xref: /openbmc/linux/mm/hugetlb.c (revision 2634682f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
88 
89 	spin_unlock(&spool->lock);
90 
91 	/* If no pages are used, and no other handles to the subpool
92 	 * remain, give up any reservations based on minimum size and
93 	 * free the subpool */
94 	if (free) {
95 		if (spool->min_hpages != -1)
96 			hugetlb_acct_memory(spool->hstate,
97 						-spool->min_hpages);
98 		kfree(spool);
99 	}
100 }
101 
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 						long min_hpages)
104 {
105 	struct hugepage_subpool *spool;
106 
107 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 	if (!spool)
109 		return NULL;
110 
111 	spin_lock_init(&spool->lock);
112 	spool->count = 1;
113 	spool->max_hpages = max_hpages;
114 	spool->hstate = h;
115 	spool->min_hpages = min_hpages;
116 
117 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 		kfree(spool);
119 		return NULL;
120 	}
121 	spool->rsv_hpages = min_hpages;
122 
123 	return spool;
124 }
125 
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 	spin_lock(&spool->lock);
129 	BUG_ON(!spool->count);
130 	spool->count--;
131 	unlock_or_release_subpool(spool);
132 }
133 
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 				      long delta)
144 {
145 	long ret = delta;
146 
147 	if (!spool)
148 		return ret;
149 
150 	spin_lock(&spool->lock);
151 
152 	if (spool->max_hpages != -1) {		/* maximum size accounting */
153 		if ((spool->used_hpages + delta) <= spool->max_hpages)
154 			spool->used_hpages += delta;
155 		else {
156 			ret = -ENOMEM;
157 			goto unlock_ret;
158 		}
159 	}
160 
161 	/* minimum size accounting */
162 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 		if (delta > spool->rsv_hpages) {
164 			/*
165 			 * Asking for more reserves than those already taken on
166 			 * behalf of subpool.  Return difference.
167 			 */
168 			ret = delta - spool->rsv_hpages;
169 			spool->rsv_hpages = 0;
170 		} else {
171 			ret = 0;	/* reserves already accounted for */
172 			spool->rsv_hpages -= delta;
173 		}
174 	}
175 
176 unlock_ret:
177 	spin_unlock(&spool->lock);
178 	return ret;
179 }
180 
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 				       long delta)
189 {
190 	long ret = delta;
191 
192 	if (!spool)
193 		return delta;
194 
195 	spin_lock(&spool->lock);
196 
197 	if (spool->max_hpages != -1)		/* maximum size accounting */
198 		spool->used_hpages -= delta;
199 
200 	 /* minimum size accounting */
201 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 	struct file_region *nrg = NULL;
238 
239 	VM_BUG_ON(resv->region_cache_count <= 0);
240 
241 	resv->region_cache_count--;
242 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 	VM_BUG_ON(!nrg);
244 	list_del(&nrg->link);
245 
246 	nrg->from = from;
247 	nrg->to = to;
248 
249 	return nrg;
250 }
251 
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 					      struct file_region *rg)
254 {
255 #ifdef CONFIG_CGROUP_HUGETLB
256 	nrg->reservation_counter = rg->reservation_counter;
257 	nrg->css = rg->css;
258 	if (rg->css)
259 		css_get(rg->css);
260 #endif
261 }
262 
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 						struct hstate *h,
266 						struct resv_map *resv,
267 						struct file_region *nrg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 	if (h_cg) {
271 		nrg->reservation_counter =
272 			&h_cg->rsvd_hugepage[hstate_index(h)];
273 		nrg->css = &h_cg->css;
274 		if (!resv->pages_per_hpage)
275 			resv->pages_per_hpage = pages_per_huge_page(h);
276 		/* pages_per_hpage should be the same for all entries in
277 		 * a resv_map.
278 		 */
279 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 	} else {
281 		nrg->reservation_counter = NULL;
282 		nrg->css = NULL;
283 	}
284 #endif
285 }
286 
287 static bool has_same_uncharge_info(struct file_region *rg,
288 				   struct file_region *org)
289 {
290 #ifdef CONFIG_CGROUP_HUGETLB
291 	return rg && org &&
292 	       rg->reservation_counter == org->reservation_counter &&
293 	       rg->css == org->css;
294 
295 #else
296 	return true;
297 #endif
298 }
299 
300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301 {
302 	struct file_region *nrg = NULL, *prg = NULL;
303 
304 	prg = list_prev_entry(rg, link);
305 	if (&prg->link != &resv->regions && prg->to == rg->from &&
306 	    has_same_uncharge_info(prg, rg)) {
307 		prg->to = rg->to;
308 
309 		list_del(&rg->link);
310 		kfree(rg);
311 
312 		coalesce_file_region(resv, prg);
313 		return;
314 	}
315 
316 	nrg = list_next_entry(rg, link);
317 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 	    has_same_uncharge_info(nrg, rg)) {
319 		nrg->from = rg->from;
320 
321 		list_del(&rg->link);
322 		kfree(rg);
323 
324 		coalesce_file_region(resv, nrg);
325 		return;
326 	}
327 }
328 
329 /* Must be called with resv->lock held. Calling this with count_only == true
330  * will count the number of pages to be added but will not modify the linked
331  * list. If regions_needed != NULL and count_only == true, then regions_needed
332  * will indicate the number of file_regions needed in the cache to carry out to
333  * add the regions for this range.
334  */
335 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 				     struct hugetlb_cgroup *h_cg,
337 				     struct hstate *h, long *regions_needed,
338 				     bool count_only)
339 {
340 	long add = 0;
341 	struct list_head *head = &resv->regions;
342 	long last_accounted_offset = f;
343 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344 
345 	if (regions_needed)
346 		*regions_needed = 0;
347 
348 	/* In this loop, we essentially handle an entry for the range
349 	 * [last_accounted_offset, rg->from), at every iteration, with some
350 	 * bounds checking.
351 	 */
352 	list_for_each_entry_safe(rg, trg, head, link) {
353 		/* Skip irrelevant regions that start before our range. */
354 		if (rg->from < f) {
355 			/* If this region ends after the last accounted offset,
356 			 * then we need to update last_accounted_offset.
357 			 */
358 			if (rg->to > last_accounted_offset)
359 				last_accounted_offset = rg->to;
360 			continue;
361 		}
362 
363 		/* When we find a region that starts beyond our range, we've
364 		 * finished.
365 		 */
366 		if (rg->from > t)
367 			break;
368 
369 		/* Add an entry for last_accounted_offset -> rg->from, and
370 		 * update last_accounted_offset.
371 		 */
372 		if (rg->from > last_accounted_offset) {
373 			add += rg->from - last_accounted_offset;
374 			if (!count_only) {
375 				nrg = get_file_region_entry_from_cache(
376 					resv, last_accounted_offset, rg->from);
377 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 								    resv, nrg);
379 				list_add(&nrg->link, rg->link.prev);
380 				coalesce_file_region(resv, nrg);
381 			} else if (regions_needed)
382 				*regions_needed += 1;
383 		}
384 
385 		last_accounted_offset = rg->to;
386 	}
387 
388 	/* Handle the case where our range extends beyond
389 	 * last_accounted_offset.
390 	 */
391 	if (last_accounted_offset < t) {
392 		add += t - last_accounted_offset;
393 		if (!count_only) {
394 			nrg = get_file_region_entry_from_cache(
395 				resv, last_accounted_offset, t);
396 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 			list_add(&nrg->link, rg->link.prev);
398 			coalesce_file_region(resv, nrg);
399 		} else if (regions_needed)
400 			*regions_needed += 1;
401 	}
402 
403 	VM_BUG_ON(add < 0);
404 	return add;
405 }
406 
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408  */
409 static int allocate_file_region_entries(struct resv_map *resv,
410 					int regions_needed)
411 	__must_hold(&resv->lock)
412 {
413 	struct list_head allocated_regions;
414 	int to_allocate = 0, i = 0;
415 	struct file_region *trg = NULL, *rg = NULL;
416 
417 	VM_BUG_ON(regions_needed < 0);
418 
419 	INIT_LIST_HEAD(&allocated_regions);
420 
421 	/*
422 	 * Check for sufficient descriptors in the cache to accommodate
423 	 * the number of in progress add operations plus regions_needed.
424 	 *
425 	 * This is a while loop because when we drop the lock, some other call
426 	 * to region_add or region_del may have consumed some region_entries,
427 	 * so we keep looping here until we finally have enough entries for
428 	 * (adds_in_progress + regions_needed).
429 	 */
430 	while (resv->region_cache_count <
431 	       (resv->adds_in_progress + regions_needed)) {
432 		to_allocate = resv->adds_in_progress + regions_needed -
433 			      resv->region_cache_count;
434 
435 		/* At this point, we should have enough entries in the cache
436 		 * for all the existings adds_in_progress. We should only be
437 		 * needing to allocate for regions_needed.
438 		 */
439 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440 
441 		spin_unlock(&resv->lock);
442 		for (i = 0; i < to_allocate; i++) {
443 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 			if (!trg)
445 				goto out_of_memory;
446 			list_add(&trg->link, &allocated_regions);
447 		}
448 
449 		spin_lock(&resv->lock);
450 
451 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 			list_del(&rg->link);
453 			list_add(&rg->link, &resv->region_cache);
454 			resv->region_cache_count++;
455 		}
456 	}
457 
458 	return 0;
459 
460 out_of_memory:
461 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 		list_del(&rg->link);
463 		kfree(rg);
464 	}
465 	return -ENOMEM;
466 }
467 
468 /*
469  * Add the huge page range represented by [f, t) to the reserve
470  * map.  Regions will be taken from the cache to fill in this range.
471  * Sufficient regions should exist in the cache due to the previous
472  * call to region_chg with the same range, but in some cases the cache will not
473  * have sufficient entries due to races with other code doing region_add or
474  * region_del.  The extra needed entries will be allocated.
475  *
476  * regions_needed is the out value provided by a previous call to region_chg.
477  *
478  * Return the number of new huge pages added to the map.  This number is greater
479  * than or equal to zero.  If file_region entries needed to be allocated for
480  * this operation and we were not able to allocate, it returns -ENOMEM.
481  * region_add of regions of length 1 never allocate file_regions and cannot
482  * fail; region_chg will always allocate at least 1 entry and a region_add for
483  * 1 page will only require at most 1 entry.
484  */
485 static long region_add(struct resv_map *resv, long f, long t,
486 		       long in_regions_needed, struct hstate *h,
487 		       struct hugetlb_cgroup *h_cg)
488 {
489 	long add = 0, actual_regions_needed = 0;
490 
491 	spin_lock(&resv->lock);
492 retry:
493 
494 	/* Count how many regions are actually needed to execute this add. */
495 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 				 true);
497 
498 	/*
499 	 * Check for sufficient descriptors in the cache to accommodate
500 	 * this add operation. Note that actual_regions_needed may be greater
501 	 * than in_regions_needed, as the resv_map may have been modified since
502 	 * the region_chg call. In this case, we need to make sure that we
503 	 * allocate extra entries, such that we have enough for all the
504 	 * existing adds_in_progress, plus the excess needed for this
505 	 * operation.
506 	 */
507 	if (actual_regions_needed > in_regions_needed &&
508 	    resv->region_cache_count <
509 		    resv->adds_in_progress +
510 			    (actual_regions_needed - in_regions_needed)) {
511 		/* region_add operation of range 1 should never need to
512 		 * allocate file_region entries.
513 		 */
514 		VM_BUG_ON(t - f <= 1);
515 
516 		if (allocate_file_region_entries(
517 			    resv, actual_regions_needed - in_regions_needed)) {
518 			return -ENOMEM;
519 		}
520 
521 		goto retry;
522 	}
523 
524 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525 
526 	resv->adds_in_progress -= in_regions_needed;
527 
528 	spin_unlock(&resv->lock);
529 	VM_BUG_ON(add < 0);
530 	return add;
531 }
532 
533 /*
534  * Examine the existing reserve map and determine how many
535  * huge pages in the specified range [f, t) are NOT currently
536  * represented.  This routine is called before a subsequent
537  * call to region_add that will actually modify the reserve
538  * map to add the specified range [f, t).  region_chg does
539  * not change the number of huge pages represented by the
540  * map.  A number of new file_region structures is added to the cache as a
541  * placeholder, for the subsequent region_add call to use. At least 1
542  * file_region structure is added.
543  *
544  * out_regions_needed is the number of regions added to the
545  * resv->adds_in_progress.  This value needs to be provided to a follow up call
546  * to region_add or region_abort for proper accounting.
547  *
548  * Returns the number of huge pages that need to be added to the existing
549  * reservation map for the range [f, t).  This number is greater or equal to
550  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
551  * is needed and can not be allocated.
552  */
553 static long region_chg(struct resv_map *resv, long f, long t,
554 		       long *out_regions_needed)
555 {
556 	long chg = 0;
557 
558 	spin_lock(&resv->lock);
559 
560 	/* Count how many hugepages in this range are NOT respresented. */
561 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 				       out_regions_needed, true);
563 
564 	if (*out_regions_needed == 0)
565 		*out_regions_needed = 1;
566 
567 	if (allocate_file_region_entries(resv, *out_regions_needed))
568 		return -ENOMEM;
569 
570 	resv->adds_in_progress += *out_regions_needed;
571 
572 	spin_unlock(&resv->lock);
573 	return chg;
574 }
575 
576 /*
577  * Abort the in progress add operation.  The adds_in_progress field
578  * of the resv_map keeps track of the operations in progress between
579  * calls to region_chg and region_add.  Operations are sometimes
580  * aborted after the call to region_chg.  In such cases, region_abort
581  * is called to decrement the adds_in_progress counter. regions_needed
582  * is the value returned by the region_chg call, it is used to decrement
583  * the adds_in_progress counter.
584  *
585  * NOTE: The range arguments [f, t) are not needed or used in this
586  * routine.  They are kept to make reading the calling code easier as
587  * arguments will match the associated region_chg call.
588  */
589 static void region_abort(struct resv_map *resv, long f, long t,
590 			 long regions_needed)
591 {
592 	spin_lock(&resv->lock);
593 	VM_BUG_ON(!resv->region_cache_count);
594 	resv->adds_in_progress -= regions_needed;
595 	spin_unlock(&resv->lock);
596 }
597 
598 /*
599  * Delete the specified range [f, t) from the reserve map.  If the
600  * t parameter is LONG_MAX, this indicates that ALL regions after f
601  * should be deleted.  Locate the regions which intersect [f, t)
602  * and either trim, delete or split the existing regions.
603  *
604  * Returns the number of huge pages deleted from the reserve map.
605  * In the normal case, the return value is zero or more.  In the
606  * case where a region must be split, a new region descriptor must
607  * be allocated.  If the allocation fails, -ENOMEM will be returned.
608  * NOTE: If the parameter t == LONG_MAX, then we will never split
609  * a region and possibly return -ENOMEM.  Callers specifying
610  * t == LONG_MAX do not need to check for -ENOMEM error.
611  */
612 static long region_del(struct resv_map *resv, long f, long t)
613 {
614 	struct list_head *head = &resv->regions;
615 	struct file_region *rg, *trg;
616 	struct file_region *nrg = NULL;
617 	long del = 0;
618 
619 retry:
620 	spin_lock(&resv->lock);
621 	list_for_each_entry_safe(rg, trg, head, link) {
622 		/*
623 		 * Skip regions before the range to be deleted.  file_region
624 		 * ranges are normally of the form [from, to).  However, there
625 		 * may be a "placeholder" entry in the map which is of the form
626 		 * (from, to) with from == to.  Check for placeholder entries
627 		 * at the beginning of the range to be deleted.
628 		 */
629 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 			continue;
631 
632 		if (rg->from >= t)
633 			break;
634 
635 		if (f > rg->from && t < rg->to) { /* Must split region */
636 			/*
637 			 * Check for an entry in the cache before dropping
638 			 * lock and attempting allocation.
639 			 */
640 			if (!nrg &&
641 			    resv->region_cache_count > resv->adds_in_progress) {
642 				nrg = list_first_entry(&resv->region_cache,
643 							struct file_region,
644 							link);
645 				list_del(&nrg->link);
646 				resv->region_cache_count--;
647 			}
648 
649 			if (!nrg) {
650 				spin_unlock(&resv->lock);
651 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 				if (!nrg)
653 					return -ENOMEM;
654 				goto retry;
655 			}
656 
657 			del += t - f;
658 
659 			/* New entry for end of split region */
660 			nrg->from = t;
661 			nrg->to = rg->to;
662 
663 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664 
665 			INIT_LIST_HEAD(&nrg->link);
666 
667 			/* Original entry is trimmed */
668 			rg->to = f;
669 
670 			hugetlb_cgroup_uncharge_file_region(
671 				resv, rg, nrg->to - nrg->from);
672 
673 			list_add(&nrg->link, &rg->link);
674 			nrg = NULL;
675 			break;
676 		}
677 
678 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 			del += rg->to - rg->from;
680 			hugetlb_cgroup_uncharge_file_region(resv, rg,
681 							    rg->to - rg->from);
682 			list_del(&rg->link);
683 			kfree(rg);
684 			continue;
685 		}
686 
687 		if (f <= rg->from) {	/* Trim beginning of region */
688 			del += t - rg->from;
689 			rg->from = t;
690 
691 			hugetlb_cgroup_uncharge_file_region(resv, rg,
692 							    t - rg->from);
693 		} else {		/* Trim end of region */
694 			del += rg->to - f;
695 			rg->to = f;
696 
697 			hugetlb_cgroup_uncharge_file_region(resv, rg,
698 							    rg->to - f);
699 		}
700 	}
701 
702 	spin_unlock(&resv->lock);
703 	kfree(nrg);
704 	return del;
705 }
706 
707 /*
708  * A rare out of memory error was encountered which prevented removal of
709  * the reserve map region for a page.  The huge page itself was free'ed
710  * and removed from the page cache.  This routine will adjust the subpool
711  * usage count, and the global reserve count if needed.  By incrementing
712  * these counts, the reserve map entry which could not be deleted will
713  * appear as a "reserved" entry instead of simply dangling with incorrect
714  * counts.
715  */
716 void hugetlb_fix_reserve_counts(struct inode *inode)
717 {
718 	struct hugepage_subpool *spool = subpool_inode(inode);
719 	long rsv_adjust;
720 
721 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 	if (rsv_adjust) {
723 		struct hstate *h = hstate_inode(inode);
724 
725 		hugetlb_acct_memory(h, 1);
726 	}
727 }
728 
729 /*
730  * Count and return the number of huge pages in the reserve map
731  * that intersect with the range [f, t).
732  */
733 static long region_count(struct resv_map *resv, long f, long t)
734 {
735 	struct list_head *head = &resv->regions;
736 	struct file_region *rg;
737 	long chg = 0;
738 
739 	spin_lock(&resv->lock);
740 	/* Locate each segment we overlap with, and count that overlap. */
741 	list_for_each_entry(rg, head, link) {
742 		long seg_from;
743 		long seg_to;
744 
745 		if (rg->to <= f)
746 			continue;
747 		if (rg->from >= t)
748 			break;
749 
750 		seg_from = max(rg->from, f);
751 		seg_to = min(rg->to, t);
752 
753 		chg += seg_to - seg_from;
754 	}
755 	spin_unlock(&resv->lock);
756 
757 	return chg;
758 }
759 
760 /*
761  * Convert the address within this vma to the page offset within
762  * the mapping, in pagecache page units; huge pages here.
763  */
764 static pgoff_t vma_hugecache_offset(struct hstate *h,
765 			struct vm_area_struct *vma, unsigned long address)
766 {
767 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 			(vma->vm_pgoff >> huge_page_order(h));
769 }
770 
771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 				     unsigned long address)
773 {
774 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
775 }
776 EXPORT_SYMBOL_GPL(linear_hugepage_index);
777 
778 /*
779  * Return the size of the pages allocated when backing a VMA. In the majority
780  * cases this will be same size as used by the page table entries.
781  */
782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783 {
784 	if (vma->vm_ops && vma->vm_ops->pagesize)
785 		return vma->vm_ops->pagesize(vma);
786 	return PAGE_SIZE;
787 }
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789 
790 /*
791  * Return the page size being used by the MMU to back a VMA. In the majority
792  * of cases, the page size used by the kernel matches the MMU size. On
793  * architectures where it differs, an architecture-specific 'strong'
794  * version of this symbol is required.
795  */
796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797 {
798 	return vma_kernel_pagesize(vma);
799 }
800 
801 /*
802  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
803  * bits of the reservation map pointer, which are always clear due to
804  * alignment.
805  */
806 #define HPAGE_RESV_OWNER    (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809 
810 /*
811  * These helpers are used to track how many pages are reserved for
812  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813  * is guaranteed to have their future faults succeed.
814  *
815  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816  * the reserve counters are updated with the hugetlb_lock held. It is safe
817  * to reset the VMA at fork() time as it is not in use yet and there is no
818  * chance of the global counters getting corrupted as a result of the values.
819  *
820  * The private mapping reservation is represented in a subtly different
821  * manner to a shared mapping.  A shared mapping has a region map associated
822  * with the underlying file, this region map represents the backing file
823  * pages which have ever had a reservation assigned which this persists even
824  * after the page is instantiated.  A private mapping has a region map
825  * associated with the original mmap which is attached to all VMAs which
826  * reference it, this region map represents those offsets which have consumed
827  * reservation ie. where pages have been instantiated.
828  */
829 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830 {
831 	return (unsigned long)vma->vm_private_data;
832 }
833 
834 static void set_vma_private_data(struct vm_area_struct *vma,
835 							unsigned long value)
836 {
837 	vma->vm_private_data = (void *)value;
838 }
839 
840 static void
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 					  struct hugetlb_cgroup *h_cg,
843 					  struct hstate *h)
844 {
845 #ifdef CONFIG_CGROUP_HUGETLB
846 	if (!h_cg || !h) {
847 		resv_map->reservation_counter = NULL;
848 		resv_map->pages_per_hpage = 0;
849 		resv_map->css = NULL;
850 	} else {
851 		resv_map->reservation_counter =
852 			&h_cg->rsvd_hugepage[hstate_index(h)];
853 		resv_map->pages_per_hpage = pages_per_huge_page(h);
854 		resv_map->css = &h_cg->css;
855 	}
856 #endif
857 }
858 
859 struct resv_map *resv_map_alloc(void)
860 {
861 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863 
864 	if (!resv_map || !rg) {
865 		kfree(resv_map);
866 		kfree(rg);
867 		return NULL;
868 	}
869 
870 	kref_init(&resv_map->refs);
871 	spin_lock_init(&resv_map->lock);
872 	INIT_LIST_HEAD(&resv_map->regions);
873 
874 	resv_map->adds_in_progress = 0;
875 	/*
876 	 * Initialize these to 0. On shared mappings, 0's here indicate these
877 	 * fields don't do cgroup accounting. On private mappings, these will be
878 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 	 * reservations are to be un-charged from here.
880 	 */
881 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882 
883 	INIT_LIST_HEAD(&resv_map->region_cache);
884 	list_add(&rg->link, &resv_map->region_cache);
885 	resv_map->region_cache_count = 1;
886 
887 	return resv_map;
888 }
889 
890 void resv_map_release(struct kref *ref)
891 {
892 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 	struct list_head *head = &resv_map->region_cache;
894 	struct file_region *rg, *trg;
895 
896 	/* Clear out any active regions before we release the map. */
897 	region_del(resv_map, 0, LONG_MAX);
898 
899 	/* ... and any entries left in the cache */
900 	list_for_each_entry_safe(rg, trg, head, link) {
901 		list_del(&rg->link);
902 		kfree(rg);
903 	}
904 
905 	VM_BUG_ON(resv_map->adds_in_progress);
906 
907 	kfree(resv_map);
908 }
909 
910 static inline struct resv_map *inode_resv_map(struct inode *inode)
911 {
912 	/*
913 	 * At inode evict time, i_mapping may not point to the original
914 	 * address space within the inode.  This original address space
915 	 * contains the pointer to the resv_map.  So, always use the
916 	 * address space embedded within the inode.
917 	 * The VERY common case is inode->mapping == &inode->i_data but,
918 	 * this may not be true for device special inodes.
919 	 */
920 	return (struct resv_map *)(&inode->i_data)->private_data;
921 }
922 
923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924 {
925 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 	if (vma->vm_flags & VM_MAYSHARE) {
927 		struct address_space *mapping = vma->vm_file->f_mapping;
928 		struct inode *inode = mapping->host;
929 
930 		return inode_resv_map(inode);
931 
932 	} else {
933 		return (struct resv_map *)(get_vma_private_data(vma) &
934 							~HPAGE_RESV_MASK);
935 	}
936 }
937 
938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939 {
940 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942 
943 	set_vma_private_data(vma, (get_vma_private_data(vma) &
944 				HPAGE_RESV_MASK) | (unsigned long)map);
945 }
946 
947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948 {
949 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951 
952 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953 }
954 
955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956 {
957 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 
959 	return (get_vma_private_data(vma) & flag) != 0;
960 }
961 
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964 {
965 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 	if (!(vma->vm_flags & VM_MAYSHARE))
967 		vma->vm_private_data = (void *)0;
968 }
969 
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972 {
973 	if (vma->vm_flags & VM_NORESERVE) {
974 		/*
975 		 * This address is already reserved by other process(chg == 0),
976 		 * so, we should decrement reserved count. Without decrementing,
977 		 * reserve count remains after releasing inode, because this
978 		 * allocated page will go into page cache and is regarded as
979 		 * coming from reserved pool in releasing step.  Currently, we
980 		 * don't have any other solution to deal with this situation
981 		 * properly, so add work-around here.
982 		 */
983 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 			return true;
985 		else
986 			return false;
987 	}
988 
989 	/* Shared mappings always use reserves */
990 	if (vma->vm_flags & VM_MAYSHARE) {
991 		/*
992 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
993 		 * be a region map for all pages.  The only situation where
994 		 * there is no region map is if a hole was punched via
995 		 * fallocate.  In this case, there really are no reserves to
996 		 * use.  This situation is indicated if chg != 0.
997 		 */
998 		if (chg)
999 			return false;
1000 		else
1001 			return true;
1002 	}
1003 
1004 	/*
1005 	 * Only the process that called mmap() has reserves for
1006 	 * private mappings.
1007 	 */
1008 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009 		/*
1010 		 * Like the shared case above, a hole punch or truncate
1011 		 * could have been performed on the private mapping.
1012 		 * Examine the value of chg to determine if reserves
1013 		 * actually exist or were previously consumed.
1014 		 * Very Subtle - The value of chg comes from a previous
1015 		 * call to vma_needs_reserves().  The reserve map for
1016 		 * private mappings has different (opposite) semantics
1017 		 * than that of shared mappings.  vma_needs_reserves()
1018 		 * has already taken this difference in semantics into
1019 		 * account.  Therefore, the meaning of chg is the same
1020 		 * as in the shared case above.  Code could easily be
1021 		 * combined, but keeping it separate draws attention to
1022 		 * subtle differences.
1023 		 */
1024 		if (chg)
1025 			return false;
1026 		else
1027 			return true;
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 static void enqueue_huge_page(struct hstate *h, struct page *page)
1034 {
1035 	int nid = page_to_nid(page);
1036 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 	h->free_huge_pages++;
1038 	h->free_huge_pages_node[nid]++;
1039 }
1040 
1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042 {
1043 	struct page *page;
1044 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045 
1046 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 		if (nocma && is_migrate_cma_page(page))
1048 			continue;
1049 
1050 		if (!PageHWPoison(page))
1051 			break;
1052 	}
1053 
1054 	/*
1055 	 * if 'non-isolated free hugepage' not found on the list,
1056 	 * the allocation fails.
1057 	 */
1058 	if (&h->hugepage_freelists[nid] == &page->lru)
1059 		return NULL;
1060 	list_move(&page->lru, &h->hugepage_activelist);
1061 	set_page_refcounted(page);
1062 	h->free_huge_pages--;
1063 	h->free_huge_pages_node[nid]--;
1064 	return page;
1065 }
1066 
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 		nodemask_t *nmask)
1069 {
1070 	unsigned int cpuset_mems_cookie;
1071 	struct zonelist *zonelist;
1072 	struct zone *zone;
1073 	struct zoneref *z;
1074 	int node = NUMA_NO_NODE;
1075 
1076 	zonelist = node_zonelist(nid, gfp_mask);
1077 
1078 retry_cpuset:
1079 	cpuset_mems_cookie = read_mems_allowed_begin();
1080 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 		struct page *page;
1082 
1083 		if (!cpuset_zone_allowed(zone, gfp_mask))
1084 			continue;
1085 		/*
1086 		 * no need to ask again on the same node. Pool is node rather than
1087 		 * zone aware
1088 		 */
1089 		if (zone_to_nid(zone) == node)
1090 			continue;
1091 		node = zone_to_nid(zone);
1092 
1093 		page = dequeue_huge_page_node_exact(h, node);
1094 		if (page)
1095 			return page;
1096 	}
1097 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 		goto retry_cpuset;
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 				struct vm_area_struct *vma,
1105 				unsigned long address, int avoid_reserve,
1106 				long chg)
1107 {
1108 	struct page *page;
1109 	struct mempolicy *mpol;
1110 	gfp_t gfp_mask;
1111 	nodemask_t *nodemask;
1112 	int nid;
1113 
1114 	/*
1115 	 * A child process with MAP_PRIVATE mappings created by their parent
1116 	 * have no page reserves. This check ensures that reservations are
1117 	 * not "stolen". The child may still get SIGKILLed
1118 	 */
1119 	if (!vma_has_reserves(vma, chg) &&
1120 			h->free_huge_pages - h->resv_huge_pages == 0)
1121 		goto err;
1122 
1123 	/* If reserves cannot be used, ensure enough pages are in the pool */
1124 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 		goto err;
1126 
1127 	gfp_mask = htlb_alloc_mask(h);
1128 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 		SetPagePrivate(page);
1132 		h->resv_huge_pages--;
1133 	}
1134 
1135 	mpol_cond_put(mpol);
1136 	return page;
1137 
1138 err:
1139 	return NULL;
1140 }
1141 
1142 /*
1143  * common helper functions for hstate_next_node_to_{alloc|free}.
1144  * We may have allocated or freed a huge page based on a different
1145  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146  * be outside of *nodes_allowed.  Ensure that we use an allowed
1147  * node for alloc or free.
1148  */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151 	nid = next_node_in(nid, *nodes_allowed);
1152 	VM_BUG_ON(nid >= MAX_NUMNODES);
1153 
1154 	return nid;
1155 }
1156 
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159 	if (!node_isset(nid, *nodes_allowed))
1160 		nid = next_node_allowed(nid, nodes_allowed);
1161 	return nid;
1162 }
1163 
1164 /*
1165  * returns the previously saved node ["this node"] from which to
1166  * allocate a persistent huge page for the pool and advance the
1167  * next node from which to allocate, handling wrap at end of node
1168  * mask.
1169  */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 					nodemask_t *nodes_allowed)
1172 {
1173 	int nid;
1174 
1175 	VM_BUG_ON(!nodes_allowed);
1176 
1177 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179 
1180 	return nid;
1181 }
1182 
1183 /*
1184  * helper for free_pool_huge_page() - return the previously saved
1185  * node ["this node"] from which to free a huge page.  Advance the
1186  * next node id whether or not we find a free huge page to free so
1187  * that the next attempt to free addresses the next node.
1188  */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191 	int nid;
1192 
1193 	VM_BUG_ON(!nodes_allowed);
1194 
1195 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197 
1198 	return nid;
1199 }
1200 
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202 	for (nr_nodes = nodes_weight(*mask);				\
1203 		nr_nodes > 0 &&						\
1204 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205 		nr_nodes--)
1206 
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208 	for (nr_nodes = nodes_weight(*mask);				\
1209 		nr_nodes > 0 &&						\
1210 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211 		nr_nodes--)
1212 
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 					unsigned int order)
1216 {
1217 	int i;
1218 	int nr_pages = 1 << order;
1219 	struct page *p = page + 1;
1220 
1221 	atomic_set(compound_mapcount_ptr(page), 0);
1222 	if (hpage_pincount_available(page))
1223 		atomic_set(compound_pincount_ptr(page), 0);
1224 
1225 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 		clear_compound_head(p);
1227 		set_page_refcounted(p);
1228 	}
1229 
1230 	set_compound_order(page, 0);
1231 	__ClearPageHead(page);
1232 }
1233 
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236 	/*
1237 	 * If the page isn't allocated using the cma allocator,
1238 	 * cma_release() returns false.
1239 	 */
1240 #ifdef CONFIG_CMA
1241 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 		return;
1243 #endif
1244 
1245 	free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247 
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 		int nid, nodemask_t *nodemask)
1251 {
1252 	unsigned long nr_pages = 1UL << huge_page_order(h);
1253 	if (nid == NUMA_NO_NODE)
1254 		nid = numa_mem_id();
1255 
1256 #ifdef CONFIG_CMA
1257 	{
1258 		struct page *page;
1259 		int node;
1260 
1261 		if (hugetlb_cma[nid]) {
1262 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 					huge_page_order(h), true);
1264 			if (page)
1265 				return page;
1266 		}
1267 
1268 		if (!(gfp_mask & __GFP_THISNODE)) {
1269 			for_each_node_mask(node, *nodemask) {
1270 				if (node == nid || !hugetlb_cma[node])
1271 					continue;
1272 
1273 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 						huge_page_order(h), true);
1275 				if (page)
1276 					return page;
1277 			}
1278 		}
1279 	}
1280 #endif
1281 
1282 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 }
1284 
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 					int nid, nodemask_t *nodemask)
1290 {
1291 	return NULL;
1292 }
1293 #endif /* CONFIG_CONTIG_ALLOC */
1294 
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 					int nid, nodemask_t *nodemask)
1298 {
1299 	return NULL;
1300 }
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303 						unsigned int order) { }
1304 #endif
1305 
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1307 {
1308 	int i;
1309 
1310 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311 		return;
1312 
1313 	h->nr_huge_pages--;
1314 	h->nr_huge_pages_node[page_to_nid(page)]--;
1315 	for (i = 0; i < pages_per_huge_page(h); i++) {
1316 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317 				1 << PG_referenced | 1 << PG_dirty |
1318 				1 << PG_active | 1 << PG_private |
1319 				1 << PG_writeback);
1320 	}
1321 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324 	set_page_refcounted(page);
1325 	if (hstate_is_gigantic(h)) {
1326 		/*
1327 		 * Temporarily drop the hugetlb_lock, because
1328 		 * we might block in free_gigantic_page().
1329 		 */
1330 		spin_unlock(&hugetlb_lock);
1331 		destroy_compound_gigantic_page(page, huge_page_order(h));
1332 		free_gigantic_page(page, huge_page_order(h));
1333 		spin_lock(&hugetlb_lock);
1334 	} else {
1335 		__free_pages(page, huge_page_order(h));
1336 	}
1337 }
1338 
1339 struct hstate *size_to_hstate(unsigned long size)
1340 {
1341 	struct hstate *h;
1342 
1343 	for_each_hstate(h) {
1344 		if (huge_page_size(h) == size)
1345 			return h;
1346 	}
1347 	return NULL;
1348 }
1349 
1350 /*
1351  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352  * to hstate->hugepage_activelist.)
1353  *
1354  * This function can be called for tail pages, but never returns true for them.
1355  */
1356 bool page_huge_active(struct page *page)
1357 {
1358 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1359 	return PageHead(page) && PagePrivate(&page[1]);
1360 }
1361 
1362 /* never called for tail page */
1363 static void set_page_huge_active(struct page *page)
1364 {
1365 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366 	SetPagePrivate(&page[1]);
1367 }
1368 
1369 static void clear_page_huge_active(struct page *page)
1370 {
1371 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372 	ClearPagePrivate(&page[1]);
1373 }
1374 
1375 /*
1376  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377  * code
1378  */
1379 static inline bool PageHugeTemporary(struct page *page)
1380 {
1381 	if (!PageHuge(page))
1382 		return false;
1383 
1384 	return (unsigned long)page[2].mapping == -1U;
1385 }
1386 
1387 static inline void SetPageHugeTemporary(struct page *page)
1388 {
1389 	page[2].mapping = (void *)-1U;
1390 }
1391 
1392 static inline void ClearPageHugeTemporary(struct page *page)
1393 {
1394 	page[2].mapping = NULL;
1395 }
1396 
1397 static void __free_huge_page(struct page *page)
1398 {
1399 	/*
1400 	 * Can't pass hstate in here because it is called from the
1401 	 * compound page destructor.
1402 	 */
1403 	struct hstate *h = page_hstate(page);
1404 	int nid = page_to_nid(page);
1405 	struct hugepage_subpool *spool =
1406 		(struct hugepage_subpool *)page_private(page);
1407 	bool restore_reserve;
1408 
1409 	VM_BUG_ON_PAGE(page_count(page), page);
1410 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1411 
1412 	set_page_private(page, 0);
1413 	page->mapping = NULL;
1414 	restore_reserve = PagePrivate(page);
1415 	ClearPagePrivate(page);
1416 
1417 	/*
1418 	 * If PagePrivate() was set on page, page allocation consumed a
1419 	 * reservation.  If the page was associated with a subpool, there
1420 	 * would have been a page reserved in the subpool before allocation
1421 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1422 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423 	 * remove the reserved page from the subpool.
1424 	 */
1425 	if (!restore_reserve) {
1426 		/*
1427 		 * A return code of zero implies that the subpool will be
1428 		 * under its minimum size if the reservation is not restored
1429 		 * after page is free.  Therefore, force restore_reserve
1430 		 * operation.
1431 		 */
1432 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1433 			restore_reserve = true;
1434 	}
1435 
1436 	spin_lock(&hugetlb_lock);
1437 	clear_page_huge_active(page);
1438 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1439 				     pages_per_huge_page(h), page);
1440 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441 					  pages_per_huge_page(h), page);
1442 	if (restore_reserve)
1443 		h->resv_huge_pages++;
1444 
1445 	if (PageHugeTemporary(page)) {
1446 		list_del(&page->lru);
1447 		ClearPageHugeTemporary(page);
1448 		update_and_free_page(h, page);
1449 	} else if (h->surplus_huge_pages_node[nid]) {
1450 		/* remove the page from active list */
1451 		list_del(&page->lru);
1452 		update_and_free_page(h, page);
1453 		h->surplus_huge_pages--;
1454 		h->surplus_huge_pages_node[nid]--;
1455 	} else {
1456 		arch_clear_hugepage_flags(page);
1457 		enqueue_huge_page(h, page);
1458 	}
1459 	spin_unlock(&hugetlb_lock);
1460 }
1461 
1462 /*
1463  * As free_huge_page() can be called from a non-task context, we have
1464  * to defer the actual freeing in a workqueue to prevent potential
1465  * hugetlb_lock deadlock.
1466  *
1467  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468  * be freed and frees them one-by-one. As the page->mapping pointer is
1469  * going to be cleared in __free_huge_page() anyway, it is reused as the
1470  * llist_node structure of a lockless linked list of huge pages to be freed.
1471  */
1472 static LLIST_HEAD(hpage_freelist);
1473 
1474 static void free_hpage_workfn(struct work_struct *work)
1475 {
1476 	struct llist_node *node;
1477 	struct page *page;
1478 
1479 	node = llist_del_all(&hpage_freelist);
1480 
1481 	while (node) {
1482 		page = container_of((struct address_space **)node,
1483 				     struct page, mapping);
1484 		node = node->next;
1485 		__free_huge_page(page);
1486 	}
1487 }
1488 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489 
1490 void free_huge_page(struct page *page)
1491 {
1492 	/*
1493 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494 	 */
1495 	if (!in_task()) {
1496 		/*
1497 		 * Only call schedule_work() if hpage_freelist is previously
1498 		 * empty. Otherwise, schedule_work() had been called but the
1499 		 * workfn hasn't retrieved the list yet.
1500 		 */
1501 		if (llist_add((struct llist_node *)&page->mapping,
1502 			      &hpage_freelist))
1503 			schedule_work(&free_hpage_work);
1504 		return;
1505 	}
1506 
1507 	__free_huge_page(page);
1508 }
1509 
1510 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511 {
1512 	INIT_LIST_HEAD(&page->lru);
1513 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 	spin_lock(&hugetlb_lock);
1515 	set_hugetlb_cgroup(page, NULL);
1516 	set_hugetlb_cgroup_rsvd(page, NULL);
1517 	h->nr_huge_pages++;
1518 	h->nr_huge_pages_node[nid]++;
1519 	spin_unlock(&hugetlb_lock);
1520 }
1521 
1522 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523 {
1524 	int i;
1525 	int nr_pages = 1 << order;
1526 	struct page *p = page + 1;
1527 
1528 	/* we rely on prep_new_huge_page to set the destructor */
1529 	set_compound_order(page, order);
1530 	__ClearPageReserved(page);
1531 	__SetPageHead(page);
1532 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533 		/*
1534 		 * For gigantic hugepages allocated through bootmem at
1535 		 * boot, it's safer to be consistent with the not-gigantic
1536 		 * hugepages and clear the PG_reserved bit from all tail pages
1537 		 * too.  Otherwise drivers using get_user_pages() to access tail
1538 		 * pages may get the reference counting wrong if they see
1539 		 * PG_reserved set on a tail page (despite the head page not
1540 		 * having PG_reserved set).  Enforcing this consistency between
1541 		 * head and tail pages allows drivers to optimize away a check
1542 		 * on the head page when they need know if put_page() is needed
1543 		 * after get_user_pages().
1544 		 */
1545 		__ClearPageReserved(p);
1546 		set_page_count(p, 0);
1547 		set_compound_head(p, page);
1548 	}
1549 	atomic_set(compound_mapcount_ptr(page), -1);
1550 
1551 	if (hpage_pincount_available(page))
1552 		atomic_set(compound_pincount_ptr(page), 0);
1553 }
1554 
1555 /*
1556  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557  * transparent huge pages.  See the PageTransHuge() documentation for more
1558  * details.
1559  */
1560 int PageHuge(struct page *page)
1561 {
1562 	if (!PageCompound(page))
1563 		return 0;
1564 
1565 	page = compound_head(page);
1566 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567 }
1568 EXPORT_SYMBOL_GPL(PageHuge);
1569 
1570 /*
1571  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572  * normal or transparent huge pages.
1573  */
1574 int PageHeadHuge(struct page *page_head)
1575 {
1576 	if (!PageHead(page_head))
1577 		return 0;
1578 
1579 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580 }
1581 
1582 /*
1583  * Find address_space associated with hugetlbfs page.
1584  * Upon entry page is locked and page 'was' mapped although mapped state
1585  * could change.  If necessary, use anon_vma to find vma and associated
1586  * address space.  The returned mapping may be stale, but it can not be
1587  * invalid as page lock (which is held) is required to destroy mapping.
1588  */
1589 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590 {
1591 	struct anon_vma *anon_vma;
1592 	pgoff_t pgoff_start, pgoff_end;
1593 	struct anon_vma_chain *avc;
1594 	struct address_space *mapping = page_mapping(hpage);
1595 
1596 	/* Simple file based mapping */
1597 	if (mapping)
1598 		return mapping;
1599 
1600 	/*
1601 	 * Even anonymous hugetlbfs mappings are associated with an
1602 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603 	 * code).  Find a vma associated with the anonymous vma, and
1604 	 * use the file pointer to get address_space.
1605 	 */
1606 	anon_vma = page_lock_anon_vma_read(hpage);
1607 	if (!anon_vma)
1608 		return mapping;  /* NULL */
1609 
1610 	/* Use first found vma */
1611 	pgoff_start = page_to_pgoff(hpage);
1612 	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614 					pgoff_start, pgoff_end) {
1615 		struct vm_area_struct *vma = avc->vma;
1616 
1617 		mapping = vma->vm_file->f_mapping;
1618 		break;
1619 	}
1620 
1621 	anon_vma_unlock_read(anon_vma);
1622 	return mapping;
1623 }
1624 
1625 /*
1626  * Find and lock address space (mapping) in write mode.
1627  *
1628  * Upon entry, the page is locked which allows us to find the mapping
1629  * even in the case of an anon page.  However, locking order dictates
1630  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1631  * specific.  So, we first try to lock the sema while still holding the
1632  * page lock.  If this works, great!  If not, then we need to drop the
1633  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1634  * course, need to revalidate state along the way.
1635  */
1636 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637 {
1638 	struct address_space *mapping, *mapping2;
1639 
1640 	mapping = _get_hugetlb_page_mapping(hpage);
1641 retry:
1642 	if (!mapping)
1643 		return mapping;
1644 
1645 	/*
1646 	 * If no contention, take lock and return
1647 	 */
1648 	if (i_mmap_trylock_write(mapping))
1649 		return mapping;
1650 
1651 	/*
1652 	 * Must drop page lock and wait on mapping sema.
1653 	 * Note:  Once page lock is dropped, mapping could become invalid.
1654 	 * As a hack, increase map count until we lock page again.
1655 	 */
1656 	atomic_inc(&hpage->_mapcount);
1657 	unlock_page(hpage);
1658 	i_mmap_lock_write(mapping);
1659 	lock_page(hpage);
1660 	atomic_add_negative(-1, &hpage->_mapcount);
1661 
1662 	/* verify page is still mapped */
1663 	if (!page_mapped(hpage)) {
1664 		i_mmap_unlock_write(mapping);
1665 		return NULL;
1666 	}
1667 
1668 	/*
1669 	 * Get address space again and verify it is the same one
1670 	 * we locked.  If not, drop lock and retry.
1671 	 */
1672 	mapping2 = _get_hugetlb_page_mapping(hpage);
1673 	if (mapping2 != mapping) {
1674 		i_mmap_unlock_write(mapping);
1675 		mapping = mapping2;
1676 		goto retry;
1677 	}
1678 
1679 	return mapping;
1680 }
1681 
1682 pgoff_t __basepage_index(struct page *page)
1683 {
1684 	struct page *page_head = compound_head(page);
1685 	pgoff_t index = page_index(page_head);
1686 	unsigned long compound_idx;
1687 
1688 	if (!PageHuge(page_head))
1689 		return page_index(page);
1690 
1691 	if (compound_order(page_head) >= MAX_ORDER)
1692 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693 	else
1694 		compound_idx = page - page_head;
1695 
1696 	return (index << compound_order(page_head)) + compound_idx;
1697 }
1698 
1699 static struct page *alloc_buddy_huge_page(struct hstate *h,
1700 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 		nodemask_t *node_alloc_noretry)
1702 {
1703 	int order = huge_page_order(h);
1704 	struct page *page;
1705 	bool alloc_try_hard = true;
1706 
1707 	/*
1708 	 * By default we always try hard to allocate the page with
1709 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1710 	 * a loop (to adjust global huge page counts) and previous allocation
1711 	 * failed, do not continue to try hard on the same node.  Use the
1712 	 * node_alloc_noretry bitmap to manage this state information.
1713 	 */
1714 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715 		alloc_try_hard = false;
1716 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717 	if (alloc_try_hard)
1718 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1719 	if (nid == NUMA_NO_NODE)
1720 		nid = numa_mem_id();
1721 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722 	if (page)
1723 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1724 	else
1725 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1726 
1727 	/*
1728 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729 	 * indicates an overall state change.  Clear bit so that we resume
1730 	 * normal 'try hard' allocations.
1731 	 */
1732 	if (node_alloc_noretry && page && !alloc_try_hard)
1733 		node_clear(nid, *node_alloc_noretry);
1734 
1735 	/*
1736 	 * If we tried hard to get a page but failed, set bit so that
1737 	 * subsequent attempts will not try as hard until there is an
1738 	 * overall state change.
1739 	 */
1740 	if (node_alloc_noretry && !page && alloc_try_hard)
1741 		node_set(nid, *node_alloc_noretry);
1742 
1743 	return page;
1744 }
1745 
1746 /*
1747  * Common helper to allocate a fresh hugetlb page. All specific allocators
1748  * should use this function to get new hugetlb pages
1749  */
1750 static struct page *alloc_fresh_huge_page(struct hstate *h,
1751 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752 		nodemask_t *node_alloc_noretry)
1753 {
1754 	struct page *page;
1755 
1756 	if (hstate_is_gigantic(h))
1757 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758 	else
1759 		page = alloc_buddy_huge_page(h, gfp_mask,
1760 				nid, nmask, node_alloc_noretry);
1761 	if (!page)
1762 		return NULL;
1763 
1764 	if (hstate_is_gigantic(h))
1765 		prep_compound_gigantic_page(page, huge_page_order(h));
1766 	prep_new_huge_page(h, page, page_to_nid(page));
1767 
1768 	return page;
1769 }
1770 
1771 /*
1772  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773  * manner.
1774  */
1775 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776 				nodemask_t *node_alloc_noretry)
1777 {
1778 	struct page *page;
1779 	int nr_nodes, node;
1780 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781 
1782 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784 						node_alloc_noretry);
1785 		if (page)
1786 			break;
1787 	}
1788 
1789 	if (!page)
1790 		return 0;
1791 
1792 	put_page(page); /* free it into the hugepage allocator */
1793 
1794 	return 1;
1795 }
1796 
1797 /*
1798  * Free huge page from pool from next node to free.
1799  * Attempt to keep persistent huge pages more or less
1800  * balanced over allowed nodes.
1801  * Called with hugetlb_lock locked.
1802  */
1803 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804 							 bool acct_surplus)
1805 {
1806 	int nr_nodes, node;
1807 	int ret = 0;
1808 
1809 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810 		/*
1811 		 * If we're returning unused surplus pages, only examine
1812 		 * nodes with surplus pages.
1813 		 */
1814 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815 		    !list_empty(&h->hugepage_freelists[node])) {
1816 			struct page *page =
1817 				list_entry(h->hugepage_freelists[node].next,
1818 					  struct page, lru);
1819 			list_del(&page->lru);
1820 			h->free_huge_pages--;
1821 			h->free_huge_pages_node[node]--;
1822 			if (acct_surplus) {
1823 				h->surplus_huge_pages--;
1824 				h->surplus_huge_pages_node[node]--;
1825 			}
1826 			update_and_free_page(h, page);
1827 			ret = 1;
1828 			break;
1829 		}
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Dissolve a given free hugepage into free buddy pages. This function does
1837  * nothing for in-use hugepages and non-hugepages.
1838  * This function returns values like below:
1839  *
1840  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841  *          (allocated or reserved.)
1842  *       0: successfully dissolved free hugepages or the page is not a
1843  *          hugepage (considered as already dissolved)
1844  */
1845 int dissolve_free_huge_page(struct page *page)
1846 {
1847 	int rc = -EBUSY;
1848 
1849 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1850 	if (!PageHuge(page))
1851 		return 0;
1852 
1853 	spin_lock(&hugetlb_lock);
1854 	if (!PageHuge(page)) {
1855 		rc = 0;
1856 		goto out;
1857 	}
1858 
1859 	if (!page_count(page)) {
1860 		struct page *head = compound_head(page);
1861 		struct hstate *h = page_hstate(head);
1862 		int nid = page_to_nid(head);
1863 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1864 			goto out;
1865 		/*
1866 		 * Move PageHWPoison flag from head page to the raw error page,
1867 		 * which makes any subpages rather than the error page reusable.
1868 		 */
1869 		if (PageHWPoison(head) && page != head) {
1870 			SetPageHWPoison(page);
1871 			ClearPageHWPoison(head);
1872 		}
1873 		list_del(&head->lru);
1874 		h->free_huge_pages--;
1875 		h->free_huge_pages_node[nid]--;
1876 		h->max_huge_pages--;
1877 		update_and_free_page(h, head);
1878 		rc = 0;
1879 	}
1880 out:
1881 	spin_unlock(&hugetlb_lock);
1882 	return rc;
1883 }
1884 
1885 /*
1886  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887  * make specified memory blocks removable from the system.
1888  * Note that this will dissolve a free gigantic hugepage completely, if any
1889  * part of it lies within the given range.
1890  * Also note that if dissolve_free_huge_page() returns with an error, all
1891  * free hugepages that were dissolved before that error are lost.
1892  */
1893 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894 {
1895 	unsigned long pfn;
1896 	struct page *page;
1897 	int rc = 0;
1898 
1899 	if (!hugepages_supported())
1900 		return rc;
1901 
1902 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903 		page = pfn_to_page(pfn);
1904 		rc = dissolve_free_huge_page(page);
1905 		if (rc)
1906 			break;
1907 	}
1908 
1909 	return rc;
1910 }
1911 
1912 /*
1913  * Allocates a fresh surplus page from the page allocator.
1914  */
1915 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916 		int nid, nodemask_t *nmask)
1917 {
1918 	struct page *page = NULL;
1919 
1920 	if (hstate_is_gigantic(h))
1921 		return NULL;
1922 
1923 	spin_lock(&hugetlb_lock);
1924 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925 		goto out_unlock;
1926 	spin_unlock(&hugetlb_lock);
1927 
1928 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929 	if (!page)
1930 		return NULL;
1931 
1932 	spin_lock(&hugetlb_lock);
1933 	/*
1934 	 * We could have raced with the pool size change.
1935 	 * Double check that and simply deallocate the new page
1936 	 * if we would end up overcommiting the surpluses. Abuse
1937 	 * temporary page to workaround the nasty free_huge_page
1938 	 * codeflow
1939 	 */
1940 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941 		SetPageHugeTemporary(page);
1942 		spin_unlock(&hugetlb_lock);
1943 		put_page(page);
1944 		return NULL;
1945 	} else {
1946 		h->surplus_huge_pages++;
1947 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1948 	}
1949 
1950 out_unlock:
1951 	spin_unlock(&hugetlb_lock);
1952 
1953 	return page;
1954 }
1955 
1956 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957 				     int nid, nodemask_t *nmask)
1958 {
1959 	struct page *page;
1960 
1961 	if (hstate_is_gigantic(h))
1962 		return NULL;
1963 
1964 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965 	if (!page)
1966 		return NULL;
1967 
1968 	/*
1969 	 * We do not account these pages as surplus because they are only
1970 	 * temporary and will be released properly on the last reference
1971 	 */
1972 	SetPageHugeTemporary(page);
1973 
1974 	return page;
1975 }
1976 
1977 /*
1978  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979  */
1980 static
1981 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982 		struct vm_area_struct *vma, unsigned long addr)
1983 {
1984 	struct page *page;
1985 	struct mempolicy *mpol;
1986 	gfp_t gfp_mask = htlb_alloc_mask(h);
1987 	int nid;
1988 	nodemask_t *nodemask;
1989 
1990 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992 	mpol_cond_put(mpol);
1993 
1994 	return page;
1995 }
1996 
1997 /* page migration callback function */
1998 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999 		nodemask_t *nmask, gfp_t gfp_mask)
2000 {
2001 	spin_lock(&hugetlb_lock);
2002 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003 		struct page *page;
2004 
2005 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006 		if (page) {
2007 			spin_unlock(&hugetlb_lock);
2008 			return page;
2009 		}
2010 	}
2011 	spin_unlock(&hugetlb_lock);
2012 
2013 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014 }
2015 
2016 /* mempolicy aware migration callback */
2017 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018 		unsigned long address)
2019 {
2020 	struct mempolicy *mpol;
2021 	nodemask_t *nodemask;
2022 	struct page *page;
2023 	gfp_t gfp_mask;
2024 	int node;
2025 
2026 	gfp_mask = htlb_alloc_mask(h);
2027 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029 	mpol_cond_put(mpol);
2030 
2031 	return page;
2032 }
2033 
2034 /*
2035  * Increase the hugetlb pool such that it can accommodate a reservation
2036  * of size 'delta'.
2037  */
2038 static int gather_surplus_pages(struct hstate *h, int delta)
2039 	__must_hold(&hugetlb_lock)
2040 {
2041 	struct list_head surplus_list;
2042 	struct page *page, *tmp;
2043 	int ret, i;
2044 	int needed, allocated;
2045 	bool alloc_ok = true;
2046 
2047 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048 	if (needed <= 0) {
2049 		h->resv_huge_pages += delta;
2050 		return 0;
2051 	}
2052 
2053 	allocated = 0;
2054 	INIT_LIST_HEAD(&surplus_list);
2055 
2056 	ret = -ENOMEM;
2057 retry:
2058 	spin_unlock(&hugetlb_lock);
2059 	for (i = 0; i < needed; i++) {
2060 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061 				NUMA_NO_NODE, NULL);
2062 		if (!page) {
2063 			alloc_ok = false;
2064 			break;
2065 		}
2066 		list_add(&page->lru, &surplus_list);
2067 		cond_resched();
2068 	}
2069 	allocated += i;
2070 
2071 	/*
2072 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073 	 * because either resv_huge_pages or free_huge_pages may have changed.
2074 	 */
2075 	spin_lock(&hugetlb_lock);
2076 	needed = (h->resv_huge_pages + delta) -
2077 			(h->free_huge_pages + allocated);
2078 	if (needed > 0) {
2079 		if (alloc_ok)
2080 			goto retry;
2081 		/*
2082 		 * We were not able to allocate enough pages to
2083 		 * satisfy the entire reservation so we free what
2084 		 * we've allocated so far.
2085 		 */
2086 		goto free;
2087 	}
2088 	/*
2089 	 * The surplus_list now contains _at_least_ the number of extra pages
2090 	 * needed to accommodate the reservation.  Add the appropriate number
2091 	 * of pages to the hugetlb pool and free the extras back to the buddy
2092 	 * allocator.  Commit the entire reservation here to prevent another
2093 	 * process from stealing the pages as they are added to the pool but
2094 	 * before they are reserved.
2095 	 */
2096 	needed += allocated;
2097 	h->resv_huge_pages += delta;
2098 	ret = 0;
2099 
2100 	/* Free the needed pages to the hugetlb pool */
2101 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102 		if ((--needed) < 0)
2103 			break;
2104 		/*
2105 		 * This page is now managed by the hugetlb allocator and has
2106 		 * no users -- drop the buddy allocator's reference.
2107 		 */
2108 		put_page_testzero(page);
2109 		VM_BUG_ON_PAGE(page_count(page), page);
2110 		enqueue_huge_page(h, page);
2111 	}
2112 free:
2113 	spin_unlock(&hugetlb_lock);
2114 
2115 	/* Free unnecessary surplus pages to the buddy allocator */
2116 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117 		put_page(page);
2118 	spin_lock(&hugetlb_lock);
2119 
2120 	return ret;
2121 }
2122 
2123 /*
2124  * This routine has two main purposes:
2125  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2127  *    to the associated reservation map.
2128  * 2) Free any unused surplus pages that may have been allocated to satisfy
2129  *    the reservation.  As many as unused_resv_pages may be freed.
2130  *
2131  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2132  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2133  * we must make sure nobody else can claim pages we are in the process of
2134  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2135  * number of huge pages we plan to free when dropping the lock.
2136  */
2137 static void return_unused_surplus_pages(struct hstate *h,
2138 					unsigned long unused_resv_pages)
2139 {
2140 	unsigned long nr_pages;
2141 
2142 	/* Cannot return gigantic pages currently */
2143 	if (hstate_is_gigantic(h))
2144 		goto out;
2145 
2146 	/*
2147 	 * Part (or even all) of the reservation could have been backed
2148 	 * by pre-allocated pages. Only free surplus pages.
2149 	 */
2150 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151 
2152 	/*
2153 	 * We want to release as many surplus pages as possible, spread
2154 	 * evenly across all nodes with memory. Iterate across these nodes
2155 	 * until we can no longer free unreserved surplus pages. This occurs
2156 	 * when the nodes with surplus pages have no free pages.
2157 	 * free_pool_huge_page() will balance the freed pages across the
2158 	 * on-line nodes with memory and will handle the hstate accounting.
2159 	 *
2160 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2161 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2162 	 * to cover subsequent pages we may free.
2163 	 */
2164 	while (nr_pages--) {
2165 		h->resv_huge_pages--;
2166 		unused_resv_pages--;
2167 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168 			goto out;
2169 		cond_resched_lock(&hugetlb_lock);
2170 	}
2171 
2172 out:
2173 	/* Fully uncommit the reservation */
2174 	h->resv_huge_pages -= unused_resv_pages;
2175 }
2176 
2177 
2178 /*
2179  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180  * are used by the huge page allocation routines to manage reservations.
2181  *
2182  * vma_needs_reservation is called to determine if the huge page at addr
2183  * within the vma has an associated reservation.  If a reservation is
2184  * needed, the value 1 is returned.  The caller is then responsible for
2185  * managing the global reservation and subpool usage counts.  After
2186  * the huge page has been allocated, vma_commit_reservation is called
2187  * to add the page to the reservation map.  If the page allocation fails,
2188  * the reservation must be ended instead of committed.  vma_end_reservation
2189  * is called in such cases.
2190  *
2191  * In the normal case, vma_commit_reservation returns the same value
2192  * as the preceding vma_needs_reservation call.  The only time this
2193  * is not the case is if a reserve map was changed between calls.  It
2194  * is the responsibility of the caller to notice the difference and
2195  * take appropriate action.
2196  *
2197  * vma_add_reservation is used in error paths where a reservation must
2198  * be restored when a newly allocated huge page must be freed.  It is
2199  * to be called after calling vma_needs_reservation to determine if a
2200  * reservation exists.
2201  */
2202 enum vma_resv_mode {
2203 	VMA_NEEDS_RESV,
2204 	VMA_COMMIT_RESV,
2205 	VMA_END_RESV,
2206 	VMA_ADD_RESV,
2207 };
2208 static long __vma_reservation_common(struct hstate *h,
2209 				struct vm_area_struct *vma, unsigned long addr,
2210 				enum vma_resv_mode mode)
2211 {
2212 	struct resv_map *resv;
2213 	pgoff_t idx;
2214 	long ret;
2215 	long dummy_out_regions_needed;
2216 
2217 	resv = vma_resv_map(vma);
2218 	if (!resv)
2219 		return 1;
2220 
2221 	idx = vma_hugecache_offset(h, vma, addr);
2222 	switch (mode) {
2223 	case VMA_NEEDS_RESV:
2224 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225 		/* We assume that vma_reservation_* routines always operate on
2226 		 * 1 page, and that adding to resv map a 1 page entry can only
2227 		 * ever require 1 region.
2228 		 */
2229 		VM_BUG_ON(dummy_out_regions_needed != 1);
2230 		break;
2231 	case VMA_COMMIT_RESV:
2232 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233 		/* region_add calls of range 1 should never fail. */
2234 		VM_BUG_ON(ret < 0);
2235 		break;
2236 	case VMA_END_RESV:
2237 		region_abort(resv, idx, idx + 1, 1);
2238 		ret = 0;
2239 		break;
2240 	case VMA_ADD_RESV:
2241 		if (vma->vm_flags & VM_MAYSHARE) {
2242 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243 			/* region_add calls of range 1 should never fail. */
2244 			VM_BUG_ON(ret < 0);
2245 		} else {
2246 			region_abort(resv, idx, idx + 1, 1);
2247 			ret = region_del(resv, idx, idx + 1);
2248 		}
2249 		break;
2250 	default:
2251 		BUG();
2252 	}
2253 
2254 	if (vma->vm_flags & VM_MAYSHARE)
2255 		return ret;
2256 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257 		/*
2258 		 * In most cases, reserves always exist for private mappings.
2259 		 * However, a file associated with mapping could have been
2260 		 * hole punched or truncated after reserves were consumed.
2261 		 * As subsequent fault on such a range will not use reserves.
2262 		 * Subtle - The reserve map for private mappings has the
2263 		 * opposite meaning than that of shared mappings.  If NO
2264 		 * entry is in the reserve map, it means a reservation exists.
2265 		 * If an entry exists in the reserve map, it means the
2266 		 * reservation has already been consumed.  As a result, the
2267 		 * return value of this routine is the opposite of the
2268 		 * value returned from reserve map manipulation routines above.
2269 		 */
2270 		if (ret)
2271 			return 0;
2272 		else
2273 			return 1;
2274 	}
2275 	else
2276 		return ret < 0 ? ret : 0;
2277 }
2278 
2279 static long vma_needs_reservation(struct hstate *h,
2280 			struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283 }
2284 
2285 static long vma_commit_reservation(struct hstate *h,
2286 			struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289 }
2290 
2291 static void vma_end_reservation(struct hstate *h,
2292 			struct vm_area_struct *vma, unsigned long addr)
2293 {
2294 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295 }
2296 
2297 static long vma_add_reservation(struct hstate *h,
2298 			struct vm_area_struct *vma, unsigned long addr)
2299 {
2300 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301 }
2302 
2303 /*
2304  * This routine is called to restore a reservation on error paths.  In the
2305  * specific error paths, a huge page was allocated (via alloc_huge_page)
2306  * and is about to be freed.  If a reservation for the page existed,
2307  * alloc_huge_page would have consumed the reservation and set PagePrivate
2308  * in the newly allocated page.  When the page is freed via free_huge_page,
2309  * the global reservation count will be incremented if PagePrivate is set.
2310  * However, free_huge_page can not adjust the reserve map.  Adjust the
2311  * reserve map here to be consistent with global reserve count adjustments
2312  * to be made by free_huge_page.
2313  */
2314 static void restore_reserve_on_error(struct hstate *h,
2315 			struct vm_area_struct *vma, unsigned long address,
2316 			struct page *page)
2317 {
2318 	if (unlikely(PagePrivate(page))) {
2319 		long rc = vma_needs_reservation(h, vma, address);
2320 
2321 		if (unlikely(rc < 0)) {
2322 			/*
2323 			 * Rare out of memory condition in reserve map
2324 			 * manipulation.  Clear PagePrivate so that
2325 			 * global reserve count will not be incremented
2326 			 * by free_huge_page.  This will make it appear
2327 			 * as though the reservation for this page was
2328 			 * consumed.  This may prevent the task from
2329 			 * faulting in the page at a later time.  This
2330 			 * is better than inconsistent global huge page
2331 			 * accounting of reserve counts.
2332 			 */
2333 			ClearPagePrivate(page);
2334 		} else if (rc) {
2335 			rc = vma_add_reservation(h, vma, address);
2336 			if (unlikely(rc < 0))
2337 				/*
2338 				 * See above comment about rare out of
2339 				 * memory condition.
2340 				 */
2341 				ClearPagePrivate(page);
2342 		} else
2343 			vma_end_reservation(h, vma, address);
2344 	}
2345 }
2346 
2347 struct page *alloc_huge_page(struct vm_area_struct *vma,
2348 				    unsigned long addr, int avoid_reserve)
2349 {
2350 	struct hugepage_subpool *spool = subpool_vma(vma);
2351 	struct hstate *h = hstate_vma(vma);
2352 	struct page *page;
2353 	long map_chg, map_commit;
2354 	long gbl_chg;
2355 	int ret, idx;
2356 	struct hugetlb_cgroup *h_cg;
2357 	bool deferred_reserve;
2358 
2359 	idx = hstate_index(h);
2360 	/*
2361 	 * Examine the region/reserve map to determine if the process
2362 	 * has a reservation for the page to be allocated.  A return
2363 	 * code of zero indicates a reservation exists (no change).
2364 	 */
2365 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366 	if (map_chg < 0)
2367 		return ERR_PTR(-ENOMEM);
2368 
2369 	/*
2370 	 * Processes that did not create the mapping will have no
2371 	 * reserves as indicated by the region/reserve map. Check
2372 	 * that the allocation will not exceed the subpool limit.
2373 	 * Allocations for MAP_NORESERVE mappings also need to be
2374 	 * checked against any subpool limit.
2375 	 */
2376 	if (map_chg || avoid_reserve) {
2377 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378 		if (gbl_chg < 0) {
2379 			vma_end_reservation(h, vma, addr);
2380 			return ERR_PTR(-ENOSPC);
2381 		}
2382 
2383 		/*
2384 		 * Even though there was no reservation in the region/reserve
2385 		 * map, there could be reservations associated with the
2386 		 * subpool that can be used.  This would be indicated if the
2387 		 * return value of hugepage_subpool_get_pages() is zero.
2388 		 * However, if avoid_reserve is specified we still avoid even
2389 		 * the subpool reservations.
2390 		 */
2391 		if (avoid_reserve)
2392 			gbl_chg = 1;
2393 	}
2394 
2395 	/* If this allocation is not consuming a reservation, charge it now.
2396 	 */
2397 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398 	if (deferred_reserve) {
2399 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400 			idx, pages_per_huge_page(h), &h_cg);
2401 		if (ret)
2402 			goto out_subpool_put;
2403 	}
2404 
2405 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406 	if (ret)
2407 		goto out_uncharge_cgroup_reservation;
2408 
2409 	spin_lock(&hugetlb_lock);
2410 	/*
2411 	 * glb_chg is passed to indicate whether or not a page must be taken
2412 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2413 	 * a reservation exists for the allocation.
2414 	 */
2415 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416 	if (!page) {
2417 		spin_unlock(&hugetlb_lock);
2418 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419 		if (!page)
2420 			goto out_uncharge_cgroup;
2421 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422 			SetPagePrivate(page);
2423 			h->resv_huge_pages--;
2424 		}
2425 		spin_lock(&hugetlb_lock);
2426 		list_move(&page->lru, &h->hugepage_activelist);
2427 		/* Fall through */
2428 	}
2429 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430 	/* If allocation is not consuming a reservation, also store the
2431 	 * hugetlb_cgroup pointer on the page.
2432 	 */
2433 	if (deferred_reserve) {
2434 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435 						  h_cg, page);
2436 	}
2437 
2438 	spin_unlock(&hugetlb_lock);
2439 
2440 	set_page_private(page, (unsigned long)spool);
2441 
2442 	map_commit = vma_commit_reservation(h, vma, addr);
2443 	if (unlikely(map_chg > map_commit)) {
2444 		/*
2445 		 * The page was added to the reservation map between
2446 		 * vma_needs_reservation and vma_commit_reservation.
2447 		 * This indicates a race with hugetlb_reserve_pages.
2448 		 * Adjust for the subpool count incremented above AND
2449 		 * in hugetlb_reserve_pages for the same page.  Also,
2450 		 * the reservation count added in hugetlb_reserve_pages
2451 		 * no longer applies.
2452 		 */
2453 		long rsv_adjust;
2454 
2455 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456 		hugetlb_acct_memory(h, -rsv_adjust);
2457 	}
2458 	return page;
2459 
2460 out_uncharge_cgroup:
2461 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462 out_uncharge_cgroup_reservation:
2463 	if (deferred_reserve)
2464 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465 						    h_cg);
2466 out_subpool_put:
2467 	if (map_chg || avoid_reserve)
2468 		hugepage_subpool_put_pages(spool, 1);
2469 	vma_end_reservation(h, vma, addr);
2470 	return ERR_PTR(-ENOSPC);
2471 }
2472 
2473 int alloc_bootmem_huge_page(struct hstate *h)
2474 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475 int __alloc_bootmem_huge_page(struct hstate *h)
2476 {
2477 	struct huge_bootmem_page *m;
2478 	int nr_nodes, node;
2479 
2480 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481 		void *addr;
2482 
2483 		addr = memblock_alloc_try_nid_raw(
2484 				huge_page_size(h), huge_page_size(h),
2485 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486 		if (addr) {
2487 			/*
2488 			 * Use the beginning of the huge page to store the
2489 			 * huge_bootmem_page struct (until gather_bootmem
2490 			 * puts them into the mem_map).
2491 			 */
2492 			m = addr;
2493 			goto found;
2494 		}
2495 	}
2496 	return 0;
2497 
2498 found:
2499 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500 	/* Put them into a private list first because mem_map is not up yet */
2501 	INIT_LIST_HEAD(&m->list);
2502 	list_add(&m->list, &huge_boot_pages);
2503 	m->hstate = h;
2504 	return 1;
2505 }
2506 
2507 static void __init prep_compound_huge_page(struct page *page,
2508 		unsigned int order)
2509 {
2510 	if (unlikely(order > (MAX_ORDER - 1)))
2511 		prep_compound_gigantic_page(page, order);
2512 	else
2513 		prep_compound_page(page, order);
2514 }
2515 
2516 /* Put bootmem huge pages into the standard lists after mem_map is up */
2517 static void __init gather_bootmem_prealloc(void)
2518 {
2519 	struct huge_bootmem_page *m;
2520 
2521 	list_for_each_entry(m, &huge_boot_pages, list) {
2522 		struct page *page = virt_to_page(m);
2523 		struct hstate *h = m->hstate;
2524 
2525 		WARN_ON(page_count(page) != 1);
2526 		prep_compound_huge_page(page, h->order);
2527 		WARN_ON(PageReserved(page));
2528 		prep_new_huge_page(h, page, page_to_nid(page));
2529 		put_page(page); /* free it into the hugepage allocator */
2530 
2531 		/*
2532 		 * If we had gigantic hugepages allocated at boot time, we need
2533 		 * to restore the 'stolen' pages to totalram_pages in order to
2534 		 * fix confusing memory reports from free(1) and another
2535 		 * side-effects, like CommitLimit going negative.
2536 		 */
2537 		if (hstate_is_gigantic(h))
2538 			adjust_managed_page_count(page, 1 << h->order);
2539 		cond_resched();
2540 	}
2541 }
2542 
2543 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544 {
2545 	unsigned long i;
2546 	nodemask_t *node_alloc_noretry;
2547 
2548 	if (!hstate_is_gigantic(h)) {
2549 		/*
2550 		 * Bit mask controlling how hard we retry per-node allocations.
2551 		 * Ignore errors as lower level routines can deal with
2552 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2553 		 * time, we are likely in bigger trouble.
2554 		 */
2555 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556 						GFP_KERNEL);
2557 	} else {
2558 		/* allocations done at boot time */
2559 		node_alloc_noretry = NULL;
2560 	}
2561 
2562 	/* bit mask controlling how hard we retry per-node allocations */
2563 	if (node_alloc_noretry)
2564 		nodes_clear(*node_alloc_noretry);
2565 
2566 	for (i = 0; i < h->max_huge_pages; ++i) {
2567 		if (hstate_is_gigantic(h)) {
2568 			if (hugetlb_cma_size) {
2569 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570 				break;
2571 			}
2572 			if (!alloc_bootmem_huge_page(h))
2573 				break;
2574 		} else if (!alloc_pool_huge_page(h,
2575 					 &node_states[N_MEMORY],
2576 					 node_alloc_noretry))
2577 			break;
2578 		cond_resched();
2579 	}
2580 	if (i < h->max_huge_pages) {
2581 		char buf[32];
2582 
2583 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2585 			h->max_huge_pages, buf, i);
2586 		h->max_huge_pages = i;
2587 	}
2588 
2589 	kfree(node_alloc_noretry);
2590 }
2591 
2592 static void __init hugetlb_init_hstates(void)
2593 {
2594 	struct hstate *h;
2595 
2596 	for_each_hstate(h) {
2597 		if (minimum_order > huge_page_order(h))
2598 			minimum_order = huge_page_order(h);
2599 
2600 		/* oversize hugepages were init'ed in early boot */
2601 		if (!hstate_is_gigantic(h))
2602 			hugetlb_hstate_alloc_pages(h);
2603 	}
2604 	VM_BUG_ON(minimum_order == UINT_MAX);
2605 }
2606 
2607 static void __init report_hugepages(void)
2608 {
2609 	struct hstate *h;
2610 
2611 	for_each_hstate(h) {
2612 		char buf[32];
2613 
2614 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616 			buf, h->free_huge_pages);
2617 	}
2618 }
2619 
2620 #ifdef CONFIG_HIGHMEM
2621 static void try_to_free_low(struct hstate *h, unsigned long count,
2622 						nodemask_t *nodes_allowed)
2623 {
2624 	int i;
2625 
2626 	if (hstate_is_gigantic(h))
2627 		return;
2628 
2629 	for_each_node_mask(i, *nodes_allowed) {
2630 		struct page *page, *next;
2631 		struct list_head *freel = &h->hugepage_freelists[i];
2632 		list_for_each_entry_safe(page, next, freel, lru) {
2633 			if (count >= h->nr_huge_pages)
2634 				return;
2635 			if (PageHighMem(page))
2636 				continue;
2637 			list_del(&page->lru);
2638 			update_and_free_page(h, page);
2639 			h->free_huge_pages--;
2640 			h->free_huge_pages_node[page_to_nid(page)]--;
2641 		}
2642 	}
2643 }
2644 #else
2645 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646 						nodemask_t *nodes_allowed)
2647 {
2648 }
2649 #endif
2650 
2651 /*
2652  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2653  * balanced by operating on them in a round-robin fashion.
2654  * Returns 1 if an adjustment was made.
2655  */
2656 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657 				int delta)
2658 {
2659 	int nr_nodes, node;
2660 
2661 	VM_BUG_ON(delta != -1 && delta != 1);
2662 
2663 	if (delta < 0) {
2664 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665 			if (h->surplus_huge_pages_node[node])
2666 				goto found;
2667 		}
2668 	} else {
2669 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670 			if (h->surplus_huge_pages_node[node] <
2671 					h->nr_huge_pages_node[node])
2672 				goto found;
2673 		}
2674 	}
2675 	return 0;
2676 
2677 found:
2678 	h->surplus_huge_pages += delta;
2679 	h->surplus_huge_pages_node[node] += delta;
2680 	return 1;
2681 }
2682 
2683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685 			      nodemask_t *nodes_allowed)
2686 {
2687 	unsigned long min_count, ret;
2688 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689 
2690 	/*
2691 	 * Bit mask controlling how hard we retry per-node allocations.
2692 	 * If we can not allocate the bit mask, do not attempt to allocate
2693 	 * the requested huge pages.
2694 	 */
2695 	if (node_alloc_noretry)
2696 		nodes_clear(*node_alloc_noretry);
2697 	else
2698 		return -ENOMEM;
2699 
2700 	spin_lock(&hugetlb_lock);
2701 
2702 	/*
2703 	 * Check for a node specific request.
2704 	 * Changing node specific huge page count may require a corresponding
2705 	 * change to the global count.  In any case, the passed node mask
2706 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2707 	 */
2708 	if (nid != NUMA_NO_NODE) {
2709 		unsigned long old_count = count;
2710 
2711 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2712 		/*
2713 		 * User may have specified a large count value which caused the
2714 		 * above calculation to overflow.  In this case, they wanted
2715 		 * to allocate as many huge pages as possible.  Set count to
2716 		 * largest possible value to align with their intention.
2717 		 */
2718 		if (count < old_count)
2719 			count = ULONG_MAX;
2720 	}
2721 
2722 	/*
2723 	 * Gigantic pages runtime allocation depend on the capability for large
2724 	 * page range allocation.
2725 	 * If the system does not provide this feature, return an error when
2726 	 * the user tries to allocate gigantic pages but let the user free the
2727 	 * boottime allocated gigantic pages.
2728 	 */
2729 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730 		if (count > persistent_huge_pages(h)) {
2731 			spin_unlock(&hugetlb_lock);
2732 			NODEMASK_FREE(node_alloc_noretry);
2733 			return -EINVAL;
2734 		}
2735 		/* Fall through to decrease pool */
2736 	}
2737 
2738 	/*
2739 	 * Increase the pool size
2740 	 * First take pages out of surplus state.  Then make up the
2741 	 * remaining difference by allocating fresh huge pages.
2742 	 *
2743 	 * We might race with alloc_surplus_huge_page() here and be unable
2744 	 * to convert a surplus huge page to a normal huge page. That is
2745 	 * not critical, though, it just means the overall size of the
2746 	 * pool might be one hugepage larger than it needs to be, but
2747 	 * within all the constraints specified by the sysctls.
2748 	 */
2749 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751 			break;
2752 	}
2753 
2754 	while (count > persistent_huge_pages(h)) {
2755 		/*
2756 		 * If this allocation races such that we no longer need the
2757 		 * page, free_huge_page will handle it by freeing the page
2758 		 * and reducing the surplus.
2759 		 */
2760 		spin_unlock(&hugetlb_lock);
2761 
2762 		/* yield cpu to avoid soft lockup */
2763 		cond_resched();
2764 
2765 		ret = alloc_pool_huge_page(h, nodes_allowed,
2766 						node_alloc_noretry);
2767 		spin_lock(&hugetlb_lock);
2768 		if (!ret)
2769 			goto out;
2770 
2771 		/* Bail for signals. Probably ctrl-c from user */
2772 		if (signal_pending(current))
2773 			goto out;
2774 	}
2775 
2776 	/*
2777 	 * Decrease the pool size
2778 	 * First return free pages to the buddy allocator (being careful
2779 	 * to keep enough around to satisfy reservations).  Then place
2780 	 * pages into surplus state as needed so the pool will shrink
2781 	 * to the desired size as pages become free.
2782 	 *
2783 	 * By placing pages into the surplus state independent of the
2784 	 * overcommit value, we are allowing the surplus pool size to
2785 	 * exceed overcommit. There are few sane options here. Since
2786 	 * alloc_surplus_huge_page() is checking the global counter,
2787 	 * though, we'll note that we're not allowed to exceed surplus
2788 	 * and won't grow the pool anywhere else. Not until one of the
2789 	 * sysctls are changed, or the surplus pages go out of use.
2790 	 */
2791 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792 	min_count = max(count, min_count);
2793 	try_to_free_low(h, min_count, nodes_allowed);
2794 	while (min_count < persistent_huge_pages(h)) {
2795 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2796 			break;
2797 		cond_resched_lock(&hugetlb_lock);
2798 	}
2799 	while (count < persistent_huge_pages(h)) {
2800 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801 			break;
2802 	}
2803 out:
2804 	h->max_huge_pages = persistent_huge_pages(h);
2805 	spin_unlock(&hugetlb_lock);
2806 
2807 	NODEMASK_FREE(node_alloc_noretry);
2808 
2809 	return 0;
2810 }
2811 
2812 #define HSTATE_ATTR_RO(_name) \
2813 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814 
2815 #define HSTATE_ATTR(_name) \
2816 	static struct kobj_attribute _name##_attr = \
2817 		__ATTR(_name, 0644, _name##_show, _name##_store)
2818 
2819 static struct kobject *hugepages_kobj;
2820 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821 
2822 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823 
2824 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825 {
2826 	int i;
2827 
2828 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829 		if (hstate_kobjs[i] == kobj) {
2830 			if (nidp)
2831 				*nidp = NUMA_NO_NODE;
2832 			return &hstates[i];
2833 		}
2834 
2835 	return kobj_to_node_hstate(kobj, nidp);
2836 }
2837 
2838 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839 					struct kobj_attribute *attr, char *buf)
2840 {
2841 	struct hstate *h;
2842 	unsigned long nr_huge_pages;
2843 	int nid;
2844 
2845 	h = kobj_to_hstate(kobj, &nid);
2846 	if (nid == NUMA_NO_NODE)
2847 		nr_huge_pages = h->nr_huge_pages;
2848 	else
2849 		nr_huge_pages = h->nr_huge_pages_node[nid];
2850 
2851 	return sprintf(buf, "%lu\n", nr_huge_pages);
2852 }
2853 
2854 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855 					   struct hstate *h, int nid,
2856 					   unsigned long count, size_t len)
2857 {
2858 	int err;
2859 	nodemask_t nodes_allowed, *n_mask;
2860 
2861 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862 		return -EINVAL;
2863 
2864 	if (nid == NUMA_NO_NODE) {
2865 		/*
2866 		 * global hstate attribute
2867 		 */
2868 		if (!(obey_mempolicy &&
2869 				init_nodemask_of_mempolicy(&nodes_allowed)))
2870 			n_mask = &node_states[N_MEMORY];
2871 		else
2872 			n_mask = &nodes_allowed;
2873 	} else {
2874 		/*
2875 		 * Node specific request.  count adjustment happens in
2876 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2877 		 */
2878 		init_nodemask_of_node(&nodes_allowed, nid);
2879 		n_mask = &nodes_allowed;
2880 	}
2881 
2882 	err = set_max_huge_pages(h, count, nid, n_mask);
2883 
2884 	return err ? err : len;
2885 }
2886 
2887 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888 					 struct kobject *kobj, const char *buf,
2889 					 size_t len)
2890 {
2891 	struct hstate *h;
2892 	unsigned long count;
2893 	int nid;
2894 	int err;
2895 
2896 	err = kstrtoul(buf, 10, &count);
2897 	if (err)
2898 		return err;
2899 
2900 	h = kobj_to_hstate(kobj, &nid);
2901 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902 }
2903 
2904 static ssize_t nr_hugepages_show(struct kobject *kobj,
2905 				       struct kobj_attribute *attr, char *buf)
2906 {
2907 	return nr_hugepages_show_common(kobj, attr, buf);
2908 }
2909 
2910 static ssize_t nr_hugepages_store(struct kobject *kobj,
2911 	       struct kobj_attribute *attr, const char *buf, size_t len)
2912 {
2913 	return nr_hugepages_store_common(false, kobj, buf, len);
2914 }
2915 HSTATE_ATTR(nr_hugepages);
2916 
2917 #ifdef CONFIG_NUMA
2918 
2919 /*
2920  * hstate attribute for optionally mempolicy-based constraint on persistent
2921  * huge page alloc/free.
2922  */
2923 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924 				       struct kobj_attribute *attr, char *buf)
2925 {
2926 	return nr_hugepages_show_common(kobj, attr, buf);
2927 }
2928 
2929 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930 	       struct kobj_attribute *attr, const char *buf, size_t len)
2931 {
2932 	return nr_hugepages_store_common(true, kobj, buf, len);
2933 }
2934 HSTATE_ATTR(nr_hugepages_mempolicy);
2935 #endif
2936 
2937 
2938 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939 					struct kobj_attribute *attr, char *buf)
2940 {
2941 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943 }
2944 
2945 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946 		struct kobj_attribute *attr, const char *buf, size_t count)
2947 {
2948 	int err;
2949 	unsigned long input;
2950 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2951 
2952 	if (hstate_is_gigantic(h))
2953 		return -EINVAL;
2954 
2955 	err = kstrtoul(buf, 10, &input);
2956 	if (err)
2957 		return err;
2958 
2959 	spin_lock(&hugetlb_lock);
2960 	h->nr_overcommit_huge_pages = input;
2961 	spin_unlock(&hugetlb_lock);
2962 
2963 	return count;
2964 }
2965 HSTATE_ATTR(nr_overcommit_hugepages);
2966 
2967 static ssize_t free_hugepages_show(struct kobject *kobj,
2968 					struct kobj_attribute *attr, char *buf)
2969 {
2970 	struct hstate *h;
2971 	unsigned long free_huge_pages;
2972 	int nid;
2973 
2974 	h = kobj_to_hstate(kobj, &nid);
2975 	if (nid == NUMA_NO_NODE)
2976 		free_huge_pages = h->free_huge_pages;
2977 	else
2978 		free_huge_pages = h->free_huge_pages_node[nid];
2979 
2980 	return sprintf(buf, "%lu\n", free_huge_pages);
2981 }
2982 HSTATE_ATTR_RO(free_hugepages);
2983 
2984 static ssize_t resv_hugepages_show(struct kobject *kobj,
2985 					struct kobj_attribute *attr, char *buf)
2986 {
2987 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2988 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989 }
2990 HSTATE_ATTR_RO(resv_hugepages);
2991 
2992 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993 					struct kobj_attribute *attr, char *buf)
2994 {
2995 	struct hstate *h;
2996 	unsigned long surplus_huge_pages;
2997 	int nid;
2998 
2999 	h = kobj_to_hstate(kobj, &nid);
3000 	if (nid == NUMA_NO_NODE)
3001 		surplus_huge_pages = h->surplus_huge_pages;
3002 	else
3003 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004 
3005 	return sprintf(buf, "%lu\n", surplus_huge_pages);
3006 }
3007 HSTATE_ATTR_RO(surplus_hugepages);
3008 
3009 static struct attribute *hstate_attrs[] = {
3010 	&nr_hugepages_attr.attr,
3011 	&nr_overcommit_hugepages_attr.attr,
3012 	&free_hugepages_attr.attr,
3013 	&resv_hugepages_attr.attr,
3014 	&surplus_hugepages_attr.attr,
3015 #ifdef CONFIG_NUMA
3016 	&nr_hugepages_mempolicy_attr.attr,
3017 #endif
3018 	NULL,
3019 };
3020 
3021 static const struct attribute_group hstate_attr_group = {
3022 	.attrs = hstate_attrs,
3023 };
3024 
3025 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026 				    struct kobject **hstate_kobjs,
3027 				    const struct attribute_group *hstate_attr_group)
3028 {
3029 	int retval;
3030 	int hi = hstate_index(h);
3031 
3032 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033 	if (!hstate_kobjs[hi])
3034 		return -ENOMEM;
3035 
3036 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037 	if (retval)
3038 		kobject_put(hstate_kobjs[hi]);
3039 
3040 	return retval;
3041 }
3042 
3043 static void __init hugetlb_sysfs_init(void)
3044 {
3045 	struct hstate *h;
3046 	int err;
3047 
3048 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049 	if (!hugepages_kobj)
3050 		return;
3051 
3052 	for_each_hstate(h) {
3053 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054 					 hstate_kobjs, &hstate_attr_group);
3055 		if (err)
3056 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057 	}
3058 }
3059 
3060 #ifdef CONFIG_NUMA
3061 
3062 /*
3063  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064  * with node devices in node_devices[] using a parallel array.  The array
3065  * index of a node device or _hstate == node id.
3066  * This is here to avoid any static dependency of the node device driver, in
3067  * the base kernel, on the hugetlb module.
3068  */
3069 struct node_hstate {
3070 	struct kobject		*hugepages_kobj;
3071 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3072 };
3073 static struct node_hstate node_hstates[MAX_NUMNODES];
3074 
3075 /*
3076  * A subset of global hstate attributes for node devices
3077  */
3078 static struct attribute *per_node_hstate_attrs[] = {
3079 	&nr_hugepages_attr.attr,
3080 	&free_hugepages_attr.attr,
3081 	&surplus_hugepages_attr.attr,
3082 	NULL,
3083 };
3084 
3085 static const struct attribute_group per_node_hstate_attr_group = {
3086 	.attrs = per_node_hstate_attrs,
3087 };
3088 
3089 /*
3090  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091  * Returns node id via non-NULL nidp.
3092  */
3093 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094 {
3095 	int nid;
3096 
3097 	for (nid = 0; nid < nr_node_ids; nid++) {
3098 		struct node_hstate *nhs = &node_hstates[nid];
3099 		int i;
3100 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101 			if (nhs->hstate_kobjs[i] == kobj) {
3102 				if (nidp)
3103 					*nidp = nid;
3104 				return &hstates[i];
3105 			}
3106 	}
3107 
3108 	BUG();
3109 	return NULL;
3110 }
3111 
3112 /*
3113  * Unregister hstate attributes from a single node device.
3114  * No-op if no hstate attributes attached.
3115  */
3116 static void hugetlb_unregister_node(struct node *node)
3117 {
3118 	struct hstate *h;
3119 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3120 
3121 	if (!nhs->hugepages_kobj)
3122 		return;		/* no hstate attributes */
3123 
3124 	for_each_hstate(h) {
3125 		int idx = hstate_index(h);
3126 		if (nhs->hstate_kobjs[idx]) {
3127 			kobject_put(nhs->hstate_kobjs[idx]);
3128 			nhs->hstate_kobjs[idx] = NULL;
3129 		}
3130 	}
3131 
3132 	kobject_put(nhs->hugepages_kobj);
3133 	nhs->hugepages_kobj = NULL;
3134 }
3135 
3136 
3137 /*
3138  * Register hstate attributes for a single node device.
3139  * No-op if attributes already registered.
3140  */
3141 static void hugetlb_register_node(struct node *node)
3142 {
3143 	struct hstate *h;
3144 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3145 	int err;
3146 
3147 	if (nhs->hugepages_kobj)
3148 		return;		/* already allocated */
3149 
3150 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151 							&node->dev.kobj);
3152 	if (!nhs->hugepages_kobj)
3153 		return;
3154 
3155 	for_each_hstate(h) {
3156 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157 						nhs->hstate_kobjs,
3158 						&per_node_hstate_attr_group);
3159 		if (err) {
3160 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161 				h->name, node->dev.id);
3162 			hugetlb_unregister_node(node);
3163 			break;
3164 		}
3165 	}
3166 }
3167 
3168 /*
3169  * hugetlb init time:  register hstate attributes for all registered node
3170  * devices of nodes that have memory.  All on-line nodes should have
3171  * registered their associated device by this time.
3172  */
3173 static void __init hugetlb_register_all_nodes(void)
3174 {
3175 	int nid;
3176 
3177 	for_each_node_state(nid, N_MEMORY) {
3178 		struct node *node = node_devices[nid];
3179 		if (node->dev.id == nid)
3180 			hugetlb_register_node(node);
3181 	}
3182 
3183 	/*
3184 	 * Let the node device driver know we're here so it can
3185 	 * [un]register hstate attributes on node hotplug.
3186 	 */
3187 	register_hugetlbfs_with_node(hugetlb_register_node,
3188 				     hugetlb_unregister_node);
3189 }
3190 #else	/* !CONFIG_NUMA */
3191 
3192 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193 {
3194 	BUG();
3195 	if (nidp)
3196 		*nidp = -1;
3197 	return NULL;
3198 }
3199 
3200 static void hugetlb_register_all_nodes(void) { }
3201 
3202 #endif
3203 
3204 static int __init hugetlb_init(void)
3205 {
3206 	int i;
3207 
3208 	if (!hugepages_supported()) {
3209 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211 		return 0;
3212 	}
3213 
3214 	/*
3215 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3216 	 * architectures depend on setup being done here.
3217 	 */
3218 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219 	if (!parsed_default_hugepagesz) {
3220 		/*
3221 		 * If we did not parse a default huge page size, set
3222 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223 		 * number of huge pages for this default size was implicitly
3224 		 * specified, set that here as well.
3225 		 * Note that the implicit setting will overwrite an explicit
3226 		 * setting.  A warning will be printed in this case.
3227 		 */
3228 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229 		if (default_hstate_max_huge_pages) {
3230 			if (default_hstate.max_huge_pages) {
3231 				char buf[32];
3232 
3233 				string_get_size(huge_page_size(&default_hstate),
3234 					1, STRING_UNITS_2, buf, 32);
3235 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236 					default_hstate.max_huge_pages, buf);
3237 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238 					default_hstate_max_huge_pages);
3239 			}
3240 			default_hstate.max_huge_pages =
3241 				default_hstate_max_huge_pages;
3242 		}
3243 	}
3244 
3245 	hugetlb_cma_check();
3246 	hugetlb_init_hstates();
3247 	gather_bootmem_prealloc();
3248 	report_hugepages();
3249 
3250 	hugetlb_sysfs_init();
3251 	hugetlb_register_all_nodes();
3252 	hugetlb_cgroup_file_init();
3253 
3254 #ifdef CONFIG_SMP
3255 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256 #else
3257 	num_fault_mutexes = 1;
3258 #endif
3259 	hugetlb_fault_mutex_table =
3260 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261 			      GFP_KERNEL);
3262 	BUG_ON(!hugetlb_fault_mutex_table);
3263 
3264 	for (i = 0; i < num_fault_mutexes; i++)
3265 		mutex_init(&hugetlb_fault_mutex_table[i]);
3266 	return 0;
3267 }
3268 subsys_initcall(hugetlb_init);
3269 
3270 /* Overwritten by architectures with more huge page sizes */
3271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272 {
3273 	return size == HPAGE_SIZE;
3274 }
3275 
3276 void __init hugetlb_add_hstate(unsigned int order)
3277 {
3278 	struct hstate *h;
3279 	unsigned long i;
3280 
3281 	if (size_to_hstate(PAGE_SIZE << order)) {
3282 		return;
3283 	}
3284 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285 	BUG_ON(order == 0);
3286 	h = &hstates[hugetlb_max_hstate++];
3287 	h->order = order;
3288 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289 	h->nr_huge_pages = 0;
3290 	h->free_huge_pages = 0;
3291 	for (i = 0; i < MAX_NUMNODES; ++i)
3292 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293 	INIT_LIST_HEAD(&h->hugepage_activelist);
3294 	h->next_nid_to_alloc = first_memory_node;
3295 	h->next_nid_to_free = first_memory_node;
3296 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297 					huge_page_size(h)/1024);
3298 
3299 	parsed_hstate = h;
3300 }
3301 
3302 /*
3303  * hugepages command line processing
3304  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305  * specification.  If not, ignore the hugepages value.  hugepages can also
3306  * be the first huge page command line  option in which case it implicitly
3307  * specifies the number of huge pages for the default size.
3308  */
3309 static int __init hugepages_setup(char *s)
3310 {
3311 	unsigned long *mhp;
3312 	static unsigned long *last_mhp;
3313 
3314 	if (!parsed_valid_hugepagesz) {
3315 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316 		parsed_valid_hugepagesz = true;
3317 		return 0;
3318 	}
3319 
3320 	/*
3321 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322 	 * yet, so this hugepages= parameter goes to the "default hstate".
3323 	 * Otherwise, it goes with the previously parsed hugepagesz or
3324 	 * default_hugepagesz.
3325 	 */
3326 	else if (!hugetlb_max_hstate)
3327 		mhp = &default_hstate_max_huge_pages;
3328 	else
3329 		mhp = &parsed_hstate->max_huge_pages;
3330 
3331 	if (mhp == last_mhp) {
3332 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333 		return 0;
3334 	}
3335 
3336 	if (sscanf(s, "%lu", mhp) <= 0)
3337 		*mhp = 0;
3338 
3339 	/*
3340 	 * Global state is always initialized later in hugetlb_init.
3341 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3342 	 * use the bootmem allocator.
3343 	 */
3344 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345 		hugetlb_hstate_alloc_pages(parsed_hstate);
3346 
3347 	last_mhp = mhp;
3348 
3349 	return 1;
3350 }
3351 __setup("hugepages=", hugepages_setup);
3352 
3353 /*
3354  * hugepagesz command line processing
3355  * A specific huge page size can only be specified once with hugepagesz.
3356  * hugepagesz is followed by hugepages on the command line.  The global
3357  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358  * hugepagesz argument was valid.
3359  */
3360 static int __init hugepagesz_setup(char *s)
3361 {
3362 	unsigned long size;
3363 	struct hstate *h;
3364 
3365 	parsed_valid_hugepagesz = false;
3366 	size = (unsigned long)memparse(s, NULL);
3367 
3368 	if (!arch_hugetlb_valid_size(size)) {
3369 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370 		return 0;
3371 	}
3372 
3373 	h = size_to_hstate(size);
3374 	if (h) {
3375 		/*
3376 		 * hstate for this size already exists.  This is normally
3377 		 * an error, but is allowed if the existing hstate is the
3378 		 * default hstate.  More specifically, it is only allowed if
3379 		 * the number of huge pages for the default hstate was not
3380 		 * previously specified.
3381 		 */
3382 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3383 		    default_hstate.max_huge_pages) {
3384 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385 			return 0;
3386 		}
3387 
3388 		/*
3389 		 * No need to call hugetlb_add_hstate() as hstate already
3390 		 * exists.  But, do set parsed_hstate so that a following
3391 		 * hugepages= parameter will be applied to this hstate.
3392 		 */
3393 		parsed_hstate = h;
3394 		parsed_valid_hugepagesz = true;
3395 		return 1;
3396 	}
3397 
3398 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399 	parsed_valid_hugepagesz = true;
3400 	return 1;
3401 }
3402 __setup("hugepagesz=", hugepagesz_setup);
3403 
3404 /*
3405  * default_hugepagesz command line input
3406  * Only one instance of default_hugepagesz allowed on command line.
3407  */
3408 static int __init default_hugepagesz_setup(char *s)
3409 {
3410 	unsigned long size;
3411 
3412 	parsed_valid_hugepagesz = false;
3413 	if (parsed_default_hugepagesz) {
3414 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415 		return 0;
3416 	}
3417 
3418 	size = (unsigned long)memparse(s, NULL);
3419 
3420 	if (!arch_hugetlb_valid_size(size)) {
3421 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422 		return 0;
3423 	}
3424 
3425 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426 	parsed_valid_hugepagesz = true;
3427 	parsed_default_hugepagesz = true;
3428 	default_hstate_idx = hstate_index(size_to_hstate(size));
3429 
3430 	/*
3431 	 * The number of default huge pages (for this size) could have been
3432 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3433 	 * then default_hstate_max_huge_pages is set.  If the default huge
3434 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435 	 * allocated here from bootmem allocator.
3436 	 */
3437 	if (default_hstate_max_huge_pages) {
3438 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439 		if (hstate_is_gigantic(&default_hstate))
3440 			hugetlb_hstate_alloc_pages(&default_hstate);
3441 		default_hstate_max_huge_pages = 0;
3442 	}
3443 
3444 	return 1;
3445 }
3446 __setup("default_hugepagesz=", default_hugepagesz_setup);
3447 
3448 static unsigned int allowed_mems_nr(struct hstate *h)
3449 {
3450 	int node;
3451 	unsigned int nr = 0;
3452 	nodemask_t *mpol_allowed;
3453 	unsigned int *array = h->free_huge_pages_node;
3454 	gfp_t gfp_mask = htlb_alloc_mask(h);
3455 
3456 	mpol_allowed = policy_nodemask_current(gfp_mask);
3457 
3458 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3459 		if (!mpol_allowed ||
3460 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3461 			nr += array[node];
3462 	}
3463 
3464 	return nr;
3465 }
3466 
3467 #ifdef CONFIG_SYSCTL
3468 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469 					  void *buffer, size_t *length,
3470 					  loff_t *ppos, unsigned long *out)
3471 {
3472 	struct ctl_table dup_table;
3473 
3474 	/*
3475 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476 	 * can duplicate the @table and alter the duplicate of it.
3477 	 */
3478 	dup_table = *table;
3479 	dup_table.data = out;
3480 
3481 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482 }
3483 
3484 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485 			 struct ctl_table *table, int write,
3486 			 void *buffer, size_t *length, loff_t *ppos)
3487 {
3488 	struct hstate *h = &default_hstate;
3489 	unsigned long tmp = h->max_huge_pages;
3490 	int ret;
3491 
3492 	if (!hugepages_supported())
3493 		return -EOPNOTSUPP;
3494 
3495 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496 					     &tmp);
3497 	if (ret)
3498 		goto out;
3499 
3500 	if (write)
3501 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502 						  NUMA_NO_NODE, tmp, *length);
3503 out:
3504 	return ret;
3505 }
3506 
3507 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508 			  void *buffer, size_t *length, loff_t *ppos)
3509 {
3510 
3511 	return hugetlb_sysctl_handler_common(false, table, write,
3512 							buffer, length, ppos);
3513 }
3514 
3515 #ifdef CONFIG_NUMA
3516 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517 			  void *buffer, size_t *length, loff_t *ppos)
3518 {
3519 	return hugetlb_sysctl_handler_common(true, table, write,
3520 							buffer, length, ppos);
3521 }
3522 #endif /* CONFIG_NUMA */
3523 
3524 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525 		void *buffer, size_t *length, loff_t *ppos)
3526 {
3527 	struct hstate *h = &default_hstate;
3528 	unsigned long tmp;
3529 	int ret;
3530 
3531 	if (!hugepages_supported())
3532 		return -EOPNOTSUPP;
3533 
3534 	tmp = h->nr_overcommit_huge_pages;
3535 
3536 	if (write && hstate_is_gigantic(h))
3537 		return -EINVAL;
3538 
3539 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540 					     &tmp);
3541 	if (ret)
3542 		goto out;
3543 
3544 	if (write) {
3545 		spin_lock(&hugetlb_lock);
3546 		h->nr_overcommit_huge_pages = tmp;
3547 		spin_unlock(&hugetlb_lock);
3548 	}
3549 out:
3550 	return ret;
3551 }
3552 
3553 #endif /* CONFIG_SYSCTL */
3554 
3555 void hugetlb_report_meminfo(struct seq_file *m)
3556 {
3557 	struct hstate *h;
3558 	unsigned long total = 0;
3559 
3560 	if (!hugepages_supported())
3561 		return;
3562 
3563 	for_each_hstate(h) {
3564 		unsigned long count = h->nr_huge_pages;
3565 
3566 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3567 
3568 		if (h == &default_hstate)
3569 			seq_printf(m,
3570 				   "HugePages_Total:   %5lu\n"
3571 				   "HugePages_Free:    %5lu\n"
3572 				   "HugePages_Rsvd:    %5lu\n"
3573 				   "HugePages_Surp:    %5lu\n"
3574 				   "Hugepagesize:   %8lu kB\n",
3575 				   count,
3576 				   h->free_huge_pages,
3577 				   h->resv_huge_pages,
3578 				   h->surplus_huge_pages,
3579 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3580 	}
3581 
3582 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3583 }
3584 
3585 int hugetlb_report_node_meminfo(int nid, char *buf)
3586 {
3587 	struct hstate *h = &default_hstate;
3588 	if (!hugepages_supported())
3589 		return 0;
3590 	return sprintf(buf,
3591 		"Node %d HugePages_Total: %5u\n"
3592 		"Node %d HugePages_Free:  %5u\n"
3593 		"Node %d HugePages_Surp:  %5u\n",
3594 		nid, h->nr_huge_pages_node[nid],
3595 		nid, h->free_huge_pages_node[nid],
3596 		nid, h->surplus_huge_pages_node[nid]);
3597 }
3598 
3599 void hugetlb_show_meminfo(void)
3600 {
3601 	struct hstate *h;
3602 	int nid;
3603 
3604 	if (!hugepages_supported())
3605 		return;
3606 
3607 	for_each_node_state(nid, N_MEMORY)
3608 		for_each_hstate(h)
3609 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610 				nid,
3611 				h->nr_huge_pages_node[nid],
3612 				h->free_huge_pages_node[nid],
3613 				h->surplus_huge_pages_node[nid],
3614 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615 }
3616 
3617 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618 {
3619 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621 }
3622 
3623 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624 unsigned long hugetlb_total_pages(void)
3625 {
3626 	struct hstate *h;
3627 	unsigned long nr_total_pages = 0;
3628 
3629 	for_each_hstate(h)
3630 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631 	return nr_total_pages;
3632 }
3633 
3634 static int hugetlb_acct_memory(struct hstate *h, long delta)
3635 {
3636 	int ret = -ENOMEM;
3637 
3638 	spin_lock(&hugetlb_lock);
3639 	/*
3640 	 * When cpuset is configured, it breaks the strict hugetlb page
3641 	 * reservation as the accounting is done on a global variable. Such
3642 	 * reservation is completely rubbish in the presence of cpuset because
3643 	 * the reservation is not checked against page availability for the
3644 	 * current cpuset. Application can still potentially OOM'ed by kernel
3645 	 * with lack of free htlb page in cpuset that the task is in.
3646 	 * Attempt to enforce strict accounting with cpuset is almost
3647 	 * impossible (or too ugly) because cpuset is too fluid that
3648 	 * task or memory node can be dynamically moved between cpusets.
3649 	 *
3650 	 * The change of semantics for shared hugetlb mapping with cpuset is
3651 	 * undesirable. However, in order to preserve some of the semantics,
3652 	 * we fall back to check against current free page availability as
3653 	 * a best attempt and hopefully to minimize the impact of changing
3654 	 * semantics that cpuset has.
3655 	 *
3656 	 * Apart from cpuset, we also have memory policy mechanism that
3657 	 * also determines from which node the kernel will allocate memory
3658 	 * in a NUMA system. So similar to cpuset, we also should consider
3659 	 * the memory policy of the current task. Similar to the description
3660 	 * above.
3661 	 */
3662 	if (delta > 0) {
3663 		if (gather_surplus_pages(h, delta) < 0)
3664 			goto out;
3665 
3666 		if (delta > allowed_mems_nr(h)) {
3667 			return_unused_surplus_pages(h, delta);
3668 			goto out;
3669 		}
3670 	}
3671 
3672 	ret = 0;
3673 	if (delta < 0)
3674 		return_unused_surplus_pages(h, (unsigned long) -delta);
3675 
3676 out:
3677 	spin_unlock(&hugetlb_lock);
3678 	return ret;
3679 }
3680 
3681 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682 {
3683 	struct resv_map *resv = vma_resv_map(vma);
3684 
3685 	/*
3686 	 * This new VMA should share its siblings reservation map if present.
3687 	 * The VMA will only ever have a valid reservation map pointer where
3688 	 * it is being copied for another still existing VMA.  As that VMA
3689 	 * has a reference to the reservation map it cannot disappear until
3690 	 * after this open call completes.  It is therefore safe to take a
3691 	 * new reference here without additional locking.
3692 	 */
3693 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694 		kref_get(&resv->refs);
3695 }
3696 
3697 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698 {
3699 	struct hstate *h = hstate_vma(vma);
3700 	struct resv_map *resv = vma_resv_map(vma);
3701 	struct hugepage_subpool *spool = subpool_vma(vma);
3702 	unsigned long reserve, start, end;
3703 	long gbl_reserve;
3704 
3705 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706 		return;
3707 
3708 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3709 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3710 
3711 	reserve = (end - start) - region_count(resv, start, end);
3712 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3713 	if (reserve) {
3714 		/*
3715 		 * Decrement reserve counts.  The global reserve count may be
3716 		 * adjusted if the subpool has a minimum size.
3717 		 */
3718 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719 		hugetlb_acct_memory(h, -gbl_reserve);
3720 	}
3721 
3722 	kref_put(&resv->refs, resv_map_release);
3723 }
3724 
3725 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726 {
3727 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728 		return -EINVAL;
3729 	return 0;
3730 }
3731 
3732 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733 {
3734 	struct hstate *hstate = hstate_vma(vma);
3735 
3736 	return 1UL << huge_page_shift(hstate);
3737 }
3738 
3739 /*
3740  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3741  * handle_mm_fault() to try to instantiate regular-sized pages in the
3742  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3743  * this far.
3744  */
3745 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746 {
3747 	BUG();
3748 	return 0;
3749 }
3750 
3751 /*
3752  * When a new function is introduced to vm_operations_struct and added
3753  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754  * This is because under System V memory model, mappings created via
3755  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756  * their original vm_ops are overwritten with shm_vm_ops.
3757  */
3758 const struct vm_operations_struct hugetlb_vm_ops = {
3759 	.fault = hugetlb_vm_op_fault,
3760 	.open = hugetlb_vm_op_open,
3761 	.close = hugetlb_vm_op_close,
3762 	.split = hugetlb_vm_op_split,
3763 	.pagesize = hugetlb_vm_op_pagesize,
3764 };
3765 
3766 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767 				int writable)
3768 {
3769 	pte_t entry;
3770 
3771 	if (writable) {
3772 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773 					 vma->vm_page_prot)));
3774 	} else {
3775 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3776 					   vma->vm_page_prot));
3777 	}
3778 	entry = pte_mkyoung(entry);
3779 	entry = pte_mkhuge(entry);
3780 	entry = arch_make_huge_pte(entry, vma, page, writable);
3781 
3782 	return entry;
3783 }
3784 
3785 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786 				   unsigned long address, pte_t *ptep)
3787 {
3788 	pte_t entry;
3789 
3790 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792 		update_mmu_cache(vma, address, ptep);
3793 }
3794 
3795 bool is_hugetlb_entry_migration(pte_t pte)
3796 {
3797 	swp_entry_t swp;
3798 
3799 	if (huge_pte_none(pte) || pte_present(pte))
3800 		return false;
3801 	swp = pte_to_swp_entry(pte);
3802 	if (non_swap_entry(swp) && is_migration_entry(swp))
3803 		return true;
3804 	else
3805 		return false;
3806 }
3807 
3808 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809 {
3810 	swp_entry_t swp;
3811 
3812 	if (huge_pte_none(pte) || pte_present(pte))
3813 		return 0;
3814 	swp = pte_to_swp_entry(pte);
3815 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816 		return 1;
3817 	else
3818 		return 0;
3819 }
3820 
3821 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822 			    struct vm_area_struct *vma)
3823 {
3824 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3825 	struct page *ptepage;
3826 	unsigned long addr;
3827 	int cow;
3828 	struct hstate *h = hstate_vma(vma);
3829 	unsigned long sz = huge_page_size(h);
3830 	struct address_space *mapping = vma->vm_file->f_mapping;
3831 	struct mmu_notifier_range range;
3832 	int ret = 0;
3833 
3834 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835 
3836 	if (cow) {
3837 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838 					vma->vm_start,
3839 					vma->vm_end);
3840 		mmu_notifier_invalidate_range_start(&range);
3841 	} else {
3842 		/*
3843 		 * For shared mappings i_mmap_rwsem must be held to call
3844 		 * huge_pte_alloc, otherwise the returned ptep could go
3845 		 * away if part of a shared pmd and another thread calls
3846 		 * huge_pmd_unshare.
3847 		 */
3848 		i_mmap_lock_read(mapping);
3849 	}
3850 
3851 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852 		spinlock_t *src_ptl, *dst_ptl;
3853 		src_pte = huge_pte_offset(src, addr, sz);
3854 		if (!src_pte)
3855 			continue;
3856 		dst_pte = huge_pte_alloc(dst, addr, sz);
3857 		if (!dst_pte) {
3858 			ret = -ENOMEM;
3859 			break;
3860 		}
3861 
3862 		/*
3863 		 * If the pagetables are shared don't copy or take references.
3864 		 * dst_pte == src_pte is the common case of src/dest sharing.
3865 		 *
3866 		 * However, src could have 'unshared' and dst shares with
3867 		 * another vma.  If dst_pte !none, this implies sharing.
3868 		 * Check here before taking page table lock, and once again
3869 		 * after taking the lock below.
3870 		 */
3871 		dst_entry = huge_ptep_get(dst_pte);
3872 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873 			continue;
3874 
3875 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3877 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878 		entry = huge_ptep_get(src_pte);
3879 		dst_entry = huge_ptep_get(dst_pte);
3880 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881 			/*
3882 			 * Skip if src entry none.  Also, skip in the
3883 			 * unlikely case dst entry !none as this implies
3884 			 * sharing with another vma.
3885 			 */
3886 			;
3887 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888 				    is_hugetlb_entry_hwpoisoned(entry))) {
3889 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3890 
3891 			if (is_write_migration_entry(swp_entry) && cow) {
3892 				/*
3893 				 * COW mappings require pages in both
3894 				 * parent and child to be set to read.
3895 				 */
3896 				make_migration_entry_read(&swp_entry);
3897 				entry = swp_entry_to_pte(swp_entry);
3898 				set_huge_swap_pte_at(src, addr, src_pte,
3899 						     entry, sz);
3900 			}
3901 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902 		} else {
3903 			if (cow) {
3904 				/*
3905 				 * No need to notify as we are downgrading page
3906 				 * table protection not changing it to point
3907 				 * to a new page.
3908 				 *
3909 				 * See Documentation/vm/mmu_notifier.rst
3910 				 */
3911 				huge_ptep_set_wrprotect(src, addr, src_pte);
3912 			}
3913 			entry = huge_ptep_get(src_pte);
3914 			ptepage = pte_page(entry);
3915 			get_page(ptepage);
3916 			page_dup_rmap(ptepage, true);
3917 			set_huge_pte_at(dst, addr, dst_pte, entry);
3918 			hugetlb_count_add(pages_per_huge_page(h), dst);
3919 		}
3920 		spin_unlock(src_ptl);
3921 		spin_unlock(dst_ptl);
3922 	}
3923 
3924 	if (cow)
3925 		mmu_notifier_invalidate_range_end(&range);
3926 	else
3927 		i_mmap_unlock_read(mapping);
3928 
3929 	return ret;
3930 }
3931 
3932 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933 			    unsigned long start, unsigned long end,
3934 			    struct page *ref_page)
3935 {
3936 	struct mm_struct *mm = vma->vm_mm;
3937 	unsigned long address;
3938 	pte_t *ptep;
3939 	pte_t pte;
3940 	spinlock_t *ptl;
3941 	struct page *page;
3942 	struct hstate *h = hstate_vma(vma);
3943 	unsigned long sz = huge_page_size(h);
3944 	struct mmu_notifier_range range;
3945 
3946 	WARN_ON(!is_vm_hugetlb_page(vma));
3947 	BUG_ON(start & ~huge_page_mask(h));
3948 	BUG_ON(end & ~huge_page_mask(h));
3949 
3950 	/*
3951 	 * This is a hugetlb vma, all the pte entries should point
3952 	 * to huge page.
3953 	 */
3954 	tlb_change_page_size(tlb, sz);
3955 	tlb_start_vma(tlb, vma);
3956 
3957 	/*
3958 	 * If sharing possible, alert mmu notifiers of worst case.
3959 	 */
3960 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961 				end);
3962 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963 	mmu_notifier_invalidate_range_start(&range);
3964 	address = start;
3965 	for (; address < end; address += sz) {
3966 		ptep = huge_pte_offset(mm, address, sz);
3967 		if (!ptep)
3968 			continue;
3969 
3970 		ptl = huge_pte_lock(h, mm, ptep);
3971 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972 			spin_unlock(ptl);
3973 			/*
3974 			 * We just unmapped a page of PMDs by clearing a PUD.
3975 			 * The caller's TLB flush range should cover this area.
3976 			 */
3977 			continue;
3978 		}
3979 
3980 		pte = huge_ptep_get(ptep);
3981 		if (huge_pte_none(pte)) {
3982 			spin_unlock(ptl);
3983 			continue;
3984 		}
3985 
3986 		/*
3987 		 * Migrating hugepage or HWPoisoned hugepage is already
3988 		 * unmapped and its refcount is dropped, so just clear pte here.
3989 		 */
3990 		if (unlikely(!pte_present(pte))) {
3991 			huge_pte_clear(mm, address, ptep, sz);
3992 			spin_unlock(ptl);
3993 			continue;
3994 		}
3995 
3996 		page = pte_page(pte);
3997 		/*
3998 		 * If a reference page is supplied, it is because a specific
3999 		 * page is being unmapped, not a range. Ensure the page we
4000 		 * are about to unmap is the actual page of interest.
4001 		 */
4002 		if (ref_page) {
4003 			if (page != ref_page) {
4004 				spin_unlock(ptl);
4005 				continue;
4006 			}
4007 			/*
4008 			 * Mark the VMA as having unmapped its page so that
4009 			 * future faults in this VMA will fail rather than
4010 			 * looking like data was lost
4011 			 */
4012 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013 		}
4014 
4015 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4016 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017 		if (huge_pte_dirty(pte))
4018 			set_page_dirty(page);
4019 
4020 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4021 		page_remove_rmap(page, true);
4022 
4023 		spin_unlock(ptl);
4024 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4025 		/*
4026 		 * Bail out after unmapping reference page if supplied
4027 		 */
4028 		if (ref_page)
4029 			break;
4030 	}
4031 	mmu_notifier_invalidate_range_end(&range);
4032 	tlb_end_vma(tlb, vma);
4033 }
4034 
4035 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036 			  struct vm_area_struct *vma, unsigned long start,
4037 			  unsigned long end, struct page *ref_page)
4038 {
4039 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040 
4041 	/*
4042 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043 	 * test will fail on a vma being torn down, and not grab a page table
4044 	 * on its way out.  We're lucky that the flag has such an appropriate
4045 	 * name, and can in fact be safely cleared here. We could clear it
4046 	 * before the __unmap_hugepage_range above, but all that's necessary
4047 	 * is to clear it before releasing the i_mmap_rwsem. This works
4048 	 * because in the context this is called, the VMA is about to be
4049 	 * destroyed and the i_mmap_rwsem is held.
4050 	 */
4051 	vma->vm_flags &= ~VM_MAYSHARE;
4052 }
4053 
4054 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055 			  unsigned long end, struct page *ref_page)
4056 {
4057 	struct mm_struct *mm;
4058 	struct mmu_gather tlb;
4059 	unsigned long tlb_start = start;
4060 	unsigned long tlb_end = end;
4061 
4062 	/*
4063 	 * If shared PMDs were possibly used within this vma range, adjust
4064 	 * start/end for worst case tlb flushing.
4065 	 * Note that we can not be sure if PMDs are shared until we try to
4066 	 * unmap pages.  However, we want to make sure TLB flushing covers
4067 	 * the largest possible range.
4068 	 */
4069 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070 
4071 	mm = vma->vm_mm;
4072 
4073 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076 }
4077 
4078 /*
4079  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080  * mappping it owns the reserve page for. The intention is to unmap the page
4081  * from other VMAs and let the children be SIGKILLed if they are faulting the
4082  * same region.
4083  */
4084 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085 			      struct page *page, unsigned long address)
4086 {
4087 	struct hstate *h = hstate_vma(vma);
4088 	struct vm_area_struct *iter_vma;
4089 	struct address_space *mapping;
4090 	pgoff_t pgoff;
4091 
4092 	/*
4093 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094 	 * from page cache lookup which is in HPAGE_SIZE units.
4095 	 */
4096 	address = address & huge_page_mask(h);
4097 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098 			vma->vm_pgoff;
4099 	mapping = vma->vm_file->f_mapping;
4100 
4101 	/*
4102 	 * Take the mapping lock for the duration of the table walk. As
4103 	 * this mapping should be shared between all the VMAs,
4104 	 * __unmap_hugepage_range() is called as the lock is already held
4105 	 */
4106 	i_mmap_lock_write(mapping);
4107 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108 		/* Do not unmap the current VMA */
4109 		if (iter_vma == vma)
4110 			continue;
4111 
4112 		/*
4113 		 * Shared VMAs have their own reserves and do not affect
4114 		 * MAP_PRIVATE accounting but it is possible that a shared
4115 		 * VMA is using the same page so check and skip such VMAs.
4116 		 */
4117 		if (iter_vma->vm_flags & VM_MAYSHARE)
4118 			continue;
4119 
4120 		/*
4121 		 * Unmap the page from other VMAs without their own reserves.
4122 		 * They get marked to be SIGKILLed if they fault in these
4123 		 * areas. This is because a future no-page fault on this VMA
4124 		 * could insert a zeroed page instead of the data existing
4125 		 * from the time of fork. This would look like data corruption
4126 		 */
4127 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128 			unmap_hugepage_range(iter_vma, address,
4129 					     address + huge_page_size(h), page);
4130 	}
4131 	i_mmap_unlock_write(mapping);
4132 }
4133 
4134 /*
4135  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137  * cannot race with other handlers or page migration.
4138  * Keep the pte_same checks anyway to make transition from the mutex easier.
4139  */
4140 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141 		       unsigned long address, pte_t *ptep,
4142 		       struct page *pagecache_page, spinlock_t *ptl)
4143 {
4144 	pte_t pte;
4145 	struct hstate *h = hstate_vma(vma);
4146 	struct page *old_page, *new_page;
4147 	int outside_reserve = 0;
4148 	vm_fault_t ret = 0;
4149 	unsigned long haddr = address & huge_page_mask(h);
4150 	struct mmu_notifier_range range;
4151 
4152 	pte = huge_ptep_get(ptep);
4153 	old_page = pte_page(pte);
4154 
4155 retry_avoidcopy:
4156 	/* If no-one else is actually using this page, avoid the copy
4157 	 * and just make the page writable */
4158 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159 		page_move_anon_rmap(old_page, vma);
4160 		set_huge_ptep_writable(vma, haddr, ptep);
4161 		return 0;
4162 	}
4163 
4164 	/*
4165 	 * If the process that created a MAP_PRIVATE mapping is about to
4166 	 * perform a COW due to a shared page count, attempt to satisfy
4167 	 * the allocation without using the existing reserves. The pagecache
4168 	 * page is used to determine if the reserve at this address was
4169 	 * consumed or not. If reserves were used, a partial faulted mapping
4170 	 * at the time of fork() could consume its reserves on COW instead
4171 	 * of the full address range.
4172 	 */
4173 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174 			old_page != pagecache_page)
4175 		outside_reserve = 1;
4176 
4177 	get_page(old_page);
4178 
4179 	/*
4180 	 * Drop page table lock as buddy allocator may be called. It will
4181 	 * be acquired again before returning to the caller, as expected.
4182 	 */
4183 	spin_unlock(ptl);
4184 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185 
4186 	if (IS_ERR(new_page)) {
4187 		/*
4188 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189 		 * it is due to references held by a child and an insufficient
4190 		 * huge page pool. To guarantee the original mappers
4191 		 * reliability, unmap the page from child processes. The child
4192 		 * may get SIGKILLed if it later faults.
4193 		 */
4194 		if (outside_reserve) {
4195 			put_page(old_page);
4196 			BUG_ON(huge_pte_none(pte));
4197 			unmap_ref_private(mm, vma, old_page, haddr);
4198 			BUG_ON(huge_pte_none(pte));
4199 			spin_lock(ptl);
4200 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201 			if (likely(ptep &&
4202 				   pte_same(huge_ptep_get(ptep), pte)))
4203 				goto retry_avoidcopy;
4204 			/*
4205 			 * race occurs while re-acquiring page table
4206 			 * lock, and our job is done.
4207 			 */
4208 			return 0;
4209 		}
4210 
4211 		ret = vmf_error(PTR_ERR(new_page));
4212 		goto out_release_old;
4213 	}
4214 
4215 	/*
4216 	 * When the original hugepage is shared one, it does not have
4217 	 * anon_vma prepared.
4218 	 */
4219 	if (unlikely(anon_vma_prepare(vma))) {
4220 		ret = VM_FAULT_OOM;
4221 		goto out_release_all;
4222 	}
4223 
4224 	copy_user_huge_page(new_page, old_page, address, vma,
4225 			    pages_per_huge_page(h));
4226 	__SetPageUptodate(new_page);
4227 
4228 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229 				haddr + huge_page_size(h));
4230 	mmu_notifier_invalidate_range_start(&range);
4231 
4232 	/*
4233 	 * Retake the page table lock to check for racing updates
4234 	 * before the page tables are altered
4235 	 */
4236 	spin_lock(ptl);
4237 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239 		ClearPagePrivate(new_page);
4240 
4241 		/* Break COW */
4242 		huge_ptep_clear_flush(vma, haddr, ptep);
4243 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4244 		set_huge_pte_at(mm, haddr, ptep,
4245 				make_huge_pte(vma, new_page, 1));
4246 		page_remove_rmap(old_page, true);
4247 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248 		set_page_huge_active(new_page);
4249 		/* Make the old page be freed below */
4250 		new_page = old_page;
4251 	}
4252 	spin_unlock(ptl);
4253 	mmu_notifier_invalidate_range_end(&range);
4254 out_release_all:
4255 	restore_reserve_on_error(h, vma, haddr, new_page);
4256 	put_page(new_page);
4257 out_release_old:
4258 	put_page(old_page);
4259 
4260 	spin_lock(ptl); /* Caller expects lock to be held */
4261 	return ret;
4262 }
4263 
4264 /* Return the pagecache page at a given address within a VMA */
4265 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266 			struct vm_area_struct *vma, unsigned long address)
4267 {
4268 	struct address_space *mapping;
4269 	pgoff_t idx;
4270 
4271 	mapping = vma->vm_file->f_mapping;
4272 	idx = vma_hugecache_offset(h, vma, address);
4273 
4274 	return find_lock_page(mapping, idx);
4275 }
4276 
4277 /*
4278  * Return whether there is a pagecache page to back given address within VMA.
4279  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280  */
4281 static bool hugetlbfs_pagecache_present(struct hstate *h,
4282 			struct vm_area_struct *vma, unsigned long address)
4283 {
4284 	struct address_space *mapping;
4285 	pgoff_t idx;
4286 	struct page *page;
4287 
4288 	mapping = vma->vm_file->f_mapping;
4289 	idx = vma_hugecache_offset(h, vma, address);
4290 
4291 	page = find_get_page(mapping, idx);
4292 	if (page)
4293 		put_page(page);
4294 	return page != NULL;
4295 }
4296 
4297 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298 			   pgoff_t idx)
4299 {
4300 	struct inode *inode = mapping->host;
4301 	struct hstate *h = hstate_inode(inode);
4302 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303 
4304 	if (err)
4305 		return err;
4306 	ClearPagePrivate(page);
4307 
4308 	/*
4309 	 * set page dirty so that it will not be removed from cache/file
4310 	 * by non-hugetlbfs specific code paths.
4311 	 */
4312 	set_page_dirty(page);
4313 
4314 	spin_lock(&inode->i_lock);
4315 	inode->i_blocks += blocks_per_huge_page(h);
4316 	spin_unlock(&inode->i_lock);
4317 	return 0;
4318 }
4319 
4320 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321 			struct vm_area_struct *vma,
4322 			struct address_space *mapping, pgoff_t idx,
4323 			unsigned long address, pte_t *ptep, unsigned int flags)
4324 {
4325 	struct hstate *h = hstate_vma(vma);
4326 	vm_fault_t ret = VM_FAULT_SIGBUS;
4327 	int anon_rmap = 0;
4328 	unsigned long size;
4329 	struct page *page;
4330 	pte_t new_pte;
4331 	spinlock_t *ptl;
4332 	unsigned long haddr = address & huge_page_mask(h);
4333 	bool new_page = false;
4334 
4335 	/*
4336 	 * Currently, we are forced to kill the process in the event the
4337 	 * original mapper has unmapped pages from the child due to a failed
4338 	 * COW. Warn that such a situation has occurred as it may not be obvious
4339 	 */
4340 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342 			   current->pid);
4343 		return ret;
4344 	}
4345 
4346 	/*
4347 	 * We can not race with truncation due to holding i_mmap_rwsem.
4348 	 * i_size is modified when holding i_mmap_rwsem, so check here
4349 	 * once for faults beyond end of file.
4350 	 */
4351 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4352 	if (idx >= size)
4353 		goto out;
4354 
4355 retry:
4356 	page = find_lock_page(mapping, idx);
4357 	if (!page) {
4358 		/*
4359 		 * Check for page in userfault range
4360 		 */
4361 		if (userfaultfd_missing(vma)) {
4362 			u32 hash;
4363 			struct vm_fault vmf = {
4364 				.vma = vma,
4365 				.address = haddr,
4366 				.flags = flags,
4367 				/*
4368 				 * Hard to debug if it ends up being
4369 				 * used by a callee that assumes
4370 				 * something about the other
4371 				 * uninitialized fields... same as in
4372 				 * memory.c
4373 				 */
4374 			};
4375 
4376 			/*
4377 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378 			 * dropped before handling userfault.  Reacquire
4379 			 * after handling fault to make calling code simpler.
4380 			 */
4381 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4382 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383 			i_mmap_unlock_read(mapping);
4384 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385 			i_mmap_lock_read(mapping);
4386 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387 			goto out;
4388 		}
4389 
4390 		page = alloc_huge_page(vma, haddr, 0);
4391 		if (IS_ERR(page)) {
4392 			/*
4393 			 * Returning error will result in faulting task being
4394 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4395 			 * tasks from racing to fault in the same page which
4396 			 * could result in false unable to allocate errors.
4397 			 * Page migration does not take the fault mutex, but
4398 			 * does a clear then write of pte's under page table
4399 			 * lock.  Page fault code could race with migration,
4400 			 * notice the clear pte and try to allocate a page
4401 			 * here.  Before returning error, get ptl and make
4402 			 * sure there really is no pte entry.
4403 			 */
4404 			ptl = huge_pte_lock(h, mm, ptep);
4405 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4406 				ret = 0;
4407 				spin_unlock(ptl);
4408 				goto out;
4409 			}
4410 			spin_unlock(ptl);
4411 			ret = vmf_error(PTR_ERR(page));
4412 			goto out;
4413 		}
4414 		clear_huge_page(page, address, pages_per_huge_page(h));
4415 		__SetPageUptodate(page);
4416 		new_page = true;
4417 
4418 		if (vma->vm_flags & VM_MAYSHARE) {
4419 			int err = huge_add_to_page_cache(page, mapping, idx);
4420 			if (err) {
4421 				put_page(page);
4422 				if (err == -EEXIST)
4423 					goto retry;
4424 				goto out;
4425 			}
4426 		} else {
4427 			lock_page(page);
4428 			if (unlikely(anon_vma_prepare(vma))) {
4429 				ret = VM_FAULT_OOM;
4430 				goto backout_unlocked;
4431 			}
4432 			anon_rmap = 1;
4433 		}
4434 	} else {
4435 		/*
4436 		 * If memory error occurs between mmap() and fault, some process
4437 		 * don't have hwpoisoned swap entry for errored virtual address.
4438 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4439 		 */
4440 		if (unlikely(PageHWPoison(page))) {
4441 			ret = VM_FAULT_HWPOISON |
4442 				VM_FAULT_SET_HINDEX(hstate_index(h));
4443 			goto backout_unlocked;
4444 		}
4445 	}
4446 
4447 	/*
4448 	 * If we are going to COW a private mapping later, we examine the
4449 	 * pending reservations for this page now. This will ensure that
4450 	 * any allocations necessary to record that reservation occur outside
4451 	 * the spinlock.
4452 	 */
4453 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4455 			ret = VM_FAULT_OOM;
4456 			goto backout_unlocked;
4457 		}
4458 		/* Just decrements count, does not deallocate */
4459 		vma_end_reservation(h, vma, haddr);
4460 	}
4461 
4462 	ptl = huge_pte_lock(h, mm, ptep);
4463 	ret = 0;
4464 	if (!huge_pte_none(huge_ptep_get(ptep)))
4465 		goto backout;
4466 
4467 	if (anon_rmap) {
4468 		ClearPagePrivate(page);
4469 		hugepage_add_new_anon_rmap(page, vma, haddr);
4470 	} else
4471 		page_dup_rmap(page, true);
4472 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473 				&& (vma->vm_flags & VM_SHARED)));
4474 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4475 
4476 	hugetlb_count_add(pages_per_huge_page(h), mm);
4477 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478 		/* Optimization, do the COW without a second fault */
4479 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480 	}
4481 
4482 	spin_unlock(ptl);
4483 
4484 	/*
4485 	 * Only make newly allocated pages active.  Existing pages found
4486 	 * in the pagecache could be !page_huge_active() if they have been
4487 	 * isolated for migration.
4488 	 */
4489 	if (new_page)
4490 		set_page_huge_active(page);
4491 
4492 	unlock_page(page);
4493 out:
4494 	return ret;
4495 
4496 backout:
4497 	spin_unlock(ptl);
4498 backout_unlocked:
4499 	unlock_page(page);
4500 	restore_reserve_on_error(h, vma, haddr, page);
4501 	put_page(page);
4502 	goto out;
4503 }
4504 
4505 #ifdef CONFIG_SMP
4506 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507 {
4508 	unsigned long key[2];
4509 	u32 hash;
4510 
4511 	key[0] = (unsigned long) mapping;
4512 	key[1] = idx;
4513 
4514 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515 
4516 	return hash & (num_fault_mutexes - 1);
4517 }
4518 #else
4519 /*
4520  * For uniprocesor systems we always use a single mutex, so just
4521  * return 0 and avoid the hashing overhead.
4522  */
4523 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524 {
4525 	return 0;
4526 }
4527 #endif
4528 
4529 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530 			unsigned long address, unsigned int flags)
4531 {
4532 	pte_t *ptep, entry;
4533 	spinlock_t *ptl;
4534 	vm_fault_t ret;
4535 	u32 hash;
4536 	pgoff_t idx;
4537 	struct page *page = NULL;
4538 	struct page *pagecache_page = NULL;
4539 	struct hstate *h = hstate_vma(vma);
4540 	struct address_space *mapping;
4541 	int need_wait_lock = 0;
4542 	unsigned long haddr = address & huge_page_mask(h);
4543 
4544 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545 	if (ptep) {
4546 		/*
4547 		 * Since we hold no locks, ptep could be stale.  That is
4548 		 * OK as we are only making decisions based on content and
4549 		 * not actually modifying content here.
4550 		 */
4551 		entry = huge_ptep_get(ptep);
4552 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4553 			migration_entry_wait_huge(vma, mm, ptep);
4554 			return 0;
4555 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556 			return VM_FAULT_HWPOISON_LARGE |
4557 				VM_FAULT_SET_HINDEX(hstate_index(h));
4558 	}
4559 
4560 	/*
4561 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562 	 * until finished with ptep.  This serves two purposes:
4563 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564 	 *    and making the ptep no longer valid.
4565 	 * 2) It synchronizes us with i_size modifications during truncation.
4566 	 *
4567 	 * ptep could have already be assigned via huge_pte_offset.  That
4568 	 * is OK, as huge_pte_alloc will return the same value unless
4569 	 * something has changed.
4570 	 */
4571 	mapping = vma->vm_file->f_mapping;
4572 	i_mmap_lock_read(mapping);
4573 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574 	if (!ptep) {
4575 		i_mmap_unlock_read(mapping);
4576 		return VM_FAULT_OOM;
4577 	}
4578 
4579 	/*
4580 	 * Serialize hugepage allocation and instantiation, so that we don't
4581 	 * get spurious allocation failures if two CPUs race to instantiate
4582 	 * the same page in the page cache.
4583 	 */
4584 	idx = vma_hugecache_offset(h, vma, haddr);
4585 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4586 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587 
4588 	entry = huge_ptep_get(ptep);
4589 	if (huge_pte_none(entry)) {
4590 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591 		goto out_mutex;
4592 	}
4593 
4594 	ret = 0;
4595 
4596 	/*
4597 	 * entry could be a migration/hwpoison entry at this point, so this
4598 	 * check prevents the kernel from going below assuming that we have
4599 	 * an active hugepage in pagecache. This goto expects the 2nd page
4600 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601 	 * properly handle it.
4602 	 */
4603 	if (!pte_present(entry))
4604 		goto out_mutex;
4605 
4606 	/*
4607 	 * If we are going to COW the mapping later, we examine the pending
4608 	 * reservations for this page now. This will ensure that any
4609 	 * allocations necessary to record that reservation occur outside the
4610 	 * spinlock. For private mappings, we also lookup the pagecache
4611 	 * page now as it is used to determine if a reservation has been
4612 	 * consumed.
4613 	 */
4614 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4616 			ret = VM_FAULT_OOM;
4617 			goto out_mutex;
4618 		}
4619 		/* Just decrements count, does not deallocate */
4620 		vma_end_reservation(h, vma, haddr);
4621 
4622 		if (!(vma->vm_flags & VM_MAYSHARE))
4623 			pagecache_page = hugetlbfs_pagecache_page(h,
4624 								vma, haddr);
4625 	}
4626 
4627 	ptl = huge_pte_lock(h, mm, ptep);
4628 
4629 	/* Check for a racing update before calling hugetlb_cow */
4630 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631 		goto out_ptl;
4632 
4633 	/*
4634 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4635 	 * pagecache_page, so here we need take the former one
4636 	 * when page != pagecache_page or !pagecache_page.
4637 	 */
4638 	page = pte_page(entry);
4639 	if (page != pagecache_page)
4640 		if (!trylock_page(page)) {
4641 			need_wait_lock = 1;
4642 			goto out_ptl;
4643 		}
4644 
4645 	get_page(page);
4646 
4647 	if (flags & FAULT_FLAG_WRITE) {
4648 		if (!huge_pte_write(entry)) {
4649 			ret = hugetlb_cow(mm, vma, address, ptep,
4650 					  pagecache_page, ptl);
4651 			goto out_put_page;
4652 		}
4653 		entry = huge_pte_mkdirty(entry);
4654 	}
4655 	entry = pte_mkyoung(entry);
4656 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657 						flags & FAULT_FLAG_WRITE))
4658 		update_mmu_cache(vma, haddr, ptep);
4659 out_put_page:
4660 	if (page != pagecache_page)
4661 		unlock_page(page);
4662 	put_page(page);
4663 out_ptl:
4664 	spin_unlock(ptl);
4665 
4666 	if (pagecache_page) {
4667 		unlock_page(pagecache_page);
4668 		put_page(pagecache_page);
4669 	}
4670 out_mutex:
4671 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672 	i_mmap_unlock_read(mapping);
4673 	/*
4674 	 * Generally it's safe to hold refcount during waiting page lock. But
4675 	 * here we just wait to defer the next page fault to avoid busy loop and
4676 	 * the page is not used after unlocked before returning from the current
4677 	 * page fault. So we are safe from accessing freed page, even if we wait
4678 	 * here without taking refcount.
4679 	 */
4680 	if (need_wait_lock)
4681 		wait_on_page_locked(page);
4682 	return ret;
4683 }
4684 
4685 /*
4686  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4687  * modifications for huge pages.
4688  */
4689 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690 			    pte_t *dst_pte,
4691 			    struct vm_area_struct *dst_vma,
4692 			    unsigned long dst_addr,
4693 			    unsigned long src_addr,
4694 			    struct page **pagep)
4695 {
4696 	struct address_space *mapping;
4697 	pgoff_t idx;
4698 	unsigned long size;
4699 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700 	struct hstate *h = hstate_vma(dst_vma);
4701 	pte_t _dst_pte;
4702 	spinlock_t *ptl;
4703 	int ret;
4704 	struct page *page;
4705 
4706 	if (!*pagep) {
4707 		ret = -ENOMEM;
4708 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4709 		if (IS_ERR(page))
4710 			goto out;
4711 
4712 		ret = copy_huge_page_from_user(page,
4713 						(const void __user *) src_addr,
4714 						pages_per_huge_page(h), false);
4715 
4716 		/* fallback to copy_from_user outside mmap_lock */
4717 		if (unlikely(ret)) {
4718 			ret = -ENOENT;
4719 			*pagep = page;
4720 			/* don't free the page */
4721 			goto out;
4722 		}
4723 	} else {
4724 		page = *pagep;
4725 		*pagep = NULL;
4726 	}
4727 
4728 	/*
4729 	 * The memory barrier inside __SetPageUptodate makes sure that
4730 	 * preceding stores to the page contents become visible before
4731 	 * the set_pte_at() write.
4732 	 */
4733 	__SetPageUptodate(page);
4734 
4735 	mapping = dst_vma->vm_file->f_mapping;
4736 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737 
4738 	/*
4739 	 * If shared, add to page cache
4740 	 */
4741 	if (vm_shared) {
4742 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 		ret = -EFAULT;
4744 		if (idx >= size)
4745 			goto out_release_nounlock;
4746 
4747 		/*
4748 		 * Serialization between remove_inode_hugepages() and
4749 		 * huge_add_to_page_cache() below happens through the
4750 		 * hugetlb_fault_mutex_table that here must be hold by
4751 		 * the caller.
4752 		 */
4753 		ret = huge_add_to_page_cache(page, mapping, idx);
4754 		if (ret)
4755 			goto out_release_nounlock;
4756 	}
4757 
4758 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759 	spin_lock(ptl);
4760 
4761 	/*
4762 	 * Recheck the i_size after holding PT lock to make sure not
4763 	 * to leave any page mapped (as page_mapped()) beyond the end
4764 	 * of the i_size (remove_inode_hugepages() is strict about
4765 	 * enforcing that). If we bail out here, we'll also leave a
4766 	 * page in the radix tree in the vm_shared case beyond the end
4767 	 * of the i_size, but remove_inode_hugepages() will take care
4768 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769 	 */
4770 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4771 	ret = -EFAULT;
4772 	if (idx >= size)
4773 		goto out_release_unlock;
4774 
4775 	ret = -EEXIST;
4776 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777 		goto out_release_unlock;
4778 
4779 	if (vm_shared) {
4780 		page_dup_rmap(page, true);
4781 	} else {
4782 		ClearPagePrivate(page);
4783 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784 	}
4785 
4786 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787 	if (dst_vma->vm_flags & VM_WRITE)
4788 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4789 	_dst_pte = pte_mkyoung(_dst_pte);
4790 
4791 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4792 
4793 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794 					dst_vma->vm_flags & VM_WRITE);
4795 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796 
4797 	/* No need to invalidate - it was non-present before */
4798 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799 
4800 	spin_unlock(ptl);
4801 	set_page_huge_active(page);
4802 	if (vm_shared)
4803 		unlock_page(page);
4804 	ret = 0;
4805 out:
4806 	return ret;
4807 out_release_unlock:
4808 	spin_unlock(ptl);
4809 	if (vm_shared)
4810 		unlock_page(page);
4811 out_release_nounlock:
4812 	put_page(page);
4813 	goto out;
4814 }
4815 
4816 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817 			 struct page **pages, struct vm_area_struct **vmas,
4818 			 unsigned long *position, unsigned long *nr_pages,
4819 			 long i, unsigned int flags, int *locked)
4820 {
4821 	unsigned long pfn_offset;
4822 	unsigned long vaddr = *position;
4823 	unsigned long remainder = *nr_pages;
4824 	struct hstate *h = hstate_vma(vma);
4825 	int err = -EFAULT;
4826 
4827 	while (vaddr < vma->vm_end && remainder) {
4828 		pte_t *pte;
4829 		spinlock_t *ptl = NULL;
4830 		int absent;
4831 		struct page *page;
4832 
4833 		/*
4834 		 * If we have a pending SIGKILL, don't keep faulting pages and
4835 		 * potentially allocating memory.
4836 		 */
4837 		if (fatal_signal_pending(current)) {
4838 			remainder = 0;
4839 			break;
4840 		}
4841 
4842 		/*
4843 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4844 		 * each hugepage.  We have to make sure we get the
4845 		 * first, for the page indexing below to work.
4846 		 *
4847 		 * Note that page table lock is not held when pte is null.
4848 		 */
4849 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850 				      huge_page_size(h));
4851 		if (pte)
4852 			ptl = huge_pte_lock(h, mm, pte);
4853 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854 
4855 		/*
4856 		 * When coredumping, it suits get_dump_page if we just return
4857 		 * an error where there's an empty slot with no huge pagecache
4858 		 * to back it.  This way, we avoid allocating a hugepage, and
4859 		 * the sparse dumpfile avoids allocating disk blocks, but its
4860 		 * huge holes still show up with zeroes where they need to be.
4861 		 */
4862 		if (absent && (flags & FOLL_DUMP) &&
4863 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864 			if (pte)
4865 				spin_unlock(ptl);
4866 			remainder = 0;
4867 			break;
4868 		}
4869 
4870 		/*
4871 		 * We need call hugetlb_fault for both hugepages under migration
4872 		 * (in which case hugetlb_fault waits for the migration,) and
4873 		 * hwpoisoned hugepages (in which case we need to prevent the
4874 		 * caller from accessing to them.) In order to do this, we use
4875 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877 		 * both cases, and because we can't follow correct pages
4878 		 * directly from any kind of swap entries.
4879 		 */
4880 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881 		    ((flags & FOLL_WRITE) &&
4882 		      !huge_pte_write(huge_ptep_get(pte)))) {
4883 			vm_fault_t ret;
4884 			unsigned int fault_flags = 0;
4885 
4886 			if (pte)
4887 				spin_unlock(ptl);
4888 			if (flags & FOLL_WRITE)
4889 				fault_flags |= FAULT_FLAG_WRITE;
4890 			if (locked)
4891 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892 					FAULT_FLAG_KILLABLE;
4893 			if (flags & FOLL_NOWAIT)
4894 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895 					FAULT_FLAG_RETRY_NOWAIT;
4896 			if (flags & FOLL_TRIED) {
4897 				/*
4898 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4899 				 * FAULT_FLAG_TRIED can co-exist
4900 				 */
4901 				fault_flags |= FAULT_FLAG_TRIED;
4902 			}
4903 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904 			if (ret & VM_FAULT_ERROR) {
4905 				err = vm_fault_to_errno(ret, flags);
4906 				remainder = 0;
4907 				break;
4908 			}
4909 			if (ret & VM_FAULT_RETRY) {
4910 				if (locked &&
4911 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912 					*locked = 0;
4913 				*nr_pages = 0;
4914 				/*
4915 				 * VM_FAULT_RETRY must not return an
4916 				 * error, it will return zero
4917 				 * instead.
4918 				 *
4919 				 * No need to update "position" as the
4920 				 * caller will not check it after
4921 				 * *nr_pages is set to 0.
4922 				 */
4923 				return i;
4924 			}
4925 			continue;
4926 		}
4927 
4928 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929 		page = pte_page(huge_ptep_get(pte));
4930 
4931 		/*
4932 		 * If subpage information not requested, update counters
4933 		 * and skip the same_page loop below.
4934 		 */
4935 		if (!pages && !vmas && !pfn_offset &&
4936 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4937 		    (remainder >= pages_per_huge_page(h))) {
4938 			vaddr += huge_page_size(h);
4939 			remainder -= pages_per_huge_page(h);
4940 			i += pages_per_huge_page(h);
4941 			spin_unlock(ptl);
4942 			continue;
4943 		}
4944 
4945 same_page:
4946 		if (pages) {
4947 			pages[i] = mem_map_offset(page, pfn_offset);
4948 			/*
4949 			 * try_grab_page() should always succeed here, because:
4950 			 * a) we hold the ptl lock, and b) we've just checked
4951 			 * that the huge page is present in the page tables. If
4952 			 * the huge page is present, then the tail pages must
4953 			 * also be present. The ptl prevents the head page and
4954 			 * tail pages from being rearranged in any way. So this
4955 			 * page must be available at this point, unless the page
4956 			 * refcount overflowed:
4957 			 */
4958 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959 				spin_unlock(ptl);
4960 				remainder = 0;
4961 				err = -ENOMEM;
4962 				break;
4963 			}
4964 		}
4965 
4966 		if (vmas)
4967 			vmas[i] = vma;
4968 
4969 		vaddr += PAGE_SIZE;
4970 		++pfn_offset;
4971 		--remainder;
4972 		++i;
4973 		if (vaddr < vma->vm_end && remainder &&
4974 				pfn_offset < pages_per_huge_page(h)) {
4975 			/*
4976 			 * We use pfn_offset to avoid touching the pageframes
4977 			 * of this compound page.
4978 			 */
4979 			goto same_page;
4980 		}
4981 		spin_unlock(ptl);
4982 	}
4983 	*nr_pages = remainder;
4984 	/*
4985 	 * setting position is actually required only if remainder is
4986 	 * not zero but it's faster not to add a "if (remainder)"
4987 	 * branch.
4988 	 */
4989 	*position = vaddr;
4990 
4991 	return i ? i : err;
4992 }
4993 
4994 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995 /*
4996  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997  * implement this.
4998  */
4999 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5000 #endif
5001 
5002 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003 		unsigned long address, unsigned long end, pgprot_t newprot)
5004 {
5005 	struct mm_struct *mm = vma->vm_mm;
5006 	unsigned long start = address;
5007 	pte_t *ptep;
5008 	pte_t pte;
5009 	struct hstate *h = hstate_vma(vma);
5010 	unsigned long pages = 0;
5011 	bool shared_pmd = false;
5012 	struct mmu_notifier_range range;
5013 
5014 	/*
5015 	 * In the case of shared PMDs, the area to flush could be beyond
5016 	 * start/end.  Set range.start/range.end to cover the maximum possible
5017 	 * range if PMD sharing is possible.
5018 	 */
5019 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020 				0, vma, mm, start, end);
5021 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022 
5023 	BUG_ON(address >= end);
5024 	flush_cache_range(vma, range.start, range.end);
5025 
5026 	mmu_notifier_invalidate_range_start(&range);
5027 	i_mmap_lock_write(vma->vm_file->f_mapping);
5028 	for (; address < end; address += huge_page_size(h)) {
5029 		spinlock_t *ptl;
5030 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031 		if (!ptep)
5032 			continue;
5033 		ptl = huge_pte_lock(h, mm, ptep);
5034 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035 			pages++;
5036 			spin_unlock(ptl);
5037 			shared_pmd = true;
5038 			continue;
5039 		}
5040 		pte = huge_ptep_get(ptep);
5041 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042 			spin_unlock(ptl);
5043 			continue;
5044 		}
5045 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5046 			swp_entry_t entry = pte_to_swp_entry(pte);
5047 
5048 			if (is_write_migration_entry(entry)) {
5049 				pte_t newpte;
5050 
5051 				make_migration_entry_read(&entry);
5052 				newpte = swp_entry_to_pte(entry);
5053 				set_huge_swap_pte_at(mm, address, ptep,
5054 						     newpte, huge_page_size(h));
5055 				pages++;
5056 			}
5057 			spin_unlock(ptl);
5058 			continue;
5059 		}
5060 		if (!huge_pte_none(pte)) {
5061 			pte_t old_pte;
5062 
5063 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067 			pages++;
5068 		}
5069 		spin_unlock(ptl);
5070 	}
5071 	/*
5072 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073 	 * may have cleared our pud entry and done put_page on the page table:
5074 	 * once we release i_mmap_rwsem, another task can do the final put_page
5075 	 * and that page table be reused and filled with junk.  If we actually
5076 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5077 	 */
5078 	if (shared_pmd)
5079 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5080 	else
5081 		flush_hugetlb_tlb_range(vma, start, end);
5082 	/*
5083 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084 	 * page table protection not changing it to point to a new page.
5085 	 *
5086 	 * See Documentation/vm/mmu_notifier.rst
5087 	 */
5088 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5089 	mmu_notifier_invalidate_range_end(&range);
5090 
5091 	return pages << h->order;
5092 }
5093 
5094 int hugetlb_reserve_pages(struct inode *inode,
5095 					long from, long to,
5096 					struct vm_area_struct *vma,
5097 					vm_flags_t vm_flags)
5098 {
5099 	long ret, chg, add = -1;
5100 	struct hstate *h = hstate_inode(inode);
5101 	struct hugepage_subpool *spool = subpool_inode(inode);
5102 	struct resv_map *resv_map;
5103 	struct hugetlb_cgroup *h_cg = NULL;
5104 	long gbl_reserve, regions_needed = 0;
5105 
5106 	/* This should never happen */
5107 	if (from > to) {
5108 		VM_WARN(1, "%s called with a negative range\n", __func__);
5109 		return -EINVAL;
5110 	}
5111 
5112 	/*
5113 	 * Only apply hugepage reservation if asked. At fault time, an
5114 	 * attempt will be made for VM_NORESERVE to allocate a page
5115 	 * without using reserves
5116 	 */
5117 	if (vm_flags & VM_NORESERVE)
5118 		return 0;
5119 
5120 	/*
5121 	 * Shared mappings base their reservation on the number of pages that
5122 	 * are already allocated on behalf of the file. Private mappings need
5123 	 * to reserve the full area even if read-only as mprotect() may be
5124 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5125 	 */
5126 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127 		/*
5128 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129 		 * called for inodes for which resv_maps were created (see
5130 		 * hugetlbfs_get_inode).
5131 		 */
5132 		resv_map = inode_resv_map(inode);
5133 
5134 		chg = region_chg(resv_map, from, to, &regions_needed);
5135 
5136 	} else {
5137 		/* Private mapping. */
5138 		resv_map = resv_map_alloc();
5139 		if (!resv_map)
5140 			return -ENOMEM;
5141 
5142 		chg = to - from;
5143 
5144 		set_vma_resv_map(vma, resv_map);
5145 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146 	}
5147 
5148 	if (chg < 0) {
5149 		ret = chg;
5150 		goto out_err;
5151 	}
5152 
5153 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155 
5156 	if (ret < 0) {
5157 		ret = -ENOMEM;
5158 		goto out_err;
5159 	}
5160 
5161 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 		 * of the resv_map.
5164 		 */
5165 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166 	}
5167 
5168 	/*
5169 	 * There must be enough pages in the subpool for the mapping. If
5170 	 * the subpool has a minimum size, there may be some global
5171 	 * reservations already in place (gbl_reserve).
5172 	 */
5173 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174 	if (gbl_reserve < 0) {
5175 		ret = -ENOSPC;
5176 		goto out_uncharge_cgroup;
5177 	}
5178 
5179 	/*
5180 	 * Check enough hugepages are available for the reservation.
5181 	 * Hand the pages back to the subpool if there are not
5182 	 */
5183 	ret = hugetlb_acct_memory(h, gbl_reserve);
5184 	if (ret < 0) {
5185 		goto out_put_pages;
5186 	}
5187 
5188 	/*
5189 	 * Account for the reservations made. Shared mappings record regions
5190 	 * that have reservations as they are shared by multiple VMAs.
5191 	 * When the last VMA disappears, the region map says how much
5192 	 * the reservation was and the page cache tells how much of
5193 	 * the reservation was consumed. Private mappings are per-VMA and
5194 	 * only the consumed reservations are tracked. When the VMA
5195 	 * disappears, the original reservation is the VMA size and the
5196 	 * consumed reservations are stored in the map. Hence, nothing
5197 	 * else has to be done for private mappings here
5198 	 */
5199 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201 
5202 		if (unlikely(add < 0)) {
5203 			hugetlb_acct_memory(h, -gbl_reserve);
5204 			goto out_put_pages;
5205 		} else if (unlikely(chg > add)) {
5206 			/*
5207 			 * pages in this range were added to the reserve
5208 			 * map between region_chg and region_add.  This
5209 			 * indicates a race with alloc_huge_page.  Adjust
5210 			 * the subpool and reserve counts modified above
5211 			 * based on the difference.
5212 			 */
5213 			long rsv_adjust;
5214 
5215 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 				hstate_index(h),
5217 				(chg - add) * pages_per_huge_page(h), h_cg);
5218 
5219 			rsv_adjust = hugepage_subpool_put_pages(spool,
5220 								chg - add);
5221 			hugetlb_acct_memory(h, -rsv_adjust);
5222 		}
5223 	}
5224 	return 0;
5225 out_put_pages:
5226 	/* put back original number of pages, chg */
5227 	(void)hugepage_subpool_put_pages(spool, chg);
5228 out_uncharge_cgroup:
5229 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230 					    chg * pages_per_huge_page(h), h_cg);
5231 out_err:
5232 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5233 		/* Only call region_abort if the region_chg succeeded but the
5234 		 * region_add failed or didn't run.
5235 		 */
5236 		if (chg >= 0 && add < 0)
5237 			region_abort(resv_map, from, to, regions_needed);
5238 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239 		kref_put(&resv_map->refs, resv_map_release);
5240 	return ret;
5241 }
5242 
5243 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244 								long freed)
5245 {
5246 	struct hstate *h = hstate_inode(inode);
5247 	struct resv_map *resv_map = inode_resv_map(inode);
5248 	long chg = 0;
5249 	struct hugepage_subpool *spool = subpool_inode(inode);
5250 	long gbl_reserve;
5251 
5252 	/*
5253 	 * Since this routine can be called in the evict inode path for all
5254 	 * hugetlbfs inodes, resv_map could be NULL.
5255 	 */
5256 	if (resv_map) {
5257 		chg = region_del(resv_map, start, end);
5258 		/*
5259 		 * region_del() can fail in the rare case where a region
5260 		 * must be split and another region descriptor can not be
5261 		 * allocated.  If end == LONG_MAX, it will not fail.
5262 		 */
5263 		if (chg < 0)
5264 			return chg;
5265 	}
5266 
5267 	spin_lock(&inode->i_lock);
5268 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269 	spin_unlock(&inode->i_lock);
5270 
5271 	/*
5272 	 * If the subpool has a minimum size, the number of global
5273 	 * reservations to be released may be adjusted.
5274 	 */
5275 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276 	hugetlb_acct_memory(h, -gbl_reserve);
5277 
5278 	return 0;
5279 }
5280 
5281 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283 				struct vm_area_struct *vma,
5284 				unsigned long addr, pgoff_t idx)
5285 {
5286 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287 				svma->vm_start;
5288 	unsigned long sbase = saddr & PUD_MASK;
5289 	unsigned long s_end = sbase + PUD_SIZE;
5290 
5291 	/* Allow segments to share if only one is marked locked */
5292 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294 
5295 	/*
5296 	 * match the virtual addresses, permission and the alignment of the
5297 	 * page table page.
5298 	 */
5299 	if (pmd_index(addr) != pmd_index(saddr) ||
5300 	    vm_flags != svm_flags ||
5301 	    sbase < svma->vm_start || svma->vm_end < s_end)
5302 		return 0;
5303 
5304 	return saddr;
5305 }
5306 
5307 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308 {
5309 	unsigned long base = addr & PUD_MASK;
5310 	unsigned long end = base + PUD_SIZE;
5311 
5312 	/*
5313 	 * check on proper vm_flags and page table alignment
5314 	 */
5315 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316 		return true;
5317 	return false;
5318 }
5319 
5320 /*
5321  * Determine if start,end range within vma could be mapped by shared pmd.
5322  * If yes, adjust start and end to cover range associated with possible
5323  * shared pmd mappings.
5324  */
5325 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326 				unsigned long *start, unsigned long *end)
5327 {
5328 	unsigned long a_start, a_end;
5329 
5330 	if (!(vma->vm_flags & VM_MAYSHARE))
5331 		return;
5332 
5333 	/* Extend the range to be PUD aligned for a worst case scenario */
5334 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335 	a_end = ALIGN(*end, PUD_SIZE);
5336 
5337 	/*
5338 	 * Intersect the range with the vma range, since pmd sharing won't be
5339 	 * across vma after all
5340 	 */
5341 	*start = max(vma->vm_start, a_start);
5342 	*end = min(vma->vm_end, a_end);
5343 }
5344 
5345 /*
5346  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347  * and returns the corresponding pte. While this is not necessary for the
5348  * !shared pmd case because we can allocate the pmd later as well, it makes the
5349  * code much cleaner.
5350  *
5351  * This routine must be called with i_mmap_rwsem held in at least read mode.
5352  * For hugetlbfs, this prevents removal of any page table entries associated
5353  * with the address space.  This is important as we are setting up sharing
5354  * based on existing page table entries (mappings).
5355  */
5356 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357 {
5358 	struct vm_area_struct *vma = find_vma(mm, addr);
5359 	struct address_space *mapping = vma->vm_file->f_mapping;
5360 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361 			vma->vm_pgoff;
5362 	struct vm_area_struct *svma;
5363 	unsigned long saddr;
5364 	pte_t *spte = NULL;
5365 	pte_t *pte;
5366 	spinlock_t *ptl;
5367 
5368 	if (!vma_shareable(vma, addr))
5369 		return (pte_t *)pmd_alloc(mm, pud, addr);
5370 
5371 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 		if (svma == vma)
5373 			continue;
5374 
5375 		saddr = page_table_shareable(svma, vma, addr, idx);
5376 		if (saddr) {
5377 			spte = huge_pte_offset(svma->vm_mm, saddr,
5378 					       vma_mmu_pagesize(svma));
5379 			if (spte) {
5380 				get_page(virt_to_page(spte));
5381 				break;
5382 			}
5383 		}
5384 	}
5385 
5386 	if (!spte)
5387 		goto out;
5388 
5389 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390 	if (pud_none(*pud)) {
5391 		pud_populate(mm, pud,
5392 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5393 		mm_inc_nr_pmds(mm);
5394 	} else {
5395 		put_page(virt_to_page(spte));
5396 	}
5397 	spin_unlock(ptl);
5398 out:
5399 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400 	return pte;
5401 }
5402 
5403 /*
5404  * unmap huge page backed by shared pte.
5405  *
5406  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407  * indicated by page_count > 1, unmap is achieved by clearing pud and
5408  * decrementing the ref count. If count == 1, the pte page is not shared.
5409  *
5410  * Called with page table lock held and i_mmap_rwsem held in write mode.
5411  *
5412  * returns: 1 successfully unmapped a shared pte page
5413  *	    0 the underlying pte page is not shared, or it is the last user
5414  */
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 					unsigned long *addr, pte_t *ptep)
5417 {
5418 	pgd_t *pgd = pgd_offset(mm, *addr);
5419 	p4d_t *p4d = p4d_offset(pgd, *addr);
5420 	pud_t *pud = pud_offset(p4d, *addr);
5421 
5422 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424 	if (page_count(virt_to_page(ptep)) == 1)
5425 		return 0;
5426 
5427 	pud_clear(pud);
5428 	put_page(virt_to_page(ptep));
5429 	mm_dec_nr_pmds(mm);
5430 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431 	return 1;
5432 }
5433 #define want_pmd_share()	(1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436 {
5437 	return NULL;
5438 }
5439 
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 				unsigned long *addr, pte_t *ptep)
5442 {
5443 	return 0;
5444 }
5445 
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447 				unsigned long *start, unsigned long *end)
5448 {
5449 }
5450 #define want_pmd_share()	(0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452 
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t *huge_pte_alloc(struct mm_struct *mm,
5455 			unsigned long addr, unsigned long sz)
5456 {
5457 	pgd_t *pgd;
5458 	p4d_t *p4d;
5459 	pud_t *pud;
5460 	pte_t *pte = NULL;
5461 
5462 	pgd = pgd_offset(mm, addr);
5463 	p4d = p4d_alloc(mm, pgd, addr);
5464 	if (!p4d)
5465 		return NULL;
5466 	pud = pud_alloc(mm, p4d, addr);
5467 	if (pud) {
5468 		if (sz == PUD_SIZE) {
5469 			pte = (pte_t *)pud;
5470 		} else {
5471 			BUG_ON(sz != PMD_SIZE);
5472 			if (want_pmd_share() && pud_none(*pud))
5473 				pte = huge_pmd_share(mm, addr, pud);
5474 			else
5475 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476 		}
5477 	}
5478 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479 
5480 	return pte;
5481 }
5482 
5483 /*
5484  * huge_pte_offset() - Walk the page table to resolve the hugepage
5485  * entry at address @addr
5486  *
5487  * Return: Pointer to page table entry (PUD or PMD) for
5488  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489  * size @sz doesn't match the hugepage size at this level of the page
5490  * table.
5491  */
5492 pte_t *huge_pte_offset(struct mm_struct *mm,
5493 		       unsigned long addr, unsigned long sz)
5494 {
5495 	pgd_t *pgd;
5496 	p4d_t *p4d;
5497 	pud_t *pud;
5498 	pmd_t *pmd;
5499 
5500 	pgd = pgd_offset(mm, addr);
5501 	if (!pgd_present(*pgd))
5502 		return NULL;
5503 	p4d = p4d_offset(pgd, addr);
5504 	if (!p4d_present(*p4d))
5505 		return NULL;
5506 
5507 	pud = pud_offset(p4d, addr);
5508 	if (sz == PUD_SIZE)
5509 		/* must be pud huge, non-present or none */
5510 		return (pte_t *)pud;
5511 	if (!pud_present(*pud))
5512 		return NULL;
5513 	/* must have a valid entry and size to go further */
5514 
5515 	pmd = pmd_offset(pud, addr);
5516 	/* must be pmd huge, non-present or none */
5517 	return (pte_t *)pmd;
5518 }
5519 
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521 
5522 /*
5523  * These functions are overwritable if your architecture needs its own
5524  * behavior.
5525  */
5526 struct page * __weak
5527 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528 			      int write)
5529 {
5530 	return ERR_PTR(-EINVAL);
5531 }
5532 
5533 struct page * __weak
5534 follow_huge_pd(struct vm_area_struct *vma,
5535 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536 {
5537 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538 	return NULL;
5539 }
5540 
5541 struct page * __weak
5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543 		pmd_t *pmd, int flags)
5544 {
5545 	struct page *page = NULL;
5546 	spinlock_t *ptl;
5547 	pte_t pte;
5548 
5549 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551 			 (FOLL_PIN | FOLL_GET)))
5552 		return NULL;
5553 
5554 retry:
5555 	ptl = pmd_lockptr(mm, pmd);
5556 	spin_lock(ptl);
5557 	/*
5558 	 * make sure that the address range covered by this pmd is not
5559 	 * unmapped from other threads.
5560 	 */
5561 	if (!pmd_huge(*pmd))
5562 		goto out;
5563 	pte = huge_ptep_get((pte_t *)pmd);
5564 	if (pte_present(pte)) {
5565 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566 		/*
5567 		 * try_grab_page() should always succeed here, because: a) we
5568 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 		 * huge pmd (head) page is present in the page tables. The ptl
5570 		 * prevents the head page and tail pages from being rearranged
5571 		 * in any way. So this page must be available at this point,
5572 		 * unless the page refcount overflowed:
5573 		 */
5574 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575 			page = NULL;
5576 			goto out;
5577 		}
5578 	} else {
5579 		if (is_hugetlb_entry_migration(pte)) {
5580 			spin_unlock(ptl);
5581 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582 			goto retry;
5583 		}
5584 		/*
5585 		 * hwpoisoned entry is treated as no_page_table in
5586 		 * follow_page_mask().
5587 		 */
5588 	}
5589 out:
5590 	spin_unlock(ptl);
5591 	return page;
5592 }
5593 
5594 struct page * __weak
5595 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596 		pud_t *pud, int flags)
5597 {
5598 	if (flags & (FOLL_GET | FOLL_PIN))
5599 		return NULL;
5600 
5601 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602 }
5603 
5604 struct page * __weak
5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606 {
5607 	if (flags & (FOLL_GET | FOLL_PIN))
5608 		return NULL;
5609 
5610 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611 }
5612 
5613 bool isolate_huge_page(struct page *page, struct list_head *list)
5614 {
5615 	bool ret = true;
5616 
5617 	VM_BUG_ON_PAGE(!PageHead(page), page);
5618 	spin_lock(&hugetlb_lock);
5619 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620 		ret = false;
5621 		goto unlock;
5622 	}
5623 	clear_page_huge_active(page);
5624 	list_move_tail(&page->lru, list);
5625 unlock:
5626 	spin_unlock(&hugetlb_lock);
5627 	return ret;
5628 }
5629 
5630 void putback_active_hugepage(struct page *page)
5631 {
5632 	VM_BUG_ON_PAGE(!PageHead(page), page);
5633 	spin_lock(&hugetlb_lock);
5634 	set_page_huge_active(page);
5635 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636 	spin_unlock(&hugetlb_lock);
5637 	put_page(page);
5638 }
5639 
5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641 {
5642 	struct hstate *h = page_hstate(oldpage);
5643 
5644 	hugetlb_cgroup_migrate(oldpage, newpage);
5645 	set_page_owner_migrate_reason(newpage, reason);
5646 
5647 	/*
5648 	 * transfer temporary state of the new huge page. This is
5649 	 * reverse to other transitions because the newpage is going to
5650 	 * be final while the old one will be freed so it takes over
5651 	 * the temporary status.
5652 	 *
5653 	 * Also note that we have to transfer the per-node surplus state
5654 	 * here as well otherwise the global surplus count will not match
5655 	 * the per-node's.
5656 	 */
5657 	if (PageHugeTemporary(newpage)) {
5658 		int old_nid = page_to_nid(oldpage);
5659 		int new_nid = page_to_nid(newpage);
5660 
5661 		SetPageHugeTemporary(oldpage);
5662 		ClearPageHugeTemporary(newpage);
5663 
5664 		spin_lock(&hugetlb_lock);
5665 		if (h->surplus_huge_pages_node[old_nid]) {
5666 			h->surplus_huge_pages_node[old_nid]--;
5667 			h->surplus_huge_pages_node[new_nid]++;
5668 		}
5669 		spin_unlock(&hugetlb_lock);
5670 	}
5671 }
5672 
5673 #ifdef CONFIG_CMA
5674 static bool cma_reserve_called __initdata;
5675 
5676 static int __init cmdline_parse_hugetlb_cma(char *p)
5677 {
5678 	hugetlb_cma_size = memparse(p, &p);
5679 	return 0;
5680 }
5681 
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683 
5684 void __init hugetlb_cma_reserve(int order)
5685 {
5686 	unsigned long size, reserved, per_node;
5687 	int nid;
5688 
5689 	cma_reserve_called = true;
5690 
5691 	if (!hugetlb_cma_size)
5692 		return;
5693 
5694 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 			(PAGE_SIZE << order) / SZ_1M);
5697 		return;
5698 	}
5699 
5700 	/*
5701 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5703 	 */
5704 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707 
5708 	reserved = 0;
5709 	for_each_node_state(nid, N_ONLINE) {
5710 		int res;
5711 		char name[20];
5712 
5713 		size = min(per_node, hugetlb_cma_size - reserved);
5714 		size = round_up(size, PAGE_SIZE << order);
5715 
5716 		snprintf(name, 20, "hugetlb%d", nid);
5717 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718 						 0, false, name,
5719 						 &hugetlb_cma[nid], nid);
5720 		if (res) {
5721 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722 				res, nid);
5723 			continue;
5724 		}
5725 
5726 		reserved += size;
5727 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728 			size / SZ_1M, nid);
5729 
5730 		if (reserved >= hugetlb_cma_size)
5731 			break;
5732 	}
5733 }
5734 
5735 void __init hugetlb_cma_check(void)
5736 {
5737 	if (!hugetlb_cma_size || cma_reserve_called)
5738 		return;
5739 
5740 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741 }
5742 
5743 #endif /* CONFIG_CMA */
5744