xref: /openbmc/linux/mm/hugetlb.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
88 
89 	spin_unlock(&spool->lock);
90 
91 	/* If no pages are used, and no other handles to the subpool
92 	 * remain, give up any reservations based on minimum size and
93 	 * free the subpool */
94 	if (free) {
95 		if (spool->min_hpages != -1)
96 			hugetlb_acct_memory(spool->hstate,
97 						-spool->min_hpages);
98 		kfree(spool);
99 	}
100 }
101 
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 						long min_hpages)
104 {
105 	struct hugepage_subpool *spool;
106 
107 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 	if (!spool)
109 		return NULL;
110 
111 	spin_lock_init(&spool->lock);
112 	spool->count = 1;
113 	spool->max_hpages = max_hpages;
114 	spool->hstate = h;
115 	spool->min_hpages = min_hpages;
116 
117 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 		kfree(spool);
119 		return NULL;
120 	}
121 	spool->rsv_hpages = min_hpages;
122 
123 	return spool;
124 }
125 
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 	spin_lock(&spool->lock);
129 	BUG_ON(!spool->count);
130 	spool->count--;
131 	unlock_or_release_subpool(spool);
132 }
133 
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 				      long delta)
144 {
145 	long ret = delta;
146 
147 	if (!spool)
148 		return ret;
149 
150 	spin_lock(&spool->lock);
151 
152 	if (spool->max_hpages != -1) {		/* maximum size accounting */
153 		if ((spool->used_hpages + delta) <= spool->max_hpages)
154 			spool->used_hpages += delta;
155 		else {
156 			ret = -ENOMEM;
157 			goto unlock_ret;
158 		}
159 	}
160 
161 	/* minimum size accounting */
162 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 		if (delta > spool->rsv_hpages) {
164 			/*
165 			 * Asking for more reserves than those already taken on
166 			 * behalf of subpool.  Return difference.
167 			 */
168 			ret = delta - spool->rsv_hpages;
169 			spool->rsv_hpages = 0;
170 		} else {
171 			ret = 0;	/* reserves already accounted for */
172 			spool->rsv_hpages -= delta;
173 		}
174 	}
175 
176 unlock_ret:
177 	spin_unlock(&spool->lock);
178 	return ret;
179 }
180 
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 				       long delta)
189 {
190 	long ret = delta;
191 
192 	if (!spool)
193 		return delta;
194 
195 	spin_lock(&spool->lock);
196 
197 	if (spool->max_hpages != -1)		/* maximum size accounting */
198 		spool->used_hpages -= delta;
199 
200 	 /* minimum size accounting */
201 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 	struct file_region *nrg = NULL;
238 
239 	VM_BUG_ON(resv->region_cache_count <= 0);
240 
241 	resv->region_cache_count--;
242 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 	list_del(&nrg->link);
244 
245 	nrg->from = from;
246 	nrg->to = to;
247 
248 	return nrg;
249 }
250 
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 					      struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255 	nrg->reservation_counter = rg->reservation_counter;
256 	nrg->css = rg->css;
257 	if (rg->css)
258 		css_get(rg->css);
259 #endif
260 }
261 
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 						struct hstate *h,
265 						struct resv_map *resv,
266 						struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	if (h_cg) {
270 		nrg->reservation_counter =
271 			&h_cg->rsvd_hugepage[hstate_index(h)];
272 		nrg->css = &h_cg->css;
273 		if (!resv->pages_per_hpage)
274 			resv->pages_per_hpage = pages_per_huge_page(h);
275 		/* pages_per_hpage should be the same for all entries in
276 		 * a resv_map.
277 		 */
278 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 	} else {
280 		nrg->reservation_counter = NULL;
281 		nrg->css = NULL;
282 	}
283 #endif
284 }
285 
286 static bool has_same_uncharge_info(struct file_region *rg,
287 				   struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290 	return rg && org &&
291 	       rg->reservation_counter == org->reservation_counter &&
292 	       rg->css == org->css;
293 
294 #else
295 	return true;
296 #endif
297 }
298 
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301 	struct file_region *nrg = NULL, *prg = NULL;
302 
303 	prg = list_prev_entry(rg, link);
304 	if (&prg->link != &resv->regions && prg->to == rg->from &&
305 	    has_same_uncharge_info(prg, rg)) {
306 		prg->to = rg->to;
307 
308 		list_del(&rg->link);
309 		kfree(rg);
310 
311 		rg = prg;
312 	}
313 
314 	nrg = list_next_entry(rg, link);
315 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 	    has_same_uncharge_info(nrg, rg)) {
317 		nrg->from = rg->from;
318 
319 		list_del(&rg->link);
320 		kfree(rg);
321 	}
322 }
323 
324 /*
325  * Must be called with resv->lock held.
326  *
327  * Calling this with regions_needed != NULL will count the number of pages
328  * to be added but will not modify the linked list. And regions_needed will
329  * indicate the number of file_regions needed in the cache to carry out to add
330  * the regions for this range.
331  */
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333 				     struct hugetlb_cgroup *h_cg,
334 				     struct hstate *h, long *regions_needed)
335 {
336 	long add = 0;
337 	struct list_head *head = &resv->regions;
338 	long last_accounted_offset = f;
339 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 
341 	if (regions_needed)
342 		*regions_needed = 0;
343 
344 	/* In this loop, we essentially handle an entry for the range
345 	 * [last_accounted_offset, rg->from), at every iteration, with some
346 	 * bounds checking.
347 	 */
348 	list_for_each_entry_safe(rg, trg, head, link) {
349 		/* Skip irrelevant regions that start before our range. */
350 		if (rg->from < f) {
351 			/* If this region ends after the last accounted offset,
352 			 * then we need to update last_accounted_offset.
353 			 */
354 			if (rg->to > last_accounted_offset)
355 				last_accounted_offset = rg->to;
356 			continue;
357 		}
358 
359 		/* When we find a region that starts beyond our range, we've
360 		 * finished.
361 		 */
362 		if (rg->from > t)
363 			break;
364 
365 		/* Add an entry for last_accounted_offset -> rg->from, and
366 		 * update last_accounted_offset.
367 		 */
368 		if (rg->from > last_accounted_offset) {
369 			add += rg->from - last_accounted_offset;
370 			if (!regions_needed) {
371 				nrg = get_file_region_entry_from_cache(
372 					resv, last_accounted_offset, rg->from);
373 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 								    resv, nrg);
375 				list_add(&nrg->link, rg->link.prev);
376 				coalesce_file_region(resv, nrg);
377 			} else
378 				*regions_needed += 1;
379 		}
380 
381 		last_accounted_offset = rg->to;
382 	}
383 
384 	/* Handle the case where our range extends beyond
385 	 * last_accounted_offset.
386 	 */
387 	if (last_accounted_offset < t) {
388 		add += t - last_accounted_offset;
389 		if (!regions_needed) {
390 			nrg = get_file_region_entry_from_cache(
391 				resv, last_accounted_offset, t);
392 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 			list_add(&nrg->link, rg->link.prev);
394 			coalesce_file_region(resv, nrg);
395 		} else
396 			*regions_needed += 1;
397 	}
398 
399 	VM_BUG_ON(add < 0);
400 	return add;
401 }
402 
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406 					int regions_needed)
407 	__must_hold(&resv->lock)
408 {
409 	struct list_head allocated_regions;
410 	int to_allocate = 0, i = 0;
411 	struct file_region *trg = NULL, *rg = NULL;
412 
413 	VM_BUG_ON(regions_needed < 0);
414 
415 	INIT_LIST_HEAD(&allocated_regions);
416 
417 	/*
418 	 * Check for sufficient descriptors in the cache to accommodate
419 	 * the number of in progress add operations plus regions_needed.
420 	 *
421 	 * This is a while loop because when we drop the lock, some other call
422 	 * to region_add or region_del may have consumed some region_entries,
423 	 * so we keep looping here until we finally have enough entries for
424 	 * (adds_in_progress + regions_needed).
425 	 */
426 	while (resv->region_cache_count <
427 	       (resv->adds_in_progress + regions_needed)) {
428 		to_allocate = resv->adds_in_progress + regions_needed -
429 			      resv->region_cache_count;
430 
431 		/* At this point, we should have enough entries in the cache
432 		 * for all the existings adds_in_progress. We should only be
433 		 * needing to allocate for regions_needed.
434 		 */
435 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436 
437 		spin_unlock(&resv->lock);
438 		for (i = 0; i < to_allocate; i++) {
439 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 			if (!trg)
441 				goto out_of_memory;
442 			list_add(&trg->link, &allocated_regions);
443 		}
444 
445 		spin_lock(&resv->lock);
446 
447 		list_splice(&allocated_regions, &resv->region_cache);
448 		resv->region_cache_count += to_allocate;
449 	}
450 
451 	return 0;
452 
453 out_of_memory:
454 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 		list_del(&rg->link);
456 		kfree(rg);
457 	}
458 	return -ENOMEM;
459 }
460 
461 /*
462  * Add the huge page range represented by [f, t) to the reserve
463  * map.  Regions will be taken from the cache to fill in this range.
464  * Sufficient regions should exist in the cache due to the previous
465  * call to region_chg with the same range, but in some cases the cache will not
466  * have sufficient entries due to races with other code doing region_add or
467  * region_del.  The extra needed entries will be allocated.
468  *
469  * regions_needed is the out value provided by a previous call to region_chg.
470  *
471  * Return the number of new huge pages added to the map.  This number is greater
472  * than or equal to zero.  If file_region entries needed to be allocated for
473  * this operation and we were not able to allocate, it returns -ENOMEM.
474  * region_add of regions of length 1 never allocate file_regions and cannot
475  * fail; region_chg will always allocate at least 1 entry and a region_add for
476  * 1 page will only require at most 1 entry.
477  */
478 static long region_add(struct resv_map *resv, long f, long t,
479 		       long in_regions_needed, struct hstate *h,
480 		       struct hugetlb_cgroup *h_cg)
481 {
482 	long add = 0, actual_regions_needed = 0;
483 
484 	spin_lock(&resv->lock);
485 retry:
486 
487 	/* Count how many regions are actually needed to execute this add. */
488 	add_reservation_in_range(resv, f, t, NULL, NULL,
489 				 &actual_regions_needed);
490 
491 	/*
492 	 * Check for sufficient descriptors in the cache to accommodate
493 	 * this add operation. Note that actual_regions_needed may be greater
494 	 * than in_regions_needed, as the resv_map may have been modified since
495 	 * the region_chg call. In this case, we need to make sure that we
496 	 * allocate extra entries, such that we have enough for all the
497 	 * existing adds_in_progress, plus the excess needed for this
498 	 * operation.
499 	 */
500 	if (actual_regions_needed > in_regions_needed &&
501 	    resv->region_cache_count <
502 		    resv->adds_in_progress +
503 			    (actual_regions_needed - in_regions_needed)) {
504 		/* region_add operation of range 1 should never need to
505 		 * allocate file_region entries.
506 		 */
507 		VM_BUG_ON(t - f <= 1);
508 
509 		if (allocate_file_region_entries(
510 			    resv, actual_regions_needed - in_regions_needed)) {
511 			return -ENOMEM;
512 		}
513 
514 		goto retry;
515 	}
516 
517 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
518 
519 	resv->adds_in_progress -= in_regions_needed;
520 
521 	spin_unlock(&resv->lock);
522 	VM_BUG_ON(add < 0);
523 	return add;
524 }
525 
526 /*
527  * Examine the existing reserve map and determine how many
528  * huge pages in the specified range [f, t) are NOT currently
529  * represented.  This routine is called before a subsequent
530  * call to region_add that will actually modify the reserve
531  * map to add the specified range [f, t).  region_chg does
532  * not change the number of huge pages represented by the
533  * map.  A number of new file_region structures is added to the cache as a
534  * placeholder, for the subsequent region_add call to use. At least 1
535  * file_region structure is added.
536  *
537  * out_regions_needed is the number of regions added to the
538  * resv->adds_in_progress.  This value needs to be provided to a follow up call
539  * to region_add or region_abort for proper accounting.
540  *
541  * Returns the number of huge pages that need to be added to the existing
542  * reservation map for the range [f, t).  This number is greater or equal to
543  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
544  * is needed and can not be allocated.
545  */
546 static long region_chg(struct resv_map *resv, long f, long t,
547 		       long *out_regions_needed)
548 {
549 	long chg = 0;
550 
551 	spin_lock(&resv->lock);
552 
553 	/* Count how many hugepages in this range are NOT represented. */
554 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555 				       out_regions_needed);
556 
557 	if (*out_regions_needed == 0)
558 		*out_regions_needed = 1;
559 
560 	if (allocate_file_region_entries(resv, *out_regions_needed))
561 		return -ENOMEM;
562 
563 	resv->adds_in_progress += *out_regions_needed;
564 
565 	spin_unlock(&resv->lock);
566 	return chg;
567 }
568 
569 /*
570  * Abort the in progress add operation.  The adds_in_progress field
571  * of the resv_map keeps track of the operations in progress between
572  * calls to region_chg and region_add.  Operations are sometimes
573  * aborted after the call to region_chg.  In such cases, region_abort
574  * is called to decrement the adds_in_progress counter. regions_needed
575  * is the value returned by the region_chg call, it is used to decrement
576  * the adds_in_progress counter.
577  *
578  * NOTE: The range arguments [f, t) are not needed or used in this
579  * routine.  They are kept to make reading the calling code easier as
580  * arguments will match the associated region_chg call.
581  */
582 static void region_abort(struct resv_map *resv, long f, long t,
583 			 long regions_needed)
584 {
585 	spin_lock(&resv->lock);
586 	VM_BUG_ON(!resv->region_cache_count);
587 	resv->adds_in_progress -= regions_needed;
588 	spin_unlock(&resv->lock);
589 }
590 
591 /*
592  * Delete the specified range [f, t) from the reserve map.  If the
593  * t parameter is LONG_MAX, this indicates that ALL regions after f
594  * should be deleted.  Locate the regions which intersect [f, t)
595  * and either trim, delete or split the existing regions.
596  *
597  * Returns the number of huge pages deleted from the reserve map.
598  * In the normal case, the return value is zero or more.  In the
599  * case where a region must be split, a new region descriptor must
600  * be allocated.  If the allocation fails, -ENOMEM will be returned.
601  * NOTE: If the parameter t == LONG_MAX, then we will never split
602  * a region and possibly return -ENOMEM.  Callers specifying
603  * t == LONG_MAX do not need to check for -ENOMEM error.
604  */
605 static long region_del(struct resv_map *resv, long f, long t)
606 {
607 	struct list_head *head = &resv->regions;
608 	struct file_region *rg, *trg;
609 	struct file_region *nrg = NULL;
610 	long del = 0;
611 
612 retry:
613 	spin_lock(&resv->lock);
614 	list_for_each_entry_safe(rg, trg, head, link) {
615 		/*
616 		 * Skip regions before the range to be deleted.  file_region
617 		 * ranges are normally of the form [from, to).  However, there
618 		 * may be a "placeholder" entry in the map which is of the form
619 		 * (from, to) with from == to.  Check for placeholder entries
620 		 * at the beginning of the range to be deleted.
621 		 */
622 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623 			continue;
624 
625 		if (rg->from >= t)
626 			break;
627 
628 		if (f > rg->from && t < rg->to) { /* Must split region */
629 			/*
630 			 * Check for an entry in the cache before dropping
631 			 * lock and attempting allocation.
632 			 */
633 			if (!nrg &&
634 			    resv->region_cache_count > resv->adds_in_progress) {
635 				nrg = list_first_entry(&resv->region_cache,
636 							struct file_region,
637 							link);
638 				list_del(&nrg->link);
639 				resv->region_cache_count--;
640 			}
641 
642 			if (!nrg) {
643 				spin_unlock(&resv->lock);
644 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 				if (!nrg)
646 					return -ENOMEM;
647 				goto retry;
648 			}
649 
650 			del += t - f;
651 			hugetlb_cgroup_uncharge_file_region(
652 				resv, rg, t - f);
653 
654 			/* New entry for end of split region */
655 			nrg->from = t;
656 			nrg->to = rg->to;
657 
658 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659 
660 			INIT_LIST_HEAD(&nrg->link);
661 
662 			/* Original entry is trimmed */
663 			rg->to = f;
664 
665 			list_add(&nrg->link, &rg->link);
666 			nrg = NULL;
667 			break;
668 		}
669 
670 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 			del += rg->to - rg->from;
672 			hugetlb_cgroup_uncharge_file_region(resv, rg,
673 							    rg->to - rg->from);
674 			list_del(&rg->link);
675 			kfree(rg);
676 			continue;
677 		}
678 
679 		if (f <= rg->from) {	/* Trim beginning of region */
680 			hugetlb_cgroup_uncharge_file_region(resv, rg,
681 							    t - rg->from);
682 
683 			del += t - rg->from;
684 			rg->from = t;
685 		} else {		/* Trim end of region */
686 			hugetlb_cgroup_uncharge_file_region(resv, rg,
687 							    rg->to - f);
688 
689 			del += rg->to - f;
690 			rg->to = f;
691 		}
692 	}
693 
694 	spin_unlock(&resv->lock);
695 	kfree(nrg);
696 	return del;
697 }
698 
699 /*
700  * A rare out of memory error was encountered which prevented removal of
701  * the reserve map region for a page.  The huge page itself was free'ed
702  * and removed from the page cache.  This routine will adjust the subpool
703  * usage count, and the global reserve count if needed.  By incrementing
704  * these counts, the reserve map entry which could not be deleted will
705  * appear as a "reserved" entry instead of simply dangling with incorrect
706  * counts.
707  */
708 void hugetlb_fix_reserve_counts(struct inode *inode)
709 {
710 	struct hugepage_subpool *spool = subpool_inode(inode);
711 	long rsv_adjust;
712 
713 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
714 	if (rsv_adjust) {
715 		struct hstate *h = hstate_inode(inode);
716 
717 		hugetlb_acct_memory(h, 1);
718 	}
719 }
720 
721 /*
722  * Count and return the number of huge pages in the reserve map
723  * that intersect with the range [f, t).
724  */
725 static long region_count(struct resv_map *resv, long f, long t)
726 {
727 	struct list_head *head = &resv->regions;
728 	struct file_region *rg;
729 	long chg = 0;
730 
731 	spin_lock(&resv->lock);
732 	/* Locate each segment we overlap with, and count that overlap. */
733 	list_for_each_entry(rg, head, link) {
734 		long seg_from;
735 		long seg_to;
736 
737 		if (rg->to <= f)
738 			continue;
739 		if (rg->from >= t)
740 			break;
741 
742 		seg_from = max(rg->from, f);
743 		seg_to = min(rg->to, t);
744 
745 		chg += seg_to - seg_from;
746 	}
747 	spin_unlock(&resv->lock);
748 
749 	return chg;
750 }
751 
752 /*
753  * Convert the address within this vma to the page offset within
754  * the mapping, in pagecache page units; huge pages here.
755  */
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757 			struct vm_area_struct *vma, unsigned long address)
758 {
759 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 			(vma->vm_pgoff >> huge_page_order(h));
761 }
762 
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 				     unsigned long address)
765 {
766 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
767 }
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
769 
770 /*
771  * Return the size of the pages allocated when backing a VMA. In the majority
772  * cases this will be same size as used by the page table entries.
773  */
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775 {
776 	if (vma->vm_ops && vma->vm_ops->pagesize)
777 		return vma->vm_ops->pagesize(vma);
778 	return PAGE_SIZE;
779 }
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
781 
782 /*
783  * Return the page size being used by the MMU to back a VMA. In the majority
784  * of cases, the page size used by the kernel matches the MMU size. On
785  * architectures where it differs, an architecture-specific 'strong'
786  * version of this symbol is required.
787  */
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
789 {
790 	return vma_kernel_pagesize(vma);
791 }
792 
793 /*
794  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
795  * bits of the reservation map pointer, which are always clear due to
796  * alignment.
797  */
798 #define HPAGE_RESV_OWNER    (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
801 
802 /*
803  * These helpers are used to track how many pages are reserved for
804  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805  * is guaranteed to have their future faults succeed.
806  *
807  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808  * the reserve counters are updated with the hugetlb_lock held. It is safe
809  * to reset the VMA at fork() time as it is not in use yet and there is no
810  * chance of the global counters getting corrupted as a result of the values.
811  *
812  * The private mapping reservation is represented in a subtly different
813  * manner to a shared mapping.  A shared mapping has a region map associated
814  * with the underlying file, this region map represents the backing file
815  * pages which have ever had a reservation assigned which this persists even
816  * after the page is instantiated.  A private mapping has a region map
817  * associated with the original mmap which is attached to all VMAs which
818  * reference it, this region map represents those offsets which have consumed
819  * reservation ie. where pages have been instantiated.
820  */
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822 {
823 	return (unsigned long)vma->vm_private_data;
824 }
825 
826 static void set_vma_private_data(struct vm_area_struct *vma,
827 							unsigned long value)
828 {
829 	vma->vm_private_data = (void *)value;
830 }
831 
832 static void
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 					  struct hugetlb_cgroup *h_cg,
835 					  struct hstate *h)
836 {
837 #ifdef CONFIG_CGROUP_HUGETLB
838 	if (!h_cg || !h) {
839 		resv_map->reservation_counter = NULL;
840 		resv_map->pages_per_hpage = 0;
841 		resv_map->css = NULL;
842 	} else {
843 		resv_map->reservation_counter =
844 			&h_cg->rsvd_hugepage[hstate_index(h)];
845 		resv_map->pages_per_hpage = pages_per_huge_page(h);
846 		resv_map->css = &h_cg->css;
847 	}
848 #endif
849 }
850 
851 struct resv_map *resv_map_alloc(void)
852 {
853 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855 
856 	if (!resv_map || !rg) {
857 		kfree(resv_map);
858 		kfree(rg);
859 		return NULL;
860 	}
861 
862 	kref_init(&resv_map->refs);
863 	spin_lock_init(&resv_map->lock);
864 	INIT_LIST_HEAD(&resv_map->regions);
865 
866 	resv_map->adds_in_progress = 0;
867 	/*
868 	 * Initialize these to 0. On shared mappings, 0's here indicate these
869 	 * fields don't do cgroup accounting. On private mappings, these will be
870 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 	 * reservations are to be un-charged from here.
872 	 */
873 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
874 
875 	INIT_LIST_HEAD(&resv_map->region_cache);
876 	list_add(&rg->link, &resv_map->region_cache);
877 	resv_map->region_cache_count = 1;
878 
879 	return resv_map;
880 }
881 
882 void resv_map_release(struct kref *ref)
883 {
884 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885 	struct list_head *head = &resv_map->region_cache;
886 	struct file_region *rg, *trg;
887 
888 	/* Clear out any active regions before we release the map. */
889 	region_del(resv_map, 0, LONG_MAX);
890 
891 	/* ... and any entries left in the cache */
892 	list_for_each_entry_safe(rg, trg, head, link) {
893 		list_del(&rg->link);
894 		kfree(rg);
895 	}
896 
897 	VM_BUG_ON(resv_map->adds_in_progress);
898 
899 	kfree(resv_map);
900 }
901 
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
903 {
904 	/*
905 	 * At inode evict time, i_mapping may not point to the original
906 	 * address space within the inode.  This original address space
907 	 * contains the pointer to the resv_map.  So, always use the
908 	 * address space embedded within the inode.
909 	 * The VERY common case is inode->mapping == &inode->i_data but,
910 	 * this may not be true for device special inodes.
911 	 */
912 	return (struct resv_map *)(&inode->i_data)->private_data;
913 }
914 
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
916 {
917 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918 	if (vma->vm_flags & VM_MAYSHARE) {
919 		struct address_space *mapping = vma->vm_file->f_mapping;
920 		struct inode *inode = mapping->host;
921 
922 		return inode_resv_map(inode);
923 
924 	} else {
925 		return (struct resv_map *)(get_vma_private_data(vma) &
926 							~HPAGE_RESV_MASK);
927 	}
928 }
929 
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
931 {
932 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
934 
935 	set_vma_private_data(vma, (get_vma_private_data(vma) &
936 				HPAGE_RESV_MASK) | (unsigned long)map);
937 }
938 
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940 {
941 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
943 
944 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
945 }
946 
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948 {
949 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 
951 	return (get_vma_private_data(vma) & flag) != 0;
952 }
953 
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956 {
957 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 	if (!(vma->vm_flags & VM_MAYSHARE))
959 		vma->vm_private_data = (void *)0;
960 }
961 
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
964 {
965 	if (vma->vm_flags & VM_NORESERVE) {
966 		/*
967 		 * This address is already reserved by other process(chg == 0),
968 		 * so, we should decrement reserved count. Without decrementing,
969 		 * reserve count remains after releasing inode, because this
970 		 * allocated page will go into page cache and is regarded as
971 		 * coming from reserved pool in releasing step.  Currently, we
972 		 * don't have any other solution to deal with this situation
973 		 * properly, so add work-around here.
974 		 */
975 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
976 			return true;
977 		else
978 			return false;
979 	}
980 
981 	/* Shared mappings always use reserves */
982 	if (vma->vm_flags & VM_MAYSHARE) {
983 		/*
984 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
985 		 * be a region map for all pages.  The only situation where
986 		 * there is no region map is if a hole was punched via
987 		 * fallocate.  In this case, there really are no reserves to
988 		 * use.  This situation is indicated if chg != 0.
989 		 */
990 		if (chg)
991 			return false;
992 		else
993 			return true;
994 	}
995 
996 	/*
997 	 * Only the process that called mmap() has reserves for
998 	 * private mappings.
999 	 */
1000 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 		/*
1002 		 * Like the shared case above, a hole punch or truncate
1003 		 * could have been performed on the private mapping.
1004 		 * Examine the value of chg to determine if reserves
1005 		 * actually exist or were previously consumed.
1006 		 * Very Subtle - The value of chg comes from a previous
1007 		 * call to vma_needs_reserves().  The reserve map for
1008 		 * private mappings has different (opposite) semantics
1009 		 * than that of shared mappings.  vma_needs_reserves()
1010 		 * has already taken this difference in semantics into
1011 		 * account.  Therefore, the meaning of chg is the same
1012 		 * as in the shared case above.  Code could easily be
1013 		 * combined, but keeping it separate draws attention to
1014 		 * subtle differences.
1015 		 */
1016 		if (chg)
1017 			return false;
1018 		else
1019 			return true;
1020 	}
1021 
1022 	return false;
1023 }
1024 
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1026 {
1027 	int nid = page_to_nid(page);
1028 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1029 	h->free_huge_pages++;
1030 	h->free_huge_pages_node[nid]++;
1031 }
1032 
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1034 {
1035 	struct page *page;
1036 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1037 
1038 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039 		if (nocma && is_migrate_cma_page(page))
1040 			continue;
1041 
1042 		if (PageHWPoison(page))
1043 			continue;
1044 
1045 		list_move(&page->lru, &h->hugepage_activelist);
1046 		set_page_refcounted(page);
1047 		h->free_huge_pages--;
1048 		h->free_huge_pages_node[nid]--;
1049 		return page;
1050 	}
1051 
1052 	return NULL;
1053 }
1054 
1055 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056 		nodemask_t *nmask)
1057 {
1058 	unsigned int cpuset_mems_cookie;
1059 	struct zonelist *zonelist;
1060 	struct zone *zone;
1061 	struct zoneref *z;
1062 	int node = NUMA_NO_NODE;
1063 
1064 	zonelist = node_zonelist(nid, gfp_mask);
1065 
1066 retry_cpuset:
1067 	cpuset_mems_cookie = read_mems_allowed_begin();
1068 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069 		struct page *page;
1070 
1071 		if (!cpuset_zone_allowed(zone, gfp_mask))
1072 			continue;
1073 		/*
1074 		 * no need to ask again on the same node. Pool is node rather than
1075 		 * zone aware
1076 		 */
1077 		if (zone_to_nid(zone) == node)
1078 			continue;
1079 		node = zone_to_nid(zone);
1080 
1081 		page = dequeue_huge_page_node_exact(h, node);
1082 		if (page)
1083 			return page;
1084 	}
1085 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086 		goto retry_cpuset;
1087 
1088 	return NULL;
1089 }
1090 
1091 static struct page *dequeue_huge_page_vma(struct hstate *h,
1092 				struct vm_area_struct *vma,
1093 				unsigned long address, int avoid_reserve,
1094 				long chg)
1095 {
1096 	struct page *page;
1097 	struct mempolicy *mpol;
1098 	gfp_t gfp_mask;
1099 	nodemask_t *nodemask;
1100 	int nid;
1101 
1102 	/*
1103 	 * A child process with MAP_PRIVATE mappings created by their parent
1104 	 * have no page reserves. This check ensures that reservations are
1105 	 * not "stolen". The child may still get SIGKILLed
1106 	 */
1107 	if (!vma_has_reserves(vma, chg) &&
1108 			h->free_huge_pages - h->resv_huge_pages == 0)
1109 		goto err;
1110 
1111 	/* If reserves cannot be used, ensure enough pages are in the pool */
1112 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1113 		goto err;
1114 
1115 	gfp_mask = htlb_alloc_mask(h);
1116 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1117 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119 		SetPagePrivate(page);
1120 		h->resv_huge_pages--;
1121 	}
1122 
1123 	mpol_cond_put(mpol);
1124 	return page;
1125 
1126 err:
1127 	return NULL;
1128 }
1129 
1130 /*
1131  * common helper functions for hstate_next_node_to_{alloc|free}.
1132  * We may have allocated or freed a huge page based on a different
1133  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134  * be outside of *nodes_allowed.  Ensure that we use an allowed
1135  * node for alloc or free.
1136  */
1137 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1138 {
1139 	nid = next_node_in(nid, *nodes_allowed);
1140 	VM_BUG_ON(nid >= MAX_NUMNODES);
1141 
1142 	return nid;
1143 }
1144 
1145 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1146 {
1147 	if (!node_isset(nid, *nodes_allowed))
1148 		nid = next_node_allowed(nid, nodes_allowed);
1149 	return nid;
1150 }
1151 
1152 /*
1153  * returns the previously saved node ["this node"] from which to
1154  * allocate a persistent huge page for the pool and advance the
1155  * next node from which to allocate, handling wrap at end of node
1156  * mask.
1157  */
1158 static int hstate_next_node_to_alloc(struct hstate *h,
1159 					nodemask_t *nodes_allowed)
1160 {
1161 	int nid;
1162 
1163 	VM_BUG_ON(!nodes_allowed);
1164 
1165 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1167 
1168 	return nid;
1169 }
1170 
1171 /*
1172  * helper for free_pool_huge_page() - return the previously saved
1173  * node ["this node"] from which to free a huge page.  Advance the
1174  * next node id whether or not we find a free huge page to free so
1175  * that the next attempt to free addresses the next node.
1176  */
1177 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1178 {
1179 	int nid;
1180 
1181 	VM_BUG_ON(!nodes_allowed);
1182 
1183 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1185 
1186 	return nid;
1187 }
1188 
1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1190 	for (nr_nodes = nodes_weight(*mask);				\
1191 		nr_nodes > 0 &&						\
1192 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1193 		nr_nodes--)
1194 
1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1196 	for (nr_nodes = nodes_weight(*mask);				\
1197 		nr_nodes > 0 &&						\
1198 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1199 		nr_nodes--)
1200 
1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202 static void destroy_compound_gigantic_page(struct page *page,
1203 					unsigned int order)
1204 {
1205 	int i;
1206 	int nr_pages = 1 << order;
1207 	struct page *p = page + 1;
1208 
1209 	atomic_set(compound_mapcount_ptr(page), 0);
1210 	if (hpage_pincount_available(page))
1211 		atomic_set(compound_pincount_ptr(page), 0);
1212 
1213 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1214 		clear_compound_head(p);
1215 		set_page_refcounted(p);
1216 	}
1217 
1218 	set_compound_order(page, 0);
1219 	__ClearPageHead(page);
1220 }
1221 
1222 static void free_gigantic_page(struct page *page, unsigned int order)
1223 {
1224 	/*
1225 	 * If the page isn't allocated using the cma allocator,
1226 	 * cma_release() returns false.
1227 	 */
1228 #ifdef CONFIG_CMA
1229 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1230 		return;
1231 #endif
1232 
1233 	free_contig_range(page_to_pfn(page), 1 << order);
1234 }
1235 
1236 #ifdef CONFIG_CONTIG_ALLOC
1237 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1238 		int nid, nodemask_t *nodemask)
1239 {
1240 	unsigned long nr_pages = 1UL << huge_page_order(h);
1241 	if (nid == NUMA_NO_NODE)
1242 		nid = numa_mem_id();
1243 
1244 #ifdef CONFIG_CMA
1245 	{
1246 		struct page *page;
1247 		int node;
1248 
1249 		if (hugetlb_cma[nid]) {
1250 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1251 					huge_page_order(h), true);
1252 			if (page)
1253 				return page;
1254 		}
1255 
1256 		if (!(gfp_mask & __GFP_THISNODE)) {
1257 			for_each_node_mask(node, *nodemask) {
1258 				if (node == nid || !hugetlb_cma[node])
1259 					continue;
1260 
1261 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1262 						huge_page_order(h), true);
1263 				if (page)
1264 					return page;
1265 			}
1266 		}
1267 	}
1268 #endif
1269 
1270 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1271 }
1272 
1273 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1274 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1275 #else /* !CONFIG_CONTIG_ALLOC */
1276 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1277 					int nid, nodemask_t *nodemask)
1278 {
1279 	return NULL;
1280 }
1281 #endif /* CONFIG_CONTIG_ALLOC */
1282 
1283 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1284 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1285 					int nid, nodemask_t *nodemask)
1286 {
1287 	return NULL;
1288 }
1289 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1290 static inline void destroy_compound_gigantic_page(struct page *page,
1291 						unsigned int order) { }
1292 #endif
1293 
1294 static void update_and_free_page(struct hstate *h, struct page *page)
1295 {
1296 	int i;
1297 
1298 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1299 		return;
1300 
1301 	h->nr_huge_pages--;
1302 	h->nr_huge_pages_node[page_to_nid(page)]--;
1303 	for (i = 0; i < pages_per_huge_page(h); i++) {
1304 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1305 				1 << PG_referenced | 1 << PG_dirty |
1306 				1 << PG_active | 1 << PG_private |
1307 				1 << PG_writeback);
1308 	}
1309 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1310 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1311 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1312 	set_page_refcounted(page);
1313 	if (hstate_is_gigantic(h)) {
1314 		/*
1315 		 * Temporarily drop the hugetlb_lock, because
1316 		 * we might block in free_gigantic_page().
1317 		 */
1318 		spin_unlock(&hugetlb_lock);
1319 		destroy_compound_gigantic_page(page, huge_page_order(h));
1320 		free_gigantic_page(page, huge_page_order(h));
1321 		spin_lock(&hugetlb_lock);
1322 	} else {
1323 		__free_pages(page, huge_page_order(h));
1324 	}
1325 }
1326 
1327 struct hstate *size_to_hstate(unsigned long size)
1328 {
1329 	struct hstate *h;
1330 
1331 	for_each_hstate(h) {
1332 		if (huge_page_size(h) == size)
1333 			return h;
1334 	}
1335 	return NULL;
1336 }
1337 
1338 /*
1339  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1340  * to hstate->hugepage_activelist.)
1341  *
1342  * This function can be called for tail pages, but never returns true for them.
1343  */
1344 bool page_huge_active(struct page *page)
1345 {
1346 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1347 	return PageHead(page) && PagePrivate(&page[1]);
1348 }
1349 
1350 /* never called for tail page */
1351 static void set_page_huge_active(struct page *page)
1352 {
1353 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1354 	SetPagePrivate(&page[1]);
1355 }
1356 
1357 static void clear_page_huge_active(struct page *page)
1358 {
1359 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1360 	ClearPagePrivate(&page[1]);
1361 }
1362 
1363 /*
1364  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1365  * code
1366  */
1367 static inline bool PageHugeTemporary(struct page *page)
1368 {
1369 	if (!PageHuge(page))
1370 		return false;
1371 
1372 	return (unsigned long)page[2].mapping == -1U;
1373 }
1374 
1375 static inline void SetPageHugeTemporary(struct page *page)
1376 {
1377 	page[2].mapping = (void *)-1U;
1378 }
1379 
1380 static inline void ClearPageHugeTemporary(struct page *page)
1381 {
1382 	page[2].mapping = NULL;
1383 }
1384 
1385 static void __free_huge_page(struct page *page)
1386 {
1387 	/*
1388 	 * Can't pass hstate in here because it is called from the
1389 	 * compound page destructor.
1390 	 */
1391 	struct hstate *h = page_hstate(page);
1392 	int nid = page_to_nid(page);
1393 	struct hugepage_subpool *spool =
1394 		(struct hugepage_subpool *)page_private(page);
1395 	bool restore_reserve;
1396 
1397 	VM_BUG_ON_PAGE(page_count(page), page);
1398 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1399 
1400 	set_page_private(page, 0);
1401 	page->mapping = NULL;
1402 	restore_reserve = PagePrivate(page);
1403 	ClearPagePrivate(page);
1404 
1405 	/*
1406 	 * If PagePrivate() was set on page, page allocation consumed a
1407 	 * reservation.  If the page was associated with a subpool, there
1408 	 * would have been a page reserved in the subpool before allocation
1409 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1410 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1411 	 * remove the reserved page from the subpool.
1412 	 */
1413 	if (!restore_reserve) {
1414 		/*
1415 		 * A return code of zero implies that the subpool will be
1416 		 * under its minimum size if the reservation is not restored
1417 		 * after page is free.  Therefore, force restore_reserve
1418 		 * operation.
1419 		 */
1420 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1421 			restore_reserve = true;
1422 	}
1423 
1424 	spin_lock(&hugetlb_lock);
1425 	clear_page_huge_active(page);
1426 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1427 				     pages_per_huge_page(h), page);
1428 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1429 					  pages_per_huge_page(h), page);
1430 	if (restore_reserve)
1431 		h->resv_huge_pages++;
1432 
1433 	if (PageHugeTemporary(page)) {
1434 		list_del(&page->lru);
1435 		ClearPageHugeTemporary(page);
1436 		update_and_free_page(h, page);
1437 	} else if (h->surplus_huge_pages_node[nid]) {
1438 		/* remove the page from active list */
1439 		list_del(&page->lru);
1440 		update_and_free_page(h, page);
1441 		h->surplus_huge_pages--;
1442 		h->surplus_huge_pages_node[nid]--;
1443 	} else {
1444 		arch_clear_hugepage_flags(page);
1445 		enqueue_huge_page(h, page);
1446 	}
1447 	spin_unlock(&hugetlb_lock);
1448 }
1449 
1450 /*
1451  * As free_huge_page() can be called from a non-task context, we have
1452  * to defer the actual freeing in a workqueue to prevent potential
1453  * hugetlb_lock deadlock.
1454  *
1455  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1456  * be freed and frees them one-by-one. As the page->mapping pointer is
1457  * going to be cleared in __free_huge_page() anyway, it is reused as the
1458  * llist_node structure of a lockless linked list of huge pages to be freed.
1459  */
1460 static LLIST_HEAD(hpage_freelist);
1461 
1462 static void free_hpage_workfn(struct work_struct *work)
1463 {
1464 	struct llist_node *node;
1465 	struct page *page;
1466 
1467 	node = llist_del_all(&hpage_freelist);
1468 
1469 	while (node) {
1470 		page = container_of((struct address_space **)node,
1471 				     struct page, mapping);
1472 		node = node->next;
1473 		__free_huge_page(page);
1474 	}
1475 }
1476 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1477 
1478 void free_huge_page(struct page *page)
1479 {
1480 	/*
1481 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1482 	 */
1483 	if (!in_task()) {
1484 		/*
1485 		 * Only call schedule_work() if hpage_freelist is previously
1486 		 * empty. Otherwise, schedule_work() had been called but the
1487 		 * workfn hasn't retrieved the list yet.
1488 		 */
1489 		if (llist_add((struct llist_node *)&page->mapping,
1490 			      &hpage_freelist))
1491 			schedule_work(&free_hpage_work);
1492 		return;
1493 	}
1494 
1495 	__free_huge_page(page);
1496 }
1497 
1498 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1499 {
1500 	INIT_LIST_HEAD(&page->lru);
1501 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1502 	set_hugetlb_cgroup(page, NULL);
1503 	set_hugetlb_cgroup_rsvd(page, NULL);
1504 	spin_lock(&hugetlb_lock);
1505 	h->nr_huge_pages++;
1506 	h->nr_huge_pages_node[nid]++;
1507 	spin_unlock(&hugetlb_lock);
1508 }
1509 
1510 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1511 {
1512 	int i;
1513 	int nr_pages = 1 << order;
1514 	struct page *p = page + 1;
1515 
1516 	/* we rely on prep_new_huge_page to set the destructor */
1517 	set_compound_order(page, order);
1518 	__ClearPageReserved(page);
1519 	__SetPageHead(page);
1520 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1521 		/*
1522 		 * For gigantic hugepages allocated through bootmem at
1523 		 * boot, it's safer to be consistent with the not-gigantic
1524 		 * hugepages and clear the PG_reserved bit from all tail pages
1525 		 * too.  Otherwise drivers using get_user_pages() to access tail
1526 		 * pages may get the reference counting wrong if they see
1527 		 * PG_reserved set on a tail page (despite the head page not
1528 		 * having PG_reserved set).  Enforcing this consistency between
1529 		 * head and tail pages allows drivers to optimize away a check
1530 		 * on the head page when they need know if put_page() is needed
1531 		 * after get_user_pages().
1532 		 */
1533 		__ClearPageReserved(p);
1534 		set_page_count(p, 0);
1535 		set_compound_head(p, page);
1536 	}
1537 	atomic_set(compound_mapcount_ptr(page), -1);
1538 
1539 	if (hpage_pincount_available(page))
1540 		atomic_set(compound_pincount_ptr(page), 0);
1541 }
1542 
1543 /*
1544  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1545  * transparent huge pages.  See the PageTransHuge() documentation for more
1546  * details.
1547  */
1548 int PageHuge(struct page *page)
1549 {
1550 	if (!PageCompound(page))
1551 		return 0;
1552 
1553 	page = compound_head(page);
1554 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1555 }
1556 EXPORT_SYMBOL_GPL(PageHuge);
1557 
1558 /*
1559  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1560  * normal or transparent huge pages.
1561  */
1562 int PageHeadHuge(struct page *page_head)
1563 {
1564 	if (!PageHead(page_head))
1565 		return 0;
1566 
1567 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1568 }
1569 
1570 /*
1571  * Find address_space associated with hugetlbfs page.
1572  * Upon entry page is locked and page 'was' mapped although mapped state
1573  * could change.  If necessary, use anon_vma to find vma and associated
1574  * address space.  The returned mapping may be stale, but it can not be
1575  * invalid as page lock (which is held) is required to destroy mapping.
1576  */
1577 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1578 {
1579 	struct anon_vma *anon_vma;
1580 	pgoff_t pgoff_start, pgoff_end;
1581 	struct anon_vma_chain *avc;
1582 	struct address_space *mapping = page_mapping(hpage);
1583 
1584 	/* Simple file based mapping */
1585 	if (mapping)
1586 		return mapping;
1587 
1588 	/*
1589 	 * Even anonymous hugetlbfs mappings are associated with an
1590 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1591 	 * code).  Find a vma associated with the anonymous vma, and
1592 	 * use the file pointer to get address_space.
1593 	 */
1594 	anon_vma = page_lock_anon_vma_read(hpage);
1595 	if (!anon_vma)
1596 		return mapping;  /* NULL */
1597 
1598 	/* Use first found vma */
1599 	pgoff_start = page_to_pgoff(hpage);
1600 	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1601 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1602 					pgoff_start, pgoff_end) {
1603 		struct vm_area_struct *vma = avc->vma;
1604 
1605 		mapping = vma->vm_file->f_mapping;
1606 		break;
1607 	}
1608 
1609 	anon_vma_unlock_read(anon_vma);
1610 	return mapping;
1611 }
1612 
1613 /*
1614  * Find and lock address space (mapping) in write mode.
1615  *
1616  * Upon entry, the page is locked which allows us to find the mapping
1617  * even in the case of an anon page.  However, locking order dictates
1618  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1619  * specific.  So, we first try to lock the sema while still holding the
1620  * page lock.  If this works, great!  If not, then we need to drop the
1621  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1622  * course, need to revalidate state along the way.
1623  */
1624 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1625 {
1626 	struct address_space *mapping, *mapping2;
1627 
1628 	mapping = _get_hugetlb_page_mapping(hpage);
1629 retry:
1630 	if (!mapping)
1631 		return mapping;
1632 
1633 	/*
1634 	 * If no contention, take lock and return
1635 	 */
1636 	if (i_mmap_trylock_write(mapping))
1637 		return mapping;
1638 
1639 	/*
1640 	 * Must drop page lock and wait on mapping sema.
1641 	 * Note:  Once page lock is dropped, mapping could become invalid.
1642 	 * As a hack, increase map count until we lock page again.
1643 	 */
1644 	atomic_inc(&hpage->_mapcount);
1645 	unlock_page(hpage);
1646 	i_mmap_lock_write(mapping);
1647 	lock_page(hpage);
1648 	atomic_add_negative(-1, &hpage->_mapcount);
1649 
1650 	/* verify page is still mapped */
1651 	if (!page_mapped(hpage)) {
1652 		i_mmap_unlock_write(mapping);
1653 		return NULL;
1654 	}
1655 
1656 	/*
1657 	 * Get address space again and verify it is the same one
1658 	 * we locked.  If not, drop lock and retry.
1659 	 */
1660 	mapping2 = _get_hugetlb_page_mapping(hpage);
1661 	if (mapping2 != mapping) {
1662 		i_mmap_unlock_write(mapping);
1663 		mapping = mapping2;
1664 		goto retry;
1665 	}
1666 
1667 	return mapping;
1668 }
1669 
1670 pgoff_t __basepage_index(struct page *page)
1671 {
1672 	struct page *page_head = compound_head(page);
1673 	pgoff_t index = page_index(page_head);
1674 	unsigned long compound_idx;
1675 
1676 	if (!PageHuge(page_head))
1677 		return page_index(page);
1678 
1679 	if (compound_order(page_head) >= MAX_ORDER)
1680 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1681 	else
1682 		compound_idx = page - page_head;
1683 
1684 	return (index << compound_order(page_head)) + compound_idx;
1685 }
1686 
1687 static struct page *alloc_buddy_huge_page(struct hstate *h,
1688 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1689 		nodemask_t *node_alloc_noretry)
1690 {
1691 	int order = huge_page_order(h);
1692 	struct page *page;
1693 	bool alloc_try_hard = true;
1694 
1695 	/*
1696 	 * By default we always try hard to allocate the page with
1697 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1698 	 * a loop (to adjust global huge page counts) and previous allocation
1699 	 * failed, do not continue to try hard on the same node.  Use the
1700 	 * node_alloc_noretry bitmap to manage this state information.
1701 	 */
1702 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1703 		alloc_try_hard = false;
1704 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1705 	if (alloc_try_hard)
1706 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1707 	if (nid == NUMA_NO_NODE)
1708 		nid = numa_mem_id();
1709 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1710 	if (page)
1711 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1712 	else
1713 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1714 
1715 	/*
1716 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1717 	 * indicates an overall state change.  Clear bit so that we resume
1718 	 * normal 'try hard' allocations.
1719 	 */
1720 	if (node_alloc_noretry && page && !alloc_try_hard)
1721 		node_clear(nid, *node_alloc_noretry);
1722 
1723 	/*
1724 	 * If we tried hard to get a page but failed, set bit so that
1725 	 * subsequent attempts will not try as hard until there is an
1726 	 * overall state change.
1727 	 */
1728 	if (node_alloc_noretry && !page && alloc_try_hard)
1729 		node_set(nid, *node_alloc_noretry);
1730 
1731 	return page;
1732 }
1733 
1734 /*
1735  * Common helper to allocate a fresh hugetlb page. All specific allocators
1736  * should use this function to get new hugetlb pages
1737  */
1738 static struct page *alloc_fresh_huge_page(struct hstate *h,
1739 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1740 		nodemask_t *node_alloc_noretry)
1741 {
1742 	struct page *page;
1743 
1744 	if (hstate_is_gigantic(h))
1745 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1746 	else
1747 		page = alloc_buddy_huge_page(h, gfp_mask,
1748 				nid, nmask, node_alloc_noretry);
1749 	if (!page)
1750 		return NULL;
1751 
1752 	if (hstate_is_gigantic(h))
1753 		prep_compound_gigantic_page(page, huge_page_order(h));
1754 	prep_new_huge_page(h, page, page_to_nid(page));
1755 
1756 	return page;
1757 }
1758 
1759 /*
1760  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1761  * manner.
1762  */
1763 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1764 				nodemask_t *node_alloc_noretry)
1765 {
1766 	struct page *page;
1767 	int nr_nodes, node;
1768 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1769 
1770 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1771 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1772 						node_alloc_noretry);
1773 		if (page)
1774 			break;
1775 	}
1776 
1777 	if (!page)
1778 		return 0;
1779 
1780 	put_page(page); /* free it into the hugepage allocator */
1781 
1782 	return 1;
1783 }
1784 
1785 /*
1786  * Free huge page from pool from next node to free.
1787  * Attempt to keep persistent huge pages more or less
1788  * balanced over allowed nodes.
1789  * Called with hugetlb_lock locked.
1790  */
1791 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1792 							 bool acct_surplus)
1793 {
1794 	int nr_nodes, node;
1795 	int ret = 0;
1796 
1797 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1798 		/*
1799 		 * If we're returning unused surplus pages, only examine
1800 		 * nodes with surplus pages.
1801 		 */
1802 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1803 		    !list_empty(&h->hugepage_freelists[node])) {
1804 			struct page *page =
1805 				list_entry(h->hugepage_freelists[node].next,
1806 					  struct page, lru);
1807 			list_del(&page->lru);
1808 			h->free_huge_pages--;
1809 			h->free_huge_pages_node[node]--;
1810 			if (acct_surplus) {
1811 				h->surplus_huge_pages--;
1812 				h->surplus_huge_pages_node[node]--;
1813 			}
1814 			update_and_free_page(h, page);
1815 			ret = 1;
1816 			break;
1817 		}
1818 	}
1819 
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Dissolve a given free hugepage into free buddy pages. This function does
1825  * nothing for in-use hugepages and non-hugepages.
1826  * This function returns values like below:
1827  *
1828  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1829  *          (allocated or reserved.)
1830  *       0: successfully dissolved free hugepages or the page is not a
1831  *          hugepage (considered as already dissolved)
1832  */
1833 int dissolve_free_huge_page(struct page *page)
1834 {
1835 	int rc = -EBUSY;
1836 
1837 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1838 	if (!PageHuge(page))
1839 		return 0;
1840 
1841 	spin_lock(&hugetlb_lock);
1842 	if (!PageHuge(page)) {
1843 		rc = 0;
1844 		goto out;
1845 	}
1846 
1847 	if (!page_count(page)) {
1848 		struct page *head = compound_head(page);
1849 		struct hstate *h = page_hstate(head);
1850 		int nid = page_to_nid(head);
1851 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1852 			goto out;
1853 		/*
1854 		 * Move PageHWPoison flag from head page to the raw error page,
1855 		 * which makes any subpages rather than the error page reusable.
1856 		 */
1857 		if (PageHWPoison(head) && page != head) {
1858 			SetPageHWPoison(page);
1859 			ClearPageHWPoison(head);
1860 		}
1861 		list_del(&head->lru);
1862 		h->free_huge_pages--;
1863 		h->free_huge_pages_node[nid]--;
1864 		h->max_huge_pages--;
1865 		update_and_free_page(h, head);
1866 		rc = 0;
1867 	}
1868 out:
1869 	spin_unlock(&hugetlb_lock);
1870 	return rc;
1871 }
1872 
1873 /*
1874  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1875  * make specified memory blocks removable from the system.
1876  * Note that this will dissolve a free gigantic hugepage completely, if any
1877  * part of it lies within the given range.
1878  * Also note that if dissolve_free_huge_page() returns with an error, all
1879  * free hugepages that were dissolved before that error are lost.
1880  */
1881 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1882 {
1883 	unsigned long pfn;
1884 	struct page *page;
1885 	int rc = 0;
1886 
1887 	if (!hugepages_supported())
1888 		return rc;
1889 
1890 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1891 		page = pfn_to_page(pfn);
1892 		rc = dissolve_free_huge_page(page);
1893 		if (rc)
1894 			break;
1895 	}
1896 
1897 	return rc;
1898 }
1899 
1900 /*
1901  * Allocates a fresh surplus page from the page allocator.
1902  */
1903 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1904 		int nid, nodemask_t *nmask)
1905 {
1906 	struct page *page = NULL;
1907 
1908 	if (hstate_is_gigantic(h))
1909 		return NULL;
1910 
1911 	spin_lock(&hugetlb_lock);
1912 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1913 		goto out_unlock;
1914 	spin_unlock(&hugetlb_lock);
1915 
1916 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1917 	if (!page)
1918 		return NULL;
1919 
1920 	spin_lock(&hugetlb_lock);
1921 	/*
1922 	 * We could have raced with the pool size change.
1923 	 * Double check that and simply deallocate the new page
1924 	 * if we would end up overcommiting the surpluses. Abuse
1925 	 * temporary page to workaround the nasty free_huge_page
1926 	 * codeflow
1927 	 */
1928 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1929 		SetPageHugeTemporary(page);
1930 		spin_unlock(&hugetlb_lock);
1931 		put_page(page);
1932 		return NULL;
1933 	} else {
1934 		h->surplus_huge_pages++;
1935 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1936 	}
1937 
1938 out_unlock:
1939 	spin_unlock(&hugetlb_lock);
1940 
1941 	return page;
1942 }
1943 
1944 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1945 				     int nid, nodemask_t *nmask)
1946 {
1947 	struct page *page;
1948 
1949 	if (hstate_is_gigantic(h))
1950 		return NULL;
1951 
1952 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1953 	if (!page)
1954 		return NULL;
1955 
1956 	/*
1957 	 * We do not account these pages as surplus because they are only
1958 	 * temporary and will be released properly on the last reference
1959 	 */
1960 	SetPageHugeTemporary(page);
1961 
1962 	return page;
1963 }
1964 
1965 /*
1966  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1967  */
1968 static
1969 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1970 		struct vm_area_struct *vma, unsigned long addr)
1971 {
1972 	struct page *page;
1973 	struct mempolicy *mpol;
1974 	gfp_t gfp_mask = htlb_alloc_mask(h);
1975 	int nid;
1976 	nodemask_t *nodemask;
1977 
1978 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1979 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1980 	mpol_cond_put(mpol);
1981 
1982 	return page;
1983 }
1984 
1985 /* page migration callback function */
1986 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1987 		nodemask_t *nmask, gfp_t gfp_mask)
1988 {
1989 	spin_lock(&hugetlb_lock);
1990 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1991 		struct page *page;
1992 
1993 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1994 		if (page) {
1995 			spin_unlock(&hugetlb_lock);
1996 			return page;
1997 		}
1998 	}
1999 	spin_unlock(&hugetlb_lock);
2000 
2001 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2002 }
2003 
2004 /* mempolicy aware migration callback */
2005 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2006 		unsigned long address)
2007 {
2008 	struct mempolicy *mpol;
2009 	nodemask_t *nodemask;
2010 	struct page *page;
2011 	gfp_t gfp_mask;
2012 	int node;
2013 
2014 	gfp_mask = htlb_alloc_mask(h);
2015 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2016 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2017 	mpol_cond_put(mpol);
2018 
2019 	return page;
2020 }
2021 
2022 /*
2023  * Increase the hugetlb pool such that it can accommodate a reservation
2024  * of size 'delta'.
2025  */
2026 static int gather_surplus_pages(struct hstate *h, int delta)
2027 	__must_hold(&hugetlb_lock)
2028 {
2029 	struct list_head surplus_list;
2030 	struct page *page, *tmp;
2031 	int ret, i;
2032 	int needed, allocated;
2033 	bool alloc_ok = true;
2034 
2035 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2036 	if (needed <= 0) {
2037 		h->resv_huge_pages += delta;
2038 		return 0;
2039 	}
2040 
2041 	allocated = 0;
2042 	INIT_LIST_HEAD(&surplus_list);
2043 
2044 	ret = -ENOMEM;
2045 retry:
2046 	spin_unlock(&hugetlb_lock);
2047 	for (i = 0; i < needed; i++) {
2048 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2049 				NUMA_NO_NODE, NULL);
2050 		if (!page) {
2051 			alloc_ok = false;
2052 			break;
2053 		}
2054 		list_add(&page->lru, &surplus_list);
2055 		cond_resched();
2056 	}
2057 	allocated += i;
2058 
2059 	/*
2060 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2061 	 * because either resv_huge_pages or free_huge_pages may have changed.
2062 	 */
2063 	spin_lock(&hugetlb_lock);
2064 	needed = (h->resv_huge_pages + delta) -
2065 			(h->free_huge_pages + allocated);
2066 	if (needed > 0) {
2067 		if (alloc_ok)
2068 			goto retry;
2069 		/*
2070 		 * We were not able to allocate enough pages to
2071 		 * satisfy the entire reservation so we free what
2072 		 * we've allocated so far.
2073 		 */
2074 		goto free;
2075 	}
2076 	/*
2077 	 * The surplus_list now contains _at_least_ the number of extra pages
2078 	 * needed to accommodate the reservation.  Add the appropriate number
2079 	 * of pages to the hugetlb pool and free the extras back to the buddy
2080 	 * allocator.  Commit the entire reservation here to prevent another
2081 	 * process from stealing the pages as they are added to the pool but
2082 	 * before they are reserved.
2083 	 */
2084 	needed += allocated;
2085 	h->resv_huge_pages += delta;
2086 	ret = 0;
2087 
2088 	/* Free the needed pages to the hugetlb pool */
2089 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2090 		if ((--needed) < 0)
2091 			break;
2092 		/*
2093 		 * This page is now managed by the hugetlb allocator and has
2094 		 * no users -- drop the buddy allocator's reference.
2095 		 */
2096 		put_page_testzero(page);
2097 		VM_BUG_ON_PAGE(page_count(page), page);
2098 		enqueue_huge_page(h, page);
2099 	}
2100 free:
2101 	spin_unlock(&hugetlb_lock);
2102 
2103 	/* Free unnecessary surplus pages to the buddy allocator */
2104 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2105 		put_page(page);
2106 	spin_lock(&hugetlb_lock);
2107 
2108 	return ret;
2109 }
2110 
2111 /*
2112  * This routine has two main purposes:
2113  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2114  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2115  *    to the associated reservation map.
2116  * 2) Free any unused surplus pages that may have been allocated to satisfy
2117  *    the reservation.  As many as unused_resv_pages may be freed.
2118  *
2119  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2120  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2121  * we must make sure nobody else can claim pages we are in the process of
2122  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2123  * number of huge pages we plan to free when dropping the lock.
2124  */
2125 static void return_unused_surplus_pages(struct hstate *h,
2126 					unsigned long unused_resv_pages)
2127 {
2128 	unsigned long nr_pages;
2129 
2130 	/* Cannot return gigantic pages currently */
2131 	if (hstate_is_gigantic(h))
2132 		goto out;
2133 
2134 	/*
2135 	 * Part (or even all) of the reservation could have been backed
2136 	 * by pre-allocated pages. Only free surplus pages.
2137 	 */
2138 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2139 
2140 	/*
2141 	 * We want to release as many surplus pages as possible, spread
2142 	 * evenly across all nodes with memory. Iterate across these nodes
2143 	 * until we can no longer free unreserved surplus pages. This occurs
2144 	 * when the nodes with surplus pages have no free pages.
2145 	 * free_pool_huge_page() will balance the freed pages across the
2146 	 * on-line nodes with memory and will handle the hstate accounting.
2147 	 *
2148 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2149 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2150 	 * to cover subsequent pages we may free.
2151 	 */
2152 	while (nr_pages--) {
2153 		h->resv_huge_pages--;
2154 		unused_resv_pages--;
2155 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2156 			goto out;
2157 		cond_resched_lock(&hugetlb_lock);
2158 	}
2159 
2160 out:
2161 	/* Fully uncommit the reservation */
2162 	h->resv_huge_pages -= unused_resv_pages;
2163 }
2164 
2165 
2166 /*
2167  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2168  * are used by the huge page allocation routines to manage reservations.
2169  *
2170  * vma_needs_reservation is called to determine if the huge page at addr
2171  * within the vma has an associated reservation.  If a reservation is
2172  * needed, the value 1 is returned.  The caller is then responsible for
2173  * managing the global reservation and subpool usage counts.  After
2174  * the huge page has been allocated, vma_commit_reservation is called
2175  * to add the page to the reservation map.  If the page allocation fails,
2176  * the reservation must be ended instead of committed.  vma_end_reservation
2177  * is called in such cases.
2178  *
2179  * In the normal case, vma_commit_reservation returns the same value
2180  * as the preceding vma_needs_reservation call.  The only time this
2181  * is not the case is if a reserve map was changed between calls.  It
2182  * is the responsibility of the caller to notice the difference and
2183  * take appropriate action.
2184  *
2185  * vma_add_reservation is used in error paths where a reservation must
2186  * be restored when a newly allocated huge page must be freed.  It is
2187  * to be called after calling vma_needs_reservation to determine if a
2188  * reservation exists.
2189  */
2190 enum vma_resv_mode {
2191 	VMA_NEEDS_RESV,
2192 	VMA_COMMIT_RESV,
2193 	VMA_END_RESV,
2194 	VMA_ADD_RESV,
2195 };
2196 static long __vma_reservation_common(struct hstate *h,
2197 				struct vm_area_struct *vma, unsigned long addr,
2198 				enum vma_resv_mode mode)
2199 {
2200 	struct resv_map *resv;
2201 	pgoff_t idx;
2202 	long ret;
2203 	long dummy_out_regions_needed;
2204 
2205 	resv = vma_resv_map(vma);
2206 	if (!resv)
2207 		return 1;
2208 
2209 	idx = vma_hugecache_offset(h, vma, addr);
2210 	switch (mode) {
2211 	case VMA_NEEDS_RESV:
2212 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2213 		/* We assume that vma_reservation_* routines always operate on
2214 		 * 1 page, and that adding to resv map a 1 page entry can only
2215 		 * ever require 1 region.
2216 		 */
2217 		VM_BUG_ON(dummy_out_regions_needed != 1);
2218 		break;
2219 	case VMA_COMMIT_RESV:
2220 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2221 		/* region_add calls of range 1 should never fail. */
2222 		VM_BUG_ON(ret < 0);
2223 		break;
2224 	case VMA_END_RESV:
2225 		region_abort(resv, idx, idx + 1, 1);
2226 		ret = 0;
2227 		break;
2228 	case VMA_ADD_RESV:
2229 		if (vma->vm_flags & VM_MAYSHARE) {
2230 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2231 			/* region_add calls of range 1 should never fail. */
2232 			VM_BUG_ON(ret < 0);
2233 		} else {
2234 			region_abort(resv, idx, idx + 1, 1);
2235 			ret = region_del(resv, idx, idx + 1);
2236 		}
2237 		break;
2238 	default:
2239 		BUG();
2240 	}
2241 
2242 	if (vma->vm_flags & VM_MAYSHARE)
2243 		return ret;
2244 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2245 		/*
2246 		 * In most cases, reserves always exist for private mappings.
2247 		 * However, a file associated with mapping could have been
2248 		 * hole punched or truncated after reserves were consumed.
2249 		 * As subsequent fault on such a range will not use reserves.
2250 		 * Subtle - The reserve map for private mappings has the
2251 		 * opposite meaning than that of shared mappings.  If NO
2252 		 * entry is in the reserve map, it means a reservation exists.
2253 		 * If an entry exists in the reserve map, it means the
2254 		 * reservation has already been consumed.  As a result, the
2255 		 * return value of this routine is the opposite of the
2256 		 * value returned from reserve map manipulation routines above.
2257 		 */
2258 		if (ret)
2259 			return 0;
2260 		else
2261 			return 1;
2262 	}
2263 	else
2264 		return ret < 0 ? ret : 0;
2265 }
2266 
2267 static long vma_needs_reservation(struct hstate *h,
2268 			struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2271 }
2272 
2273 static long vma_commit_reservation(struct hstate *h,
2274 			struct vm_area_struct *vma, unsigned long addr)
2275 {
2276 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2277 }
2278 
2279 static void vma_end_reservation(struct hstate *h,
2280 			struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2283 }
2284 
2285 static long vma_add_reservation(struct hstate *h,
2286 			struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2289 }
2290 
2291 /*
2292  * This routine is called to restore a reservation on error paths.  In the
2293  * specific error paths, a huge page was allocated (via alloc_huge_page)
2294  * and is about to be freed.  If a reservation for the page existed,
2295  * alloc_huge_page would have consumed the reservation and set PagePrivate
2296  * in the newly allocated page.  When the page is freed via free_huge_page,
2297  * the global reservation count will be incremented if PagePrivate is set.
2298  * However, free_huge_page can not adjust the reserve map.  Adjust the
2299  * reserve map here to be consistent with global reserve count adjustments
2300  * to be made by free_huge_page.
2301  */
2302 static void restore_reserve_on_error(struct hstate *h,
2303 			struct vm_area_struct *vma, unsigned long address,
2304 			struct page *page)
2305 {
2306 	if (unlikely(PagePrivate(page))) {
2307 		long rc = vma_needs_reservation(h, vma, address);
2308 
2309 		if (unlikely(rc < 0)) {
2310 			/*
2311 			 * Rare out of memory condition in reserve map
2312 			 * manipulation.  Clear PagePrivate so that
2313 			 * global reserve count will not be incremented
2314 			 * by free_huge_page.  This will make it appear
2315 			 * as though the reservation for this page was
2316 			 * consumed.  This may prevent the task from
2317 			 * faulting in the page at a later time.  This
2318 			 * is better than inconsistent global huge page
2319 			 * accounting of reserve counts.
2320 			 */
2321 			ClearPagePrivate(page);
2322 		} else if (rc) {
2323 			rc = vma_add_reservation(h, vma, address);
2324 			if (unlikely(rc < 0))
2325 				/*
2326 				 * See above comment about rare out of
2327 				 * memory condition.
2328 				 */
2329 				ClearPagePrivate(page);
2330 		} else
2331 			vma_end_reservation(h, vma, address);
2332 	}
2333 }
2334 
2335 struct page *alloc_huge_page(struct vm_area_struct *vma,
2336 				    unsigned long addr, int avoid_reserve)
2337 {
2338 	struct hugepage_subpool *spool = subpool_vma(vma);
2339 	struct hstate *h = hstate_vma(vma);
2340 	struct page *page;
2341 	long map_chg, map_commit;
2342 	long gbl_chg;
2343 	int ret, idx;
2344 	struct hugetlb_cgroup *h_cg;
2345 	bool deferred_reserve;
2346 
2347 	idx = hstate_index(h);
2348 	/*
2349 	 * Examine the region/reserve map to determine if the process
2350 	 * has a reservation for the page to be allocated.  A return
2351 	 * code of zero indicates a reservation exists (no change).
2352 	 */
2353 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2354 	if (map_chg < 0)
2355 		return ERR_PTR(-ENOMEM);
2356 
2357 	/*
2358 	 * Processes that did not create the mapping will have no
2359 	 * reserves as indicated by the region/reserve map. Check
2360 	 * that the allocation will not exceed the subpool limit.
2361 	 * Allocations for MAP_NORESERVE mappings also need to be
2362 	 * checked against any subpool limit.
2363 	 */
2364 	if (map_chg || avoid_reserve) {
2365 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2366 		if (gbl_chg < 0) {
2367 			vma_end_reservation(h, vma, addr);
2368 			return ERR_PTR(-ENOSPC);
2369 		}
2370 
2371 		/*
2372 		 * Even though there was no reservation in the region/reserve
2373 		 * map, there could be reservations associated with the
2374 		 * subpool that can be used.  This would be indicated if the
2375 		 * return value of hugepage_subpool_get_pages() is zero.
2376 		 * However, if avoid_reserve is specified we still avoid even
2377 		 * the subpool reservations.
2378 		 */
2379 		if (avoid_reserve)
2380 			gbl_chg = 1;
2381 	}
2382 
2383 	/* If this allocation is not consuming a reservation, charge it now.
2384 	 */
2385 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2386 	if (deferred_reserve) {
2387 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2388 			idx, pages_per_huge_page(h), &h_cg);
2389 		if (ret)
2390 			goto out_subpool_put;
2391 	}
2392 
2393 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2394 	if (ret)
2395 		goto out_uncharge_cgroup_reservation;
2396 
2397 	spin_lock(&hugetlb_lock);
2398 	/*
2399 	 * glb_chg is passed to indicate whether or not a page must be taken
2400 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2401 	 * a reservation exists for the allocation.
2402 	 */
2403 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2404 	if (!page) {
2405 		spin_unlock(&hugetlb_lock);
2406 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2407 		if (!page)
2408 			goto out_uncharge_cgroup;
2409 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2410 			SetPagePrivate(page);
2411 			h->resv_huge_pages--;
2412 		}
2413 		spin_lock(&hugetlb_lock);
2414 		list_add(&page->lru, &h->hugepage_activelist);
2415 		/* Fall through */
2416 	}
2417 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2418 	/* If allocation is not consuming a reservation, also store the
2419 	 * hugetlb_cgroup pointer on the page.
2420 	 */
2421 	if (deferred_reserve) {
2422 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2423 						  h_cg, page);
2424 	}
2425 
2426 	spin_unlock(&hugetlb_lock);
2427 
2428 	set_page_private(page, (unsigned long)spool);
2429 
2430 	map_commit = vma_commit_reservation(h, vma, addr);
2431 	if (unlikely(map_chg > map_commit)) {
2432 		/*
2433 		 * The page was added to the reservation map between
2434 		 * vma_needs_reservation and vma_commit_reservation.
2435 		 * This indicates a race with hugetlb_reserve_pages.
2436 		 * Adjust for the subpool count incremented above AND
2437 		 * in hugetlb_reserve_pages for the same page.  Also,
2438 		 * the reservation count added in hugetlb_reserve_pages
2439 		 * no longer applies.
2440 		 */
2441 		long rsv_adjust;
2442 
2443 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2444 		hugetlb_acct_memory(h, -rsv_adjust);
2445 		if (deferred_reserve)
2446 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2447 					pages_per_huge_page(h), page);
2448 	}
2449 	return page;
2450 
2451 out_uncharge_cgroup:
2452 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2453 out_uncharge_cgroup_reservation:
2454 	if (deferred_reserve)
2455 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2456 						    h_cg);
2457 out_subpool_put:
2458 	if (map_chg || avoid_reserve)
2459 		hugepage_subpool_put_pages(spool, 1);
2460 	vma_end_reservation(h, vma, addr);
2461 	return ERR_PTR(-ENOSPC);
2462 }
2463 
2464 int alloc_bootmem_huge_page(struct hstate *h)
2465 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2466 int __alloc_bootmem_huge_page(struct hstate *h)
2467 {
2468 	struct huge_bootmem_page *m;
2469 	int nr_nodes, node;
2470 
2471 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2472 		void *addr;
2473 
2474 		addr = memblock_alloc_try_nid_raw(
2475 				huge_page_size(h), huge_page_size(h),
2476 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2477 		if (addr) {
2478 			/*
2479 			 * Use the beginning of the huge page to store the
2480 			 * huge_bootmem_page struct (until gather_bootmem
2481 			 * puts them into the mem_map).
2482 			 */
2483 			m = addr;
2484 			goto found;
2485 		}
2486 	}
2487 	return 0;
2488 
2489 found:
2490 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2491 	/* Put them into a private list first because mem_map is not up yet */
2492 	INIT_LIST_HEAD(&m->list);
2493 	list_add(&m->list, &huge_boot_pages);
2494 	m->hstate = h;
2495 	return 1;
2496 }
2497 
2498 static void __init prep_compound_huge_page(struct page *page,
2499 		unsigned int order)
2500 {
2501 	if (unlikely(order > (MAX_ORDER - 1)))
2502 		prep_compound_gigantic_page(page, order);
2503 	else
2504 		prep_compound_page(page, order);
2505 }
2506 
2507 /* Put bootmem huge pages into the standard lists after mem_map is up */
2508 static void __init gather_bootmem_prealloc(void)
2509 {
2510 	struct huge_bootmem_page *m;
2511 
2512 	list_for_each_entry(m, &huge_boot_pages, list) {
2513 		struct page *page = virt_to_page(m);
2514 		struct hstate *h = m->hstate;
2515 
2516 		WARN_ON(page_count(page) != 1);
2517 		prep_compound_huge_page(page, h->order);
2518 		WARN_ON(PageReserved(page));
2519 		prep_new_huge_page(h, page, page_to_nid(page));
2520 		put_page(page); /* free it into the hugepage allocator */
2521 
2522 		/*
2523 		 * If we had gigantic hugepages allocated at boot time, we need
2524 		 * to restore the 'stolen' pages to totalram_pages in order to
2525 		 * fix confusing memory reports from free(1) and another
2526 		 * side-effects, like CommitLimit going negative.
2527 		 */
2528 		if (hstate_is_gigantic(h))
2529 			adjust_managed_page_count(page, 1 << h->order);
2530 		cond_resched();
2531 	}
2532 }
2533 
2534 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2535 {
2536 	unsigned long i;
2537 	nodemask_t *node_alloc_noretry;
2538 
2539 	if (!hstate_is_gigantic(h)) {
2540 		/*
2541 		 * Bit mask controlling how hard we retry per-node allocations.
2542 		 * Ignore errors as lower level routines can deal with
2543 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2544 		 * time, we are likely in bigger trouble.
2545 		 */
2546 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2547 						GFP_KERNEL);
2548 	} else {
2549 		/* allocations done at boot time */
2550 		node_alloc_noretry = NULL;
2551 	}
2552 
2553 	/* bit mask controlling how hard we retry per-node allocations */
2554 	if (node_alloc_noretry)
2555 		nodes_clear(*node_alloc_noretry);
2556 
2557 	for (i = 0; i < h->max_huge_pages; ++i) {
2558 		if (hstate_is_gigantic(h)) {
2559 			if (hugetlb_cma_size) {
2560 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2561 				break;
2562 			}
2563 			if (!alloc_bootmem_huge_page(h))
2564 				break;
2565 		} else if (!alloc_pool_huge_page(h,
2566 					 &node_states[N_MEMORY],
2567 					 node_alloc_noretry))
2568 			break;
2569 		cond_resched();
2570 	}
2571 	if (i < h->max_huge_pages) {
2572 		char buf[32];
2573 
2574 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2575 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2576 			h->max_huge_pages, buf, i);
2577 		h->max_huge_pages = i;
2578 	}
2579 
2580 	kfree(node_alloc_noretry);
2581 }
2582 
2583 static void __init hugetlb_init_hstates(void)
2584 {
2585 	struct hstate *h;
2586 
2587 	for_each_hstate(h) {
2588 		if (minimum_order > huge_page_order(h))
2589 			minimum_order = huge_page_order(h);
2590 
2591 		/* oversize hugepages were init'ed in early boot */
2592 		if (!hstate_is_gigantic(h))
2593 			hugetlb_hstate_alloc_pages(h);
2594 	}
2595 	VM_BUG_ON(minimum_order == UINT_MAX);
2596 }
2597 
2598 static void __init report_hugepages(void)
2599 {
2600 	struct hstate *h;
2601 
2602 	for_each_hstate(h) {
2603 		char buf[32];
2604 
2605 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2606 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2607 			buf, h->free_huge_pages);
2608 	}
2609 }
2610 
2611 #ifdef CONFIG_HIGHMEM
2612 static void try_to_free_low(struct hstate *h, unsigned long count,
2613 						nodemask_t *nodes_allowed)
2614 {
2615 	int i;
2616 
2617 	if (hstate_is_gigantic(h))
2618 		return;
2619 
2620 	for_each_node_mask(i, *nodes_allowed) {
2621 		struct page *page, *next;
2622 		struct list_head *freel = &h->hugepage_freelists[i];
2623 		list_for_each_entry_safe(page, next, freel, lru) {
2624 			if (count >= h->nr_huge_pages)
2625 				return;
2626 			if (PageHighMem(page))
2627 				continue;
2628 			list_del(&page->lru);
2629 			update_and_free_page(h, page);
2630 			h->free_huge_pages--;
2631 			h->free_huge_pages_node[page_to_nid(page)]--;
2632 		}
2633 	}
2634 }
2635 #else
2636 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2637 						nodemask_t *nodes_allowed)
2638 {
2639 }
2640 #endif
2641 
2642 /*
2643  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2644  * balanced by operating on them in a round-robin fashion.
2645  * Returns 1 if an adjustment was made.
2646  */
2647 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2648 				int delta)
2649 {
2650 	int nr_nodes, node;
2651 
2652 	VM_BUG_ON(delta != -1 && delta != 1);
2653 
2654 	if (delta < 0) {
2655 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2656 			if (h->surplus_huge_pages_node[node])
2657 				goto found;
2658 		}
2659 	} else {
2660 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2661 			if (h->surplus_huge_pages_node[node] <
2662 					h->nr_huge_pages_node[node])
2663 				goto found;
2664 		}
2665 	}
2666 	return 0;
2667 
2668 found:
2669 	h->surplus_huge_pages += delta;
2670 	h->surplus_huge_pages_node[node] += delta;
2671 	return 1;
2672 }
2673 
2674 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2675 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2676 			      nodemask_t *nodes_allowed)
2677 {
2678 	unsigned long min_count, ret;
2679 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2680 
2681 	/*
2682 	 * Bit mask controlling how hard we retry per-node allocations.
2683 	 * If we can not allocate the bit mask, do not attempt to allocate
2684 	 * the requested huge pages.
2685 	 */
2686 	if (node_alloc_noretry)
2687 		nodes_clear(*node_alloc_noretry);
2688 	else
2689 		return -ENOMEM;
2690 
2691 	spin_lock(&hugetlb_lock);
2692 
2693 	/*
2694 	 * Check for a node specific request.
2695 	 * Changing node specific huge page count may require a corresponding
2696 	 * change to the global count.  In any case, the passed node mask
2697 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2698 	 */
2699 	if (nid != NUMA_NO_NODE) {
2700 		unsigned long old_count = count;
2701 
2702 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2703 		/*
2704 		 * User may have specified a large count value which caused the
2705 		 * above calculation to overflow.  In this case, they wanted
2706 		 * to allocate as many huge pages as possible.  Set count to
2707 		 * largest possible value to align with their intention.
2708 		 */
2709 		if (count < old_count)
2710 			count = ULONG_MAX;
2711 	}
2712 
2713 	/*
2714 	 * Gigantic pages runtime allocation depend on the capability for large
2715 	 * page range allocation.
2716 	 * If the system does not provide this feature, return an error when
2717 	 * the user tries to allocate gigantic pages but let the user free the
2718 	 * boottime allocated gigantic pages.
2719 	 */
2720 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2721 		if (count > persistent_huge_pages(h)) {
2722 			spin_unlock(&hugetlb_lock);
2723 			NODEMASK_FREE(node_alloc_noretry);
2724 			return -EINVAL;
2725 		}
2726 		/* Fall through to decrease pool */
2727 	}
2728 
2729 	/*
2730 	 * Increase the pool size
2731 	 * First take pages out of surplus state.  Then make up the
2732 	 * remaining difference by allocating fresh huge pages.
2733 	 *
2734 	 * We might race with alloc_surplus_huge_page() here and be unable
2735 	 * to convert a surplus huge page to a normal huge page. That is
2736 	 * not critical, though, it just means the overall size of the
2737 	 * pool might be one hugepage larger than it needs to be, but
2738 	 * within all the constraints specified by the sysctls.
2739 	 */
2740 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2741 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2742 			break;
2743 	}
2744 
2745 	while (count > persistent_huge_pages(h)) {
2746 		/*
2747 		 * If this allocation races such that we no longer need the
2748 		 * page, free_huge_page will handle it by freeing the page
2749 		 * and reducing the surplus.
2750 		 */
2751 		spin_unlock(&hugetlb_lock);
2752 
2753 		/* yield cpu to avoid soft lockup */
2754 		cond_resched();
2755 
2756 		ret = alloc_pool_huge_page(h, nodes_allowed,
2757 						node_alloc_noretry);
2758 		spin_lock(&hugetlb_lock);
2759 		if (!ret)
2760 			goto out;
2761 
2762 		/* Bail for signals. Probably ctrl-c from user */
2763 		if (signal_pending(current))
2764 			goto out;
2765 	}
2766 
2767 	/*
2768 	 * Decrease the pool size
2769 	 * First return free pages to the buddy allocator (being careful
2770 	 * to keep enough around to satisfy reservations).  Then place
2771 	 * pages into surplus state as needed so the pool will shrink
2772 	 * to the desired size as pages become free.
2773 	 *
2774 	 * By placing pages into the surplus state independent of the
2775 	 * overcommit value, we are allowing the surplus pool size to
2776 	 * exceed overcommit. There are few sane options here. Since
2777 	 * alloc_surplus_huge_page() is checking the global counter,
2778 	 * though, we'll note that we're not allowed to exceed surplus
2779 	 * and won't grow the pool anywhere else. Not until one of the
2780 	 * sysctls are changed, or the surplus pages go out of use.
2781 	 */
2782 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2783 	min_count = max(count, min_count);
2784 	try_to_free_low(h, min_count, nodes_allowed);
2785 	while (min_count < persistent_huge_pages(h)) {
2786 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2787 			break;
2788 		cond_resched_lock(&hugetlb_lock);
2789 	}
2790 	while (count < persistent_huge_pages(h)) {
2791 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2792 			break;
2793 	}
2794 out:
2795 	h->max_huge_pages = persistent_huge_pages(h);
2796 	spin_unlock(&hugetlb_lock);
2797 
2798 	NODEMASK_FREE(node_alloc_noretry);
2799 
2800 	return 0;
2801 }
2802 
2803 #define HSTATE_ATTR_RO(_name) \
2804 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2805 
2806 #define HSTATE_ATTR(_name) \
2807 	static struct kobj_attribute _name##_attr = \
2808 		__ATTR(_name, 0644, _name##_show, _name##_store)
2809 
2810 static struct kobject *hugepages_kobj;
2811 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2812 
2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2814 
2815 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2816 {
2817 	int i;
2818 
2819 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2820 		if (hstate_kobjs[i] == kobj) {
2821 			if (nidp)
2822 				*nidp = NUMA_NO_NODE;
2823 			return &hstates[i];
2824 		}
2825 
2826 	return kobj_to_node_hstate(kobj, nidp);
2827 }
2828 
2829 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2830 					struct kobj_attribute *attr, char *buf)
2831 {
2832 	struct hstate *h;
2833 	unsigned long nr_huge_pages;
2834 	int nid;
2835 
2836 	h = kobj_to_hstate(kobj, &nid);
2837 	if (nid == NUMA_NO_NODE)
2838 		nr_huge_pages = h->nr_huge_pages;
2839 	else
2840 		nr_huge_pages = h->nr_huge_pages_node[nid];
2841 
2842 	return sprintf(buf, "%lu\n", nr_huge_pages);
2843 }
2844 
2845 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2846 					   struct hstate *h, int nid,
2847 					   unsigned long count, size_t len)
2848 {
2849 	int err;
2850 	nodemask_t nodes_allowed, *n_mask;
2851 
2852 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2853 		return -EINVAL;
2854 
2855 	if (nid == NUMA_NO_NODE) {
2856 		/*
2857 		 * global hstate attribute
2858 		 */
2859 		if (!(obey_mempolicy &&
2860 				init_nodemask_of_mempolicy(&nodes_allowed)))
2861 			n_mask = &node_states[N_MEMORY];
2862 		else
2863 			n_mask = &nodes_allowed;
2864 	} else {
2865 		/*
2866 		 * Node specific request.  count adjustment happens in
2867 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2868 		 */
2869 		init_nodemask_of_node(&nodes_allowed, nid);
2870 		n_mask = &nodes_allowed;
2871 	}
2872 
2873 	err = set_max_huge_pages(h, count, nid, n_mask);
2874 
2875 	return err ? err : len;
2876 }
2877 
2878 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2879 					 struct kobject *kobj, const char *buf,
2880 					 size_t len)
2881 {
2882 	struct hstate *h;
2883 	unsigned long count;
2884 	int nid;
2885 	int err;
2886 
2887 	err = kstrtoul(buf, 10, &count);
2888 	if (err)
2889 		return err;
2890 
2891 	h = kobj_to_hstate(kobj, &nid);
2892 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2893 }
2894 
2895 static ssize_t nr_hugepages_show(struct kobject *kobj,
2896 				       struct kobj_attribute *attr, char *buf)
2897 {
2898 	return nr_hugepages_show_common(kobj, attr, buf);
2899 }
2900 
2901 static ssize_t nr_hugepages_store(struct kobject *kobj,
2902 	       struct kobj_attribute *attr, const char *buf, size_t len)
2903 {
2904 	return nr_hugepages_store_common(false, kobj, buf, len);
2905 }
2906 HSTATE_ATTR(nr_hugepages);
2907 
2908 #ifdef CONFIG_NUMA
2909 
2910 /*
2911  * hstate attribute for optionally mempolicy-based constraint on persistent
2912  * huge page alloc/free.
2913  */
2914 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2915 				       struct kobj_attribute *attr, char *buf)
2916 {
2917 	return nr_hugepages_show_common(kobj, attr, buf);
2918 }
2919 
2920 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2921 	       struct kobj_attribute *attr, const char *buf, size_t len)
2922 {
2923 	return nr_hugepages_store_common(true, kobj, buf, len);
2924 }
2925 HSTATE_ATTR(nr_hugepages_mempolicy);
2926 #endif
2927 
2928 
2929 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2930 					struct kobj_attribute *attr, char *buf)
2931 {
2932 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2933 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2934 }
2935 
2936 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2937 		struct kobj_attribute *attr, const char *buf, size_t count)
2938 {
2939 	int err;
2940 	unsigned long input;
2941 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 
2943 	if (hstate_is_gigantic(h))
2944 		return -EINVAL;
2945 
2946 	err = kstrtoul(buf, 10, &input);
2947 	if (err)
2948 		return err;
2949 
2950 	spin_lock(&hugetlb_lock);
2951 	h->nr_overcommit_huge_pages = input;
2952 	spin_unlock(&hugetlb_lock);
2953 
2954 	return count;
2955 }
2956 HSTATE_ATTR(nr_overcommit_hugepages);
2957 
2958 static ssize_t free_hugepages_show(struct kobject *kobj,
2959 					struct kobj_attribute *attr, char *buf)
2960 {
2961 	struct hstate *h;
2962 	unsigned long free_huge_pages;
2963 	int nid;
2964 
2965 	h = kobj_to_hstate(kobj, &nid);
2966 	if (nid == NUMA_NO_NODE)
2967 		free_huge_pages = h->free_huge_pages;
2968 	else
2969 		free_huge_pages = h->free_huge_pages_node[nid];
2970 
2971 	return sprintf(buf, "%lu\n", free_huge_pages);
2972 }
2973 HSTATE_ATTR_RO(free_hugepages);
2974 
2975 static ssize_t resv_hugepages_show(struct kobject *kobj,
2976 					struct kobj_attribute *attr, char *buf)
2977 {
2978 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2979 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2980 }
2981 HSTATE_ATTR_RO(resv_hugepages);
2982 
2983 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2984 					struct kobj_attribute *attr, char *buf)
2985 {
2986 	struct hstate *h;
2987 	unsigned long surplus_huge_pages;
2988 	int nid;
2989 
2990 	h = kobj_to_hstate(kobj, &nid);
2991 	if (nid == NUMA_NO_NODE)
2992 		surplus_huge_pages = h->surplus_huge_pages;
2993 	else
2994 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2995 
2996 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2997 }
2998 HSTATE_ATTR_RO(surplus_hugepages);
2999 
3000 static struct attribute *hstate_attrs[] = {
3001 	&nr_hugepages_attr.attr,
3002 	&nr_overcommit_hugepages_attr.attr,
3003 	&free_hugepages_attr.attr,
3004 	&resv_hugepages_attr.attr,
3005 	&surplus_hugepages_attr.attr,
3006 #ifdef CONFIG_NUMA
3007 	&nr_hugepages_mempolicy_attr.attr,
3008 #endif
3009 	NULL,
3010 };
3011 
3012 static const struct attribute_group hstate_attr_group = {
3013 	.attrs = hstate_attrs,
3014 };
3015 
3016 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3017 				    struct kobject **hstate_kobjs,
3018 				    const struct attribute_group *hstate_attr_group)
3019 {
3020 	int retval;
3021 	int hi = hstate_index(h);
3022 
3023 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3024 	if (!hstate_kobjs[hi])
3025 		return -ENOMEM;
3026 
3027 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3028 	if (retval)
3029 		kobject_put(hstate_kobjs[hi]);
3030 
3031 	return retval;
3032 }
3033 
3034 static void __init hugetlb_sysfs_init(void)
3035 {
3036 	struct hstate *h;
3037 	int err;
3038 
3039 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3040 	if (!hugepages_kobj)
3041 		return;
3042 
3043 	for_each_hstate(h) {
3044 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3045 					 hstate_kobjs, &hstate_attr_group);
3046 		if (err)
3047 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3048 	}
3049 }
3050 
3051 #ifdef CONFIG_NUMA
3052 
3053 /*
3054  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3055  * with node devices in node_devices[] using a parallel array.  The array
3056  * index of a node device or _hstate == node id.
3057  * This is here to avoid any static dependency of the node device driver, in
3058  * the base kernel, on the hugetlb module.
3059  */
3060 struct node_hstate {
3061 	struct kobject		*hugepages_kobj;
3062 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3063 };
3064 static struct node_hstate node_hstates[MAX_NUMNODES];
3065 
3066 /*
3067  * A subset of global hstate attributes for node devices
3068  */
3069 static struct attribute *per_node_hstate_attrs[] = {
3070 	&nr_hugepages_attr.attr,
3071 	&free_hugepages_attr.attr,
3072 	&surplus_hugepages_attr.attr,
3073 	NULL,
3074 };
3075 
3076 static const struct attribute_group per_node_hstate_attr_group = {
3077 	.attrs = per_node_hstate_attrs,
3078 };
3079 
3080 /*
3081  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3082  * Returns node id via non-NULL nidp.
3083  */
3084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3085 {
3086 	int nid;
3087 
3088 	for (nid = 0; nid < nr_node_ids; nid++) {
3089 		struct node_hstate *nhs = &node_hstates[nid];
3090 		int i;
3091 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3092 			if (nhs->hstate_kobjs[i] == kobj) {
3093 				if (nidp)
3094 					*nidp = nid;
3095 				return &hstates[i];
3096 			}
3097 	}
3098 
3099 	BUG();
3100 	return NULL;
3101 }
3102 
3103 /*
3104  * Unregister hstate attributes from a single node device.
3105  * No-op if no hstate attributes attached.
3106  */
3107 static void hugetlb_unregister_node(struct node *node)
3108 {
3109 	struct hstate *h;
3110 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3111 
3112 	if (!nhs->hugepages_kobj)
3113 		return;		/* no hstate attributes */
3114 
3115 	for_each_hstate(h) {
3116 		int idx = hstate_index(h);
3117 		if (nhs->hstate_kobjs[idx]) {
3118 			kobject_put(nhs->hstate_kobjs[idx]);
3119 			nhs->hstate_kobjs[idx] = NULL;
3120 		}
3121 	}
3122 
3123 	kobject_put(nhs->hugepages_kobj);
3124 	nhs->hugepages_kobj = NULL;
3125 }
3126 
3127 
3128 /*
3129  * Register hstate attributes for a single node device.
3130  * No-op if attributes already registered.
3131  */
3132 static void hugetlb_register_node(struct node *node)
3133 {
3134 	struct hstate *h;
3135 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3136 	int err;
3137 
3138 	if (nhs->hugepages_kobj)
3139 		return;		/* already allocated */
3140 
3141 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3142 							&node->dev.kobj);
3143 	if (!nhs->hugepages_kobj)
3144 		return;
3145 
3146 	for_each_hstate(h) {
3147 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3148 						nhs->hstate_kobjs,
3149 						&per_node_hstate_attr_group);
3150 		if (err) {
3151 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3152 				h->name, node->dev.id);
3153 			hugetlb_unregister_node(node);
3154 			break;
3155 		}
3156 	}
3157 }
3158 
3159 /*
3160  * hugetlb init time:  register hstate attributes for all registered node
3161  * devices of nodes that have memory.  All on-line nodes should have
3162  * registered their associated device by this time.
3163  */
3164 static void __init hugetlb_register_all_nodes(void)
3165 {
3166 	int nid;
3167 
3168 	for_each_node_state(nid, N_MEMORY) {
3169 		struct node *node = node_devices[nid];
3170 		if (node->dev.id == nid)
3171 			hugetlb_register_node(node);
3172 	}
3173 
3174 	/*
3175 	 * Let the node device driver know we're here so it can
3176 	 * [un]register hstate attributes on node hotplug.
3177 	 */
3178 	register_hugetlbfs_with_node(hugetlb_register_node,
3179 				     hugetlb_unregister_node);
3180 }
3181 #else	/* !CONFIG_NUMA */
3182 
3183 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3184 {
3185 	BUG();
3186 	if (nidp)
3187 		*nidp = -1;
3188 	return NULL;
3189 }
3190 
3191 static void hugetlb_register_all_nodes(void) { }
3192 
3193 #endif
3194 
3195 static int __init hugetlb_init(void)
3196 {
3197 	int i;
3198 
3199 	if (!hugepages_supported()) {
3200 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3201 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3202 		return 0;
3203 	}
3204 
3205 	/*
3206 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3207 	 * architectures depend on setup being done here.
3208 	 */
3209 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3210 	if (!parsed_default_hugepagesz) {
3211 		/*
3212 		 * If we did not parse a default huge page size, set
3213 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3214 		 * number of huge pages for this default size was implicitly
3215 		 * specified, set that here as well.
3216 		 * Note that the implicit setting will overwrite an explicit
3217 		 * setting.  A warning will be printed in this case.
3218 		 */
3219 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3220 		if (default_hstate_max_huge_pages) {
3221 			if (default_hstate.max_huge_pages) {
3222 				char buf[32];
3223 
3224 				string_get_size(huge_page_size(&default_hstate),
3225 					1, STRING_UNITS_2, buf, 32);
3226 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3227 					default_hstate.max_huge_pages, buf);
3228 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3229 					default_hstate_max_huge_pages);
3230 			}
3231 			default_hstate.max_huge_pages =
3232 				default_hstate_max_huge_pages;
3233 		}
3234 	}
3235 
3236 	hugetlb_cma_check();
3237 	hugetlb_init_hstates();
3238 	gather_bootmem_prealloc();
3239 	report_hugepages();
3240 
3241 	hugetlb_sysfs_init();
3242 	hugetlb_register_all_nodes();
3243 	hugetlb_cgroup_file_init();
3244 
3245 #ifdef CONFIG_SMP
3246 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3247 #else
3248 	num_fault_mutexes = 1;
3249 #endif
3250 	hugetlb_fault_mutex_table =
3251 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3252 			      GFP_KERNEL);
3253 	BUG_ON(!hugetlb_fault_mutex_table);
3254 
3255 	for (i = 0; i < num_fault_mutexes; i++)
3256 		mutex_init(&hugetlb_fault_mutex_table[i]);
3257 	return 0;
3258 }
3259 subsys_initcall(hugetlb_init);
3260 
3261 /* Overwritten by architectures with more huge page sizes */
3262 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3263 {
3264 	return size == HPAGE_SIZE;
3265 }
3266 
3267 void __init hugetlb_add_hstate(unsigned int order)
3268 {
3269 	struct hstate *h;
3270 	unsigned long i;
3271 
3272 	if (size_to_hstate(PAGE_SIZE << order)) {
3273 		return;
3274 	}
3275 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3276 	BUG_ON(order == 0);
3277 	h = &hstates[hugetlb_max_hstate++];
3278 	h->order = order;
3279 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3280 	h->nr_huge_pages = 0;
3281 	h->free_huge_pages = 0;
3282 	for (i = 0; i < MAX_NUMNODES; ++i)
3283 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3284 	INIT_LIST_HEAD(&h->hugepage_activelist);
3285 	h->next_nid_to_alloc = first_memory_node;
3286 	h->next_nid_to_free = first_memory_node;
3287 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3288 					huge_page_size(h)/1024);
3289 
3290 	parsed_hstate = h;
3291 }
3292 
3293 /*
3294  * hugepages command line processing
3295  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3296  * specification.  If not, ignore the hugepages value.  hugepages can also
3297  * be the first huge page command line  option in which case it implicitly
3298  * specifies the number of huge pages for the default size.
3299  */
3300 static int __init hugepages_setup(char *s)
3301 {
3302 	unsigned long *mhp;
3303 	static unsigned long *last_mhp;
3304 
3305 	if (!parsed_valid_hugepagesz) {
3306 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3307 		parsed_valid_hugepagesz = true;
3308 		return 0;
3309 	}
3310 
3311 	/*
3312 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3313 	 * yet, so this hugepages= parameter goes to the "default hstate".
3314 	 * Otherwise, it goes with the previously parsed hugepagesz or
3315 	 * default_hugepagesz.
3316 	 */
3317 	else if (!hugetlb_max_hstate)
3318 		mhp = &default_hstate_max_huge_pages;
3319 	else
3320 		mhp = &parsed_hstate->max_huge_pages;
3321 
3322 	if (mhp == last_mhp) {
3323 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3324 		return 0;
3325 	}
3326 
3327 	if (sscanf(s, "%lu", mhp) <= 0)
3328 		*mhp = 0;
3329 
3330 	/*
3331 	 * Global state is always initialized later in hugetlb_init.
3332 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3333 	 * use the bootmem allocator.
3334 	 */
3335 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3336 		hugetlb_hstate_alloc_pages(parsed_hstate);
3337 
3338 	last_mhp = mhp;
3339 
3340 	return 1;
3341 }
3342 __setup("hugepages=", hugepages_setup);
3343 
3344 /*
3345  * hugepagesz command line processing
3346  * A specific huge page size can only be specified once with hugepagesz.
3347  * hugepagesz is followed by hugepages on the command line.  The global
3348  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3349  * hugepagesz argument was valid.
3350  */
3351 static int __init hugepagesz_setup(char *s)
3352 {
3353 	unsigned long size;
3354 	struct hstate *h;
3355 
3356 	parsed_valid_hugepagesz = false;
3357 	size = (unsigned long)memparse(s, NULL);
3358 
3359 	if (!arch_hugetlb_valid_size(size)) {
3360 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3361 		return 0;
3362 	}
3363 
3364 	h = size_to_hstate(size);
3365 	if (h) {
3366 		/*
3367 		 * hstate for this size already exists.  This is normally
3368 		 * an error, but is allowed if the existing hstate is the
3369 		 * default hstate.  More specifically, it is only allowed if
3370 		 * the number of huge pages for the default hstate was not
3371 		 * previously specified.
3372 		 */
3373 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3374 		    default_hstate.max_huge_pages) {
3375 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3376 			return 0;
3377 		}
3378 
3379 		/*
3380 		 * No need to call hugetlb_add_hstate() as hstate already
3381 		 * exists.  But, do set parsed_hstate so that a following
3382 		 * hugepages= parameter will be applied to this hstate.
3383 		 */
3384 		parsed_hstate = h;
3385 		parsed_valid_hugepagesz = true;
3386 		return 1;
3387 	}
3388 
3389 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3390 	parsed_valid_hugepagesz = true;
3391 	return 1;
3392 }
3393 __setup("hugepagesz=", hugepagesz_setup);
3394 
3395 /*
3396  * default_hugepagesz command line input
3397  * Only one instance of default_hugepagesz allowed on command line.
3398  */
3399 static int __init default_hugepagesz_setup(char *s)
3400 {
3401 	unsigned long size;
3402 
3403 	parsed_valid_hugepagesz = false;
3404 	if (parsed_default_hugepagesz) {
3405 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3406 		return 0;
3407 	}
3408 
3409 	size = (unsigned long)memparse(s, NULL);
3410 
3411 	if (!arch_hugetlb_valid_size(size)) {
3412 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3413 		return 0;
3414 	}
3415 
3416 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3417 	parsed_valid_hugepagesz = true;
3418 	parsed_default_hugepagesz = true;
3419 	default_hstate_idx = hstate_index(size_to_hstate(size));
3420 
3421 	/*
3422 	 * The number of default huge pages (for this size) could have been
3423 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3424 	 * then default_hstate_max_huge_pages is set.  If the default huge
3425 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3426 	 * allocated here from bootmem allocator.
3427 	 */
3428 	if (default_hstate_max_huge_pages) {
3429 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3430 		if (hstate_is_gigantic(&default_hstate))
3431 			hugetlb_hstate_alloc_pages(&default_hstate);
3432 		default_hstate_max_huge_pages = 0;
3433 	}
3434 
3435 	return 1;
3436 }
3437 __setup("default_hugepagesz=", default_hugepagesz_setup);
3438 
3439 static unsigned int allowed_mems_nr(struct hstate *h)
3440 {
3441 	int node;
3442 	unsigned int nr = 0;
3443 	nodemask_t *mpol_allowed;
3444 	unsigned int *array = h->free_huge_pages_node;
3445 	gfp_t gfp_mask = htlb_alloc_mask(h);
3446 
3447 	mpol_allowed = policy_nodemask_current(gfp_mask);
3448 
3449 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3450 		if (!mpol_allowed ||
3451 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3452 			nr += array[node];
3453 	}
3454 
3455 	return nr;
3456 }
3457 
3458 #ifdef CONFIG_SYSCTL
3459 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3460 					  void *buffer, size_t *length,
3461 					  loff_t *ppos, unsigned long *out)
3462 {
3463 	struct ctl_table dup_table;
3464 
3465 	/*
3466 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3467 	 * can duplicate the @table and alter the duplicate of it.
3468 	 */
3469 	dup_table = *table;
3470 	dup_table.data = out;
3471 
3472 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3473 }
3474 
3475 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3476 			 struct ctl_table *table, int write,
3477 			 void *buffer, size_t *length, loff_t *ppos)
3478 {
3479 	struct hstate *h = &default_hstate;
3480 	unsigned long tmp = h->max_huge_pages;
3481 	int ret;
3482 
3483 	if (!hugepages_supported())
3484 		return -EOPNOTSUPP;
3485 
3486 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3487 					     &tmp);
3488 	if (ret)
3489 		goto out;
3490 
3491 	if (write)
3492 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3493 						  NUMA_NO_NODE, tmp, *length);
3494 out:
3495 	return ret;
3496 }
3497 
3498 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3499 			  void *buffer, size_t *length, loff_t *ppos)
3500 {
3501 
3502 	return hugetlb_sysctl_handler_common(false, table, write,
3503 							buffer, length, ppos);
3504 }
3505 
3506 #ifdef CONFIG_NUMA
3507 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3508 			  void *buffer, size_t *length, loff_t *ppos)
3509 {
3510 	return hugetlb_sysctl_handler_common(true, table, write,
3511 							buffer, length, ppos);
3512 }
3513 #endif /* CONFIG_NUMA */
3514 
3515 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3516 		void *buffer, size_t *length, loff_t *ppos)
3517 {
3518 	struct hstate *h = &default_hstate;
3519 	unsigned long tmp;
3520 	int ret;
3521 
3522 	if (!hugepages_supported())
3523 		return -EOPNOTSUPP;
3524 
3525 	tmp = h->nr_overcommit_huge_pages;
3526 
3527 	if (write && hstate_is_gigantic(h))
3528 		return -EINVAL;
3529 
3530 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3531 					     &tmp);
3532 	if (ret)
3533 		goto out;
3534 
3535 	if (write) {
3536 		spin_lock(&hugetlb_lock);
3537 		h->nr_overcommit_huge_pages = tmp;
3538 		spin_unlock(&hugetlb_lock);
3539 	}
3540 out:
3541 	return ret;
3542 }
3543 
3544 #endif /* CONFIG_SYSCTL */
3545 
3546 void hugetlb_report_meminfo(struct seq_file *m)
3547 {
3548 	struct hstate *h;
3549 	unsigned long total = 0;
3550 
3551 	if (!hugepages_supported())
3552 		return;
3553 
3554 	for_each_hstate(h) {
3555 		unsigned long count = h->nr_huge_pages;
3556 
3557 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3558 
3559 		if (h == &default_hstate)
3560 			seq_printf(m,
3561 				   "HugePages_Total:   %5lu\n"
3562 				   "HugePages_Free:    %5lu\n"
3563 				   "HugePages_Rsvd:    %5lu\n"
3564 				   "HugePages_Surp:    %5lu\n"
3565 				   "Hugepagesize:   %8lu kB\n",
3566 				   count,
3567 				   h->free_huge_pages,
3568 				   h->resv_huge_pages,
3569 				   h->surplus_huge_pages,
3570 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3571 	}
3572 
3573 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3574 }
3575 
3576 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3577 {
3578 	struct hstate *h = &default_hstate;
3579 
3580 	if (!hugepages_supported())
3581 		return 0;
3582 
3583 	return sysfs_emit_at(buf, len,
3584 			     "Node %d HugePages_Total: %5u\n"
3585 			     "Node %d HugePages_Free:  %5u\n"
3586 			     "Node %d HugePages_Surp:  %5u\n",
3587 			     nid, h->nr_huge_pages_node[nid],
3588 			     nid, h->free_huge_pages_node[nid],
3589 			     nid, h->surplus_huge_pages_node[nid]);
3590 }
3591 
3592 void hugetlb_show_meminfo(void)
3593 {
3594 	struct hstate *h;
3595 	int nid;
3596 
3597 	if (!hugepages_supported())
3598 		return;
3599 
3600 	for_each_node_state(nid, N_MEMORY)
3601 		for_each_hstate(h)
3602 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3603 				nid,
3604 				h->nr_huge_pages_node[nid],
3605 				h->free_huge_pages_node[nid],
3606 				h->surplus_huge_pages_node[nid],
3607 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3608 }
3609 
3610 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3611 {
3612 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3613 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3614 }
3615 
3616 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3617 unsigned long hugetlb_total_pages(void)
3618 {
3619 	struct hstate *h;
3620 	unsigned long nr_total_pages = 0;
3621 
3622 	for_each_hstate(h)
3623 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3624 	return nr_total_pages;
3625 }
3626 
3627 static int hugetlb_acct_memory(struct hstate *h, long delta)
3628 {
3629 	int ret = -ENOMEM;
3630 
3631 	spin_lock(&hugetlb_lock);
3632 	/*
3633 	 * When cpuset is configured, it breaks the strict hugetlb page
3634 	 * reservation as the accounting is done on a global variable. Such
3635 	 * reservation is completely rubbish in the presence of cpuset because
3636 	 * the reservation is not checked against page availability for the
3637 	 * current cpuset. Application can still potentially OOM'ed by kernel
3638 	 * with lack of free htlb page in cpuset that the task is in.
3639 	 * Attempt to enforce strict accounting with cpuset is almost
3640 	 * impossible (or too ugly) because cpuset is too fluid that
3641 	 * task or memory node can be dynamically moved between cpusets.
3642 	 *
3643 	 * The change of semantics for shared hugetlb mapping with cpuset is
3644 	 * undesirable. However, in order to preserve some of the semantics,
3645 	 * we fall back to check against current free page availability as
3646 	 * a best attempt and hopefully to minimize the impact of changing
3647 	 * semantics that cpuset has.
3648 	 *
3649 	 * Apart from cpuset, we also have memory policy mechanism that
3650 	 * also determines from which node the kernel will allocate memory
3651 	 * in a NUMA system. So similar to cpuset, we also should consider
3652 	 * the memory policy of the current task. Similar to the description
3653 	 * above.
3654 	 */
3655 	if (delta > 0) {
3656 		if (gather_surplus_pages(h, delta) < 0)
3657 			goto out;
3658 
3659 		if (delta > allowed_mems_nr(h)) {
3660 			return_unused_surplus_pages(h, delta);
3661 			goto out;
3662 		}
3663 	}
3664 
3665 	ret = 0;
3666 	if (delta < 0)
3667 		return_unused_surplus_pages(h, (unsigned long) -delta);
3668 
3669 out:
3670 	spin_unlock(&hugetlb_lock);
3671 	return ret;
3672 }
3673 
3674 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3675 {
3676 	struct resv_map *resv = vma_resv_map(vma);
3677 
3678 	/*
3679 	 * This new VMA should share its siblings reservation map if present.
3680 	 * The VMA will only ever have a valid reservation map pointer where
3681 	 * it is being copied for another still existing VMA.  As that VMA
3682 	 * has a reference to the reservation map it cannot disappear until
3683 	 * after this open call completes.  It is therefore safe to take a
3684 	 * new reference here without additional locking.
3685 	 */
3686 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3687 		kref_get(&resv->refs);
3688 }
3689 
3690 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3691 {
3692 	struct hstate *h = hstate_vma(vma);
3693 	struct resv_map *resv = vma_resv_map(vma);
3694 	struct hugepage_subpool *spool = subpool_vma(vma);
3695 	unsigned long reserve, start, end;
3696 	long gbl_reserve;
3697 
3698 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3699 		return;
3700 
3701 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3702 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3703 
3704 	reserve = (end - start) - region_count(resv, start, end);
3705 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3706 	if (reserve) {
3707 		/*
3708 		 * Decrement reserve counts.  The global reserve count may be
3709 		 * adjusted if the subpool has a minimum size.
3710 		 */
3711 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3712 		hugetlb_acct_memory(h, -gbl_reserve);
3713 	}
3714 
3715 	kref_put(&resv->refs, resv_map_release);
3716 }
3717 
3718 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3719 {
3720 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3721 		return -EINVAL;
3722 	return 0;
3723 }
3724 
3725 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3726 {
3727 	struct hstate *hstate = hstate_vma(vma);
3728 
3729 	return 1UL << huge_page_shift(hstate);
3730 }
3731 
3732 /*
3733  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3734  * handle_mm_fault() to try to instantiate regular-sized pages in the
3735  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3736  * this far.
3737  */
3738 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3739 {
3740 	BUG();
3741 	return 0;
3742 }
3743 
3744 /*
3745  * When a new function is introduced to vm_operations_struct and added
3746  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3747  * This is because under System V memory model, mappings created via
3748  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3749  * their original vm_ops are overwritten with shm_vm_ops.
3750  */
3751 const struct vm_operations_struct hugetlb_vm_ops = {
3752 	.fault = hugetlb_vm_op_fault,
3753 	.open = hugetlb_vm_op_open,
3754 	.close = hugetlb_vm_op_close,
3755 	.split = hugetlb_vm_op_split,
3756 	.pagesize = hugetlb_vm_op_pagesize,
3757 };
3758 
3759 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3760 				int writable)
3761 {
3762 	pte_t entry;
3763 
3764 	if (writable) {
3765 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3766 					 vma->vm_page_prot)));
3767 	} else {
3768 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3769 					   vma->vm_page_prot));
3770 	}
3771 	entry = pte_mkyoung(entry);
3772 	entry = pte_mkhuge(entry);
3773 	entry = arch_make_huge_pte(entry, vma, page, writable);
3774 
3775 	return entry;
3776 }
3777 
3778 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3779 				   unsigned long address, pte_t *ptep)
3780 {
3781 	pte_t entry;
3782 
3783 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3784 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3785 		update_mmu_cache(vma, address, ptep);
3786 }
3787 
3788 bool is_hugetlb_entry_migration(pte_t pte)
3789 {
3790 	swp_entry_t swp;
3791 
3792 	if (huge_pte_none(pte) || pte_present(pte))
3793 		return false;
3794 	swp = pte_to_swp_entry(pte);
3795 	if (is_migration_entry(swp))
3796 		return true;
3797 	else
3798 		return false;
3799 }
3800 
3801 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3802 {
3803 	swp_entry_t swp;
3804 
3805 	if (huge_pte_none(pte) || pte_present(pte))
3806 		return false;
3807 	swp = pte_to_swp_entry(pte);
3808 	if (is_hwpoison_entry(swp))
3809 		return true;
3810 	else
3811 		return false;
3812 }
3813 
3814 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3815 			    struct vm_area_struct *vma)
3816 {
3817 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3818 	struct page *ptepage;
3819 	unsigned long addr;
3820 	int cow;
3821 	struct hstate *h = hstate_vma(vma);
3822 	unsigned long sz = huge_page_size(h);
3823 	struct address_space *mapping = vma->vm_file->f_mapping;
3824 	struct mmu_notifier_range range;
3825 	int ret = 0;
3826 
3827 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3828 
3829 	if (cow) {
3830 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3831 					vma->vm_start,
3832 					vma->vm_end);
3833 		mmu_notifier_invalidate_range_start(&range);
3834 	} else {
3835 		/*
3836 		 * For shared mappings i_mmap_rwsem must be held to call
3837 		 * huge_pte_alloc, otherwise the returned ptep could go
3838 		 * away if part of a shared pmd and another thread calls
3839 		 * huge_pmd_unshare.
3840 		 */
3841 		i_mmap_lock_read(mapping);
3842 	}
3843 
3844 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3845 		spinlock_t *src_ptl, *dst_ptl;
3846 		src_pte = huge_pte_offset(src, addr, sz);
3847 		if (!src_pte)
3848 			continue;
3849 		dst_pte = huge_pte_alloc(dst, addr, sz);
3850 		if (!dst_pte) {
3851 			ret = -ENOMEM;
3852 			break;
3853 		}
3854 
3855 		/*
3856 		 * If the pagetables are shared don't copy or take references.
3857 		 * dst_pte == src_pte is the common case of src/dest sharing.
3858 		 *
3859 		 * However, src could have 'unshared' and dst shares with
3860 		 * another vma.  If dst_pte !none, this implies sharing.
3861 		 * Check here before taking page table lock, and once again
3862 		 * after taking the lock below.
3863 		 */
3864 		dst_entry = huge_ptep_get(dst_pte);
3865 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3866 			continue;
3867 
3868 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3869 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3870 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3871 		entry = huge_ptep_get(src_pte);
3872 		dst_entry = huge_ptep_get(dst_pte);
3873 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3874 			/*
3875 			 * Skip if src entry none.  Also, skip in the
3876 			 * unlikely case dst entry !none as this implies
3877 			 * sharing with another vma.
3878 			 */
3879 			;
3880 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3881 				    is_hugetlb_entry_hwpoisoned(entry))) {
3882 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3883 
3884 			if (is_write_migration_entry(swp_entry) && cow) {
3885 				/*
3886 				 * COW mappings require pages in both
3887 				 * parent and child to be set to read.
3888 				 */
3889 				make_migration_entry_read(&swp_entry);
3890 				entry = swp_entry_to_pte(swp_entry);
3891 				set_huge_swap_pte_at(src, addr, src_pte,
3892 						     entry, sz);
3893 			}
3894 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3895 		} else {
3896 			if (cow) {
3897 				/*
3898 				 * No need to notify as we are downgrading page
3899 				 * table protection not changing it to point
3900 				 * to a new page.
3901 				 *
3902 				 * See Documentation/vm/mmu_notifier.rst
3903 				 */
3904 				huge_ptep_set_wrprotect(src, addr, src_pte);
3905 			}
3906 			entry = huge_ptep_get(src_pte);
3907 			ptepage = pte_page(entry);
3908 			get_page(ptepage);
3909 			page_dup_rmap(ptepage, true);
3910 			set_huge_pte_at(dst, addr, dst_pte, entry);
3911 			hugetlb_count_add(pages_per_huge_page(h), dst);
3912 		}
3913 		spin_unlock(src_ptl);
3914 		spin_unlock(dst_ptl);
3915 	}
3916 
3917 	if (cow)
3918 		mmu_notifier_invalidate_range_end(&range);
3919 	else
3920 		i_mmap_unlock_read(mapping);
3921 
3922 	return ret;
3923 }
3924 
3925 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3926 			    unsigned long start, unsigned long end,
3927 			    struct page *ref_page)
3928 {
3929 	struct mm_struct *mm = vma->vm_mm;
3930 	unsigned long address;
3931 	pte_t *ptep;
3932 	pte_t pte;
3933 	spinlock_t *ptl;
3934 	struct page *page;
3935 	struct hstate *h = hstate_vma(vma);
3936 	unsigned long sz = huge_page_size(h);
3937 	struct mmu_notifier_range range;
3938 
3939 	WARN_ON(!is_vm_hugetlb_page(vma));
3940 	BUG_ON(start & ~huge_page_mask(h));
3941 	BUG_ON(end & ~huge_page_mask(h));
3942 
3943 	/*
3944 	 * This is a hugetlb vma, all the pte entries should point
3945 	 * to huge page.
3946 	 */
3947 	tlb_change_page_size(tlb, sz);
3948 	tlb_start_vma(tlb, vma);
3949 
3950 	/*
3951 	 * If sharing possible, alert mmu notifiers of worst case.
3952 	 */
3953 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3954 				end);
3955 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3956 	mmu_notifier_invalidate_range_start(&range);
3957 	address = start;
3958 	for (; address < end; address += sz) {
3959 		ptep = huge_pte_offset(mm, address, sz);
3960 		if (!ptep)
3961 			continue;
3962 
3963 		ptl = huge_pte_lock(h, mm, ptep);
3964 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3965 			spin_unlock(ptl);
3966 			/*
3967 			 * We just unmapped a page of PMDs by clearing a PUD.
3968 			 * The caller's TLB flush range should cover this area.
3969 			 */
3970 			continue;
3971 		}
3972 
3973 		pte = huge_ptep_get(ptep);
3974 		if (huge_pte_none(pte)) {
3975 			spin_unlock(ptl);
3976 			continue;
3977 		}
3978 
3979 		/*
3980 		 * Migrating hugepage or HWPoisoned hugepage is already
3981 		 * unmapped and its refcount is dropped, so just clear pte here.
3982 		 */
3983 		if (unlikely(!pte_present(pte))) {
3984 			huge_pte_clear(mm, address, ptep, sz);
3985 			spin_unlock(ptl);
3986 			continue;
3987 		}
3988 
3989 		page = pte_page(pte);
3990 		/*
3991 		 * If a reference page is supplied, it is because a specific
3992 		 * page is being unmapped, not a range. Ensure the page we
3993 		 * are about to unmap is the actual page of interest.
3994 		 */
3995 		if (ref_page) {
3996 			if (page != ref_page) {
3997 				spin_unlock(ptl);
3998 				continue;
3999 			}
4000 			/*
4001 			 * Mark the VMA as having unmapped its page so that
4002 			 * future faults in this VMA will fail rather than
4003 			 * looking like data was lost
4004 			 */
4005 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4006 		}
4007 
4008 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4009 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4010 		if (huge_pte_dirty(pte))
4011 			set_page_dirty(page);
4012 
4013 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4014 		page_remove_rmap(page, true);
4015 
4016 		spin_unlock(ptl);
4017 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4018 		/*
4019 		 * Bail out after unmapping reference page if supplied
4020 		 */
4021 		if (ref_page)
4022 			break;
4023 	}
4024 	mmu_notifier_invalidate_range_end(&range);
4025 	tlb_end_vma(tlb, vma);
4026 }
4027 
4028 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4029 			  struct vm_area_struct *vma, unsigned long start,
4030 			  unsigned long end, struct page *ref_page)
4031 {
4032 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4033 
4034 	/*
4035 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4036 	 * test will fail on a vma being torn down, and not grab a page table
4037 	 * on its way out.  We're lucky that the flag has such an appropriate
4038 	 * name, and can in fact be safely cleared here. We could clear it
4039 	 * before the __unmap_hugepage_range above, but all that's necessary
4040 	 * is to clear it before releasing the i_mmap_rwsem. This works
4041 	 * because in the context this is called, the VMA is about to be
4042 	 * destroyed and the i_mmap_rwsem is held.
4043 	 */
4044 	vma->vm_flags &= ~VM_MAYSHARE;
4045 }
4046 
4047 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4048 			  unsigned long end, struct page *ref_page)
4049 {
4050 	struct mm_struct *mm;
4051 	struct mmu_gather tlb;
4052 	unsigned long tlb_start = start;
4053 	unsigned long tlb_end = end;
4054 
4055 	/*
4056 	 * If shared PMDs were possibly used within this vma range, adjust
4057 	 * start/end for worst case tlb flushing.
4058 	 * Note that we can not be sure if PMDs are shared until we try to
4059 	 * unmap pages.  However, we want to make sure TLB flushing covers
4060 	 * the largest possible range.
4061 	 */
4062 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4063 
4064 	mm = vma->vm_mm;
4065 
4066 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4067 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4068 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4069 }
4070 
4071 /*
4072  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4073  * mappping it owns the reserve page for. The intention is to unmap the page
4074  * from other VMAs and let the children be SIGKILLed if they are faulting the
4075  * same region.
4076  */
4077 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4078 			      struct page *page, unsigned long address)
4079 {
4080 	struct hstate *h = hstate_vma(vma);
4081 	struct vm_area_struct *iter_vma;
4082 	struct address_space *mapping;
4083 	pgoff_t pgoff;
4084 
4085 	/*
4086 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4087 	 * from page cache lookup which is in HPAGE_SIZE units.
4088 	 */
4089 	address = address & huge_page_mask(h);
4090 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4091 			vma->vm_pgoff;
4092 	mapping = vma->vm_file->f_mapping;
4093 
4094 	/*
4095 	 * Take the mapping lock for the duration of the table walk. As
4096 	 * this mapping should be shared between all the VMAs,
4097 	 * __unmap_hugepage_range() is called as the lock is already held
4098 	 */
4099 	i_mmap_lock_write(mapping);
4100 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4101 		/* Do not unmap the current VMA */
4102 		if (iter_vma == vma)
4103 			continue;
4104 
4105 		/*
4106 		 * Shared VMAs have their own reserves and do not affect
4107 		 * MAP_PRIVATE accounting but it is possible that a shared
4108 		 * VMA is using the same page so check and skip such VMAs.
4109 		 */
4110 		if (iter_vma->vm_flags & VM_MAYSHARE)
4111 			continue;
4112 
4113 		/*
4114 		 * Unmap the page from other VMAs without their own reserves.
4115 		 * They get marked to be SIGKILLed if they fault in these
4116 		 * areas. This is because a future no-page fault on this VMA
4117 		 * could insert a zeroed page instead of the data existing
4118 		 * from the time of fork. This would look like data corruption
4119 		 */
4120 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4121 			unmap_hugepage_range(iter_vma, address,
4122 					     address + huge_page_size(h), page);
4123 	}
4124 	i_mmap_unlock_write(mapping);
4125 }
4126 
4127 /*
4128  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4129  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4130  * cannot race with other handlers or page migration.
4131  * Keep the pte_same checks anyway to make transition from the mutex easier.
4132  */
4133 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4134 		       unsigned long address, pte_t *ptep,
4135 		       struct page *pagecache_page, spinlock_t *ptl)
4136 {
4137 	pte_t pte;
4138 	struct hstate *h = hstate_vma(vma);
4139 	struct page *old_page, *new_page;
4140 	int outside_reserve = 0;
4141 	vm_fault_t ret = 0;
4142 	unsigned long haddr = address & huge_page_mask(h);
4143 	struct mmu_notifier_range range;
4144 
4145 	pte = huge_ptep_get(ptep);
4146 	old_page = pte_page(pte);
4147 
4148 retry_avoidcopy:
4149 	/* If no-one else is actually using this page, avoid the copy
4150 	 * and just make the page writable */
4151 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4152 		page_move_anon_rmap(old_page, vma);
4153 		set_huge_ptep_writable(vma, haddr, ptep);
4154 		return 0;
4155 	}
4156 
4157 	/*
4158 	 * If the process that created a MAP_PRIVATE mapping is about to
4159 	 * perform a COW due to a shared page count, attempt to satisfy
4160 	 * the allocation without using the existing reserves. The pagecache
4161 	 * page is used to determine if the reserve at this address was
4162 	 * consumed or not. If reserves were used, a partial faulted mapping
4163 	 * at the time of fork() could consume its reserves on COW instead
4164 	 * of the full address range.
4165 	 */
4166 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4167 			old_page != pagecache_page)
4168 		outside_reserve = 1;
4169 
4170 	get_page(old_page);
4171 
4172 	/*
4173 	 * Drop page table lock as buddy allocator may be called. It will
4174 	 * be acquired again before returning to the caller, as expected.
4175 	 */
4176 	spin_unlock(ptl);
4177 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4178 
4179 	if (IS_ERR(new_page)) {
4180 		/*
4181 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4182 		 * it is due to references held by a child and an insufficient
4183 		 * huge page pool. To guarantee the original mappers
4184 		 * reliability, unmap the page from child processes. The child
4185 		 * may get SIGKILLed if it later faults.
4186 		 */
4187 		if (outside_reserve) {
4188 			put_page(old_page);
4189 			BUG_ON(huge_pte_none(pte));
4190 			unmap_ref_private(mm, vma, old_page, haddr);
4191 			BUG_ON(huge_pte_none(pte));
4192 			spin_lock(ptl);
4193 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4194 			if (likely(ptep &&
4195 				   pte_same(huge_ptep_get(ptep), pte)))
4196 				goto retry_avoidcopy;
4197 			/*
4198 			 * race occurs while re-acquiring page table
4199 			 * lock, and our job is done.
4200 			 */
4201 			return 0;
4202 		}
4203 
4204 		ret = vmf_error(PTR_ERR(new_page));
4205 		goto out_release_old;
4206 	}
4207 
4208 	/*
4209 	 * When the original hugepage is shared one, it does not have
4210 	 * anon_vma prepared.
4211 	 */
4212 	if (unlikely(anon_vma_prepare(vma))) {
4213 		ret = VM_FAULT_OOM;
4214 		goto out_release_all;
4215 	}
4216 
4217 	copy_user_huge_page(new_page, old_page, address, vma,
4218 			    pages_per_huge_page(h));
4219 	__SetPageUptodate(new_page);
4220 
4221 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4222 				haddr + huge_page_size(h));
4223 	mmu_notifier_invalidate_range_start(&range);
4224 
4225 	/*
4226 	 * Retake the page table lock to check for racing updates
4227 	 * before the page tables are altered
4228 	 */
4229 	spin_lock(ptl);
4230 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4231 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4232 		ClearPagePrivate(new_page);
4233 
4234 		/* Break COW */
4235 		huge_ptep_clear_flush(vma, haddr, ptep);
4236 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4237 		set_huge_pte_at(mm, haddr, ptep,
4238 				make_huge_pte(vma, new_page, 1));
4239 		page_remove_rmap(old_page, true);
4240 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4241 		set_page_huge_active(new_page);
4242 		/* Make the old page be freed below */
4243 		new_page = old_page;
4244 	}
4245 	spin_unlock(ptl);
4246 	mmu_notifier_invalidate_range_end(&range);
4247 out_release_all:
4248 	restore_reserve_on_error(h, vma, haddr, new_page);
4249 	put_page(new_page);
4250 out_release_old:
4251 	put_page(old_page);
4252 
4253 	spin_lock(ptl); /* Caller expects lock to be held */
4254 	return ret;
4255 }
4256 
4257 /* Return the pagecache page at a given address within a VMA */
4258 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4259 			struct vm_area_struct *vma, unsigned long address)
4260 {
4261 	struct address_space *mapping;
4262 	pgoff_t idx;
4263 
4264 	mapping = vma->vm_file->f_mapping;
4265 	idx = vma_hugecache_offset(h, vma, address);
4266 
4267 	return find_lock_page(mapping, idx);
4268 }
4269 
4270 /*
4271  * Return whether there is a pagecache page to back given address within VMA.
4272  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4273  */
4274 static bool hugetlbfs_pagecache_present(struct hstate *h,
4275 			struct vm_area_struct *vma, unsigned long address)
4276 {
4277 	struct address_space *mapping;
4278 	pgoff_t idx;
4279 	struct page *page;
4280 
4281 	mapping = vma->vm_file->f_mapping;
4282 	idx = vma_hugecache_offset(h, vma, address);
4283 
4284 	page = find_get_page(mapping, idx);
4285 	if (page)
4286 		put_page(page);
4287 	return page != NULL;
4288 }
4289 
4290 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4291 			   pgoff_t idx)
4292 {
4293 	struct inode *inode = mapping->host;
4294 	struct hstate *h = hstate_inode(inode);
4295 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4296 
4297 	if (err)
4298 		return err;
4299 	ClearPagePrivate(page);
4300 
4301 	/*
4302 	 * set page dirty so that it will not be removed from cache/file
4303 	 * by non-hugetlbfs specific code paths.
4304 	 */
4305 	set_page_dirty(page);
4306 
4307 	spin_lock(&inode->i_lock);
4308 	inode->i_blocks += blocks_per_huge_page(h);
4309 	spin_unlock(&inode->i_lock);
4310 	return 0;
4311 }
4312 
4313 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4314 			struct vm_area_struct *vma,
4315 			struct address_space *mapping, pgoff_t idx,
4316 			unsigned long address, pte_t *ptep, unsigned int flags)
4317 {
4318 	struct hstate *h = hstate_vma(vma);
4319 	vm_fault_t ret = VM_FAULT_SIGBUS;
4320 	int anon_rmap = 0;
4321 	unsigned long size;
4322 	struct page *page;
4323 	pte_t new_pte;
4324 	spinlock_t *ptl;
4325 	unsigned long haddr = address & huge_page_mask(h);
4326 	bool new_page = false;
4327 
4328 	/*
4329 	 * Currently, we are forced to kill the process in the event the
4330 	 * original mapper has unmapped pages from the child due to a failed
4331 	 * COW. Warn that such a situation has occurred as it may not be obvious
4332 	 */
4333 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4334 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4335 			   current->pid);
4336 		return ret;
4337 	}
4338 
4339 	/*
4340 	 * We can not race with truncation due to holding i_mmap_rwsem.
4341 	 * i_size is modified when holding i_mmap_rwsem, so check here
4342 	 * once for faults beyond end of file.
4343 	 */
4344 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4345 	if (idx >= size)
4346 		goto out;
4347 
4348 retry:
4349 	page = find_lock_page(mapping, idx);
4350 	if (!page) {
4351 		/*
4352 		 * Check for page in userfault range
4353 		 */
4354 		if (userfaultfd_missing(vma)) {
4355 			u32 hash;
4356 			struct vm_fault vmf = {
4357 				.vma = vma,
4358 				.address = haddr,
4359 				.flags = flags,
4360 				/*
4361 				 * Hard to debug if it ends up being
4362 				 * used by a callee that assumes
4363 				 * something about the other
4364 				 * uninitialized fields... same as in
4365 				 * memory.c
4366 				 */
4367 			};
4368 
4369 			/*
4370 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4371 			 * dropped before handling userfault.  Reacquire
4372 			 * after handling fault to make calling code simpler.
4373 			 */
4374 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4375 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4376 			i_mmap_unlock_read(mapping);
4377 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4378 			i_mmap_lock_read(mapping);
4379 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4380 			goto out;
4381 		}
4382 
4383 		page = alloc_huge_page(vma, haddr, 0);
4384 		if (IS_ERR(page)) {
4385 			/*
4386 			 * Returning error will result in faulting task being
4387 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4388 			 * tasks from racing to fault in the same page which
4389 			 * could result in false unable to allocate errors.
4390 			 * Page migration does not take the fault mutex, but
4391 			 * does a clear then write of pte's under page table
4392 			 * lock.  Page fault code could race with migration,
4393 			 * notice the clear pte and try to allocate a page
4394 			 * here.  Before returning error, get ptl and make
4395 			 * sure there really is no pte entry.
4396 			 */
4397 			ptl = huge_pte_lock(h, mm, ptep);
4398 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4399 				ret = 0;
4400 				spin_unlock(ptl);
4401 				goto out;
4402 			}
4403 			spin_unlock(ptl);
4404 			ret = vmf_error(PTR_ERR(page));
4405 			goto out;
4406 		}
4407 		clear_huge_page(page, address, pages_per_huge_page(h));
4408 		__SetPageUptodate(page);
4409 		new_page = true;
4410 
4411 		if (vma->vm_flags & VM_MAYSHARE) {
4412 			int err = huge_add_to_page_cache(page, mapping, idx);
4413 			if (err) {
4414 				put_page(page);
4415 				if (err == -EEXIST)
4416 					goto retry;
4417 				goto out;
4418 			}
4419 		} else {
4420 			lock_page(page);
4421 			if (unlikely(anon_vma_prepare(vma))) {
4422 				ret = VM_FAULT_OOM;
4423 				goto backout_unlocked;
4424 			}
4425 			anon_rmap = 1;
4426 		}
4427 	} else {
4428 		/*
4429 		 * If memory error occurs between mmap() and fault, some process
4430 		 * don't have hwpoisoned swap entry for errored virtual address.
4431 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4432 		 */
4433 		if (unlikely(PageHWPoison(page))) {
4434 			ret = VM_FAULT_HWPOISON |
4435 				VM_FAULT_SET_HINDEX(hstate_index(h));
4436 			goto backout_unlocked;
4437 		}
4438 	}
4439 
4440 	/*
4441 	 * If we are going to COW a private mapping later, we examine the
4442 	 * pending reservations for this page now. This will ensure that
4443 	 * any allocations necessary to record that reservation occur outside
4444 	 * the spinlock.
4445 	 */
4446 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4447 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4448 			ret = VM_FAULT_OOM;
4449 			goto backout_unlocked;
4450 		}
4451 		/* Just decrements count, does not deallocate */
4452 		vma_end_reservation(h, vma, haddr);
4453 	}
4454 
4455 	ptl = huge_pte_lock(h, mm, ptep);
4456 	ret = 0;
4457 	if (!huge_pte_none(huge_ptep_get(ptep)))
4458 		goto backout;
4459 
4460 	if (anon_rmap) {
4461 		ClearPagePrivate(page);
4462 		hugepage_add_new_anon_rmap(page, vma, haddr);
4463 	} else
4464 		page_dup_rmap(page, true);
4465 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4466 				&& (vma->vm_flags & VM_SHARED)));
4467 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4468 
4469 	hugetlb_count_add(pages_per_huge_page(h), mm);
4470 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4471 		/* Optimization, do the COW without a second fault */
4472 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4473 	}
4474 
4475 	spin_unlock(ptl);
4476 
4477 	/*
4478 	 * Only make newly allocated pages active.  Existing pages found
4479 	 * in the pagecache could be !page_huge_active() if they have been
4480 	 * isolated for migration.
4481 	 */
4482 	if (new_page)
4483 		set_page_huge_active(page);
4484 
4485 	unlock_page(page);
4486 out:
4487 	return ret;
4488 
4489 backout:
4490 	spin_unlock(ptl);
4491 backout_unlocked:
4492 	unlock_page(page);
4493 	restore_reserve_on_error(h, vma, haddr, page);
4494 	put_page(page);
4495 	goto out;
4496 }
4497 
4498 #ifdef CONFIG_SMP
4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4500 {
4501 	unsigned long key[2];
4502 	u32 hash;
4503 
4504 	key[0] = (unsigned long) mapping;
4505 	key[1] = idx;
4506 
4507 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4508 
4509 	return hash & (num_fault_mutexes - 1);
4510 }
4511 #else
4512 /*
4513  * For uniprocesor systems we always use a single mutex, so just
4514  * return 0 and avoid the hashing overhead.
4515  */
4516 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4517 {
4518 	return 0;
4519 }
4520 #endif
4521 
4522 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4523 			unsigned long address, unsigned int flags)
4524 {
4525 	pte_t *ptep, entry;
4526 	spinlock_t *ptl;
4527 	vm_fault_t ret;
4528 	u32 hash;
4529 	pgoff_t idx;
4530 	struct page *page = NULL;
4531 	struct page *pagecache_page = NULL;
4532 	struct hstate *h = hstate_vma(vma);
4533 	struct address_space *mapping;
4534 	int need_wait_lock = 0;
4535 	unsigned long haddr = address & huge_page_mask(h);
4536 
4537 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4538 	if (ptep) {
4539 		/*
4540 		 * Since we hold no locks, ptep could be stale.  That is
4541 		 * OK as we are only making decisions based on content and
4542 		 * not actually modifying content here.
4543 		 */
4544 		entry = huge_ptep_get(ptep);
4545 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4546 			migration_entry_wait_huge(vma, mm, ptep);
4547 			return 0;
4548 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4549 			return VM_FAULT_HWPOISON_LARGE |
4550 				VM_FAULT_SET_HINDEX(hstate_index(h));
4551 	}
4552 
4553 	/*
4554 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4555 	 * until finished with ptep.  This serves two purposes:
4556 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4557 	 *    and making the ptep no longer valid.
4558 	 * 2) It synchronizes us with i_size modifications during truncation.
4559 	 *
4560 	 * ptep could have already be assigned via huge_pte_offset.  That
4561 	 * is OK, as huge_pte_alloc will return the same value unless
4562 	 * something has changed.
4563 	 */
4564 	mapping = vma->vm_file->f_mapping;
4565 	i_mmap_lock_read(mapping);
4566 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4567 	if (!ptep) {
4568 		i_mmap_unlock_read(mapping);
4569 		return VM_FAULT_OOM;
4570 	}
4571 
4572 	/*
4573 	 * Serialize hugepage allocation and instantiation, so that we don't
4574 	 * get spurious allocation failures if two CPUs race to instantiate
4575 	 * the same page in the page cache.
4576 	 */
4577 	idx = vma_hugecache_offset(h, vma, haddr);
4578 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4579 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4580 
4581 	entry = huge_ptep_get(ptep);
4582 	if (huge_pte_none(entry)) {
4583 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4584 		goto out_mutex;
4585 	}
4586 
4587 	ret = 0;
4588 
4589 	/*
4590 	 * entry could be a migration/hwpoison entry at this point, so this
4591 	 * check prevents the kernel from going below assuming that we have
4592 	 * an active hugepage in pagecache. This goto expects the 2nd page
4593 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4594 	 * properly handle it.
4595 	 */
4596 	if (!pte_present(entry))
4597 		goto out_mutex;
4598 
4599 	/*
4600 	 * If we are going to COW the mapping later, we examine the pending
4601 	 * reservations for this page now. This will ensure that any
4602 	 * allocations necessary to record that reservation occur outside the
4603 	 * spinlock. For private mappings, we also lookup the pagecache
4604 	 * page now as it is used to determine if a reservation has been
4605 	 * consumed.
4606 	 */
4607 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4608 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4609 			ret = VM_FAULT_OOM;
4610 			goto out_mutex;
4611 		}
4612 		/* Just decrements count, does not deallocate */
4613 		vma_end_reservation(h, vma, haddr);
4614 
4615 		if (!(vma->vm_flags & VM_MAYSHARE))
4616 			pagecache_page = hugetlbfs_pagecache_page(h,
4617 								vma, haddr);
4618 	}
4619 
4620 	ptl = huge_pte_lock(h, mm, ptep);
4621 
4622 	/* Check for a racing update before calling hugetlb_cow */
4623 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4624 		goto out_ptl;
4625 
4626 	/*
4627 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4628 	 * pagecache_page, so here we need take the former one
4629 	 * when page != pagecache_page or !pagecache_page.
4630 	 */
4631 	page = pte_page(entry);
4632 	if (page != pagecache_page)
4633 		if (!trylock_page(page)) {
4634 			need_wait_lock = 1;
4635 			goto out_ptl;
4636 		}
4637 
4638 	get_page(page);
4639 
4640 	if (flags & FAULT_FLAG_WRITE) {
4641 		if (!huge_pte_write(entry)) {
4642 			ret = hugetlb_cow(mm, vma, address, ptep,
4643 					  pagecache_page, ptl);
4644 			goto out_put_page;
4645 		}
4646 		entry = huge_pte_mkdirty(entry);
4647 	}
4648 	entry = pte_mkyoung(entry);
4649 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4650 						flags & FAULT_FLAG_WRITE))
4651 		update_mmu_cache(vma, haddr, ptep);
4652 out_put_page:
4653 	if (page != pagecache_page)
4654 		unlock_page(page);
4655 	put_page(page);
4656 out_ptl:
4657 	spin_unlock(ptl);
4658 
4659 	if (pagecache_page) {
4660 		unlock_page(pagecache_page);
4661 		put_page(pagecache_page);
4662 	}
4663 out_mutex:
4664 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4665 	i_mmap_unlock_read(mapping);
4666 	/*
4667 	 * Generally it's safe to hold refcount during waiting page lock. But
4668 	 * here we just wait to defer the next page fault to avoid busy loop and
4669 	 * the page is not used after unlocked before returning from the current
4670 	 * page fault. So we are safe from accessing freed page, even if we wait
4671 	 * here without taking refcount.
4672 	 */
4673 	if (need_wait_lock)
4674 		wait_on_page_locked(page);
4675 	return ret;
4676 }
4677 
4678 /*
4679  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4680  * modifications for huge pages.
4681  */
4682 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4683 			    pte_t *dst_pte,
4684 			    struct vm_area_struct *dst_vma,
4685 			    unsigned long dst_addr,
4686 			    unsigned long src_addr,
4687 			    struct page **pagep)
4688 {
4689 	struct address_space *mapping;
4690 	pgoff_t idx;
4691 	unsigned long size;
4692 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4693 	struct hstate *h = hstate_vma(dst_vma);
4694 	pte_t _dst_pte;
4695 	spinlock_t *ptl;
4696 	int ret;
4697 	struct page *page;
4698 
4699 	if (!*pagep) {
4700 		ret = -ENOMEM;
4701 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4702 		if (IS_ERR(page))
4703 			goto out;
4704 
4705 		ret = copy_huge_page_from_user(page,
4706 						(const void __user *) src_addr,
4707 						pages_per_huge_page(h), false);
4708 
4709 		/* fallback to copy_from_user outside mmap_lock */
4710 		if (unlikely(ret)) {
4711 			ret = -ENOENT;
4712 			*pagep = page;
4713 			/* don't free the page */
4714 			goto out;
4715 		}
4716 	} else {
4717 		page = *pagep;
4718 		*pagep = NULL;
4719 	}
4720 
4721 	/*
4722 	 * The memory barrier inside __SetPageUptodate makes sure that
4723 	 * preceding stores to the page contents become visible before
4724 	 * the set_pte_at() write.
4725 	 */
4726 	__SetPageUptodate(page);
4727 
4728 	mapping = dst_vma->vm_file->f_mapping;
4729 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4730 
4731 	/*
4732 	 * If shared, add to page cache
4733 	 */
4734 	if (vm_shared) {
4735 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4736 		ret = -EFAULT;
4737 		if (idx >= size)
4738 			goto out_release_nounlock;
4739 
4740 		/*
4741 		 * Serialization between remove_inode_hugepages() and
4742 		 * huge_add_to_page_cache() below happens through the
4743 		 * hugetlb_fault_mutex_table that here must be hold by
4744 		 * the caller.
4745 		 */
4746 		ret = huge_add_to_page_cache(page, mapping, idx);
4747 		if (ret)
4748 			goto out_release_nounlock;
4749 	}
4750 
4751 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4752 	spin_lock(ptl);
4753 
4754 	/*
4755 	 * Recheck the i_size after holding PT lock to make sure not
4756 	 * to leave any page mapped (as page_mapped()) beyond the end
4757 	 * of the i_size (remove_inode_hugepages() is strict about
4758 	 * enforcing that). If we bail out here, we'll also leave a
4759 	 * page in the radix tree in the vm_shared case beyond the end
4760 	 * of the i_size, but remove_inode_hugepages() will take care
4761 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4762 	 */
4763 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4764 	ret = -EFAULT;
4765 	if (idx >= size)
4766 		goto out_release_unlock;
4767 
4768 	ret = -EEXIST;
4769 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4770 		goto out_release_unlock;
4771 
4772 	if (vm_shared) {
4773 		page_dup_rmap(page, true);
4774 	} else {
4775 		ClearPagePrivate(page);
4776 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4777 	}
4778 
4779 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4780 	if (dst_vma->vm_flags & VM_WRITE)
4781 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4782 	_dst_pte = pte_mkyoung(_dst_pte);
4783 
4784 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4785 
4786 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4787 					dst_vma->vm_flags & VM_WRITE);
4788 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4789 
4790 	/* No need to invalidate - it was non-present before */
4791 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4792 
4793 	spin_unlock(ptl);
4794 	set_page_huge_active(page);
4795 	if (vm_shared)
4796 		unlock_page(page);
4797 	ret = 0;
4798 out:
4799 	return ret;
4800 out_release_unlock:
4801 	spin_unlock(ptl);
4802 	if (vm_shared)
4803 		unlock_page(page);
4804 out_release_nounlock:
4805 	put_page(page);
4806 	goto out;
4807 }
4808 
4809 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4810 			 struct page **pages, struct vm_area_struct **vmas,
4811 			 unsigned long *position, unsigned long *nr_pages,
4812 			 long i, unsigned int flags, int *locked)
4813 {
4814 	unsigned long pfn_offset;
4815 	unsigned long vaddr = *position;
4816 	unsigned long remainder = *nr_pages;
4817 	struct hstate *h = hstate_vma(vma);
4818 	int err = -EFAULT;
4819 
4820 	while (vaddr < vma->vm_end && remainder) {
4821 		pte_t *pte;
4822 		spinlock_t *ptl = NULL;
4823 		int absent;
4824 		struct page *page;
4825 
4826 		/*
4827 		 * If we have a pending SIGKILL, don't keep faulting pages and
4828 		 * potentially allocating memory.
4829 		 */
4830 		if (fatal_signal_pending(current)) {
4831 			remainder = 0;
4832 			break;
4833 		}
4834 
4835 		/*
4836 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4837 		 * each hugepage.  We have to make sure we get the
4838 		 * first, for the page indexing below to work.
4839 		 *
4840 		 * Note that page table lock is not held when pte is null.
4841 		 */
4842 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4843 				      huge_page_size(h));
4844 		if (pte)
4845 			ptl = huge_pte_lock(h, mm, pte);
4846 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4847 
4848 		/*
4849 		 * When coredumping, it suits get_dump_page if we just return
4850 		 * an error where there's an empty slot with no huge pagecache
4851 		 * to back it.  This way, we avoid allocating a hugepage, and
4852 		 * the sparse dumpfile avoids allocating disk blocks, but its
4853 		 * huge holes still show up with zeroes where they need to be.
4854 		 */
4855 		if (absent && (flags & FOLL_DUMP) &&
4856 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4857 			if (pte)
4858 				spin_unlock(ptl);
4859 			remainder = 0;
4860 			break;
4861 		}
4862 
4863 		/*
4864 		 * We need call hugetlb_fault for both hugepages under migration
4865 		 * (in which case hugetlb_fault waits for the migration,) and
4866 		 * hwpoisoned hugepages (in which case we need to prevent the
4867 		 * caller from accessing to them.) In order to do this, we use
4868 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4869 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4870 		 * both cases, and because we can't follow correct pages
4871 		 * directly from any kind of swap entries.
4872 		 */
4873 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4874 		    ((flags & FOLL_WRITE) &&
4875 		      !huge_pte_write(huge_ptep_get(pte)))) {
4876 			vm_fault_t ret;
4877 			unsigned int fault_flags = 0;
4878 
4879 			if (pte)
4880 				spin_unlock(ptl);
4881 			if (flags & FOLL_WRITE)
4882 				fault_flags |= FAULT_FLAG_WRITE;
4883 			if (locked)
4884 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4885 					FAULT_FLAG_KILLABLE;
4886 			if (flags & FOLL_NOWAIT)
4887 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4888 					FAULT_FLAG_RETRY_NOWAIT;
4889 			if (flags & FOLL_TRIED) {
4890 				/*
4891 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4892 				 * FAULT_FLAG_TRIED can co-exist
4893 				 */
4894 				fault_flags |= FAULT_FLAG_TRIED;
4895 			}
4896 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4897 			if (ret & VM_FAULT_ERROR) {
4898 				err = vm_fault_to_errno(ret, flags);
4899 				remainder = 0;
4900 				break;
4901 			}
4902 			if (ret & VM_FAULT_RETRY) {
4903 				if (locked &&
4904 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4905 					*locked = 0;
4906 				*nr_pages = 0;
4907 				/*
4908 				 * VM_FAULT_RETRY must not return an
4909 				 * error, it will return zero
4910 				 * instead.
4911 				 *
4912 				 * No need to update "position" as the
4913 				 * caller will not check it after
4914 				 * *nr_pages is set to 0.
4915 				 */
4916 				return i;
4917 			}
4918 			continue;
4919 		}
4920 
4921 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4922 		page = pte_page(huge_ptep_get(pte));
4923 
4924 		/*
4925 		 * If subpage information not requested, update counters
4926 		 * and skip the same_page loop below.
4927 		 */
4928 		if (!pages && !vmas && !pfn_offset &&
4929 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4930 		    (remainder >= pages_per_huge_page(h))) {
4931 			vaddr += huge_page_size(h);
4932 			remainder -= pages_per_huge_page(h);
4933 			i += pages_per_huge_page(h);
4934 			spin_unlock(ptl);
4935 			continue;
4936 		}
4937 
4938 same_page:
4939 		if (pages) {
4940 			pages[i] = mem_map_offset(page, pfn_offset);
4941 			/*
4942 			 * try_grab_page() should always succeed here, because:
4943 			 * a) we hold the ptl lock, and b) we've just checked
4944 			 * that the huge page is present in the page tables. If
4945 			 * the huge page is present, then the tail pages must
4946 			 * also be present. The ptl prevents the head page and
4947 			 * tail pages from being rearranged in any way. So this
4948 			 * page must be available at this point, unless the page
4949 			 * refcount overflowed:
4950 			 */
4951 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4952 				spin_unlock(ptl);
4953 				remainder = 0;
4954 				err = -ENOMEM;
4955 				break;
4956 			}
4957 		}
4958 
4959 		if (vmas)
4960 			vmas[i] = vma;
4961 
4962 		vaddr += PAGE_SIZE;
4963 		++pfn_offset;
4964 		--remainder;
4965 		++i;
4966 		if (vaddr < vma->vm_end && remainder &&
4967 				pfn_offset < pages_per_huge_page(h)) {
4968 			/*
4969 			 * We use pfn_offset to avoid touching the pageframes
4970 			 * of this compound page.
4971 			 */
4972 			goto same_page;
4973 		}
4974 		spin_unlock(ptl);
4975 	}
4976 	*nr_pages = remainder;
4977 	/*
4978 	 * setting position is actually required only if remainder is
4979 	 * not zero but it's faster not to add a "if (remainder)"
4980 	 * branch.
4981 	 */
4982 	*position = vaddr;
4983 
4984 	return i ? i : err;
4985 }
4986 
4987 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4988 /*
4989  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4990  * implement this.
4991  */
4992 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4993 #endif
4994 
4995 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4996 		unsigned long address, unsigned long end, pgprot_t newprot)
4997 {
4998 	struct mm_struct *mm = vma->vm_mm;
4999 	unsigned long start = address;
5000 	pte_t *ptep;
5001 	pte_t pte;
5002 	struct hstate *h = hstate_vma(vma);
5003 	unsigned long pages = 0;
5004 	bool shared_pmd = false;
5005 	struct mmu_notifier_range range;
5006 
5007 	/*
5008 	 * In the case of shared PMDs, the area to flush could be beyond
5009 	 * start/end.  Set range.start/range.end to cover the maximum possible
5010 	 * range if PMD sharing is possible.
5011 	 */
5012 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5013 				0, vma, mm, start, end);
5014 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5015 
5016 	BUG_ON(address >= end);
5017 	flush_cache_range(vma, range.start, range.end);
5018 
5019 	mmu_notifier_invalidate_range_start(&range);
5020 	i_mmap_lock_write(vma->vm_file->f_mapping);
5021 	for (; address < end; address += huge_page_size(h)) {
5022 		spinlock_t *ptl;
5023 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5024 		if (!ptep)
5025 			continue;
5026 		ptl = huge_pte_lock(h, mm, ptep);
5027 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5028 			pages++;
5029 			spin_unlock(ptl);
5030 			shared_pmd = true;
5031 			continue;
5032 		}
5033 		pte = huge_ptep_get(ptep);
5034 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5035 			spin_unlock(ptl);
5036 			continue;
5037 		}
5038 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5039 			swp_entry_t entry = pte_to_swp_entry(pte);
5040 
5041 			if (is_write_migration_entry(entry)) {
5042 				pte_t newpte;
5043 
5044 				make_migration_entry_read(&entry);
5045 				newpte = swp_entry_to_pte(entry);
5046 				set_huge_swap_pte_at(mm, address, ptep,
5047 						     newpte, huge_page_size(h));
5048 				pages++;
5049 			}
5050 			spin_unlock(ptl);
5051 			continue;
5052 		}
5053 		if (!huge_pte_none(pte)) {
5054 			pte_t old_pte;
5055 
5056 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5057 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5058 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5059 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5060 			pages++;
5061 		}
5062 		spin_unlock(ptl);
5063 	}
5064 	/*
5065 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5066 	 * may have cleared our pud entry and done put_page on the page table:
5067 	 * once we release i_mmap_rwsem, another task can do the final put_page
5068 	 * and that page table be reused and filled with junk.  If we actually
5069 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5070 	 */
5071 	if (shared_pmd)
5072 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5073 	else
5074 		flush_hugetlb_tlb_range(vma, start, end);
5075 	/*
5076 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5077 	 * page table protection not changing it to point to a new page.
5078 	 *
5079 	 * See Documentation/vm/mmu_notifier.rst
5080 	 */
5081 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5082 	mmu_notifier_invalidate_range_end(&range);
5083 
5084 	return pages << h->order;
5085 }
5086 
5087 int hugetlb_reserve_pages(struct inode *inode,
5088 					long from, long to,
5089 					struct vm_area_struct *vma,
5090 					vm_flags_t vm_flags)
5091 {
5092 	long ret, chg, add = -1;
5093 	struct hstate *h = hstate_inode(inode);
5094 	struct hugepage_subpool *spool = subpool_inode(inode);
5095 	struct resv_map *resv_map;
5096 	struct hugetlb_cgroup *h_cg = NULL;
5097 	long gbl_reserve, regions_needed = 0;
5098 
5099 	/* This should never happen */
5100 	if (from > to) {
5101 		VM_WARN(1, "%s called with a negative range\n", __func__);
5102 		return -EINVAL;
5103 	}
5104 
5105 	/*
5106 	 * Only apply hugepage reservation if asked. At fault time, an
5107 	 * attempt will be made for VM_NORESERVE to allocate a page
5108 	 * without using reserves
5109 	 */
5110 	if (vm_flags & VM_NORESERVE)
5111 		return 0;
5112 
5113 	/*
5114 	 * Shared mappings base their reservation on the number of pages that
5115 	 * are already allocated on behalf of the file. Private mappings need
5116 	 * to reserve the full area even if read-only as mprotect() may be
5117 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5118 	 */
5119 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5120 		/*
5121 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5122 		 * called for inodes for which resv_maps were created (see
5123 		 * hugetlbfs_get_inode).
5124 		 */
5125 		resv_map = inode_resv_map(inode);
5126 
5127 		chg = region_chg(resv_map, from, to, &regions_needed);
5128 
5129 	} else {
5130 		/* Private mapping. */
5131 		resv_map = resv_map_alloc();
5132 		if (!resv_map)
5133 			return -ENOMEM;
5134 
5135 		chg = to - from;
5136 
5137 		set_vma_resv_map(vma, resv_map);
5138 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5139 	}
5140 
5141 	if (chg < 0) {
5142 		ret = chg;
5143 		goto out_err;
5144 	}
5145 
5146 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5147 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5148 
5149 	if (ret < 0) {
5150 		ret = -ENOMEM;
5151 		goto out_err;
5152 	}
5153 
5154 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5155 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5156 		 * of the resv_map.
5157 		 */
5158 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5159 	}
5160 
5161 	/*
5162 	 * There must be enough pages in the subpool for the mapping. If
5163 	 * the subpool has a minimum size, there may be some global
5164 	 * reservations already in place (gbl_reserve).
5165 	 */
5166 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5167 	if (gbl_reserve < 0) {
5168 		ret = -ENOSPC;
5169 		goto out_uncharge_cgroup;
5170 	}
5171 
5172 	/*
5173 	 * Check enough hugepages are available for the reservation.
5174 	 * Hand the pages back to the subpool if there are not
5175 	 */
5176 	ret = hugetlb_acct_memory(h, gbl_reserve);
5177 	if (ret < 0) {
5178 		goto out_put_pages;
5179 	}
5180 
5181 	/*
5182 	 * Account for the reservations made. Shared mappings record regions
5183 	 * that have reservations as they are shared by multiple VMAs.
5184 	 * When the last VMA disappears, the region map says how much
5185 	 * the reservation was and the page cache tells how much of
5186 	 * the reservation was consumed. Private mappings are per-VMA and
5187 	 * only the consumed reservations are tracked. When the VMA
5188 	 * disappears, the original reservation is the VMA size and the
5189 	 * consumed reservations are stored in the map. Hence, nothing
5190 	 * else has to be done for private mappings here
5191 	 */
5192 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5193 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5194 
5195 		if (unlikely(add < 0)) {
5196 			hugetlb_acct_memory(h, -gbl_reserve);
5197 			goto out_put_pages;
5198 		} else if (unlikely(chg > add)) {
5199 			/*
5200 			 * pages in this range were added to the reserve
5201 			 * map between region_chg and region_add.  This
5202 			 * indicates a race with alloc_huge_page.  Adjust
5203 			 * the subpool and reserve counts modified above
5204 			 * based on the difference.
5205 			 */
5206 			long rsv_adjust;
5207 
5208 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5209 				hstate_index(h),
5210 				(chg - add) * pages_per_huge_page(h), h_cg);
5211 
5212 			rsv_adjust = hugepage_subpool_put_pages(spool,
5213 								chg - add);
5214 			hugetlb_acct_memory(h, -rsv_adjust);
5215 		}
5216 	}
5217 	return 0;
5218 out_put_pages:
5219 	/* put back original number of pages, chg */
5220 	(void)hugepage_subpool_put_pages(spool, chg);
5221 out_uncharge_cgroup:
5222 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5223 					    chg * pages_per_huge_page(h), h_cg);
5224 out_err:
5225 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5226 		/* Only call region_abort if the region_chg succeeded but the
5227 		 * region_add failed or didn't run.
5228 		 */
5229 		if (chg >= 0 && add < 0)
5230 			region_abort(resv_map, from, to, regions_needed);
5231 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5232 		kref_put(&resv_map->refs, resv_map_release);
5233 	return ret;
5234 }
5235 
5236 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5237 								long freed)
5238 {
5239 	struct hstate *h = hstate_inode(inode);
5240 	struct resv_map *resv_map = inode_resv_map(inode);
5241 	long chg = 0;
5242 	struct hugepage_subpool *spool = subpool_inode(inode);
5243 	long gbl_reserve;
5244 
5245 	/*
5246 	 * Since this routine can be called in the evict inode path for all
5247 	 * hugetlbfs inodes, resv_map could be NULL.
5248 	 */
5249 	if (resv_map) {
5250 		chg = region_del(resv_map, start, end);
5251 		/*
5252 		 * region_del() can fail in the rare case where a region
5253 		 * must be split and another region descriptor can not be
5254 		 * allocated.  If end == LONG_MAX, it will not fail.
5255 		 */
5256 		if (chg < 0)
5257 			return chg;
5258 	}
5259 
5260 	spin_lock(&inode->i_lock);
5261 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5262 	spin_unlock(&inode->i_lock);
5263 
5264 	/*
5265 	 * If the subpool has a minimum size, the number of global
5266 	 * reservations to be released may be adjusted.
5267 	 */
5268 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5269 	hugetlb_acct_memory(h, -gbl_reserve);
5270 
5271 	return 0;
5272 }
5273 
5274 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5275 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5276 				struct vm_area_struct *vma,
5277 				unsigned long addr, pgoff_t idx)
5278 {
5279 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5280 				svma->vm_start;
5281 	unsigned long sbase = saddr & PUD_MASK;
5282 	unsigned long s_end = sbase + PUD_SIZE;
5283 
5284 	/* Allow segments to share if only one is marked locked */
5285 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5286 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5287 
5288 	/*
5289 	 * match the virtual addresses, permission and the alignment of the
5290 	 * page table page.
5291 	 */
5292 	if (pmd_index(addr) != pmd_index(saddr) ||
5293 	    vm_flags != svm_flags ||
5294 	    sbase < svma->vm_start || svma->vm_end < s_end)
5295 		return 0;
5296 
5297 	return saddr;
5298 }
5299 
5300 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5301 {
5302 	unsigned long base = addr & PUD_MASK;
5303 	unsigned long end = base + PUD_SIZE;
5304 
5305 	/*
5306 	 * check on proper vm_flags and page table alignment
5307 	 */
5308 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5309 		return true;
5310 	return false;
5311 }
5312 
5313 /*
5314  * Determine if start,end range within vma could be mapped by shared pmd.
5315  * If yes, adjust start and end to cover range associated with possible
5316  * shared pmd mappings.
5317  */
5318 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5319 				unsigned long *start, unsigned long *end)
5320 {
5321 	unsigned long a_start, a_end;
5322 
5323 	if (!(vma->vm_flags & VM_MAYSHARE))
5324 		return;
5325 
5326 	/* Extend the range to be PUD aligned for a worst case scenario */
5327 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5328 	a_end = ALIGN(*end, PUD_SIZE);
5329 
5330 	/*
5331 	 * Intersect the range with the vma range, since pmd sharing won't be
5332 	 * across vma after all
5333 	 */
5334 	*start = max(vma->vm_start, a_start);
5335 	*end = min(vma->vm_end, a_end);
5336 }
5337 
5338 /*
5339  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5340  * and returns the corresponding pte. While this is not necessary for the
5341  * !shared pmd case because we can allocate the pmd later as well, it makes the
5342  * code much cleaner.
5343  *
5344  * This routine must be called with i_mmap_rwsem held in at least read mode if
5345  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5346  * table entries associated with the address space.  This is important as we
5347  * are setting up sharing based on existing page table entries (mappings).
5348  *
5349  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5350  * huge_pte_alloc know that sharing is not possible and do not take
5351  * i_mmap_rwsem as a performance optimization.  This is handled by the
5352  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5353  * only required for subsequent processing.
5354  */
5355 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5356 {
5357 	struct vm_area_struct *vma = find_vma(mm, addr);
5358 	struct address_space *mapping = vma->vm_file->f_mapping;
5359 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5360 			vma->vm_pgoff;
5361 	struct vm_area_struct *svma;
5362 	unsigned long saddr;
5363 	pte_t *spte = NULL;
5364 	pte_t *pte;
5365 	spinlock_t *ptl;
5366 
5367 	if (!vma_shareable(vma, addr))
5368 		return (pte_t *)pmd_alloc(mm, pud, addr);
5369 
5370 	i_mmap_assert_locked(mapping);
5371 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 		if (svma == vma)
5373 			continue;
5374 
5375 		saddr = page_table_shareable(svma, vma, addr, idx);
5376 		if (saddr) {
5377 			spte = huge_pte_offset(svma->vm_mm, saddr,
5378 					       vma_mmu_pagesize(svma));
5379 			if (spte) {
5380 				get_page(virt_to_page(spte));
5381 				break;
5382 			}
5383 		}
5384 	}
5385 
5386 	if (!spte)
5387 		goto out;
5388 
5389 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390 	if (pud_none(*pud)) {
5391 		pud_populate(mm, pud,
5392 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5393 		mm_inc_nr_pmds(mm);
5394 	} else {
5395 		put_page(virt_to_page(spte));
5396 	}
5397 	spin_unlock(ptl);
5398 out:
5399 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400 	return pte;
5401 }
5402 
5403 /*
5404  * unmap huge page backed by shared pte.
5405  *
5406  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407  * indicated by page_count > 1, unmap is achieved by clearing pud and
5408  * decrementing the ref count. If count == 1, the pte page is not shared.
5409  *
5410  * Called with page table lock held and i_mmap_rwsem held in write mode.
5411  *
5412  * returns: 1 successfully unmapped a shared pte page
5413  *	    0 the underlying pte page is not shared, or it is the last user
5414  */
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 					unsigned long *addr, pte_t *ptep)
5417 {
5418 	pgd_t *pgd = pgd_offset(mm, *addr);
5419 	p4d_t *p4d = p4d_offset(pgd, *addr);
5420 	pud_t *pud = pud_offset(p4d, *addr);
5421 
5422 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424 	if (page_count(virt_to_page(ptep)) == 1)
5425 		return 0;
5426 
5427 	pud_clear(pud);
5428 	put_page(virt_to_page(ptep));
5429 	mm_dec_nr_pmds(mm);
5430 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431 	return 1;
5432 }
5433 #define want_pmd_share()	(1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436 {
5437 	return NULL;
5438 }
5439 
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 				unsigned long *addr, pte_t *ptep)
5442 {
5443 	return 0;
5444 }
5445 
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447 				unsigned long *start, unsigned long *end)
5448 {
5449 }
5450 #define want_pmd_share()	(0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452 
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t *huge_pte_alloc(struct mm_struct *mm,
5455 			unsigned long addr, unsigned long sz)
5456 {
5457 	pgd_t *pgd;
5458 	p4d_t *p4d;
5459 	pud_t *pud;
5460 	pte_t *pte = NULL;
5461 
5462 	pgd = pgd_offset(mm, addr);
5463 	p4d = p4d_alloc(mm, pgd, addr);
5464 	if (!p4d)
5465 		return NULL;
5466 	pud = pud_alloc(mm, p4d, addr);
5467 	if (pud) {
5468 		if (sz == PUD_SIZE) {
5469 			pte = (pte_t *)pud;
5470 		} else {
5471 			BUG_ON(sz != PMD_SIZE);
5472 			if (want_pmd_share() && pud_none(*pud))
5473 				pte = huge_pmd_share(mm, addr, pud);
5474 			else
5475 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476 		}
5477 	}
5478 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479 
5480 	return pte;
5481 }
5482 
5483 /*
5484  * huge_pte_offset() - Walk the page table to resolve the hugepage
5485  * entry at address @addr
5486  *
5487  * Return: Pointer to page table entry (PUD or PMD) for
5488  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489  * size @sz doesn't match the hugepage size at this level of the page
5490  * table.
5491  */
5492 pte_t *huge_pte_offset(struct mm_struct *mm,
5493 		       unsigned long addr, unsigned long sz)
5494 {
5495 	pgd_t *pgd;
5496 	p4d_t *p4d;
5497 	pud_t *pud;
5498 	pmd_t *pmd;
5499 
5500 	pgd = pgd_offset(mm, addr);
5501 	if (!pgd_present(*pgd))
5502 		return NULL;
5503 	p4d = p4d_offset(pgd, addr);
5504 	if (!p4d_present(*p4d))
5505 		return NULL;
5506 
5507 	pud = pud_offset(p4d, addr);
5508 	if (sz == PUD_SIZE)
5509 		/* must be pud huge, non-present or none */
5510 		return (pte_t *)pud;
5511 	if (!pud_present(*pud))
5512 		return NULL;
5513 	/* must have a valid entry and size to go further */
5514 
5515 	pmd = pmd_offset(pud, addr);
5516 	/* must be pmd huge, non-present or none */
5517 	return (pte_t *)pmd;
5518 }
5519 
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521 
5522 /*
5523  * These functions are overwritable if your architecture needs its own
5524  * behavior.
5525  */
5526 struct page * __weak
5527 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528 			      int write)
5529 {
5530 	return ERR_PTR(-EINVAL);
5531 }
5532 
5533 struct page * __weak
5534 follow_huge_pd(struct vm_area_struct *vma,
5535 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536 {
5537 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538 	return NULL;
5539 }
5540 
5541 struct page * __weak
5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543 		pmd_t *pmd, int flags)
5544 {
5545 	struct page *page = NULL;
5546 	spinlock_t *ptl;
5547 	pte_t pte;
5548 
5549 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551 			 (FOLL_PIN | FOLL_GET)))
5552 		return NULL;
5553 
5554 retry:
5555 	ptl = pmd_lockptr(mm, pmd);
5556 	spin_lock(ptl);
5557 	/*
5558 	 * make sure that the address range covered by this pmd is not
5559 	 * unmapped from other threads.
5560 	 */
5561 	if (!pmd_huge(*pmd))
5562 		goto out;
5563 	pte = huge_ptep_get((pte_t *)pmd);
5564 	if (pte_present(pte)) {
5565 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566 		/*
5567 		 * try_grab_page() should always succeed here, because: a) we
5568 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 		 * huge pmd (head) page is present in the page tables. The ptl
5570 		 * prevents the head page and tail pages from being rearranged
5571 		 * in any way. So this page must be available at this point,
5572 		 * unless the page refcount overflowed:
5573 		 */
5574 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575 			page = NULL;
5576 			goto out;
5577 		}
5578 	} else {
5579 		if (is_hugetlb_entry_migration(pte)) {
5580 			spin_unlock(ptl);
5581 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582 			goto retry;
5583 		}
5584 		/*
5585 		 * hwpoisoned entry is treated as no_page_table in
5586 		 * follow_page_mask().
5587 		 */
5588 	}
5589 out:
5590 	spin_unlock(ptl);
5591 	return page;
5592 }
5593 
5594 struct page * __weak
5595 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596 		pud_t *pud, int flags)
5597 {
5598 	if (flags & (FOLL_GET | FOLL_PIN))
5599 		return NULL;
5600 
5601 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602 }
5603 
5604 struct page * __weak
5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606 {
5607 	if (flags & (FOLL_GET | FOLL_PIN))
5608 		return NULL;
5609 
5610 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611 }
5612 
5613 bool isolate_huge_page(struct page *page, struct list_head *list)
5614 {
5615 	bool ret = true;
5616 
5617 	VM_BUG_ON_PAGE(!PageHead(page), page);
5618 	spin_lock(&hugetlb_lock);
5619 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620 		ret = false;
5621 		goto unlock;
5622 	}
5623 	clear_page_huge_active(page);
5624 	list_move_tail(&page->lru, list);
5625 unlock:
5626 	spin_unlock(&hugetlb_lock);
5627 	return ret;
5628 }
5629 
5630 void putback_active_hugepage(struct page *page)
5631 {
5632 	VM_BUG_ON_PAGE(!PageHead(page), page);
5633 	spin_lock(&hugetlb_lock);
5634 	set_page_huge_active(page);
5635 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636 	spin_unlock(&hugetlb_lock);
5637 	put_page(page);
5638 }
5639 
5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641 {
5642 	struct hstate *h = page_hstate(oldpage);
5643 
5644 	hugetlb_cgroup_migrate(oldpage, newpage);
5645 	set_page_owner_migrate_reason(newpage, reason);
5646 
5647 	/*
5648 	 * transfer temporary state of the new huge page. This is
5649 	 * reverse to other transitions because the newpage is going to
5650 	 * be final while the old one will be freed so it takes over
5651 	 * the temporary status.
5652 	 *
5653 	 * Also note that we have to transfer the per-node surplus state
5654 	 * here as well otherwise the global surplus count will not match
5655 	 * the per-node's.
5656 	 */
5657 	if (PageHugeTemporary(newpage)) {
5658 		int old_nid = page_to_nid(oldpage);
5659 		int new_nid = page_to_nid(newpage);
5660 
5661 		SetPageHugeTemporary(oldpage);
5662 		ClearPageHugeTemporary(newpage);
5663 
5664 		spin_lock(&hugetlb_lock);
5665 		if (h->surplus_huge_pages_node[old_nid]) {
5666 			h->surplus_huge_pages_node[old_nid]--;
5667 			h->surplus_huge_pages_node[new_nid]++;
5668 		}
5669 		spin_unlock(&hugetlb_lock);
5670 	}
5671 }
5672 
5673 #ifdef CONFIG_CMA
5674 static bool cma_reserve_called __initdata;
5675 
5676 static int __init cmdline_parse_hugetlb_cma(char *p)
5677 {
5678 	hugetlb_cma_size = memparse(p, &p);
5679 	return 0;
5680 }
5681 
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683 
5684 void __init hugetlb_cma_reserve(int order)
5685 {
5686 	unsigned long size, reserved, per_node;
5687 	int nid;
5688 
5689 	cma_reserve_called = true;
5690 
5691 	if (!hugetlb_cma_size)
5692 		return;
5693 
5694 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 			(PAGE_SIZE << order) / SZ_1M);
5697 		return;
5698 	}
5699 
5700 	/*
5701 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5703 	 */
5704 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707 
5708 	reserved = 0;
5709 	for_each_node_state(nid, N_ONLINE) {
5710 		int res;
5711 		char name[CMA_MAX_NAME];
5712 
5713 		size = min(per_node, hugetlb_cma_size - reserved);
5714 		size = round_up(size, PAGE_SIZE << order);
5715 
5716 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5717 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718 						 0, false, name,
5719 						 &hugetlb_cma[nid], nid);
5720 		if (res) {
5721 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722 				res, nid);
5723 			continue;
5724 		}
5725 
5726 		reserved += size;
5727 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728 			size / SZ_1M, nid);
5729 
5730 		if (reserved >= hugetlb_cma_size)
5731 			break;
5732 	}
5733 }
5734 
5735 void __init hugetlb_cma_check(void)
5736 {
5737 	if (!hugetlb_cma_size || cma_reserve_called)
5738 		return;
5739 
5740 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741 }
5742 
5743 #endif /* CONFIG_CMA */
5744