1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 101 static inline bool subpool_is_free(struct hugepage_subpool *spool) 102 { 103 if (spool->count) 104 return false; 105 if (spool->max_hpages != -1) 106 return spool->used_hpages == 0; 107 if (spool->min_hpages != -1) 108 return spool->rsv_hpages == spool->min_hpages; 109 110 return true; 111 } 112 113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 114 unsigned long irq_flags) 115 { 116 spin_unlock_irqrestore(&spool->lock, irq_flags); 117 118 /* If no pages are used, and no other handles to the subpool 119 * remain, give up any reservations based on minimum size and 120 * free the subpool */ 121 if (subpool_is_free(spool)) { 122 if (spool->min_hpages != -1) 123 hugetlb_acct_memory(spool->hstate, 124 -spool->min_hpages); 125 kfree(spool); 126 } 127 } 128 129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 130 long min_hpages) 131 { 132 struct hugepage_subpool *spool; 133 134 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 135 if (!spool) 136 return NULL; 137 138 spin_lock_init(&spool->lock); 139 spool->count = 1; 140 spool->max_hpages = max_hpages; 141 spool->hstate = h; 142 spool->min_hpages = min_hpages; 143 144 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 145 kfree(spool); 146 return NULL; 147 } 148 spool->rsv_hpages = min_hpages; 149 150 return spool; 151 } 152 153 void hugepage_put_subpool(struct hugepage_subpool *spool) 154 { 155 unsigned long flags; 156 157 spin_lock_irqsave(&spool->lock, flags); 158 BUG_ON(!spool->count); 159 spool->count--; 160 unlock_or_release_subpool(spool, flags); 161 } 162 163 /* 164 * Subpool accounting for allocating and reserving pages. 165 * Return -ENOMEM if there are not enough resources to satisfy the 166 * request. Otherwise, return the number of pages by which the 167 * global pools must be adjusted (upward). The returned value may 168 * only be different than the passed value (delta) in the case where 169 * a subpool minimum size must be maintained. 170 */ 171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 172 long delta) 173 { 174 long ret = delta; 175 176 if (!spool) 177 return ret; 178 179 spin_lock_irq(&spool->lock); 180 181 if (spool->max_hpages != -1) { /* maximum size accounting */ 182 if ((spool->used_hpages + delta) <= spool->max_hpages) 183 spool->used_hpages += delta; 184 else { 185 ret = -ENOMEM; 186 goto unlock_ret; 187 } 188 } 189 190 /* minimum size accounting */ 191 if (spool->min_hpages != -1 && spool->rsv_hpages) { 192 if (delta > spool->rsv_hpages) { 193 /* 194 * Asking for more reserves than those already taken on 195 * behalf of subpool. Return difference. 196 */ 197 ret = delta - spool->rsv_hpages; 198 spool->rsv_hpages = 0; 199 } else { 200 ret = 0; /* reserves already accounted for */ 201 spool->rsv_hpages -= delta; 202 } 203 } 204 205 unlock_ret: 206 spin_unlock_irq(&spool->lock); 207 return ret; 208 } 209 210 /* 211 * Subpool accounting for freeing and unreserving pages. 212 * Return the number of global page reservations that must be dropped. 213 * The return value may only be different than the passed value (delta) 214 * in the case where a subpool minimum size must be maintained. 215 */ 216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 217 long delta) 218 { 219 long ret = delta; 220 unsigned long flags; 221 222 if (!spool) 223 return delta; 224 225 spin_lock_irqsave(&spool->lock, flags); 226 227 if (spool->max_hpages != -1) /* maximum size accounting */ 228 spool->used_hpages -= delta; 229 230 /* minimum size accounting */ 231 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 232 if (spool->rsv_hpages + delta <= spool->min_hpages) 233 ret = 0; 234 else 235 ret = spool->rsv_hpages + delta - spool->min_hpages; 236 237 spool->rsv_hpages += delta; 238 if (spool->rsv_hpages > spool->min_hpages) 239 spool->rsv_hpages = spool->min_hpages; 240 } 241 242 /* 243 * If hugetlbfs_put_super couldn't free spool due to an outstanding 244 * quota reference, free it now. 245 */ 246 unlock_or_release_subpool(spool, flags); 247 248 return ret; 249 } 250 251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 252 { 253 return HUGETLBFS_SB(inode->i_sb)->spool; 254 } 255 256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 257 { 258 return subpool_inode(file_inode(vma->vm_file)); 259 } 260 261 /* 262 * hugetlb vma_lock helper routines 263 */ 264 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 265 { 266 if (__vma_shareable_lock(vma)) { 267 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 268 269 down_read(&vma_lock->rw_sema); 270 } 271 } 272 273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 274 { 275 if (__vma_shareable_lock(vma)) { 276 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 277 278 up_read(&vma_lock->rw_sema); 279 } 280 } 281 282 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 283 { 284 if (__vma_shareable_lock(vma)) { 285 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 286 287 down_write(&vma_lock->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 up_write(&vma_lock->rw_sema); 297 } 298 } 299 300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 301 { 302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 303 304 if (!__vma_shareable_lock(vma)) 305 return 1; 306 307 return down_write_trylock(&vma_lock->rw_sema); 308 } 309 310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 311 { 312 if (__vma_shareable_lock(vma)) { 313 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 314 315 lockdep_assert_held(&vma_lock->rw_sema); 316 } 317 } 318 319 void hugetlb_vma_lock_release(struct kref *kref) 320 { 321 struct hugetlb_vma_lock *vma_lock = container_of(kref, 322 struct hugetlb_vma_lock, refs); 323 324 kfree(vma_lock); 325 } 326 327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 328 { 329 struct vm_area_struct *vma = vma_lock->vma; 330 331 /* 332 * vma_lock structure may or not be released as a result of put, 333 * it certainly will no longer be attached to vma so clear pointer. 334 * Semaphore synchronizes access to vma_lock->vma field. 335 */ 336 vma_lock->vma = NULL; 337 vma->vm_private_data = NULL; 338 up_write(&vma_lock->rw_sema); 339 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 340 } 341 342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 343 { 344 if (__vma_shareable_lock(vma)) { 345 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 346 347 __hugetlb_vma_unlock_write_put(vma_lock); 348 } 349 } 350 351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 352 { 353 /* 354 * Only present in sharable vmas. 355 */ 356 if (!vma || !__vma_shareable_lock(vma)) 357 return; 358 359 if (vma->vm_private_data) { 360 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 361 362 down_write(&vma_lock->rw_sema); 363 __hugetlb_vma_unlock_write_put(vma_lock); 364 } 365 } 366 367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 368 { 369 struct hugetlb_vma_lock *vma_lock; 370 371 /* Only establish in (flags) sharable vmas */ 372 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 373 return; 374 375 /* Should never get here with non-NULL vm_private_data */ 376 if (vma->vm_private_data) 377 return; 378 379 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 380 if (!vma_lock) { 381 /* 382 * If we can not allocate structure, then vma can not 383 * participate in pmd sharing. This is only a possible 384 * performance enhancement and memory saving issue. 385 * However, the lock is also used to synchronize page 386 * faults with truncation. If the lock is not present, 387 * unlikely races could leave pages in a file past i_size 388 * until the file is removed. Warn in the unlikely case of 389 * allocation failure. 390 */ 391 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 392 return; 393 } 394 395 kref_init(&vma_lock->refs); 396 init_rwsem(&vma_lock->rw_sema); 397 vma_lock->vma = vma; 398 vma->vm_private_data = vma_lock; 399 } 400 401 /* Helper that removes a struct file_region from the resv_map cache and returns 402 * it for use. 403 */ 404 static struct file_region * 405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 406 { 407 struct file_region *nrg; 408 409 VM_BUG_ON(resv->region_cache_count <= 0); 410 411 resv->region_cache_count--; 412 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 413 list_del(&nrg->link); 414 415 nrg->from = from; 416 nrg->to = to; 417 418 return nrg; 419 } 420 421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 422 struct file_region *rg) 423 { 424 #ifdef CONFIG_CGROUP_HUGETLB 425 nrg->reservation_counter = rg->reservation_counter; 426 nrg->css = rg->css; 427 if (rg->css) 428 css_get(rg->css); 429 #endif 430 } 431 432 /* Helper that records hugetlb_cgroup uncharge info. */ 433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 434 struct hstate *h, 435 struct resv_map *resv, 436 struct file_region *nrg) 437 { 438 #ifdef CONFIG_CGROUP_HUGETLB 439 if (h_cg) { 440 nrg->reservation_counter = 441 &h_cg->rsvd_hugepage[hstate_index(h)]; 442 nrg->css = &h_cg->css; 443 /* 444 * The caller will hold exactly one h_cg->css reference for the 445 * whole contiguous reservation region. But this area might be 446 * scattered when there are already some file_regions reside in 447 * it. As a result, many file_regions may share only one css 448 * reference. In order to ensure that one file_region must hold 449 * exactly one h_cg->css reference, we should do css_get for 450 * each file_region and leave the reference held by caller 451 * untouched. 452 */ 453 css_get(&h_cg->css); 454 if (!resv->pages_per_hpage) 455 resv->pages_per_hpage = pages_per_huge_page(h); 456 /* pages_per_hpage should be the same for all entries in 457 * a resv_map. 458 */ 459 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 460 } else { 461 nrg->reservation_counter = NULL; 462 nrg->css = NULL; 463 } 464 #endif 465 } 466 467 static void put_uncharge_info(struct file_region *rg) 468 { 469 #ifdef CONFIG_CGROUP_HUGETLB 470 if (rg->css) 471 css_put(rg->css); 472 #endif 473 } 474 475 static bool has_same_uncharge_info(struct file_region *rg, 476 struct file_region *org) 477 { 478 #ifdef CONFIG_CGROUP_HUGETLB 479 return rg->reservation_counter == org->reservation_counter && 480 rg->css == org->css; 481 482 #else 483 return true; 484 #endif 485 } 486 487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 488 { 489 struct file_region *nrg, *prg; 490 491 prg = list_prev_entry(rg, link); 492 if (&prg->link != &resv->regions && prg->to == rg->from && 493 has_same_uncharge_info(prg, rg)) { 494 prg->to = rg->to; 495 496 list_del(&rg->link); 497 put_uncharge_info(rg); 498 kfree(rg); 499 500 rg = prg; 501 } 502 503 nrg = list_next_entry(rg, link); 504 if (&nrg->link != &resv->regions && nrg->from == rg->to && 505 has_same_uncharge_info(nrg, rg)) { 506 nrg->from = rg->from; 507 508 list_del(&rg->link); 509 put_uncharge_info(rg); 510 kfree(rg); 511 } 512 } 513 514 static inline long 515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 516 long to, struct hstate *h, struct hugetlb_cgroup *cg, 517 long *regions_needed) 518 { 519 struct file_region *nrg; 520 521 if (!regions_needed) { 522 nrg = get_file_region_entry_from_cache(map, from, to); 523 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 524 list_add(&nrg->link, rg); 525 coalesce_file_region(map, nrg); 526 } else 527 *regions_needed += 1; 528 529 return to - from; 530 } 531 532 /* 533 * Must be called with resv->lock held. 534 * 535 * Calling this with regions_needed != NULL will count the number of pages 536 * to be added but will not modify the linked list. And regions_needed will 537 * indicate the number of file_regions needed in the cache to carry out to add 538 * the regions for this range. 539 */ 540 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 541 struct hugetlb_cgroup *h_cg, 542 struct hstate *h, long *regions_needed) 543 { 544 long add = 0; 545 struct list_head *head = &resv->regions; 546 long last_accounted_offset = f; 547 struct file_region *iter, *trg = NULL; 548 struct list_head *rg = NULL; 549 550 if (regions_needed) 551 *regions_needed = 0; 552 553 /* In this loop, we essentially handle an entry for the range 554 * [last_accounted_offset, iter->from), at every iteration, with some 555 * bounds checking. 556 */ 557 list_for_each_entry_safe(iter, trg, head, link) { 558 /* Skip irrelevant regions that start before our range. */ 559 if (iter->from < f) { 560 /* If this region ends after the last accounted offset, 561 * then we need to update last_accounted_offset. 562 */ 563 if (iter->to > last_accounted_offset) 564 last_accounted_offset = iter->to; 565 continue; 566 } 567 568 /* When we find a region that starts beyond our range, we've 569 * finished. 570 */ 571 if (iter->from >= t) { 572 rg = iter->link.prev; 573 break; 574 } 575 576 /* Add an entry for last_accounted_offset -> iter->from, and 577 * update last_accounted_offset. 578 */ 579 if (iter->from > last_accounted_offset) 580 add += hugetlb_resv_map_add(resv, iter->link.prev, 581 last_accounted_offset, 582 iter->from, h, h_cg, 583 regions_needed); 584 585 last_accounted_offset = iter->to; 586 } 587 588 /* Handle the case where our range extends beyond 589 * last_accounted_offset. 590 */ 591 if (!rg) 592 rg = head->prev; 593 if (last_accounted_offset < t) 594 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 595 t, h, h_cg, regions_needed); 596 597 return add; 598 } 599 600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 601 */ 602 static int allocate_file_region_entries(struct resv_map *resv, 603 int regions_needed) 604 __must_hold(&resv->lock) 605 { 606 LIST_HEAD(allocated_regions); 607 int to_allocate = 0, i = 0; 608 struct file_region *trg = NULL, *rg = NULL; 609 610 VM_BUG_ON(regions_needed < 0); 611 612 /* 613 * Check for sufficient descriptors in the cache to accommodate 614 * the number of in progress add operations plus regions_needed. 615 * 616 * This is a while loop because when we drop the lock, some other call 617 * to region_add or region_del may have consumed some region_entries, 618 * so we keep looping here until we finally have enough entries for 619 * (adds_in_progress + regions_needed). 620 */ 621 while (resv->region_cache_count < 622 (resv->adds_in_progress + regions_needed)) { 623 to_allocate = resv->adds_in_progress + regions_needed - 624 resv->region_cache_count; 625 626 /* At this point, we should have enough entries in the cache 627 * for all the existing adds_in_progress. We should only be 628 * needing to allocate for regions_needed. 629 */ 630 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 631 632 spin_unlock(&resv->lock); 633 for (i = 0; i < to_allocate; i++) { 634 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 635 if (!trg) 636 goto out_of_memory; 637 list_add(&trg->link, &allocated_regions); 638 } 639 640 spin_lock(&resv->lock); 641 642 list_splice(&allocated_regions, &resv->region_cache); 643 resv->region_cache_count += to_allocate; 644 } 645 646 return 0; 647 648 out_of_memory: 649 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 650 list_del(&rg->link); 651 kfree(rg); 652 } 653 return -ENOMEM; 654 } 655 656 /* 657 * Add the huge page range represented by [f, t) to the reserve 658 * map. Regions will be taken from the cache to fill in this range. 659 * Sufficient regions should exist in the cache due to the previous 660 * call to region_chg with the same range, but in some cases the cache will not 661 * have sufficient entries due to races with other code doing region_add or 662 * region_del. The extra needed entries will be allocated. 663 * 664 * regions_needed is the out value provided by a previous call to region_chg. 665 * 666 * Return the number of new huge pages added to the map. This number is greater 667 * than or equal to zero. If file_region entries needed to be allocated for 668 * this operation and we were not able to allocate, it returns -ENOMEM. 669 * region_add of regions of length 1 never allocate file_regions and cannot 670 * fail; region_chg will always allocate at least 1 entry and a region_add for 671 * 1 page will only require at most 1 entry. 672 */ 673 static long region_add(struct resv_map *resv, long f, long t, 674 long in_regions_needed, struct hstate *h, 675 struct hugetlb_cgroup *h_cg) 676 { 677 long add = 0, actual_regions_needed = 0; 678 679 spin_lock(&resv->lock); 680 retry: 681 682 /* Count how many regions are actually needed to execute this add. */ 683 add_reservation_in_range(resv, f, t, NULL, NULL, 684 &actual_regions_needed); 685 686 /* 687 * Check for sufficient descriptors in the cache to accommodate 688 * this add operation. Note that actual_regions_needed may be greater 689 * than in_regions_needed, as the resv_map may have been modified since 690 * the region_chg call. In this case, we need to make sure that we 691 * allocate extra entries, such that we have enough for all the 692 * existing adds_in_progress, plus the excess needed for this 693 * operation. 694 */ 695 if (actual_regions_needed > in_regions_needed && 696 resv->region_cache_count < 697 resv->adds_in_progress + 698 (actual_regions_needed - in_regions_needed)) { 699 /* region_add operation of range 1 should never need to 700 * allocate file_region entries. 701 */ 702 VM_BUG_ON(t - f <= 1); 703 704 if (allocate_file_region_entries( 705 resv, actual_regions_needed - in_regions_needed)) { 706 return -ENOMEM; 707 } 708 709 goto retry; 710 } 711 712 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 713 714 resv->adds_in_progress -= in_regions_needed; 715 716 spin_unlock(&resv->lock); 717 return add; 718 } 719 720 /* 721 * Examine the existing reserve map and determine how many 722 * huge pages in the specified range [f, t) are NOT currently 723 * represented. This routine is called before a subsequent 724 * call to region_add that will actually modify the reserve 725 * map to add the specified range [f, t). region_chg does 726 * not change the number of huge pages represented by the 727 * map. A number of new file_region structures is added to the cache as a 728 * placeholder, for the subsequent region_add call to use. At least 1 729 * file_region structure is added. 730 * 731 * out_regions_needed is the number of regions added to the 732 * resv->adds_in_progress. This value needs to be provided to a follow up call 733 * to region_add or region_abort for proper accounting. 734 * 735 * Returns the number of huge pages that need to be added to the existing 736 * reservation map for the range [f, t). This number is greater or equal to 737 * zero. -ENOMEM is returned if a new file_region structure or cache entry 738 * is needed and can not be allocated. 739 */ 740 static long region_chg(struct resv_map *resv, long f, long t, 741 long *out_regions_needed) 742 { 743 long chg = 0; 744 745 spin_lock(&resv->lock); 746 747 /* Count how many hugepages in this range are NOT represented. */ 748 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 749 out_regions_needed); 750 751 if (*out_regions_needed == 0) 752 *out_regions_needed = 1; 753 754 if (allocate_file_region_entries(resv, *out_regions_needed)) 755 return -ENOMEM; 756 757 resv->adds_in_progress += *out_regions_needed; 758 759 spin_unlock(&resv->lock); 760 return chg; 761 } 762 763 /* 764 * Abort the in progress add operation. The adds_in_progress field 765 * of the resv_map keeps track of the operations in progress between 766 * calls to region_chg and region_add. Operations are sometimes 767 * aborted after the call to region_chg. In such cases, region_abort 768 * is called to decrement the adds_in_progress counter. regions_needed 769 * is the value returned by the region_chg call, it is used to decrement 770 * the adds_in_progress counter. 771 * 772 * NOTE: The range arguments [f, t) are not needed or used in this 773 * routine. They are kept to make reading the calling code easier as 774 * arguments will match the associated region_chg call. 775 */ 776 static void region_abort(struct resv_map *resv, long f, long t, 777 long regions_needed) 778 { 779 spin_lock(&resv->lock); 780 VM_BUG_ON(!resv->region_cache_count); 781 resv->adds_in_progress -= regions_needed; 782 spin_unlock(&resv->lock); 783 } 784 785 /* 786 * Delete the specified range [f, t) from the reserve map. If the 787 * t parameter is LONG_MAX, this indicates that ALL regions after f 788 * should be deleted. Locate the regions which intersect [f, t) 789 * and either trim, delete or split the existing regions. 790 * 791 * Returns the number of huge pages deleted from the reserve map. 792 * In the normal case, the return value is zero or more. In the 793 * case where a region must be split, a new region descriptor must 794 * be allocated. If the allocation fails, -ENOMEM will be returned. 795 * NOTE: If the parameter t == LONG_MAX, then we will never split 796 * a region and possibly return -ENOMEM. Callers specifying 797 * t == LONG_MAX do not need to check for -ENOMEM error. 798 */ 799 static long region_del(struct resv_map *resv, long f, long t) 800 { 801 struct list_head *head = &resv->regions; 802 struct file_region *rg, *trg; 803 struct file_region *nrg = NULL; 804 long del = 0; 805 806 retry: 807 spin_lock(&resv->lock); 808 list_for_each_entry_safe(rg, trg, head, link) { 809 /* 810 * Skip regions before the range to be deleted. file_region 811 * ranges are normally of the form [from, to). However, there 812 * may be a "placeholder" entry in the map which is of the form 813 * (from, to) with from == to. Check for placeholder entries 814 * at the beginning of the range to be deleted. 815 */ 816 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 817 continue; 818 819 if (rg->from >= t) 820 break; 821 822 if (f > rg->from && t < rg->to) { /* Must split region */ 823 /* 824 * Check for an entry in the cache before dropping 825 * lock and attempting allocation. 826 */ 827 if (!nrg && 828 resv->region_cache_count > resv->adds_in_progress) { 829 nrg = list_first_entry(&resv->region_cache, 830 struct file_region, 831 link); 832 list_del(&nrg->link); 833 resv->region_cache_count--; 834 } 835 836 if (!nrg) { 837 spin_unlock(&resv->lock); 838 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 839 if (!nrg) 840 return -ENOMEM; 841 goto retry; 842 } 843 844 del += t - f; 845 hugetlb_cgroup_uncharge_file_region( 846 resv, rg, t - f, false); 847 848 /* New entry for end of split region */ 849 nrg->from = t; 850 nrg->to = rg->to; 851 852 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 853 854 INIT_LIST_HEAD(&nrg->link); 855 856 /* Original entry is trimmed */ 857 rg->to = f; 858 859 list_add(&nrg->link, &rg->link); 860 nrg = NULL; 861 break; 862 } 863 864 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 865 del += rg->to - rg->from; 866 hugetlb_cgroup_uncharge_file_region(resv, rg, 867 rg->to - rg->from, true); 868 list_del(&rg->link); 869 kfree(rg); 870 continue; 871 } 872 873 if (f <= rg->from) { /* Trim beginning of region */ 874 hugetlb_cgroup_uncharge_file_region(resv, rg, 875 t - rg->from, false); 876 877 del += t - rg->from; 878 rg->from = t; 879 } else { /* Trim end of region */ 880 hugetlb_cgroup_uncharge_file_region(resv, rg, 881 rg->to - f, false); 882 883 del += rg->to - f; 884 rg->to = f; 885 } 886 } 887 888 spin_unlock(&resv->lock); 889 kfree(nrg); 890 return del; 891 } 892 893 /* 894 * A rare out of memory error was encountered which prevented removal of 895 * the reserve map region for a page. The huge page itself was free'ed 896 * and removed from the page cache. This routine will adjust the subpool 897 * usage count, and the global reserve count if needed. By incrementing 898 * these counts, the reserve map entry which could not be deleted will 899 * appear as a "reserved" entry instead of simply dangling with incorrect 900 * counts. 901 */ 902 void hugetlb_fix_reserve_counts(struct inode *inode) 903 { 904 struct hugepage_subpool *spool = subpool_inode(inode); 905 long rsv_adjust; 906 bool reserved = false; 907 908 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 909 if (rsv_adjust > 0) { 910 struct hstate *h = hstate_inode(inode); 911 912 if (!hugetlb_acct_memory(h, 1)) 913 reserved = true; 914 } else if (!rsv_adjust) { 915 reserved = true; 916 } 917 918 if (!reserved) 919 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 920 } 921 922 /* 923 * Count and return the number of huge pages in the reserve map 924 * that intersect with the range [f, t). 925 */ 926 static long region_count(struct resv_map *resv, long f, long t) 927 { 928 struct list_head *head = &resv->regions; 929 struct file_region *rg; 930 long chg = 0; 931 932 spin_lock(&resv->lock); 933 /* Locate each segment we overlap with, and count that overlap. */ 934 list_for_each_entry(rg, head, link) { 935 long seg_from; 936 long seg_to; 937 938 if (rg->to <= f) 939 continue; 940 if (rg->from >= t) 941 break; 942 943 seg_from = max(rg->from, f); 944 seg_to = min(rg->to, t); 945 946 chg += seg_to - seg_from; 947 } 948 spin_unlock(&resv->lock); 949 950 return chg; 951 } 952 953 /* 954 * Convert the address within this vma to the page offset within 955 * the mapping, in pagecache page units; huge pages here. 956 */ 957 static pgoff_t vma_hugecache_offset(struct hstate *h, 958 struct vm_area_struct *vma, unsigned long address) 959 { 960 return ((address - vma->vm_start) >> huge_page_shift(h)) + 961 (vma->vm_pgoff >> huge_page_order(h)); 962 } 963 964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 965 unsigned long address) 966 { 967 return vma_hugecache_offset(hstate_vma(vma), vma, address); 968 } 969 EXPORT_SYMBOL_GPL(linear_hugepage_index); 970 971 /* 972 * Return the size of the pages allocated when backing a VMA. In the majority 973 * cases this will be same size as used by the page table entries. 974 */ 975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 976 { 977 if (vma->vm_ops && vma->vm_ops->pagesize) 978 return vma->vm_ops->pagesize(vma); 979 return PAGE_SIZE; 980 } 981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 982 983 /* 984 * Return the page size being used by the MMU to back a VMA. In the majority 985 * of cases, the page size used by the kernel matches the MMU size. On 986 * architectures where it differs, an architecture-specific 'strong' 987 * version of this symbol is required. 988 */ 989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 990 { 991 return vma_kernel_pagesize(vma); 992 } 993 994 /* 995 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 996 * bits of the reservation map pointer, which are always clear due to 997 * alignment. 998 */ 999 #define HPAGE_RESV_OWNER (1UL << 0) 1000 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1002 1003 /* 1004 * These helpers are used to track how many pages are reserved for 1005 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1006 * is guaranteed to have their future faults succeed. 1007 * 1008 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1009 * the reserve counters are updated with the hugetlb_lock held. It is safe 1010 * to reset the VMA at fork() time as it is not in use yet and there is no 1011 * chance of the global counters getting corrupted as a result of the values. 1012 * 1013 * The private mapping reservation is represented in a subtly different 1014 * manner to a shared mapping. A shared mapping has a region map associated 1015 * with the underlying file, this region map represents the backing file 1016 * pages which have ever had a reservation assigned which this persists even 1017 * after the page is instantiated. A private mapping has a region map 1018 * associated with the original mmap which is attached to all VMAs which 1019 * reference it, this region map represents those offsets which have consumed 1020 * reservation ie. where pages have been instantiated. 1021 */ 1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1023 { 1024 return (unsigned long)vma->vm_private_data; 1025 } 1026 1027 static void set_vma_private_data(struct vm_area_struct *vma, 1028 unsigned long value) 1029 { 1030 vma->vm_private_data = (void *)value; 1031 } 1032 1033 static void 1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1035 struct hugetlb_cgroup *h_cg, 1036 struct hstate *h) 1037 { 1038 #ifdef CONFIG_CGROUP_HUGETLB 1039 if (!h_cg || !h) { 1040 resv_map->reservation_counter = NULL; 1041 resv_map->pages_per_hpage = 0; 1042 resv_map->css = NULL; 1043 } else { 1044 resv_map->reservation_counter = 1045 &h_cg->rsvd_hugepage[hstate_index(h)]; 1046 resv_map->pages_per_hpage = pages_per_huge_page(h); 1047 resv_map->css = &h_cg->css; 1048 } 1049 #endif 1050 } 1051 1052 struct resv_map *resv_map_alloc(void) 1053 { 1054 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1055 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1056 1057 if (!resv_map || !rg) { 1058 kfree(resv_map); 1059 kfree(rg); 1060 return NULL; 1061 } 1062 1063 kref_init(&resv_map->refs); 1064 spin_lock_init(&resv_map->lock); 1065 INIT_LIST_HEAD(&resv_map->regions); 1066 1067 resv_map->adds_in_progress = 0; 1068 /* 1069 * Initialize these to 0. On shared mappings, 0's here indicate these 1070 * fields don't do cgroup accounting. On private mappings, these will be 1071 * re-initialized to the proper values, to indicate that hugetlb cgroup 1072 * reservations are to be un-charged from here. 1073 */ 1074 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1075 1076 INIT_LIST_HEAD(&resv_map->region_cache); 1077 list_add(&rg->link, &resv_map->region_cache); 1078 resv_map->region_cache_count = 1; 1079 1080 return resv_map; 1081 } 1082 1083 void resv_map_release(struct kref *ref) 1084 { 1085 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1086 struct list_head *head = &resv_map->region_cache; 1087 struct file_region *rg, *trg; 1088 1089 /* Clear out any active regions before we release the map. */ 1090 region_del(resv_map, 0, LONG_MAX); 1091 1092 /* ... and any entries left in the cache */ 1093 list_for_each_entry_safe(rg, trg, head, link) { 1094 list_del(&rg->link); 1095 kfree(rg); 1096 } 1097 1098 VM_BUG_ON(resv_map->adds_in_progress); 1099 1100 kfree(resv_map); 1101 } 1102 1103 static inline struct resv_map *inode_resv_map(struct inode *inode) 1104 { 1105 /* 1106 * At inode evict time, i_mapping may not point to the original 1107 * address space within the inode. This original address space 1108 * contains the pointer to the resv_map. So, always use the 1109 * address space embedded within the inode. 1110 * The VERY common case is inode->mapping == &inode->i_data but, 1111 * this may not be true for device special inodes. 1112 */ 1113 return (struct resv_map *)(&inode->i_data)->private_data; 1114 } 1115 1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1117 { 1118 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1119 if (vma->vm_flags & VM_MAYSHARE) { 1120 struct address_space *mapping = vma->vm_file->f_mapping; 1121 struct inode *inode = mapping->host; 1122 1123 return inode_resv_map(inode); 1124 1125 } else { 1126 return (struct resv_map *)(get_vma_private_data(vma) & 1127 ~HPAGE_RESV_MASK); 1128 } 1129 } 1130 1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1132 { 1133 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1134 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1135 1136 set_vma_private_data(vma, (get_vma_private_data(vma) & 1137 HPAGE_RESV_MASK) | (unsigned long)map); 1138 } 1139 1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1141 { 1142 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1143 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1144 1145 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1146 } 1147 1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 1152 return (get_vma_private_data(vma) & flag) != 0; 1153 } 1154 1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1156 { 1157 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1158 /* 1159 * Clear vm_private_data 1160 * - For shared mappings this is a per-vma semaphore that may be 1161 * allocated in a subsequent call to hugetlb_vm_op_open. 1162 * Before clearing, make sure pointer is not associated with vma 1163 * as this will leak the structure. This is the case when called 1164 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1165 * been called to allocate a new structure. 1166 * - For MAP_PRIVATE mappings, this is the reserve map which does 1167 * not apply to children. Faults generated by the children are 1168 * not guaranteed to succeed, even if read-only. 1169 */ 1170 if (vma->vm_flags & VM_MAYSHARE) { 1171 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1172 1173 if (vma_lock && vma_lock->vma != vma) 1174 vma->vm_private_data = NULL; 1175 } else 1176 vma->vm_private_data = NULL; 1177 } 1178 1179 /* 1180 * Reset and decrement one ref on hugepage private reservation. 1181 * Called with mm->mmap_lock writer semaphore held. 1182 * This function should be only used by move_vma() and operate on 1183 * same sized vma. It should never come here with last ref on the 1184 * reservation. 1185 */ 1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1187 { 1188 /* 1189 * Clear the old hugetlb private page reservation. 1190 * It has already been transferred to new_vma. 1191 * 1192 * During a mremap() operation of a hugetlb vma we call move_vma() 1193 * which copies vma into new_vma and unmaps vma. After the copy 1194 * operation both new_vma and vma share a reference to the resv_map 1195 * struct, and at that point vma is about to be unmapped. We don't 1196 * want to return the reservation to the pool at unmap of vma because 1197 * the reservation still lives on in new_vma, so simply decrement the 1198 * ref here and remove the resv_map reference from this vma. 1199 */ 1200 struct resv_map *reservations = vma_resv_map(vma); 1201 1202 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1203 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1204 kref_put(&reservations->refs, resv_map_release); 1205 } 1206 1207 hugetlb_dup_vma_private(vma); 1208 } 1209 1210 /* Returns true if the VMA has associated reserve pages */ 1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1212 { 1213 if (vma->vm_flags & VM_NORESERVE) { 1214 /* 1215 * This address is already reserved by other process(chg == 0), 1216 * so, we should decrement reserved count. Without decrementing, 1217 * reserve count remains after releasing inode, because this 1218 * allocated page will go into page cache and is regarded as 1219 * coming from reserved pool in releasing step. Currently, we 1220 * don't have any other solution to deal with this situation 1221 * properly, so add work-around here. 1222 */ 1223 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1224 return true; 1225 else 1226 return false; 1227 } 1228 1229 /* Shared mappings always use reserves */ 1230 if (vma->vm_flags & VM_MAYSHARE) { 1231 /* 1232 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1233 * be a region map for all pages. The only situation where 1234 * there is no region map is if a hole was punched via 1235 * fallocate. In this case, there really are no reserves to 1236 * use. This situation is indicated if chg != 0. 1237 */ 1238 if (chg) 1239 return false; 1240 else 1241 return true; 1242 } 1243 1244 /* 1245 * Only the process that called mmap() has reserves for 1246 * private mappings. 1247 */ 1248 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1249 /* 1250 * Like the shared case above, a hole punch or truncate 1251 * could have been performed on the private mapping. 1252 * Examine the value of chg to determine if reserves 1253 * actually exist or were previously consumed. 1254 * Very Subtle - The value of chg comes from a previous 1255 * call to vma_needs_reserves(). The reserve map for 1256 * private mappings has different (opposite) semantics 1257 * than that of shared mappings. vma_needs_reserves() 1258 * has already taken this difference in semantics into 1259 * account. Therefore, the meaning of chg is the same 1260 * as in the shared case above. Code could easily be 1261 * combined, but keeping it separate draws attention to 1262 * subtle differences. 1263 */ 1264 if (chg) 1265 return false; 1266 else 1267 return true; 1268 } 1269 1270 return false; 1271 } 1272 1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1274 { 1275 int nid = folio_nid(folio); 1276 1277 lockdep_assert_held(&hugetlb_lock); 1278 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1279 1280 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1281 h->free_huge_pages++; 1282 h->free_huge_pages_node[nid]++; 1283 folio_set_hugetlb_freed(folio); 1284 } 1285 1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1287 int nid) 1288 { 1289 struct folio *folio; 1290 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1291 1292 lockdep_assert_held(&hugetlb_lock); 1293 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1294 if (pin && !folio_is_longterm_pinnable(folio)) 1295 continue; 1296 1297 if (folio_test_hwpoison(folio)) 1298 continue; 1299 1300 list_move(&folio->lru, &h->hugepage_activelist); 1301 folio_ref_unfreeze(folio, 1); 1302 folio_clear_hugetlb_freed(folio); 1303 h->free_huge_pages--; 1304 h->free_huge_pages_node[nid]--; 1305 return folio; 1306 } 1307 1308 return NULL; 1309 } 1310 1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1312 int nid, nodemask_t *nmask) 1313 { 1314 unsigned int cpuset_mems_cookie; 1315 struct zonelist *zonelist; 1316 struct zone *zone; 1317 struct zoneref *z; 1318 int node = NUMA_NO_NODE; 1319 1320 zonelist = node_zonelist(nid, gfp_mask); 1321 1322 retry_cpuset: 1323 cpuset_mems_cookie = read_mems_allowed_begin(); 1324 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1325 struct folio *folio; 1326 1327 if (!cpuset_zone_allowed(zone, gfp_mask)) 1328 continue; 1329 /* 1330 * no need to ask again on the same node. Pool is node rather than 1331 * zone aware 1332 */ 1333 if (zone_to_nid(zone) == node) 1334 continue; 1335 node = zone_to_nid(zone); 1336 1337 folio = dequeue_hugetlb_folio_node_exact(h, node); 1338 if (folio) 1339 return folio; 1340 } 1341 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1342 goto retry_cpuset; 1343 1344 return NULL; 1345 } 1346 1347 static unsigned long available_huge_pages(struct hstate *h) 1348 { 1349 return h->free_huge_pages - h->resv_huge_pages; 1350 } 1351 1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1353 struct vm_area_struct *vma, 1354 unsigned long address, int avoid_reserve, 1355 long chg) 1356 { 1357 struct folio *folio = NULL; 1358 struct mempolicy *mpol; 1359 gfp_t gfp_mask; 1360 nodemask_t *nodemask; 1361 int nid; 1362 1363 /* 1364 * A child process with MAP_PRIVATE mappings created by their parent 1365 * have no page reserves. This check ensures that reservations are 1366 * not "stolen". The child may still get SIGKILLed 1367 */ 1368 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1369 goto err; 1370 1371 /* If reserves cannot be used, ensure enough pages are in the pool */ 1372 if (avoid_reserve && !available_huge_pages(h)) 1373 goto err; 1374 1375 gfp_mask = htlb_alloc_mask(h); 1376 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1377 1378 if (mpol_is_preferred_many(mpol)) { 1379 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1380 nid, nodemask); 1381 1382 /* Fallback to all nodes if page==NULL */ 1383 nodemask = NULL; 1384 } 1385 1386 if (!folio) 1387 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1388 nid, nodemask); 1389 1390 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1391 folio_set_hugetlb_restore_reserve(folio); 1392 h->resv_huge_pages--; 1393 } 1394 1395 mpol_cond_put(mpol); 1396 return folio; 1397 1398 err: 1399 return NULL; 1400 } 1401 1402 /* 1403 * common helper functions for hstate_next_node_to_{alloc|free}. 1404 * We may have allocated or freed a huge page based on a different 1405 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1406 * be outside of *nodes_allowed. Ensure that we use an allowed 1407 * node for alloc or free. 1408 */ 1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1410 { 1411 nid = next_node_in(nid, *nodes_allowed); 1412 VM_BUG_ON(nid >= MAX_NUMNODES); 1413 1414 return nid; 1415 } 1416 1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1418 { 1419 if (!node_isset(nid, *nodes_allowed)) 1420 nid = next_node_allowed(nid, nodes_allowed); 1421 return nid; 1422 } 1423 1424 /* 1425 * returns the previously saved node ["this node"] from which to 1426 * allocate a persistent huge page for the pool and advance the 1427 * next node from which to allocate, handling wrap at end of node 1428 * mask. 1429 */ 1430 static int hstate_next_node_to_alloc(struct hstate *h, 1431 nodemask_t *nodes_allowed) 1432 { 1433 int nid; 1434 1435 VM_BUG_ON(!nodes_allowed); 1436 1437 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1438 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1439 1440 return nid; 1441 } 1442 1443 /* 1444 * helper for remove_pool_huge_page() - return the previously saved 1445 * node ["this node"] from which to free a huge page. Advance the 1446 * next node id whether or not we find a free huge page to free so 1447 * that the next attempt to free addresses the next node. 1448 */ 1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1450 { 1451 int nid; 1452 1453 VM_BUG_ON(!nodes_allowed); 1454 1455 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1456 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1457 1458 return nid; 1459 } 1460 1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1462 for (nr_nodes = nodes_weight(*mask); \ 1463 nr_nodes > 0 && \ 1464 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1465 nr_nodes--) 1466 1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1468 for (nr_nodes = nodes_weight(*mask); \ 1469 nr_nodes > 0 && \ 1470 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1471 nr_nodes--) 1472 1473 /* used to demote non-gigantic_huge pages as well */ 1474 static void __destroy_compound_gigantic_folio(struct folio *folio, 1475 unsigned int order, bool demote) 1476 { 1477 int i; 1478 int nr_pages = 1 << order; 1479 struct page *p; 1480 1481 atomic_set(&folio->_entire_mapcount, 0); 1482 atomic_set(&folio->_nr_pages_mapped, 0); 1483 atomic_set(&folio->_pincount, 0); 1484 1485 for (i = 1; i < nr_pages; i++) { 1486 p = folio_page(folio, i); 1487 p->mapping = NULL; 1488 clear_compound_head(p); 1489 if (!demote) 1490 set_page_refcounted(p); 1491 } 1492 1493 __folio_clear_head(folio); 1494 } 1495 1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1497 unsigned int order) 1498 { 1499 __destroy_compound_gigantic_folio(folio, order, true); 1500 } 1501 1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1503 static void destroy_compound_gigantic_folio(struct folio *folio, 1504 unsigned int order) 1505 { 1506 __destroy_compound_gigantic_folio(folio, order, false); 1507 } 1508 1509 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1510 { 1511 /* 1512 * If the page isn't allocated using the cma allocator, 1513 * cma_release() returns false. 1514 */ 1515 #ifdef CONFIG_CMA 1516 int nid = folio_nid(folio); 1517 1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1519 return; 1520 #endif 1521 1522 free_contig_range(folio_pfn(folio), 1 << order); 1523 } 1524 1525 #ifdef CONFIG_CONTIG_ALLOC 1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1527 int nid, nodemask_t *nodemask) 1528 { 1529 struct page *page; 1530 unsigned long nr_pages = pages_per_huge_page(h); 1531 if (nid == NUMA_NO_NODE) 1532 nid = numa_mem_id(); 1533 1534 #ifdef CONFIG_CMA 1535 { 1536 int node; 1537 1538 if (hugetlb_cma[nid]) { 1539 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1540 huge_page_order(h), true); 1541 if (page) 1542 return page_folio(page); 1543 } 1544 1545 if (!(gfp_mask & __GFP_THISNODE)) { 1546 for_each_node_mask(node, *nodemask) { 1547 if (node == nid || !hugetlb_cma[node]) 1548 continue; 1549 1550 page = cma_alloc(hugetlb_cma[node], nr_pages, 1551 huge_page_order(h), true); 1552 if (page) 1553 return page_folio(page); 1554 } 1555 } 1556 } 1557 #endif 1558 1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1560 return page ? page_folio(page) : NULL; 1561 } 1562 1563 #else /* !CONFIG_CONTIG_ALLOC */ 1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1565 int nid, nodemask_t *nodemask) 1566 { 1567 return NULL; 1568 } 1569 #endif /* CONFIG_CONTIG_ALLOC */ 1570 1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1573 int nid, nodemask_t *nodemask) 1574 { 1575 return NULL; 1576 } 1577 static inline void free_gigantic_folio(struct folio *folio, 1578 unsigned int order) { } 1579 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1580 unsigned int order) { } 1581 #endif 1582 1583 /* 1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1585 * as just a compound page. 1586 * 1587 * A reference is held on the folio, except in the case of demote. 1588 * 1589 * Must be called with hugetlb lock held. 1590 */ 1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1592 bool adjust_surplus, 1593 bool demote) 1594 { 1595 int nid = folio_nid(folio); 1596 1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1599 1600 lockdep_assert_held(&hugetlb_lock); 1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1602 return; 1603 1604 list_del(&folio->lru); 1605 1606 if (folio_test_hugetlb_freed(folio)) { 1607 h->free_huge_pages--; 1608 h->free_huge_pages_node[nid]--; 1609 } 1610 if (adjust_surplus) { 1611 h->surplus_huge_pages--; 1612 h->surplus_huge_pages_node[nid]--; 1613 } 1614 1615 /* 1616 * Very subtle 1617 * 1618 * For non-gigantic pages set the destructor to the normal compound 1619 * page dtor. This is needed in case someone takes an additional 1620 * temporary ref to the page, and freeing is delayed until they drop 1621 * their reference. 1622 * 1623 * For gigantic pages set the destructor to the null dtor. This 1624 * destructor will never be called. Before freeing the gigantic 1625 * page destroy_compound_gigantic_folio will turn the folio into a 1626 * simple group of pages. After this the destructor does not 1627 * apply. 1628 * 1629 * This handles the case where more than one ref is held when and 1630 * after update_and_free_hugetlb_folio is called. 1631 * 1632 * In the case of demote we do not ref count the page as it will soon 1633 * be turned into a page of smaller size. 1634 */ 1635 if (!demote) 1636 folio_ref_unfreeze(folio, 1); 1637 if (hstate_is_gigantic(h)) 1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1639 else 1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1641 1642 h->nr_huge_pages--; 1643 h->nr_huge_pages_node[nid]--; 1644 } 1645 1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus) 1648 { 1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1650 } 1651 1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1653 bool adjust_surplus) 1654 { 1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1656 } 1657 1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1659 bool adjust_surplus) 1660 { 1661 int zeroed; 1662 int nid = folio_nid(folio); 1663 1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1665 1666 lockdep_assert_held(&hugetlb_lock); 1667 1668 INIT_LIST_HEAD(&folio->lru); 1669 h->nr_huge_pages++; 1670 h->nr_huge_pages_node[nid]++; 1671 1672 if (adjust_surplus) { 1673 h->surplus_huge_pages++; 1674 h->surplus_huge_pages_node[nid]++; 1675 } 1676 1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1678 folio_change_private(folio, NULL); 1679 /* 1680 * We have to set hugetlb_vmemmap_optimized again as above 1681 * folio_change_private(folio, NULL) cleared it. 1682 */ 1683 folio_set_hugetlb_vmemmap_optimized(folio); 1684 1685 /* 1686 * This folio is about to be managed by the hugetlb allocator and 1687 * should have no users. Drop our reference, and check for others 1688 * just in case. 1689 */ 1690 zeroed = folio_put_testzero(folio); 1691 if (unlikely(!zeroed)) 1692 /* 1693 * It is VERY unlikely soneone else has taken a ref on 1694 * the page. In this case, we simply return as the 1695 * hugetlb destructor (free_huge_page) will be called 1696 * when this other ref is dropped. 1697 */ 1698 return; 1699 1700 arch_clear_hugepage_flags(&folio->page); 1701 enqueue_hugetlb_folio(h, folio); 1702 } 1703 1704 static void __update_and_free_hugetlb_folio(struct hstate *h, 1705 struct folio *folio) 1706 { 1707 int i; 1708 struct page *subpage; 1709 1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1711 return; 1712 1713 /* 1714 * If we don't know which subpages are hwpoisoned, we can't free 1715 * the hugepage, so it's leaked intentionally. 1716 */ 1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1718 return; 1719 1720 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1721 spin_lock_irq(&hugetlb_lock); 1722 /* 1723 * If we cannot allocate vmemmap pages, just refuse to free the 1724 * page and put the page back on the hugetlb free list and treat 1725 * as a surplus page. 1726 */ 1727 add_hugetlb_folio(h, folio, true); 1728 spin_unlock_irq(&hugetlb_lock); 1729 return; 1730 } 1731 1732 /* 1733 * Move PageHWPoison flag from head page to the raw error pages, 1734 * which makes any healthy subpages reusable. 1735 */ 1736 if (unlikely(folio_test_hwpoison(folio))) 1737 folio_clear_hugetlb_hwpoison(folio); 1738 1739 for (i = 0; i < pages_per_huge_page(h); i++) { 1740 subpage = folio_page(folio, i); 1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1742 1 << PG_referenced | 1 << PG_dirty | 1743 1 << PG_active | 1 << PG_private | 1744 1 << PG_writeback); 1745 } 1746 1747 /* 1748 * Non-gigantic pages demoted from CMA allocated gigantic pages 1749 * need to be given back to CMA in free_gigantic_folio. 1750 */ 1751 if (hstate_is_gigantic(h) || 1752 hugetlb_cma_folio(folio, huge_page_order(h))) { 1753 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1754 free_gigantic_folio(folio, huge_page_order(h)); 1755 } else { 1756 __free_pages(&folio->page, huge_page_order(h)); 1757 } 1758 } 1759 1760 /* 1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1764 * the vmemmap pages. 1765 * 1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1767 * freed and frees them one-by-one. As the page->mapping pointer is going 1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1769 * structure of a lockless linked list of huge pages to be freed. 1770 */ 1771 static LLIST_HEAD(hpage_freelist); 1772 1773 static void free_hpage_workfn(struct work_struct *work) 1774 { 1775 struct llist_node *node; 1776 1777 node = llist_del_all(&hpage_freelist); 1778 1779 while (node) { 1780 struct page *page; 1781 struct hstate *h; 1782 1783 page = container_of((struct address_space **)node, 1784 struct page, mapping); 1785 node = node->next; 1786 page->mapping = NULL; 1787 /* 1788 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1789 * folio_hstate() is going to trigger because a previous call to 1790 * remove_hugetlb_folio() will call folio_set_compound_dtor 1791 * (folio, NULL_COMPOUND_DTOR), so do not use folio_hstate() 1792 * directly. 1793 */ 1794 h = size_to_hstate(page_size(page)); 1795 1796 __update_and_free_hugetlb_folio(h, page_folio(page)); 1797 1798 cond_resched(); 1799 } 1800 } 1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1802 1803 static inline void flush_free_hpage_work(struct hstate *h) 1804 { 1805 if (hugetlb_vmemmap_optimizable(h)) 1806 flush_work(&free_hpage_work); 1807 } 1808 1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1810 bool atomic) 1811 { 1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1813 __update_and_free_hugetlb_folio(h, folio); 1814 return; 1815 } 1816 1817 /* 1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1819 * 1820 * Only call schedule_work() if hpage_freelist is previously 1821 * empty. Otherwise, schedule_work() had been called but the workfn 1822 * hasn't retrieved the list yet. 1823 */ 1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1825 schedule_work(&free_hpage_work); 1826 } 1827 1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1829 { 1830 struct page *page, *t_page; 1831 struct folio *folio; 1832 1833 list_for_each_entry_safe(page, t_page, list, lru) { 1834 folio = page_folio(page); 1835 update_and_free_hugetlb_folio(h, folio, false); 1836 cond_resched(); 1837 } 1838 } 1839 1840 struct hstate *size_to_hstate(unsigned long size) 1841 { 1842 struct hstate *h; 1843 1844 for_each_hstate(h) { 1845 if (huge_page_size(h) == size) 1846 return h; 1847 } 1848 return NULL; 1849 } 1850 1851 void free_huge_page(struct page *page) 1852 { 1853 /* 1854 * Can't pass hstate in here because it is called from the 1855 * compound page destructor. 1856 */ 1857 struct folio *folio = page_folio(page); 1858 struct hstate *h = folio_hstate(folio); 1859 int nid = folio_nid(folio); 1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1861 bool restore_reserve; 1862 unsigned long flags; 1863 1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1866 1867 hugetlb_set_folio_subpool(folio, NULL); 1868 if (folio_test_anon(folio)) 1869 __ClearPageAnonExclusive(&folio->page); 1870 folio->mapping = NULL; 1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1872 folio_clear_hugetlb_restore_reserve(folio); 1873 1874 /* 1875 * If HPageRestoreReserve was set on page, page allocation consumed a 1876 * reservation. If the page was associated with a subpool, there 1877 * would have been a page reserved in the subpool before allocation 1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1879 * reservation, do not call hugepage_subpool_put_pages() as this will 1880 * remove the reserved page from the subpool. 1881 */ 1882 if (!restore_reserve) { 1883 /* 1884 * A return code of zero implies that the subpool will be 1885 * under its minimum size if the reservation is not restored 1886 * after page is free. Therefore, force restore_reserve 1887 * operation. 1888 */ 1889 if (hugepage_subpool_put_pages(spool, 1) == 0) 1890 restore_reserve = true; 1891 } 1892 1893 spin_lock_irqsave(&hugetlb_lock, flags); 1894 folio_clear_hugetlb_migratable(folio); 1895 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1896 pages_per_huge_page(h), folio); 1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1898 pages_per_huge_page(h), folio); 1899 if (restore_reserve) 1900 h->resv_huge_pages++; 1901 1902 if (folio_test_hugetlb_temporary(folio)) { 1903 remove_hugetlb_folio(h, folio, false); 1904 spin_unlock_irqrestore(&hugetlb_lock, flags); 1905 update_and_free_hugetlb_folio(h, folio, true); 1906 } else if (h->surplus_huge_pages_node[nid]) { 1907 /* remove the page from active list */ 1908 remove_hugetlb_folio(h, folio, true); 1909 spin_unlock_irqrestore(&hugetlb_lock, flags); 1910 update_and_free_hugetlb_folio(h, folio, true); 1911 } else { 1912 arch_clear_hugepage_flags(page); 1913 enqueue_hugetlb_folio(h, folio); 1914 spin_unlock_irqrestore(&hugetlb_lock, flags); 1915 } 1916 } 1917 1918 /* 1919 * Must be called with the hugetlb lock held 1920 */ 1921 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1922 { 1923 lockdep_assert_held(&hugetlb_lock); 1924 h->nr_huge_pages++; 1925 h->nr_huge_pages_node[nid]++; 1926 } 1927 1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1929 { 1930 hugetlb_vmemmap_optimize(h, &folio->page); 1931 INIT_LIST_HEAD(&folio->lru); 1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1933 hugetlb_set_folio_subpool(folio, NULL); 1934 set_hugetlb_cgroup(folio, NULL); 1935 set_hugetlb_cgroup_rsvd(folio, NULL); 1936 } 1937 1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1939 { 1940 __prep_new_hugetlb_folio(h, folio); 1941 spin_lock_irq(&hugetlb_lock); 1942 __prep_account_new_huge_page(h, nid); 1943 spin_unlock_irq(&hugetlb_lock); 1944 } 1945 1946 static bool __prep_compound_gigantic_folio(struct folio *folio, 1947 unsigned int order, bool demote) 1948 { 1949 int i, j; 1950 int nr_pages = 1 << order; 1951 struct page *p; 1952 1953 __folio_clear_reserved(folio); 1954 for (i = 0; i < nr_pages; i++) { 1955 p = folio_page(folio, i); 1956 1957 /* 1958 * For gigantic hugepages allocated through bootmem at 1959 * boot, it's safer to be consistent with the not-gigantic 1960 * hugepages and clear the PG_reserved bit from all tail pages 1961 * too. Otherwise drivers using get_user_pages() to access tail 1962 * pages may get the reference counting wrong if they see 1963 * PG_reserved set on a tail page (despite the head page not 1964 * having PG_reserved set). Enforcing this consistency between 1965 * head and tail pages allows drivers to optimize away a check 1966 * on the head page when they need know if put_page() is needed 1967 * after get_user_pages(). 1968 */ 1969 if (i != 0) /* head page cleared above */ 1970 __ClearPageReserved(p); 1971 /* 1972 * Subtle and very unlikely 1973 * 1974 * Gigantic 'page allocators' such as memblock or cma will 1975 * return a set of pages with each page ref counted. We need 1976 * to turn this set of pages into a compound page with tail 1977 * page ref counts set to zero. Code such as speculative page 1978 * cache adding could take a ref on a 'to be' tail page. 1979 * We need to respect any increased ref count, and only set 1980 * the ref count to zero if count is currently 1. If count 1981 * is not 1, we return an error. An error return indicates 1982 * the set of pages can not be converted to a gigantic page. 1983 * The caller who allocated the pages should then discard the 1984 * pages using the appropriate free interface. 1985 * 1986 * In the case of demote, the ref count will be zero. 1987 */ 1988 if (!demote) { 1989 if (!page_ref_freeze(p, 1)) { 1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1991 goto out_error; 1992 } 1993 } else { 1994 VM_BUG_ON_PAGE(page_count(p), p); 1995 } 1996 if (i != 0) 1997 set_compound_head(p, &folio->page); 1998 } 1999 __folio_set_head(folio); 2000 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2001 folio_set_order(folio, order); 2002 atomic_set(&folio->_entire_mapcount, -1); 2003 atomic_set(&folio->_nr_pages_mapped, 0); 2004 atomic_set(&folio->_pincount, 0); 2005 return true; 2006 2007 out_error: 2008 /* undo page modifications made above */ 2009 for (j = 0; j < i; j++) { 2010 p = folio_page(folio, j); 2011 if (j != 0) 2012 clear_compound_head(p); 2013 set_page_refcounted(p); 2014 } 2015 /* need to clear PG_reserved on remaining tail pages */ 2016 for (; j < nr_pages; j++) { 2017 p = folio_page(folio, j); 2018 __ClearPageReserved(p); 2019 } 2020 return false; 2021 } 2022 2023 static bool prep_compound_gigantic_folio(struct folio *folio, 2024 unsigned int order) 2025 { 2026 return __prep_compound_gigantic_folio(folio, order, false); 2027 } 2028 2029 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2030 unsigned int order) 2031 { 2032 return __prep_compound_gigantic_folio(folio, order, true); 2033 } 2034 2035 /* 2036 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2037 * transparent huge pages. See the PageTransHuge() documentation for more 2038 * details. 2039 */ 2040 int PageHuge(struct page *page) 2041 { 2042 struct folio *folio; 2043 2044 if (!PageCompound(page)) 2045 return 0; 2046 folio = page_folio(page); 2047 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2048 } 2049 EXPORT_SYMBOL_GPL(PageHuge); 2050 2051 /** 2052 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs 2053 * @folio: The folio to test. 2054 * 2055 * Context: Any context. Caller should have a reference on the folio to 2056 * prevent it from being turned into a tail page. 2057 * Return: True for hugetlbfs folios, false for anon folios or folios 2058 * belonging to other filesystems. 2059 */ 2060 bool folio_test_hugetlb(struct folio *folio) 2061 { 2062 if (!folio_test_large(folio)) 2063 return false; 2064 2065 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2066 } 2067 EXPORT_SYMBOL_GPL(folio_test_hugetlb); 2068 2069 /* 2070 * Find and lock address space (mapping) in write mode. 2071 * 2072 * Upon entry, the page is locked which means that page_mapping() is 2073 * stable. Due to locking order, we can only trylock_write. If we can 2074 * not get the lock, simply return NULL to caller. 2075 */ 2076 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2077 { 2078 struct address_space *mapping = page_mapping(hpage); 2079 2080 if (!mapping) 2081 return mapping; 2082 2083 if (i_mmap_trylock_write(mapping)) 2084 return mapping; 2085 2086 return NULL; 2087 } 2088 2089 pgoff_t hugetlb_basepage_index(struct page *page) 2090 { 2091 struct page *page_head = compound_head(page); 2092 pgoff_t index = page_index(page_head); 2093 unsigned long compound_idx; 2094 2095 if (compound_order(page_head) > MAX_ORDER) 2096 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2097 else 2098 compound_idx = page - page_head; 2099 2100 return (index << compound_order(page_head)) + compound_idx; 2101 } 2102 2103 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2104 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2105 nodemask_t *node_alloc_noretry) 2106 { 2107 int order = huge_page_order(h); 2108 struct page *page; 2109 bool alloc_try_hard = true; 2110 bool retry = true; 2111 2112 /* 2113 * By default we always try hard to allocate the page with 2114 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2115 * a loop (to adjust global huge page counts) and previous allocation 2116 * failed, do not continue to try hard on the same node. Use the 2117 * node_alloc_noretry bitmap to manage this state information. 2118 */ 2119 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2120 alloc_try_hard = false; 2121 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2122 if (alloc_try_hard) 2123 gfp_mask |= __GFP_RETRY_MAYFAIL; 2124 if (nid == NUMA_NO_NODE) 2125 nid = numa_mem_id(); 2126 retry: 2127 page = __alloc_pages(gfp_mask, order, nid, nmask); 2128 2129 /* Freeze head page */ 2130 if (page && !page_ref_freeze(page, 1)) { 2131 __free_pages(page, order); 2132 if (retry) { /* retry once */ 2133 retry = false; 2134 goto retry; 2135 } 2136 /* WOW! twice in a row. */ 2137 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2138 page = NULL; 2139 } 2140 2141 /* 2142 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2143 * indicates an overall state change. Clear bit so that we resume 2144 * normal 'try hard' allocations. 2145 */ 2146 if (node_alloc_noretry && page && !alloc_try_hard) 2147 node_clear(nid, *node_alloc_noretry); 2148 2149 /* 2150 * If we tried hard to get a page but failed, set bit so that 2151 * subsequent attempts will not try as hard until there is an 2152 * overall state change. 2153 */ 2154 if (node_alloc_noretry && !page && alloc_try_hard) 2155 node_set(nid, *node_alloc_noretry); 2156 2157 if (!page) { 2158 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2159 return NULL; 2160 } 2161 2162 __count_vm_event(HTLB_BUDDY_PGALLOC); 2163 return page_folio(page); 2164 } 2165 2166 /* 2167 * Common helper to allocate a fresh hugetlb page. All specific allocators 2168 * should use this function to get new hugetlb pages 2169 * 2170 * Note that returned page is 'frozen': ref count of head page and all tail 2171 * pages is zero. 2172 */ 2173 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2174 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2175 nodemask_t *node_alloc_noretry) 2176 { 2177 struct folio *folio; 2178 bool retry = false; 2179 2180 retry: 2181 if (hstate_is_gigantic(h)) 2182 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2183 else 2184 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2185 nid, nmask, node_alloc_noretry); 2186 if (!folio) 2187 return NULL; 2188 if (hstate_is_gigantic(h)) { 2189 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2190 /* 2191 * Rare failure to convert pages to compound page. 2192 * Free pages and try again - ONCE! 2193 */ 2194 free_gigantic_folio(folio, huge_page_order(h)); 2195 if (!retry) { 2196 retry = true; 2197 goto retry; 2198 } 2199 return NULL; 2200 } 2201 } 2202 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2203 2204 return folio; 2205 } 2206 2207 /* 2208 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2209 * manner. 2210 */ 2211 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2212 nodemask_t *node_alloc_noretry) 2213 { 2214 struct folio *folio; 2215 int nr_nodes, node; 2216 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2217 2218 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2219 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2220 nodes_allowed, node_alloc_noretry); 2221 if (folio) { 2222 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2223 return 1; 2224 } 2225 } 2226 2227 return 0; 2228 } 2229 2230 /* 2231 * Remove huge page from pool from next node to free. Attempt to keep 2232 * persistent huge pages more or less balanced over allowed nodes. 2233 * This routine only 'removes' the hugetlb page. The caller must make 2234 * an additional call to free the page to low level allocators. 2235 * Called with hugetlb_lock locked. 2236 */ 2237 static struct page *remove_pool_huge_page(struct hstate *h, 2238 nodemask_t *nodes_allowed, 2239 bool acct_surplus) 2240 { 2241 int nr_nodes, node; 2242 struct page *page = NULL; 2243 struct folio *folio; 2244 2245 lockdep_assert_held(&hugetlb_lock); 2246 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2247 /* 2248 * If we're returning unused surplus pages, only examine 2249 * nodes with surplus pages. 2250 */ 2251 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2252 !list_empty(&h->hugepage_freelists[node])) { 2253 page = list_entry(h->hugepage_freelists[node].next, 2254 struct page, lru); 2255 folio = page_folio(page); 2256 remove_hugetlb_folio(h, folio, acct_surplus); 2257 break; 2258 } 2259 } 2260 2261 return page; 2262 } 2263 2264 /* 2265 * Dissolve a given free hugepage into free buddy pages. This function does 2266 * nothing for in-use hugepages and non-hugepages. 2267 * This function returns values like below: 2268 * 2269 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2270 * when the system is under memory pressure and the feature of 2271 * freeing unused vmemmap pages associated with each hugetlb page 2272 * is enabled. 2273 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2274 * (allocated or reserved.) 2275 * 0: successfully dissolved free hugepages or the page is not a 2276 * hugepage (considered as already dissolved) 2277 */ 2278 int dissolve_free_huge_page(struct page *page) 2279 { 2280 int rc = -EBUSY; 2281 struct folio *folio = page_folio(page); 2282 2283 retry: 2284 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2285 if (!folio_test_hugetlb(folio)) 2286 return 0; 2287 2288 spin_lock_irq(&hugetlb_lock); 2289 if (!folio_test_hugetlb(folio)) { 2290 rc = 0; 2291 goto out; 2292 } 2293 2294 if (!folio_ref_count(folio)) { 2295 struct hstate *h = folio_hstate(folio); 2296 if (!available_huge_pages(h)) 2297 goto out; 2298 2299 /* 2300 * We should make sure that the page is already on the free list 2301 * when it is dissolved. 2302 */ 2303 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2304 spin_unlock_irq(&hugetlb_lock); 2305 cond_resched(); 2306 2307 /* 2308 * Theoretically, we should return -EBUSY when we 2309 * encounter this race. In fact, we have a chance 2310 * to successfully dissolve the page if we do a 2311 * retry. Because the race window is quite small. 2312 * If we seize this opportunity, it is an optimization 2313 * for increasing the success rate of dissolving page. 2314 */ 2315 goto retry; 2316 } 2317 2318 remove_hugetlb_folio(h, folio, false); 2319 h->max_huge_pages--; 2320 spin_unlock_irq(&hugetlb_lock); 2321 2322 /* 2323 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2324 * before freeing the page. update_and_free_hugtlb_folio will fail to 2325 * free the page if it can not allocate required vmemmap. We 2326 * need to adjust max_huge_pages if the page is not freed. 2327 * Attempt to allocate vmemmmap here so that we can take 2328 * appropriate action on failure. 2329 */ 2330 rc = hugetlb_vmemmap_restore(h, &folio->page); 2331 if (!rc) { 2332 update_and_free_hugetlb_folio(h, folio, false); 2333 } else { 2334 spin_lock_irq(&hugetlb_lock); 2335 add_hugetlb_folio(h, folio, false); 2336 h->max_huge_pages++; 2337 spin_unlock_irq(&hugetlb_lock); 2338 } 2339 2340 return rc; 2341 } 2342 out: 2343 spin_unlock_irq(&hugetlb_lock); 2344 return rc; 2345 } 2346 2347 /* 2348 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2349 * make specified memory blocks removable from the system. 2350 * Note that this will dissolve a free gigantic hugepage completely, if any 2351 * part of it lies within the given range. 2352 * Also note that if dissolve_free_huge_page() returns with an error, all 2353 * free hugepages that were dissolved before that error are lost. 2354 */ 2355 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2356 { 2357 unsigned long pfn; 2358 struct page *page; 2359 int rc = 0; 2360 unsigned int order; 2361 struct hstate *h; 2362 2363 if (!hugepages_supported()) 2364 return rc; 2365 2366 order = huge_page_order(&default_hstate); 2367 for_each_hstate(h) 2368 order = min(order, huge_page_order(h)); 2369 2370 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2371 page = pfn_to_page(pfn); 2372 rc = dissolve_free_huge_page(page); 2373 if (rc) 2374 break; 2375 } 2376 2377 return rc; 2378 } 2379 2380 /* 2381 * Allocates a fresh surplus page from the page allocator. 2382 */ 2383 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2384 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2385 { 2386 struct folio *folio = NULL; 2387 2388 if (hstate_is_gigantic(h)) 2389 return NULL; 2390 2391 spin_lock_irq(&hugetlb_lock); 2392 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2393 goto out_unlock; 2394 spin_unlock_irq(&hugetlb_lock); 2395 2396 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2397 if (!folio) 2398 return NULL; 2399 2400 spin_lock_irq(&hugetlb_lock); 2401 /* 2402 * We could have raced with the pool size change. 2403 * Double check that and simply deallocate the new page 2404 * if we would end up overcommiting the surpluses. Abuse 2405 * temporary page to workaround the nasty free_huge_page 2406 * codeflow 2407 */ 2408 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2409 folio_set_hugetlb_temporary(folio); 2410 spin_unlock_irq(&hugetlb_lock); 2411 free_huge_page(&folio->page); 2412 return NULL; 2413 } 2414 2415 h->surplus_huge_pages++; 2416 h->surplus_huge_pages_node[folio_nid(folio)]++; 2417 2418 out_unlock: 2419 spin_unlock_irq(&hugetlb_lock); 2420 2421 return folio; 2422 } 2423 2424 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2425 int nid, nodemask_t *nmask) 2426 { 2427 struct folio *folio; 2428 2429 if (hstate_is_gigantic(h)) 2430 return NULL; 2431 2432 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2433 if (!folio) 2434 return NULL; 2435 2436 /* fresh huge pages are frozen */ 2437 folio_ref_unfreeze(folio, 1); 2438 /* 2439 * We do not account these pages as surplus because they are only 2440 * temporary and will be released properly on the last reference 2441 */ 2442 folio_set_hugetlb_temporary(folio); 2443 2444 return folio; 2445 } 2446 2447 /* 2448 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2449 */ 2450 static 2451 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2452 struct vm_area_struct *vma, unsigned long addr) 2453 { 2454 struct folio *folio = NULL; 2455 struct mempolicy *mpol; 2456 gfp_t gfp_mask = htlb_alloc_mask(h); 2457 int nid; 2458 nodemask_t *nodemask; 2459 2460 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2461 if (mpol_is_preferred_many(mpol)) { 2462 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2463 2464 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2465 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2466 2467 /* Fallback to all nodes if page==NULL */ 2468 nodemask = NULL; 2469 } 2470 2471 if (!folio) 2472 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2473 mpol_cond_put(mpol); 2474 return folio; 2475 } 2476 2477 /* folio migration callback function */ 2478 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2479 nodemask_t *nmask, gfp_t gfp_mask) 2480 { 2481 spin_lock_irq(&hugetlb_lock); 2482 if (available_huge_pages(h)) { 2483 struct folio *folio; 2484 2485 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2486 preferred_nid, nmask); 2487 if (folio) { 2488 spin_unlock_irq(&hugetlb_lock); 2489 return folio; 2490 } 2491 } 2492 spin_unlock_irq(&hugetlb_lock); 2493 2494 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2495 } 2496 2497 /* mempolicy aware migration callback */ 2498 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2499 unsigned long address) 2500 { 2501 struct mempolicy *mpol; 2502 nodemask_t *nodemask; 2503 struct folio *folio; 2504 gfp_t gfp_mask; 2505 int node; 2506 2507 gfp_mask = htlb_alloc_mask(h); 2508 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2509 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2510 mpol_cond_put(mpol); 2511 2512 return folio; 2513 } 2514 2515 /* 2516 * Increase the hugetlb pool such that it can accommodate a reservation 2517 * of size 'delta'. 2518 */ 2519 static int gather_surplus_pages(struct hstate *h, long delta) 2520 __must_hold(&hugetlb_lock) 2521 { 2522 LIST_HEAD(surplus_list); 2523 struct folio *folio; 2524 struct page *page, *tmp; 2525 int ret; 2526 long i; 2527 long needed, allocated; 2528 bool alloc_ok = true; 2529 2530 lockdep_assert_held(&hugetlb_lock); 2531 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2532 if (needed <= 0) { 2533 h->resv_huge_pages += delta; 2534 return 0; 2535 } 2536 2537 allocated = 0; 2538 2539 ret = -ENOMEM; 2540 retry: 2541 spin_unlock_irq(&hugetlb_lock); 2542 for (i = 0; i < needed; i++) { 2543 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2544 NUMA_NO_NODE, NULL); 2545 if (!folio) { 2546 alloc_ok = false; 2547 break; 2548 } 2549 list_add(&folio->lru, &surplus_list); 2550 cond_resched(); 2551 } 2552 allocated += i; 2553 2554 /* 2555 * After retaking hugetlb_lock, we need to recalculate 'needed' 2556 * because either resv_huge_pages or free_huge_pages may have changed. 2557 */ 2558 spin_lock_irq(&hugetlb_lock); 2559 needed = (h->resv_huge_pages + delta) - 2560 (h->free_huge_pages + allocated); 2561 if (needed > 0) { 2562 if (alloc_ok) 2563 goto retry; 2564 /* 2565 * We were not able to allocate enough pages to 2566 * satisfy the entire reservation so we free what 2567 * we've allocated so far. 2568 */ 2569 goto free; 2570 } 2571 /* 2572 * The surplus_list now contains _at_least_ the number of extra pages 2573 * needed to accommodate the reservation. Add the appropriate number 2574 * of pages to the hugetlb pool and free the extras back to the buddy 2575 * allocator. Commit the entire reservation here to prevent another 2576 * process from stealing the pages as they are added to the pool but 2577 * before they are reserved. 2578 */ 2579 needed += allocated; 2580 h->resv_huge_pages += delta; 2581 ret = 0; 2582 2583 /* Free the needed pages to the hugetlb pool */ 2584 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2585 if ((--needed) < 0) 2586 break; 2587 /* Add the page to the hugetlb allocator */ 2588 enqueue_hugetlb_folio(h, page_folio(page)); 2589 } 2590 free: 2591 spin_unlock_irq(&hugetlb_lock); 2592 2593 /* 2594 * Free unnecessary surplus pages to the buddy allocator. 2595 * Pages have no ref count, call free_huge_page directly. 2596 */ 2597 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2598 free_huge_page(page); 2599 spin_lock_irq(&hugetlb_lock); 2600 2601 return ret; 2602 } 2603 2604 /* 2605 * This routine has two main purposes: 2606 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2607 * in unused_resv_pages. This corresponds to the prior adjustments made 2608 * to the associated reservation map. 2609 * 2) Free any unused surplus pages that may have been allocated to satisfy 2610 * the reservation. As many as unused_resv_pages may be freed. 2611 */ 2612 static void return_unused_surplus_pages(struct hstate *h, 2613 unsigned long unused_resv_pages) 2614 { 2615 unsigned long nr_pages; 2616 struct page *page; 2617 LIST_HEAD(page_list); 2618 2619 lockdep_assert_held(&hugetlb_lock); 2620 /* Uncommit the reservation */ 2621 h->resv_huge_pages -= unused_resv_pages; 2622 2623 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2624 goto out; 2625 2626 /* 2627 * Part (or even all) of the reservation could have been backed 2628 * by pre-allocated pages. Only free surplus pages. 2629 */ 2630 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2631 2632 /* 2633 * We want to release as many surplus pages as possible, spread 2634 * evenly across all nodes with memory. Iterate across these nodes 2635 * until we can no longer free unreserved surplus pages. This occurs 2636 * when the nodes with surplus pages have no free pages. 2637 * remove_pool_huge_page() will balance the freed pages across the 2638 * on-line nodes with memory and will handle the hstate accounting. 2639 */ 2640 while (nr_pages--) { 2641 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2642 if (!page) 2643 goto out; 2644 2645 list_add(&page->lru, &page_list); 2646 } 2647 2648 out: 2649 spin_unlock_irq(&hugetlb_lock); 2650 update_and_free_pages_bulk(h, &page_list); 2651 spin_lock_irq(&hugetlb_lock); 2652 } 2653 2654 2655 /* 2656 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2657 * are used by the huge page allocation routines to manage reservations. 2658 * 2659 * vma_needs_reservation is called to determine if the huge page at addr 2660 * within the vma has an associated reservation. If a reservation is 2661 * needed, the value 1 is returned. The caller is then responsible for 2662 * managing the global reservation and subpool usage counts. After 2663 * the huge page has been allocated, vma_commit_reservation is called 2664 * to add the page to the reservation map. If the page allocation fails, 2665 * the reservation must be ended instead of committed. vma_end_reservation 2666 * is called in such cases. 2667 * 2668 * In the normal case, vma_commit_reservation returns the same value 2669 * as the preceding vma_needs_reservation call. The only time this 2670 * is not the case is if a reserve map was changed between calls. It 2671 * is the responsibility of the caller to notice the difference and 2672 * take appropriate action. 2673 * 2674 * vma_add_reservation is used in error paths where a reservation must 2675 * be restored when a newly allocated huge page must be freed. It is 2676 * to be called after calling vma_needs_reservation to determine if a 2677 * reservation exists. 2678 * 2679 * vma_del_reservation is used in error paths where an entry in the reserve 2680 * map was created during huge page allocation and must be removed. It is to 2681 * be called after calling vma_needs_reservation to determine if a reservation 2682 * exists. 2683 */ 2684 enum vma_resv_mode { 2685 VMA_NEEDS_RESV, 2686 VMA_COMMIT_RESV, 2687 VMA_END_RESV, 2688 VMA_ADD_RESV, 2689 VMA_DEL_RESV, 2690 }; 2691 static long __vma_reservation_common(struct hstate *h, 2692 struct vm_area_struct *vma, unsigned long addr, 2693 enum vma_resv_mode mode) 2694 { 2695 struct resv_map *resv; 2696 pgoff_t idx; 2697 long ret; 2698 long dummy_out_regions_needed; 2699 2700 resv = vma_resv_map(vma); 2701 if (!resv) 2702 return 1; 2703 2704 idx = vma_hugecache_offset(h, vma, addr); 2705 switch (mode) { 2706 case VMA_NEEDS_RESV: 2707 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2708 /* We assume that vma_reservation_* routines always operate on 2709 * 1 page, and that adding to resv map a 1 page entry can only 2710 * ever require 1 region. 2711 */ 2712 VM_BUG_ON(dummy_out_regions_needed != 1); 2713 break; 2714 case VMA_COMMIT_RESV: 2715 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2716 /* region_add calls of range 1 should never fail. */ 2717 VM_BUG_ON(ret < 0); 2718 break; 2719 case VMA_END_RESV: 2720 region_abort(resv, idx, idx + 1, 1); 2721 ret = 0; 2722 break; 2723 case VMA_ADD_RESV: 2724 if (vma->vm_flags & VM_MAYSHARE) { 2725 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2726 /* region_add calls of range 1 should never fail. */ 2727 VM_BUG_ON(ret < 0); 2728 } else { 2729 region_abort(resv, idx, idx + 1, 1); 2730 ret = region_del(resv, idx, idx + 1); 2731 } 2732 break; 2733 case VMA_DEL_RESV: 2734 if (vma->vm_flags & VM_MAYSHARE) { 2735 region_abort(resv, idx, idx + 1, 1); 2736 ret = region_del(resv, idx, idx + 1); 2737 } else { 2738 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2739 /* region_add calls of range 1 should never fail. */ 2740 VM_BUG_ON(ret < 0); 2741 } 2742 break; 2743 default: 2744 BUG(); 2745 } 2746 2747 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2748 return ret; 2749 /* 2750 * We know private mapping must have HPAGE_RESV_OWNER set. 2751 * 2752 * In most cases, reserves always exist for private mappings. 2753 * However, a file associated with mapping could have been 2754 * hole punched or truncated after reserves were consumed. 2755 * As subsequent fault on such a range will not use reserves. 2756 * Subtle - The reserve map for private mappings has the 2757 * opposite meaning than that of shared mappings. If NO 2758 * entry is in the reserve map, it means a reservation exists. 2759 * If an entry exists in the reserve map, it means the 2760 * reservation has already been consumed. As a result, the 2761 * return value of this routine is the opposite of the 2762 * value returned from reserve map manipulation routines above. 2763 */ 2764 if (ret > 0) 2765 return 0; 2766 if (ret == 0) 2767 return 1; 2768 return ret; 2769 } 2770 2771 static long vma_needs_reservation(struct hstate *h, 2772 struct vm_area_struct *vma, unsigned long addr) 2773 { 2774 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2775 } 2776 2777 static long vma_commit_reservation(struct hstate *h, 2778 struct vm_area_struct *vma, unsigned long addr) 2779 { 2780 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2781 } 2782 2783 static void vma_end_reservation(struct hstate *h, 2784 struct vm_area_struct *vma, unsigned long addr) 2785 { 2786 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2787 } 2788 2789 static long vma_add_reservation(struct hstate *h, 2790 struct vm_area_struct *vma, unsigned long addr) 2791 { 2792 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2793 } 2794 2795 static long vma_del_reservation(struct hstate *h, 2796 struct vm_area_struct *vma, unsigned long addr) 2797 { 2798 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2799 } 2800 2801 /* 2802 * This routine is called to restore reservation information on error paths. 2803 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2804 * and the hugetlb mutex should remain held when calling this routine. 2805 * 2806 * It handles two specific cases: 2807 * 1) A reservation was in place and the folio consumed the reservation. 2808 * hugetlb_restore_reserve is set in the folio. 2809 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2810 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2811 * 2812 * In case 1, free_huge_page later in the error path will increment the 2813 * global reserve count. But, free_huge_page does not have enough context 2814 * to adjust the reservation map. This case deals primarily with private 2815 * mappings. Adjust the reserve map here to be consistent with global 2816 * reserve count adjustments to be made by free_huge_page. Make sure the 2817 * reserve map indicates there is a reservation present. 2818 * 2819 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2820 */ 2821 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2822 unsigned long address, struct folio *folio) 2823 { 2824 long rc = vma_needs_reservation(h, vma, address); 2825 2826 if (folio_test_hugetlb_restore_reserve(folio)) { 2827 if (unlikely(rc < 0)) 2828 /* 2829 * Rare out of memory condition in reserve map 2830 * manipulation. Clear hugetlb_restore_reserve so 2831 * that global reserve count will not be incremented 2832 * by free_huge_page. This will make it appear 2833 * as though the reservation for this folio was 2834 * consumed. This may prevent the task from 2835 * faulting in the folio at a later time. This 2836 * is better than inconsistent global huge page 2837 * accounting of reserve counts. 2838 */ 2839 folio_clear_hugetlb_restore_reserve(folio); 2840 else if (rc) 2841 (void)vma_add_reservation(h, vma, address); 2842 else 2843 vma_end_reservation(h, vma, address); 2844 } else { 2845 if (!rc) { 2846 /* 2847 * This indicates there is an entry in the reserve map 2848 * not added by alloc_hugetlb_folio. We know it was added 2849 * before the alloc_hugetlb_folio call, otherwise 2850 * hugetlb_restore_reserve would be set on the folio. 2851 * Remove the entry so that a subsequent allocation 2852 * does not consume a reservation. 2853 */ 2854 rc = vma_del_reservation(h, vma, address); 2855 if (rc < 0) 2856 /* 2857 * VERY rare out of memory condition. Since 2858 * we can not delete the entry, set 2859 * hugetlb_restore_reserve so that the reserve 2860 * count will be incremented when the folio 2861 * is freed. This reserve will be consumed 2862 * on a subsequent allocation. 2863 */ 2864 folio_set_hugetlb_restore_reserve(folio); 2865 } else if (rc < 0) { 2866 /* 2867 * Rare out of memory condition from 2868 * vma_needs_reservation call. Memory allocation is 2869 * only attempted if a new entry is needed. Therefore, 2870 * this implies there is not an entry in the 2871 * reserve map. 2872 * 2873 * For shared mappings, no entry in the map indicates 2874 * no reservation. We are done. 2875 */ 2876 if (!(vma->vm_flags & VM_MAYSHARE)) 2877 /* 2878 * For private mappings, no entry indicates 2879 * a reservation is present. Since we can 2880 * not add an entry, set hugetlb_restore_reserve 2881 * on the folio so reserve count will be 2882 * incremented when freed. This reserve will 2883 * be consumed on a subsequent allocation. 2884 */ 2885 folio_set_hugetlb_restore_reserve(folio); 2886 } else 2887 /* 2888 * No reservation present, do nothing 2889 */ 2890 vma_end_reservation(h, vma, address); 2891 } 2892 } 2893 2894 /* 2895 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2896 * the old one 2897 * @h: struct hstate old page belongs to 2898 * @old_folio: Old folio to dissolve 2899 * @list: List to isolate the page in case we need to 2900 * Returns 0 on success, otherwise negated error. 2901 */ 2902 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2903 struct folio *old_folio, struct list_head *list) 2904 { 2905 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2906 int nid = folio_nid(old_folio); 2907 struct folio *new_folio; 2908 int ret = 0; 2909 2910 /* 2911 * Before dissolving the folio, we need to allocate a new one for the 2912 * pool to remain stable. Here, we allocate the folio and 'prep' it 2913 * by doing everything but actually updating counters and adding to 2914 * the pool. This simplifies and let us do most of the processing 2915 * under the lock. 2916 */ 2917 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2918 if (!new_folio) 2919 return -ENOMEM; 2920 __prep_new_hugetlb_folio(h, new_folio); 2921 2922 retry: 2923 spin_lock_irq(&hugetlb_lock); 2924 if (!folio_test_hugetlb(old_folio)) { 2925 /* 2926 * Freed from under us. Drop new_folio too. 2927 */ 2928 goto free_new; 2929 } else if (folio_ref_count(old_folio)) { 2930 bool isolated; 2931 2932 /* 2933 * Someone has grabbed the folio, try to isolate it here. 2934 * Fail with -EBUSY if not possible. 2935 */ 2936 spin_unlock_irq(&hugetlb_lock); 2937 isolated = isolate_hugetlb(old_folio, list); 2938 ret = isolated ? 0 : -EBUSY; 2939 spin_lock_irq(&hugetlb_lock); 2940 goto free_new; 2941 } else if (!folio_test_hugetlb_freed(old_folio)) { 2942 /* 2943 * Folio's refcount is 0 but it has not been enqueued in the 2944 * freelist yet. Race window is small, so we can succeed here if 2945 * we retry. 2946 */ 2947 spin_unlock_irq(&hugetlb_lock); 2948 cond_resched(); 2949 goto retry; 2950 } else { 2951 /* 2952 * Ok, old_folio is still a genuine free hugepage. Remove it from 2953 * the freelist and decrease the counters. These will be 2954 * incremented again when calling __prep_account_new_huge_page() 2955 * and enqueue_hugetlb_folio() for new_folio. The counters will 2956 * remain stable since this happens under the lock. 2957 */ 2958 remove_hugetlb_folio(h, old_folio, false); 2959 2960 /* 2961 * Ref count on new_folio is already zero as it was dropped 2962 * earlier. It can be directly added to the pool free list. 2963 */ 2964 __prep_account_new_huge_page(h, nid); 2965 enqueue_hugetlb_folio(h, new_folio); 2966 2967 /* 2968 * Folio has been replaced, we can safely free the old one. 2969 */ 2970 spin_unlock_irq(&hugetlb_lock); 2971 update_and_free_hugetlb_folio(h, old_folio, false); 2972 } 2973 2974 return ret; 2975 2976 free_new: 2977 spin_unlock_irq(&hugetlb_lock); 2978 /* Folio has a zero ref count, but needs a ref to be freed */ 2979 folio_ref_unfreeze(new_folio, 1); 2980 update_and_free_hugetlb_folio(h, new_folio, false); 2981 2982 return ret; 2983 } 2984 2985 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2986 { 2987 struct hstate *h; 2988 struct folio *folio = page_folio(page); 2989 int ret = -EBUSY; 2990 2991 /* 2992 * The page might have been dissolved from under our feet, so make sure 2993 * to carefully check the state under the lock. 2994 * Return success when racing as if we dissolved the page ourselves. 2995 */ 2996 spin_lock_irq(&hugetlb_lock); 2997 if (folio_test_hugetlb(folio)) { 2998 h = folio_hstate(folio); 2999 } else { 3000 spin_unlock_irq(&hugetlb_lock); 3001 return 0; 3002 } 3003 spin_unlock_irq(&hugetlb_lock); 3004 3005 /* 3006 * Fence off gigantic pages as there is a cyclic dependency between 3007 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3008 * of bailing out right away without further retrying. 3009 */ 3010 if (hstate_is_gigantic(h)) 3011 return -ENOMEM; 3012 3013 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3014 ret = 0; 3015 else if (!folio_ref_count(folio)) 3016 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3017 3018 return ret; 3019 } 3020 3021 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3022 unsigned long addr, int avoid_reserve) 3023 { 3024 struct hugepage_subpool *spool = subpool_vma(vma); 3025 struct hstate *h = hstate_vma(vma); 3026 struct folio *folio; 3027 long map_chg, map_commit; 3028 long gbl_chg; 3029 int ret, idx; 3030 struct hugetlb_cgroup *h_cg = NULL; 3031 bool deferred_reserve; 3032 3033 idx = hstate_index(h); 3034 /* 3035 * Examine the region/reserve map to determine if the process 3036 * has a reservation for the page to be allocated. A return 3037 * code of zero indicates a reservation exists (no change). 3038 */ 3039 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3040 if (map_chg < 0) 3041 return ERR_PTR(-ENOMEM); 3042 3043 /* 3044 * Processes that did not create the mapping will have no 3045 * reserves as indicated by the region/reserve map. Check 3046 * that the allocation will not exceed the subpool limit. 3047 * Allocations for MAP_NORESERVE mappings also need to be 3048 * checked against any subpool limit. 3049 */ 3050 if (map_chg || avoid_reserve) { 3051 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3052 if (gbl_chg < 0) { 3053 vma_end_reservation(h, vma, addr); 3054 return ERR_PTR(-ENOSPC); 3055 } 3056 3057 /* 3058 * Even though there was no reservation in the region/reserve 3059 * map, there could be reservations associated with the 3060 * subpool that can be used. This would be indicated if the 3061 * return value of hugepage_subpool_get_pages() is zero. 3062 * However, if avoid_reserve is specified we still avoid even 3063 * the subpool reservations. 3064 */ 3065 if (avoid_reserve) 3066 gbl_chg = 1; 3067 } 3068 3069 /* If this allocation is not consuming a reservation, charge it now. 3070 */ 3071 deferred_reserve = map_chg || avoid_reserve; 3072 if (deferred_reserve) { 3073 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3074 idx, pages_per_huge_page(h), &h_cg); 3075 if (ret) 3076 goto out_subpool_put; 3077 } 3078 3079 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3080 if (ret) 3081 goto out_uncharge_cgroup_reservation; 3082 3083 spin_lock_irq(&hugetlb_lock); 3084 /* 3085 * glb_chg is passed to indicate whether or not a page must be taken 3086 * from the global free pool (global change). gbl_chg == 0 indicates 3087 * a reservation exists for the allocation. 3088 */ 3089 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3090 if (!folio) { 3091 spin_unlock_irq(&hugetlb_lock); 3092 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3093 if (!folio) 3094 goto out_uncharge_cgroup; 3095 spin_lock_irq(&hugetlb_lock); 3096 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3097 folio_set_hugetlb_restore_reserve(folio); 3098 h->resv_huge_pages--; 3099 } 3100 list_add(&folio->lru, &h->hugepage_activelist); 3101 folio_ref_unfreeze(folio, 1); 3102 /* Fall through */ 3103 } 3104 3105 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3106 /* If allocation is not consuming a reservation, also store the 3107 * hugetlb_cgroup pointer on the page. 3108 */ 3109 if (deferred_reserve) { 3110 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3111 h_cg, folio); 3112 } 3113 3114 spin_unlock_irq(&hugetlb_lock); 3115 3116 hugetlb_set_folio_subpool(folio, spool); 3117 3118 map_commit = vma_commit_reservation(h, vma, addr); 3119 if (unlikely(map_chg > map_commit)) { 3120 /* 3121 * The page was added to the reservation map between 3122 * vma_needs_reservation and vma_commit_reservation. 3123 * This indicates a race with hugetlb_reserve_pages. 3124 * Adjust for the subpool count incremented above AND 3125 * in hugetlb_reserve_pages for the same page. Also, 3126 * the reservation count added in hugetlb_reserve_pages 3127 * no longer applies. 3128 */ 3129 long rsv_adjust; 3130 3131 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3132 hugetlb_acct_memory(h, -rsv_adjust); 3133 if (deferred_reserve) 3134 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3135 pages_per_huge_page(h), folio); 3136 } 3137 return folio; 3138 3139 out_uncharge_cgroup: 3140 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3141 out_uncharge_cgroup_reservation: 3142 if (deferred_reserve) 3143 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3144 h_cg); 3145 out_subpool_put: 3146 if (map_chg || avoid_reserve) 3147 hugepage_subpool_put_pages(spool, 1); 3148 vma_end_reservation(h, vma, addr); 3149 return ERR_PTR(-ENOSPC); 3150 } 3151 3152 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3153 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3154 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3155 { 3156 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3157 int nr_nodes, node; 3158 3159 /* do node specific alloc */ 3160 if (nid != NUMA_NO_NODE) { 3161 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3162 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3163 if (!m) 3164 return 0; 3165 goto found; 3166 } 3167 /* allocate from next node when distributing huge pages */ 3168 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3169 m = memblock_alloc_try_nid_raw( 3170 huge_page_size(h), huge_page_size(h), 3171 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3172 /* 3173 * Use the beginning of the huge page to store the 3174 * huge_bootmem_page struct (until gather_bootmem 3175 * puts them into the mem_map). 3176 */ 3177 if (!m) 3178 return 0; 3179 goto found; 3180 } 3181 3182 found: 3183 /* Put them into a private list first because mem_map is not up yet */ 3184 INIT_LIST_HEAD(&m->list); 3185 list_add(&m->list, &huge_boot_pages); 3186 m->hstate = h; 3187 return 1; 3188 } 3189 3190 /* 3191 * Put bootmem huge pages into the standard lists after mem_map is up. 3192 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3193 */ 3194 static void __init gather_bootmem_prealloc(void) 3195 { 3196 struct huge_bootmem_page *m; 3197 3198 list_for_each_entry(m, &huge_boot_pages, list) { 3199 struct page *page = virt_to_page(m); 3200 struct folio *folio = page_folio(page); 3201 struct hstate *h = m->hstate; 3202 3203 VM_BUG_ON(!hstate_is_gigantic(h)); 3204 WARN_ON(folio_ref_count(folio) != 1); 3205 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3206 WARN_ON(folio_test_reserved(folio)); 3207 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3208 free_huge_page(page); /* add to the hugepage allocator */ 3209 } else { 3210 /* VERY unlikely inflated ref count on a tail page */ 3211 free_gigantic_folio(folio, huge_page_order(h)); 3212 } 3213 3214 /* 3215 * We need to restore the 'stolen' pages to totalram_pages 3216 * in order to fix confusing memory reports from free(1) and 3217 * other side-effects, like CommitLimit going negative. 3218 */ 3219 adjust_managed_page_count(page, pages_per_huge_page(h)); 3220 cond_resched(); 3221 } 3222 } 3223 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3224 { 3225 unsigned long i; 3226 char buf[32]; 3227 3228 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3229 if (hstate_is_gigantic(h)) { 3230 if (!alloc_bootmem_huge_page(h, nid)) 3231 break; 3232 } else { 3233 struct folio *folio; 3234 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3235 3236 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3237 &node_states[N_MEMORY], NULL); 3238 if (!folio) 3239 break; 3240 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3241 } 3242 cond_resched(); 3243 } 3244 if (i == h->max_huge_pages_node[nid]) 3245 return; 3246 3247 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3248 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3249 h->max_huge_pages_node[nid], buf, nid, i); 3250 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3251 h->max_huge_pages_node[nid] = i; 3252 } 3253 3254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3255 { 3256 unsigned long i; 3257 nodemask_t *node_alloc_noretry; 3258 bool node_specific_alloc = false; 3259 3260 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3261 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3262 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3263 return; 3264 } 3265 3266 /* do node specific alloc */ 3267 for_each_online_node(i) { 3268 if (h->max_huge_pages_node[i] > 0) { 3269 hugetlb_hstate_alloc_pages_onenode(h, i); 3270 node_specific_alloc = true; 3271 } 3272 } 3273 3274 if (node_specific_alloc) 3275 return; 3276 3277 /* below will do all node balanced alloc */ 3278 if (!hstate_is_gigantic(h)) { 3279 /* 3280 * Bit mask controlling how hard we retry per-node allocations. 3281 * Ignore errors as lower level routines can deal with 3282 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3283 * time, we are likely in bigger trouble. 3284 */ 3285 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3286 GFP_KERNEL); 3287 } else { 3288 /* allocations done at boot time */ 3289 node_alloc_noretry = NULL; 3290 } 3291 3292 /* bit mask controlling how hard we retry per-node allocations */ 3293 if (node_alloc_noretry) 3294 nodes_clear(*node_alloc_noretry); 3295 3296 for (i = 0; i < h->max_huge_pages; ++i) { 3297 if (hstate_is_gigantic(h)) { 3298 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3299 break; 3300 } else if (!alloc_pool_huge_page(h, 3301 &node_states[N_MEMORY], 3302 node_alloc_noretry)) 3303 break; 3304 cond_resched(); 3305 } 3306 if (i < h->max_huge_pages) { 3307 char buf[32]; 3308 3309 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3310 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3311 h->max_huge_pages, buf, i); 3312 h->max_huge_pages = i; 3313 } 3314 kfree(node_alloc_noretry); 3315 } 3316 3317 static void __init hugetlb_init_hstates(void) 3318 { 3319 struct hstate *h, *h2; 3320 3321 for_each_hstate(h) { 3322 /* oversize hugepages were init'ed in early boot */ 3323 if (!hstate_is_gigantic(h)) 3324 hugetlb_hstate_alloc_pages(h); 3325 3326 /* 3327 * Set demote order for each hstate. Note that 3328 * h->demote_order is initially 0. 3329 * - We can not demote gigantic pages if runtime freeing 3330 * is not supported, so skip this. 3331 * - If CMA allocation is possible, we can not demote 3332 * HUGETLB_PAGE_ORDER or smaller size pages. 3333 */ 3334 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3335 continue; 3336 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3337 continue; 3338 for_each_hstate(h2) { 3339 if (h2 == h) 3340 continue; 3341 if (h2->order < h->order && 3342 h2->order > h->demote_order) 3343 h->demote_order = h2->order; 3344 } 3345 } 3346 } 3347 3348 static void __init report_hugepages(void) 3349 { 3350 struct hstate *h; 3351 3352 for_each_hstate(h) { 3353 char buf[32]; 3354 3355 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3356 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3357 buf, h->free_huge_pages); 3358 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3359 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3360 } 3361 } 3362 3363 #ifdef CONFIG_HIGHMEM 3364 static void try_to_free_low(struct hstate *h, unsigned long count, 3365 nodemask_t *nodes_allowed) 3366 { 3367 int i; 3368 LIST_HEAD(page_list); 3369 3370 lockdep_assert_held(&hugetlb_lock); 3371 if (hstate_is_gigantic(h)) 3372 return; 3373 3374 /* 3375 * Collect pages to be freed on a list, and free after dropping lock 3376 */ 3377 for_each_node_mask(i, *nodes_allowed) { 3378 struct page *page, *next; 3379 struct list_head *freel = &h->hugepage_freelists[i]; 3380 list_for_each_entry_safe(page, next, freel, lru) { 3381 if (count >= h->nr_huge_pages) 3382 goto out; 3383 if (PageHighMem(page)) 3384 continue; 3385 remove_hugetlb_folio(h, page_folio(page), false); 3386 list_add(&page->lru, &page_list); 3387 } 3388 } 3389 3390 out: 3391 spin_unlock_irq(&hugetlb_lock); 3392 update_and_free_pages_bulk(h, &page_list); 3393 spin_lock_irq(&hugetlb_lock); 3394 } 3395 #else 3396 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3397 nodemask_t *nodes_allowed) 3398 { 3399 } 3400 #endif 3401 3402 /* 3403 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3404 * balanced by operating on them in a round-robin fashion. 3405 * Returns 1 if an adjustment was made. 3406 */ 3407 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3408 int delta) 3409 { 3410 int nr_nodes, node; 3411 3412 lockdep_assert_held(&hugetlb_lock); 3413 VM_BUG_ON(delta != -1 && delta != 1); 3414 3415 if (delta < 0) { 3416 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3417 if (h->surplus_huge_pages_node[node]) 3418 goto found; 3419 } 3420 } else { 3421 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3422 if (h->surplus_huge_pages_node[node] < 3423 h->nr_huge_pages_node[node]) 3424 goto found; 3425 } 3426 } 3427 return 0; 3428 3429 found: 3430 h->surplus_huge_pages += delta; 3431 h->surplus_huge_pages_node[node] += delta; 3432 return 1; 3433 } 3434 3435 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3436 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3437 nodemask_t *nodes_allowed) 3438 { 3439 unsigned long min_count, ret; 3440 struct page *page; 3441 LIST_HEAD(page_list); 3442 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3443 3444 /* 3445 * Bit mask controlling how hard we retry per-node allocations. 3446 * If we can not allocate the bit mask, do not attempt to allocate 3447 * the requested huge pages. 3448 */ 3449 if (node_alloc_noretry) 3450 nodes_clear(*node_alloc_noretry); 3451 else 3452 return -ENOMEM; 3453 3454 /* 3455 * resize_lock mutex prevents concurrent adjustments to number of 3456 * pages in hstate via the proc/sysfs interfaces. 3457 */ 3458 mutex_lock(&h->resize_lock); 3459 flush_free_hpage_work(h); 3460 spin_lock_irq(&hugetlb_lock); 3461 3462 /* 3463 * Check for a node specific request. 3464 * Changing node specific huge page count may require a corresponding 3465 * change to the global count. In any case, the passed node mask 3466 * (nodes_allowed) will restrict alloc/free to the specified node. 3467 */ 3468 if (nid != NUMA_NO_NODE) { 3469 unsigned long old_count = count; 3470 3471 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3472 /* 3473 * User may have specified a large count value which caused the 3474 * above calculation to overflow. In this case, they wanted 3475 * to allocate as many huge pages as possible. Set count to 3476 * largest possible value to align with their intention. 3477 */ 3478 if (count < old_count) 3479 count = ULONG_MAX; 3480 } 3481 3482 /* 3483 * Gigantic pages runtime allocation depend on the capability for large 3484 * page range allocation. 3485 * If the system does not provide this feature, return an error when 3486 * the user tries to allocate gigantic pages but let the user free the 3487 * boottime allocated gigantic pages. 3488 */ 3489 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3490 if (count > persistent_huge_pages(h)) { 3491 spin_unlock_irq(&hugetlb_lock); 3492 mutex_unlock(&h->resize_lock); 3493 NODEMASK_FREE(node_alloc_noretry); 3494 return -EINVAL; 3495 } 3496 /* Fall through to decrease pool */ 3497 } 3498 3499 /* 3500 * Increase the pool size 3501 * First take pages out of surplus state. Then make up the 3502 * remaining difference by allocating fresh huge pages. 3503 * 3504 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3505 * to convert a surplus huge page to a normal huge page. That is 3506 * not critical, though, it just means the overall size of the 3507 * pool might be one hugepage larger than it needs to be, but 3508 * within all the constraints specified by the sysctls. 3509 */ 3510 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3511 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3512 break; 3513 } 3514 3515 while (count > persistent_huge_pages(h)) { 3516 /* 3517 * If this allocation races such that we no longer need the 3518 * page, free_huge_page will handle it by freeing the page 3519 * and reducing the surplus. 3520 */ 3521 spin_unlock_irq(&hugetlb_lock); 3522 3523 /* yield cpu to avoid soft lockup */ 3524 cond_resched(); 3525 3526 ret = alloc_pool_huge_page(h, nodes_allowed, 3527 node_alloc_noretry); 3528 spin_lock_irq(&hugetlb_lock); 3529 if (!ret) 3530 goto out; 3531 3532 /* Bail for signals. Probably ctrl-c from user */ 3533 if (signal_pending(current)) 3534 goto out; 3535 } 3536 3537 /* 3538 * Decrease the pool size 3539 * First return free pages to the buddy allocator (being careful 3540 * to keep enough around to satisfy reservations). Then place 3541 * pages into surplus state as needed so the pool will shrink 3542 * to the desired size as pages become free. 3543 * 3544 * By placing pages into the surplus state independent of the 3545 * overcommit value, we are allowing the surplus pool size to 3546 * exceed overcommit. There are few sane options here. Since 3547 * alloc_surplus_hugetlb_folio() is checking the global counter, 3548 * though, we'll note that we're not allowed to exceed surplus 3549 * and won't grow the pool anywhere else. Not until one of the 3550 * sysctls are changed, or the surplus pages go out of use. 3551 */ 3552 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3553 min_count = max(count, min_count); 3554 try_to_free_low(h, min_count, nodes_allowed); 3555 3556 /* 3557 * Collect pages to be removed on list without dropping lock 3558 */ 3559 while (min_count < persistent_huge_pages(h)) { 3560 page = remove_pool_huge_page(h, nodes_allowed, 0); 3561 if (!page) 3562 break; 3563 3564 list_add(&page->lru, &page_list); 3565 } 3566 /* free the pages after dropping lock */ 3567 spin_unlock_irq(&hugetlb_lock); 3568 update_and_free_pages_bulk(h, &page_list); 3569 flush_free_hpage_work(h); 3570 spin_lock_irq(&hugetlb_lock); 3571 3572 while (count < persistent_huge_pages(h)) { 3573 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3574 break; 3575 } 3576 out: 3577 h->max_huge_pages = persistent_huge_pages(h); 3578 spin_unlock_irq(&hugetlb_lock); 3579 mutex_unlock(&h->resize_lock); 3580 3581 NODEMASK_FREE(node_alloc_noretry); 3582 3583 return 0; 3584 } 3585 3586 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3587 { 3588 int i, nid = folio_nid(folio); 3589 struct hstate *target_hstate; 3590 struct page *subpage; 3591 struct folio *inner_folio; 3592 int rc = 0; 3593 3594 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3595 3596 remove_hugetlb_folio_for_demote(h, folio, false); 3597 spin_unlock_irq(&hugetlb_lock); 3598 3599 rc = hugetlb_vmemmap_restore(h, &folio->page); 3600 if (rc) { 3601 /* Allocation of vmemmmap failed, we can not demote folio */ 3602 spin_lock_irq(&hugetlb_lock); 3603 folio_ref_unfreeze(folio, 1); 3604 add_hugetlb_folio(h, folio, false); 3605 return rc; 3606 } 3607 3608 /* 3609 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3610 * sizes as it will not ref count folios. 3611 */ 3612 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3613 3614 /* 3615 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3616 * Without the mutex, pages added to target hstate could be marked 3617 * as surplus. 3618 * 3619 * Note that we already hold h->resize_lock. To prevent deadlock, 3620 * use the convention of always taking larger size hstate mutex first. 3621 */ 3622 mutex_lock(&target_hstate->resize_lock); 3623 for (i = 0; i < pages_per_huge_page(h); 3624 i += pages_per_huge_page(target_hstate)) { 3625 subpage = folio_page(folio, i); 3626 inner_folio = page_folio(subpage); 3627 if (hstate_is_gigantic(target_hstate)) 3628 prep_compound_gigantic_folio_for_demote(inner_folio, 3629 target_hstate->order); 3630 else 3631 prep_compound_page(subpage, target_hstate->order); 3632 folio_change_private(inner_folio, NULL); 3633 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3634 free_huge_page(subpage); 3635 } 3636 mutex_unlock(&target_hstate->resize_lock); 3637 3638 spin_lock_irq(&hugetlb_lock); 3639 3640 /* 3641 * Not absolutely necessary, but for consistency update max_huge_pages 3642 * based on pool changes for the demoted page. 3643 */ 3644 h->max_huge_pages--; 3645 target_hstate->max_huge_pages += 3646 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3647 3648 return rc; 3649 } 3650 3651 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3652 __must_hold(&hugetlb_lock) 3653 { 3654 int nr_nodes, node; 3655 struct folio *folio; 3656 3657 lockdep_assert_held(&hugetlb_lock); 3658 3659 /* We should never get here if no demote order */ 3660 if (!h->demote_order) { 3661 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3662 return -EINVAL; /* internal error */ 3663 } 3664 3665 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3666 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3667 if (folio_test_hwpoison(folio)) 3668 continue; 3669 return demote_free_hugetlb_folio(h, folio); 3670 } 3671 } 3672 3673 /* 3674 * Only way to get here is if all pages on free lists are poisoned. 3675 * Return -EBUSY so that caller will not retry. 3676 */ 3677 return -EBUSY; 3678 } 3679 3680 #define HSTATE_ATTR_RO(_name) \ 3681 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3682 3683 #define HSTATE_ATTR_WO(_name) \ 3684 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3685 3686 #define HSTATE_ATTR(_name) \ 3687 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3688 3689 static struct kobject *hugepages_kobj; 3690 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3691 3692 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3693 3694 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3695 { 3696 int i; 3697 3698 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3699 if (hstate_kobjs[i] == kobj) { 3700 if (nidp) 3701 *nidp = NUMA_NO_NODE; 3702 return &hstates[i]; 3703 } 3704 3705 return kobj_to_node_hstate(kobj, nidp); 3706 } 3707 3708 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3709 struct kobj_attribute *attr, char *buf) 3710 { 3711 struct hstate *h; 3712 unsigned long nr_huge_pages; 3713 int nid; 3714 3715 h = kobj_to_hstate(kobj, &nid); 3716 if (nid == NUMA_NO_NODE) 3717 nr_huge_pages = h->nr_huge_pages; 3718 else 3719 nr_huge_pages = h->nr_huge_pages_node[nid]; 3720 3721 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3722 } 3723 3724 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3725 struct hstate *h, int nid, 3726 unsigned long count, size_t len) 3727 { 3728 int err; 3729 nodemask_t nodes_allowed, *n_mask; 3730 3731 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3732 return -EINVAL; 3733 3734 if (nid == NUMA_NO_NODE) { 3735 /* 3736 * global hstate attribute 3737 */ 3738 if (!(obey_mempolicy && 3739 init_nodemask_of_mempolicy(&nodes_allowed))) 3740 n_mask = &node_states[N_MEMORY]; 3741 else 3742 n_mask = &nodes_allowed; 3743 } else { 3744 /* 3745 * Node specific request. count adjustment happens in 3746 * set_max_huge_pages() after acquiring hugetlb_lock. 3747 */ 3748 init_nodemask_of_node(&nodes_allowed, nid); 3749 n_mask = &nodes_allowed; 3750 } 3751 3752 err = set_max_huge_pages(h, count, nid, n_mask); 3753 3754 return err ? err : len; 3755 } 3756 3757 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3758 struct kobject *kobj, const char *buf, 3759 size_t len) 3760 { 3761 struct hstate *h; 3762 unsigned long count; 3763 int nid; 3764 int err; 3765 3766 err = kstrtoul(buf, 10, &count); 3767 if (err) 3768 return err; 3769 3770 h = kobj_to_hstate(kobj, &nid); 3771 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3772 } 3773 3774 static ssize_t nr_hugepages_show(struct kobject *kobj, 3775 struct kobj_attribute *attr, char *buf) 3776 { 3777 return nr_hugepages_show_common(kobj, attr, buf); 3778 } 3779 3780 static ssize_t nr_hugepages_store(struct kobject *kobj, 3781 struct kobj_attribute *attr, const char *buf, size_t len) 3782 { 3783 return nr_hugepages_store_common(false, kobj, buf, len); 3784 } 3785 HSTATE_ATTR(nr_hugepages); 3786 3787 #ifdef CONFIG_NUMA 3788 3789 /* 3790 * hstate attribute for optionally mempolicy-based constraint on persistent 3791 * huge page alloc/free. 3792 */ 3793 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3794 struct kobj_attribute *attr, 3795 char *buf) 3796 { 3797 return nr_hugepages_show_common(kobj, attr, buf); 3798 } 3799 3800 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3801 struct kobj_attribute *attr, const char *buf, size_t len) 3802 { 3803 return nr_hugepages_store_common(true, kobj, buf, len); 3804 } 3805 HSTATE_ATTR(nr_hugepages_mempolicy); 3806 #endif 3807 3808 3809 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3810 struct kobj_attribute *attr, char *buf) 3811 { 3812 struct hstate *h = kobj_to_hstate(kobj, NULL); 3813 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3814 } 3815 3816 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3817 struct kobj_attribute *attr, const char *buf, size_t count) 3818 { 3819 int err; 3820 unsigned long input; 3821 struct hstate *h = kobj_to_hstate(kobj, NULL); 3822 3823 if (hstate_is_gigantic(h)) 3824 return -EINVAL; 3825 3826 err = kstrtoul(buf, 10, &input); 3827 if (err) 3828 return err; 3829 3830 spin_lock_irq(&hugetlb_lock); 3831 h->nr_overcommit_huge_pages = input; 3832 spin_unlock_irq(&hugetlb_lock); 3833 3834 return count; 3835 } 3836 HSTATE_ATTR(nr_overcommit_hugepages); 3837 3838 static ssize_t free_hugepages_show(struct kobject *kobj, 3839 struct kobj_attribute *attr, char *buf) 3840 { 3841 struct hstate *h; 3842 unsigned long free_huge_pages; 3843 int nid; 3844 3845 h = kobj_to_hstate(kobj, &nid); 3846 if (nid == NUMA_NO_NODE) 3847 free_huge_pages = h->free_huge_pages; 3848 else 3849 free_huge_pages = h->free_huge_pages_node[nid]; 3850 3851 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3852 } 3853 HSTATE_ATTR_RO(free_hugepages); 3854 3855 static ssize_t resv_hugepages_show(struct kobject *kobj, 3856 struct kobj_attribute *attr, char *buf) 3857 { 3858 struct hstate *h = kobj_to_hstate(kobj, NULL); 3859 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3860 } 3861 HSTATE_ATTR_RO(resv_hugepages); 3862 3863 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3864 struct kobj_attribute *attr, char *buf) 3865 { 3866 struct hstate *h; 3867 unsigned long surplus_huge_pages; 3868 int nid; 3869 3870 h = kobj_to_hstate(kobj, &nid); 3871 if (nid == NUMA_NO_NODE) 3872 surplus_huge_pages = h->surplus_huge_pages; 3873 else 3874 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3875 3876 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3877 } 3878 HSTATE_ATTR_RO(surplus_hugepages); 3879 3880 static ssize_t demote_store(struct kobject *kobj, 3881 struct kobj_attribute *attr, const char *buf, size_t len) 3882 { 3883 unsigned long nr_demote; 3884 unsigned long nr_available; 3885 nodemask_t nodes_allowed, *n_mask; 3886 struct hstate *h; 3887 int err; 3888 int nid; 3889 3890 err = kstrtoul(buf, 10, &nr_demote); 3891 if (err) 3892 return err; 3893 h = kobj_to_hstate(kobj, &nid); 3894 3895 if (nid != NUMA_NO_NODE) { 3896 init_nodemask_of_node(&nodes_allowed, nid); 3897 n_mask = &nodes_allowed; 3898 } else { 3899 n_mask = &node_states[N_MEMORY]; 3900 } 3901 3902 /* Synchronize with other sysfs operations modifying huge pages */ 3903 mutex_lock(&h->resize_lock); 3904 spin_lock_irq(&hugetlb_lock); 3905 3906 while (nr_demote) { 3907 /* 3908 * Check for available pages to demote each time thorough the 3909 * loop as demote_pool_huge_page will drop hugetlb_lock. 3910 */ 3911 if (nid != NUMA_NO_NODE) 3912 nr_available = h->free_huge_pages_node[nid]; 3913 else 3914 nr_available = h->free_huge_pages; 3915 nr_available -= h->resv_huge_pages; 3916 if (!nr_available) 3917 break; 3918 3919 err = demote_pool_huge_page(h, n_mask); 3920 if (err) 3921 break; 3922 3923 nr_demote--; 3924 } 3925 3926 spin_unlock_irq(&hugetlb_lock); 3927 mutex_unlock(&h->resize_lock); 3928 3929 if (err) 3930 return err; 3931 return len; 3932 } 3933 HSTATE_ATTR_WO(demote); 3934 3935 static ssize_t demote_size_show(struct kobject *kobj, 3936 struct kobj_attribute *attr, char *buf) 3937 { 3938 struct hstate *h = kobj_to_hstate(kobj, NULL); 3939 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3940 3941 return sysfs_emit(buf, "%lukB\n", demote_size); 3942 } 3943 3944 static ssize_t demote_size_store(struct kobject *kobj, 3945 struct kobj_attribute *attr, 3946 const char *buf, size_t count) 3947 { 3948 struct hstate *h, *demote_hstate; 3949 unsigned long demote_size; 3950 unsigned int demote_order; 3951 3952 demote_size = (unsigned long)memparse(buf, NULL); 3953 3954 demote_hstate = size_to_hstate(demote_size); 3955 if (!demote_hstate) 3956 return -EINVAL; 3957 demote_order = demote_hstate->order; 3958 if (demote_order < HUGETLB_PAGE_ORDER) 3959 return -EINVAL; 3960 3961 /* demote order must be smaller than hstate order */ 3962 h = kobj_to_hstate(kobj, NULL); 3963 if (demote_order >= h->order) 3964 return -EINVAL; 3965 3966 /* resize_lock synchronizes access to demote size and writes */ 3967 mutex_lock(&h->resize_lock); 3968 h->demote_order = demote_order; 3969 mutex_unlock(&h->resize_lock); 3970 3971 return count; 3972 } 3973 HSTATE_ATTR(demote_size); 3974 3975 static struct attribute *hstate_attrs[] = { 3976 &nr_hugepages_attr.attr, 3977 &nr_overcommit_hugepages_attr.attr, 3978 &free_hugepages_attr.attr, 3979 &resv_hugepages_attr.attr, 3980 &surplus_hugepages_attr.attr, 3981 #ifdef CONFIG_NUMA 3982 &nr_hugepages_mempolicy_attr.attr, 3983 #endif 3984 NULL, 3985 }; 3986 3987 static const struct attribute_group hstate_attr_group = { 3988 .attrs = hstate_attrs, 3989 }; 3990 3991 static struct attribute *hstate_demote_attrs[] = { 3992 &demote_size_attr.attr, 3993 &demote_attr.attr, 3994 NULL, 3995 }; 3996 3997 static const struct attribute_group hstate_demote_attr_group = { 3998 .attrs = hstate_demote_attrs, 3999 }; 4000 4001 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4002 struct kobject **hstate_kobjs, 4003 const struct attribute_group *hstate_attr_group) 4004 { 4005 int retval; 4006 int hi = hstate_index(h); 4007 4008 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4009 if (!hstate_kobjs[hi]) 4010 return -ENOMEM; 4011 4012 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4013 if (retval) { 4014 kobject_put(hstate_kobjs[hi]); 4015 hstate_kobjs[hi] = NULL; 4016 return retval; 4017 } 4018 4019 if (h->demote_order) { 4020 retval = sysfs_create_group(hstate_kobjs[hi], 4021 &hstate_demote_attr_group); 4022 if (retval) { 4023 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4024 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4025 kobject_put(hstate_kobjs[hi]); 4026 hstate_kobjs[hi] = NULL; 4027 return retval; 4028 } 4029 } 4030 4031 return 0; 4032 } 4033 4034 #ifdef CONFIG_NUMA 4035 static bool hugetlb_sysfs_initialized __ro_after_init; 4036 4037 /* 4038 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4039 * with node devices in node_devices[] using a parallel array. The array 4040 * index of a node device or _hstate == node id. 4041 * This is here to avoid any static dependency of the node device driver, in 4042 * the base kernel, on the hugetlb module. 4043 */ 4044 struct node_hstate { 4045 struct kobject *hugepages_kobj; 4046 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4047 }; 4048 static struct node_hstate node_hstates[MAX_NUMNODES]; 4049 4050 /* 4051 * A subset of global hstate attributes for node devices 4052 */ 4053 static struct attribute *per_node_hstate_attrs[] = { 4054 &nr_hugepages_attr.attr, 4055 &free_hugepages_attr.attr, 4056 &surplus_hugepages_attr.attr, 4057 NULL, 4058 }; 4059 4060 static const struct attribute_group per_node_hstate_attr_group = { 4061 .attrs = per_node_hstate_attrs, 4062 }; 4063 4064 /* 4065 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4066 * Returns node id via non-NULL nidp. 4067 */ 4068 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4069 { 4070 int nid; 4071 4072 for (nid = 0; nid < nr_node_ids; nid++) { 4073 struct node_hstate *nhs = &node_hstates[nid]; 4074 int i; 4075 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4076 if (nhs->hstate_kobjs[i] == kobj) { 4077 if (nidp) 4078 *nidp = nid; 4079 return &hstates[i]; 4080 } 4081 } 4082 4083 BUG(); 4084 return NULL; 4085 } 4086 4087 /* 4088 * Unregister hstate attributes from a single node device. 4089 * No-op if no hstate attributes attached. 4090 */ 4091 void hugetlb_unregister_node(struct node *node) 4092 { 4093 struct hstate *h; 4094 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4095 4096 if (!nhs->hugepages_kobj) 4097 return; /* no hstate attributes */ 4098 4099 for_each_hstate(h) { 4100 int idx = hstate_index(h); 4101 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4102 4103 if (!hstate_kobj) 4104 continue; 4105 if (h->demote_order) 4106 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4107 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4108 kobject_put(hstate_kobj); 4109 nhs->hstate_kobjs[idx] = NULL; 4110 } 4111 4112 kobject_put(nhs->hugepages_kobj); 4113 nhs->hugepages_kobj = NULL; 4114 } 4115 4116 4117 /* 4118 * Register hstate attributes for a single node device. 4119 * No-op if attributes already registered. 4120 */ 4121 void hugetlb_register_node(struct node *node) 4122 { 4123 struct hstate *h; 4124 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4125 int err; 4126 4127 if (!hugetlb_sysfs_initialized) 4128 return; 4129 4130 if (nhs->hugepages_kobj) 4131 return; /* already allocated */ 4132 4133 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4134 &node->dev.kobj); 4135 if (!nhs->hugepages_kobj) 4136 return; 4137 4138 for_each_hstate(h) { 4139 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4140 nhs->hstate_kobjs, 4141 &per_node_hstate_attr_group); 4142 if (err) { 4143 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4144 h->name, node->dev.id); 4145 hugetlb_unregister_node(node); 4146 break; 4147 } 4148 } 4149 } 4150 4151 /* 4152 * hugetlb init time: register hstate attributes for all registered node 4153 * devices of nodes that have memory. All on-line nodes should have 4154 * registered their associated device by this time. 4155 */ 4156 static void __init hugetlb_register_all_nodes(void) 4157 { 4158 int nid; 4159 4160 for_each_online_node(nid) 4161 hugetlb_register_node(node_devices[nid]); 4162 } 4163 #else /* !CONFIG_NUMA */ 4164 4165 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4166 { 4167 BUG(); 4168 if (nidp) 4169 *nidp = -1; 4170 return NULL; 4171 } 4172 4173 static void hugetlb_register_all_nodes(void) { } 4174 4175 #endif 4176 4177 #ifdef CONFIG_CMA 4178 static void __init hugetlb_cma_check(void); 4179 #else 4180 static inline __init void hugetlb_cma_check(void) 4181 { 4182 } 4183 #endif 4184 4185 static void __init hugetlb_sysfs_init(void) 4186 { 4187 struct hstate *h; 4188 int err; 4189 4190 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4191 if (!hugepages_kobj) 4192 return; 4193 4194 for_each_hstate(h) { 4195 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4196 hstate_kobjs, &hstate_attr_group); 4197 if (err) 4198 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4199 } 4200 4201 #ifdef CONFIG_NUMA 4202 hugetlb_sysfs_initialized = true; 4203 #endif 4204 hugetlb_register_all_nodes(); 4205 } 4206 4207 #ifdef CONFIG_SYSCTL 4208 static void hugetlb_sysctl_init(void); 4209 #else 4210 static inline void hugetlb_sysctl_init(void) { } 4211 #endif 4212 4213 static int __init hugetlb_init(void) 4214 { 4215 int i; 4216 4217 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4218 __NR_HPAGEFLAGS); 4219 4220 if (!hugepages_supported()) { 4221 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4222 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4223 return 0; 4224 } 4225 4226 /* 4227 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4228 * architectures depend on setup being done here. 4229 */ 4230 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4231 if (!parsed_default_hugepagesz) { 4232 /* 4233 * If we did not parse a default huge page size, set 4234 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4235 * number of huge pages for this default size was implicitly 4236 * specified, set that here as well. 4237 * Note that the implicit setting will overwrite an explicit 4238 * setting. A warning will be printed in this case. 4239 */ 4240 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4241 if (default_hstate_max_huge_pages) { 4242 if (default_hstate.max_huge_pages) { 4243 char buf[32]; 4244 4245 string_get_size(huge_page_size(&default_hstate), 4246 1, STRING_UNITS_2, buf, 32); 4247 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4248 default_hstate.max_huge_pages, buf); 4249 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4250 default_hstate_max_huge_pages); 4251 } 4252 default_hstate.max_huge_pages = 4253 default_hstate_max_huge_pages; 4254 4255 for_each_online_node(i) 4256 default_hstate.max_huge_pages_node[i] = 4257 default_hugepages_in_node[i]; 4258 } 4259 } 4260 4261 hugetlb_cma_check(); 4262 hugetlb_init_hstates(); 4263 gather_bootmem_prealloc(); 4264 report_hugepages(); 4265 4266 hugetlb_sysfs_init(); 4267 hugetlb_cgroup_file_init(); 4268 hugetlb_sysctl_init(); 4269 4270 #ifdef CONFIG_SMP 4271 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4272 #else 4273 num_fault_mutexes = 1; 4274 #endif 4275 hugetlb_fault_mutex_table = 4276 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4277 GFP_KERNEL); 4278 BUG_ON(!hugetlb_fault_mutex_table); 4279 4280 for (i = 0; i < num_fault_mutexes; i++) 4281 mutex_init(&hugetlb_fault_mutex_table[i]); 4282 return 0; 4283 } 4284 subsys_initcall(hugetlb_init); 4285 4286 /* Overwritten by architectures with more huge page sizes */ 4287 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4288 { 4289 return size == HPAGE_SIZE; 4290 } 4291 4292 void __init hugetlb_add_hstate(unsigned int order) 4293 { 4294 struct hstate *h; 4295 unsigned long i; 4296 4297 if (size_to_hstate(PAGE_SIZE << order)) { 4298 return; 4299 } 4300 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4301 BUG_ON(order == 0); 4302 h = &hstates[hugetlb_max_hstate++]; 4303 mutex_init(&h->resize_lock); 4304 h->order = order; 4305 h->mask = ~(huge_page_size(h) - 1); 4306 for (i = 0; i < MAX_NUMNODES; ++i) 4307 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4308 INIT_LIST_HEAD(&h->hugepage_activelist); 4309 h->next_nid_to_alloc = first_memory_node; 4310 h->next_nid_to_free = first_memory_node; 4311 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4312 huge_page_size(h)/SZ_1K); 4313 4314 parsed_hstate = h; 4315 } 4316 4317 bool __init __weak hugetlb_node_alloc_supported(void) 4318 { 4319 return true; 4320 } 4321 4322 static void __init hugepages_clear_pages_in_node(void) 4323 { 4324 if (!hugetlb_max_hstate) { 4325 default_hstate_max_huge_pages = 0; 4326 memset(default_hugepages_in_node, 0, 4327 sizeof(default_hugepages_in_node)); 4328 } else { 4329 parsed_hstate->max_huge_pages = 0; 4330 memset(parsed_hstate->max_huge_pages_node, 0, 4331 sizeof(parsed_hstate->max_huge_pages_node)); 4332 } 4333 } 4334 4335 /* 4336 * hugepages command line processing 4337 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4338 * specification. If not, ignore the hugepages value. hugepages can also 4339 * be the first huge page command line option in which case it implicitly 4340 * specifies the number of huge pages for the default size. 4341 */ 4342 static int __init hugepages_setup(char *s) 4343 { 4344 unsigned long *mhp; 4345 static unsigned long *last_mhp; 4346 int node = NUMA_NO_NODE; 4347 int count; 4348 unsigned long tmp; 4349 char *p = s; 4350 4351 if (!parsed_valid_hugepagesz) { 4352 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4353 parsed_valid_hugepagesz = true; 4354 return 1; 4355 } 4356 4357 /* 4358 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4359 * yet, so this hugepages= parameter goes to the "default hstate". 4360 * Otherwise, it goes with the previously parsed hugepagesz or 4361 * default_hugepagesz. 4362 */ 4363 else if (!hugetlb_max_hstate) 4364 mhp = &default_hstate_max_huge_pages; 4365 else 4366 mhp = &parsed_hstate->max_huge_pages; 4367 4368 if (mhp == last_mhp) { 4369 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4370 return 1; 4371 } 4372 4373 while (*p) { 4374 count = 0; 4375 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4376 goto invalid; 4377 /* Parameter is node format */ 4378 if (p[count] == ':') { 4379 if (!hugetlb_node_alloc_supported()) { 4380 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4381 return 1; 4382 } 4383 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4384 goto invalid; 4385 node = array_index_nospec(tmp, MAX_NUMNODES); 4386 p += count + 1; 4387 /* Parse hugepages */ 4388 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4389 goto invalid; 4390 if (!hugetlb_max_hstate) 4391 default_hugepages_in_node[node] = tmp; 4392 else 4393 parsed_hstate->max_huge_pages_node[node] = tmp; 4394 *mhp += tmp; 4395 /* Go to parse next node*/ 4396 if (p[count] == ',') 4397 p += count + 1; 4398 else 4399 break; 4400 } else { 4401 if (p != s) 4402 goto invalid; 4403 *mhp = tmp; 4404 break; 4405 } 4406 } 4407 4408 /* 4409 * Global state is always initialized later in hugetlb_init. 4410 * But we need to allocate gigantic hstates here early to still 4411 * use the bootmem allocator. 4412 */ 4413 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4414 hugetlb_hstate_alloc_pages(parsed_hstate); 4415 4416 last_mhp = mhp; 4417 4418 return 1; 4419 4420 invalid: 4421 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4422 hugepages_clear_pages_in_node(); 4423 return 1; 4424 } 4425 __setup("hugepages=", hugepages_setup); 4426 4427 /* 4428 * hugepagesz command line processing 4429 * A specific huge page size can only be specified once with hugepagesz. 4430 * hugepagesz is followed by hugepages on the command line. The global 4431 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4432 * hugepagesz argument was valid. 4433 */ 4434 static int __init hugepagesz_setup(char *s) 4435 { 4436 unsigned long size; 4437 struct hstate *h; 4438 4439 parsed_valid_hugepagesz = false; 4440 size = (unsigned long)memparse(s, NULL); 4441 4442 if (!arch_hugetlb_valid_size(size)) { 4443 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4444 return 1; 4445 } 4446 4447 h = size_to_hstate(size); 4448 if (h) { 4449 /* 4450 * hstate for this size already exists. This is normally 4451 * an error, but is allowed if the existing hstate is the 4452 * default hstate. More specifically, it is only allowed if 4453 * the number of huge pages for the default hstate was not 4454 * previously specified. 4455 */ 4456 if (!parsed_default_hugepagesz || h != &default_hstate || 4457 default_hstate.max_huge_pages) { 4458 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4459 return 1; 4460 } 4461 4462 /* 4463 * No need to call hugetlb_add_hstate() as hstate already 4464 * exists. But, do set parsed_hstate so that a following 4465 * hugepages= parameter will be applied to this hstate. 4466 */ 4467 parsed_hstate = h; 4468 parsed_valid_hugepagesz = true; 4469 return 1; 4470 } 4471 4472 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4473 parsed_valid_hugepagesz = true; 4474 return 1; 4475 } 4476 __setup("hugepagesz=", hugepagesz_setup); 4477 4478 /* 4479 * default_hugepagesz command line input 4480 * Only one instance of default_hugepagesz allowed on command line. 4481 */ 4482 static int __init default_hugepagesz_setup(char *s) 4483 { 4484 unsigned long size; 4485 int i; 4486 4487 parsed_valid_hugepagesz = false; 4488 if (parsed_default_hugepagesz) { 4489 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4490 return 1; 4491 } 4492 4493 size = (unsigned long)memparse(s, NULL); 4494 4495 if (!arch_hugetlb_valid_size(size)) { 4496 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4497 return 1; 4498 } 4499 4500 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4501 parsed_valid_hugepagesz = true; 4502 parsed_default_hugepagesz = true; 4503 default_hstate_idx = hstate_index(size_to_hstate(size)); 4504 4505 /* 4506 * The number of default huge pages (for this size) could have been 4507 * specified as the first hugetlb parameter: hugepages=X. If so, 4508 * then default_hstate_max_huge_pages is set. If the default huge 4509 * page size is gigantic (> MAX_ORDER), then the pages must be 4510 * allocated here from bootmem allocator. 4511 */ 4512 if (default_hstate_max_huge_pages) { 4513 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4514 for_each_online_node(i) 4515 default_hstate.max_huge_pages_node[i] = 4516 default_hugepages_in_node[i]; 4517 if (hstate_is_gigantic(&default_hstate)) 4518 hugetlb_hstate_alloc_pages(&default_hstate); 4519 default_hstate_max_huge_pages = 0; 4520 } 4521 4522 return 1; 4523 } 4524 __setup("default_hugepagesz=", default_hugepagesz_setup); 4525 4526 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4527 { 4528 #ifdef CONFIG_NUMA 4529 struct mempolicy *mpol = get_task_policy(current); 4530 4531 /* 4532 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4533 * (from policy_nodemask) specifically for hugetlb case 4534 */ 4535 if (mpol->mode == MPOL_BIND && 4536 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4537 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4538 return &mpol->nodes; 4539 #endif 4540 return NULL; 4541 } 4542 4543 static unsigned int allowed_mems_nr(struct hstate *h) 4544 { 4545 int node; 4546 unsigned int nr = 0; 4547 nodemask_t *mbind_nodemask; 4548 unsigned int *array = h->free_huge_pages_node; 4549 gfp_t gfp_mask = htlb_alloc_mask(h); 4550 4551 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4552 for_each_node_mask(node, cpuset_current_mems_allowed) { 4553 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4554 nr += array[node]; 4555 } 4556 4557 return nr; 4558 } 4559 4560 #ifdef CONFIG_SYSCTL 4561 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4562 void *buffer, size_t *length, 4563 loff_t *ppos, unsigned long *out) 4564 { 4565 struct ctl_table dup_table; 4566 4567 /* 4568 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4569 * can duplicate the @table and alter the duplicate of it. 4570 */ 4571 dup_table = *table; 4572 dup_table.data = out; 4573 4574 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4575 } 4576 4577 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4578 struct ctl_table *table, int write, 4579 void *buffer, size_t *length, loff_t *ppos) 4580 { 4581 struct hstate *h = &default_hstate; 4582 unsigned long tmp = h->max_huge_pages; 4583 int ret; 4584 4585 if (!hugepages_supported()) 4586 return -EOPNOTSUPP; 4587 4588 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4589 &tmp); 4590 if (ret) 4591 goto out; 4592 4593 if (write) 4594 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4595 NUMA_NO_NODE, tmp, *length); 4596 out: 4597 return ret; 4598 } 4599 4600 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4601 void *buffer, size_t *length, loff_t *ppos) 4602 { 4603 4604 return hugetlb_sysctl_handler_common(false, table, write, 4605 buffer, length, ppos); 4606 } 4607 4608 #ifdef CONFIG_NUMA 4609 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4610 void *buffer, size_t *length, loff_t *ppos) 4611 { 4612 return hugetlb_sysctl_handler_common(true, table, write, 4613 buffer, length, ppos); 4614 } 4615 #endif /* CONFIG_NUMA */ 4616 4617 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4618 void *buffer, size_t *length, loff_t *ppos) 4619 { 4620 struct hstate *h = &default_hstate; 4621 unsigned long tmp; 4622 int ret; 4623 4624 if (!hugepages_supported()) 4625 return -EOPNOTSUPP; 4626 4627 tmp = h->nr_overcommit_huge_pages; 4628 4629 if (write && hstate_is_gigantic(h)) 4630 return -EINVAL; 4631 4632 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4633 &tmp); 4634 if (ret) 4635 goto out; 4636 4637 if (write) { 4638 spin_lock_irq(&hugetlb_lock); 4639 h->nr_overcommit_huge_pages = tmp; 4640 spin_unlock_irq(&hugetlb_lock); 4641 } 4642 out: 4643 return ret; 4644 } 4645 4646 static struct ctl_table hugetlb_table[] = { 4647 { 4648 .procname = "nr_hugepages", 4649 .data = NULL, 4650 .maxlen = sizeof(unsigned long), 4651 .mode = 0644, 4652 .proc_handler = hugetlb_sysctl_handler, 4653 }, 4654 #ifdef CONFIG_NUMA 4655 { 4656 .procname = "nr_hugepages_mempolicy", 4657 .data = NULL, 4658 .maxlen = sizeof(unsigned long), 4659 .mode = 0644, 4660 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4661 }, 4662 #endif 4663 { 4664 .procname = "hugetlb_shm_group", 4665 .data = &sysctl_hugetlb_shm_group, 4666 .maxlen = sizeof(gid_t), 4667 .mode = 0644, 4668 .proc_handler = proc_dointvec, 4669 }, 4670 { 4671 .procname = "nr_overcommit_hugepages", 4672 .data = NULL, 4673 .maxlen = sizeof(unsigned long), 4674 .mode = 0644, 4675 .proc_handler = hugetlb_overcommit_handler, 4676 }, 4677 { } 4678 }; 4679 4680 static void hugetlb_sysctl_init(void) 4681 { 4682 register_sysctl_init("vm", hugetlb_table); 4683 } 4684 #endif /* CONFIG_SYSCTL */ 4685 4686 void hugetlb_report_meminfo(struct seq_file *m) 4687 { 4688 struct hstate *h; 4689 unsigned long total = 0; 4690 4691 if (!hugepages_supported()) 4692 return; 4693 4694 for_each_hstate(h) { 4695 unsigned long count = h->nr_huge_pages; 4696 4697 total += huge_page_size(h) * count; 4698 4699 if (h == &default_hstate) 4700 seq_printf(m, 4701 "HugePages_Total: %5lu\n" 4702 "HugePages_Free: %5lu\n" 4703 "HugePages_Rsvd: %5lu\n" 4704 "HugePages_Surp: %5lu\n" 4705 "Hugepagesize: %8lu kB\n", 4706 count, 4707 h->free_huge_pages, 4708 h->resv_huge_pages, 4709 h->surplus_huge_pages, 4710 huge_page_size(h) / SZ_1K); 4711 } 4712 4713 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4714 } 4715 4716 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4717 { 4718 struct hstate *h = &default_hstate; 4719 4720 if (!hugepages_supported()) 4721 return 0; 4722 4723 return sysfs_emit_at(buf, len, 4724 "Node %d HugePages_Total: %5u\n" 4725 "Node %d HugePages_Free: %5u\n" 4726 "Node %d HugePages_Surp: %5u\n", 4727 nid, h->nr_huge_pages_node[nid], 4728 nid, h->free_huge_pages_node[nid], 4729 nid, h->surplus_huge_pages_node[nid]); 4730 } 4731 4732 void hugetlb_show_meminfo_node(int nid) 4733 { 4734 struct hstate *h; 4735 4736 if (!hugepages_supported()) 4737 return; 4738 4739 for_each_hstate(h) 4740 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4741 nid, 4742 h->nr_huge_pages_node[nid], 4743 h->free_huge_pages_node[nid], 4744 h->surplus_huge_pages_node[nid], 4745 huge_page_size(h) / SZ_1K); 4746 } 4747 4748 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4749 { 4750 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4751 K(atomic_long_read(&mm->hugetlb_usage))); 4752 } 4753 4754 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4755 unsigned long hugetlb_total_pages(void) 4756 { 4757 struct hstate *h; 4758 unsigned long nr_total_pages = 0; 4759 4760 for_each_hstate(h) 4761 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4762 return nr_total_pages; 4763 } 4764 4765 static int hugetlb_acct_memory(struct hstate *h, long delta) 4766 { 4767 int ret = -ENOMEM; 4768 4769 if (!delta) 4770 return 0; 4771 4772 spin_lock_irq(&hugetlb_lock); 4773 /* 4774 * When cpuset is configured, it breaks the strict hugetlb page 4775 * reservation as the accounting is done on a global variable. Such 4776 * reservation is completely rubbish in the presence of cpuset because 4777 * the reservation is not checked against page availability for the 4778 * current cpuset. Application can still potentially OOM'ed by kernel 4779 * with lack of free htlb page in cpuset that the task is in. 4780 * Attempt to enforce strict accounting with cpuset is almost 4781 * impossible (or too ugly) because cpuset is too fluid that 4782 * task or memory node can be dynamically moved between cpusets. 4783 * 4784 * The change of semantics for shared hugetlb mapping with cpuset is 4785 * undesirable. However, in order to preserve some of the semantics, 4786 * we fall back to check against current free page availability as 4787 * a best attempt and hopefully to minimize the impact of changing 4788 * semantics that cpuset has. 4789 * 4790 * Apart from cpuset, we also have memory policy mechanism that 4791 * also determines from which node the kernel will allocate memory 4792 * in a NUMA system. So similar to cpuset, we also should consider 4793 * the memory policy of the current task. Similar to the description 4794 * above. 4795 */ 4796 if (delta > 0) { 4797 if (gather_surplus_pages(h, delta) < 0) 4798 goto out; 4799 4800 if (delta > allowed_mems_nr(h)) { 4801 return_unused_surplus_pages(h, delta); 4802 goto out; 4803 } 4804 } 4805 4806 ret = 0; 4807 if (delta < 0) 4808 return_unused_surplus_pages(h, (unsigned long) -delta); 4809 4810 out: 4811 spin_unlock_irq(&hugetlb_lock); 4812 return ret; 4813 } 4814 4815 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4816 { 4817 struct resv_map *resv = vma_resv_map(vma); 4818 4819 /* 4820 * HPAGE_RESV_OWNER indicates a private mapping. 4821 * This new VMA should share its siblings reservation map if present. 4822 * The VMA will only ever have a valid reservation map pointer where 4823 * it is being copied for another still existing VMA. As that VMA 4824 * has a reference to the reservation map it cannot disappear until 4825 * after this open call completes. It is therefore safe to take a 4826 * new reference here without additional locking. 4827 */ 4828 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4829 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4830 kref_get(&resv->refs); 4831 } 4832 4833 /* 4834 * vma_lock structure for sharable mappings is vma specific. 4835 * Clear old pointer (if copied via vm_area_dup) and allocate 4836 * new structure. Before clearing, make sure vma_lock is not 4837 * for this vma. 4838 */ 4839 if (vma->vm_flags & VM_MAYSHARE) { 4840 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4841 4842 if (vma_lock) { 4843 if (vma_lock->vma != vma) { 4844 vma->vm_private_data = NULL; 4845 hugetlb_vma_lock_alloc(vma); 4846 } else 4847 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4848 } else 4849 hugetlb_vma_lock_alloc(vma); 4850 } 4851 } 4852 4853 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4854 { 4855 struct hstate *h = hstate_vma(vma); 4856 struct resv_map *resv; 4857 struct hugepage_subpool *spool = subpool_vma(vma); 4858 unsigned long reserve, start, end; 4859 long gbl_reserve; 4860 4861 hugetlb_vma_lock_free(vma); 4862 4863 resv = vma_resv_map(vma); 4864 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4865 return; 4866 4867 start = vma_hugecache_offset(h, vma, vma->vm_start); 4868 end = vma_hugecache_offset(h, vma, vma->vm_end); 4869 4870 reserve = (end - start) - region_count(resv, start, end); 4871 hugetlb_cgroup_uncharge_counter(resv, start, end); 4872 if (reserve) { 4873 /* 4874 * Decrement reserve counts. The global reserve count may be 4875 * adjusted if the subpool has a minimum size. 4876 */ 4877 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4878 hugetlb_acct_memory(h, -gbl_reserve); 4879 } 4880 4881 kref_put(&resv->refs, resv_map_release); 4882 } 4883 4884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4885 { 4886 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4887 return -EINVAL; 4888 4889 /* 4890 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4891 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4892 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4893 */ 4894 if (addr & ~PUD_MASK) { 4895 /* 4896 * hugetlb_vm_op_split is called right before we attempt to 4897 * split the VMA. We will need to unshare PMDs in the old and 4898 * new VMAs, so let's unshare before we split. 4899 */ 4900 unsigned long floor = addr & PUD_MASK; 4901 unsigned long ceil = floor + PUD_SIZE; 4902 4903 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4904 hugetlb_unshare_pmds(vma, floor, ceil); 4905 } 4906 4907 return 0; 4908 } 4909 4910 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4911 { 4912 return huge_page_size(hstate_vma(vma)); 4913 } 4914 4915 /* 4916 * We cannot handle pagefaults against hugetlb pages at all. They cause 4917 * handle_mm_fault() to try to instantiate regular-sized pages in the 4918 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4919 * this far. 4920 */ 4921 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4922 { 4923 BUG(); 4924 return 0; 4925 } 4926 4927 /* 4928 * When a new function is introduced to vm_operations_struct and added 4929 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4930 * This is because under System V memory model, mappings created via 4931 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4932 * their original vm_ops are overwritten with shm_vm_ops. 4933 */ 4934 const struct vm_operations_struct hugetlb_vm_ops = { 4935 .fault = hugetlb_vm_op_fault, 4936 .open = hugetlb_vm_op_open, 4937 .close = hugetlb_vm_op_close, 4938 .may_split = hugetlb_vm_op_split, 4939 .pagesize = hugetlb_vm_op_pagesize, 4940 }; 4941 4942 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4943 int writable) 4944 { 4945 pte_t entry; 4946 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4947 4948 if (writable) { 4949 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4950 vma->vm_page_prot))); 4951 } else { 4952 entry = huge_pte_wrprotect(mk_huge_pte(page, 4953 vma->vm_page_prot)); 4954 } 4955 entry = pte_mkyoung(entry); 4956 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4957 4958 return entry; 4959 } 4960 4961 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4962 unsigned long address, pte_t *ptep) 4963 { 4964 pte_t entry; 4965 4966 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4967 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4968 update_mmu_cache(vma, address, ptep); 4969 } 4970 4971 bool is_hugetlb_entry_migration(pte_t pte) 4972 { 4973 swp_entry_t swp; 4974 4975 if (huge_pte_none(pte) || pte_present(pte)) 4976 return false; 4977 swp = pte_to_swp_entry(pte); 4978 if (is_migration_entry(swp)) 4979 return true; 4980 else 4981 return false; 4982 } 4983 4984 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4985 { 4986 swp_entry_t swp; 4987 4988 if (huge_pte_none(pte) || pte_present(pte)) 4989 return false; 4990 swp = pte_to_swp_entry(pte); 4991 if (is_hwpoison_entry(swp)) 4992 return true; 4993 else 4994 return false; 4995 } 4996 4997 static void 4998 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4999 struct folio *new_folio, pte_t old) 5000 { 5001 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5002 5003 __folio_mark_uptodate(new_folio); 5004 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5005 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5006 newpte = huge_pte_mkuffd_wp(newpte); 5007 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte); 5008 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5009 folio_set_hugetlb_migratable(new_folio); 5010 } 5011 5012 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5013 struct vm_area_struct *dst_vma, 5014 struct vm_area_struct *src_vma) 5015 { 5016 pte_t *src_pte, *dst_pte, entry; 5017 struct folio *pte_folio; 5018 unsigned long addr; 5019 bool cow = is_cow_mapping(src_vma->vm_flags); 5020 struct hstate *h = hstate_vma(src_vma); 5021 unsigned long sz = huge_page_size(h); 5022 unsigned long npages = pages_per_huge_page(h); 5023 struct mmu_notifier_range range; 5024 unsigned long last_addr_mask; 5025 int ret = 0; 5026 5027 if (cow) { 5028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5029 src_vma->vm_start, 5030 src_vma->vm_end); 5031 mmu_notifier_invalidate_range_start(&range); 5032 vma_assert_write_locked(src_vma); 5033 raw_write_seqcount_begin(&src->write_protect_seq); 5034 } else { 5035 /* 5036 * For shared mappings the vma lock must be held before 5037 * calling hugetlb_walk() in the src vma. Otherwise, the 5038 * returned ptep could go away if part of a shared pmd and 5039 * another thread calls huge_pmd_unshare. 5040 */ 5041 hugetlb_vma_lock_read(src_vma); 5042 } 5043 5044 last_addr_mask = hugetlb_mask_last_page(h); 5045 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5046 spinlock_t *src_ptl, *dst_ptl; 5047 src_pte = hugetlb_walk(src_vma, addr, sz); 5048 if (!src_pte) { 5049 addr |= last_addr_mask; 5050 continue; 5051 } 5052 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5053 if (!dst_pte) { 5054 ret = -ENOMEM; 5055 break; 5056 } 5057 5058 /* 5059 * If the pagetables are shared don't copy or take references. 5060 * 5061 * dst_pte == src_pte is the common case of src/dest sharing. 5062 * However, src could have 'unshared' and dst shares with 5063 * another vma. So page_count of ptep page is checked instead 5064 * to reliably determine whether pte is shared. 5065 */ 5066 if (page_count(virt_to_page(dst_pte)) > 1) { 5067 addr |= last_addr_mask; 5068 continue; 5069 } 5070 5071 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5072 src_ptl = huge_pte_lockptr(h, src, src_pte); 5073 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5074 entry = huge_ptep_get(src_pte); 5075 again: 5076 if (huge_pte_none(entry)) { 5077 /* 5078 * Skip if src entry none. 5079 */ 5080 ; 5081 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5082 if (!userfaultfd_wp(dst_vma)) 5083 entry = huge_pte_clear_uffd_wp(entry); 5084 set_huge_pte_at(dst, addr, dst_pte, entry); 5085 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5086 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5087 bool uffd_wp = pte_swp_uffd_wp(entry); 5088 5089 if (!is_readable_migration_entry(swp_entry) && cow) { 5090 /* 5091 * COW mappings require pages in both 5092 * parent and child to be set to read. 5093 */ 5094 swp_entry = make_readable_migration_entry( 5095 swp_offset(swp_entry)); 5096 entry = swp_entry_to_pte(swp_entry); 5097 if (userfaultfd_wp(src_vma) && uffd_wp) 5098 entry = pte_swp_mkuffd_wp(entry); 5099 set_huge_pte_at(src, addr, src_pte, entry); 5100 } 5101 if (!userfaultfd_wp(dst_vma)) 5102 entry = huge_pte_clear_uffd_wp(entry); 5103 set_huge_pte_at(dst, addr, dst_pte, entry); 5104 } else if (unlikely(is_pte_marker(entry))) { 5105 pte_marker marker = copy_pte_marker( 5106 pte_to_swp_entry(entry), dst_vma); 5107 5108 if (marker) 5109 set_huge_pte_at(dst, addr, dst_pte, 5110 make_pte_marker(marker)); 5111 } else { 5112 entry = huge_ptep_get(src_pte); 5113 pte_folio = page_folio(pte_page(entry)); 5114 folio_get(pte_folio); 5115 5116 /* 5117 * Failing to duplicate the anon rmap is a rare case 5118 * where we see pinned hugetlb pages while they're 5119 * prone to COW. We need to do the COW earlier during 5120 * fork. 5121 * 5122 * When pre-allocating the page or copying data, we 5123 * need to be without the pgtable locks since we could 5124 * sleep during the process. 5125 */ 5126 if (!folio_test_anon(pte_folio)) { 5127 page_dup_file_rmap(&pte_folio->page, true); 5128 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5129 true, src_vma)) { 5130 pte_t src_pte_old = entry; 5131 struct folio *new_folio; 5132 5133 spin_unlock(src_ptl); 5134 spin_unlock(dst_ptl); 5135 /* Do not use reserve as it's private owned */ 5136 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5137 if (IS_ERR(new_folio)) { 5138 folio_put(pte_folio); 5139 ret = PTR_ERR(new_folio); 5140 break; 5141 } 5142 ret = copy_user_large_folio(new_folio, 5143 pte_folio, 5144 addr, dst_vma); 5145 folio_put(pte_folio); 5146 if (ret) { 5147 folio_put(new_folio); 5148 break; 5149 } 5150 5151 /* Install the new hugetlb folio if src pte stable */ 5152 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5153 src_ptl = huge_pte_lockptr(h, src, src_pte); 5154 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5155 entry = huge_ptep_get(src_pte); 5156 if (!pte_same(src_pte_old, entry)) { 5157 restore_reserve_on_error(h, dst_vma, addr, 5158 new_folio); 5159 folio_put(new_folio); 5160 /* huge_ptep of dst_pte won't change as in child */ 5161 goto again; 5162 } 5163 hugetlb_install_folio(dst_vma, dst_pte, addr, 5164 new_folio, src_pte_old); 5165 spin_unlock(src_ptl); 5166 spin_unlock(dst_ptl); 5167 continue; 5168 } 5169 5170 if (cow) { 5171 /* 5172 * No need to notify as we are downgrading page 5173 * table protection not changing it to point 5174 * to a new page. 5175 * 5176 * See Documentation/mm/mmu_notifier.rst 5177 */ 5178 huge_ptep_set_wrprotect(src, addr, src_pte); 5179 entry = huge_pte_wrprotect(entry); 5180 } 5181 5182 if (!userfaultfd_wp(dst_vma)) 5183 entry = huge_pte_clear_uffd_wp(entry); 5184 5185 set_huge_pte_at(dst, addr, dst_pte, entry); 5186 hugetlb_count_add(npages, dst); 5187 } 5188 spin_unlock(src_ptl); 5189 spin_unlock(dst_ptl); 5190 } 5191 5192 if (cow) { 5193 raw_write_seqcount_end(&src->write_protect_seq); 5194 mmu_notifier_invalidate_range_end(&range); 5195 } else { 5196 hugetlb_vma_unlock_read(src_vma); 5197 } 5198 5199 return ret; 5200 } 5201 5202 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5203 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5204 { 5205 struct hstate *h = hstate_vma(vma); 5206 struct mm_struct *mm = vma->vm_mm; 5207 spinlock_t *src_ptl, *dst_ptl; 5208 pte_t pte; 5209 5210 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5211 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5212 5213 /* 5214 * We don't have to worry about the ordering of src and dst ptlocks 5215 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5216 */ 5217 if (src_ptl != dst_ptl) 5218 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5219 5220 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5221 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5222 5223 if (src_ptl != dst_ptl) 5224 spin_unlock(src_ptl); 5225 spin_unlock(dst_ptl); 5226 } 5227 5228 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5229 struct vm_area_struct *new_vma, 5230 unsigned long old_addr, unsigned long new_addr, 5231 unsigned long len) 5232 { 5233 struct hstate *h = hstate_vma(vma); 5234 struct address_space *mapping = vma->vm_file->f_mapping; 5235 unsigned long sz = huge_page_size(h); 5236 struct mm_struct *mm = vma->vm_mm; 5237 unsigned long old_end = old_addr + len; 5238 unsigned long last_addr_mask; 5239 pte_t *src_pte, *dst_pte; 5240 struct mmu_notifier_range range; 5241 bool shared_pmd = false; 5242 5243 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5244 old_end); 5245 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5246 /* 5247 * In case of shared PMDs, we should cover the maximum possible 5248 * range. 5249 */ 5250 flush_cache_range(vma, range.start, range.end); 5251 5252 mmu_notifier_invalidate_range_start(&range); 5253 last_addr_mask = hugetlb_mask_last_page(h); 5254 /* Prevent race with file truncation */ 5255 hugetlb_vma_lock_write(vma); 5256 i_mmap_lock_write(mapping); 5257 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5258 src_pte = hugetlb_walk(vma, old_addr, sz); 5259 if (!src_pte) { 5260 old_addr |= last_addr_mask; 5261 new_addr |= last_addr_mask; 5262 continue; 5263 } 5264 if (huge_pte_none(huge_ptep_get(src_pte))) 5265 continue; 5266 5267 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5268 shared_pmd = true; 5269 old_addr |= last_addr_mask; 5270 new_addr |= last_addr_mask; 5271 continue; 5272 } 5273 5274 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5275 if (!dst_pte) 5276 break; 5277 5278 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5279 } 5280 5281 if (shared_pmd) 5282 flush_hugetlb_tlb_range(vma, range.start, range.end); 5283 else 5284 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5285 mmu_notifier_invalidate_range_end(&range); 5286 i_mmap_unlock_write(mapping); 5287 hugetlb_vma_unlock_write(vma); 5288 5289 return len + old_addr - old_end; 5290 } 5291 5292 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5293 unsigned long start, unsigned long end, 5294 struct page *ref_page, zap_flags_t zap_flags) 5295 { 5296 struct mm_struct *mm = vma->vm_mm; 5297 unsigned long address; 5298 pte_t *ptep; 5299 pte_t pte; 5300 spinlock_t *ptl; 5301 struct page *page; 5302 struct hstate *h = hstate_vma(vma); 5303 unsigned long sz = huge_page_size(h); 5304 unsigned long last_addr_mask; 5305 bool force_flush = false; 5306 5307 WARN_ON(!is_vm_hugetlb_page(vma)); 5308 BUG_ON(start & ~huge_page_mask(h)); 5309 BUG_ON(end & ~huge_page_mask(h)); 5310 5311 /* 5312 * This is a hugetlb vma, all the pte entries should point 5313 * to huge page. 5314 */ 5315 tlb_change_page_size(tlb, sz); 5316 tlb_start_vma(tlb, vma); 5317 5318 last_addr_mask = hugetlb_mask_last_page(h); 5319 address = start; 5320 for (; address < end; address += sz) { 5321 ptep = hugetlb_walk(vma, address, sz); 5322 if (!ptep) { 5323 address |= last_addr_mask; 5324 continue; 5325 } 5326 5327 ptl = huge_pte_lock(h, mm, ptep); 5328 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5329 spin_unlock(ptl); 5330 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5331 force_flush = true; 5332 address |= last_addr_mask; 5333 continue; 5334 } 5335 5336 pte = huge_ptep_get(ptep); 5337 if (huge_pte_none(pte)) { 5338 spin_unlock(ptl); 5339 continue; 5340 } 5341 5342 /* 5343 * Migrating hugepage or HWPoisoned hugepage is already 5344 * unmapped and its refcount is dropped, so just clear pte here. 5345 */ 5346 if (unlikely(!pte_present(pte))) { 5347 /* 5348 * If the pte was wr-protected by uffd-wp in any of the 5349 * swap forms, meanwhile the caller does not want to 5350 * drop the uffd-wp bit in this zap, then replace the 5351 * pte with a marker. 5352 */ 5353 if (pte_swp_uffd_wp_any(pte) && 5354 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5355 set_huge_pte_at(mm, address, ptep, 5356 make_pte_marker(PTE_MARKER_UFFD_WP)); 5357 else 5358 huge_pte_clear(mm, address, ptep, sz); 5359 spin_unlock(ptl); 5360 continue; 5361 } 5362 5363 page = pte_page(pte); 5364 /* 5365 * If a reference page is supplied, it is because a specific 5366 * page is being unmapped, not a range. Ensure the page we 5367 * are about to unmap is the actual page of interest. 5368 */ 5369 if (ref_page) { 5370 if (page != ref_page) { 5371 spin_unlock(ptl); 5372 continue; 5373 } 5374 /* 5375 * Mark the VMA as having unmapped its page so that 5376 * future faults in this VMA will fail rather than 5377 * looking like data was lost 5378 */ 5379 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5380 } 5381 5382 pte = huge_ptep_get_and_clear(mm, address, ptep); 5383 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5384 if (huge_pte_dirty(pte)) 5385 set_page_dirty(page); 5386 /* Leave a uffd-wp pte marker if needed */ 5387 if (huge_pte_uffd_wp(pte) && 5388 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5389 set_huge_pte_at(mm, address, ptep, 5390 make_pte_marker(PTE_MARKER_UFFD_WP)); 5391 hugetlb_count_sub(pages_per_huge_page(h), mm); 5392 page_remove_rmap(page, vma, true); 5393 5394 spin_unlock(ptl); 5395 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5396 /* 5397 * Bail out after unmapping reference page if supplied 5398 */ 5399 if (ref_page) 5400 break; 5401 } 5402 tlb_end_vma(tlb, vma); 5403 5404 /* 5405 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5406 * could defer the flush until now, since by holding i_mmap_rwsem we 5407 * guaranteed that the last refernece would not be dropped. But we must 5408 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5409 * dropped and the last reference to the shared PMDs page might be 5410 * dropped as well. 5411 * 5412 * In theory we could defer the freeing of the PMD pages as well, but 5413 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5414 * detect sharing, so we cannot defer the release of the page either. 5415 * Instead, do flush now. 5416 */ 5417 if (force_flush) 5418 tlb_flush_mmu_tlbonly(tlb); 5419 } 5420 5421 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5422 struct vm_area_struct *vma, unsigned long start, 5423 unsigned long end, struct page *ref_page, 5424 zap_flags_t zap_flags) 5425 { 5426 hugetlb_vma_lock_write(vma); 5427 i_mmap_lock_write(vma->vm_file->f_mapping); 5428 5429 /* mmu notification performed in caller */ 5430 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5431 5432 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5433 /* 5434 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5435 * When the vma_lock is freed, this makes the vma ineligible 5436 * for pmd sharing. And, i_mmap_rwsem is required to set up 5437 * pmd sharing. This is important as page tables for this 5438 * unmapped range will be asynchrously deleted. If the page 5439 * tables are shared, there will be issues when accessed by 5440 * someone else. 5441 */ 5442 __hugetlb_vma_unlock_write_free(vma); 5443 i_mmap_unlock_write(vma->vm_file->f_mapping); 5444 } else { 5445 i_mmap_unlock_write(vma->vm_file->f_mapping); 5446 hugetlb_vma_unlock_write(vma); 5447 } 5448 } 5449 5450 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5451 unsigned long end, struct page *ref_page, 5452 zap_flags_t zap_flags) 5453 { 5454 struct mmu_notifier_range range; 5455 struct mmu_gather tlb; 5456 5457 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5458 start, end); 5459 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5460 mmu_notifier_invalidate_range_start(&range); 5461 tlb_gather_mmu(&tlb, vma->vm_mm); 5462 5463 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5464 5465 mmu_notifier_invalidate_range_end(&range); 5466 tlb_finish_mmu(&tlb); 5467 } 5468 5469 /* 5470 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5471 * mapping it owns the reserve page for. The intention is to unmap the page 5472 * from other VMAs and let the children be SIGKILLed if they are faulting the 5473 * same region. 5474 */ 5475 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5476 struct page *page, unsigned long address) 5477 { 5478 struct hstate *h = hstate_vma(vma); 5479 struct vm_area_struct *iter_vma; 5480 struct address_space *mapping; 5481 pgoff_t pgoff; 5482 5483 /* 5484 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5485 * from page cache lookup which is in HPAGE_SIZE units. 5486 */ 5487 address = address & huge_page_mask(h); 5488 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5489 vma->vm_pgoff; 5490 mapping = vma->vm_file->f_mapping; 5491 5492 /* 5493 * Take the mapping lock for the duration of the table walk. As 5494 * this mapping should be shared between all the VMAs, 5495 * __unmap_hugepage_range() is called as the lock is already held 5496 */ 5497 i_mmap_lock_write(mapping); 5498 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5499 /* Do not unmap the current VMA */ 5500 if (iter_vma == vma) 5501 continue; 5502 5503 /* 5504 * Shared VMAs have their own reserves and do not affect 5505 * MAP_PRIVATE accounting but it is possible that a shared 5506 * VMA is using the same page so check and skip such VMAs. 5507 */ 5508 if (iter_vma->vm_flags & VM_MAYSHARE) 5509 continue; 5510 5511 /* 5512 * Unmap the page from other VMAs without their own reserves. 5513 * They get marked to be SIGKILLed if they fault in these 5514 * areas. This is because a future no-page fault on this VMA 5515 * could insert a zeroed page instead of the data existing 5516 * from the time of fork. This would look like data corruption 5517 */ 5518 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5519 unmap_hugepage_range(iter_vma, address, 5520 address + huge_page_size(h), page, 0); 5521 } 5522 i_mmap_unlock_write(mapping); 5523 } 5524 5525 /* 5526 * hugetlb_wp() should be called with page lock of the original hugepage held. 5527 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5528 * cannot race with other handlers or page migration. 5529 * Keep the pte_same checks anyway to make transition from the mutex easier. 5530 */ 5531 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5532 unsigned long address, pte_t *ptep, unsigned int flags, 5533 struct folio *pagecache_folio, spinlock_t *ptl) 5534 { 5535 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5536 pte_t pte = huge_ptep_get(ptep); 5537 struct hstate *h = hstate_vma(vma); 5538 struct folio *old_folio; 5539 struct folio *new_folio; 5540 int outside_reserve = 0; 5541 vm_fault_t ret = 0; 5542 unsigned long haddr = address & huge_page_mask(h); 5543 struct mmu_notifier_range range; 5544 5545 /* 5546 * Never handle CoW for uffd-wp protected pages. It should be only 5547 * handled when the uffd-wp protection is removed. 5548 * 5549 * Note that only the CoW optimization path (in hugetlb_no_page()) 5550 * can trigger this, because hugetlb_fault() will always resolve 5551 * uffd-wp bit first. 5552 */ 5553 if (!unshare && huge_pte_uffd_wp(pte)) 5554 return 0; 5555 5556 /* 5557 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5558 * PTE mapped R/O such as maybe_mkwrite() would do. 5559 */ 5560 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5561 return VM_FAULT_SIGSEGV; 5562 5563 /* Let's take out MAP_SHARED mappings first. */ 5564 if (vma->vm_flags & VM_MAYSHARE) { 5565 set_huge_ptep_writable(vma, haddr, ptep); 5566 return 0; 5567 } 5568 5569 old_folio = page_folio(pte_page(pte)); 5570 5571 delayacct_wpcopy_start(); 5572 5573 retry_avoidcopy: 5574 /* 5575 * If no-one else is actually using this page, we're the exclusive 5576 * owner and can reuse this page. 5577 */ 5578 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5579 if (!PageAnonExclusive(&old_folio->page)) 5580 page_move_anon_rmap(&old_folio->page, vma); 5581 if (likely(!unshare)) 5582 set_huge_ptep_writable(vma, haddr, ptep); 5583 5584 delayacct_wpcopy_end(); 5585 return 0; 5586 } 5587 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5588 PageAnonExclusive(&old_folio->page), &old_folio->page); 5589 5590 /* 5591 * If the process that created a MAP_PRIVATE mapping is about to 5592 * perform a COW due to a shared page count, attempt to satisfy 5593 * the allocation without using the existing reserves. The pagecache 5594 * page is used to determine if the reserve at this address was 5595 * consumed or not. If reserves were used, a partial faulted mapping 5596 * at the time of fork() could consume its reserves on COW instead 5597 * of the full address range. 5598 */ 5599 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5600 old_folio != pagecache_folio) 5601 outside_reserve = 1; 5602 5603 folio_get(old_folio); 5604 5605 /* 5606 * Drop page table lock as buddy allocator may be called. It will 5607 * be acquired again before returning to the caller, as expected. 5608 */ 5609 spin_unlock(ptl); 5610 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5611 5612 if (IS_ERR(new_folio)) { 5613 /* 5614 * If a process owning a MAP_PRIVATE mapping fails to COW, 5615 * it is due to references held by a child and an insufficient 5616 * huge page pool. To guarantee the original mappers 5617 * reliability, unmap the page from child processes. The child 5618 * may get SIGKILLed if it later faults. 5619 */ 5620 if (outside_reserve) { 5621 struct address_space *mapping = vma->vm_file->f_mapping; 5622 pgoff_t idx; 5623 u32 hash; 5624 5625 folio_put(old_folio); 5626 /* 5627 * Drop hugetlb_fault_mutex and vma_lock before 5628 * unmapping. unmapping needs to hold vma_lock 5629 * in write mode. Dropping vma_lock in read mode 5630 * here is OK as COW mappings do not interact with 5631 * PMD sharing. 5632 * 5633 * Reacquire both after unmap operation. 5634 */ 5635 idx = vma_hugecache_offset(h, vma, haddr); 5636 hash = hugetlb_fault_mutex_hash(mapping, idx); 5637 hugetlb_vma_unlock_read(vma); 5638 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5639 5640 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5641 5642 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5643 hugetlb_vma_lock_read(vma); 5644 spin_lock(ptl); 5645 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5646 if (likely(ptep && 5647 pte_same(huge_ptep_get(ptep), pte))) 5648 goto retry_avoidcopy; 5649 /* 5650 * race occurs while re-acquiring page table 5651 * lock, and our job is done. 5652 */ 5653 delayacct_wpcopy_end(); 5654 return 0; 5655 } 5656 5657 ret = vmf_error(PTR_ERR(new_folio)); 5658 goto out_release_old; 5659 } 5660 5661 /* 5662 * When the original hugepage is shared one, it does not have 5663 * anon_vma prepared. 5664 */ 5665 if (unlikely(anon_vma_prepare(vma))) { 5666 ret = VM_FAULT_OOM; 5667 goto out_release_all; 5668 } 5669 5670 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5671 ret = VM_FAULT_HWPOISON_LARGE; 5672 goto out_release_all; 5673 } 5674 __folio_mark_uptodate(new_folio); 5675 5676 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5677 haddr + huge_page_size(h)); 5678 mmu_notifier_invalidate_range_start(&range); 5679 5680 /* 5681 * Retake the page table lock to check for racing updates 5682 * before the page tables are altered 5683 */ 5684 spin_lock(ptl); 5685 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5686 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5687 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5688 5689 /* Break COW or unshare */ 5690 huge_ptep_clear_flush(vma, haddr, ptep); 5691 page_remove_rmap(&old_folio->page, vma, true); 5692 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5693 if (huge_pte_uffd_wp(pte)) 5694 newpte = huge_pte_mkuffd_wp(newpte); 5695 set_huge_pte_at(mm, haddr, ptep, newpte); 5696 folio_set_hugetlb_migratable(new_folio); 5697 /* Make the old page be freed below */ 5698 new_folio = old_folio; 5699 } 5700 spin_unlock(ptl); 5701 mmu_notifier_invalidate_range_end(&range); 5702 out_release_all: 5703 /* 5704 * No restore in case of successful pagetable update (Break COW or 5705 * unshare) 5706 */ 5707 if (new_folio != old_folio) 5708 restore_reserve_on_error(h, vma, haddr, new_folio); 5709 folio_put(new_folio); 5710 out_release_old: 5711 folio_put(old_folio); 5712 5713 spin_lock(ptl); /* Caller expects lock to be held */ 5714 5715 delayacct_wpcopy_end(); 5716 return ret; 5717 } 5718 5719 /* 5720 * Return whether there is a pagecache page to back given address within VMA. 5721 */ 5722 static bool hugetlbfs_pagecache_present(struct hstate *h, 5723 struct vm_area_struct *vma, unsigned long address) 5724 { 5725 struct address_space *mapping = vma->vm_file->f_mapping; 5726 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5727 struct folio *folio; 5728 5729 folio = filemap_get_folio(mapping, idx); 5730 if (IS_ERR(folio)) 5731 return false; 5732 folio_put(folio); 5733 return true; 5734 } 5735 5736 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5737 pgoff_t idx) 5738 { 5739 struct inode *inode = mapping->host; 5740 struct hstate *h = hstate_inode(inode); 5741 int err; 5742 5743 __folio_set_locked(folio); 5744 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5745 5746 if (unlikely(err)) { 5747 __folio_clear_locked(folio); 5748 return err; 5749 } 5750 folio_clear_hugetlb_restore_reserve(folio); 5751 5752 /* 5753 * mark folio dirty so that it will not be removed from cache/file 5754 * by non-hugetlbfs specific code paths. 5755 */ 5756 folio_mark_dirty(folio); 5757 5758 spin_lock(&inode->i_lock); 5759 inode->i_blocks += blocks_per_huge_page(h); 5760 spin_unlock(&inode->i_lock); 5761 return 0; 5762 } 5763 5764 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5765 struct address_space *mapping, 5766 pgoff_t idx, 5767 unsigned int flags, 5768 unsigned long haddr, 5769 unsigned long addr, 5770 unsigned long reason) 5771 { 5772 u32 hash; 5773 struct vm_fault vmf = { 5774 .vma = vma, 5775 .address = haddr, 5776 .real_address = addr, 5777 .flags = flags, 5778 5779 /* 5780 * Hard to debug if it ends up being 5781 * used by a callee that assumes 5782 * something about the other 5783 * uninitialized fields... same as in 5784 * memory.c 5785 */ 5786 }; 5787 5788 /* 5789 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5790 * userfault. Also mmap_lock could be dropped due to handling 5791 * userfault, any vma operation should be careful from here. 5792 */ 5793 hugetlb_vma_unlock_read(vma); 5794 hash = hugetlb_fault_mutex_hash(mapping, idx); 5795 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5796 return handle_userfault(&vmf, reason); 5797 } 5798 5799 /* 5800 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5801 * false if pte changed or is changing. 5802 */ 5803 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5804 pte_t *ptep, pte_t old_pte) 5805 { 5806 spinlock_t *ptl; 5807 bool same; 5808 5809 ptl = huge_pte_lock(h, mm, ptep); 5810 same = pte_same(huge_ptep_get(ptep), old_pte); 5811 spin_unlock(ptl); 5812 5813 return same; 5814 } 5815 5816 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5817 struct vm_area_struct *vma, 5818 struct address_space *mapping, pgoff_t idx, 5819 unsigned long address, pte_t *ptep, 5820 pte_t old_pte, unsigned int flags) 5821 { 5822 struct hstate *h = hstate_vma(vma); 5823 vm_fault_t ret = VM_FAULT_SIGBUS; 5824 int anon_rmap = 0; 5825 unsigned long size; 5826 struct folio *folio; 5827 pte_t new_pte; 5828 spinlock_t *ptl; 5829 unsigned long haddr = address & huge_page_mask(h); 5830 bool new_folio, new_pagecache_folio = false; 5831 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5832 5833 /* 5834 * Currently, we are forced to kill the process in the event the 5835 * original mapper has unmapped pages from the child due to a failed 5836 * COW/unsharing. Warn that such a situation has occurred as it may not 5837 * be obvious. 5838 */ 5839 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5840 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5841 current->pid); 5842 goto out; 5843 } 5844 5845 /* 5846 * Use page lock to guard against racing truncation 5847 * before we get page_table_lock. 5848 */ 5849 new_folio = false; 5850 folio = filemap_lock_folio(mapping, idx); 5851 if (IS_ERR(folio)) { 5852 size = i_size_read(mapping->host) >> huge_page_shift(h); 5853 if (idx >= size) 5854 goto out; 5855 /* Check for page in userfault range */ 5856 if (userfaultfd_missing(vma)) { 5857 /* 5858 * Since hugetlb_no_page() was examining pte 5859 * without pgtable lock, we need to re-test under 5860 * lock because the pte may not be stable and could 5861 * have changed from under us. Try to detect 5862 * either changed or during-changing ptes and retry 5863 * properly when needed. 5864 * 5865 * Note that userfaultfd is actually fine with 5866 * false positives (e.g. caused by pte changed), 5867 * but not wrong logical events (e.g. caused by 5868 * reading a pte during changing). The latter can 5869 * confuse the userspace, so the strictness is very 5870 * much preferred. E.g., MISSING event should 5871 * never happen on the page after UFFDIO_COPY has 5872 * correctly installed the page and returned. 5873 */ 5874 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5875 ret = 0; 5876 goto out; 5877 } 5878 5879 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5880 haddr, address, 5881 VM_UFFD_MISSING); 5882 } 5883 5884 folio = alloc_hugetlb_folio(vma, haddr, 0); 5885 if (IS_ERR(folio)) { 5886 /* 5887 * Returning error will result in faulting task being 5888 * sent SIGBUS. The hugetlb fault mutex prevents two 5889 * tasks from racing to fault in the same page which 5890 * could result in false unable to allocate errors. 5891 * Page migration does not take the fault mutex, but 5892 * does a clear then write of pte's under page table 5893 * lock. Page fault code could race with migration, 5894 * notice the clear pte and try to allocate a page 5895 * here. Before returning error, get ptl and make 5896 * sure there really is no pte entry. 5897 */ 5898 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5899 ret = vmf_error(PTR_ERR(folio)); 5900 else 5901 ret = 0; 5902 goto out; 5903 } 5904 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5905 __folio_mark_uptodate(folio); 5906 new_folio = true; 5907 5908 if (vma->vm_flags & VM_MAYSHARE) { 5909 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5910 if (err) { 5911 /* 5912 * err can't be -EEXIST which implies someone 5913 * else consumed the reservation since hugetlb 5914 * fault mutex is held when add a hugetlb page 5915 * to the page cache. So it's safe to call 5916 * restore_reserve_on_error() here. 5917 */ 5918 restore_reserve_on_error(h, vma, haddr, folio); 5919 folio_put(folio); 5920 goto out; 5921 } 5922 new_pagecache_folio = true; 5923 } else { 5924 folio_lock(folio); 5925 if (unlikely(anon_vma_prepare(vma))) { 5926 ret = VM_FAULT_OOM; 5927 goto backout_unlocked; 5928 } 5929 anon_rmap = 1; 5930 } 5931 } else { 5932 /* 5933 * If memory error occurs between mmap() and fault, some process 5934 * don't have hwpoisoned swap entry for errored virtual address. 5935 * So we need to block hugepage fault by PG_hwpoison bit check. 5936 */ 5937 if (unlikely(folio_test_hwpoison(folio))) { 5938 ret = VM_FAULT_HWPOISON_LARGE | 5939 VM_FAULT_SET_HINDEX(hstate_index(h)); 5940 goto backout_unlocked; 5941 } 5942 5943 /* Check for page in userfault range. */ 5944 if (userfaultfd_minor(vma)) { 5945 folio_unlock(folio); 5946 folio_put(folio); 5947 /* See comment in userfaultfd_missing() block above */ 5948 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5949 ret = 0; 5950 goto out; 5951 } 5952 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5953 haddr, address, 5954 VM_UFFD_MINOR); 5955 } 5956 } 5957 5958 /* 5959 * If we are going to COW a private mapping later, we examine the 5960 * pending reservations for this page now. This will ensure that 5961 * any allocations necessary to record that reservation occur outside 5962 * the spinlock. 5963 */ 5964 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5965 if (vma_needs_reservation(h, vma, haddr) < 0) { 5966 ret = VM_FAULT_OOM; 5967 goto backout_unlocked; 5968 } 5969 /* Just decrements count, does not deallocate */ 5970 vma_end_reservation(h, vma, haddr); 5971 } 5972 5973 ptl = huge_pte_lock(h, mm, ptep); 5974 ret = 0; 5975 /* If pte changed from under us, retry */ 5976 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5977 goto backout; 5978 5979 if (anon_rmap) 5980 hugepage_add_new_anon_rmap(folio, vma, haddr); 5981 else 5982 page_dup_file_rmap(&folio->page, true); 5983 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 5984 && (vma->vm_flags & VM_SHARED))); 5985 /* 5986 * If this pte was previously wr-protected, keep it wr-protected even 5987 * if populated. 5988 */ 5989 if (unlikely(pte_marker_uffd_wp(old_pte))) 5990 new_pte = huge_pte_mkuffd_wp(new_pte); 5991 set_huge_pte_at(mm, haddr, ptep, new_pte); 5992 5993 hugetlb_count_add(pages_per_huge_page(h), mm); 5994 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5995 /* Optimization, do the COW without a second fault */ 5996 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 5997 } 5998 5999 spin_unlock(ptl); 6000 6001 /* 6002 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6003 * found in the pagecache may not have hugetlb_migratable if they have 6004 * been isolated for migration. 6005 */ 6006 if (new_folio) 6007 folio_set_hugetlb_migratable(folio); 6008 6009 folio_unlock(folio); 6010 out: 6011 hugetlb_vma_unlock_read(vma); 6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6013 return ret; 6014 6015 backout: 6016 spin_unlock(ptl); 6017 backout_unlocked: 6018 if (new_folio && !new_pagecache_folio) 6019 restore_reserve_on_error(h, vma, haddr, folio); 6020 6021 folio_unlock(folio); 6022 folio_put(folio); 6023 goto out; 6024 } 6025 6026 #ifdef CONFIG_SMP 6027 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6028 { 6029 unsigned long key[2]; 6030 u32 hash; 6031 6032 key[0] = (unsigned long) mapping; 6033 key[1] = idx; 6034 6035 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6036 6037 return hash & (num_fault_mutexes - 1); 6038 } 6039 #else 6040 /* 6041 * For uniprocessor systems we always use a single mutex, so just 6042 * return 0 and avoid the hashing overhead. 6043 */ 6044 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6045 { 6046 return 0; 6047 } 6048 #endif 6049 6050 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6051 unsigned long address, unsigned int flags) 6052 { 6053 pte_t *ptep, entry; 6054 spinlock_t *ptl; 6055 vm_fault_t ret; 6056 u32 hash; 6057 pgoff_t idx; 6058 struct folio *folio = NULL; 6059 struct folio *pagecache_folio = NULL; 6060 struct hstate *h = hstate_vma(vma); 6061 struct address_space *mapping; 6062 int need_wait_lock = 0; 6063 unsigned long haddr = address & huge_page_mask(h); 6064 6065 /* TODO: Handle faults under the VMA lock */ 6066 if (flags & FAULT_FLAG_VMA_LOCK) { 6067 vma_end_read(vma); 6068 return VM_FAULT_RETRY; 6069 } 6070 6071 /* 6072 * Serialize hugepage allocation and instantiation, so that we don't 6073 * get spurious allocation failures if two CPUs race to instantiate 6074 * the same page in the page cache. 6075 */ 6076 mapping = vma->vm_file->f_mapping; 6077 idx = vma_hugecache_offset(h, vma, haddr); 6078 hash = hugetlb_fault_mutex_hash(mapping, idx); 6079 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6080 6081 /* 6082 * Acquire vma lock before calling huge_pte_alloc and hold 6083 * until finished with ptep. This prevents huge_pmd_unshare from 6084 * being called elsewhere and making the ptep no longer valid. 6085 */ 6086 hugetlb_vma_lock_read(vma); 6087 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6088 if (!ptep) { 6089 hugetlb_vma_unlock_read(vma); 6090 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6091 return VM_FAULT_OOM; 6092 } 6093 6094 entry = huge_ptep_get(ptep); 6095 if (huge_pte_none_mostly(entry)) { 6096 if (is_pte_marker(entry)) { 6097 pte_marker marker = 6098 pte_marker_get(pte_to_swp_entry(entry)); 6099 6100 if (marker & PTE_MARKER_POISONED) { 6101 ret = VM_FAULT_HWPOISON_LARGE; 6102 goto out_mutex; 6103 } 6104 } 6105 6106 /* 6107 * Other PTE markers should be handled the same way as none PTE. 6108 * 6109 * hugetlb_no_page will drop vma lock and hugetlb fault 6110 * mutex internally, which make us return immediately. 6111 */ 6112 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6113 entry, flags); 6114 } 6115 6116 ret = 0; 6117 6118 /* 6119 * entry could be a migration/hwpoison entry at this point, so this 6120 * check prevents the kernel from going below assuming that we have 6121 * an active hugepage in pagecache. This goto expects the 2nd page 6122 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6123 * properly handle it. 6124 */ 6125 if (!pte_present(entry)) { 6126 if (unlikely(is_hugetlb_entry_migration(entry))) { 6127 /* 6128 * Release the hugetlb fault lock now, but retain 6129 * the vma lock, because it is needed to guard the 6130 * huge_pte_lockptr() later in 6131 * migration_entry_wait_huge(). The vma lock will 6132 * be released there. 6133 */ 6134 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6135 migration_entry_wait_huge(vma, ptep); 6136 return 0; 6137 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6138 ret = VM_FAULT_HWPOISON_LARGE | 6139 VM_FAULT_SET_HINDEX(hstate_index(h)); 6140 goto out_mutex; 6141 } 6142 6143 /* 6144 * If we are going to COW/unshare the mapping later, we examine the 6145 * pending reservations for this page now. This will ensure that any 6146 * allocations necessary to record that reservation occur outside the 6147 * spinlock. Also lookup the pagecache page now as it is used to 6148 * determine if a reservation has been consumed. 6149 */ 6150 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6151 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6152 if (vma_needs_reservation(h, vma, haddr) < 0) { 6153 ret = VM_FAULT_OOM; 6154 goto out_mutex; 6155 } 6156 /* Just decrements count, does not deallocate */ 6157 vma_end_reservation(h, vma, haddr); 6158 6159 pagecache_folio = filemap_lock_folio(mapping, idx); 6160 if (IS_ERR(pagecache_folio)) 6161 pagecache_folio = NULL; 6162 } 6163 6164 ptl = huge_pte_lock(h, mm, ptep); 6165 6166 /* Check for a racing update before calling hugetlb_wp() */ 6167 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6168 goto out_ptl; 6169 6170 /* Handle userfault-wp first, before trying to lock more pages */ 6171 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6172 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6173 struct vm_fault vmf = { 6174 .vma = vma, 6175 .address = haddr, 6176 .real_address = address, 6177 .flags = flags, 6178 }; 6179 6180 spin_unlock(ptl); 6181 if (pagecache_folio) { 6182 folio_unlock(pagecache_folio); 6183 folio_put(pagecache_folio); 6184 } 6185 hugetlb_vma_unlock_read(vma); 6186 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6187 return handle_userfault(&vmf, VM_UFFD_WP); 6188 } 6189 6190 /* 6191 * hugetlb_wp() requires page locks of pte_page(entry) and 6192 * pagecache_folio, so here we need take the former one 6193 * when folio != pagecache_folio or !pagecache_folio. 6194 */ 6195 folio = page_folio(pte_page(entry)); 6196 if (folio != pagecache_folio) 6197 if (!folio_trylock(folio)) { 6198 need_wait_lock = 1; 6199 goto out_ptl; 6200 } 6201 6202 folio_get(folio); 6203 6204 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6205 if (!huge_pte_write(entry)) { 6206 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6207 pagecache_folio, ptl); 6208 goto out_put_page; 6209 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6210 entry = huge_pte_mkdirty(entry); 6211 } 6212 } 6213 entry = pte_mkyoung(entry); 6214 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6215 flags & FAULT_FLAG_WRITE)) 6216 update_mmu_cache(vma, haddr, ptep); 6217 out_put_page: 6218 if (folio != pagecache_folio) 6219 folio_unlock(folio); 6220 folio_put(folio); 6221 out_ptl: 6222 spin_unlock(ptl); 6223 6224 if (pagecache_folio) { 6225 folio_unlock(pagecache_folio); 6226 folio_put(pagecache_folio); 6227 } 6228 out_mutex: 6229 hugetlb_vma_unlock_read(vma); 6230 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6231 /* 6232 * Generally it's safe to hold refcount during waiting page lock. But 6233 * here we just wait to defer the next page fault to avoid busy loop and 6234 * the page is not used after unlocked before returning from the current 6235 * page fault. So we are safe from accessing freed page, even if we wait 6236 * here without taking refcount. 6237 */ 6238 if (need_wait_lock) 6239 folio_wait_locked(folio); 6240 return ret; 6241 } 6242 6243 #ifdef CONFIG_USERFAULTFD 6244 /* 6245 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6246 * with modifications for hugetlb pages. 6247 */ 6248 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6249 struct vm_area_struct *dst_vma, 6250 unsigned long dst_addr, 6251 unsigned long src_addr, 6252 uffd_flags_t flags, 6253 struct folio **foliop) 6254 { 6255 struct mm_struct *dst_mm = dst_vma->vm_mm; 6256 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6257 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6258 struct hstate *h = hstate_vma(dst_vma); 6259 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6260 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6261 unsigned long size; 6262 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6263 pte_t _dst_pte; 6264 spinlock_t *ptl; 6265 int ret = -ENOMEM; 6266 struct folio *folio; 6267 int writable; 6268 bool folio_in_pagecache = false; 6269 6270 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6271 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6272 6273 /* Don't overwrite any existing PTEs (even markers) */ 6274 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6275 spin_unlock(ptl); 6276 return -EEXIST; 6277 } 6278 6279 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6280 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6281 6282 /* No need to invalidate - it was non-present before */ 6283 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6284 6285 spin_unlock(ptl); 6286 return 0; 6287 } 6288 6289 if (is_continue) { 6290 ret = -EFAULT; 6291 folio = filemap_lock_folio(mapping, idx); 6292 if (IS_ERR(folio)) 6293 goto out; 6294 folio_in_pagecache = true; 6295 } else if (!*foliop) { 6296 /* If a folio already exists, then it's UFFDIO_COPY for 6297 * a non-missing case. Return -EEXIST. 6298 */ 6299 if (vm_shared && 6300 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6301 ret = -EEXIST; 6302 goto out; 6303 } 6304 6305 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6306 if (IS_ERR(folio)) { 6307 ret = -ENOMEM; 6308 goto out; 6309 } 6310 6311 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6312 false); 6313 6314 /* fallback to copy_from_user outside mmap_lock */ 6315 if (unlikely(ret)) { 6316 ret = -ENOENT; 6317 /* Free the allocated folio which may have 6318 * consumed a reservation. 6319 */ 6320 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6321 folio_put(folio); 6322 6323 /* Allocate a temporary folio to hold the copied 6324 * contents. 6325 */ 6326 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6327 if (!folio) { 6328 ret = -ENOMEM; 6329 goto out; 6330 } 6331 *foliop = folio; 6332 /* Set the outparam foliop and return to the caller to 6333 * copy the contents outside the lock. Don't free the 6334 * folio. 6335 */ 6336 goto out; 6337 } 6338 } else { 6339 if (vm_shared && 6340 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6341 folio_put(*foliop); 6342 ret = -EEXIST; 6343 *foliop = NULL; 6344 goto out; 6345 } 6346 6347 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6348 if (IS_ERR(folio)) { 6349 folio_put(*foliop); 6350 ret = -ENOMEM; 6351 *foliop = NULL; 6352 goto out; 6353 } 6354 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6355 folio_put(*foliop); 6356 *foliop = NULL; 6357 if (ret) { 6358 folio_put(folio); 6359 goto out; 6360 } 6361 } 6362 6363 /* 6364 * The memory barrier inside __folio_mark_uptodate makes sure that 6365 * preceding stores to the page contents become visible before 6366 * the set_pte_at() write. 6367 */ 6368 __folio_mark_uptodate(folio); 6369 6370 /* Add shared, newly allocated pages to the page cache. */ 6371 if (vm_shared && !is_continue) { 6372 size = i_size_read(mapping->host) >> huge_page_shift(h); 6373 ret = -EFAULT; 6374 if (idx >= size) 6375 goto out_release_nounlock; 6376 6377 /* 6378 * Serialization between remove_inode_hugepages() and 6379 * hugetlb_add_to_page_cache() below happens through the 6380 * hugetlb_fault_mutex_table that here must be hold by 6381 * the caller. 6382 */ 6383 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6384 if (ret) 6385 goto out_release_nounlock; 6386 folio_in_pagecache = true; 6387 } 6388 6389 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6390 6391 ret = -EIO; 6392 if (folio_test_hwpoison(folio)) 6393 goto out_release_unlock; 6394 6395 /* 6396 * We allow to overwrite a pte marker: consider when both MISSING|WP 6397 * registered, we firstly wr-protect a none pte which has no page cache 6398 * page backing it, then access the page. 6399 */ 6400 ret = -EEXIST; 6401 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6402 goto out_release_unlock; 6403 6404 if (folio_in_pagecache) 6405 page_dup_file_rmap(&folio->page, true); 6406 else 6407 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6408 6409 /* 6410 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6411 * with wp flag set, don't set pte write bit. 6412 */ 6413 if (wp_enabled || (is_continue && !vm_shared)) 6414 writable = 0; 6415 else 6416 writable = dst_vma->vm_flags & VM_WRITE; 6417 6418 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6419 /* 6420 * Always mark UFFDIO_COPY page dirty; note that this may not be 6421 * extremely important for hugetlbfs for now since swapping is not 6422 * supported, but we should still be clear in that this page cannot be 6423 * thrown away at will, even if write bit not set. 6424 */ 6425 _dst_pte = huge_pte_mkdirty(_dst_pte); 6426 _dst_pte = pte_mkyoung(_dst_pte); 6427 6428 if (wp_enabled) 6429 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6430 6431 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6432 6433 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6434 6435 /* No need to invalidate - it was non-present before */ 6436 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6437 6438 spin_unlock(ptl); 6439 if (!is_continue) 6440 folio_set_hugetlb_migratable(folio); 6441 if (vm_shared || is_continue) 6442 folio_unlock(folio); 6443 ret = 0; 6444 out: 6445 return ret; 6446 out_release_unlock: 6447 spin_unlock(ptl); 6448 if (vm_shared || is_continue) 6449 folio_unlock(folio); 6450 out_release_nounlock: 6451 if (!folio_in_pagecache) 6452 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6453 folio_put(folio); 6454 goto out; 6455 } 6456 #endif /* CONFIG_USERFAULTFD */ 6457 6458 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6459 unsigned long address, unsigned int flags, 6460 unsigned int *page_mask) 6461 { 6462 struct hstate *h = hstate_vma(vma); 6463 struct mm_struct *mm = vma->vm_mm; 6464 unsigned long haddr = address & huge_page_mask(h); 6465 struct page *page = NULL; 6466 spinlock_t *ptl; 6467 pte_t *pte, entry; 6468 int ret; 6469 6470 hugetlb_vma_lock_read(vma); 6471 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6472 if (!pte) 6473 goto out_unlock; 6474 6475 ptl = huge_pte_lock(h, mm, pte); 6476 entry = huge_ptep_get(pte); 6477 if (pte_present(entry)) { 6478 page = pte_page(entry); 6479 6480 if (!huge_pte_write(entry)) { 6481 if (flags & FOLL_WRITE) { 6482 page = NULL; 6483 goto out; 6484 } 6485 6486 if (gup_must_unshare(vma, flags, page)) { 6487 /* Tell the caller to do unsharing */ 6488 page = ERR_PTR(-EMLINK); 6489 goto out; 6490 } 6491 } 6492 6493 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6494 6495 /* 6496 * Note that page may be a sub-page, and with vmemmap 6497 * optimizations the page struct may be read only. 6498 * try_grab_page() will increase the ref count on the 6499 * head page, so this will be OK. 6500 * 6501 * try_grab_page() should always be able to get the page here, 6502 * because we hold the ptl lock and have verified pte_present(). 6503 */ 6504 ret = try_grab_page(page, flags); 6505 6506 if (WARN_ON_ONCE(ret)) { 6507 page = ERR_PTR(ret); 6508 goto out; 6509 } 6510 6511 *page_mask = (1U << huge_page_order(h)) - 1; 6512 } 6513 out: 6514 spin_unlock(ptl); 6515 out_unlock: 6516 hugetlb_vma_unlock_read(vma); 6517 6518 /* 6519 * Fixup retval for dump requests: if pagecache doesn't exist, 6520 * don't try to allocate a new page but just skip it. 6521 */ 6522 if (!page && (flags & FOLL_DUMP) && 6523 !hugetlbfs_pagecache_present(h, vma, address)) 6524 page = ERR_PTR(-EFAULT); 6525 6526 return page; 6527 } 6528 6529 long hugetlb_change_protection(struct vm_area_struct *vma, 6530 unsigned long address, unsigned long end, 6531 pgprot_t newprot, unsigned long cp_flags) 6532 { 6533 struct mm_struct *mm = vma->vm_mm; 6534 unsigned long start = address; 6535 pte_t *ptep; 6536 pte_t pte; 6537 struct hstate *h = hstate_vma(vma); 6538 long pages = 0, psize = huge_page_size(h); 6539 bool shared_pmd = false; 6540 struct mmu_notifier_range range; 6541 unsigned long last_addr_mask; 6542 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6543 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6544 6545 /* 6546 * In the case of shared PMDs, the area to flush could be beyond 6547 * start/end. Set range.start/range.end to cover the maximum possible 6548 * range if PMD sharing is possible. 6549 */ 6550 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6551 0, mm, start, end); 6552 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6553 6554 BUG_ON(address >= end); 6555 flush_cache_range(vma, range.start, range.end); 6556 6557 mmu_notifier_invalidate_range_start(&range); 6558 hugetlb_vma_lock_write(vma); 6559 i_mmap_lock_write(vma->vm_file->f_mapping); 6560 last_addr_mask = hugetlb_mask_last_page(h); 6561 for (; address < end; address += psize) { 6562 spinlock_t *ptl; 6563 ptep = hugetlb_walk(vma, address, psize); 6564 if (!ptep) { 6565 if (!uffd_wp) { 6566 address |= last_addr_mask; 6567 continue; 6568 } 6569 /* 6570 * Userfaultfd wr-protect requires pgtable 6571 * pre-allocations to install pte markers. 6572 */ 6573 ptep = huge_pte_alloc(mm, vma, address, psize); 6574 if (!ptep) { 6575 pages = -ENOMEM; 6576 break; 6577 } 6578 } 6579 ptl = huge_pte_lock(h, mm, ptep); 6580 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6581 /* 6582 * When uffd-wp is enabled on the vma, unshare 6583 * shouldn't happen at all. Warn about it if it 6584 * happened due to some reason. 6585 */ 6586 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6587 pages++; 6588 spin_unlock(ptl); 6589 shared_pmd = true; 6590 address |= last_addr_mask; 6591 continue; 6592 } 6593 pte = huge_ptep_get(ptep); 6594 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6595 /* Nothing to do. */ 6596 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6597 swp_entry_t entry = pte_to_swp_entry(pte); 6598 struct page *page = pfn_swap_entry_to_page(entry); 6599 pte_t newpte = pte; 6600 6601 if (is_writable_migration_entry(entry)) { 6602 if (PageAnon(page)) 6603 entry = make_readable_exclusive_migration_entry( 6604 swp_offset(entry)); 6605 else 6606 entry = make_readable_migration_entry( 6607 swp_offset(entry)); 6608 newpte = swp_entry_to_pte(entry); 6609 pages++; 6610 } 6611 6612 if (uffd_wp) 6613 newpte = pte_swp_mkuffd_wp(newpte); 6614 else if (uffd_wp_resolve) 6615 newpte = pte_swp_clear_uffd_wp(newpte); 6616 if (!pte_same(pte, newpte)) 6617 set_huge_pte_at(mm, address, ptep, newpte); 6618 } else if (unlikely(is_pte_marker(pte))) { 6619 /* No other markers apply for now. */ 6620 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6621 if (uffd_wp_resolve) 6622 /* Safe to modify directly (non-present->none). */ 6623 huge_pte_clear(mm, address, ptep, psize); 6624 } else if (!huge_pte_none(pte)) { 6625 pte_t old_pte; 6626 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6627 6628 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6629 pte = huge_pte_modify(old_pte, newprot); 6630 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6631 if (uffd_wp) 6632 pte = huge_pte_mkuffd_wp(pte); 6633 else if (uffd_wp_resolve) 6634 pte = huge_pte_clear_uffd_wp(pte); 6635 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6636 pages++; 6637 } else { 6638 /* None pte */ 6639 if (unlikely(uffd_wp)) 6640 /* Safe to modify directly (none->non-present). */ 6641 set_huge_pte_at(mm, address, ptep, 6642 make_pte_marker(PTE_MARKER_UFFD_WP)); 6643 } 6644 spin_unlock(ptl); 6645 } 6646 /* 6647 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6648 * may have cleared our pud entry and done put_page on the page table: 6649 * once we release i_mmap_rwsem, another task can do the final put_page 6650 * and that page table be reused and filled with junk. If we actually 6651 * did unshare a page of pmds, flush the range corresponding to the pud. 6652 */ 6653 if (shared_pmd) 6654 flush_hugetlb_tlb_range(vma, range.start, range.end); 6655 else 6656 flush_hugetlb_tlb_range(vma, start, end); 6657 /* 6658 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6659 * downgrading page table protection not changing it to point to a new 6660 * page. 6661 * 6662 * See Documentation/mm/mmu_notifier.rst 6663 */ 6664 i_mmap_unlock_write(vma->vm_file->f_mapping); 6665 hugetlb_vma_unlock_write(vma); 6666 mmu_notifier_invalidate_range_end(&range); 6667 6668 return pages > 0 ? (pages << h->order) : pages; 6669 } 6670 6671 /* Return true if reservation was successful, false otherwise. */ 6672 bool hugetlb_reserve_pages(struct inode *inode, 6673 long from, long to, 6674 struct vm_area_struct *vma, 6675 vm_flags_t vm_flags) 6676 { 6677 long chg = -1, add = -1; 6678 struct hstate *h = hstate_inode(inode); 6679 struct hugepage_subpool *spool = subpool_inode(inode); 6680 struct resv_map *resv_map; 6681 struct hugetlb_cgroup *h_cg = NULL; 6682 long gbl_reserve, regions_needed = 0; 6683 6684 /* This should never happen */ 6685 if (from > to) { 6686 VM_WARN(1, "%s called with a negative range\n", __func__); 6687 return false; 6688 } 6689 6690 /* 6691 * vma specific semaphore used for pmd sharing and fault/truncation 6692 * synchronization 6693 */ 6694 hugetlb_vma_lock_alloc(vma); 6695 6696 /* 6697 * Only apply hugepage reservation if asked. At fault time, an 6698 * attempt will be made for VM_NORESERVE to allocate a page 6699 * without using reserves 6700 */ 6701 if (vm_flags & VM_NORESERVE) 6702 return true; 6703 6704 /* 6705 * Shared mappings base their reservation on the number of pages that 6706 * are already allocated on behalf of the file. Private mappings need 6707 * to reserve the full area even if read-only as mprotect() may be 6708 * called to make the mapping read-write. Assume !vma is a shm mapping 6709 */ 6710 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6711 /* 6712 * resv_map can not be NULL as hugetlb_reserve_pages is only 6713 * called for inodes for which resv_maps were created (see 6714 * hugetlbfs_get_inode). 6715 */ 6716 resv_map = inode_resv_map(inode); 6717 6718 chg = region_chg(resv_map, from, to, ®ions_needed); 6719 } else { 6720 /* Private mapping. */ 6721 resv_map = resv_map_alloc(); 6722 if (!resv_map) 6723 goto out_err; 6724 6725 chg = to - from; 6726 6727 set_vma_resv_map(vma, resv_map); 6728 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6729 } 6730 6731 if (chg < 0) 6732 goto out_err; 6733 6734 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6735 chg * pages_per_huge_page(h), &h_cg) < 0) 6736 goto out_err; 6737 6738 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6739 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6740 * of the resv_map. 6741 */ 6742 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6743 } 6744 6745 /* 6746 * There must be enough pages in the subpool for the mapping. If 6747 * the subpool has a minimum size, there may be some global 6748 * reservations already in place (gbl_reserve). 6749 */ 6750 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6751 if (gbl_reserve < 0) 6752 goto out_uncharge_cgroup; 6753 6754 /* 6755 * Check enough hugepages are available for the reservation. 6756 * Hand the pages back to the subpool if there are not 6757 */ 6758 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6759 goto out_put_pages; 6760 6761 /* 6762 * Account for the reservations made. Shared mappings record regions 6763 * that have reservations as they are shared by multiple VMAs. 6764 * When the last VMA disappears, the region map says how much 6765 * the reservation was and the page cache tells how much of 6766 * the reservation was consumed. Private mappings are per-VMA and 6767 * only the consumed reservations are tracked. When the VMA 6768 * disappears, the original reservation is the VMA size and the 6769 * consumed reservations are stored in the map. Hence, nothing 6770 * else has to be done for private mappings here 6771 */ 6772 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6773 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6774 6775 if (unlikely(add < 0)) { 6776 hugetlb_acct_memory(h, -gbl_reserve); 6777 goto out_put_pages; 6778 } else if (unlikely(chg > add)) { 6779 /* 6780 * pages in this range were added to the reserve 6781 * map between region_chg and region_add. This 6782 * indicates a race with alloc_hugetlb_folio. Adjust 6783 * the subpool and reserve counts modified above 6784 * based on the difference. 6785 */ 6786 long rsv_adjust; 6787 6788 /* 6789 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6790 * reference to h_cg->css. See comment below for detail. 6791 */ 6792 hugetlb_cgroup_uncharge_cgroup_rsvd( 6793 hstate_index(h), 6794 (chg - add) * pages_per_huge_page(h), h_cg); 6795 6796 rsv_adjust = hugepage_subpool_put_pages(spool, 6797 chg - add); 6798 hugetlb_acct_memory(h, -rsv_adjust); 6799 } else if (h_cg) { 6800 /* 6801 * The file_regions will hold their own reference to 6802 * h_cg->css. So we should release the reference held 6803 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6804 * done. 6805 */ 6806 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6807 } 6808 } 6809 return true; 6810 6811 out_put_pages: 6812 /* put back original number of pages, chg */ 6813 (void)hugepage_subpool_put_pages(spool, chg); 6814 out_uncharge_cgroup: 6815 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6816 chg * pages_per_huge_page(h), h_cg); 6817 out_err: 6818 hugetlb_vma_lock_free(vma); 6819 if (!vma || vma->vm_flags & VM_MAYSHARE) 6820 /* Only call region_abort if the region_chg succeeded but the 6821 * region_add failed or didn't run. 6822 */ 6823 if (chg >= 0 && add < 0) 6824 region_abort(resv_map, from, to, regions_needed); 6825 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6826 kref_put(&resv_map->refs, resv_map_release); 6827 return false; 6828 } 6829 6830 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6831 long freed) 6832 { 6833 struct hstate *h = hstate_inode(inode); 6834 struct resv_map *resv_map = inode_resv_map(inode); 6835 long chg = 0; 6836 struct hugepage_subpool *spool = subpool_inode(inode); 6837 long gbl_reserve; 6838 6839 /* 6840 * Since this routine can be called in the evict inode path for all 6841 * hugetlbfs inodes, resv_map could be NULL. 6842 */ 6843 if (resv_map) { 6844 chg = region_del(resv_map, start, end); 6845 /* 6846 * region_del() can fail in the rare case where a region 6847 * must be split and another region descriptor can not be 6848 * allocated. If end == LONG_MAX, it will not fail. 6849 */ 6850 if (chg < 0) 6851 return chg; 6852 } 6853 6854 spin_lock(&inode->i_lock); 6855 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6856 spin_unlock(&inode->i_lock); 6857 6858 /* 6859 * If the subpool has a minimum size, the number of global 6860 * reservations to be released may be adjusted. 6861 * 6862 * Note that !resv_map implies freed == 0. So (chg - freed) 6863 * won't go negative. 6864 */ 6865 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6866 hugetlb_acct_memory(h, -gbl_reserve); 6867 6868 return 0; 6869 } 6870 6871 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6872 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6873 struct vm_area_struct *vma, 6874 unsigned long addr, pgoff_t idx) 6875 { 6876 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6877 svma->vm_start; 6878 unsigned long sbase = saddr & PUD_MASK; 6879 unsigned long s_end = sbase + PUD_SIZE; 6880 6881 /* Allow segments to share if only one is marked locked */ 6882 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6883 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6884 6885 /* 6886 * match the virtual addresses, permission and the alignment of the 6887 * page table page. 6888 * 6889 * Also, vma_lock (vm_private_data) is required for sharing. 6890 */ 6891 if (pmd_index(addr) != pmd_index(saddr) || 6892 vm_flags != svm_flags || 6893 !range_in_vma(svma, sbase, s_end) || 6894 !svma->vm_private_data) 6895 return 0; 6896 6897 return saddr; 6898 } 6899 6900 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6901 { 6902 unsigned long start = addr & PUD_MASK; 6903 unsigned long end = start + PUD_SIZE; 6904 6905 #ifdef CONFIG_USERFAULTFD 6906 if (uffd_disable_huge_pmd_share(vma)) 6907 return false; 6908 #endif 6909 /* 6910 * check on proper vm_flags and page table alignment 6911 */ 6912 if (!(vma->vm_flags & VM_MAYSHARE)) 6913 return false; 6914 if (!vma->vm_private_data) /* vma lock required for sharing */ 6915 return false; 6916 if (!range_in_vma(vma, start, end)) 6917 return false; 6918 return true; 6919 } 6920 6921 /* 6922 * Determine if start,end range within vma could be mapped by shared pmd. 6923 * If yes, adjust start and end to cover range associated with possible 6924 * shared pmd mappings. 6925 */ 6926 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6927 unsigned long *start, unsigned long *end) 6928 { 6929 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6930 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6931 6932 /* 6933 * vma needs to span at least one aligned PUD size, and the range 6934 * must be at least partially within in. 6935 */ 6936 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6937 (*end <= v_start) || (*start >= v_end)) 6938 return; 6939 6940 /* Extend the range to be PUD aligned for a worst case scenario */ 6941 if (*start > v_start) 6942 *start = ALIGN_DOWN(*start, PUD_SIZE); 6943 6944 if (*end < v_end) 6945 *end = ALIGN(*end, PUD_SIZE); 6946 } 6947 6948 /* 6949 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6950 * and returns the corresponding pte. While this is not necessary for the 6951 * !shared pmd case because we can allocate the pmd later as well, it makes the 6952 * code much cleaner. pmd allocation is essential for the shared case because 6953 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6954 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6955 * bad pmd for sharing. 6956 */ 6957 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6958 unsigned long addr, pud_t *pud) 6959 { 6960 struct address_space *mapping = vma->vm_file->f_mapping; 6961 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6962 vma->vm_pgoff; 6963 struct vm_area_struct *svma; 6964 unsigned long saddr; 6965 pte_t *spte = NULL; 6966 pte_t *pte; 6967 6968 i_mmap_lock_read(mapping); 6969 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6970 if (svma == vma) 6971 continue; 6972 6973 saddr = page_table_shareable(svma, vma, addr, idx); 6974 if (saddr) { 6975 spte = hugetlb_walk(svma, saddr, 6976 vma_mmu_pagesize(svma)); 6977 if (spte) { 6978 get_page(virt_to_page(spte)); 6979 break; 6980 } 6981 } 6982 } 6983 6984 if (!spte) 6985 goto out; 6986 6987 spin_lock(&mm->page_table_lock); 6988 if (pud_none(*pud)) { 6989 pud_populate(mm, pud, 6990 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6991 mm_inc_nr_pmds(mm); 6992 } else { 6993 put_page(virt_to_page(spte)); 6994 } 6995 spin_unlock(&mm->page_table_lock); 6996 out: 6997 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6998 i_mmap_unlock_read(mapping); 6999 return pte; 7000 } 7001 7002 /* 7003 * unmap huge page backed by shared pte. 7004 * 7005 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7006 * indicated by page_count > 1, unmap is achieved by clearing pud and 7007 * decrementing the ref count. If count == 1, the pte page is not shared. 7008 * 7009 * Called with page table lock held. 7010 * 7011 * returns: 1 successfully unmapped a shared pte page 7012 * 0 the underlying pte page is not shared, or it is the last user 7013 */ 7014 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7015 unsigned long addr, pte_t *ptep) 7016 { 7017 pgd_t *pgd = pgd_offset(mm, addr); 7018 p4d_t *p4d = p4d_offset(pgd, addr); 7019 pud_t *pud = pud_offset(p4d, addr); 7020 7021 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7022 hugetlb_vma_assert_locked(vma); 7023 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7024 if (page_count(virt_to_page(ptep)) == 1) 7025 return 0; 7026 7027 pud_clear(pud); 7028 put_page(virt_to_page(ptep)); 7029 mm_dec_nr_pmds(mm); 7030 return 1; 7031 } 7032 7033 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7034 7035 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7036 unsigned long addr, pud_t *pud) 7037 { 7038 return NULL; 7039 } 7040 7041 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7042 unsigned long addr, pte_t *ptep) 7043 { 7044 return 0; 7045 } 7046 7047 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7048 unsigned long *start, unsigned long *end) 7049 { 7050 } 7051 7052 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7053 { 7054 return false; 7055 } 7056 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7057 7058 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7059 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7060 unsigned long addr, unsigned long sz) 7061 { 7062 pgd_t *pgd; 7063 p4d_t *p4d; 7064 pud_t *pud; 7065 pte_t *pte = NULL; 7066 7067 pgd = pgd_offset(mm, addr); 7068 p4d = p4d_alloc(mm, pgd, addr); 7069 if (!p4d) 7070 return NULL; 7071 pud = pud_alloc(mm, p4d, addr); 7072 if (pud) { 7073 if (sz == PUD_SIZE) { 7074 pte = (pte_t *)pud; 7075 } else { 7076 BUG_ON(sz != PMD_SIZE); 7077 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7078 pte = huge_pmd_share(mm, vma, addr, pud); 7079 else 7080 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7081 } 7082 } 7083 7084 if (pte) { 7085 pte_t pteval = ptep_get_lockless(pte); 7086 7087 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7088 } 7089 7090 return pte; 7091 } 7092 7093 /* 7094 * huge_pte_offset() - Walk the page table to resolve the hugepage 7095 * entry at address @addr 7096 * 7097 * Return: Pointer to page table entry (PUD or PMD) for 7098 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7099 * size @sz doesn't match the hugepage size at this level of the page 7100 * table. 7101 */ 7102 pte_t *huge_pte_offset(struct mm_struct *mm, 7103 unsigned long addr, unsigned long sz) 7104 { 7105 pgd_t *pgd; 7106 p4d_t *p4d; 7107 pud_t *pud; 7108 pmd_t *pmd; 7109 7110 pgd = pgd_offset(mm, addr); 7111 if (!pgd_present(*pgd)) 7112 return NULL; 7113 p4d = p4d_offset(pgd, addr); 7114 if (!p4d_present(*p4d)) 7115 return NULL; 7116 7117 pud = pud_offset(p4d, addr); 7118 if (sz == PUD_SIZE) 7119 /* must be pud huge, non-present or none */ 7120 return (pte_t *)pud; 7121 if (!pud_present(*pud)) 7122 return NULL; 7123 /* must have a valid entry and size to go further */ 7124 7125 pmd = pmd_offset(pud, addr); 7126 /* must be pmd huge, non-present or none */ 7127 return (pte_t *)pmd; 7128 } 7129 7130 /* 7131 * Return a mask that can be used to update an address to the last huge 7132 * page in a page table page mapping size. Used to skip non-present 7133 * page table entries when linearly scanning address ranges. Architectures 7134 * with unique huge page to page table relationships can define their own 7135 * version of this routine. 7136 */ 7137 unsigned long hugetlb_mask_last_page(struct hstate *h) 7138 { 7139 unsigned long hp_size = huge_page_size(h); 7140 7141 if (hp_size == PUD_SIZE) 7142 return P4D_SIZE - PUD_SIZE; 7143 else if (hp_size == PMD_SIZE) 7144 return PUD_SIZE - PMD_SIZE; 7145 else 7146 return 0UL; 7147 } 7148 7149 #else 7150 7151 /* See description above. Architectures can provide their own version. */ 7152 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7153 { 7154 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7155 if (huge_page_size(h) == PMD_SIZE) 7156 return PUD_SIZE - PMD_SIZE; 7157 #endif 7158 return 0UL; 7159 } 7160 7161 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7162 7163 /* 7164 * These functions are overwritable if your architecture needs its own 7165 * behavior. 7166 */ 7167 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7168 { 7169 bool ret = true; 7170 7171 spin_lock_irq(&hugetlb_lock); 7172 if (!folio_test_hugetlb(folio) || 7173 !folio_test_hugetlb_migratable(folio) || 7174 !folio_try_get(folio)) { 7175 ret = false; 7176 goto unlock; 7177 } 7178 folio_clear_hugetlb_migratable(folio); 7179 list_move_tail(&folio->lru, list); 7180 unlock: 7181 spin_unlock_irq(&hugetlb_lock); 7182 return ret; 7183 } 7184 7185 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7186 { 7187 int ret = 0; 7188 7189 *hugetlb = false; 7190 spin_lock_irq(&hugetlb_lock); 7191 if (folio_test_hugetlb(folio)) { 7192 *hugetlb = true; 7193 if (folio_test_hugetlb_freed(folio)) 7194 ret = 0; 7195 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7196 ret = folio_try_get(folio); 7197 else 7198 ret = -EBUSY; 7199 } 7200 spin_unlock_irq(&hugetlb_lock); 7201 return ret; 7202 } 7203 7204 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7205 bool *migratable_cleared) 7206 { 7207 int ret; 7208 7209 spin_lock_irq(&hugetlb_lock); 7210 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7211 spin_unlock_irq(&hugetlb_lock); 7212 return ret; 7213 } 7214 7215 void folio_putback_active_hugetlb(struct folio *folio) 7216 { 7217 spin_lock_irq(&hugetlb_lock); 7218 folio_set_hugetlb_migratable(folio); 7219 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7220 spin_unlock_irq(&hugetlb_lock); 7221 folio_put(folio); 7222 } 7223 7224 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7225 { 7226 struct hstate *h = folio_hstate(old_folio); 7227 7228 hugetlb_cgroup_migrate(old_folio, new_folio); 7229 set_page_owner_migrate_reason(&new_folio->page, reason); 7230 7231 /* 7232 * transfer temporary state of the new hugetlb folio. This is 7233 * reverse to other transitions because the newpage is going to 7234 * be final while the old one will be freed so it takes over 7235 * the temporary status. 7236 * 7237 * Also note that we have to transfer the per-node surplus state 7238 * here as well otherwise the global surplus count will not match 7239 * the per-node's. 7240 */ 7241 if (folio_test_hugetlb_temporary(new_folio)) { 7242 int old_nid = folio_nid(old_folio); 7243 int new_nid = folio_nid(new_folio); 7244 7245 folio_set_hugetlb_temporary(old_folio); 7246 folio_clear_hugetlb_temporary(new_folio); 7247 7248 7249 /* 7250 * There is no need to transfer the per-node surplus state 7251 * when we do not cross the node. 7252 */ 7253 if (new_nid == old_nid) 7254 return; 7255 spin_lock_irq(&hugetlb_lock); 7256 if (h->surplus_huge_pages_node[old_nid]) { 7257 h->surplus_huge_pages_node[old_nid]--; 7258 h->surplus_huge_pages_node[new_nid]++; 7259 } 7260 spin_unlock_irq(&hugetlb_lock); 7261 } 7262 } 7263 7264 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7265 unsigned long start, 7266 unsigned long end) 7267 { 7268 struct hstate *h = hstate_vma(vma); 7269 unsigned long sz = huge_page_size(h); 7270 struct mm_struct *mm = vma->vm_mm; 7271 struct mmu_notifier_range range; 7272 unsigned long address; 7273 spinlock_t *ptl; 7274 pte_t *ptep; 7275 7276 if (!(vma->vm_flags & VM_MAYSHARE)) 7277 return; 7278 7279 if (start >= end) 7280 return; 7281 7282 flush_cache_range(vma, start, end); 7283 /* 7284 * No need to call adjust_range_if_pmd_sharing_possible(), because 7285 * we have already done the PUD_SIZE alignment. 7286 */ 7287 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7288 start, end); 7289 mmu_notifier_invalidate_range_start(&range); 7290 hugetlb_vma_lock_write(vma); 7291 i_mmap_lock_write(vma->vm_file->f_mapping); 7292 for (address = start; address < end; address += PUD_SIZE) { 7293 ptep = hugetlb_walk(vma, address, sz); 7294 if (!ptep) 7295 continue; 7296 ptl = huge_pte_lock(h, mm, ptep); 7297 huge_pmd_unshare(mm, vma, address, ptep); 7298 spin_unlock(ptl); 7299 } 7300 flush_hugetlb_tlb_range(vma, start, end); 7301 i_mmap_unlock_write(vma->vm_file->f_mapping); 7302 hugetlb_vma_unlock_write(vma); 7303 /* 7304 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7305 * Documentation/mm/mmu_notifier.rst. 7306 */ 7307 mmu_notifier_invalidate_range_end(&range); 7308 } 7309 7310 /* 7311 * This function will unconditionally remove all the shared pmd pgtable entries 7312 * within the specific vma for a hugetlbfs memory range. 7313 */ 7314 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7315 { 7316 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7317 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7318 } 7319 7320 #ifdef CONFIG_CMA 7321 static bool cma_reserve_called __initdata; 7322 7323 static int __init cmdline_parse_hugetlb_cma(char *p) 7324 { 7325 int nid, count = 0; 7326 unsigned long tmp; 7327 char *s = p; 7328 7329 while (*s) { 7330 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7331 break; 7332 7333 if (s[count] == ':') { 7334 if (tmp >= MAX_NUMNODES) 7335 break; 7336 nid = array_index_nospec(tmp, MAX_NUMNODES); 7337 7338 s += count + 1; 7339 tmp = memparse(s, &s); 7340 hugetlb_cma_size_in_node[nid] = tmp; 7341 hugetlb_cma_size += tmp; 7342 7343 /* 7344 * Skip the separator if have one, otherwise 7345 * break the parsing. 7346 */ 7347 if (*s == ',') 7348 s++; 7349 else 7350 break; 7351 } else { 7352 hugetlb_cma_size = memparse(p, &p); 7353 break; 7354 } 7355 } 7356 7357 return 0; 7358 } 7359 7360 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7361 7362 void __init hugetlb_cma_reserve(int order) 7363 { 7364 unsigned long size, reserved, per_node; 7365 bool node_specific_cma_alloc = false; 7366 int nid; 7367 7368 cma_reserve_called = true; 7369 7370 if (!hugetlb_cma_size) 7371 return; 7372 7373 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7374 if (hugetlb_cma_size_in_node[nid] == 0) 7375 continue; 7376 7377 if (!node_online(nid)) { 7378 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7379 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7380 hugetlb_cma_size_in_node[nid] = 0; 7381 continue; 7382 } 7383 7384 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7385 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7386 nid, (PAGE_SIZE << order) / SZ_1M); 7387 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7388 hugetlb_cma_size_in_node[nid] = 0; 7389 } else { 7390 node_specific_cma_alloc = true; 7391 } 7392 } 7393 7394 /* Validate the CMA size again in case some invalid nodes specified. */ 7395 if (!hugetlb_cma_size) 7396 return; 7397 7398 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7399 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7400 (PAGE_SIZE << order) / SZ_1M); 7401 hugetlb_cma_size = 0; 7402 return; 7403 } 7404 7405 if (!node_specific_cma_alloc) { 7406 /* 7407 * If 3 GB area is requested on a machine with 4 numa nodes, 7408 * let's allocate 1 GB on first three nodes and ignore the last one. 7409 */ 7410 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7411 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7412 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7413 } 7414 7415 reserved = 0; 7416 for_each_online_node(nid) { 7417 int res; 7418 char name[CMA_MAX_NAME]; 7419 7420 if (node_specific_cma_alloc) { 7421 if (hugetlb_cma_size_in_node[nid] == 0) 7422 continue; 7423 7424 size = hugetlb_cma_size_in_node[nid]; 7425 } else { 7426 size = min(per_node, hugetlb_cma_size - reserved); 7427 } 7428 7429 size = round_up(size, PAGE_SIZE << order); 7430 7431 snprintf(name, sizeof(name), "hugetlb%d", nid); 7432 /* 7433 * Note that 'order per bit' is based on smallest size that 7434 * may be returned to CMA allocator in the case of 7435 * huge page demotion. 7436 */ 7437 res = cma_declare_contiguous_nid(0, size, 0, 7438 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7439 0, false, name, 7440 &hugetlb_cma[nid], nid); 7441 if (res) { 7442 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7443 res, nid); 7444 continue; 7445 } 7446 7447 reserved += size; 7448 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7449 size / SZ_1M, nid); 7450 7451 if (reserved >= hugetlb_cma_size) 7452 break; 7453 } 7454 7455 if (!reserved) 7456 /* 7457 * hugetlb_cma_size is used to determine if allocations from 7458 * cma are possible. Set to zero if no cma regions are set up. 7459 */ 7460 hugetlb_cma_size = 0; 7461 } 7462 7463 static void __init hugetlb_cma_check(void) 7464 { 7465 if (!hugetlb_cma_size || cma_reserve_called) 7466 return; 7467 7468 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7469 } 7470 7471 #endif /* CONFIG_CMA */ 7472