore_reserve
1384 		 * operation.
1385 		 */
1386 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1387 			restore_reserve = true;
1388 	}
1389 
1390 	spin_lock(&hugetlb_lock);
1391 	ClearHPageMigratable(page);
1392 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1393 				     pages_per_huge_page(h), page);
1394 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1395 					  pages_per_huge_page(h), page);
1396 	if (restore_reserve)
1397 		h->resv_huge_pages++;
1398 
1399 	if (HPageTemporary(page)) {
1400 		list_del(&page->lru);
1401 		ClearHPageTemporary(page);
1402 		update_and_free_page(h, page);
1403 	} else if (h->surplus_huge_pages_node[nid]) {
1404 		/* remove the page from active list */
1405 		list_del(&page->lru);
1406 		update_and_free_page(h, page);
1407 		h->surplus_huge_pages--;
1408 		h->surplus_huge_pages_node[nid]--;
1409 	} else {
1410 		arch_clear_hugepage_flags(page);
1411 		enqueue_huge_page(h, page);
1412 	}
1413 	spin_unlock(&hugetlb_lock);
1414 }
1415 
1416 /*
1417  * As free_huge_page() can be called from a non-task context, we have
1418  * to defer the actual freeing in a workqueue to prevent potential
1419  * hugetlb_lock deadlock.
1420  *
1421  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1422  * be freed and frees them one-by-one. As the page->mapping pointer is
1423  * going to be cleared in __free_huge_page() anyway, it is reused as the
1424  * llist_node structure of a lockless linked list of huge pages to be freed.
1425  */
1426 static LLIST_HEAD(hpage_freelist);
1427 
1428 static void free_hpage_workfn(struct work_struct *work)
1429 {
1430 	struct llist_node *node;
1431 	struct page *page;
1432 
1433 	node = llist_del_all(&hpage_freelist);
1434 
1435 	while (node) {
1436 		page = container_of((struct address_space **)node,
1437 				     struct page, mapping);
1438 		node = node->next;
1439 		__free_huge_page(page);
1440 	}
1441 }
1442 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1443 
1444 void free_huge_page(struct page *page)
1445 {
1446 	/*
1447 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1448 	 */
1449 	if (!in_task()) {
1450 		/*
1451 		 * Only call schedule_work() if hpage_freelist is previously
1452 		 * empty. Otherwise, schedule_work() had been called but the
1453 		 * workfn hasn't retrieved the list yet.
1454 		 */
1455 		if (llist_add((struct llist_node *)&page->mapping,
1456 			      &hpage_freelist))
1457 			schedule_work(&free_hpage_work);
1458 		return;
1459 	}
1460 
1461 	__free_huge_page(page);
1462 }
1463 
1464 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1465 {
1466 	INIT_LIST_HEAD(&page->lru);
1467 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1468 	hugetlb_set_page_subpool(page, NULL);
1469 	set_hugetlb_cgroup(page, NULL);
1470 	set_hugetlb_cgroup_rsvd(page, NULL);
1471 	spin_lock(&hugetlb_lock);
1472 	h->nr_huge_pages++;
1473 	h->nr_huge_pages_node[nid]++;
1474 	ClearHPageFreed(page);
1475 	spin_unlock(&hugetlb_lock);
1476 }
1477 
1478 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1479 {
1480 	int i;
1481 	int nr_pages = 1 << order;
1482 	struct page *p = page + 1;
1483 
1484 	/* we rely on prep_new_huge_page to set the destructor */
1485 	set_compound_order(page, order);
1486 	__ClearPageReserved(page);
1487 	__SetPageHead(page);
1488 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1489 		/*
1490 		 * For gigantic hugepages allocated through bootmem at
1491 		 * boot, it's safer to be consistent with the not-gigantic
1492 		 * hugepages and clear the PG_reserved bit from all tail pages
1493 		 * too.  Otherwise drivers using get_user_pages() to access tail
1494 		 * pages may get the reference counting wrong if they see
1495 		 * PG_reserved set on a tail page (despite the head page not
1496 		 * having PG_reserved set).  Enforcing this consistency between
1497 		 * head and tail pages allows drivers to optimize away a check
1498 		 * on the head page when they need know if put_page() is needed
1499 		 * after get_user_pages().
1500 		 */
1501 		__ClearPageReserved(p);
1502 		set_page_count(p, 0);
1503 		set_compound_head(p, page);
1504 	}
1505 	atomic_set(compound_mapcount_ptr(page), -1);
1506 	atomic_set(compound_pincount_ptr(page), 0);
1507 }
1508 
1509 /*
1510  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1511  * transparent huge pages.  See the PageTransHuge() documentation for more
1512  * details.
1513  */
1514 int PageHuge(struct page *page)
1515 {
1516 	if (!PageCompound(page))
1517 		return 0;
1518 
1519 	page = compound_head(page);
1520 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1521 }
1522 EXPORT_SYMBOL_GPL(PageHuge);
1523 
1524 /*
1525  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1526  * normal or transparent huge pages.
1527  */
1528 int PageHeadHuge(struct page *page_head)
1529 {
1530 	if (!PageHead(page_head))
1531 		return 0;
1532 
1533 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1534 }
1535 
1536 /*
1537  * Find and lock address space (mapping) in write mode.
1538  *
1539  * Upon entry, the page is locked which means that page_mapping() is
1540  * stable.  Due to locking order, we can only trylock_write.  If we can
1541  * not get the lock, simply return NULL to caller.
1542  */
1543 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1544 {
1545 	struct address_space *mapping = page_mapping(hpage);
1546 
1547 	if (!mapping)
1548 		return mapping;
1549 
1550 	if (i_mmap_trylock_write(mapping))
1551 		return mapping;
1552 
1553 	return NULL;
1554 }
1555 
1556 pgoff_t __basepage_index(struct page *page)
1557 {
1558 	struct page *page_head = compound_head(page);
1559 	pgoff_t index = page_index(page_head);
1560 	unsigned long compound_idx;
1561 
1562 	if (!PageHuge(page_head))
1563 		return page_index(page);
1564 
1565 	if (compound_order(page_head) >= MAX_ORDER)
1566 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1567 	else
1568 		compound_idx = page - page_head;
1569 
1570 	return (index << compound_order(page_head)) + compound_idx;
1571 }
1572 
1573 static struct page *alloc_buddy_huge_page(struct hstate *h,
1574 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1575 		nodemask_t *node_alloc_noretry)
1576 {
1577 	int order = huge_page_order(h);
1578 	struct page *page;
1579 	bool alloc_try_hard = true;
1580 
1581 	/*
1582 	 * By default we always try hard to allocate the page with
1583 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1584 	 * a loop (to adjust global huge page counts) and previous allocation
1585 	 * failed, do not continue to try hard on the same node.  Use the
1586 	 * node_alloc_noretry bitmap to manage this state information.
1587 	 */
1588 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1589 		alloc_try_hard = false;
1590 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1591 	if (alloc_try_hard)
1592 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1593 	if (nid == NUMA_NO_NODE)
1594 		nid = numa_mem_id();
1595 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1596 	if (page)
1597 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1598 	else
1599 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1600 
1601 	/*
1602 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1603 	 * indicates an overall state change.  Clear bit so that we resume
1604 	 * normal 'try hard' allocations.
1605 	 */
1606 	if (node_alloc_noretry && page && !alloc_try_hard)
1607 		node_clear(nid, *node_alloc_noretry);
1608 
1609 	/*
1610 	 * If we tried hard to get a page but failed, set bit so that
1611 	 * subsequent attempts will not try as hard until there is an
1612 	 * overall state change.
1613 	 */
1614 	if (node_alloc_noretry && !page && alloc_try_hard)
1615 		node_set(nid, *node_alloc_noretry);
1616 
1617 	return page;
1618 }
1619 
1620 /*
1621  * Common helper to allocate a fresh hugetlb page. All specific allocators
1622  * should use this function to get new hugetlb pages
1623  */
1624 static struct page *alloc_fresh_huge_page(struct hstate *h,
1625 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1626 		nodemask_t *node_alloc_noretry)
1627 {
1628 	struct page *page;
1629 
1630 	if (hstate_is_gigantic(h))
1631 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1632 	else
1633 		page = alloc_buddy_huge_page(h, gfp_mask,
1634 				nid, nmask, node_alloc_noretry);
1635 	if (!page)
1636 		return NULL;
1637 
1638 	if (hstate_is_gigantic(h))
1639 		prep_compound_gigantic_page(page, huge_page_order(h));
1640 	prep_new_huge_page(h, page, page_to_nid(page));
1641 
1642 	return page;
1643 }
1644 
1645 /*
1646  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1647  * manner.
1648  */
1649 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1650 				nodemask_t *node_alloc_noretry)
1651 {
1652 	struct page *page;
1653 	int nr_nodes, node;
1654 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1655 
1656 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1657 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1658 						node_alloc_noretry);
1659 		if (page)
1660 			break;
1661 	}
1662 
1663 	if (!page)
1664 		return 0;
1665 
1666 	put_page(page); /* free it into the hugepage allocator */
1667 
1668 	return 1;
1669 }
1670 
1671 /*
1672  * Free huge page from pool from next node to free.
1673  * Attempt to keep persistent huge pages more or less
1674  * balanced over allowed nodes.
1675  * Called with hugetlb_lock locked.
1676  */
1677 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1678 							 bool acct_surplus)
1679 {
1680 	int nr_nodes, node;
1681 	int ret = 0;
1682 
1683 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1684 		/*
1685 		 * If we're returning unused surplus pages, only examine
1686 		 * nodes with surplus pages.
1687 		 */
1688 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1689 		    !list_empty(&h->hugepage_freelists[node])) {
1690 			struct page *page =
1691 				list_entry(h->hugepage_freelists[node].next,
1692 					  struct page, lru);
1693 			list_del(&page->lru);
1694 			h->free_huge_pages--;
1695 			h->free_huge_pages_node[node]--;
1696 			if (acct_surplus) {
1697 				h->surplus_huge_pages--;
1698 				h->surplus_huge_pages_node[node]--;
1699 			}
1700 			update_and_free_page(h, page);
1701 			ret = 1;
1702 			break;
1703 		}
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 /*
1710  * Dissolve a given free hugepage into free buddy pages. This function does
1711  * nothing for in-use hugepages and non-hugepages.
1712  * This function returns values like below:
1713  *
1714  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1715  *          (allocated or reserved.)
1716  *       0: successfully dissolved free hugepages or the page is not a
1717  *          hugepage (considered as already dissolved)
1718  */
1719 int dissolve_free_huge_page(struct page *page)
1720 {
1721 	int rc = -EBUSY;
1722 
1723 retry:
1724 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1725 	if (!PageHuge(page))
1726 		return 0;
1727 
1728 	spin_lock(&hugetlb_lock);
1729 	if (!PageHuge(page)) {
1730 		rc = 0;
1731 		goto out;
1732 	}
1733 
1734 	if (!page_count(page)) {
1735 		struct page *head = compound_head(page);
1736 		struct hstate *h = page_hstate(head);
1737 		int nid = page_to_nid(head);
1738 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1739 			goto out;
1740 
1741 		/*
1742 		 * We should make sure that the page is already on the free list
1743 		 * when it is dissolved.
1744 		 */
1745 		if (unlikely(!HPageFreed(head))) {
1746 			spin_unlock(&hugetlb_lock);
1747 			cond_resched();
1748 
1749 			/*
1750 			 * Theoretically, we should return -EBUSY when we
1751 			 * encounter this race. In fact, we have a chance
1752 			 * to successfully dissolve the page if we do a
1753 			 * retry. Because the race window is quite small.
1754 			 * If we seize this opportunity, it is an optimization
1755 			 * for increasing the success rate of dissolving page.
1756 			 */
1757 			goto retry;
1758 		}
1759 
1760 		/*
1761 		 * Move PageHWPoison flag from head page to the raw error page,
1762 		 * which makes any subpages rather than the error page reusable.
1763 		 */
1764 		if (PageHWPoison(head) && page != head) {
1765 			SetPageHWPoison(page);
1766 			ClearPageHWPoison(head);
1767 		}
1768 		list_del(&head->lru);
1769 		h->free_huge_pages--;
1770 		h->free_huge_pages_node[nid]--;
1771 		h->max_huge_pages--;
1772 		update_and_free_page(h, head);
1773 		rc = 0;
1774 	}
1775 out:
1776 	spin_unlock(&hugetlb_lock);
1777 	return rc;
1778 }
1779 
1780 /*
1781  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1782  * make specified memory blocks removable from the system.
1783  * Note that this will dissolve a free gigantic hugepage completely, if any
1784  * part of it lies within the given range.
1785  * Also note that if dissolve_free_huge_page() returns with an error, all
1786  * free hugepages that were dissolved before that error are lost.
1787  */
1788 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1789 {
1790 	unsigned long pfn;
1791 	struct page *page;
1792 	int rc = 0;
1793 
1794 	if (!hugepages_supported())
1795 		return rc;
1796 
1797 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1798 		page = pfn_to_page(pfn);
1799 		rc = dissolve_free_huge_page(page);
1800 		if (rc)
1801 			break;
1802 	}
1803 
1804 	return rc;
1805 }
1806 
1807 /*
1808  * Allocates a fresh surplus page from the page allocator.
1809  */
1810 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1811 		int nid, nodemask_t *nmask)
1812 {
1813 	struct page *page = NULL;
1814 
1815 	if (hstate_is_gigantic(h))
1816 		return NULL;
1817 
1818 	spin_lock(&hugetlb_lock);
1819 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1820 		goto out_unlock;
1821 	spin_unlock(&hugetlb_lock);
1822 
1823 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1824 	if (!page)
1825 		return NULL;
1826 
1827 	spin_lock(&hugetlb_lock);
1828 	/*
1829 	 * We could have raced with the pool size change.
1830 	 * Double check that and simply deallocate the new page
1831 	 * if we would end up overcommiting the surpluses. Abuse
1832 	 * temporary page to workaround the nasty free_huge_page
1833 	 * codeflow
1834 	 */
1835 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1836 		SetHPageTemporary(page);
1837 		spin_unlock(&hugetlb_lock);
1838 		put_page(page);
1839 		return NULL;
1840 	} else {
1841 		h->surplus_huge_pages++;
1842 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1843 	}
1844 
1845 out_unlock:
1846 	spin_unlock(&hugetlb_lock);
1847 
1848 	return page;
1849 }
1850 
1851 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1852 				     int nid, nodemask_t *nmask)
1853 {
1854 	struct page *page;
1855 
1856 	if (hstate_is_gigantic(h))
1857 		return NULL;
1858 
1859 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1860 	if (!page)
1861 		return NULL;
1862 
1863 	/*
1864 	 * We do not account these pages as surplus because they are only
1865 	 * temporary and will be released properly on the last reference
1866 	 */
1867 	SetHPageTemporary(page);
1868 
1869 	return page;
1870 }
1871 
1872 /*
1873  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1874  */
1875 static
1876 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1877 		struct vm_area_struct *vma, unsigned long addr)
1878 {
1879 	struct page *page;
1880 	struct mempolicy *mpol;
1881 	gfp_t gfp_mask = htlb_alloc_mask(h);
1882 	int nid;
1883 	nodemask_t *nodemask;
1884 
1885 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1886 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1887 	mpol_cond_put(mpol);
1888 
1889 	return page;
1890 }
1891 
1892 /* page migration callback function */
1893 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1894 		nodemask_t *nmask, gfp_t gfp_mask)
1895 {
1896 	spin_lock(&hugetlb_lock);
1897 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1898 		struct page *page;
1899 
1900 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1901 		if (page) {
1902 			spin_unlock(&hugetlb_lock);
1903 			return page;
1904 		}
1905 	}
1906 	spin_unlock(&hugetlb_lock);
1907 
1908 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1909 }
1910 
1911 /* mempolicy aware migration callback */
1912 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1913 		unsigned long address)
1914 {
1915 	struct mempolicy *mpol;
1916 	nodemask_t *nodemask;
1917 	struct page *page;
1918 	gfp_t gfp_mask;
1919 	int node;
1920 
1921 	gfp_mask = htlb_alloc_mask(h);
1922 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1923 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1924 	mpol_cond_put(mpol);
1925 
1926 	return page;
1927 }
1928 
1929 /*
1930  * Increase the hugetlb pool such that it can accommodate a reservation
1931  * of size 'delta'.
1932  */
1933 static int gather_surplus_pages(struct hstate *h, long delta)
1934 	__must_hold(&hugetlb_lock)
1935 {
1936 	struct list_head surplus_list;
1937 	struct page *page, *tmp;
1938 	int ret;
1939 	long i;
1940 	long needed, allocated;
1941 	bool alloc_ok = true;
1942 
1943 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1944 	if (needed <= 0) {
1945 		h->resv_huge_pages += delta;
1946 		return 0;
1947 	}
1948 
1949 	allocated = 0;
1950 	INIT_LIST_HEAD(&surplus_list);
1951 
1952 	ret = -ENOMEM;
1953 retry:
1954 	spin_unlock(&hugetlb_lock);
1955 	for (i = 0; i < needed; i++) {
1956 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1957 				NUMA_NO_NODE, NULL);
1958 		if (!page) {
1959 			alloc_ok = false;
1960 			break;
1961 		}
1962 		list_add(&page->lru, &surplus_list);
1963 		cond_resched();
1964 	}
1965 	allocated += i;
1966 
1967 	/*
1968 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1969 	 * because either resv_huge_pages or free_huge_pages may have changed.
1970 	 */
1971 	spin_lock(&hugetlb_lock);
1972 	needed = (h->resv_huge_pages + delta) -
1973 			(h->free_huge_pages + allocated);
1974 	if (needed > 0) {
1975 		if (alloc_ok)
1976 			goto retry;
1977 		/*
1978 		 * We were not able to allocate enough pages to
1979 		 * satisfy the entire reservation so we free what
1980 		 * we've allocated so far.
1981 		 */
1982 		goto free;
1983 	}
1984 	/*
1985 	 * The surplus_list now contains _at_least_ the number of extra pages
1986 	 * needed to accommodate the reservation.  Add the appropriate number
1987 	 * of pages to the hugetlb pool and free the extras back to the buddy
1988 	 * allocator.  Commit the entire reservation here to prevent another
1989 	 * process from stealing the pages as they are added to the pool but
1990 	 * before they are reserved.
1991 	 */
1992 	needed += allocated;
1993 	h->resv_huge_pages += delta;
1994 	ret = 0;
1995 
1996 	/* Free the needed pages to the hugetlb pool */
1997 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1998 		int zeroed;
1999 
2000 		if ((--needed) < 0)
2001 			break;
2002 		/*
2003 		 * This page is now managed by the hugetlb allocator and has
2004 		 * no users -- drop the buddy allocator's reference.
2005 		 */
2006 		zeroed = put_page_testzero(page);
2007 		VM_BUG_ON_PAGE(!zeroed, page);
2008 		enqueue_huge_page(h, page);
2009 	}
2010 free:
2011 	spin_unlock(&hugetlb_lock);
2012 
2013 	/* Free unnecessary surplus pages to the buddy allocator */
2014 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2015 		put_page(page);
2016 	spin_lock(&hugetlb_lock);
2017 
2018 	return ret;
2019 }
2020 
2021 /*
2022  * This routine has two main purposes:
2023  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2024  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2025  *    to the associated reservation map.
2026  * 2) Free any unused surplus pages that may have been allocated to satisfy
2027  *    the reservation.  As many as unused_resv_pages may be freed.
2028  *
2029  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2030  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2031  * we must make sure nobody else can claim pages we are in the process of
2032  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2033  * number of huge pages we plan to free when dropping the lock.
2034  */
2035 static void return_unused_surplus_pages(struct hstate *h,
2036 					unsigned long unused_resv_pages)
2037 {
2038 	unsigned long nr_pages;
2039 
2040 	/* Cannot return gigantic pages currently */
2041 	if (hstate_is_gigantic(h))
2042 		goto out;
2043 
2044 	/*
2045 	 * Part (or even all) of the reservation could have been backed
2046 	 * by pre-allocated pages. Only free surplus pages.
2047 	 */
2048 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2049 
2050 	/*
2051 	 * We want to release as many surplus pages as possible, spread
2052 	 * evenly across all nodes with memory. Iterate across these nodes
2053 	 * until we can no longer free unreserved surplus pages. This occurs
2054 	 * when the nodes with surplus pages have no free pages.
2055 	 * free_pool_huge_page() will balance the freed pages across the
2056 	 * on-line nodes with memory and will handle the hstate accounting.
2057 	 *
2058 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2059 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2060 	 * to cover subsequent pages we may free.
2061 	 */
2062 	while (nr_pages--) {
2063 		h->resv_huge_pages--;
2064 		unused_resv_pages--;
2065 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2066 			goto out;
2067 		cond_resched_lock(&hugetlb_lock);
2068 	}
2069 
2070 out:
2071 	/* Fully uncommit the reservation */
2072 	h->resv_huge_pages -= unused_resv_pages;
2073 }
2074 
2075 
2076 /*
2077  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2078  * are used by the huge page allocation routines to manage reservations.
2079  *
2080  * vma_needs_reservation is called to determine if the huge page at addr
2081  * within the vma has an associated reservation.  If a reservation is
2082  * needed, the value 1 is returned.  The caller is then responsible for
2083  * managing the global reservation and subpool usage counts.  After
2084  * the huge page has been allocated, vma_commit_reservation is called
2085  * to add the page to the reservation map.  If the page allocation fails,
2086  * the reservation must be ended instead of committed.  vma_end_reservation
2087  * is called in such cases.
2088  *
2089  * In the normal case, vma_commit_reservation returns the same value
2090  * as the preceding vma_needs_reservation call.  The only time this
2091  * is not the case is if a reserve map was changed between calls.  It
2092  * is the responsibility of the caller to notice the difference and
2093  * take appropriate action.
2094  *
2095  * vma_add_reservation is used in error paths where a reservation must
2096  * be restored when a newly allocated huge page must be freed.  It is
2097  * to be called after calling vma_needs_reservation to determine if a
2098  * reservation exists.
2099  */
2100 enum vma_resv_mode {
2101 	VMA_NEEDS_RESV,
2102 	VMA_COMMIT_RESV,
2103 	VMA_END_RESV,
2104 	VMA_ADD_RESV,
2105 };
2106 static long __vma_reservation_common(struct hstate *h,
2107 				struct vm_area_struct *vma, unsigned long addr,
2108 				enum vma_resv_mode mode)
2109 {
2110 	struct resv_map *resv;
2111 	pgoff_t idx;
2112 	long ret;
2113 	long dummy_out_regions_needed;
2114 
2115 	resv = vma_resv_map(vma);
2116 	if (!resv)
2117 		return 1;
2118 
2119 	idx = vma_hugecache_offset(h, vma, addr);
2120 	switch (mode) {
2121 	case VMA_NEEDS_RESV:
2122 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2123 		/* We assume that vma_reservation_* routines always operate on
2124 		 * 1 page, and that adding to resv map a 1 page entry can only
2125 		 * ever require 1 region.
2126 		 */
2127 		VM_BUG_ON(dummy_out_regions_needed != 1);
2128 		break;
2129 	case VMA_COMMIT_RESV:
2130 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2131 		/* region_add calls of range 1 should never fail. */
2132 		VM_BUG_ON(ret < 0);
2133 		break;
2134 	case VMA_END_RESV:
2135 		region_abort(resv, idx, idx + 1, 1);
2136 		ret = 0;
2137 		break;
2138 	case VMA_ADD_RESV:
2139 		if (vma->vm_flags & VM_MAYSHARE) {
2140 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2141 			/* region_add calls of range 1 should never fail. */
2142 			VM_BUG_ON(ret < 0);
2143 		} else {
2144 			region_abort(resv, idx, idx + 1, 1);
2145 			ret = region_del(resv, idx, idx + 1);
2146 		}
2147 		break;
2148 	default:
2149 		BUG();
2150 	}
2151 
2152 	if (vma->vm_flags & VM_MAYSHARE)
2153 		return ret;
2154 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2155 		/*
2156 		 * In most cases, reserves always exist for private mappings.
2157 		 * However, a file associated with mapping could have been
2158 		 * hole punched or truncated after reserves were consumed.
2159 		 * As subsequent fault on such a range will not use reserves.
2160 		 * Subtle - The reserve map for private mappings has the
2161 		 * opposite meaning than that of shared mappings.  If NO
2162 		 * entry is in the reserve map, it means a reservation exists.
2163 		 * If an entry exists in the reserve map, it means the
2164 		 * reservation has already been consumed.  As a result, the
2165 		 * return value of this routine is the opposite of the
2166 		 * value returned from reserve map manipulation routines above.
2167 		 */
2168 		if (ret)
2169 			return 0;
2170 		else
2171 			return 1;
2172 	}
2173 	else
2174 		return ret < 0 ? ret : 0;
2175 }
2176 
2177 static long vma_needs_reservation(struct hstate *h,
2178 			struct vm_area_struct *vma, unsigned long addr)
2179 {
2180 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2181 }
2182 
2183 static long vma_commit_reservation(struct hstate *h,
2184 			struct vm_area_struct *vma, unsigned long addr)
2185 {
2186 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2187 }
2188 
2189 static void vma_end_reservation(struct hstate *h,
2190 			struct vm_area_struct *vma, unsigned long addr)
2191 {
2192 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2193 }
2194 
2195 static long vma_add_reservation(struct hstate *h,
2196 			struct vm_area_struct *vma, unsigned long addr)
2197 {
2198 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2199 }
2200 
2201 /*
2202  * This routine is called to restore a reservation on error paths.  In the
2203  * specific error paths, a huge page was allocated (via alloc_huge_page)
2204  * and is about to be freed.  If a reservation for the page existed,
2205  * alloc_huge_page would have consumed the reservation and set
2206  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2207  * via free_huge_page, the global reservation count will be incremented if
2208  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2209  * reserve map.  Adjust the reserve map here to be consistent with global
2210  * reserve count adjustments to be made by free_huge_page.
2211  */
2212 static void restore_reserve_on_error(struct hstate *h,
2213 			struct vm_area_struct *vma, unsigned long address,
2214 			struct page *page)
2215 {
2216 	if (unlikely(HPageRestoreReserve(page))) {
2217 		long rc = vma_needs_reservation(h, vma, address);
2218 
2219 		if (unlikely(rc < 0)) {
2220 			/*
2221 			 * Rare out of memory condition in reserve map
2222 			 * manipulation.  Clear HPageRestoreReserve so that
2223 			 * global reserve count will not be incremented
2224 			 * by free_huge_page.  This will make it appear
2225 			 * as though the reservation for this page was
2226 			 * consumed.  This may prevent the task from
2227 			 * faulting in the page at a later time.  This
2228 			 * is better than inconsistent global huge page
2229 			 * accounting of reserve counts.
2230 			 */
2231 			ClearHPageRestoreReserve(page);
2232 		} else if (rc) {
2233 			rc = vma_add_reservation(h, vma, address);
2234 			if (unlikely(rc < 0))
2235 				/*
2236 				 * See above comment about rare out of
2237 				 * memory condition.
2238 				 */
2239 				ClearHPageRestoreReserve(page);
2240 		} else
2241 			vma_end_reservation(h, vma, address);
2242 	}
2243 }
2244 
2245 struct page *alloc_huge_page(struct vm_area_struct *vma,
2246 				    unsigned long addr, int avoid_reserve)
2247 {
2248 	struct hugepage_subpool *spool = subpool_vma(vma);
2249 	struct hstate *h = hstate_vma(vma);
2250 	struct page *page;
2251 	long map_chg, map_commit;
2252 	long gbl_chg;
2253 	int ret, idx;
2254 	struct hugetlb_cgroup *h_cg;
2255 	bool deferred_reserve;
2256 
2257 	idx = hstate_index(h);
2258 	/*
2259 	 * Examine the region/reserve map to determine if the process
2260 	 * has a reservation for the page to be allocated.  A return
2261 	 * code of zero indicates a reservation exists (no change).
2262 	 */
2263 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2264 	if (map_chg < 0)
2265 		return ERR_PTR(-ENOMEM);
2266 
2267 	/*
2268 	 * Processes that did not create the mapping will have no
2269 	 * reserves as indicated by the region/reserve map. Check
2270 	 * that the allocation will not exceed the subpool limit.
2271 	 * Allocations for MAP_NORESERVE mappings also need to be
2272 	 * checked against any subpool limit.
2273 	 */
2274 	if (map_chg || avoid_reserve) {
2275 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2276 		if (gbl_chg < 0) {
2277 			vma_end_reservation(h, vma, addr);
2278 			return ERR_PTR(-ENOSPC);
2279 		}
2280 
2281 		/*
2282 		 * Even though there was no reservation in the region/reserve
2283 		 * map, there could be reservations associated with the
2284 		 * subpool that can be used.  This would be indicated if the
2285 		 * return value of hugepage_subpool_get_pages() is zero.
2286 		 * However, if avoid_reserve is specified we still avoid even
2287 		 * the subpool reservations.
2288 		 */
2289 		if (avoid_reserve)
2290 			gbl_chg = 1;
2291 	}
2292 
2293 	/* If this allocation is not consuming a reservation, charge it now.
2294 	 */
2295 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2296 	if (deferred_reserve) {
2297 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2298 			idx, pages_per_huge_page(h), &h_cg);
2299 		if (ret)
2300 			goto out_subpool_put;
2301 	}
2302 
2303 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2304 	if (ret)
2305 		goto out_uncharge_cgroup_reservation;
2306 
2307 	spin_lock(&hugetlb_lock);
2308 	/*
2309 	 * glb_chg is passed to indicate whether or not a page must be taken
2310 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2311 	 * a reservation exists for the allocation.
2312 	 */
2313 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2314 	if (!page) {
2315 		spin_unlock(&hugetlb_lock);
2316 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2317 		if (!page)
2318 			goto out_uncharge_cgroup;
2319 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2320 			SetHPageRestoreReserve(page);
2321 			h->resv_huge_pages--;
2322 		}
2323 		spin_lock(&hugetlb_lock);
2324 		list_add(&page->lru, &h->hugepage_activelist);
2325 		/* Fall through */
2326 	}
2327 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2328 	/* If allocation is not consuming a reservation, also store the
2329 	 * hugetlb_cgroup pointer on the page.
2330 	 */
2331 	if (deferred_reserve) {
2332 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2333 						  h_cg, page);
2334 	}
2335 
2336 	spin_unlock(&hugetlb_lock);
2337 
2338 	hugetlb_set_page_subpool(page, spool);
2339 
2340 	map_commit = vma_commit_reservation(h, vma, addr);
2341 	if (unlikely(map_chg > map_commit)) {
2342 		/*
2343 		 * The page was added to the reservation map between
2344 		 * vma_needs_reservation and vma_commit_reservation.
2345 		 * This indicates a race with hugetlb_reserve_pages.
2346 		 * Adjust for the subpool count incremented above AND
2347 		 * in hugetlb_reserve_pages for the same page.  Also,
2348 		 * the reservation count added in hugetlb_reserve_pages
2349 		 * no longer applies.
2350 		 */
2351 		long rsv_adjust;
2352 
2353 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2354 		hugetlb_acct_memory(h, -rsv_adjust);
2355 		if (deferred_reserve)
2356 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2357 					pages_per_huge_page(h), page);
2358 	}
2359 	return page;
2360 
2361 out_uncharge_cgroup:
2362 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2363 out_uncharge_cgroup_reservation:
2364 	if (deferred_reserve)
2365 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2366 						    h_cg);
2367 out_subpool_put:
2368 	if (map_chg || avoid_reserve)
2369 		hugepage_subpool_put_pages(spool, 1);
2370 	vma_end_reservation(h, vma, addr);
2371 	return ERR_PTR(-ENOSPC);
2372 }
2373 
2374 int alloc_bootmem_huge_page(struct hstate *h)
2375 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2376 int __alloc_bootmem_huge_page(struct hstate *h)
2377 {
2378 	struct huge_bootmem_page *m;
2379 	int nr_nodes, node;
2380 
2381 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2382 		void *addr;
2383 
2384 		addr = memblock_alloc_try_nid_raw(
2385 				huge_page_size(h), huge_page_size(h),
2386 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2387 		if (addr) {
2388 			/*
2389 			 * Use the beginning of the huge page to store the
2390 			 * huge_bootmem_page struct (until gather_bootmem
2391 			 * puts them into the mem_map).
2392 			 */
2393 			m = addr;
2394 			goto found;
2395 		}
2396 	}
2397 	return 0;
2398 
2399 found:
2400 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2401 	/* Put them into a private list first because mem_map is not up yet */
2402 	INIT_LIST_HEAD(&m->list);
2403 	list_add(&m->list, &huge_boot_pages);
2404 	m->hstate = h;
2405 	return 1;
2406 }
2407 
2408 static void __init prep_compound_huge_page(struct page *page,
2409 		unsigned int order)
2410 {
2411 	if (unlikely(order > (MAX_ORDER - 1)))
2412 		prep_compound_gigantic_page(page, order);
2413 	else
2414 		prep_compound_page(page, order);
2415 }
2416 
2417 /* Put bootmem huge pages into the standard lists after mem_map is up */
2418 static void __init gather_bootmem_prealloc(void)
2419 {
2420 	struct huge_bootmem_page *m;
2421 
2422 	list_for_each_entry(m, &huge_boot_pages, list) {
2423 		struct page *page = virt_to_page(m);
2424 		struct hstate *h = m->hstate;
2425 
2426 		WARN_ON(page_count(page) != 1);
2427 		prep_compound_huge_page(page, huge_page_order(h));
2428 		WARN_ON(PageReserved(page));
2429 		prep_new_huge_page(h, page, page_to_nid(page));
2430 		put_page(page); /* free it into the hugepage allocator */
2431 
2432 		/*
2433 		 * If we had gigantic hugepages allocated at boot time, we need
2434 		 * to restore the 'stolen' pages to totalram_pages in order to
2435 		 * fix confusing memory reports from free(1) and another
2436 		 * side-effects, like CommitLimit going negative.
2437 		 */
2438 		if (hstate_is_gigantic(h))
2439 			adjust_managed_page_count(page, pages_per_huge_page(h));
2440 		cond_resched();
2441 	}
2442 }
2443 
2444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2445 {
2446 	unsigned long i;
2447 	nodemask_t *node_alloc_noretry;
2448 
2449 	if (!hstate_is_gigantic(h)) {
2450 		/*
2451 		 * Bit mask controlling how hard we retry per-node allocations.
2452 		 * Ignore errors as lower level routines can deal with
2453 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2454 		 * time, we are likely in bigger trouble.
2455 		 */
2456 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2457 						GFP_KERNEL);
2458 	} else {
2459 		/* allocations done at boot time */
2460 		node_alloc_noretry = NULL;
2461 	}
2462 
2463 	/* bit mask controlling how hard we retry per-node allocations */
2464 	if (node_alloc_noretry)
2465 		nodes_clear(*node_alloc_noretry);
2466 
2467 	for (i = 0; i < h->max_huge_pages; ++i) {
2468 		if (hstate_is_gigantic(h)) {
2469 			if (hugetlb_cma_size) {
2470 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2471 				goto free;
2472 			}
2473 			if (!alloc_bootmem_huge_page(h))
2474 				break;
2475 		} else if (!alloc_pool_huge_page(h,
2476 					 &node_states[N_MEMORY],
2477 					 node_alloc_noretry))
2478 			break;
2479 		cond_resched();
2480 	}
2481 	if (i < h->max_huge_pages) {
2482 		char buf[32];
2483 
2484 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2485 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2486 			h->max_huge_pages, buf, i);
2487 		h->max_huge_pages = i;
2488 	}
2489 free:
2490 	kfree(node_alloc_noretry);
2491 }
2492 
2493 static void __init hugetlb_init_hstates(void)
2494 {
2495 	struct hstate *h;
2496 
2497 	for_each_hstate(h) {
2498 		if (minimum_order > huge_page_order(h))
2499 			minimum_order = huge_page_order(h);
2500 
2501 		/* oversize hugepages were init'ed in early boot */
2502 		if (!hstate_is_gigantic(h))
2503 			hugetlb_hstate_alloc_pages(h);
2504 	}
2505 	VM_BUG_ON(minimum_order == UINT_MAX);
2506 }
2507 
2508 static void __init report_hugepages(void)
2509 {
2510 	struct hstate *h;
2511 
2512 	for_each_hstate(h) {
2513 		char buf[32];
2514 
2515 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2516 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2517 			buf, h->free_huge_pages);
2518 	}
2519 }
2520 
2521 #ifdef CONFIG_HIGHMEM
2522 static void try_to_free_low(struct hstate *h, unsigned long count,
2523 						nodemask_t *nodes_allowed)
2524 {
2525 	int i;
2526 
2527 	if (hstate_is_gigantic(h))
2528 		return;
2529 
2530 	for_each_node_mask(i, *nodes_allowed) {
2531 		struct page *page, *next;
2532 		struct list_head *freel = &h->hugepage_freelists[i];
2533 		list_for_each_entry_safe(page, next, freel, lru) {
2534 			if (count >= h->nr_huge_pages)
2535 				return;
2536 			if (PageHighMem(page))
2537 				continue;
2538 			list_del(&page->lru);
2539 			update_and_free_page(h, page);
2540 			h->free_huge_pages--;
2541 			h->free_huge_pages_node[page_to_nid(page)]--;
2542 		}
2543 	}
2544 }
2545 #else
2546 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2547 						nodemask_t *nodes_allowed)
2548 {
2549 }
2550 #endif
2551 
2552 /*
2553  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2554  * balanced by operating on them in a round-robin fashion.
2555  * Returns 1 if an adjustment was made.
2556  */
2557 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2558 				int delta)
2559 {
2560 	int nr_nodes, node;
2561 
2562 	VM_BUG_ON(delta != -1 && delta != 1);
2563 
2564 	if (delta < 0) {
2565 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2566 			if (h->surplus_huge_pages_node[node])
2567 				goto found;
2568 		}
2569 	} else {
2570 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2571 			if (h->surplus_huge_pages_node[node] <
2572 					h->nr_huge_pages_node[node])
2573 				goto found;
2574 		}
2575 	}
2576 	return 0;
2577 
2578 found:
2579 	h->surplus_huge_pages += delta;
2580 	h->surplus_huge_pages_node[node] += delta;
2581 	return 1;
2582 }
2583 
2584 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2585 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2586 			      nodemask_t *nodes_allowed)
2587 {
2588 	unsigned long min_count, ret;
2589 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2590 
2591 	/*
2592 	 * Bit mask controlling how hard we retry per-node allocations.
2593 	 * If we can not allocate the bit mask, do not attempt to allocate
2594 	 * the requested huge pages.
2595 	 */
2596 	if (node_alloc_noretry)
2597 		nodes_clear(*node_alloc_noretry);
2598 	else
2599 		return -ENOMEM;
2600 
2601 	spin_lock(&hugetlb_lock);
2602 
2603 	/*
2604 	 * Check for a node specific request.
2605 	 * Changing node specific huge page count may require a corresponding
2606 	 * change to the global count.  In any case, the passed node mask
2607 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2608 	 */
2609 	if (nid != NUMA_NO_NODE) {
2610 		unsigned long old_count = count;
2611 
2612 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2613 		/*
2614 		 * User may have specified a large count value which caused the
2615 		 * above calculation to overflow.  In this case, they wanted
2616 		 * to allocate as many huge pages as possible.  Set count to
2617 		 * largest possible value to align with their intention.
2618 		 */
2619 		if (count < old_count)
2620 			count = ULONG_MAX;
2621 	}
2622 
2623 	/*
2624 	 * Gigantic pages runtime allocation depend on the capability for large
2625 	 * page range allocation.
2626 	 * If the system does not provide this feature, return an error when
2627 	 * the user tries to allocate gigantic pages but let the user free the
2628 	 * boottime allocated gigantic pages.
2629 	 */
2630 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2631 		if (count > persistent_huge_pages(h)) {
2632 			spin_unlock(&hugetlb_lock);
2633 			NODEMASK_FREE(node_alloc_noretry);
2634 			return -EINVAL;
2635 		}
2636 		/* Fall through to decrease pool */
2637 	}
2638 
2639 	/*
2640 	 * Increase the pool size
2641 	 * First take pages out of surplus state.  Then make up the
2642 	 * remaining difference by allocating fresh huge pages.
2643 	 *
2644 	 * We might race with alloc_surplus_huge_page() here and be unable
2645 	 * to convert a surplus huge page to a normal huge page. That is
2646 	 * not critical, though, it just means the overall size of the
2647 	 * pool might be one hugepage larger than it needs to be, but
2648 	 * within all the constraints specified by the sysctls.
2649 	 */
2650 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2651 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2652 			break;
2653 	}
2654 
2655 	while (count > persistent_huge_pages(h)) {
2656 		/*
2657 		 * If this allocation races such that we no longer need the
2658 		 * page, free_huge_page will handle it by freeing the page
2659 		 * and reducing the surplus.
2660 		 */
2661 		spin_unlock(&hugetlb_lock);
2662 
2663 		/* yield cpu to avoid soft lockup */
2664 		cond_resched();
2665 
2666 		ret = alloc_pool_huge_page(h, nodes_allowed,
2667 						node_alloc_noretry);
2668 		spin_lock(&hugetlb_lock);
2669 		if (!ret)
2670 			goto out;
2671 
2672 		/* Bail for signals. Probably ctrl-c from user */
2673 		if (signal_pending(current))
2674 			goto out;
2675 	}
2676 
2677 	/*
2678 	 * Decrease the pool size
2679 	 * First return free pages to the buddy allocator (being careful
2680 	 * to keep enough around to satisfy reservations).  Then place
2681 	 * pages into surplus state as needed so the pool will shrink
2682 	 * to the desired size as pages become free.
2683 	 *
2684 	 * By placing pages into the surplus state independent of the
2685 	 * overcommit value, we are allowing the surplus pool size to
2686 	 * exceed overcommit. There are few sane options here. Since
2687 	 * alloc_surplus_huge_page() is checking the global counter,
2688 	 * though, we'll note that we're not allowed to exceed surplus
2689 	 * and won't grow the pool anywhere else. Not until one of the
2690 	 * sysctls are changed, or the surplus pages go out of use.
2691 	 */
2692 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2693 	min_count = max(count, min_count);
2694 	try_to_free_low(h, min_count, nodes_allowed);
2695 	while (min_count < persistent_huge_pages(h)) {
2696 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2697 			break;
2698 		cond_resched_lock(&hugetlb_lock);
2699 	}
2700 	while (count < persistent_huge_pages(h)) {
2701 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2702 			break;
2703 	}
2704 out:
2705 	h->max_huge_pages = persistent_huge_pages(h);
2706 	spin_unlock(&hugetlb_lock);
2707 
2708 	NODEMASK_FREE(node_alloc_noretry);
2709 
2710 	return 0;
2711 }
2712 
2713 #define HSTATE_ATTR_RO(_name) \
2714 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2715 
2716 #define HSTATE_ATTR(_name) \
2717 	static struct kobj_attribute _name##_attr = \
2718 		__ATTR(_name, 0644, _name##_show, _name##_store)
2719 
2720 static struct kobject *hugepages_kobj;
2721 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2722 
2723 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2724 
2725 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2726 {
2727 	int i;
2728 
2729 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2730 		if (hstate_kobjs[i] == kobj) {
2731 			if (nidp)
2732 				*nidp = NUMA_NO_NODE;
2733 			return &hstates[i];
2734 		}
2735 
2736 	return kobj_to_node_hstate(kobj, nidp);
2737 }
2738 
2739 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2740 					struct kobj_attribute *attr, char *buf)
2741 {
2742 	struct hstate *h;
2743 	unsigned long nr_huge_pages;
2744 	int nid;
2745 
2746 	h = kobj_to_hstate(kobj, &nid);
2747 	if (nid == NUMA_NO_NODE)
2748 		nr_huge_pages = h->nr_huge_pages;
2749 	else
2750 		nr_huge_pages = h->nr_huge_pages_node[nid];
2751 
2752 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2753 }
2754 
2755 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2756 					   struct hstate *h, int nid,
2757 					   unsigned long count, size_t len)
2758 {
2759 	int err;
2760 	nodemask_t nodes_allowed, *n_mask;
2761 
2762 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2763 		return -EINVAL;
2764 
2765 	if (nid == NUMA_NO_NODE) {
2766 		/*
2767 		 * global hstate attribute
2768 		 */
2769 		if (!(obey_mempolicy &&
2770 				init_nodemask_of_mempolicy(&nodes_allowed)))
2771 			n_mask = &node_states[N_MEMORY];
2772 		else
2773 			n_mask = &nodes_allowed;
2774 	} else {
2775 		/*
2776 		 * Node specific request.  count adjustment happens in
2777 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2778 		 */
2779 		init_nodemask_of_node(&nodes_allowed, nid);
2780 		n_mask = &nodes_allowed;
2781 	}
2782 
2783 	err = set_max_huge_pages(h, count, nid, n_mask);
2784 
2785 	return err ? err : len;
2786 }
2787 
2788 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2789 					 struct kobject *kobj, const char *buf,
2790 					 size_t len)
2791 {
2792 	struct hstate *h;
2793 	unsigned long count;
2794 	int nid;
2795 	int err;
2796 
2797 	err = kstrtoul(buf, 10, &count);
2798 	if (err)
2799 		return err;
2800 
2801 	h = kobj_to_hstate(kobj, &nid);
2802 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2803 }
2804 
2805 static ssize_t nr_hugepages_show(struct kobject *kobj,
2806 				       struct kobj_attribute *attr, char *buf)
2807 {
2808 	return nr_hugepages_show_common(kobj, attr, buf);
2809 }
2810 
2811 static ssize_t nr_hugepages_store(struct kobject *kobj,
2812 	       struct kobj_attribute *attr, const char *buf, size_t len)
2813 {
2814 	return nr_hugepages_store_common(false, kobj, buf, len);
2815 }
2816 HSTATE_ATTR(nr_hugepages);
2817 
2818 #ifdef CONFIG_NUMA
2819 
2820 /*
2821  * hstate attribute for optionally mempolicy-based constraint on persistent
2822  * huge page alloc/free.
2823  */
2824 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2825 					   struct kobj_attribute *attr,
2826 					   char *buf)
2827 {
2828 	return nr_hugepages_show_common(kobj, attr, buf);
2829 }
2830 
2831 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2832 	       struct kobj_attribute *attr, const char *buf, size_t len)
2833 {
2834 	return nr_hugepages_store_common(true, kobj, buf, len);
2835 }
2836 HSTATE_ATTR(nr_hugepages_mempolicy);
2837 #endif
2838 
2839 
2840 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2841 					struct kobj_attribute *attr, char *buf)
2842 {
2843 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2844 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2845 }
2846 
2847 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2848 		struct kobj_attribute *attr, const char *buf, size_t count)
2849 {
2850 	int err;
2851 	unsigned long input;
2852 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2853 
2854 	if (hstate_is_gigantic(h))
2855 		return -EINVAL;
2856 
2857 	err = kstrtoul(buf, 10, &input);
2858 	if (err)
2859 		return err;
2860 
2861 	spin_lock(&hugetlb_lock);
2862 	h->nr_overcommit_huge_pages = input;
2863 	spin_unlock(&hugetlb_lock);
2864 
2865 	return count;
2866 }
2867 HSTATE_ATTR(nr_overcommit_hugepages);
2868 
2869 static ssize_t free_hugepages_show(struct kobject *kobj,
2870 					struct kobj_attribute *attr, char *buf)
2871 {
2872 	struct hstate *h;
2873 	unsigned long free_huge_pages;
2874 	int nid;
2875 
2876 	h = kobj_to_hstate(kobj, &nid);
2877 	if (nid == NUMA_NO_NODE)
2878 		free_huge_pages = h->free_huge_pages;
2879 	else
2880 		free_huge_pages = h->free_huge_pages_node[nid];
2881 
2882 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2883 }
2884 HSTATE_ATTR_RO(free_hugepages);
2885 
2886 static ssize_t resv_hugepages_show(struct kobject *kobj,
2887 					struct kobj_attribute *attr, char *buf)
2888 {
2889 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2890 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2891 }
2892 HSTATE_ATTR_RO(resv_hugepages);
2893 
2894 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2895 					struct kobj_attribute *attr, char *buf)
2896 {
2897 	struct hstate *h;
2898 	unsigned long surplus_huge_pages;
2899 	int nid;
2900 
2901 	h = kobj_to_hstate(kobj, &nid);
2902 	if (nid == NUMA_NO_NODE)
2903 		surplus_huge_pages = h->surplus_huge_pages;
2904 	else
2905 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2906 
2907 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2908 }
2909 HSTATE_ATTR_RO(surplus_hugepages);
2910 
2911 static struct attribute *hstate_attrs[] = {
2912 	&nr_hugepages_attr.attr,
2913 	&nr_overcommit_hugepages_attr.attr,
2914 	&free_hugepages_attr.attr,
2915 	&resv_hugepages_attr.attr,
2916 	&surplus_hugepages_attr.attr,
2917 #ifdef CONFIG_NUMA
2918 	&nr_hugepages_mempolicy_attr.attr,
2919 #endif
2920 	NULL,
2921 };
2922 
2923 static const struct attribute_group hstate_attr_group = {
2924 	.attrs = hstate_attrs,
2925 };
2926 
2927 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2928 				    struct kobject **hstate_kobjs,
2929 				    const struct attribute_group *hstate_attr_group)
2930 {
2931 	int retval;
2932 	int hi = hstate_index(h);
2933 
2934 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2935 	if (!hstate_kobjs[hi])
2936 		return -ENOMEM;
2937 
2938 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2939 	if (retval) {
2940 		kobject_put(hstate_kobjs[hi]);
2941 		hstate_kobjs[hi] = NULL;
2942 	}
2943 
2944 	return retval;
2945 }
2946 
2947 static void __init hugetlb_sysfs_init(void)
2948 {
2949 	struct hstate *h;
2950 	int err;
2951 
2952 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2953 	if (!hugepages_kobj)
2954 		return;
2955 
2956 	for_each_hstate(h) {
2957 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2958 					 hstate_kobjs, &hstate_attr_group);
2959 		if (err)
2960 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2961 	}
2962 }
2963 
2964 #ifdef CONFIG_NUMA
2965 
2966 /*
2967  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2968  * with node devices in node_devices[] using a parallel array.  The array
2969  * index of a node device or _hstate == node id.
2970  * This is here to avoid any static dependency of the node device driver, in
2971  * the base kernel, on the hugetlb module.
2972  */
2973 struct node_hstate {
2974 	struct kobject		*hugepages_kobj;
2975 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2976 };
2977 static struct node_hstate node_hstates[MAX_NUMNODES];
2978 
2979 /*
2980  * A subset of global hstate attributes for node devices
2981  */
2982 static struct attribute *per_node_hstate_attrs[] = {
2983 	&nr_hugepages_attr.attr,
2984 	&free_hugepages_attr.attr,
2985 	&surplus_hugepages_attr.attr,
2986 	NULL,
2987 };
2988 
2989 static const struct attribute_group per_node_hstate_attr_group = {
2990 	.attrs = per_node_hstate_attrs,
2991 };
2992 
2993 /*
2994  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2995  * Returns node id via non-NULL nidp.
2996  */
2997 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2998 {
2999 	int nid;
3000 
3001 	for (nid = 0; nid < nr_node_ids; nid++) {
3002 		struct node_hstate *nhs = &node_hstates[nid];
3003 		int i;
3004 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3005 			if (nhs->hstate_kobjs[i] == kobj) {
3006 				if (nidp)
3007 					*nidp = nid;
3008 				return &hstates[i];
3009 			}
3010 	}
3011 
3012 	BUG();
3013 	return NULL;
3014 }
3015 
3016 /*
3017  * Unregister hstate attributes from a single node device.
3018  * No-op if no hstate attributes attached.
3019  */
3020 static void hugetlb_unregister_node(struct node *node)
3021 {
3022 	struct hstate *h;
3023 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3024 
3025 	if (!nhs->hugepages_kobj)
3026 		return;		/* no hstate attributes */
3027 
3028 	for_each_hstate(h) {
3029 		int idx = hstate_index(h);
3030 		if (nhs->hstate_kobjs[idx]) {
3031 			kobject_put(nhs->hstate_kobjs[idx]);
3032 			nhs->hstate_kobjs[idx] = NULL;
3033 		}
3034 	}
3035 
3036 	kobject_put(nhs->hugepages_kobj);
3037 	nhs->hugepages_kobj = NULL;
3038 }
3039 
3040 
3041 /*
3042  * Register hstate attributes for a single node device.
3043  * No-op if attributes already registered.
3044  */
3045 static void hugetlb_register_node(struct node *node)
3046 {
3047 	struct hstate *h;
3048 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3049 	int err;
3050 
3051 	if (nhs->hugepages_kobj)
3052 		return;		/* already allocated */
3053 
3054 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3055 							&node->dev.kobj);
3056 	if (!nhs->hugepages_kobj)
3057 		return;
3058 
3059 	for_each_hstate(h) {
3060 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3061 						nhs->hstate_kobjs,
3062 						&per_node_hstate_attr_group);
3063 		if (err) {
3064 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3065 				h->name, node->dev.id);
3066 			hugetlb_unregister_node(node);
3067 			break;
3068 		}
3069 	}
3070 }
3071 
3072 /*
3073  * hugetlb init time:  register hstate attributes for all registered node
3074  * devices of nodes that have memory.  All on-line nodes should have
3075  * registered their associated device by this time.
3076  */
3077 static void __init hugetlb_register_all_nodes(void)
3078 {
3079 	int nid;
3080 
3081 	for_each_node_state(nid, N_MEMORY) {
3082 		struct node *node = node_devices[nid];
3083 		if (node->dev.id == nid)
3084 			hugetlb_register_node(node);
3085 	}
3086 
3087 	/*
3088 	 * Let the node device driver know we're here so it can
3089 	 * [un]register hstate attributes on node hotplug.
3090 	 */
3091 	register_hugetlbfs_with_node(hugetlb_register_node,
3092 				     hugetlb_unregister_node);
3093 }
3094 #else	/* !CONFIG_NUMA */
3095 
3096 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3097 {
3098 	BUG();
3099 	if (nidp)
3100 		*nidp = -1;
3101 	return NULL;
3102 }
3103 
3104 static void hugetlb_register_all_nodes(void) { }
3105 
3106 #endif
3107 
3108 static int __init hugetlb_init(void)
3109 {
3110 	int i;
3111 
3112 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3113 			__NR_HPAGEFLAGS);
3114 
3115 	if (!hugepages_supported()) {
3116 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3117 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3118 		return 0;
3119 	}
3120 
3121 	/*
3122 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3123 	 * architectures depend on setup being done here.
3124 	 */
3125 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3126 	if (!parsed_default_hugepagesz) {
3127 		/*
3128 		 * If we did not parse a default huge page size, set
3129 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3130 		 * number of huge pages for this default size was implicitly
3131 		 * specified, set that here as well.
3132 		 * Note that the implicit setting will overwrite an explicit
3133 		 * setting.  A warning will be printed in this case.
3134 		 */
3135 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3136 		if (default_hstate_max_huge_pages) {
3137 			if (default_hstate.max_huge_pages) {
3138 				char buf[32];
3139 
3140 				string_get_size(huge_page_size(&default_hstate),
3141 					1, STRING_UNITS_2, buf, 32);
3142 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3143 					default_hstate.max_huge_pages, buf);
3144 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3145 					default_hstate_max_huge_pages);
3146 			}
3147 			default_hstate.max_huge_pages =
3148 				default_hstate_max_huge_pages;
3149 		}
3150 	}
3151 
3152 	hugetlb_cma_check();
3153 	hugetlb_init_hstates();
3154 	gather_bootmem_prealloc();
3155 	report_hugepages();
3156 
3157 	hugetlb_sysfs_init();
3158 	hugetlb_register_all_nodes();
3159 	hugetlb_cgroup_file_init();
3160 
3161 #ifdef CONFIG_SMP
3162 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3163 #else
3164 	num_fault_mutexes = 1;
3165 #endif
3166 	hugetlb_fault_mutex_table =
3167 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3168 			      GFP_KERNEL);
3169 	BUG_ON(!hugetlb_fault_mutex_table);
3170 
3171 	for (i = 0; i < num_fault_mutexes; i++)
3172 		mutex_init(&hugetlb_fault_mutex_table[i]);
3173 	return 0;
3174 }
3175 subsys_initcall(hugetlb_init);
3176 
3177 /* Overwritten by architectures with more huge page sizes */
3178 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3179 {
3180 	return size == HPAGE_SIZE;
3181 }
3182 
3183 void __init hugetlb_add_hstate(unsigned int order)
3184 {
3185 	struct hstate *h;
3186 	unsigned long i;
3187 
3188 	if (size_to_hstate(PAGE_SIZE << order)) {
3189 		return;
3190 	}
3191 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3192 	BUG_ON(order == 0);
3193 	h = &hstates[hugetlb_max_hstate++];
3194 	h->order = order;
3195 	h->mask = ~(huge_page_size(h) - 1);
3196 	for (i = 0; i < MAX_NUMNODES; ++i)
3197 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3198 	INIT_LIST_HEAD(&h->hugepage_activelist);
3199 	h->next_nid_to_alloc = first_memory_node;
3200 	h->next_nid_to_free = first_memory_node;
3201 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3202 					huge_page_size(h)/1024);
3203 
3204 	parsed_hstate = h;
3205 }
3206 
3207 /*
3208  * hugepages command line processing
3209  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3210  * specification.  If not, ignore the hugepages value.  hugepages can also
3211  * be the first huge page command line  option in which case it implicitly
3212  * specifies the number of huge pages for the default size.
3213  */
3214 static int __init hugepages_setup(char *s)
3215 {
3216 	unsigned long *mhp;
3217 	static unsigned long *last_mhp;
3218 
3219 	if (!parsed_valid_hugepagesz) {
3220 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3221 		parsed_valid_hugepagesz = true;
3222 		return 0;
3223 	}
3224 
3225 	/*
3226 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3227 	 * yet, so this hugepages= parameter goes to the "default hstate".
3228 	 * Otherwise, it goes with the previously parsed hugepagesz or
3229 	 * default_hugepagesz.
3230 	 */
3231 	else if (!hugetlb_max_hstate)
3232 		mhp = &default_hstate_max_huge_pages;
3233 	else
3234 		mhp = &parsed_hstate->max_huge_pages;
3235 
3236 	if (mhp == last_mhp) {
3237 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3238 		return 0;
3239 	}
3240 
3241 	if (sscanf(s, "%lu", mhp) <= 0)
3242 		*mhp = 0;
3243 
3244 	/*
3245 	 * Global state is always initialized later in hugetlb_init.
3246 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3247 	 * use the bootmem allocator.
3248 	 */
3249 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3250 		hugetlb_hstate_alloc_pages(parsed_hstate);
3251 
3252 	last_mhp = mhp;
3253 
3254 	return 1;
3255 }
3256 __setup("hugepages=", hugepages_setup);
3257 
3258 /*
3259  * hugepagesz command line processing
3260  * A specific huge page size can only be specified once with hugepagesz.
3261  * hugepagesz is followed by hugepages on the command line.  The global
3262  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3263  * hugepagesz argument was valid.
3264  */
3265 static int __init hugepagesz_setup(char *s)
3266 {
3267 	unsigned long size;
3268 	struct hstate *h;
3269 
3270 	parsed_valid_hugepagesz = false;
3271 	size = (unsigned long)memparse(s, NULL);
3272 
3273 	if (!arch_hugetlb_valid_size(size)) {
3274 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3275 		return 0;
3276 	}
3277 
3278 	h = size_to_hstate(size);
3279 	if (h) {
3280 		/*
3281 		 * hstate for this size already exists.  This is normally
3282 		 * an error, but is allowed if the existing hstate is the
3283 		 * default hstate.  More specifically, it is only allowed if
3284 		 * the number of huge pages for the default hstate was not
3285 		 * previously specified.
3286 		 */
3287 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3288 		    default_hstate.max_huge_pages) {
3289 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3290 			return 0;
3291 		}
3292 
3293 		/*
3294 		 * No need to call hugetlb_add_hstate() as hstate already
3295 		 * exists.  But, do set parsed_hstate so that a following
3296 		 * hugepages= parameter will be applied to this hstate.
3297 		 */
3298 		parsed_hstate = h;
3299 		parsed_valid_hugepagesz = true;
3300 		return 1;
3301 	}
3302 
3303 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3304 	parsed_valid_hugepagesz = true;
3305 	return 1;
3306 }
3307 __setup("hugepagesz=", hugepagesz_setup);
3308 
3309 /*
3310  * default_hugepagesz command line input
3311  * Only one instance of default_hugepagesz allowed on command line.
3312  */
3313 static int __init default_hugepagesz_setup(char *s)
3314 {
3315 	unsigned long size;
3316 
3317 	parsed_valid_hugepagesz = false;
3318 	if (parsed_default_hugepagesz) {
3319 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3320 		return 0;
3321 	}
3322 
3323 	size = (unsigned long)memparse(s, NULL);
3324 
3325 	if (!arch_hugetlb_valid_size(size)) {
3326 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3327 		return 0;
3328 	}
3329 
3330 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3331 	parsed_valid_hugepagesz = true;
3332 	parsed_default_hugepagesz = true;
3333 	default_hstate_idx = hstate_index(size_to_hstate(size));
3334 
3335 	/*
3336 	 * The number of default huge pages (for this size) could have been
3337 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3338 	 * then default_hstate_max_huge_pages is set.  If the default huge
3339 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3340 	 * allocated here from bootmem allocator.
3341 	 */
3342 	if (default_hstate_max_huge_pages) {
3343 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3344 		if (hstate_is_gigantic(&default_hstate))
3345 			hugetlb_hstate_alloc_pages(&default_hstate);
3346 		default_hstate_max_huge_pages = 0;
3347 	}
3348 
3349 	return 1;
3350 }
3351 __setup("default_hugepagesz=", default_hugepagesz_setup);
3352 
3353 static unsigned int allowed_mems_nr(struct hstate *h)
3354 {
3355 	int node;
3356 	unsigned int nr = 0;
3357 	nodemask_t *mpol_allowed;
3358 	unsigned int *array = h->free_huge_pages_node;
3359 	gfp_t gfp_mask = htlb_alloc_mask(h);
3360 
3361 	mpol_allowed = policy_nodemask_current(gfp_mask);
3362 
3363 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3364 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3365 			nr += array[node];
3366 	}
3367 
3368 	return nr;
3369 }
3370 
3371 #ifdef CONFIG_SYSCTL
3372 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3373 					  void *buffer, size_t *length,
3374 					  loff_t *ppos, unsigned long *out)
3375 {
3376 	struct ctl_table dup_table;
3377 
3378 	/*
3379 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3380 	 * can duplicate the @table and alter the duplicate of it.
3381 	 */
3382 	dup_table = *table;
3383 	dup_table.data = out;
3384 
3385 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3386 }
3387 
3388 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3389 			 struct ctl_table *table, int write,
3390 			 void *buffer, size_t *length, loff_t *ppos)
3391 {
3392 	struct hstate *h = &default_hstate;
3393 	unsigned long tmp = h->max_huge_pages;
3394 	int ret;
3395 
3396 	if (!hugepages_supported())
3397 		return -EOPNOTSUPP;
3398 
3399 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3400 					     &tmp);
3401 	if (ret)
3402 		goto out;
3403 
3404 	if (write)
3405 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3406 						  NUMA_NO_NODE, tmp, *length);
3407 out:
3408 	return ret;
3409 }
3410 
3411 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3412 			  void *buffer, size_t *length, loff_t *ppos)
3413 {
3414 
3415 	return hugetlb_sysctl_handler_common(false, table, write,
3416 							buffer, length, ppos);
3417 }
3418 
3419 #ifdef CONFIG_NUMA
3420 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3421 			  void *buffer, size_t *length, loff_t *ppos)
3422 {
3423 	return hugetlb_sysctl_handler_common(true, table, write,
3424 							buffer, length, ppos);
3425 }
3426 #endif /* CONFIG_NUMA */
3427 
3428 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3429 		void *buffer, size_t *length, loff_t *ppos)
3430 {
3431 	struct hstate *h = &default_hstate;
3432 	unsigned long tmp;
3433 	int ret;
3434 
3435 	if (!hugepages_supported())
3436 		return -EOPNOTSUPP;
3437 
3438 	tmp = h->nr_overcommit_huge_pages;
3439 
3440 	if (write && hstate_is_gigantic(h))
3441 		return -EINVAL;
3442 
3443 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3444 					     &tmp);
3445 	if (ret)
3446 		goto out;
3447 
3448 	if (write) {
3449 		spin_lock(&hugetlb_lock);
3450 		h->nr_overcommit_huge_pages = tmp;
3451 		spin_unlock(&hugetlb_lock);
3452 	}
3453 out:
3454 	return ret;
3455 }
3456 
3457 #endif /* CONFIG_SYSCTL */
3458 
3459 void hugetlb_report_meminfo(struct seq_file *m)
3460 {
3461 	struct hstate *h;
3462 	unsigned long total = 0;
3463 
3464 	if (!hugepages_supported())
3465 		return;
3466 
3467 	for_each_hstate(h) {
3468 		unsigned long count = h->nr_huge_pages;
3469 
3470 		total += huge_page_size(h) * count;
3471 
3472 		if (h == &default_hstate)
3473 			seq_printf(m,
3474 				   "HugePages_Total:   %5lu\n"
3475 				   "HugePages_Free:    %5lu\n"
3476 				   "HugePages_Rsvd:    %5lu\n"
3477 				   "HugePages_Surp:    %5lu\n"
3478 				   "Hugepagesize:   %8lu kB\n",
3479 				   count,
3480 				   h->free_huge_pages,
3481 				   h->resv_huge_pages,
3482 				   h->surplus_huge_pages,
3483 				   huge_page_size(h) / SZ_1K);
3484 	}
3485 
3486 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3487 }
3488 
3489 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3490 {
3491 	struct hstate *h = &default_hstate;
3492 
3493 	if (!hugepages_supported())
3494 		return 0;
3495 
3496 	return sysfs_emit_at(buf, len,
3497 			     "Node %d HugePages_Total: %5u\n"
3498 			     "Node %d HugePages_Free:  %5u\n"
3499 			     "Node %d HugePages_Surp:  %5u\n",
3500 			     nid, h->nr_huge_pages_node[nid],
3501 			     nid, h->free_huge_pages_node[nid],
3502 			     nid, h->surplus_huge_pages_node[nid]);
3503 }
3504 
3505 void hugetlb_show_meminfo(void)
3506 {
3507 	struct hstate *h;
3508 	int nid;
3509 
3510 	if (!hugepages_supported())
3511 		return;
3512 
3513 	for_each_node_state(nid, N_MEMORY)
3514 		for_each_hstate(h)
3515 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3516 				nid,
3517 				h->nr_huge_pages_node[nid],
3518 				h->free_huge_pages_node[nid],
3519 				h->surplus_huge_pages_node[nid],
3520 				huge_page_size(h) / SZ_1K);
3521 }
3522 
3523 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3524 {
3525 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3526 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3527 }
3528 
3529 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3530 unsigned long hugetlb_total_pages(void)
3531 {
3532 	struct hstate *h;
3533 	unsigned long nr_total_pages = 0;
3534 
3535 	for_each_hstate(h)
3536 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3537 	return nr_total_pages;
3538 }
3539 
3540 static int hugetlb_acct_memory(struct hstate *h, long delta)
3541 {
3542 	int ret = -ENOMEM;
3543 
3544 	if (!delta)
3545 		return 0;
3546 
3547 	spin_lock(&hugetlb_lock);
3548 	/*
3549 	 * When cpuset is configured, it breaks the strict hugetlb page
3550 	 * reservation as the accounting is done on a global variable. Such
3551 	 * reservation is completely rubbish in the presence of cpuset because
3552 	 * the reservation is not checked against page availability for the
3553 	 * current cpuset. Application can still potentially OOM'ed by kernel
3554 	 * with lack of free htlb page in cpuset that the task is in.
3555 	 * Attempt to enforce strict accounting with cpuset is almost
3556 	 * impossible (or too ugly) because cpuset is too fluid that
3557 	 * task or memory node can be dynamically moved between cpusets.
3558 	 *
3559 	 * The change of semantics for shared hugetlb mapping with cpuset is
3560 	 * undesirable. However, in order to preserve some of the semantics,
3561 	 * we fall back to check against current free page availability as
3562 	 * a best attempt and hopefully to minimize the impact of changing
3563 	 * semantics that cpuset has.
3564 	 *
3565 	 * Apart from cpuset, we also have memory policy mechanism that
3566 	 * also determines from which node the kernel will allocate memory
3567 	 * in a NUMA system. So similar to cpuset, we also should consider
3568 	 * the memory policy of the current task. Similar to the description
3569 	 * above.
3570 	 */
3571 	if (delta > 0) {
3572 		if (gather_surplus_pages(h, delta) < 0)
3573 			goto out;
3574 
3575 		if (delta > allowed_mems_nr(h)) {
3576 			return_unused_surplus_pages(h, delta);
3577 			goto out;
3578 		}
3579 	}
3580 
3581 	ret = 0;
3582 	if (delta < 0)
3583 		return_unused_surplus_pages(h, (unsigned long) -delta);
3584 
3585 out:
3586 	spin_unlock(&hugetlb_lock);
3587 	return ret;
3588 }
3589 
3590 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3591 {
3592 	struct resv_map *resv = vma_resv_map(vma);
3593 
3594 	/*
3595 	 * This new VMA should share its siblings reservation map if present.
3596 	 * The VMA will only ever have a valid reservation map pointer where
3597 	 * it is being copied for another still existing VMA.  As that VMA
3598 	 * has a reference to the reservation map it cannot disappear until
3599 	 * after this open call completes.  It is therefore safe to take a
3600 	 * new reference here without additional locking.
3601 	 */
3602 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3603 		kref_get(&resv->refs);
3604 }
3605 
3606 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3607 {
3608 	struct hstate *h = hstate_vma(vma);
3609 	struct resv_map *resv = vma_resv_map(vma);
3610 	struct hugepage_subpool *spool = subpool_vma(vma);
3611 	unsigned long reserve, start, end;
3612 	long gbl_reserve;
3613 
3614 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3615 		return;
3616 
3617 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3618 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3619 
3620 	reserve = (end - start) - region_count(resv, start, end);
3621 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3622 	if (reserve) {
3623 		/*
3624 		 * Decrement reserve counts.  The global reserve count may be
3625 		 * adjusted if the subpool has a minimum size.
3626 		 */
3627 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3628 		hugetlb_acct_memory(h, -gbl_reserve);
3629 	}
3630 
3631 	kref_put(&resv->refs, resv_map_release);
3632 }
3633 
3634 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3635 {
3636 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3637 		return -EINVAL;
3638 	return 0;
3639 }
3640 
3641 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3642 {
3643 	return huge_page_size(hstate_vma(vma));
3644 }
3645 
3646 /*
3647  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3648  * handle_mm_fault() to try to instantiate regular-sized pages in the
3649  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3650  * this far.
3651  */
3652 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3653 {
3654 	BUG();
3655 	return 0;
3656 }
3657 
3658 /*
3659  * When a new function is introduced to vm_operations_struct and added
3660  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3661  * This is because under System V memory model, mappings created via
3662  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3663  * their original vm_ops are overwritten with shm_vm_ops.
3664  */
3665 const struct vm_operations_struct hugetlb_vm_ops = {
3666 	.fault = hugetlb_vm_op_fault,
3667 	.open = hugetlb_vm_op_open,
3668 	.close = hugetlb_vm_op_close,
3669 	.may_split = hugetlb_vm_op_split,
3670 	.pagesize = hugetlb_vm_op_pagesize,
3671 };
3672 
3673 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3674 				int writable)
3675 {
3676 	pte_t entry;
3677 
3678 	if (writable) {
3679 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3680 					 vma->vm_page_prot)));
3681 	} else {
3682 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3683 					   vma->vm_page_prot));
3684 	}
3685 	entry = pte_mkyoung(entry);
3686 	entry = pte_mkhuge(entry);
3687 	entry = arch_make_huge_pte(entry, vma, page, writable);
3688 
3689 	return entry;
3690 }
3691 
3692 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3693 				   unsigned long address, pte_t *ptep)
3694 {
3695 	pte_t entry;
3696 
3697 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3698 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3699 		update_mmu_cache(vma, address, ptep);
3700 }
3701 
3702 bool is_hugetlb_entry_migration(pte_t pte)
3703 {
3704 	swp_entry_t swp;
3705 
3706 	if (huge_pte_none(pte) || pte_present(pte))
3707 		return false;
3708 	swp = pte_to_swp_entry(pte);
3709 	if (is_migration_entry(swp))
3710 		return true;
3711 	else
3712 		return false;
3713 }
3714 
3715 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3716 {
3717 	swp_entry_t swp;
3718 
3719 	if (huge_pte_none(pte) || pte_present(pte))
3720 		return false;
3721 	swp = pte_to_swp_entry(pte);
3722 	if (is_hwpoison_entry(swp))
3723 		return true;
3724 	else
3725 		return false;
3726 }
3727 
3728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3729 			    struct vm_area_struct *vma)
3730 {
3731 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3732 	struct page *ptepage;
3733 	unsigned long addr;
3734 	int cow;
3735 	struct hstate *h = hstate_vma(vma);
3736 	unsigned long sz = huge_page_size(h);
3737 	struct address_space *mapping = vma->vm_file->f_mapping;
3738 	struct mmu_notifier_range range;
3739 	int ret = 0;
3740 
3741 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3742 
3743 	if (cow) {
3744 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3745 					vma->vm_start,
3746 					vma->vm_end);
3747 		mmu_notifier_invalidate_range_start(&range);
3748 	} else {
3749 		/*
3750 		 * For shared mappings i_mmap_rwsem must be held to call
3751 		 * huge_pte_alloc, otherwise the returned ptep could go
3752 		 * away if part of a shared pmd and another thread calls
3753 		 * huge_pmd_unshare.
3754 		 */
3755 		i_mmap_lock_read(mapping);
3756 	}
3757 
3758 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3759 		spinlock_t *src_ptl, *dst_ptl;
3760 		src_pte = huge_pte_offset(src, addr, sz);
3761 		if (!src_pte)
3762 			continue;
3763 		dst_pte = huge_pte_alloc(dst, addr, sz);
3764 		if (!dst_pte) {
3765 			ret = -ENOMEM;
3766 			break;
3767 		}
3768 
3769 		/*
3770 		 * If the pagetables are shared don't copy or take references.
3771 		 * dst_pte == src_pte is the common case of src/dest sharing.
3772 		 *
3773 		 * However, src could have 'unshared' and dst shares with
3774 		 * another vma.  If dst_pte !none, this implies sharing.
3775 		 * Check here before taking page table lock, and once again
3776 		 * after taking the lock below.
3777 		 */
3778 		dst_entry = huge_ptep_get(dst_pte);
3779 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3780 			continue;
3781 
3782 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3783 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3784 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3785 		entry = huge_ptep_get(src_pte);
3786 		dst_entry = huge_ptep_get(dst_pte);
3787 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3788 			/*
3789 			 * Skip if src entry none.  Also, skip in the
3790 			 * unlikely case dst entry !none as this implies
3791 			 * sharing with another vma.
3792 			 */
3793 			;
3794 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3795 				    is_hugetlb_entry_hwpoisoned(entry))) {
3796 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3797 
3798 			if (is_write_migration_entry(swp_entry) && cow) {
3799 				/*
3800 				 * COW mappings require pages in both
3801 				 * parent and child to be set to read.
3802 				 */
3803 				make_migration_entry_read(&swp_entry);
3804 				entry = swp_entry_to_pte(swp_entry);
3805 				set_huge_swap_pte_at(src, addr, src_pte,
3806 						     entry, sz);
3807 			}
3808 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3809 		} else {
3810 			if (cow) {
3811 				/*
3812 				 * No need to notify as we are downgrading page
3813 				 * table protection not changing it to point
3814 				 * to a new page.
3815 				 *
3816 				 * See Documentation/vm/mmu_notifier.rst
3817 				 */
3818 				huge_ptep_set_wrprotect(src, addr, src_pte);
3819 			}
3820 			entry = huge_ptep_get(src_pte);
3821 			ptepage = pte_page(entry);
3822 			get_page(ptepage);
3823 			page_dup_rmap(ptepage, true);
3824 			set_huge_pte_at(dst, addr, dst_pte, entry);
3825 			hugetlb_count_add(pages_per_huge_page(h), dst);
3826 		}
3827 		spin_unlock(src_ptl);
3828 		spin_unlock(dst_ptl);
3829 	}
3830 
3831 	if (cow)
3832 		mmu_notifier_invalidate_range_end(&range);
3833 	else
3834 		i_mmap_unlock_read(mapping);
3835 
3836 	return ret;
3837 }
3838 
3839 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3840 			    unsigned long start, unsigned long end,
3841 			    struct page *ref_page)
3842 {
3843 	struct mm_struct *mm = vma->vm_mm;
3844 	unsigned long address;
3845 	pte_t *ptep;
3846 	pte_t pte;
3847 	spinlock_t *ptl;
3848 	struct page *page;
3849 	struct hstate *h = hstate_vma(vma);
3850 	unsigned long sz = huge_page_size(h);
3851 	struct mmu_notifier_range range;
3852 
3853 	WARN_ON(!is_vm_hugetlb_page(vma));
3854 	BUG_ON(start & ~huge_page_mask(h));
3855 	BUG_ON(end & ~huge_page_mask(h));
3856 
3857 	/*
3858 	 * This is a hugetlb vma, all the pte entries should point
3859 	 * to huge page.
3860 	 */
3861 	tlb_change_page_size(tlb, sz);
3862 	tlb_start_vma(tlb, vma);
3863 
3864 	/*
3865 	 * If sharing possible, alert mmu notifiers of worst case.
3866 	 */
3867 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3868 				end);
3869 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3870 	mmu_notifier_invalidate_range_start(&range);
3871 	address = start;
3872 	for (; address < end; address += sz) {
3873 		ptep = huge_pte_offset(mm, address, sz);
3874 		if (!ptep)
3875 			continue;
3876 
3877 		ptl = huge_pte_lock(h, mm, ptep);
3878 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3879 			spin_unlock(ptl);
3880 			/*
3881 			 * We just unmapped a page of PMDs by clearing a PUD.
3882 			 * The caller's TLB flush range should cover this area.
3883 			 */
3884 			continue;
3885 		}
3886 
3887 		pte = huge_ptep_get(ptep);
3888 		if (huge_pte_none(pte)) {
3889 			spin_unlock(ptl);
3890 			continue;
3891 		}
3892 
3893 		/*
3894 		 * Migrating hugepage or HWPoisoned hugepage is already
3895 		 * unmapped and its refcount is dropped, so just clear pte here.
3896 		 */
3897 		if (unlikely(!pte_present(pte))) {
3898 			huge_pte_clear(mm, address, ptep, sz);
3899 			spin_unlock(ptl);
3900 			continue;
3901 		}
3902 
3903 		page = pte_page(pte);
3904 		/*
3905 		 * If a reference page is supplied, it is because a specific
3906 		 * page is being unmapped, not a range. Ensure the page we
3907 		 * are about to unmap is the actual page of interest.
3908 		 */
3909 		if (ref_page) {
3910 			if (page != ref_page) {
3911 				spin_unlock(ptl);
3912 				continue;
3913 			}
3914 			/*
3915 			 * Mark the VMA as having unmapped its page so that
3916 			 * future faults in this VMA will fail rather than
3917 			 * looking like data was lost
3918 			 */
3919 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3920 		}
3921 
3922 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3923 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3924 		if (huge_pte_dirty(pte))
3925 			set_page_dirty(page);
3926 
3927 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3928 		page_remove_rmap(page, true);
3929 
3930 		spin_unlock(ptl);
3931 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3932 		/*
3933 		 * Bail out after unmapping reference page if supplied
3934 		 */
3935 		if (ref_page)
3936 			break;
3937 	}
3938 	mmu_notifier_invalidate_range_end(&range);
3939 	tlb_end_vma(tlb, vma);
3940 }
3941 
3942 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3943 			  struct vm_area_struct *vma, unsigned long start,
3944 			  unsigned long end, struct page *ref_page)
3945 {
3946 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3947 
3948 	/*
3949 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3950 	 * test will fail on a vma being torn down, and not grab a page table
3951 	 * on its way out.  We're lucky that the flag has such an appropriate
3952 	 * name, and can in fact be safely cleared here. We could clear it
3953 	 * before the __unmap_hugepage_range above, but all that's necessary
3954 	 * is to clear it before releasing the i_mmap_rwsem. This works
3955 	 * because in the context this is called, the VMA is about to be
3956 	 * destroyed and the i_mmap_rwsem is held.
3957 	 */
3958 	vma->vm_flags &= ~VM_MAYSHARE;
3959 }
3960 
3961 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3962 			  unsigned long end, struct page *ref_page)
3963 {
3964 	struct mmu_gather tlb;
3965 
3966 	tlb_gather_mmu(&tlb, vma->vm_mm);
3967 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3968 	tlb_finish_mmu(&tlb);
3969 }
3970 
3971 /*
3972  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3973  * mapping it owns the reserve page for. The intention is to unmap the page
3974  * from other VMAs and let the children be SIGKILLed if they are faulting the
3975  * same region.
3976  */
3977 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3978 			      struct page *page, unsigned long address)
3979 {
3980 	struct hstate *h = hstate_vma(vma);
3981 	struct vm_area_struct *iter_vma;
3982 	struct address_space *mapping;
3983 	pgoff_t pgoff;
3984 
3985 	/*
3986 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3987 	 * from page cache lookup which is in HPAGE_SIZE units.
3988 	 */
3989 	address = address & huge_page_mask(h);
3990 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3991 			vma->vm_pgoff;
3992 	mapping = vma->vm_file->f_mapping;
3993 
3994 	/*
3995 	 * Take the mapping lock for the duration of the table walk. As
3996 	 * this mapping should be shared between all the VMAs,
3997 	 * __unmap_hugepage_range() is called as the lock is already held
3998 	 */
3999 	i_mmap_lock_write(mapping);
4000 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4001 		/* Do not unmap the current VMA */
4002 		if (iter_vma == vma)
4003 			continue;
4004 
4005 		/*
4006 		 * Shared VMAs have their own reserves and do not affect
4007 		 * MAP_PRIVATE accounting but it is possible that a shared
4008 		 * VMA is using the same page so check and skip such VMAs.
4009 		 */
4010 		if (iter_vma->vm_flags & VM_MAYSHARE)
4011 			continue;
4012 
4013 		/*
4014 		 * Unmap the page from other VMAs without their own reserves.
4015 		 * They get marked to be SIGKILLed if they fault in these
4016 		 * areas. This is because a future no-page fault on this VMA
4017 		 * could insert a zeroed page instead of the data existing
4018 		 * from the time of fork. This would look like data corruption
4019 		 */
4020 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4021 			unmap_hugepage_range(iter_vma, address,
4022 					     address + huge_page_size(h), page);
4023 	}
4024 	i_mmap_unlock_write(mapping);
4025 }
4026 
4027 /*
4028  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4029  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4030  * cannot race with other handlers or page migration.
4031  * Keep the pte_same checks anyway to make transition from the mutex easier.
4032  */
4033 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4034 		       unsigned long address, pte_t *ptep,
4035 		       struct page *pagecache_page, spinlock_t *ptl)
4036 {
4037 	pte_t pte;
4038 	struct hstate *h = hstate_vma(vma);
4039 	struct page *old_page, *new_page;
4040 	int outside_reserve = 0;
4041 	vm_fault_t ret = 0;
4042 	unsigned long haddr = address & huge_page_mask(h);
4043 	struct mmu_notifier_range range;
4044 
4045 	pte = huge_ptep_get(ptep);
4046 	old_page = pte_page(pte);
4047 
4048 retry_avoidcopy:
4049 	/* If no-one else is actually using this page, avoid the copy
4050 	 * and just make the page writable */
4051 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4052 		page_move_anon_rmap(old_page, vma);
4053 		set_huge_ptep_writable(vma, haddr, ptep);
4054 		return 0;
4055 	}
4056 
4057 	/*
4058 	 * If the process that created a MAP_PRIVATE mapping is about to
4059 	 * perform a COW due to a shared page count, attempt to satisfy
4060 	 * the allocation without using the existing reserves. The pagecache
4061 	 * page is used to determine if the reserve at this address was
4062 	 * consumed or not. If reserves were used, a partial faulted mapping
4063 	 * at the time of fork() could consume its reserves on COW instead
4064 	 * of the full address range.
4065 	 */
4066 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4067 			old_page != pagecache_page)
4068 		outside_reserve = 1;
4069 
4070 	get_page(old_page);
4071 
4072 	/*
4073 	 * Drop page table lock as buddy allocator may be called. It will
4074 	 * be acquired again before returning to the caller, as expected.
4075 	 */
4076 	spin_unlock(ptl);
4077 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4078 
4079 	if (IS_ERR(new_page)) {
4080 		/*
4081 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4082 		 * it is due to references held by a child and an insufficient
4083 		 * huge page pool. To guarantee the original mappers
4084 		 * reliability, unmap the page from child processes. The child
4085 		 * may get SIGKILLed if it later faults.
4086 		 */
4087 		if (outside_reserve) {
4088 			struct address_space *mapping = vma->vm_file->f_mapping;
4089 			pgoff_t idx;
4090 			u32 hash;
4091 
4092 			put_page(old_page);
4093 			BUG_ON(huge_pte_none(pte));
4094 			/*
4095 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4096 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4097 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4098 			 * here is OK as COW mappings do not interact with
4099 			 * PMD sharing.
4100 			 *
4101 			 * Reacquire both after unmap operation.
4102 			 */
4103 			idx = vma_hugecache_offset(h, vma, haddr);
4104 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4105 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4106 			i_mmap_unlock_read(mapping);
4107 
4108 			unmap_ref_private(mm, vma, old_page, haddr);
4109 
4110 			i_mmap_lock_read(mapping);
4111 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4112 			spin_lock(ptl);
4113 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4114 			if (likely(ptep &&
4115 				   pte_same(huge_ptep_get(ptep), pte)))
4116 				goto retry_avoidcopy;
4117 			/*
4118 			 * race occurs while re-acquiring page table
4119 			 * lock, and our job is done.
4120 			 */
4121 			return 0;
4122 		}
4123 
4124 		ret = vmf_error(PTR_ERR(new_page));
4125 		goto out_release_old;
4126 	}
4127 
4128 	/*
4129 	 * When the original hugepage is shared one, it does not have
4130 	 * anon_vma prepared.
4131 	 */
4132 	if (unlikely(anon_vma_prepare(vma))) {
4133 		ret = VM_FAULT_OOM;
4134 		goto out_release_all;
4135 	}
4136 
4137 	copy_user_huge_page(new_page, old_page, address, vma,
4138 			    pages_per_huge_page(h));
4139 	__SetPageUptodate(new_page);
4140 
4141 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4142 				haddr + huge_page_size(h));
4143 	mmu_notifier_invalidate_range_start(&range);
4144 
4145 	/*
4146 	 * Retake the page table lock to check for racing updates
4147 	 * before the page tables are altered
4148 	 */
4149 	spin_lock(ptl);
4150 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4151 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4152 		ClearHPageRestoreReserve(new_page);
4153 
4154 		/* Break COW */
4155 		huge_ptep_clear_flush(vma, haddr, ptep);
4156 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4157 		set_huge_pte_at(mm, haddr, ptep,
4158 				make_huge_pte(vma, new_page, 1));
4159 		page_remove_rmap(old_page, true);
4160 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4161 		SetHPageMigratable(new_page);
4162 		/* Make the old page be freed below */
4163 		new_page = old_page;
4164 	}
4165 	spin_unlock(ptl);
4166 	mmu_notifier_invalidate_range_end(&range);
4167 out_release_all:
4168 	restore_reserve_on_error(h, vma, haddr, new_page);
4169 	put_page(new_page);
4170 out_release_old:
4171 	put_page(old_page);
4172 
4173 	spin_lock(ptl); /* Caller expects lock to be held */
4174 	return ret;
4175 }
4176 
4177 /* Return the pagecache page at a given address within a VMA */
4178 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4179 			struct vm_area_struct *vma, unsigned long address)
4180 {
4181 	struct address_space *mapping;
4182 	pgoff_t idx;
4183 
4184 	mapping = vma->vm_file->f_mapping;
4185 	idx = vma_hugecache_offset(h, vma, address);
4186 
4187 	return find_lock_page(mapping, idx);
4188 }
4189 
4190 /*
4191  * Return whether there is a pagecache page to back given address within VMA.
4192  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4193  */
4194 static bool hugetlbfs_pagecache_present(struct hstate *h,
4195 			struct vm_area_struct *vma, unsigned long address)
4196 {
4197 	struct address_space *mapping;
4198 	pgoff_t idx;
4199 	struct page *page;
4200 
4201 	mapping = vma->vm_file->f_mapping;
4202 	idx = vma_hugecache_offset(h, vma, address);
4203 
4204 	page = find_get_page(mapping, idx);
4205 	if (page)
4206 		put_page(page);
4207 	return page != NULL;
4208 }
4209 
4210 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4211 			   pgoff_t idx)
4212 {
4213 	struct inode *inode = mapping->host;
4214 	struct hstate *h = hstate_inode(inode);
4215 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4216 
4217 	if (err)
4218 		return err;
4219 	ClearHPageRestoreReserve(page);
4220 
4221 	/*
4222 	 * set page dirty so that it will not be removed from cache/file
4223 	 * by non-hugetlbfs specific code paths.
4224 	 */
4225 	set_page_dirty(page);
4226 
4227 	spin_lock(&inode->i_lock);
4228 	inode->i_blocks += blocks_per_huge_page(h);
4229 	spin_unlock(&inode->i_lock);
4230 	return 0;
4231 }
4232 
4233 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4234 			struct vm_area_struct *vma,
4235 			struct address_space *mapping, pgoff_t idx,
4236 			unsigned long address, pte_t *ptep, unsigned int flags)
4237 {
4238 	struct hstate *h = hstate_vma(vma);
4239 	vm_fault_t ret = VM_FAULT_SIGBUS;
4240 	int anon_rmap = 0;
4241 	unsigned long size;
4242 	struct page *page;
4243 	pte_t new_pte;
4244 	spinlock_t *ptl;
4245 	unsigned long haddr = address & huge_page_mask(h);
4246 	bool new_page = false;
4247 
4248 	/*
4249 	 * Currently, we are forced to kill the process in the event the
4250 	 * original mapper has unmapped pages from the child due to a failed
4251 	 * COW. Warn that such a situation has occurred as it may not be obvious
4252 	 */
4253 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4254 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4255 			   current->pid);
4256 		return ret;
4257 	}
4258 
4259 	/*
4260 	 * We can not race with truncation due to holding i_mmap_rwsem.
4261 	 * i_size is modified when holding i_mmap_rwsem, so check here
4262 	 * once for faults beyond end of file.
4263 	 */
4264 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 	if (idx >= size)
4266 		goto out;
4267 
4268 retry:
4269 	page = find_lock_page(mapping, idx);
4270 	if (!page) {
4271 		/*
4272 		 * Check for page in userfault range
4273 		 */
4274 		if (userfaultfd_missing(vma)) {
4275 			u32 hash;
4276 			struct vm_fault vmf = {
4277 				.vma = vma,
4278 				.address = haddr,
4279 				.flags = flags,
4280 				/*
4281 				 * Hard to debug if it ends up being
4282 				 * used by a callee that assumes
4283 				 * something about the other
4284 				 * uninitialized fields... same as in
4285 				 * memory.c
4286 				 */
4287 			};
4288 
4289 			/*
4290 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4291 			 * dropped before handling userfault.  Reacquire
4292 			 * after handling fault to make calling code simpler.
4293 			 */
4294 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4295 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4296 			i_mmap_unlock_read(mapping);
4297 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4298 			i_mmap_lock_read(mapping);
4299 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4300 			goto out;
4301 		}
4302 
4303 		page = alloc_huge_page(vma, haddr, 0);
4304 		if (IS_ERR(page)) {
4305 			/*
4306 			 * Returning error will result in faulting task being
4307 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4308 			 * tasks from racing to fault in the same page which
4309 			 * could result in false unable to allocate errors.
4310 			 * Page migration does not take the fault mutex, but
4311 			 * does a clear then write of pte's under page table
4312 			 * lock.  Page fault code could race with migration,
4313 			 * notice the clear pte and try to allocate a page
4314 			 * here.  Before returning error, get ptl and make
4315 			 * sure there really is no pte entry.
4316 			 */
4317 			ptl = huge_pte_lock(h, mm, ptep);
4318 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4319 				ret = 0;
4320 				spin_unlock(ptl);
4321 				goto out;
4322 			}
4323 			spin_unlock(ptl);
4324 			ret = vmf_error(PTR_ERR(page));
4325 			goto out;
4326 		}
4327 		clear_huge_page(page, address, pages_per_huge_page(h));
4328 		__SetPageUptodate(page);
4329 		new_page = true;
4330 
4331 		if (vma->vm_flags & VM_MAYSHARE) {
4332 			int err = huge_add_to_page_cache(page, mapping, idx);
4333 			if (err) {
4334 				put_page(page);
4335 				if (err == -EEXIST)
4336 					goto retry;
4337 				goto out;
4338 			}
4339 		} else {
4340 			lock_page(page);
4341 			if (unlikely(anon_vma_prepare(vma))) {
4342 				ret = VM_FAULT_OOM;
4343 				goto backout_unlocked;
4344 			}
4345 			anon_rmap = 1;
4346 		}
4347 	} else {
4348 		/*
4349 		 * If memory error occurs between mmap() and fault, some process
4350 		 * don't have hwpoisoned swap entry for errored virtual address.
4351 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4352 		 */
4353 		if (unlikely(PageHWPoison(page))) {
4354 			ret = VM_FAULT_HWPOISON_LARGE |
4355 				VM_FAULT_SET_HINDEX(hstate_index(h));
4356 			goto backout_unlocked;
4357 		}
4358 	}
4359 
4360 	/*
4361 	 * If we are going to COW a private mapping later, we examine the
4362 	 * pending reservations for this page now. This will ensure that
4363 	 * any allocations necessary to record that reservation occur outside
4364 	 * the spinlock.
4365 	 */
4366 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4367 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4368 			ret = VM_FAULT_OOM;
4369 			goto backout_unlocked;
4370 		}
4371 		/* Just decrements count, does not deallocate */
4372 		vma_end_reservation(h, vma, haddr);
4373 	}
4374 
4375 	ptl = huge_pte_lock(h, mm, ptep);
4376 	ret = 0;
4377 	if (!huge_pte_none(huge_ptep_get(ptep)))
4378 		goto backout;
4379 
4380 	if (anon_rmap) {
4381 		ClearHPageRestoreReserve(page);
4382 		hugepage_add_new_anon_rmap(page, vma, haddr);
4383 	} else
4384 		page_dup_rmap(page, true);
4385 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4386 				&& (vma->vm_flags & VM_SHARED)));
4387 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4388 
4389 	hugetlb_count_add(pages_per_huge_page(h), mm);
4390 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4391 		/* Optimization, do the COW without a second fault */
4392 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4393 	}
4394 
4395 	spin_unlock(ptl);
4396 
4397 	/*
4398 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4399 	 * found in the pagecache may not have HPageMigratableset if they have
4400 	 * been isolated for migration.
4401 	 */
4402 	if (new_page)
4403 		SetHPageMigratable(page);
4404 
4405 	unlock_page(page);
4406 out:
4407 	return ret;
4408 
4409 backout:
4410 	spin_unlock(ptl);
4411 backout_unlocked:
4412 	unlock_page(page);
4413 	restore_reserve_on_error(h, vma, haddr, page);
4414 	put_page(page);
4415 	goto out;
4416 }
4417 
4418 #ifdef CONFIG_SMP
4419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4420 {
4421 	unsigned long key[2];
4422 	u32 hash;
4423 
4424 	key[0] = (unsigned long) mapping;
4425 	key[1] = idx;
4426 
4427 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4428 
4429 	return hash & (num_fault_mutexes - 1);
4430 }
4431 #else
4432 /*
4433  * For uniprocessor systems we always use a single mutex, so just
4434  * return 0 and avoid the hashing overhead.
4435  */
4436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4437 {
4438 	return 0;
4439 }
4440 #endif
4441 
4442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4443 			unsigned long address, unsigned int flags)
4444 {
4445 	pte_t *ptep, entry;
4446 	spinlock_t *ptl;
4447 	vm_fault_t ret;
4448 	u32 hash;
4449 	pgoff_t idx;
4450 	struct page *page = NULL;
4451 	struct page *pagecache_page = NULL;
4452 	struct hstate *h = hstate_vma(vma);
4453 	struct address_space *mapping;
4454 	int need_wait_lock = 0;
4455 	unsigned long haddr = address & huge_page_mask(h);
4456 
4457 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4458 	if (ptep) {
4459 		/*
4460 		 * Since we hold no locks, ptep could be stale.  That is
4461 		 * OK as we are only making decisions based on content and
4462 		 * not actually modifying content here.
4463 		 */
4464 		entry = huge_ptep_get(ptep);
4465 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4466 			migration_entry_wait_huge(vma, mm, ptep);
4467 			return 0;
4468 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4469 			return VM_FAULT_HWPOISON_LARGE |
4470 				VM_FAULT_SET_HINDEX(hstate_index(h));
4471 	}
4472 
4473 	/*
4474 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4475 	 * until finished with ptep.  This serves two purposes:
4476 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4477 	 *    and making the ptep no longer valid.
4478 	 * 2) It synchronizes us with i_size modifications during truncation.
4479 	 *
4480 	 * ptep could have already be assigned via huge_pte_offset.  That
4481 	 * is OK, as huge_pte_alloc will return the same value unless
4482 	 * something has changed.
4483 	 */
4484 	mapping = vma->vm_file->f_mapping;
4485 	i_mmap_lock_read(mapping);
4486 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4487 	if (!ptep) {
4488 		i_mmap_unlock_read(mapping);
4489 		return VM_FAULT_OOM;
4490 	}
4491 
4492 	/*
4493 	 * Serialize hugepage allocation and instantiation, so that we don't
4494 	 * get spurious allocation failures if two CPUs race to instantiate
4495 	 * the same page in the page cache.
4496 	 */
4497 	idx = vma_hugecache_offset(h, vma, haddr);
4498 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4499 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4500 
4501 	entry = huge_ptep_get(ptep);
4502 	if (huge_pte_none(entry)) {
4503 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4504 		goto out_mutex;
4505 	}
4506 
4507 	ret = 0;
4508 
4509 	/*
4510 	 * entry could be a migration/hwpoison entry at this point, so this
4511 	 * check prevents the kernel from going below assuming that we have
4512 	 * an active hugepage in pagecache. This goto expects the 2nd page
4513 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4514 	 * properly handle it.
4515 	 */
4516 	if (!pte_present(entry))
4517 		goto out_mutex;
4518 
4519 	/*
4520 	 * If we are going to COW the mapping later, we examine the pending
4521 	 * reservations for this page now. This will ensure that any
4522 	 * allocations necessary to record that reservation occur outside the
4523 	 * spinlock. For private mappings, we also lookup the pagecache
4524 	 * page now as it is used to determine if a reservation has been
4525 	 * consumed.
4526 	 */
4527 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4528 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4529 			ret = VM_FAULT_OOM;
4530 			goto out_mutex;
4531 		}
4532 		/* Just decrements count, does not deallocate */
4533 		vma_end_reservation(h, vma, haddr);
4534 
4535 		if (!(vma->vm_flags & VM_MAYSHARE))
4536 			pagecache_page = hugetlbfs_pagecache_page(h,
4537 								vma, haddr);
4538 	}
4539 
4540 	ptl = huge_pte_lock(h, mm, ptep);
4541 
4542 	/* Check for a racing update before calling hugetlb_cow */
4543 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4544 		goto out_ptl;
4545 
4546 	/*
4547 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4548 	 * pagecache_page, so here we need take the former one
4549 	 * when page != pagecache_page or !pagecache_page.
4550 	 */
4551 	page = pte_page(entry);
4552 	if (page != pagecache_page)
4553 		if (!trylock_page(page)) {
4554 			need_wait_lock = 1;
4555 			goto out_ptl;
4556 		}
4557 
4558 	get_page(page);
4559 
4560 	if (flags & FAULT_FLAG_WRITE) {
4561 		if (!huge_pte_write(entry)) {
4562 			ret = hugetlb_cow(mm, vma, address, ptep,
4563 					  pagecache_page, ptl);
4564 			goto out_put_page;
4565 		}
4566 		entry = huge_pte_mkdirty(entry);
4567 	}
4568 	entry = pte_mkyoung(entry);
4569 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4570 						flags & FAULT_FLAG_WRITE))
4571 		update_mmu_cache(vma, haddr, ptep);
4572 out_put_page:
4573 	if (page != pagecache_page)
4574 		unlock_page(page);
4575 	put_page(page);
4576 out_ptl:
4577 	spin_unlock(ptl);
4578 
4579 	if (pagecache_page) {
4580 		unlock_page(pagecache_page);
4581 		put_page(pagecache_page);
4582 	}
4583 out_mutex:
4584 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4585 	i_mmap_unlock_read(mapping);
4586 	/*
4587 	 * Generally it's safe to hold refcount during waiting page lock. But
4588 	 * here we just wait to defer the next page fault to avoid busy loop and
4589 	 * the page is not used after unlocked before returning from the current
4590 	 * page fault. So we are safe from accessing freed page, even if we wait
4591 	 * here without taking refcount.
4592 	 */
4593 	if (need_wait_lock)
4594 		wait_on_page_locked(page);
4595 	return ret;
4596 }
4597 
4598 /*
4599  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4600  * modifications for huge pages.
4601  */
4602 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4603 			    pte_t *dst_pte,
4604 			    struct vm_area_struct *dst_vma,
4605 			    unsigned long dst_addr,
4606 			    unsigned long src_addr,
4607 			    struct page **pagep)
4608 {
4609 	struct address_space *mapping;
4610 	pgoff_t idx;
4611 	unsigned long size;
4612 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4613 	struct hstate *h = hstate_vma(dst_vma);
4614 	pte_t _dst_pte;
4615 	spinlock_t *ptl;
4616 	int ret;
4617 	struct page *page;
4618 
4619 	if (!*pagep) {
4620 		ret = -ENOMEM;
4621 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4622 		if (IS_ERR(page))
4623 			goto out;
4624 
4625 		ret = copy_huge_page_from_user(page,
4626 						(const void __user *) src_addr,
4627 						pages_per_huge_page(h), false);
4628 
4629 		/* fallback to copy_from_user outside mmap_lock */
4630 		if (unlikely(ret)) {
4631 			ret = -ENOENT;
4632 			*pagep = page;
4633 			/* don't free the page */
4634 			goto out;
4635 		}
4636 	} else {
4637 		page = *pagep;
4638 		*pagep = NULL;
4639 	}
4640 
4641 	/*
4642 	 * The memory barrier inside __SetPageUptodate makes sure that
4643 	 * preceding stores to the page contents become visible before
4644 	 * the set_pte_at() write.
4645 	 */
4646 	__SetPageUptodate(page);
4647 
4648 	mapping = dst_vma->vm_file->f_mapping;
4649 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4650 
4651 	/*
4652 	 * If shared, add to page cache
4653 	 */
4654 	if (vm_shared) {
4655 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4656 		ret = -EFAULT;
4657 		if (idx >= size)
4658 			goto out_release_nounlock;
4659 
4660 		/*
4661 		 * Serialization between remove_inode_hugepages() and
4662 		 * huge_add_to_page_cache() below happens through the
4663 		 * hugetlb_fault_mutex_table that here must be hold by
4664 		 * the caller.
4665 		 */
4666 		ret = huge_add_to_page_cache(page, mapping, idx);
4667 		if (ret)
4668 			goto out_release_nounlock;
4669 	}
4670 
4671 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4672 	spin_lock(ptl);
4673 
4674 	/*
4675 	 * Recheck the i_size after holding PT lock to make sure not
4676 	 * to leave any page mapped (as page_mapped()) beyond the end
4677 	 * of the i_size (remove_inode_hugepages() is strict about
4678 	 * enforcing that). If we bail out here, we'll also leave a
4679 	 * page in the radix tree in the vm_shared case beyond the end
4680 	 * of the i_size, but remove_inode_hugepages() will take care
4681 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4682 	 */
4683 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4684 	ret = -EFAULT;
4685 	if (idx >= size)
4686 		goto out_release_unlock;
4687 
4688 	ret = -EEXIST;
4689 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4690 		goto out_release_unlock;
4691 
4692 	if (vm_shared) {
4693 		page_dup_rmap(page, true);
4694 	} else {
4695 		ClearHPageRestoreReserve(page);
4696 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4697 	}
4698 
4699 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4700 	if (dst_vma->vm_flags & VM_WRITE)
4701 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4702 	_dst_pte = pte_mkyoung(_dst_pte);
4703 
4704 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4705 
4706 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4707 					dst_vma->vm_flags & VM_WRITE);
4708 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4709 
4710 	/* No need to invalidate - it was non-present before */
4711 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4712 
4713 	spin_unlock(ptl);
4714 	SetHPageMigratable(page);
4715 	if (vm_shared)
4716 		unlock_page(page);
4717 	ret = 0;
4718 out:
4719 	return ret;
4720 out_release_unlock:
4721 	spin_unlock(ptl);
4722 	if (vm_shared)
4723 		unlock_page(page);
4724 out_release_nounlock:
4725 	put_page(page);
4726 	goto out;
4727 }
4728 
4729 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4730 				 int refs, struct page **pages,
4731 				 struct vm_area_struct **vmas)
4732 {
4733 	int nr;
4734 
4735 	for (nr = 0; nr < refs; nr++) {
4736 		if (likely(pages))
4737 			pages[nr] = mem_map_offset(page, nr);
4738 		if (vmas)
4739 			vmas[nr] = vma;
4740 	}
4741 }
4742 
4743 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4744 			 struct page **pages, struct vm_area_struct **vmas,
4745 			 unsigned long *position, unsigned long *nr_pages,
4746 			 long i, unsigned int flags, int *locked)
4747 {
4748 	unsigned long pfn_offset;
4749 	unsigned long vaddr = *position;
4750 	unsigned long remainder = *nr_pages;
4751 	struct hstate *h = hstate_vma(vma);
4752 	int err = -EFAULT, refs;
4753 
4754 	while (vaddr < vma->vm_end && remainder) {
4755 		pte_t *pte;
4756 		spinlock_t *ptl = NULL;
4757 		int absent;
4758 		struct page *page;
4759 
4760 		/*
4761 		 * If we have a pending SIGKILL, don't keep faulting pages and
4762 		 * potentially allocating memory.
4763 		 */
4764 		if (fatal_signal_pending(current)) {
4765 			remainder = 0;
4766 			break;
4767 		}
4768 
4769 		/*
4770 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4771 		 * each hugepage.  We have to make sure we get the
4772 		 * first, for the page indexing below to work.
4773 		 *
4774 		 * Note that page table lock is not held when pte is null.
4775 		 */
4776 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4777 				      huge_page_size(h));
4778 		if (pte)
4779 			ptl = huge_pte_lock(h, mm, pte);
4780 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4781 
4782 		/*
4783 		 * When coredumping, it suits get_dump_page if we just return
4784 		 * an error where there's an empty slot with no huge pagecache
4785 		 * to back it.  This way, we avoid allocating a hugepage, and
4786 		 * the sparse dumpfile avoids allocating disk blocks, but its
4787 		 * huge holes still show up with zeroes where they need to be.
4788 		 */
4789 		if (absent && (flags & FOLL_DUMP) &&
4790 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4791 			if (pte)
4792 				spin_unlock(ptl);
4793 			remainder = 0;
4794 			break;
4795 		}
4796 
4797 		/*
4798 		 * We need call hugetlb_fault for both hugepages under migration
4799 		 * (in which case hugetlb_fault waits for the migration,) and
4800 		 * hwpoisoned hugepages (in which case we need to prevent the
4801 		 * caller from accessing to them.) In order to do this, we use
4802 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4803 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4804 		 * both cases, and because we can't follow correct pages
4805 		 * directly from any kind of swap entries.
4806 		 */
4807 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4808 		    ((flags & FOLL_WRITE) &&
4809 		      !huge_pte_write(huge_ptep_get(pte)))) {
4810 			vm_fault_t ret;
4811 			unsigned int fault_flags = 0;
4812 
4813 			if (pte)
4814 				spin_unlock(ptl);
4815 			if (flags & FOLL_WRITE)
4816 				fault_flags |= FAULT_FLAG_WRITE;
4817 			if (locked)
4818 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4819 					FAULT_FLAG_KILLABLE;
4820 			if (flags & FOLL_NOWAIT)
4821 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4822 					FAULT_FLAG_RETRY_NOWAIT;
4823 			if (flags & FOLL_TRIED) {
4824 				/*
4825 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4826 				 * FAULT_FLAG_TRIED can co-exist
4827 				 */
4828 				fault_flags |= FAULT_FLAG_TRIED;
4829 			}
4830 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4831 			if (ret & VM_FAULT_ERROR) {
4832 				err = vm_fault_to_errno(ret, flags);
4833 				remainder = 0;
4834 				break;
4835 			}
4836 			if (ret & VM_FAULT_RETRY) {
4837 				if (locked &&
4838 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4839 					*locked = 0;
4840 				*nr_pages = 0;
4841 				/*
4842 				 * VM_FAULT_RETRY must not return an
4843 				 * error, it will return zero
4844 				 * instead.
4845 				 *
4846 				 * No need to update "position" as the
4847 				 * caller will not check it after
4848 				 * *nr_pages is set to 0.
4849 				 */
4850 				return i;
4851 			}
4852 			continue;
4853 		}
4854 
4855 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4856 		page = pte_page(huge_ptep_get(pte));
4857 
4858 		/*
4859 		 * If subpage information not requested, update counters
4860 		 * and skip the same_page loop below.
4861 		 */
4862 		if (!pages && !vmas && !pfn_offset &&
4863 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4864 		    (remainder >= pages_per_huge_page(h))) {
4865 			vaddr += huge_page_size(h);
4866 			remainder -= pages_per_huge_page(h);
4867 			i += pages_per_huge_page(h);
4868 			spin_unlock(ptl);
4869 			continue;
4870 		}
4871 
4872 		refs = min3(pages_per_huge_page(h) - pfn_offset,
4873 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4874 
4875 		if (pages || vmas)
4876 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
4877 					     vma, refs,
4878 					     likely(pages) ? pages + i : NULL,
4879 					     vmas ? vmas + i : NULL);
4880 
4881 		if (pages) {
4882 			/*
4883 			 * try_grab_compound_head() should always succeed here,
4884 			 * because: a) we hold the ptl lock, and b) we've just
4885 			 * checked that the huge page is present in the page
4886 			 * tables. If the huge page is present, then the tail
4887 			 * pages must also be present. The ptl prevents the
4888 			 * head page and tail pages from being rearranged in
4889 			 * any way. So this page must be available at this
4890 			 * point, unless the page refcount overflowed:
4891 			 */
4892 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4893 								 refs,
4894 								 flags))) {
4895 				spin_unlock(ptl);
4896 				remainder = 0;
4897 				err = -ENOMEM;
4898 				break;
4899 			}
4900 		}
4901 
4902 		vaddr += (refs << PAGE_SHIFT);
4903 		remainder -= refs;
4904 		i += refs;
4905 
4906 		spin_unlock(ptl);
4907 	}
4908 	*nr_pages = remainder;
4909 	/*
4910 	 * setting position is actually required only if remainder is
4911 	 * not zero but it's faster not to add a "if (remainder)"
4912 	 * branch.
4913 	 */
4914 	*position = vaddr;
4915 
4916 	return i ? i : err;
4917 }
4918 
4919 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4920 /*
4921  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4922  * implement this.
4923  */
4924 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4925 #endif
4926 
4927 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4928 		unsigned long address, unsigned long end, pgprot_t newprot)
4929 {
4930 	struct mm_struct *mm = vma->vm_mm;
4931 	unsigned long start = address;
4932 	pte_t *ptep;
4933 	pte_t pte;
4934 	struct hstate *h = hstate_vma(vma);
4935 	unsigned long pages = 0;
4936 	bool shared_pmd = false;
4937 	struct mmu_notifier_range range;
4938 
4939 	/*
4940 	 * In the case of shared PMDs, the area to flush could be beyond
4941 	 * start/end.  Set range.start/range.end to cover the maximum possible
4942 	 * range if PMD sharing is possible.
4943 	 */
4944 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4945 				0, vma, mm, start, end);
4946 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4947 
4948 	BUG_ON(address >= end);
4949 	flush_cache_range(vma, range.start, range.end);
4950 
4951 	mmu_notifier_invalidate_range_start(&range);
4952 	i_mmap_lock_write(vma->vm_file->f_mapping);
4953 	for (; address < end; address += huge_page_size(h)) {
4954 		spinlock_t *ptl;
4955 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4956 		if (!ptep)
4957 			continue;
4958 		ptl = huge_pte_lock(h, mm, ptep);
4959 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4960 			pages++;
4961 			spin_unlock(ptl);
4962 			shared_pmd = true;
4963 			continue;
4964 		}
4965 		pte = huge_ptep_get(ptep);
4966 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4967 			spin_unlock(ptl);
4968 			continue;
4969 		}
4970 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4971 			swp_entry_t entry = pte_to_swp_entry(pte);
4972 
4973 			if (is_write_migration_entry(entry)) {
4974 				pte_t newpte;
4975 
4976 				make_migration_entry_read(&entry);
4977 				newpte = swp_entry_to_pte(entry);
4978 				set_huge_swap_pte_at(mm, address, ptep,
4979 						     newpte, huge_page_size(h));
4980 				pages++;
4981 			}
4982 			spin_unlock(ptl);
4983 			continue;
4984 		}
4985 		if (!huge_pte_none(pte)) {
4986 			pte_t old_pte;
4987 
4988 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4989 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4990 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4991 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4992 			pages++;
4993 		}
4994 		spin_unlock(ptl);
4995 	}
4996 	/*
4997 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4998 	 * may have cleared our pud entry and done put_page on the page table:
4999 	 * once we release i_mmap_rwsem, another task can do the final put_page
5000 	 * and that page table be reused and filled with junk.  If we actually
5001 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5002 	 */
5003 	if (shared_pmd)
5004 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5005 	else
5006 		flush_hugetlb_tlb_range(vma, start, end);
5007 	/*
5008 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5009 	 * page table protection not changing it to point to a new page.
5010 	 *
5011 	 * See Documentation/vm/mmu_notifier.rst
5012 	 */
5013 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5014 	mmu_notifier_invalidate_range_end(&range);
5015 
5016 	return pages << h->order;
5017 }
5018 
5019 /* Return true if reservation was successful, false otherwise.  */
5020 bool hugetlb_reserve_pages(struct inode *inode,
5021 					long from, long to,
5022 					struct vm_area_struct *vma,
5023 					vm_flags_t vm_flags)
5024 {
5025 	long chg, add = -1;
5026 	struct hstate *h = hstate_inode(inode);
5027 	struct hugepage_subpool *spool = subpool_inode(inode);
5028 	struct resv_map *resv_map;
5029 	struct hugetlb_cgroup *h_cg = NULL;
5030 	long gbl_reserve, regions_needed = 0;
5031 
5032 	/* This should never happen */
5033 	if (from > to) {
5034 		VM_WARN(1, "%s called with a negative range\n", __func__);
5035 		return false;
5036 	}
5037 
5038 	/*
5039 	 * Only apply hugepage reservation if asked. At fault time, an
5040 	 * attempt will be made for VM_NORESERVE to allocate a page
5041 	 * without using reserves
5042 	 */
5043 	if (vm_flags & VM_NORESERVE)
5044 		return true;
5045 
5046 	/*
5047 	 * Shared mappings base their reservation on the number of pages that
5048 	 * are already allocated on behalf of the file. Private mappings need
5049 	 * to reserve the full area even if read-only as mprotect() may be
5050 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5051 	 */
5052 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5053 		/*
5054 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5055 		 * called for inodes for which resv_maps were created (see
5056 		 * hugetlbfs_get_inode).
5057 		 */
5058 		resv_map = inode_resv_map(inode);
5059 
5060 		chg = region_chg(resv_map, from, to, &regions_needed);
5061 
5062 	} else {
5063 		/* Private mapping. */
5064 		resv_map = resv_map_alloc();
5065 		if (!resv_map)
5066 			return false;
5067 
5068 		chg = to - from;
5069 
5070 		set_vma_resv_map(vma, resv_map);
5071 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5072 	}
5073 
5074 	if (chg < 0)
5075 		goto out_err;
5076 
5077 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5078 				chg * pages_per_huge_page(h), &h_cg) < 0)
5079 		goto out_err;
5080 
5081 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5082 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5083 		 * of the resv_map.
5084 		 */
5085 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5086 	}
5087 
5088 	/*
5089 	 * There must be enough pages in the subpool for the mapping. If
5090 	 * the subpool has a minimum size, there may be some global
5091 	 * reservations already in place (gbl_reserve).
5092 	 */
5093 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5094 	if (gbl_reserve < 0)
5095 		goto out_uncharge_cgroup;
5096 
5097 	/*
5098 	 * Check enough hugepages are available for the reservation.
5099 	 * Hand the pages back to the subpool if there are not
5100 	 */
5101 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5102 		goto out_put_pages;
5103 
5104 	/*
5105 	 * Account for the reservations made. Shared mappings record regions
5106 	 * that have reservations as they are shared by multiple VMAs.
5107 	 * When the last VMA disappears, the region map says how much
5108 	 * the reservation was and the page cache tells how much of
5109 	 * the reservation was consumed. Private mappings are per-VMA and
5110 	 * only the consumed reservations are tracked. When the VMA
5111 	 * disappears, the original reservation is the VMA size and the
5112 	 * consumed reservations are stored in the map. Hence, nothing
5113 	 * else has to be done for private mappings here
5114 	 */
5115 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5116 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5117 
5118 		if (unlikely(add < 0)) {
5119 			hugetlb_acct_memory(h, -gbl_reserve);
5120 			goto out_put_pages;
5121 		} else if (unlikely(chg > add)) {
5122 			/*
5123 			 * pages in this range were added to the reserve
5124 			 * map between region_chg and region_add.  This
5125 			 * indicates a race with alloc_huge_page.  Adjust
5126 			 * the subpool and reserve counts modified above
5127 			 * based on the difference.
5128 			 */
5129 			long rsv_adjust;
5130 
5131 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5132 				hstate_index(h),
5133 				(chg - add) * pages_per_huge_page(h), h_cg);
5134 
5135 			rsv_adjust = hugepage_subpool_put_pages(spool,
5136 								chg - add);
5137 			hugetlb_acct_memory(h, -rsv_adjust);
5138 		}
5139 	}
5140 	return true;
5141 
5142 out_put_pages:
5143 	/* put back original number of pages, chg */
5144 	(void)hugepage_subpool_put_pages(spool, chg);
5145 out_uncharge_cgroup:
5146 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5147 					    chg * pages_per_huge_page(h), h_cg);
5148 out_err:
5149 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5150 		/* Only call region_abort if the region_chg succeeded but the
5151 		 * region_add failed or didn't run.
5152 		 */
5153 		if (chg >= 0 && add < 0)
5154 			region_abort(resv_map, from, to, regions_needed);
5155 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5156 		kref_put(&resv_map->refs, resv_map_release);
5157 	return false;
5158 }
5159 
5160 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5161 								long freed)
5162 {
5163 	struct hstate *h = hstate_inode(inode);
5164 	struct resv_map *resv_map = inode_resv_map(inode);
5165 	long chg = 0;
5166 	struct hugepage_subpool *spool = subpool_inode(inode);
5167 	long gbl_reserve;
5168 
5169 	/*
5170 	 * Since this routine can be called in the evict inode path for all
5171 	 * hugetlbfs inodes, resv_map could be NULL.
5172 	 */
5173 	if (resv_map) {
5174 		chg = region_del(resv_map, start, end);
5175 		/*
5176 		 * region_del() can fail in the rare case where a region
5177 		 * must be split and another region descriptor can not be
5178 		 * allocated.  If end == LONG_MAX, it will not fail.
5179 		 */
5180 		if (chg < 0)
5181 			return chg;
5182 	}
5183 
5184 	spin_lock(&inode->i_lock);
5185 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5186 	spin_unlock(&inode->i_lock);
5187 
5188 	/*
5189 	 * If the subpool has a minimum size, the number of global
5190 	 * reservations to be released may be adjusted.
5191 	 */
5192 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5193 	hugetlb_acct_memory(h, -gbl_reserve);
5194 
5195 	return 0;
5196 }
5197 
5198 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5199 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5200 				struct vm_area_struct *vma,
5201 				unsigned long addr, pgoff_t idx)
5202 {
5203 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5204 				svma->vm_start;
5205 	unsigned long sbase = saddr & PUD_MASK;
5206 	unsigned long s_end = sbase + PUD_SIZE;
5207 
5208 	/* Allow segments to share if only one is marked locked */
5209 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5210 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5211 
5212 	/*
5213 	 * match the virtual addresses, permission and the alignment of the
5214 	 * page table page.
5215 	 */
5216 	if (pmd_index(addr) != pmd_index(saddr) ||
5217 	    vm_flags != svm_flags ||
5218 	    !range_in_vma(svma, sbase, s_end))
5219 		return 0;
5220 
5221 	return saddr;
5222 }
5223 
5224 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5225 {
5226 	unsigned long base = addr & PUD_MASK;
5227 	unsigned long end = base + PUD_SIZE;
5228 
5229 	/*
5230 	 * check on proper vm_flags and page table alignment
5231 	 */
5232 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5233 		return true;
5234 	return false;
5235 }
5236 
5237 /*
5238  * Determine if start,end range within vma could be mapped by shared pmd.
5239  * If yes, adjust start and end to cover range associated with possible
5240  * shared pmd mappings.
5241  */
5242 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5243 				unsigned long *start, unsigned long *end)
5244 {
5245 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5246 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5247 
5248 	/*
5249 	 * vma need span at least one aligned PUD size and the start,end range
5250 	 * must at least partialy within it.
5251 	 */
5252 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5253 		(*end <= v_start) || (*start >= v_end))
5254 		return;
5255 
5256 	/* Extend the range to be PUD aligned for a worst case scenario */
5257 	if (*start > v_start)
5258 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5259 
5260 	if (*end < v_end)
5261 		*end = ALIGN(*end, PUD_SIZE);
5262 }
5263 
5264 /*
5265  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5266  * and returns the corresponding pte. While this is not necessary for the
5267  * !shared pmd case because we can allocate the pmd later as well, it makes the
5268  * code much cleaner.
5269  *
5270  * This routine must be called with i_mmap_rwsem held in at least read mode if
5271  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5272  * table entries associated with the address space.  This is important as we
5273  * are setting up sharing based on existing page table entries (mappings).
5274  *
5275  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5276  * huge_pte_alloc know that sharing is not possible and do not take
5277  * i_mmap_rwsem as a performance optimization.  This is handled by the
5278  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5279  * only required for subsequent processing.
5280  */
5281 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5282 {
5283 	struct vm_area_struct *vma = find_vma(mm, addr);
5284 	struct address_space *mapping = vma->vm_file->f_mapping;
5285 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5286 			vma->vm_pgoff;
5287 	struct vm_area_struct *svma;
5288 	unsigned long saddr;
5289 	pte_t *spte = NULL;
5290 	pte_t *pte;
5291 	spinlock_t *ptl;
5292 
5293 	if (!vma_shareable(vma, addr))
5294 		return (pte_t *)pmd_alloc(mm, pud, addr);
5295 
5296 	i_mmap_assert_locked(mapping);
5297 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5298 		if (svma == vma)
5299 			continue;
5300 
5301 		saddr = page_table_shareable(svma, vma, addr, idx);
5302 		if (saddr) {
5303 			spte = huge_pte_offset(svma->vm_mm, saddr,
5304 					       vma_mmu_pagesize(svma));
5305 			if (spte) {
5306 				get_page(virt_to_page(spte));
5307 				break;
5308 			}
5309 		}
5310 	}
5311 
5312 	if (!spte)
5313 		goto out;
5314 
5315 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5316 	if (pud_none(*pud)) {
5317 		pud_populate(mm, pud,
5318 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5319 		mm_inc_nr_pmds(mm);
5320 	} else {
5321 		put_page(virt_to_page(spte));
5322 	}
5323 	spin_unlock(ptl);
5324 out:
5325 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5326 	return pte;
5327 }
5328 
5329 /*
5330  * unmap huge page backed by shared pte.
5331  *
5332  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5333  * indicated by page_count > 1, unmap is achieved by clearing pud and
5334  * decrementing the ref count. If count == 1, the pte page is not shared.
5335  *
5336  * Called with page table lock held and i_mmap_rwsem held in write mode.
5337  *
5338  * returns: 1 successfully unmapped a shared pte page
5339  *	    0 the underlying pte page is not shared, or it is the last user
5340  */
5341 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5342 					unsigned long *addr, pte_t *ptep)
5343 {
5344 	pgd_t *pgd = pgd_offset(mm, *addr);
5345 	p4d_t *p4d = p4d_offset(pgd, *addr);
5346 	pud_t *pud = pud_offset(p4d, *addr);
5347 
5348 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5349 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5350 	if (page_count(virt_to_page(ptep)) == 1)
5351 		return 0;
5352 
5353 	pud_clear(pud);
5354 	put_page(virt_to_page(ptep));
5355 	mm_dec_nr_pmds(mm);
5356 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5357 	return 1;
5358 }
5359 #define want_pmd_share()	(1)
5360 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5361 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5362 {
5363 	return NULL;
5364 }
5365 
5366 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5367 				unsigned long *addr, pte_t *ptep)
5368 {
5369 	return 0;
5370 }
5371 
5372 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5373 				unsigned long *start, unsigned long *end)
5374 {
5375 }
5376 #define want_pmd_share()	(0)
5377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5378 
5379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5380 pte_t *huge_pte_alloc(struct mm_struct *mm,
5381 			unsigned long addr, unsigned long sz)
5382 {
5383 	pgd_t *pgd;
5384 	p4d_t *p4d;
5385 	pud_t *pud;
5386 	pte_t *pte = NULL;
5387 
5388 	pgd = pgd_offset(mm, addr);
5389 	p4d = p4d_alloc(mm, pgd, addr);
5390 	if (!p4d)
5391 		return NULL;
5392 	pud = pud_alloc(mm, p4d, addr);
5393 	if (pud) {
5394 		if (sz == PUD_SIZE) {
5395 			pte = (pte_t *)pud;
5396 		} else {
5397 			BUG_ON(sz != PMD_SIZE);
5398 			if (want_pmd_share() && pud_none(*pud))
5399 				pte = huge_pmd_share(mm, addr, pud);
5400 			else
5401 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5402 		}
5403 	}
5404 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5405 
5406 	return pte;
5407 }
5408 
5409 /*
5410  * huge_pte_offset() - Walk the page table to resolve the hugepage
5411  * entry at address @addr
5412  *
5413  * Return: Pointer to page table entry (PUD or PMD) for
5414  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5415  * size @sz doesn't match the hugepage size at this level of the page
5416  * table.
5417  */
5418 pte_t *huge_pte_offset(struct mm_struct *mm,
5419 		       unsigned long addr, unsigned long sz)
5420 {
5421 	pgd_t *pgd;
5422 	p4d_t *p4d;
5423 	pud_t *pud;
5424 	pmd_t *pmd;
5425 
5426 	pgd = pgd_offset(mm, addr);
5427 	if (!pgd_present(*pgd))
5428 		return NULL;
5429 	p4d = p4d_offset(pgd, addr);
5430 	if (!p4d_present(*p4d))
5431 		return NULL;
5432 
5433 	pud = pud_offset(p4d, addr);
5434 	if (sz == PUD_SIZE)
5435 		/* must be pud huge, non-present or none */
5436 		return (pte_t *)pud;
5437 	if (!pud_present(*pud))
5438 		return NULL;
5439 	/* must have a valid entry and size to go further */
5440 
5441 	pmd = pmd_offset(pud, addr);
5442 	/* must be pmd huge, non-present or none */
5443 	return (pte_t *)pmd;
5444 }
5445 
5446 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5447 
5448 /*
5449  * These functions are overwritable if your architecture needs its own
5450  * behavior.
5451  */
5452 struct page * __weak
5453 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5454 			      int write)
5455 {
5456 	return ERR_PTR(-EINVAL);
5457 }
5458 
5459 struct page * __weak
5460 follow_huge_pd(struct vm_area_struct *vma,
5461 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5462 {
5463 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5464 	return NULL;
5465 }
5466 
5467 struct page * __weak
5468 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5469 		pmd_t *pmd, int flags)
5470 {
5471 	struct page *page = NULL;
5472 	spinlock_t *ptl;
5473 	pte_t pte;
5474 
5475 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5476 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5477 			 (FOLL_PIN | FOLL_GET)))
5478 		return NULL;
5479 
5480 retry:
5481 	ptl = pmd_lockptr(mm, pmd);
5482 	spin_lock(ptl);
5483 	/*
5484 	 * make sure that the address range covered by this pmd is not
5485 	 * unmapped from other threads.
5486 	 */
5487 	if (!pmd_huge(*pmd))
5488 		goto out;
5489 	pte = huge_ptep_get((pte_t *)pmd);
5490 	if (pte_present(pte)) {
5491 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5492 		/*
5493 		 * try_grab_page() should always succeed here, because: a) we
5494 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5495 		 * huge pmd (head) page is present in the page tables. The ptl
5496 		 * prevents the head page and tail pages from being rearranged
5497 		 * in any way. So this page must be available at this point,
5498 		 * unless the page refcount overflowed:
5499 		 */
5500 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5501 			page = NULL;
5502 			goto out;
5503 		}
5504 	} else {
5505 		if (is_hugetlb_entry_migration(pte)) {
5506 			spin_unlock(ptl);
5507 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5508 			goto retry;
5509 		}
5510 		/*
5511 		 * hwpoisoned entry is treated as no_page_table in
5512 		 * follow_page_mask().
5513 		 */
5514 	}
5515 out:
5516 	spin_unlock(ptl);
5517 	return page;
5518 }
5519 
5520 struct page * __weak
5521 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5522 		pud_t *pud, int flags)
5523 {
5524 	if (flags & (FOLL_GET | FOLL_PIN))
5525 		return NULL;
5526 
5527 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5528 }
5529 
5530 struct page * __weak
5531 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5532 {
5533 	if (flags & (FOLL_GET | FOLL_PIN))
5534 		return NULL;
5535 
5536 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5537 }
5538 
5539 bool isolate_huge_page(struct page *page, struct list_head *list)
5540 {
5541 	bool ret = true;
5542 
5543 	spin_lock(&hugetlb_lock);
5544 	if (!PageHeadHuge(page) ||
5545 	    !HPageMigratable(page) ||
5546 	    !get_page_unless_zero(page)) {
5547 		ret = false;
5548 		goto unlock;
5549 	}
5550 	ClearHPageMigratable(page);
5551 	list_move_tail(&page->lru, list);
5552 unlock:
5553 	spin_unlock(&hugetlb_lock);
5554 	return ret;
5555 }
5556 
5557 void putback_active_hugepage(struct page *page)
5558 {
5559 	spin_lock(&hugetlb_lock);
5560 	SetHPageMigratable(page);
5561 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5562 	spin_unlock(&hugetlb_lock);
5563 	put_page(page);
5564 }
5565 
5566 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5567 {
5568 	struct hstate *h = page_hstate(oldpage);
5569 
5570 	hugetlb_cgroup_migrate(oldpage, newpage);
5571 	set_page_owner_migrate_reason(newpage, reason);
5572 
5573 	/*
5574 	 * transfer temporary state of the new huge page. This is
5575 	 * reverse to other transitions because the newpage is going to
5576 	 * be final while the old one will be freed so it takes over
5577 	 * the temporary status.
5578 	 *
5579 	 * Also note that we have to transfer the per-node surplus state
5580 	 * here as well otherwise the global surplus count will not match
5581 	 * the per-node's.
5582 	 */
5583 	if (HPageTemporary(newpage)) {
5584 		int old_nid = page_to_nid(oldpage);
5585 		int new_nid = page_to_nid(newpage);
5586 
5587 		SetHPageTemporary(oldpage);
5588 		ClearHPageTemporary(newpage);
5589 
5590 		spin_lock(&hugetlb_lock);
5591 		if (h->surplus_huge_pages_node[old_nid]) {
5592 			h->surplus_huge_pages_node[old_nid]--;
5593 			h->surplus_huge_pages_node[new_nid]++;
5594 		}
5595 		spin_unlock(&hugetlb_lock);
5596 	}
5597 }
5598 
5599 #ifdef CONFIG_CMA
5600 static bool cma_reserve_called __initdata;
5601 
5602 static int __init cmdline_parse_hugetlb_cma(char *p)
5603 {
5604 	hugetlb_cma_size = memparse(p, &p);
5605 	return 0;
5606 }
5607 
5608 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5609 
5610 void __init hugetlb_cma_reserve(int order)
5611 {
5612 	unsigned long size, reserved, per_node;
5613 	int nid;
5614 
5615 	cma_reserve_called = true;
5616 
5617 	if (!hugetlb_cma_size)
5618 		return;
5619 
5620 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5621 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5622 			(PAGE_SIZE << order) / SZ_1M);
5623 		return;
5624 	}
5625 
5626 	/*
5627 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5628 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5629 	 */
5630 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5631 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5632 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5633 
5634 	reserved = 0;
5635 	for_each_node_state(nid, N_ONLINE) {
5636 		int res;
5637 		char name[CMA_MAX_NAME];
5638 
5639 		size = min(per_node, hugetlb_cma_size - reserved);
5640 		size = round_up(size, PAGE_SIZE << order);
5641 
5642 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5643 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5644 						 0, false, name,
5645 						 &hugetlb_cma[nid], nid);
5646 		if (res) {
5647 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5648 				res, nid);
5649 			continue;
5650 		}
5651 
5652 		reserved += size;
5653 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5654 			size / SZ_1M, nid);
5655 
5656 		if (reserved >= hugetlb_cma_size)
5657 			break;
5658 	}
5659 }
5660 
5661 void __init hugetlb_cma_check(void)
5662 {
5663 	if (!hugetlb_cma_size || cma_reserve_called)
5664 		return;
5665 
5666 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5667 }
5668 
5669 #endif /* CONFIG_CMA */
5670