xref: /openbmc/linux/mm/hugetlb.c (revision 22b6e7f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103 	if (spool->count)
104 		return false;
105 	if (spool->max_hpages != -1)
106 		return spool->used_hpages == 0;
107 	if (spool->min_hpages != -1)
108 		return spool->rsv_hpages == spool->min_hpages;
109 
110 	return true;
111 }
112 
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 						unsigned long irq_flags)
115 {
116 	spin_unlock_irqrestore(&spool->lock, irq_flags);
117 
118 	/* If no pages are used, and no other handles to the subpool
119 	 * remain, give up any reservations based on minimum size and
120 	 * free the subpool */
121 	if (subpool_is_free(spool)) {
122 		if (spool->min_hpages != -1)
123 			hugetlb_acct_memory(spool->hstate,
124 						-spool->min_hpages);
125 		kfree(spool);
126 	}
127 }
128 
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130 						long min_hpages)
131 {
132 	struct hugepage_subpool *spool;
133 
134 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 	if (!spool)
136 		return NULL;
137 
138 	spin_lock_init(&spool->lock);
139 	spool->count = 1;
140 	spool->max_hpages = max_hpages;
141 	spool->hstate = h;
142 	spool->min_hpages = min_hpages;
143 
144 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 		kfree(spool);
146 		return NULL;
147 	}
148 	spool->rsv_hpages = min_hpages;
149 
150 	return spool;
151 }
152 
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&spool->lock, flags);
158 	BUG_ON(!spool->count);
159 	spool->count--;
160 	unlock_or_release_subpool(spool, flags);
161 }
162 
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172 				      long delta)
173 {
174 	long ret = delta;
175 
176 	if (!spool)
177 		return ret;
178 
179 	spin_lock_irq(&spool->lock);
180 
181 	if (spool->max_hpages != -1) {		/* maximum size accounting */
182 		if ((spool->used_hpages + delta) <= spool->max_hpages)
183 			spool->used_hpages += delta;
184 		else {
185 			ret = -ENOMEM;
186 			goto unlock_ret;
187 		}
188 	}
189 
190 	/* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 		if (delta > spool->rsv_hpages) {
193 			/*
194 			 * Asking for more reserves than those already taken on
195 			 * behalf of subpool.  Return difference.
196 			 */
197 			ret = delta - spool->rsv_hpages;
198 			spool->rsv_hpages = 0;
199 		} else {
200 			ret = 0;	/* reserves already accounted for */
201 			spool->rsv_hpages -= delta;
202 		}
203 	}
204 
205 unlock_ret:
206 	spin_unlock_irq(&spool->lock);
207 	return ret;
208 }
209 
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217 				       long delta)
218 {
219 	long ret = delta;
220 	unsigned long flags;
221 
222 	if (!spool)
223 		return delta;
224 
225 	spin_lock_irqsave(&spool->lock, flags);
226 
227 	if (spool->max_hpages != -1)		/* maximum size accounting */
228 		spool->used_hpages -= delta;
229 
230 	 /* minimum size accounting */
231 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 		if (spool->rsv_hpages + delta <= spool->min_hpages)
233 			ret = 0;
234 		else
235 			ret = spool->rsv_hpages + delta - spool->min_hpages;
236 
237 		spool->rsv_hpages += delta;
238 		if (spool->rsv_hpages > spool->min_hpages)
239 			spool->rsv_hpages = spool->min_hpages;
240 	}
241 
242 	/*
243 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 	 * quota reference, free it now.
245 	 */
246 	unlock_or_release_subpool(spool, flags);
247 
248 	return ret;
249 }
250 
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253 	return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255 
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258 	return subpool_inode(file_inode(vma->vm_file));
259 }
260 
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266 	if (__vma_shareable_lock(vma)) {
267 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 
269 		down_read(&vma_lock->rw_sema);
270 	}
271 }
272 
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275 	if (__vma_shareable_lock(vma)) {
276 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 
278 		up_read(&vma_lock->rw_sema);
279 	}
280 }
281 
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284 	if (__vma_shareable_lock(vma)) {
285 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 
287 		down_write(&vma_lock->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		up_write(&vma_lock->rw_sema);
297 	}
298 }
299 
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 	if (!__vma_shareable_lock(vma))
305 		return 1;
306 
307 	return down_write_trylock(&vma_lock->rw_sema);
308 }
309 
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312 	if (__vma_shareable_lock(vma)) {
313 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 
315 		lockdep_assert_held(&vma_lock->rw_sema);
316 	}
317 }
318 
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 			struct hugetlb_vma_lock, refs);
323 
324 	kfree(vma_lock);
325 }
326 
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329 	struct vm_area_struct *vma = vma_lock->vma;
330 
331 	/*
332 	 * vma_lock structure may or not be released as a result of put,
333 	 * it certainly will no longer be attached to vma so clear pointer.
334 	 * Semaphore synchronizes access to vma_lock->vma field.
335 	 */
336 	vma_lock->vma = NULL;
337 	vma->vm_private_data = NULL;
338 	up_write(&vma_lock->rw_sema);
339 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341 
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344 	if (__vma_shareable_lock(vma)) {
345 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 
347 		__hugetlb_vma_unlock_write_put(vma_lock);
348 	}
349 }
350 
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353 	/*
354 	 * Only present in sharable vmas.
355 	 */
356 	if (!vma || !__vma_shareable_lock(vma))
357 		return;
358 
359 	if (vma->vm_private_data) {
360 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 
362 		down_write(&vma_lock->rw_sema);
363 		__hugetlb_vma_unlock_write_put(vma_lock);
364 	}
365 }
366 
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369 	struct hugetlb_vma_lock *vma_lock;
370 
371 	/* Only establish in (flags) sharable vmas */
372 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373 		return;
374 
375 	/* Should never get here with non-NULL vm_private_data */
376 	if (vma->vm_private_data)
377 		return;
378 
379 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380 	if (!vma_lock) {
381 		/*
382 		 * If we can not allocate structure, then vma can not
383 		 * participate in pmd sharing.  This is only a possible
384 		 * performance enhancement and memory saving issue.
385 		 * However, the lock is also used to synchronize page
386 		 * faults with truncation.  If the lock is not present,
387 		 * unlikely races could leave pages in a file past i_size
388 		 * until the file is removed.  Warn in the unlikely case of
389 		 * allocation failure.
390 		 */
391 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392 		return;
393 	}
394 
395 	kref_init(&vma_lock->refs);
396 	init_rwsem(&vma_lock->rw_sema);
397 	vma_lock->vma = vma;
398 	vma->vm_private_data = vma_lock;
399 }
400 
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407 	struct file_region *nrg;
408 
409 	VM_BUG_ON(resv->region_cache_count <= 0);
410 
411 	resv->region_cache_count--;
412 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 	list_del(&nrg->link);
414 
415 	nrg->from = from;
416 	nrg->to = to;
417 
418 	return nrg;
419 }
420 
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 					      struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425 	nrg->reservation_counter = rg->reservation_counter;
426 	nrg->css = rg->css;
427 	if (rg->css)
428 		css_get(rg->css);
429 #endif
430 }
431 
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 						struct hstate *h,
435 						struct resv_map *resv,
436 						struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439 	if (h_cg) {
440 		nrg->reservation_counter =
441 			&h_cg->rsvd_hugepage[hstate_index(h)];
442 		nrg->css = &h_cg->css;
443 		/*
444 		 * The caller will hold exactly one h_cg->css reference for the
445 		 * whole contiguous reservation region. But this area might be
446 		 * scattered when there are already some file_regions reside in
447 		 * it. As a result, many file_regions may share only one css
448 		 * reference. In order to ensure that one file_region must hold
449 		 * exactly one h_cg->css reference, we should do css_get for
450 		 * each file_region and leave the reference held by caller
451 		 * untouched.
452 		 */
453 		css_get(&h_cg->css);
454 		if (!resv->pages_per_hpage)
455 			resv->pages_per_hpage = pages_per_huge_page(h);
456 		/* pages_per_hpage should be the same for all entries in
457 		 * a resv_map.
458 		 */
459 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 	} else {
461 		nrg->reservation_counter = NULL;
462 		nrg->css = NULL;
463 	}
464 #endif
465 }
466 
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470 	if (rg->css)
471 		css_put(rg->css);
472 #endif
473 }
474 
475 static bool has_same_uncharge_info(struct file_region *rg,
476 				   struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479 	return rg->reservation_counter == org->reservation_counter &&
480 	       rg->css == org->css;
481 
482 #else
483 	return true;
484 #endif
485 }
486 
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489 	struct file_region *nrg, *prg;
490 
491 	prg = list_prev_entry(rg, link);
492 	if (&prg->link != &resv->regions && prg->to == rg->from &&
493 	    has_same_uncharge_info(prg, rg)) {
494 		prg->to = rg->to;
495 
496 		list_del(&rg->link);
497 		put_uncharge_info(rg);
498 		kfree(rg);
499 
500 		rg = prg;
501 	}
502 
503 	nrg = list_next_entry(rg, link);
504 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 	    has_same_uncharge_info(nrg, rg)) {
506 		nrg->from = rg->from;
507 
508 		list_del(&rg->link);
509 		put_uncharge_info(rg);
510 		kfree(rg);
511 	}
512 }
513 
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 		     long *regions_needed)
518 {
519 	struct file_region *nrg;
520 
521 	if (!regions_needed) {
522 		nrg = get_file_region_entry_from_cache(map, from, to);
523 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 		list_add(&nrg->link, rg);
525 		coalesce_file_region(map, nrg);
526 	} else
527 		*regions_needed += 1;
528 
529 	return to - from;
530 }
531 
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 				     struct hugetlb_cgroup *h_cg,
542 				     struct hstate *h, long *regions_needed)
543 {
544 	long add = 0;
545 	struct list_head *head = &resv->regions;
546 	long last_accounted_offset = f;
547 	struct file_region *iter, *trg = NULL;
548 	struct list_head *rg = NULL;
549 
550 	if (regions_needed)
551 		*regions_needed = 0;
552 
553 	/* In this loop, we essentially handle an entry for the range
554 	 * [last_accounted_offset, iter->from), at every iteration, with some
555 	 * bounds checking.
556 	 */
557 	list_for_each_entry_safe(iter, trg, head, link) {
558 		/* Skip irrelevant regions that start before our range. */
559 		if (iter->from < f) {
560 			/* If this region ends after the last accounted offset,
561 			 * then we need to update last_accounted_offset.
562 			 */
563 			if (iter->to > last_accounted_offset)
564 				last_accounted_offset = iter->to;
565 			continue;
566 		}
567 
568 		/* When we find a region that starts beyond our range, we've
569 		 * finished.
570 		 */
571 		if (iter->from >= t) {
572 			rg = iter->link.prev;
573 			break;
574 		}
575 
576 		/* Add an entry for last_accounted_offset -> iter->from, and
577 		 * update last_accounted_offset.
578 		 */
579 		if (iter->from > last_accounted_offset)
580 			add += hugetlb_resv_map_add(resv, iter->link.prev,
581 						    last_accounted_offset,
582 						    iter->from, h, h_cg,
583 						    regions_needed);
584 
585 		last_accounted_offset = iter->to;
586 	}
587 
588 	/* Handle the case where our range extends beyond
589 	 * last_accounted_offset.
590 	 */
591 	if (!rg)
592 		rg = head->prev;
593 	if (last_accounted_offset < t)
594 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 					    t, h, h_cg, regions_needed);
596 
597 	return add;
598 }
599 
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603 					int regions_needed)
604 	__must_hold(&resv->lock)
605 {
606 	LIST_HEAD(allocated_regions);
607 	int to_allocate = 0, i = 0;
608 	struct file_region *trg = NULL, *rg = NULL;
609 
610 	VM_BUG_ON(regions_needed < 0);
611 
612 	/*
613 	 * Check for sufficient descriptors in the cache to accommodate
614 	 * the number of in progress add operations plus regions_needed.
615 	 *
616 	 * This is a while loop because when we drop the lock, some other call
617 	 * to region_add or region_del may have consumed some region_entries,
618 	 * so we keep looping here until we finally have enough entries for
619 	 * (adds_in_progress + regions_needed).
620 	 */
621 	while (resv->region_cache_count <
622 	       (resv->adds_in_progress + regions_needed)) {
623 		to_allocate = resv->adds_in_progress + regions_needed -
624 			      resv->region_cache_count;
625 
626 		/* At this point, we should have enough entries in the cache
627 		 * for all the existing adds_in_progress. We should only be
628 		 * needing to allocate for regions_needed.
629 		 */
630 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 
632 		spin_unlock(&resv->lock);
633 		for (i = 0; i < to_allocate; i++) {
634 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635 			if (!trg)
636 				goto out_of_memory;
637 			list_add(&trg->link, &allocated_regions);
638 		}
639 
640 		spin_lock(&resv->lock);
641 
642 		list_splice(&allocated_regions, &resv->region_cache);
643 		resv->region_cache_count += to_allocate;
644 	}
645 
646 	return 0;
647 
648 out_of_memory:
649 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650 		list_del(&rg->link);
651 		kfree(rg);
652 	}
653 	return -ENOMEM;
654 }
655 
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674 		       long in_regions_needed, struct hstate *h,
675 		       struct hugetlb_cgroup *h_cg)
676 {
677 	long add = 0, actual_regions_needed = 0;
678 
679 	spin_lock(&resv->lock);
680 retry:
681 
682 	/* Count how many regions are actually needed to execute this add. */
683 	add_reservation_in_range(resv, f, t, NULL, NULL,
684 				 &actual_regions_needed);
685 
686 	/*
687 	 * Check for sufficient descriptors in the cache to accommodate
688 	 * this add operation. Note that actual_regions_needed may be greater
689 	 * than in_regions_needed, as the resv_map may have been modified since
690 	 * the region_chg call. In this case, we need to make sure that we
691 	 * allocate extra entries, such that we have enough for all the
692 	 * existing adds_in_progress, plus the excess needed for this
693 	 * operation.
694 	 */
695 	if (actual_regions_needed > in_regions_needed &&
696 	    resv->region_cache_count <
697 		    resv->adds_in_progress +
698 			    (actual_regions_needed - in_regions_needed)) {
699 		/* region_add operation of range 1 should never need to
700 		 * allocate file_region entries.
701 		 */
702 		VM_BUG_ON(t - f <= 1);
703 
704 		if (allocate_file_region_entries(
705 			    resv, actual_regions_needed - in_regions_needed)) {
706 			return -ENOMEM;
707 		}
708 
709 		goto retry;
710 	}
711 
712 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 
714 	resv->adds_in_progress -= in_regions_needed;
715 
716 	spin_unlock(&resv->lock);
717 	return add;
718 }
719 
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741 		       long *out_regions_needed)
742 {
743 	long chg = 0;
744 
745 	spin_lock(&resv->lock);
746 
747 	/* Count how many hugepages in this range are NOT represented. */
748 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749 				       out_regions_needed);
750 
751 	if (*out_regions_needed == 0)
752 		*out_regions_needed = 1;
753 
754 	if (allocate_file_region_entries(resv, *out_regions_needed))
755 		return -ENOMEM;
756 
757 	resv->adds_in_progress += *out_regions_needed;
758 
759 	spin_unlock(&resv->lock);
760 	return chg;
761 }
762 
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777 			 long regions_needed)
778 {
779 	spin_lock(&resv->lock);
780 	VM_BUG_ON(!resv->region_cache_count);
781 	resv->adds_in_progress -= regions_needed;
782 	spin_unlock(&resv->lock);
783 }
784 
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801 	struct list_head *head = &resv->regions;
802 	struct file_region *rg, *trg;
803 	struct file_region *nrg = NULL;
804 	long del = 0;
805 
806 retry:
807 	spin_lock(&resv->lock);
808 	list_for_each_entry_safe(rg, trg, head, link) {
809 		/*
810 		 * Skip regions before the range to be deleted.  file_region
811 		 * ranges are normally of the form [from, to).  However, there
812 		 * may be a "placeholder" entry in the map which is of the form
813 		 * (from, to) with from == to.  Check for placeholder entries
814 		 * at the beginning of the range to be deleted.
815 		 */
816 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817 			continue;
818 
819 		if (rg->from >= t)
820 			break;
821 
822 		if (f > rg->from && t < rg->to) { /* Must split region */
823 			/*
824 			 * Check for an entry in the cache before dropping
825 			 * lock and attempting allocation.
826 			 */
827 			if (!nrg &&
828 			    resv->region_cache_count > resv->adds_in_progress) {
829 				nrg = list_first_entry(&resv->region_cache,
830 							struct file_region,
831 							link);
832 				list_del(&nrg->link);
833 				resv->region_cache_count--;
834 			}
835 
836 			if (!nrg) {
837 				spin_unlock(&resv->lock);
838 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839 				if (!nrg)
840 					return -ENOMEM;
841 				goto retry;
842 			}
843 
844 			del += t - f;
845 			hugetlb_cgroup_uncharge_file_region(
846 				resv, rg, t - f, false);
847 
848 			/* New entry for end of split region */
849 			nrg->from = t;
850 			nrg->to = rg->to;
851 
852 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 
854 			INIT_LIST_HEAD(&nrg->link);
855 
856 			/* Original entry is trimmed */
857 			rg->to = f;
858 
859 			list_add(&nrg->link, &rg->link);
860 			nrg = NULL;
861 			break;
862 		}
863 
864 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 			del += rg->to - rg->from;
866 			hugetlb_cgroup_uncharge_file_region(resv, rg,
867 							    rg->to - rg->from, true);
868 			list_del(&rg->link);
869 			kfree(rg);
870 			continue;
871 		}
872 
873 		if (f <= rg->from) {	/* Trim beginning of region */
874 			hugetlb_cgroup_uncharge_file_region(resv, rg,
875 							    t - rg->from, false);
876 
877 			del += t - rg->from;
878 			rg->from = t;
879 		} else {		/* Trim end of region */
880 			hugetlb_cgroup_uncharge_file_region(resv, rg,
881 							    rg->to - f, false);
882 
883 			del += rg->to - f;
884 			rg->to = f;
885 		}
886 	}
887 
888 	spin_unlock(&resv->lock);
889 	kfree(nrg);
890 	return del;
891 }
892 
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904 	struct hugepage_subpool *spool = subpool_inode(inode);
905 	long rsv_adjust;
906 	bool reserved = false;
907 
908 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 	if (rsv_adjust > 0) {
910 		struct hstate *h = hstate_inode(inode);
911 
912 		if (!hugetlb_acct_memory(h, 1))
913 			reserved = true;
914 	} else if (!rsv_adjust) {
915 		reserved = true;
916 	}
917 
918 	if (!reserved)
919 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921 
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928 	struct list_head *head = &resv->regions;
929 	struct file_region *rg;
930 	long chg = 0;
931 
932 	spin_lock(&resv->lock);
933 	/* Locate each segment we overlap with, and count that overlap. */
934 	list_for_each_entry(rg, head, link) {
935 		long seg_from;
936 		long seg_to;
937 
938 		if (rg->to <= f)
939 			continue;
940 		if (rg->from >= t)
941 			break;
942 
943 		seg_from = max(rg->from, f);
944 		seg_to = min(rg->to, t);
945 
946 		chg += seg_to - seg_from;
947 	}
948 	spin_unlock(&resv->lock);
949 
950 	return chg;
951 }
952 
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 			struct vm_area_struct *vma, unsigned long address)
959 {
960 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 			(vma->vm_pgoff >> huge_page_order(h));
962 }
963 
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 				     unsigned long address)
966 {
967 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970 
971 /**
972  * vma_kernel_pagesize - Page size granularity for this VMA.
973  * @vma: The user mapping.
974  *
975  * Folios in this VMA will be aligned to, and at least the size of the
976  * number of bytes returned by this function.
977  *
978  * Return: The default size of the folios allocated when backing a VMA.
979  */
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982 	if (vma->vm_ops && vma->vm_ops->pagesize)
983 		return vma->vm_ops->pagesize(vma);
984 	return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987 
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996 	return vma_kernel_pagesize(vma);
997 }
998 
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007 
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029 	return (unsigned long)vma->vm_private_data;
1030 }
1031 
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033 							unsigned long value)
1034 {
1035 	vma->vm_private_data = (void *)value;
1036 }
1037 
1038 static void
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 					  struct hugetlb_cgroup *h_cg,
1041 					  struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044 	if (!h_cg || !h) {
1045 		resv_map->reservation_counter = NULL;
1046 		resv_map->pages_per_hpage = 0;
1047 		resv_map->css = NULL;
1048 	} else {
1049 		resv_map->reservation_counter =
1050 			&h_cg->rsvd_hugepage[hstate_index(h)];
1051 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 		resv_map->css = &h_cg->css;
1053 	}
1054 #endif
1055 }
1056 
1057 struct resv_map *resv_map_alloc(void)
1058 {
1059 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061 
1062 	if (!resv_map || !rg) {
1063 		kfree(resv_map);
1064 		kfree(rg);
1065 		return NULL;
1066 	}
1067 
1068 	kref_init(&resv_map->refs);
1069 	spin_lock_init(&resv_map->lock);
1070 	INIT_LIST_HEAD(&resv_map->regions);
1071 
1072 	resv_map->adds_in_progress = 0;
1073 	/*
1074 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 	 * fields don't do cgroup accounting. On private mappings, these will be
1076 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 	 * reservations are to be un-charged from here.
1078 	 */
1079 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080 
1081 	INIT_LIST_HEAD(&resv_map->region_cache);
1082 	list_add(&rg->link, &resv_map->region_cache);
1083 	resv_map->region_cache_count = 1;
1084 
1085 	return resv_map;
1086 }
1087 
1088 void resv_map_release(struct kref *ref)
1089 {
1090 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 	struct list_head *head = &resv_map->region_cache;
1092 	struct file_region *rg, *trg;
1093 
1094 	/* Clear out any active regions before we release the map. */
1095 	region_del(resv_map, 0, LONG_MAX);
1096 
1097 	/* ... and any entries left in the cache */
1098 	list_for_each_entry_safe(rg, trg, head, link) {
1099 		list_del(&rg->link);
1100 		kfree(rg);
1101 	}
1102 
1103 	VM_BUG_ON(resv_map->adds_in_progress);
1104 
1105 	kfree(resv_map);
1106 }
1107 
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110 	/*
1111 	 * At inode evict time, i_mapping may not point to the original
1112 	 * address space within the inode.  This original address space
1113 	 * contains the pointer to the resv_map.  So, always use the
1114 	 * address space embedded within the inode.
1115 	 * The VERY common case is inode->mapping == &inode->i_data but,
1116 	 * this may not be true for device special inodes.
1117 	 */
1118 	return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120 
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 	if (vma->vm_flags & VM_MAYSHARE) {
1125 		struct address_space *mapping = vma->vm_file->f_mapping;
1126 		struct inode *inode = mapping->host;
1127 
1128 		return inode_resv_map(inode);
1129 
1130 	} else {
1131 		return (struct resv_map *)(get_vma_private_data(vma) &
1132 							~HPAGE_RESV_MASK);
1133 	}
1134 }
1135 
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140 
1141 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 				HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144 
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149 
1150 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152 
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156 
1157 	return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159 
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 	/*
1164 	 * Clear vm_private_data
1165 	 * - For shared mappings this is a per-vma semaphore that may be
1166 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1167 	 *   Before clearing, make sure pointer is not associated with vma
1168 	 *   as this will leak the structure.  This is the case when called
1169 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 	 *   been called to allocate a new structure.
1171 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 	 *   not apply to children.  Faults generated by the children are
1173 	 *   not guaranteed to succeed, even if read-only.
1174 	 */
1175 	if (vma->vm_flags & VM_MAYSHARE) {
1176 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177 
1178 		if (vma_lock && vma_lock->vma != vma)
1179 			vma->vm_private_data = NULL;
1180 	} else
1181 		vma->vm_private_data = NULL;
1182 }
1183 
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_lock writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193 	/*
1194 	 * Clear the old hugetlb private page reservation.
1195 	 * It has already been transferred to new_vma.
1196 	 *
1197 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 	 * which copies vma into new_vma and unmaps vma. After the copy
1199 	 * operation both new_vma and vma share a reference to the resv_map
1200 	 * struct, and at that point vma is about to be unmapped. We don't
1201 	 * want to return the reservation to the pool at unmap of vma because
1202 	 * the reservation still lives on in new_vma, so simply decrement the
1203 	 * ref here and remove the resv_map reference from this vma.
1204 	 */
1205 	struct resv_map *reservations = vma_resv_map(vma);
1206 
1207 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 		kref_put(&reservations->refs, resv_map_release);
1210 	}
1211 
1212 	hugetlb_dup_vma_private(vma);
1213 }
1214 
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218 	if (vma->vm_flags & VM_NORESERVE) {
1219 		/*
1220 		 * This address is already reserved by other process(chg == 0),
1221 		 * so, we should decrement reserved count. Without decrementing,
1222 		 * reserve count remains after releasing inode, because this
1223 		 * allocated page will go into page cache and is regarded as
1224 		 * coming from reserved pool in releasing step.  Currently, we
1225 		 * don't have any other solution to deal with this situation
1226 		 * properly, so add work-around here.
1227 		 */
1228 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 			return true;
1230 		else
1231 			return false;
1232 	}
1233 
1234 	/* Shared mappings always use reserves */
1235 	if (vma->vm_flags & VM_MAYSHARE) {
1236 		/*
1237 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238 		 * be a region map for all pages.  The only situation where
1239 		 * there is no region map is if a hole was punched via
1240 		 * fallocate.  In this case, there really are no reserves to
1241 		 * use.  This situation is indicated if chg != 0.
1242 		 */
1243 		if (chg)
1244 			return false;
1245 		else
1246 			return true;
1247 	}
1248 
1249 	/*
1250 	 * Only the process that called mmap() has reserves for
1251 	 * private mappings.
1252 	 */
1253 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 		/*
1255 		 * Like the shared case above, a hole punch or truncate
1256 		 * could have been performed on the private mapping.
1257 		 * Examine the value of chg to determine if reserves
1258 		 * actually exist or were previously consumed.
1259 		 * Very Subtle - The value of chg comes from a previous
1260 		 * call to vma_needs_reserves().  The reserve map for
1261 		 * private mappings has different (opposite) semantics
1262 		 * than that of shared mappings.  vma_needs_reserves()
1263 		 * has already taken this difference in semantics into
1264 		 * account.  Therefore, the meaning of chg is the same
1265 		 * as in the shared case above.  Code could easily be
1266 		 * combined, but keeping it separate draws attention to
1267 		 * subtle differences.
1268 		 */
1269 		if (chg)
1270 			return false;
1271 		else
1272 			return true;
1273 	}
1274 
1275 	return false;
1276 }
1277 
1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279 {
1280 	int nid = folio_nid(folio);
1281 
1282 	lockdep_assert_held(&hugetlb_lock);
1283 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284 
1285 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 	h->free_huge_pages++;
1287 	h->free_huge_pages_node[nid]++;
1288 	folio_set_hugetlb_freed(folio);
1289 }
1290 
1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1292 								int nid)
1293 {
1294 	struct folio *folio;
1295 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1296 
1297 	lockdep_assert_held(&hugetlb_lock);
1298 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1299 		if (pin && !folio_is_longterm_pinnable(folio))
1300 			continue;
1301 
1302 		if (folio_test_hwpoison(folio))
1303 			continue;
1304 
1305 		list_move(&folio->lru, &h->hugepage_activelist);
1306 		folio_ref_unfreeze(folio, 1);
1307 		folio_clear_hugetlb_freed(folio);
1308 		h->free_huge_pages--;
1309 		h->free_huge_pages_node[nid]--;
1310 		return folio;
1311 	}
1312 
1313 	return NULL;
1314 }
1315 
1316 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1317 							int nid, nodemask_t *nmask)
1318 {
1319 	unsigned int cpuset_mems_cookie;
1320 	struct zonelist *zonelist;
1321 	struct zone *zone;
1322 	struct zoneref *z;
1323 	int node = NUMA_NO_NODE;
1324 
1325 	zonelist = node_zonelist(nid, gfp_mask);
1326 
1327 retry_cpuset:
1328 	cpuset_mems_cookie = read_mems_allowed_begin();
1329 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1330 		struct folio *folio;
1331 
1332 		if (!cpuset_zone_allowed(zone, gfp_mask))
1333 			continue;
1334 		/*
1335 		 * no need to ask again on the same node. Pool is node rather than
1336 		 * zone aware
1337 		 */
1338 		if (zone_to_nid(zone) == node)
1339 			continue;
1340 		node = zone_to_nid(zone);
1341 
1342 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1343 		if (folio)
1344 			return folio;
1345 	}
1346 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1347 		goto retry_cpuset;
1348 
1349 	return NULL;
1350 }
1351 
1352 static unsigned long available_huge_pages(struct hstate *h)
1353 {
1354 	return h->free_huge_pages - h->resv_huge_pages;
1355 }
1356 
1357 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1358 				struct vm_area_struct *vma,
1359 				unsigned long address, int avoid_reserve,
1360 				long chg)
1361 {
1362 	struct folio *folio = NULL;
1363 	struct mempolicy *mpol;
1364 	gfp_t gfp_mask;
1365 	nodemask_t *nodemask;
1366 	int nid;
1367 
1368 	/*
1369 	 * A child process with MAP_PRIVATE mappings created by their parent
1370 	 * have no page reserves. This check ensures that reservations are
1371 	 * not "stolen". The child may still get SIGKILLed
1372 	 */
1373 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1374 		goto err;
1375 
1376 	/* If reserves cannot be used, ensure enough pages are in the pool */
1377 	if (avoid_reserve && !available_huge_pages(h))
1378 		goto err;
1379 
1380 	gfp_mask = htlb_alloc_mask(h);
1381 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1382 
1383 	if (mpol_is_preferred_many(mpol)) {
1384 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1385 							nid, nodemask);
1386 
1387 		/* Fallback to all nodes if page==NULL */
1388 		nodemask = NULL;
1389 	}
1390 
1391 	if (!folio)
1392 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1393 							nid, nodemask);
1394 
1395 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1396 		folio_set_hugetlb_restore_reserve(folio);
1397 		h->resv_huge_pages--;
1398 	}
1399 
1400 	mpol_cond_put(mpol);
1401 	return folio;
1402 
1403 err:
1404 	return NULL;
1405 }
1406 
1407 /*
1408  * common helper functions for hstate_next_node_to_{alloc|free}.
1409  * We may have allocated or freed a huge page based on a different
1410  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411  * be outside of *nodes_allowed.  Ensure that we use an allowed
1412  * node for alloc or free.
1413  */
1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 {
1416 	nid = next_node_in(nid, *nodes_allowed);
1417 	VM_BUG_ON(nid >= MAX_NUMNODES);
1418 
1419 	return nid;
1420 }
1421 
1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1423 {
1424 	if (!node_isset(nid, *nodes_allowed))
1425 		nid = next_node_allowed(nid, nodes_allowed);
1426 	return nid;
1427 }
1428 
1429 /*
1430  * returns the previously saved node ["this node"] from which to
1431  * allocate a persistent huge page for the pool and advance the
1432  * next node from which to allocate, handling wrap at end of node
1433  * mask.
1434  */
1435 static int hstate_next_node_to_alloc(struct hstate *h,
1436 					nodemask_t *nodes_allowed)
1437 {
1438 	int nid;
1439 
1440 	VM_BUG_ON(!nodes_allowed);
1441 
1442 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1443 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1444 
1445 	return nid;
1446 }
1447 
1448 /*
1449  * helper for remove_pool_huge_page() - return the previously saved
1450  * node ["this node"] from which to free a huge page.  Advance the
1451  * next node id whether or not we find a free huge page to free so
1452  * that the next attempt to free addresses the next node.
1453  */
1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1455 {
1456 	int nid;
1457 
1458 	VM_BUG_ON(!nodes_allowed);
1459 
1460 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1462 
1463 	return nid;
1464 }
1465 
1466 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1467 	for (nr_nodes = nodes_weight(*mask);				\
1468 		nr_nodes > 0 &&						\
1469 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1470 		nr_nodes--)
1471 
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1473 	for (nr_nodes = nodes_weight(*mask);				\
1474 		nr_nodes > 0 &&						\
1475 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1476 		nr_nodes--)
1477 
1478 /* used to demote non-gigantic_huge pages as well */
1479 static void __destroy_compound_gigantic_folio(struct folio *folio,
1480 					unsigned int order, bool demote)
1481 {
1482 	int i;
1483 	int nr_pages = 1 << order;
1484 	struct page *p;
1485 
1486 	atomic_set(&folio->_entire_mapcount, 0);
1487 	atomic_set(&folio->_nr_pages_mapped, 0);
1488 	atomic_set(&folio->_pincount, 0);
1489 
1490 	for (i = 1; i < nr_pages; i++) {
1491 		p = folio_page(folio, i);
1492 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1493 		p->mapping = NULL;
1494 		clear_compound_head(p);
1495 		if (!demote)
1496 			set_page_refcounted(p);
1497 	}
1498 
1499 	__folio_clear_head(folio);
1500 }
1501 
1502 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1503 					unsigned int order)
1504 {
1505 	__destroy_compound_gigantic_folio(folio, order, true);
1506 }
1507 
1508 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1509 static void destroy_compound_gigantic_folio(struct folio *folio,
1510 					unsigned int order)
1511 {
1512 	__destroy_compound_gigantic_folio(folio, order, false);
1513 }
1514 
1515 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1516 {
1517 	/*
1518 	 * If the page isn't allocated using the cma allocator,
1519 	 * cma_release() returns false.
1520 	 */
1521 #ifdef CONFIG_CMA
1522 	int nid = folio_nid(folio);
1523 
1524 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1525 		return;
1526 #endif
1527 
1528 	free_contig_range(folio_pfn(folio), 1 << order);
1529 }
1530 
1531 #ifdef CONFIG_CONTIG_ALLOC
1532 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1533 		int nid, nodemask_t *nodemask)
1534 {
1535 	struct page *page;
1536 	unsigned long nr_pages = pages_per_huge_page(h);
1537 	if (nid == NUMA_NO_NODE)
1538 		nid = numa_mem_id();
1539 
1540 #ifdef CONFIG_CMA
1541 	{
1542 		int node;
1543 
1544 		if (hugetlb_cma[nid]) {
1545 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1546 					huge_page_order(h), true);
1547 			if (page)
1548 				return page_folio(page);
1549 		}
1550 
1551 		if (!(gfp_mask & __GFP_THISNODE)) {
1552 			for_each_node_mask(node, *nodemask) {
1553 				if (node == nid || !hugetlb_cma[node])
1554 					continue;
1555 
1556 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1557 						huge_page_order(h), true);
1558 				if (page)
1559 					return page_folio(page);
1560 			}
1561 		}
1562 	}
1563 #endif
1564 
1565 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1566 	return page ? page_folio(page) : NULL;
1567 }
1568 
1569 #else /* !CONFIG_CONTIG_ALLOC */
1570 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571 					int nid, nodemask_t *nodemask)
1572 {
1573 	return NULL;
1574 }
1575 #endif /* CONFIG_CONTIG_ALLOC */
1576 
1577 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1578 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1579 					int nid, nodemask_t *nodemask)
1580 {
1581 	return NULL;
1582 }
1583 static inline void free_gigantic_folio(struct folio *folio,
1584 						unsigned int order) { }
1585 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1586 						unsigned int order) { }
1587 #endif
1588 
1589 static inline void __clear_hugetlb_destructor(struct hstate *h,
1590 						struct folio *folio)
1591 {
1592 	lockdep_assert_held(&hugetlb_lock);
1593 
1594 	folio_clear_hugetlb(folio);
1595 }
1596 
1597 /*
1598  * Remove hugetlb folio from lists.
1599  * If vmemmap exists for the folio, update dtor so that the folio appears
1600  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1601  * to update dtor.
1602  *
1603  * A reference is held on the folio, except in the case of demote.
1604  *
1605  * Must be called with hugetlb lock held.
1606  */
1607 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1608 							bool adjust_surplus,
1609 							bool demote)
1610 {
1611 	int nid = folio_nid(folio);
1612 
1613 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1614 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1615 
1616 	lockdep_assert_held(&hugetlb_lock);
1617 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1618 		return;
1619 
1620 	list_del(&folio->lru);
1621 
1622 	if (folio_test_hugetlb_freed(folio)) {
1623 		h->free_huge_pages--;
1624 		h->free_huge_pages_node[nid]--;
1625 	}
1626 	if (adjust_surplus) {
1627 		h->surplus_huge_pages--;
1628 		h->surplus_huge_pages_node[nid]--;
1629 	}
1630 
1631 	/*
1632 	 * We can only clear the hugetlb destructor after allocating vmemmap
1633 	 * pages.  Otherwise, someone (memory error handling) may try to write
1634 	 * to tail struct pages.
1635 	 */
1636 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1637 		__clear_hugetlb_destructor(h, folio);
1638 
1639 	 /*
1640 	  * In the case of demote we do not ref count the page as it will soon
1641 	  * be turned into a page of smaller size.
1642 	 */
1643 	if (!demote)
1644 		folio_ref_unfreeze(folio, 1);
1645 
1646 	h->nr_huge_pages--;
1647 	h->nr_huge_pages_node[nid]--;
1648 }
1649 
1650 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1651 							bool adjust_surplus)
1652 {
1653 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1654 }
1655 
1656 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1657 							bool adjust_surplus)
1658 {
1659 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1660 }
1661 
1662 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1663 			     bool adjust_surplus)
1664 {
1665 	int zeroed;
1666 	int nid = folio_nid(folio);
1667 
1668 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1669 
1670 	lockdep_assert_held(&hugetlb_lock);
1671 
1672 	INIT_LIST_HEAD(&folio->lru);
1673 	h->nr_huge_pages++;
1674 	h->nr_huge_pages_node[nid]++;
1675 
1676 	if (adjust_surplus) {
1677 		h->surplus_huge_pages++;
1678 		h->surplus_huge_pages_node[nid]++;
1679 	}
1680 
1681 	folio_set_hugetlb(folio);
1682 	folio_change_private(folio, NULL);
1683 	/*
1684 	 * We have to set hugetlb_vmemmap_optimized again as above
1685 	 * folio_change_private(folio, NULL) cleared it.
1686 	 */
1687 	folio_set_hugetlb_vmemmap_optimized(folio);
1688 
1689 	/*
1690 	 * This folio is about to be managed by the hugetlb allocator and
1691 	 * should have no users.  Drop our reference, and check for others
1692 	 * just in case.
1693 	 */
1694 	zeroed = folio_put_testzero(folio);
1695 	if (unlikely(!zeroed))
1696 		/*
1697 		 * It is VERY unlikely soneone else has taken a ref
1698 		 * on the folio.  In this case, we simply return as
1699 		 * free_huge_folio() will be called when this other ref
1700 		 * is dropped.
1701 		 */
1702 		return;
1703 
1704 	arch_clear_hugepage_flags(&folio->page);
1705 	enqueue_hugetlb_folio(h, folio);
1706 }
1707 
1708 static void __update_and_free_hugetlb_folio(struct hstate *h,
1709 						struct folio *folio)
1710 {
1711 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1712 
1713 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 		return;
1715 
1716 	/*
1717 	 * If we don't know which subpages are hwpoisoned, we can't free
1718 	 * the hugepage, so it's leaked intentionally.
1719 	 */
1720 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 		return;
1722 
1723 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1724 		spin_lock_irq(&hugetlb_lock);
1725 		/*
1726 		 * If we cannot allocate vmemmap pages, just refuse to free the
1727 		 * page and put the page back on the hugetlb free list and treat
1728 		 * as a surplus page.
1729 		 */
1730 		add_hugetlb_folio(h, folio, true);
1731 		spin_unlock_irq(&hugetlb_lock);
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * Move PageHWPoison flag from head page to the raw error pages,
1737 	 * which makes any healthy subpages reusable.
1738 	 */
1739 	if (unlikely(folio_test_hwpoison(folio)))
1740 		folio_clear_hugetlb_hwpoison(folio);
1741 
1742 	/*
1743 	 * If vmemmap pages were allocated above, then we need to clear the
1744 	 * hugetlb destructor under the hugetlb lock.
1745 	 */
1746 	if (clear_dtor) {
1747 		spin_lock_irq(&hugetlb_lock);
1748 		__clear_hugetlb_destructor(h, folio);
1749 		spin_unlock_irq(&hugetlb_lock);
1750 	}
1751 
1752 	/*
1753 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1754 	 * need to be given back to CMA in free_gigantic_folio.
1755 	 */
1756 	if (hstate_is_gigantic(h) ||
1757 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1758 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1759 		free_gigantic_folio(folio, huge_page_order(h));
1760 	} else {
1761 		__free_pages(&folio->page, huge_page_order(h));
1762 	}
1763 }
1764 
1765 /*
1766  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769  * the vmemmap pages.
1770  *
1771  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772  * freed and frees them one-by-one. As the page->mapping pointer is going
1773  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774  * structure of a lockless linked list of huge pages to be freed.
1775  */
1776 static LLIST_HEAD(hpage_freelist);
1777 
1778 static void free_hpage_workfn(struct work_struct *work)
1779 {
1780 	struct llist_node *node;
1781 
1782 	node = llist_del_all(&hpage_freelist);
1783 
1784 	while (node) {
1785 		struct page *page;
1786 		struct hstate *h;
1787 
1788 		page = container_of((struct address_space **)node,
1789 				     struct page, mapping);
1790 		node = node->next;
1791 		page->mapping = NULL;
1792 		/*
1793 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794 		 * folio_hstate() is going to trigger because a previous call to
1795 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796 		 * not use folio_hstate() directly.
1797 		 */
1798 		h = size_to_hstate(page_size(page));
1799 
1800 		__update_and_free_hugetlb_folio(h, page_folio(page));
1801 
1802 		cond_resched();
1803 	}
1804 }
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1806 
1807 static inline void flush_free_hpage_work(struct hstate *h)
1808 {
1809 	if (hugetlb_vmemmap_optimizable(h))
1810 		flush_work(&free_hpage_work);
1811 }
1812 
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1814 				 bool atomic)
1815 {
1816 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817 		__update_and_free_hugetlb_folio(h, folio);
1818 		return;
1819 	}
1820 
1821 	/*
1822 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1823 	 *
1824 	 * Only call schedule_work() if hpage_freelist is previously
1825 	 * empty. Otherwise, schedule_work() had been called but the workfn
1826 	 * hasn't retrieved the list yet.
1827 	 */
1828 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829 		schedule_work(&free_hpage_work);
1830 }
1831 
1832 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1833 {
1834 	struct page *page, *t_page;
1835 	struct folio *folio;
1836 
1837 	list_for_each_entry_safe(page, t_page, list, lru) {
1838 		folio = page_folio(page);
1839 		update_and_free_hugetlb_folio(h, folio, false);
1840 		cond_resched();
1841 	}
1842 }
1843 
1844 struct hstate *size_to_hstate(unsigned long size)
1845 {
1846 	struct hstate *h;
1847 
1848 	for_each_hstate(h) {
1849 		if (huge_page_size(h) == size)
1850 			return h;
1851 	}
1852 	return NULL;
1853 }
1854 
1855 void free_huge_folio(struct folio *folio)
1856 {
1857 	/*
1858 	 * Can't pass hstate in here because it is called from the
1859 	 * compound page destructor.
1860 	 */
1861 	struct hstate *h = folio_hstate(folio);
1862 	int nid = folio_nid(folio);
1863 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 	bool restore_reserve;
1865 	unsigned long flags;
1866 
1867 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869 
1870 	hugetlb_set_folio_subpool(folio, NULL);
1871 	if (folio_test_anon(folio))
1872 		__ClearPageAnonExclusive(&folio->page);
1873 	folio->mapping = NULL;
1874 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 	folio_clear_hugetlb_restore_reserve(folio);
1876 
1877 	/*
1878 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 	 * reservation.  If the page was associated with a subpool, there
1880 	 * would have been a page reserved in the subpool before allocation
1881 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1882 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 	 * remove the reserved page from the subpool.
1884 	 */
1885 	if (!restore_reserve) {
1886 		/*
1887 		 * A return code of zero implies that the subpool will be
1888 		 * under its minimum size if the reservation is not restored
1889 		 * after page is free.  Therefore, force restore_reserve
1890 		 * operation.
1891 		 */
1892 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 			restore_reserve = true;
1894 	}
1895 
1896 	spin_lock_irqsave(&hugetlb_lock, flags);
1897 	folio_clear_hugetlb_migratable(folio);
1898 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 				     pages_per_huge_page(h), folio);
1900 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 					  pages_per_huge_page(h), folio);
1902 	if (restore_reserve)
1903 		h->resv_huge_pages++;
1904 
1905 	if (folio_test_hugetlb_temporary(folio)) {
1906 		remove_hugetlb_folio(h, folio, false);
1907 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 		update_and_free_hugetlb_folio(h, folio, true);
1909 	} else if (h->surplus_huge_pages_node[nid]) {
1910 		/* remove the page from active list */
1911 		remove_hugetlb_folio(h, folio, true);
1912 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 		update_and_free_hugetlb_folio(h, folio, true);
1914 	} else {
1915 		arch_clear_hugepage_flags(&folio->page);
1916 		enqueue_hugetlb_folio(h, folio);
1917 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 	}
1919 }
1920 
1921 /*
1922  * Must be called with the hugetlb lock held
1923  */
1924 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925 {
1926 	lockdep_assert_held(&hugetlb_lock);
1927 	h->nr_huge_pages++;
1928 	h->nr_huge_pages_node[nid]++;
1929 }
1930 
1931 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932 {
1933 	hugetlb_vmemmap_optimize(h, &folio->page);
1934 	INIT_LIST_HEAD(&folio->lru);
1935 	folio_set_hugetlb(folio);
1936 	hugetlb_set_folio_subpool(folio, NULL);
1937 	set_hugetlb_cgroup(folio, NULL);
1938 	set_hugetlb_cgroup_rsvd(folio, NULL);
1939 }
1940 
1941 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942 {
1943 	__prep_new_hugetlb_folio(h, folio);
1944 	spin_lock_irq(&hugetlb_lock);
1945 	__prep_account_new_huge_page(h, nid);
1946 	spin_unlock_irq(&hugetlb_lock);
1947 }
1948 
1949 static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 					unsigned int order, bool demote)
1951 {
1952 	int i, j;
1953 	int nr_pages = 1 << order;
1954 	struct page *p;
1955 
1956 	__folio_clear_reserved(folio);
1957 	for (i = 0; i < nr_pages; i++) {
1958 		p = folio_page(folio, i);
1959 
1960 		/*
1961 		 * For gigantic hugepages allocated through bootmem at
1962 		 * boot, it's safer to be consistent with the not-gigantic
1963 		 * hugepages and clear the PG_reserved bit from all tail pages
1964 		 * too.  Otherwise drivers using get_user_pages() to access tail
1965 		 * pages may get the reference counting wrong if they see
1966 		 * PG_reserved set on a tail page (despite the head page not
1967 		 * having PG_reserved set).  Enforcing this consistency between
1968 		 * head and tail pages allows drivers to optimize away a check
1969 		 * on the head page when they need know if put_page() is needed
1970 		 * after get_user_pages().
1971 		 */
1972 		if (i != 0)	/* head page cleared above */
1973 			__ClearPageReserved(p);
1974 		/*
1975 		 * Subtle and very unlikely
1976 		 *
1977 		 * Gigantic 'page allocators' such as memblock or cma will
1978 		 * return a set of pages with each page ref counted.  We need
1979 		 * to turn this set of pages into a compound page with tail
1980 		 * page ref counts set to zero.  Code such as speculative page
1981 		 * cache adding could take a ref on a 'to be' tail page.
1982 		 * We need to respect any increased ref count, and only set
1983 		 * the ref count to zero if count is currently 1.  If count
1984 		 * is not 1, we return an error.  An error return indicates
1985 		 * the set of pages can not be converted to a gigantic page.
1986 		 * The caller who allocated the pages should then discard the
1987 		 * pages using the appropriate free interface.
1988 		 *
1989 		 * In the case of demote, the ref count will be zero.
1990 		 */
1991 		if (!demote) {
1992 			if (!page_ref_freeze(p, 1)) {
1993 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 				goto out_error;
1995 			}
1996 		} else {
1997 			VM_BUG_ON_PAGE(page_count(p), p);
1998 		}
1999 		if (i != 0)
2000 			set_compound_head(p, &folio->page);
2001 	}
2002 	__folio_set_head(folio);
2003 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2004 	folio_set_order(folio, order);
2005 	atomic_set(&folio->_entire_mapcount, -1);
2006 	atomic_set(&folio->_nr_pages_mapped, 0);
2007 	atomic_set(&folio->_pincount, 0);
2008 	return true;
2009 
2010 out_error:
2011 	/* undo page modifications made above */
2012 	for (j = 0; j < i; j++) {
2013 		p = folio_page(folio, j);
2014 		if (j != 0)
2015 			clear_compound_head(p);
2016 		set_page_refcounted(p);
2017 	}
2018 	/* need to clear PG_reserved on remaining tail pages  */
2019 	for (; j < nr_pages; j++) {
2020 		p = folio_page(folio, j);
2021 		__ClearPageReserved(p);
2022 	}
2023 	return false;
2024 }
2025 
2026 static bool prep_compound_gigantic_folio(struct folio *folio,
2027 							unsigned int order)
2028 {
2029 	return __prep_compound_gigantic_folio(folio, order, false);
2030 }
2031 
2032 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2033 							unsigned int order)
2034 {
2035 	return __prep_compound_gigantic_folio(folio, order, true);
2036 }
2037 
2038 /*
2039  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040  * transparent huge pages.  See the PageTransHuge() documentation for more
2041  * details.
2042  */
2043 int PageHuge(struct page *page)
2044 {
2045 	struct folio *folio;
2046 
2047 	if (!PageCompound(page))
2048 		return 0;
2049 	folio = page_folio(page);
2050 	return folio_test_hugetlb(folio);
2051 }
2052 EXPORT_SYMBOL_GPL(PageHuge);
2053 
2054 /*
2055  * Find and lock address space (mapping) in write mode.
2056  *
2057  * Upon entry, the page is locked which means that page_mapping() is
2058  * stable.  Due to locking order, we can only trylock_write.  If we can
2059  * not get the lock, simply return NULL to caller.
2060  */
2061 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2062 {
2063 	struct address_space *mapping = page_mapping(hpage);
2064 
2065 	if (!mapping)
2066 		return mapping;
2067 
2068 	if (i_mmap_trylock_write(mapping))
2069 		return mapping;
2070 
2071 	return NULL;
2072 }
2073 
2074 pgoff_t hugetlb_basepage_index(struct page *page)
2075 {
2076 	struct page *page_head = compound_head(page);
2077 	pgoff_t index = page_index(page_head);
2078 	unsigned long compound_idx;
2079 
2080 	if (compound_order(page_head) > MAX_ORDER)
2081 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2082 	else
2083 		compound_idx = page - page_head;
2084 
2085 	return (index << compound_order(page_head)) + compound_idx;
2086 }
2087 
2088 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2089 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2090 		nodemask_t *node_alloc_noretry)
2091 {
2092 	int order = huge_page_order(h);
2093 	struct page *page;
2094 	bool alloc_try_hard = true;
2095 	bool retry = true;
2096 
2097 	/*
2098 	 * By default we always try hard to allocate the page with
2099 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2100 	 * a loop (to adjust global huge page counts) and previous allocation
2101 	 * failed, do not continue to try hard on the same node.  Use the
2102 	 * node_alloc_noretry bitmap to manage this state information.
2103 	 */
2104 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2105 		alloc_try_hard = false;
2106 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2107 	if (alloc_try_hard)
2108 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2109 	if (nid == NUMA_NO_NODE)
2110 		nid = numa_mem_id();
2111 retry:
2112 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2113 
2114 	/* Freeze head page */
2115 	if (page && !page_ref_freeze(page, 1)) {
2116 		__free_pages(page, order);
2117 		if (retry) {	/* retry once */
2118 			retry = false;
2119 			goto retry;
2120 		}
2121 		/* WOW!  twice in a row. */
2122 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2123 		page = NULL;
2124 	}
2125 
2126 	/*
2127 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2128 	 * indicates an overall state change.  Clear bit so that we resume
2129 	 * normal 'try hard' allocations.
2130 	 */
2131 	if (node_alloc_noretry && page && !alloc_try_hard)
2132 		node_clear(nid, *node_alloc_noretry);
2133 
2134 	/*
2135 	 * If we tried hard to get a page but failed, set bit so that
2136 	 * subsequent attempts will not try as hard until there is an
2137 	 * overall state change.
2138 	 */
2139 	if (node_alloc_noretry && !page && alloc_try_hard)
2140 		node_set(nid, *node_alloc_noretry);
2141 
2142 	if (!page) {
2143 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2144 		return NULL;
2145 	}
2146 
2147 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2148 	return page_folio(page);
2149 }
2150 
2151 /*
2152  * Common helper to allocate a fresh hugetlb page. All specific allocators
2153  * should use this function to get new hugetlb pages
2154  *
2155  * Note that returned page is 'frozen':  ref count of head page and all tail
2156  * pages is zero.
2157  */
2158 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2159 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2160 		nodemask_t *node_alloc_noretry)
2161 {
2162 	struct folio *folio;
2163 	bool retry = false;
2164 
2165 retry:
2166 	if (hstate_is_gigantic(h))
2167 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2168 	else
2169 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2170 				nid, nmask, node_alloc_noretry);
2171 	if (!folio)
2172 		return NULL;
2173 	if (hstate_is_gigantic(h)) {
2174 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2175 			/*
2176 			 * Rare failure to convert pages to compound page.
2177 			 * Free pages and try again - ONCE!
2178 			 */
2179 			free_gigantic_folio(folio, huge_page_order(h));
2180 			if (!retry) {
2181 				retry = true;
2182 				goto retry;
2183 			}
2184 			return NULL;
2185 		}
2186 	}
2187 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2188 
2189 	return folio;
2190 }
2191 
2192 /*
2193  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2194  * manner.
2195  */
2196 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2197 				nodemask_t *node_alloc_noretry)
2198 {
2199 	struct folio *folio;
2200 	int nr_nodes, node;
2201 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2202 
2203 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2204 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2205 					nodes_allowed, node_alloc_noretry);
2206 		if (folio) {
2207 			free_huge_folio(folio); /* free it into the hugepage allocator */
2208 			return 1;
2209 		}
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 /*
2216  * Remove huge page from pool from next node to free.  Attempt to keep
2217  * persistent huge pages more or less balanced over allowed nodes.
2218  * This routine only 'removes' the hugetlb page.  The caller must make
2219  * an additional call to free the page to low level allocators.
2220  * Called with hugetlb_lock locked.
2221  */
2222 static struct page *remove_pool_huge_page(struct hstate *h,
2223 						nodemask_t *nodes_allowed,
2224 						 bool acct_surplus)
2225 {
2226 	int nr_nodes, node;
2227 	struct page *page = NULL;
2228 	struct folio *folio;
2229 
2230 	lockdep_assert_held(&hugetlb_lock);
2231 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2232 		/*
2233 		 * If we're returning unused surplus pages, only examine
2234 		 * nodes with surplus pages.
2235 		 */
2236 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2237 		    !list_empty(&h->hugepage_freelists[node])) {
2238 			page = list_entry(h->hugepage_freelists[node].next,
2239 					  struct page, lru);
2240 			folio = page_folio(page);
2241 			remove_hugetlb_folio(h, folio, acct_surplus);
2242 			break;
2243 		}
2244 	}
2245 
2246 	return page;
2247 }
2248 
2249 /*
2250  * Dissolve a given free hugepage into free buddy pages. This function does
2251  * nothing for in-use hugepages and non-hugepages.
2252  * This function returns values like below:
2253  *
2254  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2255  *           when the system is under memory pressure and the feature of
2256  *           freeing unused vmemmap pages associated with each hugetlb page
2257  *           is enabled.
2258  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2259  *           (allocated or reserved.)
2260  *       0:  successfully dissolved free hugepages or the page is not a
2261  *           hugepage (considered as already dissolved)
2262  */
2263 int dissolve_free_huge_page(struct page *page)
2264 {
2265 	int rc = -EBUSY;
2266 	struct folio *folio = page_folio(page);
2267 
2268 retry:
2269 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2270 	if (!folio_test_hugetlb(folio))
2271 		return 0;
2272 
2273 	spin_lock_irq(&hugetlb_lock);
2274 	if (!folio_test_hugetlb(folio)) {
2275 		rc = 0;
2276 		goto out;
2277 	}
2278 
2279 	if (!folio_ref_count(folio)) {
2280 		struct hstate *h = folio_hstate(folio);
2281 		if (!available_huge_pages(h))
2282 			goto out;
2283 
2284 		/*
2285 		 * We should make sure that the page is already on the free list
2286 		 * when it is dissolved.
2287 		 */
2288 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2289 			spin_unlock_irq(&hugetlb_lock);
2290 			cond_resched();
2291 
2292 			/*
2293 			 * Theoretically, we should return -EBUSY when we
2294 			 * encounter this race. In fact, we have a chance
2295 			 * to successfully dissolve the page if we do a
2296 			 * retry. Because the race window is quite small.
2297 			 * If we seize this opportunity, it is an optimization
2298 			 * for increasing the success rate of dissolving page.
2299 			 */
2300 			goto retry;
2301 		}
2302 
2303 		remove_hugetlb_folio(h, folio, false);
2304 		h->max_huge_pages--;
2305 		spin_unlock_irq(&hugetlb_lock);
2306 
2307 		/*
2308 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2309 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2310 		 * free the page if it can not allocate required vmemmap.  We
2311 		 * need to adjust max_huge_pages if the page is not freed.
2312 		 * Attempt to allocate vmemmmap here so that we can take
2313 		 * appropriate action on failure.
2314 		 */
2315 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2316 		if (!rc) {
2317 			update_and_free_hugetlb_folio(h, folio, false);
2318 		} else {
2319 			spin_lock_irq(&hugetlb_lock);
2320 			add_hugetlb_folio(h, folio, false);
2321 			h->max_huge_pages++;
2322 			spin_unlock_irq(&hugetlb_lock);
2323 		}
2324 
2325 		return rc;
2326 	}
2327 out:
2328 	spin_unlock_irq(&hugetlb_lock);
2329 	return rc;
2330 }
2331 
2332 /*
2333  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2334  * make specified memory blocks removable from the system.
2335  * Note that this will dissolve a free gigantic hugepage completely, if any
2336  * part of it lies within the given range.
2337  * Also note that if dissolve_free_huge_page() returns with an error, all
2338  * free hugepages that were dissolved before that error are lost.
2339  */
2340 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2341 {
2342 	unsigned long pfn;
2343 	struct page *page;
2344 	int rc = 0;
2345 	unsigned int order;
2346 	struct hstate *h;
2347 
2348 	if (!hugepages_supported())
2349 		return rc;
2350 
2351 	order = huge_page_order(&default_hstate);
2352 	for_each_hstate(h)
2353 		order = min(order, huge_page_order(h));
2354 
2355 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2356 		page = pfn_to_page(pfn);
2357 		rc = dissolve_free_huge_page(page);
2358 		if (rc)
2359 			break;
2360 	}
2361 
2362 	return rc;
2363 }
2364 
2365 /*
2366  * Allocates a fresh surplus page from the page allocator.
2367  */
2368 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2369 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2370 {
2371 	struct folio *folio = NULL;
2372 
2373 	if (hstate_is_gigantic(h))
2374 		return NULL;
2375 
2376 	spin_lock_irq(&hugetlb_lock);
2377 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2378 		goto out_unlock;
2379 	spin_unlock_irq(&hugetlb_lock);
2380 
2381 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2382 	if (!folio)
2383 		return NULL;
2384 
2385 	spin_lock_irq(&hugetlb_lock);
2386 	/*
2387 	 * We could have raced with the pool size change.
2388 	 * Double check that and simply deallocate the new page
2389 	 * if we would end up overcommiting the surpluses. Abuse
2390 	 * temporary page to workaround the nasty free_huge_folio
2391 	 * codeflow
2392 	 */
2393 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2394 		folio_set_hugetlb_temporary(folio);
2395 		spin_unlock_irq(&hugetlb_lock);
2396 		free_huge_folio(folio);
2397 		return NULL;
2398 	}
2399 
2400 	h->surplus_huge_pages++;
2401 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2402 
2403 out_unlock:
2404 	spin_unlock_irq(&hugetlb_lock);
2405 
2406 	return folio;
2407 }
2408 
2409 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2410 				     int nid, nodemask_t *nmask)
2411 {
2412 	struct folio *folio;
2413 
2414 	if (hstate_is_gigantic(h))
2415 		return NULL;
2416 
2417 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2418 	if (!folio)
2419 		return NULL;
2420 
2421 	/* fresh huge pages are frozen */
2422 	folio_ref_unfreeze(folio, 1);
2423 	/*
2424 	 * We do not account these pages as surplus because they are only
2425 	 * temporary and will be released properly on the last reference
2426 	 */
2427 	folio_set_hugetlb_temporary(folio);
2428 
2429 	return folio;
2430 }
2431 
2432 /*
2433  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2434  */
2435 static
2436 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2437 		struct vm_area_struct *vma, unsigned long addr)
2438 {
2439 	struct folio *folio = NULL;
2440 	struct mempolicy *mpol;
2441 	gfp_t gfp_mask = htlb_alloc_mask(h);
2442 	int nid;
2443 	nodemask_t *nodemask;
2444 
2445 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2446 	if (mpol_is_preferred_many(mpol)) {
2447 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2448 
2449 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2450 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2451 
2452 		/* Fallback to all nodes if page==NULL */
2453 		nodemask = NULL;
2454 	}
2455 
2456 	if (!folio)
2457 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2458 	mpol_cond_put(mpol);
2459 	return folio;
2460 }
2461 
2462 /* folio migration callback function */
2463 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2464 		nodemask_t *nmask, gfp_t gfp_mask)
2465 {
2466 	spin_lock_irq(&hugetlb_lock);
2467 	if (available_huge_pages(h)) {
2468 		struct folio *folio;
2469 
2470 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2471 						preferred_nid, nmask);
2472 		if (folio) {
2473 			spin_unlock_irq(&hugetlb_lock);
2474 			return folio;
2475 		}
2476 	}
2477 	spin_unlock_irq(&hugetlb_lock);
2478 
2479 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2480 }
2481 
2482 /* mempolicy aware migration callback */
2483 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2484 		unsigned long address)
2485 {
2486 	struct mempolicy *mpol;
2487 	nodemask_t *nodemask;
2488 	struct folio *folio;
2489 	gfp_t gfp_mask;
2490 	int node;
2491 
2492 	gfp_mask = htlb_alloc_mask(h);
2493 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2494 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2495 	mpol_cond_put(mpol);
2496 
2497 	return folio;
2498 }
2499 
2500 /*
2501  * Increase the hugetlb pool such that it can accommodate a reservation
2502  * of size 'delta'.
2503  */
2504 static int gather_surplus_pages(struct hstate *h, long delta)
2505 	__must_hold(&hugetlb_lock)
2506 {
2507 	LIST_HEAD(surplus_list);
2508 	struct folio *folio, *tmp;
2509 	int ret;
2510 	long i;
2511 	long needed, allocated;
2512 	bool alloc_ok = true;
2513 
2514 	lockdep_assert_held(&hugetlb_lock);
2515 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2516 	if (needed <= 0) {
2517 		h->resv_huge_pages += delta;
2518 		return 0;
2519 	}
2520 
2521 	allocated = 0;
2522 
2523 	ret = -ENOMEM;
2524 retry:
2525 	spin_unlock_irq(&hugetlb_lock);
2526 	for (i = 0; i < needed; i++) {
2527 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2528 				NUMA_NO_NODE, NULL);
2529 		if (!folio) {
2530 			alloc_ok = false;
2531 			break;
2532 		}
2533 		list_add(&folio->lru, &surplus_list);
2534 		cond_resched();
2535 	}
2536 	allocated += i;
2537 
2538 	/*
2539 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2540 	 * because either resv_huge_pages or free_huge_pages may have changed.
2541 	 */
2542 	spin_lock_irq(&hugetlb_lock);
2543 	needed = (h->resv_huge_pages + delta) -
2544 			(h->free_huge_pages + allocated);
2545 	if (needed > 0) {
2546 		if (alloc_ok)
2547 			goto retry;
2548 		/*
2549 		 * We were not able to allocate enough pages to
2550 		 * satisfy the entire reservation so we free what
2551 		 * we've allocated so far.
2552 		 */
2553 		goto free;
2554 	}
2555 	/*
2556 	 * The surplus_list now contains _at_least_ the number of extra pages
2557 	 * needed to accommodate the reservation.  Add the appropriate number
2558 	 * of pages to the hugetlb pool and free the extras back to the buddy
2559 	 * allocator.  Commit the entire reservation here to prevent another
2560 	 * process from stealing the pages as they are added to the pool but
2561 	 * before they are reserved.
2562 	 */
2563 	needed += allocated;
2564 	h->resv_huge_pages += delta;
2565 	ret = 0;
2566 
2567 	/* Free the needed pages to the hugetlb pool */
2568 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2569 		if ((--needed) < 0)
2570 			break;
2571 		/* Add the page to the hugetlb allocator */
2572 		enqueue_hugetlb_folio(h, folio);
2573 	}
2574 free:
2575 	spin_unlock_irq(&hugetlb_lock);
2576 
2577 	/*
2578 	 * Free unnecessary surplus pages to the buddy allocator.
2579 	 * Pages have no ref count, call free_huge_folio directly.
2580 	 */
2581 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2582 		free_huge_folio(folio);
2583 	spin_lock_irq(&hugetlb_lock);
2584 
2585 	return ret;
2586 }
2587 
2588 /*
2589  * This routine has two main purposes:
2590  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2591  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2592  *    to the associated reservation map.
2593  * 2) Free any unused surplus pages that may have been allocated to satisfy
2594  *    the reservation.  As many as unused_resv_pages may be freed.
2595  */
2596 static void return_unused_surplus_pages(struct hstate *h,
2597 					unsigned long unused_resv_pages)
2598 {
2599 	unsigned long nr_pages;
2600 	struct page *page;
2601 	LIST_HEAD(page_list);
2602 
2603 	lockdep_assert_held(&hugetlb_lock);
2604 	/* Uncommit the reservation */
2605 	h->resv_huge_pages -= unused_resv_pages;
2606 
2607 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2608 		goto out;
2609 
2610 	/*
2611 	 * Part (or even all) of the reservation could have been backed
2612 	 * by pre-allocated pages. Only free surplus pages.
2613 	 */
2614 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2615 
2616 	/*
2617 	 * We want to release as many surplus pages as possible, spread
2618 	 * evenly across all nodes with memory. Iterate across these nodes
2619 	 * until we can no longer free unreserved surplus pages. This occurs
2620 	 * when the nodes with surplus pages have no free pages.
2621 	 * remove_pool_huge_page() will balance the freed pages across the
2622 	 * on-line nodes with memory and will handle the hstate accounting.
2623 	 */
2624 	while (nr_pages--) {
2625 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2626 		if (!page)
2627 			goto out;
2628 
2629 		list_add(&page->lru, &page_list);
2630 	}
2631 
2632 out:
2633 	spin_unlock_irq(&hugetlb_lock);
2634 	update_and_free_pages_bulk(h, &page_list);
2635 	spin_lock_irq(&hugetlb_lock);
2636 }
2637 
2638 
2639 /*
2640  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2641  * are used by the huge page allocation routines to manage reservations.
2642  *
2643  * vma_needs_reservation is called to determine if the huge page at addr
2644  * within the vma has an associated reservation.  If a reservation is
2645  * needed, the value 1 is returned.  The caller is then responsible for
2646  * managing the global reservation and subpool usage counts.  After
2647  * the huge page has been allocated, vma_commit_reservation is called
2648  * to add the page to the reservation map.  If the page allocation fails,
2649  * the reservation must be ended instead of committed.  vma_end_reservation
2650  * is called in such cases.
2651  *
2652  * In the normal case, vma_commit_reservation returns the same value
2653  * as the preceding vma_needs_reservation call.  The only time this
2654  * is not the case is if a reserve map was changed between calls.  It
2655  * is the responsibility of the caller to notice the difference and
2656  * take appropriate action.
2657  *
2658  * vma_add_reservation is used in error paths where a reservation must
2659  * be restored when a newly allocated huge page must be freed.  It is
2660  * to be called after calling vma_needs_reservation to determine if a
2661  * reservation exists.
2662  *
2663  * vma_del_reservation is used in error paths where an entry in the reserve
2664  * map was created during huge page allocation and must be removed.  It is to
2665  * be called after calling vma_needs_reservation to determine if a reservation
2666  * exists.
2667  */
2668 enum vma_resv_mode {
2669 	VMA_NEEDS_RESV,
2670 	VMA_COMMIT_RESV,
2671 	VMA_END_RESV,
2672 	VMA_ADD_RESV,
2673 	VMA_DEL_RESV,
2674 };
2675 static long __vma_reservation_common(struct hstate *h,
2676 				struct vm_area_struct *vma, unsigned long addr,
2677 				enum vma_resv_mode mode)
2678 {
2679 	struct resv_map *resv;
2680 	pgoff_t idx;
2681 	long ret;
2682 	long dummy_out_regions_needed;
2683 
2684 	resv = vma_resv_map(vma);
2685 	if (!resv)
2686 		return 1;
2687 
2688 	idx = vma_hugecache_offset(h, vma, addr);
2689 	switch (mode) {
2690 	case VMA_NEEDS_RESV:
2691 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2692 		/* We assume that vma_reservation_* routines always operate on
2693 		 * 1 page, and that adding to resv map a 1 page entry can only
2694 		 * ever require 1 region.
2695 		 */
2696 		VM_BUG_ON(dummy_out_regions_needed != 1);
2697 		break;
2698 	case VMA_COMMIT_RESV:
2699 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2700 		/* region_add calls of range 1 should never fail. */
2701 		VM_BUG_ON(ret < 0);
2702 		break;
2703 	case VMA_END_RESV:
2704 		region_abort(resv, idx, idx + 1, 1);
2705 		ret = 0;
2706 		break;
2707 	case VMA_ADD_RESV:
2708 		if (vma->vm_flags & VM_MAYSHARE) {
2709 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2710 			/* region_add calls of range 1 should never fail. */
2711 			VM_BUG_ON(ret < 0);
2712 		} else {
2713 			region_abort(resv, idx, idx + 1, 1);
2714 			ret = region_del(resv, idx, idx + 1);
2715 		}
2716 		break;
2717 	case VMA_DEL_RESV:
2718 		if (vma->vm_flags & VM_MAYSHARE) {
2719 			region_abort(resv, idx, idx + 1, 1);
2720 			ret = region_del(resv, idx, idx + 1);
2721 		} else {
2722 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 			/* region_add calls of range 1 should never fail. */
2724 			VM_BUG_ON(ret < 0);
2725 		}
2726 		break;
2727 	default:
2728 		BUG();
2729 	}
2730 
2731 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2732 		return ret;
2733 	/*
2734 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2735 	 *
2736 	 * In most cases, reserves always exist for private mappings.
2737 	 * However, a file associated with mapping could have been
2738 	 * hole punched or truncated after reserves were consumed.
2739 	 * As subsequent fault on such a range will not use reserves.
2740 	 * Subtle - The reserve map for private mappings has the
2741 	 * opposite meaning than that of shared mappings.  If NO
2742 	 * entry is in the reserve map, it means a reservation exists.
2743 	 * If an entry exists in the reserve map, it means the
2744 	 * reservation has already been consumed.  As a result, the
2745 	 * return value of this routine is the opposite of the
2746 	 * value returned from reserve map manipulation routines above.
2747 	 */
2748 	if (ret > 0)
2749 		return 0;
2750 	if (ret == 0)
2751 		return 1;
2752 	return ret;
2753 }
2754 
2755 static long vma_needs_reservation(struct hstate *h,
2756 			struct vm_area_struct *vma, unsigned long addr)
2757 {
2758 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2759 }
2760 
2761 static long vma_commit_reservation(struct hstate *h,
2762 			struct vm_area_struct *vma, unsigned long addr)
2763 {
2764 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2765 }
2766 
2767 static void vma_end_reservation(struct hstate *h,
2768 			struct vm_area_struct *vma, unsigned long addr)
2769 {
2770 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2771 }
2772 
2773 static long vma_add_reservation(struct hstate *h,
2774 			struct vm_area_struct *vma, unsigned long addr)
2775 {
2776 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2777 }
2778 
2779 static long vma_del_reservation(struct hstate *h,
2780 			struct vm_area_struct *vma, unsigned long addr)
2781 {
2782 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2783 }
2784 
2785 /*
2786  * This routine is called to restore reservation information on error paths.
2787  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2788  * and the hugetlb mutex should remain held when calling this routine.
2789  *
2790  * It handles two specific cases:
2791  * 1) A reservation was in place and the folio consumed the reservation.
2792  *    hugetlb_restore_reserve is set in the folio.
2793  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2794  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2795  *
2796  * In case 1, free_huge_folio later in the error path will increment the
2797  * global reserve count.  But, free_huge_folio does not have enough context
2798  * to adjust the reservation map.  This case deals primarily with private
2799  * mappings.  Adjust the reserve map here to be consistent with global
2800  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2801  * reserve map indicates there is a reservation present.
2802  *
2803  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2804  */
2805 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2806 			unsigned long address, struct folio *folio)
2807 {
2808 	long rc = vma_needs_reservation(h, vma, address);
2809 
2810 	if (folio_test_hugetlb_restore_reserve(folio)) {
2811 		if (unlikely(rc < 0))
2812 			/*
2813 			 * Rare out of memory condition in reserve map
2814 			 * manipulation.  Clear hugetlb_restore_reserve so
2815 			 * that global reserve count will not be incremented
2816 			 * by free_huge_folio.  This will make it appear
2817 			 * as though the reservation for this folio was
2818 			 * consumed.  This may prevent the task from
2819 			 * faulting in the folio at a later time.  This
2820 			 * is better than inconsistent global huge page
2821 			 * accounting of reserve counts.
2822 			 */
2823 			folio_clear_hugetlb_restore_reserve(folio);
2824 		else if (rc)
2825 			(void)vma_add_reservation(h, vma, address);
2826 		else
2827 			vma_end_reservation(h, vma, address);
2828 	} else {
2829 		if (!rc) {
2830 			/*
2831 			 * This indicates there is an entry in the reserve map
2832 			 * not added by alloc_hugetlb_folio.  We know it was added
2833 			 * before the alloc_hugetlb_folio call, otherwise
2834 			 * hugetlb_restore_reserve would be set on the folio.
2835 			 * Remove the entry so that a subsequent allocation
2836 			 * does not consume a reservation.
2837 			 */
2838 			rc = vma_del_reservation(h, vma, address);
2839 			if (rc < 0)
2840 				/*
2841 				 * VERY rare out of memory condition.  Since
2842 				 * we can not delete the entry, set
2843 				 * hugetlb_restore_reserve so that the reserve
2844 				 * count will be incremented when the folio
2845 				 * is freed.  This reserve will be consumed
2846 				 * on a subsequent allocation.
2847 				 */
2848 				folio_set_hugetlb_restore_reserve(folio);
2849 		} else if (rc < 0) {
2850 			/*
2851 			 * Rare out of memory condition from
2852 			 * vma_needs_reservation call.  Memory allocation is
2853 			 * only attempted if a new entry is needed.  Therefore,
2854 			 * this implies there is not an entry in the
2855 			 * reserve map.
2856 			 *
2857 			 * For shared mappings, no entry in the map indicates
2858 			 * no reservation.  We are done.
2859 			 */
2860 			if (!(vma->vm_flags & VM_MAYSHARE))
2861 				/*
2862 				 * For private mappings, no entry indicates
2863 				 * a reservation is present.  Since we can
2864 				 * not add an entry, set hugetlb_restore_reserve
2865 				 * on the folio so reserve count will be
2866 				 * incremented when freed.  This reserve will
2867 				 * be consumed on a subsequent allocation.
2868 				 */
2869 				folio_set_hugetlb_restore_reserve(folio);
2870 		} else
2871 			/*
2872 			 * No reservation present, do nothing
2873 			 */
2874 			 vma_end_reservation(h, vma, address);
2875 	}
2876 }
2877 
2878 /*
2879  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2880  * the old one
2881  * @h: struct hstate old page belongs to
2882  * @old_folio: Old folio to dissolve
2883  * @list: List to isolate the page in case we need to
2884  * Returns 0 on success, otherwise negated error.
2885  */
2886 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2887 			struct folio *old_folio, struct list_head *list)
2888 {
2889 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2890 	int nid = folio_nid(old_folio);
2891 	struct folio *new_folio;
2892 	int ret = 0;
2893 
2894 	/*
2895 	 * Before dissolving the folio, we need to allocate a new one for the
2896 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2897 	 * by doing everything but actually updating counters and adding to
2898 	 * the pool.  This simplifies and let us do most of the processing
2899 	 * under the lock.
2900 	 */
2901 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2902 	if (!new_folio)
2903 		return -ENOMEM;
2904 	__prep_new_hugetlb_folio(h, new_folio);
2905 
2906 retry:
2907 	spin_lock_irq(&hugetlb_lock);
2908 	if (!folio_test_hugetlb(old_folio)) {
2909 		/*
2910 		 * Freed from under us. Drop new_folio too.
2911 		 */
2912 		goto free_new;
2913 	} else if (folio_ref_count(old_folio)) {
2914 		bool isolated;
2915 
2916 		/*
2917 		 * Someone has grabbed the folio, try to isolate it here.
2918 		 * Fail with -EBUSY if not possible.
2919 		 */
2920 		spin_unlock_irq(&hugetlb_lock);
2921 		isolated = isolate_hugetlb(old_folio, list);
2922 		ret = isolated ? 0 : -EBUSY;
2923 		spin_lock_irq(&hugetlb_lock);
2924 		goto free_new;
2925 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2926 		/*
2927 		 * Folio's refcount is 0 but it has not been enqueued in the
2928 		 * freelist yet. Race window is small, so we can succeed here if
2929 		 * we retry.
2930 		 */
2931 		spin_unlock_irq(&hugetlb_lock);
2932 		cond_resched();
2933 		goto retry;
2934 	} else {
2935 		/*
2936 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2937 		 * the freelist and decrease the counters. These will be
2938 		 * incremented again when calling __prep_account_new_huge_page()
2939 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2940 		 * remain stable since this happens under the lock.
2941 		 */
2942 		remove_hugetlb_folio(h, old_folio, false);
2943 
2944 		/*
2945 		 * Ref count on new_folio is already zero as it was dropped
2946 		 * earlier.  It can be directly added to the pool free list.
2947 		 */
2948 		__prep_account_new_huge_page(h, nid);
2949 		enqueue_hugetlb_folio(h, new_folio);
2950 
2951 		/*
2952 		 * Folio has been replaced, we can safely free the old one.
2953 		 */
2954 		spin_unlock_irq(&hugetlb_lock);
2955 		update_and_free_hugetlb_folio(h, old_folio, false);
2956 	}
2957 
2958 	return ret;
2959 
2960 free_new:
2961 	spin_unlock_irq(&hugetlb_lock);
2962 	/* Folio has a zero ref count, but needs a ref to be freed */
2963 	folio_ref_unfreeze(new_folio, 1);
2964 	update_and_free_hugetlb_folio(h, new_folio, false);
2965 
2966 	return ret;
2967 }
2968 
2969 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2970 {
2971 	struct hstate *h;
2972 	struct folio *folio = page_folio(page);
2973 	int ret = -EBUSY;
2974 
2975 	/*
2976 	 * The page might have been dissolved from under our feet, so make sure
2977 	 * to carefully check the state under the lock.
2978 	 * Return success when racing as if we dissolved the page ourselves.
2979 	 */
2980 	spin_lock_irq(&hugetlb_lock);
2981 	if (folio_test_hugetlb(folio)) {
2982 		h = folio_hstate(folio);
2983 	} else {
2984 		spin_unlock_irq(&hugetlb_lock);
2985 		return 0;
2986 	}
2987 	spin_unlock_irq(&hugetlb_lock);
2988 
2989 	/*
2990 	 * Fence off gigantic pages as there is a cyclic dependency between
2991 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2992 	 * of bailing out right away without further retrying.
2993 	 */
2994 	if (hstate_is_gigantic(h))
2995 		return -ENOMEM;
2996 
2997 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2998 		ret = 0;
2999 	else if (!folio_ref_count(folio))
3000 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3001 
3002 	return ret;
3003 }
3004 
3005 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3006 				    unsigned long addr, int avoid_reserve)
3007 {
3008 	struct hugepage_subpool *spool = subpool_vma(vma);
3009 	struct hstate *h = hstate_vma(vma);
3010 	struct folio *folio;
3011 	long map_chg, map_commit;
3012 	long gbl_chg;
3013 	int ret, idx;
3014 	struct hugetlb_cgroup *h_cg = NULL;
3015 	bool deferred_reserve;
3016 
3017 	idx = hstate_index(h);
3018 	/*
3019 	 * Examine the region/reserve map to determine if the process
3020 	 * has a reservation for the page to be allocated.  A return
3021 	 * code of zero indicates a reservation exists (no change).
3022 	 */
3023 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3024 	if (map_chg < 0)
3025 		return ERR_PTR(-ENOMEM);
3026 
3027 	/*
3028 	 * Processes that did not create the mapping will have no
3029 	 * reserves as indicated by the region/reserve map. Check
3030 	 * that the allocation will not exceed the subpool limit.
3031 	 * Allocations for MAP_NORESERVE mappings also need to be
3032 	 * checked against any subpool limit.
3033 	 */
3034 	if (map_chg || avoid_reserve) {
3035 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3036 		if (gbl_chg < 0) {
3037 			vma_end_reservation(h, vma, addr);
3038 			return ERR_PTR(-ENOSPC);
3039 		}
3040 
3041 		/*
3042 		 * Even though there was no reservation in the region/reserve
3043 		 * map, there could be reservations associated with the
3044 		 * subpool that can be used.  This would be indicated if the
3045 		 * return value of hugepage_subpool_get_pages() is zero.
3046 		 * However, if avoid_reserve is specified we still avoid even
3047 		 * the subpool reservations.
3048 		 */
3049 		if (avoid_reserve)
3050 			gbl_chg = 1;
3051 	}
3052 
3053 	/* If this allocation is not consuming a reservation, charge it now.
3054 	 */
3055 	deferred_reserve = map_chg || avoid_reserve;
3056 	if (deferred_reserve) {
3057 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3058 			idx, pages_per_huge_page(h), &h_cg);
3059 		if (ret)
3060 			goto out_subpool_put;
3061 	}
3062 
3063 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3064 	if (ret)
3065 		goto out_uncharge_cgroup_reservation;
3066 
3067 	spin_lock_irq(&hugetlb_lock);
3068 	/*
3069 	 * glb_chg is passed to indicate whether or not a page must be taken
3070 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3071 	 * a reservation exists for the allocation.
3072 	 */
3073 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3074 	if (!folio) {
3075 		spin_unlock_irq(&hugetlb_lock);
3076 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3077 		if (!folio)
3078 			goto out_uncharge_cgroup;
3079 		spin_lock_irq(&hugetlb_lock);
3080 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3081 			folio_set_hugetlb_restore_reserve(folio);
3082 			h->resv_huge_pages--;
3083 		}
3084 		list_add(&folio->lru, &h->hugepage_activelist);
3085 		folio_ref_unfreeze(folio, 1);
3086 		/* Fall through */
3087 	}
3088 
3089 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3090 	/* If allocation is not consuming a reservation, also store the
3091 	 * hugetlb_cgroup pointer on the page.
3092 	 */
3093 	if (deferred_reserve) {
3094 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3095 						  h_cg, folio);
3096 	}
3097 
3098 	spin_unlock_irq(&hugetlb_lock);
3099 
3100 	hugetlb_set_folio_subpool(folio, spool);
3101 
3102 	map_commit = vma_commit_reservation(h, vma, addr);
3103 	if (unlikely(map_chg > map_commit)) {
3104 		/*
3105 		 * The page was added to the reservation map between
3106 		 * vma_needs_reservation and vma_commit_reservation.
3107 		 * This indicates a race with hugetlb_reserve_pages.
3108 		 * Adjust for the subpool count incremented above AND
3109 		 * in hugetlb_reserve_pages for the same page.  Also,
3110 		 * the reservation count added in hugetlb_reserve_pages
3111 		 * no longer applies.
3112 		 */
3113 		long rsv_adjust;
3114 
3115 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3116 		hugetlb_acct_memory(h, -rsv_adjust);
3117 		if (deferred_reserve)
3118 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3119 					pages_per_huge_page(h), folio);
3120 	}
3121 	return folio;
3122 
3123 out_uncharge_cgroup:
3124 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3125 out_uncharge_cgroup_reservation:
3126 	if (deferred_reserve)
3127 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3128 						    h_cg);
3129 out_subpool_put:
3130 	if (map_chg || avoid_reserve)
3131 		hugepage_subpool_put_pages(spool, 1);
3132 	vma_end_reservation(h, vma, addr);
3133 	return ERR_PTR(-ENOSPC);
3134 }
3135 
3136 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3137 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3138 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3139 {
3140 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3141 	int nr_nodes, node;
3142 
3143 	/* do node specific alloc */
3144 	if (nid != NUMA_NO_NODE) {
3145 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3146 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3147 		if (!m)
3148 			return 0;
3149 		goto found;
3150 	}
3151 	/* allocate from next node when distributing huge pages */
3152 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3153 		m = memblock_alloc_try_nid_raw(
3154 				huge_page_size(h), huge_page_size(h),
3155 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3156 		/*
3157 		 * Use the beginning of the huge page to store the
3158 		 * huge_bootmem_page struct (until gather_bootmem
3159 		 * puts them into the mem_map).
3160 		 */
3161 		if (!m)
3162 			return 0;
3163 		goto found;
3164 	}
3165 
3166 found:
3167 	/* Put them into a private list first because mem_map is not up yet */
3168 	INIT_LIST_HEAD(&m->list);
3169 	list_add(&m->list, &huge_boot_pages);
3170 	m->hstate = h;
3171 	return 1;
3172 }
3173 
3174 /*
3175  * Put bootmem huge pages into the standard lists after mem_map is up.
3176  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3177  */
3178 static void __init gather_bootmem_prealloc(void)
3179 {
3180 	struct huge_bootmem_page *m;
3181 
3182 	list_for_each_entry(m, &huge_boot_pages, list) {
3183 		struct page *page = virt_to_page(m);
3184 		struct folio *folio = page_folio(page);
3185 		struct hstate *h = m->hstate;
3186 
3187 		VM_BUG_ON(!hstate_is_gigantic(h));
3188 		WARN_ON(folio_ref_count(folio) != 1);
3189 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3190 			WARN_ON(folio_test_reserved(folio));
3191 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3192 			free_huge_folio(folio); /* add to the hugepage allocator */
3193 		} else {
3194 			/* VERY unlikely inflated ref count on a tail page */
3195 			free_gigantic_folio(folio, huge_page_order(h));
3196 		}
3197 
3198 		/*
3199 		 * We need to restore the 'stolen' pages to totalram_pages
3200 		 * in order to fix confusing memory reports from free(1) and
3201 		 * other side-effects, like CommitLimit going negative.
3202 		 */
3203 		adjust_managed_page_count(page, pages_per_huge_page(h));
3204 		cond_resched();
3205 	}
3206 }
3207 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3208 {
3209 	unsigned long i;
3210 	char buf[32];
3211 
3212 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3213 		if (hstate_is_gigantic(h)) {
3214 			if (!alloc_bootmem_huge_page(h, nid))
3215 				break;
3216 		} else {
3217 			struct folio *folio;
3218 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3219 
3220 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3221 					&node_states[N_MEMORY], NULL);
3222 			if (!folio)
3223 				break;
3224 			free_huge_folio(folio); /* free it into the hugepage allocator */
3225 		}
3226 		cond_resched();
3227 	}
3228 	if (i == h->max_huge_pages_node[nid])
3229 		return;
3230 
3231 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3232 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3233 		h->max_huge_pages_node[nid], buf, nid, i);
3234 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3235 	h->max_huge_pages_node[nid] = i;
3236 }
3237 
3238 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3239 {
3240 	unsigned long i;
3241 	nodemask_t *node_alloc_noretry;
3242 	bool node_specific_alloc = false;
3243 
3244 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3245 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3246 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3247 		return;
3248 	}
3249 
3250 	/* do node specific alloc */
3251 	for_each_online_node(i) {
3252 		if (h->max_huge_pages_node[i] > 0) {
3253 			hugetlb_hstate_alloc_pages_onenode(h, i);
3254 			node_specific_alloc = true;
3255 		}
3256 	}
3257 
3258 	if (node_specific_alloc)
3259 		return;
3260 
3261 	/* below will do all node balanced alloc */
3262 	if (!hstate_is_gigantic(h)) {
3263 		/*
3264 		 * Bit mask controlling how hard we retry per-node allocations.
3265 		 * Ignore errors as lower level routines can deal with
3266 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3267 		 * time, we are likely in bigger trouble.
3268 		 */
3269 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3270 						GFP_KERNEL);
3271 	} else {
3272 		/* allocations done at boot time */
3273 		node_alloc_noretry = NULL;
3274 	}
3275 
3276 	/* bit mask controlling how hard we retry per-node allocations */
3277 	if (node_alloc_noretry)
3278 		nodes_clear(*node_alloc_noretry);
3279 
3280 	for (i = 0; i < h->max_huge_pages; ++i) {
3281 		if (hstate_is_gigantic(h)) {
3282 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3283 				break;
3284 		} else if (!alloc_pool_huge_page(h,
3285 					 &node_states[N_MEMORY],
3286 					 node_alloc_noretry))
3287 			break;
3288 		cond_resched();
3289 	}
3290 	if (i < h->max_huge_pages) {
3291 		char buf[32];
3292 
3293 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3294 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3295 			h->max_huge_pages, buf, i);
3296 		h->max_huge_pages = i;
3297 	}
3298 	kfree(node_alloc_noretry);
3299 }
3300 
3301 static void __init hugetlb_init_hstates(void)
3302 {
3303 	struct hstate *h, *h2;
3304 
3305 	for_each_hstate(h) {
3306 		/* oversize hugepages were init'ed in early boot */
3307 		if (!hstate_is_gigantic(h))
3308 			hugetlb_hstate_alloc_pages(h);
3309 
3310 		/*
3311 		 * Set demote order for each hstate.  Note that
3312 		 * h->demote_order is initially 0.
3313 		 * - We can not demote gigantic pages if runtime freeing
3314 		 *   is not supported, so skip this.
3315 		 * - If CMA allocation is possible, we can not demote
3316 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3317 		 */
3318 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3319 			continue;
3320 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3321 			continue;
3322 		for_each_hstate(h2) {
3323 			if (h2 == h)
3324 				continue;
3325 			if (h2->order < h->order &&
3326 			    h2->order > h->demote_order)
3327 				h->demote_order = h2->order;
3328 		}
3329 	}
3330 }
3331 
3332 static void __init report_hugepages(void)
3333 {
3334 	struct hstate *h;
3335 
3336 	for_each_hstate(h) {
3337 		char buf[32];
3338 
3339 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3340 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3341 			buf, h->free_huge_pages);
3342 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3343 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3344 	}
3345 }
3346 
3347 #ifdef CONFIG_HIGHMEM
3348 static void try_to_free_low(struct hstate *h, unsigned long count,
3349 						nodemask_t *nodes_allowed)
3350 {
3351 	int i;
3352 	LIST_HEAD(page_list);
3353 
3354 	lockdep_assert_held(&hugetlb_lock);
3355 	if (hstate_is_gigantic(h))
3356 		return;
3357 
3358 	/*
3359 	 * Collect pages to be freed on a list, and free after dropping lock
3360 	 */
3361 	for_each_node_mask(i, *nodes_allowed) {
3362 		struct page *page, *next;
3363 		struct list_head *freel = &h->hugepage_freelists[i];
3364 		list_for_each_entry_safe(page, next, freel, lru) {
3365 			if (count >= h->nr_huge_pages)
3366 				goto out;
3367 			if (PageHighMem(page))
3368 				continue;
3369 			remove_hugetlb_folio(h, page_folio(page), false);
3370 			list_add(&page->lru, &page_list);
3371 		}
3372 	}
3373 
3374 out:
3375 	spin_unlock_irq(&hugetlb_lock);
3376 	update_and_free_pages_bulk(h, &page_list);
3377 	spin_lock_irq(&hugetlb_lock);
3378 }
3379 #else
3380 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3381 						nodemask_t *nodes_allowed)
3382 {
3383 }
3384 #endif
3385 
3386 /*
3387  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3388  * balanced by operating on them in a round-robin fashion.
3389  * Returns 1 if an adjustment was made.
3390  */
3391 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3392 				int delta)
3393 {
3394 	int nr_nodes, node;
3395 
3396 	lockdep_assert_held(&hugetlb_lock);
3397 	VM_BUG_ON(delta != -1 && delta != 1);
3398 
3399 	if (delta < 0) {
3400 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3401 			if (h->surplus_huge_pages_node[node])
3402 				goto found;
3403 		}
3404 	} else {
3405 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3406 			if (h->surplus_huge_pages_node[node] <
3407 					h->nr_huge_pages_node[node])
3408 				goto found;
3409 		}
3410 	}
3411 	return 0;
3412 
3413 found:
3414 	h->surplus_huge_pages += delta;
3415 	h->surplus_huge_pages_node[node] += delta;
3416 	return 1;
3417 }
3418 
3419 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3420 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3421 			      nodemask_t *nodes_allowed)
3422 {
3423 	unsigned long min_count, ret;
3424 	struct page *page;
3425 	LIST_HEAD(page_list);
3426 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3427 
3428 	/*
3429 	 * Bit mask controlling how hard we retry per-node allocations.
3430 	 * If we can not allocate the bit mask, do not attempt to allocate
3431 	 * the requested huge pages.
3432 	 */
3433 	if (node_alloc_noretry)
3434 		nodes_clear(*node_alloc_noretry);
3435 	else
3436 		return -ENOMEM;
3437 
3438 	/*
3439 	 * resize_lock mutex prevents concurrent adjustments to number of
3440 	 * pages in hstate via the proc/sysfs interfaces.
3441 	 */
3442 	mutex_lock(&h->resize_lock);
3443 	flush_free_hpage_work(h);
3444 	spin_lock_irq(&hugetlb_lock);
3445 
3446 	/*
3447 	 * Check for a node specific request.
3448 	 * Changing node specific huge page count may require a corresponding
3449 	 * change to the global count.  In any case, the passed node mask
3450 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3451 	 */
3452 	if (nid != NUMA_NO_NODE) {
3453 		unsigned long old_count = count;
3454 
3455 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3456 		/*
3457 		 * User may have specified a large count value which caused the
3458 		 * above calculation to overflow.  In this case, they wanted
3459 		 * to allocate as many huge pages as possible.  Set count to
3460 		 * largest possible value to align with their intention.
3461 		 */
3462 		if (count < old_count)
3463 			count = ULONG_MAX;
3464 	}
3465 
3466 	/*
3467 	 * Gigantic pages runtime allocation depend on the capability for large
3468 	 * page range allocation.
3469 	 * If the system does not provide this feature, return an error when
3470 	 * the user tries to allocate gigantic pages but let the user free the
3471 	 * boottime allocated gigantic pages.
3472 	 */
3473 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3474 		if (count > persistent_huge_pages(h)) {
3475 			spin_unlock_irq(&hugetlb_lock);
3476 			mutex_unlock(&h->resize_lock);
3477 			NODEMASK_FREE(node_alloc_noretry);
3478 			return -EINVAL;
3479 		}
3480 		/* Fall through to decrease pool */
3481 	}
3482 
3483 	/*
3484 	 * Increase the pool size
3485 	 * First take pages out of surplus state.  Then make up the
3486 	 * remaining difference by allocating fresh huge pages.
3487 	 *
3488 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3489 	 * to convert a surplus huge page to a normal huge page. That is
3490 	 * not critical, though, it just means the overall size of the
3491 	 * pool might be one hugepage larger than it needs to be, but
3492 	 * within all the constraints specified by the sysctls.
3493 	 */
3494 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3495 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3496 			break;
3497 	}
3498 
3499 	while (count > persistent_huge_pages(h)) {
3500 		/*
3501 		 * If this allocation races such that we no longer need the
3502 		 * page, free_huge_folio will handle it by freeing the page
3503 		 * and reducing the surplus.
3504 		 */
3505 		spin_unlock_irq(&hugetlb_lock);
3506 
3507 		/* yield cpu to avoid soft lockup */
3508 		cond_resched();
3509 
3510 		ret = alloc_pool_huge_page(h, nodes_allowed,
3511 						node_alloc_noretry);
3512 		spin_lock_irq(&hugetlb_lock);
3513 		if (!ret)
3514 			goto out;
3515 
3516 		/* Bail for signals. Probably ctrl-c from user */
3517 		if (signal_pending(current))
3518 			goto out;
3519 	}
3520 
3521 	/*
3522 	 * Decrease the pool size
3523 	 * First return free pages to the buddy allocator (being careful
3524 	 * to keep enough around to satisfy reservations).  Then place
3525 	 * pages into surplus state as needed so the pool will shrink
3526 	 * to the desired size as pages become free.
3527 	 *
3528 	 * By placing pages into the surplus state independent of the
3529 	 * overcommit value, we are allowing the surplus pool size to
3530 	 * exceed overcommit. There are few sane options here. Since
3531 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3532 	 * though, we'll note that we're not allowed to exceed surplus
3533 	 * and won't grow the pool anywhere else. Not until one of the
3534 	 * sysctls are changed, or the surplus pages go out of use.
3535 	 */
3536 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3537 	min_count = max(count, min_count);
3538 	try_to_free_low(h, min_count, nodes_allowed);
3539 
3540 	/*
3541 	 * Collect pages to be removed on list without dropping lock
3542 	 */
3543 	while (min_count < persistent_huge_pages(h)) {
3544 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3545 		if (!page)
3546 			break;
3547 
3548 		list_add(&page->lru, &page_list);
3549 	}
3550 	/* free the pages after dropping lock */
3551 	spin_unlock_irq(&hugetlb_lock);
3552 	update_and_free_pages_bulk(h, &page_list);
3553 	flush_free_hpage_work(h);
3554 	spin_lock_irq(&hugetlb_lock);
3555 
3556 	while (count < persistent_huge_pages(h)) {
3557 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3558 			break;
3559 	}
3560 out:
3561 	h->max_huge_pages = persistent_huge_pages(h);
3562 	spin_unlock_irq(&hugetlb_lock);
3563 	mutex_unlock(&h->resize_lock);
3564 
3565 	NODEMASK_FREE(node_alloc_noretry);
3566 
3567 	return 0;
3568 }
3569 
3570 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3571 {
3572 	int i, nid = folio_nid(folio);
3573 	struct hstate *target_hstate;
3574 	struct page *subpage;
3575 	struct folio *inner_folio;
3576 	int rc = 0;
3577 
3578 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3579 
3580 	remove_hugetlb_folio_for_demote(h, folio, false);
3581 	spin_unlock_irq(&hugetlb_lock);
3582 
3583 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3584 	if (rc) {
3585 		/* Allocation of vmemmmap failed, we can not demote folio */
3586 		spin_lock_irq(&hugetlb_lock);
3587 		folio_ref_unfreeze(folio, 1);
3588 		add_hugetlb_folio(h, folio, false);
3589 		return rc;
3590 	}
3591 
3592 	/*
3593 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3594 	 * sizes as it will not ref count folios.
3595 	 */
3596 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3597 
3598 	/*
3599 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3600 	 * Without the mutex, pages added to target hstate could be marked
3601 	 * as surplus.
3602 	 *
3603 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3604 	 * use the convention of always taking larger size hstate mutex first.
3605 	 */
3606 	mutex_lock(&target_hstate->resize_lock);
3607 	for (i = 0; i < pages_per_huge_page(h);
3608 				i += pages_per_huge_page(target_hstate)) {
3609 		subpage = folio_page(folio, i);
3610 		inner_folio = page_folio(subpage);
3611 		if (hstate_is_gigantic(target_hstate))
3612 			prep_compound_gigantic_folio_for_demote(inner_folio,
3613 							target_hstate->order);
3614 		else
3615 			prep_compound_page(subpage, target_hstate->order);
3616 		folio_change_private(inner_folio, NULL);
3617 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3618 		free_huge_folio(inner_folio);
3619 	}
3620 	mutex_unlock(&target_hstate->resize_lock);
3621 
3622 	spin_lock_irq(&hugetlb_lock);
3623 
3624 	/*
3625 	 * Not absolutely necessary, but for consistency update max_huge_pages
3626 	 * based on pool changes for the demoted page.
3627 	 */
3628 	h->max_huge_pages--;
3629 	target_hstate->max_huge_pages +=
3630 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3631 
3632 	return rc;
3633 }
3634 
3635 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3636 	__must_hold(&hugetlb_lock)
3637 {
3638 	int nr_nodes, node;
3639 	struct folio *folio;
3640 
3641 	lockdep_assert_held(&hugetlb_lock);
3642 
3643 	/* We should never get here if no demote order */
3644 	if (!h->demote_order) {
3645 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3646 		return -EINVAL;		/* internal error */
3647 	}
3648 
3649 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3650 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3651 			if (folio_test_hwpoison(folio))
3652 				continue;
3653 			return demote_free_hugetlb_folio(h, folio);
3654 		}
3655 	}
3656 
3657 	/*
3658 	 * Only way to get here is if all pages on free lists are poisoned.
3659 	 * Return -EBUSY so that caller will not retry.
3660 	 */
3661 	return -EBUSY;
3662 }
3663 
3664 #define HSTATE_ATTR_RO(_name) \
3665 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3666 
3667 #define HSTATE_ATTR_WO(_name) \
3668 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3669 
3670 #define HSTATE_ATTR(_name) \
3671 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3672 
3673 static struct kobject *hugepages_kobj;
3674 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3675 
3676 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3677 
3678 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3679 {
3680 	int i;
3681 
3682 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3683 		if (hstate_kobjs[i] == kobj) {
3684 			if (nidp)
3685 				*nidp = NUMA_NO_NODE;
3686 			return &hstates[i];
3687 		}
3688 
3689 	return kobj_to_node_hstate(kobj, nidp);
3690 }
3691 
3692 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3693 					struct kobj_attribute *attr, char *buf)
3694 {
3695 	struct hstate *h;
3696 	unsigned long nr_huge_pages;
3697 	int nid;
3698 
3699 	h = kobj_to_hstate(kobj, &nid);
3700 	if (nid == NUMA_NO_NODE)
3701 		nr_huge_pages = h->nr_huge_pages;
3702 	else
3703 		nr_huge_pages = h->nr_huge_pages_node[nid];
3704 
3705 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3706 }
3707 
3708 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3709 					   struct hstate *h, int nid,
3710 					   unsigned long count, size_t len)
3711 {
3712 	int err;
3713 	nodemask_t nodes_allowed, *n_mask;
3714 
3715 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3716 		return -EINVAL;
3717 
3718 	if (nid == NUMA_NO_NODE) {
3719 		/*
3720 		 * global hstate attribute
3721 		 */
3722 		if (!(obey_mempolicy &&
3723 				init_nodemask_of_mempolicy(&nodes_allowed)))
3724 			n_mask = &node_states[N_MEMORY];
3725 		else
3726 			n_mask = &nodes_allowed;
3727 	} else {
3728 		/*
3729 		 * Node specific request.  count adjustment happens in
3730 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3731 		 */
3732 		init_nodemask_of_node(&nodes_allowed, nid);
3733 		n_mask = &nodes_allowed;
3734 	}
3735 
3736 	err = set_max_huge_pages(h, count, nid, n_mask);
3737 
3738 	return err ? err : len;
3739 }
3740 
3741 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3742 					 struct kobject *kobj, const char *buf,
3743 					 size_t len)
3744 {
3745 	struct hstate *h;
3746 	unsigned long count;
3747 	int nid;
3748 	int err;
3749 
3750 	err = kstrtoul(buf, 10, &count);
3751 	if (err)
3752 		return err;
3753 
3754 	h = kobj_to_hstate(kobj, &nid);
3755 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3756 }
3757 
3758 static ssize_t nr_hugepages_show(struct kobject *kobj,
3759 				       struct kobj_attribute *attr, char *buf)
3760 {
3761 	return nr_hugepages_show_common(kobj, attr, buf);
3762 }
3763 
3764 static ssize_t nr_hugepages_store(struct kobject *kobj,
3765 	       struct kobj_attribute *attr, const char *buf, size_t len)
3766 {
3767 	return nr_hugepages_store_common(false, kobj, buf, len);
3768 }
3769 HSTATE_ATTR(nr_hugepages);
3770 
3771 #ifdef CONFIG_NUMA
3772 
3773 /*
3774  * hstate attribute for optionally mempolicy-based constraint on persistent
3775  * huge page alloc/free.
3776  */
3777 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3778 					   struct kobj_attribute *attr,
3779 					   char *buf)
3780 {
3781 	return nr_hugepages_show_common(kobj, attr, buf);
3782 }
3783 
3784 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3785 	       struct kobj_attribute *attr, const char *buf, size_t len)
3786 {
3787 	return nr_hugepages_store_common(true, kobj, buf, len);
3788 }
3789 HSTATE_ATTR(nr_hugepages_mempolicy);
3790 #endif
3791 
3792 
3793 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3794 					struct kobj_attribute *attr, char *buf)
3795 {
3796 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3797 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3798 }
3799 
3800 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3801 		struct kobj_attribute *attr, const char *buf, size_t count)
3802 {
3803 	int err;
3804 	unsigned long input;
3805 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3806 
3807 	if (hstate_is_gigantic(h))
3808 		return -EINVAL;
3809 
3810 	err = kstrtoul(buf, 10, &input);
3811 	if (err)
3812 		return err;
3813 
3814 	spin_lock_irq(&hugetlb_lock);
3815 	h->nr_overcommit_huge_pages = input;
3816 	spin_unlock_irq(&hugetlb_lock);
3817 
3818 	return count;
3819 }
3820 HSTATE_ATTR(nr_overcommit_hugepages);
3821 
3822 static ssize_t free_hugepages_show(struct kobject *kobj,
3823 					struct kobj_attribute *attr, char *buf)
3824 {
3825 	struct hstate *h;
3826 	unsigned long free_huge_pages;
3827 	int nid;
3828 
3829 	h = kobj_to_hstate(kobj, &nid);
3830 	if (nid == NUMA_NO_NODE)
3831 		free_huge_pages = h->free_huge_pages;
3832 	else
3833 		free_huge_pages = h->free_huge_pages_node[nid];
3834 
3835 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3836 }
3837 HSTATE_ATTR_RO(free_hugepages);
3838 
3839 static ssize_t resv_hugepages_show(struct kobject *kobj,
3840 					struct kobj_attribute *attr, char *buf)
3841 {
3842 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3843 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3844 }
3845 HSTATE_ATTR_RO(resv_hugepages);
3846 
3847 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3848 					struct kobj_attribute *attr, char *buf)
3849 {
3850 	struct hstate *h;
3851 	unsigned long surplus_huge_pages;
3852 	int nid;
3853 
3854 	h = kobj_to_hstate(kobj, &nid);
3855 	if (nid == NUMA_NO_NODE)
3856 		surplus_huge_pages = h->surplus_huge_pages;
3857 	else
3858 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3859 
3860 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3861 }
3862 HSTATE_ATTR_RO(surplus_hugepages);
3863 
3864 static ssize_t demote_store(struct kobject *kobj,
3865 	       struct kobj_attribute *attr, const char *buf, size_t len)
3866 {
3867 	unsigned long nr_demote;
3868 	unsigned long nr_available;
3869 	nodemask_t nodes_allowed, *n_mask;
3870 	struct hstate *h;
3871 	int err;
3872 	int nid;
3873 
3874 	err = kstrtoul(buf, 10, &nr_demote);
3875 	if (err)
3876 		return err;
3877 	h = kobj_to_hstate(kobj, &nid);
3878 
3879 	if (nid != NUMA_NO_NODE) {
3880 		init_nodemask_of_node(&nodes_allowed, nid);
3881 		n_mask = &nodes_allowed;
3882 	} else {
3883 		n_mask = &node_states[N_MEMORY];
3884 	}
3885 
3886 	/* Synchronize with other sysfs operations modifying huge pages */
3887 	mutex_lock(&h->resize_lock);
3888 	spin_lock_irq(&hugetlb_lock);
3889 
3890 	while (nr_demote) {
3891 		/*
3892 		 * Check for available pages to demote each time thorough the
3893 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3894 		 */
3895 		if (nid != NUMA_NO_NODE)
3896 			nr_available = h->free_huge_pages_node[nid];
3897 		else
3898 			nr_available = h->free_huge_pages;
3899 		nr_available -= h->resv_huge_pages;
3900 		if (!nr_available)
3901 			break;
3902 
3903 		err = demote_pool_huge_page(h, n_mask);
3904 		if (err)
3905 			break;
3906 
3907 		nr_demote--;
3908 	}
3909 
3910 	spin_unlock_irq(&hugetlb_lock);
3911 	mutex_unlock(&h->resize_lock);
3912 
3913 	if (err)
3914 		return err;
3915 	return len;
3916 }
3917 HSTATE_ATTR_WO(demote);
3918 
3919 static ssize_t demote_size_show(struct kobject *kobj,
3920 					struct kobj_attribute *attr, char *buf)
3921 {
3922 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3923 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3924 
3925 	return sysfs_emit(buf, "%lukB\n", demote_size);
3926 }
3927 
3928 static ssize_t demote_size_store(struct kobject *kobj,
3929 					struct kobj_attribute *attr,
3930 					const char *buf, size_t count)
3931 {
3932 	struct hstate *h, *demote_hstate;
3933 	unsigned long demote_size;
3934 	unsigned int demote_order;
3935 
3936 	demote_size = (unsigned long)memparse(buf, NULL);
3937 
3938 	demote_hstate = size_to_hstate(demote_size);
3939 	if (!demote_hstate)
3940 		return -EINVAL;
3941 	demote_order = demote_hstate->order;
3942 	if (demote_order < HUGETLB_PAGE_ORDER)
3943 		return -EINVAL;
3944 
3945 	/* demote order must be smaller than hstate order */
3946 	h = kobj_to_hstate(kobj, NULL);
3947 	if (demote_order >= h->order)
3948 		return -EINVAL;
3949 
3950 	/* resize_lock synchronizes access to demote size and writes */
3951 	mutex_lock(&h->resize_lock);
3952 	h->demote_order = demote_order;
3953 	mutex_unlock(&h->resize_lock);
3954 
3955 	return count;
3956 }
3957 HSTATE_ATTR(demote_size);
3958 
3959 static struct attribute *hstate_attrs[] = {
3960 	&nr_hugepages_attr.attr,
3961 	&nr_overcommit_hugepages_attr.attr,
3962 	&free_hugepages_attr.attr,
3963 	&resv_hugepages_attr.attr,
3964 	&surplus_hugepages_attr.attr,
3965 #ifdef CONFIG_NUMA
3966 	&nr_hugepages_mempolicy_attr.attr,
3967 #endif
3968 	NULL,
3969 };
3970 
3971 static const struct attribute_group hstate_attr_group = {
3972 	.attrs = hstate_attrs,
3973 };
3974 
3975 static struct attribute *hstate_demote_attrs[] = {
3976 	&demote_size_attr.attr,
3977 	&demote_attr.attr,
3978 	NULL,
3979 };
3980 
3981 static const struct attribute_group hstate_demote_attr_group = {
3982 	.attrs = hstate_demote_attrs,
3983 };
3984 
3985 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3986 				    struct kobject **hstate_kobjs,
3987 				    const struct attribute_group *hstate_attr_group)
3988 {
3989 	int retval;
3990 	int hi = hstate_index(h);
3991 
3992 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3993 	if (!hstate_kobjs[hi])
3994 		return -ENOMEM;
3995 
3996 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3997 	if (retval) {
3998 		kobject_put(hstate_kobjs[hi]);
3999 		hstate_kobjs[hi] = NULL;
4000 		return retval;
4001 	}
4002 
4003 	if (h->demote_order) {
4004 		retval = sysfs_create_group(hstate_kobjs[hi],
4005 					    &hstate_demote_attr_group);
4006 		if (retval) {
4007 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4008 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4009 			kobject_put(hstate_kobjs[hi]);
4010 			hstate_kobjs[hi] = NULL;
4011 			return retval;
4012 		}
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 #ifdef CONFIG_NUMA
4019 static bool hugetlb_sysfs_initialized __ro_after_init;
4020 
4021 /*
4022  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4023  * with node devices in node_devices[] using a parallel array.  The array
4024  * index of a node device or _hstate == node id.
4025  * This is here to avoid any static dependency of the node device driver, in
4026  * the base kernel, on the hugetlb module.
4027  */
4028 struct node_hstate {
4029 	struct kobject		*hugepages_kobj;
4030 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4031 };
4032 static struct node_hstate node_hstates[MAX_NUMNODES];
4033 
4034 /*
4035  * A subset of global hstate attributes for node devices
4036  */
4037 static struct attribute *per_node_hstate_attrs[] = {
4038 	&nr_hugepages_attr.attr,
4039 	&free_hugepages_attr.attr,
4040 	&surplus_hugepages_attr.attr,
4041 	NULL,
4042 };
4043 
4044 static const struct attribute_group per_node_hstate_attr_group = {
4045 	.attrs = per_node_hstate_attrs,
4046 };
4047 
4048 /*
4049  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4050  * Returns node id via non-NULL nidp.
4051  */
4052 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4053 {
4054 	int nid;
4055 
4056 	for (nid = 0; nid < nr_node_ids; nid++) {
4057 		struct node_hstate *nhs = &node_hstates[nid];
4058 		int i;
4059 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4060 			if (nhs->hstate_kobjs[i] == kobj) {
4061 				if (nidp)
4062 					*nidp = nid;
4063 				return &hstates[i];
4064 			}
4065 	}
4066 
4067 	BUG();
4068 	return NULL;
4069 }
4070 
4071 /*
4072  * Unregister hstate attributes from a single node device.
4073  * No-op if no hstate attributes attached.
4074  */
4075 void hugetlb_unregister_node(struct node *node)
4076 {
4077 	struct hstate *h;
4078 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4079 
4080 	if (!nhs->hugepages_kobj)
4081 		return;		/* no hstate attributes */
4082 
4083 	for_each_hstate(h) {
4084 		int idx = hstate_index(h);
4085 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4086 
4087 		if (!hstate_kobj)
4088 			continue;
4089 		if (h->demote_order)
4090 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4091 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4092 		kobject_put(hstate_kobj);
4093 		nhs->hstate_kobjs[idx] = NULL;
4094 	}
4095 
4096 	kobject_put(nhs->hugepages_kobj);
4097 	nhs->hugepages_kobj = NULL;
4098 }
4099 
4100 
4101 /*
4102  * Register hstate attributes for a single node device.
4103  * No-op if attributes already registered.
4104  */
4105 void hugetlb_register_node(struct node *node)
4106 {
4107 	struct hstate *h;
4108 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4109 	int err;
4110 
4111 	if (!hugetlb_sysfs_initialized)
4112 		return;
4113 
4114 	if (nhs->hugepages_kobj)
4115 		return;		/* already allocated */
4116 
4117 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4118 							&node->dev.kobj);
4119 	if (!nhs->hugepages_kobj)
4120 		return;
4121 
4122 	for_each_hstate(h) {
4123 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4124 						nhs->hstate_kobjs,
4125 						&per_node_hstate_attr_group);
4126 		if (err) {
4127 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4128 				h->name, node->dev.id);
4129 			hugetlb_unregister_node(node);
4130 			break;
4131 		}
4132 	}
4133 }
4134 
4135 /*
4136  * hugetlb init time:  register hstate attributes for all registered node
4137  * devices of nodes that have memory.  All on-line nodes should have
4138  * registered their associated device by this time.
4139  */
4140 static void __init hugetlb_register_all_nodes(void)
4141 {
4142 	int nid;
4143 
4144 	for_each_online_node(nid)
4145 		hugetlb_register_node(node_devices[nid]);
4146 }
4147 #else	/* !CONFIG_NUMA */
4148 
4149 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4150 {
4151 	BUG();
4152 	if (nidp)
4153 		*nidp = -1;
4154 	return NULL;
4155 }
4156 
4157 static void hugetlb_register_all_nodes(void) { }
4158 
4159 #endif
4160 
4161 #ifdef CONFIG_CMA
4162 static void __init hugetlb_cma_check(void);
4163 #else
4164 static inline __init void hugetlb_cma_check(void)
4165 {
4166 }
4167 #endif
4168 
4169 static void __init hugetlb_sysfs_init(void)
4170 {
4171 	struct hstate *h;
4172 	int err;
4173 
4174 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4175 	if (!hugepages_kobj)
4176 		return;
4177 
4178 	for_each_hstate(h) {
4179 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4180 					 hstate_kobjs, &hstate_attr_group);
4181 		if (err)
4182 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4183 	}
4184 
4185 #ifdef CONFIG_NUMA
4186 	hugetlb_sysfs_initialized = true;
4187 #endif
4188 	hugetlb_register_all_nodes();
4189 }
4190 
4191 #ifdef CONFIG_SYSCTL
4192 static void hugetlb_sysctl_init(void);
4193 #else
4194 static inline void hugetlb_sysctl_init(void) { }
4195 #endif
4196 
4197 static int __init hugetlb_init(void)
4198 {
4199 	int i;
4200 
4201 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4202 			__NR_HPAGEFLAGS);
4203 
4204 	if (!hugepages_supported()) {
4205 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4206 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4207 		return 0;
4208 	}
4209 
4210 	/*
4211 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4212 	 * architectures depend on setup being done here.
4213 	 */
4214 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4215 	if (!parsed_default_hugepagesz) {
4216 		/*
4217 		 * If we did not parse a default huge page size, set
4218 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4219 		 * number of huge pages for this default size was implicitly
4220 		 * specified, set that here as well.
4221 		 * Note that the implicit setting will overwrite an explicit
4222 		 * setting.  A warning will be printed in this case.
4223 		 */
4224 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4225 		if (default_hstate_max_huge_pages) {
4226 			if (default_hstate.max_huge_pages) {
4227 				char buf[32];
4228 
4229 				string_get_size(huge_page_size(&default_hstate),
4230 					1, STRING_UNITS_2, buf, 32);
4231 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4232 					default_hstate.max_huge_pages, buf);
4233 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4234 					default_hstate_max_huge_pages);
4235 			}
4236 			default_hstate.max_huge_pages =
4237 				default_hstate_max_huge_pages;
4238 
4239 			for_each_online_node(i)
4240 				default_hstate.max_huge_pages_node[i] =
4241 					default_hugepages_in_node[i];
4242 		}
4243 	}
4244 
4245 	hugetlb_cma_check();
4246 	hugetlb_init_hstates();
4247 	gather_bootmem_prealloc();
4248 	report_hugepages();
4249 
4250 	hugetlb_sysfs_init();
4251 	hugetlb_cgroup_file_init();
4252 	hugetlb_sysctl_init();
4253 
4254 #ifdef CONFIG_SMP
4255 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4256 #else
4257 	num_fault_mutexes = 1;
4258 #endif
4259 	hugetlb_fault_mutex_table =
4260 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4261 			      GFP_KERNEL);
4262 	BUG_ON(!hugetlb_fault_mutex_table);
4263 
4264 	for (i = 0; i < num_fault_mutexes; i++)
4265 		mutex_init(&hugetlb_fault_mutex_table[i]);
4266 	return 0;
4267 }
4268 subsys_initcall(hugetlb_init);
4269 
4270 /* Overwritten by architectures with more huge page sizes */
4271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4272 {
4273 	return size == HPAGE_SIZE;
4274 }
4275 
4276 void __init hugetlb_add_hstate(unsigned int order)
4277 {
4278 	struct hstate *h;
4279 	unsigned long i;
4280 
4281 	if (size_to_hstate(PAGE_SIZE << order)) {
4282 		return;
4283 	}
4284 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4285 	BUG_ON(order == 0);
4286 	h = &hstates[hugetlb_max_hstate++];
4287 	mutex_init(&h->resize_lock);
4288 	h->order = order;
4289 	h->mask = ~(huge_page_size(h) - 1);
4290 	for (i = 0; i < MAX_NUMNODES; ++i)
4291 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4292 	INIT_LIST_HEAD(&h->hugepage_activelist);
4293 	h->next_nid_to_alloc = first_memory_node;
4294 	h->next_nid_to_free = first_memory_node;
4295 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4296 					huge_page_size(h)/SZ_1K);
4297 
4298 	parsed_hstate = h;
4299 }
4300 
4301 bool __init __weak hugetlb_node_alloc_supported(void)
4302 {
4303 	return true;
4304 }
4305 
4306 static void __init hugepages_clear_pages_in_node(void)
4307 {
4308 	if (!hugetlb_max_hstate) {
4309 		default_hstate_max_huge_pages = 0;
4310 		memset(default_hugepages_in_node, 0,
4311 			sizeof(default_hugepages_in_node));
4312 	} else {
4313 		parsed_hstate->max_huge_pages = 0;
4314 		memset(parsed_hstate->max_huge_pages_node, 0,
4315 			sizeof(parsed_hstate->max_huge_pages_node));
4316 	}
4317 }
4318 
4319 /*
4320  * hugepages command line processing
4321  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4322  * specification.  If not, ignore the hugepages value.  hugepages can also
4323  * be the first huge page command line  option in which case it implicitly
4324  * specifies the number of huge pages for the default size.
4325  */
4326 static int __init hugepages_setup(char *s)
4327 {
4328 	unsigned long *mhp;
4329 	static unsigned long *last_mhp;
4330 	int node = NUMA_NO_NODE;
4331 	int count;
4332 	unsigned long tmp;
4333 	char *p = s;
4334 
4335 	if (!parsed_valid_hugepagesz) {
4336 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4337 		parsed_valid_hugepagesz = true;
4338 		return 1;
4339 	}
4340 
4341 	/*
4342 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4343 	 * yet, so this hugepages= parameter goes to the "default hstate".
4344 	 * Otherwise, it goes with the previously parsed hugepagesz or
4345 	 * default_hugepagesz.
4346 	 */
4347 	else if (!hugetlb_max_hstate)
4348 		mhp = &default_hstate_max_huge_pages;
4349 	else
4350 		mhp = &parsed_hstate->max_huge_pages;
4351 
4352 	if (mhp == last_mhp) {
4353 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4354 		return 1;
4355 	}
4356 
4357 	while (*p) {
4358 		count = 0;
4359 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4360 			goto invalid;
4361 		/* Parameter is node format */
4362 		if (p[count] == ':') {
4363 			if (!hugetlb_node_alloc_supported()) {
4364 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4365 				return 1;
4366 			}
4367 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4368 				goto invalid;
4369 			node = array_index_nospec(tmp, MAX_NUMNODES);
4370 			p += count + 1;
4371 			/* Parse hugepages */
4372 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4373 				goto invalid;
4374 			if (!hugetlb_max_hstate)
4375 				default_hugepages_in_node[node] = tmp;
4376 			else
4377 				parsed_hstate->max_huge_pages_node[node] = tmp;
4378 			*mhp += tmp;
4379 			/* Go to parse next node*/
4380 			if (p[count] == ',')
4381 				p += count + 1;
4382 			else
4383 				break;
4384 		} else {
4385 			if (p != s)
4386 				goto invalid;
4387 			*mhp = tmp;
4388 			break;
4389 		}
4390 	}
4391 
4392 	/*
4393 	 * Global state is always initialized later in hugetlb_init.
4394 	 * But we need to allocate gigantic hstates here early to still
4395 	 * use the bootmem allocator.
4396 	 */
4397 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4398 		hugetlb_hstate_alloc_pages(parsed_hstate);
4399 
4400 	last_mhp = mhp;
4401 
4402 	return 1;
4403 
4404 invalid:
4405 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4406 	hugepages_clear_pages_in_node();
4407 	return 1;
4408 }
4409 __setup("hugepages=", hugepages_setup);
4410 
4411 /*
4412  * hugepagesz command line processing
4413  * A specific huge page size can only be specified once with hugepagesz.
4414  * hugepagesz is followed by hugepages on the command line.  The global
4415  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4416  * hugepagesz argument was valid.
4417  */
4418 static int __init hugepagesz_setup(char *s)
4419 {
4420 	unsigned long size;
4421 	struct hstate *h;
4422 
4423 	parsed_valid_hugepagesz = false;
4424 	size = (unsigned long)memparse(s, NULL);
4425 
4426 	if (!arch_hugetlb_valid_size(size)) {
4427 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4428 		return 1;
4429 	}
4430 
4431 	h = size_to_hstate(size);
4432 	if (h) {
4433 		/*
4434 		 * hstate for this size already exists.  This is normally
4435 		 * an error, but is allowed if the existing hstate is the
4436 		 * default hstate.  More specifically, it is only allowed if
4437 		 * the number of huge pages for the default hstate was not
4438 		 * previously specified.
4439 		 */
4440 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4441 		    default_hstate.max_huge_pages) {
4442 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4443 			return 1;
4444 		}
4445 
4446 		/*
4447 		 * No need to call hugetlb_add_hstate() as hstate already
4448 		 * exists.  But, do set parsed_hstate so that a following
4449 		 * hugepages= parameter will be applied to this hstate.
4450 		 */
4451 		parsed_hstate = h;
4452 		parsed_valid_hugepagesz = true;
4453 		return 1;
4454 	}
4455 
4456 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4457 	parsed_valid_hugepagesz = true;
4458 	return 1;
4459 }
4460 __setup("hugepagesz=", hugepagesz_setup);
4461 
4462 /*
4463  * default_hugepagesz command line input
4464  * Only one instance of default_hugepagesz allowed on command line.
4465  */
4466 static int __init default_hugepagesz_setup(char *s)
4467 {
4468 	unsigned long size;
4469 	int i;
4470 
4471 	parsed_valid_hugepagesz = false;
4472 	if (parsed_default_hugepagesz) {
4473 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4474 		return 1;
4475 	}
4476 
4477 	size = (unsigned long)memparse(s, NULL);
4478 
4479 	if (!arch_hugetlb_valid_size(size)) {
4480 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4481 		return 1;
4482 	}
4483 
4484 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4485 	parsed_valid_hugepagesz = true;
4486 	parsed_default_hugepagesz = true;
4487 	default_hstate_idx = hstate_index(size_to_hstate(size));
4488 
4489 	/*
4490 	 * The number of default huge pages (for this size) could have been
4491 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4492 	 * then default_hstate_max_huge_pages is set.  If the default huge
4493 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4494 	 * allocated here from bootmem allocator.
4495 	 */
4496 	if (default_hstate_max_huge_pages) {
4497 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4498 		for_each_online_node(i)
4499 			default_hstate.max_huge_pages_node[i] =
4500 				default_hugepages_in_node[i];
4501 		if (hstate_is_gigantic(&default_hstate))
4502 			hugetlb_hstate_alloc_pages(&default_hstate);
4503 		default_hstate_max_huge_pages = 0;
4504 	}
4505 
4506 	return 1;
4507 }
4508 __setup("default_hugepagesz=", default_hugepagesz_setup);
4509 
4510 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4511 {
4512 #ifdef CONFIG_NUMA
4513 	struct mempolicy *mpol = get_task_policy(current);
4514 
4515 	/*
4516 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4517 	 * (from policy_nodemask) specifically for hugetlb case
4518 	 */
4519 	if (mpol->mode == MPOL_BIND &&
4520 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4521 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4522 		return &mpol->nodes;
4523 #endif
4524 	return NULL;
4525 }
4526 
4527 static unsigned int allowed_mems_nr(struct hstate *h)
4528 {
4529 	int node;
4530 	unsigned int nr = 0;
4531 	nodemask_t *mbind_nodemask;
4532 	unsigned int *array = h->free_huge_pages_node;
4533 	gfp_t gfp_mask = htlb_alloc_mask(h);
4534 
4535 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4536 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4537 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4538 			nr += array[node];
4539 	}
4540 
4541 	return nr;
4542 }
4543 
4544 #ifdef CONFIG_SYSCTL
4545 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4546 					  void *buffer, size_t *length,
4547 					  loff_t *ppos, unsigned long *out)
4548 {
4549 	struct ctl_table dup_table;
4550 
4551 	/*
4552 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4553 	 * can duplicate the @table and alter the duplicate of it.
4554 	 */
4555 	dup_table = *table;
4556 	dup_table.data = out;
4557 
4558 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4559 }
4560 
4561 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4562 			 struct ctl_table *table, int write,
4563 			 void *buffer, size_t *length, loff_t *ppos)
4564 {
4565 	struct hstate *h = &default_hstate;
4566 	unsigned long tmp = h->max_huge_pages;
4567 	int ret;
4568 
4569 	if (!hugepages_supported())
4570 		return -EOPNOTSUPP;
4571 
4572 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4573 					     &tmp);
4574 	if (ret)
4575 		goto out;
4576 
4577 	if (write)
4578 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4579 						  NUMA_NO_NODE, tmp, *length);
4580 out:
4581 	return ret;
4582 }
4583 
4584 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4585 			  void *buffer, size_t *length, loff_t *ppos)
4586 {
4587 
4588 	return hugetlb_sysctl_handler_common(false, table, write,
4589 							buffer, length, ppos);
4590 }
4591 
4592 #ifdef CONFIG_NUMA
4593 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4594 			  void *buffer, size_t *length, loff_t *ppos)
4595 {
4596 	return hugetlb_sysctl_handler_common(true, table, write,
4597 							buffer, length, ppos);
4598 }
4599 #endif /* CONFIG_NUMA */
4600 
4601 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4602 		void *buffer, size_t *length, loff_t *ppos)
4603 {
4604 	struct hstate *h = &default_hstate;
4605 	unsigned long tmp;
4606 	int ret;
4607 
4608 	if (!hugepages_supported())
4609 		return -EOPNOTSUPP;
4610 
4611 	tmp = h->nr_overcommit_huge_pages;
4612 
4613 	if (write && hstate_is_gigantic(h))
4614 		return -EINVAL;
4615 
4616 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4617 					     &tmp);
4618 	if (ret)
4619 		goto out;
4620 
4621 	if (write) {
4622 		spin_lock_irq(&hugetlb_lock);
4623 		h->nr_overcommit_huge_pages = tmp;
4624 		spin_unlock_irq(&hugetlb_lock);
4625 	}
4626 out:
4627 	return ret;
4628 }
4629 
4630 static struct ctl_table hugetlb_table[] = {
4631 	{
4632 		.procname	= "nr_hugepages",
4633 		.data		= NULL,
4634 		.maxlen		= sizeof(unsigned long),
4635 		.mode		= 0644,
4636 		.proc_handler	= hugetlb_sysctl_handler,
4637 	},
4638 #ifdef CONFIG_NUMA
4639 	{
4640 		.procname       = "nr_hugepages_mempolicy",
4641 		.data           = NULL,
4642 		.maxlen         = sizeof(unsigned long),
4643 		.mode           = 0644,
4644 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4645 	},
4646 #endif
4647 	{
4648 		.procname	= "hugetlb_shm_group",
4649 		.data		= &sysctl_hugetlb_shm_group,
4650 		.maxlen		= sizeof(gid_t),
4651 		.mode		= 0644,
4652 		.proc_handler	= proc_dointvec,
4653 	},
4654 	{
4655 		.procname	= "nr_overcommit_hugepages",
4656 		.data		= NULL,
4657 		.maxlen		= sizeof(unsigned long),
4658 		.mode		= 0644,
4659 		.proc_handler	= hugetlb_overcommit_handler,
4660 	},
4661 	{ }
4662 };
4663 
4664 static void hugetlb_sysctl_init(void)
4665 {
4666 	register_sysctl_init("vm", hugetlb_table);
4667 }
4668 #endif /* CONFIG_SYSCTL */
4669 
4670 void hugetlb_report_meminfo(struct seq_file *m)
4671 {
4672 	struct hstate *h;
4673 	unsigned long total = 0;
4674 
4675 	if (!hugepages_supported())
4676 		return;
4677 
4678 	for_each_hstate(h) {
4679 		unsigned long count = h->nr_huge_pages;
4680 
4681 		total += huge_page_size(h) * count;
4682 
4683 		if (h == &default_hstate)
4684 			seq_printf(m,
4685 				   "HugePages_Total:   %5lu\n"
4686 				   "HugePages_Free:    %5lu\n"
4687 				   "HugePages_Rsvd:    %5lu\n"
4688 				   "HugePages_Surp:    %5lu\n"
4689 				   "Hugepagesize:   %8lu kB\n",
4690 				   count,
4691 				   h->free_huge_pages,
4692 				   h->resv_huge_pages,
4693 				   h->surplus_huge_pages,
4694 				   huge_page_size(h) / SZ_1K);
4695 	}
4696 
4697 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4698 }
4699 
4700 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4701 {
4702 	struct hstate *h = &default_hstate;
4703 
4704 	if (!hugepages_supported())
4705 		return 0;
4706 
4707 	return sysfs_emit_at(buf, len,
4708 			     "Node %d HugePages_Total: %5u\n"
4709 			     "Node %d HugePages_Free:  %5u\n"
4710 			     "Node %d HugePages_Surp:  %5u\n",
4711 			     nid, h->nr_huge_pages_node[nid],
4712 			     nid, h->free_huge_pages_node[nid],
4713 			     nid, h->surplus_huge_pages_node[nid]);
4714 }
4715 
4716 void hugetlb_show_meminfo_node(int nid)
4717 {
4718 	struct hstate *h;
4719 
4720 	if (!hugepages_supported())
4721 		return;
4722 
4723 	for_each_hstate(h)
4724 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4725 			nid,
4726 			h->nr_huge_pages_node[nid],
4727 			h->free_huge_pages_node[nid],
4728 			h->surplus_huge_pages_node[nid],
4729 			huge_page_size(h) / SZ_1K);
4730 }
4731 
4732 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4733 {
4734 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4735 		   K(atomic_long_read(&mm->hugetlb_usage)));
4736 }
4737 
4738 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4739 unsigned long hugetlb_total_pages(void)
4740 {
4741 	struct hstate *h;
4742 	unsigned long nr_total_pages = 0;
4743 
4744 	for_each_hstate(h)
4745 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4746 	return nr_total_pages;
4747 }
4748 
4749 static int hugetlb_acct_memory(struct hstate *h, long delta)
4750 {
4751 	int ret = -ENOMEM;
4752 
4753 	if (!delta)
4754 		return 0;
4755 
4756 	spin_lock_irq(&hugetlb_lock);
4757 	/*
4758 	 * When cpuset is configured, it breaks the strict hugetlb page
4759 	 * reservation as the accounting is done on a global variable. Such
4760 	 * reservation is completely rubbish in the presence of cpuset because
4761 	 * the reservation is not checked against page availability for the
4762 	 * current cpuset. Application can still potentially OOM'ed by kernel
4763 	 * with lack of free htlb page in cpuset that the task is in.
4764 	 * Attempt to enforce strict accounting with cpuset is almost
4765 	 * impossible (or too ugly) because cpuset is too fluid that
4766 	 * task or memory node can be dynamically moved between cpusets.
4767 	 *
4768 	 * The change of semantics for shared hugetlb mapping with cpuset is
4769 	 * undesirable. However, in order to preserve some of the semantics,
4770 	 * we fall back to check against current free page availability as
4771 	 * a best attempt and hopefully to minimize the impact of changing
4772 	 * semantics that cpuset has.
4773 	 *
4774 	 * Apart from cpuset, we also have memory policy mechanism that
4775 	 * also determines from which node the kernel will allocate memory
4776 	 * in a NUMA system. So similar to cpuset, we also should consider
4777 	 * the memory policy of the current task. Similar to the description
4778 	 * above.
4779 	 */
4780 	if (delta > 0) {
4781 		if (gather_surplus_pages(h, delta) < 0)
4782 			goto out;
4783 
4784 		if (delta > allowed_mems_nr(h)) {
4785 			return_unused_surplus_pages(h, delta);
4786 			goto out;
4787 		}
4788 	}
4789 
4790 	ret = 0;
4791 	if (delta < 0)
4792 		return_unused_surplus_pages(h, (unsigned long) -delta);
4793 
4794 out:
4795 	spin_unlock_irq(&hugetlb_lock);
4796 	return ret;
4797 }
4798 
4799 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4800 {
4801 	struct resv_map *resv = vma_resv_map(vma);
4802 
4803 	/*
4804 	 * HPAGE_RESV_OWNER indicates a private mapping.
4805 	 * This new VMA should share its siblings reservation map if present.
4806 	 * The VMA will only ever have a valid reservation map pointer where
4807 	 * it is being copied for another still existing VMA.  As that VMA
4808 	 * has a reference to the reservation map it cannot disappear until
4809 	 * after this open call completes.  It is therefore safe to take a
4810 	 * new reference here without additional locking.
4811 	 */
4812 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4813 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4814 		kref_get(&resv->refs);
4815 	}
4816 
4817 	/*
4818 	 * vma_lock structure for sharable mappings is vma specific.
4819 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4820 	 * new structure.  Before clearing, make sure vma_lock is not
4821 	 * for this vma.
4822 	 */
4823 	if (vma->vm_flags & VM_MAYSHARE) {
4824 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4825 
4826 		if (vma_lock) {
4827 			if (vma_lock->vma != vma) {
4828 				vma->vm_private_data = NULL;
4829 				hugetlb_vma_lock_alloc(vma);
4830 			} else
4831 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4832 		} else
4833 			hugetlb_vma_lock_alloc(vma);
4834 	}
4835 }
4836 
4837 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4838 {
4839 	struct hstate *h = hstate_vma(vma);
4840 	struct resv_map *resv;
4841 	struct hugepage_subpool *spool = subpool_vma(vma);
4842 	unsigned long reserve, start, end;
4843 	long gbl_reserve;
4844 
4845 	hugetlb_vma_lock_free(vma);
4846 
4847 	resv = vma_resv_map(vma);
4848 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4849 		return;
4850 
4851 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4852 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4853 
4854 	reserve = (end - start) - region_count(resv, start, end);
4855 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4856 	if (reserve) {
4857 		/*
4858 		 * Decrement reserve counts.  The global reserve count may be
4859 		 * adjusted if the subpool has a minimum size.
4860 		 */
4861 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4862 		hugetlb_acct_memory(h, -gbl_reserve);
4863 	}
4864 
4865 	kref_put(&resv->refs, resv_map_release);
4866 }
4867 
4868 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4869 {
4870 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4871 		return -EINVAL;
4872 
4873 	/*
4874 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4875 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4876 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4877 	 */
4878 	if (addr & ~PUD_MASK) {
4879 		/*
4880 		 * hugetlb_vm_op_split is called right before we attempt to
4881 		 * split the VMA. We will need to unshare PMDs in the old and
4882 		 * new VMAs, so let's unshare before we split.
4883 		 */
4884 		unsigned long floor = addr & PUD_MASK;
4885 		unsigned long ceil = floor + PUD_SIZE;
4886 
4887 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4888 			hugetlb_unshare_pmds(vma, floor, ceil);
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4895 {
4896 	return huge_page_size(hstate_vma(vma));
4897 }
4898 
4899 /*
4900  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4901  * handle_mm_fault() to try to instantiate regular-sized pages in the
4902  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4903  * this far.
4904  */
4905 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4906 {
4907 	BUG();
4908 	return 0;
4909 }
4910 
4911 /*
4912  * When a new function is introduced to vm_operations_struct and added
4913  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4914  * This is because under System V memory model, mappings created via
4915  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4916  * their original vm_ops are overwritten with shm_vm_ops.
4917  */
4918 const struct vm_operations_struct hugetlb_vm_ops = {
4919 	.fault = hugetlb_vm_op_fault,
4920 	.open = hugetlb_vm_op_open,
4921 	.close = hugetlb_vm_op_close,
4922 	.may_split = hugetlb_vm_op_split,
4923 	.pagesize = hugetlb_vm_op_pagesize,
4924 };
4925 
4926 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4927 				int writable)
4928 {
4929 	pte_t entry;
4930 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4931 
4932 	if (writable) {
4933 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4934 					 vma->vm_page_prot)));
4935 	} else {
4936 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4937 					   vma->vm_page_prot));
4938 	}
4939 	entry = pte_mkyoung(entry);
4940 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4941 
4942 	return entry;
4943 }
4944 
4945 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4946 				   unsigned long address, pte_t *ptep)
4947 {
4948 	pte_t entry;
4949 
4950 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4951 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4952 		update_mmu_cache(vma, address, ptep);
4953 }
4954 
4955 bool is_hugetlb_entry_migration(pte_t pte)
4956 {
4957 	swp_entry_t swp;
4958 
4959 	if (huge_pte_none(pte) || pte_present(pte))
4960 		return false;
4961 	swp = pte_to_swp_entry(pte);
4962 	if (is_migration_entry(swp))
4963 		return true;
4964 	else
4965 		return false;
4966 }
4967 
4968 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4969 {
4970 	swp_entry_t swp;
4971 
4972 	if (huge_pte_none(pte) || pte_present(pte))
4973 		return false;
4974 	swp = pte_to_swp_entry(pte);
4975 	if (is_hwpoison_entry(swp))
4976 		return true;
4977 	else
4978 		return false;
4979 }
4980 
4981 static void
4982 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4983 		      struct folio *new_folio, pte_t old)
4984 {
4985 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
4986 
4987 	__folio_mark_uptodate(new_folio);
4988 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
4989 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4990 		newpte = huge_pte_mkuffd_wp(newpte);
4991 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
4992 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4993 	folio_set_hugetlb_migratable(new_folio);
4994 }
4995 
4996 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4997 			    struct vm_area_struct *dst_vma,
4998 			    struct vm_area_struct *src_vma)
4999 {
5000 	pte_t *src_pte, *dst_pte, entry;
5001 	struct folio *pte_folio;
5002 	unsigned long addr;
5003 	bool cow = is_cow_mapping(src_vma->vm_flags);
5004 	struct hstate *h = hstate_vma(src_vma);
5005 	unsigned long sz = huge_page_size(h);
5006 	unsigned long npages = pages_per_huge_page(h);
5007 	struct mmu_notifier_range range;
5008 	unsigned long last_addr_mask;
5009 	int ret = 0;
5010 
5011 	if (cow) {
5012 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5013 					src_vma->vm_start,
5014 					src_vma->vm_end);
5015 		mmu_notifier_invalidate_range_start(&range);
5016 		vma_assert_write_locked(src_vma);
5017 		raw_write_seqcount_begin(&src->write_protect_seq);
5018 	} else {
5019 		/*
5020 		 * For shared mappings the vma lock must be held before
5021 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5022 		 * returned ptep could go away if part of a shared pmd and
5023 		 * another thread calls huge_pmd_unshare.
5024 		 */
5025 		hugetlb_vma_lock_read(src_vma);
5026 	}
5027 
5028 	last_addr_mask = hugetlb_mask_last_page(h);
5029 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5030 		spinlock_t *src_ptl, *dst_ptl;
5031 		src_pte = hugetlb_walk(src_vma, addr, sz);
5032 		if (!src_pte) {
5033 			addr |= last_addr_mask;
5034 			continue;
5035 		}
5036 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5037 		if (!dst_pte) {
5038 			ret = -ENOMEM;
5039 			break;
5040 		}
5041 
5042 		/*
5043 		 * If the pagetables are shared don't copy or take references.
5044 		 *
5045 		 * dst_pte == src_pte is the common case of src/dest sharing.
5046 		 * However, src could have 'unshared' and dst shares with
5047 		 * another vma. So page_count of ptep page is checked instead
5048 		 * to reliably determine whether pte is shared.
5049 		 */
5050 		if (page_count(virt_to_page(dst_pte)) > 1) {
5051 			addr |= last_addr_mask;
5052 			continue;
5053 		}
5054 
5055 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5056 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5057 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5058 		entry = huge_ptep_get(src_pte);
5059 again:
5060 		if (huge_pte_none(entry)) {
5061 			/*
5062 			 * Skip if src entry none.
5063 			 */
5064 			;
5065 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5066 			if (!userfaultfd_wp(dst_vma))
5067 				entry = huge_pte_clear_uffd_wp(entry);
5068 			set_huge_pte_at(dst, addr, dst_pte, entry);
5069 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5070 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5071 			bool uffd_wp = pte_swp_uffd_wp(entry);
5072 
5073 			if (!is_readable_migration_entry(swp_entry) && cow) {
5074 				/*
5075 				 * COW mappings require pages in both
5076 				 * parent and child to be set to read.
5077 				 */
5078 				swp_entry = make_readable_migration_entry(
5079 							swp_offset(swp_entry));
5080 				entry = swp_entry_to_pte(swp_entry);
5081 				if (userfaultfd_wp(src_vma) && uffd_wp)
5082 					entry = pte_swp_mkuffd_wp(entry);
5083 				set_huge_pte_at(src, addr, src_pte, entry);
5084 			}
5085 			if (!userfaultfd_wp(dst_vma))
5086 				entry = huge_pte_clear_uffd_wp(entry);
5087 			set_huge_pte_at(dst, addr, dst_pte, entry);
5088 		} else if (unlikely(is_pte_marker(entry))) {
5089 			pte_marker marker = copy_pte_marker(
5090 				pte_to_swp_entry(entry), dst_vma);
5091 
5092 			if (marker)
5093 				set_huge_pte_at(dst, addr, dst_pte,
5094 						make_pte_marker(marker));
5095 		} else {
5096 			entry = huge_ptep_get(src_pte);
5097 			pte_folio = page_folio(pte_page(entry));
5098 			folio_get(pte_folio);
5099 
5100 			/*
5101 			 * Failing to duplicate the anon rmap is a rare case
5102 			 * where we see pinned hugetlb pages while they're
5103 			 * prone to COW. We need to do the COW earlier during
5104 			 * fork.
5105 			 *
5106 			 * When pre-allocating the page or copying data, we
5107 			 * need to be without the pgtable locks since we could
5108 			 * sleep during the process.
5109 			 */
5110 			if (!folio_test_anon(pte_folio)) {
5111 				page_dup_file_rmap(&pte_folio->page, true);
5112 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5113 							  true, src_vma)) {
5114 				pte_t src_pte_old = entry;
5115 				struct folio *new_folio;
5116 
5117 				spin_unlock(src_ptl);
5118 				spin_unlock(dst_ptl);
5119 				/* Do not use reserve as it's private owned */
5120 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5121 				if (IS_ERR(new_folio)) {
5122 					folio_put(pte_folio);
5123 					ret = PTR_ERR(new_folio);
5124 					break;
5125 				}
5126 				ret = copy_user_large_folio(new_folio,
5127 							    pte_folio,
5128 							    addr, dst_vma);
5129 				folio_put(pte_folio);
5130 				if (ret) {
5131 					folio_put(new_folio);
5132 					break;
5133 				}
5134 
5135 				/* Install the new hugetlb folio if src pte stable */
5136 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5137 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5138 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5139 				entry = huge_ptep_get(src_pte);
5140 				if (!pte_same(src_pte_old, entry)) {
5141 					restore_reserve_on_error(h, dst_vma, addr,
5142 								new_folio);
5143 					folio_put(new_folio);
5144 					/* huge_ptep of dst_pte won't change as in child */
5145 					goto again;
5146 				}
5147 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5148 						      new_folio, src_pte_old);
5149 				spin_unlock(src_ptl);
5150 				spin_unlock(dst_ptl);
5151 				continue;
5152 			}
5153 
5154 			if (cow) {
5155 				/*
5156 				 * No need to notify as we are downgrading page
5157 				 * table protection not changing it to point
5158 				 * to a new page.
5159 				 *
5160 				 * See Documentation/mm/mmu_notifier.rst
5161 				 */
5162 				huge_ptep_set_wrprotect(src, addr, src_pte);
5163 				entry = huge_pte_wrprotect(entry);
5164 			}
5165 
5166 			if (!userfaultfd_wp(dst_vma))
5167 				entry = huge_pte_clear_uffd_wp(entry);
5168 
5169 			set_huge_pte_at(dst, addr, dst_pte, entry);
5170 			hugetlb_count_add(npages, dst);
5171 		}
5172 		spin_unlock(src_ptl);
5173 		spin_unlock(dst_ptl);
5174 	}
5175 
5176 	if (cow) {
5177 		raw_write_seqcount_end(&src->write_protect_seq);
5178 		mmu_notifier_invalidate_range_end(&range);
5179 	} else {
5180 		hugetlb_vma_unlock_read(src_vma);
5181 	}
5182 
5183 	return ret;
5184 }
5185 
5186 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5187 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5188 {
5189 	struct hstate *h = hstate_vma(vma);
5190 	struct mm_struct *mm = vma->vm_mm;
5191 	spinlock_t *src_ptl, *dst_ptl;
5192 	pte_t pte;
5193 
5194 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5195 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5196 
5197 	/*
5198 	 * We don't have to worry about the ordering of src and dst ptlocks
5199 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5200 	 */
5201 	if (src_ptl != dst_ptl)
5202 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5203 
5204 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5205 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5206 
5207 	if (src_ptl != dst_ptl)
5208 		spin_unlock(src_ptl);
5209 	spin_unlock(dst_ptl);
5210 }
5211 
5212 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5213 			     struct vm_area_struct *new_vma,
5214 			     unsigned long old_addr, unsigned long new_addr,
5215 			     unsigned long len)
5216 {
5217 	struct hstate *h = hstate_vma(vma);
5218 	struct address_space *mapping = vma->vm_file->f_mapping;
5219 	unsigned long sz = huge_page_size(h);
5220 	struct mm_struct *mm = vma->vm_mm;
5221 	unsigned long old_end = old_addr + len;
5222 	unsigned long last_addr_mask;
5223 	pte_t *src_pte, *dst_pte;
5224 	struct mmu_notifier_range range;
5225 	bool shared_pmd = false;
5226 
5227 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5228 				old_end);
5229 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5230 	/*
5231 	 * In case of shared PMDs, we should cover the maximum possible
5232 	 * range.
5233 	 */
5234 	flush_cache_range(vma, range.start, range.end);
5235 
5236 	mmu_notifier_invalidate_range_start(&range);
5237 	last_addr_mask = hugetlb_mask_last_page(h);
5238 	/* Prevent race with file truncation */
5239 	hugetlb_vma_lock_write(vma);
5240 	i_mmap_lock_write(mapping);
5241 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5242 		src_pte = hugetlb_walk(vma, old_addr, sz);
5243 		if (!src_pte) {
5244 			old_addr |= last_addr_mask;
5245 			new_addr |= last_addr_mask;
5246 			continue;
5247 		}
5248 		if (huge_pte_none(huge_ptep_get(src_pte)))
5249 			continue;
5250 
5251 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5252 			shared_pmd = true;
5253 			old_addr |= last_addr_mask;
5254 			new_addr |= last_addr_mask;
5255 			continue;
5256 		}
5257 
5258 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5259 		if (!dst_pte)
5260 			break;
5261 
5262 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5263 	}
5264 
5265 	if (shared_pmd)
5266 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5267 	else
5268 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5269 	mmu_notifier_invalidate_range_end(&range);
5270 	i_mmap_unlock_write(mapping);
5271 	hugetlb_vma_unlock_write(vma);
5272 
5273 	return len + old_addr - old_end;
5274 }
5275 
5276 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5277 				   unsigned long start, unsigned long end,
5278 				   struct page *ref_page, zap_flags_t zap_flags)
5279 {
5280 	struct mm_struct *mm = vma->vm_mm;
5281 	unsigned long address;
5282 	pte_t *ptep;
5283 	pte_t pte;
5284 	spinlock_t *ptl;
5285 	struct page *page;
5286 	struct hstate *h = hstate_vma(vma);
5287 	unsigned long sz = huge_page_size(h);
5288 	unsigned long last_addr_mask;
5289 	bool force_flush = false;
5290 
5291 	WARN_ON(!is_vm_hugetlb_page(vma));
5292 	BUG_ON(start & ~huge_page_mask(h));
5293 	BUG_ON(end & ~huge_page_mask(h));
5294 
5295 	/*
5296 	 * This is a hugetlb vma, all the pte entries should point
5297 	 * to huge page.
5298 	 */
5299 	tlb_change_page_size(tlb, sz);
5300 	tlb_start_vma(tlb, vma);
5301 
5302 	last_addr_mask = hugetlb_mask_last_page(h);
5303 	address = start;
5304 	for (; address < end; address += sz) {
5305 		ptep = hugetlb_walk(vma, address, sz);
5306 		if (!ptep) {
5307 			address |= last_addr_mask;
5308 			continue;
5309 		}
5310 
5311 		ptl = huge_pte_lock(h, mm, ptep);
5312 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5313 			spin_unlock(ptl);
5314 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5315 			force_flush = true;
5316 			address |= last_addr_mask;
5317 			continue;
5318 		}
5319 
5320 		pte = huge_ptep_get(ptep);
5321 		if (huge_pte_none(pte)) {
5322 			spin_unlock(ptl);
5323 			continue;
5324 		}
5325 
5326 		/*
5327 		 * Migrating hugepage or HWPoisoned hugepage is already
5328 		 * unmapped and its refcount is dropped, so just clear pte here.
5329 		 */
5330 		if (unlikely(!pte_present(pte))) {
5331 			/*
5332 			 * If the pte was wr-protected by uffd-wp in any of the
5333 			 * swap forms, meanwhile the caller does not want to
5334 			 * drop the uffd-wp bit in this zap, then replace the
5335 			 * pte with a marker.
5336 			 */
5337 			if (pte_swp_uffd_wp_any(pte) &&
5338 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5339 				set_huge_pte_at(mm, address, ptep,
5340 						make_pte_marker(PTE_MARKER_UFFD_WP));
5341 			else
5342 				huge_pte_clear(mm, address, ptep, sz);
5343 			spin_unlock(ptl);
5344 			continue;
5345 		}
5346 
5347 		page = pte_page(pte);
5348 		/*
5349 		 * If a reference page is supplied, it is because a specific
5350 		 * page is being unmapped, not a range. Ensure the page we
5351 		 * are about to unmap is the actual page of interest.
5352 		 */
5353 		if (ref_page) {
5354 			if (page != ref_page) {
5355 				spin_unlock(ptl);
5356 				continue;
5357 			}
5358 			/*
5359 			 * Mark the VMA as having unmapped its page so that
5360 			 * future faults in this VMA will fail rather than
5361 			 * looking like data was lost
5362 			 */
5363 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5364 		}
5365 
5366 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5367 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5368 		if (huge_pte_dirty(pte))
5369 			set_page_dirty(page);
5370 		/* Leave a uffd-wp pte marker if needed */
5371 		if (huge_pte_uffd_wp(pte) &&
5372 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5373 			set_huge_pte_at(mm, address, ptep,
5374 					make_pte_marker(PTE_MARKER_UFFD_WP));
5375 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5376 		page_remove_rmap(page, vma, true);
5377 
5378 		spin_unlock(ptl);
5379 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5380 		/*
5381 		 * Bail out after unmapping reference page if supplied
5382 		 */
5383 		if (ref_page)
5384 			break;
5385 	}
5386 	tlb_end_vma(tlb, vma);
5387 
5388 	/*
5389 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5390 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5391 	 * guaranteed that the last refernece would not be dropped. But we must
5392 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5393 	 * dropped and the last reference to the shared PMDs page might be
5394 	 * dropped as well.
5395 	 *
5396 	 * In theory we could defer the freeing of the PMD pages as well, but
5397 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5398 	 * detect sharing, so we cannot defer the release of the page either.
5399 	 * Instead, do flush now.
5400 	 */
5401 	if (force_flush)
5402 		tlb_flush_mmu_tlbonly(tlb);
5403 }
5404 
5405 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5406 			  struct vm_area_struct *vma, unsigned long start,
5407 			  unsigned long end, struct page *ref_page,
5408 			  zap_flags_t zap_flags)
5409 {
5410 	hugetlb_vma_lock_write(vma);
5411 	i_mmap_lock_write(vma->vm_file->f_mapping);
5412 
5413 	/* mmu notification performed in caller */
5414 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5415 
5416 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5417 		/*
5418 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5419 		 * When the vma_lock is freed, this makes the vma ineligible
5420 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5421 		 * pmd sharing.  This is important as page tables for this
5422 		 * unmapped range will be asynchrously deleted.  If the page
5423 		 * tables are shared, there will be issues when accessed by
5424 		 * someone else.
5425 		 */
5426 		__hugetlb_vma_unlock_write_free(vma);
5427 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5428 	} else {
5429 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5430 		hugetlb_vma_unlock_write(vma);
5431 	}
5432 }
5433 
5434 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5435 			  unsigned long end, struct page *ref_page,
5436 			  zap_flags_t zap_flags)
5437 {
5438 	struct mmu_notifier_range range;
5439 	struct mmu_gather tlb;
5440 
5441 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5442 				start, end);
5443 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5444 	mmu_notifier_invalidate_range_start(&range);
5445 	tlb_gather_mmu(&tlb, vma->vm_mm);
5446 
5447 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5448 
5449 	mmu_notifier_invalidate_range_end(&range);
5450 	tlb_finish_mmu(&tlb);
5451 }
5452 
5453 /*
5454  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5455  * mapping it owns the reserve page for. The intention is to unmap the page
5456  * from other VMAs and let the children be SIGKILLed if they are faulting the
5457  * same region.
5458  */
5459 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5460 			      struct page *page, unsigned long address)
5461 {
5462 	struct hstate *h = hstate_vma(vma);
5463 	struct vm_area_struct *iter_vma;
5464 	struct address_space *mapping;
5465 	pgoff_t pgoff;
5466 
5467 	/*
5468 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5469 	 * from page cache lookup which is in HPAGE_SIZE units.
5470 	 */
5471 	address = address & huge_page_mask(h);
5472 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5473 			vma->vm_pgoff;
5474 	mapping = vma->vm_file->f_mapping;
5475 
5476 	/*
5477 	 * Take the mapping lock for the duration of the table walk. As
5478 	 * this mapping should be shared between all the VMAs,
5479 	 * __unmap_hugepage_range() is called as the lock is already held
5480 	 */
5481 	i_mmap_lock_write(mapping);
5482 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5483 		/* Do not unmap the current VMA */
5484 		if (iter_vma == vma)
5485 			continue;
5486 
5487 		/*
5488 		 * Shared VMAs have their own reserves and do not affect
5489 		 * MAP_PRIVATE accounting but it is possible that a shared
5490 		 * VMA is using the same page so check and skip such VMAs.
5491 		 */
5492 		if (iter_vma->vm_flags & VM_MAYSHARE)
5493 			continue;
5494 
5495 		/*
5496 		 * Unmap the page from other VMAs without their own reserves.
5497 		 * They get marked to be SIGKILLed if they fault in these
5498 		 * areas. This is because a future no-page fault on this VMA
5499 		 * could insert a zeroed page instead of the data existing
5500 		 * from the time of fork. This would look like data corruption
5501 		 */
5502 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5503 			unmap_hugepage_range(iter_vma, address,
5504 					     address + huge_page_size(h), page, 0);
5505 	}
5506 	i_mmap_unlock_write(mapping);
5507 }
5508 
5509 /*
5510  * hugetlb_wp() should be called with page lock of the original hugepage held.
5511  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5512  * cannot race with other handlers or page migration.
5513  * Keep the pte_same checks anyway to make transition from the mutex easier.
5514  */
5515 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5516 		       unsigned long address, pte_t *ptep, unsigned int flags,
5517 		       struct folio *pagecache_folio, spinlock_t *ptl)
5518 {
5519 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5520 	pte_t pte = huge_ptep_get(ptep);
5521 	struct hstate *h = hstate_vma(vma);
5522 	struct folio *old_folio;
5523 	struct folio *new_folio;
5524 	int outside_reserve = 0;
5525 	vm_fault_t ret = 0;
5526 	unsigned long haddr = address & huge_page_mask(h);
5527 	struct mmu_notifier_range range;
5528 
5529 	/*
5530 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5531 	 * handled when the uffd-wp protection is removed.
5532 	 *
5533 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5534 	 * can trigger this, because hugetlb_fault() will always resolve
5535 	 * uffd-wp bit first.
5536 	 */
5537 	if (!unshare && huge_pte_uffd_wp(pte))
5538 		return 0;
5539 
5540 	/*
5541 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5542 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5543 	 */
5544 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5545 		return VM_FAULT_SIGSEGV;
5546 
5547 	/* Let's take out MAP_SHARED mappings first. */
5548 	if (vma->vm_flags & VM_MAYSHARE) {
5549 		set_huge_ptep_writable(vma, haddr, ptep);
5550 		return 0;
5551 	}
5552 
5553 	old_folio = page_folio(pte_page(pte));
5554 
5555 	delayacct_wpcopy_start();
5556 
5557 retry_avoidcopy:
5558 	/*
5559 	 * If no-one else is actually using this page, we're the exclusive
5560 	 * owner and can reuse this page.
5561 	 */
5562 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5563 		if (!PageAnonExclusive(&old_folio->page))
5564 			page_move_anon_rmap(&old_folio->page, vma);
5565 		if (likely(!unshare))
5566 			set_huge_ptep_writable(vma, haddr, ptep);
5567 
5568 		delayacct_wpcopy_end();
5569 		return 0;
5570 	}
5571 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5572 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5573 
5574 	/*
5575 	 * If the process that created a MAP_PRIVATE mapping is about to
5576 	 * perform a COW due to a shared page count, attempt to satisfy
5577 	 * the allocation without using the existing reserves. The pagecache
5578 	 * page is used to determine if the reserve at this address was
5579 	 * consumed or not. If reserves were used, a partial faulted mapping
5580 	 * at the time of fork() could consume its reserves on COW instead
5581 	 * of the full address range.
5582 	 */
5583 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5584 			old_folio != pagecache_folio)
5585 		outside_reserve = 1;
5586 
5587 	folio_get(old_folio);
5588 
5589 	/*
5590 	 * Drop page table lock as buddy allocator may be called. It will
5591 	 * be acquired again before returning to the caller, as expected.
5592 	 */
5593 	spin_unlock(ptl);
5594 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5595 
5596 	if (IS_ERR(new_folio)) {
5597 		/*
5598 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5599 		 * it is due to references held by a child and an insufficient
5600 		 * huge page pool. To guarantee the original mappers
5601 		 * reliability, unmap the page from child processes. The child
5602 		 * may get SIGKILLed if it later faults.
5603 		 */
5604 		if (outside_reserve) {
5605 			struct address_space *mapping = vma->vm_file->f_mapping;
5606 			pgoff_t idx;
5607 			u32 hash;
5608 
5609 			folio_put(old_folio);
5610 			/*
5611 			 * Drop hugetlb_fault_mutex and vma_lock before
5612 			 * unmapping.  unmapping needs to hold vma_lock
5613 			 * in write mode.  Dropping vma_lock in read mode
5614 			 * here is OK as COW mappings do not interact with
5615 			 * PMD sharing.
5616 			 *
5617 			 * Reacquire both after unmap operation.
5618 			 */
5619 			idx = vma_hugecache_offset(h, vma, haddr);
5620 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5621 			hugetlb_vma_unlock_read(vma);
5622 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5623 
5624 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5625 
5626 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5627 			hugetlb_vma_lock_read(vma);
5628 			spin_lock(ptl);
5629 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5630 			if (likely(ptep &&
5631 				   pte_same(huge_ptep_get(ptep), pte)))
5632 				goto retry_avoidcopy;
5633 			/*
5634 			 * race occurs while re-acquiring page table
5635 			 * lock, and our job is done.
5636 			 */
5637 			delayacct_wpcopy_end();
5638 			return 0;
5639 		}
5640 
5641 		ret = vmf_error(PTR_ERR(new_folio));
5642 		goto out_release_old;
5643 	}
5644 
5645 	/*
5646 	 * When the original hugepage is shared one, it does not have
5647 	 * anon_vma prepared.
5648 	 */
5649 	if (unlikely(anon_vma_prepare(vma))) {
5650 		ret = VM_FAULT_OOM;
5651 		goto out_release_all;
5652 	}
5653 
5654 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5655 		ret = VM_FAULT_HWPOISON_LARGE;
5656 		goto out_release_all;
5657 	}
5658 	__folio_mark_uptodate(new_folio);
5659 
5660 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5661 				haddr + huge_page_size(h));
5662 	mmu_notifier_invalidate_range_start(&range);
5663 
5664 	/*
5665 	 * Retake the page table lock to check for racing updates
5666 	 * before the page tables are altered
5667 	 */
5668 	spin_lock(ptl);
5669 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5670 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5671 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5672 
5673 		/* Break COW or unshare */
5674 		huge_ptep_clear_flush(vma, haddr, ptep);
5675 		page_remove_rmap(&old_folio->page, vma, true);
5676 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5677 		if (huge_pte_uffd_wp(pte))
5678 			newpte = huge_pte_mkuffd_wp(newpte);
5679 		set_huge_pte_at(mm, haddr, ptep, newpte);
5680 		folio_set_hugetlb_migratable(new_folio);
5681 		/* Make the old page be freed below */
5682 		new_folio = old_folio;
5683 	}
5684 	spin_unlock(ptl);
5685 	mmu_notifier_invalidate_range_end(&range);
5686 out_release_all:
5687 	/*
5688 	 * No restore in case of successful pagetable update (Break COW or
5689 	 * unshare)
5690 	 */
5691 	if (new_folio != old_folio)
5692 		restore_reserve_on_error(h, vma, haddr, new_folio);
5693 	folio_put(new_folio);
5694 out_release_old:
5695 	folio_put(old_folio);
5696 
5697 	spin_lock(ptl); /* Caller expects lock to be held */
5698 
5699 	delayacct_wpcopy_end();
5700 	return ret;
5701 }
5702 
5703 /*
5704  * Return whether there is a pagecache page to back given address within VMA.
5705  */
5706 static bool hugetlbfs_pagecache_present(struct hstate *h,
5707 			struct vm_area_struct *vma, unsigned long address)
5708 {
5709 	struct address_space *mapping = vma->vm_file->f_mapping;
5710 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5711 	struct folio *folio;
5712 
5713 	folio = filemap_get_folio(mapping, idx);
5714 	if (IS_ERR(folio))
5715 		return false;
5716 	folio_put(folio);
5717 	return true;
5718 }
5719 
5720 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5721 			   pgoff_t idx)
5722 {
5723 	struct inode *inode = mapping->host;
5724 	struct hstate *h = hstate_inode(inode);
5725 	int err;
5726 
5727 	__folio_set_locked(folio);
5728 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5729 
5730 	if (unlikely(err)) {
5731 		__folio_clear_locked(folio);
5732 		return err;
5733 	}
5734 	folio_clear_hugetlb_restore_reserve(folio);
5735 
5736 	/*
5737 	 * mark folio dirty so that it will not be removed from cache/file
5738 	 * by non-hugetlbfs specific code paths.
5739 	 */
5740 	folio_mark_dirty(folio);
5741 
5742 	spin_lock(&inode->i_lock);
5743 	inode->i_blocks += blocks_per_huge_page(h);
5744 	spin_unlock(&inode->i_lock);
5745 	return 0;
5746 }
5747 
5748 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5749 						  struct address_space *mapping,
5750 						  pgoff_t idx,
5751 						  unsigned int flags,
5752 						  unsigned long haddr,
5753 						  unsigned long addr,
5754 						  unsigned long reason)
5755 {
5756 	u32 hash;
5757 	struct vm_fault vmf = {
5758 		.vma = vma,
5759 		.address = haddr,
5760 		.real_address = addr,
5761 		.flags = flags,
5762 
5763 		/*
5764 		 * Hard to debug if it ends up being
5765 		 * used by a callee that assumes
5766 		 * something about the other
5767 		 * uninitialized fields... same as in
5768 		 * memory.c
5769 		 */
5770 	};
5771 
5772 	/*
5773 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5774 	 * userfault. Also mmap_lock could be dropped due to handling
5775 	 * userfault, any vma operation should be careful from here.
5776 	 */
5777 	hugetlb_vma_unlock_read(vma);
5778 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5779 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5780 	return handle_userfault(&vmf, reason);
5781 }
5782 
5783 /*
5784  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5785  * false if pte changed or is changing.
5786  */
5787 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5788 			       pte_t *ptep, pte_t old_pte)
5789 {
5790 	spinlock_t *ptl;
5791 	bool same;
5792 
5793 	ptl = huge_pte_lock(h, mm, ptep);
5794 	same = pte_same(huge_ptep_get(ptep), old_pte);
5795 	spin_unlock(ptl);
5796 
5797 	return same;
5798 }
5799 
5800 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5801 			struct vm_area_struct *vma,
5802 			struct address_space *mapping, pgoff_t idx,
5803 			unsigned long address, pte_t *ptep,
5804 			pte_t old_pte, unsigned int flags)
5805 {
5806 	struct hstate *h = hstate_vma(vma);
5807 	vm_fault_t ret = VM_FAULT_SIGBUS;
5808 	int anon_rmap = 0;
5809 	unsigned long size;
5810 	struct folio *folio;
5811 	pte_t new_pte;
5812 	spinlock_t *ptl;
5813 	unsigned long haddr = address & huge_page_mask(h);
5814 	bool new_folio, new_pagecache_folio = false;
5815 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5816 
5817 	/*
5818 	 * Currently, we are forced to kill the process in the event the
5819 	 * original mapper has unmapped pages from the child due to a failed
5820 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5821 	 * be obvious.
5822 	 */
5823 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5824 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5825 			   current->pid);
5826 		goto out;
5827 	}
5828 
5829 	/*
5830 	 * Use page lock to guard against racing truncation
5831 	 * before we get page_table_lock.
5832 	 */
5833 	new_folio = false;
5834 	folio = filemap_lock_folio(mapping, idx);
5835 	if (IS_ERR(folio)) {
5836 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5837 		if (idx >= size)
5838 			goto out;
5839 		/* Check for page in userfault range */
5840 		if (userfaultfd_missing(vma)) {
5841 			/*
5842 			 * Since hugetlb_no_page() was examining pte
5843 			 * without pgtable lock, we need to re-test under
5844 			 * lock because the pte may not be stable and could
5845 			 * have changed from under us.  Try to detect
5846 			 * either changed or during-changing ptes and retry
5847 			 * properly when needed.
5848 			 *
5849 			 * Note that userfaultfd is actually fine with
5850 			 * false positives (e.g. caused by pte changed),
5851 			 * but not wrong logical events (e.g. caused by
5852 			 * reading a pte during changing).  The latter can
5853 			 * confuse the userspace, so the strictness is very
5854 			 * much preferred.  E.g., MISSING event should
5855 			 * never happen on the page after UFFDIO_COPY has
5856 			 * correctly installed the page and returned.
5857 			 */
5858 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5859 				ret = 0;
5860 				goto out;
5861 			}
5862 
5863 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5864 							haddr, address,
5865 							VM_UFFD_MISSING);
5866 		}
5867 
5868 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5869 		if (IS_ERR(folio)) {
5870 			/*
5871 			 * Returning error will result in faulting task being
5872 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5873 			 * tasks from racing to fault in the same page which
5874 			 * could result in false unable to allocate errors.
5875 			 * Page migration does not take the fault mutex, but
5876 			 * does a clear then write of pte's under page table
5877 			 * lock.  Page fault code could race with migration,
5878 			 * notice the clear pte and try to allocate a page
5879 			 * here.  Before returning error, get ptl and make
5880 			 * sure there really is no pte entry.
5881 			 */
5882 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5883 				ret = vmf_error(PTR_ERR(folio));
5884 			else
5885 				ret = 0;
5886 			goto out;
5887 		}
5888 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5889 		__folio_mark_uptodate(folio);
5890 		new_folio = true;
5891 
5892 		if (vma->vm_flags & VM_MAYSHARE) {
5893 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5894 			if (err) {
5895 				/*
5896 				 * err can't be -EEXIST which implies someone
5897 				 * else consumed the reservation since hugetlb
5898 				 * fault mutex is held when add a hugetlb page
5899 				 * to the page cache. So it's safe to call
5900 				 * restore_reserve_on_error() here.
5901 				 */
5902 				restore_reserve_on_error(h, vma, haddr, folio);
5903 				folio_put(folio);
5904 				goto out;
5905 			}
5906 			new_pagecache_folio = true;
5907 		} else {
5908 			folio_lock(folio);
5909 			if (unlikely(anon_vma_prepare(vma))) {
5910 				ret = VM_FAULT_OOM;
5911 				goto backout_unlocked;
5912 			}
5913 			anon_rmap = 1;
5914 		}
5915 	} else {
5916 		/*
5917 		 * If memory error occurs between mmap() and fault, some process
5918 		 * don't have hwpoisoned swap entry for errored virtual address.
5919 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5920 		 */
5921 		if (unlikely(folio_test_hwpoison(folio))) {
5922 			ret = VM_FAULT_HWPOISON_LARGE |
5923 				VM_FAULT_SET_HINDEX(hstate_index(h));
5924 			goto backout_unlocked;
5925 		}
5926 
5927 		/* Check for page in userfault range. */
5928 		if (userfaultfd_minor(vma)) {
5929 			folio_unlock(folio);
5930 			folio_put(folio);
5931 			/* See comment in userfaultfd_missing() block above */
5932 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5933 				ret = 0;
5934 				goto out;
5935 			}
5936 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5937 							haddr, address,
5938 							VM_UFFD_MINOR);
5939 		}
5940 	}
5941 
5942 	/*
5943 	 * If we are going to COW a private mapping later, we examine the
5944 	 * pending reservations for this page now. This will ensure that
5945 	 * any allocations necessary to record that reservation occur outside
5946 	 * the spinlock.
5947 	 */
5948 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5949 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5950 			ret = VM_FAULT_OOM;
5951 			goto backout_unlocked;
5952 		}
5953 		/* Just decrements count, does not deallocate */
5954 		vma_end_reservation(h, vma, haddr);
5955 	}
5956 
5957 	ptl = huge_pte_lock(h, mm, ptep);
5958 	ret = 0;
5959 	/* If pte changed from under us, retry */
5960 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5961 		goto backout;
5962 
5963 	if (anon_rmap)
5964 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5965 	else
5966 		page_dup_file_rmap(&folio->page, true);
5967 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5968 				&& (vma->vm_flags & VM_SHARED)));
5969 	/*
5970 	 * If this pte was previously wr-protected, keep it wr-protected even
5971 	 * if populated.
5972 	 */
5973 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5974 		new_pte = huge_pte_mkuffd_wp(new_pte);
5975 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5976 
5977 	hugetlb_count_add(pages_per_huge_page(h), mm);
5978 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5979 		/* Optimization, do the COW without a second fault */
5980 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5981 	}
5982 
5983 	spin_unlock(ptl);
5984 
5985 	/*
5986 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5987 	 * found in the pagecache may not have hugetlb_migratable if they have
5988 	 * been isolated for migration.
5989 	 */
5990 	if (new_folio)
5991 		folio_set_hugetlb_migratable(folio);
5992 
5993 	folio_unlock(folio);
5994 out:
5995 	hugetlb_vma_unlock_read(vma);
5996 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5997 	return ret;
5998 
5999 backout:
6000 	spin_unlock(ptl);
6001 backout_unlocked:
6002 	if (new_folio && !new_pagecache_folio)
6003 		restore_reserve_on_error(h, vma, haddr, folio);
6004 
6005 	folio_unlock(folio);
6006 	folio_put(folio);
6007 	goto out;
6008 }
6009 
6010 #ifdef CONFIG_SMP
6011 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6012 {
6013 	unsigned long key[2];
6014 	u32 hash;
6015 
6016 	key[0] = (unsigned long) mapping;
6017 	key[1] = idx;
6018 
6019 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6020 
6021 	return hash & (num_fault_mutexes - 1);
6022 }
6023 #else
6024 /*
6025  * For uniprocessor systems we always use a single mutex, so just
6026  * return 0 and avoid the hashing overhead.
6027  */
6028 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6029 {
6030 	return 0;
6031 }
6032 #endif
6033 
6034 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6035 			unsigned long address, unsigned int flags)
6036 {
6037 	pte_t *ptep, entry;
6038 	spinlock_t *ptl;
6039 	vm_fault_t ret;
6040 	u32 hash;
6041 	pgoff_t idx;
6042 	struct folio *folio = NULL;
6043 	struct folio *pagecache_folio = NULL;
6044 	struct hstate *h = hstate_vma(vma);
6045 	struct address_space *mapping;
6046 	int need_wait_lock = 0;
6047 	unsigned long haddr = address & huge_page_mask(h);
6048 
6049 	/* TODO: Handle faults under the VMA lock */
6050 	if (flags & FAULT_FLAG_VMA_LOCK) {
6051 		vma_end_read(vma);
6052 		return VM_FAULT_RETRY;
6053 	}
6054 
6055 	/*
6056 	 * Serialize hugepage allocation and instantiation, so that we don't
6057 	 * get spurious allocation failures if two CPUs race to instantiate
6058 	 * the same page in the page cache.
6059 	 */
6060 	mapping = vma->vm_file->f_mapping;
6061 	idx = vma_hugecache_offset(h, vma, haddr);
6062 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6063 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6064 
6065 	/*
6066 	 * Acquire vma lock before calling huge_pte_alloc and hold
6067 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6068 	 * being called elsewhere and making the ptep no longer valid.
6069 	 */
6070 	hugetlb_vma_lock_read(vma);
6071 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6072 	if (!ptep) {
6073 		hugetlb_vma_unlock_read(vma);
6074 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6075 		return VM_FAULT_OOM;
6076 	}
6077 
6078 	entry = huge_ptep_get(ptep);
6079 	if (huge_pte_none_mostly(entry)) {
6080 		if (is_pte_marker(entry)) {
6081 			pte_marker marker =
6082 				pte_marker_get(pte_to_swp_entry(entry));
6083 
6084 			if (marker & PTE_MARKER_POISONED) {
6085 				ret = VM_FAULT_HWPOISON_LARGE;
6086 				goto out_mutex;
6087 			}
6088 		}
6089 
6090 		/*
6091 		 * Other PTE markers should be handled the same way as none PTE.
6092 		 *
6093 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6094 		 * mutex internally, which make us return immediately.
6095 		 */
6096 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6097 				      entry, flags);
6098 	}
6099 
6100 	ret = 0;
6101 
6102 	/*
6103 	 * entry could be a migration/hwpoison entry at this point, so this
6104 	 * check prevents the kernel from going below assuming that we have
6105 	 * an active hugepage in pagecache. This goto expects the 2nd page
6106 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6107 	 * properly handle it.
6108 	 */
6109 	if (!pte_present(entry)) {
6110 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6111 			/*
6112 			 * Release the hugetlb fault lock now, but retain
6113 			 * the vma lock, because it is needed to guard the
6114 			 * huge_pte_lockptr() later in
6115 			 * migration_entry_wait_huge(). The vma lock will
6116 			 * be released there.
6117 			 */
6118 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6119 			migration_entry_wait_huge(vma, ptep);
6120 			return 0;
6121 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6122 			ret = VM_FAULT_HWPOISON_LARGE |
6123 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6124 		goto out_mutex;
6125 	}
6126 
6127 	/*
6128 	 * If we are going to COW/unshare the mapping later, we examine the
6129 	 * pending reservations for this page now. This will ensure that any
6130 	 * allocations necessary to record that reservation occur outside the
6131 	 * spinlock. Also lookup the pagecache page now as it is used to
6132 	 * determine if a reservation has been consumed.
6133 	 */
6134 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6135 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6136 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6137 			ret = VM_FAULT_OOM;
6138 			goto out_mutex;
6139 		}
6140 		/* Just decrements count, does not deallocate */
6141 		vma_end_reservation(h, vma, haddr);
6142 
6143 		pagecache_folio = filemap_lock_folio(mapping, idx);
6144 		if (IS_ERR(pagecache_folio))
6145 			pagecache_folio = NULL;
6146 	}
6147 
6148 	ptl = huge_pte_lock(h, mm, ptep);
6149 
6150 	/* Check for a racing update before calling hugetlb_wp() */
6151 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6152 		goto out_ptl;
6153 
6154 	/* Handle userfault-wp first, before trying to lock more pages */
6155 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6156 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6157 		struct vm_fault vmf = {
6158 			.vma = vma,
6159 			.address = haddr,
6160 			.real_address = address,
6161 			.flags = flags,
6162 		};
6163 
6164 		spin_unlock(ptl);
6165 		if (pagecache_folio) {
6166 			folio_unlock(pagecache_folio);
6167 			folio_put(pagecache_folio);
6168 		}
6169 		hugetlb_vma_unlock_read(vma);
6170 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171 		return handle_userfault(&vmf, VM_UFFD_WP);
6172 	}
6173 
6174 	/*
6175 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6176 	 * pagecache_folio, so here we need take the former one
6177 	 * when folio != pagecache_folio or !pagecache_folio.
6178 	 */
6179 	folio = page_folio(pte_page(entry));
6180 	if (folio != pagecache_folio)
6181 		if (!folio_trylock(folio)) {
6182 			need_wait_lock = 1;
6183 			goto out_ptl;
6184 		}
6185 
6186 	folio_get(folio);
6187 
6188 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6189 		if (!huge_pte_write(entry)) {
6190 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6191 					 pagecache_folio, ptl);
6192 			goto out_put_page;
6193 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6194 			entry = huge_pte_mkdirty(entry);
6195 		}
6196 	}
6197 	entry = pte_mkyoung(entry);
6198 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6199 						flags & FAULT_FLAG_WRITE))
6200 		update_mmu_cache(vma, haddr, ptep);
6201 out_put_page:
6202 	if (folio != pagecache_folio)
6203 		folio_unlock(folio);
6204 	folio_put(folio);
6205 out_ptl:
6206 	spin_unlock(ptl);
6207 
6208 	if (pagecache_folio) {
6209 		folio_unlock(pagecache_folio);
6210 		folio_put(pagecache_folio);
6211 	}
6212 out_mutex:
6213 	hugetlb_vma_unlock_read(vma);
6214 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6215 	/*
6216 	 * Generally it's safe to hold refcount during waiting page lock. But
6217 	 * here we just wait to defer the next page fault to avoid busy loop and
6218 	 * the page is not used after unlocked before returning from the current
6219 	 * page fault. So we are safe from accessing freed page, even if we wait
6220 	 * here without taking refcount.
6221 	 */
6222 	if (need_wait_lock)
6223 		folio_wait_locked(folio);
6224 	return ret;
6225 }
6226 
6227 #ifdef CONFIG_USERFAULTFD
6228 /*
6229  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6230  * with modifications for hugetlb pages.
6231  */
6232 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6233 			     struct vm_area_struct *dst_vma,
6234 			     unsigned long dst_addr,
6235 			     unsigned long src_addr,
6236 			     uffd_flags_t flags,
6237 			     struct folio **foliop)
6238 {
6239 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6240 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6241 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6242 	struct hstate *h = hstate_vma(dst_vma);
6243 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6244 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6245 	unsigned long size;
6246 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6247 	pte_t _dst_pte;
6248 	spinlock_t *ptl;
6249 	int ret = -ENOMEM;
6250 	struct folio *folio;
6251 	int writable;
6252 	bool folio_in_pagecache = false;
6253 
6254 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6255 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6256 
6257 		/* Don't overwrite any existing PTEs (even markers) */
6258 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6259 			spin_unlock(ptl);
6260 			return -EEXIST;
6261 		}
6262 
6263 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6264 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6265 
6266 		/* No need to invalidate - it was non-present before */
6267 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6268 
6269 		spin_unlock(ptl);
6270 		return 0;
6271 	}
6272 
6273 	if (is_continue) {
6274 		ret = -EFAULT;
6275 		folio = filemap_lock_folio(mapping, idx);
6276 		if (IS_ERR(folio))
6277 			goto out;
6278 		folio_in_pagecache = true;
6279 	} else if (!*foliop) {
6280 		/* If a folio already exists, then it's UFFDIO_COPY for
6281 		 * a non-missing case. Return -EEXIST.
6282 		 */
6283 		if (vm_shared &&
6284 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6285 			ret = -EEXIST;
6286 			goto out;
6287 		}
6288 
6289 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6290 		if (IS_ERR(folio)) {
6291 			ret = -ENOMEM;
6292 			goto out;
6293 		}
6294 
6295 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6296 					   false);
6297 
6298 		/* fallback to copy_from_user outside mmap_lock */
6299 		if (unlikely(ret)) {
6300 			ret = -ENOENT;
6301 			/* Free the allocated folio which may have
6302 			 * consumed a reservation.
6303 			 */
6304 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6305 			folio_put(folio);
6306 
6307 			/* Allocate a temporary folio to hold the copied
6308 			 * contents.
6309 			 */
6310 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6311 			if (!folio) {
6312 				ret = -ENOMEM;
6313 				goto out;
6314 			}
6315 			*foliop = folio;
6316 			/* Set the outparam foliop and return to the caller to
6317 			 * copy the contents outside the lock. Don't free the
6318 			 * folio.
6319 			 */
6320 			goto out;
6321 		}
6322 	} else {
6323 		if (vm_shared &&
6324 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6325 			folio_put(*foliop);
6326 			ret = -EEXIST;
6327 			*foliop = NULL;
6328 			goto out;
6329 		}
6330 
6331 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6332 		if (IS_ERR(folio)) {
6333 			folio_put(*foliop);
6334 			ret = -ENOMEM;
6335 			*foliop = NULL;
6336 			goto out;
6337 		}
6338 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6339 		folio_put(*foliop);
6340 		*foliop = NULL;
6341 		if (ret) {
6342 			folio_put(folio);
6343 			goto out;
6344 		}
6345 	}
6346 
6347 	/*
6348 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6349 	 * preceding stores to the page contents become visible before
6350 	 * the set_pte_at() write.
6351 	 */
6352 	__folio_mark_uptodate(folio);
6353 
6354 	/* Add shared, newly allocated pages to the page cache. */
6355 	if (vm_shared && !is_continue) {
6356 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6357 		ret = -EFAULT;
6358 		if (idx >= size)
6359 			goto out_release_nounlock;
6360 
6361 		/*
6362 		 * Serialization between remove_inode_hugepages() and
6363 		 * hugetlb_add_to_page_cache() below happens through the
6364 		 * hugetlb_fault_mutex_table that here must be hold by
6365 		 * the caller.
6366 		 */
6367 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6368 		if (ret)
6369 			goto out_release_nounlock;
6370 		folio_in_pagecache = true;
6371 	}
6372 
6373 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6374 
6375 	ret = -EIO;
6376 	if (folio_test_hwpoison(folio))
6377 		goto out_release_unlock;
6378 
6379 	/*
6380 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6381 	 * registered, we firstly wr-protect a none pte which has no page cache
6382 	 * page backing it, then access the page.
6383 	 */
6384 	ret = -EEXIST;
6385 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6386 		goto out_release_unlock;
6387 
6388 	if (folio_in_pagecache)
6389 		page_dup_file_rmap(&folio->page, true);
6390 	else
6391 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6392 
6393 	/*
6394 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6395 	 * with wp flag set, don't set pte write bit.
6396 	 */
6397 	if (wp_enabled || (is_continue && !vm_shared))
6398 		writable = 0;
6399 	else
6400 		writable = dst_vma->vm_flags & VM_WRITE;
6401 
6402 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6403 	/*
6404 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6405 	 * extremely important for hugetlbfs for now since swapping is not
6406 	 * supported, but we should still be clear in that this page cannot be
6407 	 * thrown away at will, even if write bit not set.
6408 	 */
6409 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6410 	_dst_pte = pte_mkyoung(_dst_pte);
6411 
6412 	if (wp_enabled)
6413 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6414 
6415 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6416 
6417 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6418 
6419 	/* No need to invalidate - it was non-present before */
6420 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6421 
6422 	spin_unlock(ptl);
6423 	if (!is_continue)
6424 		folio_set_hugetlb_migratable(folio);
6425 	if (vm_shared || is_continue)
6426 		folio_unlock(folio);
6427 	ret = 0;
6428 out:
6429 	return ret;
6430 out_release_unlock:
6431 	spin_unlock(ptl);
6432 	if (vm_shared || is_continue)
6433 		folio_unlock(folio);
6434 out_release_nounlock:
6435 	if (!folio_in_pagecache)
6436 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6437 	folio_put(folio);
6438 	goto out;
6439 }
6440 #endif /* CONFIG_USERFAULTFD */
6441 
6442 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6443 				      unsigned long address, unsigned int flags,
6444 				      unsigned int *page_mask)
6445 {
6446 	struct hstate *h = hstate_vma(vma);
6447 	struct mm_struct *mm = vma->vm_mm;
6448 	unsigned long haddr = address & huge_page_mask(h);
6449 	struct page *page = NULL;
6450 	spinlock_t *ptl;
6451 	pte_t *pte, entry;
6452 	int ret;
6453 
6454 	hugetlb_vma_lock_read(vma);
6455 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6456 	if (!pte)
6457 		goto out_unlock;
6458 
6459 	ptl = huge_pte_lock(h, mm, pte);
6460 	entry = huge_ptep_get(pte);
6461 	if (pte_present(entry)) {
6462 		page = pte_page(entry);
6463 
6464 		if (!huge_pte_write(entry)) {
6465 			if (flags & FOLL_WRITE) {
6466 				page = NULL;
6467 				goto out;
6468 			}
6469 
6470 			if (gup_must_unshare(vma, flags, page)) {
6471 				/* Tell the caller to do unsharing */
6472 				page = ERR_PTR(-EMLINK);
6473 				goto out;
6474 			}
6475 		}
6476 
6477 		page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6478 
6479 		/*
6480 		 * Note that page may be a sub-page, and with vmemmap
6481 		 * optimizations the page struct may be read only.
6482 		 * try_grab_page() will increase the ref count on the
6483 		 * head page, so this will be OK.
6484 		 *
6485 		 * try_grab_page() should always be able to get the page here,
6486 		 * because we hold the ptl lock and have verified pte_present().
6487 		 */
6488 		ret = try_grab_page(page, flags);
6489 
6490 		if (WARN_ON_ONCE(ret)) {
6491 			page = ERR_PTR(ret);
6492 			goto out;
6493 		}
6494 
6495 		*page_mask = (1U << huge_page_order(h)) - 1;
6496 	}
6497 out:
6498 	spin_unlock(ptl);
6499 out_unlock:
6500 	hugetlb_vma_unlock_read(vma);
6501 
6502 	/*
6503 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6504 	 * don't try to allocate a new page but just skip it.
6505 	 */
6506 	if (!page && (flags & FOLL_DUMP) &&
6507 	    !hugetlbfs_pagecache_present(h, vma, address))
6508 		page = ERR_PTR(-EFAULT);
6509 
6510 	return page;
6511 }
6512 
6513 long hugetlb_change_protection(struct vm_area_struct *vma,
6514 		unsigned long address, unsigned long end,
6515 		pgprot_t newprot, unsigned long cp_flags)
6516 {
6517 	struct mm_struct *mm = vma->vm_mm;
6518 	unsigned long start = address;
6519 	pte_t *ptep;
6520 	pte_t pte;
6521 	struct hstate *h = hstate_vma(vma);
6522 	long pages = 0, psize = huge_page_size(h);
6523 	bool shared_pmd = false;
6524 	struct mmu_notifier_range range;
6525 	unsigned long last_addr_mask;
6526 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6527 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6528 
6529 	/*
6530 	 * In the case of shared PMDs, the area to flush could be beyond
6531 	 * start/end.  Set range.start/range.end to cover the maximum possible
6532 	 * range if PMD sharing is possible.
6533 	 */
6534 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6535 				0, mm, start, end);
6536 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6537 
6538 	BUG_ON(address >= end);
6539 	flush_cache_range(vma, range.start, range.end);
6540 
6541 	mmu_notifier_invalidate_range_start(&range);
6542 	hugetlb_vma_lock_write(vma);
6543 	i_mmap_lock_write(vma->vm_file->f_mapping);
6544 	last_addr_mask = hugetlb_mask_last_page(h);
6545 	for (; address < end; address += psize) {
6546 		spinlock_t *ptl;
6547 		ptep = hugetlb_walk(vma, address, psize);
6548 		if (!ptep) {
6549 			if (!uffd_wp) {
6550 				address |= last_addr_mask;
6551 				continue;
6552 			}
6553 			/*
6554 			 * Userfaultfd wr-protect requires pgtable
6555 			 * pre-allocations to install pte markers.
6556 			 */
6557 			ptep = huge_pte_alloc(mm, vma, address, psize);
6558 			if (!ptep) {
6559 				pages = -ENOMEM;
6560 				break;
6561 			}
6562 		}
6563 		ptl = huge_pte_lock(h, mm, ptep);
6564 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6565 			/*
6566 			 * When uffd-wp is enabled on the vma, unshare
6567 			 * shouldn't happen at all.  Warn about it if it
6568 			 * happened due to some reason.
6569 			 */
6570 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6571 			pages++;
6572 			spin_unlock(ptl);
6573 			shared_pmd = true;
6574 			address |= last_addr_mask;
6575 			continue;
6576 		}
6577 		pte = huge_ptep_get(ptep);
6578 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6579 			/* Nothing to do. */
6580 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6581 			swp_entry_t entry = pte_to_swp_entry(pte);
6582 			struct page *page = pfn_swap_entry_to_page(entry);
6583 			pte_t newpte = pte;
6584 
6585 			if (is_writable_migration_entry(entry)) {
6586 				if (PageAnon(page))
6587 					entry = make_readable_exclusive_migration_entry(
6588 								swp_offset(entry));
6589 				else
6590 					entry = make_readable_migration_entry(
6591 								swp_offset(entry));
6592 				newpte = swp_entry_to_pte(entry);
6593 				pages++;
6594 			}
6595 
6596 			if (uffd_wp)
6597 				newpte = pte_swp_mkuffd_wp(newpte);
6598 			else if (uffd_wp_resolve)
6599 				newpte = pte_swp_clear_uffd_wp(newpte);
6600 			if (!pte_same(pte, newpte))
6601 				set_huge_pte_at(mm, address, ptep, newpte);
6602 		} else if (unlikely(is_pte_marker(pte))) {
6603 			/* No other markers apply for now. */
6604 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6605 			if (uffd_wp_resolve)
6606 				/* Safe to modify directly (non-present->none). */
6607 				huge_pte_clear(mm, address, ptep, psize);
6608 		} else if (!huge_pte_none(pte)) {
6609 			pte_t old_pte;
6610 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6611 
6612 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6613 			pte = huge_pte_modify(old_pte, newprot);
6614 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6615 			if (uffd_wp)
6616 				pte = huge_pte_mkuffd_wp(pte);
6617 			else if (uffd_wp_resolve)
6618 				pte = huge_pte_clear_uffd_wp(pte);
6619 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6620 			pages++;
6621 		} else {
6622 			/* None pte */
6623 			if (unlikely(uffd_wp))
6624 				/* Safe to modify directly (none->non-present). */
6625 				set_huge_pte_at(mm, address, ptep,
6626 						make_pte_marker(PTE_MARKER_UFFD_WP));
6627 		}
6628 		spin_unlock(ptl);
6629 	}
6630 	/*
6631 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6632 	 * may have cleared our pud entry and done put_page on the page table:
6633 	 * once we release i_mmap_rwsem, another task can do the final put_page
6634 	 * and that page table be reused and filled with junk.  If we actually
6635 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6636 	 */
6637 	if (shared_pmd)
6638 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6639 	else
6640 		flush_hugetlb_tlb_range(vma, start, end);
6641 	/*
6642 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6643 	 * downgrading page table protection not changing it to point to a new
6644 	 * page.
6645 	 *
6646 	 * See Documentation/mm/mmu_notifier.rst
6647 	 */
6648 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6649 	hugetlb_vma_unlock_write(vma);
6650 	mmu_notifier_invalidate_range_end(&range);
6651 
6652 	return pages > 0 ? (pages << h->order) : pages;
6653 }
6654 
6655 /* Return true if reservation was successful, false otherwise.  */
6656 bool hugetlb_reserve_pages(struct inode *inode,
6657 					long from, long to,
6658 					struct vm_area_struct *vma,
6659 					vm_flags_t vm_flags)
6660 {
6661 	long chg = -1, add = -1;
6662 	struct hstate *h = hstate_inode(inode);
6663 	struct hugepage_subpool *spool = subpool_inode(inode);
6664 	struct resv_map *resv_map;
6665 	struct hugetlb_cgroup *h_cg = NULL;
6666 	long gbl_reserve, regions_needed = 0;
6667 
6668 	/* This should never happen */
6669 	if (from > to) {
6670 		VM_WARN(1, "%s called with a negative range\n", __func__);
6671 		return false;
6672 	}
6673 
6674 	/*
6675 	 * vma specific semaphore used for pmd sharing and fault/truncation
6676 	 * synchronization
6677 	 */
6678 	hugetlb_vma_lock_alloc(vma);
6679 
6680 	/*
6681 	 * Only apply hugepage reservation if asked. At fault time, an
6682 	 * attempt will be made for VM_NORESERVE to allocate a page
6683 	 * without using reserves
6684 	 */
6685 	if (vm_flags & VM_NORESERVE)
6686 		return true;
6687 
6688 	/*
6689 	 * Shared mappings base their reservation on the number of pages that
6690 	 * are already allocated on behalf of the file. Private mappings need
6691 	 * to reserve the full area even if read-only as mprotect() may be
6692 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6693 	 */
6694 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6695 		/*
6696 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6697 		 * called for inodes for which resv_maps were created (see
6698 		 * hugetlbfs_get_inode).
6699 		 */
6700 		resv_map = inode_resv_map(inode);
6701 
6702 		chg = region_chg(resv_map, from, to, &regions_needed);
6703 	} else {
6704 		/* Private mapping. */
6705 		resv_map = resv_map_alloc();
6706 		if (!resv_map)
6707 			goto out_err;
6708 
6709 		chg = to - from;
6710 
6711 		set_vma_resv_map(vma, resv_map);
6712 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6713 	}
6714 
6715 	if (chg < 0)
6716 		goto out_err;
6717 
6718 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6719 				chg * pages_per_huge_page(h), &h_cg) < 0)
6720 		goto out_err;
6721 
6722 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6723 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6724 		 * of the resv_map.
6725 		 */
6726 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6727 	}
6728 
6729 	/*
6730 	 * There must be enough pages in the subpool for the mapping. If
6731 	 * the subpool has a minimum size, there may be some global
6732 	 * reservations already in place (gbl_reserve).
6733 	 */
6734 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6735 	if (gbl_reserve < 0)
6736 		goto out_uncharge_cgroup;
6737 
6738 	/*
6739 	 * Check enough hugepages are available for the reservation.
6740 	 * Hand the pages back to the subpool if there are not
6741 	 */
6742 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6743 		goto out_put_pages;
6744 
6745 	/*
6746 	 * Account for the reservations made. Shared mappings record regions
6747 	 * that have reservations as they are shared by multiple VMAs.
6748 	 * When the last VMA disappears, the region map says how much
6749 	 * the reservation was and the page cache tells how much of
6750 	 * the reservation was consumed. Private mappings are per-VMA and
6751 	 * only the consumed reservations are tracked. When the VMA
6752 	 * disappears, the original reservation is the VMA size and the
6753 	 * consumed reservations are stored in the map. Hence, nothing
6754 	 * else has to be done for private mappings here
6755 	 */
6756 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6757 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6758 
6759 		if (unlikely(add < 0)) {
6760 			hugetlb_acct_memory(h, -gbl_reserve);
6761 			goto out_put_pages;
6762 		} else if (unlikely(chg > add)) {
6763 			/*
6764 			 * pages in this range were added to the reserve
6765 			 * map between region_chg and region_add.  This
6766 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6767 			 * the subpool and reserve counts modified above
6768 			 * based on the difference.
6769 			 */
6770 			long rsv_adjust;
6771 
6772 			/*
6773 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6774 			 * reference to h_cg->css. See comment below for detail.
6775 			 */
6776 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6777 				hstate_index(h),
6778 				(chg - add) * pages_per_huge_page(h), h_cg);
6779 
6780 			rsv_adjust = hugepage_subpool_put_pages(spool,
6781 								chg - add);
6782 			hugetlb_acct_memory(h, -rsv_adjust);
6783 		} else if (h_cg) {
6784 			/*
6785 			 * The file_regions will hold their own reference to
6786 			 * h_cg->css. So we should release the reference held
6787 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6788 			 * done.
6789 			 */
6790 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6791 		}
6792 	}
6793 	return true;
6794 
6795 out_put_pages:
6796 	/* put back original number of pages, chg */
6797 	(void)hugepage_subpool_put_pages(spool, chg);
6798 out_uncharge_cgroup:
6799 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6800 					    chg * pages_per_huge_page(h), h_cg);
6801 out_err:
6802 	hugetlb_vma_lock_free(vma);
6803 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6804 		/* Only call region_abort if the region_chg succeeded but the
6805 		 * region_add failed or didn't run.
6806 		 */
6807 		if (chg >= 0 && add < 0)
6808 			region_abort(resv_map, from, to, regions_needed);
6809 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6810 		kref_put(&resv_map->refs, resv_map_release);
6811 	return false;
6812 }
6813 
6814 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6815 								long freed)
6816 {
6817 	struct hstate *h = hstate_inode(inode);
6818 	struct resv_map *resv_map = inode_resv_map(inode);
6819 	long chg = 0;
6820 	struct hugepage_subpool *spool = subpool_inode(inode);
6821 	long gbl_reserve;
6822 
6823 	/*
6824 	 * Since this routine can be called in the evict inode path for all
6825 	 * hugetlbfs inodes, resv_map could be NULL.
6826 	 */
6827 	if (resv_map) {
6828 		chg = region_del(resv_map, start, end);
6829 		/*
6830 		 * region_del() can fail in the rare case where a region
6831 		 * must be split and another region descriptor can not be
6832 		 * allocated.  If end == LONG_MAX, it will not fail.
6833 		 */
6834 		if (chg < 0)
6835 			return chg;
6836 	}
6837 
6838 	spin_lock(&inode->i_lock);
6839 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6840 	spin_unlock(&inode->i_lock);
6841 
6842 	/*
6843 	 * If the subpool has a minimum size, the number of global
6844 	 * reservations to be released may be adjusted.
6845 	 *
6846 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6847 	 * won't go negative.
6848 	 */
6849 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6850 	hugetlb_acct_memory(h, -gbl_reserve);
6851 
6852 	return 0;
6853 }
6854 
6855 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6856 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6857 				struct vm_area_struct *vma,
6858 				unsigned long addr, pgoff_t idx)
6859 {
6860 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6861 				svma->vm_start;
6862 	unsigned long sbase = saddr & PUD_MASK;
6863 	unsigned long s_end = sbase + PUD_SIZE;
6864 
6865 	/* Allow segments to share if only one is marked locked */
6866 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6867 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6868 
6869 	/*
6870 	 * match the virtual addresses, permission and the alignment of the
6871 	 * page table page.
6872 	 *
6873 	 * Also, vma_lock (vm_private_data) is required for sharing.
6874 	 */
6875 	if (pmd_index(addr) != pmd_index(saddr) ||
6876 	    vm_flags != svm_flags ||
6877 	    !range_in_vma(svma, sbase, s_end) ||
6878 	    !svma->vm_private_data)
6879 		return 0;
6880 
6881 	return saddr;
6882 }
6883 
6884 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6885 {
6886 	unsigned long start = addr & PUD_MASK;
6887 	unsigned long end = start + PUD_SIZE;
6888 
6889 #ifdef CONFIG_USERFAULTFD
6890 	if (uffd_disable_huge_pmd_share(vma))
6891 		return false;
6892 #endif
6893 	/*
6894 	 * check on proper vm_flags and page table alignment
6895 	 */
6896 	if (!(vma->vm_flags & VM_MAYSHARE))
6897 		return false;
6898 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6899 		return false;
6900 	if (!range_in_vma(vma, start, end))
6901 		return false;
6902 	return true;
6903 }
6904 
6905 /*
6906  * Determine if start,end range within vma could be mapped by shared pmd.
6907  * If yes, adjust start and end to cover range associated with possible
6908  * shared pmd mappings.
6909  */
6910 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6911 				unsigned long *start, unsigned long *end)
6912 {
6913 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6914 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6915 
6916 	/*
6917 	 * vma needs to span at least one aligned PUD size, and the range
6918 	 * must be at least partially within in.
6919 	 */
6920 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6921 		(*end <= v_start) || (*start >= v_end))
6922 		return;
6923 
6924 	/* Extend the range to be PUD aligned for a worst case scenario */
6925 	if (*start > v_start)
6926 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6927 
6928 	if (*end < v_end)
6929 		*end = ALIGN(*end, PUD_SIZE);
6930 }
6931 
6932 /*
6933  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6934  * and returns the corresponding pte. While this is not necessary for the
6935  * !shared pmd case because we can allocate the pmd later as well, it makes the
6936  * code much cleaner. pmd allocation is essential for the shared case because
6937  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6938  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6939  * bad pmd for sharing.
6940  */
6941 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6942 		      unsigned long addr, pud_t *pud)
6943 {
6944 	struct address_space *mapping = vma->vm_file->f_mapping;
6945 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6946 			vma->vm_pgoff;
6947 	struct vm_area_struct *svma;
6948 	unsigned long saddr;
6949 	pte_t *spte = NULL;
6950 	pte_t *pte;
6951 
6952 	i_mmap_lock_read(mapping);
6953 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6954 		if (svma == vma)
6955 			continue;
6956 
6957 		saddr = page_table_shareable(svma, vma, addr, idx);
6958 		if (saddr) {
6959 			spte = hugetlb_walk(svma, saddr,
6960 					    vma_mmu_pagesize(svma));
6961 			if (spte) {
6962 				get_page(virt_to_page(spte));
6963 				break;
6964 			}
6965 		}
6966 	}
6967 
6968 	if (!spte)
6969 		goto out;
6970 
6971 	spin_lock(&mm->page_table_lock);
6972 	if (pud_none(*pud)) {
6973 		pud_populate(mm, pud,
6974 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6975 		mm_inc_nr_pmds(mm);
6976 	} else {
6977 		put_page(virt_to_page(spte));
6978 	}
6979 	spin_unlock(&mm->page_table_lock);
6980 out:
6981 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6982 	i_mmap_unlock_read(mapping);
6983 	return pte;
6984 }
6985 
6986 /*
6987  * unmap huge page backed by shared pte.
6988  *
6989  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6990  * indicated by page_count > 1, unmap is achieved by clearing pud and
6991  * decrementing the ref count. If count == 1, the pte page is not shared.
6992  *
6993  * Called with page table lock held.
6994  *
6995  * returns: 1 successfully unmapped a shared pte page
6996  *	    0 the underlying pte page is not shared, or it is the last user
6997  */
6998 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6999 					unsigned long addr, pte_t *ptep)
7000 {
7001 	pgd_t *pgd = pgd_offset(mm, addr);
7002 	p4d_t *p4d = p4d_offset(pgd, addr);
7003 	pud_t *pud = pud_offset(p4d, addr);
7004 
7005 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7006 	hugetlb_vma_assert_locked(vma);
7007 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7008 	if (page_count(virt_to_page(ptep)) == 1)
7009 		return 0;
7010 
7011 	pud_clear(pud);
7012 	put_page(virt_to_page(ptep));
7013 	mm_dec_nr_pmds(mm);
7014 	return 1;
7015 }
7016 
7017 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7018 
7019 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7020 		      unsigned long addr, pud_t *pud)
7021 {
7022 	return NULL;
7023 }
7024 
7025 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7026 				unsigned long addr, pte_t *ptep)
7027 {
7028 	return 0;
7029 }
7030 
7031 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7032 				unsigned long *start, unsigned long *end)
7033 {
7034 }
7035 
7036 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7037 {
7038 	return false;
7039 }
7040 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7041 
7042 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7043 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7044 			unsigned long addr, unsigned long sz)
7045 {
7046 	pgd_t *pgd;
7047 	p4d_t *p4d;
7048 	pud_t *pud;
7049 	pte_t *pte = NULL;
7050 
7051 	pgd = pgd_offset(mm, addr);
7052 	p4d = p4d_alloc(mm, pgd, addr);
7053 	if (!p4d)
7054 		return NULL;
7055 	pud = pud_alloc(mm, p4d, addr);
7056 	if (pud) {
7057 		if (sz == PUD_SIZE) {
7058 			pte = (pte_t *)pud;
7059 		} else {
7060 			BUG_ON(sz != PMD_SIZE);
7061 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7062 				pte = huge_pmd_share(mm, vma, addr, pud);
7063 			else
7064 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7065 		}
7066 	}
7067 
7068 	if (pte) {
7069 		pte_t pteval = ptep_get_lockless(pte);
7070 
7071 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7072 	}
7073 
7074 	return pte;
7075 }
7076 
7077 /*
7078  * huge_pte_offset() - Walk the page table to resolve the hugepage
7079  * entry at address @addr
7080  *
7081  * Return: Pointer to page table entry (PUD or PMD) for
7082  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7083  * size @sz doesn't match the hugepage size at this level of the page
7084  * table.
7085  */
7086 pte_t *huge_pte_offset(struct mm_struct *mm,
7087 		       unsigned long addr, unsigned long sz)
7088 {
7089 	pgd_t *pgd;
7090 	p4d_t *p4d;
7091 	pud_t *pud;
7092 	pmd_t *pmd;
7093 
7094 	pgd = pgd_offset(mm, addr);
7095 	if (!pgd_present(*pgd))
7096 		return NULL;
7097 	p4d = p4d_offset(pgd, addr);
7098 	if (!p4d_present(*p4d))
7099 		return NULL;
7100 
7101 	pud = pud_offset(p4d, addr);
7102 	if (sz == PUD_SIZE)
7103 		/* must be pud huge, non-present or none */
7104 		return (pte_t *)pud;
7105 	if (!pud_present(*pud))
7106 		return NULL;
7107 	/* must have a valid entry and size to go further */
7108 
7109 	pmd = pmd_offset(pud, addr);
7110 	/* must be pmd huge, non-present or none */
7111 	return (pte_t *)pmd;
7112 }
7113 
7114 /*
7115  * Return a mask that can be used to update an address to the last huge
7116  * page in a page table page mapping size.  Used to skip non-present
7117  * page table entries when linearly scanning address ranges.  Architectures
7118  * with unique huge page to page table relationships can define their own
7119  * version of this routine.
7120  */
7121 unsigned long hugetlb_mask_last_page(struct hstate *h)
7122 {
7123 	unsigned long hp_size = huge_page_size(h);
7124 
7125 	if (hp_size == PUD_SIZE)
7126 		return P4D_SIZE - PUD_SIZE;
7127 	else if (hp_size == PMD_SIZE)
7128 		return PUD_SIZE - PMD_SIZE;
7129 	else
7130 		return 0UL;
7131 }
7132 
7133 #else
7134 
7135 /* See description above.  Architectures can provide their own version. */
7136 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7137 {
7138 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7139 	if (huge_page_size(h) == PMD_SIZE)
7140 		return PUD_SIZE - PMD_SIZE;
7141 #endif
7142 	return 0UL;
7143 }
7144 
7145 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7146 
7147 /*
7148  * These functions are overwritable if your architecture needs its own
7149  * behavior.
7150  */
7151 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7152 {
7153 	bool ret = true;
7154 
7155 	spin_lock_irq(&hugetlb_lock);
7156 	if (!folio_test_hugetlb(folio) ||
7157 	    !folio_test_hugetlb_migratable(folio) ||
7158 	    !folio_try_get(folio)) {
7159 		ret = false;
7160 		goto unlock;
7161 	}
7162 	folio_clear_hugetlb_migratable(folio);
7163 	list_move_tail(&folio->lru, list);
7164 unlock:
7165 	spin_unlock_irq(&hugetlb_lock);
7166 	return ret;
7167 }
7168 
7169 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7170 {
7171 	int ret = 0;
7172 
7173 	*hugetlb = false;
7174 	spin_lock_irq(&hugetlb_lock);
7175 	if (folio_test_hugetlb(folio)) {
7176 		*hugetlb = true;
7177 		if (folio_test_hugetlb_freed(folio))
7178 			ret = 0;
7179 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7180 			ret = folio_try_get(folio);
7181 		else
7182 			ret = -EBUSY;
7183 	}
7184 	spin_unlock_irq(&hugetlb_lock);
7185 	return ret;
7186 }
7187 
7188 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7189 				bool *migratable_cleared)
7190 {
7191 	int ret;
7192 
7193 	spin_lock_irq(&hugetlb_lock);
7194 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7195 	spin_unlock_irq(&hugetlb_lock);
7196 	return ret;
7197 }
7198 
7199 void folio_putback_active_hugetlb(struct folio *folio)
7200 {
7201 	spin_lock_irq(&hugetlb_lock);
7202 	folio_set_hugetlb_migratable(folio);
7203 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7204 	spin_unlock_irq(&hugetlb_lock);
7205 	folio_put(folio);
7206 }
7207 
7208 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7209 {
7210 	struct hstate *h = folio_hstate(old_folio);
7211 
7212 	hugetlb_cgroup_migrate(old_folio, new_folio);
7213 	set_page_owner_migrate_reason(&new_folio->page, reason);
7214 
7215 	/*
7216 	 * transfer temporary state of the new hugetlb folio. This is
7217 	 * reverse to other transitions because the newpage is going to
7218 	 * be final while the old one will be freed so it takes over
7219 	 * the temporary status.
7220 	 *
7221 	 * Also note that we have to transfer the per-node surplus state
7222 	 * here as well otherwise the global surplus count will not match
7223 	 * the per-node's.
7224 	 */
7225 	if (folio_test_hugetlb_temporary(new_folio)) {
7226 		int old_nid = folio_nid(old_folio);
7227 		int new_nid = folio_nid(new_folio);
7228 
7229 		folio_set_hugetlb_temporary(old_folio);
7230 		folio_clear_hugetlb_temporary(new_folio);
7231 
7232 
7233 		/*
7234 		 * There is no need to transfer the per-node surplus state
7235 		 * when we do not cross the node.
7236 		 */
7237 		if (new_nid == old_nid)
7238 			return;
7239 		spin_lock_irq(&hugetlb_lock);
7240 		if (h->surplus_huge_pages_node[old_nid]) {
7241 			h->surplus_huge_pages_node[old_nid]--;
7242 			h->surplus_huge_pages_node[new_nid]++;
7243 		}
7244 		spin_unlock_irq(&hugetlb_lock);
7245 	}
7246 }
7247 
7248 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7249 				   unsigned long start,
7250 				   unsigned long end)
7251 {
7252 	struct hstate *h = hstate_vma(vma);
7253 	unsigned long sz = huge_page_size(h);
7254 	struct mm_struct *mm = vma->vm_mm;
7255 	struct mmu_notifier_range range;
7256 	unsigned long address;
7257 	spinlock_t *ptl;
7258 	pte_t *ptep;
7259 
7260 	if (!(vma->vm_flags & VM_MAYSHARE))
7261 		return;
7262 
7263 	if (start >= end)
7264 		return;
7265 
7266 	flush_cache_range(vma, start, end);
7267 	/*
7268 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7269 	 * we have already done the PUD_SIZE alignment.
7270 	 */
7271 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7272 				start, end);
7273 	mmu_notifier_invalidate_range_start(&range);
7274 	hugetlb_vma_lock_write(vma);
7275 	i_mmap_lock_write(vma->vm_file->f_mapping);
7276 	for (address = start; address < end; address += PUD_SIZE) {
7277 		ptep = hugetlb_walk(vma, address, sz);
7278 		if (!ptep)
7279 			continue;
7280 		ptl = huge_pte_lock(h, mm, ptep);
7281 		huge_pmd_unshare(mm, vma, address, ptep);
7282 		spin_unlock(ptl);
7283 	}
7284 	flush_hugetlb_tlb_range(vma, start, end);
7285 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7286 	hugetlb_vma_unlock_write(vma);
7287 	/*
7288 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7289 	 * Documentation/mm/mmu_notifier.rst.
7290 	 */
7291 	mmu_notifier_invalidate_range_end(&range);
7292 }
7293 
7294 /*
7295  * This function will unconditionally remove all the shared pmd pgtable entries
7296  * within the specific vma for a hugetlbfs memory range.
7297  */
7298 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7299 {
7300 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7301 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7302 }
7303 
7304 #ifdef CONFIG_CMA
7305 static bool cma_reserve_called __initdata;
7306 
7307 static int __init cmdline_parse_hugetlb_cma(char *p)
7308 {
7309 	int nid, count = 0;
7310 	unsigned long tmp;
7311 	char *s = p;
7312 
7313 	while (*s) {
7314 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7315 			break;
7316 
7317 		if (s[count] == ':') {
7318 			if (tmp >= MAX_NUMNODES)
7319 				break;
7320 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7321 
7322 			s += count + 1;
7323 			tmp = memparse(s, &s);
7324 			hugetlb_cma_size_in_node[nid] = tmp;
7325 			hugetlb_cma_size += tmp;
7326 
7327 			/*
7328 			 * Skip the separator if have one, otherwise
7329 			 * break the parsing.
7330 			 */
7331 			if (*s == ',')
7332 				s++;
7333 			else
7334 				break;
7335 		} else {
7336 			hugetlb_cma_size = memparse(p, &p);
7337 			break;
7338 		}
7339 	}
7340 
7341 	return 0;
7342 }
7343 
7344 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7345 
7346 void __init hugetlb_cma_reserve(int order)
7347 {
7348 	unsigned long size, reserved, per_node;
7349 	bool node_specific_cma_alloc = false;
7350 	int nid;
7351 
7352 	cma_reserve_called = true;
7353 
7354 	if (!hugetlb_cma_size)
7355 		return;
7356 
7357 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7358 		if (hugetlb_cma_size_in_node[nid] == 0)
7359 			continue;
7360 
7361 		if (!node_online(nid)) {
7362 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7363 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7364 			hugetlb_cma_size_in_node[nid] = 0;
7365 			continue;
7366 		}
7367 
7368 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7369 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7370 				nid, (PAGE_SIZE << order) / SZ_1M);
7371 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7372 			hugetlb_cma_size_in_node[nid] = 0;
7373 		} else {
7374 			node_specific_cma_alloc = true;
7375 		}
7376 	}
7377 
7378 	/* Validate the CMA size again in case some invalid nodes specified. */
7379 	if (!hugetlb_cma_size)
7380 		return;
7381 
7382 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7383 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7384 			(PAGE_SIZE << order) / SZ_1M);
7385 		hugetlb_cma_size = 0;
7386 		return;
7387 	}
7388 
7389 	if (!node_specific_cma_alloc) {
7390 		/*
7391 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7392 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7393 		 */
7394 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7395 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7396 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7397 	}
7398 
7399 	reserved = 0;
7400 	for_each_online_node(nid) {
7401 		int res;
7402 		char name[CMA_MAX_NAME];
7403 
7404 		if (node_specific_cma_alloc) {
7405 			if (hugetlb_cma_size_in_node[nid] == 0)
7406 				continue;
7407 
7408 			size = hugetlb_cma_size_in_node[nid];
7409 		} else {
7410 			size = min(per_node, hugetlb_cma_size - reserved);
7411 		}
7412 
7413 		size = round_up(size, PAGE_SIZE << order);
7414 
7415 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7416 		/*
7417 		 * Note that 'order per bit' is based on smallest size that
7418 		 * may be returned to CMA allocator in the case of
7419 		 * huge page demotion.
7420 		 */
7421 		res = cma_declare_contiguous_nid(0, size, 0,
7422 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7423 						 0, false, name,
7424 						 &hugetlb_cma[nid], nid);
7425 		if (res) {
7426 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7427 				res, nid);
7428 			continue;
7429 		}
7430 
7431 		reserved += size;
7432 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7433 			size / SZ_1M, nid);
7434 
7435 		if (reserved >= hugetlb_cma_size)
7436 			break;
7437 	}
7438 
7439 	if (!reserved)
7440 		/*
7441 		 * hugetlb_cma_size is used to determine if allocations from
7442 		 * cma are possible.  Set to zero if no cma regions are set up.
7443 		 */
7444 		hugetlb_cma_size = 0;
7445 }
7446 
7447 static void __init hugetlb_cma_check(void)
7448 {
7449 	if (!hugetlb_cma_size || cma_reserve_called)
7450 		return;
7451 
7452 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7453 }
7454 
7455 #endif /* CONFIG_CMA */
7456