xref: /openbmc/linux/mm/hugetlb.c (revision 26b32974)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265 	if (__vma_shareable_lock(vma)) {
266 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267 
268 		down_read(&vma_lock->rw_sema);
269 	}
270 }
271 
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274 	if (__vma_shareable_lock(vma)) {
275 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276 
277 		up_read(&vma_lock->rw_sema);
278 	}
279 }
280 
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		down_write(&vma_lock->rw_sema);
287 	}
288 }
289 
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292 	if (__vma_shareable_lock(vma)) {
293 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294 
295 		up_write(&vma_lock->rw_sema);
296 	}
297 }
298 
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302 
303 	if (!__vma_shareable_lock(vma))
304 		return 1;
305 
306 	return down_write_trylock(&vma_lock->rw_sema);
307 }
308 
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311 	if (__vma_shareable_lock(vma)) {
312 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313 
314 		lockdep_assert_held(&vma_lock->rw_sema);
315 	}
316 }
317 
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 			struct hugetlb_vma_lock, refs);
322 
323 	kfree(vma_lock);
324 }
325 
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328 	struct vm_area_struct *vma = vma_lock->vma;
329 
330 	/*
331 	 * vma_lock structure may or not be released as a result of put,
332 	 * it certainly will no longer be attached to vma so clear pointer.
333 	 * Semaphore synchronizes access to vma_lock->vma field.
334 	 */
335 	vma_lock->vma = NULL;
336 	vma->vm_private_data = NULL;
337 	up_write(&vma_lock->rw_sema);
338 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340 
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343 	if (__vma_shareable_lock(vma)) {
344 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345 
346 		__hugetlb_vma_unlock_write_put(vma_lock);
347 	}
348 }
349 
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352 	/*
353 	 * Only present in sharable vmas.
354 	 */
355 	if (!vma || !__vma_shareable_lock(vma))
356 		return;
357 
358 	if (vma->vm_private_data) {
359 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360 
361 		down_write(&vma_lock->rw_sema);
362 		__hugetlb_vma_unlock_write_put(vma_lock);
363 	}
364 }
365 
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368 	struct hugetlb_vma_lock *vma_lock;
369 
370 	/* Only establish in (flags) sharable vmas */
371 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 		return;
373 
374 	/* Should never get here with non-NULL vm_private_data */
375 	if (vma->vm_private_data)
376 		return;
377 
378 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 	if (!vma_lock) {
380 		/*
381 		 * If we can not allocate structure, then vma can not
382 		 * participate in pmd sharing.  This is only a possible
383 		 * performance enhancement and memory saving issue.
384 		 * However, the lock is also used to synchronize page
385 		 * faults with truncation.  If the lock is not present,
386 		 * unlikely races could leave pages in a file past i_size
387 		 * until the file is removed.  Warn in the unlikely case of
388 		 * allocation failure.
389 		 */
390 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 		return;
392 	}
393 
394 	kref_init(&vma_lock->refs);
395 	init_rwsem(&vma_lock->rw_sema);
396 	vma_lock->vma = vma;
397 	vma->vm_private_data = vma_lock;
398 }
399 
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406 	struct file_region *nrg;
407 
408 	VM_BUG_ON(resv->region_cache_count <= 0);
409 
410 	resv->region_cache_count--;
411 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 	list_del(&nrg->link);
413 
414 	nrg->from = from;
415 	nrg->to = to;
416 
417 	return nrg;
418 }
419 
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 					      struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424 	nrg->reservation_counter = rg->reservation_counter;
425 	nrg->css = rg->css;
426 	if (rg->css)
427 		css_get(rg->css);
428 #endif
429 }
430 
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 						struct hstate *h,
434 						struct resv_map *resv,
435 						struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438 	if (h_cg) {
439 		nrg->reservation_counter =
440 			&h_cg->rsvd_hugepage[hstate_index(h)];
441 		nrg->css = &h_cg->css;
442 		/*
443 		 * The caller will hold exactly one h_cg->css reference for the
444 		 * whole contiguous reservation region. But this area might be
445 		 * scattered when there are already some file_regions reside in
446 		 * it. As a result, many file_regions may share only one css
447 		 * reference. In order to ensure that one file_region must hold
448 		 * exactly one h_cg->css reference, we should do css_get for
449 		 * each file_region and leave the reference held by caller
450 		 * untouched.
451 		 */
452 		css_get(&h_cg->css);
453 		if (!resv->pages_per_hpage)
454 			resv->pages_per_hpage = pages_per_huge_page(h);
455 		/* pages_per_hpage should be the same for all entries in
456 		 * a resv_map.
457 		 */
458 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 	} else {
460 		nrg->reservation_counter = NULL;
461 		nrg->css = NULL;
462 	}
463 #endif
464 }
465 
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469 	if (rg->css)
470 		css_put(rg->css);
471 #endif
472 }
473 
474 static bool has_same_uncharge_info(struct file_region *rg,
475 				   struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478 	return rg->reservation_counter == org->reservation_counter &&
479 	       rg->css == org->css;
480 
481 #else
482 	return true;
483 #endif
484 }
485 
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488 	struct file_region *nrg, *prg;
489 
490 	prg = list_prev_entry(rg, link);
491 	if (&prg->link != &resv->regions && prg->to == rg->from &&
492 	    has_same_uncharge_info(prg, rg)) {
493 		prg->to = rg->to;
494 
495 		list_del(&rg->link);
496 		put_uncharge_info(rg);
497 		kfree(rg);
498 
499 		rg = prg;
500 	}
501 
502 	nrg = list_next_entry(rg, link);
503 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 	    has_same_uncharge_info(nrg, rg)) {
505 		nrg->from = rg->from;
506 
507 		list_del(&rg->link);
508 		put_uncharge_info(rg);
509 		kfree(rg);
510 	}
511 }
512 
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 		     long *regions_needed)
517 {
518 	struct file_region *nrg;
519 
520 	if (!regions_needed) {
521 		nrg = get_file_region_entry_from_cache(map, from, to);
522 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 		list_add(&nrg->link, rg);
524 		coalesce_file_region(map, nrg);
525 	} else
526 		*regions_needed += 1;
527 
528 	return to - from;
529 }
530 
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 				     struct hugetlb_cgroup *h_cg,
541 				     struct hstate *h, long *regions_needed)
542 {
543 	long add = 0;
544 	struct list_head *head = &resv->regions;
545 	long last_accounted_offset = f;
546 	struct file_region *iter, *trg = NULL;
547 	struct list_head *rg = NULL;
548 
549 	if (regions_needed)
550 		*regions_needed = 0;
551 
552 	/* In this loop, we essentially handle an entry for the range
553 	 * [last_accounted_offset, iter->from), at every iteration, with some
554 	 * bounds checking.
555 	 */
556 	list_for_each_entry_safe(iter, trg, head, link) {
557 		/* Skip irrelevant regions that start before our range. */
558 		if (iter->from < f) {
559 			/* If this region ends after the last accounted offset,
560 			 * then we need to update last_accounted_offset.
561 			 */
562 			if (iter->to > last_accounted_offset)
563 				last_accounted_offset = iter->to;
564 			continue;
565 		}
566 
567 		/* When we find a region that starts beyond our range, we've
568 		 * finished.
569 		 */
570 		if (iter->from >= t) {
571 			rg = iter->link.prev;
572 			break;
573 		}
574 
575 		/* Add an entry for last_accounted_offset -> iter->from, and
576 		 * update last_accounted_offset.
577 		 */
578 		if (iter->from > last_accounted_offset)
579 			add += hugetlb_resv_map_add(resv, iter->link.prev,
580 						    last_accounted_offset,
581 						    iter->from, h, h_cg,
582 						    regions_needed);
583 
584 		last_accounted_offset = iter->to;
585 	}
586 
587 	/* Handle the case where our range extends beyond
588 	 * last_accounted_offset.
589 	 */
590 	if (!rg)
591 		rg = head->prev;
592 	if (last_accounted_offset < t)
593 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 					    t, h, h_cg, regions_needed);
595 
596 	return add;
597 }
598 
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602 					int regions_needed)
603 	__must_hold(&resv->lock)
604 {
605 	LIST_HEAD(allocated_regions);
606 	int to_allocate = 0, i = 0;
607 	struct file_region *trg = NULL, *rg = NULL;
608 
609 	VM_BUG_ON(regions_needed < 0);
610 
611 	/*
612 	 * Check for sufficient descriptors in the cache to accommodate
613 	 * the number of in progress add operations plus regions_needed.
614 	 *
615 	 * This is a while loop because when we drop the lock, some other call
616 	 * to region_add or region_del may have consumed some region_entries,
617 	 * so we keep looping here until we finally have enough entries for
618 	 * (adds_in_progress + regions_needed).
619 	 */
620 	while (resv->region_cache_count <
621 	       (resv->adds_in_progress + regions_needed)) {
622 		to_allocate = resv->adds_in_progress + regions_needed -
623 			      resv->region_cache_count;
624 
625 		/* At this point, we should have enough entries in the cache
626 		 * for all the existing adds_in_progress. We should only be
627 		 * needing to allocate for regions_needed.
628 		 */
629 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630 
631 		spin_unlock(&resv->lock);
632 		for (i = 0; i < to_allocate; i++) {
633 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 			if (!trg)
635 				goto out_of_memory;
636 			list_add(&trg->link, &allocated_regions);
637 		}
638 
639 		spin_lock(&resv->lock);
640 
641 		list_splice(&allocated_regions, &resv->region_cache);
642 		resv->region_cache_count += to_allocate;
643 	}
644 
645 	return 0;
646 
647 out_of_memory:
648 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 		list_del(&rg->link);
650 		kfree(rg);
651 	}
652 	return -ENOMEM;
653 }
654 
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673 		       long in_regions_needed, struct hstate *h,
674 		       struct hugetlb_cgroup *h_cg)
675 {
676 	long add = 0, actual_regions_needed = 0;
677 
678 	spin_lock(&resv->lock);
679 retry:
680 
681 	/* Count how many regions are actually needed to execute this add. */
682 	add_reservation_in_range(resv, f, t, NULL, NULL,
683 				 &actual_regions_needed);
684 
685 	/*
686 	 * Check for sufficient descriptors in the cache to accommodate
687 	 * this add operation. Note that actual_regions_needed may be greater
688 	 * than in_regions_needed, as the resv_map may have been modified since
689 	 * the region_chg call. In this case, we need to make sure that we
690 	 * allocate extra entries, such that we have enough for all the
691 	 * existing adds_in_progress, plus the excess needed for this
692 	 * operation.
693 	 */
694 	if (actual_regions_needed > in_regions_needed &&
695 	    resv->region_cache_count <
696 		    resv->adds_in_progress +
697 			    (actual_regions_needed - in_regions_needed)) {
698 		/* region_add operation of range 1 should never need to
699 		 * allocate file_region entries.
700 		 */
701 		VM_BUG_ON(t - f <= 1);
702 
703 		if (allocate_file_region_entries(
704 			    resv, actual_regions_needed - in_regions_needed)) {
705 			return -ENOMEM;
706 		}
707 
708 		goto retry;
709 	}
710 
711 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712 
713 	resv->adds_in_progress -= in_regions_needed;
714 
715 	spin_unlock(&resv->lock);
716 	return add;
717 }
718 
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740 		       long *out_regions_needed)
741 {
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 
746 	/* Count how many hugepages in this range are NOT represented. */
747 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 				       out_regions_needed);
749 
750 	if (*out_regions_needed == 0)
751 		*out_regions_needed = 1;
752 
753 	if (allocate_file_region_entries(resv, *out_regions_needed))
754 		return -ENOMEM;
755 
756 	resv->adds_in_progress += *out_regions_needed;
757 
758 	spin_unlock(&resv->lock);
759 	return chg;
760 }
761 
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776 			 long regions_needed)
777 {
778 	spin_lock(&resv->lock);
779 	VM_BUG_ON(!resv->region_cache_count);
780 	resv->adds_in_progress -= regions_needed;
781 	spin_unlock(&resv->lock);
782 }
783 
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800 	struct list_head *head = &resv->regions;
801 	struct file_region *rg, *trg;
802 	struct file_region *nrg = NULL;
803 	long del = 0;
804 
805 retry:
806 	spin_lock(&resv->lock);
807 	list_for_each_entry_safe(rg, trg, head, link) {
808 		/*
809 		 * Skip regions before the range to be deleted.  file_region
810 		 * ranges are normally of the form [from, to).  However, there
811 		 * may be a "placeholder" entry in the map which is of the form
812 		 * (from, to) with from == to.  Check for placeholder entries
813 		 * at the beginning of the range to be deleted.
814 		 */
815 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 			continue;
817 
818 		if (rg->from >= t)
819 			break;
820 
821 		if (f > rg->from && t < rg->to) { /* Must split region */
822 			/*
823 			 * Check for an entry in the cache before dropping
824 			 * lock and attempting allocation.
825 			 */
826 			if (!nrg &&
827 			    resv->region_cache_count > resv->adds_in_progress) {
828 				nrg = list_first_entry(&resv->region_cache,
829 							struct file_region,
830 							link);
831 				list_del(&nrg->link);
832 				resv->region_cache_count--;
833 			}
834 
835 			if (!nrg) {
836 				spin_unlock(&resv->lock);
837 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 				if (!nrg)
839 					return -ENOMEM;
840 				goto retry;
841 			}
842 
843 			del += t - f;
844 			hugetlb_cgroup_uncharge_file_region(
845 				resv, rg, t - f, false);
846 
847 			/* New entry for end of split region */
848 			nrg->from = t;
849 			nrg->to = rg->to;
850 
851 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852 
853 			INIT_LIST_HEAD(&nrg->link);
854 
855 			/* Original entry is trimmed */
856 			rg->to = f;
857 
858 			list_add(&nrg->link, &rg->link);
859 			nrg = NULL;
860 			break;
861 		}
862 
863 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 			del += rg->to - rg->from;
865 			hugetlb_cgroup_uncharge_file_region(resv, rg,
866 							    rg->to - rg->from, true);
867 			list_del(&rg->link);
868 			kfree(rg);
869 			continue;
870 		}
871 
872 		if (f <= rg->from) {	/* Trim beginning of region */
873 			hugetlb_cgroup_uncharge_file_region(resv, rg,
874 							    t - rg->from, false);
875 
876 			del += t - rg->from;
877 			rg->from = t;
878 		} else {		/* Trim end of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    rg->to - f, false);
881 
882 			del += rg->to - f;
883 			rg->to = f;
884 		}
885 	}
886 
887 	spin_unlock(&resv->lock);
888 	kfree(nrg);
889 	return del;
890 }
891 
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903 	struct hugepage_subpool *spool = subpool_inode(inode);
904 	long rsv_adjust;
905 	bool reserved = false;
906 
907 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 	if (rsv_adjust > 0) {
909 		struct hstate *h = hstate_inode(inode);
910 
911 		if (!hugetlb_acct_memory(h, 1))
912 			reserved = true;
913 	} else if (!rsv_adjust) {
914 		reserved = true;
915 	}
916 
917 	if (!reserved)
918 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920 
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927 	struct list_head *head = &resv->regions;
928 	struct file_region *rg;
929 	long chg = 0;
930 
931 	spin_lock(&resv->lock);
932 	/* Locate each segment we overlap with, and count that overlap. */
933 	list_for_each_entry(rg, head, link) {
934 		long seg_from;
935 		long seg_to;
936 
937 		if (rg->to <= f)
938 			continue;
939 		if (rg->from >= t)
940 			break;
941 
942 		seg_from = max(rg->from, f);
943 		seg_to = min(rg->to, t);
944 
945 		chg += seg_to - seg_from;
946 	}
947 	spin_unlock(&resv->lock);
948 
949 	return chg;
950 }
951 
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 			struct vm_area_struct *vma, unsigned long address)
958 {
959 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 			(vma->vm_pgoff >> huge_page_order(h));
961 }
962 
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 				     unsigned long address)
965 {
966 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969 
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976 	if (vma->vm_ops && vma->vm_ops->pagesize)
977 		return vma->vm_ops->pagesize(vma);
978 	return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981 
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990 	return vma_kernel_pagesize(vma);
991 }
992 
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001 
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023 	return (unsigned long)vma->vm_private_data;
1024 }
1025 
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 							unsigned long value)
1028 {
1029 	vma->vm_private_data = (void *)value;
1030 }
1031 
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 					  struct hugetlb_cgroup *h_cg,
1035 					  struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038 	if (!h_cg || !h) {
1039 		resv_map->reservation_counter = NULL;
1040 		resv_map->pages_per_hpage = 0;
1041 		resv_map->css = NULL;
1042 	} else {
1043 		resv_map->reservation_counter =
1044 			&h_cg->rsvd_hugepage[hstate_index(h)];
1045 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 		resv_map->css = &h_cg->css;
1047 	}
1048 #endif
1049 }
1050 
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055 
1056 	if (!resv_map || !rg) {
1057 		kfree(resv_map);
1058 		kfree(rg);
1059 		return NULL;
1060 	}
1061 
1062 	kref_init(&resv_map->refs);
1063 	spin_lock_init(&resv_map->lock);
1064 	INIT_LIST_HEAD(&resv_map->regions);
1065 
1066 	resv_map->adds_in_progress = 0;
1067 	/*
1068 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 	 * fields don't do cgroup accounting. On private mappings, these will be
1070 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 	 * reservations are to be un-charged from here.
1072 	 */
1073 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074 
1075 	INIT_LIST_HEAD(&resv_map->region_cache);
1076 	list_add(&rg->link, &resv_map->region_cache);
1077 	resv_map->region_cache_count = 1;
1078 
1079 	return resv_map;
1080 }
1081 
1082 void resv_map_release(struct kref *ref)
1083 {
1084 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 	struct list_head *head = &resv_map->region_cache;
1086 	struct file_region *rg, *trg;
1087 
1088 	/* Clear out any active regions before we release the map. */
1089 	region_del(resv_map, 0, LONG_MAX);
1090 
1091 	/* ... and any entries left in the cache */
1092 	list_for_each_entry_safe(rg, trg, head, link) {
1093 		list_del(&rg->link);
1094 		kfree(rg);
1095 	}
1096 
1097 	VM_BUG_ON(resv_map->adds_in_progress);
1098 
1099 	kfree(resv_map);
1100 }
1101 
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104 	/*
1105 	 * At inode evict time, i_mapping may not point to the original
1106 	 * address space within the inode.  This original address space
1107 	 * contains the pointer to the resv_map.  So, always use the
1108 	 * address space embedded within the inode.
1109 	 * The VERY common case is inode->mapping == &inode->i_data but,
1110 	 * this may not be true for device special inodes.
1111 	 */
1112 	return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114 
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 	if (vma->vm_flags & VM_MAYSHARE) {
1119 		struct address_space *mapping = vma->vm_file->f_mapping;
1120 		struct inode *inode = mapping->host;
1121 
1122 		return inode_resv_map(inode);
1123 
1124 	} else {
1125 		return (struct resv_map *)(get_vma_private_data(vma) &
1126 							~HPAGE_RESV_MASK);
1127 	}
1128 }
1129 
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134 
1135 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 				HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138 
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143 
1144 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146 
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 
1151 	return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153 
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	/*
1158 	 * Clear vm_private_data
1159 	 * - For shared mappings this is a per-vma semaphore that may be
1160 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1161 	 *   Before clearing, make sure pointer is not associated with vma
1162 	 *   as this will leak the structure.  This is the case when called
1163 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 	 *   been called to allocate a new structure.
1165 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 	 *   not apply to children.  Faults generated by the children are
1167 	 *   not guaranteed to succeed, even if read-only.
1168 	 */
1169 	if (vma->vm_flags & VM_MAYSHARE) {
1170 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171 
1172 		if (vma_lock && vma_lock->vma != vma)
1173 			vma->vm_private_data = NULL;
1174 	} else
1175 		vma->vm_private_data = NULL;
1176 }
1177 
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * Clear the old hugetlb private page reservation.
1189 	 * It has already been transferred to new_vma.
1190 	 *
1191 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 	 * which copies vma into new_vma and unmaps vma. After the copy
1193 	 * operation both new_vma and vma share a reference to the resv_map
1194 	 * struct, and at that point vma is about to be unmapped. We don't
1195 	 * want to return the reservation to the pool at unmap of vma because
1196 	 * the reservation still lives on in new_vma, so simply decrement the
1197 	 * ref here and remove the resv_map reference from this vma.
1198 	 */
1199 	struct resv_map *reservations = vma_resv_map(vma);
1200 
1201 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 		kref_put(&reservations->refs, resv_map_release);
1204 	}
1205 
1206 	hugetlb_dup_vma_private(vma);
1207 }
1208 
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212 	if (vma->vm_flags & VM_NORESERVE) {
1213 		/*
1214 		 * This address is already reserved by other process(chg == 0),
1215 		 * so, we should decrement reserved count. Without decrementing,
1216 		 * reserve count remains after releasing inode, because this
1217 		 * allocated page will go into page cache and is regarded as
1218 		 * coming from reserved pool in releasing step.  Currently, we
1219 		 * don't have any other solution to deal with this situation
1220 		 * properly, so add work-around here.
1221 		 */
1222 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 			return true;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	/* Shared mappings always use reserves */
1229 	if (vma->vm_flags & VM_MAYSHARE) {
1230 		/*
1231 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232 		 * be a region map for all pages.  The only situation where
1233 		 * there is no region map is if a hole was punched via
1234 		 * fallocate.  In this case, there really are no reserves to
1235 		 * use.  This situation is indicated if chg != 0.
1236 		 */
1237 		if (chg)
1238 			return false;
1239 		else
1240 			return true;
1241 	}
1242 
1243 	/*
1244 	 * Only the process that called mmap() has reserves for
1245 	 * private mappings.
1246 	 */
1247 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 		/*
1249 		 * Like the shared case above, a hole punch or truncate
1250 		 * could have been performed on the private mapping.
1251 		 * Examine the value of chg to determine if reserves
1252 		 * actually exist or were previously consumed.
1253 		 * Very Subtle - The value of chg comes from a previous
1254 		 * call to vma_needs_reserves().  The reserve map for
1255 		 * private mappings has different (opposite) semantics
1256 		 * than that of shared mappings.  vma_needs_reserves()
1257 		 * has already taken this difference in semantics into
1258 		 * account.  Therefore, the meaning of chg is the same
1259 		 * as in the shared case above.  Code could easily be
1260 		 * combined, but keeping it separate draws attention to
1261 		 * subtle differences.
1262 		 */
1263 		if (chg)
1264 			return false;
1265 		else
1266 			return true;
1267 	}
1268 
1269 	return false;
1270 }
1271 
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274 	int nid = folio_nid(folio);
1275 
1276 	lockdep_assert_held(&hugetlb_lock);
1277 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278 
1279 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 	h->free_huge_pages++;
1281 	h->free_huge_pages_node[nid]++;
1282 	folio_set_hugetlb_freed(folio);
1283 }
1284 
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 								int nid)
1287 {
1288 	struct folio *folio;
1289 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290 
1291 	lockdep_assert_held(&hugetlb_lock);
1292 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 		if (pin && !folio_is_longterm_pinnable(folio))
1294 			continue;
1295 
1296 		if (folio_test_hwpoison(folio))
1297 			continue;
1298 
1299 		list_move(&folio->lru, &h->hugepage_activelist);
1300 		folio_ref_unfreeze(folio, 1);
1301 		folio_clear_hugetlb_freed(folio);
1302 		h->free_huge_pages--;
1303 		h->free_huge_pages_node[nid]--;
1304 		return folio;
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 							int nid, nodemask_t *nmask)
1312 {
1313 	unsigned int cpuset_mems_cookie;
1314 	struct zonelist *zonelist;
1315 	struct zone *zone;
1316 	struct zoneref *z;
1317 	int node = NUMA_NO_NODE;
1318 
1319 	zonelist = node_zonelist(nid, gfp_mask);
1320 
1321 retry_cpuset:
1322 	cpuset_mems_cookie = read_mems_allowed_begin();
1323 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 		struct folio *folio;
1325 
1326 		if (!cpuset_zone_allowed(zone, gfp_mask))
1327 			continue;
1328 		/*
1329 		 * no need to ask again on the same node. Pool is node rather than
1330 		 * zone aware
1331 		 */
1332 		if (zone_to_nid(zone) == node)
1333 			continue;
1334 		node = zone_to_nid(zone);
1335 
1336 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 		if (folio)
1338 			return folio;
1339 	}
1340 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 		goto retry_cpuset;
1342 
1343 	return NULL;
1344 }
1345 
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348 	return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350 
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 				struct vm_area_struct *vma,
1353 				unsigned long address, int avoid_reserve,
1354 				long chg)
1355 {
1356 	struct folio *folio = NULL;
1357 	struct mempolicy *mpol;
1358 	gfp_t gfp_mask;
1359 	nodemask_t *nodemask;
1360 	int nid;
1361 
1362 	/*
1363 	 * A child process with MAP_PRIVATE mappings created by their parent
1364 	 * have no page reserves. This check ensures that reservations are
1365 	 * not "stolen". The child may still get SIGKILLed
1366 	 */
1367 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 		goto err;
1369 
1370 	/* If reserves cannot be used, ensure enough pages are in the pool */
1371 	if (avoid_reserve && !available_huge_pages(h))
1372 		goto err;
1373 
1374 	gfp_mask = htlb_alloc_mask(h);
1375 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376 
1377 	if (mpol_is_preferred_many(mpol)) {
1378 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 							nid, nodemask);
1380 
1381 		/* Fallback to all nodes if page==NULL */
1382 		nodemask = NULL;
1383 	}
1384 
1385 	if (!folio)
1386 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 							nid, nodemask);
1388 
1389 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 		folio_set_hugetlb_restore_reserve(folio);
1391 		h->resv_huge_pages--;
1392 	}
1393 
1394 	mpol_cond_put(mpol);
1395 	return folio;
1396 
1397 err:
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410 	nid = next_node_in(nid, *nodes_allowed);
1411 	VM_BUG_ON(nid >= MAX_NUMNODES);
1412 
1413 	return nid;
1414 }
1415 
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418 	if (!node_isset(nid, *nodes_allowed))
1419 		nid = next_node_allowed(nid, nodes_allowed);
1420 	return nid;
1421 }
1422 
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 					nodemask_t *nodes_allowed)
1431 {
1432 	int nid;
1433 
1434 	VM_BUG_ON(!nodes_allowed);
1435 
1436 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438 
1439 	return nid;
1440 }
1441 
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450 	int nid;
1451 
1452 	VM_BUG_ON(!nodes_allowed);
1453 
1454 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456 
1457 	return nid;
1458 }
1459 
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1461 	for (nr_nodes = nodes_weight(*mask);				\
1462 		nr_nodes > 0 &&						\
1463 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1464 		nr_nodes--)
1465 
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 					unsigned int order, bool demote)
1475 {
1476 	int i;
1477 	int nr_pages = 1 << order;
1478 	struct page *p;
1479 
1480 	atomic_set(&folio->_entire_mapcount, 0);
1481 	atomic_set(&folio->_nr_pages_mapped, 0);
1482 	atomic_set(&folio->_pincount, 0);
1483 
1484 	for (i = 1; i < nr_pages; i++) {
1485 		p = folio_page(folio, i);
1486 		p->mapping = NULL;
1487 		clear_compound_head(p);
1488 		if (!demote)
1489 			set_page_refcounted(p);
1490 	}
1491 
1492 	__folio_clear_head(folio);
1493 }
1494 
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1496 					unsigned int order)
1497 {
1498 	__destroy_compound_gigantic_folio(folio, order, true);
1499 }
1500 
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1503 					unsigned int order)
1504 {
1505 	__destroy_compound_gigantic_folio(folio, order, false);
1506 }
1507 
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1509 {
1510 	/*
1511 	 * If the page isn't allocated using the cma allocator,
1512 	 * cma_release() returns false.
1513 	 */
1514 #ifdef CONFIG_CMA
1515 	int nid = folio_nid(folio);
1516 
1517 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1518 		return;
1519 #endif
1520 
1521 	free_contig_range(folio_pfn(folio), 1 << order);
1522 }
1523 
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526 		int nid, nodemask_t *nodemask)
1527 {
1528 	struct page *page;
1529 	unsigned long nr_pages = pages_per_huge_page(h);
1530 	if (nid == NUMA_NO_NODE)
1531 		nid = numa_mem_id();
1532 
1533 #ifdef CONFIG_CMA
1534 	{
1535 		int node;
1536 
1537 		if (hugetlb_cma[nid]) {
1538 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539 					huge_page_order(h), true);
1540 			if (page)
1541 				return page_folio(page);
1542 		}
1543 
1544 		if (!(gfp_mask & __GFP_THISNODE)) {
1545 			for_each_node_mask(node, *nodemask) {
1546 				if (node == nid || !hugetlb_cma[node])
1547 					continue;
1548 
1549 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1550 						huge_page_order(h), true);
1551 				if (page)
1552 					return page_folio(page);
1553 			}
1554 		}
1555 	}
1556 #endif
1557 
1558 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559 	return page ? page_folio(page) : NULL;
1560 }
1561 
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564 					int nid, nodemask_t *nodemask)
1565 {
1566 	return NULL;
1567 }
1568 #endif /* CONFIG_CONTIG_ALLOC */
1569 
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 					int nid, nodemask_t *nodemask)
1573 {
1574 	return NULL;
1575 }
1576 static inline void free_gigantic_folio(struct folio *folio,
1577 						unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579 						unsigned int order) { }
1580 #endif
1581 
1582 /*
1583  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1584  * as just a compound page.
1585  *
1586  * A reference is held on the folio, except in the case of demote.
1587  *
1588  * Must be called with hugetlb lock held.
1589  */
1590 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591 							bool adjust_surplus,
1592 							bool demote)
1593 {
1594 	int nid = folio_nid(folio);
1595 
1596 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1597 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1598 
1599 	lockdep_assert_held(&hugetlb_lock);
1600 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1601 		return;
1602 
1603 	list_del(&folio->lru);
1604 
1605 	if (folio_test_hugetlb_freed(folio)) {
1606 		h->free_huge_pages--;
1607 		h->free_huge_pages_node[nid]--;
1608 	}
1609 	if (adjust_surplus) {
1610 		h->surplus_huge_pages--;
1611 		h->surplus_huge_pages_node[nid]--;
1612 	}
1613 
1614 	/*
1615 	 * Very subtle
1616 	 *
1617 	 * For non-gigantic pages set the destructor to the normal compound
1618 	 * page dtor.  This is needed in case someone takes an additional
1619 	 * temporary ref to the page, and freeing is delayed until they drop
1620 	 * their reference.
1621 	 *
1622 	 * For gigantic pages set the destructor to the null dtor.  This
1623 	 * destructor will never be called.  Before freeing the gigantic
1624 	 * page destroy_compound_gigantic_folio will turn the folio into a
1625 	 * simple group of pages.  After this the destructor does not
1626 	 * apply.
1627 	 *
1628 	 * This handles the case where more than one ref is held when and
1629 	 * after update_and_free_hugetlb_folio is called.
1630 	 *
1631 	 * In the case of demote we do not ref count the page as it will soon
1632 	 * be turned into a page of smaller size.
1633 	 */
1634 	if (!demote)
1635 		folio_ref_unfreeze(folio, 1);
1636 	if (hstate_is_gigantic(h))
1637 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1638 	else
1639 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1640 
1641 	h->nr_huge_pages--;
1642 	h->nr_huge_pages_node[nid]--;
1643 }
1644 
1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1646 							bool adjust_surplus)
1647 {
1648 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1649 }
1650 
1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1652 							bool adjust_surplus)
1653 {
1654 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1655 }
1656 
1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1658 			     bool adjust_surplus)
1659 {
1660 	int zeroed;
1661 	int nid = folio_nid(folio);
1662 
1663 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1664 
1665 	lockdep_assert_held(&hugetlb_lock);
1666 
1667 	INIT_LIST_HEAD(&folio->lru);
1668 	h->nr_huge_pages++;
1669 	h->nr_huge_pages_node[nid]++;
1670 
1671 	if (adjust_surplus) {
1672 		h->surplus_huge_pages++;
1673 		h->surplus_huge_pages_node[nid]++;
1674 	}
1675 
1676 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1677 	folio_change_private(folio, NULL);
1678 	/*
1679 	 * We have to set hugetlb_vmemmap_optimized again as above
1680 	 * folio_change_private(folio, NULL) cleared it.
1681 	 */
1682 	folio_set_hugetlb_vmemmap_optimized(folio);
1683 
1684 	/*
1685 	 * This folio is about to be managed by the hugetlb allocator and
1686 	 * should have no users.  Drop our reference, and check for others
1687 	 * just in case.
1688 	 */
1689 	zeroed = folio_put_testzero(folio);
1690 	if (unlikely(!zeroed))
1691 		/*
1692 		 * It is VERY unlikely soneone else has taken a ref on
1693 		 * the page.  In this case, we simply return as the
1694 		 * hugetlb destructor (free_huge_page) will be called
1695 		 * when this other ref is dropped.
1696 		 */
1697 		return;
1698 
1699 	arch_clear_hugepage_flags(&folio->page);
1700 	enqueue_hugetlb_folio(h, folio);
1701 }
1702 
1703 static void __update_and_free_hugetlb_folio(struct hstate *h,
1704 						struct folio *folio)
1705 {
1706 	int i;
1707 	struct page *subpage;
1708 
1709 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1710 		return;
1711 
1712 	/*
1713 	 * If we don't know which subpages are hwpoisoned, we can't free
1714 	 * the hugepage, so it's leaked intentionally.
1715 	 */
1716 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1717 		return;
1718 
1719 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1720 		spin_lock_irq(&hugetlb_lock);
1721 		/*
1722 		 * If we cannot allocate vmemmap pages, just refuse to free the
1723 		 * page and put the page back on the hugetlb free list and treat
1724 		 * as a surplus page.
1725 		 */
1726 		add_hugetlb_folio(h, folio, true);
1727 		spin_unlock_irq(&hugetlb_lock);
1728 		return;
1729 	}
1730 
1731 	/*
1732 	 * Move PageHWPoison flag from head page to the raw error pages,
1733 	 * which makes any healthy subpages reusable.
1734 	 */
1735 	if (unlikely(folio_test_hwpoison(folio)))
1736 		folio_clear_hugetlb_hwpoison(folio);
1737 
1738 	for (i = 0; i < pages_per_huge_page(h); i++) {
1739 		subpage = folio_page(folio, i);
1740 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1741 				1 << PG_referenced | 1 << PG_dirty |
1742 				1 << PG_active | 1 << PG_private |
1743 				1 << PG_writeback);
1744 	}
1745 
1746 	/*
1747 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1748 	 * need to be given back to CMA in free_gigantic_folio.
1749 	 */
1750 	if (hstate_is_gigantic(h) ||
1751 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1752 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1753 		free_gigantic_folio(folio, huge_page_order(h));
1754 	} else {
1755 		__free_pages(&folio->page, huge_page_order(h));
1756 	}
1757 }
1758 
1759 /*
1760  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1761  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1762  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1763  * the vmemmap pages.
1764  *
1765  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1766  * freed and frees them one-by-one. As the page->mapping pointer is going
1767  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1768  * structure of a lockless linked list of huge pages to be freed.
1769  */
1770 static LLIST_HEAD(hpage_freelist);
1771 
1772 static void free_hpage_workfn(struct work_struct *work)
1773 {
1774 	struct llist_node *node;
1775 
1776 	node = llist_del_all(&hpage_freelist);
1777 
1778 	while (node) {
1779 		struct page *page;
1780 		struct hstate *h;
1781 
1782 		page = container_of((struct address_space **)node,
1783 				     struct page, mapping);
1784 		node = node->next;
1785 		page->mapping = NULL;
1786 		/*
1787 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1788 		 * is going to trigger because a previous call to
1789 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1790 		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1791 		 * directly.
1792 		 */
1793 		h = size_to_hstate(page_size(page));
1794 
1795 		__update_and_free_hugetlb_folio(h, page_folio(page));
1796 
1797 		cond_resched();
1798 	}
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801 
1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804 	if (hugetlb_vmemmap_optimizable(h))
1805 		flush_work(&free_hpage_work);
1806 }
1807 
1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1809 				 bool atomic)
1810 {
1811 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1812 		__update_and_free_hugetlb_folio(h, folio);
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818 	 *
1819 	 * Only call schedule_work() if hpage_freelist is previously
1820 	 * empty. Otherwise, schedule_work() had been called but the workfn
1821 	 * hasn't retrieved the list yet.
1822 	 */
1823 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1824 		schedule_work(&free_hpage_work);
1825 }
1826 
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829 	struct page *page, *t_page;
1830 	struct folio *folio;
1831 
1832 	list_for_each_entry_safe(page, t_page, list, lru) {
1833 		folio = page_folio(page);
1834 		update_and_free_hugetlb_folio(h, folio, false);
1835 		cond_resched();
1836 	}
1837 }
1838 
1839 struct hstate *size_to_hstate(unsigned long size)
1840 {
1841 	struct hstate *h;
1842 
1843 	for_each_hstate(h) {
1844 		if (huge_page_size(h) == size)
1845 			return h;
1846 	}
1847 	return NULL;
1848 }
1849 
1850 void free_huge_page(struct page *page)
1851 {
1852 	/*
1853 	 * Can't pass hstate in here because it is called from the
1854 	 * compound page destructor.
1855 	 */
1856 	struct folio *folio = page_folio(page);
1857 	struct hstate *h = folio_hstate(folio);
1858 	int nid = folio_nid(folio);
1859 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1860 	bool restore_reserve;
1861 	unsigned long flags;
1862 
1863 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1864 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1865 
1866 	hugetlb_set_folio_subpool(folio, NULL);
1867 	if (folio_test_anon(folio))
1868 		__ClearPageAnonExclusive(&folio->page);
1869 	folio->mapping = NULL;
1870 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1871 	folio_clear_hugetlb_restore_reserve(folio);
1872 
1873 	/*
1874 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1875 	 * reservation.  If the page was associated with a subpool, there
1876 	 * would have been a page reserved in the subpool before allocation
1877 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1878 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1879 	 * remove the reserved page from the subpool.
1880 	 */
1881 	if (!restore_reserve) {
1882 		/*
1883 		 * A return code of zero implies that the subpool will be
1884 		 * under its minimum size if the reservation is not restored
1885 		 * after page is free.  Therefore, force restore_reserve
1886 		 * operation.
1887 		 */
1888 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1889 			restore_reserve = true;
1890 	}
1891 
1892 	spin_lock_irqsave(&hugetlb_lock, flags);
1893 	folio_clear_hugetlb_migratable(folio);
1894 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1895 				     pages_per_huge_page(h), folio);
1896 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1897 					  pages_per_huge_page(h), folio);
1898 	if (restore_reserve)
1899 		h->resv_huge_pages++;
1900 
1901 	if (folio_test_hugetlb_temporary(folio)) {
1902 		remove_hugetlb_folio(h, folio, false);
1903 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1904 		update_and_free_hugetlb_folio(h, folio, true);
1905 	} else if (h->surplus_huge_pages_node[nid]) {
1906 		/* remove the page from active list */
1907 		remove_hugetlb_folio(h, folio, true);
1908 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1909 		update_and_free_hugetlb_folio(h, folio, true);
1910 	} else {
1911 		arch_clear_hugepage_flags(page);
1912 		enqueue_hugetlb_folio(h, folio);
1913 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1914 	}
1915 }
1916 
1917 /*
1918  * Must be called with the hugetlb lock held
1919  */
1920 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1921 {
1922 	lockdep_assert_held(&hugetlb_lock);
1923 	h->nr_huge_pages++;
1924 	h->nr_huge_pages_node[nid]++;
1925 }
1926 
1927 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1928 {
1929 	hugetlb_vmemmap_optimize(h, &folio->page);
1930 	INIT_LIST_HEAD(&folio->lru);
1931 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1932 	hugetlb_set_folio_subpool(folio, NULL);
1933 	set_hugetlb_cgroup(folio, NULL);
1934 	set_hugetlb_cgroup_rsvd(folio, NULL);
1935 }
1936 
1937 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1938 {
1939 	__prep_new_hugetlb_folio(h, folio);
1940 	spin_lock_irq(&hugetlb_lock);
1941 	__prep_account_new_huge_page(h, nid);
1942 	spin_unlock_irq(&hugetlb_lock);
1943 }
1944 
1945 static bool __prep_compound_gigantic_folio(struct folio *folio,
1946 					unsigned int order, bool demote)
1947 {
1948 	int i, j;
1949 	int nr_pages = 1 << order;
1950 	struct page *p;
1951 
1952 	__folio_clear_reserved(folio);
1953 	for (i = 0; i < nr_pages; i++) {
1954 		p = folio_page(folio, i);
1955 
1956 		/*
1957 		 * For gigantic hugepages allocated through bootmem at
1958 		 * boot, it's safer to be consistent with the not-gigantic
1959 		 * hugepages and clear the PG_reserved bit from all tail pages
1960 		 * too.  Otherwise drivers using get_user_pages() to access tail
1961 		 * pages may get the reference counting wrong if they see
1962 		 * PG_reserved set on a tail page (despite the head page not
1963 		 * having PG_reserved set).  Enforcing this consistency between
1964 		 * head and tail pages allows drivers to optimize away a check
1965 		 * on the head page when they need know if put_page() is needed
1966 		 * after get_user_pages().
1967 		 */
1968 		if (i != 0)	/* head page cleared above */
1969 			__ClearPageReserved(p);
1970 		/*
1971 		 * Subtle and very unlikely
1972 		 *
1973 		 * Gigantic 'page allocators' such as memblock or cma will
1974 		 * return a set of pages with each page ref counted.  We need
1975 		 * to turn this set of pages into a compound page with tail
1976 		 * page ref counts set to zero.  Code such as speculative page
1977 		 * cache adding could take a ref on a 'to be' tail page.
1978 		 * We need to respect any increased ref count, and only set
1979 		 * the ref count to zero if count is currently 1.  If count
1980 		 * is not 1, we return an error.  An error return indicates
1981 		 * the set of pages can not be converted to a gigantic page.
1982 		 * The caller who allocated the pages should then discard the
1983 		 * pages using the appropriate free interface.
1984 		 *
1985 		 * In the case of demote, the ref count will be zero.
1986 		 */
1987 		if (!demote) {
1988 			if (!page_ref_freeze(p, 1)) {
1989 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1990 				goto out_error;
1991 			}
1992 		} else {
1993 			VM_BUG_ON_PAGE(page_count(p), p);
1994 		}
1995 		if (i != 0)
1996 			set_compound_head(p, &folio->page);
1997 	}
1998 	__folio_set_head(folio);
1999 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2000 	folio_set_order(folio, order);
2001 	atomic_set(&folio->_entire_mapcount, -1);
2002 	atomic_set(&folio->_nr_pages_mapped, 0);
2003 	atomic_set(&folio->_pincount, 0);
2004 	return true;
2005 
2006 out_error:
2007 	/* undo page modifications made above */
2008 	for (j = 0; j < i; j++) {
2009 		p = folio_page(folio, j);
2010 		if (j != 0)
2011 			clear_compound_head(p);
2012 		set_page_refcounted(p);
2013 	}
2014 	/* need to clear PG_reserved on remaining tail pages  */
2015 	for (; j < nr_pages; j++) {
2016 		p = folio_page(folio, j);
2017 		__ClearPageReserved(p);
2018 	}
2019 	return false;
2020 }
2021 
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2023 							unsigned int order)
2024 {
2025 	return __prep_compound_gigantic_folio(folio, order, false);
2026 }
2027 
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2029 							unsigned int order)
2030 {
2031 	return __prep_compound_gigantic_folio(folio, order, true);
2032 }
2033 
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041 	struct folio *folio;
2042 
2043 	if (!PageCompound(page))
2044 		return 0;
2045 	folio = page_folio(page);
2046 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2047 }
2048 EXPORT_SYMBOL_GPL(PageHuge);
2049 
2050 /**
2051  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2052  * @folio: The folio to test.
2053  *
2054  * Context: Any context.  Caller should have a reference on the folio to
2055  * prevent it from being turned into a tail page.
2056  * Return: True for hugetlbfs folios, false for anon folios or folios
2057  * belonging to other filesystems.
2058  */
2059 bool folio_test_hugetlb(struct folio *folio)
2060 {
2061 	if (!folio_test_large(folio))
2062 		return false;
2063 
2064 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2065 }
2066 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2067 
2068 /*
2069  * Find and lock address space (mapping) in write mode.
2070  *
2071  * Upon entry, the page is locked which means that page_mapping() is
2072  * stable.  Due to locking order, we can only trylock_write.  If we can
2073  * not get the lock, simply return NULL to caller.
2074  */
2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076 {
2077 	struct address_space *mapping = page_mapping(hpage);
2078 
2079 	if (!mapping)
2080 		return mapping;
2081 
2082 	if (i_mmap_trylock_write(mapping))
2083 		return mapping;
2084 
2085 	return NULL;
2086 }
2087 
2088 pgoff_t hugetlb_basepage_index(struct page *page)
2089 {
2090 	struct page *page_head = compound_head(page);
2091 	pgoff_t index = page_index(page_head);
2092 	unsigned long compound_idx;
2093 
2094 	if (compound_order(page_head) > MAX_ORDER)
2095 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 	else
2097 		compound_idx = page - page_head;
2098 
2099 	return (index << compound_order(page_head)) + compound_idx;
2100 }
2101 
2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 		nodemask_t *node_alloc_noretry)
2105 {
2106 	int order = huge_page_order(h);
2107 	struct page *page;
2108 	bool alloc_try_hard = true;
2109 	bool retry = true;
2110 
2111 	/*
2112 	 * By default we always try hard to allocate the page with
2113 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2114 	 * a loop (to adjust global huge page counts) and previous allocation
2115 	 * failed, do not continue to try hard on the same node.  Use the
2116 	 * node_alloc_noretry bitmap to manage this state information.
2117 	 */
2118 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 		alloc_try_hard = false;
2120 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 	if (alloc_try_hard)
2122 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 	if (nid == NUMA_NO_NODE)
2124 		nid = numa_mem_id();
2125 retry:
2126 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2127 
2128 	/* Freeze head page */
2129 	if (page && !page_ref_freeze(page, 1)) {
2130 		__free_pages(page, order);
2131 		if (retry) {	/* retry once */
2132 			retry = false;
2133 			goto retry;
2134 		}
2135 		/* WOW!  twice in a row. */
2136 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 		page = NULL;
2138 	}
2139 
2140 	/*
2141 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 	 * indicates an overall state change.  Clear bit so that we resume
2143 	 * normal 'try hard' allocations.
2144 	 */
2145 	if (node_alloc_noretry && page && !alloc_try_hard)
2146 		node_clear(nid, *node_alloc_noretry);
2147 
2148 	/*
2149 	 * If we tried hard to get a page but failed, set bit so that
2150 	 * subsequent attempts will not try as hard until there is an
2151 	 * overall state change.
2152 	 */
2153 	if (node_alloc_noretry && !page && alloc_try_hard)
2154 		node_set(nid, *node_alloc_noretry);
2155 
2156 	if (!page) {
2157 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158 		return NULL;
2159 	}
2160 
2161 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2162 	return page_folio(page);
2163 }
2164 
2165 /*
2166  * Common helper to allocate a fresh hugetlb page. All specific allocators
2167  * should use this function to get new hugetlb pages
2168  *
2169  * Note that returned page is 'frozen':  ref count of head page and all tail
2170  * pages is zero.
2171  */
2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 		nodemask_t *node_alloc_noretry)
2175 {
2176 	struct folio *folio;
2177 	bool retry = false;
2178 
2179 retry:
2180 	if (hstate_is_gigantic(h))
2181 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 	else
2183 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 				nid, nmask, node_alloc_noretry);
2185 	if (!folio)
2186 		return NULL;
2187 	if (hstate_is_gigantic(h)) {
2188 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 			/*
2190 			 * Rare failure to convert pages to compound page.
2191 			 * Free pages and try again - ONCE!
2192 			 */
2193 			free_gigantic_folio(folio, huge_page_order(h));
2194 			if (!retry) {
2195 				retry = true;
2196 				goto retry;
2197 			}
2198 			return NULL;
2199 		}
2200 	}
2201 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202 
2203 	return folio;
2204 }
2205 
2206 /*
2207  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208  * manner.
2209  */
2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 				nodemask_t *node_alloc_noretry)
2212 {
2213 	struct folio *folio;
2214 	int nr_nodes, node;
2215 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216 
2217 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 					nodes_allowed, node_alloc_noretry);
2220 		if (folio) {
2221 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222 			return 1;
2223 		}
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Remove huge page from pool from next node to free.  Attempt to keep
2231  * persistent huge pages more or less balanced over allowed nodes.
2232  * This routine only 'removes' the hugetlb page.  The caller must make
2233  * an additional call to free the page to low level allocators.
2234  * Called with hugetlb_lock locked.
2235  */
2236 static struct page *remove_pool_huge_page(struct hstate *h,
2237 						nodemask_t *nodes_allowed,
2238 						 bool acct_surplus)
2239 {
2240 	int nr_nodes, node;
2241 	struct page *page = NULL;
2242 	struct folio *folio;
2243 
2244 	lockdep_assert_held(&hugetlb_lock);
2245 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 		/*
2247 		 * If we're returning unused surplus pages, only examine
2248 		 * nodes with surplus pages.
2249 		 */
2250 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 		    !list_empty(&h->hugepage_freelists[node])) {
2252 			page = list_entry(h->hugepage_freelists[node].next,
2253 					  struct page, lru);
2254 			folio = page_folio(page);
2255 			remove_hugetlb_folio(h, folio, acct_surplus);
2256 			break;
2257 		}
2258 	}
2259 
2260 	return page;
2261 }
2262 
2263 /*
2264  * Dissolve a given free hugepage into free buddy pages. This function does
2265  * nothing for in-use hugepages and non-hugepages.
2266  * This function returns values like below:
2267  *
2268  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269  *           when the system is under memory pressure and the feature of
2270  *           freeing unused vmemmap pages associated with each hugetlb page
2271  *           is enabled.
2272  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2273  *           (allocated or reserved.)
2274  *       0:  successfully dissolved free hugepages or the page is not a
2275  *           hugepage (considered as already dissolved)
2276  */
2277 int dissolve_free_huge_page(struct page *page)
2278 {
2279 	int rc = -EBUSY;
2280 	struct folio *folio = page_folio(page);
2281 
2282 retry:
2283 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 	if (!folio_test_hugetlb(folio))
2285 		return 0;
2286 
2287 	spin_lock_irq(&hugetlb_lock);
2288 	if (!folio_test_hugetlb(folio)) {
2289 		rc = 0;
2290 		goto out;
2291 	}
2292 
2293 	if (!folio_ref_count(folio)) {
2294 		struct hstate *h = folio_hstate(folio);
2295 		if (!available_huge_pages(h))
2296 			goto out;
2297 
2298 		/*
2299 		 * We should make sure that the page is already on the free list
2300 		 * when it is dissolved.
2301 		 */
2302 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 			spin_unlock_irq(&hugetlb_lock);
2304 			cond_resched();
2305 
2306 			/*
2307 			 * Theoretically, we should return -EBUSY when we
2308 			 * encounter this race. In fact, we have a chance
2309 			 * to successfully dissolve the page if we do a
2310 			 * retry. Because the race window is quite small.
2311 			 * If we seize this opportunity, it is an optimization
2312 			 * for increasing the success rate of dissolving page.
2313 			 */
2314 			goto retry;
2315 		}
2316 
2317 		remove_hugetlb_folio(h, folio, false);
2318 		h->max_huge_pages--;
2319 		spin_unlock_irq(&hugetlb_lock);
2320 
2321 		/*
2322 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2324 		 * free the page if it can not allocate required vmemmap.  We
2325 		 * need to adjust max_huge_pages if the page is not freed.
2326 		 * Attempt to allocate vmemmmap here so that we can take
2327 		 * appropriate action on failure.
2328 		 */
2329 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 		if (!rc) {
2331 			update_and_free_hugetlb_folio(h, folio, false);
2332 		} else {
2333 			spin_lock_irq(&hugetlb_lock);
2334 			add_hugetlb_folio(h, folio, false);
2335 			h->max_huge_pages++;
2336 			spin_unlock_irq(&hugetlb_lock);
2337 		}
2338 
2339 		return rc;
2340 	}
2341 out:
2342 	spin_unlock_irq(&hugetlb_lock);
2343 	return rc;
2344 }
2345 
2346 /*
2347  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348  * make specified memory blocks removable from the system.
2349  * Note that this will dissolve a free gigantic hugepage completely, if any
2350  * part of it lies within the given range.
2351  * Also note that if dissolve_free_huge_page() returns with an error, all
2352  * free hugepages that were dissolved before that error are lost.
2353  */
2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355 {
2356 	unsigned long pfn;
2357 	struct page *page;
2358 	int rc = 0;
2359 	unsigned int order;
2360 	struct hstate *h;
2361 
2362 	if (!hugepages_supported())
2363 		return rc;
2364 
2365 	order = huge_page_order(&default_hstate);
2366 	for_each_hstate(h)
2367 		order = min(order, huge_page_order(h));
2368 
2369 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 		page = pfn_to_page(pfn);
2371 		rc = dissolve_free_huge_page(page);
2372 		if (rc)
2373 			break;
2374 	}
2375 
2376 	return rc;
2377 }
2378 
2379 /*
2380  * Allocates a fresh surplus page from the page allocator.
2381  */
2382 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2383 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2384 {
2385 	struct folio *folio = NULL;
2386 
2387 	if (hstate_is_gigantic(h))
2388 		return NULL;
2389 
2390 	spin_lock_irq(&hugetlb_lock);
2391 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 		goto out_unlock;
2393 	spin_unlock_irq(&hugetlb_lock);
2394 
2395 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396 	if (!folio)
2397 		return NULL;
2398 
2399 	spin_lock_irq(&hugetlb_lock);
2400 	/*
2401 	 * We could have raced with the pool size change.
2402 	 * Double check that and simply deallocate the new page
2403 	 * if we would end up overcommiting the surpluses. Abuse
2404 	 * temporary page to workaround the nasty free_huge_page
2405 	 * codeflow
2406 	 */
2407 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 		folio_set_hugetlb_temporary(folio);
2409 		spin_unlock_irq(&hugetlb_lock);
2410 		free_huge_page(&folio->page);
2411 		return NULL;
2412 	}
2413 
2414 	h->surplus_huge_pages++;
2415 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2416 
2417 out_unlock:
2418 	spin_unlock_irq(&hugetlb_lock);
2419 
2420 	return folio;
2421 }
2422 
2423 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2424 				     int nid, nodemask_t *nmask)
2425 {
2426 	struct folio *folio;
2427 
2428 	if (hstate_is_gigantic(h))
2429 		return NULL;
2430 
2431 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432 	if (!folio)
2433 		return NULL;
2434 
2435 	/* fresh huge pages are frozen */
2436 	folio_ref_unfreeze(folio, 1);
2437 	/*
2438 	 * We do not account these pages as surplus because they are only
2439 	 * temporary and will be released properly on the last reference
2440 	 */
2441 	folio_set_hugetlb_temporary(folio);
2442 
2443 	return folio;
2444 }
2445 
2446 /*
2447  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448  */
2449 static
2450 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2451 		struct vm_area_struct *vma, unsigned long addr)
2452 {
2453 	struct folio *folio = NULL;
2454 	struct mempolicy *mpol;
2455 	gfp_t gfp_mask = htlb_alloc_mask(h);
2456 	int nid;
2457 	nodemask_t *nodemask;
2458 
2459 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 	if (mpol_is_preferred_many(mpol)) {
2461 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462 
2463 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2465 
2466 		/* Fallback to all nodes if page==NULL */
2467 		nodemask = NULL;
2468 	}
2469 
2470 	if (!folio)
2471 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2472 	mpol_cond_put(mpol);
2473 	return folio;
2474 }
2475 
2476 /* folio migration callback function */
2477 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2478 		nodemask_t *nmask, gfp_t gfp_mask)
2479 {
2480 	spin_lock_irq(&hugetlb_lock);
2481 	if (available_huge_pages(h)) {
2482 		struct folio *folio;
2483 
2484 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2485 						preferred_nid, nmask);
2486 		if (folio) {
2487 			spin_unlock_irq(&hugetlb_lock);
2488 			return folio;
2489 		}
2490 	}
2491 	spin_unlock_irq(&hugetlb_lock);
2492 
2493 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2494 }
2495 
2496 /* mempolicy aware migration callback */
2497 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2498 		unsigned long address)
2499 {
2500 	struct mempolicy *mpol;
2501 	nodemask_t *nodemask;
2502 	struct folio *folio;
2503 	gfp_t gfp_mask;
2504 	int node;
2505 
2506 	gfp_mask = htlb_alloc_mask(h);
2507 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2508 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2509 	mpol_cond_put(mpol);
2510 
2511 	return folio;
2512 }
2513 
2514 /*
2515  * Increase the hugetlb pool such that it can accommodate a reservation
2516  * of size 'delta'.
2517  */
2518 static int gather_surplus_pages(struct hstate *h, long delta)
2519 	__must_hold(&hugetlb_lock)
2520 {
2521 	LIST_HEAD(surplus_list);
2522 	struct folio *folio;
2523 	struct page *page, *tmp;
2524 	int ret;
2525 	long i;
2526 	long needed, allocated;
2527 	bool alloc_ok = true;
2528 
2529 	lockdep_assert_held(&hugetlb_lock);
2530 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2531 	if (needed <= 0) {
2532 		h->resv_huge_pages += delta;
2533 		return 0;
2534 	}
2535 
2536 	allocated = 0;
2537 
2538 	ret = -ENOMEM;
2539 retry:
2540 	spin_unlock_irq(&hugetlb_lock);
2541 	for (i = 0; i < needed; i++) {
2542 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2543 				NUMA_NO_NODE, NULL);
2544 		if (!folio) {
2545 			alloc_ok = false;
2546 			break;
2547 		}
2548 		list_add(&folio->lru, &surplus_list);
2549 		cond_resched();
2550 	}
2551 	allocated += i;
2552 
2553 	/*
2554 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2555 	 * because either resv_huge_pages or free_huge_pages may have changed.
2556 	 */
2557 	spin_lock_irq(&hugetlb_lock);
2558 	needed = (h->resv_huge_pages + delta) -
2559 			(h->free_huge_pages + allocated);
2560 	if (needed > 0) {
2561 		if (alloc_ok)
2562 			goto retry;
2563 		/*
2564 		 * We were not able to allocate enough pages to
2565 		 * satisfy the entire reservation so we free what
2566 		 * we've allocated so far.
2567 		 */
2568 		goto free;
2569 	}
2570 	/*
2571 	 * The surplus_list now contains _at_least_ the number of extra pages
2572 	 * needed to accommodate the reservation.  Add the appropriate number
2573 	 * of pages to the hugetlb pool and free the extras back to the buddy
2574 	 * allocator.  Commit the entire reservation here to prevent another
2575 	 * process from stealing the pages as they are added to the pool but
2576 	 * before they are reserved.
2577 	 */
2578 	needed += allocated;
2579 	h->resv_huge_pages += delta;
2580 	ret = 0;
2581 
2582 	/* Free the needed pages to the hugetlb pool */
2583 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2584 		if ((--needed) < 0)
2585 			break;
2586 		/* Add the page to the hugetlb allocator */
2587 		enqueue_hugetlb_folio(h, page_folio(page));
2588 	}
2589 free:
2590 	spin_unlock_irq(&hugetlb_lock);
2591 
2592 	/*
2593 	 * Free unnecessary surplus pages to the buddy allocator.
2594 	 * Pages have no ref count, call free_huge_page directly.
2595 	 */
2596 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2597 		free_huge_page(page);
2598 	spin_lock_irq(&hugetlb_lock);
2599 
2600 	return ret;
2601 }
2602 
2603 /*
2604  * This routine has two main purposes:
2605  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2606  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2607  *    to the associated reservation map.
2608  * 2) Free any unused surplus pages that may have been allocated to satisfy
2609  *    the reservation.  As many as unused_resv_pages may be freed.
2610  */
2611 static void return_unused_surplus_pages(struct hstate *h,
2612 					unsigned long unused_resv_pages)
2613 {
2614 	unsigned long nr_pages;
2615 	struct page *page;
2616 	LIST_HEAD(page_list);
2617 
2618 	lockdep_assert_held(&hugetlb_lock);
2619 	/* Uncommit the reservation */
2620 	h->resv_huge_pages -= unused_resv_pages;
2621 
2622 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2623 		goto out;
2624 
2625 	/*
2626 	 * Part (or even all) of the reservation could have been backed
2627 	 * by pre-allocated pages. Only free surplus pages.
2628 	 */
2629 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2630 
2631 	/*
2632 	 * We want to release as many surplus pages as possible, spread
2633 	 * evenly across all nodes with memory. Iterate across these nodes
2634 	 * until we can no longer free unreserved surplus pages. This occurs
2635 	 * when the nodes with surplus pages have no free pages.
2636 	 * remove_pool_huge_page() will balance the freed pages across the
2637 	 * on-line nodes with memory and will handle the hstate accounting.
2638 	 */
2639 	while (nr_pages--) {
2640 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2641 		if (!page)
2642 			goto out;
2643 
2644 		list_add(&page->lru, &page_list);
2645 	}
2646 
2647 out:
2648 	spin_unlock_irq(&hugetlb_lock);
2649 	update_and_free_pages_bulk(h, &page_list);
2650 	spin_lock_irq(&hugetlb_lock);
2651 }
2652 
2653 
2654 /*
2655  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2656  * are used by the huge page allocation routines to manage reservations.
2657  *
2658  * vma_needs_reservation is called to determine if the huge page at addr
2659  * within the vma has an associated reservation.  If a reservation is
2660  * needed, the value 1 is returned.  The caller is then responsible for
2661  * managing the global reservation and subpool usage counts.  After
2662  * the huge page has been allocated, vma_commit_reservation is called
2663  * to add the page to the reservation map.  If the page allocation fails,
2664  * the reservation must be ended instead of committed.  vma_end_reservation
2665  * is called in such cases.
2666  *
2667  * In the normal case, vma_commit_reservation returns the same value
2668  * as the preceding vma_needs_reservation call.  The only time this
2669  * is not the case is if a reserve map was changed between calls.  It
2670  * is the responsibility of the caller to notice the difference and
2671  * take appropriate action.
2672  *
2673  * vma_add_reservation is used in error paths where a reservation must
2674  * be restored when a newly allocated huge page must be freed.  It is
2675  * to be called after calling vma_needs_reservation to determine if a
2676  * reservation exists.
2677  *
2678  * vma_del_reservation is used in error paths where an entry in the reserve
2679  * map was created during huge page allocation and must be removed.  It is to
2680  * be called after calling vma_needs_reservation to determine if a reservation
2681  * exists.
2682  */
2683 enum vma_resv_mode {
2684 	VMA_NEEDS_RESV,
2685 	VMA_COMMIT_RESV,
2686 	VMA_END_RESV,
2687 	VMA_ADD_RESV,
2688 	VMA_DEL_RESV,
2689 };
2690 static long __vma_reservation_common(struct hstate *h,
2691 				struct vm_area_struct *vma, unsigned long addr,
2692 				enum vma_resv_mode mode)
2693 {
2694 	struct resv_map *resv;
2695 	pgoff_t idx;
2696 	long ret;
2697 	long dummy_out_regions_needed;
2698 
2699 	resv = vma_resv_map(vma);
2700 	if (!resv)
2701 		return 1;
2702 
2703 	idx = vma_hugecache_offset(h, vma, addr);
2704 	switch (mode) {
2705 	case VMA_NEEDS_RESV:
2706 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2707 		/* We assume that vma_reservation_* routines always operate on
2708 		 * 1 page, and that adding to resv map a 1 page entry can only
2709 		 * ever require 1 region.
2710 		 */
2711 		VM_BUG_ON(dummy_out_regions_needed != 1);
2712 		break;
2713 	case VMA_COMMIT_RESV:
2714 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2715 		/* region_add calls of range 1 should never fail. */
2716 		VM_BUG_ON(ret < 0);
2717 		break;
2718 	case VMA_END_RESV:
2719 		region_abort(resv, idx, idx + 1, 1);
2720 		ret = 0;
2721 		break;
2722 	case VMA_ADD_RESV:
2723 		if (vma->vm_flags & VM_MAYSHARE) {
2724 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2725 			/* region_add calls of range 1 should never fail. */
2726 			VM_BUG_ON(ret < 0);
2727 		} else {
2728 			region_abort(resv, idx, idx + 1, 1);
2729 			ret = region_del(resv, idx, idx + 1);
2730 		}
2731 		break;
2732 	case VMA_DEL_RESV:
2733 		if (vma->vm_flags & VM_MAYSHARE) {
2734 			region_abort(resv, idx, idx + 1, 1);
2735 			ret = region_del(resv, idx, idx + 1);
2736 		} else {
2737 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2738 			/* region_add calls of range 1 should never fail. */
2739 			VM_BUG_ON(ret < 0);
2740 		}
2741 		break;
2742 	default:
2743 		BUG();
2744 	}
2745 
2746 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2747 		return ret;
2748 	/*
2749 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2750 	 *
2751 	 * In most cases, reserves always exist for private mappings.
2752 	 * However, a file associated with mapping could have been
2753 	 * hole punched or truncated after reserves were consumed.
2754 	 * As subsequent fault on such a range will not use reserves.
2755 	 * Subtle - The reserve map for private mappings has the
2756 	 * opposite meaning than that of shared mappings.  If NO
2757 	 * entry is in the reserve map, it means a reservation exists.
2758 	 * If an entry exists in the reserve map, it means the
2759 	 * reservation has already been consumed.  As a result, the
2760 	 * return value of this routine is the opposite of the
2761 	 * value returned from reserve map manipulation routines above.
2762 	 */
2763 	if (ret > 0)
2764 		return 0;
2765 	if (ret == 0)
2766 		return 1;
2767 	return ret;
2768 }
2769 
2770 static long vma_needs_reservation(struct hstate *h,
2771 			struct vm_area_struct *vma, unsigned long addr)
2772 {
2773 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2774 }
2775 
2776 static long vma_commit_reservation(struct hstate *h,
2777 			struct vm_area_struct *vma, unsigned long addr)
2778 {
2779 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2780 }
2781 
2782 static void vma_end_reservation(struct hstate *h,
2783 			struct vm_area_struct *vma, unsigned long addr)
2784 {
2785 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2786 }
2787 
2788 static long vma_add_reservation(struct hstate *h,
2789 			struct vm_area_struct *vma, unsigned long addr)
2790 {
2791 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2792 }
2793 
2794 static long vma_del_reservation(struct hstate *h,
2795 			struct vm_area_struct *vma, unsigned long addr)
2796 {
2797 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2798 }
2799 
2800 /*
2801  * This routine is called to restore reservation information on error paths.
2802  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2803  * and the hugetlb mutex should remain held when calling this routine.
2804  *
2805  * It handles two specific cases:
2806  * 1) A reservation was in place and the folio consumed the reservation.
2807  *    hugetlb_restore_reserve is set in the folio.
2808  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2809  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2810  *
2811  * In case 1, free_huge_page later in the error path will increment the
2812  * global reserve count.  But, free_huge_page does not have enough context
2813  * to adjust the reservation map.  This case deals primarily with private
2814  * mappings.  Adjust the reserve map here to be consistent with global
2815  * reserve count adjustments to be made by free_huge_page.  Make sure the
2816  * reserve map indicates there is a reservation present.
2817  *
2818  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2819  */
2820 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2821 			unsigned long address, struct folio *folio)
2822 {
2823 	long rc = vma_needs_reservation(h, vma, address);
2824 
2825 	if (folio_test_hugetlb_restore_reserve(folio)) {
2826 		if (unlikely(rc < 0))
2827 			/*
2828 			 * Rare out of memory condition in reserve map
2829 			 * manipulation.  Clear hugetlb_restore_reserve so
2830 			 * that global reserve count will not be incremented
2831 			 * by free_huge_page.  This will make it appear
2832 			 * as though the reservation for this folio was
2833 			 * consumed.  This may prevent the task from
2834 			 * faulting in the folio at a later time.  This
2835 			 * is better than inconsistent global huge page
2836 			 * accounting of reserve counts.
2837 			 */
2838 			folio_clear_hugetlb_restore_reserve(folio);
2839 		else if (rc)
2840 			(void)vma_add_reservation(h, vma, address);
2841 		else
2842 			vma_end_reservation(h, vma, address);
2843 	} else {
2844 		if (!rc) {
2845 			/*
2846 			 * This indicates there is an entry in the reserve map
2847 			 * not added by alloc_hugetlb_folio.  We know it was added
2848 			 * before the alloc_hugetlb_folio call, otherwise
2849 			 * hugetlb_restore_reserve would be set on the folio.
2850 			 * Remove the entry so that a subsequent allocation
2851 			 * does not consume a reservation.
2852 			 */
2853 			rc = vma_del_reservation(h, vma, address);
2854 			if (rc < 0)
2855 				/*
2856 				 * VERY rare out of memory condition.  Since
2857 				 * we can not delete the entry, set
2858 				 * hugetlb_restore_reserve so that the reserve
2859 				 * count will be incremented when the folio
2860 				 * is freed.  This reserve will be consumed
2861 				 * on a subsequent allocation.
2862 				 */
2863 				folio_set_hugetlb_restore_reserve(folio);
2864 		} else if (rc < 0) {
2865 			/*
2866 			 * Rare out of memory condition from
2867 			 * vma_needs_reservation call.  Memory allocation is
2868 			 * only attempted if a new entry is needed.  Therefore,
2869 			 * this implies there is not an entry in the
2870 			 * reserve map.
2871 			 *
2872 			 * For shared mappings, no entry in the map indicates
2873 			 * no reservation.  We are done.
2874 			 */
2875 			if (!(vma->vm_flags & VM_MAYSHARE))
2876 				/*
2877 				 * For private mappings, no entry indicates
2878 				 * a reservation is present.  Since we can
2879 				 * not add an entry, set hugetlb_restore_reserve
2880 				 * on the folio so reserve count will be
2881 				 * incremented when freed.  This reserve will
2882 				 * be consumed on a subsequent allocation.
2883 				 */
2884 				folio_set_hugetlb_restore_reserve(folio);
2885 		} else
2886 			/*
2887 			 * No reservation present, do nothing
2888 			 */
2889 			 vma_end_reservation(h, vma, address);
2890 	}
2891 }
2892 
2893 /*
2894  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2895  * the old one
2896  * @h: struct hstate old page belongs to
2897  * @old_folio: Old folio to dissolve
2898  * @list: List to isolate the page in case we need to
2899  * Returns 0 on success, otherwise negated error.
2900  */
2901 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2902 			struct folio *old_folio, struct list_head *list)
2903 {
2904 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2905 	int nid = folio_nid(old_folio);
2906 	struct folio *new_folio;
2907 	int ret = 0;
2908 
2909 	/*
2910 	 * Before dissolving the folio, we need to allocate a new one for the
2911 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2912 	 * by doing everything but actually updating counters and adding to
2913 	 * the pool.  This simplifies and let us do most of the processing
2914 	 * under the lock.
2915 	 */
2916 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2917 	if (!new_folio)
2918 		return -ENOMEM;
2919 	__prep_new_hugetlb_folio(h, new_folio);
2920 
2921 retry:
2922 	spin_lock_irq(&hugetlb_lock);
2923 	if (!folio_test_hugetlb(old_folio)) {
2924 		/*
2925 		 * Freed from under us. Drop new_folio too.
2926 		 */
2927 		goto free_new;
2928 	} else if (folio_ref_count(old_folio)) {
2929 		bool isolated;
2930 
2931 		/*
2932 		 * Someone has grabbed the folio, try to isolate it here.
2933 		 * Fail with -EBUSY if not possible.
2934 		 */
2935 		spin_unlock_irq(&hugetlb_lock);
2936 		isolated = isolate_hugetlb(old_folio, list);
2937 		ret = isolated ? 0 : -EBUSY;
2938 		spin_lock_irq(&hugetlb_lock);
2939 		goto free_new;
2940 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2941 		/*
2942 		 * Folio's refcount is 0 but it has not been enqueued in the
2943 		 * freelist yet. Race window is small, so we can succeed here if
2944 		 * we retry.
2945 		 */
2946 		spin_unlock_irq(&hugetlb_lock);
2947 		cond_resched();
2948 		goto retry;
2949 	} else {
2950 		/*
2951 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2952 		 * the freelist and decrease the counters. These will be
2953 		 * incremented again when calling __prep_account_new_huge_page()
2954 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2955 		 * remain stable since this happens under the lock.
2956 		 */
2957 		remove_hugetlb_folio(h, old_folio, false);
2958 
2959 		/*
2960 		 * Ref count on new_folio is already zero as it was dropped
2961 		 * earlier.  It can be directly added to the pool free list.
2962 		 */
2963 		__prep_account_new_huge_page(h, nid);
2964 		enqueue_hugetlb_folio(h, new_folio);
2965 
2966 		/*
2967 		 * Folio has been replaced, we can safely free the old one.
2968 		 */
2969 		spin_unlock_irq(&hugetlb_lock);
2970 		update_and_free_hugetlb_folio(h, old_folio, false);
2971 	}
2972 
2973 	return ret;
2974 
2975 free_new:
2976 	spin_unlock_irq(&hugetlb_lock);
2977 	/* Folio has a zero ref count, but needs a ref to be freed */
2978 	folio_ref_unfreeze(new_folio, 1);
2979 	update_and_free_hugetlb_folio(h, new_folio, false);
2980 
2981 	return ret;
2982 }
2983 
2984 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2985 {
2986 	struct hstate *h;
2987 	struct folio *folio = page_folio(page);
2988 	int ret = -EBUSY;
2989 
2990 	/*
2991 	 * The page might have been dissolved from under our feet, so make sure
2992 	 * to carefully check the state under the lock.
2993 	 * Return success when racing as if we dissolved the page ourselves.
2994 	 */
2995 	spin_lock_irq(&hugetlb_lock);
2996 	if (folio_test_hugetlb(folio)) {
2997 		h = folio_hstate(folio);
2998 	} else {
2999 		spin_unlock_irq(&hugetlb_lock);
3000 		return 0;
3001 	}
3002 	spin_unlock_irq(&hugetlb_lock);
3003 
3004 	/*
3005 	 * Fence off gigantic pages as there is a cyclic dependency between
3006 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3007 	 * of bailing out right away without further retrying.
3008 	 */
3009 	if (hstate_is_gigantic(h))
3010 		return -ENOMEM;
3011 
3012 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3013 		ret = 0;
3014 	else if (!folio_ref_count(folio))
3015 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3016 
3017 	return ret;
3018 }
3019 
3020 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3021 				    unsigned long addr, int avoid_reserve)
3022 {
3023 	struct hugepage_subpool *spool = subpool_vma(vma);
3024 	struct hstate *h = hstate_vma(vma);
3025 	struct folio *folio;
3026 	long map_chg, map_commit;
3027 	long gbl_chg;
3028 	int ret, idx;
3029 	struct hugetlb_cgroup *h_cg = NULL;
3030 	bool deferred_reserve;
3031 
3032 	idx = hstate_index(h);
3033 	/*
3034 	 * Examine the region/reserve map to determine if the process
3035 	 * has a reservation for the page to be allocated.  A return
3036 	 * code of zero indicates a reservation exists (no change).
3037 	 */
3038 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3039 	if (map_chg < 0)
3040 		return ERR_PTR(-ENOMEM);
3041 
3042 	/*
3043 	 * Processes that did not create the mapping will have no
3044 	 * reserves as indicated by the region/reserve map. Check
3045 	 * that the allocation will not exceed the subpool limit.
3046 	 * Allocations for MAP_NORESERVE mappings also need to be
3047 	 * checked against any subpool limit.
3048 	 */
3049 	if (map_chg || avoid_reserve) {
3050 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3051 		if (gbl_chg < 0) {
3052 			vma_end_reservation(h, vma, addr);
3053 			return ERR_PTR(-ENOSPC);
3054 		}
3055 
3056 		/*
3057 		 * Even though there was no reservation in the region/reserve
3058 		 * map, there could be reservations associated with the
3059 		 * subpool that can be used.  This would be indicated if the
3060 		 * return value of hugepage_subpool_get_pages() is zero.
3061 		 * However, if avoid_reserve is specified we still avoid even
3062 		 * the subpool reservations.
3063 		 */
3064 		if (avoid_reserve)
3065 			gbl_chg = 1;
3066 	}
3067 
3068 	/* If this allocation is not consuming a reservation, charge it now.
3069 	 */
3070 	deferred_reserve = map_chg || avoid_reserve;
3071 	if (deferred_reserve) {
3072 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3073 			idx, pages_per_huge_page(h), &h_cg);
3074 		if (ret)
3075 			goto out_subpool_put;
3076 	}
3077 
3078 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3079 	if (ret)
3080 		goto out_uncharge_cgroup_reservation;
3081 
3082 	spin_lock_irq(&hugetlb_lock);
3083 	/*
3084 	 * glb_chg is passed to indicate whether or not a page must be taken
3085 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3086 	 * a reservation exists for the allocation.
3087 	 */
3088 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3089 	if (!folio) {
3090 		spin_unlock_irq(&hugetlb_lock);
3091 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3092 		if (!folio)
3093 			goto out_uncharge_cgroup;
3094 		spin_lock_irq(&hugetlb_lock);
3095 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3096 			folio_set_hugetlb_restore_reserve(folio);
3097 			h->resv_huge_pages--;
3098 		}
3099 		list_add(&folio->lru, &h->hugepage_activelist);
3100 		folio_ref_unfreeze(folio, 1);
3101 		/* Fall through */
3102 	}
3103 
3104 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3105 	/* If allocation is not consuming a reservation, also store the
3106 	 * hugetlb_cgroup pointer on the page.
3107 	 */
3108 	if (deferred_reserve) {
3109 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3110 						  h_cg, folio);
3111 	}
3112 
3113 	spin_unlock_irq(&hugetlb_lock);
3114 
3115 	hugetlb_set_folio_subpool(folio, spool);
3116 
3117 	map_commit = vma_commit_reservation(h, vma, addr);
3118 	if (unlikely(map_chg > map_commit)) {
3119 		/*
3120 		 * The page was added to the reservation map between
3121 		 * vma_needs_reservation and vma_commit_reservation.
3122 		 * This indicates a race with hugetlb_reserve_pages.
3123 		 * Adjust for the subpool count incremented above AND
3124 		 * in hugetlb_reserve_pages for the same page.  Also,
3125 		 * the reservation count added in hugetlb_reserve_pages
3126 		 * no longer applies.
3127 		 */
3128 		long rsv_adjust;
3129 
3130 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3131 		hugetlb_acct_memory(h, -rsv_adjust);
3132 		if (deferred_reserve)
3133 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3134 					pages_per_huge_page(h), folio);
3135 	}
3136 	return folio;
3137 
3138 out_uncharge_cgroup:
3139 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3140 out_uncharge_cgroup_reservation:
3141 	if (deferred_reserve)
3142 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3143 						    h_cg);
3144 out_subpool_put:
3145 	if (map_chg || avoid_reserve)
3146 		hugepage_subpool_put_pages(spool, 1);
3147 	vma_end_reservation(h, vma, addr);
3148 	return ERR_PTR(-ENOSPC);
3149 }
3150 
3151 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3152 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3153 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3154 {
3155 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3156 	int nr_nodes, node;
3157 
3158 	/* do node specific alloc */
3159 	if (nid != NUMA_NO_NODE) {
3160 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3161 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3162 		if (!m)
3163 			return 0;
3164 		goto found;
3165 	}
3166 	/* allocate from next node when distributing huge pages */
3167 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3168 		m = memblock_alloc_try_nid_raw(
3169 				huge_page_size(h), huge_page_size(h),
3170 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3171 		/*
3172 		 * Use the beginning of the huge page to store the
3173 		 * huge_bootmem_page struct (until gather_bootmem
3174 		 * puts them into the mem_map).
3175 		 */
3176 		if (!m)
3177 			return 0;
3178 		goto found;
3179 	}
3180 
3181 found:
3182 	/* Put them into a private list first because mem_map is not up yet */
3183 	INIT_LIST_HEAD(&m->list);
3184 	list_add(&m->list, &huge_boot_pages);
3185 	m->hstate = h;
3186 	return 1;
3187 }
3188 
3189 /*
3190  * Put bootmem huge pages into the standard lists after mem_map is up.
3191  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3192  */
3193 static void __init gather_bootmem_prealloc(void)
3194 {
3195 	struct huge_bootmem_page *m;
3196 
3197 	list_for_each_entry(m, &huge_boot_pages, list) {
3198 		struct page *page = virt_to_page(m);
3199 		struct folio *folio = page_folio(page);
3200 		struct hstate *h = m->hstate;
3201 
3202 		VM_BUG_ON(!hstate_is_gigantic(h));
3203 		WARN_ON(folio_ref_count(folio) != 1);
3204 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3205 			WARN_ON(folio_test_reserved(folio));
3206 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3207 			free_huge_page(page); /* add to the hugepage allocator */
3208 		} else {
3209 			/* VERY unlikely inflated ref count on a tail page */
3210 			free_gigantic_folio(folio, huge_page_order(h));
3211 		}
3212 
3213 		/*
3214 		 * We need to restore the 'stolen' pages to totalram_pages
3215 		 * in order to fix confusing memory reports from free(1) and
3216 		 * other side-effects, like CommitLimit going negative.
3217 		 */
3218 		adjust_managed_page_count(page, pages_per_huge_page(h));
3219 		cond_resched();
3220 	}
3221 }
3222 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3223 {
3224 	unsigned long i;
3225 	char buf[32];
3226 
3227 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3228 		if (hstate_is_gigantic(h)) {
3229 			if (!alloc_bootmem_huge_page(h, nid))
3230 				break;
3231 		} else {
3232 			struct folio *folio;
3233 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3234 
3235 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3236 					&node_states[N_MEMORY], NULL);
3237 			if (!folio)
3238 				break;
3239 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3240 		}
3241 		cond_resched();
3242 	}
3243 	if (i == h->max_huge_pages_node[nid])
3244 		return;
3245 
3246 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3247 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3248 		h->max_huge_pages_node[nid], buf, nid, i);
3249 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3250 	h->max_huge_pages_node[nid] = i;
3251 }
3252 
3253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3254 {
3255 	unsigned long i;
3256 	nodemask_t *node_alloc_noretry;
3257 	bool node_specific_alloc = false;
3258 
3259 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3260 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3261 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3262 		return;
3263 	}
3264 
3265 	/* do node specific alloc */
3266 	for_each_online_node(i) {
3267 		if (h->max_huge_pages_node[i] > 0) {
3268 			hugetlb_hstate_alloc_pages_onenode(h, i);
3269 			node_specific_alloc = true;
3270 		}
3271 	}
3272 
3273 	if (node_specific_alloc)
3274 		return;
3275 
3276 	/* below will do all node balanced alloc */
3277 	if (!hstate_is_gigantic(h)) {
3278 		/*
3279 		 * Bit mask controlling how hard we retry per-node allocations.
3280 		 * Ignore errors as lower level routines can deal with
3281 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3282 		 * time, we are likely in bigger trouble.
3283 		 */
3284 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3285 						GFP_KERNEL);
3286 	} else {
3287 		/* allocations done at boot time */
3288 		node_alloc_noretry = NULL;
3289 	}
3290 
3291 	/* bit mask controlling how hard we retry per-node allocations */
3292 	if (node_alloc_noretry)
3293 		nodes_clear(*node_alloc_noretry);
3294 
3295 	for (i = 0; i < h->max_huge_pages; ++i) {
3296 		if (hstate_is_gigantic(h)) {
3297 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3298 				break;
3299 		} else if (!alloc_pool_huge_page(h,
3300 					 &node_states[N_MEMORY],
3301 					 node_alloc_noretry))
3302 			break;
3303 		cond_resched();
3304 	}
3305 	if (i < h->max_huge_pages) {
3306 		char buf[32];
3307 
3308 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3309 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3310 			h->max_huge_pages, buf, i);
3311 		h->max_huge_pages = i;
3312 	}
3313 	kfree(node_alloc_noretry);
3314 }
3315 
3316 static void __init hugetlb_init_hstates(void)
3317 {
3318 	struct hstate *h, *h2;
3319 
3320 	for_each_hstate(h) {
3321 		/* oversize hugepages were init'ed in early boot */
3322 		if (!hstate_is_gigantic(h))
3323 			hugetlb_hstate_alloc_pages(h);
3324 
3325 		/*
3326 		 * Set demote order for each hstate.  Note that
3327 		 * h->demote_order is initially 0.
3328 		 * - We can not demote gigantic pages if runtime freeing
3329 		 *   is not supported, so skip this.
3330 		 * - If CMA allocation is possible, we can not demote
3331 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3332 		 */
3333 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3334 			continue;
3335 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3336 			continue;
3337 		for_each_hstate(h2) {
3338 			if (h2 == h)
3339 				continue;
3340 			if (h2->order < h->order &&
3341 			    h2->order > h->demote_order)
3342 				h->demote_order = h2->order;
3343 		}
3344 	}
3345 }
3346 
3347 static void __init report_hugepages(void)
3348 {
3349 	struct hstate *h;
3350 
3351 	for_each_hstate(h) {
3352 		char buf[32];
3353 
3354 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3355 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3356 			buf, h->free_huge_pages);
3357 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3358 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3359 	}
3360 }
3361 
3362 #ifdef CONFIG_HIGHMEM
3363 static void try_to_free_low(struct hstate *h, unsigned long count,
3364 						nodemask_t *nodes_allowed)
3365 {
3366 	int i;
3367 	LIST_HEAD(page_list);
3368 
3369 	lockdep_assert_held(&hugetlb_lock);
3370 	if (hstate_is_gigantic(h))
3371 		return;
3372 
3373 	/*
3374 	 * Collect pages to be freed on a list, and free after dropping lock
3375 	 */
3376 	for_each_node_mask(i, *nodes_allowed) {
3377 		struct page *page, *next;
3378 		struct list_head *freel = &h->hugepage_freelists[i];
3379 		list_for_each_entry_safe(page, next, freel, lru) {
3380 			if (count >= h->nr_huge_pages)
3381 				goto out;
3382 			if (PageHighMem(page))
3383 				continue;
3384 			remove_hugetlb_folio(h, page_folio(page), false);
3385 			list_add(&page->lru, &page_list);
3386 		}
3387 	}
3388 
3389 out:
3390 	spin_unlock_irq(&hugetlb_lock);
3391 	update_and_free_pages_bulk(h, &page_list);
3392 	spin_lock_irq(&hugetlb_lock);
3393 }
3394 #else
3395 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3396 						nodemask_t *nodes_allowed)
3397 {
3398 }
3399 #endif
3400 
3401 /*
3402  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3403  * balanced by operating on them in a round-robin fashion.
3404  * Returns 1 if an adjustment was made.
3405  */
3406 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3407 				int delta)
3408 {
3409 	int nr_nodes, node;
3410 
3411 	lockdep_assert_held(&hugetlb_lock);
3412 	VM_BUG_ON(delta != -1 && delta != 1);
3413 
3414 	if (delta < 0) {
3415 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3416 			if (h->surplus_huge_pages_node[node])
3417 				goto found;
3418 		}
3419 	} else {
3420 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3421 			if (h->surplus_huge_pages_node[node] <
3422 					h->nr_huge_pages_node[node])
3423 				goto found;
3424 		}
3425 	}
3426 	return 0;
3427 
3428 found:
3429 	h->surplus_huge_pages += delta;
3430 	h->surplus_huge_pages_node[node] += delta;
3431 	return 1;
3432 }
3433 
3434 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3435 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3436 			      nodemask_t *nodes_allowed)
3437 {
3438 	unsigned long min_count, ret;
3439 	struct page *page;
3440 	LIST_HEAD(page_list);
3441 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3442 
3443 	/*
3444 	 * Bit mask controlling how hard we retry per-node allocations.
3445 	 * If we can not allocate the bit mask, do not attempt to allocate
3446 	 * the requested huge pages.
3447 	 */
3448 	if (node_alloc_noretry)
3449 		nodes_clear(*node_alloc_noretry);
3450 	else
3451 		return -ENOMEM;
3452 
3453 	/*
3454 	 * resize_lock mutex prevents concurrent adjustments to number of
3455 	 * pages in hstate via the proc/sysfs interfaces.
3456 	 */
3457 	mutex_lock(&h->resize_lock);
3458 	flush_free_hpage_work(h);
3459 	spin_lock_irq(&hugetlb_lock);
3460 
3461 	/*
3462 	 * Check for a node specific request.
3463 	 * Changing node specific huge page count may require a corresponding
3464 	 * change to the global count.  In any case, the passed node mask
3465 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3466 	 */
3467 	if (nid != NUMA_NO_NODE) {
3468 		unsigned long old_count = count;
3469 
3470 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3471 		/*
3472 		 * User may have specified a large count value which caused the
3473 		 * above calculation to overflow.  In this case, they wanted
3474 		 * to allocate as many huge pages as possible.  Set count to
3475 		 * largest possible value to align with their intention.
3476 		 */
3477 		if (count < old_count)
3478 			count = ULONG_MAX;
3479 	}
3480 
3481 	/*
3482 	 * Gigantic pages runtime allocation depend on the capability for large
3483 	 * page range allocation.
3484 	 * If the system does not provide this feature, return an error when
3485 	 * the user tries to allocate gigantic pages but let the user free the
3486 	 * boottime allocated gigantic pages.
3487 	 */
3488 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3489 		if (count > persistent_huge_pages(h)) {
3490 			spin_unlock_irq(&hugetlb_lock);
3491 			mutex_unlock(&h->resize_lock);
3492 			NODEMASK_FREE(node_alloc_noretry);
3493 			return -EINVAL;
3494 		}
3495 		/* Fall through to decrease pool */
3496 	}
3497 
3498 	/*
3499 	 * Increase the pool size
3500 	 * First take pages out of surplus state.  Then make up the
3501 	 * remaining difference by allocating fresh huge pages.
3502 	 *
3503 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3504 	 * to convert a surplus huge page to a normal huge page. That is
3505 	 * not critical, though, it just means the overall size of the
3506 	 * pool might be one hugepage larger than it needs to be, but
3507 	 * within all the constraints specified by the sysctls.
3508 	 */
3509 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3510 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3511 			break;
3512 	}
3513 
3514 	while (count > persistent_huge_pages(h)) {
3515 		/*
3516 		 * If this allocation races such that we no longer need the
3517 		 * page, free_huge_page will handle it by freeing the page
3518 		 * and reducing the surplus.
3519 		 */
3520 		spin_unlock_irq(&hugetlb_lock);
3521 
3522 		/* yield cpu to avoid soft lockup */
3523 		cond_resched();
3524 
3525 		ret = alloc_pool_huge_page(h, nodes_allowed,
3526 						node_alloc_noretry);
3527 		spin_lock_irq(&hugetlb_lock);
3528 		if (!ret)
3529 			goto out;
3530 
3531 		/* Bail for signals. Probably ctrl-c from user */
3532 		if (signal_pending(current))
3533 			goto out;
3534 	}
3535 
3536 	/*
3537 	 * Decrease the pool size
3538 	 * First return free pages to the buddy allocator (being careful
3539 	 * to keep enough around to satisfy reservations).  Then place
3540 	 * pages into surplus state as needed so the pool will shrink
3541 	 * to the desired size as pages become free.
3542 	 *
3543 	 * By placing pages into the surplus state independent of the
3544 	 * overcommit value, we are allowing the surplus pool size to
3545 	 * exceed overcommit. There are few sane options here. Since
3546 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3547 	 * though, we'll note that we're not allowed to exceed surplus
3548 	 * and won't grow the pool anywhere else. Not until one of the
3549 	 * sysctls are changed, or the surplus pages go out of use.
3550 	 */
3551 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3552 	min_count = max(count, min_count);
3553 	try_to_free_low(h, min_count, nodes_allowed);
3554 
3555 	/*
3556 	 * Collect pages to be removed on list without dropping lock
3557 	 */
3558 	while (min_count < persistent_huge_pages(h)) {
3559 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3560 		if (!page)
3561 			break;
3562 
3563 		list_add(&page->lru, &page_list);
3564 	}
3565 	/* free the pages after dropping lock */
3566 	spin_unlock_irq(&hugetlb_lock);
3567 	update_and_free_pages_bulk(h, &page_list);
3568 	flush_free_hpage_work(h);
3569 	spin_lock_irq(&hugetlb_lock);
3570 
3571 	while (count < persistent_huge_pages(h)) {
3572 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3573 			break;
3574 	}
3575 out:
3576 	h->max_huge_pages = persistent_huge_pages(h);
3577 	spin_unlock_irq(&hugetlb_lock);
3578 	mutex_unlock(&h->resize_lock);
3579 
3580 	NODEMASK_FREE(node_alloc_noretry);
3581 
3582 	return 0;
3583 }
3584 
3585 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3586 {
3587 	int i, nid = folio_nid(folio);
3588 	struct hstate *target_hstate;
3589 	struct page *subpage;
3590 	struct folio *inner_folio;
3591 	int rc = 0;
3592 
3593 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3594 
3595 	remove_hugetlb_folio_for_demote(h, folio, false);
3596 	spin_unlock_irq(&hugetlb_lock);
3597 
3598 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3599 	if (rc) {
3600 		/* Allocation of vmemmmap failed, we can not demote folio */
3601 		spin_lock_irq(&hugetlb_lock);
3602 		folio_ref_unfreeze(folio, 1);
3603 		add_hugetlb_folio(h, folio, false);
3604 		return rc;
3605 	}
3606 
3607 	/*
3608 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3609 	 * sizes as it will not ref count folios.
3610 	 */
3611 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3612 
3613 	/*
3614 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3615 	 * Without the mutex, pages added to target hstate could be marked
3616 	 * as surplus.
3617 	 *
3618 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3619 	 * use the convention of always taking larger size hstate mutex first.
3620 	 */
3621 	mutex_lock(&target_hstate->resize_lock);
3622 	for (i = 0; i < pages_per_huge_page(h);
3623 				i += pages_per_huge_page(target_hstate)) {
3624 		subpage = folio_page(folio, i);
3625 		inner_folio = page_folio(subpage);
3626 		if (hstate_is_gigantic(target_hstate))
3627 			prep_compound_gigantic_folio_for_demote(inner_folio,
3628 							target_hstate->order);
3629 		else
3630 			prep_compound_page(subpage, target_hstate->order);
3631 		folio_change_private(inner_folio, NULL);
3632 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3633 		free_huge_page(subpage);
3634 	}
3635 	mutex_unlock(&target_hstate->resize_lock);
3636 
3637 	spin_lock_irq(&hugetlb_lock);
3638 
3639 	/*
3640 	 * Not absolutely necessary, but for consistency update max_huge_pages
3641 	 * based on pool changes for the demoted page.
3642 	 */
3643 	h->max_huge_pages--;
3644 	target_hstate->max_huge_pages +=
3645 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3646 
3647 	return rc;
3648 }
3649 
3650 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3651 	__must_hold(&hugetlb_lock)
3652 {
3653 	int nr_nodes, node;
3654 	struct folio *folio;
3655 
3656 	lockdep_assert_held(&hugetlb_lock);
3657 
3658 	/* We should never get here if no demote order */
3659 	if (!h->demote_order) {
3660 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3661 		return -EINVAL;		/* internal error */
3662 	}
3663 
3664 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3665 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3666 			if (folio_test_hwpoison(folio))
3667 				continue;
3668 			return demote_free_hugetlb_folio(h, folio);
3669 		}
3670 	}
3671 
3672 	/*
3673 	 * Only way to get here is if all pages on free lists are poisoned.
3674 	 * Return -EBUSY so that caller will not retry.
3675 	 */
3676 	return -EBUSY;
3677 }
3678 
3679 #define HSTATE_ATTR_RO(_name) \
3680 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3681 
3682 #define HSTATE_ATTR_WO(_name) \
3683 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3684 
3685 #define HSTATE_ATTR(_name) \
3686 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3687 
3688 static struct kobject *hugepages_kobj;
3689 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3690 
3691 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3692 
3693 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3694 {
3695 	int i;
3696 
3697 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3698 		if (hstate_kobjs[i] == kobj) {
3699 			if (nidp)
3700 				*nidp = NUMA_NO_NODE;
3701 			return &hstates[i];
3702 		}
3703 
3704 	return kobj_to_node_hstate(kobj, nidp);
3705 }
3706 
3707 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3708 					struct kobj_attribute *attr, char *buf)
3709 {
3710 	struct hstate *h;
3711 	unsigned long nr_huge_pages;
3712 	int nid;
3713 
3714 	h = kobj_to_hstate(kobj, &nid);
3715 	if (nid == NUMA_NO_NODE)
3716 		nr_huge_pages = h->nr_huge_pages;
3717 	else
3718 		nr_huge_pages = h->nr_huge_pages_node[nid];
3719 
3720 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3721 }
3722 
3723 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3724 					   struct hstate *h, int nid,
3725 					   unsigned long count, size_t len)
3726 {
3727 	int err;
3728 	nodemask_t nodes_allowed, *n_mask;
3729 
3730 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3731 		return -EINVAL;
3732 
3733 	if (nid == NUMA_NO_NODE) {
3734 		/*
3735 		 * global hstate attribute
3736 		 */
3737 		if (!(obey_mempolicy &&
3738 				init_nodemask_of_mempolicy(&nodes_allowed)))
3739 			n_mask = &node_states[N_MEMORY];
3740 		else
3741 			n_mask = &nodes_allowed;
3742 	} else {
3743 		/*
3744 		 * Node specific request.  count adjustment happens in
3745 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3746 		 */
3747 		init_nodemask_of_node(&nodes_allowed, nid);
3748 		n_mask = &nodes_allowed;
3749 	}
3750 
3751 	err = set_max_huge_pages(h, count, nid, n_mask);
3752 
3753 	return err ? err : len;
3754 }
3755 
3756 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3757 					 struct kobject *kobj, const char *buf,
3758 					 size_t len)
3759 {
3760 	struct hstate *h;
3761 	unsigned long count;
3762 	int nid;
3763 	int err;
3764 
3765 	err = kstrtoul(buf, 10, &count);
3766 	if (err)
3767 		return err;
3768 
3769 	h = kobj_to_hstate(kobj, &nid);
3770 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3771 }
3772 
3773 static ssize_t nr_hugepages_show(struct kobject *kobj,
3774 				       struct kobj_attribute *attr, char *buf)
3775 {
3776 	return nr_hugepages_show_common(kobj, attr, buf);
3777 }
3778 
3779 static ssize_t nr_hugepages_store(struct kobject *kobj,
3780 	       struct kobj_attribute *attr, const char *buf, size_t len)
3781 {
3782 	return nr_hugepages_store_common(false, kobj, buf, len);
3783 }
3784 HSTATE_ATTR(nr_hugepages);
3785 
3786 #ifdef CONFIG_NUMA
3787 
3788 /*
3789  * hstate attribute for optionally mempolicy-based constraint on persistent
3790  * huge page alloc/free.
3791  */
3792 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3793 					   struct kobj_attribute *attr,
3794 					   char *buf)
3795 {
3796 	return nr_hugepages_show_common(kobj, attr, buf);
3797 }
3798 
3799 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3800 	       struct kobj_attribute *attr, const char *buf, size_t len)
3801 {
3802 	return nr_hugepages_store_common(true, kobj, buf, len);
3803 }
3804 HSTATE_ATTR(nr_hugepages_mempolicy);
3805 #endif
3806 
3807 
3808 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3809 					struct kobj_attribute *attr, char *buf)
3810 {
3811 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3812 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3813 }
3814 
3815 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3816 		struct kobj_attribute *attr, const char *buf, size_t count)
3817 {
3818 	int err;
3819 	unsigned long input;
3820 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3821 
3822 	if (hstate_is_gigantic(h))
3823 		return -EINVAL;
3824 
3825 	err = kstrtoul(buf, 10, &input);
3826 	if (err)
3827 		return err;
3828 
3829 	spin_lock_irq(&hugetlb_lock);
3830 	h->nr_overcommit_huge_pages = input;
3831 	spin_unlock_irq(&hugetlb_lock);
3832 
3833 	return count;
3834 }
3835 HSTATE_ATTR(nr_overcommit_hugepages);
3836 
3837 static ssize_t free_hugepages_show(struct kobject *kobj,
3838 					struct kobj_attribute *attr, char *buf)
3839 {
3840 	struct hstate *h;
3841 	unsigned long free_huge_pages;
3842 	int nid;
3843 
3844 	h = kobj_to_hstate(kobj, &nid);
3845 	if (nid == NUMA_NO_NODE)
3846 		free_huge_pages = h->free_huge_pages;
3847 	else
3848 		free_huge_pages = h->free_huge_pages_node[nid];
3849 
3850 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3851 }
3852 HSTATE_ATTR_RO(free_hugepages);
3853 
3854 static ssize_t resv_hugepages_show(struct kobject *kobj,
3855 					struct kobj_attribute *attr, char *buf)
3856 {
3857 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3858 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3859 }
3860 HSTATE_ATTR_RO(resv_hugepages);
3861 
3862 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3863 					struct kobj_attribute *attr, char *buf)
3864 {
3865 	struct hstate *h;
3866 	unsigned long surplus_huge_pages;
3867 	int nid;
3868 
3869 	h = kobj_to_hstate(kobj, &nid);
3870 	if (nid == NUMA_NO_NODE)
3871 		surplus_huge_pages = h->surplus_huge_pages;
3872 	else
3873 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3874 
3875 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3876 }
3877 HSTATE_ATTR_RO(surplus_hugepages);
3878 
3879 static ssize_t demote_store(struct kobject *kobj,
3880 	       struct kobj_attribute *attr, const char *buf, size_t len)
3881 {
3882 	unsigned long nr_demote;
3883 	unsigned long nr_available;
3884 	nodemask_t nodes_allowed, *n_mask;
3885 	struct hstate *h;
3886 	int err;
3887 	int nid;
3888 
3889 	err = kstrtoul(buf, 10, &nr_demote);
3890 	if (err)
3891 		return err;
3892 	h = kobj_to_hstate(kobj, &nid);
3893 
3894 	if (nid != NUMA_NO_NODE) {
3895 		init_nodemask_of_node(&nodes_allowed, nid);
3896 		n_mask = &nodes_allowed;
3897 	} else {
3898 		n_mask = &node_states[N_MEMORY];
3899 	}
3900 
3901 	/* Synchronize with other sysfs operations modifying huge pages */
3902 	mutex_lock(&h->resize_lock);
3903 	spin_lock_irq(&hugetlb_lock);
3904 
3905 	while (nr_demote) {
3906 		/*
3907 		 * Check for available pages to demote each time thorough the
3908 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3909 		 */
3910 		if (nid != NUMA_NO_NODE)
3911 			nr_available = h->free_huge_pages_node[nid];
3912 		else
3913 			nr_available = h->free_huge_pages;
3914 		nr_available -= h->resv_huge_pages;
3915 		if (!nr_available)
3916 			break;
3917 
3918 		err = demote_pool_huge_page(h, n_mask);
3919 		if (err)
3920 			break;
3921 
3922 		nr_demote--;
3923 	}
3924 
3925 	spin_unlock_irq(&hugetlb_lock);
3926 	mutex_unlock(&h->resize_lock);
3927 
3928 	if (err)
3929 		return err;
3930 	return len;
3931 }
3932 HSTATE_ATTR_WO(demote);
3933 
3934 static ssize_t demote_size_show(struct kobject *kobj,
3935 					struct kobj_attribute *attr, char *buf)
3936 {
3937 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3938 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3939 
3940 	return sysfs_emit(buf, "%lukB\n", demote_size);
3941 }
3942 
3943 static ssize_t demote_size_store(struct kobject *kobj,
3944 					struct kobj_attribute *attr,
3945 					const char *buf, size_t count)
3946 {
3947 	struct hstate *h, *demote_hstate;
3948 	unsigned long demote_size;
3949 	unsigned int demote_order;
3950 
3951 	demote_size = (unsigned long)memparse(buf, NULL);
3952 
3953 	demote_hstate = size_to_hstate(demote_size);
3954 	if (!demote_hstate)
3955 		return -EINVAL;
3956 	demote_order = demote_hstate->order;
3957 	if (demote_order < HUGETLB_PAGE_ORDER)
3958 		return -EINVAL;
3959 
3960 	/* demote order must be smaller than hstate order */
3961 	h = kobj_to_hstate(kobj, NULL);
3962 	if (demote_order >= h->order)
3963 		return -EINVAL;
3964 
3965 	/* resize_lock synchronizes access to demote size and writes */
3966 	mutex_lock(&h->resize_lock);
3967 	h->demote_order = demote_order;
3968 	mutex_unlock(&h->resize_lock);
3969 
3970 	return count;
3971 }
3972 HSTATE_ATTR(demote_size);
3973 
3974 static struct attribute *hstate_attrs[] = {
3975 	&nr_hugepages_attr.attr,
3976 	&nr_overcommit_hugepages_attr.attr,
3977 	&free_hugepages_attr.attr,
3978 	&resv_hugepages_attr.attr,
3979 	&surplus_hugepages_attr.attr,
3980 #ifdef CONFIG_NUMA
3981 	&nr_hugepages_mempolicy_attr.attr,
3982 #endif
3983 	NULL,
3984 };
3985 
3986 static const struct attribute_group hstate_attr_group = {
3987 	.attrs = hstate_attrs,
3988 };
3989 
3990 static struct attribute *hstate_demote_attrs[] = {
3991 	&demote_size_attr.attr,
3992 	&demote_attr.attr,
3993 	NULL,
3994 };
3995 
3996 static const struct attribute_group hstate_demote_attr_group = {
3997 	.attrs = hstate_demote_attrs,
3998 };
3999 
4000 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4001 				    struct kobject **hstate_kobjs,
4002 				    const struct attribute_group *hstate_attr_group)
4003 {
4004 	int retval;
4005 	int hi = hstate_index(h);
4006 
4007 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4008 	if (!hstate_kobjs[hi])
4009 		return -ENOMEM;
4010 
4011 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4012 	if (retval) {
4013 		kobject_put(hstate_kobjs[hi]);
4014 		hstate_kobjs[hi] = NULL;
4015 		return retval;
4016 	}
4017 
4018 	if (h->demote_order) {
4019 		retval = sysfs_create_group(hstate_kobjs[hi],
4020 					    &hstate_demote_attr_group);
4021 		if (retval) {
4022 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4023 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4024 			kobject_put(hstate_kobjs[hi]);
4025 			hstate_kobjs[hi] = NULL;
4026 			return retval;
4027 		}
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 #ifdef CONFIG_NUMA
4034 static bool hugetlb_sysfs_initialized __ro_after_init;
4035 
4036 /*
4037  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4038  * with node devices in node_devices[] using a parallel array.  The array
4039  * index of a node device or _hstate == node id.
4040  * This is here to avoid any static dependency of the node device driver, in
4041  * the base kernel, on the hugetlb module.
4042  */
4043 struct node_hstate {
4044 	struct kobject		*hugepages_kobj;
4045 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4046 };
4047 static struct node_hstate node_hstates[MAX_NUMNODES];
4048 
4049 /*
4050  * A subset of global hstate attributes for node devices
4051  */
4052 static struct attribute *per_node_hstate_attrs[] = {
4053 	&nr_hugepages_attr.attr,
4054 	&free_hugepages_attr.attr,
4055 	&surplus_hugepages_attr.attr,
4056 	NULL,
4057 };
4058 
4059 static const struct attribute_group per_node_hstate_attr_group = {
4060 	.attrs = per_node_hstate_attrs,
4061 };
4062 
4063 /*
4064  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4065  * Returns node id via non-NULL nidp.
4066  */
4067 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4068 {
4069 	int nid;
4070 
4071 	for (nid = 0; nid < nr_node_ids; nid++) {
4072 		struct node_hstate *nhs = &node_hstates[nid];
4073 		int i;
4074 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4075 			if (nhs->hstate_kobjs[i] == kobj) {
4076 				if (nidp)
4077 					*nidp = nid;
4078 				return &hstates[i];
4079 			}
4080 	}
4081 
4082 	BUG();
4083 	return NULL;
4084 }
4085 
4086 /*
4087  * Unregister hstate attributes from a single node device.
4088  * No-op if no hstate attributes attached.
4089  */
4090 void hugetlb_unregister_node(struct node *node)
4091 {
4092 	struct hstate *h;
4093 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4094 
4095 	if (!nhs->hugepages_kobj)
4096 		return;		/* no hstate attributes */
4097 
4098 	for_each_hstate(h) {
4099 		int idx = hstate_index(h);
4100 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4101 
4102 		if (!hstate_kobj)
4103 			continue;
4104 		if (h->demote_order)
4105 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4106 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4107 		kobject_put(hstate_kobj);
4108 		nhs->hstate_kobjs[idx] = NULL;
4109 	}
4110 
4111 	kobject_put(nhs->hugepages_kobj);
4112 	nhs->hugepages_kobj = NULL;
4113 }
4114 
4115 
4116 /*
4117  * Register hstate attributes for a single node device.
4118  * No-op if attributes already registered.
4119  */
4120 void hugetlb_register_node(struct node *node)
4121 {
4122 	struct hstate *h;
4123 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4124 	int err;
4125 
4126 	if (!hugetlb_sysfs_initialized)
4127 		return;
4128 
4129 	if (nhs->hugepages_kobj)
4130 		return;		/* already allocated */
4131 
4132 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4133 							&node->dev.kobj);
4134 	if (!nhs->hugepages_kobj)
4135 		return;
4136 
4137 	for_each_hstate(h) {
4138 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4139 						nhs->hstate_kobjs,
4140 						&per_node_hstate_attr_group);
4141 		if (err) {
4142 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4143 				h->name, node->dev.id);
4144 			hugetlb_unregister_node(node);
4145 			break;
4146 		}
4147 	}
4148 }
4149 
4150 /*
4151  * hugetlb init time:  register hstate attributes for all registered node
4152  * devices of nodes that have memory.  All on-line nodes should have
4153  * registered their associated device by this time.
4154  */
4155 static void __init hugetlb_register_all_nodes(void)
4156 {
4157 	int nid;
4158 
4159 	for_each_online_node(nid)
4160 		hugetlb_register_node(node_devices[nid]);
4161 }
4162 #else	/* !CONFIG_NUMA */
4163 
4164 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4165 {
4166 	BUG();
4167 	if (nidp)
4168 		*nidp = -1;
4169 	return NULL;
4170 }
4171 
4172 static void hugetlb_register_all_nodes(void) { }
4173 
4174 #endif
4175 
4176 #ifdef CONFIG_CMA
4177 static void __init hugetlb_cma_check(void);
4178 #else
4179 static inline __init void hugetlb_cma_check(void)
4180 {
4181 }
4182 #endif
4183 
4184 static void __init hugetlb_sysfs_init(void)
4185 {
4186 	struct hstate *h;
4187 	int err;
4188 
4189 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4190 	if (!hugepages_kobj)
4191 		return;
4192 
4193 	for_each_hstate(h) {
4194 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4195 					 hstate_kobjs, &hstate_attr_group);
4196 		if (err)
4197 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4198 	}
4199 
4200 #ifdef CONFIG_NUMA
4201 	hugetlb_sysfs_initialized = true;
4202 #endif
4203 	hugetlb_register_all_nodes();
4204 }
4205 
4206 #ifdef CONFIG_SYSCTL
4207 static void hugetlb_sysctl_init(void);
4208 #else
4209 static inline void hugetlb_sysctl_init(void) { }
4210 #endif
4211 
4212 static int __init hugetlb_init(void)
4213 {
4214 	int i;
4215 
4216 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4217 			__NR_HPAGEFLAGS);
4218 
4219 	if (!hugepages_supported()) {
4220 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4221 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4222 		return 0;
4223 	}
4224 
4225 	/*
4226 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4227 	 * architectures depend on setup being done here.
4228 	 */
4229 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4230 	if (!parsed_default_hugepagesz) {
4231 		/*
4232 		 * If we did not parse a default huge page size, set
4233 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4234 		 * number of huge pages for this default size was implicitly
4235 		 * specified, set that here as well.
4236 		 * Note that the implicit setting will overwrite an explicit
4237 		 * setting.  A warning will be printed in this case.
4238 		 */
4239 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4240 		if (default_hstate_max_huge_pages) {
4241 			if (default_hstate.max_huge_pages) {
4242 				char buf[32];
4243 
4244 				string_get_size(huge_page_size(&default_hstate),
4245 					1, STRING_UNITS_2, buf, 32);
4246 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4247 					default_hstate.max_huge_pages, buf);
4248 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4249 					default_hstate_max_huge_pages);
4250 			}
4251 			default_hstate.max_huge_pages =
4252 				default_hstate_max_huge_pages;
4253 
4254 			for_each_online_node(i)
4255 				default_hstate.max_huge_pages_node[i] =
4256 					default_hugepages_in_node[i];
4257 		}
4258 	}
4259 
4260 	hugetlb_cma_check();
4261 	hugetlb_init_hstates();
4262 	gather_bootmem_prealloc();
4263 	report_hugepages();
4264 
4265 	hugetlb_sysfs_init();
4266 	hugetlb_cgroup_file_init();
4267 	hugetlb_sysctl_init();
4268 
4269 #ifdef CONFIG_SMP
4270 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4271 #else
4272 	num_fault_mutexes = 1;
4273 #endif
4274 	hugetlb_fault_mutex_table =
4275 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4276 			      GFP_KERNEL);
4277 	BUG_ON(!hugetlb_fault_mutex_table);
4278 
4279 	for (i = 0; i < num_fault_mutexes; i++)
4280 		mutex_init(&hugetlb_fault_mutex_table[i]);
4281 	return 0;
4282 }
4283 subsys_initcall(hugetlb_init);
4284 
4285 /* Overwritten by architectures with more huge page sizes */
4286 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4287 {
4288 	return size == HPAGE_SIZE;
4289 }
4290 
4291 void __init hugetlb_add_hstate(unsigned int order)
4292 {
4293 	struct hstate *h;
4294 	unsigned long i;
4295 
4296 	if (size_to_hstate(PAGE_SIZE << order)) {
4297 		return;
4298 	}
4299 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4300 	BUG_ON(order == 0);
4301 	h = &hstates[hugetlb_max_hstate++];
4302 	mutex_init(&h->resize_lock);
4303 	h->order = order;
4304 	h->mask = ~(huge_page_size(h) - 1);
4305 	for (i = 0; i < MAX_NUMNODES; ++i)
4306 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4307 	INIT_LIST_HEAD(&h->hugepage_activelist);
4308 	h->next_nid_to_alloc = first_memory_node;
4309 	h->next_nid_to_free = first_memory_node;
4310 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4311 					huge_page_size(h)/SZ_1K);
4312 
4313 	parsed_hstate = h;
4314 }
4315 
4316 bool __init __weak hugetlb_node_alloc_supported(void)
4317 {
4318 	return true;
4319 }
4320 
4321 static void __init hugepages_clear_pages_in_node(void)
4322 {
4323 	if (!hugetlb_max_hstate) {
4324 		default_hstate_max_huge_pages = 0;
4325 		memset(default_hugepages_in_node, 0,
4326 			sizeof(default_hugepages_in_node));
4327 	} else {
4328 		parsed_hstate->max_huge_pages = 0;
4329 		memset(parsed_hstate->max_huge_pages_node, 0,
4330 			sizeof(parsed_hstate->max_huge_pages_node));
4331 	}
4332 }
4333 
4334 /*
4335  * hugepages command line processing
4336  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4337  * specification.  If not, ignore the hugepages value.  hugepages can also
4338  * be the first huge page command line  option in which case it implicitly
4339  * specifies the number of huge pages for the default size.
4340  */
4341 static int __init hugepages_setup(char *s)
4342 {
4343 	unsigned long *mhp;
4344 	static unsigned long *last_mhp;
4345 	int node = NUMA_NO_NODE;
4346 	int count;
4347 	unsigned long tmp;
4348 	char *p = s;
4349 
4350 	if (!parsed_valid_hugepagesz) {
4351 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4352 		parsed_valid_hugepagesz = true;
4353 		return 1;
4354 	}
4355 
4356 	/*
4357 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4358 	 * yet, so this hugepages= parameter goes to the "default hstate".
4359 	 * Otherwise, it goes with the previously parsed hugepagesz or
4360 	 * default_hugepagesz.
4361 	 */
4362 	else if (!hugetlb_max_hstate)
4363 		mhp = &default_hstate_max_huge_pages;
4364 	else
4365 		mhp = &parsed_hstate->max_huge_pages;
4366 
4367 	if (mhp == last_mhp) {
4368 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4369 		return 1;
4370 	}
4371 
4372 	while (*p) {
4373 		count = 0;
4374 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4375 			goto invalid;
4376 		/* Parameter is node format */
4377 		if (p[count] == ':') {
4378 			if (!hugetlb_node_alloc_supported()) {
4379 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4380 				return 1;
4381 			}
4382 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4383 				goto invalid;
4384 			node = array_index_nospec(tmp, MAX_NUMNODES);
4385 			p += count + 1;
4386 			/* Parse hugepages */
4387 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4388 				goto invalid;
4389 			if (!hugetlb_max_hstate)
4390 				default_hugepages_in_node[node] = tmp;
4391 			else
4392 				parsed_hstate->max_huge_pages_node[node] = tmp;
4393 			*mhp += tmp;
4394 			/* Go to parse next node*/
4395 			if (p[count] == ',')
4396 				p += count + 1;
4397 			else
4398 				break;
4399 		} else {
4400 			if (p != s)
4401 				goto invalid;
4402 			*mhp = tmp;
4403 			break;
4404 		}
4405 	}
4406 
4407 	/*
4408 	 * Global state is always initialized later in hugetlb_init.
4409 	 * But we need to allocate gigantic hstates here early to still
4410 	 * use the bootmem allocator.
4411 	 */
4412 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4413 		hugetlb_hstate_alloc_pages(parsed_hstate);
4414 
4415 	last_mhp = mhp;
4416 
4417 	return 1;
4418 
4419 invalid:
4420 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4421 	hugepages_clear_pages_in_node();
4422 	return 1;
4423 }
4424 __setup("hugepages=", hugepages_setup);
4425 
4426 /*
4427  * hugepagesz command line processing
4428  * A specific huge page size can only be specified once with hugepagesz.
4429  * hugepagesz is followed by hugepages on the command line.  The global
4430  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4431  * hugepagesz argument was valid.
4432  */
4433 static int __init hugepagesz_setup(char *s)
4434 {
4435 	unsigned long size;
4436 	struct hstate *h;
4437 
4438 	parsed_valid_hugepagesz = false;
4439 	size = (unsigned long)memparse(s, NULL);
4440 
4441 	if (!arch_hugetlb_valid_size(size)) {
4442 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4443 		return 1;
4444 	}
4445 
4446 	h = size_to_hstate(size);
4447 	if (h) {
4448 		/*
4449 		 * hstate for this size already exists.  This is normally
4450 		 * an error, but is allowed if the existing hstate is the
4451 		 * default hstate.  More specifically, it is only allowed if
4452 		 * the number of huge pages for the default hstate was not
4453 		 * previously specified.
4454 		 */
4455 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4456 		    default_hstate.max_huge_pages) {
4457 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4458 			return 1;
4459 		}
4460 
4461 		/*
4462 		 * No need to call hugetlb_add_hstate() as hstate already
4463 		 * exists.  But, do set parsed_hstate so that a following
4464 		 * hugepages= parameter will be applied to this hstate.
4465 		 */
4466 		parsed_hstate = h;
4467 		parsed_valid_hugepagesz = true;
4468 		return 1;
4469 	}
4470 
4471 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4472 	parsed_valid_hugepagesz = true;
4473 	return 1;
4474 }
4475 __setup("hugepagesz=", hugepagesz_setup);
4476 
4477 /*
4478  * default_hugepagesz command line input
4479  * Only one instance of default_hugepagesz allowed on command line.
4480  */
4481 static int __init default_hugepagesz_setup(char *s)
4482 {
4483 	unsigned long size;
4484 	int i;
4485 
4486 	parsed_valid_hugepagesz = false;
4487 	if (parsed_default_hugepagesz) {
4488 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4489 		return 1;
4490 	}
4491 
4492 	size = (unsigned long)memparse(s, NULL);
4493 
4494 	if (!arch_hugetlb_valid_size(size)) {
4495 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4496 		return 1;
4497 	}
4498 
4499 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4500 	parsed_valid_hugepagesz = true;
4501 	parsed_default_hugepagesz = true;
4502 	default_hstate_idx = hstate_index(size_to_hstate(size));
4503 
4504 	/*
4505 	 * The number of default huge pages (for this size) could have been
4506 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4507 	 * then default_hstate_max_huge_pages is set.  If the default huge
4508 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4509 	 * allocated here from bootmem allocator.
4510 	 */
4511 	if (default_hstate_max_huge_pages) {
4512 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4513 		for_each_online_node(i)
4514 			default_hstate.max_huge_pages_node[i] =
4515 				default_hugepages_in_node[i];
4516 		if (hstate_is_gigantic(&default_hstate))
4517 			hugetlb_hstate_alloc_pages(&default_hstate);
4518 		default_hstate_max_huge_pages = 0;
4519 	}
4520 
4521 	return 1;
4522 }
4523 __setup("default_hugepagesz=", default_hugepagesz_setup);
4524 
4525 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4526 {
4527 #ifdef CONFIG_NUMA
4528 	struct mempolicy *mpol = get_task_policy(current);
4529 
4530 	/*
4531 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4532 	 * (from policy_nodemask) specifically for hugetlb case
4533 	 */
4534 	if (mpol->mode == MPOL_BIND &&
4535 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4536 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4537 		return &mpol->nodes;
4538 #endif
4539 	return NULL;
4540 }
4541 
4542 static unsigned int allowed_mems_nr(struct hstate *h)
4543 {
4544 	int node;
4545 	unsigned int nr = 0;
4546 	nodemask_t *mbind_nodemask;
4547 	unsigned int *array = h->free_huge_pages_node;
4548 	gfp_t gfp_mask = htlb_alloc_mask(h);
4549 
4550 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4551 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4552 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4553 			nr += array[node];
4554 	}
4555 
4556 	return nr;
4557 }
4558 
4559 #ifdef CONFIG_SYSCTL
4560 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4561 					  void *buffer, size_t *length,
4562 					  loff_t *ppos, unsigned long *out)
4563 {
4564 	struct ctl_table dup_table;
4565 
4566 	/*
4567 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4568 	 * can duplicate the @table and alter the duplicate of it.
4569 	 */
4570 	dup_table = *table;
4571 	dup_table.data = out;
4572 
4573 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4574 }
4575 
4576 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4577 			 struct ctl_table *table, int write,
4578 			 void *buffer, size_t *length, loff_t *ppos)
4579 {
4580 	struct hstate *h = &default_hstate;
4581 	unsigned long tmp = h->max_huge_pages;
4582 	int ret;
4583 
4584 	if (!hugepages_supported())
4585 		return -EOPNOTSUPP;
4586 
4587 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4588 					     &tmp);
4589 	if (ret)
4590 		goto out;
4591 
4592 	if (write)
4593 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4594 						  NUMA_NO_NODE, tmp, *length);
4595 out:
4596 	return ret;
4597 }
4598 
4599 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4600 			  void *buffer, size_t *length, loff_t *ppos)
4601 {
4602 
4603 	return hugetlb_sysctl_handler_common(false, table, write,
4604 							buffer, length, ppos);
4605 }
4606 
4607 #ifdef CONFIG_NUMA
4608 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4609 			  void *buffer, size_t *length, loff_t *ppos)
4610 {
4611 	return hugetlb_sysctl_handler_common(true, table, write,
4612 							buffer, length, ppos);
4613 }
4614 #endif /* CONFIG_NUMA */
4615 
4616 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4617 		void *buffer, size_t *length, loff_t *ppos)
4618 {
4619 	struct hstate *h = &default_hstate;
4620 	unsigned long tmp;
4621 	int ret;
4622 
4623 	if (!hugepages_supported())
4624 		return -EOPNOTSUPP;
4625 
4626 	tmp = h->nr_overcommit_huge_pages;
4627 
4628 	if (write && hstate_is_gigantic(h))
4629 		return -EINVAL;
4630 
4631 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4632 					     &tmp);
4633 	if (ret)
4634 		goto out;
4635 
4636 	if (write) {
4637 		spin_lock_irq(&hugetlb_lock);
4638 		h->nr_overcommit_huge_pages = tmp;
4639 		spin_unlock_irq(&hugetlb_lock);
4640 	}
4641 out:
4642 	return ret;
4643 }
4644 
4645 static struct ctl_table hugetlb_table[] = {
4646 	{
4647 		.procname	= "nr_hugepages",
4648 		.data		= NULL,
4649 		.maxlen		= sizeof(unsigned long),
4650 		.mode		= 0644,
4651 		.proc_handler	= hugetlb_sysctl_handler,
4652 	},
4653 #ifdef CONFIG_NUMA
4654 	{
4655 		.procname       = "nr_hugepages_mempolicy",
4656 		.data           = NULL,
4657 		.maxlen         = sizeof(unsigned long),
4658 		.mode           = 0644,
4659 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4660 	},
4661 #endif
4662 	{
4663 		.procname	= "hugetlb_shm_group",
4664 		.data		= &sysctl_hugetlb_shm_group,
4665 		.maxlen		= sizeof(gid_t),
4666 		.mode		= 0644,
4667 		.proc_handler	= proc_dointvec,
4668 	},
4669 	{
4670 		.procname	= "nr_overcommit_hugepages",
4671 		.data		= NULL,
4672 		.maxlen		= sizeof(unsigned long),
4673 		.mode		= 0644,
4674 		.proc_handler	= hugetlb_overcommit_handler,
4675 	},
4676 	{ }
4677 };
4678 
4679 static void hugetlb_sysctl_init(void)
4680 {
4681 	register_sysctl_init("vm", hugetlb_table);
4682 }
4683 #endif /* CONFIG_SYSCTL */
4684 
4685 void hugetlb_report_meminfo(struct seq_file *m)
4686 {
4687 	struct hstate *h;
4688 	unsigned long total = 0;
4689 
4690 	if (!hugepages_supported())
4691 		return;
4692 
4693 	for_each_hstate(h) {
4694 		unsigned long count = h->nr_huge_pages;
4695 
4696 		total += huge_page_size(h) * count;
4697 
4698 		if (h == &default_hstate)
4699 			seq_printf(m,
4700 				   "HugePages_Total:   %5lu\n"
4701 				   "HugePages_Free:    %5lu\n"
4702 				   "HugePages_Rsvd:    %5lu\n"
4703 				   "HugePages_Surp:    %5lu\n"
4704 				   "Hugepagesize:   %8lu kB\n",
4705 				   count,
4706 				   h->free_huge_pages,
4707 				   h->resv_huge_pages,
4708 				   h->surplus_huge_pages,
4709 				   huge_page_size(h) / SZ_1K);
4710 	}
4711 
4712 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4713 }
4714 
4715 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4716 {
4717 	struct hstate *h = &default_hstate;
4718 
4719 	if (!hugepages_supported())
4720 		return 0;
4721 
4722 	return sysfs_emit_at(buf, len,
4723 			     "Node %d HugePages_Total: %5u\n"
4724 			     "Node %d HugePages_Free:  %5u\n"
4725 			     "Node %d HugePages_Surp:  %5u\n",
4726 			     nid, h->nr_huge_pages_node[nid],
4727 			     nid, h->free_huge_pages_node[nid],
4728 			     nid, h->surplus_huge_pages_node[nid]);
4729 }
4730 
4731 void hugetlb_show_meminfo_node(int nid)
4732 {
4733 	struct hstate *h;
4734 
4735 	if (!hugepages_supported())
4736 		return;
4737 
4738 	for_each_hstate(h)
4739 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4740 			nid,
4741 			h->nr_huge_pages_node[nid],
4742 			h->free_huge_pages_node[nid],
4743 			h->surplus_huge_pages_node[nid],
4744 			huge_page_size(h) / SZ_1K);
4745 }
4746 
4747 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4748 {
4749 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4750 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4751 }
4752 
4753 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4754 unsigned long hugetlb_total_pages(void)
4755 {
4756 	struct hstate *h;
4757 	unsigned long nr_total_pages = 0;
4758 
4759 	for_each_hstate(h)
4760 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4761 	return nr_total_pages;
4762 }
4763 
4764 static int hugetlb_acct_memory(struct hstate *h, long delta)
4765 {
4766 	int ret = -ENOMEM;
4767 
4768 	if (!delta)
4769 		return 0;
4770 
4771 	spin_lock_irq(&hugetlb_lock);
4772 	/*
4773 	 * When cpuset is configured, it breaks the strict hugetlb page
4774 	 * reservation as the accounting is done on a global variable. Such
4775 	 * reservation is completely rubbish in the presence of cpuset because
4776 	 * the reservation is not checked against page availability for the
4777 	 * current cpuset. Application can still potentially OOM'ed by kernel
4778 	 * with lack of free htlb page in cpuset that the task is in.
4779 	 * Attempt to enforce strict accounting with cpuset is almost
4780 	 * impossible (or too ugly) because cpuset is too fluid that
4781 	 * task or memory node can be dynamically moved between cpusets.
4782 	 *
4783 	 * The change of semantics for shared hugetlb mapping with cpuset is
4784 	 * undesirable. However, in order to preserve some of the semantics,
4785 	 * we fall back to check against current free page availability as
4786 	 * a best attempt and hopefully to minimize the impact of changing
4787 	 * semantics that cpuset has.
4788 	 *
4789 	 * Apart from cpuset, we also have memory policy mechanism that
4790 	 * also determines from which node the kernel will allocate memory
4791 	 * in a NUMA system. So similar to cpuset, we also should consider
4792 	 * the memory policy of the current task. Similar to the description
4793 	 * above.
4794 	 */
4795 	if (delta > 0) {
4796 		if (gather_surplus_pages(h, delta) < 0)
4797 			goto out;
4798 
4799 		if (delta > allowed_mems_nr(h)) {
4800 			return_unused_surplus_pages(h, delta);
4801 			goto out;
4802 		}
4803 	}
4804 
4805 	ret = 0;
4806 	if (delta < 0)
4807 		return_unused_surplus_pages(h, (unsigned long) -delta);
4808 
4809 out:
4810 	spin_unlock_irq(&hugetlb_lock);
4811 	return ret;
4812 }
4813 
4814 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4815 {
4816 	struct resv_map *resv = vma_resv_map(vma);
4817 
4818 	/*
4819 	 * HPAGE_RESV_OWNER indicates a private mapping.
4820 	 * This new VMA should share its siblings reservation map if present.
4821 	 * The VMA will only ever have a valid reservation map pointer where
4822 	 * it is being copied for another still existing VMA.  As that VMA
4823 	 * has a reference to the reservation map it cannot disappear until
4824 	 * after this open call completes.  It is therefore safe to take a
4825 	 * new reference here without additional locking.
4826 	 */
4827 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4828 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4829 		kref_get(&resv->refs);
4830 	}
4831 
4832 	/*
4833 	 * vma_lock structure for sharable mappings is vma specific.
4834 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4835 	 * new structure.  Before clearing, make sure vma_lock is not
4836 	 * for this vma.
4837 	 */
4838 	if (vma->vm_flags & VM_MAYSHARE) {
4839 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4840 
4841 		if (vma_lock) {
4842 			if (vma_lock->vma != vma) {
4843 				vma->vm_private_data = NULL;
4844 				hugetlb_vma_lock_alloc(vma);
4845 			} else
4846 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4847 		} else
4848 			hugetlb_vma_lock_alloc(vma);
4849 	}
4850 }
4851 
4852 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4853 {
4854 	struct hstate *h = hstate_vma(vma);
4855 	struct resv_map *resv;
4856 	struct hugepage_subpool *spool = subpool_vma(vma);
4857 	unsigned long reserve, start, end;
4858 	long gbl_reserve;
4859 
4860 	hugetlb_vma_lock_free(vma);
4861 
4862 	resv = vma_resv_map(vma);
4863 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4864 		return;
4865 
4866 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4867 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4868 
4869 	reserve = (end - start) - region_count(resv, start, end);
4870 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4871 	if (reserve) {
4872 		/*
4873 		 * Decrement reserve counts.  The global reserve count may be
4874 		 * adjusted if the subpool has a minimum size.
4875 		 */
4876 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4877 		hugetlb_acct_memory(h, -gbl_reserve);
4878 	}
4879 
4880 	kref_put(&resv->refs, resv_map_release);
4881 }
4882 
4883 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4884 {
4885 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4886 		return -EINVAL;
4887 
4888 	/*
4889 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4890 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4891 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4892 	 */
4893 	if (addr & ~PUD_MASK) {
4894 		/*
4895 		 * hugetlb_vm_op_split is called right before we attempt to
4896 		 * split the VMA. We will need to unshare PMDs in the old and
4897 		 * new VMAs, so let's unshare before we split.
4898 		 */
4899 		unsigned long floor = addr & PUD_MASK;
4900 		unsigned long ceil = floor + PUD_SIZE;
4901 
4902 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4903 			hugetlb_unshare_pmds(vma, floor, ceil);
4904 	}
4905 
4906 	return 0;
4907 }
4908 
4909 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4910 {
4911 	return huge_page_size(hstate_vma(vma));
4912 }
4913 
4914 /*
4915  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4916  * handle_mm_fault() to try to instantiate regular-sized pages in the
4917  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4918  * this far.
4919  */
4920 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4921 {
4922 	BUG();
4923 	return 0;
4924 }
4925 
4926 /*
4927  * When a new function is introduced to vm_operations_struct and added
4928  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4929  * This is because under System V memory model, mappings created via
4930  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4931  * their original vm_ops are overwritten with shm_vm_ops.
4932  */
4933 const struct vm_operations_struct hugetlb_vm_ops = {
4934 	.fault = hugetlb_vm_op_fault,
4935 	.open = hugetlb_vm_op_open,
4936 	.close = hugetlb_vm_op_close,
4937 	.may_split = hugetlb_vm_op_split,
4938 	.pagesize = hugetlb_vm_op_pagesize,
4939 };
4940 
4941 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4942 				int writable)
4943 {
4944 	pte_t entry;
4945 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4946 
4947 	if (writable) {
4948 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4949 					 vma->vm_page_prot)));
4950 	} else {
4951 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4952 					   vma->vm_page_prot));
4953 	}
4954 	entry = pte_mkyoung(entry);
4955 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4956 
4957 	return entry;
4958 }
4959 
4960 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4961 				   unsigned long address, pte_t *ptep)
4962 {
4963 	pte_t entry;
4964 
4965 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4966 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4967 		update_mmu_cache(vma, address, ptep);
4968 }
4969 
4970 bool is_hugetlb_entry_migration(pte_t pte)
4971 {
4972 	swp_entry_t swp;
4973 
4974 	if (huge_pte_none(pte) || pte_present(pte))
4975 		return false;
4976 	swp = pte_to_swp_entry(pte);
4977 	if (is_migration_entry(swp))
4978 		return true;
4979 	else
4980 		return false;
4981 }
4982 
4983 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4984 {
4985 	swp_entry_t swp;
4986 
4987 	if (huge_pte_none(pte) || pte_present(pte))
4988 		return false;
4989 	swp = pte_to_swp_entry(pte);
4990 	if (is_hwpoison_entry(swp))
4991 		return true;
4992 	else
4993 		return false;
4994 }
4995 
4996 static void
4997 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4998 		      struct folio *new_folio, pte_t old)
4999 {
5000 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5001 
5002 	__folio_mark_uptodate(new_folio);
5003 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5004 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5005 		newpte = huge_pte_mkuffd_wp(newpte);
5006 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5007 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5008 	folio_set_hugetlb_migratable(new_folio);
5009 }
5010 
5011 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5012 			    struct vm_area_struct *dst_vma,
5013 			    struct vm_area_struct *src_vma)
5014 {
5015 	pte_t *src_pte, *dst_pte, entry;
5016 	struct folio *pte_folio;
5017 	unsigned long addr;
5018 	bool cow = is_cow_mapping(src_vma->vm_flags);
5019 	struct hstate *h = hstate_vma(src_vma);
5020 	unsigned long sz = huge_page_size(h);
5021 	unsigned long npages = pages_per_huge_page(h);
5022 	struct mmu_notifier_range range;
5023 	unsigned long last_addr_mask;
5024 	int ret = 0;
5025 
5026 	if (cow) {
5027 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5028 					src_vma->vm_start,
5029 					src_vma->vm_end);
5030 		mmu_notifier_invalidate_range_start(&range);
5031 		mmap_assert_write_locked(src);
5032 		raw_write_seqcount_begin(&src->write_protect_seq);
5033 	} else {
5034 		/*
5035 		 * For shared mappings the vma lock must be held before
5036 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5037 		 * returned ptep could go away if part of a shared pmd and
5038 		 * another thread calls huge_pmd_unshare.
5039 		 */
5040 		hugetlb_vma_lock_read(src_vma);
5041 	}
5042 
5043 	last_addr_mask = hugetlb_mask_last_page(h);
5044 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5045 		spinlock_t *src_ptl, *dst_ptl;
5046 		src_pte = hugetlb_walk(src_vma, addr, sz);
5047 		if (!src_pte) {
5048 			addr |= last_addr_mask;
5049 			continue;
5050 		}
5051 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5052 		if (!dst_pte) {
5053 			ret = -ENOMEM;
5054 			break;
5055 		}
5056 
5057 		/*
5058 		 * If the pagetables are shared don't copy or take references.
5059 		 *
5060 		 * dst_pte == src_pte is the common case of src/dest sharing.
5061 		 * However, src could have 'unshared' and dst shares with
5062 		 * another vma. So page_count of ptep page is checked instead
5063 		 * to reliably determine whether pte is shared.
5064 		 */
5065 		if (page_count(virt_to_page(dst_pte)) > 1) {
5066 			addr |= last_addr_mask;
5067 			continue;
5068 		}
5069 
5070 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5071 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5072 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5073 		entry = huge_ptep_get(src_pte);
5074 again:
5075 		if (huge_pte_none(entry)) {
5076 			/*
5077 			 * Skip if src entry none.
5078 			 */
5079 			;
5080 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5081 			if (!userfaultfd_wp(dst_vma))
5082 				entry = huge_pte_clear_uffd_wp(entry);
5083 			set_huge_pte_at(dst, addr, dst_pte, entry);
5084 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5085 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5086 			bool uffd_wp = pte_swp_uffd_wp(entry);
5087 
5088 			if (!is_readable_migration_entry(swp_entry) && cow) {
5089 				/*
5090 				 * COW mappings require pages in both
5091 				 * parent and child to be set to read.
5092 				 */
5093 				swp_entry = make_readable_migration_entry(
5094 							swp_offset(swp_entry));
5095 				entry = swp_entry_to_pte(swp_entry);
5096 				if (userfaultfd_wp(src_vma) && uffd_wp)
5097 					entry = pte_swp_mkuffd_wp(entry);
5098 				set_huge_pte_at(src, addr, src_pte, entry);
5099 			}
5100 			if (!userfaultfd_wp(dst_vma))
5101 				entry = huge_pte_clear_uffd_wp(entry);
5102 			set_huge_pte_at(dst, addr, dst_pte, entry);
5103 		} else if (unlikely(is_pte_marker(entry))) {
5104 			/* No swap on hugetlb */
5105 			WARN_ON_ONCE(
5106 			    is_swapin_error_entry(pte_to_swp_entry(entry)));
5107 			/*
5108 			 * We copy the pte marker only if the dst vma has
5109 			 * uffd-wp enabled.
5110 			 */
5111 			if (userfaultfd_wp(dst_vma))
5112 				set_huge_pte_at(dst, addr, dst_pte, entry);
5113 		} else {
5114 			entry = huge_ptep_get(src_pte);
5115 			pte_folio = page_folio(pte_page(entry));
5116 			folio_get(pte_folio);
5117 
5118 			/*
5119 			 * Failing to duplicate the anon rmap is a rare case
5120 			 * where we see pinned hugetlb pages while they're
5121 			 * prone to COW. We need to do the COW earlier during
5122 			 * fork.
5123 			 *
5124 			 * When pre-allocating the page or copying data, we
5125 			 * need to be without the pgtable locks since we could
5126 			 * sleep during the process.
5127 			 */
5128 			if (!folio_test_anon(pte_folio)) {
5129 				page_dup_file_rmap(&pte_folio->page, true);
5130 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5131 							  true, src_vma)) {
5132 				pte_t src_pte_old = entry;
5133 				struct folio *new_folio;
5134 
5135 				spin_unlock(src_ptl);
5136 				spin_unlock(dst_ptl);
5137 				/* Do not use reserve as it's private owned */
5138 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5139 				if (IS_ERR(new_folio)) {
5140 					folio_put(pte_folio);
5141 					ret = PTR_ERR(new_folio);
5142 					break;
5143 				}
5144 				ret = copy_user_large_folio(new_folio,
5145 							    pte_folio,
5146 							    addr, dst_vma);
5147 				folio_put(pte_folio);
5148 				if (ret) {
5149 					folio_put(new_folio);
5150 					break;
5151 				}
5152 
5153 				/* Install the new hugetlb folio if src pte stable */
5154 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5155 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5156 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5157 				entry = huge_ptep_get(src_pte);
5158 				if (!pte_same(src_pte_old, entry)) {
5159 					restore_reserve_on_error(h, dst_vma, addr,
5160 								new_folio);
5161 					folio_put(new_folio);
5162 					/* huge_ptep of dst_pte won't change as in child */
5163 					goto again;
5164 				}
5165 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5166 						      new_folio, src_pte_old);
5167 				spin_unlock(src_ptl);
5168 				spin_unlock(dst_ptl);
5169 				continue;
5170 			}
5171 
5172 			if (cow) {
5173 				/*
5174 				 * No need to notify as we are downgrading page
5175 				 * table protection not changing it to point
5176 				 * to a new page.
5177 				 *
5178 				 * See Documentation/mm/mmu_notifier.rst
5179 				 */
5180 				huge_ptep_set_wrprotect(src, addr, src_pte);
5181 				entry = huge_pte_wrprotect(entry);
5182 			}
5183 
5184 			if (!userfaultfd_wp(dst_vma))
5185 				entry = huge_pte_clear_uffd_wp(entry);
5186 
5187 			set_huge_pte_at(dst, addr, dst_pte, entry);
5188 			hugetlb_count_add(npages, dst);
5189 		}
5190 		spin_unlock(src_ptl);
5191 		spin_unlock(dst_ptl);
5192 	}
5193 
5194 	if (cow) {
5195 		raw_write_seqcount_end(&src->write_protect_seq);
5196 		mmu_notifier_invalidate_range_end(&range);
5197 	} else {
5198 		hugetlb_vma_unlock_read(src_vma);
5199 	}
5200 
5201 	return ret;
5202 }
5203 
5204 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5205 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5206 {
5207 	struct hstate *h = hstate_vma(vma);
5208 	struct mm_struct *mm = vma->vm_mm;
5209 	spinlock_t *src_ptl, *dst_ptl;
5210 	pte_t pte;
5211 
5212 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5213 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5214 
5215 	/*
5216 	 * We don't have to worry about the ordering of src and dst ptlocks
5217 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5218 	 */
5219 	if (src_ptl != dst_ptl)
5220 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5221 
5222 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5223 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5224 
5225 	if (src_ptl != dst_ptl)
5226 		spin_unlock(src_ptl);
5227 	spin_unlock(dst_ptl);
5228 }
5229 
5230 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5231 			     struct vm_area_struct *new_vma,
5232 			     unsigned long old_addr, unsigned long new_addr,
5233 			     unsigned long len)
5234 {
5235 	struct hstate *h = hstate_vma(vma);
5236 	struct address_space *mapping = vma->vm_file->f_mapping;
5237 	unsigned long sz = huge_page_size(h);
5238 	struct mm_struct *mm = vma->vm_mm;
5239 	unsigned long old_end = old_addr + len;
5240 	unsigned long last_addr_mask;
5241 	pte_t *src_pte, *dst_pte;
5242 	struct mmu_notifier_range range;
5243 	bool shared_pmd = false;
5244 
5245 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5246 				old_end);
5247 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5248 	/*
5249 	 * In case of shared PMDs, we should cover the maximum possible
5250 	 * range.
5251 	 */
5252 	flush_cache_range(vma, range.start, range.end);
5253 
5254 	mmu_notifier_invalidate_range_start(&range);
5255 	last_addr_mask = hugetlb_mask_last_page(h);
5256 	/* Prevent race with file truncation */
5257 	hugetlb_vma_lock_write(vma);
5258 	i_mmap_lock_write(mapping);
5259 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5260 		src_pte = hugetlb_walk(vma, old_addr, sz);
5261 		if (!src_pte) {
5262 			old_addr |= last_addr_mask;
5263 			new_addr |= last_addr_mask;
5264 			continue;
5265 		}
5266 		if (huge_pte_none(huge_ptep_get(src_pte)))
5267 			continue;
5268 
5269 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5270 			shared_pmd = true;
5271 			old_addr |= last_addr_mask;
5272 			new_addr |= last_addr_mask;
5273 			continue;
5274 		}
5275 
5276 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5277 		if (!dst_pte)
5278 			break;
5279 
5280 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5281 	}
5282 
5283 	if (shared_pmd)
5284 		flush_tlb_range(vma, range.start, range.end);
5285 	else
5286 		flush_tlb_range(vma, old_end - len, old_end);
5287 	mmu_notifier_invalidate_range_end(&range);
5288 	i_mmap_unlock_write(mapping);
5289 	hugetlb_vma_unlock_write(vma);
5290 
5291 	return len + old_addr - old_end;
5292 }
5293 
5294 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5295 				   unsigned long start, unsigned long end,
5296 				   struct page *ref_page, zap_flags_t zap_flags)
5297 {
5298 	struct mm_struct *mm = vma->vm_mm;
5299 	unsigned long address;
5300 	pte_t *ptep;
5301 	pte_t pte;
5302 	spinlock_t *ptl;
5303 	struct page *page;
5304 	struct hstate *h = hstate_vma(vma);
5305 	unsigned long sz = huge_page_size(h);
5306 	unsigned long last_addr_mask;
5307 	bool force_flush = false;
5308 
5309 	WARN_ON(!is_vm_hugetlb_page(vma));
5310 	BUG_ON(start & ~huge_page_mask(h));
5311 	BUG_ON(end & ~huge_page_mask(h));
5312 
5313 	/*
5314 	 * This is a hugetlb vma, all the pte entries should point
5315 	 * to huge page.
5316 	 */
5317 	tlb_change_page_size(tlb, sz);
5318 	tlb_start_vma(tlb, vma);
5319 
5320 	last_addr_mask = hugetlb_mask_last_page(h);
5321 	address = start;
5322 	for (; address < end; address += sz) {
5323 		ptep = hugetlb_walk(vma, address, sz);
5324 		if (!ptep) {
5325 			address |= last_addr_mask;
5326 			continue;
5327 		}
5328 
5329 		ptl = huge_pte_lock(h, mm, ptep);
5330 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5331 			spin_unlock(ptl);
5332 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5333 			force_flush = true;
5334 			address |= last_addr_mask;
5335 			continue;
5336 		}
5337 
5338 		pte = huge_ptep_get(ptep);
5339 		if (huge_pte_none(pte)) {
5340 			spin_unlock(ptl);
5341 			continue;
5342 		}
5343 
5344 		/*
5345 		 * Migrating hugepage or HWPoisoned hugepage is already
5346 		 * unmapped and its refcount is dropped, so just clear pte here.
5347 		 */
5348 		if (unlikely(!pte_present(pte))) {
5349 			/*
5350 			 * If the pte was wr-protected by uffd-wp in any of the
5351 			 * swap forms, meanwhile the caller does not want to
5352 			 * drop the uffd-wp bit in this zap, then replace the
5353 			 * pte with a marker.
5354 			 */
5355 			if (pte_swp_uffd_wp_any(pte) &&
5356 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5357 				set_huge_pte_at(mm, address, ptep,
5358 						make_pte_marker(PTE_MARKER_UFFD_WP));
5359 			else
5360 				huge_pte_clear(mm, address, ptep, sz);
5361 			spin_unlock(ptl);
5362 			continue;
5363 		}
5364 
5365 		page = pte_page(pte);
5366 		/*
5367 		 * If a reference page is supplied, it is because a specific
5368 		 * page is being unmapped, not a range. Ensure the page we
5369 		 * are about to unmap is the actual page of interest.
5370 		 */
5371 		if (ref_page) {
5372 			if (page != ref_page) {
5373 				spin_unlock(ptl);
5374 				continue;
5375 			}
5376 			/*
5377 			 * Mark the VMA as having unmapped its page so that
5378 			 * future faults in this VMA will fail rather than
5379 			 * looking like data was lost
5380 			 */
5381 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5382 		}
5383 
5384 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5385 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5386 		if (huge_pte_dirty(pte))
5387 			set_page_dirty(page);
5388 		/* Leave a uffd-wp pte marker if needed */
5389 		if (huge_pte_uffd_wp(pte) &&
5390 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5391 			set_huge_pte_at(mm, address, ptep,
5392 					make_pte_marker(PTE_MARKER_UFFD_WP));
5393 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5394 		page_remove_rmap(page, vma, true);
5395 
5396 		spin_unlock(ptl);
5397 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5398 		/*
5399 		 * Bail out after unmapping reference page if supplied
5400 		 */
5401 		if (ref_page)
5402 			break;
5403 	}
5404 	tlb_end_vma(tlb, vma);
5405 
5406 	/*
5407 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5408 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5409 	 * guaranteed that the last refernece would not be dropped. But we must
5410 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5411 	 * dropped and the last reference to the shared PMDs page might be
5412 	 * dropped as well.
5413 	 *
5414 	 * In theory we could defer the freeing of the PMD pages as well, but
5415 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5416 	 * detect sharing, so we cannot defer the release of the page either.
5417 	 * Instead, do flush now.
5418 	 */
5419 	if (force_flush)
5420 		tlb_flush_mmu_tlbonly(tlb);
5421 }
5422 
5423 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5424 			  struct vm_area_struct *vma, unsigned long start,
5425 			  unsigned long end, struct page *ref_page,
5426 			  zap_flags_t zap_flags)
5427 {
5428 	hugetlb_vma_lock_write(vma);
5429 	i_mmap_lock_write(vma->vm_file->f_mapping);
5430 
5431 	/* mmu notification performed in caller */
5432 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5433 
5434 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5435 		/*
5436 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5437 		 * When the vma_lock is freed, this makes the vma ineligible
5438 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5439 		 * pmd sharing.  This is important as page tables for this
5440 		 * unmapped range will be asynchrously deleted.  If the page
5441 		 * tables are shared, there will be issues when accessed by
5442 		 * someone else.
5443 		 */
5444 		__hugetlb_vma_unlock_write_free(vma);
5445 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5446 	} else {
5447 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5448 		hugetlb_vma_unlock_write(vma);
5449 	}
5450 }
5451 
5452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5453 			  unsigned long end, struct page *ref_page,
5454 			  zap_flags_t zap_flags)
5455 {
5456 	struct mmu_notifier_range range;
5457 	struct mmu_gather tlb;
5458 
5459 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5460 				start, end);
5461 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5462 	mmu_notifier_invalidate_range_start(&range);
5463 	tlb_gather_mmu(&tlb, vma->vm_mm);
5464 
5465 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5466 
5467 	mmu_notifier_invalidate_range_end(&range);
5468 	tlb_finish_mmu(&tlb);
5469 }
5470 
5471 /*
5472  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5473  * mapping it owns the reserve page for. The intention is to unmap the page
5474  * from other VMAs and let the children be SIGKILLed if they are faulting the
5475  * same region.
5476  */
5477 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5478 			      struct page *page, unsigned long address)
5479 {
5480 	struct hstate *h = hstate_vma(vma);
5481 	struct vm_area_struct *iter_vma;
5482 	struct address_space *mapping;
5483 	pgoff_t pgoff;
5484 
5485 	/*
5486 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5487 	 * from page cache lookup which is in HPAGE_SIZE units.
5488 	 */
5489 	address = address & huge_page_mask(h);
5490 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5491 			vma->vm_pgoff;
5492 	mapping = vma->vm_file->f_mapping;
5493 
5494 	/*
5495 	 * Take the mapping lock for the duration of the table walk. As
5496 	 * this mapping should be shared between all the VMAs,
5497 	 * __unmap_hugepage_range() is called as the lock is already held
5498 	 */
5499 	i_mmap_lock_write(mapping);
5500 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5501 		/* Do not unmap the current VMA */
5502 		if (iter_vma == vma)
5503 			continue;
5504 
5505 		/*
5506 		 * Shared VMAs have their own reserves and do not affect
5507 		 * MAP_PRIVATE accounting but it is possible that a shared
5508 		 * VMA is using the same page so check and skip such VMAs.
5509 		 */
5510 		if (iter_vma->vm_flags & VM_MAYSHARE)
5511 			continue;
5512 
5513 		/*
5514 		 * Unmap the page from other VMAs without their own reserves.
5515 		 * They get marked to be SIGKILLed if they fault in these
5516 		 * areas. This is because a future no-page fault on this VMA
5517 		 * could insert a zeroed page instead of the data existing
5518 		 * from the time of fork. This would look like data corruption
5519 		 */
5520 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5521 			unmap_hugepage_range(iter_vma, address,
5522 					     address + huge_page_size(h), page, 0);
5523 	}
5524 	i_mmap_unlock_write(mapping);
5525 }
5526 
5527 /*
5528  * hugetlb_wp() should be called with page lock of the original hugepage held.
5529  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5530  * cannot race with other handlers or page migration.
5531  * Keep the pte_same checks anyway to make transition from the mutex easier.
5532  */
5533 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5534 		       unsigned long address, pte_t *ptep, unsigned int flags,
5535 		       struct folio *pagecache_folio, spinlock_t *ptl)
5536 {
5537 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5538 	pte_t pte = huge_ptep_get(ptep);
5539 	struct hstate *h = hstate_vma(vma);
5540 	struct folio *old_folio;
5541 	struct folio *new_folio;
5542 	int outside_reserve = 0;
5543 	vm_fault_t ret = 0;
5544 	unsigned long haddr = address & huge_page_mask(h);
5545 	struct mmu_notifier_range range;
5546 
5547 	/*
5548 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5549 	 * handled when the uffd-wp protection is removed.
5550 	 *
5551 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5552 	 * can trigger this, because hugetlb_fault() will always resolve
5553 	 * uffd-wp bit first.
5554 	 */
5555 	if (!unshare && huge_pte_uffd_wp(pte))
5556 		return 0;
5557 
5558 	/*
5559 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5560 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5561 	 */
5562 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5563 		return VM_FAULT_SIGSEGV;
5564 
5565 	/* Let's take out MAP_SHARED mappings first. */
5566 	if (vma->vm_flags & VM_MAYSHARE) {
5567 		set_huge_ptep_writable(vma, haddr, ptep);
5568 		return 0;
5569 	}
5570 
5571 	old_folio = page_folio(pte_page(pte));
5572 
5573 	delayacct_wpcopy_start();
5574 
5575 retry_avoidcopy:
5576 	/*
5577 	 * If no-one else is actually using this page, we're the exclusive
5578 	 * owner and can reuse this page.
5579 	 */
5580 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5581 		if (!PageAnonExclusive(&old_folio->page))
5582 			page_move_anon_rmap(&old_folio->page, vma);
5583 		if (likely(!unshare))
5584 			set_huge_ptep_writable(vma, haddr, ptep);
5585 
5586 		delayacct_wpcopy_end();
5587 		return 0;
5588 	}
5589 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5590 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5591 
5592 	/*
5593 	 * If the process that created a MAP_PRIVATE mapping is about to
5594 	 * perform a COW due to a shared page count, attempt to satisfy
5595 	 * the allocation without using the existing reserves. The pagecache
5596 	 * page is used to determine if the reserve at this address was
5597 	 * consumed or not. If reserves were used, a partial faulted mapping
5598 	 * at the time of fork() could consume its reserves on COW instead
5599 	 * of the full address range.
5600 	 */
5601 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5602 			old_folio != pagecache_folio)
5603 		outside_reserve = 1;
5604 
5605 	folio_get(old_folio);
5606 
5607 	/*
5608 	 * Drop page table lock as buddy allocator may be called. It will
5609 	 * be acquired again before returning to the caller, as expected.
5610 	 */
5611 	spin_unlock(ptl);
5612 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5613 
5614 	if (IS_ERR(new_folio)) {
5615 		/*
5616 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5617 		 * it is due to references held by a child and an insufficient
5618 		 * huge page pool. To guarantee the original mappers
5619 		 * reliability, unmap the page from child processes. The child
5620 		 * may get SIGKILLed if it later faults.
5621 		 */
5622 		if (outside_reserve) {
5623 			struct address_space *mapping = vma->vm_file->f_mapping;
5624 			pgoff_t idx;
5625 			u32 hash;
5626 
5627 			folio_put(old_folio);
5628 			/*
5629 			 * Drop hugetlb_fault_mutex and vma_lock before
5630 			 * unmapping.  unmapping needs to hold vma_lock
5631 			 * in write mode.  Dropping vma_lock in read mode
5632 			 * here is OK as COW mappings do not interact with
5633 			 * PMD sharing.
5634 			 *
5635 			 * Reacquire both after unmap operation.
5636 			 */
5637 			idx = vma_hugecache_offset(h, vma, haddr);
5638 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5639 			hugetlb_vma_unlock_read(vma);
5640 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5641 
5642 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5643 
5644 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5645 			hugetlb_vma_lock_read(vma);
5646 			spin_lock(ptl);
5647 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5648 			if (likely(ptep &&
5649 				   pte_same(huge_ptep_get(ptep), pte)))
5650 				goto retry_avoidcopy;
5651 			/*
5652 			 * race occurs while re-acquiring page table
5653 			 * lock, and our job is done.
5654 			 */
5655 			delayacct_wpcopy_end();
5656 			return 0;
5657 		}
5658 
5659 		ret = vmf_error(PTR_ERR(new_folio));
5660 		goto out_release_old;
5661 	}
5662 
5663 	/*
5664 	 * When the original hugepage is shared one, it does not have
5665 	 * anon_vma prepared.
5666 	 */
5667 	if (unlikely(anon_vma_prepare(vma))) {
5668 		ret = VM_FAULT_OOM;
5669 		goto out_release_all;
5670 	}
5671 
5672 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5673 		ret = VM_FAULT_HWPOISON_LARGE;
5674 		goto out_release_all;
5675 	}
5676 	__folio_mark_uptodate(new_folio);
5677 
5678 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5679 				haddr + huge_page_size(h));
5680 	mmu_notifier_invalidate_range_start(&range);
5681 
5682 	/*
5683 	 * Retake the page table lock to check for racing updates
5684 	 * before the page tables are altered
5685 	 */
5686 	spin_lock(ptl);
5687 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5688 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5689 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5690 
5691 		/* Break COW or unshare */
5692 		huge_ptep_clear_flush(vma, haddr, ptep);
5693 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5694 		page_remove_rmap(&old_folio->page, vma, true);
5695 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5696 		if (huge_pte_uffd_wp(pte))
5697 			newpte = huge_pte_mkuffd_wp(newpte);
5698 		set_huge_pte_at(mm, haddr, ptep, newpte);
5699 		folio_set_hugetlb_migratable(new_folio);
5700 		/* Make the old page be freed below */
5701 		new_folio = old_folio;
5702 	}
5703 	spin_unlock(ptl);
5704 	mmu_notifier_invalidate_range_end(&range);
5705 out_release_all:
5706 	/*
5707 	 * No restore in case of successful pagetable update (Break COW or
5708 	 * unshare)
5709 	 */
5710 	if (new_folio != old_folio)
5711 		restore_reserve_on_error(h, vma, haddr, new_folio);
5712 	folio_put(new_folio);
5713 out_release_old:
5714 	folio_put(old_folio);
5715 
5716 	spin_lock(ptl); /* Caller expects lock to be held */
5717 
5718 	delayacct_wpcopy_end();
5719 	return ret;
5720 }
5721 
5722 /*
5723  * Return whether there is a pagecache page to back given address within VMA.
5724  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5725  */
5726 static bool hugetlbfs_pagecache_present(struct hstate *h,
5727 			struct vm_area_struct *vma, unsigned long address)
5728 {
5729 	struct address_space *mapping = vma->vm_file->f_mapping;
5730 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5731 	struct folio *folio;
5732 
5733 	folio = filemap_get_folio(mapping, idx);
5734 	if (IS_ERR(folio))
5735 		return false;
5736 	folio_put(folio);
5737 	return true;
5738 }
5739 
5740 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5741 			   pgoff_t idx)
5742 {
5743 	struct inode *inode = mapping->host;
5744 	struct hstate *h = hstate_inode(inode);
5745 	int err;
5746 
5747 	__folio_set_locked(folio);
5748 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5749 
5750 	if (unlikely(err)) {
5751 		__folio_clear_locked(folio);
5752 		return err;
5753 	}
5754 	folio_clear_hugetlb_restore_reserve(folio);
5755 
5756 	/*
5757 	 * mark folio dirty so that it will not be removed from cache/file
5758 	 * by non-hugetlbfs specific code paths.
5759 	 */
5760 	folio_mark_dirty(folio);
5761 
5762 	spin_lock(&inode->i_lock);
5763 	inode->i_blocks += blocks_per_huge_page(h);
5764 	spin_unlock(&inode->i_lock);
5765 	return 0;
5766 }
5767 
5768 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5769 						  struct address_space *mapping,
5770 						  pgoff_t idx,
5771 						  unsigned int flags,
5772 						  unsigned long haddr,
5773 						  unsigned long addr,
5774 						  unsigned long reason)
5775 {
5776 	u32 hash;
5777 	struct vm_fault vmf = {
5778 		.vma = vma,
5779 		.address = haddr,
5780 		.real_address = addr,
5781 		.flags = flags,
5782 
5783 		/*
5784 		 * Hard to debug if it ends up being
5785 		 * used by a callee that assumes
5786 		 * something about the other
5787 		 * uninitialized fields... same as in
5788 		 * memory.c
5789 		 */
5790 	};
5791 
5792 	/*
5793 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5794 	 * userfault. Also mmap_lock could be dropped due to handling
5795 	 * userfault, any vma operation should be careful from here.
5796 	 */
5797 	hugetlb_vma_unlock_read(vma);
5798 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5799 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5800 	return handle_userfault(&vmf, reason);
5801 }
5802 
5803 /*
5804  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5805  * false if pte changed or is changing.
5806  */
5807 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5808 			       pte_t *ptep, pte_t old_pte)
5809 {
5810 	spinlock_t *ptl;
5811 	bool same;
5812 
5813 	ptl = huge_pte_lock(h, mm, ptep);
5814 	same = pte_same(huge_ptep_get(ptep), old_pte);
5815 	spin_unlock(ptl);
5816 
5817 	return same;
5818 }
5819 
5820 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5821 			struct vm_area_struct *vma,
5822 			struct address_space *mapping, pgoff_t idx,
5823 			unsigned long address, pte_t *ptep,
5824 			pte_t old_pte, unsigned int flags)
5825 {
5826 	struct hstate *h = hstate_vma(vma);
5827 	vm_fault_t ret = VM_FAULT_SIGBUS;
5828 	int anon_rmap = 0;
5829 	unsigned long size;
5830 	struct folio *folio;
5831 	pte_t new_pte;
5832 	spinlock_t *ptl;
5833 	unsigned long haddr = address & huge_page_mask(h);
5834 	bool new_folio, new_pagecache_folio = false;
5835 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5836 
5837 	/*
5838 	 * Currently, we are forced to kill the process in the event the
5839 	 * original mapper has unmapped pages from the child due to a failed
5840 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5841 	 * be obvious.
5842 	 */
5843 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5844 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5845 			   current->pid);
5846 		goto out;
5847 	}
5848 
5849 	/*
5850 	 * Use page lock to guard against racing truncation
5851 	 * before we get page_table_lock.
5852 	 */
5853 	new_folio = false;
5854 	folio = filemap_lock_folio(mapping, idx);
5855 	if (IS_ERR(folio)) {
5856 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5857 		if (idx >= size)
5858 			goto out;
5859 		/* Check for page in userfault range */
5860 		if (userfaultfd_missing(vma)) {
5861 			/*
5862 			 * Since hugetlb_no_page() was examining pte
5863 			 * without pgtable lock, we need to re-test under
5864 			 * lock because the pte may not be stable and could
5865 			 * have changed from under us.  Try to detect
5866 			 * either changed or during-changing ptes and retry
5867 			 * properly when needed.
5868 			 *
5869 			 * Note that userfaultfd is actually fine with
5870 			 * false positives (e.g. caused by pte changed),
5871 			 * but not wrong logical events (e.g. caused by
5872 			 * reading a pte during changing).  The latter can
5873 			 * confuse the userspace, so the strictness is very
5874 			 * much preferred.  E.g., MISSING event should
5875 			 * never happen on the page after UFFDIO_COPY has
5876 			 * correctly installed the page and returned.
5877 			 */
5878 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5879 				ret = 0;
5880 				goto out;
5881 			}
5882 
5883 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5884 							haddr, address,
5885 							VM_UFFD_MISSING);
5886 		}
5887 
5888 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5889 		if (IS_ERR(folio)) {
5890 			/*
5891 			 * Returning error will result in faulting task being
5892 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5893 			 * tasks from racing to fault in the same page which
5894 			 * could result in false unable to allocate errors.
5895 			 * Page migration does not take the fault mutex, but
5896 			 * does a clear then write of pte's under page table
5897 			 * lock.  Page fault code could race with migration,
5898 			 * notice the clear pte and try to allocate a page
5899 			 * here.  Before returning error, get ptl and make
5900 			 * sure there really is no pte entry.
5901 			 */
5902 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5903 				ret = vmf_error(PTR_ERR(folio));
5904 			else
5905 				ret = 0;
5906 			goto out;
5907 		}
5908 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5909 		__folio_mark_uptodate(folio);
5910 		new_folio = true;
5911 
5912 		if (vma->vm_flags & VM_MAYSHARE) {
5913 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5914 			if (err) {
5915 				/*
5916 				 * err can't be -EEXIST which implies someone
5917 				 * else consumed the reservation since hugetlb
5918 				 * fault mutex is held when add a hugetlb page
5919 				 * to the page cache. So it's safe to call
5920 				 * restore_reserve_on_error() here.
5921 				 */
5922 				restore_reserve_on_error(h, vma, haddr, folio);
5923 				folio_put(folio);
5924 				goto out;
5925 			}
5926 			new_pagecache_folio = true;
5927 		} else {
5928 			folio_lock(folio);
5929 			if (unlikely(anon_vma_prepare(vma))) {
5930 				ret = VM_FAULT_OOM;
5931 				goto backout_unlocked;
5932 			}
5933 			anon_rmap = 1;
5934 		}
5935 	} else {
5936 		/*
5937 		 * If memory error occurs between mmap() and fault, some process
5938 		 * don't have hwpoisoned swap entry for errored virtual address.
5939 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5940 		 */
5941 		if (unlikely(folio_test_hwpoison(folio))) {
5942 			ret = VM_FAULT_HWPOISON_LARGE |
5943 				VM_FAULT_SET_HINDEX(hstate_index(h));
5944 			goto backout_unlocked;
5945 		}
5946 
5947 		/* Check for page in userfault range. */
5948 		if (userfaultfd_minor(vma)) {
5949 			folio_unlock(folio);
5950 			folio_put(folio);
5951 			/* See comment in userfaultfd_missing() block above */
5952 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5953 				ret = 0;
5954 				goto out;
5955 			}
5956 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5957 							haddr, address,
5958 							VM_UFFD_MINOR);
5959 		}
5960 	}
5961 
5962 	/*
5963 	 * If we are going to COW a private mapping later, we examine the
5964 	 * pending reservations for this page now. This will ensure that
5965 	 * any allocations necessary to record that reservation occur outside
5966 	 * the spinlock.
5967 	 */
5968 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5969 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5970 			ret = VM_FAULT_OOM;
5971 			goto backout_unlocked;
5972 		}
5973 		/* Just decrements count, does not deallocate */
5974 		vma_end_reservation(h, vma, haddr);
5975 	}
5976 
5977 	ptl = huge_pte_lock(h, mm, ptep);
5978 	ret = 0;
5979 	/* If pte changed from under us, retry */
5980 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5981 		goto backout;
5982 
5983 	if (anon_rmap)
5984 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5985 	else
5986 		page_dup_file_rmap(&folio->page, true);
5987 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5988 				&& (vma->vm_flags & VM_SHARED)));
5989 	/*
5990 	 * If this pte was previously wr-protected, keep it wr-protected even
5991 	 * if populated.
5992 	 */
5993 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5994 		new_pte = huge_pte_mkuffd_wp(new_pte);
5995 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5996 
5997 	hugetlb_count_add(pages_per_huge_page(h), mm);
5998 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5999 		/* Optimization, do the COW without a second fault */
6000 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6001 	}
6002 
6003 	spin_unlock(ptl);
6004 
6005 	/*
6006 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6007 	 * found in the pagecache may not have hugetlb_migratable if they have
6008 	 * been isolated for migration.
6009 	 */
6010 	if (new_folio)
6011 		folio_set_hugetlb_migratable(folio);
6012 
6013 	folio_unlock(folio);
6014 out:
6015 	hugetlb_vma_unlock_read(vma);
6016 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6017 	return ret;
6018 
6019 backout:
6020 	spin_unlock(ptl);
6021 backout_unlocked:
6022 	if (new_folio && !new_pagecache_folio)
6023 		restore_reserve_on_error(h, vma, haddr, folio);
6024 
6025 	folio_unlock(folio);
6026 	folio_put(folio);
6027 	goto out;
6028 }
6029 
6030 #ifdef CONFIG_SMP
6031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6032 {
6033 	unsigned long key[2];
6034 	u32 hash;
6035 
6036 	key[0] = (unsigned long) mapping;
6037 	key[1] = idx;
6038 
6039 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6040 
6041 	return hash & (num_fault_mutexes - 1);
6042 }
6043 #else
6044 /*
6045  * For uniprocessor systems we always use a single mutex, so just
6046  * return 0 and avoid the hashing overhead.
6047  */
6048 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6049 {
6050 	return 0;
6051 }
6052 #endif
6053 
6054 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6055 			unsigned long address, unsigned int flags)
6056 {
6057 	pte_t *ptep, entry;
6058 	spinlock_t *ptl;
6059 	vm_fault_t ret;
6060 	u32 hash;
6061 	pgoff_t idx;
6062 	struct folio *folio = NULL;
6063 	struct folio *pagecache_folio = NULL;
6064 	struct hstate *h = hstate_vma(vma);
6065 	struct address_space *mapping;
6066 	int need_wait_lock = 0;
6067 	unsigned long haddr = address & huge_page_mask(h);
6068 
6069 	/*
6070 	 * Serialize hugepage allocation and instantiation, so that we don't
6071 	 * get spurious allocation failures if two CPUs race to instantiate
6072 	 * the same page in the page cache.
6073 	 */
6074 	mapping = vma->vm_file->f_mapping;
6075 	idx = vma_hugecache_offset(h, vma, haddr);
6076 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6077 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6078 
6079 	/*
6080 	 * Acquire vma lock before calling huge_pte_alloc and hold
6081 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6082 	 * being called elsewhere and making the ptep no longer valid.
6083 	 */
6084 	hugetlb_vma_lock_read(vma);
6085 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6086 	if (!ptep) {
6087 		hugetlb_vma_unlock_read(vma);
6088 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6089 		return VM_FAULT_OOM;
6090 	}
6091 
6092 	entry = huge_ptep_get(ptep);
6093 	/* PTE markers should be handled the same way as none pte */
6094 	if (huge_pte_none_mostly(entry))
6095 		/*
6096 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6097 		 * mutex internally, which make us return immediately.
6098 		 */
6099 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6100 				      entry, flags);
6101 
6102 	ret = 0;
6103 
6104 	/*
6105 	 * entry could be a migration/hwpoison entry at this point, so this
6106 	 * check prevents the kernel from going below assuming that we have
6107 	 * an active hugepage in pagecache. This goto expects the 2nd page
6108 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6109 	 * properly handle it.
6110 	 */
6111 	if (!pte_present(entry)) {
6112 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6113 			/*
6114 			 * Release the hugetlb fault lock now, but retain
6115 			 * the vma lock, because it is needed to guard the
6116 			 * huge_pte_lockptr() later in
6117 			 * migration_entry_wait_huge(). The vma lock will
6118 			 * be released there.
6119 			 */
6120 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6121 			migration_entry_wait_huge(vma, ptep);
6122 			return 0;
6123 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6124 			ret = VM_FAULT_HWPOISON_LARGE |
6125 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6126 		goto out_mutex;
6127 	}
6128 
6129 	/*
6130 	 * If we are going to COW/unshare the mapping later, we examine the
6131 	 * pending reservations for this page now. This will ensure that any
6132 	 * allocations necessary to record that reservation occur outside the
6133 	 * spinlock. Also lookup the pagecache page now as it is used to
6134 	 * determine if a reservation has been consumed.
6135 	 */
6136 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6137 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6138 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6139 			ret = VM_FAULT_OOM;
6140 			goto out_mutex;
6141 		}
6142 		/* Just decrements count, does not deallocate */
6143 		vma_end_reservation(h, vma, haddr);
6144 
6145 		pagecache_folio = filemap_lock_folio(mapping, idx);
6146 		if (IS_ERR(pagecache_folio))
6147 			pagecache_folio = NULL;
6148 	}
6149 
6150 	ptl = huge_pte_lock(h, mm, ptep);
6151 
6152 	/* Check for a racing update before calling hugetlb_wp() */
6153 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6154 		goto out_ptl;
6155 
6156 	/* Handle userfault-wp first, before trying to lock more pages */
6157 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6158 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6159 		struct vm_fault vmf = {
6160 			.vma = vma,
6161 			.address = haddr,
6162 			.real_address = address,
6163 			.flags = flags,
6164 		};
6165 
6166 		spin_unlock(ptl);
6167 		if (pagecache_folio) {
6168 			folio_unlock(pagecache_folio);
6169 			folio_put(pagecache_folio);
6170 		}
6171 		hugetlb_vma_unlock_read(vma);
6172 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6173 		return handle_userfault(&vmf, VM_UFFD_WP);
6174 	}
6175 
6176 	/*
6177 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6178 	 * pagecache_folio, so here we need take the former one
6179 	 * when folio != pagecache_folio or !pagecache_folio.
6180 	 */
6181 	folio = page_folio(pte_page(entry));
6182 	if (folio != pagecache_folio)
6183 		if (!folio_trylock(folio)) {
6184 			need_wait_lock = 1;
6185 			goto out_ptl;
6186 		}
6187 
6188 	folio_get(folio);
6189 
6190 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6191 		if (!huge_pte_write(entry)) {
6192 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6193 					 pagecache_folio, ptl);
6194 			goto out_put_page;
6195 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6196 			entry = huge_pte_mkdirty(entry);
6197 		}
6198 	}
6199 	entry = pte_mkyoung(entry);
6200 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6201 						flags & FAULT_FLAG_WRITE))
6202 		update_mmu_cache(vma, haddr, ptep);
6203 out_put_page:
6204 	if (folio != pagecache_folio)
6205 		folio_unlock(folio);
6206 	folio_put(folio);
6207 out_ptl:
6208 	spin_unlock(ptl);
6209 
6210 	if (pagecache_folio) {
6211 		folio_unlock(pagecache_folio);
6212 		folio_put(pagecache_folio);
6213 	}
6214 out_mutex:
6215 	hugetlb_vma_unlock_read(vma);
6216 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6217 	/*
6218 	 * Generally it's safe to hold refcount during waiting page lock. But
6219 	 * here we just wait to defer the next page fault to avoid busy loop and
6220 	 * the page is not used after unlocked before returning from the current
6221 	 * page fault. So we are safe from accessing freed page, even if we wait
6222 	 * here without taking refcount.
6223 	 */
6224 	if (need_wait_lock)
6225 		folio_wait_locked(folio);
6226 	return ret;
6227 }
6228 
6229 #ifdef CONFIG_USERFAULTFD
6230 /*
6231  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6232  * with modifications for hugetlb pages.
6233  */
6234 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6235 			     struct vm_area_struct *dst_vma,
6236 			     unsigned long dst_addr,
6237 			     unsigned long src_addr,
6238 			     uffd_flags_t flags,
6239 			     struct folio **foliop)
6240 {
6241 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6242 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6243 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6244 	struct hstate *h = hstate_vma(dst_vma);
6245 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6246 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6247 	unsigned long size;
6248 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6249 	pte_t _dst_pte;
6250 	spinlock_t *ptl;
6251 	int ret = -ENOMEM;
6252 	struct folio *folio;
6253 	int writable;
6254 	bool folio_in_pagecache = false;
6255 
6256 	if (is_continue) {
6257 		ret = -EFAULT;
6258 		folio = filemap_lock_folio(mapping, idx);
6259 		if (IS_ERR(folio))
6260 			goto out;
6261 		folio_in_pagecache = true;
6262 	} else if (!*foliop) {
6263 		/* If a folio already exists, then it's UFFDIO_COPY for
6264 		 * a non-missing case. Return -EEXIST.
6265 		 */
6266 		if (vm_shared &&
6267 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6268 			ret = -EEXIST;
6269 			goto out;
6270 		}
6271 
6272 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6273 		if (IS_ERR(folio)) {
6274 			ret = -ENOMEM;
6275 			goto out;
6276 		}
6277 
6278 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6279 					   false);
6280 
6281 		/* fallback to copy_from_user outside mmap_lock */
6282 		if (unlikely(ret)) {
6283 			ret = -ENOENT;
6284 			/* Free the allocated folio which may have
6285 			 * consumed a reservation.
6286 			 */
6287 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6288 			folio_put(folio);
6289 
6290 			/* Allocate a temporary folio to hold the copied
6291 			 * contents.
6292 			 */
6293 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6294 			if (!folio) {
6295 				ret = -ENOMEM;
6296 				goto out;
6297 			}
6298 			*foliop = folio;
6299 			/* Set the outparam foliop and return to the caller to
6300 			 * copy the contents outside the lock. Don't free the
6301 			 * folio.
6302 			 */
6303 			goto out;
6304 		}
6305 	} else {
6306 		if (vm_shared &&
6307 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6308 			folio_put(*foliop);
6309 			ret = -EEXIST;
6310 			*foliop = NULL;
6311 			goto out;
6312 		}
6313 
6314 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6315 		if (IS_ERR(folio)) {
6316 			folio_put(*foliop);
6317 			ret = -ENOMEM;
6318 			*foliop = NULL;
6319 			goto out;
6320 		}
6321 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6322 		folio_put(*foliop);
6323 		*foliop = NULL;
6324 		if (ret) {
6325 			folio_put(folio);
6326 			goto out;
6327 		}
6328 	}
6329 
6330 	/*
6331 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6332 	 * preceding stores to the page contents become visible before
6333 	 * the set_pte_at() write.
6334 	 */
6335 	__folio_mark_uptodate(folio);
6336 
6337 	/* Add shared, newly allocated pages to the page cache. */
6338 	if (vm_shared && !is_continue) {
6339 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6340 		ret = -EFAULT;
6341 		if (idx >= size)
6342 			goto out_release_nounlock;
6343 
6344 		/*
6345 		 * Serialization between remove_inode_hugepages() and
6346 		 * hugetlb_add_to_page_cache() below happens through the
6347 		 * hugetlb_fault_mutex_table that here must be hold by
6348 		 * the caller.
6349 		 */
6350 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6351 		if (ret)
6352 			goto out_release_nounlock;
6353 		folio_in_pagecache = true;
6354 	}
6355 
6356 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6357 
6358 	ret = -EIO;
6359 	if (folio_test_hwpoison(folio))
6360 		goto out_release_unlock;
6361 
6362 	/*
6363 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6364 	 * registered, we firstly wr-protect a none pte which has no page cache
6365 	 * page backing it, then access the page.
6366 	 */
6367 	ret = -EEXIST;
6368 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6369 		goto out_release_unlock;
6370 
6371 	if (folio_in_pagecache)
6372 		page_dup_file_rmap(&folio->page, true);
6373 	else
6374 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6375 
6376 	/*
6377 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6378 	 * with wp flag set, don't set pte write bit.
6379 	 */
6380 	if (wp_enabled || (is_continue && !vm_shared))
6381 		writable = 0;
6382 	else
6383 		writable = dst_vma->vm_flags & VM_WRITE;
6384 
6385 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6386 	/*
6387 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6388 	 * extremely important for hugetlbfs for now since swapping is not
6389 	 * supported, but we should still be clear in that this page cannot be
6390 	 * thrown away at will, even if write bit not set.
6391 	 */
6392 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6393 	_dst_pte = pte_mkyoung(_dst_pte);
6394 
6395 	if (wp_enabled)
6396 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6397 
6398 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6399 
6400 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6401 
6402 	/* No need to invalidate - it was non-present before */
6403 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6404 
6405 	spin_unlock(ptl);
6406 	if (!is_continue)
6407 		folio_set_hugetlb_migratable(folio);
6408 	if (vm_shared || is_continue)
6409 		folio_unlock(folio);
6410 	ret = 0;
6411 out:
6412 	return ret;
6413 out_release_unlock:
6414 	spin_unlock(ptl);
6415 	if (vm_shared || is_continue)
6416 		folio_unlock(folio);
6417 out_release_nounlock:
6418 	if (!folio_in_pagecache)
6419 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6420 	folio_put(folio);
6421 	goto out;
6422 }
6423 #endif /* CONFIG_USERFAULTFD */
6424 
6425 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6426 			    int refs, struct page **pages)
6427 {
6428 	int nr;
6429 
6430 	for (nr = 0; nr < refs; nr++) {
6431 		if (likely(pages))
6432 			pages[nr] = nth_page(page, nr);
6433 	}
6434 }
6435 
6436 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6437 					       unsigned int flags, pte_t *pte,
6438 					       bool *unshare)
6439 {
6440 	pte_t pteval = huge_ptep_get(pte);
6441 
6442 	*unshare = false;
6443 	if (is_swap_pte(pteval))
6444 		return true;
6445 	if (huge_pte_write(pteval))
6446 		return false;
6447 	if (flags & FOLL_WRITE)
6448 		return true;
6449 	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6450 		*unshare = true;
6451 		return true;
6452 	}
6453 	return false;
6454 }
6455 
6456 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6457 				unsigned long address, unsigned int flags)
6458 {
6459 	struct hstate *h = hstate_vma(vma);
6460 	struct mm_struct *mm = vma->vm_mm;
6461 	unsigned long haddr = address & huge_page_mask(h);
6462 	struct page *page = NULL;
6463 	spinlock_t *ptl;
6464 	pte_t *pte, entry;
6465 
6466 	/*
6467 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6468 	 * follow_hugetlb_page().
6469 	 */
6470 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6471 		return NULL;
6472 
6473 	hugetlb_vma_lock_read(vma);
6474 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6475 	if (!pte)
6476 		goto out_unlock;
6477 
6478 	ptl = huge_pte_lock(h, mm, pte);
6479 	entry = huge_ptep_get(pte);
6480 	if (pte_present(entry)) {
6481 		page = pte_page(entry) +
6482 				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6483 		/*
6484 		 * Note that page may be a sub-page, and with vmemmap
6485 		 * optimizations the page struct may be read only.
6486 		 * try_grab_page() will increase the ref count on the
6487 		 * head page, so this will be OK.
6488 		 *
6489 		 * try_grab_page() should always be able to get the page here,
6490 		 * because we hold the ptl lock and have verified pte_present().
6491 		 */
6492 		if (try_grab_page(page, flags)) {
6493 			page = NULL;
6494 			goto out;
6495 		}
6496 	}
6497 out:
6498 	spin_unlock(ptl);
6499 out_unlock:
6500 	hugetlb_vma_unlock_read(vma);
6501 	return page;
6502 }
6503 
6504 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6505 			 struct page **pages, unsigned long *position,
6506 			 unsigned long *nr_pages, long i, unsigned int flags,
6507 			 int *locked)
6508 {
6509 	unsigned long pfn_offset;
6510 	unsigned long vaddr = *position;
6511 	unsigned long remainder = *nr_pages;
6512 	struct hstate *h = hstate_vma(vma);
6513 	int err = -EFAULT, refs;
6514 
6515 	while (vaddr < vma->vm_end && remainder) {
6516 		pte_t *pte;
6517 		spinlock_t *ptl = NULL;
6518 		bool unshare = false;
6519 		int absent;
6520 		struct page *page;
6521 
6522 		/*
6523 		 * If we have a pending SIGKILL, don't keep faulting pages and
6524 		 * potentially allocating memory.
6525 		 */
6526 		if (fatal_signal_pending(current)) {
6527 			remainder = 0;
6528 			break;
6529 		}
6530 
6531 		hugetlb_vma_lock_read(vma);
6532 		/*
6533 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6534 		 * each hugepage.  We have to make sure we get the
6535 		 * first, for the page indexing below to work.
6536 		 *
6537 		 * Note that page table lock is not held when pte is null.
6538 		 */
6539 		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6540 				   huge_page_size(h));
6541 		if (pte)
6542 			ptl = huge_pte_lock(h, mm, pte);
6543 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6544 
6545 		/*
6546 		 * When coredumping, it suits get_dump_page if we just return
6547 		 * an error where there's an empty slot with no huge pagecache
6548 		 * to back it.  This way, we avoid allocating a hugepage, and
6549 		 * the sparse dumpfile avoids allocating disk blocks, but its
6550 		 * huge holes still show up with zeroes where they need to be.
6551 		 */
6552 		if (absent && (flags & FOLL_DUMP) &&
6553 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6554 			if (pte)
6555 				spin_unlock(ptl);
6556 			hugetlb_vma_unlock_read(vma);
6557 			remainder = 0;
6558 			break;
6559 		}
6560 
6561 		/*
6562 		 * We need call hugetlb_fault for both hugepages under migration
6563 		 * (in which case hugetlb_fault waits for the migration,) and
6564 		 * hwpoisoned hugepages (in which case we need to prevent the
6565 		 * caller from accessing to them.) In order to do this, we use
6566 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6567 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6568 		 * both cases, and because we can't follow correct pages
6569 		 * directly from any kind of swap entries.
6570 		 */
6571 		if (absent ||
6572 		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6573 			vm_fault_t ret;
6574 			unsigned int fault_flags = 0;
6575 
6576 			if (pte)
6577 				spin_unlock(ptl);
6578 			hugetlb_vma_unlock_read(vma);
6579 
6580 			if (flags & FOLL_WRITE)
6581 				fault_flags |= FAULT_FLAG_WRITE;
6582 			else if (unshare)
6583 				fault_flags |= FAULT_FLAG_UNSHARE;
6584 			if (locked) {
6585 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6586 					FAULT_FLAG_KILLABLE;
6587 				if (flags & FOLL_INTERRUPTIBLE)
6588 					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6589 			}
6590 			if (flags & FOLL_NOWAIT)
6591 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592 					FAULT_FLAG_RETRY_NOWAIT;
6593 			if (flags & FOLL_TRIED) {
6594 				/*
6595 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6596 				 * FAULT_FLAG_TRIED can co-exist
6597 				 */
6598 				fault_flags |= FAULT_FLAG_TRIED;
6599 			}
6600 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6601 			if (ret & VM_FAULT_ERROR) {
6602 				err = vm_fault_to_errno(ret, flags);
6603 				remainder = 0;
6604 				break;
6605 			}
6606 			if (ret & VM_FAULT_RETRY) {
6607 				if (locked &&
6608 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6609 					*locked = 0;
6610 				*nr_pages = 0;
6611 				/*
6612 				 * VM_FAULT_RETRY must not return an
6613 				 * error, it will return zero
6614 				 * instead.
6615 				 *
6616 				 * No need to update "position" as the
6617 				 * caller will not check it after
6618 				 * *nr_pages is set to 0.
6619 				 */
6620 				return i;
6621 			}
6622 			continue;
6623 		}
6624 
6625 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6626 		page = pte_page(huge_ptep_get(pte));
6627 
6628 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6629 			       !PageAnonExclusive(page), page);
6630 
6631 		/*
6632 		 * If subpage information not requested, update counters
6633 		 * and skip the same_page loop below.
6634 		 */
6635 		if (!pages && !pfn_offset &&
6636 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6637 		    (remainder >= pages_per_huge_page(h))) {
6638 			vaddr += huge_page_size(h);
6639 			remainder -= pages_per_huge_page(h);
6640 			i += pages_per_huge_page(h);
6641 			spin_unlock(ptl);
6642 			hugetlb_vma_unlock_read(vma);
6643 			continue;
6644 		}
6645 
6646 		/* vaddr may not be aligned to PAGE_SIZE */
6647 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6648 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6649 
6650 		if (pages)
6651 			record_subpages(nth_page(page, pfn_offset),
6652 					vma, refs,
6653 					likely(pages) ? pages + i : NULL);
6654 
6655 		if (pages) {
6656 			/*
6657 			 * try_grab_folio() should always succeed here,
6658 			 * because: a) we hold the ptl lock, and b) we've just
6659 			 * checked that the huge page is present in the page
6660 			 * tables. If the huge page is present, then the tail
6661 			 * pages must also be present. The ptl prevents the
6662 			 * head page and tail pages from being rearranged in
6663 			 * any way. As this is hugetlb, the pages will never
6664 			 * be p2pdma or not longterm pinable. So this page
6665 			 * must be available at this point, unless the page
6666 			 * refcount overflowed:
6667 			 */
6668 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6669 							 flags))) {
6670 				spin_unlock(ptl);
6671 				hugetlb_vma_unlock_read(vma);
6672 				remainder = 0;
6673 				err = -ENOMEM;
6674 				break;
6675 			}
6676 		}
6677 
6678 		vaddr += (refs << PAGE_SHIFT);
6679 		remainder -= refs;
6680 		i += refs;
6681 
6682 		spin_unlock(ptl);
6683 		hugetlb_vma_unlock_read(vma);
6684 	}
6685 	*nr_pages = remainder;
6686 	/*
6687 	 * setting position is actually required only if remainder is
6688 	 * not zero but it's faster not to add a "if (remainder)"
6689 	 * branch.
6690 	 */
6691 	*position = vaddr;
6692 
6693 	return i ? i : err;
6694 }
6695 
6696 long hugetlb_change_protection(struct vm_area_struct *vma,
6697 		unsigned long address, unsigned long end,
6698 		pgprot_t newprot, unsigned long cp_flags)
6699 {
6700 	struct mm_struct *mm = vma->vm_mm;
6701 	unsigned long start = address;
6702 	pte_t *ptep;
6703 	pte_t pte;
6704 	struct hstate *h = hstate_vma(vma);
6705 	long pages = 0, psize = huge_page_size(h);
6706 	bool shared_pmd = false;
6707 	struct mmu_notifier_range range;
6708 	unsigned long last_addr_mask;
6709 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6710 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6711 
6712 	/*
6713 	 * In the case of shared PMDs, the area to flush could be beyond
6714 	 * start/end.  Set range.start/range.end to cover the maximum possible
6715 	 * range if PMD sharing is possible.
6716 	 */
6717 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6718 				0, mm, start, end);
6719 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6720 
6721 	BUG_ON(address >= end);
6722 	flush_cache_range(vma, range.start, range.end);
6723 
6724 	mmu_notifier_invalidate_range_start(&range);
6725 	hugetlb_vma_lock_write(vma);
6726 	i_mmap_lock_write(vma->vm_file->f_mapping);
6727 	last_addr_mask = hugetlb_mask_last_page(h);
6728 	for (; address < end; address += psize) {
6729 		spinlock_t *ptl;
6730 		ptep = hugetlb_walk(vma, address, psize);
6731 		if (!ptep) {
6732 			if (!uffd_wp) {
6733 				address |= last_addr_mask;
6734 				continue;
6735 			}
6736 			/*
6737 			 * Userfaultfd wr-protect requires pgtable
6738 			 * pre-allocations to install pte markers.
6739 			 */
6740 			ptep = huge_pte_alloc(mm, vma, address, psize);
6741 			if (!ptep) {
6742 				pages = -ENOMEM;
6743 				break;
6744 			}
6745 		}
6746 		ptl = huge_pte_lock(h, mm, ptep);
6747 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6748 			/*
6749 			 * When uffd-wp is enabled on the vma, unshare
6750 			 * shouldn't happen at all.  Warn about it if it
6751 			 * happened due to some reason.
6752 			 */
6753 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6754 			pages++;
6755 			spin_unlock(ptl);
6756 			shared_pmd = true;
6757 			address |= last_addr_mask;
6758 			continue;
6759 		}
6760 		pte = huge_ptep_get(ptep);
6761 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6762 			/* Nothing to do. */
6763 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6764 			swp_entry_t entry = pte_to_swp_entry(pte);
6765 			struct page *page = pfn_swap_entry_to_page(entry);
6766 			pte_t newpte = pte;
6767 
6768 			if (is_writable_migration_entry(entry)) {
6769 				if (PageAnon(page))
6770 					entry = make_readable_exclusive_migration_entry(
6771 								swp_offset(entry));
6772 				else
6773 					entry = make_readable_migration_entry(
6774 								swp_offset(entry));
6775 				newpte = swp_entry_to_pte(entry);
6776 				pages++;
6777 			}
6778 
6779 			if (uffd_wp)
6780 				newpte = pte_swp_mkuffd_wp(newpte);
6781 			else if (uffd_wp_resolve)
6782 				newpte = pte_swp_clear_uffd_wp(newpte);
6783 			if (!pte_same(pte, newpte))
6784 				set_huge_pte_at(mm, address, ptep, newpte);
6785 		} else if (unlikely(is_pte_marker(pte))) {
6786 			/* No other markers apply for now. */
6787 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6788 			if (uffd_wp_resolve)
6789 				/* Safe to modify directly (non-present->none). */
6790 				huge_pte_clear(mm, address, ptep, psize);
6791 		} else if (!huge_pte_none(pte)) {
6792 			pte_t old_pte;
6793 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6794 
6795 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6796 			pte = huge_pte_modify(old_pte, newprot);
6797 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6798 			if (uffd_wp)
6799 				pte = huge_pte_mkuffd_wp(pte);
6800 			else if (uffd_wp_resolve)
6801 				pte = huge_pte_clear_uffd_wp(pte);
6802 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6803 			pages++;
6804 		} else {
6805 			/* None pte */
6806 			if (unlikely(uffd_wp))
6807 				/* Safe to modify directly (none->non-present). */
6808 				set_huge_pte_at(mm, address, ptep,
6809 						make_pte_marker(PTE_MARKER_UFFD_WP));
6810 		}
6811 		spin_unlock(ptl);
6812 	}
6813 	/*
6814 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6815 	 * may have cleared our pud entry and done put_page on the page table:
6816 	 * once we release i_mmap_rwsem, another task can do the final put_page
6817 	 * and that page table be reused and filled with junk.  If we actually
6818 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6819 	 */
6820 	if (shared_pmd)
6821 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6822 	else
6823 		flush_hugetlb_tlb_range(vma, start, end);
6824 	/*
6825 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6826 	 * page table protection not changing it to point to a new page.
6827 	 *
6828 	 * See Documentation/mm/mmu_notifier.rst
6829 	 */
6830 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6831 	hugetlb_vma_unlock_write(vma);
6832 	mmu_notifier_invalidate_range_end(&range);
6833 
6834 	return pages > 0 ? (pages << h->order) : pages;
6835 }
6836 
6837 /* Return true if reservation was successful, false otherwise.  */
6838 bool hugetlb_reserve_pages(struct inode *inode,
6839 					long from, long to,
6840 					struct vm_area_struct *vma,
6841 					vm_flags_t vm_flags)
6842 {
6843 	long chg = -1, add = -1;
6844 	struct hstate *h = hstate_inode(inode);
6845 	struct hugepage_subpool *spool = subpool_inode(inode);
6846 	struct resv_map *resv_map;
6847 	struct hugetlb_cgroup *h_cg = NULL;
6848 	long gbl_reserve, regions_needed = 0;
6849 
6850 	/* This should never happen */
6851 	if (from > to) {
6852 		VM_WARN(1, "%s called with a negative range\n", __func__);
6853 		return false;
6854 	}
6855 
6856 	/*
6857 	 * vma specific semaphore used for pmd sharing and fault/truncation
6858 	 * synchronization
6859 	 */
6860 	hugetlb_vma_lock_alloc(vma);
6861 
6862 	/*
6863 	 * Only apply hugepage reservation if asked. At fault time, an
6864 	 * attempt will be made for VM_NORESERVE to allocate a page
6865 	 * without using reserves
6866 	 */
6867 	if (vm_flags & VM_NORESERVE)
6868 		return true;
6869 
6870 	/*
6871 	 * Shared mappings base their reservation on the number of pages that
6872 	 * are already allocated on behalf of the file. Private mappings need
6873 	 * to reserve the full area even if read-only as mprotect() may be
6874 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6875 	 */
6876 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6877 		/*
6878 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6879 		 * called for inodes for which resv_maps were created (see
6880 		 * hugetlbfs_get_inode).
6881 		 */
6882 		resv_map = inode_resv_map(inode);
6883 
6884 		chg = region_chg(resv_map, from, to, &regions_needed);
6885 	} else {
6886 		/* Private mapping. */
6887 		resv_map = resv_map_alloc();
6888 		if (!resv_map)
6889 			goto out_err;
6890 
6891 		chg = to - from;
6892 
6893 		set_vma_resv_map(vma, resv_map);
6894 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6895 	}
6896 
6897 	if (chg < 0)
6898 		goto out_err;
6899 
6900 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6901 				chg * pages_per_huge_page(h), &h_cg) < 0)
6902 		goto out_err;
6903 
6904 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6905 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6906 		 * of the resv_map.
6907 		 */
6908 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6909 	}
6910 
6911 	/*
6912 	 * There must be enough pages in the subpool for the mapping. If
6913 	 * the subpool has a minimum size, there may be some global
6914 	 * reservations already in place (gbl_reserve).
6915 	 */
6916 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6917 	if (gbl_reserve < 0)
6918 		goto out_uncharge_cgroup;
6919 
6920 	/*
6921 	 * Check enough hugepages are available for the reservation.
6922 	 * Hand the pages back to the subpool if there are not
6923 	 */
6924 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6925 		goto out_put_pages;
6926 
6927 	/*
6928 	 * Account for the reservations made. Shared mappings record regions
6929 	 * that have reservations as they are shared by multiple VMAs.
6930 	 * When the last VMA disappears, the region map says how much
6931 	 * the reservation was and the page cache tells how much of
6932 	 * the reservation was consumed. Private mappings are per-VMA and
6933 	 * only the consumed reservations are tracked. When the VMA
6934 	 * disappears, the original reservation is the VMA size and the
6935 	 * consumed reservations are stored in the map. Hence, nothing
6936 	 * else has to be done for private mappings here
6937 	 */
6938 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6939 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6940 
6941 		if (unlikely(add < 0)) {
6942 			hugetlb_acct_memory(h, -gbl_reserve);
6943 			goto out_put_pages;
6944 		} else if (unlikely(chg > add)) {
6945 			/*
6946 			 * pages in this range were added to the reserve
6947 			 * map between region_chg and region_add.  This
6948 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6949 			 * the subpool and reserve counts modified above
6950 			 * based on the difference.
6951 			 */
6952 			long rsv_adjust;
6953 
6954 			/*
6955 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6956 			 * reference to h_cg->css. See comment below for detail.
6957 			 */
6958 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6959 				hstate_index(h),
6960 				(chg - add) * pages_per_huge_page(h), h_cg);
6961 
6962 			rsv_adjust = hugepage_subpool_put_pages(spool,
6963 								chg - add);
6964 			hugetlb_acct_memory(h, -rsv_adjust);
6965 		} else if (h_cg) {
6966 			/*
6967 			 * The file_regions will hold their own reference to
6968 			 * h_cg->css. So we should release the reference held
6969 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6970 			 * done.
6971 			 */
6972 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6973 		}
6974 	}
6975 	return true;
6976 
6977 out_put_pages:
6978 	/* put back original number of pages, chg */
6979 	(void)hugepage_subpool_put_pages(spool, chg);
6980 out_uncharge_cgroup:
6981 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6982 					    chg * pages_per_huge_page(h), h_cg);
6983 out_err:
6984 	hugetlb_vma_lock_free(vma);
6985 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6986 		/* Only call region_abort if the region_chg succeeded but the
6987 		 * region_add failed or didn't run.
6988 		 */
6989 		if (chg >= 0 && add < 0)
6990 			region_abort(resv_map, from, to, regions_needed);
6991 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6992 		kref_put(&resv_map->refs, resv_map_release);
6993 	return false;
6994 }
6995 
6996 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6997 								long freed)
6998 {
6999 	struct hstate *h = hstate_inode(inode);
7000 	struct resv_map *resv_map = inode_resv_map(inode);
7001 	long chg = 0;
7002 	struct hugepage_subpool *spool = subpool_inode(inode);
7003 	long gbl_reserve;
7004 
7005 	/*
7006 	 * Since this routine can be called in the evict inode path for all
7007 	 * hugetlbfs inodes, resv_map could be NULL.
7008 	 */
7009 	if (resv_map) {
7010 		chg = region_del(resv_map, start, end);
7011 		/*
7012 		 * region_del() can fail in the rare case where a region
7013 		 * must be split and another region descriptor can not be
7014 		 * allocated.  If end == LONG_MAX, it will not fail.
7015 		 */
7016 		if (chg < 0)
7017 			return chg;
7018 	}
7019 
7020 	spin_lock(&inode->i_lock);
7021 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7022 	spin_unlock(&inode->i_lock);
7023 
7024 	/*
7025 	 * If the subpool has a minimum size, the number of global
7026 	 * reservations to be released may be adjusted.
7027 	 *
7028 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7029 	 * won't go negative.
7030 	 */
7031 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7032 	hugetlb_acct_memory(h, -gbl_reserve);
7033 
7034 	return 0;
7035 }
7036 
7037 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7038 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7039 				struct vm_area_struct *vma,
7040 				unsigned long addr, pgoff_t idx)
7041 {
7042 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7043 				svma->vm_start;
7044 	unsigned long sbase = saddr & PUD_MASK;
7045 	unsigned long s_end = sbase + PUD_SIZE;
7046 
7047 	/* Allow segments to share if only one is marked locked */
7048 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7049 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7050 
7051 	/*
7052 	 * match the virtual addresses, permission and the alignment of the
7053 	 * page table page.
7054 	 *
7055 	 * Also, vma_lock (vm_private_data) is required for sharing.
7056 	 */
7057 	if (pmd_index(addr) != pmd_index(saddr) ||
7058 	    vm_flags != svm_flags ||
7059 	    !range_in_vma(svma, sbase, s_end) ||
7060 	    !svma->vm_private_data)
7061 		return 0;
7062 
7063 	return saddr;
7064 }
7065 
7066 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7067 {
7068 	unsigned long start = addr & PUD_MASK;
7069 	unsigned long end = start + PUD_SIZE;
7070 
7071 #ifdef CONFIG_USERFAULTFD
7072 	if (uffd_disable_huge_pmd_share(vma))
7073 		return false;
7074 #endif
7075 	/*
7076 	 * check on proper vm_flags and page table alignment
7077 	 */
7078 	if (!(vma->vm_flags & VM_MAYSHARE))
7079 		return false;
7080 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7081 		return false;
7082 	if (!range_in_vma(vma, start, end))
7083 		return false;
7084 	return true;
7085 }
7086 
7087 /*
7088  * Determine if start,end range within vma could be mapped by shared pmd.
7089  * If yes, adjust start and end to cover range associated with possible
7090  * shared pmd mappings.
7091  */
7092 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7093 				unsigned long *start, unsigned long *end)
7094 {
7095 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7096 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7097 
7098 	/*
7099 	 * vma needs to span at least one aligned PUD size, and the range
7100 	 * must be at least partially within in.
7101 	 */
7102 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7103 		(*end <= v_start) || (*start >= v_end))
7104 		return;
7105 
7106 	/* Extend the range to be PUD aligned for a worst case scenario */
7107 	if (*start > v_start)
7108 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7109 
7110 	if (*end < v_end)
7111 		*end = ALIGN(*end, PUD_SIZE);
7112 }
7113 
7114 /*
7115  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7116  * and returns the corresponding pte. While this is not necessary for the
7117  * !shared pmd case because we can allocate the pmd later as well, it makes the
7118  * code much cleaner. pmd allocation is essential for the shared case because
7119  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7120  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7121  * bad pmd for sharing.
7122  */
7123 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7124 		      unsigned long addr, pud_t *pud)
7125 {
7126 	struct address_space *mapping = vma->vm_file->f_mapping;
7127 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7128 			vma->vm_pgoff;
7129 	struct vm_area_struct *svma;
7130 	unsigned long saddr;
7131 	pte_t *spte = NULL;
7132 	pte_t *pte;
7133 
7134 	i_mmap_lock_read(mapping);
7135 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7136 		if (svma == vma)
7137 			continue;
7138 
7139 		saddr = page_table_shareable(svma, vma, addr, idx);
7140 		if (saddr) {
7141 			spte = hugetlb_walk(svma, saddr,
7142 					    vma_mmu_pagesize(svma));
7143 			if (spte) {
7144 				get_page(virt_to_page(spte));
7145 				break;
7146 			}
7147 		}
7148 	}
7149 
7150 	if (!spte)
7151 		goto out;
7152 
7153 	spin_lock(&mm->page_table_lock);
7154 	if (pud_none(*pud)) {
7155 		pud_populate(mm, pud,
7156 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7157 		mm_inc_nr_pmds(mm);
7158 	} else {
7159 		put_page(virt_to_page(spte));
7160 	}
7161 	spin_unlock(&mm->page_table_lock);
7162 out:
7163 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7164 	i_mmap_unlock_read(mapping);
7165 	return pte;
7166 }
7167 
7168 /*
7169  * unmap huge page backed by shared pte.
7170  *
7171  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7172  * indicated by page_count > 1, unmap is achieved by clearing pud and
7173  * decrementing the ref count. If count == 1, the pte page is not shared.
7174  *
7175  * Called with page table lock held.
7176  *
7177  * returns: 1 successfully unmapped a shared pte page
7178  *	    0 the underlying pte page is not shared, or it is the last user
7179  */
7180 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7181 					unsigned long addr, pte_t *ptep)
7182 {
7183 	pgd_t *pgd = pgd_offset(mm, addr);
7184 	p4d_t *p4d = p4d_offset(pgd, addr);
7185 	pud_t *pud = pud_offset(p4d, addr);
7186 
7187 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7188 	hugetlb_vma_assert_locked(vma);
7189 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7190 	if (page_count(virt_to_page(ptep)) == 1)
7191 		return 0;
7192 
7193 	pud_clear(pud);
7194 	put_page(virt_to_page(ptep));
7195 	mm_dec_nr_pmds(mm);
7196 	return 1;
7197 }
7198 
7199 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7200 
7201 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7202 		      unsigned long addr, pud_t *pud)
7203 {
7204 	return NULL;
7205 }
7206 
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208 				unsigned long addr, pte_t *ptep)
7209 {
7210 	return 0;
7211 }
7212 
7213 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7214 				unsigned long *start, unsigned long *end)
7215 {
7216 }
7217 
7218 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7219 {
7220 	return false;
7221 }
7222 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7223 
7224 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7225 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7226 			unsigned long addr, unsigned long sz)
7227 {
7228 	pgd_t *pgd;
7229 	p4d_t *p4d;
7230 	pud_t *pud;
7231 	pte_t *pte = NULL;
7232 
7233 	pgd = pgd_offset(mm, addr);
7234 	p4d = p4d_alloc(mm, pgd, addr);
7235 	if (!p4d)
7236 		return NULL;
7237 	pud = pud_alloc(mm, p4d, addr);
7238 	if (pud) {
7239 		if (sz == PUD_SIZE) {
7240 			pte = (pte_t *)pud;
7241 		} else {
7242 			BUG_ON(sz != PMD_SIZE);
7243 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7244 				pte = huge_pmd_share(mm, vma, addr, pud);
7245 			else
7246 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7247 		}
7248 	}
7249 	BUG_ON(pte && pte_present(ptep_get(pte)) && !pte_huge(ptep_get(pte)));
7250 
7251 	return pte;
7252 }
7253 
7254 /*
7255  * huge_pte_offset() - Walk the page table to resolve the hugepage
7256  * entry at address @addr
7257  *
7258  * Return: Pointer to page table entry (PUD or PMD) for
7259  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7260  * size @sz doesn't match the hugepage size at this level of the page
7261  * table.
7262  */
7263 pte_t *huge_pte_offset(struct mm_struct *mm,
7264 		       unsigned long addr, unsigned long sz)
7265 {
7266 	pgd_t *pgd;
7267 	p4d_t *p4d;
7268 	pud_t *pud;
7269 	pmd_t *pmd;
7270 
7271 	pgd = pgd_offset(mm, addr);
7272 	if (!pgd_present(*pgd))
7273 		return NULL;
7274 	p4d = p4d_offset(pgd, addr);
7275 	if (!p4d_present(*p4d))
7276 		return NULL;
7277 
7278 	pud = pud_offset(p4d, addr);
7279 	if (sz == PUD_SIZE)
7280 		/* must be pud huge, non-present or none */
7281 		return (pte_t *)pud;
7282 	if (!pud_present(*pud))
7283 		return NULL;
7284 	/* must have a valid entry and size to go further */
7285 
7286 	pmd = pmd_offset(pud, addr);
7287 	/* must be pmd huge, non-present or none */
7288 	return (pte_t *)pmd;
7289 }
7290 
7291 /*
7292  * Return a mask that can be used to update an address to the last huge
7293  * page in a page table page mapping size.  Used to skip non-present
7294  * page table entries when linearly scanning address ranges.  Architectures
7295  * with unique huge page to page table relationships can define their own
7296  * version of this routine.
7297  */
7298 unsigned long hugetlb_mask_last_page(struct hstate *h)
7299 {
7300 	unsigned long hp_size = huge_page_size(h);
7301 
7302 	if (hp_size == PUD_SIZE)
7303 		return P4D_SIZE - PUD_SIZE;
7304 	else if (hp_size == PMD_SIZE)
7305 		return PUD_SIZE - PMD_SIZE;
7306 	else
7307 		return 0UL;
7308 }
7309 
7310 #else
7311 
7312 /* See description above.  Architectures can provide their own version. */
7313 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7314 {
7315 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7316 	if (huge_page_size(h) == PMD_SIZE)
7317 		return PUD_SIZE - PMD_SIZE;
7318 #endif
7319 	return 0UL;
7320 }
7321 
7322 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7323 
7324 /*
7325  * These functions are overwritable if your architecture needs its own
7326  * behavior.
7327  */
7328 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7329 {
7330 	bool ret = true;
7331 
7332 	spin_lock_irq(&hugetlb_lock);
7333 	if (!folio_test_hugetlb(folio) ||
7334 	    !folio_test_hugetlb_migratable(folio) ||
7335 	    !folio_try_get(folio)) {
7336 		ret = false;
7337 		goto unlock;
7338 	}
7339 	folio_clear_hugetlb_migratable(folio);
7340 	list_move_tail(&folio->lru, list);
7341 unlock:
7342 	spin_unlock_irq(&hugetlb_lock);
7343 	return ret;
7344 }
7345 
7346 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7347 {
7348 	int ret = 0;
7349 
7350 	*hugetlb = false;
7351 	spin_lock_irq(&hugetlb_lock);
7352 	if (folio_test_hugetlb(folio)) {
7353 		*hugetlb = true;
7354 		if (folio_test_hugetlb_freed(folio))
7355 			ret = 0;
7356 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7357 			ret = folio_try_get(folio);
7358 		else
7359 			ret = -EBUSY;
7360 	}
7361 	spin_unlock_irq(&hugetlb_lock);
7362 	return ret;
7363 }
7364 
7365 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7366 				bool *migratable_cleared)
7367 {
7368 	int ret;
7369 
7370 	spin_lock_irq(&hugetlb_lock);
7371 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7372 	spin_unlock_irq(&hugetlb_lock);
7373 	return ret;
7374 }
7375 
7376 void folio_putback_active_hugetlb(struct folio *folio)
7377 {
7378 	spin_lock_irq(&hugetlb_lock);
7379 	folio_set_hugetlb_migratable(folio);
7380 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7381 	spin_unlock_irq(&hugetlb_lock);
7382 	folio_put(folio);
7383 }
7384 
7385 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7386 {
7387 	struct hstate *h = folio_hstate(old_folio);
7388 
7389 	hugetlb_cgroup_migrate(old_folio, new_folio);
7390 	set_page_owner_migrate_reason(&new_folio->page, reason);
7391 
7392 	/*
7393 	 * transfer temporary state of the new hugetlb folio. This is
7394 	 * reverse to other transitions because the newpage is going to
7395 	 * be final while the old one will be freed so it takes over
7396 	 * the temporary status.
7397 	 *
7398 	 * Also note that we have to transfer the per-node surplus state
7399 	 * here as well otherwise the global surplus count will not match
7400 	 * the per-node's.
7401 	 */
7402 	if (folio_test_hugetlb_temporary(new_folio)) {
7403 		int old_nid = folio_nid(old_folio);
7404 		int new_nid = folio_nid(new_folio);
7405 
7406 		folio_set_hugetlb_temporary(old_folio);
7407 		folio_clear_hugetlb_temporary(new_folio);
7408 
7409 
7410 		/*
7411 		 * There is no need to transfer the per-node surplus state
7412 		 * when we do not cross the node.
7413 		 */
7414 		if (new_nid == old_nid)
7415 			return;
7416 		spin_lock_irq(&hugetlb_lock);
7417 		if (h->surplus_huge_pages_node[old_nid]) {
7418 			h->surplus_huge_pages_node[old_nid]--;
7419 			h->surplus_huge_pages_node[new_nid]++;
7420 		}
7421 		spin_unlock_irq(&hugetlb_lock);
7422 	}
7423 }
7424 
7425 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7426 				   unsigned long start,
7427 				   unsigned long end)
7428 {
7429 	struct hstate *h = hstate_vma(vma);
7430 	unsigned long sz = huge_page_size(h);
7431 	struct mm_struct *mm = vma->vm_mm;
7432 	struct mmu_notifier_range range;
7433 	unsigned long address;
7434 	spinlock_t *ptl;
7435 	pte_t *ptep;
7436 
7437 	if (!(vma->vm_flags & VM_MAYSHARE))
7438 		return;
7439 
7440 	if (start >= end)
7441 		return;
7442 
7443 	flush_cache_range(vma, start, end);
7444 	/*
7445 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7446 	 * we have already done the PUD_SIZE alignment.
7447 	 */
7448 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7449 				start, end);
7450 	mmu_notifier_invalidate_range_start(&range);
7451 	hugetlb_vma_lock_write(vma);
7452 	i_mmap_lock_write(vma->vm_file->f_mapping);
7453 	for (address = start; address < end; address += PUD_SIZE) {
7454 		ptep = hugetlb_walk(vma, address, sz);
7455 		if (!ptep)
7456 			continue;
7457 		ptl = huge_pte_lock(h, mm, ptep);
7458 		huge_pmd_unshare(mm, vma, address, ptep);
7459 		spin_unlock(ptl);
7460 	}
7461 	flush_hugetlb_tlb_range(vma, start, end);
7462 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7463 	hugetlb_vma_unlock_write(vma);
7464 	/*
7465 	 * No need to call mmu_notifier_invalidate_range(), see
7466 	 * Documentation/mm/mmu_notifier.rst.
7467 	 */
7468 	mmu_notifier_invalidate_range_end(&range);
7469 }
7470 
7471 /*
7472  * This function will unconditionally remove all the shared pmd pgtable entries
7473  * within the specific vma for a hugetlbfs memory range.
7474  */
7475 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7476 {
7477 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7478 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7479 }
7480 
7481 #ifdef CONFIG_CMA
7482 static bool cma_reserve_called __initdata;
7483 
7484 static int __init cmdline_parse_hugetlb_cma(char *p)
7485 {
7486 	int nid, count = 0;
7487 	unsigned long tmp;
7488 	char *s = p;
7489 
7490 	while (*s) {
7491 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7492 			break;
7493 
7494 		if (s[count] == ':') {
7495 			if (tmp >= MAX_NUMNODES)
7496 				break;
7497 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7498 
7499 			s += count + 1;
7500 			tmp = memparse(s, &s);
7501 			hugetlb_cma_size_in_node[nid] = tmp;
7502 			hugetlb_cma_size += tmp;
7503 
7504 			/*
7505 			 * Skip the separator if have one, otherwise
7506 			 * break the parsing.
7507 			 */
7508 			if (*s == ',')
7509 				s++;
7510 			else
7511 				break;
7512 		} else {
7513 			hugetlb_cma_size = memparse(p, &p);
7514 			break;
7515 		}
7516 	}
7517 
7518 	return 0;
7519 }
7520 
7521 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7522 
7523 void __init hugetlb_cma_reserve(int order)
7524 {
7525 	unsigned long size, reserved, per_node;
7526 	bool node_specific_cma_alloc = false;
7527 	int nid;
7528 
7529 	cma_reserve_called = true;
7530 
7531 	if (!hugetlb_cma_size)
7532 		return;
7533 
7534 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7535 		if (hugetlb_cma_size_in_node[nid] == 0)
7536 			continue;
7537 
7538 		if (!node_online(nid)) {
7539 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7540 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7541 			hugetlb_cma_size_in_node[nid] = 0;
7542 			continue;
7543 		}
7544 
7545 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7546 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7547 				nid, (PAGE_SIZE << order) / SZ_1M);
7548 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549 			hugetlb_cma_size_in_node[nid] = 0;
7550 		} else {
7551 			node_specific_cma_alloc = true;
7552 		}
7553 	}
7554 
7555 	/* Validate the CMA size again in case some invalid nodes specified. */
7556 	if (!hugetlb_cma_size)
7557 		return;
7558 
7559 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7560 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7561 			(PAGE_SIZE << order) / SZ_1M);
7562 		hugetlb_cma_size = 0;
7563 		return;
7564 	}
7565 
7566 	if (!node_specific_cma_alloc) {
7567 		/*
7568 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7569 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7570 		 */
7571 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7572 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7573 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7574 	}
7575 
7576 	reserved = 0;
7577 	for_each_online_node(nid) {
7578 		int res;
7579 		char name[CMA_MAX_NAME];
7580 
7581 		if (node_specific_cma_alloc) {
7582 			if (hugetlb_cma_size_in_node[nid] == 0)
7583 				continue;
7584 
7585 			size = hugetlb_cma_size_in_node[nid];
7586 		} else {
7587 			size = min(per_node, hugetlb_cma_size - reserved);
7588 		}
7589 
7590 		size = round_up(size, PAGE_SIZE << order);
7591 
7592 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7593 		/*
7594 		 * Note that 'order per bit' is based on smallest size that
7595 		 * may be returned to CMA allocator in the case of
7596 		 * huge page demotion.
7597 		 */
7598 		res = cma_declare_contiguous_nid(0, size, 0,
7599 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7600 						 0, false, name,
7601 						 &hugetlb_cma[nid], nid);
7602 		if (res) {
7603 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7604 				res, nid);
7605 			continue;
7606 		}
7607 
7608 		reserved += size;
7609 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7610 			size / SZ_1M, nid);
7611 
7612 		if (reserved >= hugetlb_cma_size)
7613 			break;
7614 	}
7615 
7616 	if (!reserved)
7617 		/*
7618 		 * hugetlb_cma_size is used to determine if allocations from
7619 		 * cma are possible.  Set to zero if no cma regions are set up.
7620 		 */
7621 		hugetlb_cma_size = 0;
7622 }
7623 
7624 static void __init hugetlb_cma_check(void)
7625 {
7626 	if (!hugetlb_cma_size || cma_reserve_called)
7627 		return;
7628 
7629 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7630 }
7631 
7632 #endif /* CONFIG_CMA */
7633