xref: /openbmc/linux/mm/hugetlb.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	if (vma->vm_ops && vma->vm_ops->pagesize)
641 		return vma->vm_ops->pagesize(vma);
642 	return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645 
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific 'strong'
650  * version of this symbol is required.
651  */
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 	return vma_kernel_pagesize(vma);
655 }
656 
657 /*
658  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
659  * bits of the reservation map pointer, which are always clear due to
660  * alignment.
661  */
662 #define HPAGE_RESV_OWNER    (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665 
666 /*
667  * These helpers are used to track how many pages are reserved for
668  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669  * is guaranteed to have their future faults succeed.
670  *
671  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672  * the reserve counters are updated with the hugetlb_lock held. It is safe
673  * to reset the VMA at fork() time as it is not in use yet and there is no
674  * chance of the global counters getting corrupted as a result of the values.
675  *
676  * The private mapping reservation is represented in a subtly different
677  * manner to a shared mapping.  A shared mapping has a region map associated
678  * with the underlying file, this region map represents the backing file
679  * pages which have ever had a reservation assigned which this persists even
680  * after the page is instantiated.  A private mapping has a region map
681  * associated with the original mmap which is attached to all VMAs which
682  * reference it, this region map represents those offsets which have consumed
683  * reservation ie. where pages have been instantiated.
684  */
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687 	return (unsigned long)vma->vm_private_data;
688 }
689 
690 static void set_vma_private_data(struct vm_area_struct *vma,
691 							unsigned long value)
692 {
693 	vma->vm_private_data = (void *)value;
694 }
695 
696 struct resv_map *resv_map_alloc(void)
697 {
698 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700 
701 	if (!resv_map || !rg) {
702 		kfree(resv_map);
703 		kfree(rg);
704 		return NULL;
705 	}
706 
707 	kref_init(&resv_map->refs);
708 	spin_lock_init(&resv_map->lock);
709 	INIT_LIST_HEAD(&resv_map->regions);
710 
711 	resv_map->adds_in_progress = 0;
712 
713 	INIT_LIST_HEAD(&resv_map->region_cache);
714 	list_add(&rg->link, &resv_map->region_cache);
715 	resv_map->region_cache_count = 1;
716 
717 	return resv_map;
718 }
719 
720 void resv_map_release(struct kref *ref)
721 {
722 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 	struct list_head *head = &resv_map->region_cache;
724 	struct file_region *rg, *trg;
725 
726 	/* Clear out any active regions before we release the map. */
727 	region_del(resv_map, 0, LONG_MAX);
728 
729 	/* ... and any entries left in the cache */
730 	list_for_each_entry_safe(rg, trg, head, link) {
731 		list_del(&rg->link);
732 		kfree(rg);
733 	}
734 
735 	VM_BUG_ON(resv_map->adds_in_progress);
736 
737 	kfree(resv_map);
738 }
739 
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742 	return inode->i_mapping->private_data;
743 }
744 
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 	if (vma->vm_flags & VM_MAYSHARE) {
749 		struct address_space *mapping = vma->vm_file->f_mapping;
750 		struct inode *inode = mapping->host;
751 
752 		return inode_resv_map(inode);
753 
754 	} else {
755 		return (struct resv_map *)(get_vma_private_data(vma) &
756 							~HPAGE_RESV_MASK);
757 	}
758 }
759 
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764 
765 	set_vma_private_data(vma, (get_vma_private_data(vma) &
766 				HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768 
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 
774 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776 
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 
781 	return (get_vma_private_data(vma) & flag) != 0;
782 }
783 
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 	if (!(vma->vm_flags & VM_MAYSHARE))
789 		vma->vm_private_data = (void *)0;
790 }
791 
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795 	if (vma->vm_flags & VM_NORESERVE) {
796 		/*
797 		 * This address is already reserved by other process(chg == 0),
798 		 * so, we should decrement reserved count. Without decrementing,
799 		 * reserve count remains after releasing inode, because this
800 		 * allocated page will go into page cache and is regarded as
801 		 * coming from reserved pool in releasing step.  Currently, we
802 		 * don't have any other solution to deal with this situation
803 		 * properly, so add work-around here.
804 		 */
805 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 			return true;
807 		else
808 			return false;
809 	}
810 
811 	/* Shared mappings always use reserves */
812 	if (vma->vm_flags & VM_MAYSHARE) {
813 		/*
814 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
815 		 * be a region map for all pages.  The only situation where
816 		 * there is no region map is if a hole was punched via
817 		 * fallocate.  In this case, there really are no reverves to
818 		 * use.  This situation is indicated if chg != 0.
819 		 */
820 		if (chg)
821 			return false;
822 		else
823 			return true;
824 	}
825 
826 	/*
827 	 * Only the process that called mmap() has reserves for
828 	 * private mappings.
829 	 */
830 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 		/*
832 		 * Like the shared case above, a hole punch or truncate
833 		 * could have been performed on the private mapping.
834 		 * Examine the value of chg to determine if reserves
835 		 * actually exist or were previously consumed.
836 		 * Very Subtle - The value of chg comes from a previous
837 		 * call to vma_needs_reserves().  The reserve map for
838 		 * private mappings has different (opposite) semantics
839 		 * than that of shared mappings.  vma_needs_reserves()
840 		 * has already taken this difference in semantics into
841 		 * account.  Therefore, the meaning of chg is the same
842 		 * as in the shared case above.  Code could easily be
843 		 * combined, but keeping it separate draws attention to
844 		 * subtle differences.
845 		 */
846 		if (chg)
847 			return false;
848 		else
849 			return true;
850 	}
851 
852 	return false;
853 }
854 
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857 	int nid = page_to_nid(page);
858 	list_move(&page->lru, &h->hugepage_freelists[nid]);
859 	h->free_huge_pages++;
860 	h->free_huge_pages_node[nid]++;
861 }
862 
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865 	struct page *page;
866 
867 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 		if (!PageHWPoison(page))
869 			break;
870 	/*
871 	 * if 'non-isolated free hugepage' not found on the list,
872 	 * the allocation fails.
873 	 */
874 	if (&h->hugepage_freelists[nid] == &page->lru)
875 		return NULL;
876 	list_move(&page->lru, &h->hugepage_activelist);
877 	set_page_refcounted(page);
878 	h->free_huge_pages--;
879 	h->free_huge_pages_node[nid]--;
880 	return page;
881 }
882 
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 		nodemask_t *nmask)
885 {
886 	unsigned int cpuset_mems_cookie;
887 	struct zonelist *zonelist;
888 	struct zone *zone;
889 	struct zoneref *z;
890 	int node = -1;
891 
892 	zonelist = node_zonelist(nid, gfp_mask);
893 
894 retry_cpuset:
895 	cpuset_mems_cookie = read_mems_allowed_begin();
896 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 		struct page *page;
898 
899 		if (!cpuset_zone_allowed(zone, gfp_mask))
900 			continue;
901 		/*
902 		 * no need to ask again on the same node. Pool is node rather than
903 		 * zone aware
904 		 */
905 		if (zone_to_nid(zone) == node)
906 			continue;
907 		node = zone_to_nid(zone);
908 
909 		page = dequeue_huge_page_node_exact(h, node);
910 		if (page)
911 			return page;
912 	}
913 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 		goto retry_cpuset;
915 
916 	return NULL;
917 }
918 
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922 	if (hugepage_migration_supported(h))
923 		return GFP_HIGHUSER_MOVABLE;
924 	else
925 		return GFP_HIGHUSER;
926 }
927 
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 				struct vm_area_struct *vma,
930 				unsigned long address, int avoid_reserve,
931 				long chg)
932 {
933 	struct page *page;
934 	struct mempolicy *mpol;
935 	gfp_t gfp_mask;
936 	nodemask_t *nodemask;
937 	int nid;
938 
939 	/*
940 	 * A child process with MAP_PRIVATE mappings created by their parent
941 	 * have no page reserves. This check ensures that reservations are
942 	 * not "stolen". The child may still get SIGKILLed
943 	 */
944 	if (!vma_has_reserves(vma, chg) &&
945 			h->free_huge_pages - h->resv_huge_pages == 0)
946 		goto err;
947 
948 	/* If reserves cannot be used, ensure enough pages are in the pool */
949 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 		goto err;
951 
952 	gfp_mask = htlb_alloc_mask(h);
953 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 		SetPagePrivate(page);
957 		h->resv_huge_pages--;
958 	}
959 
960 	mpol_cond_put(mpol);
961 	return page;
962 
963 err:
964 	return NULL;
965 }
966 
967 /*
968  * common helper functions for hstate_next_node_to_{alloc|free}.
969  * We may have allocated or freed a huge page based on a different
970  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971  * be outside of *nodes_allowed.  Ensure that we use an allowed
972  * node for alloc or free.
973  */
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976 	nid = next_node_in(nid, *nodes_allowed);
977 	VM_BUG_ON(nid >= MAX_NUMNODES);
978 
979 	return nid;
980 }
981 
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 	if (!node_isset(nid, *nodes_allowed))
985 		nid = next_node_allowed(nid, nodes_allowed);
986 	return nid;
987 }
988 
989 /*
990  * returns the previously saved node ["this node"] from which to
991  * allocate a persistent huge page for the pool and advance the
992  * next node from which to allocate, handling wrap at end of node
993  * mask.
994  */
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 					nodemask_t *nodes_allowed)
997 {
998 	int nid;
999 
1000 	VM_BUG_ON(!nodes_allowed);
1001 
1002 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004 
1005 	return nid;
1006 }
1007 
1008 /*
1009  * helper for free_pool_huge_page() - return the previously saved
1010  * node ["this node"] from which to free a huge page.  Advance the
1011  * next node id whether or not we find a free huge page to free so
1012  * that the next attempt to free addresses the next node.
1013  */
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016 	int nid;
1017 
1018 	VM_BUG_ON(!nodes_allowed);
1019 
1020 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022 
1023 	return nid;
1024 }
1025 
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1027 	for (nr_nodes = nodes_weight(*mask);				\
1028 		nr_nodes > 0 &&						\
1029 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1030 		nr_nodes--)
1031 
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1033 	for (nr_nodes = nodes_weight(*mask);				\
1034 		nr_nodes > 0 &&						\
1035 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1036 		nr_nodes--)
1037 
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040 					unsigned int order)
1041 {
1042 	int i;
1043 	int nr_pages = 1 << order;
1044 	struct page *p = page + 1;
1045 
1046 	atomic_set(compound_mapcount_ptr(page), 0);
1047 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 		clear_compound_head(p);
1049 		set_page_refcounted(p);
1050 	}
1051 
1052 	set_compound_order(page, 0);
1053 	__ClearPageHead(page);
1054 }
1055 
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058 	free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060 
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 				unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064 	unsigned long end_pfn = start_pfn + nr_pages;
1065 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 				  gfp_mask);
1067 }
1068 
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 			unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072 	unsigned long i, end_pfn = start_pfn + nr_pages;
1073 	struct page *page;
1074 
1075 	for (i = start_pfn; i < end_pfn; i++) {
1076 		if (!pfn_valid(i))
1077 			return false;
1078 
1079 		page = pfn_to_page(i);
1080 
1081 		if (page_zone(page) != z)
1082 			return false;
1083 
1084 		if (PageReserved(page))
1085 			return false;
1086 
1087 		if (page_count(page) > 0)
1088 			return false;
1089 
1090 		if (PageHuge(page))
1091 			return false;
1092 	}
1093 
1094 	return true;
1095 }
1096 
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 			unsigned long start_pfn, unsigned long nr_pages)
1099 {
1100 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 	return zone_spans_pfn(zone, last_pfn);
1102 }
1103 
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 		int nid, nodemask_t *nodemask)
1106 {
1107 	unsigned int order = huge_page_order(h);
1108 	unsigned long nr_pages = 1 << order;
1109 	unsigned long ret, pfn, flags;
1110 	struct zonelist *zonelist;
1111 	struct zone *zone;
1112 	struct zoneref *z;
1113 
1114 	zonelist = node_zonelist(nid, gfp_mask);
1115 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 		spin_lock_irqsave(&zone->lock, flags);
1117 
1118 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 				/*
1122 				 * We release the zone lock here because
1123 				 * alloc_contig_range() will also lock the zone
1124 				 * at some point. If there's an allocation
1125 				 * spinning on this lock, it may win the race
1126 				 * and cause alloc_contig_range() to fail...
1127 				 */
1128 				spin_unlock_irqrestore(&zone->lock, flags);
1129 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 				if (!ret)
1131 					return pfn_to_page(pfn);
1132 				spin_lock_irqsave(&zone->lock, flags);
1133 			}
1134 			pfn += nr_pages;
1135 		}
1136 
1137 		spin_unlock_irqrestore(&zone->lock, flags);
1138 	}
1139 
1140 	return NULL;
1141 }
1142 
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145 
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 		int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 						unsigned int order) { }
1153 #endif
1154 
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1156 {
1157 	int i;
1158 
1159 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 		return;
1161 
1162 	h->nr_huge_pages--;
1163 	h->nr_huge_pages_node[page_to_nid(page)]--;
1164 	for (i = 0; i < pages_per_huge_page(h); i++) {
1165 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 				1 << PG_referenced | 1 << PG_dirty |
1167 				1 << PG_active | 1 << PG_private |
1168 				1 << PG_writeback);
1169 	}
1170 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 	set_page_refcounted(page);
1173 	if (hstate_is_gigantic(h)) {
1174 		destroy_compound_gigantic_page(page, huge_page_order(h));
1175 		free_gigantic_page(page, huge_page_order(h));
1176 	} else {
1177 		__free_pages(page, huge_page_order(h));
1178 	}
1179 }
1180 
1181 struct hstate *size_to_hstate(unsigned long size)
1182 {
1183 	struct hstate *h;
1184 
1185 	for_each_hstate(h) {
1186 		if (huge_page_size(h) == size)
1187 			return h;
1188 	}
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194  * to hstate->hugepage_activelist.)
1195  *
1196  * This function can be called for tail pages, but never returns true for them.
1197  */
1198 bool page_huge_active(struct page *page)
1199 {
1200 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 	return PageHead(page) && PagePrivate(&page[1]);
1202 }
1203 
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1206 {
1207 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 	SetPagePrivate(&page[1]);
1209 }
1210 
1211 static void clear_page_huge_active(struct page *page)
1212 {
1213 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 	ClearPagePrivate(&page[1]);
1215 }
1216 
1217 /*
1218  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219  * code
1220  */
1221 static inline bool PageHugeTemporary(struct page *page)
1222 {
1223 	if (!PageHuge(page))
1224 		return false;
1225 
1226 	return (unsigned long)page[2].mapping == -1U;
1227 }
1228 
1229 static inline void SetPageHugeTemporary(struct page *page)
1230 {
1231 	page[2].mapping = (void *)-1U;
1232 }
1233 
1234 static inline void ClearPageHugeTemporary(struct page *page)
1235 {
1236 	page[2].mapping = NULL;
1237 }
1238 
1239 void free_huge_page(struct page *page)
1240 {
1241 	/*
1242 	 * Can't pass hstate in here because it is called from the
1243 	 * compound page destructor.
1244 	 */
1245 	struct hstate *h = page_hstate(page);
1246 	int nid = page_to_nid(page);
1247 	struct hugepage_subpool *spool =
1248 		(struct hugepage_subpool *)page_private(page);
1249 	bool restore_reserve;
1250 
1251 	set_page_private(page, 0);
1252 	page->mapping = NULL;
1253 	VM_BUG_ON_PAGE(page_count(page), page);
1254 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1255 	restore_reserve = PagePrivate(page);
1256 	ClearPagePrivate(page);
1257 
1258 	/*
1259 	 * A return code of zero implies that the subpool will be under its
1260 	 * minimum size if the reservation is not restored after page is free.
1261 	 * Therefore, force restore_reserve operation.
1262 	 */
1263 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 		restore_reserve = true;
1265 
1266 	spin_lock(&hugetlb_lock);
1267 	clear_page_huge_active(page);
1268 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 				     pages_per_huge_page(h), page);
1270 	if (restore_reserve)
1271 		h->resv_huge_pages++;
1272 
1273 	if (PageHugeTemporary(page)) {
1274 		list_del(&page->lru);
1275 		ClearPageHugeTemporary(page);
1276 		update_and_free_page(h, page);
1277 	} else if (h->surplus_huge_pages_node[nid]) {
1278 		/* remove the page from active list */
1279 		list_del(&page->lru);
1280 		update_and_free_page(h, page);
1281 		h->surplus_huge_pages--;
1282 		h->surplus_huge_pages_node[nid]--;
1283 	} else {
1284 		arch_clear_hugepage_flags(page);
1285 		enqueue_huge_page(h, page);
1286 	}
1287 	spin_unlock(&hugetlb_lock);
1288 }
1289 
1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291 {
1292 	INIT_LIST_HEAD(&page->lru);
1293 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294 	spin_lock(&hugetlb_lock);
1295 	set_hugetlb_cgroup(page, NULL);
1296 	h->nr_huge_pages++;
1297 	h->nr_huge_pages_node[nid]++;
1298 	spin_unlock(&hugetlb_lock);
1299 }
1300 
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302 {
1303 	int i;
1304 	int nr_pages = 1 << order;
1305 	struct page *p = page + 1;
1306 
1307 	/* we rely on prep_new_huge_page to set the destructor */
1308 	set_compound_order(page, order);
1309 	__ClearPageReserved(page);
1310 	__SetPageHead(page);
1311 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312 		/*
1313 		 * For gigantic hugepages allocated through bootmem at
1314 		 * boot, it's safer to be consistent with the not-gigantic
1315 		 * hugepages and clear the PG_reserved bit from all tail pages
1316 		 * too.  Otherwse drivers using get_user_pages() to access tail
1317 		 * pages may get the reference counting wrong if they see
1318 		 * PG_reserved set on a tail page (despite the head page not
1319 		 * having PG_reserved set).  Enforcing this consistency between
1320 		 * head and tail pages allows drivers to optimize away a check
1321 		 * on the head page when they need know if put_page() is needed
1322 		 * after get_user_pages().
1323 		 */
1324 		__ClearPageReserved(p);
1325 		set_page_count(p, 0);
1326 		set_compound_head(p, page);
1327 	}
1328 	atomic_set(compound_mapcount_ptr(page), -1);
1329 }
1330 
1331 /*
1332  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333  * transparent huge pages.  See the PageTransHuge() documentation for more
1334  * details.
1335  */
1336 int PageHuge(struct page *page)
1337 {
1338 	if (!PageCompound(page))
1339 		return 0;
1340 
1341 	page = compound_head(page);
1342 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343 }
1344 EXPORT_SYMBOL_GPL(PageHuge);
1345 
1346 /*
1347  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348  * normal or transparent huge pages.
1349  */
1350 int PageHeadHuge(struct page *page_head)
1351 {
1352 	if (!PageHead(page_head))
1353 		return 0;
1354 
1355 	return get_compound_page_dtor(page_head) == free_huge_page;
1356 }
1357 
1358 pgoff_t __basepage_index(struct page *page)
1359 {
1360 	struct page *page_head = compound_head(page);
1361 	pgoff_t index = page_index(page_head);
1362 	unsigned long compound_idx;
1363 
1364 	if (!PageHuge(page_head))
1365 		return page_index(page);
1366 
1367 	if (compound_order(page_head) >= MAX_ORDER)
1368 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369 	else
1370 		compound_idx = page - page_head;
1371 
1372 	return (index << compound_order(page_head)) + compound_idx;
1373 }
1374 
1375 static struct page *alloc_buddy_huge_page(struct hstate *h,
1376 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377 {
1378 	int order = huge_page_order(h);
1379 	struct page *page;
1380 
1381 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 	if (nid == NUMA_NO_NODE)
1383 		nid = numa_mem_id();
1384 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385 	if (page)
1386 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1387 	else
1388 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389 
1390 	return page;
1391 }
1392 
1393 /*
1394  * Common helper to allocate a fresh hugetlb page. All specific allocators
1395  * should use this function to get new hugetlb pages
1396  */
1397 static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399 {
1400 	struct page *page;
1401 
1402 	if (hstate_is_gigantic(h))
1403 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404 	else
1405 		page = alloc_buddy_huge_page(h, gfp_mask,
1406 				nid, nmask);
1407 	if (!page)
1408 		return NULL;
1409 
1410 	if (hstate_is_gigantic(h))
1411 		prep_compound_gigantic_page(page, huge_page_order(h));
1412 	prep_new_huge_page(h, page, page_to_nid(page));
1413 
1414 	return page;
1415 }
1416 
1417 /*
1418  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419  * manner.
1420  */
1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422 {
1423 	struct page *page;
1424 	int nr_nodes, node;
1425 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426 
1427 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429 		if (page)
1430 			break;
1431 	}
1432 
1433 	if (!page)
1434 		return 0;
1435 
1436 	put_page(page); /* free it into the hugepage allocator */
1437 
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Free huge page from pool from next node to free.
1443  * Attempt to keep persistent huge pages more or less
1444  * balanced over allowed nodes.
1445  * Called with hugetlb_lock locked.
1446  */
1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448 							 bool acct_surplus)
1449 {
1450 	int nr_nodes, node;
1451 	int ret = 0;
1452 
1453 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454 		/*
1455 		 * If we're returning unused surplus pages, only examine
1456 		 * nodes with surplus pages.
1457 		 */
1458 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 		    !list_empty(&h->hugepage_freelists[node])) {
1460 			struct page *page =
1461 				list_entry(h->hugepage_freelists[node].next,
1462 					  struct page, lru);
1463 			list_del(&page->lru);
1464 			h->free_huge_pages--;
1465 			h->free_huge_pages_node[node]--;
1466 			if (acct_surplus) {
1467 				h->surplus_huge_pages--;
1468 				h->surplus_huge_pages_node[node]--;
1469 			}
1470 			update_and_free_page(h, page);
1471 			ret = 1;
1472 			break;
1473 		}
1474 	}
1475 
1476 	return ret;
1477 }
1478 
1479 /*
1480  * Dissolve a given free hugepage into free buddy pages. This function does
1481  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482  * dissolution fails because a give page is not a free hugepage, or because
1483  * free hugepages are fully reserved.
1484  */
1485 int dissolve_free_huge_page(struct page *page)
1486 {
1487 	int rc = -EBUSY;
1488 
1489 	spin_lock(&hugetlb_lock);
1490 	if (PageHuge(page) && !page_count(page)) {
1491 		struct page *head = compound_head(page);
1492 		struct hstate *h = page_hstate(head);
1493 		int nid = page_to_nid(head);
1494 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1495 			goto out;
1496 		/*
1497 		 * Move PageHWPoison flag from head page to the raw error page,
1498 		 * which makes any subpages rather than the error page reusable.
1499 		 */
1500 		if (PageHWPoison(head) && page != head) {
1501 			SetPageHWPoison(page);
1502 			ClearPageHWPoison(head);
1503 		}
1504 		list_del(&head->lru);
1505 		h->free_huge_pages--;
1506 		h->free_huge_pages_node[nid]--;
1507 		h->max_huge_pages--;
1508 		update_and_free_page(h, head);
1509 		rc = 0;
1510 	}
1511 out:
1512 	spin_unlock(&hugetlb_lock);
1513 	return rc;
1514 }
1515 
1516 /*
1517  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1518  * make specified memory blocks removable from the system.
1519  * Note that this will dissolve a free gigantic hugepage completely, if any
1520  * part of it lies within the given range.
1521  * Also note that if dissolve_free_huge_page() returns with an error, all
1522  * free hugepages that were dissolved before that error are lost.
1523  */
1524 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1525 {
1526 	unsigned long pfn;
1527 	struct page *page;
1528 	int rc = 0;
1529 
1530 	if (!hugepages_supported())
1531 		return rc;
1532 
1533 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1534 		page = pfn_to_page(pfn);
1535 		if (PageHuge(page) && !page_count(page)) {
1536 			rc = dissolve_free_huge_page(page);
1537 			if (rc)
1538 				break;
1539 		}
1540 	}
1541 
1542 	return rc;
1543 }
1544 
1545 /*
1546  * Allocates a fresh surplus page from the page allocator.
1547  */
1548 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1549 		int nid, nodemask_t *nmask)
1550 {
1551 	struct page *page = NULL;
1552 
1553 	if (hstate_is_gigantic(h))
1554 		return NULL;
1555 
1556 	spin_lock(&hugetlb_lock);
1557 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1558 		goto out_unlock;
1559 	spin_unlock(&hugetlb_lock);
1560 
1561 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1562 	if (!page)
1563 		return NULL;
1564 
1565 	spin_lock(&hugetlb_lock);
1566 	/*
1567 	 * We could have raced with the pool size change.
1568 	 * Double check that and simply deallocate the new page
1569 	 * if we would end up overcommiting the surpluses. Abuse
1570 	 * temporary page to workaround the nasty free_huge_page
1571 	 * codeflow
1572 	 */
1573 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1574 		SetPageHugeTemporary(page);
1575 		put_page(page);
1576 		page = NULL;
1577 	} else {
1578 		h->surplus_huge_pages++;
1579 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1580 	}
1581 
1582 out_unlock:
1583 	spin_unlock(&hugetlb_lock);
1584 
1585 	return page;
1586 }
1587 
1588 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1589 		int nid, nodemask_t *nmask)
1590 {
1591 	struct page *page;
1592 
1593 	if (hstate_is_gigantic(h))
1594 		return NULL;
1595 
1596 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1597 	if (!page)
1598 		return NULL;
1599 
1600 	/*
1601 	 * We do not account these pages as surplus because they are only
1602 	 * temporary and will be released properly on the last reference
1603 	 */
1604 	SetPageHugeTemporary(page);
1605 
1606 	return page;
1607 }
1608 
1609 /*
1610  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611  */
1612 static
1613 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614 		struct vm_area_struct *vma, unsigned long addr)
1615 {
1616 	struct page *page;
1617 	struct mempolicy *mpol;
1618 	gfp_t gfp_mask = htlb_alloc_mask(h);
1619 	int nid;
1620 	nodemask_t *nodemask;
1621 
1622 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1623 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1624 	mpol_cond_put(mpol);
1625 
1626 	return page;
1627 }
1628 
1629 /* page migration callback function */
1630 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631 {
1632 	gfp_t gfp_mask = htlb_alloc_mask(h);
1633 	struct page *page = NULL;
1634 
1635 	if (nid != NUMA_NO_NODE)
1636 		gfp_mask |= __GFP_THISNODE;
1637 
1638 	spin_lock(&hugetlb_lock);
1639 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1640 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641 	spin_unlock(&hugetlb_lock);
1642 
1643 	if (!page)
1644 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1645 
1646 	return page;
1647 }
1648 
1649 /* page migration callback function */
1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651 		nodemask_t *nmask)
1652 {
1653 	gfp_t gfp_mask = htlb_alloc_mask(h);
1654 
1655 	spin_lock(&hugetlb_lock);
1656 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657 		struct page *page;
1658 
1659 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660 		if (page) {
1661 			spin_unlock(&hugetlb_lock);
1662 			return page;
1663 		}
1664 	}
1665 	spin_unlock(&hugetlb_lock);
1666 
1667 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1668 }
1669 
1670 /* mempolicy aware migration callback */
1671 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1672 		unsigned long address)
1673 {
1674 	struct mempolicy *mpol;
1675 	nodemask_t *nodemask;
1676 	struct page *page;
1677 	gfp_t gfp_mask;
1678 	int node;
1679 
1680 	gfp_mask = htlb_alloc_mask(h);
1681 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1682 	page = alloc_huge_page_nodemask(h, node, nodemask);
1683 	mpol_cond_put(mpol);
1684 
1685 	return page;
1686 }
1687 
1688 /*
1689  * Increase the hugetlb pool such that it can accommodate a reservation
1690  * of size 'delta'.
1691  */
1692 static int gather_surplus_pages(struct hstate *h, int delta)
1693 {
1694 	struct list_head surplus_list;
1695 	struct page *page, *tmp;
1696 	int ret, i;
1697 	int needed, allocated;
1698 	bool alloc_ok = true;
1699 
1700 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1701 	if (needed <= 0) {
1702 		h->resv_huge_pages += delta;
1703 		return 0;
1704 	}
1705 
1706 	allocated = 0;
1707 	INIT_LIST_HEAD(&surplus_list);
1708 
1709 	ret = -ENOMEM;
1710 retry:
1711 	spin_unlock(&hugetlb_lock);
1712 	for (i = 0; i < needed; i++) {
1713 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1714 				NUMA_NO_NODE, NULL);
1715 		if (!page) {
1716 			alloc_ok = false;
1717 			break;
1718 		}
1719 		list_add(&page->lru, &surplus_list);
1720 		cond_resched();
1721 	}
1722 	allocated += i;
1723 
1724 	/*
1725 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 	 * because either resv_huge_pages or free_huge_pages may have changed.
1727 	 */
1728 	spin_lock(&hugetlb_lock);
1729 	needed = (h->resv_huge_pages + delta) -
1730 			(h->free_huge_pages + allocated);
1731 	if (needed > 0) {
1732 		if (alloc_ok)
1733 			goto retry;
1734 		/*
1735 		 * We were not able to allocate enough pages to
1736 		 * satisfy the entire reservation so we free what
1737 		 * we've allocated so far.
1738 		 */
1739 		goto free;
1740 	}
1741 	/*
1742 	 * The surplus_list now contains _at_least_ the number of extra pages
1743 	 * needed to accommodate the reservation.  Add the appropriate number
1744 	 * of pages to the hugetlb pool and free the extras back to the buddy
1745 	 * allocator.  Commit the entire reservation here to prevent another
1746 	 * process from stealing the pages as they are added to the pool but
1747 	 * before they are reserved.
1748 	 */
1749 	needed += allocated;
1750 	h->resv_huge_pages += delta;
1751 	ret = 0;
1752 
1753 	/* Free the needed pages to the hugetlb pool */
1754 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755 		if ((--needed) < 0)
1756 			break;
1757 		/*
1758 		 * This page is now managed by the hugetlb allocator and has
1759 		 * no users -- drop the buddy allocator's reference.
1760 		 */
1761 		put_page_testzero(page);
1762 		VM_BUG_ON_PAGE(page_count(page), page);
1763 		enqueue_huge_page(h, page);
1764 	}
1765 free:
1766 	spin_unlock(&hugetlb_lock);
1767 
1768 	/* Free unnecessary surplus pages to the buddy allocator */
1769 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 		put_page(page);
1771 	spin_lock(&hugetlb_lock);
1772 
1773 	return ret;
1774 }
1775 
1776 /*
1777  * This routine has two main purposes:
1778  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1780  *    to the associated reservation map.
1781  * 2) Free any unused surplus pages that may have been allocated to satisfy
1782  *    the reservation.  As many as unused_resv_pages may be freed.
1783  *
1784  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1785  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1786  * we must make sure nobody else can claim pages we are in the process of
1787  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1788  * number of huge pages we plan to free when dropping the lock.
1789  */
1790 static void return_unused_surplus_pages(struct hstate *h,
1791 					unsigned long unused_resv_pages)
1792 {
1793 	unsigned long nr_pages;
1794 
1795 	/* Cannot return gigantic pages currently */
1796 	if (hstate_is_gigantic(h))
1797 		goto out;
1798 
1799 	/*
1800 	 * Part (or even all) of the reservation could have been backed
1801 	 * by pre-allocated pages. Only free surplus pages.
1802 	 */
1803 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804 
1805 	/*
1806 	 * We want to release as many surplus pages as possible, spread
1807 	 * evenly across all nodes with memory. Iterate across these nodes
1808 	 * until we can no longer free unreserved surplus pages. This occurs
1809 	 * when the nodes with surplus pages have no free pages.
1810 	 * free_pool_huge_page() will balance the the freed pages across the
1811 	 * on-line nodes with memory and will handle the hstate accounting.
1812 	 *
1813 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1814 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 	 * to cover subsequent pages we may free.
1816 	 */
1817 	while (nr_pages--) {
1818 		h->resv_huge_pages--;
1819 		unused_resv_pages--;
1820 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821 			goto out;
1822 		cond_resched_lock(&hugetlb_lock);
1823 	}
1824 
1825 out:
1826 	/* Fully uncommit the reservation */
1827 	h->resv_huge_pages -= unused_resv_pages;
1828 }
1829 
1830 
1831 /*
1832  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833  * are used by the huge page allocation routines to manage reservations.
1834  *
1835  * vma_needs_reservation is called to determine if the huge page at addr
1836  * within the vma has an associated reservation.  If a reservation is
1837  * needed, the value 1 is returned.  The caller is then responsible for
1838  * managing the global reservation and subpool usage counts.  After
1839  * the huge page has been allocated, vma_commit_reservation is called
1840  * to add the page to the reservation map.  If the page allocation fails,
1841  * the reservation must be ended instead of committed.  vma_end_reservation
1842  * is called in such cases.
1843  *
1844  * In the normal case, vma_commit_reservation returns the same value
1845  * as the preceding vma_needs_reservation call.  The only time this
1846  * is not the case is if a reserve map was changed between calls.  It
1847  * is the responsibility of the caller to notice the difference and
1848  * take appropriate action.
1849  *
1850  * vma_add_reservation is used in error paths where a reservation must
1851  * be restored when a newly allocated huge page must be freed.  It is
1852  * to be called after calling vma_needs_reservation to determine if a
1853  * reservation exists.
1854  */
1855 enum vma_resv_mode {
1856 	VMA_NEEDS_RESV,
1857 	VMA_COMMIT_RESV,
1858 	VMA_END_RESV,
1859 	VMA_ADD_RESV,
1860 };
1861 static long __vma_reservation_common(struct hstate *h,
1862 				struct vm_area_struct *vma, unsigned long addr,
1863 				enum vma_resv_mode mode)
1864 {
1865 	struct resv_map *resv;
1866 	pgoff_t idx;
1867 	long ret;
1868 
1869 	resv = vma_resv_map(vma);
1870 	if (!resv)
1871 		return 1;
1872 
1873 	idx = vma_hugecache_offset(h, vma, addr);
1874 	switch (mode) {
1875 	case VMA_NEEDS_RESV:
1876 		ret = region_chg(resv, idx, idx + 1);
1877 		break;
1878 	case VMA_COMMIT_RESV:
1879 		ret = region_add(resv, idx, idx + 1);
1880 		break;
1881 	case VMA_END_RESV:
1882 		region_abort(resv, idx, idx + 1);
1883 		ret = 0;
1884 		break;
1885 	case VMA_ADD_RESV:
1886 		if (vma->vm_flags & VM_MAYSHARE)
1887 			ret = region_add(resv, idx, idx + 1);
1888 		else {
1889 			region_abort(resv, idx, idx + 1);
1890 			ret = region_del(resv, idx, idx + 1);
1891 		}
1892 		break;
1893 	default:
1894 		BUG();
1895 	}
1896 
1897 	if (vma->vm_flags & VM_MAYSHARE)
1898 		return ret;
1899 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1900 		/*
1901 		 * In most cases, reserves always exist for private mappings.
1902 		 * However, a file associated with mapping could have been
1903 		 * hole punched or truncated after reserves were consumed.
1904 		 * As subsequent fault on such a range will not use reserves.
1905 		 * Subtle - The reserve map for private mappings has the
1906 		 * opposite meaning than that of shared mappings.  If NO
1907 		 * entry is in the reserve map, it means a reservation exists.
1908 		 * If an entry exists in the reserve map, it means the
1909 		 * reservation has already been consumed.  As a result, the
1910 		 * return value of this routine is the opposite of the
1911 		 * value returned from reserve map manipulation routines above.
1912 		 */
1913 		if (ret)
1914 			return 0;
1915 		else
1916 			return 1;
1917 	}
1918 	else
1919 		return ret < 0 ? ret : 0;
1920 }
1921 
1922 static long vma_needs_reservation(struct hstate *h,
1923 			struct vm_area_struct *vma, unsigned long addr)
1924 {
1925 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1926 }
1927 
1928 static long vma_commit_reservation(struct hstate *h,
1929 			struct vm_area_struct *vma, unsigned long addr)
1930 {
1931 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1932 }
1933 
1934 static void vma_end_reservation(struct hstate *h,
1935 			struct vm_area_struct *vma, unsigned long addr)
1936 {
1937 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1938 }
1939 
1940 static long vma_add_reservation(struct hstate *h,
1941 			struct vm_area_struct *vma, unsigned long addr)
1942 {
1943 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1944 }
1945 
1946 /*
1947  * This routine is called to restore a reservation on error paths.  In the
1948  * specific error paths, a huge page was allocated (via alloc_huge_page)
1949  * and is about to be freed.  If a reservation for the page existed,
1950  * alloc_huge_page would have consumed the reservation and set PagePrivate
1951  * in the newly allocated page.  When the page is freed via free_huge_page,
1952  * the global reservation count will be incremented if PagePrivate is set.
1953  * However, free_huge_page can not adjust the reserve map.  Adjust the
1954  * reserve map here to be consistent with global reserve count adjustments
1955  * to be made by free_huge_page.
1956  */
1957 static void restore_reserve_on_error(struct hstate *h,
1958 			struct vm_area_struct *vma, unsigned long address,
1959 			struct page *page)
1960 {
1961 	if (unlikely(PagePrivate(page))) {
1962 		long rc = vma_needs_reservation(h, vma, address);
1963 
1964 		if (unlikely(rc < 0)) {
1965 			/*
1966 			 * Rare out of memory condition in reserve map
1967 			 * manipulation.  Clear PagePrivate so that
1968 			 * global reserve count will not be incremented
1969 			 * by free_huge_page.  This will make it appear
1970 			 * as though the reservation for this page was
1971 			 * consumed.  This may prevent the task from
1972 			 * faulting in the page at a later time.  This
1973 			 * is better than inconsistent global huge page
1974 			 * accounting of reserve counts.
1975 			 */
1976 			ClearPagePrivate(page);
1977 		} else if (rc) {
1978 			rc = vma_add_reservation(h, vma, address);
1979 			if (unlikely(rc < 0))
1980 				/*
1981 				 * See above comment about rare out of
1982 				 * memory condition.
1983 				 */
1984 				ClearPagePrivate(page);
1985 		} else
1986 			vma_end_reservation(h, vma, address);
1987 	}
1988 }
1989 
1990 struct page *alloc_huge_page(struct vm_area_struct *vma,
1991 				    unsigned long addr, int avoid_reserve)
1992 {
1993 	struct hugepage_subpool *spool = subpool_vma(vma);
1994 	struct hstate *h = hstate_vma(vma);
1995 	struct page *page;
1996 	long map_chg, map_commit;
1997 	long gbl_chg;
1998 	int ret, idx;
1999 	struct hugetlb_cgroup *h_cg;
2000 
2001 	idx = hstate_index(h);
2002 	/*
2003 	 * Examine the region/reserve map to determine if the process
2004 	 * has a reservation for the page to be allocated.  A return
2005 	 * code of zero indicates a reservation exists (no change).
2006 	 */
2007 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2008 	if (map_chg < 0)
2009 		return ERR_PTR(-ENOMEM);
2010 
2011 	/*
2012 	 * Processes that did not create the mapping will have no
2013 	 * reserves as indicated by the region/reserve map. Check
2014 	 * that the allocation will not exceed the subpool limit.
2015 	 * Allocations for MAP_NORESERVE mappings also need to be
2016 	 * checked against any subpool limit.
2017 	 */
2018 	if (map_chg || avoid_reserve) {
2019 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2020 		if (gbl_chg < 0) {
2021 			vma_end_reservation(h, vma, addr);
2022 			return ERR_PTR(-ENOSPC);
2023 		}
2024 
2025 		/*
2026 		 * Even though there was no reservation in the region/reserve
2027 		 * map, there could be reservations associated with the
2028 		 * subpool that can be used.  This would be indicated if the
2029 		 * return value of hugepage_subpool_get_pages() is zero.
2030 		 * However, if avoid_reserve is specified we still avoid even
2031 		 * the subpool reservations.
2032 		 */
2033 		if (avoid_reserve)
2034 			gbl_chg = 1;
2035 	}
2036 
2037 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2038 	if (ret)
2039 		goto out_subpool_put;
2040 
2041 	spin_lock(&hugetlb_lock);
2042 	/*
2043 	 * glb_chg is passed to indicate whether or not a page must be taken
2044 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2045 	 * a reservation exists for the allocation.
2046 	 */
2047 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2048 	if (!page) {
2049 		spin_unlock(&hugetlb_lock);
2050 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2051 		if (!page)
2052 			goto out_uncharge_cgroup;
2053 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054 			SetPagePrivate(page);
2055 			h->resv_huge_pages--;
2056 		}
2057 		spin_lock(&hugetlb_lock);
2058 		list_move(&page->lru, &h->hugepage_activelist);
2059 		/* Fall through */
2060 	}
2061 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062 	spin_unlock(&hugetlb_lock);
2063 
2064 	set_page_private(page, (unsigned long)spool);
2065 
2066 	map_commit = vma_commit_reservation(h, vma, addr);
2067 	if (unlikely(map_chg > map_commit)) {
2068 		/*
2069 		 * The page was added to the reservation map between
2070 		 * vma_needs_reservation and vma_commit_reservation.
2071 		 * This indicates a race with hugetlb_reserve_pages.
2072 		 * Adjust for the subpool count incremented above AND
2073 		 * in hugetlb_reserve_pages for the same page.  Also,
2074 		 * the reservation count added in hugetlb_reserve_pages
2075 		 * no longer applies.
2076 		 */
2077 		long rsv_adjust;
2078 
2079 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080 		hugetlb_acct_memory(h, -rsv_adjust);
2081 	}
2082 	return page;
2083 
2084 out_uncharge_cgroup:
2085 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2086 out_subpool_put:
2087 	if (map_chg || avoid_reserve)
2088 		hugepage_subpool_put_pages(spool, 1);
2089 	vma_end_reservation(h, vma, addr);
2090 	return ERR_PTR(-ENOSPC);
2091 }
2092 
2093 int alloc_bootmem_huge_page(struct hstate *h)
2094 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2095 int __alloc_bootmem_huge_page(struct hstate *h)
2096 {
2097 	struct huge_bootmem_page *m;
2098 	int nr_nodes, node;
2099 
2100 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2101 		void *addr;
2102 
2103 		addr = memblock_virt_alloc_try_nid_raw(
2104 				huge_page_size(h), huge_page_size(h),
2105 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2106 		if (addr) {
2107 			/*
2108 			 * Use the beginning of the huge page to store the
2109 			 * huge_bootmem_page struct (until gather_bootmem
2110 			 * puts them into the mem_map).
2111 			 */
2112 			m = addr;
2113 			goto found;
2114 		}
2115 	}
2116 	return 0;
2117 
2118 found:
2119 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2120 	/* Put them into a private list first because mem_map is not up yet */
2121 	INIT_LIST_HEAD(&m->list);
2122 	list_add(&m->list, &huge_boot_pages);
2123 	m->hstate = h;
2124 	return 1;
2125 }
2126 
2127 static void __init prep_compound_huge_page(struct page *page,
2128 		unsigned int order)
2129 {
2130 	if (unlikely(order > (MAX_ORDER - 1)))
2131 		prep_compound_gigantic_page(page, order);
2132 	else
2133 		prep_compound_page(page, order);
2134 }
2135 
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init gather_bootmem_prealloc(void)
2138 {
2139 	struct huge_bootmem_page *m;
2140 
2141 	list_for_each_entry(m, &huge_boot_pages, list) {
2142 		struct page *page = virt_to_page(m);
2143 		struct hstate *h = m->hstate;
2144 
2145 		WARN_ON(page_count(page) != 1);
2146 		prep_compound_huge_page(page, h->order);
2147 		WARN_ON(PageReserved(page));
2148 		prep_new_huge_page(h, page, page_to_nid(page));
2149 		put_page(page); /* free it into the hugepage allocator */
2150 
2151 		/*
2152 		 * If we had gigantic hugepages allocated at boot time, we need
2153 		 * to restore the 'stolen' pages to totalram_pages in order to
2154 		 * fix confusing memory reports from free(1) and another
2155 		 * side-effects, like CommitLimit going negative.
2156 		 */
2157 		if (hstate_is_gigantic(h))
2158 			adjust_managed_page_count(page, 1 << h->order);
2159 		cond_resched();
2160 	}
2161 }
2162 
2163 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2164 {
2165 	unsigned long i;
2166 
2167 	for (i = 0; i < h->max_huge_pages; ++i) {
2168 		if (hstate_is_gigantic(h)) {
2169 			if (!alloc_bootmem_huge_page(h))
2170 				break;
2171 		} else if (!alloc_pool_huge_page(h,
2172 					 &node_states[N_MEMORY]))
2173 			break;
2174 		cond_resched();
2175 	}
2176 	if (i < h->max_huge_pages) {
2177 		char buf[32];
2178 
2179 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2180 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2181 			h->max_huge_pages, buf, i);
2182 		h->max_huge_pages = i;
2183 	}
2184 }
2185 
2186 static void __init hugetlb_init_hstates(void)
2187 {
2188 	struct hstate *h;
2189 
2190 	for_each_hstate(h) {
2191 		if (minimum_order > huge_page_order(h))
2192 			minimum_order = huge_page_order(h);
2193 
2194 		/* oversize hugepages were init'ed in early boot */
2195 		if (!hstate_is_gigantic(h))
2196 			hugetlb_hstate_alloc_pages(h);
2197 	}
2198 	VM_BUG_ON(minimum_order == UINT_MAX);
2199 }
2200 
2201 static void __init report_hugepages(void)
2202 {
2203 	struct hstate *h;
2204 
2205 	for_each_hstate(h) {
2206 		char buf[32];
2207 
2208 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2209 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2210 			buf, h->free_huge_pages);
2211 	}
2212 }
2213 
2214 #ifdef CONFIG_HIGHMEM
2215 static void try_to_free_low(struct hstate *h, unsigned long count,
2216 						nodemask_t *nodes_allowed)
2217 {
2218 	int i;
2219 
2220 	if (hstate_is_gigantic(h))
2221 		return;
2222 
2223 	for_each_node_mask(i, *nodes_allowed) {
2224 		struct page *page, *next;
2225 		struct list_head *freel = &h->hugepage_freelists[i];
2226 		list_for_each_entry_safe(page, next, freel, lru) {
2227 			if (count >= h->nr_huge_pages)
2228 				return;
2229 			if (PageHighMem(page))
2230 				continue;
2231 			list_del(&page->lru);
2232 			update_and_free_page(h, page);
2233 			h->free_huge_pages--;
2234 			h->free_huge_pages_node[page_to_nid(page)]--;
2235 		}
2236 	}
2237 }
2238 #else
2239 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2240 						nodemask_t *nodes_allowed)
2241 {
2242 }
2243 #endif
2244 
2245 /*
2246  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2247  * balanced by operating on them in a round-robin fashion.
2248  * Returns 1 if an adjustment was made.
2249  */
2250 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2251 				int delta)
2252 {
2253 	int nr_nodes, node;
2254 
2255 	VM_BUG_ON(delta != -1 && delta != 1);
2256 
2257 	if (delta < 0) {
2258 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2259 			if (h->surplus_huge_pages_node[node])
2260 				goto found;
2261 		}
2262 	} else {
2263 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264 			if (h->surplus_huge_pages_node[node] <
2265 					h->nr_huge_pages_node[node])
2266 				goto found;
2267 		}
2268 	}
2269 	return 0;
2270 
2271 found:
2272 	h->surplus_huge_pages += delta;
2273 	h->surplus_huge_pages_node[node] += delta;
2274 	return 1;
2275 }
2276 
2277 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2278 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2279 						nodemask_t *nodes_allowed)
2280 {
2281 	unsigned long min_count, ret;
2282 
2283 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2284 		return h->max_huge_pages;
2285 
2286 	/*
2287 	 * Increase the pool size
2288 	 * First take pages out of surplus state.  Then make up the
2289 	 * remaining difference by allocating fresh huge pages.
2290 	 *
2291 	 * We might race with alloc_surplus_huge_page() here and be unable
2292 	 * to convert a surplus huge page to a normal huge page. That is
2293 	 * not critical, though, it just means the overall size of the
2294 	 * pool might be one hugepage larger than it needs to be, but
2295 	 * within all the constraints specified by the sysctls.
2296 	 */
2297 	spin_lock(&hugetlb_lock);
2298 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2299 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2300 			break;
2301 	}
2302 
2303 	while (count > persistent_huge_pages(h)) {
2304 		/*
2305 		 * If this allocation races such that we no longer need the
2306 		 * page, free_huge_page will handle it by freeing the page
2307 		 * and reducing the surplus.
2308 		 */
2309 		spin_unlock(&hugetlb_lock);
2310 
2311 		/* yield cpu to avoid soft lockup */
2312 		cond_resched();
2313 
2314 		ret = alloc_pool_huge_page(h, nodes_allowed);
2315 		spin_lock(&hugetlb_lock);
2316 		if (!ret)
2317 			goto out;
2318 
2319 		/* Bail for signals. Probably ctrl-c from user */
2320 		if (signal_pending(current))
2321 			goto out;
2322 	}
2323 
2324 	/*
2325 	 * Decrease the pool size
2326 	 * First return free pages to the buddy allocator (being careful
2327 	 * to keep enough around to satisfy reservations).  Then place
2328 	 * pages into surplus state as needed so the pool will shrink
2329 	 * to the desired size as pages become free.
2330 	 *
2331 	 * By placing pages into the surplus state independent of the
2332 	 * overcommit value, we are allowing the surplus pool size to
2333 	 * exceed overcommit. There are few sane options here. Since
2334 	 * alloc_surplus_huge_page() is checking the global counter,
2335 	 * though, we'll note that we're not allowed to exceed surplus
2336 	 * and won't grow the pool anywhere else. Not until one of the
2337 	 * sysctls are changed, or the surplus pages go out of use.
2338 	 */
2339 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2340 	min_count = max(count, min_count);
2341 	try_to_free_low(h, min_count, nodes_allowed);
2342 	while (min_count < persistent_huge_pages(h)) {
2343 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2344 			break;
2345 		cond_resched_lock(&hugetlb_lock);
2346 	}
2347 	while (count < persistent_huge_pages(h)) {
2348 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2349 			break;
2350 	}
2351 out:
2352 	ret = persistent_huge_pages(h);
2353 	spin_unlock(&hugetlb_lock);
2354 	return ret;
2355 }
2356 
2357 #define HSTATE_ATTR_RO(_name) \
2358 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2359 
2360 #define HSTATE_ATTR(_name) \
2361 	static struct kobj_attribute _name##_attr = \
2362 		__ATTR(_name, 0644, _name##_show, _name##_store)
2363 
2364 static struct kobject *hugepages_kobj;
2365 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2366 
2367 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2368 
2369 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2370 {
2371 	int i;
2372 
2373 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2374 		if (hstate_kobjs[i] == kobj) {
2375 			if (nidp)
2376 				*nidp = NUMA_NO_NODE;
2377 			return &hstates[i];
2378 		}
2379 
2380 	return kobj_to_node_hstate(kobj, nidp);
2381 }
2382 
2383 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2384 					struct kobj_attribute *attr, char *buf)
2385 {
2386 	struct hstate *h;
2387 	unsigned long nr_huge_pages;
2388 	int nid;
2389 
2390 	h = kobj_to_hstate(kobj, &nid);
2391 	if (nid == NUMA_NO_NODE)
2392 		nr_huge_pages = h->nr_huge_pages;
2393 	else
2394 		nr_huge_pages = h->nr_huge_pages_node[nid];
2395 
2396 	return sprintf(buf, "%lu\n", nr_huge_pages);
2397 }
2398 
2399 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2400 					   struct hstate *h, int nid,
2401 					   unsigned long count, size_t len)
2402 {
2403 	int err;
2404 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2405 
2406 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2407 		err = -EINVAL;
2408 		goto out;
2409 	}
2410 
2411 	if (nid == NUMA_NO_NODE) {
2412 		/*
2413 		 * global hstate attribute
2414 		 */
2415 		if (!(obey_mempolicy &&
2416 				init_nodemask_of_mempolicy(nodes_allowed))) {
2417 			NODEMASK_FREE(nodes_allowed);
2418 			nodes_allowed = &node_states[N_MEMORY];
2419 		}
2420 	} else if (nodes_allowed) {
2421 		/*
2422 		 * per node hstate attribute: adjust count to global,
2423 		 * but restrict alloc/free to the specified node.
2424 		 */
2425 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2426 		init_nodemask_of_node(nodes_allowed, nid);
2427 	} else
2428 		nodes_allowed = &node_states[N_MEMORY];
2429 
2430 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2431 
2432 	if (nodes_allowed != &node_states[N_MEMORY])
2433 		NODEMASK_FREE(nodes_allowed);
2434 
2435 	return len;
2436 out:
2437 	NODEMASK_FREE(nodes_allowed);
2438 	return err;
2439 }
2440 
2441 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2442 					 struct kobject *kobj, const char *buf,
2443 					 size_t len)
2444 {
2445 	struct hstate *h;
2446 	unsigned long count;
2447 	int nid;
2448 	int err;
2449 
2450 	err = kstrtoul(buf, 10, &count);
2451 	if (err)
2452 		return err;
2453 
2454 	h = kobj_to_hstate(kobj, &nid);
2455 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2456 }
2457 
2458 static ssize_t nr_hugepages_show(struct kobject *kobj,
2459 				       struct kobj_attribute *attr, char *buf)
2460 {
2461 	return nr_hugepages_show_common(kobj, attr, buf);
2462 }
2463 
2464 static ssize_t nr_hugepages_store(struct kobject *kobj,
2465 	       struct kobj_attribute *attr, const char *buf, size_t len)
2466 {
2467 	return nr_hugepages_store_common(false, kobj, buf, len);
2468 }
2469 HSTATE_ATTR(nr_hugepages);
2470 
2471 #ifdef CONFIG_NUMA
2472 
2473 /*
2474  * hstate attribute for optionally mempolicy-based constraint on persistent
2475  * huge page alloc/free.
2476  */
2477 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2478 				       struct kobj_attribute *attr, char *buf)
2479 {
2480 	return nr_hugepages_show_common(kobj, attr, buf);
2481 }
2482 
2483 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2484 	       struct kobj_attribute *attr, const char *buf, size_t len)
2485 {
2486 	return nr_hugepages_store_common(true, kobj, buf, len);
2487 }
2488 HSTATE_ATTR(nr_hugepages_mempolicy);
2489 #endif
2490 
2491 
2492 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2493 					struct kobj_attribute *attr, char *buf)
2494 {
2495 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2496 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2497 }
2498 
2499 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2500 		struct kobj_attribute *attr, const char *buf, size_t count)
2501 {
2502 	int err;
2503 	unsigned long input;
2504 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2505 
2506 	if (hstate_is_gigantic(h))
2507 		return -EINVAL;
2508 
2509 	err = kstrtoul(buf, 10, &input);
2510 	if (err)
2511 		return err;
2512 
2513 	spin_lock(&hugetlb_lock);
2514 	h->nr_overcommit_huge_pages = input;
2515 	spin_unlock(&hugetlb_lock);
2516 
2517 	return count;
2518 }
2519 HSTATE_ATTR(nr_overcommit_hugepages);
2520 
2521 static ssize_t free_hugepages_show(struct kobject *kobj,
2522 					struct kobj_attribute *attr, char *buf)
2523 {
2524 	struct hstate *h;
2525 	unsigned long free_huge_pages;
2526 	int nid;
2527 
2528 	h = kobj_to_hstate(kobj, &nid);
2529 	if (nid == NUMA_NO_NODE)
2530 		free_huge_pages = h->free_huge_pages;
2531 	else
2532 		free_huge_pages = h->free_huge_pages_node[nid];
2533 
2534 	return sprintf(buf, "%lu\n", free_huge_pages);
2535 }
2536 HSTATE_ATTR_RO(free_hugepages);
2537 
2538 static ssize_t resv_hugepages_show(struct kobject *kobj,
2539 					struct kobj_attribute *attr, char *buf)
2540 {
2541 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2542 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2543 }
2544 HSTATE_ATTR_RO(resv_hugepages);
2545 
2546 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2547 					struct kobj_attribute *attr, char *buf)
2548 {
2549 	struct hstate *h;
2550 	unsigned long surplus_huge_pages;
2551 	int nid;
2552 
2553 	h = kobj_to_hstate(kobj, &nid);
2554 	if (nid == NUMA_NO_NODE)
2555 		surplus_huge_pages = h->surplus_huge_pages;
2556 	else
2557 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2558 
2559 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2560 }
2561 HSTATE_ATTR_RO(surplus_hugepages);
2562 
2563 static struct attribute *hstate_attrs[] = {
2564 	&nr_hugepages_attr.attr,
2565 	&nr_overcommit_hugepages_attr.attr,
2566 	&free_hugepages_attr.attr,
2567 	&resv_hugepages_attr.attr,
2568 	&surplus_hugepages_attr.attr,
2569 #ifdef CONFIG_NUMA
2570 	&nr_hugepages_mempolicy_attr.attr,
2571 #endif
2572 	NULL,
2573 };
2574 
2575 static const struct attribute_group hstate_attr_group = {
2576 	.attrs = hstate_attrs,
2577 };
2578 
2579 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2580 				    struct kobject **hstate_kobjs,
2581 				    const struct attribute_group *hstate_attr_group)
2582 {
2583 	int retval;
2584 	int hi = hstate_index(h);
2585 
2586 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2587 	if (!hstate_kobjs[hi])
2588 		return -ENOMEM;
2589 
2590 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2591 	if (retval)
2592 		kobject_put(hstate_kobjs[hi]);
2593 
2594 	return retval;
2595 }
2596 
2597 static void __init hugetlb_sysfs_init(void)
2598 {
2599 	struct hstate *h;
2600 	int err;
2601 
2602 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2603 	if (!hugepages_kobj)
2604 		return;
2605 
2606 	for_each_hstate(h) {
2607 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2608 					 hstate_kobjs, &hstate_attr_group);
2609 		if (err)
2610 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2611 	}
2612 }
2613 
2614 #ifdef CONFIG_NUMA
2615 
2616 /*
2617  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618  * with node devices in node_devices[] using a parallel array.  The array
2619  * index of a node device or _hstate == node id.
2620  * This is here to avoid any static dependency of the node device driver, in
2621  * the base kernel, on the hugetlb module.
2622  */
2623 struct node_hstate {
2624 	struct kobject		*hugepages_kobj;
2625 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2626 };
2627 static struct node_hstate node_hstates[MAX_NUMNODES];
2628 
2629 /*
2630  * A subset of global hstate attributes for node devices
2631  */
2632 static struct attribute *per_node_hstate_attrs[] = {
2633 	&nr_hugepages_attr.attr,
2634 	&free_hugepages_attr.attr,
2635 	&surplus_hugepages_attr.attr,
2636 	NULL,
2637 };
2638 
2639 static const struct attribute_group per_node_hstate_attr_group = {
2640 	.attrs = per_node_hstate_attrs,
2641 };
2642 
2643 /*
2644  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645  * Returns node id via non-NULL nidp.
2646  */
2647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2648 {
2649 	int nid;
2650 
2651 	for (nid = 0; nid < nr_node_ids; nid++) {
2652 		struct node_hstate *nhs = &node_hstates[nid];
2653 		int i;
2654 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2655 			if (nhs->hstate_kobjs[i] == kobj) {
2656 				if (nidp)
2657 					*nidp = nid;
2658 				return &hstates[i];
2659 			}
2660 	}
2661 
2662 	BUG();
2663 	return NULL;
2664 }
2665 
2666 /*
2667  * Unregister hstate attributes from a single node device.
2668  * No-op if no hstate attributes attached.
2669  */
2670 static void hugetlb_unregister_node(struct node *node)
2671 {
2672 	struct hstate *h;
2673 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2674 
2675 	if (!nhs->hugepages_kobj)
2676 		return;		/* no hstate attributes */
2677 
2678 	for_each_hstate(h) {
2679 		int idx = hstate_index(h);
2680 		if (nhs->hstate_kobjs[idx]) {
2681 			kobject_put(nhs->hstate_kobjs[idx]);
2682 			nhs->hstate_kobjs[idx] = NULL;
2683 		}
2684 	}
2685 
2686 	kobject_put(nhs->hugepages_kobj);
2687 	nhs->hugepages_kobj = NULL;
2688 }
2689 
2690 
2691 /*
2692  * Register hstate attributes for a single node device.
2693  * No-op if attributes already registered.
2694  */
2695 static void hugetlb_register_node(struct node *node)
2696 {
2697 	struct hstate *h;
2698 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2699 	int err;
2700 
2701 	if (nhs->hugepages_kobj)
2702 		return;		/* already allocated */
2703 
2704 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2705 							&node->dev.kobj);
2706 	if (!nhs->hugepages_kobj)
2707 		return;
2708 
2709 	for_each_hstate(h) {
2710 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2711 						nhs->hstate_kobjs,
2712 						&per_node_hstate_attr_group);
2713 		if (err) {
2714 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715 				h->name, node->dev.id);
2716 			hugetlb_unregister_node(node);
2717 			break;
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * hugetlb init time:  register hstate attributes for all registered node
2724  * devices of nodes that have memory.  All on-line nodes should have
2725  * registered their associated device by this time.
2726  */
2727 static void __init hugetlb_register_all_nodes(void)
2728 {
2729 	int nid;
2730 
2731 	for_each_node_state(nid, N_MEMORY) {
2732 		struct node *node = node_devices[nid];
2733 		if (node->dev.id == nid)
2734 			hugetlb_register_node(node);
2735 	}
2736 
2737 	/*
2738 	 * Let the node device driver know we're here so it can
2739 	 * [un]register hstate attributes on node hotplug.
2740 	 */
2741 	register_hugetlbfs_with_node(hugetlb_register_node,
2742 				     hugetlb_unregister_node);
2743 }
2744 #else	/* !CONFIG_NUMA */
2745 
2746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2747 {
2748 	BUG();
2749 	if (nidp)
2750 		*nidp = -1;
2751 	return NULL;
2752 }
2753 
2754 static void hugetlb_register_all_nodes(void) { }
2755 
2756 #endif
2757 
2758 static int __init hugetlb_init(void)
2759 {
2760 	int i;
2761 
2762 	if (!hugepages_supported())
2763 		return 0;
2764 
2765 	if (!size_to_hstate(default_hstate_size)) {
2766 		if (default_hstate_size != 0) {
2767 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2768 			       default_hstate_size, HPAGE_SIZE);
2769 		}
2770 
2771 		default_hstate_size = HPAGE_SIZE;
2772 		if (!size_to_hstate(default_hstate_size))
2773 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2774 	}
2775 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2776 	if (default_hstate_max_huge_pages) {
2777 		if (!default_hstate.max_huge_pages)
2778 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2779 	}
2780 
2781 	hugetlb_init_hstates();
2782 	gather_bootmem_prealloc();
2783 	report_hugepages();
2784 
2785 	hugetlb_sysfs_init();
2786 	hugetlb_register_all_nodes();
2787 	hugetlb_cgroup_file_init();
2788 
2789 #ifdef CONFIG_SMP
2790 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2791 #else
2792 	num_fault_mutexes = 1;
2793 #endif
2794 	hugetlb_fault_mutex_table =
2795 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2796 			      GFP_KERNEL);
2797 	BUG_ON(!hugetlb_fault_mutex_table);
2798 
2799 	for (i = 0; i < num_fault_mutexes; i++)
2800 		mutex_init(&hugetlb_fault_mutex_table[i]);
2801 	return 0;
2802 }
2803 subsys_initcall(hugetlb_init);
2804 
2805 /* Should be called on processing a hugepagesz=... option */
2806 void __init hugetlb_bad_size(void)
2807 {
2808 	parsed_valid_hugepagesz = false;
2809 }
2810 
2811 void __init hugetlb_add_hstate(unsigned int order)
2812 {
2813 	struct hstate *h;
2814 	unsigned long i;
2815 
2816 	if (size_to_hstate(PAGE_SIZE << order)) {
2817 		pr_warn("hugepagesz= specified twice, ignoring\n");
2818 		return;
2819 	}
2820 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2821 	BUG_ON(order == 0);
2822 	h = &hstates[hugetlb_max_hstate++];
2823 	h->order = order;
2824 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2825 	h->nr_huge_pages = 0;
2826 	h->free_huge_pages = 0;
2827 	for (i = 0; i < MAX_NUMNODES; ++i)
2828 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2829 	INIT_LIST_HEAD(&h->hugepage_activelist);
2830 	h->next_nid_to_alloc = first_memory_node;
2831 	h->next_nid_to_free = first_memory_node;
2832 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2833 					huge_page_size(h)/1024);
2834 
2835 	parsed_hstate = h;
2836 }
2837 
2838 static int __init hugetlb_nrpages_setup(char *s)
2839 {
2840 	unsigned long *mhp;
2841 	static unsigned long *last_mhp;
2842 
2843 	if (!parsed_valid_hugepagesz) {
2844 		pr_warn("hugepages = %s preceded by "
2845 			"an unsupported hugepagesz, ignoring\n", s);
2846 		parsed_valid_hugepagesz = true;
2847 		return 1;
2848 	}
2849 	/*
2850 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2851 	 * so this hugepages= parameter goes to the "default hstate".
2852 	 */
2853 	else if (!hugetlb_max_hstate)
2854 		mhp = &default_hstate_max_huge_pages;
2855 	else
2856 		mhp = &parsed_hstate->max_huge_pages;
2857 
2858 	if (mhp == last_mhp) {
2859 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2860 		return 1;
2861 	}
2862 
2863 	if (sscanf(s, "%lu", mhp) <= 0)
2864 		*mhp = 0;
2865 
2866 	/*
2867 	 * Global state is always initialized later in hugetlb_init.
2868 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2869 	 * use the bootmem allocator.
2870 	 */
2871 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2872 		hugetlb_hstate_alloc_pages(parsed_hstate);
2873 
2874 	last_mhp = mhp;
2875 
2876 	return 1;
2877 }
2878 __setup("hugepages=", hugetlb_nrpages_setup);
2879 
2880 static int __init hugetlb_default_setup(char *s)
2881 {
2882 	default_hstate_size = memparse(s, &s);
2883 	return 1;
2884 }
2885 __setup("default_hugepagesz=", hugetlb_default_setup);
2886 
2887 static unsigned int cpuset_mems_nr(unsigned int *array)
2888 {
2889 	int node;
2890 	unsigned int nr = 0;
2891 
2892 	for_each_node_mask(node, cpuset_current_mems_allowed)
2893 		nr += array[node];
2894 
2895 	return nr;
2896 }
2897 
2898 #ifdef CONFIG_SYSCTL
2899 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2900 			 struct ctl_table *table, int write,
2901 			 void __user *buffer, size_t *length, loff_t *ppos)
2902 {
2903 	struct hstate *h = &default_hstate;
2904 	unsigned long tmp = h->max_huge_pages;
2905 	int ret;
2906 
2907 	if (!hugepages_supported())
2908 		return -EOPNOTSUPP;
2909 
2910 	table->data = &tmp;
2911 	table->maxlen = sizeof(unsigned long);
2912 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2913 	if (ret)
2914 		goto out;
2915 
2916 	if (write)
2917 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2918 						  NUMA_NO_NODE, tmp, *length);
2919 out:
2920 	return ret;
2921 }
2922 
2923 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2924 			  void __user *buffer, size_t *length, loff_t *ppos)
2925 {
2926 
2927 	return hugetlb_sysctl_handler_common(false, table, write,
2928 							buffer, length, ppos);
2929 }
2930 
2931 #ifdef CONFIG_NUMA
2932 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2933 			  void __user *buffer, size_t *length, loff_t *ppos)
2934 {
2935 	return hugetlb_sysctl_handler_common(true, table, write,
2936 							buffer, length, ppos);
2937 }
2938 #endif /* CONFIG_NUMA */
2939 
2940 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2941 			void __user *buffer,
2942 			size_t *length, loff_t *ppos)
2943 {
2944 	struct hstate *h = &default_hstate;
2945 	unsigned long tmp;
2946 	int ret;
2947 
2948 	if (!hugepages_supported())
2949 		return -EOPNOTSUPP;
2950 
2951 	tmp = h->nr_overcommit_huge_pages;
2952 
2953 	if (write && hstate_is_gigantic(h))
2954 		return -EINVAL;
2955 
2956 	table->data = &tmp;
2957 	table->maxlen = sizeof(unsigned long);
2958 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2959 	if (ret)
2960 		goto out;
2961 
2962 	if (write) {
2963 		spin_lock(&hugetlb_lock);
2964 		h->nr_overcommit_huge_pages = tmp;
2965 		spin_unlock(&hugetlb_lock);
2966 	}
2967 out:
2968 	return ret;
2969 }
2970 
2971 #endif /* CONFIG_SYSCTL */
2972 
2973 void hugetlb_report_meminfo(struct seq_file *m)
2974 {
2975 	struct hstate *h;
2976 	unsigned long total = 0;
2977 
2978 	if (!hugepages_supported())
2979 		return;
2980 
2981 	for_each_hstate(h) {
2982 		unsigned long count = h->nr_huge_pages;
2983 
2984 		total += (PAGE_SIZE << huge_page_order(h)) * count;
2985 
2986 		if (h == &default_hstate)
2987 			seq_printf(m,
2988 				   "HugePages_Total:   %5lu\n"
2989 				   "HugePages_Free:    %5lu\n"
2990 				   "HugePages_Rsvd:    %5lu\n"
2991 				   "HugePages_Surp:    %5lu\n"
2992 				   "Hugepagesize:   %8lu kB\n",
2993 				   count,
2994 				   h->free_huge_pages,
2995 				   h->resv_huge_pages,
2996 				   h->surplus_huge_pages,
2997 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
2998 	}
2999 
3000 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3001 }
3002 
3003 int hugetlb_report_node_meminfo(int nid, char *buf)
3004 {
3005 	struct hstate *h = &default_hstate;
3006 	if (!hugepages_supported())
3007 		return 0;
3008 	return sprintf(buf,
3009 		"Node %d HugePages_Total: %5u\n"
3010 		"Node %d HugePages_Free:  %5u\n"
3011 		"Node %d HugePages_Surp:  %5u\n",
3012 		nid, h->nr_huge_pages_node[nid],
3013 		nid, h->free_huge_pages_node[nid],
3014 		nid, h->surplus_huge_pages_node[nid]);
3015 }
3016 
3017 void hugetlb_show_meminfo(void)
3018 {
3019 	struct hstate *h;
3020 	int nid;
3021 
3022 	if (!hugepages_supported())
3023 		return;
3024 
3025 	for_each_node_state(nid, N_MEMORY)
3026 		for_each_hstate(h)
3027 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3028 				nid,
3029 				h->nr_huge_pages_node[nid],
3030 				h->free_huge_pages_node[nid],
3031 				h->surplus_huge_pages_node[nid],
3032 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3033 }
3034 
3035 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3036 {
3037 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3038 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3039 }
3040 
3041 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3042 unsigned long hugetlb_total_pages(void)
3043 {
3044 	struct hstate *h;
3045 	unsigned long nr_total_pages = 0;
3046 
3047 	for_each_hstate(h)
3048 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3049 	return nr_total_pages;
3050 }
3051 
3052 static int hugetlb_acct_memory(struct hstate *h, long delta)
3053 {
3054 	int ret = -ENOMEM;
3055 
3056 	spin_lock(&hugetlb_lock);
3057 	/*
3058 	 * When cpuset is configured, it breaks the strict hugetlb page
3059 	 * reservation as the accounting is done on a global variable. Such
3060 	 * reservation is completely rubbish in the presence of cpuset because
3061 	 * the reservation is not checked against page availability for the
3062 	 * current cpuset. Application can still potentially OOM'ed by kernel
3063 	 * with lack of free htlb page in cpuset that the task is in.
3064 	 * Attempt to enforce strict accounting with cpuset is almost
3065 	 * impossible (or too ugly) because cpuset is too fluid that
3066 	 * task or memory node can be dynamically moved between cpusets.
3067 	 *
3068 	 * The change of semantics for shared hugetlb mapping with cpuset is
3069 	 * undesirable. However, in order to preserve some of the semantics,
3070 	 * we fall back to check against current free page availability as
3071 	 * a best attempt and hopefully to minimize the impact of changing
3072 	 * semantics that cpuset has.
3073 	 */
3074 	if (delta > 0) {
3075 		if (gather_surplus_pages(h, delta) < 0)
3076 			goto out;
3077 
3078 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3079 			return_unused_surplus_pages(h, delta);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	ret = 0;
3085 	if (delta < 0)
3086 		return_unused_surplus_pages(h, (unsigned long) -delta);
3087 
3088 out:
3089 	spin_unlock(&hugetlb_lock);
3090 	return ret;
3091 }
3092 
3093 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3094 {
3095 	struct resv_map *resv = vma_resv_map(vma);
3096 
3097 	/*
3098 	 * This new VMA should share its siblings reservation map if present.
3099 	 * The VMA will only ever have a valid reservation map pointer where
3100 	 * it is being copied for another still existing VMA.  As that VMA
3101 	 * has a reference to the reservation map it cannot disappear until
3102 	 * after this open call completes.  It is therefore safe to take a
3103 	 * new reference here without additional locking.
3104 	 */
3105 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3106 		kref_get(&resv->refs);
3107 }
3108 
3109 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3110 {
3111 	struct hstate *h = hstate_vma(vma);
3112 	struct resv_map *resv = vma_resv_map(vma);
3113 	struct hugepage_subpool *spool = subpool_vma(vma);
3114 	unsigned long reserve, start, end;
3115 	long gbl_reserve;
3116 
3117 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118 		return;
3119 
3120 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3121 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3122 
3123 	reserve = (end - start) - region_count(resv, start, end);
3124 
3125 	kref_put(&resv->refs, resv_map_release);
3126 
3127 	if (reserve) {
3128 		/*
3129 		 * Decrement reserve counts.  The global reserve count may be
3130 		 * adjusted if the subpool has a minimum size.
3131 		 */
3132 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3133 		hugetlb_acct_memory(h, -gbl_reserve);
3134 	}
3135 }
3136 
3137 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3138 {
3139 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3140 		return -EINVAL;
3141 	return 0;
3142 }
3143 
3144 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3145 {
3146 	struct hstate *hstate = hstate_vma(vma);
3147 
3148 	return 1UL << huge_page_shift(hstate);
3149 }
3150 
3151 /*
3152  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3153  * handle_mm_fault() to try to instantiate regular-sized pages in the
3154  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3155  * this far.
3156  */
3157 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3158 {
3159 	BUG();
3160 	return 0;
3161 }
3162 
3163 /*
3164  * When a new function is introduced to vm_operations_struct and added
3165  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3166  * This is because under System V memory model, mappings created via
3167  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3168  * their original vm_ops are overwritten with shm_vm_ops.
3169  */
3170 const struct vm_operations_struct hugetlb_vm_ops = {
3171 	.fault = hugetlb_vm_op_fault,
3172 	.open = hugetlb_vm_op_open,
3173 	.close = hugetlb_vm_op_close,
3174 	.split = hugetlb_vm_op_split,
3175 	.pagesize = hugetlb_vm_op_pagesize,
3176 };
3177 
3178 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3179 				int writable)
3180 {
3181 	pte_t entry;
3182 
3183 	if (writable) {
3184 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3185 					 vma->vm_page_prot)));
3186 	} else {
3187 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3188 					   vma->vm_page_prot));
3189 	}
3190 	entry = pte_mkyoung(entry);
3191 	entry = pte_mkhuge(entry);
3192 	entry = arch_make_huge_pte(entry, vma, page, writable);
3193 
3194 	return entry;
3195 }
3196 
3197 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3198 				   unsigned long address, pte_t *ptep)
3199 {
3200 	pte_t entry;
3201 
3202 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3203 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3204 		update_mmu_cache(vma, address, ptep);
3205 }
3206 
3207 bool is_hugetlb_entry_migration(pte_t pte)
3208 {
3209 	swp_entry_t swp;
3210 
3211 	if (huge_pte_none(pte) || pte_present(pte))
3212 		return false;
3213 	swp = pte_to_swp_entry(pte);
3214 	if (non_swap_entry(swp) && is_migration_entry(swp))
3215 		return true;
3216 	else
3217 		return false;
3218 }
3219 
3220 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3221 {
3222 	swp_entry_t swp;
3223 
3224 	if (huge_pte_none(pte) || pte_present(pte))
3225 		return 0;
3226 	swp = pte_to_swp_entry(pte);
3227 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3228 		return 1;
3229 	else
3230 		return 0;
3231 }
3232 
3233 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3234 			    struct vm_area_struct *vma)
3235 {
3236 	pte_t *src_pte, *dst_pte, entry;
3237 	struct page *ptepage;
3238 	unsigned long addr;
3239 	int cow;
3240 	struct hstate *h = hstate_vma(vma);
3241 	unsigned long sz = huge_page_size(h);
3242 	unsigned long mmun_start;	/* For mmu_notifiers */
3243 	unsigned long mmun_end;		/* For mmu_notifiers */
3244 	int ret = 0;
3245 
3246 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3247 
3248 	mmun_start = vma->vm_start;
3249 	mmun_end = vma->vm_end;
3250 	if (cow)
3251 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3252 
3253 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3254 		spinlock_t *src_ptl, *dst_ptl;
3255 		src_pte = huge_pte_offset(src, addr, sz);
3256 		if (!src_pte)
3257 			continue;
3258 		dst_pte = huge_pte_alloc(dst, addr, sz);
3259 		if (!dst_pte) {
3260 			ret = -ENOMEM;
3261 			break;
3262 		}
3263 
3264 		/* If the pagetables are shared don't copy or take references */
3265 		if (dst_pte == src_pte)
3266 			continue;
3267 
3268 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3269 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3270 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3271 		entry = huge_ptep_get(src_pte);
3272 		if (huge_pte_none(entry)) { /* skip none entry */
3273 			;
3274 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3275 				    is_hugetlb_entry_hwpoisoned(entry))) {
3276 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3277 
3278 			if (is_write_migration_entry(swp_entry) && cow) {
3279 				/*
3280 				 * COW mappings require pages in both
3281 				 * parent and child to be set to read.
3282 				 */
3283 				make_migration_entry_read(&swp_entry);
3284 				entry = swp_entry_to_pte(swp_entry);
3285 				set_huge_swap_pte_at(src, addr, src_pte,
3286 						     entry, sz);
3287 			}
3288 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3289 		} else {
3290 			if (cow) {
3291 				/*
3292 				 * No need to notify as we are downgrading page
3293 				 * table protection not changing it to point
3294 				 * to a new page.
3295 				 *
3296 				 * See Documentation/vm/mmu_notifier.rst
3297 				 */
3298 				huge_ptep_set_wrprotect(src, addr, src_pte);
3299 			}
3300 			entry = huge_ptep_get(src_pte);
3301 			ptepage = pte_page(entry);
3302 			get_page(ptepage);
3303 			page_dup_rmap(ptepage, true);
3304 			set_huge_pte_at(dst, addr, dst_pte, entry);
3305 			hugetlb_count_add(pages_per_huge_page(h), dst);
3306 		}
3307 		spin_unlock(src_ptl);
3308 		spin_unlock(dst_ptl);
3309 	}
3310 
3311 	if (cow)
3312 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3313 
3314 	return ret;
3315 }
3316 
3317 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3318 			    unsigned long start, unsigned long end,
3319 			    struct page *ref_page)
3320 {
3321 	struct mm_struct *mm = vma->vm_mm;
3322 	unsigned long address;
3323 	pte_t *ptep;
3324 	pte_t pte;
3325 	spinlock_t *ptl;
3326 	struct page *page;
3327 	struct hstate *h = hstate_vma(vma);
3328 	unsigned long sz = huge_page_size(h);
3329 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3330 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3331 
3332 	WARN_ON(!is_vm_hugetlb_page(vma));
3333 	BUG_ON(start & ~huge_page_mask(h));
3334 	BUG_ON(end & ~huge_page_mask(h));
3335 
3336 	/*
3337 	 * This is a hugetlb vma, all the pte entries should point
3338 	 * to huge page.
3339 	 */
3340 	tlb_remove_check_page_size_change(tlb, sz);
3341 	tlb_start_vma(tlb, vma);
3342 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3343 	address = start;
3344 	for (; address < end; address += sz) {
3345 		ptep = huge_pte_offset(mm, address, sz);
3346 		if (!ptep)
3347 			continue;
3348 
3349 		ptl = huge_pte_lock(h, mm, ptep);
3350 		if (huge_pmd_unshare(mm, &address, ptep)) {
3351 			spin_unlock(ptl);
3352 			continue;
3353 		}
3354 
3355 		pte = huge_ptep_get(ptep);
3356 		if (huge_pte_none(pte)) {
3357 			spin_unlock(ptl);
3358 			continue;
3359 		}
3360 
3361 		/*
3362 		 * Migrating hugepage or HWPoisoned hugepage is already
3363 		 * unmapped and its refcount is dropped, so just clear pte here.
3364 		 */
3365 		if (unlikely(!pte_present(pte))) {
3366 			huge_pte_clear(mm, address, ptep, sz);
3367 			spin_unlock(ptl);
3368 			continue;
3369 		}
3370 
3371 		page = pte_page(pte);
3372 		/*
3373 		 * If a reference page is supplied, it is because a specific
3374 		 * page is being unmapped, not a range. Ensure the page we
3375 		 * are about to unmap is the actual page of interest.
3376 		 */
3377 		if (ref_page) {
3378 			if (page != ref_page) {
3379 				spin_unlock(ptl);
3380 				continue;
3381 			}
3382 			/*
3383 			 * Mark the VMA as having unmapped its page so that
3384 			 * future faults in this VMA will fail rather than
3385 			 * looking like data was lost
3386 			 */
3387 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3388 		}
3389 
3390 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3391 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3392 		if (huge_pte_dirty(pte))
3393 			set_page_dirty(page);
3394 
3395 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3396 		page_remove_rmap(page, true);
3397 
3398 		spin_unlock(ptl);
3399 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3400 		/*
3401 		 * Bail out after unmapping reference page if supplied
3402 		 */
3403 		if (ref_page)
3404 			break;
3405 	}
3406 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3407 	tlb_end_vma(tlb, vma);
3408 }
3409 
3410 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3411 			  struct vm_area_struct *vma, unsigned long start,
3412 			  unsigned long end, struct page *ref_page)
3413 {
3414 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3415 
3416 	/*
3417 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3418 	 * test will fail on a vma being torn down, and not grab a page table
3419 	 * on its way out.  We're lucky that the flag has such an appropriate
3420 	 * name, and can in fact be safely cleared here. We could clear it
3421 	 * before the __unmap_hugepage_range above, but all that's necessary
3422 	 * is to clear it before releasing the i_mmap_rwsem. This works
3423 	 * because in the context this is called, the VMA is about to be
3424 	 * destroyed and the i_mmap_rwsem is held.
3425 	 */
3426 	vma->vm_flags &= ~VM_MAYSHARE;
3427 }
3428 
3429 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3430 			  unsigned long end, struct page *ref_page)
3431 {
3432 	struct mm_struct *mm;
3433 	struct mmu_gather tlb;
3434 
3435 	mm = vma->vm_mm;
3436 
3437 	tlb_gather_mmu(&tlb, mm, start, end);
3438 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3439 	tlb_finish_mmu(&tlb, start, end);
3440 }
3441 
3442 /*
3443  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3444  * mappping it owns the reserve page for. The intention is to unmap the page
3445  * from other VMAs and let the children be SIGKILLed if they are faulting the
3446  * same region.
3447  */
3448 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3449 			      struct page *page, unsigned long address)
3450 {
3451 	struct hstate *h = hstate_vma(vma);
3452 	struct vm_area_struct *iter_vma;
3453 	struct address_space *mapping;
3454 	pgoff_t pgoff;
3455 
3456 	/*
3457 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3458 	 * from page cache lookup which is in HPAGE_SIZE units.
3459 	 */
3460 	address = address & huge_page_mask(h);
3461 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3462 			vma->vm_pgoff;
3463 	mapping = vma->vm_file->f_mapping;
3464 
3465 	/*
3466 	 * Take the mapping lock for the duration of the table walk. As
3467 	 * this mapping should be shared between all the VMAs,
3468 	 * __unmap_hugepage_range() is called as the lock is already held
3469 	 */
3470 	i_mmap_lock_write(mapping);
3471 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3472 		/* Do not unmap the current VMA */
3473 		if (iter_vma == vma)
3474 			continue;
3475 
3476 		/*
3477 		 * Shared VMAs have their own reserves and do not affect
3478 		 * MAP_PRIVATE accounting but it is possible that a shared
3479 		 * VMA is using the same page so check and skip such VMAs.
3480 		 */
3481 		if (iter_vma->vm_flags & VM_MAYSHARE)
3482 			continue;
3483 
3484 		/*
3485 		 * Unmap the page from other VMAs without their own reserves.
3486 		 * They get marked to be SIGKILLed if they fault in these
3487 		 * areas. This is because a future no-page fault on this VMA
3488 		 * could insert a zeroed page instead of the data existing
3489 		 * from the time of fork. This would look like data corruption
3490 		 */
3491 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3492 			unmap_hugepage_range(iter_vma, address,
3493 					     address + huge_page_size(h), page);
3494 	}
3495 	i_mmap_unlock_write(mapping);
3496 }
3497 
3498 /*
3499  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3500  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3501  * cannot race with other handlers or page migration.
3502  * Keep the pte_same checks anyway to make transition from the mutex easier.
3503  */
3504 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3505 		       unsigned long address, pte_t *ptep,
3506 		       struct page *pagecache_page, spinlock_t *ptl)
3507 {
3508 	pte_t pte;
3509 	struct hstate *h = hstate_vma(vma);
3510 	struct page *old_page, *new_page;
3511 	int outside_reserve = 0;
3512 	vm_fault_t ret = 0;
3513 	unsigned long mmun_start;	/* For mmu_notifiers */
3514 	unsigned long mmun_end;		/* For mmu_notifiers */
3515 	unsigned long haddr = address & huge_page_mask(h);
3516 
3517 	pte = huge_ptep_get(ptep);
3518 	old_page = pte_page(pte);
3519 
3520 retry_avoidcopy:
3521 	/* If no-one else is actually using this page, avoid the copy
3522 	 * and just make the page writable */
3523 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3524 		page_move_anon_rmap(old_page, vma);
3525 		set_huge_ptep_writable(vma, haddr, ptep);
3526 		return 0;
3527 	}
3528 
3529 	/*
3530 	 * If the process that created a MAP_PRIVATE mapping is about to
3531 	 * perform a COW due to a shared page count, attempt to satisfy
3532 	 * the allocation without using the existing reserves. The pagecache
3533 	 * page is used to determine if the reserve at this address was
3534 	 * consumed or not. If reserves were used, a partial faulted mapping
3535 	 * at the time of fork() could consume its reserves on COW instead
3536 	 * of the full address range.
3537 	 */
3538 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3539 			old_page != pagecache_page)
3540 		outside_reserve = 1;
3541 
3542 	get_page(old_page);
3543 
3544 	/*
3545 	 * Drop page table lock as buddy allocator may be called. It will
3546 	 * be acquired again before returning to the caller, as expected.
3547 	 */
3548 	spin_unlock(ptl);
3549 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3550 
3551 	if (IS_ERR(new_page)) {
3552 		/*
3553 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3554 		 * it is due to references held by a child and an insufficient
3555 		 * huge page pool. To guarantee the original mappers
3556 		 * reliability, unmap the page from child processes. The child
3557 		 * may get SIGKILLed if it later faults.
3558 		 */
3559 		if (outside_reserve) {
3560 			put_page(old_page);
3561 			BUG_ON(huge_pte_none(pte));
3562 			unmap_ref_private(mm, vma, old_page, haddr);
3563 			BUG_ON(huge_pte_none(pte));
3564 			spin_lock(ptl);
3565 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3566 			if (likely(ptep &&
3567 				   pte_same(huge_ptep_get(ptep), pte)))
3568 				goto retry_avoidcopy;
3569 			/*
3570 			 * race occurs while re-acquiring page table
3571 			 * lock, and our job is done.
3572 			 */
3573 			return 0;
3574 		}
3575 
3576 		ret = vmf_error(PTR_ERR(new_page));
3577 		goto out_release_old;
3578 	}
3579 
3580 	/*
3581 	 * When the original hugepage is shared one, it does not have
3582 	 * anon_vma prepared.
3583 	 */
3584 	if (unlikely(anon_vma_prepare(vma))) {
3585 		ret = VM_FAULT_OOM;
3586 		goto out_release_all;
3587 	}
3588 
3589 	copy_user_huge_page(new_page, old_page, address, vma,
3590 			    pages_per_huge_page(h));
3591 	__SetPageUptodate(new_page);
3592 	set_page_huge_active(new_page);
3593 
3594 	mmun_start = haddr;
3595 	mmun_end = mmun_start + huge_page_size(h);
3596 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3597 
3598 	/*
3599 	 * Retake the page table lock to check for racing updates
3600 	 * before the page tables are altered
3601 	 */
3602 	spin_lock(ptl);
3603 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3604 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 		ClearPagePrivate(new_page);
3606 
3607 		/* Break COW */
3608 		huge_ptep_clear_flush(vma, haddr, ptep);
3609 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610 		set_huge_pte_at(mm, haddr, ptep,
3611 				make_huge_pte(vma, new_page, 1));
3612 		page_remove_rmap(old_page, true);
3613 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3614 		/* Make the old page be freed below */
3615 		new_page = old_page;
3616 	}
3617 	spin_unlock(ptl);
3618 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3619 out_release_all:
3620 	restore_reserve_on_error(h, vma, haddr, new_page);
3621 	put_page(new_page);
3622 out_release_old:
3623 	put_page(old_page);
3624 
3625 	spin_lock(ptl); /* Caller expects lock to be held */
3626 	return ret;
3627 }
3628 
3629 /* Return the pagecache page at a given address within a VMA */
3630 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631 			struct vm_area_struct *vma, unsigned long address)
3632 {
3633 	struct address_space *mapping;
3634 	pgoff_t idx;
3635 
3636 	mapping = vma->vm_file->f_mapping;
3637 	idx = vma_hugecache_offset(h, vma, address);
3638 
3639 	return find_lock_page(mapping, idx);
3640 }
3641 
3642 /*
3643  * Return whether there is a pagecache page to back given address within VMA.
3644  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3645  */
3646 static bool hugetlbfs_pagecache_present(struct hstate *h,
3647 			struct vm_area_struct *vma, unsigned long address)
3648 {
3649 	struct address_space *mapping;
3650 	pgoff_t idx;
3651 	struct page *page;
3652 
3653 	mapping = vma->vm_file->f_mapping;
3654 	idx = vma_hugecache_offset(h, vma, address);
3655 
3656 	page = find_get_page(mapping, idx);
3657 	if (page)
3658 		put_page(page);
3659 	return page != NULL;
3660 }
3661 
3662 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3663 			   pgoff_t idx)
3664 {
3665 	struct inode *inode = mapping->host;
3666 	struct hstate *h = hstate_inode(inode);
3667 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3668 
3669 	if (err)
3670 		return err;
3671 	ClearPagePrivate(page);
3672 
3673 	spin_lock(&inode->i_lock);
3674 	inode->i_blocks += blocks_per_huge_page(h);
3675 	spin_unlock(&inode->i_lock);
3676 	return 0;
3677 }
3678 
3679 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3680 			struct vm_area_struct *vma,
3681 			struct address_space *mapping, pgoff_t idx,
3682 			unsigned long address, pte_t *ptep, unsigned int flags)
3683 {
3684 	struct hstate *h = hstate_vma(vma);
3685 	vm_fault_t ret = VM_FAULT_SIGBUS;
3686 	int anon_rmap = 0;
3687 	unsigned long size;
3688 	struct page *page;
3689 	pte_t new_pte;
3690 	spinlock_t *ptl;
3691 	unsigned long haddr = address & huge_page_mask(h);
3692 
3693 	/*
3694 	 * Currently, we are forced to kill the process in the event the
3695 	 * original mapper has unmapped pages from the child due to a failed
3696 	 * COW. Warn that such a situation has occurred as it may not be obvious
3697 	 */
3698 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3699 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3700 			   current->pid);
3701 		return ret;
3702 	}
3703 
3704 	/*
3705 	 * Use page lock to guard against racing truncation
3706 	 * before we get page_table_lock.
3707 	 */
3708 retry:
3709 	page = find_lock_page(mapping, idx);
3710 	if (!page) {
3711 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3712 		if (idx >= size)
3713 			goto out;
3714 
3715 		/*
3716 		 * Check for page in userfault range
3717 		 */
3718 		if (userfaultfd_missing(vma)) {
3719 			u32 hash;
3720 			struct vm_fault vmf = {
3721 				.vma = vma,
3722 				.address = haddr,
3723 				.flags = flags,
3724 				/*
3725 				 * Hard to debug if it ends up being
3726 				 * used by a callee that assumes
3727 				 * something about the other
3728 				 * uninitialized fields... same as in
3729 				 * memory.c
3730 				 */
3731 			};
3732 
3733 			/*
3734 			 * hugetlb_fault_mutex must be dropped before
3735 			 * handling userfault.  Reacquire after handling
3736 			 * fault to make calling code simpler.
3737 			 */
3738 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3739 							idx, haddr);
3740 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3741 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3742 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3743 			goto out;
3744 		}
3745 
3746 		page = alloc_huge_page(vma, haddr, 0);
3747 		if (IS_ERR(page)) {
3748 			ret = vmf_error(PTR_ERR(page));
3749 			goto out;
3750 		}
3751 		clear_huge_page(page, address, pages_per_huge_page(h));
3752 		__SetPageUptodate(page);
3753 		set_page_huge_active(page);
3754 
3755 		if (vma->vm_flags & VM_MAYSHARE) {
3756 			int err = huge_add_to_page_cache(page, mapping, idx);
3757 			if (err) {
3758 				put_page(page);
3759 				if (err == -EEXIST)
3760 					goto retry;
3761 				goto out;
3762 			}
3763 		} else {
3764 			lock_page(page);
3765 			if (unlikely(anon_vma_prepare(vma))) {
3766 				ret = VM_FAULT_OOM;
3767 				goto backout_unlocked;
3768 			}
3769 			anon_rmap = 1;
3770 		}
3771 	} else {
3772 		/*
3773 		 * If memory error occurs between mmap() and fault, some process
3774 		 * don't have hwpoisoned swap entry for errored virtual address.
3775 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3776 		 */
3777 		if (unlikely(PageHWPoison(page))) {
3778 			ret = VM_FAULT_HWPOISON |
3779 				VM_FAULT_SET_HINDEX(hstate_index(h));
3780 			goto backout_unlocked;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * If we are going to COW a private mapping later, we examine the
3786 	 * pending reservations for this page now. This will ensure that
3787 	 * any allocations necessary to record that reservation occur outside
3788 	 * the spinlock.
3789 	 */
3790 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3792 			ret = VM_FAULT_OOM;
3793 			goto backout_unlocked;
3794 		}
3795 		/* Just decrements count, does not deallocate */
3796 		vma_end_reservation(h, vma, haddr);
3797 	}
3798 
3799 	ptl = huge_pte_lock(h, mm, ptep);
3800 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3801 	if (idx >= size)
3802 		goto backout;
3803 
3804 	ret = 0;
3805 	if (!huge_pte_none(huge_ptep_get(ptep)))
3806 		goto backout;
3807 
3808 	if (anon_rmap) {
3809 		ClearPagePrivate(page);
3810 		hugepage_add_new_anon_rmap(page, vma, haddr);
3811 	} else
3812 		page_dup_rmap(page, true);
3813 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 				&& (vma->vm_flags & VM_SHARED)));
3815 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3816 
3817 	hugetlb_count_add(pages_per_huge_page(h), mm);
3818 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819 		/* Optimization, do the COW without a second fault */
3820 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3821 	}
3822 
3823 	spin_unlock(ptl);
3824 	unlock_page(page);
3825 out:
3826 	return ret;
3827 
3828 backout:
3829 	spin_unlock(ptl);
3830 backout_unlocked:
3831 	unlock_page(page);
3832 	restore_reserve_on_error(h, vma, haddr, page);
3833 	put_page(page);
3834 	goto out;
3835 }
3836 
3837 #ifdef CONFIG_SMP
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 			    struct vm_area_struct *vma,
3840 			    struct address_space *mapping,
3841 			    pgoff_t idx, unsigned long address)
3842 {
3843 	unsigned long key[2];
3844 	u32 hash;
3845 
3846 	if (vma->vm_flags & VM_SHARED) {
3847 		key[0] = (unsigned long) mapping;
3848 		key[1] = idx;
3849 	} else {
3850 		key[0] = (unsigned long) mm;
3851 		key[1] = address >> huge_page_shift(h);
3852 	}
3853 
3854 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855 
3856 	return hash & (num_fault_mutexes - 1);
3857 }
3858 #else
3859 /*
3860  * For uniprocesor systems we always use a single mutex, so just
3861  * return 0 and avoid the hashing overhead.
3862  */
3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864 			    struct vm_area_struct *vma,
3865 			    struct address_space *mapping,
3866 			    pgoff_t idx, unsigned long address)
3867 {
3868 	return 0;
3869 }
3870 #endif
3871 
3872 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873 			unsigned long address, unsigned int flags)
3874 {
3875 	pte_t *ptep, entry;
3876 	spinlock_t *ptl;
3877 	vm_fault_t ret;
3878 	u32 hash;
3879 	pgoff_t idx;
3880 	struct page *page = NULL;
3881 	struct page *pagecache_page = NULL;
3882 	struct hstate *h = hstate_vma(vma);
3883 	struct address_space *mapping;
3884 	int need_wait_lock = 0;
3885 	unsigned long haddr = address & huge_page_mask(h);
3886 
3887 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3888 	if (ptep) {
3889 		entry = huge_ptep_get(ptep);
3890 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3891 			migration_entry_wait_huge(vma, mm, ptep);
3892 			return 0;
3893 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3894 			return VM_FAULT_HWPOISON_LARGE |
3895 				VM_FAULT_SET_HINDEX(hstate_index(h));
3896 	} else {
3897 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3898 		if (!ptep)
3899 			return VM_FAULT_OOM;
3900 	}
3901 
3902 	mapping = vma->vm_file->f_mapping;
3903 	idx = vma_hugecache_offset(h, vma, haddr);
3904 
3905 	/*
3906 	 * Serialize hugepage allocation and instantiation, so that we don't
3907 	 * get spurious allocation failures if two CPUs race to instantiate
3908 	 * the same page in the page cache.
3909 	 */
3910 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3911 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3912 
3913 	entry = huge_ptep_get(ptep);
3914 	if (huge_pte_none(entry)) {
3915 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3916 		goto out_mutex;
3917 	}
3918 
3919 	ret = 0;
3920 
3921 	/*
3922 	 * entry could be a migration/hwpoison entry at this point, so this
3923 	 * check prevents the kernel from going below assuming that we have
3924 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926 	 * handle it.
3927 	 */
3928 	if (!pte_present(entry))
3929 		goto out_mutex;
3930 
3931 	/*
3932 	 * If we are going to COW the mapping later, we examine the pending
3933 	 * reservations for this page now. This will ensure that any
3934 	 * allocations necessary to record that reservation occur outside the
3935 	 * spinlock. For private mappings, we also lookup the pagecache
3936 	 * page now as it is used to determine if a reservation has been
3937 	 * consumed.
3938 	 */
3939 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3940 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3941 			ret = VM_FAULT_OOM;
3942 			goto out_mutex;
3943 		}
3944 		/* Just decrements count, does not deallocate */
3945 		vma_end_reservation(h, vma, haddr);
3946 
3947 		if (!(vma->vm_flags & VM_MAYSHARE))
3948 			pagecache_page = hugetlbfs_pagecache_page(h,
3949 								vma, haddr);
3950 	}
3951 
3952 	ptl = huge_pte_lock(h, mm, ptep);
3953 
3954 	/* Check for a racing update before calling hugetlb_cow */
3955 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956 		goto out_ptl;
3957 
3958 	/*
3959 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 	 * pagecache_page, so here we need take the former one
3961 	 * when page != pagecache_page or !pagecache_page.
3962 	 */
3963 	page = pte_page(entry);
3964 	if (page != pagecache_page)
3965 		if (!trylock_page(page)) {
3966 			need_wait_lock = 1;
3967 			goto out_ptl;
3968 		}
3969 
3970 	get_page(page);
3971 
3972 	if (flags & FAULT_FLAG_WRITE) {
3973 		if (!huge_pte_write(entry)) {
3974 			ret = hugetlb_cow(mm, vma, address, ptep,
3975 					  pagecache_page, ptl);
3976 			goto out_put_page;
3977 		}
3978 		entry = huge_pte_mkdirty(entry);
3979 	}
3980 	entry = pte_mkyoung(entry);
3981 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
3982 						flags & FAULT_FLAG_WRITE))
3983 		update_mmu_cache(vma, haddr, ptep);
3984 out_put_page:
3985 	if (page != pagecache_page)
3986 		unlock_page(page);
3987 	put_page(page);
3988 out_ptl:
3989 	spin_unlock(ptl);
3990 
3991 	if (pagecache_page) {
3992 		unlock_page(pagecache_page);
3993 		put_page(pagecache_page);
3994 	}
3995 out_mutex:
3996 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3997 	/*
3998 	 * Generally it's safe to hold refcount during waiting page lock. But
3999 	 * here we just wait to defer the next page fault to avoid busy loop and
4000 	 * the page is not used after unlocked before returning from the current
4001 	 * page fault. So we are safe from accessing freed page, even if we wait
4002 	 * here without taking refcount.
4003 	 */
4004 	if (need_wait_lock)
4005 		wait_on_page_locked(page);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4011  * modifications for huge pages.
4012  */
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014 			    pte_t *dst_pte,
4015 			    struct vm_area_struct *dst_vma,
4016 			    unsigned long dst_addr,
4017 			    unsigned long src_addr,
4018 			    struct page **pagep)
4019 {
4020 	struct address_space *mapping;
4021 	pgoff_t idx;
4022 	unsigned long size;
4023 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024 	struct hstate *h = hstate_vma(dst_vma);
4025 	pte_t _dst_pte;
4026 	spinlock_t *ptl;
4027 	int ret;
4028 	struct page *page;
4029 
4030 	if (!*pagep) {
4031 		ret = -ENOMEM;
4032 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 		if (IS_ERR(page))
4034 			goto out;
4035 
4036 		ret = copy_huge_page_from_user(page,
4037 						(const void __user *) src_addr,
4038 						pages_per_huge_page(h), false);
4039 
4040 		/* fallback to copy_from_user outside mmap_sem */
4041 		if (unlikely(ret)) {
4042 			ret = -EFAULT;
4043 			*pagep = page;
4044 			/* don't free the page */
4045 			goto out;
4046 		}
4047 	} else {
4048 		page = *pagep;
4049 		*pagep = NULL;
4050 	}
4051 
4052 	/*
4053 	 * The memory barrier inside __SetPageUptodate makes sure that
4054 	 * preceding stores to the page contents become visible before
4055 	 * the set_pte_at() write.
4056 	 */
4057 	__SetPageUptodate(page);
4058 	set_page_huge_active(page);
4059 
4060 	mapping = dst_vma->vm_file->f_mapping;
4061 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062 
4063 	/*
4064 	 * If shared, add to page cache
4065 	 */
4066 	if (vm_shared) {
4067 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 		ret = -EFAULT;
4069 		if (idx >= size)
4070 			goto out_release_nounlock;
4071 
4072 		/*
4073 		 * Serialization between remove_inode_hugepages() and
4074 		 * huge_add_to_page_cache() below happens through the
4075 		 * hugetlb_fault_mutex_table that here must be hold by
4076 		 * the caller.
4077 		 */
4078 		ret = huge_add_to_page_cache(page, mapping, idx);
4079 		if (ret)
4080 			goto out_release_nounlock;
4081 	}
4082 
4083 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084 	spin_lock(ptl);
4085 
4086 	/*
4087 	 * Recheck the i_size after holding PT lock to make sure not
4088 	 * to leave any page mapped (as page_mapped()) beyond the end
4089 	 * of the i_size (remove_inode_hugepages() is strict about
4090 	 * enforcing that). If we bail out here, we'll also leave a
4091 	 * page in the radix tree in the vm_shared case beyond the end
4092 	 * of the i_size, but remove_inode_hugepages() will take care
4093 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4094 	 */
4095 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4096 	ret = -EFAULT;
4097 	if (idx >= size)
4098 		goto out_release_unlock;
4099 
4100 	ret = -EEXIST;
4101 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 		goto out_release_unlock;
4103 
4104 	if (vm_shared) {
4105 		page_dup_rmap(page, true);
4106 	} else {
4107 		ClearPagePrivate(page);
4108 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109 	}
4110 
4111 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 	if (dst_vma->vm_flags & VM_WRITE)
4113 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4114 	_dst_pte = pte_mkyoung(_dst_pte);
4115 
4116 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117 
4118 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 					dst_vma->vm_flags & VM_WRITE);
4120 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121 
4122 	/* No need to invalidate - it was non-present before */
4123 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124 
4125 	spin_unlock(ptl);
4126 	if (vm_shared)
4127 		unlock_page(page);
4128 	ret = 0;
4129 out:
4130 	return ret;
4131 out_release_unlock:
4132 	spin_unlock(ptl);
4133 	if (vm_shared)
4134 		unlock_page(page);
4135 out_release_nounlock:
4136 	put_page(page);
4137 	goto out;
4138 }
4139 
4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 			 struct page **pages, struct vm_area_struct **vmas,
4142 			 unsigned long *position, unsigned long *nr_pages,
4143 			 long i, unsigned int flags, int *nonblocking)
4144 {
4145 	unsigned long pfn_offset;
4146 	unsigned long vaddr = *position;
4147 	unsigned long remainder = *nr_pages;
4148 	struct hstate *h = hstate_vma(vma);
4149 	int err = -EFAULT;
4150 
4151 	while (vaddr < vma->vm_end && remainder) {
4152 		pte_t *pte;
4153 		spinlock_t *ptl = NULL;
4154 		int absent;
4155 		struct page *page;
4156 
4157 		/*
4158 		 * If we have a pending SIGKILL, don't keep faulting pages and
4159 		 * potentially allocating memory.
4160 		 */
4161 		if (unlikely(fatal_signal_pending(current))) {
4162 			remainder = 0;
4163 			break;
4164 		}
4165 
4166 		/*
4167 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4168 		 * each hugepage.  We have to make sure we get the
4169 		 * first, for the page indexing below to work.
4170 		 *
4171 		 * Note that page table lock is not held when pte is null.
4172 		 */
4173 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174 				      huge_page_size(h));
4175 		if (pte)
4176 			ptl = huge_pte_lock(h, mm, pte);
4177 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178 
4179 		/*
4180 		 * When coredumping, it suits get_dump_page if we just return
4181 		 * an error where there's an empty slot with no huge pagecache
4182 		 * to back it.  This way, we avoid allocating a hugepage, and
4183 		 * the sparse dumpfile avoids allocating disk blocks, but its
4184 		 * huge holes still show up with zeroes where they need to be.
4185 		 */
4186 		if (absent && (flags & FOLL_DUMP) &&
4187 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4188 			if (pte)
4189 				spin_unlock(ptl);
4190 			remainder = 0;
4191 			break;
4192 		}
4193 
4194 		/*
4195 		 * We need call hugetlb_fault for both hugepages under migration
4196 		 * (in which case hugetlb_fault waits for the migration,) and
4197 		 * hwpoisoned hugepages (in which case we need to prevent the
4198 		 * caller from accessing to them.) In order to do this, we use
4199 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 		 * both cases, and because we can't follow correct pages
4202 		 * directly from any kind of swap entries.
4203 		 */
4204 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4205 		    ((flags & FOLL_WRITE) &&
4206 		      !huge_pte_write(huge_ptep_get(pte)))) {
4207 			vm_fault_t ret;
4208 			unsigned int fault_flags = 0;
4209 
4210 			if (pte)
4211 				spin_unlock(ptl);
4212 			if (flags & FOLL_WRITE)
4213 				fault_flags |= FAULT_FLAG_WRITE;
4214 			if (nonblocking)
4215 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 			if (flags & FOLL_NOWAIT)
4217 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 					FAULT_FLAG_RETRY_NOWAIT;
4219 			if (flags & FOLL_TRIED) {
4220 				VM_WARN_ON_ONCE(fault_flags &
4221 						FAULT_FLAG_ALLOW_RETRY);
4222 				fault_flags |= FAULT_FLAG_TRIED;
4223 			}
4224 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 			if (ret & VM_FAULT_ERROR) {
4226 				err = vm_fault_to_errno(ret, flags);
4227 				remainder = 0;
4228 				break;
4229 			}
4230 			if (ret & VM_FAULT_RETRY) {
4231 				if (nonblocking)
4232 					*nonblocking = 0;
4233 				*nr_pages = 0;
4234 				/*
4235 				 * VM_FAULT_RETRY must not return an
4236 				 * error, it will return zero
4237 				 * instead.
4238 				 *
4239 				 * No need to update "position" as the
4240 				 * caller will not check it after
4241 				 * *nr_pages is set to 0.
4242 				 */
4243 				return i;
4244 			}
4245 			continue;
4246 		}
4247 
4248 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4249 		page = pte_page(huge_ptep_get(pte));
4250 same_page:
4251 		if (pages) {
4252 			pages[i] = mem_map_offset(page, pfn_offset);
4253 			get_page(pages[i]);
4254 		}
4255 
4256 		if (vmas)
4257 			vmas[i] = vma;
4258 
4259 		vaddr += PAGE_SIZE;
4260 		++pfn_offset;
4261 		--remainder;
4262 		++i;
4263 		if (vaddr < vma->vm_end && remainder &&
4264 				pfn_offset < pages_per_huge_page(h)) {
4265 			/*
4266 			 * We use pfn_offset to avoid touching the pageframes
4267 			 * of this compound page.
4268 			 */
4269 			goto same_page;
4270 		}
4271 		spin_unlock(ptl);
4272 	}
4273 	*nr_pages = remainder;
4274 	/*
4275 	 * setting position is actually required only if remainder is
4276 	 * not zero but it's faster not to add a "if (remainder)"
4277 	 * branch.
4278 	 */
4279 	*position = vaddr;
4280 
4281 	return i ? i : err;
4282 }
4283 
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285 /*
4286  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287  * implement this.
4288  */
4289 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4290 #endif
4291 
4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4293 		unsigned long address, unsigned long end, pgprot_t newprot)
4294 {
4295 	struct mm_struct *mm = vma->vm_mm;
4296 	unsigned long start = address;
4297 	pte_t *ptep;
4298 	pte_t pte;
4299 	struct hstate *h = hstate_vma(vma);
4300 	unsigned long pages = 0;
4301 
4302 	BUG_ON(address >= end);
4303 	flush_cache_range(vma, address, end);
4304 
4305 	mmu_notifier_invalidate_range_start(mm, start, end);
4306 	i_mmap_lock_write(vma->vm_file->f_mapping);
4307 	for (; address < end; address += huge_page_size(h)) {
4308 		spinlock_t *ptl;
4309 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4310 		if (!ptep)
4311 			continue;
4312 		ptl = huge_pte_lock(h, mm, ptep);
4313 		if (huge_pmd_unshare(mm, &address, ptep)) {
4314 			pages++;
4315 			spin_unlock(ptl);
4316 			continue;
4317 		}
4318 		pte = huge_ptep_get(ptep);
4319 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320 			spin_unlock(ptl);
4321 			continue;
4322 		}
4323 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 			swp_entry_t entry = pte_to_swp_entry(pte);
4325 
4326 			if (is_write_migration_entry(entry)) {
4327 				pte_t newpte;
4328 
4329 				make_migration_entry_read(&entry);
4330 				newpte = swp_entry_to_pte(entry);
4331 				set_huge_swap_pte_at(mm, address, ptep,
4332 						     newpte, huge_page_size(h));
4333 				pages++;
4334 			}
4335 			spin_unlock(ptl);
4336 			continue;
4337 		}
4338 		if (!huge_pte_none(pte)) {
4339 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4340 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4341 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4342 			set_huge_pte_at(mm, address, ptep, pte);
4343 			pages++;
4344 		}
4345 		spin_unlock(ptl);
4346 	}
4347 	/*
4348 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349 	 * may have cleared our pud entry and done put_page on the page table:
4350 	 * once we release i_mmap_rwsem, another task can do the final put_page
4351 	 * and that page table be reused and filled with junk.
4352 	 */
4353 	flush_hugetlb_tlb_range(vma, start, end);
4354 	/*
4355 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 	 * page table protection not changing it to point to a new page.
4357 	 *
4358 	 * See Documentation/vm/mmu_notifier.rst
4359 	 */
4360 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4361 	mmu_notifier_invalidate_range_end(mm, start, end);
4362 
4363 	return pages << h->order;
4364 }
4365 
4366 int hugetlb_reserve_pages(struct inode *inode,
4367 					long from, long to,
4368 					struct vm_area_struct *vma,
4369 					vm_flags_t vm_flags)
4370 {
4371 	long ret, chg;
4372 	struct hstate *h = hstate_inode(inode);
4373 	struct hugepage_subpool *spool = subpool_inode(inode);
4374 	struct resv_map *resv_map;
4375 	long gbl_reserve;
4376 
4377 	/* This should never happen */
4378 	if (from > to) {
4379 		VM_WARN(1, "%s called with a negative range\n", __func__);
4380 		return -EINVAL;
4381 	}
4382 
4383 	/*
4384 	 * Only apply hugepage reservation if asked. At fault time, an
4385 	 * attempt will be made for VM_NORESERVE to allocate a page
4386 	 * without using reserves
4387 	 */
4388 	if (vm_flags & VM_NORESERVE)
4389 		return 0;
4390 
4391 	/*
4392 	 * Shared mappings base their reservation on the number of pages that
4393 	 * are already allocated on behalf of the file. Private mappings need
4394 	 * to reserve the full area even if read-only as mprotect() may be
4395 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4396 	 */
4397 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4398 		resv_map = inode_resv_map(inode);
4399 
4400 		chg = region_chg(resv_map, from, to);
4401 
4402 	} else {
4403 		resv_map = resv_map_alloc();
4404 		if (!resv_map)
4405 			return -ENOMEM;
4406 
4407 		chg = to - from;
4408 
4409 		set_vma_resv_map(vma, resv_map);
4410 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4411 	}
4412 
4413 	if (chg < 0) {
4414 		ret = chg;
4415 		goto out_err;
4416 	}
4417 
4418 	/*
4419 	 * There must be enough pages in the subpool for the mapping. If
4420 	 * the subpool has a minimum size, there may be some global
4421 	 * reservations already in place (gbl_reserve).
4422 	 */
4423 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4424 	if (gbl_reserve < 0) {
4425 		ret = -ENOSPC;
4426 		goto out_err;
4427 	}
4428 
4429 	/*
4430 	 * Check enough hugepages are available for the reservation.
4431 	 * Hand the pages back to the subpool if there are not
4432 	 */
4433 	ret = hugetlb_acct_memory(h, gbl_reserve);
4434 	if (ret < 0) {
4435 		/* put back original number of pages, chg */
4436 		(void)hugepage_subpool_put_pages(spool, chg);
4437 		goto out_err;
4438 	}
4439 
4440 	/*
4441 	 * Account for the reservations made. Shared mappings record regions
4442 	 * that have reservations as they are shared by multiple VMAs.
4443 	 * When the last VMA disappears, the region map says how much
4444 	 * the reservation was and the page cache tells how much of
4445 	 * the reservation was consumed. Private mappings are per-VMA and
4446 	 * only the consumed reservations are tracked. When the VMA
4447 	 * disappears, the original reservation is the VMA size and the
4448 	 * consumed reservations are stored in the map. Hence, nothing
4449 	 * else has to be done for private mappings here
4450 	 */
4451 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4452 		long add = region_add(resv_map, from, to);
4453 
4454 		if (unlikely(chg > add)) {
4455 			/*
4456 			 * pages in this range were added to the reserve
4457 			 * map between region_chg and region_add.  This
4458 			 * indicates a race with alloc_huge_page.  Adjust
4459 			 * the subpool and reserve counts modified above
4460 			 * based on the difference.
4461 			 */
4462 			long rsv_adjust;
4463 
4464 			rsv_adjust = hugepage_subpool_put_pages(spool,
4465 								chg - add);
4466 			hugetlb_acct_memory(h, -rsv_adjust);
4467 		}
4468 	}
4469 	return 0;
4470 out_err:
4471 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4472 		/* Don't call region_abort if region_chg failed */
4473 		if (chg >= 0)
4474 			region_abort(resv_map, from, to);
4475 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4476 		kref_put(&resv_map->refs, resv_map_release);
4477 	return ret;
4478 }
4479 
4480 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4481 								long freed)
4482 {
4483 	struct hstate *h = hstate_inode(inode);
4484 	struct resv_map *resv_map = inode_resv_map(inode);
4485 	long chg = 0;
4486 	struct hugepage_subpool *spool = subpool_inode(inode);
4487 	long gbl_reserve;
4488 
4489 	if (resv_map) {
4490 		chg = region_del(resv_map, start, end);
4491 		/*
4492 		 * region_del() can fail in the rare case where a region
4493 		 * must be split and another region descriptor can not be
4494 		 * allocated.  If end == LONG_MAX, it will not fail.
4495 		 */
4496 		if (chg < 0)
4497 			return chg;
4498 	}
4499 
4500 	spin_lock(&inode->i_lock);
4501 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4502 	spin_unlock(&inode->i_lock);
4503 
4504 	/*
4505 	 * If the subpool has a minimum size, the number of global
4506 	 * reservations to be released may be adjusted.
4507 	 */
4508 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4509 	hugetlb_acct_memory(h, -gbl_reserve);
4510 
4511 	return 0;
4512 }
4513 
4514 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4515 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4516 				struct vm_area_struct *vma,
4517 				unsigned long addr, pgoff_t idx)
4518 {
4519 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4520 				svma->vm_start;
4521 	unsigned long sbase = saddr & PUD_MASK;
4522 	unsigned long s_end = sbase + PUD_SIZE;
4523 
4524 	/* Allow segments to share if only one is marked locked */
4525 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4526 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4527 
4528 	/*
4529 	 * match the virtual addresses, permission and the alignment of the
4530 	 * page table page.
4531 	 */
4532 	if (pmd_index(addr) != pmd_index(saddr) ||
4533 	    vm_flags != svm_flags ||
4534 	    sbase < svma->vm_start || svma->vm_end < s_end)
4535 		return 0;
4536 
4537 	return saddr;
4538 }
4539 
4540 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4541 {
4542 	unsigned long base = addr & PUD_MASK;
4543 	unsigned long end = base + PUD_SIZE;
4544 
4545 	/*
4546 	 * check on proper vm_flags and page table alignment
4547 	 */
4548 	if (vma->vm_flags & VM_MAYSHARE &&
4549 	    vma->vm_start <= base && end <= vma->vm_end)
4550 		return true;
4551 	return false;
4552 }
4553 
4554 /*
4555  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4556  * and returns the corresponding pte. While this is not necessary for the
4557  * !shared pmd case because we can allocate the pmd later as well, it makes the
4558  * code much cleaner. pmd allocation is essential for the shared case because
4559  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4560  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4561  * bad pmd for sharing.
4562  */
4563 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4564 {
4565 	struct vm_area_struct *vma = find_vma(mm, addr);
4566 	struct address_space *mapping = vma->vm_file->f_mapping;
4567 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4568 			vma->vm_pgoff;
4569 	struct vm_area_struct *svma;
4570 	unsigned long saddr;
4571 	pte_t *spte = NULL;
4572 	pte_t *pte;
4573 	spinlock_t *ptl;
4574 
4575 	if (!vma_shareable(vma, addr))
4576 		return (pte_t *)pmd_alloc(mm, pud, addr);
4577 
4578 	i_mmap_lock_write(mapping);
4579 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4580 		if (svma == vma)
4581 			continue;
4582 
4583 		saddr = page_table_shareable(svma, vma, addr, idx);
4584 		if (saddr) {
4585 			spte = huge_pte_offset(svma->vm_mm, saddr,
4586 					       vma_mmu_pagesize(svma));
4587 			if (spte) {
4588 				get_page(virt_to_page(spte));
4589 				break;
4590 			}
4591 		}
4592 	}
4593 
4594 	if (!spte)
4595 		goto out;
4596 
4597 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4598 	if (pud_none(*pud)) {
4599 		pud_populate(mm, pud,
4600 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4601 		mm_inc_nr_pmds(mm);
4602 	} else {
4603 		put_page(virt_to_page(spte));
4604 	}
4605 	spin_unlock(ptl);
4606 out:
4607 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4608 	i_mmap_unlock_write(mapping);
4609 	return pte;
4610 }
4611 
4612 /*
4613  * unmap huge page backed by shared pte.
4614  *
4615  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4616  * indicated by page_count > 1, unmap is achieved by clearing pud and
4617  * decrementing the ref count. If count == 1, the pte page is not shared.
4618  *
4619  * called with page table lock held.
4620  *
4621  * returns: 1 successfully unmapped a shared pte page
4622  *	    0 the underlying pte page is not shared, or it is the last user
4623  */
4624 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4625 {
4626 	pgd_t *pgd = pgd_offset(mm, *addr);
4627 	p4d_t *p4d = p4d_offset(pgd, *addr);
4628 	pud_t *pud = pud_offset(p4d, *addr);
4629 
4630 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4631 	if (page_count(virt_to_page(ptep)) == 1)
4632 		return 0;
4633 
4634 	pud_clear(pud);
4635 	put_page(virt_to_page(ptep));
4636 	mm_dec_nr_pmds(mm);
4637 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4638 	return 1;
4639 }
4640 #define want_pmd_share()	(1)
4641 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4642 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4643 {
4644 	return NULL;
4645 }
4646 
4647 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4648 {
4649 	return 0;
4650 }
4651 #define want_pmd_share()	(0)
4652 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4653 
4654 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4655 pte_t *huge_pte_alloc(struct mm_struct *mm,
4656 			unsigned long addr, unsigned long sz)
4657 {
4658 	pgd_t *pgd;
4659 	p4d_t *p4d;
4660 	pud_t *pud;
4661 	pte_t *pte = NULL;
4662 
4663 	pgd = pgd_offset(mm, addr);
4664 	p4d = p4d_alloc(mm, pgd, addr);
4665 	if (!p4d)
4666 		return NULL;
4667 	pud = pud_alloc(mm, p4d, addr);
4668 	if (pud) {
4669 		if (sz == PUD_SIZE) {
4670 			pte = (pte_t *)pud;
4671 		} else {
4672 			BUG_ON(sz != PMD_SIZE);
4673 			if (want_pmd_share() && pud_none(*pud))
4674 				pte = huge_pmd_share(mm, addr, pud);
4675 			else
4676 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4677 		}
4678 	}
4679 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4680 
4681 	return pte;
4682 }
4683 
4684 /*
4685  * huge_pte_offset() - Walk the page table to resolve the hugepage
4686  * entry at address @addr
4687  *
4688  * Return: Pointer to page table or swap entry (PUD or PMD) for
4689  * address @addr, or NULL if a p*d_none() entry is encountered and the
4690  * size @sz doesn't match the hugepage size at this level of the page
4691  * table.
4692  */
4693 pte_t *huge_pte_offset(struct mm_struct *mm,
4694 		       unsigned long addr, unsigned long sz)
4695 {
4696 	pgd_t *pgd;
4697 	p4d_t *p4d;
4698 	pud_t *pud;
4699 	pmd_t *pmd;
4700 
4701 	pgd = pgd_offset(mm, addr);
4702 	if (!pgd_present(*pgd))
4703 		return NULL;
4704 	p4d = p4d_offset(pgd, addr);
4705 	if (!p4d_present(*p4d))
4706 		return NULL;
4707 
4708 	pud = pud_offset(p4d, addr);
4709 	if (sz != PUD_SIZE && pud_none(*pud))
4710 		return NULL;
4711 	/* hugepage or swap? */
4712 	if (pud_huge(*pud) || !pud_present(*pud))
4713 		return (pte_t *)pud;
4714 
4715 	pmd = pmd_offset(pud, addr);
4716 	if (sz != PMD_SIZE && pmd_none(*pmd))
4717 		return NULL;
4718 	/* hugepage or swap? */
4719 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4720 		return (pte_t *)pmd;
4721 
4722 	return NULL;
4723 }
4724 
4725 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4726 
4727 /*
4728  * These functions are overwritable if your architecture needs its own
4729  * behavior.
4730  */
4731 struct page * __weak
4732 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4733 			      int write)
4734 {
4735 	return ERR_PTR(-EINVAL);
4736 }
4737 
4738 struct page * __weak
4739 follow_huge_pd(struct vm_area_struct *vma,
4740 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4741 {
4742 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4743 	return NULL;
4744 }
4745 
4746 struct page * __weak
4747 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4748 		pmd_t *pmd, int flags)
4749 {
4750 	struct page *page = NULL;
4751 	spinlock_t *ptl;
4752 	pte_t pte;
4753 retry:
4754 	ptl = pmd_lockptr(mm, pmd);
4755 	spin_lock(ptl);
4756 	/*
4757 	 * make sure that the address range covered by this pmd is not
4758 	 * unmapped from other threads.
4759 	 */
4760 	if (!pmd_huge(*pmd))
4761 		goto out;
4762 	pte = huge_ptep_get((pte_t *)pmd);
4763 	if (pte_present(pte)) {
4764 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4765 		if (flags & FOLL_GET)
4766 			get_page(page);
4767 	} else {
4768 		if (is_hugetlb_entry_migration(pte)) {
4769 			spin_unlock(ptl);
4770 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4771 			goto retry;
4772 		}
4773 		/*
4774 		 * hwpoisoned entry is treated as no_page_table in
4775 		 * follow_page_mask().
4776 		 */
4777 	}
4778 out:
4779 	spin_unlock(ptl);
4780 	return page;
4781 }
4782 
4783 struct page * __weak
4784 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4785 		pud_t *pud, int flags)
4786 {
4787 	if (flags & FOLL_GET)
4788 		return NULL;
4789 
4790 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4791 }
4792 
4793 struct page * __weak
4794 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4795 {
4796 	if (flags & FOLL_GET)
4797 		return NULL;
4798 
4799 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4800 }
4801 
4802 bool isolate_huge_page(struct page *page, struct list_head *list)
4803 {
4804 	bool ret = true;
4805 
4806 	VM_BUG_ON_PAGE(!PageHead(page), page);
4807 	spin_lock(&hugetlb_lock);
4808 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4809 		ret = false;
4810 		goto unlock;
4811 	}
4812 	clear_page_huge_active(page);
4813 	list_move_tail(&page->lru, list);
4814 unlock:
4815 	spin_unlock(&hugetlb_lock);
4816 	return ret;
4817 }
4818 
4819 void putback_active_hugepage(struct page *page)
4820 {
4821 	VM_BUG_ON_PAGE(!PageHead(page), page);
4822 	spin_lock(&hugetlb_lock);
4823 	set_page_huge_active(page);
4824 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4825 	spin_unlock(&hugetlb_lock);
4826 	put_page(page);
4827 }
4828 
4829 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4830 {
4831 	struct hstate *h = page_hstate(oldpage);
4832 
4833 	hugetlb_cgroup_migrate(oldpage, newpage);
4834 	set_page_owner_migrate_reason(newpage, reason);
4835 
4836 	/*
4837 	 * transfer temporary state of the new huge page. This is
4838 	 * reverse to other transitions because the newpage is going to
4839 	 * be final while the old one will be freed so it takes over
4840 	 * the temporary status.
4841 	 *
4842 	 * Also note that we have to transfer the per-node surplus state
4843 	 * here as well otherwise the global surplus count will not match
4844 	 * the per-node's.
4845 	 */
4846 	if (PageHugeTemporary(newpage)) {
4847 		int old_nid = page_to_nid(oldpage);
4848 		int new_nid = page_to_nid(newpage);
4849 
4850 		SetPageHugeTemporary(oldpage);
4851 		ClearPageHugeTemporary(newpage);
4852 
4853 		spin_lock(&hugetlb_lock);
4854 		if (h->surplus_huge_pages_node[old_nid]) {
4855 			h->surplus_huge_pages_node[old_nid]--;
4856 			h->surplus_huge_pages_node[new_nid]++;
4857 		}
4858 		spin_unlock(&hugetlb_lock);
4859 	}
4860 }
4861