1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 /* Forward declaration */ 83 static int hugetlb_acct_memory(struct hstate *h, long delta); 84 85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 86 { 87 bool free = (spool->count == 0) && (spool->used_hpages == 0); 88 89 spin_unlock(&spool->lock); 90 91 /* If no pages are used, and no other handles to the subpool 92 * remain, give up any reservations based on minimum size and 93 * free the subpool */ 94 if (free) { 95 if (spool->min_hpages != -1) 96 hugetlb_acct_memory(spool->hstate, 97 -spool->min_hpages); 98 kfree(spool); 99 } 100 } 101 102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 103 long min_hpages) 104 { 105 struct hugepage_subpool *spool; 106 107 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 108 if (!spool) 109 return NULL; 110 111 spin_lock_init(&spool->lock); 112 spool->count = 1; 113 spool->max_hpages = max_hpages; 114 spool->hstate = h; 115 spool->min_hpages = min_hpages; 116 117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 118 kfree(spool); 119 return NULL; 120 } 121 spool->rsv_hpages = min_hpages; 122 123 return spool; 124 } 125 126 void hugepage_put_subpool(struct hugepage_subpool *spool) 127 { 128 spin_lock(&spool->lock); 129 BUG_ON(!spool->count); 130 spool->count--; 131 unlock_or_release_subpool(spool); 132 } 133 134 /* 135 * Subpool accounting for allocating and reserving pages. 136 * Return -ENOMEM if there are not enough resources to satisfy the 137 * request. Otherwise, return the number of pages by which the 138 * global pools must be adjusted (upward). The returned value may 139 * only be different than the passed value (delta) in the case where 140 * a subpool minimum size must be maintained. 141 */ 142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 143 long delta) 144 { 145 long ret = delta; 146 147 if (!spool) 148 return ret; 149 150 spin_lock(&spool->lock); 151 152 if (spool->max_hpages != -1) { /* maximum size accounting */ 153 if ((spool->used_hpages + delta) <= spool->max_hpages) 154 spool->used_hpages += delta; 155 else { 156 ret = -ENOMEM; 157 goto unlock_ret; 158 } 159 } 160 161 /* minimum size accounting */ 162 if (spool->min_hpages != -1 && spool->rsv_hpages) { 163 if (delta > spool->rsv_hpages) { 164 /* 165 * Asking for more reserves than those already taken on 166 * behalf of subpool. Return difference. 167 */ 168 ret = delta - spool->rsv_hpages; 169 spool->rsv_hpages = 0; 170 } else { 171 ret = 0; /* reserves already accounted for */ 172 spool->rsv_hpages -= delta; 173 } 174 } 175 176 unlock_ret: 177 spin_unlock(&spool->lock); 178 return ret; 179 } 180 181 /* 182 * Subpool accounting for freeing and unreserving pages. 183 * Return the number of global page reservations that must be dropped. 184 * The return value may only be different than the passed value (delta) 185 * in the case where a subpool minimum size must be maintained. 186 */ 187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 188 long delta) 189 { 190 long ret = delta; 191 192 if (!spool) 193 return delta; 194 195 spin_lock(&spool->lock); 196 197 if (spool->max_hpages != -1) /* maximum size accounting */ 198 spool->used_hpages -= delta; 199 200 /* minimum size accounting */ 201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 202 if (spool->rsv_hpages + delta <= spool->min_hpages) 203 ret = 0; 204 else 205 ret = spool->rsv_hpages + delta - spool->min_hpages; 206 207 spool->rsv_hpages += delta; 208 if (spool->rsv_hpages > spool->min_hpages) 209 spool->rsv_hpages = spool->min_hpages; 210 } 211 212 /* 213 * If hugetlbfs_put_super couldn't free spool due to an outstanding 214 * quota reference, free it now. 215 */ 216 unlock_or_release_subpool(spool); 217 218 return ret; 219 } 220 221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 222 { 223 return HUGETLBFS_SB(inode->i_sb)->spool; 224 } 225 226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 227 { 228 return subpool_inode(file_inode(vma->vm_file)); 229 } 230 231 /* Helper that removes a struct file_region from the resv_map cache and returns 232 * it for use. 233 */ 234 static struct file_region * 235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 236 { 237 struct file_region *nrg = NULL; 238 239 VM_BUG_ON(resv->region_cache_count <= 0); 240 241 resv->region_cache_count--; 242 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 243 list_del(&nrg->link); 244 245 nrg->from = from; 246 nrg->to = to; 247 248 return nrg; 249 } 250 251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 252 struct file_region *rg) 253 { 254 #ifdef CONFIG_CGROUP_HUGETLB 255 nrg->reservation_counter = rg->reservation_counter; 256 nrg->css = rg->css; 257 if (rg->css) 258 css_get(rg->css); 259 #endif 260 } 261 262 /* Helper that records hugetlb_cgroup uncharge info. */ 263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 264 struct hstate *h, 265 struct resv_map *resv, 266 struct file_region *nrg) 267 { 268 #ifdef CONFIG_CGROUP_HUGETLB 269 if (h_cg) { 270 nrg->reservation_counter = 271 &h_cg->rsvd_hugepage[hstate_index(h)]; 272 nrg->css = &h_cg->css; 273 if (!resv->pages_per_hpage) 274 resv->pages_per_hpage = pages_per_huge_page(h); 275 /* pages_per_hpage should be the same for all entries in 276 * a resv_map. 277 */ 278 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 279 } else { 280 nrg->reservation_counter = NULL; 281 nrg->css = NULL; 282 } 283 #endif 284 } 285 286 static bool has_same_uncharge_info(struct file_region *rg, 287 struct file_region *org) 288 { 289 #ifdef CONFIG_CGROUP_HUGETLB 290 return rg && org && 291 rg->reservation_counter == org->reservation_counter && 292 rg->css == org->css; 293 294 #else 295 return true; 296 #endif 297 } 298 299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 300 { 301 struct file_region *nrg = NULL, *prg = NULL; 302 303 prg = list_prev_entry(rg, link); 304 if (&prg->link != &resv->regions && prg->to == rg->from && 305 has_same_uncharge_info(prg, rg)) { 306 prg->to = rg->to; 307 308 list_del(&rg->link); 309 kfree(rg); 310 311 rg = prg; 312 } 313 314 nrg = list_next_entry(rg, link); 315 if (&nrg->link != &resv->regions && nrg->from == rg->to && 316 has_same_uncharge_info(nrg, rg)) { 317 nrg->from = rg->from; 318 319 list_del(&rg->link); 320 kfree(rg); 321 } 322 } 323 324 /* 325 * Must be called with resv->lock held. 326 * 327 * Calling this with regions_needed != NULL will count the number of pages 328 * to be added but will not modify the linked list. And regions_needed will 329 * indicate the number of file_regions needed in the cache to carry out to add 330 * the regions for this range. 331 */ 332 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 333 struct hugetlb_cgroup *h_cg, 334 struct hstate *h, long *regions_needed) 335 { 336 long add = 0; 337 struct list_head *head = &resv->regions; 338 long last_accounted_offset = f; 339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 340 341 if (regions_needed) 342 *regions_needed = 0; 343 344 /* In this loop, we essentially handle an entry for the range 345 * [last_accounted_offset, rg->from), at every iteration, with some 346 * bounds checking. 347 */ 348 list_for_each_entry_safe(rg, trg, head, link) { 349 /* Skip irrelevant regions that start before our range. */ 350 if (rg->from < f) { 351 /* If this region ends after the last accounted offset, 352 * then we need to update last_accounted_offset. 353 */ 354 if (rg->to > last_accounted_offset) 355 last_accounted_offset = rg->to; 356 continue; 357 } 358 359 /* When we find a region that starts beyond our range, we've 360 * finished. 361 */ 362 if (rg->from > t) 363 break; 364 365 /* Add an entry for last_accounted_offset -> rg->from, and 366 * update last_accounted_offset. 367 */ 368 if (rg->from > last_accounted_offset) { 369 add += rg->from - last_accounted_offset; 370 if (!regions_needed) { 371 nrg = get_file_region_entry_from_cache( 372 resv, last_accounted_offset, rg->from); 373 record_hugetlb_cgroup_uncharge_info(h_cg, h, 374 resv, nrg); 375 list_add(&nrg->link, rg->link.prev); 376 coalesce_file_region(resv, nrg); 377 } else 378 *regions_needed += 1; 379 } 380 381 last_accounted_offset = rg->to; 382 } 383 384 /* Handle the case where our range extends beyond 385 * last_accounted_offset. 386 */ 387 if (last_accounted_offset < t) { 388 add += t - last_accounted_offset; 389 if (!regions_needed) { 390 nrg = get_file_region_entry_from_cache( 391 resv, last_accounted_offset, t); 392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 393 list_add(&nrg->link, rg->link.prev); 394 coalesce_file_region(resv, nrg); 395 } else 396 *regions_needed += 1; 397 } 398 399 VM_BUG_ON(add < 0); 400 return add; 401 } 402 403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 404 */ 405 static int allocate_file_region_entries(struct resv_map *resv, 406 int regions_needed) 407 __must_hold(&resv->lock) 408 { 409 struct list_head allocated_regions; 410 int to_allocate = 0, i = 0; 411 struct file_region *trg = NULL, *rg = NULL; 412 413 VM_BUG_ON(regions_needed < 0); 414 415 INIT_LIST_HEAD(&allocated_regions); 416 417 /* 418 * Check for sufficient descriptors in the cache to accommodate 419 * the number of in progress add operations plus regions_needed. 420 * 421 * This is a while loop because when we drop the lock, some other call 422 * to region_add or region_del may have consumed some region_entries, 423 * so we keep looping here until we finally have enough entries for 424 * (adds_in_progress + regions_needed). 425 */ 426 while (resv->region_cache_count < 427 (resv->adds_in_progress + regions_needed)) { 428 to_allocate = resv->adds_in_progress + regions_needed - 429 resv->region_cache_count; 430 431 /* At this point, we should have enough entries in the cache 432 * for all the existings adds_in_progress. We should only be 433 * needing to allocate for regions_needed. 434 */ 435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 436 437 spin_unlock(&resv->lock); 438 for (i = 0; i < to_allocate; i++) { 439 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 440 if (!trg) 441 goto out_of_memory; 442 list_add(&trg->link, &allocated_regions); 443 } 444 445 spin_lock(&resv->lock); 446 447 list_splice(&allocated_regions, &resv->region_cache); 448 resv->region_cache_count += to_allocate; 449 } 450 451 return 0; 452 453 out_of_memory: 454 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 455 list_del(&rg->link); 456 kfree(rg); 457 } 458 return -ENOMEM; 459 } 460 461 /* 462 * Add the huge page range represented by [f, t) to the reserve 463 * map. Regions will be taken from the cache to fill in this range. 464 * Sufficient regions should exist in the cache due to the previous 465 * call to region_chg with the same range, but in some cases the cache will not 466 * have sufficient entries due to races with other code doing region_add or 467 * region_del. The extra needed entries will be allocated. 468 * 469 * regions_needed is the out value provided by a previous call to region_chg. 470 * 471 * Return the number of new huge pages added to the map. This number is greater 472 * than or equal to zero. If file_region entries needed to be allocated for 473 * this operation and we were not able to allocate, it returns -ENOMEM. 474 * region_add of regions of length 1 never allocate file_regions and cannot 475 * fail; region_chg will always allocate at least 1 entry and a region_add for 476 * 1 page will only require at most 1 entry. 477 */ 478 static long region_add(struct resv_map *resv, long f, long t, 479 long in_regions_needed, struct hstate *h, 480 struct hugetlb_cgroup *h_cg) 481 { 482 long add = 0, actual_regions_needed = 0; 483 484 spin_lock(&resv->lock); 485 retry: 486 487 /* Count how many regions are actually needed to execute this add. */ 488 add_reservation_in_range(resv, f, t, NULL, NULL, 489 &actual_regions_needed); 490 491 /* 492 * Check for sufficient descriptors in the cache to accommodate 493 * this add operation. Note that actual_regions_needed may be greater 494 * than in_regions_needed, as the resv_map may have been modified since 495 * the region_chg call. In this case, we need to make sure that we 496 * allocate extra entries, such that we have enough for all the 497 * existing adds_in_progress, plus the excess needed for this 498 * operation. 499 */ 500 if (actual_regions_needed > in_regions_needed && 501 resv->region_cache_count < 502 resv->adds_in_progress + 503 (actual_regions_needed - in_regions_needed)) { 504 /* region_add operation of range 1 should never need to 505 * allocate file_region entries. 506 */ 507 VM_BUG_ON(t - f <= 1); 508 509 if (allocate_file_region_entries( 510 resv, actual_regions_needed - in_regions_needed)) { 511 return -ENOMEM; 512 } 513 514 goto retry; 515 } 516 517 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 518 519 resv->adds_in_progress -= in_regions_needed; 520 521 spin_unlock(&resv->lock); 522 VM_BUG_ON(add < 0); 523 return add; 524 } 525 526 /* 527 * Examine the existing reserve map and determine how many 528 * huge pages in the specified range [f, t) are NOT currently 529 * represented. This routine is called before a subsequent 530 * call to region_add that will actually modify the reserve 531 * map to add the specified range [f, t). region_chg does 532 * not change the number of huge pages represented by the 533 * map. A number of new file_region structures is added to the cache as a 534 * placeholder, for the subsequent region_add call to use. At least 1 535 * file_region structure is added. 536 * 537 * out_regions_needed is the number of regions added to the 538 * resv->adds_in_progress. This value needs to be provided to a follow up call 539 * to region_add or region_abort for proper accounting. 540 * 541 * Returns the number of huge pages that need to be added to the existing 542 * reservation map for the range [f, t). This number is greater or equal to 543 * zero. -ENOMEM is returned if a new file_region structure or cache entry 544 * is needed and can not be allocated. 545 */ 546 static long region_chg(struct resv_map *resv, long f, long t, 547 long *out_regions_needed) 548 { 549 long chg = 0; 550 551 spin_lock(&resv->lock); 552 553 /* Count how many hugepages in this range are NOT represented. */ 554 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 555 out_regions_needed); 556 557 if (*out_regions_needed == 0) 558 *out_regions_needed = 1; 559 560 if (allocate_file_region_entries(resv, *out_regions_needed)) 561 return -ENOMEM; 562 563 resv->adds_in_progress += *out_regions_needed; 564 565 spin_unlock(&resv->lock); 566 return chg; 567 } 568 569 /* 570 * Abort the in progress add operation. The adds_in_progress field 571 * of the resv_map keeps track of the operations in progress between 572 * calls to region_chg and region_add. Operations are sometimes 573 * aborted after the call to region_chg. In such cases, region_abort 574 * is called to decrement the adds_in_progress counter. regions_needed 575 * is the value returned by the region_chg call, it is used to decrement 576 * the adds_in_progress counter. 577 * 578 * NOTE: The range arguments [f, t) are not needed or used in this 579 * routine. They are kept to make reading the calling code easier as 580 * arguments will match the associated region_chg call. 581 */ 582 static void region_abort(struct resv_map *resv, long f, long t, 583 long regions_needed) 584 { 585 spin_lock(&resv->lock); 586 VM_BUG_ON(!resv->region_cache_count); 587 resv->adds_in_progress -= regions_needed; 588 spin_unlock(&resv->lock); 589 } 590 591 /* 592 * Delete the specified range [f, t) from the reserve map. If the 593 * t parameter is LONG_MAX, this indicates that ALL regions after f 594 * should be deleted. Locate the regions which intersect [f, t) 595 * and either trim, delete or split the existing regions. 596 * 597 * Returns the number of huge pages deleted from the reserve map. 598 * In the normal case, the return value is zero or more. In the 599 * case where a region must be split, a new region descriptor must 600 * be allocated. If the allocation fails, -ENOMEM will be returned. 601 * NOTE: If the parameter t == LONG_MAX, then we will never split 602 * a region and possibly return -ENOMEM. Callers specifying 603 * t == LONG_MAX do not need to check for -ENOMEM error. 604 */ 605 static long region_del(struct resv_map *resv, long f, long t) 606 { 607 struct list_head *head = &resv->regions; 608 struct file_region *rg, *trg; 609 struct file_region *nrg = NULL; 610 long del = 0; 611 612 retry: 613 spin_lock(&resv->lock); 614 list_for_each_entry_safe(rg, trg, head, link) { 615 /* 616 * Skip regions before the range to be deleted. file_region 617 * ranges are normally of the form [from, to). However, there 618 * may be a "placeholder" entry in the map which is of the form 619 * (from, to) with from == to. Check for placeholder entries 620 * at the beginning of the range to be deleted. 621 */ 622 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 623 continue; 624 625 if (rg->from >= t) 626 break; 627 628 if (f > rg->from && t < rg->to) { /* Must split region */ 629 /* 630 * Check for an entry in the cache before dropping 631 * lock and attempting allocation. 632 */ 633 if (!nrg && 634 resv->region_cache_count > resv->adds_in_progress) { 635 nrg = list_first_entry(&resv->region_cache, 636 struct file_region, 637 link); 638 list_del(&nrg->link); 639 resv->region_cache_count--; 640 } 641 642 if (!nrg) { 643 spin_unlock(&resv->lock); 644 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 645 if (!nrg) 646 return -ENOMEM; 647 goto retry; 648 } 649 650 del += t - f; 651 hugetlb_cgroup_uncharge_file_region( 652 resv, rg, t - f); 653 654 /* New entry for end of split region */ 655 nrg->from = t; 656 nrg->to = rg->to; 657 658 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 659 660 INIT_LIST_HEAD(&nrg->link); 661 662 /* Original entry is trimmed */ 663 rg->to = f; 664 665 list_add(&nrg->link, &rg->link); 666 nrg = NULL; 667 break; 668 } 669 670 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 671 del += rg->to - rg->from; 672 hugetlb_cgroup_uncharge_file_region(resv, rg, 673 rg->to - rg->from); 674 list_del(&rg->link); 675 kfree(rg); 676 continue; 677 } 678 679 if (f <= rg->from) { /* Trim beginning of region */ 680 hugetlb_cgroup_uncharge_file_region(resv, rg, 681 t - rg->from); 682 683 del += t - rg->from; 684 rg->from = t; 685 } else { /* Trim end of region */ 686 hugetlb_cgroup_uncharge_file_region(resv, rg, 687 rg->to - f); 688 689 del += rg->to - f; 690 rg->to = f; 691 } 692 } 693 694 spin_unlock(&resv->lock); 695 kfree(nrg); 696 return del; 697 } 698 699 /* 700 * A rare out of memory error was encountered which prevented removal of 701 * the reserve map region for a page. The huge page itself was free'ed 702 * and removed from the page cache. This routine will adjust the subpool 703 * usage count, and the global reserve count if needed. By incrementing 704 * these counts, the reserve map entry which could not be deleted will 705 * appear as a "reserved" entry instead of simply dangling with incorrect 706 * counts. 707 */ 708 void hugetlb_fix_reserve_counts(struct inode *inode) 709 { 710 struct hugepage_subpool *spool = subpool_inode(inode); 711 long rsv_adjust; 712 713 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 714 if (rsv_adjust) { 715 struct hstate *h = hstate_inode(inode); 716 717 hugetlb_acct_memory(h, 1); 718 } 719 } 720 721 /* 722 * Count and return the number of huge pages in the reserve map 723 * that intersect with the range [f, t). 724 */ 725 static long region_count(struct resv_map *resv, long f, long t) 726 { 727 struct list_head *head = &resv->regions; 728 struct file_region *rg; 729 long chg = 0; 730 731 spin_lock(&resv->lock); 732 /* Locate each segment we overlap with, and count that overlap. */ 733 list_for_each_entry(rg, head, link) { 734 long seg_from; 735 long seg_to; 736 737 if (rg->to <= f) 738 continue; 739 if (rg->from >= t) 740 break; 741 742 seg_from = max(rg->from, f); 743 seg_to = min(rg->to, t); 744 745 chg += seg_to - seg_from; 746 } 747 spin_unlock(&resv->lock); 748 749 return chg; 750 } 751 752 /* 753 * Convert the address within this vma to the page offset within 754 * the mapping, in pagecache page units; huge pages here. 755 */ 756 static pgoff_t vma_hugecache_offset(struct hstate *h, 757 struct vm_area_struct *vma, unsigned long address) 758 { 759 return ((address - vma->vm_start) >> huge_page_shift(h)) + 760 (vma->vm_pgoff >> huge_page_order(h)); 761 } 762 763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 764 unsigned long address) 765 { 766 return vma_hugecache_offset(hstate_vma(vma), vma, address); 767 } 768 EXPORT_SYMBOL_GPL(linear_hugepage_index); 769 770 /* 771 * Return the size of the pages allocated when backing a VMA. In the majority 772 * cases this will be same size as used by the page table entries. 773 */ 774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 775 { 776 if (vma->vm_ops && vma->vm_ops->pagesize) 777 return vma->vm_ops->pagesize(vma); 778 return PAGE_SIZE; 779 } 780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 781 782 /* 783 * Return the page size being used by the MMU to back a VMA. In the majority 784 * of cases, the page size used by the kernel matches the MMU size. On 785 * architectures where it differs, an architecture-specific 'strong' 786 * version of this symbol is required. 787 */ 788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 789 { 790 return vma_kernel_pagesize(vma); 791 } 792 793 /* 794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 795 * bits of the reservation map pointer, which are always clear due to 796 * alignment. 797 */ 798 #define HPAGE_RESV_OWNER (1UL << 0) 799 #define HPAGE_RESV_UNMAPPED (1UL << 1) 800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 801 802 /* 803 * These helpers are used to track how many pages are reserved for 804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 805 * is guaranteed to have their future faults succeed. 806 * 807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 808 * the reserve counters are updated with the hugetlb_lock held. It is safe 809 * to reset the VMA at fork() time as it is not in use yet and there is no 810 * chance of the global counters getting corrupted as a result of the values. 811 * 812 * The private mapping reservation is represented in a subtly different 813 * manner to a shared mapping. A shared mapping has a region map associated 814 * with the underlying file, this region map represents the backing file 815 * pages which have ever had a reservation assigned which this persists even 816 * after the page is instantiated. A private mapping has a region map 817 * associated with the original mmap which is attached to all VMAs which 818 * reference it, this region map represents those offsets which have consumed 819 * reservation ie. where pages have been instantiated. 820 */ 821 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 822 { 823 return (unsigned long)vma->vm_private_data; 824 } 825 826 static void set_vma_private_data(struct vm_area_struct *vma, 827 unsigned long value) 828 { 829 vma->vm_private_data = (void *)value; 830 } 831 832 static void 833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 834 struct hugetlb_cgroup *h_cg, 835 struct hstate *h) 836 { 837 #ifdef CONFIG_CGROUP_HUGETLB 838 if (!h_cg || !h) { 839 resv_map->reservation_counter = NULL; 840 resv_map->pages_per_hpage = 0; 841 resv_map->css = NULL; 842 } else { 843 resv_map->reservation_counter = 844 &h_cg->rsvd_hugepage[hstate_index(h)]; 845 resv_map->pages_per_hpage = pages_per_huge_page(h); 846 resv_map->css = &h_cg->css; 847 } 848 #endif 849 } 850 851 struct resv_map *resv_map_alloc(void) 852 { 853 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 854 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 855 856 if (!resv_map || !rg) { 857 kfree(resv_map); 858 kfree(rg); 859 return NULL; 860 } 861 862 kref_init(&resv_map->refs); 863 spin_lock_init(&resv_map->lock); 864 INIT_LIST_HEAD(&resv_map->regions); 865 866 resv_map->adds_in_progress = 0; 867 /* 868 * Initialize these to 0. On shared mappings, 0's here indicate these 869 * fields don't do cgroup accounting. On private mappings, these will be 870 * re-initialized to the proper values, to indicate that hugetlb cgroup 871 * reservations are to be un-charged from here. 872 */ 873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 874 875 INIT_LIST_HEAD(&resv_map->region_cache); 876 list_add(&rg->link, &resv_map->region_cache); 877 resv_map->region_cache_count = 1; 878 879 return resv_map; 880 } 881 882 void resv_map_release(struct kref *ref) 883 { 884 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 885 struct list_head *head = &resv_map->region_cache; 886 struct file_region *rg, *trg; 887 888 /* Clear out any active regions before we release the map. */ 889 region_del(resv_map, 0, LONG_MAX); 890 891 /* ... and any entries left in the cache */ 892 list_for_each_entry_safe(rg, trg, head, link) { 893 list_del(&rg->link); 894 kfree(rg); 895 } 896 897 VM_BUG_ON(resv_map->adds_in_progress); 898 899 kfree(resv_map); 900 } 901 902 static inline struct resv_map *inode_resv_map(struct inode *inode) 903 { 904 /* 905 * At inode evict time, i_mapping may not point to the original 906 * address space within the inode. This original address space 907 * contains the pointer to the resv_map. So, always use the 908 * address space embedded within the inode. 909 * The VERY common case is inode->mapping == &inode->i_data but, 910 * this may not be true for device special inodes. 911 */ 912 return (struct resv_map *)(&inode->i_data)->private_data; 913 } 914 915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 916 { 917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 918 if (vma->vm_flags & VM_MAYSHARE) { 919 struct address_space *mapping = vma->vm_file->f_mapping; 920 struct inode *inode = mapping->host; 921 922 return inode_resv_map(inode); 923 924 } else { 925 return (struct resv_map *)(get_vma_private_data(vma) & 926 ~HPAGE_RESV_MASK); 927 } 928 } 929 930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 931 { 932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 933 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 934 935 set_vma_private_data(vma, (get_vma_private_data(vma) & 936 HPAGE_RESV_MASK) | (unsigned long)map); 937 } 938 939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 940 { 941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 942 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 943 944 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 945 } 946 947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 948 { 949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 950 951 return (get_vma_private_data(vma) & flag) != 0; 952 } 953 954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 956 { 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 958 if (!(vma->vm_flags & VM_MAYSHARE)) 959 vma->vm_private_data = (void *)0; 960 } 961 962 /* Returns true if the VMA has associated reserve pages */ 963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 964 { 965 if (vma->vm_flags & VM_NORESERVE) { 966 /* 967 * This address is already reserved by other process(chg == 0), 968 * so, we should decrement reserved count. Without decrementing, 969 * reserve count remains after releasing inode, because this 970 * allocated page will go into page cache and is regarded as 971 * coming from reserved pool in releasing step. Currently, we 972 * don't have any other solution to deal with this situation 973 * properly, so add work-around here. 974 */ 975 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 976 return true; 977 else 978 return false; 979 } 980 981 /* Shared mappings always use reserves */ 982 if (vma->vm_flags & VM_MAYSHARE) { 983 /* 984 * We know VM_NORESERVE is not set. Therefore, there SHOULD 985 * be a region map for all pages. The only situation where 986 * there is no region map is if a hole was punched via 987 * fallocate. In this case, there really are no reserves to 988 * use. This situation is indicated if chg != 0. 989 */ 990 if (chg) 991 return false; 992 else 993 return true; 994 } 995 996 /* 997 * Only the process that called mmap() has reserves for 998 * private mappings. 999 */ 1000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1001 /* 1002 * Like the shared case above, a hole punch or truncate 1003 * could have been performed on the private mapping. 1004 * Examine the value of chg to determine if reserves 1005 * actually exist or were previously consumed. 1006 * Very Subtle - The value of chg comes from a previous 1007 * call to vma_needs_reserves(). The reserve map for 1008 * private mappings has different (opposite) semantics 1009 * than that of shared mappings. vma_needs_reserves() 1010 * has already taken this difference in semantics into 1011 * account. Therefore, the meaning of chg is the same 1012 * as in the shared case above. Code could easily be 1013 * combined, but keeping it separate draws attention to 1014 * subtle differences. 1015 */ 1016 if (chg) 1017 return false; 1018 else 1019 return true; 1020 } 1021 1022 return false; 1023 } 1024 1025 static void enqueue_huge_page(struct hstate *h, struct page *page) 1026 { 1027 int nid = page_to_nid(page); 1028 list_move(&page->lru, &h->hugepage_freelists[nid]); 1029 h->free_huge_pages++; 1030 h->free_huge_pages_node[nid]++; 1031 } 1032 1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1034 { 1035 struct page *page; 1036 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1037 1038 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1039 if (nocma && is_migrate_cma_page(page)) 1040 continue; 1041 1042 if (PageHWPoison(page)) 1043 continue; 1044 1045 list_move(&page->lru, &h->hugepage_activelist); 1046 set_page_refcounted(page); 1047 h->free_huge_pages--; 1048 h->free_huge_pages_node[nid]--; 1049 return page; 1050 } 1051 1052 return NULL; 1053 } 1054 1055 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1056 nodemask_t *nmask) 1057 { 1058 unsigned int cpuset_mems_cookie; 1059 struct zonelist *zonelist; 1060 struct zone *zone; 1061 struct zoneref *z; 1062 int node = NUMA_NO_NODE; 1063 1064 zonelist = node_zonelist(nid, gfp_mask); 1065 1066 retry_cpuset: 1067 cpuset_mems_cookie = read_mems_allowed_begin(); 1068 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1069 struct page *page; 1070 1071 if (!cpuset_zone_allowed(zone, gfp_mask)) 1072 continue; 1073 /* 1074 * no need to ask again on the same node. Pool is node rather than 1075 * zone aware 1076 */ 1077 if (zone_to_nid(zone) == node) 1078 continue; 1079 node = zone_to_nid(zone); 1080 1081 page = dequeue_huge_page_node_exact(h, node); 1082 if (page) 1083 return page; 1084 } 1085 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1086 goto retry_cpuset; 1087 1088 return NULL; 1089 } 1090 1091 static struct page *dequeue_huge_page_vma(struct hstate *h, 1092 struct vm_area_struct *vma, 1093 unsigned long address, int avoid_reserve, 1094 long chg) 1095 { 1096 struct page *page; 1097 struct mempolicy *mpol; 1098 gfp_t gfp_mask; 1099 nodemask_t *nodemask; 1100 int nid; 1101 1102 /* 1103 * A child process with MAP_PRIVATE mappings created by their parent 1104 * have no page reserves. This check ensures that reservations are 1105 * not "stolen". The child may still get SIGKILLed 1106 */ 1107 if (!vma_has_reserves(vma, chg) && 1108 h->free_huge_pages - h->resv_huge_pages == 0) 1109 goto err; 1110 1111 /* If reserves cannot be used, ensure enough pages are in the pool */ 1112 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1113 goto err; 1114 1115 gfp_mask = htlb_alloc_mask(h); 1116 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1117 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1118 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1119 SetPagePrivate(page); 1120 h->resv_huge_pages--; 1121 } 1122 1123 mpol_cond_put(mpol); 1124 return page; 1125 1126 err: 1127 return NULL; 1128 } 1129 1130 /* 1131 * common helper functions for hstate_next_node_to_{alloc|free}. 1132 * We may have allocated or freed a huge page based on a different 1133 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1134 * be outside of *nodes_allowed. Ensure that we use an allowed 1135 * node for alloc or free. 1136 */ 1137 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1138 { 1139 nid = next_node_in(nid, *nodes_allowed); 1140 VM_BUG_ON(nid >= MAX_NUMNODES); 1141 1142 return nid; 1143 } 1144 1145 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1146 { 1147 if (!node_isset(nid, *nodes_allowed)) 1148 nid = next_node_allowed(nid, nodes_allowed); 1149 return nid; 1150 } 1151 1152 /* 1153 * returns the previously saved node ["this node"] from which to 1154 * allocate a persistent huge page for the pool and advance the 1155 * next node from which to allocate, handling wrap at end of node 1156 * mask. 1157 */ 1158 static int hstate_next_node_to_alloc(struct hstate *h, 1159 nodemask_t *nodes_allowed) 1160 { 1161 int nid; 1162 1163 VM_BUG_ON(!nodes_allowed); 1164 1165 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1166 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1167 1168 return nid; 1169 } 1170 1171 /* 1172 * helper for free_pool_huge_page() - return the previously saved 1173 * node ["this node"] from which to free a huge page. Advance the 1174 * next node id whether or not we find a free huge page to free so 1175 * that the next attempt to free addresses the next node. 1176 */ 1177 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1178 { 1179 int nid; 1180 1181 VM_BUG_ON(!nodes_allowed); 1182 1183 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1184 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1185 1186 return nid; 1187 } 1188 1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1190 for (nr_nodes = nodes_weight(*mask); \ 1191 nr_nodes > 0 && \ 1192 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1193 nr_nodes--) 1194 1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1196 for (nr_nodes = nodes_weight(*mask); \ 1197 nr_nodes > 0 && \ 1198 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1199 nr_nodes--) 1200 1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1202 static void destroy_compound_gigantic_page(struct page *page, 1203 unsigned int order) 1204 { 1205 int i; 1206 int nr_pages = 1 << order; 1207 struct page *p = page + 1; 1208 1209 atomic_set(compound_mapcount_ptr(page), 0); 1210 if (hpage_pincount_available(page)) 1211 atomic_set(compound_pincount_ptr(page), 0); 1212 1213 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1214 clear_compound_head(p); 1215 set_page_refcounted(p); 1216 } 1217 1218 set_compound_order(page, 0); 1219 __ClearPageHead(page); 1220 } 1221 1222 static void free_gigantic_page(struct page *page, unsigned int order) 1223 { 1224 /* 1225 * If the page isn't allocated using the cma allocator, 1226 * cma_release() returns false. 1227 */ 1228 #ifdef CONFIG_CMA 1229 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1230 return; 1231 #endif 1232 1233 free_contig_range(page_to_pfn(page), 1 << order); 1234 } 1235 1236 #ifdef CONFIG_CONTIG_ALLOC 1237 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1238 int nid, nodemask_t *nodemask) 1239 { 1240 unsigned long nr_pages = 1UL << huge_page_order(h); 1241 if (nid == NUMA_NO_NODE) 1242 nid = numa_mem_id(); 1243 1244 #ifdef CONFIG_CMA 1245 { 1246 struct page *page; 1247 int node; 1248 1249 if (hugetlb_cma[nid]) { 1250 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1251 huge_page_order(h), true); 1252 if (page) 1253 return page; 1254 } 1255 1256 if (!(gfp_mask & __GFP_THISNODE)) { 1257 for_each_node_mask(node, *nodemask) { 1258 if (node == nid || !hugetlb_cma[node]) 1259 continue; 1260 1261 page = cma_alloc(hugetlb_cma[node], nr_pages, 1262 huge_page_order(h), true); 1263 if (page) 1264 return page; 1265 } 1266 } 1267 } 1268 #endif 1269 1270 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1271 } 1272 1273 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1274 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1275 #else /* !CONFIG_CONTIG_ALLOC */ 1276 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1277 int nid, nodemask_t *nodemask) 1278 { 1279 return NULL; 1280 } 1281 #endif /* CONFIG_CONTIG_ALLOC */ 1282 1283 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1284 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1285 int nid, nodemask_t *nodemask) 1286 { 1287 return NULL; 1288 } 1289 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1290 static inline void destroy_compound_gigantic_page(struct page *page, 1291 unsigned int order) { } 1292 #endif 1293 1294 static void update_and_free_page(struct hstate *h, struct page *page) 1295 { 1296 int i; 1297 1298 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1299 return; 1300 1301 h->nr_huge_pages--; 1302 h->nr_huge_pages_node[page_to_nid(page)]--; 1303 for (i = 0; i < pages_per_huge_page(h); i++) { 1304 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1305 1 << PG_referenced | 1 << PG_dirty | 1306 1 << PG_active | 1 << PG_private | 1307 1 << PG_writeback); 1308 } 1309 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1311 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1312 set_page_refcounted(page); 1313 if (hstate_is_gigantic(h)) { 1314 /* 1315 * Temporarily drop the hugetlb_lock, because 1316 * we might block in free_gigantic_page(). 1317 */ 1318 spin_unlock(&hugetlb_lock); 1319 destroy_compound_gigantic_page(page, huge_page_order(h)); 1320 free_gigantic_page(page, huge_page_order(h)); 1321 spin_lock(&hugetlb_lock); 1322 } else { 1323 __free_pages(page, huge_page_order(h)); 1324 } 1325 } 1326 1327 struct hstate *size_to_hstate(unsigned long size) 1328 { 1329 struct hstate *h; 1330 1331 for_each_hstate(h) { 1332 if (huge_page_size(h) == size) 1333 return h; 1334 } 1335 return NULL; 1336 } 1337 1338 /* 1339 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1340 * to hstate->hugepage_activelist.) 1341 * 1342 * This function can be called for tail pages, but never returns true for them. 1343 */ 1344 bool page_huge_active(struct page *page) 1345 { 1346 VM_BUG_ON_PAGE(!PageHuge(page), page); 1347 return PageHead(page) && PagePrivate(&page[1]); 1348 } 1349 1350 /* never called for tail page */ 1351 static void set_page_huge_active(struct page *page) 1352 { 1353 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1354 SetPagePrivate(&page[1]); 1355 } 1356 1357 static void clear_page_huge_active(struct page *page) 1358 { 1359 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1360 ClearPagePrivate(&page[1]); 1361 } 1362 1363 /* 1364 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1365 * code 1366 */ 1367 static inline bool PageHugeTemporary(struct page *page) 1368 { 1369 if (!PageHuge(page)) 1370 return false; 1371 1372 return (unsigned long)page[2].mapping == -1U; 1373 } 1374 1375 static inline void SetPageHugeTemporary(struct page *page) 1376 { 1377 page[2].mapping = (void *)-1U; 1378 } 1379 1380 static inline void ClearPageHugeTemporary(struct page *page) 1381 { 1382 page[2].mapping = NULL; 1383 } 1384 1385 static void __free_huge_page(struct page *page) 1386 { 1387 /* 1388 * Can't pass hstate in here because it is called from the 1389 * compound page destructor. 1390 */ 1391 struct hstate *h = page_hstate(page); 1392 int nid = page_to_nid(page); 1393 struct hugepage_subpool *spool = 1394 (struct hugepage_subpool *)page_private(page); 1395 bool restore_reserve; 1396 1397 VM_BUG_ON_PAGE(page_count(page), page); 1398 VM_BUG_ON_PAGE(page_mapcount(page), page); 1399 1400 set_page_private(page, 0); 1401 page->mapping = NULL; 1402 restore_reserve = PagePrivate(page); 1403 ClearPagePrivate(page); 1404 1405 /* 1406 * If PagePrivate() was set on page, page allocation consumed a 1407 * reservation. If the page was associated with a subpool, there 1408 * would have been a page reserved in the subpool before allocation 1409 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1410 * reservtion, do not call hugepage_subpool_put_pages() as this will 1411 * remove the reserved page from the subpool. 1412 */ 1413 if (!restore_reserve) { 1414 /* 1415 * A return code of zero implies that the subpool will be 1416 * under its minimum size if the reservation is not restored 1417 * after page is free. Therefore, force restore_reserve 1418 * operation. 1419 */ 1420 if (hugepage_subpool_put_pages(spool, 1) == 0) 1421 restore_reserve = true; 1422 } 1423 1424 spin_lock(&hugetlb_lock); 1425 clear_page_huge_active(page); 1426 hugetlb_cgroup_uncharge_page(hstate_index(h), 1427 pages_per_huge_page(h), page); 1428 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1429 pages_per_huge_page(h), page); 1430 if (restore_reserve) 1431 h->resv_huge_pages++; 1432 1433 if (PageHugeTemporary(page)) { 1434 list_del(&page->lru); 1435 ClearPageHugeTemporary(page); 1436 update_and_free_page(h, page); 1437 } else if (h->surplus_huge_pages_node[nid]) { 1438 /* remove the page from active list */ 1439 list_del(&page->lru); 1440 update_and_free_page(h, page); 1441 h->surplus_huge_pages--; 1442 h->surplus_huge_pages_node[nid]--; 1443 } else { 1444 arch_clear_hugepage_flags(page); 1445 enqueue_huge_page(h, page); 1446 } 1447 spin_unlock(&hugetlb_lock); 1448 } 1449 1450 /* 1451 * As free_huge_page() can be called from a non-task context, we have 1452 * to defer the actual freeing in a workqueue to prevent potential 1453 * hugetlb_lock deadlock. 1454 * 1455 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1456 * be freed and frees them one-by-one. As the page->mapping pointer is 1457 * going to be cleared in __free_huge_page() anyway, it is reused as the 1458 * llist_node structure of a lockless linked list of huge pages to be freed. 1459 */ 1460 static LLIST_HEAD(hpage_freelist); 1461 1462 static void free_hpage_workfn(struct work_struct *work) 1463 { 1464 struct llist_node *node; 1465 struct page *page; 1466 1467 node = llist_del_all(&hpage_freelist); 1468 1469 while (node) { 1470 page = container_of((struct address_space **)node, 1471 struct page, mapping); 1472 node = node->next; 1473 __free_huge_page(page); 1474 } 1475 } 1476 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1477 1478 void free_huge_page(struct page *page) 1479 { 1480 /* 1481 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1482 */ 1483 if (!in_task()) { 1484 /* 1485 * Only call schedule_work() if hpage_freelist is previously 1486 * empty. Otherwise, schedule_work() had been called but the 1487 * workfn hasn't retrieved the list yet. 1488 */ 1489 if (llist_add((struct llist_node *)&page->mapping, 1490 &hpage_freelist)) 1491 schedule_work(&free_hpage_work); 1492 return; 1493 } 1494 1495 __free_huge_page(page); 1496 } 1497 1498 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1499 { 1500 INIT_LIST_HEAD(&page->lru); 1501 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1502 set_hugetlb_cgroup(page, NULL); 1503 set_hugetlb_cgroup_rsvd(page, NULL); 1504 spin_lock(&hugetlb_lock); 1505 h->nr_huge_pages++; 1506 h->nr_huge_pages_node[nid]++; 1507 spin_unlock(&hugetlb_lock); 1508 } 1509 1510 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1511 { 1512 int i; 1513 int nr_pages = 1 << order; 1514 struct page *p = page + 1; 1515 1516 /* we rely on prep_new_huge_page to set the destructor */ 1517 set_compound_order(page, order); 1518 __ClearPageReserved(page); 1519 __SetPageHead(page); 1520 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1521 /* 1522 * For gigantic hugepages allocated through bootmem at 1523 * boot, it's safer to be consistent with the not-gigantic 1524 * hugepages and clear the PG_reserved bit from all tail pages 1525 * too. Otherwise drivers using get_user_pages() to access tail 1526 * pages may get the reference counting wrong if they see 1527 * PG_reserved set on a tail page (despite the head page not 1528 * having PG_reserved set). Enforcing this consistency between 1529 * head and tail pages allows drivers to optimize away a check 1530 * on the head page when they need know if put_page() is needed 1531 * after get_user_pages(). 1532 */ 1533 __ClearPageReserved(p); 1534 set_page_count(p, 0); 1535 set_compound_head(p, page); 1536 } 1537 atomic_set(compound_mapcount_ptr(page), -1); 1538 1539 if (hpage_pincount_available(page)) 1540 atomic_set(compound_pincount_ptr(page), 0); 1541 } 1542 1543 /* 1544 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1545 * transparent huge pages. See the PageTransHuge() documentation for more 1546 * details. 1547 */ 1548 int PageHuge(struct page *page) 1549 { 1550 if (!PageCompound(page)) 1551 return 0; 1552 1553 page = compound_head(page); 1554 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1555 } 1556 EXPORT_SYMBOL_GPL(PageHuge); 1557 1558 /* 1559 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1560 * normal or transparent huge pages. 1561 */ 1562 int PageHeadHuge(struct page *page_head) 1563 { 1564 if (!PageHead(page_head)) 1565 return 0; 1566 1567 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1568 } 1569 1570 /* 1571 * Find address_space associated with hugetlbfs page. 1572 * Upon entry page is locked and page 'was' mapped although mapped state 1573 * could change. If necessary, use anon_vma to find vma and associated 1574 * address space. The returned mapping may be stale, but it can not be 1575 * invalid as page lock (which is held) is required to destroy mapping. 1576 */ 1577 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) 1578 { 1579 struct anon_vma *anon_vma; 1580 pgoff_t pgoff_start, pgoff_end; 1581 struct anon_vma_chain *avc; 1582 struct address_space *mapping = page_mapping(hpage); 1583 1584 /* Simple file based mapping */ 1585 if (mapping) 1586 return mapping; 1587 1588 /* 1589 * Even anonymous hugetlbfs mappings are associated with an 1590 * underlying hugetlbfs file (see hugetlb_file_setup in mmap 1591 * code). Find a vma associated with the anonymous vma, and 1592 * use the file pointer to get address_space. 1593 */ 1594 anon_vma = page_lock_anon_vma_read(hpage); 1595 if (!anon_vma) 1596 return mapping; /* NULL */ 1597 1598 /* Use first found vma */ 1599 pgoff_start = page_to_pgoff(hpage); 1600 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1; 1601 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1602 pgoff_start, pgoff_end) { 1603 struct vm_area_struct *vma = avc->vma; 1604 1605 mapping = vma->vm_file->f_mapping; 1606 break; 1607 } 1608 1609 anon_vma_unlock_read(anon_vma); 1610 return mapping; 1611 } 1612 1613 /* 1614 * Find and lock address space (mapping) in write mode. 1615 * 1616 * Upon entry, the page is locked which allows us to find the mapping 1617 * even in the case of an anon page. However, locking order dictates 1618 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs 1619 * specific. So, we first try to lock the sema while still holding the 1620 * page lock. If this works, great! If not, then we need to drop the 1621 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of 1622 * course, need to revalidate state along the way. 1623 */ 1624 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1625 { 1626 struct address_space *mapping, *mapping2; 1627 1628 mapping = _get_hugetlb_page_mapping(hpage); 1629 retry: 1630 if (!mapping) 1631 return mapping; 1632 1633 /* 1634 * If no contention, take lock and return 1635 */ 1636 if (i_mmap_trylock_write(mapping)) 1637 return mapping; 1638 1639 /* 1640 * Must drop page lock and wait on mapping sema. 1641 * Note: Once page lock is dropped, mapping could become invalid. 1642 * As a hack, increase map count until we lock page again. 1643 */ 1644 atomic_inc(&hpage->_mapcount); 1645 unlock_page(hpage); 1646 i_mmap_lock_write(mapping); 1647 lock_page(hpage); 1648 atomic_add_negative(-1, &hpage->_mapcount); 1649 1650 /* verify page is still mapped */ 1651 if (!page_mapped(hpage)) { 1652 i_mmap_unlock_write(mapping); 1653 return NULL; 1654 } 1655 1656 /* 1657 * Get address space again and verify it is the same one 1658 * we locked. If not, drop lock and retry. 1659 */ 1660 mapping2 = _get_hugetlb_page_mapping(hpage); 1661 if (mapping2 != mapping) { 1662 i_mmap_unlock_write(mapping); 1663 mapping = mapping2; 1664 goto retry; 1665 } 1666 1667 return mapping; 1668 } 1669 1670 pgoff_t __basepage_index(struct page *page) 1671 { 1672 struct page *page_head = compound_head(page); 1673 pgoff_t index = page_index(page_head); 1674 unsigned long compound_idx; 1675 1676 if (!PageHuge(page_head)) 1677 return page_index(page); 1678 1679 if (compound_order(page_head) >= MAX_ORDER) 1680 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1681 else 1682 compound_idx = page - page_head; 1683 1684 return (index << compound_order(page_head)) + compound_idx; 1685 } 1686 1687 static struct page *alloc_buddy_huge_page(struct hstate *h, 1688 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1689 nodemask_t *node_alloc_noretry) 1690 { 1691 int order = huge_page_order(h); 1692 struct page *page; 1693 bool alloc_try_hard = true; 1694 1695 /* 1696 * By default we always try hard to allocate the page with 1697 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1698 * a loop (to adjust global huge page counts) and previous allocation 1699 * failed, do not continue to try hard on the same node. Use the 1700 * node_alloc_noretry bitmap to manage this state information. 1701 */ 1702 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1703 alloc_try_hard = false; 1704 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1705 if (alloc_try_hard) 1706 gfp_mask |= __GFP_RETRY_MAYFAIL; 1707 if (nid == NUMA_NO_NODE) 1708 nid = numa_mem_id(); 1709 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1710 if (page) 1711 __count_vm_event(HTLB_BUDDY_PGALLOC); 1712 else 1713 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1714 1715 /* 1716 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1717 * indicates an overall state change. Clear bit so that we resume 1718 * normal 'try hard' allocations. 1719 */ 1720 if (node_alloc_noretry && page && !alloc_try_hard) 1721 node_clear(nid, *node_alloc_noretry); 1722 1723 /* 1724 * If we tried hard to get a page but failed, set bit so that 1725 * subsequent attempts will not try as hard until there is an 1726 * overall state change. 1727 */ 1728 if (node_alloc_noretry && !page && alloc_try_hard) 1729 node_set(nid, *node_alloc_noretry); 1730 1731 return page; 1732 } 1733 1734 /* 1735 * Common helper to allocate a fresh hugetlb page. All specific allocators 1736 * should use this function to get new hugetlb pages 1737 */ 1738 static struct page *alloc_fresh_huge_page(struct hstate *h, 1739 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1740 nodemask_t *node_alloc_noretry) 1741 { 1742 struct page *page; 1743 1744 if (hstate_is_gigantic(h)) 1745 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1746 else 1747 page = alloc_buddy_huge_page(h, gfp_mask, 1748 nid, nmask, node_alloc_noretry); 1749 if (!page) 1750 return NULL; 1751 1752 if (hstate_is_gigantic(h)) 1753 prep_compound_gigantic_page(page, huge_page_order(h)); 1754 prep_new_huge_page(h, page, page_to_nid(page)); 1755 1756 return page; 1757 } 1758 1759 /* 1760 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1761 * manner. 1762 */ 1763 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1764 nodemask_t *node_alloc_noretry) 1765 { 1766 struct page *page; 1767 int nr_nodes, node; 1768 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1769 1770 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1771 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1772 node_alloc_noretry); 1773 if (page) 1774 break; 1775 } 1776 1777 if (!page) 1778 return 0; 1779 1780 put_page(page); /* free it into the hugepage allocator */ 1781 1782 return 1; 1783 } 1784 1785 /* 1786 * Free huge page from pool from next node to free. 1787 * Attempt to keep persistent huge pages more or less 1788 * balanced over allowed nodes. 1789 * Called with hugetlb_lock locked. 1790 */ 1791 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1792 bool acct_surplus) 1793 { 1794 int nr_nodes, node; 1795 int ret = 0; 1796 1797 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1798 /* 1799 * If we're returning unused surplus pages, only examine 1800 * nodes with surplus pages. 1801 */ 1802 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1803 !list_empty(&h->hugepage_freelists[node])) { 1804 struct page *page = 1805 list_entry(h->hugepage_freelists[node].next, 1806 struct page, lru); 1807 list_del(&page->lru); 1808 h->free_huge_pages--; 1809 h->free_huge_pages_node[node]--; 1810 if (acct_surplus) { 1811 h->surplus_huge_pages--; 1812 h->surplus_huge_pages_node[node]--; 1813 } 1814 update_and_free_page(h, page); 1815 ret = 1; 1816 break; 1817 } 1818 } 1819 1820 return ret; 1821 } 1822 1823 /* 1824 * Dissolve a given free hugepage into free buddy pages. This function does 1825 * nothing for in-use hugepages and non-hugepages. 1826 * This function returns values like below: 1827 * 1828 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1829 * (allocated or reserved.) 1830 * 0: successfully dissolved free hugepages or the page is not a 1831 * hugepage (considered as already dissolved) 1832 */ 1833 int dissolve_free_huge_page(struct page *page) 1834 { 1835 int rc = -EBUSY; 1836 1837 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1838 if (!PageHuge(page)) 1839 return 0; 1840 1841 spin_lock(&hugetlb_lock); 1842 if (!PageHuge(page)) { 1843 rc = 0; 1844 goto out; 1845 } 1846 1847 if (!page_count(page)) { 1848 struct page *head = compound_head(page); 1849 struct hstate *h = page_hstate(head); 1850 int nid = page_to_nid(head); 1851 if (h->free_huge_pages - h->resv_huge_pages == 0) 1852 goto out; 1853 /* 1854 * Move PageHWPoison flag from head page to the raw error page, 1855 * which makes any subpages rather than the error page reusable. 1856 */ 1857 if (PageHWPoison(head) && page != head) { 1858 SetPageHWPoison(page); 1859 ClearPageHWPoison(head); 1860 } 1861 list_del(&head->lru); 1862 h->free_huge_pages--; 1863 h->free_huge_pages_node[nid]--; 1864 h->max_huge_pages--; 1865 update_and_free_page(h, head); 1866 rc = 0; 1867 } 1868 out: 1869 spin_unlock(&hugetlb_lock); 1870 return rc; 1871 } 1872 1873 /* 1874 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1875 * make specified memory blocks removable from the system. 1876 * Note that this will dissolve a free gigantic hugepage completely, if any 1877 * part of it lies within the given range. 1878 * Also note that if dissolve_free_huge_page() returns with an error, all 1879 * free hugepages that were dissolved before that error are lost. 1880 */ 1881 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1882 { 1883 unsigned long pfn; 1884 struct page *page; 1885 int rc = 0; 1886 1887 if (!hugepages_supported()) 1888 return rc; 1889 1890 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1891 page = pfn_to_page(pfn); 1892 rc = dissolve_free_huge_page(page); 1893 if (rc) 1894 break; 1895 } 1896 1897 return rc; 1898 } 1899 1900 /* 1901 * Allocates a fresh surplus page from the page allocator. 1902 */ 1903 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1904 int nid, nodemask_t *nmask) 1905 { 1906 struct page *page = NULL; 1907 1908 if (hstate_is_gigantic(h)) 1909 return NULL; 1910 1911 spin_lock(&hugetlb_lock); 1912 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1913 goto out_unlock; 1914 spin_unlock(&hugetlb_lock); 1915 1916 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1917 if (!page) 1918 return NULL; 1919 1920 spin_lock(&hugetlb_lock); 1921 /* 1922 * We could have raced with the pool size change. 1923 * Double check that and simply deallocate the new page 1924 * if we would end up overcommiting the surpluses. Abuse 1925 * temporary page to workaround the nasty free_huge_page 1926 * codeflow 1927 */ 1928 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1929 SetPageHugeTemporary(page); 1930 spin_unlock(&hugetlb_lock); 1931 put_page(page); 1932 return NULL; 1933 } else { 1934 h->surplus_huge_pages++; 1935 h->surplus_huge_pages_node[page_to_nid(page)]++; 1936 } 1937 1938 out_unlock: 1939 spin_unlock(&hugetlb_lock); 1940 1941 return page; 1942 } 1943 1944 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1945 int nid, nodemask_t *nmask) 1946 { 1947 struct page *page; 1948 1949 if (hstate_is_gigantic(h)) 1950 return NULL; 1951 1952 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1953 if (!page) 1954 return NULL; 1955 1956 /* 1957 * We do not account these pages as surplus because they are only 1958 * temporary and will be released properly on the last reference 1959 */ 1960 SetPageHugeTemporary(page); 1961 1962 return page; 1963 } 1964 1965 /* 1966 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1967 */ 1968 static 1969 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1970 struct vm_area_struct *vma, unsigned long addr) 1971 { 1972 struct page *page; 1973 struct mempolicy *mpol; 1974 gfp_t gfp_mask = htlb_alloc_mask(h); 1975 int nid; 1976 nodemask_t *nodemask; 1977 1978 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1979 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1980 mpol_cond_put(mpol); 1981 1982 return page; 1983 } 1984 1985 /* page migration callback function */ 1986 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1987 nodemask_t *nmask, gfp_t gfp_mask) 1988 { 1989 spin_lock(&hugetlb_lock); 1990 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1991 struct page *page; 1992 1993 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1994 if (page) { 1995 spin_unlock(&hugetlb_lock); 1996 return page; 1997 } 1998 } 1999 spin_unlock(&hugetlb_lock); 2000 2001 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2002 } 2003 2004 /* mempolicy aware migration callback */ 2005 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2006 unsigned long address) 2007 { 2008 struct mempolicy *mpol; 2009 nodemask_t *nodemask; 2010 struct page *page; 2011 gfp_t gfp_mask; 2012 int node; 2013 2014 gfp_mask = htlb_alloc_mask(h); 2015 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2016 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2017 mpol_cond_put(mpol); 2018 2019 return page; 2020 } 2021 2022 /* 2023 * Increase the hugetlb pool such that it can accommodate a reservation 2024 * of size 'delta'. 2025 */ 2026 static int gather_surplus_pages(struct hstate *h, int delta) 2027 __must_hold(&hugetlb_lock) 2028 { 2029 struct list_head surplus_list; 2030 struct page *page, *tmp; 2031 int ret, i; 2032 int needed, allocated; 2033 bool alloc_ok = true; 2034 2035 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2036 if (needed <= 0) { 2037 h->resv_huge_pages += delta; 2038 return 0; 2039 } 2040 2041 allocated = 0; 2042 INIT_LIST_HEAD(&surplus_list); 2043 2044 ret = -ENOMEM; 2045 retry: 2046 spin_unlock(&hugetlb_lock); 2047 for (i = 0; i < needed; i++) { 2048 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2049 NUMA_NO_NODE, NULL); 2050 if (!page) { 2051 alloc_ok = false; 2052 break; 2053 } 2054 list_add(&page->lru, &surplus_list); 2055 cond_resched(); 2056 } 2057 allocated += i; 2058 2059 /* 2060 * After retaking hugetlb_lock, we need to recalculate 'needed' 2061 * because either resv_huge_pages or free_huge_pages may have changed. 2062 */ 2063 spin_lock(&hugetlb_lock); 2064 needed = (h->resv_huge_pages + delta) - 2065 (h->free_huge_pages + allocated); 2066 if (needed > 0) { 2067 if (alloc_ok) 2068 goto retry; 2069 /* 2070 * We were not able to allocate enough pages to 2071 * satisfy the entire reservation so we free what 2072 * we've allocated so far. 2073 */ 2074 goto free; 2075 } 2076 /* 2077 * The surplus_list now contains _at_least_ the number of extra pages 2078 * needed to accommodate the reservation. Add the appropriate number 2079 * of pages to the hugetlb pool and free the extras back to the buddy 2080 * allocator. Commit the entire reservation here to prevent another 2081 * process from stealing the pages as they are added to the pool but 2082 * before they are reserved. 2083 */ 2084 needed += allocated; 2085 h->resv_huge_pages += delta; 2086 ret = 0; 2087 2088 /* Free the needed pages to the hugetlb pool */ 2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2090 if ((--needed) < 0) 2091 break; 2092 /* 2093 * This page is now managed by the hugetlb allocator and has 2094 * no users -- drop the buddy allocator's reference. 2095 */ 2096 put_page_testzero(page); 2097 VM_BUG_ON_PAGE(page_count(page), page); 2098 enqueue_huge_page(h, page); 2099 } 2100 free: 2101 spin_unlock(&hugetlb_lock); 2102 2103 /* Free unnecessary surplus pages to the buddy allocator */ 2104 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2105 put_page(page); 2106 spin_lock(&hugetlb_lock); 2107 2108 return ret; 2109 } 2110 2111 /* 2112 * This routine has two main purposes: 2113 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2114 * in unused_resv_pages. This corresponds to the prior adjustments made 2115 * to the associated reservation map. 2116 * 2) Free any unused surplus pages that may have been allocated to satisfy 2117 * the reservation. As many as unused_resv_pages may be freed. 2118 * 2119 * Called with hugetlb_lock held. However, the lock could be dropped (and 2120 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2121 * we must make sure nobody else can claim pages we are in the process of 2122 * freeing. Do this by ensuring resv_huge_page always is greater than the 2123 * number of huge pages we plan to free when dropping the lock. 2124 */ 2125 static void return_unused_surplus_pages(struct hstate *h, 2126 unsigned long unused_resv_pages) 2127 { 2128 unsigned long nr_pages; 2129 2130 /* Cannot return gigantic pages currently */ 2131 if (hstate_is_gigantic(h)) 2132 goto out; 2133 2134 /* 2135 * Part (or even all) of the reservation could have been backed 2136 * by pre-allocated pages. Only free surplus pages. 2137 */ 2138 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2139 2140 /* 2141 * We want to release as many surplus pages as possible, spread 2142 * evenly across all nodes with memory. Iterate across these nodes 2143 * until we can no longer free unreserved surplus pages. This occurs 2144 * when the nodes with surplus pages have no free pages. 2145 * free_pool_huge_page() will balance the freed pages across the 2146 * on-line nodes with memory and will handle the hstate accounting. 2147 * 2148 * Note that we decrement resv_huge_pages as we free the pages. If 2149 * we drop the lock, resv_huge_pages will still be sufficiently large 2150 * to cover subsequent pages we may free. 2151 */ 2152 while (nr_pages--) { 2153 h->resv_huge_pages--; 2154 unused_resv_pages--; 2155 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2156 goto out; 2157 cond_resched_lock(&hugetlb_lock); 2158 } 2159 2160 out: 2161 /* Fully uncommit the reservation */ 2162 h->resv_huge_pages -= unused_resv_pages; 2163 } 2164 2165 2166 /* 2167 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2168 * are used by the huge page allocation routines to manage reservations. 2169 * 2170 * vma_needs_reservation is called to determine if the huge page at addr 2171 * within the vma has an associated reservation. If a reservation is 2172 * needed, the value 1 is returned. The caller is then responsible for 2173 * managing the global reservation and subpool usage counts. After 2174 * the huge page has been allocated, vma_commit_reservation is called 2175 * to add the page to the reservation map. If the page allocation fails, 2176 * the reservation must be ended instead of committed. vma_end_reservation 2177 * is called in such cases. 2178 * 2179 * In the normal case, vma_commit_reservation returns the same value 2180 * as the preceding vma_needs_reservation call. The only time this 2181 * is not the case is if a reserve map was changed between calls. It 2182 * is the responsibility of the caller to notice the difference and 2183 * take appropriate action. 2184 * 2185 * vma_add_reservation is used in error paths where a reservation must 2186 * be restored when a newly allocated huge page must be freed. It is 2187 * to be called after calling vma_needs_reservation to determine if a 2188 * reservation exists. 2189 */ 2190 enum vma_resv_mode { 2191 VMA_NEEDS_RESV, 2192 VMA_COMMIT_RESV, 2193 VMA_END_RESV, 2194 VMA_ADD_RESV, 2195 }; 2196 static long __vma_reservation_common(struct hstate *h, 2197 struct vm_area_struct *vma, unsigned long addr, 2198 enum vma_resv_mode mode) 2199 { 2200 struct resv_map *resv; 2201 pgoff_t idx; 2202 long ret; 2203 long dummy_out_regions_needed; 2204 2205 resv = vma_resv_map(vma); 2206 if (!resv) 2207 return 1; 2208 2209 idx = vma_hugecache_offset(h, vma, addr); 2210 switch (mode) { 2211 case VMA_NEEDS_RESV: 2212 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2213 /* We assume that vma_reservation_* routines always operate on 2214 * 1 page, and that adding to resv map a 1 page entry can only 2215 * ever require 1 region. 2216 */ 2217 VM_BUG_ON(dummy_out_regions_needed != 1); 2218 break; 2219 case VMA_COMMIT_RESV: 2220 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2221 /* region_add calls of range 1 should never fail. */ 2222 VM_BUG_ON(ret < 0); 2223 break; 2224 case VMA_END_RESV: 2225 region_abort(resv, idx, idx + 1, 1); 2226 ret = 0; 2227 break; 2228 case VMA_ADD_RESV: 2229 if (vma->vm_flags & VM_MAYSHARE) { 2230 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2231 /* region_add calls of range 1 should never fail. */ 2232 VM_BUG_ON(ret < 0); 2233 } else { 2234 region_abort(resv, idx, idx + 1, 1); 2235 ret = region_del(resv, idx, idx + 1); 2236 } 2237 break; 2238 default: 2239 BUG(); 2240 } 2241 2242 if (vma->vm_flags & VM_MAYSHARE) 2243 return ret; 2244 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2245 /* 2246 * In most cases, reserves always exist for private mappings. 2247 * However, a file associated with mapping could have been 2248 * hole punched or truncated after reserves were consumed. 2249 * As subsequent fault on such a range will not use reserves. 2250 * Subtle - The reserve map for private mappings has the 2251 * opposite meaning than that of shared mappings. If NO 2252 * entry is in the reserve map, it means a reservation exists. 2253 * If an entry exists in the reserve map, it means the 2254 * reservation has already been consumed. As a result, the 2255 * return value of this routine is the opposite of the 2256 * value returned from reserve map manipulation routines above. 2257 */ 2258 if (ret) 2259 return 0; 2260 else 2261 return 1; 2262 } 2263 else 2264 return ret < 0 ? ret : 0; 2265 } 2266 2267 static long vma_needs_reservation(struct hstate *h, 2268 struct vm_area_struct *vma, unsigned long addr) 2269 { 2270 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2271 } 2272 2273 static long vma_commit_reservation(struct hstate *h, 2274 struct vm_area_struct *vma, unsigned long addr) 2275 { 2276 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2277 } 2278 2279 static void vma_end_reservation(struct hstate *h, 2280 struct vm_area_struct *vma, unsigned long addr) 2281 { 2282 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2283 } 2284 2285 static long vma_add_reservation(struct hstate *h, 2286 struct vm_area_struct *vma, unsigned long addr) 2287 { 2288 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2289 } 2290 2291 /* 2292 * This routine is called to restore a reservation on error paths. In the 2293 * specific error paths, a huge page was allocated (via alloc_huge_page) 2294 * and is about to be freed. If a reservation for the page existed, 2295 * alloc_huge_page would have consumed the reservation and set PagePrivate 2296 * in the newly allocated page. When the page is freed via free_huge_page, 2297 * the global reservation count will be incremented if PagePrivate is set. 2298 * However, free_huge_page can not adjust the reserve map. Adjust the 2299 * reserve map here to be consistent with global reserve count adjustments 2300 * to be made by free_huge_page. 2301 */ 2302 static void restore_reserve_on_error(struct hstate *h, 2303 struct vm_area_struct *vma, unsigned long address, 2304 struct page *page) 2305 { 2306 if (unlikely(PagePrivate(page))) { 2307 long rc = vma_needs_reservation(h, vma, address); 2308 2309 if (unlikely(rc < 0)) { 2310 /* 2311 * Rare out of memory condition in reserve map 2312 * manipulation. Clear PagePrivate so that 2313 * global reserve count will not be incremented 2314 * by free_huge_page. This will make it appear 2315 * as though the reservation for this page was 2316 * consumed. This may prevent the task from 2317 * faulting in the page at a later time. This 2318 * is better than inconsistent global huge page 2319 * accounting of reserve counts. 2320 */ 2321 ClearPagePrivate(page); 2322 } else if (rc) { 2323 rc = vma_add_reservation(h, vma, address); 2324 if (unlikely(rc < 0)) 2325 /* 2326 * See above comment about rare out of 2327 * memory condition. 2328 */ 2329 ClearPagePrivate(page); 2330 } else 2331 vma_end_reservation(h, vma, address); 2332 } 2333 } 2334 2335 struct page *alloc_huge_page(struct vm_area_struct *vma, 2336 unsigned long addr, int avoid_reserve) 2337 { 2338 struct hugepage_subpool *spool = subpool_vma(vma); 2339 struct hstate *h = hstate_vma(vma); 2340 struct page *page; 2341 long map_chg, map_commit; 2342 long gbl_chg; 2343 int ret, idx; 2344 struct hugetlb_cgroup *h_cg; 2345 bool deferred_reserve; 2346 2347 idx = hstate_index(h); 2348 /* 2349 * Examine the region/reserve map to determine if the process 2350 * has a reservation for the page to be allocated. A return 2351 * code of zero indicates a reservation exists (no change). 2352 */ 2353 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2354 if (map_chg < 0) 2355 return ERR_PTR(-ENOMEM); 2356 2357 /* 2358 * Processes that did not create the mapping will have no 2359 * reserves as indicated by the region/reserve map. Check 2360 * that the allocation will not exceed the subpool limit. 2361 * Allocations for MAP_NORESERVE mappings also need to be 2362 * checked against any subpool limit. 2363 */ 2364 if (map_chg || avoid_reserve) { 2365 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2366 if (gbl_chg < 0) { 2367 vma_end_reservation(h, vma, addr); 2368 return ERR_PTR(-ENOSPC); 2369 } 2370 2371 /* 2372 * Even though there was no reservation in the region/reserve 2373 * map, there could be reservations associated with the 2374 * subpool that can be used. This would be indicated if the 2375 * return value of hugepage_subpool_get_pages() is zero. 2376 * However, if avoid_reserve is specified we still avoid even 2377 * the subpool reservations. 2378 */ 2379 if (avoid_reserve) 2380 gbl_chg = 1; 2381 } 2382 2383 /* If this allocation is not consuming a reservation, charge it now. 2384 */ 2385 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2386 if (deferred_reserve) { 2387 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2388 idx, pages_per_huge_page(h), &h_cg); 2389 if (ret) 2390 goto out_subpool_put; 2391 } 2392 2393 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2394 if (ret) 2395 goto out_uncharge_cgroup_reservation; 2396 2397 spin_lock(&hugetlb_lock); 2398 /* 2399 * glb_chg is passed to indicate whether or not a page must be taken 2400 * from the global free pool (global change). gbl_chg == 0 indicates 2401 * a reservation exists for the allocation. 2402 */ 2403 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2404 if (!page) { 2405 spin_unlock(&hugetlb_lock); 2406 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2407 if (!page) 2408 goto out_uncharge_cgroup; 2409 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2410 SetPagePrivate(page); 2411 h->resv_huge_pages--; 2412 } 2413 spin_lock(&hugetlb_lock); 2414 list_add(&page->lru, &h->hugepage_activelist); 2415 /* Fall through */ 2416 } 2417 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2418 /* If allocation is not consuming a reservation, also store the 2419 * hugetlb_cgroup pointer on the page. 2420 */ 2421 if (deferred_reserve) { 2422 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2423 h_cg, page); 2424 } 2425 2426 spin_unlock(&hugetlb_lock); 2427 2428 set_page_private(page, (unsigned long)spool); 2429 2430 map_commit = vma_commit_reservation(h, vma, addr); 2431 if (unlikely(map_chg > map_commit)) { 2432 /* 2433 * The page was added to the reservation map between 2434 * vma_needs_reservation and vma_commit_reservation. 2435 * This indicates a race with hugetlb_reserve_pages. 2436 * Adjust for the subpool count incremented above AND 2437 * in hugetlb_reserve_pages for the same page. Also, 2438 * the reservation count added in hugetlb_reserve_pages 2439 * no longer applies. 2440 */ 2441 long rsv_adjust; 2442 2443 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2444 hugetlb_acct_memory(h, -rsv_adjust); 2445 if (deferred_reserve) 2446 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2447 pages_per_huge_page(h), page); 2448 } 2449 return page; 2450 2451 out_uncharge_cgroup: 2452 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2453 out_uncharge_cgroup_reservation: 2454 if (deferred_reserve) 2455 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2456 h_cg); 2457 out_subpool_put: 2458 if (map_chg || avoid_reserve) 2459 hugepage_subpool_put_pages(spool, 1); 2460 vma_end_reservation(h, vma, addr); 2461 return ERR_PTR(-ENOSPC); 2462 } 2463 2464 int alloc_bootmem_huge_page(struct hstate *h) 2465 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2466 int __alloc_bootmem_huge_page(struct hstate *h) 2467 { 2468 struct huge_bootmem_page *m; 2469 int nr_nodes, node; 2470 2471 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2472 void *addr; 2473 2474 addr = memblock_alloc_try_nid_raw( 2475 huge_page_size(h), huge_page_size(h), 2476 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2477 if (addr) { 2478 /* 2479 * Use the beginning of the huge page to store the 2480 * huge_bootmem_page struct (until gather_bootmem 2481 * puts them into the mem_map). 2482 */ 2483 m = addr; 2484 goto found; 2485 } 2486 } 2487 return 0; 2488 2489 found: 2490 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2491 /* Put them into a private list first because mem_map is not up yet */ 2492 INIT_LIST_HEAD(&m->list); 2493 list_add(&m->list, &huge_boot_pages); 2494 m->hstate = h; 2495 return 1; 2496 } 2497 2498 static void __init prep_compound_huge_page(struct page *page, 2499 unsigned int order) 2500 { 2501 if (unlikely(order > (MAX_ORDER - 1))) 2502 prep_compound_gigantic_page(page, order); 2503 else 2504 prep_compound_page(page, order); 2505 } 2506 2507 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2508 static void __init gather_bootmem_prealloc(void) 2509 { 2510 struct huge_bootmem_page *m; 2511 2512 list_for_each_entry(m, &huge_boot_pages, list) { 2513 struct page *page = virt_to_page(m); 2514 struct hstate *h = m->hstate; 2515 2516 WARN_ON(page_count(page) != 1); 2517 prep_compound_huge_page(page, h->order); 2518 WARN_ON(PageReserved(page)); 2519 prep_new_huge_page(h, page, page_to_nid(page)); 2520 put_page(page); /* free it into the hugepage allocator */ 2521 2522 /* 2523 * If we had gigantic hugepages allocated at boot time, we need 2524 * to restore the 'stolen' pages to totalram_pages in order to 2525 * fix confusing memory reports from free(1) and another 2526 * side-effects, like CommitLimit going negative. 2527 */ 2528 if (hstate_is_gigantic(h)) 2529 adjust_managed_page_count(page, 1 << h->order); 2530 cond_resched(); 2531 } 2532 } 2533 2534 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2535 { 2536 unsigned long i; 2537 nodemask_t *node_alloc_noretry; 2538 2539 if (!hstate_is_gigantic(h)) { 2540 /* 2541 * Bit mask controlling how hard we retry per-node allocations. 2542 * Ignore errors as lower level routines can deal with 2543 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2544 * time, we are likely in bigger trouble. 2545 */ 2546 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2547 GFP_KERNEL); 2548 } else { 2549 /* allocations done at boot time */ 2550 node_alloc_noretry = NULL; 2551 } 2552 2553 /* bit mask controlling how hard we retry per-node allocations */ 2554 if (node_alloc_noretry) 2555 nodes_clear(*node_alloc_noretry); 2556 2557 for (i = 0; i < h->max_huge_pages; ++i) { 2558 if (hstate_is_gigantic(h)) { 2559 if (hugetlb_cma_size) { 2560 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2561 break; 2562 } 2563 if (!alloc_bootmem_huge_page(h)) 2564 break; 2565 } else if (!alloc_pool_huge_page(h, 2566 &node_states[N_MEMORY], 2567 node_alloc_noretry)) 2568 break; 2569 cond_resched(); 2570 } 2571 if (i < h->max_huge_pages) { 2572 char buf[32]; 2573 2574 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2575 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2576 h->max_huge_pages, buf, i); 2577 h->max_huge_pages = i; 2578 } 2579 2580 kfree(node_alloc_noretry); 2581 } 2582 2583 static void __init hugetlb_init_hstates(void) 2584 { 2585 struct hstate *h; 2586 2587 for_each_hstate(h) { 2588 if (minimum_order > huge_page_order(h)) 2589 minimum_order = huge_page_order(h); 2590 2591 /* oversize hugepages were init'ed in early boot */ 2592 if (!hstate_is_gigantic(h)) 2593 hugetlb_hstate_alloc_pages(h); 2594 } 2595 VM_BUG_ON(minimum_order == UINT_MAX); 2596 } 2597 2598 static void __init report_hugepages(void) 2599 { 2600 struct hstate *h; 2601 2602 for_each_hstate(h) { 2603 char buf[32]; 2604 2605 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2606 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2607 buf, h->free_huge_pages); 2608 } 2609 } 2610 2611 #ifdef CONFIG_HIGHMEM 2612 static void try_to_free_low(struct hstate *h, unsigned long count, 2613 nodemask_t *nodes_allowed) 2614 { 2615 int i; 2616 2617 if (hstate_is_gigantic(h)) 2618 return; 2619 2620 for_each_node_mask(i, *nodes_allowed) { 2621 struct page *page, *next; 2622 struct list_head *freel = &h->hugepage_freelists[i]; 2623 list_for_each_entry_safe(page, next, freel, lru) { 2624 if (count >= h->nr_huge_pages) 2625 return; 2626 if (PageHighMem(page)) 2627 continue; 2628 list_del(&page->lru); 2629 update_and_free_page(h, page); 2630 h->free_huge_pages--; 2631 h->free_huge_pages_node[page_to_nid(page)]--; 2632 } 2633 } 2634 } 2635 #else 2636 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2637 nodemask_t *nodes_allowed) 2638 { 2639 } 2640 #endif 2641 2642 /* 2643 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2644 * balanced by operating on them in a round-robin fashion. 2645 * Returns 1 if an adjustment was made. 2646 */ 2647 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2648 int delta) 2649 { 2650 int nr_nodes, node; 2651 2652 VM_BUG_ON(delta != -1 && delta != 1); 2653 2654 if (delta < 0) { 2655 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2656 if (h->surplus_huge_pages_node[node]) 2657 goto found; 2658 } 2659 } else { 2660 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2661 if (h->surplus_huge_pages_node[node] < 2662 h->nr_huge_pages_node[node]) 2663 goto found; 2664 } 2665 } 2666 return 0; 2667 2668 found: 2669 h->surplus_huge_pages += delta; 2670 h->surplus_huge_pages_node[node] += delta; 2671 return 1; 2672 } 2673 2674 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2675 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2676 nodemask_t *nodes_allowed) 2677 { 2678 unsigned long min_count, ret; 2679 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2680 2681 /* 2682 * Bit mask controlling how hard we retry per-node allocations. 2683 * If we can not allocate the bit mask, do not attempt to allocate 2684 * the requested huge pages. 2685 */ 2686 if (node_alloc_noretry) 2687 nodes_clear(*node_alloc_noretry); 2688 else 2689 return -ENOMEM; 2690 2691 spin_lock(&hugetlb_lock); 2692 2693 /* 2694 * Check for a node specific request. 2695 * Changing node specific huge page count may require a corresponding 2696 * change to the global count. In any case, the passed node mask 2697 * (nodes_allowed) will restrict alloc/free to the specified node. 2698 */ 2699 if (nid != NUMA_NO_NODE) { 2700 unsigned long old_count = count; 2701 2702 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2703 /* 2704 * User may have specified a large count value which caused the 2705 * above calculation to overflow. In this case, they wanted 2706 * to allocate as many huge pages as possible. Set count to 2707 * largest possible value to align with their intention. 2708 */ 2709 if (count < old_count) 2710 count = ULONG_MAX; 2711 } 2712 2713 /* 2714 * Gigantic pages runtime allocation depend on the capability for large 2715 * page range allocation. 2716 * If the system does not provide this feature, return an error when 2717 * the user tries to allocate gigantic pages but let the user free the 2718 * boottime allocated gigantic pages. 2719 */ 2720 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2721 if (count > persistent_huge_pages(h)) { 2722 spin_unlock(&hugetlb_lock); 2723 NODEMASK_FREE(node_alloc_noretry); 2724 return -EINVAL; 2725 } 2726 /* Fall through to decrease pool */ 2727 } 2728 2729 /* 2730 * Increase the pool size 2731 * First take pages out of surplus state. Then make up the 2732 * remaining difference by allocating fresh huge pages. 2733 * 2734 * We might race with alloc_surplus_huge_page() here and be unable 2735 * to convert a surplus huge page to a normal huge page. That is 2736 * not critical, though, it just means the overall size of the 2737 * pool might be one hugepage larger than it needs to be, but 2738 * within all the constraints specified by the sysctls. 2739 */ 2740 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2741 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2742 break; 2743 } 2744 2745 while (count > persistent_huge_pages(h)) { 2746 /* 2747 * If this allocation races such that we no longer need the 2748 * page, free_huge_page will handle it by freeing the page 2749 * and reducing the surplus. 2750 */ 2751 spin_unlock(&hugetlb_lock); 2752 2753 /* yield cpu to avoid soft lockup */ 2754 cond_resched(); 2755 2756 ret = alloc_pool_huge_page(h, nodes_allowed, 2757 node_alloc_noretry); 2758 spin_lock(&hugetlb_lock); 2759 if (!ret) 2760 goto out; 2761 2762 /* Bail for signals. Probably ctrl-c from user */ 2763 if (signal_pending(current)) 2764 goto out; 2765 } 2766 2767 /* 2768 * Decrease the pool size 2769 * First return free pages to the buddy allocator (being careful 2770 * to keep enough around to satisfy reservations). Then place 2771 * pages into surplus state as needed so the pool will shrink 2772 * to the desired size as pages become free. 2773 * 2774 * By placing pages into the surplus state independent of the 2775 * overcommit value, we are allowing the surplus pool size to 2776 * exceed overcommit. There are few sane options here. Since 2777 * alloc_surplus_huge_page() is checking the global counter, 2778 * though, we'll note that we're not allowed to exceed surplus 2779 * and won't grow the pool anywhere else. Not until one of the 2780 * sysctls are changed, or the surplus pages go out of use. 2781 */ 2782 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2783 min_count = max(count, min_count); 2784 try_to_free_low(h, min_count, nodes_allowed); 2785 while (min_count < persistent_huge_pages(h)) { 2786 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2787 break; 2788 cond_resched_lock(&hugetlb_lock); 2789 } 2790 while (count < persistent_huge_pages(h)) { 2791 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2792 break; 2793 } 2794 out: 2795 h->max_huge_pages = persistent_huge_pages(h); 2796 spin_unlock(&hugetlb_lock); 2797 2798 NODEMASK_FREE(node_alloc_noretry); 2799 2800 return 0; 2801 } 2802 2803 #define HSTATE_ATTR_RO(_name) \ 2804 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2805 2806 #define HSTATE_ATTR(_name) \ 2807 static struct kobj_attribute _name##_attr = \ 2808 __ATTR(_name, 0644, _name##_show, _name##_store) 2809 2810 static struct kobject *hugepages_kobj; 2811 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2812 2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2814 2815 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2816 { 2817 int i; 2818 2819 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2820 if (hstate_kobjs[i] == kobj) { 2821 if (nidp) 2822 *nidp = NUMA_NO_NODE; 2823 return &hstates[i]; 2824 } 2825 2826 return kobj_to_node_hstate(kobj, nidp); 2827 } 2828 2829 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2830 struct kobj_attribute *attr, char *buf) 2831 { 2832 struct hstate *h; 2833 unsigned long nr_huge_pages; 2834 int nid; 2835 2836 h = kobj_to_hstate(kobj, &nid); 2837 if (nid == NUMA_NO_NODE) 2838 nr_huge_pages = h->nr_huge_pages; 2839 else 2840 nr_huge_pages = h->nr_huge_pages_node[nid]; 2841 2842 return sprintf(buf, "%lu\n", nr_huge_pages); 2843 } 2844 2845 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2846 struct hstate *h, int nid, 2847 unsigned long count, size_t len) 2848 { 2849 int err; 2850 nodemask_t nodes_allowed, *n_mask; 2851 2852 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2853 return -EINVAL; 2854 2855 if (nid == NUMA_NO_NODE) { 2856 /* 2857 * global hstate attribute 2858 */ 2859 if (!(obey_mempolicy && 2860 init_nodemask_of_mempolicy(&nodes_allowed))) 2861 n_mask = &node_states[N_MEMORY]; 2862 else 2863 n_mask = &nodes_allowed; 2864 } else { 2865 /* 2866 * Node specific request. count adjustment happens in 2867 * set_max_huge_pages() after acquiring hugetlb_lock. 2868 */ 2869 init_nodemask_of_node(&nodes_allowed, nid); 2870 n_mask = &nodes_allowed; 2871 } 2872 2873 err = set_max_huge_pages(h, count, nid, n_mask); 2874 2875 return err ? err : len; 2876 } 2877 2878 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2879 struct kobject *kobj, const char *buf, 2880 size_t len) 2881 { 2882 struct hstate *h; 2883 unsigned long count; 2884 int nid; 2885 int err; 2886 2887 err = kstrtoul(buf, 10, &count); 2888 if (err) 2889 return err; 2890 2891 h = kobj_to_hstate(kobj, &nid); 2892 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2893 } 2894 2895 static ssize_t nr_hugepages_show(struct kobject *kobj, 2896 struct kobj_attribute *attr, char *buf) 2897 { 2898 return nr_hugepages_show_common(kobj, attr, buf); 2899 } 2900 2901 static ssize_t nr_hugepages_store(struct kobject *kobj, 2902 struct kobj_attribute *attr, const char *buf, size_t len) 2903 { 2904 return nr_hugepages_store_common(false, kobj, buf, len); 2905 } 2906 HSTATE_ATTR(nr_hugepages); 2907 2908 #ifdef CONFIG_NUMA 2909 2910 /* 2911 * hstate attribute for optionally mempolicy-based constraint on persistent 2912 * huge page alloc/free. 2913 */ 2914 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2915 struct kobj_attribute *attr, char *buf) 2916 { 2917 return nr_hugepages_show_common(kobj, attr, buf); 2918 } 2919 2920 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2921 struct kobj_attribute *attr, const char *buf, size_t len) 2922 { 2923 return nr_hugepages_store_common(true, kobj, buf, len); 2924 } 2925 HSTATE_ATTR(nr_hugepages_mempolicy); 2926 #endif 2927 2928 2929 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2930 struct kobj_attribute *attr, char *buf) 2931 { 2932 struct hstate *h = kobj_to_hstate(kobj, NULL); 2933 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2934 } 2935 2936 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2937 struct kobj_attribute *attr, const char *buf, size_t count) 2938 { 2939 int err; 2940 unsigned long input; 2941 struct hstate *h = kobj_to_hstate(kobj, NULL); 2942 2943 if (hstate_is_gigantic(h)) 2944 return -EINVAL; 2945 2946 err = kstrtoul(buf, 10, &input); 2947 if (err) 2948 return err; 2949 2950 spin_lock(&hugetlb_lock); 2951 h->nr_overcommit_huge_pages = input; 2952 spin_unlock(&hugetlb_lock); 2953 2954 return count; 2955 } 2956 HSTATE_ATTR(nr_overcommit_hugepages); 2957 2958 static ssize_t free_hugepages_show(struct kobject *kobj, 2959 struct kobj_attribute *attr, char *buf) 2960 { 2961 struct hstate *h; 2962 unsigned long free_huge_pages; 2963 int nid; 2964 2965 h = kobj_to_hstate(kobj, &nid); 2966 if (nid == NUMA_NO_NODE) 2967 free_huge_pages = h->free_huge_pages; 2968 else 2969 free_huge_pages = h->free_huge_pages_node[nid]; 2970 2971 return sprintf(buf, "%lu\n", free_huge_pages); 2972 } 2973 HSTATE_ATTR_RO(free_hugepages); 2974 2975 static ssize_t resv_hugepages_show(struct kobject *kobj, 2976 struct kobj_attribute *attr, char *buf) 2977 { 2978 struct hstate *h = kobj_to_hstate(kobj, NULL); 2979 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2980 } 2981 HSTATE_ATTR_RO(resv_hugepages); 2982 2983 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2984 struct kobj_attribute *attr, char *buf) 2985 { 2986 struct hstate *h; 2987 unsigned long surplus_huge_pages; 2988 int nid; 2989 2990 h = kobj_to_hstate(kobj, &nid); 2991 if (nid == NUMA_NO_NODE) 2992 surplus_huge_pages = h->surplus_huge_pages; 2993 else 2994 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2995 2996 return sprintf(buf, "%lu\n", surplus_huge_pages); 2997 } 2998 HSTATE_ATTR_RO(surplus_hugepages); 2999 3000 static struct attribute *hstate_attrs[] = { 3001 &nr_hugepages_attr.attr, 3002 &nr_overcommit_hugepages_attr.attr, 3003 &free_hugepages_attr.attr, 3004 &resv_hugepages_attr.attr, 3005 &surplus_hugepages_attr.attr, 3006 #ifdef CONFIG_NUMA 3007 &nr_hugepages_mempolicy_attr.attr, 3008 #endif 3009 NULL, 3010 }; 3011 3012 static const struct attribute_group hstate_attr_group = { 3013 .attrs = hstate_attrs, 3014 }; 3015 3016 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3017 struct kobject **hstate_kobjs, 3018 const struct attribute_group *hstate_attr_group) 3019 { 3020 int retval; 3021 int hi = hstate_index(h); 3022 3023 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3024 if (!hstate_kobjs[hi]) 3025 return -ENOMEM; 3026 3027 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3028 if (retval) 3029 kobject_put(hstate_kobjs[hi]); 3030 3031 return retval; 3032 } 3033 3034 static void __init hugetlb_sysfs_init(void) 3035 { 3036 struct hstate *h; 3037 int err; 3038 3039 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3040 if (!hugepages_kobj) 3041 return; 3042 3043 for_each_hstate(h) { 3044 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3045 hstate_kobjs, &hstate_attr_group); 3046 if (err) 3047 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3048 } 3049 } 3050 3051 #ifdef CONFIG_NUMA 3052 3053 /* 3054 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3055 * with node devices in node_devices[] using a parallel array. The array 3056 * index of a node device or _hstate == node id. 3057 * This is here to avoid any static dependency of the node device driver, in 3058 * the base kernel, on the hugetlb module. 3059 */ 3060 struct node_hstate { 3061 struct kobject *hugepages_kobj; 3062 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3063 }; 3064 static struct node_hstate node_hstates[MAX_NUMNODES]; 3065 3066 /* 3067 * A subset of global hstate attributes for node devices 3068 */ 3069 static struct attribute *per_node_hstate_attrs[] = { 3070 &nr_hugepages_attr.attr, 3071 &free_hugepages_attr.attr, 3072 &surplus_hugepages_attr.attr, 3073 NULL, 3074 }; 3075 3076 static const struct attribute_group per_node_hstate_attr_group = { 3077 .attrs = per_node_hstate_attrs, 3078 }; 3079 3080 /* 3081 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3082 * Returns node id via non-NULL nidp. 3083 */ 3084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3085 { 3086 int nid; 3087 3088 for (nid = 0; nid < nr_node_ids; nid++) { 3089 struct node_hstate *nhs = &node_hstates[nid]; 3090 int i; 3091 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3092 if (nhs->hstate_kobjs[i] == kobj) { 3093 if (nidp) 3094 *nidp = nid; 3095 return &hstates[i]; 3096 } 3097 } 3098 3099 BUG(); 3100 return NULL; 3101 } 3102 3103 /* 3104 * Unregister hstate attributes from a single node device. 3105 * No-op if no hstate attributes attached. 3106 */ 3107 static void hugetlb_unregister_node(struct node *node) 3108 { 3109 struct hstate *h; 3110 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3111 3112 if (!nhs->hugepages_kobj) 3113 return; /* no hstate attributes */ 3114 3115 for_each_hstate(h) { 3116 int idx = hstate_index(h); 3117 if (nhs->hstate_kobjs[idx]) { 3118 kobject_put(nhs->hstate_kobjs[idx]); 3119 nhs->hstate_kobjs[idx] = NULL; 3120 } 3121 } 3122 3123 kobject_put(nhs->hugepages_kobj); 3124 nhs->hugepages_kobj = NULL; 3125 } 3126 3127 3128 /* 3129 * Register hstate attributes for a single node device. 3130 * No-op if attributes already registered. 3131 */ 3132 static void hugetlb_register_node(struct node *node) 3133 { 3134 struct hstate *h; 3135 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3136 int err; 3137 3138 if (nhs->hugepages_kobj) 3139 return; /* already allocated */ 3140 3141 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3142 &node->dev.kobj); 3143 if (!nhs->hugepages_kobj) 3144 return; 3145 3146 for_each_hstate(h) { 3147 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3148 nhs->hstate_kobjs, 3149 &per_node_hstate_attr_group); 3150 if (err) { 3151 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3152 h->name, node->dev.id); 3153 hugetlb_unregister_node(node); 3154 break; 3155 } 3156 } 3157 } 3158 3159 /* 3160 * hugetlb init time: register hstate attributes for all registered node 3161 * devices of nodes that have memory. All on-line nodes should have 3162 * registered their associated device by this time. 3163 */ 3164 static void __init hugetlb_register_all_nodes(void) 3165 { 3166 int nid; 3167 3168 for_each_node_state(nid, N_MEMORY) { 3169 struct node *node = node_devices[nid]; 3170 if (node->dev.id == nid) 3171 hugetlb_register_node(node); 3172 } 3173 3174 /* 3175 * Let the node device driver know we're here so it can 3176 * [un]register hstate attributes on node hotplug. 3177 */ 3178 register_hugetlbfs_with_node(hugetlb_register_node, 3179 hugetlb_unregister_node); 3180 } 3181 #else /* !CONFIG_NUMA */ 3182 3183 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3184 { 3185 BUG(); 3186 if (nidp) 3187 *nidp = -1; 3188 return NULL; 3189 } 3190 3191 static void hugetlb_register_all_nodes(void) { } 3192 3193 #endif 3194 3195 static int __init hugetlb_init(void) 3196 { 3197 int i; 3198 3199 if (!hugepages_supported()) { 3200 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3201 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3202 return 0; 3203 } 3204 3205 /* 3206 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3207 * architectures depend on setup being done here. 3208 */ 3209 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3210 if (!parsed_default_hugepagesz) { 3211 /* 3212 * If we did not parse a default huge page size, set 3213 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3214 * number of huge pages for this default size was implicitly 3215 * specified, set that here as well. 3216 * Note that the implicit setting will overwrite an explicit 3217 * setting. A warning will be printed in this case. 3218 */ 3219 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3220 if (default_hstate_max_huge_pages) { 3221 if (default_hstate.max_huge_pages) { 3222 char buf[32]; 3223 3224 string_get_size(huge_page_size(&default_hstate), 3225 1, STRING_UNITS_2, buf, 32); 3226 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3227 default_hstate.max_huge_pages, buf); 3228 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3229 default_hstate_max_huge_pages); 3230 } 3231 default_hstate.max_huge_pages = 3232 default_hstate_max_huge_pages; 3233 } 3234 } 3235 3236 hugetlb_cma_check(); 3237 hugetlb_init_hstates(); 3238 gather_bootmem_prealloc(); 3239 report_hugepages(); 3240 3241 hugetlb_sysfs_init(); 3242 hugetlb_register_all_nodes(); 3243 hugetlb_cgroup_file_init(); 3244 3245 #ifdef CONFIG_SMP 3246 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3247 #else 3248 num_fault_mutexes = 1; 3249 #endif 3250 hugetlb_fault_mutex_table = 3251 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3252 GFP_KERNEL); 3253 BUG_ON(!hugetlb_fault_mutex_table); 3254 3255 for (i = 0; i < num_fault_mutexes; i++) 3256 mutex_init(&hugetlb_fault_mutex_table[i]); 3257 return 0; 3258 } 3259 subsys_initcall(hugetlb_init); 3260 3261 /* Overwritten by architectures with more huge page sizes */ 3262 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3263 { 3264 return size == HPAGE_SIZE; 3265 } 3266 3267 void __init hugetlb_add_hstate(unsigned int order) 3268 { 3269 struct hstate *h; 3270 unsigned long i; 3271 3272 if (size_to_hstate(PAGE_SIZE << order)) { 3273 return; 3274 } 3275 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3276 BUG_ON(order == 0); 3277 h = &hstates[hugetlb_max_hstate++]; 3278 h->order = order; 3279 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3280 h->nr_huge_pages = 0; 3281 h->free_huge_pages = 0; 3282 for (i = 0; i < MAX_NUMNODES; ++i) 3283 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3284 INIT_LIST_HEAD(&h->hugepage_activelist); 3285 h->next_nid_to_alloc = first_memory_node; 3286 h->next_nid_to_free = first_memory_node; 3287 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3288 huge_page_size(h)/1024); 3289 3290 parsed_hstate = h; 3291 } 3292 3293 /* 3294 * hugepages command line processing 3295 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3296 * specification. If not, ignore the hugepages value. hugepages can also 3297 * be the first huge page command line option in which case it implicitly 3298 * specifies the number of huge pages for the default size. 3299 */ 3300 static int __init hugepages_setup(char *s) 3301 { 3302 unsigned long *mhp; 3303 static unsigned long *last_mhp; 3304 3305 if (!parsed_valid_hugepagesz) { 3306 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3307 parsed_valid_hugepagesz = true; 3308 return 0; 3309 } 3310 3311 /* 3312 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3313 * yet, so this hugepages= parameter goes to the "default hstate". 3314 * Otherwise, it goes with the previously parsed hugepagesz or 3315 * default_hugepagesz. 3316 */ 3317 else if (!hugetlb_max_hstate) 3318 mhp = &default_hstate_max_huge_pages; 3319 else 3320 mhp = &parsed_hstate->max_huge_pages; 3321 3322 if (mhp == last_mhp) { 3323 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3324 return 0; 3325 } 3326 3327 if (sscanf(s, "%lu", mhp) <= 0) 3328 *mhp = 0; 3329 3330 /* 3331 * Global state is always initialized later in hugetlb_init. 3332 * But we need to allocate >= MAX_ORDER hstates here early to still 3333 * use the bootmem allocator. 3334 */ 3335 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3336 hugetlb_hstate_alloc_pages(parsed_hstate); 3337 3338 last_mhp = mhp; 3339 3340 return 1; 3341 } 3342 __setup("hugepages=", hugepages_setup); 3343 3344 /* 3345 * hugepagesz command line processing 3346 * A specific huge page size can only be specified once with hugepagesz. 3347 * hugepagesz is followed by hugepages on the command line. The global 3348 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3349 * hugepagesz argument was valid. 3350 */ 3351 static int __init hugepagesz_setup(char *s) 3352 { 3353 unsigned long size; 3354 struct hstate *h; 3355 3356 parsed_valid_hugepagesz = false; 3357 size = (unsigned long)memparse(s, NULL); 3358 3359 if (!arch_hugetlb_valid_size(size)) { 3360 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3361 return 0; 3362 } 3363 3364 h = size_to_hstate(size); 3365 if (h) { 3366 /* 3367 * hstate for this size already exists. This is normally 3368 * an error, but is allowed if the existing hstate is the 3369 * default hstate. More specifically, it is only allowed if 3370 * the number of huge pages for the default hstate was not 3371 * previously specified. 3372 */ 3373 if (!parsed_default_hugepagesz || h != &default_hstate || 3374 default_hstate.max_huge_pages) { 3375 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3376 return 0; 3377 } 3378 3379 /* 3380 * No need to call hugetlb_add_hstate() as hstate already 3381 * exists. But, do set parsed_hstate so that a following 3382 * hugepages= parameter will be applied to this hstate. 3383 */ 3384 parsed_hstate = h; 3385 parsed_valid_hugepagesz = true; 3386 return 1; 3387 } 3388 3389 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3390 parsed_valid_hugepagesz = true; 3391 return 1; 3392 } 3393 __setup("hugepagesz=", hugepagesz_setup); 3394 3395 /* 3396 * default_hugepagesz command line input 3397 * Only one instance of default_hugepagesz allowed on command line. 3398 */ 3399 static int __init default_hugepagesz_setup(char *s) 3400 { 3401 unsigned long size; 3402 3403 parsed_valid_hugepagesz = false; 3404 if (parsed_default_hugepagesz) { 3405 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3406 return 0; 3407 } 3408 3409 size = (unsigned long)memparse(s, NULL); 3410 3411 if (!arch_hugetlb_valid_size(size)) { 3412 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3413 return 0; 3414 } 3415 3416 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3417 parsed_valid_hugepagesz = true; 3418 parsed_default_hugepagesz = true; 3419 default_hstate_idx = hstate_index(size_to_hstate(size)); 3420 3421 /* 3422 * The number of default huge pages (for this size) could have been 3423 * specified as the first hugetlb parameter: hugepages=X. If so, 3424 * then default_hstate_max_huge_pages is set. If the default huge 3425 * page size is gigantic (>= MAX_ORDER), then the pages must be 3426 * allocated here from bootmem allocator. 3427 */ 3428 if (default_hstate_max_huge_pages) { 3429 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3430 if (hstate_is_gigantic(&default_hstate)) 3431 hugetlb_hstate_alloc_pages(&default_hstate); 3432 default_hstate_max_huge_pages = 0; 3433 } 3434 3435 return 1; 3436 } 3437 __setup("default_hugepagesz=", default_hugepagesz_setup); 3438 3439 static unsigned int allowed_mems_nr(struct hstate *h) 3440 { 3441 int node; 3442 unsigned int nr = 0; 3443 nodemask_t *mpol_allowed; 3444 unsigned int *array = h->free_huge_pages_node; 3445 gfp_t gfp_mask = htlb_alloc_mask(h); 3446 3447 mpol_allowed = policy_nodemask_current(gfp_mask); 3448 3449 for_each_node_mask(node, cpuset_current_mems_allowed) { 3450 if (!mpol_allowed || 3451 (mpol_allowed && node_isset(node, *mpol_allowed))) 3452 nr += array[node]; 3453 } 3454 3455 return nr; 3456 } 3457 3458 #ifdef CONFIG_SYSCTL 3459 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3460 void *buffer, size_t *length, 3461 loff_t *ppos, unsigned long *out) 3462 { 3463 struct ctl_table dup_table; 3464 3465 /* 3466 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3467 * can duplicate the @table and alter the duplicate of it. 3468 */ 3469 dup_table = *table; 3470 dup_table.data = out; 3471 3472 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3473 } 3474 3475 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3476 struct ctl_table *table, int write, 3477 void *buffer, size_t *length, loff_t *ppos) 3478 { 3479 struct hstate *h = &default_hstate; 3480 unsigned long tmp = h->max_huge_pages; 3481 int ret; 3482 3483 if (!hugepages_supported()) 3484 return -EOPNOTSUPP; 3485 3486 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3487 &tmp); 3488 if (ret) 3489 goto out; 3490 3491 if (write) 3492 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3493 NUMA_NO_NODE, tmp, *length); 3494 out: 3495 return ret; 3496 } 3497 3498 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3499 void *buffer, size_t *length, loff_t *ppos) 3500 { 3501 3502 return hugetlb_sysctl_handler_common(false, table, write, 3503 buffer, length, ppos); 3504 } 3505 3506 #ifdef CONFIG_NUMA 3507 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3508 void *buffer, size_t *length, loff_t *ppos) 3509 { 3510 return hugetlb_sysctl_handler_common(true, table, write, 3511 buffer, length, ppos); 3512 } 3513 #endif /* CONFIG_NUMA */ 3514 3515 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3516 void *buffer, size_t *length, loff_t *ppos) 3517 { 3518 struct hstate *h = &default_hstate; 3519 unsigned long tmp; 3520 int ret; 3521 3522 if (!hugepages_supported()) 3523 return -EOPNOTSUPP; 3524 3525 tmp = h->nr_overcommit_huge_pages; 3526 3527 if (write && hstate_is_gigantic(h)) 3528 return -EINVAL; 3529 3530 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3531 &tmp); 3532 if (ret) 3533 goto out; 3534 3535 if (write) { 3536 spin_lock(&hugetlb_lock); 3537 h->nr_overcommit_huge_pages = tmp; 3538 spin_unlock(&hugetlb_lock); 3539 } 3540 out: 3541 return ret; 3542 } 3543 3544 #endif /* CONFIG_SYSCTL */ 3545 3546 void hugetlb_report_meminfo(struct seq_file *m) 3547 { 3548 struct hstate *h; 3549 unsigned long total = 0; 3550 3551 if (!hugepages_supported()) 3552 return; 3553 3554 for_each_hstate(h) { 3555 unsigned long count = h->nr_huge_pages; 3556 3557 total += (PAGE_SIZE << huge_page_order(h)) * count; 3558 3559 if (h == &default_hstate) 3560 seq_printf(m, 3561 "HugePages_Total: %5lu\n" 3562 "HugePages_Free: %5lu\n" 3563 "HugePages_Rsvd: %5lu\n" 3564 "HugePages_Surp: %5lu\n" 3565 "Hugepagesize: %8lu kB\n", 3566 count, 3567 h->free_huge_pages, 3568 h->resv_huge_pages, 3569 h->surplus_huge_pages, 3570 (PAGE_SIZE << huge_page_order(h)) / 1024); 3571 } 3572 3573 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3574 } 3575 3576 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3577 { 3578 struct hstate *h = &default_hstate; 3579 3580 if (!hugepages_supported()) 3581 return 0; 3582 3583 return sysfs_emit_at(buf, len, 3584 "Node %d HugePages_Total: %5u\n" 3585 "Node %d HugePages_Free: %5u\n" 3586 "Node %d HugePages_Surp: %5u\n", 3587 nid, h->nr_huge_pages_node[nid], 3588 nid, h->free_huge_pages_node[nid], 3589 nid, h->surplus_huge_pages_node[nid]); 3590 } 3591 3592 void hugetlb_show_meminfo(void) 3593 { 3594 struct hstate *h; 3595 int nid; 3596 3597 if (!hugepages_supported()) 3598 return; 3599 3600 for_each_node_state(nid, N_MEMORY) 3601 for_each_hstate(h) 3602 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3603 nid, 3604 h->nr_huge_pages_node[nid], 3605 h->free_huge_pages_node[nid], 3606 h->surplus_huge_pages_node[nid], 3607 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3608 } 3609 3610 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3611 { 3612 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3613 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3614 } 3615 3616 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3617 unsigned long hugetlb_total_pages(void) 3618 { 3619 struct hstate *h; 3620 unsigned long nr_total_pages = 0; 3621 3622 for_each_hstate(h) 3623 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3624 return nr_total_pages; 3625 } 3626 3627 static int hugetlb_acct_memory(struct hstate *h, long delta) 3628 { 3629 int ret = -ENOMEM; 3630 3631 spin_lock(&hugetlb_lock); 3632 /* 3633 * When cpuset is configured, it breaks the strict hugetlb page 3634 * reservation as the accounting is done on a global variable. Such 3635 * reservation is completely rubbish in the presence of cpuset because 3636 * the reservation is not checked against page availability for the 3637 * current cpuset. Application can still potentially OOM'ed by kernel 3638 * with lack of free htlb page in cpuset that the task is in. 3639 * Attempt to enforce strict accounting with cpuset is almost 3640 * impossible (or too ugly) because cpuset is too fluid that 3641 * task or memory node can be dynamically moved between cpusets. 3642 * 3643 * The change of semantics for shared hugetlb mapping with cpuset is 3644 * undesirable. However, in order to preserve some of the semantics, 3645 * we fall back to check against current free page availability as 3646 * a best attempt and hopefully to minimize the impact of changing 3647 * semantics that cpuset has. 3648 * 3649 * Apart from cpuset, we also have memory policy mechanism that 3650 * also determines from which node the kernel will allocate memory 3651 * in a NUMA system. So similar to cpuset, we also should consider 3652 * the memory policy of the current task. Similar to the description 3653 * above. 3654 */ 3655 if (delta > 0) { 3656 if (gather_surplus_pages(h, delta) < 0) 3657 goto out; 3658 3659 if (delta > allowed_mems_nr(h)) { 3660 return_unused_surplus_pages(h, delta); 3661 goto out; 3662 } 3663 } 3664 3665 ret = 0; 3666 if (delta < 0) 3667 return_unused_surplus_pages(h, (unsigned long) -delta); 3668 3669 out: 3670 spin_unlock(&hugetlb_lock); 3671 return ret; 3672 } 3673 3674 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3675 { 3676 struct resv_map *resv = vma_resv_map(vma); 3677 3678 /* 3679 * This new VMA should share its siblings reservation map if present. 3680 * The VMA will only ever have a valid reservation map pointer where 3681 * it is being copied for another still existing VMA. As that VMA 3682 * has a reference to the reservation map it cannot disappear until 3683 * after this open call completes. It is therefore safe to take a 3684 * new reference here without additional locking. 3685 */ 3686 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3687 kref_get(&resv->refs); 3688 } 3689 3690 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3691 { 3692 struct hstate *h = hstate_vma(vma); 3693 struct resv_map *resv = vma_resv_map(vma); 3694 struct hugepage_subpool *spool = subpool_vma(vma); 3695 unsigned long reserve, start, end; 3696 long gbl_reserve; 3697 3698 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3699 return; 3700 3701 start = vma_hugecache_offset(h, vma, vma->vm_start); 3702 end = vma_hugecache_offset(h, vma, vma->vm_end); 3703 3704 reserve = (end - start) - region_count(resv, start, end); 3705 hugetlb_cgroup_uncharge_counter(resv, start, end); 3706 if (reserve) { 3707 /* 3708 * Decrement reserve counts. The global reserve count may be 3709 * adjusted if the subpool has a minimum size. 3710 */ 3711 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3712 hugetlb_acct_memory(h, -gbl_reserve); 3713 } 3714 3715 kref_put(&resv->refs, resv_map_release); 3716 } 3717 3718 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3719 { 3720 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3721 return -EINVAL; 3722 return 0; 3723 } 3724 3725 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3726 { 3727 struct hstate *hstate = hstate_vma(vma); 3728 3729 return 1UL << huge_page_shift(hstate); 3730 } 3731 3732 /* 3733 * We cannot handle pagefaults against hugetlb pages at all. They cause 3734 * handle_mm_fault() to try to instantiate regular-sized pages in the 3735 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3736 * this far. 3737 */ 3738 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3739 { 3740 BUG(); 3741 return 0; 3742 } 3743 3744 /* 3745 * When a new function is introduced to vm_operations_struct and added 3746 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3747 * This is because under System V memory model, mappings created via 3748 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3749 * their original vm_ops are overwritten with shm_vm_ops. 3750 */ 3751 const struct vm_operations_struct hugetlb_vm_ops = { 3752 .fault = hugetlb_vm_op_fault, 3753 .open = hugetlb_vm_op_open, 3754 .close = hugetlb_vm_op_close, 3755 .split = hugetlb_vm_op_split, 3756 .pagesize = hugetlb_vm_op_pagesize, 3757 }; 3758 3759 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3760 int writable) 3761 { 3762 pte_t entry; 3763 3764 if (writable) { 3765 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3766 vma->vm_page_prot))); 3767 } else { 3768 entry = huge_pte_wrprotect(mk_huge_pte(page, 3769 vma->vm_page_prot)); 3770 } 3771 entry = pte_mkyoung(entry); 3772 entry = pte_mkhuge(entry); 3773 entry = arch_make_huge_pte(entry, vma, page, writable); 3774 3775 return entry; 3776 } 3777 3778 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3779 unsigned long address, pte_t *ptep) 3780 { 3781 pte_t entry; 3782 3783 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3784 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3785 update_mmu_cache(vma, address, ptep); 3786 } 3787 3788 bool is_hugetlb_entry_migration(pte_t pte) 3789 { 3790 swp_entry_t swp; 3791 3792 if (huge_pte_none(pte) || pte_present(pte)) 3793 return false; 3794 swp = pte_to_swp_entry(pte); 3795 if (is_migration_entry(swp)) 3796 return true; 3797 else 3798 return false; 3799 } 3800 3801 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3802 { 3803 swp_entry_t swp; 3804 3805 if (huge_pte_none(pte) || pte_present(pte)) 3806 return false; 3807 swp = pte_to_swp_entry(pte); 3808 if (is_hwpoison_entry(swp)) 3809 return true; 3810 else 3811 return false; 3812 } 3813 3814 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3815 struct vm_area_struct *vma) 3816 { 3817 pte_t *src_pte, *dst_pte, entry, dst_entry; 3818 struct page *ptepage; 3819 unsigned long addr; 3820 int cow; 3821 struct hstate *h = hstate_vma(vma); 3822 unsigned long sz = huge_page_size(h); 3823 struct address_space *mapping = vma->vm_file->f_mapping; 3824 struct mmu_notifier_range range; 3825 int ret = 0; 3826 3827 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3828 3829 if (cow) { 3830 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3831 vma->vm_start, 3832 vma->vm_end); 3833 mmu_notifier_invalidate_range_start(&range); 3834 } else { 3835 /* 3836 * For shared mappings i_mmap_rwsem must be held to call 3837 * huge_pte_alloc, otherwise the returned ptep could go 3838 * away if part of a shared pmd and another thread calls 3839 * huge_pmd_unshare. 3840 */ 3841 i_mmap_lock_read(mapping); 3842 } 3843 3844 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3845 spinlock_t *src_ptl, *dst_ptl; 3846 src_pte = huge_pte_offset(src, addr, sz); 3847 if (!src_pte) 3848 continue; 3849 dst_pte = huge_pte_alloc(dst, addr, sz); 3850 if (!dst_pte) { 3851 ret = -ENOMEM; 3852 break; 3853 } 3854 3855 /* 3856 * If the pagetables are shared don't copy or take references. 3857 * dst_pte == src_pte is the common case of src/dest sharing. 3858 * 3859 * However, src could have 'unshared' and dst shares with 3860 * another vma. If dst_pte !none, this implies sharing. 3861 * Check here before taking page table lock, and once again 3862 * after taking the lock below. 3863 */ 3864 dst_entry = huge_ptep_get(dst_pte); 3865 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3866 continue; 3867 3868 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3869 src_ptl = huge_pte_lockptr(h, src, src_pte); 3870 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3871 entry = huge_ptep_get(src_pte); 3872 dst_entry = huge_ptep_get(dst_pte); 3873 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3874 /* 3875 * Skip if src entry none. Also, skip in the 3876 * unlikely case dst entry !none as this implies 3877 * sharing with another vma. 3878 */ 3879 ; 3880 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3881 is_hugetlb_entry_hwpoisoned(entry))) { 3882 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3883 3884 if (is_write_migration_entry(swp_entry) && cow) { 3885 /* 3886 * COW mappings require pages in both 3887 * parent and child to be set to read. 3888 */ 3889 make_migration_entry_read(&swp_entry); 3890 entry = swp_entry_to_pte(swp_entry); 3891 set_huge_swap_pte_at(src, addr, src_pte, 3892 entry, sz); 3893 } 3894 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3895 } else { 3896 if (cow) { 3897 /* 3898 * No need to notify as we are downgrading page 3899 * table protection not changing it to point 3900 * to a new page. 3901 * 3902 * See Documentation/vm/mmu_notifier.rst 3903 */ 3904 huge_ptep_set_wrprotect(src, addr, src_pte); 3905 } 3906 entry = huge_ptep_get(src_pte); 3907 ptepage = pte_page(entry); 3908 get_page(ptepage); 3909 page_dup_rmap(ptepage, true); 3910 set_huge_pte_at(dst, addr, dst_pte, entry); 3911 hugetlb_count_add(pages_per_huge_page(h), dst); 3912 } 3913 spin_unlock(src_ptl); 3914 spin_unlock(dst_ptl); 3915 } 3916 3917 if (cow) 3918 mmu_notifier_invalidate_range_end(&range); 3919 else 3920 i_mmap_unlock_read(mapping); 3921 3922 return ret; 3923 } 3924 3925 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3926 unsigned long start, unsigned long end, 3927 struct page *ref_page) 3928 { 3929 struct mm_struct *mm = vma->vm_mm; 3930 unsigned long address; 3931 pte_t *ptep; 3932 pte_t pte; 3933 spinlock_t *ptl; 3934 struct page *page; 3935 struct hstate *h = hstate_vma(vma); 3936 unsigned long sz = huge_page_size(h); 3937 struct mmu_notifier_range range; 3938 3939 WARN_ON(!is_vm_hugetlb_page(vma)); 3940 BUG_ON(start & ~huge_page_mask(h)); 3941 BUG_ON(end & ~huge_page_mask(h)); 3942 3943 /* 3944 * This is a hugetlb vma, all the pte entries should point 3945 * to huge page. 3946 */ 3947 tlb_change_page_size(tlb, sz); 3948 tlb_start_vma(tlb, vma); 3949 3950 /* 3951 * If sharing possible, alert mmu notifiers of worst case. 3952 */ 3953 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3954 end); 3955 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3956 mmu_notifier_invalidate_range_start(&range); 3957 address = start; 3958 for (; address < end; address += sz) { 3959 ptep = huge_pte_offset(mm, address, sz); 3960 if (!ptep) 3961 continue; 3962 3963 ptl = huge_pte_lock(h, mm, ptep); 3964 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3965 spin_unlock(ptl); 3966 /* 3967 * We just unmapped a page of PMDs by clearing a PUD. 3968 * The caller's TLB flush range should cover this area. 3969 */ 3970 continue; 3971 } 3972 3973 pte = huge_ptep_get(ptep); 3974 if (huge_pte_none(pte)) { 3975 spin_unlock(ptl); 3976 continue; 3977 } 3978 3979 /* 3980 * Migrating hugepage or HWPoisoned hugepage is already 3981 * unmapped and its refcount is dropped, so just clear pte here. 3982 */ 3983 if (unlikely(!pte_present(pte))) { 3984 huge_pte_clear(mm, address, ptep, sz); 3985 spin_unlock(ptl); 3986 continue; 3987 } 3988 3989 page = pte_page(pte); 3990 /* 3991 * If a reference page is supplied, it is because a specific 3992 * page is being unmapped, not a range. Ensure the page we 3993 * are about to unmap is the actual page of interest. 3994 */ 3995 if (ref_page) { 3996 if (page != ref_page) { 3997 spin_unlock(ptl); 3998 continue; 3999 } 4000 /* 4001 * Mark the VMA as having unmapped its page so that 4002 * future faults in this VMA will fail rather than 4003 * looking like data was lost 4004 */ 4005 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4006 } 4007 4008 pte = huge_ptep_get_and_clear(mm, address, ptep); 4009 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4010 if (huge_pte_dirty(pte)) 4011 set_page_dirty(page); 4012 4013 hugetlb_count_sub(pages_per_huge_page(h), mm); 4014 page_remove_rmap(page, true); 4015 4016 spin_unlock(ptl); 4017 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4018 /* 4019 * Bail out after unmapping reference page if supplied 4020 */ 4021 if (ref_page) 4022 break; 4023 } 4024 mmu_notifier_invalidate_range_end(&range); 4025 tlb_end_vma(tlb, vma); 4026 } 4027 4028 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4029 struct vm_area_struct *vma, unsigned long start, 4030 unsigned long end, struct page *ref_page) 4031 { 4032 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4033 4034 /* 4035 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4036 * test will fail on a vma being torn down, and not grab a page table 4037 * on its way out. We're lucky that the flag has such an appropriate 4038 * name, and can in fact be safely cleared here. We could clear it 4039 * before the __unmap_hugepage_range above, but all that's necessary 4040 * is to clear it before releasing the i_mmap_rwsem. This works 4041 * because in the context this is called, the VMA is about to be 4042 * destroyed and the i_mmap_rwsem is held. 4043 */ 4044 vma->vm_flags &= ~VM_MAYSHARE; 4045 } 4046 4047 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4048 unsigned long end, struct page *ref_page) 4049 { 4050 struct mm_struct *mm; 4051 struct mmu_gather tlb; 4052 unsigned long tlb_start = start; 4053 unsigned long tlb_end = end; 4054 4055 /* 4056 * If shared PMDs were possibly used within this vma range, adjust 4057 * start/end for worst case tlb flushing. 4058 * Note that we can not be sure if PMDs are shared until we try to 4059 * unmap pages. However, we want to make sure TLB flushing covers 4060 * the largest possible range. 4061 */ 4062 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4063 4064 mm = vma->vm_mm; 4065 4066 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4067 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4068 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4069 } 4070 4071 /* 4072 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4073 * mappping it owns the reserve page for. The intention is to unmap the page 4074 * from other VMAs and let the children be SIGKILLed if they are faulting the 4075 * same region. 4076 */ 4077 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4078 struct page *page, unsigned long address) 4079 { 4080 struct hstate *h = hstate_vma(vma); 4081 struct vm_area_struct *iter_vma; 4082 struct address_space *mapping; 4083 pgoff_t pgoff; 4084 4085 /* 4086 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4087 * from page cache lookup which is in HPAGE_SIZE units. 4088 */ 4089 address = address & huge_page_mask(h); 4090 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4091 vma->vm_pgoff; 4092 mapping = vma->vm_file->f_mapping; 4093 4094 /* 4095 * Take the mapping lock for the duration of the table walk. As 4096 * this mapping should be shared between all the VMAs, 4097 * __unmap_hugepage_range() is called as the lock is already held 4098 */ 4099 i_mmap_lock_write(mapping); 4100 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4101 /* Do not unmap the current VMA */ 4102 if (iter_vma == vma) 4103 continue; 4104 4105 /* 4106 * Shared VMAs have their own reserves and do not affect 4107 * MAP_PRIVATE accounting but it is possible that a shared 4108 * VMA is using the same page so check and skip such VMAs. 4109 */ 4110 if (iter_vma->vm_flags & VM_MAYSHARE) 4111 continue; 4112 4113 /* 4114 * Unmap the page from other VMAs without their own reserves. 4115 * They get marked to be SIGKILLed if they fault in these 4116 * areas. This is because a future no-page fault on this VMA 4117 * could insert a zeroed page instead of the data existing 4118 * from the time of fork. This would look like data corruption 4119 */ 4120 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4121 unmap_hugepage_range(iter_vma, address, 4122 address + huge_page_size(h), page); 4123 } 4124 i_mmap_unlock_write(mapping); 4125 } 4126 4127 /* 4128 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4129 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4130 * cannot race with other handlers or page migration. 4131 * Keep the pte_same checks anyway to make transition from the mutex easier. 4132 */ 4133 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4134 unsigned long address, pte_t *ptep, 4135 struct page *pagecache_page, spinlock_t *ptl) 4136 { 4137 pte_t pte; 4138 struct hstate *h = hstate_vma(vma); 4139 struct page *old_page, *new_page; 4140 int outside_reserve = 0; 4141 vm_fault_t ret = 0; 4142 unsigned long haddr = address & huge_page_mask(h); 4143 struct mmu_notifier_range range; 4144 4145 pte = huge_ptep_get(ptep); 4146 old_page = pte_page(pte); 4147 4148 retry_avoidcopy: 4149 /* If no-one else is actually using this page, avoid the copy 4150 * and just make the page writable */ 4151 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4152 page_move_anon_rmap(old_page, vma); 4153 set_huge_ptep_writable(vma, haddr, ptep); 4154 return 0; 4155 } 4156 4157 /* 4158 * If the process that created a MAP_PRIVATE mapping is about to 4159 * perform a COW due to a shared page count, attempt to satisfy 4160 * the allocation without using the existing reserves. The pagecache 4161 * page is used to determine if the reserve at this address was 4162 * consumed or not. If reserves were used, a partial faulted mapping 4163 * at the time of fork() could consume its reserves on COW instead 4164 * of the full address range. 4165 */ 4166 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4167 old_page != pagecache_page) 4168 outside_reserve = 1; 4169 4170 get_page(old_page); 4171 4172 /* 4173 * Drop page table lock as buddy allocator may be called. It will 4174 * be acquired again before returning to the caller, as expected. 4175 */ 4176 spin_unlock(ptl); 4177 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4178 4179 if (IS_ERR(new_page)) { 4180 /* 4181 * If a process owning a MAP_PRIVATE mapping fails to COW, 4182 * it is due to references held by a child and an insufficient 4183 * huge page pool. To guarantee the original mappers 4184 * reliability, unmap the page from child processes. The child 4185 * may get SIGKILLed if it later faults. 4186 */ 4187 if (outside_reserve) { 4188 put_page(old_page); 4189 BUG_ON(huge_pte_none(pte)); 4190 unmap_ref_private(mm, vma, old_page, haddr); 4191 BUG_ON(huge_pte_none(pte)); 4192 spin_lock(ptl); 4193 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4194 if (likely(ptep && 4195 pte_same(huge_ptep_get(ptep), pte))) 4196 goto retry_avoidcopy; 4197 /* 4198 * race occurs while re-acquiring page table 4199 * lock, and our job is done. 4200 */ 4201 return 0; 4202 } 4203 4204 ret = vmf_error(PTR_ERR(new_page)); 4205 goto out_release_old; 4206 } 4207 4208 /* 4209 * When the original hugepage is shared one, it does not have 4210 * anon_vma prepared. 4211 */ 4212 if (unlikely(anon_vma_prepare(vma))) { 4213 ret = VM_FAULT_OOM; 4214 goto out_release_all; 4215 } 4216 4217 copy_user_huge_page(new_page, old_page, address, vma, 4218 pages_per_huge_page(h)); 4219 __SetPageUptodate(new_page); 4220 4221 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4222 haddr + huge_page_size(h)); 4223 mmu_notifier_invalidate_range_start(&range); 4224 4225 /* 4226 * Retake the page table lock to check for racing updates 4227 * before the page tables are altered 4228 */ 4229 spin_lock(ptl); 4230 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4231 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4232 ClearPagePrivate(new_page); 4233 4234 /* Break COW */ 4235 huge_ptep_clear_flush(vma, haddr, ptep); 4236 mmu_notifier_invalidate_range(mm, range.start, range.end); 4237 set_huge_pte_at(mm, haddr, ptep, 4238 make_huge_pte(vma, new_page, 1)); 4239 page_remove_rmap(old_page, true); 4240 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4241 set_page_huge_active(new_page); 4242 /* Make the old page be freed below */ 4243 new_page = old_page; 4244 } 4245 spin_unlock(ptl); 4246 mmu_notifier_invalidate_range_end(&range); 4247 out_release_all: 4248 restore_reserve_on_error(h, vma, haddr, new_page); 4249 put_page(new_page); 4250 out_release_old: 4251 put_page(old_page); 4252 4253 spin_lock(ptl); /* Caller expects lock to be held */ 4254 return ret; 4255 } 4256 4257 /* Return the pagecache page at a given address within a VMA */ 4258 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4259 struct vm_area_struct *vma, unsigned long address) 4260 { 4261 struct address_space *mapping; 4262 pgoff_t idx; 4263 4264 mapping = vma->vm_file->f_mapping; 4265 idx = vma_hugecache_offset(h, vma, address); 4266 4267 return find_lock_page(mapping, idx); 4268 } 4269 4270 /* 4271 * Return whether there is a pagecache page to back given address within VMA. 4272 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4273 */ 4274 static bool hugetlbfs_pagecache_present(struct hstate *h, 4275 struct vm_area_struct *vma, unsigned long address) 4276 { 4277 struct address_space *mapping; 4278 pgoff_t idx; 4279 struct page *page; 4280 4281 mapping = vma->vm_file->f_mapping; 4282 idx = vma_hugecache_offset(h, vma, address); 4283 4284 page = find_get_page(mapping, idx); 4285 if (page) 4286 put_page(page); 4287 return page != NULL; 4288 } 4289 4290 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4291 pgoff_t idx) 4292 { 4293 struct inode *inode = mapping->host; 4294 struct hstate *h = hstate_inode(inode); 4295 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4296 4297 if (err) 4298 return err; 4299 ClearPagePrivate(page); 4300 4301 /* 4302 * set page dirty so that it will not be removed from cache/file 4303 * by non-hugetlbfs specific code paths. 4304 */ 4305 set_page_dirty(page); 4306 4307 spin_lock(&inode->i_lock); 4308 inode->i_blocks += blocks_per_huge_page(h); 4309 spin_unlock(&inode->i_lock); 4310 return 0; 4311 } 4312 4313 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4314 struct vm_area_struct *vma, 4315 struct address_space *mapping, pgoff_t idx, 4316 unsigned long address, pte_t *ptep, unsigned int flags) 4317 { 4318 struct hstate *h = hstate_vma(vma); 4319 vm_fault_t ret = VM_FAULT_SIGBUS; 4320 int anon_rmap = 0; 4321 unsigned long size; 4322 struct page *page; 4323 pte_t new_pte; 4324 spinlock_t *ptl; 4325 unsigned long haddr = address & huge_page_mask(h); 4326 bool new_page = false; 4327 4328 /* 4329 * Currently, we are forced to kill the process in the event the 4330 * original mapper has unmapped pages from the child due to a failed 4331 * COW. Warn that such a situation has occurred as it may not be obvious 4332 */ 4333 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4334 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4335 current->pid); 4336 return ret; 4337 } 4338 4339 /* 4340 * We can not race with truncation due to holding i_mmap_rwsem. 4341 * i_size is modified when holding i_mmap_rwsem, so check here 4342 * once for faults beyond end of file. 4343 */ 4344 size = i_size_read(mapping->host) >> huge_page_shift(h); 4345 if (idx >= size) 4346 goto out; 4347 4348 retry: 4349 page = find_lock_page(mapping, idx); 4350 if (!page) { 4351 /* 4352 * Check for page in userfault range 4353 */ 4354 if (userfaultfd_missing(vma)) { 4355 u32 hash; 4356 struct vm_fault vmf = { 4357 .vma = vma, 4358 .address = haddr, 4359 .flags = flags, 4360 /* 4361 * Hard to debug if it ends up being 4362 * used by a callee that assumes 4363 * something about the other 4364 * uninitialized fields... same as in 4365 * memory.c 4366 */ 4367 }; 4368 4369 /* 4370 * hugetlb_fault_mutex and i_mmap_rwsem must be 4371 * dropped before handling userfault. Reacquire 4372 * after handling fault to make calling code simpler. 4373 */ 4374 hash = hugetlb_fault_mutex_hash(mapping, idx); 4375 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4376 i_mmap_unlock_read(mapping); 4377 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4378 i_mmap_lock_read(mapping); 4379 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4380 goto out; 4381 } 4382 4383 page = alloc_huge_page(vma, haddr, 0); 4384 if (IS_ERR(page)) { 4385 /* 4386 * Returning error will result in faulting task being 4387 * sent SIGBUS. The hugetlb fault mutex prevents two 4388 * tasks from racing to fault in the same page which 4389 * could result in false unable to allocate errors. 4390 * Page migration does not take the fault mutex, but 4391 * does a clear then write of pte's under page table 4392 * lock. Page fault code could race with migration, 4393 * notice the clear pte and try to allocate a page 4394 * here. Before returning error, get ptl and make 4395 * sure there really is no pte entry. 4396 */ 4397 ptl = huge_pte_lock(h, mm, ptep); 4398 if (!huge_pte_none(huge_ptep_get(ptep))) { 4399 ret = 0; 4400 spin_unlock(ptl); 4401 goto out; 4402 } 4403 spin_unlock(ptl); 4404 ret = vmf_error(PTR_ERR(page)); 4405 goto out; 4406 } 4407 clear_huge_page(page, address, pages_per_huge_page(h)); 4408 __SetPageUptodate(page); 4409 new_page = true; 4410 4411 if (vma->vm_flags & VM_MAYSHARE) { 4412 int err = huge_add_to_page_cache(page, mapping, idx); 4413 if (err) { 4414 put_page(page); 4415 if (err == -EEXIST) 4416 goto retry; 4417 goto out; 4418 } 4419 } else { 4420 lock_page(page); 4421 if (unlikely(anon_vma_prepare(vma))) { 4422 ret = VM_FAULT_OOM; 4423 goto backout_unlocked; 4424 } 4425 anon_rmap = 1; 4426 } 4427 } else { 4428 /* 4429 * If memory error occurs between mmap() and fault, some process 4430 * don't have hwpoisoned swap entry for errored virtual address. 4431 * So we need to block hugepage fault by PG_hwpoison bit check. 4432 */ 4433 if (unlikely(PageHWPoison(page))) { 4434 ret = VM_FAULT_HWPOISON | 4435 VM_FAULT_SET_HINDEX(hstate_index(h)); 4436 goto backout_unlocked; 4437 } 4438 } 4439 4440 /* 4441 * If we are going to COW a private mapping later, we examine the 4442 * pending reservations for this page now. This will ensure that 4443 * any allocations necessary to record that reservation occur outside 4444 * the spinlock. 4445 */ 4446 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4447 if (vma_needs_reservation(h, vma, haddr) < 0) { 4448 ret = VM_FAULT_OOM; 4449 goto backout_unlocked; 4450 } 4451 /* Just decrements count, does not deallocate */ 4452 vma_end_reservation(h, vma, haddr); 4453 } 4454 4455 ptl = huge_pte_lock(h, mm, ptep); 4456 ret = 0; 4457 if (!huge_pte_none(huge_ptep_get(ptep))) 4458 goto backout; 4459 4460 if (anon_rmap) { 4461 ClearPagePrivate(page); 4462 hugepage_add_new_anon_rmap(page, vma, haddr); 4463 } else 4464 page_dup_rmap(page, true); 4465 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4466 && (vma->vm_flags & VM_SHARED))); 4467 set_huge_pte_at(mm, haddr, ptep, new_pte); 4468 4469 hugetlb_count_add(pages_per_huge_page(h), mm); 4470 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4471 /* Optimization, do the COW without a second fault */ 4472 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4473 } 4474 4475 spin_unlock(ptl); 4476 4477 /* 4478 * Only make newly allocated pages active. Existing pages found 4479 * in the pagecache could be !page_huge_active() if they have been 4480 * isolated for migration. 4481 */ 4482 if (new_page) 4483 set_page_huge_active(page); 4484 4485 unlock_page(page); 4486 out: 4487 return ret; 4488 4489 backout: 4490 spin_unlock(ptl); 4491 backout_unlocked: 4492 unlock_page(page); 4493 restore_reserve_on_error(h, vma, haddr, page); 4494 put_page(page); 4495 goto out; 4496 } 4497 4498 #ifdef CONFIG_SMP 4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4500 { 4501 unsigned long key[2]; 4502 u32 hash; 4503 4504 key[0] = (unsigned long) mapping; 4505 key[1] = idx; 4506 4507 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4508 4509 return hash & (num_fault_mutexes - 1); 4510 } 4511 #else 4512 /* 4513 * For uniprocesor systems we always use a single mutex, so just 4514 * return 0 and avoid the hashing overhead. 4515 */ 4516 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4517 { 4518 return 0; 4519 } 4520 #endif 4521 4522 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4523 unsigned long address, unsigned int flags) 4524 { 4525 pte_t *ptep, entry; 4526 spinlock_t *ptl; 4527 vm_fault_t ret; 4528 u32 hash; 4529 pgoff_t idx; 4530 struct page *page = NULL; 4531 struct page *pagecache_page = NULL; 4532 struct hstate *h = hstate_vma(vma); 4533 struct address_space *mapping; 4534 int need_wait_lock = 0; 4535 unsigned long haddr = address & huge_page_mask(h); 4536 4537 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4538 if (ptep) { 4539 /* 4540 * Since we hold no locks, ptep could be stale. That is 4541 * OK as we are only making decisions based on content and 4542 * not actually modifying content here. 4543 */ 4544 entry = huge_ptep_get(ptep); 4545 if (unlikely(is_hugetlb_entry_migration(entry))) { 4546 migration_entry_wait_huge(vma, mm, ptep); 4547 return 0; 4548 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4549 return VM_FAULT_HWPOISON_LARGE | 4550 VM_FAULT_SET_HINDEX(hstate_index(h)); 4551 } 4552 4553 /* 4554 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4555 * until finished with ptep. This serves two purposes: 4556 * 1) It prevents huge_pmd_unshare from being called elsewhere 4557 * and making the ptep no longer valid. 4558 * 2) It synchronizes us with i_size modifications during truncation. 4559 * 4560 * ptep could have already be assigned via huge_pte_offset. That 4561 * is OK, as huge_pte_alloc will return the same value unless 4562 * something has changed. 4563 */ 4564 mapping = vma->vm_file->f_mapping; 4565 i_mmap_lock_read(mapping); 4566 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4567 if (!ptep) { 4568 i_mmap_unlock_read(mapping); 4569 return VM_FAULT_OOM; 4570 } 4571 4572 /* 4573 * Serialize hugepage allocation and instantiation, so that we don't 4574 * get spurious allocation failures if two CPUs race to instantiate 4575 * the same page in the page cache. 4576 */ 4577 idx = vma_hugecache_offset(h, vma, haddr); 4578 hash = hugetlb_fault_mutex_hash(mapping, idx); 4579 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4580 4581 entry = huge_ptep_get(ptep); 4582 if (huge_pte_none(entry)) { 4583 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4584 goto out_mutex; 4585 } 4586 4587 ret = 0; 4588 4589 /* 4590 * entry could be a migration/hwpoison entry at this point, so this 4591 * check prevents the kernel from going below assuming that we have 4592 * an active hugepage in pagecache. This goto expects the 2nd page 4593 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4594 * properly handle it. 4595 */ 4596 if (!pte_present(entry)) 4597 goto out_mutex; 4598 4599 /* 4600 * If we are going to COW the mapping later, we examine the pending 4601 * reservations for this page now. This will ensure that any 4602 * allocations necessary to record that reservation occur outside the 4603 * spinlock. For private mappings, we also lookup the pagecache 4604 * page now as it is used to determine if a reservation has been 4605 * consumed. 4606 */ 4607 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4608 if (vma_needs_reservation(h, vma, haddr) < 0) { 4609 ret = VM_FAULT_OOM; 4610 goto out_mutex; 4611 } 4612 /* Just decrements count, does not deallocate */ 4613 vma_end_reservation(h, vma, haddr); 4614 4615 if (!(vma->vm_flags & VM_MAYSHARE)) 4616 pagecache_page = hugetlbfs_pagecache_page(h, 4617 vma, haddr); 4618 } 4619 4620 ptl = huge_pte_lock(h, mm, ptep); 4621 4622 /* Check for a racing update before calling hugetlb_cow */ 4623 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4624 goto out_ptl; 4625 4626 /* 4627 * hugetlb_cow() requires page locks of pte_page(entry) and 4628 * pagecache_page, so here we need take the former one 4629 * when page != pagecache_page or !pagecache_page. 4630 */ 4631 page = pte_page(entry); 4632 if (page != pagecache_page) 4633 if (!trylock_page(page)) { 4634 need_wait_lock = 1; 4635 goto out_ptl; 4636 } 4637 4638 get_page(page); 4639 4640 if (flags & FAULT_FLAG_WRITE) { 4641 if (!huge_pte_write(entry)) { 4642 ret = hugetlb_cow(mm, vma, address, ptep, 4643 pagecache_page, ptl); 4644 goto out_put_page; 4645 } 4646 entry = huge_pte_mkdirty(entry); 4647 } 4648 entry = pte_mkyoung(entry); 4649 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4650 flags & FAULT_FLAG_WRITE)) 4651 update_mmu_cache(vma, haddr, ptep); 4652 out_put_page: 4653 if (page != pagecache_page) 4654 unlock_page(page); 4655 put_page(page); 4656 out_ptl: 4657 spin_unlock(ptl); 4658 4659 if (pagecache_page) { 4660 unlock_page(pagecache_page); 4661 put_page(pagecache_page); 4662 } 4663 out_mutex: 4664 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4665 i_mmap_unlock_read(mapping); 4666 /* 4667 * Generally it's safe to hold refcount during waiting page lock. But 4668 * here we just wait to defer the next page fault to avoid busy loop and 4669 * the page is not used after unlocked before returning from the current 4670 * page fault. So we are safe from accessing freed page, even if we wait 4671 * here without taking refcount. 4672 */ 4673 if (need_wait_lock) 4674 wait_on_page_locked(page); 4675 return ret; 4676 } 4677 4678 /* 4679 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4680 * modifications for huge pages. 4681 */ 4682 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4683 pte_t *dst_pte, 4684 struct vm_area_struct *dst_vma, 4685 unsigned long dst_addr, 4686 unsigned long src_addr, 4687 struct page **pagep) 4688 { 4689 struct address_space *mapping; 4690 pgoff_t idx; 4691 unsigned long size; 4692 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4693 struct hstate *h = hstate_vma(dst_vma); 4694 pte_t _dst_pte; 4695 spinlock_t *ptl; 4696 int ret; 4697 struct page *page; 4698 4699 if (!*pagep) { 4700 ret = -ENOMEM; 4701 page = alloc_huge_page(dst_vma, dst_addr, 0); 4702 if (IS_ERR(page)) 4703 goto out; 4704 4705 ret = copy_huge_page_from_user(page, 4706 (const void __user *) src_addr, 4707 pages_per_huge_page(h), false); 4708 4709 /* fallback to copy_from_user outside mmap_lock */ 4710 if (unlikely(ret)) { 4711 ret = -ENOENT; 4712 *pagep = page; 4713 /* don't free the page */ 4714 goto out; 4715 } 4716 } else { 4717 page = *pagep; 4718 *pagep = NULL; 4719 } 4720 4721 /* 4722 * The memory barrier inside __SetPageUptodate makes sure that 4723 * preceding stores to the page contents become visible before 4724 * the set_pte_at() write. 4725 */ 4726 __SetPageUptodate(page); 4727 4728 mapping = dst_vma->vm_file->f_mapping; 4729 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4730 4731 /* 4732 * If shared, add to page cache 4733 */ 4734 if (vm_shared) { 4735 size = i_size_read(mapping->host) >> huge_page_shift(h); 4736 ret = -EFAULT; 4737 if (idx >= size) 4738 goto out_release_nounlock; 4739 4740 /* 4741 * Serialization between remove_inode_hugepages() and 4742 * huge_add_to_page_cache() below happens through the 4743 * hugetlb_fault_mutex_table that here must be hold by 4744 * the caller. 4745 */ 4746 ret = huge_add_to_page_cache(page, mapping, idx); 4747 if (ret) 4748 goto out_release_nounlock; 4749 } 4750 4751 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4752 spin_lock(ptl); 4753 4754 /* 4755 * Recheck the i_size after holding PT lock to make sure not 4756 * to leave any page mapped (as page_mapped()) beyond the end 4757 * of the i_size (remove_inode_hugepages() is strict about 4758 * enforcing that). If we bail out here, we'll also leave a 4759 * page in the radix tree in the vm_shared case beyond the end 4760 * of the i_size, but remove_inode_hugepages() will take care 4761 * of it as soon as we drop the hugetlb_fault_mutex_table. 4762 */ 4763 size = i_size_read(mapping->host) >> huge_page_shift(h); 4764 ret = -EFAULT; 4765 if (idx >= size) 4766 goto out_release_unlock; 4767 4768 ret = -EEXIST; 4769 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4770 goto out_release_unlock; 4771 4772 if (vm_shared) { 4773 page_dup_rmap(page, true); 4774 } else { 4775 ClearPagePrivate(page); 4776 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4777 } 4778 4779 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4780 if (dst_vma->vm_flags & VM_WRITE) 4781 _dst_pte = huge_pte_mkdirty(_dst_pte); 4782 _dst_pte = pte_mkyoung(_dst_pte); 4783 4784 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4785 4786 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4787 dst_vma->vm_flags & VM_WRITE); 4788 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4789 4790 /* No need to invalidate - it was non-present before */ 4791 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4792 4793 spin_unlock(ptl); 4794 set_page_huge_active(page); 4795 if (vm_shared) 4796 unlock_page(page); 4797 ret = 0; 4798 out: 4799 return ret; 4800 out_release_unlock: 4801 spin_unlock(ptl); 4802 if (vm_shared) 4803 unlock_page(page); 4804 out_release_nounlock: 4805 put_page(page); 4806 goto out; 4807 } 4808 4809 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4810 struct page **pages, struct vm_area_struct **vmas, 4811 unsigned long *position, unsigned long *nr_pages, 4812 long i, unsigned int flags, int *locked) 4813 { 4814 unsigned long pfn_offset; 4815 unsigned long vaddr = *position; 4816 unsigned long remainder = *nr_pages; 4817 struct hstate *h = hstate_vma(vma); 4818 int err = -EFAULT; 4819 4820 while (vaddr < vma->vm_end && remainder) { 4821 pte_t *pte; 4822 spinlock_t *ptl = NULL; 4823 int absent; 4824 struct page *page; 4825 4826 /* 4827 * If we have a pending SIGKILL, don't keep faulting pages and 4828 * potentially allocating memory. 4829 */ 4830 if (fatal_signal_pending(current)) { 4831 remainder = 0; 4832 break; 4833 } 4834 4835 /* 4836 * Some archs (sparc64, sh*) have multiple pte_ts to 4837 * each hugepage. We have to make sure we get the 4838 * first, for the page indexing below to work. 4839 * 4840 * Note that page table lock is not held when pte is null. 4841 */ 4842 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4843 huge_page_size(h)); 4844 if (pte) 4845 ptl = huge_pte_lock(h, mm, pte); 4846 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4847 4848 /* 4849 * When coredumping, it suits get_dump_page if we just return 4850 * an error where there's an empty slot with no huge pagecache 4851 * to back it. This way, we avoid allocating a hugepage, and 4852 * the sparse dumpfile avoids allocating disk blocks, but its 4853 * huge holes still show up with zeroes where they need to be. 4854 */ 4855 if (absent && (flags & FOLL_DUMP) && 4856 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4857 if (pte) 4858 spin_unlock(ptl); 4859 remainder = 0; 4860 break; 4861 } 4862 4863 /* 4864 * We need call hugetlb_fault for both hugepages under migration 4865 * (in which case hugetlb_fault waits for the migration,) and 4866 * hwpoisoned hugepages (in which case we need to prevent the 4867 * caller from accessing to them.) In order to do this, we use 4868 * here is_swap_pte instead of is_hugetlb_entry_migration and 4869 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4870 * both cases, and because we can't follow correct pages 4871 * directly from any kind of swap entries. 4872 */ 4873 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4874 ((flags & FOLL_WRITE) && 4875 !huge_pte_write(huge_ptep_get(pte)))) { 4876 vm_fault_t ret; 4877 unsigned int fault_flags = 0; 4878 4879 if (pte) 4880 spin_unlock(ptl); 4881 if (flags & FOLL_WRITE) 4882 fault_flags |= FAULT_FLAG_WRITE; 4883 if (locked) 4884 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4885 FAULT_FLAG_KILLABLE; 4886 if (flags & FOLL_NOWAIT) 4887 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4888 FAULT_FLAG_RETRY_NOWAIT; 4889 if (flags & FOLL_TRIED) { 4890 /* 4891 * Note: FAULT_FLAG_ALLOW_RETRY and 4892 * FAULT_FLAG_TRIED can co-exist 4893 */ 4894 fault_flags |= FAULT_FLAG_TRIED; 4895 } 4896 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4897 if (ret & VM_FAULT_ERROR) { 4898 err = vm_fault_to_errno(ret, flags); 4899 remainder = 0; 4900 break; 4901 } 4902 if (ret & VM_FAULT_RETRY) { 4903 if (locked && 4904 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4905 *locked = 0; 4906 *nr_pages = 0; 4907 /* 4908 * VM_FAULT_RETRY must not return an 4909 * error, it will return zero 4910 * instead. 4911 * 4912 * No need to update "position" as the 4913 * caller will not check it after 4914 * *nr_pages is set to 0. 4915 */ 4916 return i; 4917 } 4918 continue; 4919 } 4920 4921 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4922 page = pte_page(huge_ptep_get(pte)); 4923 4924 /* 4925 * If subpage information not requested, update counters 4926 * and skip the same_page loop below. 4927 */ 4928 if (!pages && !vmas && !pfn_offset && 4929 (vaddr + huge_page_size(h) < vma->vm_end) && 4930 (remainder >= pages_per_huge_page(h))) { 4931 vaddr += huge_page_size(h); 4932 remainder -= pages_per_huge_page(h); 4933 i += pages_per_huge_page(h); 4934 spin_unlock(ptl); 4935 continue; 4936 } 4937 4938 same_page: 4939 if (pages) { 4940 pages[i] = mem_map_offset(page, pfn_offset); 4941 /* 4942 * try_grab_page() should always succeed here, because: 4943 * a) we hold the ptl lock, and b) we've just checked 4944 * that the huge page is present in the page tables. If 4945 * the huge page is present, then the tail pages must 4946 * also be present. The ptl prevents the head page and 4947 * tail pages from being rearranged in any way. So this 4948 * page must be available at this point, unless the page 4949 * refcount overflowed: 4950 */ 4951 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4952 spin_unlock(ptl); 4953 remainder = 0; 4954 err = -ENOMEM; 4955 break; 4956 } 4957 } 4958 4959 if (vmas) 4960 vmas[i] = vma; 4961 4962 vaddr += PAGE_SIZE; 4963 ++pfn_offset; 4964 --remainder; 4965 ++i; 4966 if (vaddr < vma->vm_end && remainder && 4967 pfn_offset < pages_per_huge_page(h)) { 4968 /* 4969 * We use pfn_offset to avoid touching the pageframes 4970 * of this compound page. 4971 */ 4972 goto same_page; 4973 } 4974 spin_unlock(ptl); 4975 } 4976 *nr_pages = remainder; 4977 /* 4978 * setting position is actually required only if remainder is 4979 * not zero but it's faster not to add a "if (remainder)" 4980 * branch. 4981 */ 4982 *position = vaddr; 4983 4984 return i ? i : err; 4985 } 4986 4987 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4988 /* 4989 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4990 * implement this. 4991 */ 4992 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4993 #endif 4994 4995 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4996 unsigned long address, unsigned long end, pgprot_t newprot) 4997 { 4998 struct mm_struct *mm = vma->vm_mm; 4999 unsigned long start = address; 5000 pte_t *ptep; 5001 pte_t pte; 5002 struct hstate *h = hstate_vma(vma); 5003 unsigned long pages = 0; 5004 bool shared_pmd = false; 5005 struct mmu_notifier_range range; 5006 5007 /* 5008 * In the case of shared PMDs, the area to flush could be beyond 5009 * start/end. Set range.start/range.end to cover the maximum possible 5010 * range if PMD sharing is possible. 5011 */ 5012 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5013 0, vma, mm, start, end); 5014 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5015 5016 BUG_ON(address >= end); 5017 flush_cache_range(vma, range.start, range.end); 5018 5019 mmu_notifier_invalidate_range_start(&range); 5020 i_mmap_lock_write(vma->vm_file->f_mapping); 5021 for (; address < end; address += huge_page_size(h)) { 5022 spinlock_t *ptl; 5023 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5024 if (!ptep) 5025 continue; 5026 ptl = huge_pte_lock(h, mm, ptep); 5027 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5028 pages++; 5029 spin_unlock(ptl); 5030 shared_pmd = true; 5031 continue; 5032 } 5033 pte = huge_ptep_get(ptep); 5034 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5035 spin_unlock(ptl); 5036 continue; 5037 } 5038 if (unlikely(is_hugetlb_entry_migration(pte))) { 5039 swp_entry_t entry = pte_to_swp_entry(pte); 5040 5041 if (is_write_migration_entry(entry)) { 5042 pte_t newpte; 5043 5044 make_migration_entry_read(&entry); 5045 newpte = swp_entry_to_pte(entry); 5046 set_huge_swap_pte_at(mm, address, ptep, 5047 newpte, huge_page_size(h)); 5048 pages++; 5049 } 5050 spin_unlock(ptl); 5051 continue; 5052 } 5053 if (!huge_pte_none(pte)) { 5054 pte_t old_pte; 5055 5056 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5057 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5058 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5059 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5060 pages++; 5061 } 5062 spin_unlock(ptl); 5063 } 5064 /* 5065 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5066 * may have cleared our pud entry and done put_page on the page table: 5067 * once we release i_mmap_rwsem, another task can do the final put_page 5068 * and that page table be reused and filled with junk. If we actually 5069 * did unshare a page of pmds, flush the range corresponding to the pud. 5070 */ 5071 if (shared_pmd) 5072 flush_hugetlb_tlb_range(vma, range.start, range.end); 5073 else 5074 flush_hugetlb_tlb_range(vma, start, end); 5075 /* 5076 * No need to call mmu_notifier_invalidate_range() we are downgrading 5077 * page table protection not changing it to point to a new page. 5078 * 5079 * See Documentation/vm/mmu_notifier.rst 5080 */ 5081 i_mmap_unlock_write(vma->vm_file->f_mapping); 5082 mmu_notifier_invalidate_range_end(&range); 5083 5084 return pages << h->order; 5085 } 5086 5087 int hugetlb_reserve_pages(struct inode *inode, 5088 long from, long to, 5089 struct vm_area_struct *vma, 5090 vm_flags_t vm_flags) 5091 { 5092 long ret, chg, add = -1; 5093 struct hstate *h = hstate_inode(inode); 5094 struct hugepage_subpool *spool = subpool_inode(inode); 5095 struct resv_map *resv_map; 5096 struct hugetlb_cgroup *h_cg = NULL; 5097 long gbl_reserve, regions_needed = 0; 5098 5099 /* This should never happen */ 5100 if (from > to) { 5101 VM_WARN(1, "%s called with a negative range\n", __func__); 5102 return -EINVAL; 5103 } 5104 5105 /* 5106 * Only apply hugepage reservation if asked. At fault time, an 5107 * attempt will be made for VM_NORESERVE to allocate a page 5108 * without using reserves 5109 */ 5110 if (vm_flags & VM_NORESERVE) 5111 return 0; 5112 5113 /* 5114 * Shared mappings base their reservation on the number of pages that 5115 * are already allocated on behalf of the file. Private mappings need 5116 * to reserve the full area even if read-only as mprotect() may be 5117 * called to make the mapping read-write. Assume !vma is a shm mapping 5118 */ 5119 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5120 /* 5121 * resv_map can not be NULL as hugetlb_reserve_pages is only 5122 * called for inodes for which resv_maps were created (see 5123 * hugetlbfs_get_inode). 5124 */ 5125 resv_map = inode_resv_map(inode); 5126 5127 chg = region_chg(resv_map, from, to, ®ions_needed); 5128 5129 } else { 5130 /* Private mapping. */ 5131 resv_map = resv_map_alloc(); 5132 if (!resv_map) 5133 return -ENOMEM; 5134 5135 chg = to - from; 5136 5137 set_vma_resv_map(vma, resv_map); 5138 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5139 } 5140 5141 if (chg < 0) { 5142 ret = chg; 5143 goto out_err; 5144 } 5145 5146 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5147 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5148 5149 if (ret < 0) { 5150 ret = -ENOMEM; 5151 goto out_err; 5152 } 5153 5154 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5155 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5156 * of the resv_map. 5157 */ 5158 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5159 } 5160 5161 /* 5162 * There must be enough pages in the subpool for the mapping. If 5163 * the subpool has a minimum size, there may be some global 5164 * reservations already in place (gbl_reserve). 5165 */ 5166 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5167 if (gbl_reserve < 0) { 5168 ret = -ENOSPC; 5169 goto out_uncharge_cgroup; 5170 } 5171 5172 /* 5173 * Check enough hugepages are available for the reservation. 5174 * Hand the pages back to the subpool if there are not 5175 */ 5176 ret = hugetlb_acct_memory(h, gbl_reserve); 5177 if (ret < 0) { 5178 goto out_put_pages; 5179 } 5180 5181 /* 5182 * Account for the reservations made. Shared mappings record regions 5183 * that have reservations as they are shared by multiple VMAs. 5184 * When the last VMA disappears, the region map says how much 5185 * the reservation was and the page cache tells how much of 5186 * the reservation was consumed. Private mappings are per-VMA and 5187 * only the consumed reservations are tracked. When the VMA 5188 * disappears, the original reservation is the VMA size and the 5189 * consumed reservations are stored in the map. Hence, nothing 5190 * else has to be done for private mappings here 5191 */ 5192 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5193 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5194 5195 if (unlikely(add < 0)) { 5196 hugetlb_acct_memory(h, -gbl_reserve); 5197 goto out_put_pages; 5198 } else if (unlikely(chg > add)) { 5199 /* 5200 * pages in this range were added to the reserve 5201 * map between region_chg and region_add. This 5202 * indicates a race with alloc_huge_page. Adjust 5203 * the subpool and reserve counts modified above 5204 * based on the difference. 5205 */ 5206 long rsv_adjust; 5207 5208 hugetlb_cgroup_uncharge_cgroup_rsvd( 5209 hstate_index(h), 5210 (chg - add) * pages_per_huge_page(h), h_cg); 5211 5212 rsv_adjust = hugepage_subpool_put_pages(spool, 5213 chg - add); 5214 hugetlb_acct_memory(h, -rsv_adjust); 5215 } 5216 } 5217 return 0; 5218 out_put_pages: 5219 /* put back original number of pages, chg */ 5220 (void)hugepage_subpool_put_pages(spool, chg); 5221 out_uncharge_cgroup: 5222 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5223 chg * pages_per_huge_page(h), h_cg); 5224 out_err: 5225 if (!vma || vma->vm_flags & VM_MAYSHARE) 5226 /* Only call region_abort if the region_chg succeeded but the 5227 * region_add failed or didn't run. 5228 */ 5229 if (chg >= 0 && add < 0) 5230 region_abort(resv_map, from, to, regions_needed); 5231 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5232 kref_put(&resv_map->refs, resv_map_release); 5233 return ret; 5234 } 5235 5236 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5237 long freed) 5238 { 5239 struct hstate *h = hstate_inode(inode); 5240 struct resv_map *resv_map = inode_resv_map(inode); 5241 long chg = 0; 5242 struct hugepage_subpool *spool = subpool_inode(inode); 5243 long gbl_reserve; 5244 5245 /* 5246 * Since this routine can be called in the evict inode path for all 5247 * hugetlbfs inodes, resv_map could be NULL. 5248 */ 5249 if (resv_map) { 5250 chg = region_del(resv_map, start, end); 5251 /* 5252 * region_del() can fail in the rare case where a region 5253 * must be split and another region descriptor can not be 5254 * allocated. If end == LONG_MAX, it will not fail. 5255 */ 5256 if (chg < 0) 5257 return chg; 5258 } 5259 5260 spin_lock(&inode->i_lock); 5261 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5262 spin_unlock(&inode->i_lock); 5263 5264 /* 5265 * If the subpool has a minimum size, the number of global 5266 * reservations to be released may be adjusted. 5267 */ 5268 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5269 hugetlb_acct_memory(h, -gbl_reserve); 5270 5271 return 0; 5272 } 5273 5274 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5275 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5276 struct vm_area_struct *vma, 5277 unsigned long addr, pgoff_t idx) 5278 { 5279 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5280 svma->vm_start; 5281 unsigned long sbase = saddr & PUD_MASK; 5282 unsigned long s_end = sbase + PUD_SIZE; 5283 5284 /* Allow segments to share if only one is marked locked */ 5285 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5286 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5287 5288 /* 5289 * match the virtual addresses, permission and the alignment of the 5290 * page table page. 5291 */ 5292 if (pmd_index(addr) != pmd_index(saddr) || 5293 vm_flags != svm_flags || 5294 sbase < svma->vm_start || svma->vm_end < s_end) 5295 return 0; 5296 5297 return saddr; 5298 } 5299 5300 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5301 { 5302 unsigned long base = addr & PUD_MASK; 5303 unsigned long end = base + PUD_SIZE; 5304 5305 /* 5306 * check on proper vm_flags and page table alignment 5307 */ 5308 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5309 return true; 5310 return false; 5311 } 5312 5313 /* 5314 * Determine if start,end range within vma could be mapped by shared pmd. 5315 * If yes, adjust start and end to cover range associated with possible 5316 * shared pmd mappings. 5317 */ 5318 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5319 unsigned long *start, unsigned long *end) 5320 { 5321 unsigned long a_start, a_end; 5322 5323 if (!(vma->vm_flags & VM_MAYSHARE)) 5324 return; 5325 5326 /* Extend the range to be PUD aligned for a worst case scenario */ 5327 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5328 a_end = ALIGN(*end, PUD_SIZE); 5329 5330 /* 5331 * Intersect the range with the vma range, since pmd sharing won't be 5332 * across vma after all 5333 */ 5334 *start = max(vma->vm_start, a_start); 5335 *end = min(vma->vm_end, a_end); 5336 } 5337 5338 /* 5339 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5340 * and returns the corresponding pte. While this is not necessary for the 5341 * !shared pmd case because we can allocate the pmd later as well, it makes the 5342 * code much cleaner. 5343 * 5344 * This routine must be called with i_mmap_rwsem held in at least read mode if 5345 * sharing is possible. For hugetlbfs, this prevents removal of any page 5346 * table entries associated with the address space. This is important as we 5347 * are setting up sharing based on existing page table entries (mappings). 5348 * 5349 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5350 * huge_pte_alloc know that sharing is not possible and do not take 5351 * i_mmap_rwsem as a performance optimization. This is handled by the 5352 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5353 * only required for subsequent processing. 5354 */ 5355 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5356 { 5357 struct vm_area_struct *vma = find_vma(mm, addr); 5358 struct address_space *mapping = vma->vm_file->f_mapping; 5359 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5360 vma->vm_pgoff; 5361 struct vm_area_struct *svma; 5362 unsigned long saddr; 5363 pte_t *spte = NULL; 5364 pte_t *pte; 5365 spinlock_t *ptl; 5366 5367 if (!vma_shareable(vma, addr)) 5368 return (pte_t *)pmd_alloc(mm, pud, addr); 5369 5370 i_mmap_assert_locked(mapping); 5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5372 if (svma == vma) 5373 continue; 5374 5375 saddr = page_table_shareable(svma, vma, addr, idx); 5376 if (saddr) { 5377 spte = huge_pte_offset(svma->vm_mm, saddr, 5378 vma_mmu_pagesize(svma)); 5379 if (spte) { 5380 get_page(virt_to_page(spte)); 5381 break; 5382 } 5383 } 5384 } 5385 5386 if (!spte) 5387 goto out; 5388 5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5390 if (pud_none(*pud)) { 5391 pud_populate(mm, pud, 5392 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5393 mm_inc_nr_pmds(mm); 5394 } else { 5395 put_page(virt_to_page(spte)); 5396 } 5397 spin_unlock(ptl); 5398 out: 5399 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5400 return pte; 5401 } 5402 5403 /* 5404 * unmap huge page backed by shared pte. 5405 * 5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5407 * indicated by page_count > 1, unmap is achieved by clearing pud and 5408 * decrementing the ref count. If count == 1, the pte page is not shared. 5409 * 5410 * Called with page table lock held and i_mmap_rwsem held in write mode. 5411 * 5412 * returns: 1 successfully unmapped a shared pte page 5413 * 0 the underlying pte page is not shared, or it is the last user 5414 */ 5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5416 unsigned long *addr, pte_t *ptep) 5417 { 5418 pgd_t *pgd = pgd_offset(mm, *addr); 5419 p4d_t *p4d = p4d_offset(pgd, *addr); 5420 pud_t *pud = pud_offset(p4d, *addr); 5421 5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5423 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5424 if (page_count(virt_to_page(ptep)) == 1) 5425 return 0; 5426 5427 pud_clear(pud); 5428 put_page(virt_to_page(ptep)); 5429 mm_dec_nr_pmds(mm); 5430 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5431 return 1; 5432 } 5433 #define want_pmd_share() (1) 5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5436 { 5437 return NULL; 5438 } 5439 5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5441 unsigned long *addr, pte_t *ptep) 5442 { 5443 return 0; 5444 } 5445 5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5447 unsigned long *start, unsigned long *end) 5448 { 5449 } 5450 #define want_pmd_share() (0) 5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5452 5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5454 pte_t *huge_pte_alloc(struct mm_struct *mm, 5455 unsigned long addr, unsigned long sz) 5456 { 5457 pgd_t *pgd; 5458 p4d_t *p4d; 5459 pud_t *pud; 5460 pte_t *pte = NULL; 5461 5462 pgd = pgd_offset(mm, addr); 5463 p4d = p4d_alloc(mm, pgd, addr); 5464 if (!p4d) 5465 return NULL; 5466 pud = pud_alloc(mm, p4d, addr); 5467 if (pud) { 5468 if (sz == PUD_SIZE) { 5469 pte = (pte_t *)pud; 5470 } else { 5471 BUG_ON(sz != PMD_SIZE); 5472 if (want_pmd_share() && pud_none(*pud)) 5473 pte = huge_pmd_share(mm, addr, pud); 5474 else 5475 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5476 } 5477 } 5478 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5479 5480 return pte; 5481 } 5482 5483 /* 5484 * huge_pte_offset() - Walk the page table to resolve the hugepage 5485 * entry at address @addr 5486 * 5487 * Return: Pointer to page table entry (PUD or PMD) for 5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5489 * size @sz doesn't match the hugepage size at this level of the page 5490 * table. 5491 */ 5492 pte_t *huge_pte_offset(struct mm_struct *mm, 5493 unsigned long addr, unsigned long sz) 5494 { 5495 pgd_t *pgd; 5496 p4d_t *p4d; 5497 pud_t *pud; 5498 pmd_t *pmd; 5499 5500 pgd = pgd_offset(mm, addr); 5501 if (!pgd_present(*pgd)) 5502 return NULL; 5503 p4d = p4d_offset(pgd, addr); 5504 if (!p4d_present(*p4d)) 5505 return NULL; 5506 5507 pud = pud_offset(p4d, addr); 5508 if (sz == PUD_SIZE) 5509 /* must be pud huge, non-present or none */ 5510 return (pte_t *)pud; 5511 if (!pud_present(*pud)) 5512 return NULL; 5513 /* must have a valid entry and size to go further */ 5514 5515 pmd = pmd_offset(pud, addr); 5516 /* must be pmd huge, non-present or none */ 5517 return (pte_t *)pmd; 5518 } 5519 5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5521 5522 /* 5523 * These functions are overwritable if your architecture needs its own 5524 * behavior. 5525 */ 5526 struct page * __weak 5527 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5528 int write) 5529 { 5530 return ERR_PTR(-EINVAL); 5531 } 5532 5533 struct page * __weak 5534 follow_huge_pd(struct vm_area_struct *vma, 5535 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5536 { 5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5538 return NULL; 5539 } 5540 5541 struct page * __weak 5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5543 pmd_t *pmd, int flags) 5544 { 5545 struct page *page = NULL; 5546 spinlock_t *ptl; 5547 pte_t pte; 5548 5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5550 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5551 (FOLL_PIN | FOLL_GET))) 5552 return NULL; 5553 5554 retry: 5555 ptl = pmd_lockptr(mm, pmd); 5556 spin_lock(ptl); 5557 /* 5558 * make sure that the address range covered by this pmd is not 5559 * unmapped from other threads. 5560 */ 5561 if (!pmd_huge(*pmd)) 5562 goto out; 5563 pte = huge_ptep_get((pte_t *)pmd); 5564 if (pte_present(pte)) { 5565 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5566 /* 5567 * try_grab_page() should always succeed here, because: a) we 5568 * hold the pmd (ptl) lock, and b) we've just checked that the 5569 * huge pmd (head) page is present in the page tables. The ptl 5570 * prevents the head page and tail pages from being rearranged 5571 * in any way. So this page must be available at this point, 5572 * unless the page refcount overflowed: 5573 */ 5574 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5575 page = NULL; 5576 goto out; 5577 } 5578 } else { 5579 if (is_hugetlb_entry_migration(pte)) { 5580 spin_unlock(ptl); 5581 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5582 goto retry; 5583 } 5584 /* 5585 * hwpoisoned entry is treated as no_page_table in 5586 * follow_page_mask(). 5587 */ 5588 } 5589 out: 5590 spin_unlock(ptl); 5591 return page; 5592 } 5593 5594 struct page * __weak 5595 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5596 pud_t *pud, int flags) 5597 { 5598 if (flags & (FOLL_GET | FOLL_PIN)) 5599 return NULL; 5600 5601 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5602 } 5603 5604 struct page * __weak 5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5606 { 5607 if (flags & (FOLL_GET | FOLL_PIN)) 5608 return NULL; 5609 5610 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5611 } 5612 5613 bool isolate_huge_page(struct page *page, struct list_head *list) 5614 { 5615 bool ret = true; 5616 5617 VM_BUG_ON_PAGE(!PageHead(page), page); 5618 spin_lock(&hugetlb_lock); 5619 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5620 ret = false; 5621 goto unlock; 5622 } 5623 clear_page_huge_active(page); 5624 list_move_tail(&page->lru, list); 5625 unlock: 5626 spin_unlock(&hugetlb_lock); 5627 return ret; 5628 } 5629 5630 void putback_active_hugepage(struct page *page) 5631 { 5632 VM_BUG_ON_PAGE(!PageHead(page), page); 5633 spin_lock(&hugetlb_lock); 5634 set_page_huge_active(page); 5635 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5636 spin_unlock(&hugetlb_lock); 5637 put_page(page); 5638 } 5639 5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5641 { 5642 struct hstate *h = page_hstate(oldpage); 5643 5644 hugetlb_cgroup_migrate(oldpage, newpage); 5645 set_page_owner_migrate_reason(newpage, reason); 5646 5647 /* 5648 * transfer temporary state of the new huge page. This is 5649 * reverse to other transitions because the newpage is going to 5650 * be final while the old one will be freed so it takes over 5651 * the temporary status. 5652 * 5653 * Also note that we have to transfer the per-node surplus state 5654 * here as well otherwise the global surplus count will not match 5655 * the per-node's. 5656 */ 5657 if (PageHugeTemporary(newpage)) { 5658 int old_nid = page_to_nid(oldpage); 5659 int new_nid = page_to_nid(newpage); 5660 5661 SetPageHugeTemporary(oldpage); 5662 ClearPageHugeTemporary(newpage); 5663 5664 spin_lock(&hugetlb_lock); 5665 if (h->surplus_huge_pages_node[old_nid]) { 5666 h->surplus_huge_pages_node[old_nid]--; 5667 h->surplus_huge_pages_node[new_nid]++; 5668 } 5669 spin_unlock(&hugetlb_lock); 5670 } 5671 } 5672 5673 #ifdef CONFIG_CMA 5674 static bool cma_reserve_called __initdata; 5675 5676 static int __init cmdline_parse_hugetlb_cma(char *p) 5677 { 5678 hugetlb_cma_size = memparse(p, &p); 5679 return 0; 5680 } 5681 5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5683 5684 void __init hugetlb_cma_reserve(int order) 5685 { 5686 unsigned long size, reserved, per_node; 5687 int nid; 5688 5689 cma_reserve_called = true; 5690 5691 if (!hugetlb_cma_size) 5692 return; 5693 5694 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5696 (PAGE_SIZE << order) / SZ_1M); 5697 return; 5698 } 5699 5700 /* 5701 * If 3 GB area is requested on a machine with 4 numa nodes, 5702 * let's allocate 1 GB on first three nodes and ignore the last one. 5703 */ 5704 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5706 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5707 5708 reserved = 0; 5709 for_each_node_state(nid, N_ONLINE) { 5710 int res; 5711 char name[CMA_MAX_NAME]; 5712 5713 size = min(per_node, hugetlb_cma_size - reserved); 5714 size = round_up(size, PAGE_SIZE << order); 5715 5716 snprintf(name, sizeof(name), "hugetlb%d", nid); 5717 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5718 0, false, name, 5719 &hugetlb_cma[nid], nid); 5720 if (res) { 5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5722 res, nid); 5723 continue; 5724 } 5725 5726 reserved += size; 5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5728 size / SZ_1M, nid); 5729 5730 if (reserved >= hugetlb_cma_size) 5731 break; 5732 } 5733 } 5734 5735 void __init hugetlb_cma_check(void) 5736 { 5737 if (!hugetlb_cma_size || cma_reserve_called) 5738 return; 5739 5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5741 } 5742 5743 #endif /* CONFIG_CMA */ 5744