1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 98 unsigned long start, unsigned long end); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* 261 * hugetlb vma_lock helper routines 262 */ 263 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 264 { 265 if (__vma_shareable_lock(vma)) { 266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 267 268 down_read(&vma_lock->rw_sema); 269 } 270 } 271 272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 273 { 274 if (__vma_shareable_lock(vma)) { 275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 276 277 up_read(&vma_lock->rw_sema); 278 } 279 } 280 281 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 282 { 283 if (__vma_shareable_lock(vma)) { 284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 285 286 down_write(&vma_lock->rw_sema); 287 } 288 } 289 290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 291 { 292 if (__vma_shareable_lock(vma)) { 293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 294 295 up_write(&vma_lock->rw_sema); 296 } 297 } 298 299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 300 { 301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 302 303 if (!__vma_shareable_lock(vma)) 304 return 1; 305 306 return down_write_trylock(&vma_lock->rw_sema); 307 } 308 309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 lockdep_assert_held(&vma_lock->rw_sema); 315 } 316 } 317 318 void hugetlb_vma_lock_release(struct kref *kref) 319 { 320 struct hugetlb_vma_lock *vma_lock = container_of(kref, 321 struct hugetlb_vma_lock, refs); 322 323 kfree(vma_lock); 324 } 325 326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 327 { 328 struct vm_area_struct *vma = vma_lock->vma; 329 330 /* 331 * vma_lock structure may or not be released as a result of put, 332 * it certainly will no longer be attached to vma so clear pointer. 333 * Semaphore synchronizes access to vma_lock->vma field. 334 */ 335 vma_lock->vma = NULL; 336 vma->vm_private_data = NULL; 337 up_write(&vma_lock->rw_sema); 338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 339 } 340 341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 342 { 343 if (__vma_shareable_lock(vma)) { 344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 345 346 __hugetlb_vma_unlock_write_put(vma_lock); 347 } 348 } 349 350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 351 { 352 /* 353 * Only present in sharable vmas. 354 */ 355 if (!vma || !__vma_shareable_lock(vma)) 356 return; 357 358 if (vma->vm_private_data) { 359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 360 361 down_write(&vma_lock->rw_sema); 362 __hugetlb_vma_unlock_write_put(vma_lock); 363 } 364 } 365 366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 367 { 368 struct hugetlb_vma_lock *vma_lock; 369 370 /* Only establish in (flags) sharable vmas */ 371 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 372 return; 373 374 /* Should never get here with non-NULL vm_private_data */ 375 if (vma->vm_private_data) 376 return; 377 378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 379 if (!vma_lock) { 380 /* 381 * If we can not allocate structure, then vma can not 382 * participate in pmd sharing. This is only a possible 383 * performance enhancement and memory saving issue. 384 * However, the lock is also used to synchronize page 385 * faults with truncation. If the lock is not present, 386 * unlikely races could leave pages in a file past i_size 387 * until the file is removed. Warn in the unlikely case of 388 * allocation failure. 389 */ 390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 391 return; 392 } 393 394 kref_init(&vma_lock->refs); 395 init_rwsem(&vma_lock->rw_sema); 396 vma_lock->vma = vma; 397 vma->vm_private_data = vma_lock; 398 } 399 400 /* Helper that removes a struct file_region from the resv_map cache and returns 401 * it for use. 402 */ 403 static struct file_region * 404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 405 { 406 struct file_region *nrg; 407 408 VM_BUG_ON(resv->region_cache_count <= 0); 409 410 resv->region_cache_count--; 411 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 412 list_del(&nrg->link); 413 414 nrg->from = from; 415 nrg->to = to; 416 417 return nrg; 418 } 419 420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 421 struct file_region *rg) 422 { 423 #ifdef CONFIG_CGROUP_HUGETLB 424 nrg->reservation_counter = rg->reservation_counter; 425 nrg->css = rg->css; 426 if (rg->css) 427 css_get(rg->css); 428 #endif 429 } 430 431 /* Helper that records hugetlb_cgroup uncharge info. */ 432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 433 struct hstate *h, 434 struct resv_map *resv, 435 struct file_region *nrg) 436 { 437 #ifdef CONFIG_CGROUP_HUGETLB 438 if (h_cg) { 439 nrg->reservation_counter = 440 &h_cg->rsvd_hugepage[hstate_index(h)]; 441 nrg->css = &h_cg->css; 442 /* 443 * The caller will hold exactly one h_cg->css reference for the 444 * whole contiguous reservation region. But this area might be 445 * scattered when there are already some file_regions reside in 446 * it. As a result, many file_regions may share only one css 447 * reference. In order to ensure that one file_region must hold 448 * exactly one h_cg->css reference, we should do css_get for 449 * each file_region and leave the reference held by caller 450 * untouched. 451 */ 452 css_get(&h_cg->css); 453 if (!resv->pages_per_hpage) 454 resv->pages_per_hpage = pages_per_huge_page(h); 455 /* pages_per_hpage should be the same for all entries in 456 * a resv_map. 457 */ 458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 459 } else { 460 nrg->reservation_counter = NULL; 461 nrg->css = NULL; 462 } 463 #endif 464 } 465 466 static void put_uncharge_info(struct file_region *rg) 467 { 468 #ifdef CONFIG_CGROUP_HUGETLB 469 if (rg->css) 470 css_put(rg->css); 471 #endif 472 } 473 474 static bool has_same_uncharge_info(struct file_region *rg, 475 struct file_region *org) 476 { 477 #ifdef CONFIG_CGROUP_HUGETLB 478 return rg->reservation_counter == org->reservation_counter && 479 rg->css == org->css; 480 481 #else 482 return true; 483 #endif 484 } 485 486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 487 { 488 struct file_region *nrg, *prg; 489 490 prg = list_prev_entry(rg, link); 491 if (&prg->link != &resv->regions && prg->to == rg->from && 492 has_same_uncharge_info(prg, rg)) { 493 prg->to = rg->to; 494 495 list_del(&rg->link); 496 put_uncharge_info(rg); 497 kfree(rg); 498 499 rg = prg; 500 } 501 502 nrg = list_next_entry(rg, link); 503 if (&nrg->link != &resv->regions && nrg->from == rg->to && 504 has_same_uncharge_info(nrg, rg)) { 505 nrg->from = rg->from; 506 507 list_del(&rg->link); 508 put_uncharge_info(rg); 509 kfree(rg); 510 } 511 } 512 513 static inline long 514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 515 long to, struct hstate *h, struct hugetlb_cgroup *cg, 516 long *regions_needed) 517 { 518 struct file_region *nrg; 519 520 if (!regions_needed) { 521 nrg = get_file_region_entry_from_cache(map, from, to); 522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 523 list_add(&nrg->link, rg); 524 coalesce_file_region(map, nrg); 525 } else 526 *regions_needed += 1; 527 528 return to - from; 529 } 530 531 /* 532 * Must be called with resv->lock held. 533 * 534 * Calling this with regions_needed != NULL will count the number of pages 535 * to be added but will not modify the linked list. And regions_needed will 536 * indicate the number of file_regions needed in the cache to carry out to add 537 * the regions for this range. 538 */ 539 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 540 struct hugetlb_cgroup *h_cg, 541 struct hstate *h, long *regions_needed) 542 { 543 long add = 0; 544 struct list_head *head = &resv->regions; 545 long last_accounted_offset = f; 546 struct file_region *iter, *trg = NULL; 547 struct list_head *rg = NULL; 548 549 if (regions_needed) 550 *regions_needed = 0; 551 552 /* In this loop, we essentially handle an entry for the range 553 * [last_accounted_offset, iter->from), at every iteration, with some 554 * bounds checking. 555 */ 556 list_for_each_entry_safe(iter, trg, head, link) { 557 /* Skip irrelevant regions that start before our range. */ 558 if (iter->from < f) { 559 /* If this region ends after the last accounted offset, 560 * then we need to update last_accounted_offset. 561 */ 562 if (iter->to > last_accounted_offset) 563 last_accounted_offset = iter->to; 564 continue; 565 } 566 567 /* When we find a region that starts beyond our range, we've 568 * finished. 569 */ 570 if (iter->from >= t) { 571 rg = iter->link.prev; 572 break; 573 } 574 575 /* Add an entry for last_accounted_offset -> iter->from, and 576 * update last_accounted_offset. 577 */ 578 if (iter->from > last_accounted_offset) 579 add += hugetlb_resv_map_add(resv, iter->link.prev, 580 last_accounted_offset, 581 iter->from, h, h_cg, 582 regions_needed); 583 584 last_accounted_offset = iter->to; 585 } 586 587 /* Handle the case where our range extends beyond 588 * last_accounted_offset. 589 */ 590 if (!rg) 591 rg = head->prev; 592 if (last_accounted_offset < t) 593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 594 t, h, h_cg, regions_needed); 595 596 return add; 597 } 598 599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 600 */ 601 static int allocate_file_region_entries(struct resv_map *resv, 602 int regions_needed) 603 __must_hold(&resv->lock) 604 { 605 LIST_HEAD(allocated_regions); 606 int to_allocate = 0, i = 0; 607 struct file_region *trg = NULL, *rg = NULL; 608 609 VM_BUG_ON(regions_needed < 0); 610 611 /* 612 * Check for sufficient descriptors in the cache to accommodate 613 * the number of in progress add operations plus regions_needed. 614 * 615 * This is a while loop because when we drop the lock, some other call 616 * to region_add or region_del may have consumed some region_entries, 617 * so we keep looping here until we finally have enough entries for 618 * (adds_in_progress + regions_needed). 619 */ 620 while (resv->region_cache_count < 621 (resv->adds_in_progress + regions_needed)) { 622 to_allocate = resv->adds_in_progress + regions_needed - 623 resv->region_cache_count; 624 625 /* At this point, we should have enough entries in the cache 626 * for all the existing adds_in_progress. We should only be 627 * needing to allocate for regions_needed. 628 */ 629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 630 631 spin_unlock(&resv->lock); 632 for (i = 0; i < to_allocate; i++) { 633 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 634 if (!trg) 635 goto out_of_memory; 636 list_add(&trg->link, &allocated_regions); 637 } 638 639 spin_lock(&resv->lock); 640 641 list_splice(&allocated_regions, &resv->region_cache); 642 resv->region_cache_count += to_allocate; 643 } 644 645 return 0; 646 647 out_of_memory: 648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 649 list_del(&rg->link); 650 kfree(rg); 651 } 652 return -ENOMEM; 653 } 654 655 /* 656 * Add the huge page range represented by [f, t) to the reserve 657 * map. Regions will be taken from the cache to fill in this range. 658 * Sufficient regions should exist in the cache due to the previous 659 * call to region_chg with the same range, but in some cases the cache will not 660 * have sufficient entries due to races with other code doing region_add or 661 * region_del. The extra needed entries will be allocated. 662 * 663 * regions_needed is the out value provided by a previous call to region_chg. 664 * 665 * Return the number of new huge pages added to the map. This number is greater 666 * than or equal to zero. If file_region entries needed to be allocated for 667 * this operation and we were not able to allocate, it returns -ENOMEM. 668 * region_add of regions of length 1 never allocate file_regions and cannot 669 * fail; region_chg will always allocate at least 1 entry and a region_add for 670 * 1 page will only require at most 1 entry. 671 */ 672 static long region_add(struct resv_map *resv, long f, long t, 673 long in_regions_needed, struct hstate *h, 674 struct hugetlb_cgroup *h_cg) 675 { 676 long add = 0, actual_regions_needed = 0; 677 678 spin_lock(&resv->lock); 679 retry: 680 681 /* Count how many regions are actually needed to execute this add. */ 682 add_reservation_in_range(resv, f, t, NULL, NULL, 683 &actual_regions_needed); 684 685 /* 686 * Check for sufficient descriptors in the cache to accommodate 687 * this add operation. Note that actual_regions_needed may be greater 688 * than in_regions_needed, as the resv_map may have been modified since 689 * the region_chg call. In this case, we need to make sure that we 690 * allocate extra entries, such that we have enough for all the 691 * existing adds_in_progress, plus the excess needed for this 692 * operation. 693 */ 694 if (actual_regions_needed > in_regions_needed && 695 resv->region_cache_count < 696 resv->adds_in_progress + 697 (actual_regions_needed - in_regions_needed)) { 698 /* region_add operation of range 1 should never need to 699 * allocate file_region entries. 700 */ 701 VM_BUG_ON(t - f <= 1); 702 703 if (allocate_file_region_entries( 704 resv, actual_regions_needed - in_regions_needed)) { 705 return -ENOMEM; 706 } 707 708 goto retry; 709 } 710 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 712 713 resv->adds_in_progress -= in_regions_needed; 714 715 spin_unlock(&resv->lock); 716 return add; 717 } 718 719 /* 720 * Examine the existing reserve map and determine how many 721 * huge pages in the specified range [f, t) are NOT currently 722 * represented. This routine is called before a subsequent 723 * call to region_add that will actually modify the reserve 724 * map to add the specified range [f, t). region_chg does 725 * not change the number of huge pages represented by the 726 * map. A number of new file_region structures is added to the cache as a 727 * placeholder, for the subsequent region_add call to use. At least 1 728 * file_region structure is added. 729 * 730 * out_regions_needed is the number of regions added to the 731 * resv->adds_in_progress. This value needs to be provided to a follow up call 732 * to region_add or region_abort for proper accounting. 733 * 734 * Returns the number of huge pages that need to be added to the existing 735 * reservation map for the range [f, t). This number is greater or equal to 736 * zero. -ENOMEM is returned if a new file_region structure or cache entry 737 * is needed and can not be allocated. 738 */ 739 static long region_chg(struct resv_map *resv, long f, long t, 740 long *out_regions_needed) 741 { 742 long chg = 0; 743 744 spin_lock(&resv->lock); 745 746 /* Count how many hugepages in this range are NOT represented. */ 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 748 out_regions_needed); 749 750 if (*out_regions_needed == 0) 751 *out_regions_needed = 1; 752 753 if (allocate_file_region_entries(resv, *out_regions_needed)) 754 return -ENOMEM; 755 756 resv->adds_in_progress += *out_regions_needed; 757 758 spin_unlock(&resv->lock); 759 return chg; 760 } 761 762 /* 763 * Abort the in progress add operation. The adds_in_progress field 764 * of the resv_map keeps track of the operations in progress between 765 * calls to region_chg and region_add. Operations are sometimes 766 * aborted after the call to region_chg. In such cases, region_abort 767 * is called to decrement the adds_in_progress counter. regions_needed 768 * is the value returned by the region_chg call, it is used to decrement 769 * the adds_in_progress counter. 770 * 771 * NOTE: The range arguments [f, t) are not needed or used in this 772 * routine. They are kept to make reading the calling code easier as 773 * arguments will match the associated region_chg call. 774 */ 775 static void region_abort(struct resv_map *resv, long f, long t, 776 long regions_needed) 777 { 778 spin_lock(&resv->lock); 779 VM_BUG_ON(!resv->region_cache_count); 780 resv->adds_in_progress -= regions_needed; 781 spin_unlock(&resv->lock); 782 } 783 784 /* 785 * Delete the specified range [f, t) from the reserve map. If the 786 * t parameter is LONG_MAX, this indicates that ALL regions after f 787 * should be deleted. Locate the regions which intersect [f, t) 788 * and either trim, delete or split the existing regions. 789 * 790 * Returns the number of huge pages deleted from the reserve map. 791 * In the normal case, the return value is zero or more. In the 792 * case where a region must be split, a new region descriptor must 793 * be allocated. If the allocation fails, -ENOMEM will be returned. 794 * NOTE: If the parameter t == LONG_MAX, then we will never split 795 * a region and possibly return -ENOMEM. Callers specifying 796 * t == LONG_MAX do not need to check for -ENOMEM error. 797 */ 798 static long region_del(struct resv_map *resv, long f, long t) 799 { 800 struct list_head *head = &resv->regions; 801 struct file_region *rg, *trg; 802 struct file_region *nrg = NULL; 803 long del = 0; 804 805 retry: 806 spin_lock(&resv->lock); 807 list_for_each_entry_safe(rg, trg, head, link) { 808 /* 809 * Skip regions before the range to be deleted. file_region 810 * ranges are normally of the form [from, to). However, there 811 * may be a "placeholder" entry in the map which is of the form 812 * (from, to) with from == to. Check for placeholder entries 813 * at the beginning of the range to be deleted. 814 */ 815 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 816 continue; 817 818 if (rg->from >= t) 819 break; 820 821 if (f > rg->from && t < rg->to) { /* Must split region */ 822 /* 823 * Check for an entry in the cache before dropping 824 * lock and attempting allocation. 825 */ 826 if (!nrg && 827 resv->region_cache_count > resv->adds_in_progress) { 828 nrg = list_first_entry(&resv->region_cache, 829 struct file_region, 830 link); 831 list_del(&nrg->link); 832 resv->region_cache_count--; 833 } 834 835 if (!nrg) { 836 spin_unlock(&resv->lock); 837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 838 if (!nrg) 839 return -ENOMEM; 840 goto retry; 841 } 842 843 del += t - f; 844 hugetlb_cgroup_uncharge_file_region( 845 resv, rg, t - f, false); 846 847 /* New entry for end of split region */ 848 nrg->from = t; 849 nrg->to = rg->to; 850 851 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 852 853 INIT_LIST_HEAD(&nrg->link); 854 855 /* Original entry is trimmed */ 856 rg->to = f; 857 858 list_add(&nrg->link, &rg->link); 859 nrg = NULL; 860 break; 861 } 862 863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 864 del += rg->to - rg->from; 865 hugetlb_cgroup_uncharge_file_region(resv, rg, 866 rg->to - rg->from, true); 867 list_del(&rg->link); 868 kfree(rg); 869 continue; 870 } 871 872 if (f <= rg->from) { /* Trim beginning of region */ 873 hugetlb_cgroup_uncharge_file_region(resv, rg, 874 t - rg->from, false); 875 876 del += t - rg->from; 877 rg->from = t; 878 } else { /* Trim end of region */ 879 hugetlb_cgroup_uncharge_file_region(resv, rg, 880 rg->to - f, false); 881 882 del += rg->to - f; 883 rg->to = f; 884 } 885 } 886 887 spin_unlock(&resv->lock); 888 kfree(nrg); 889 return del; 890 } 891 892 /* 893 * A rare out of memory error was encountered which prevented removal of 894 * the reserve map region for a page. The huge page itself was free'ed 895 * and removed from the page cache. This routine will adjust the subpool 896 * usage count, and the global reserve count if needed. By incrementing 897 * these counts, the reserve map entry which could not be deleted will 898 * appear as a "reserved" entry instead of simply dangling with incorrect 899 * counts. 900 */ 901 void hugetlb_fix_reserve_counts(struct inode *inode) 902 { 903 struct hugepage_subpool *spool = subpool_inode(inode); 904 long rsv_adjust; 905 bool reserved = false; 906 907 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 908 if (rsv_adjust > 0) { 909 struct hstate *h = hstate_inode(inode); 910 911 if (!hugetlb_acct_memory(h, 1)) 912 reserved = true; 913 } else if (!rsv_adjust) { 914 reserved = true; 915 } 916 917 if (!reserved) 918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 919 } 920 921 /* 922 * Count and return the number of huge pages in the reserve map 923 * that intersect with the range [f, t). 924 */ 925 static long region_count(struct resv_map *resv, long f, long t) 926 { 927 struct list_head *head = &resv->regions; 928 struct file_region *rg; 929 long chg = 0; 930 931 spin_lock(&resv->lock); 932 /* Locate each segment we overlap with, and count that overlap. */ 933 list_for_each_entry(rg, head, link) { 934 long seg_from; 935 long seg_to; 936 937 if (rg->to <= f) 938 continue; 939 if (rg->from >= t) 940 break; 941 942 seg_from = max(rg->from, f); 943 seg_to = min(rg->to, t); 944 945 chg += seg_to - seg_from; 946 } 947 spin_unlock(&resv->lock); 948 949 return chg; 950 } 951 952 /* 953 * Convert the address within this vma to the page offset within 954 * the mapping, in pagecache page units; huge pages here. 955 */ 956 static pgoff_t vma_hugecache_offset(struct hstate *h, 957 struct vm_area_struct *vma, unsigned long address) 958 { 959 return ((address - vma->vm_start) >> huge_page_shift(h)) + 960 (vma->vm_pgoff >> huge_page_order(h)); 961 } 962 963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 964 unsigned long address) 965 { 966 return vma_hugecache_offset(hstate_vma(vma), vma, address); 967 } 968 EXPORT_SYMBOL_GPL(linear_hugepage_index); 969 970 /* 971 * Return the size of the pages allocated when backing a VMA. In the majority 972 * cases this will be same size as used by the page table entries. 973 */ 974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 975 { 976 if (vma->vm_ops && vma->vm_ops->pagesize) 977 return vma->vm_ops->pagesize(vma); 978 return PAGE_SIZE; 979 } 980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 981 982 /* 983 * Return the page size being used by the MMU to back a VMA. In the majority 984 * of cases, the page size used by the kernel matches the MMU size. On 985 * architectures where it differs, an architecture-specific 'strong' 986 * version of this symbol is required. 987 */ 988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 989 { 990 return vma_kernel_pagesize(vma); 991 } 992 993 /* 994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 995 * bits of the reservation map pointer, which are always clear due to 996 * alignment. 997 */ 998 #define HPAGE_RESV_OWNER (1UL << 0) 999 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1001 1002 /* 1003 * These helpers are used to track how many pages are reserved for 1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1005 * is guaranteed to have their future faults succeed. 1006 * 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1008 * the reserve counters are updated with the hugetlb_lock held. It is safe 1009 * to reset the VMA at fork() time as it is not in use yet and there is no 1010 * chance of the global counters getting corrupted as a result of the values. 1011 * 1012 * The private mapping reservation is represented in a subtly different 1013 * manner to a shared mapping. A shared mapping has a region map associated 1014 * with the underlying file, this region map represents the backing file 1015 * pages which have ever had a reservation assigned which this persists even 1016 * after the page is instantiated. A private mapping has a region map 1017 * associated with the original mmap which is attached to all VMAs which 1018 * reference it, this region map represents those offsets which have consumed 1019 * reservation ie. where pages have been instantiated. 1020 */ 1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1022 { 1023 return (unsigned long)vma->vm_private_data; 1024 } 1025 1026 static void set_vma_private_data(struct vm_area_struct *vma, 1027 unsigned long value) 1028 { 1029 vma->vm_private_data = (void *)value; 1030 } 1031 1032 static void 1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1034 struct hugetlb_cgroup *h_cg, 1035 struct hstate *h) 1036 { 1037 #ifdef CONFIG_CGROUP_HUGETLB 1038 if (!h_cg || !h) { 1039 resv_map->reservation_counter = NULL; 1040 resv_map->pages_per_hpage = 0; 1041 resv_map->css = NULL; 1042 } else { 1043 resv_map->reservation_counter = 1044 &h_cg->rsvd_hugepage[hstate_index(h)]; 1045 resv_map->pages_per_hpage = pages_per_huge_page(h); 1046 resv_map->css = &h_cg->css; 1047 } 1048 #endif 1049 } 1050 1051 struct resv_map *resv_map_alloc(void) 1052 { 1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1055 1056 if (!resv_map || !rg) { 1057 kfree(resv_map); 1058 kfree(rg); 1059 return NULL; 1060 } 1061 1062 kref_init(&resv_map->refs); 1063 spin_lock_init(&resv_map->lock); 1064 INIT_LIST_HEAD(&resv_map->regions); 1065 1066 resv_map->adds_in_progress = 0; 1067 /* 1068 * Initialize these to 0. On shared mappings, 0's here indicate these 1069 * fields don't do cgroup accounting. On private mappings, these will be 1070 * re-initialized to the proper values, to indicate that hugetlb cgroup 1071 * reservations are to be un-charged from here. 1072 */ 1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1074 1075 INIT_LIST_HEAD(&resv_map->region_cache); 1076 list_add(&rg->link, &resv_map->region_cache); 1077 resv_map->region_cache_count = 1; 1078 1079 return resv_map; 1080 } 1081 1082 void resv_map_release(struct kref *ref) 1083 { 1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1085 struct list_head *head = &resv_map->region_cache; 1086 struct file_region *rg, *trg; 1087 1088 /* Clear out any active regions before we release the map. */ 1089 region_del(resv_map, 0, LONG_MAX); 1090 1091 /* ... and any entries left in the cache */ 1092 list_for_each_entry_safe(rg, trg, head, link) { 1093 list_del(&rg->link); 1094 kfree(rg); 1095 } 1096 1097 VM_BUG_ON(resv_map->adds_in_progress); 1098 1099 kfree(resv_map); 1100 } 1101 1102 static inline struct resv_map *inode_resv_map(struct inode *inode) 1103 { 1104 /* 1105 * At inode evict time, i_mapping may not point to the original 1106 * address space within the inode. This original address space 1107 * contains the pointer to the resv_map. So, always use the 1108 * address space embedded within the inode. 1109 * The VERY common case is inode->mapping == &inode->i_data but, 1110 * this may not be true for device special inodes. 1111 */ 1112 return (struct resv_map *)(&inode->i_data)->private_data; 1113 } 1114 1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1116 { 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1118 if (vma->vm_flags & VM_MAYSHARE) { 1119 struct address_space *mapping = vma->vm_file->f_mapping; 1120 struct inode *inode = mapping->host; 1121 1122 return inode_resv_map(inode); 1123 1124 } else { 1125 return (struct resv_map *)(get_vma_private_data(vma) & 1126 ~HPAGE_RESV_MASK); 1127 } 1128 } 1129 1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1131 { 1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1134 1135 set_vma_private_data(vma, (get_vma_private_data(vma) & 1136 HPAGE_RESV_MASK) | (unsigned long)map); 1137 } 1138 1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1140 { 1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1143 1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1145 } 1146 1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 1151 return (get_vma_private_data(vma) & flag) != 0; 1152 } 1153 1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 /* 1158 * Clear vm_private_data 1159 * - For shared mappings this is a per-vma semaphore that may be 1160 * allocated in a subsequent call to hugetlb_vm_op_open. 1161 * Before clearing, make sure pointer is not associated with vma 1162 * as this will leak the structure. This is the case when called 1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1164 * been called to allocate a new structure. 1165 * - For MAP_PRIVATE mappings, this is the reserve map which does 1166 * not apply to children. Faults generated by the children are 1167 * not guaranteed to succeed, even if read-only. 1168 */ 1169 if (vma->vm_flags & VM_MAYSHARE) { 1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1171 1172 if (vma_lock && vma_lock->vma != vma) 1173 vma->vm_private_data = NULL; 1174 } else 1175 vma->vm_private_data = NULL; 1176 } 1177 1178 /* 1179 * Reset and decrement one ref on hugepage private reservation. 1180 * Called with mm->mmap_lock writer semaphore held. 1181 * This function should be only used by move_vma() and operate on 1182 * same sized vma. It should never come here with last ref on the 1183 * reservation. 1184 */ 1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1186 { 1187 /* 1188 * Clear the old hugetlb private page reservation. 1189 * It has already been transferred to new_vma. 1190 * 1191 * During a mremap() operation of a hugetlb vma we call move_vma() 1192 * which copies vma into new_vma and unmaps vma. After the copy 1193 * operation both new_vma and vma share a reference to the resv_map 1194 * struct, and at that point vma is about to be unmapped. We don't 1195 * want to return the reservation to the pool at unmap of vma because 1196 * the reservation still lives on in new_vma, so simply decrement the 1197 * ref here and remove the resv_map reference from this vma. 1198 */ 1199 struct resv_map *reservations = vma_resv_map(vma); 1200 1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1203 kref_put(&reservations->refs, resv_map_release); 1204 } 1205 1206 hugetlb_dup_vma_private(vma); 1207 } 1208 1209 /* Returns true if the VMA has associated reserve pages */ 1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1211 { 1212 if (vma->vm_flags & VM_NORESERVE) { 1213 /* 1214 * This address is already reserved by other process(chg == 0), 1215 * so, we should decrement reserved count. Without decrementing, 1216 * reserve count remains after releasing inode, because this 1217 * allocated page will go into page cache and is regarded as 1218 * coming from reserved pool in releasing step. Currently, we 1219 * don't have any other solution to deal with this situation 1220 * properly, so add work-around here. 1221 */ 1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1223 return true; 1224 else 1225 return false; 1226 } 1227 1228 /* Shared mappings always use reserves */ 1229 if (vma->vm_flags & VM_MAYSHARE) { 1230 /* 1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1232 * be a region map for all pages. The only situation where 1233 * there is no region map is if a hole was punched via 1234 * fallocate. In this case, there really are no reserves to 1235 * use. This situation is indicated if chg != 0. 1236 */ 1237 if (chg) 1238 return false; 1239 else 1240 return true; 1241 } 1242 1243 /* 1244 * Only the process that called mmap() has reserves for 1245 * private mappings. 1246 */ 1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1248 /* 1249 * Like the shared case above, a hole punch or truncate 1250 * could have been performed on the private mapping. 1251 * Examine the value of chg to determine if reserves 1252 * actually exist or were previously consumed. 1253 * Very Subtle - The value of chg comes from a previous 1254 * call to vma_needs_reserves(). The reserve map for 1255 * private mappings has different (opposite) semantics 1256 * than that of shared mappings. vma_needs_reserves() 1257 * has already taken this difference in semantics into 1258 * account. Therefore, the meaning of chg is the same 1259 * as in the shared case above. Code could easily be 1260 * combined, but keeping it separate draws attention to 1261 * subtle differences. 1262 */ 1263 if (chg) 1264 return false; 1265 else 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1273 { 1274 int nid = folio_nid(folio); 1275 1276 lockdep_assert_held(&hugetlb_lock); 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1278 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1280 h->free_huge_pages++; 1281 h->free_huge_pages_node[nid]++; 1282 folio_set_hugetlb_freed(folio); 1283 } 1284 1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1286 int nid) 1287 { 1288 struct folio *folio; 1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1290 1291 lockdep_assert_held(&hugetlb_lock); 1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1293 if (pin && !folio_is_longterm_pinnable(folio)) 1294 continue; 1295 1296 if (folio_test_hwpoison(folio)) 1297 continue; 1298 1299 list_move(&folio->lru, &h->hugepage_activelist); 1300 folio_ref_unfreeze(folio, 1); 1301 folio_clear_hugetlb_freed(folio); 1302 h->free_huge_pages--; 1303 h->free_huge_pages_node[nid]--; 1304 return folio; 1305 } 1306 1307 return NULL; 1308 } 1309 1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1311 int nid, nodemask_t *nmask) 1312 { 1313 unsigned int cpuset_mems_cookie; 1314 struct zonelist *zonelist; 1315 struct zone *zone; 1316 struct zoneref *z; 1317 int node = NUMA_NO_NODE; 1318 1319 zonelist = node_zonelist(nid, gfp_mask); 1320 1321 retry_cpuset: 1322 cpuset_mems_cookie = read_mems_allowed_begin(); 1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1324 struct folio *folio; 1325 1326 if (!cpuset_zone_allowed(zone, gfp_mask)) 1327 continue; 1328 /* 1329 * no need to ask again on the same node. Pool is node rather than 1330 * zone aware 1331 */ 1332 if (zone_to_nid(zone) == node) 1333 continue; 1334 node = zone_to_nid(zone); 1335 1336 folio = dequeue_hugetlb_folio_node_exact(h, node); 1337 if (folio) 1338 return folio; 1339 } 1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1341 goto retry_cpuset; 1342 1343 return NULL; 1344 } 1345 1346 static unsigned long available_huge_pages(struct hstate *h) 1347 { 1348 return h->free_huge_pages - h->resv_huge_pages; 1349 } 1350 1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1352 struct vm_area_struct *vma, 1353 unsigned long address, int avoid_reserve, 1354 long chg) 1355 { 1356 struct folio *folio = NULL; 1357 struct mempolicy *mpol; 1358 gfp_t gfp_mask; 1359 nodemask_t *nodemask; 1360 int nid; 1361 1362 /* 1363 * A child process with MAP_PRIVATE mappings created by their parent 1364 * have no page reserves. This check ensures that reservations are 1365 * not "stolen". The child may still get SIGKILLed 1366 */ 1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1368 goto err; 1369 1370 /* If reserves cannot be used, ensure enough pages are in the pool */ 1371 if (avoid_reserve && !available_huge_pages(h)) 1372 goto err; 1373 1374 gfp_mask = htlb_alloc_mask(h); 1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1376 1377 if (mpol_is_preferred_many(mpol)) { 1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1379 nid, nodemask); 1380 1381 /* Fallback to all nodes if page==NULL */ 1382 nodemask = NULL; 1383 } 1384 1385 if (!folio) 1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1387 nid, nodemask); 1388 1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1390 folio_set_hugetlb_restore_reserve(folio); 1391 h->resv_huge_pages--; 1392 } 1393 1394 mpol_cond_put(mpol); 1395 return folio; 1396 1397 err: 1398 return NULL; 1399 } 1400 1401 /* 1402 * common helper functions for hstate_next_node_to_{alloc|free}. 1403 * We may have allocated or freed a huge page based on a different 1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1405 * be outside of *nodes_allowed. Ensure that we use an allowed 1406 * node for alloc or free. 1407 */ 1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1409 { 1410 nid = next_node_in(nid, *nodes_allowed); 1411 VM_BUG_ON(nid >= MAX_NUMNODES); 1412 1413 return nid; 1414 } 1415 1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1417 { 1418 if (!node_isset(nid, *nodes_allowed)) 1419 nid = next_node_allowed(nid, nodes_allowed); 1420 return nid; 1421 } 1422 1423 /* 1424 * returns the previously saved node ["this node"] from which to 1425 * allocate a persistent huge page for the pool and advance the 1426 * next node from which to allocate, handling wrap at end of node 1427 * mask. 1428 */ 1429 static int hstate_next_node_to_alloc(struct hstate *h, 1430 nodemask_t *nodes_allowed) 1431 { 1432 int nid; 1433 1434 VM_BUG_ON(!nodes_allowed); 1435 1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1438 1439 return nid; 1440 } 1441 1442 /* 1443 * helper for remove_pool_huge_page() - return the previously saved 1444 * node ["this node"] from which to free a huge page. Advance the 1445 * next node id whether or not we find a free huge page to free so 1446 * that the next attempt to free addresses the next node. 1447 */ 1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1449 { 1450 int nid; 1451 1452 VM_BUG_ON(!nodes_allowed); 1453 1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1456 1457 return nid; 1458 } 1459 1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1461 for (nr_nodes = nodes_weight(*mask); \ 1462 nr_nodes > 0 && \ 1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1464 nr_nodes--) 1465 1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1467 for (nr_nodes = nodes_weight(*mask); \ 1468 nr_nodes > 0 && \ 1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1470 nr_nodes--) 1471 1472 /* used to demote non-gigantic_huge pages as well */ 1473 static void __destroy_compound_gigantic_folio(struct folio *folio, 1474 unsigned int order, bool demote) 1475 { 1476 int i; 1477 int nr_pages = 1 << order; 1478 struct page *p; 1479 1480 atomic_set(&folio->_entire_mapcount, 0); 1481 atomic_set(&folio->_nr_pages_mapped, 0); 1482 atomic_set(&folio->_pincount, 0); 1483 1484 for (i = 1; i < nr_pages; i++) { 1485 p = folio_page(folio, i); 1486 p->mapping = NULL; 1487 clear_compound_head(p); 1488 if (!demote) 1489 set_page_refcounted(p); 1490 } 1491 1492 folio_set_order(folio, 0); 1493 __folio_clear_head(folio); 1494 } 1495 1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1497 unsigned int order) 1498 { 1499 __destroy_compound_gigantic_folio(folio, order, true); 1500 } 1501 1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1503 static void destroy_compound_gigantic_folio(struct folio *folio, 1504 unsigned int order) 1505 { 1506 __destroy_compound_gigantic_folio(folio, order, false); 1507 } 1508 1509 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1510 { 1511 /* 1512 * If the page isn't allocated using the cma allocator, 1513 * cma_release() returns false. 1514 */ 1515 #ifdef CONFIG_CMA 1516 int nid = folio_nid(folio); 1517 1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1519 return; 1520 #endif 1521 1522 free_contig_range(folio_pfn(folio), 1 << order); 1523 } 1524 1525 #ifdef CONFIG_CONTIG_ALLOC 1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1527 int nid, nodemask_t *nodemask) 1528 { 1529 struct page *page; 1530 unsigned long nr_pages = pages_per_huge_page(h); 1531 if (nid == NUMA_NO_NODE) 1532 nid = numa_mem_id(); 1533 1534 #ifdef CONFIG_CMA 1535 { 1536 int node; 1537 1538 if (hugetlb_cma[nid]) { 1539 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1540 huge_page_order(h), true); 1541 if (page) 1542 return page_folio(page); 1543 } 1544 1545 if (!(gfp_mask & __GFP_THISNODE)) { 1546 for_each_node_mask(node, *nodemask) { 1547 if (node == nid || !hugetlb_cma[node]) 1548 continue; 1549 1550 page = cma_alloc(hugetlb_cma[node], nr_pages, 1551 huge_page_order(h), true); 1552 if (page) 1553 return page_folio(page); 1554 } 1555 } 1556 } 1557 #endif 1558 1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1560 return page ? page_folio(page) : NULL; 1561 } 1562 1563 #else /* !CONFIG_CONTIG_ALLOC */ 1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1565 int nid, nodemask_t *nodemask) 1566 { 1567 return NULL; 1568 } 1569 #endif /* CONFIG_CONTIG_ALLOC */ 1570 1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1573 int nid, nodemask_t *nodemask) 1574 { 1575 return NULL; 1576 } 1577 static inline void free_gigantic_folio(struct folio *folio, 1578 unsigned int order) { } 1579 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1580 unsigned int order) { } 1581 #endif 1582 1583 /* 1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1585 * as just a compound page. 1586 * 1587 * A reference is held on the folio, except in the case of demote. 1588 * 1589 * Must be called with hugetlb lock held. 1590 */ 1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1592 bool adjust_surplus, 1593 bool demote) 1594 { 1595 int nid = folio_nid(folio); 1596 1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1599 1600 lockdep_assert_held(&hugetlb_lock); 1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1602 return; 1603 1604 list_del(&folio->lru); 1605 1606 if (folio_test_hugetlb_freed(folio)) { 1607 h->free_huge_pages--; 1608 h->free_huge_pages_node[nid]--; 1609 } 1610 if (adjust_surplus) { 1611 h->surplus_huge_pages--; 1612 h->surplus_huge_pages_node[nid]--; 1613 } 1614 1615 /* 1616 * Very subtle 1617 * 1618 * For non-gigantic pages set the destructor to the normal compound 1619 * page dtor. This is needed in case someone takes an additional 1620 * temporary ref to the page, and freeing is delayed until they drop 1621 * their reference. 1622 * 1623 * For gigantic pages set the destructor to the null dtor. This 1624 * destructor will never be called. Before freeing the gigantic 1625 * page destroy_compound_gigantic_folio will turn the folio into a 1626 * simple group of pages. After this the destructor does not 1627 * apply. 1628 * 1629 * This handles the case where more than one ref is held when and 1630 * after update_and_free_hugetlb_folio is called. 1631 * 1632 * In the case of demote we do not ref count the page as it will soon 1633 * be turned into a page of smaller size. 1634 */ 1635 if (!demote) 1636 folio_ref_unfreeze(folio, 1); 1637 if (hstate_is_gigantic(h)) 1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1639 else 1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1641 1642 h->nr_huge_pages--; 1643 h->nr_huge_pages_node[nid]--; 1644 } 1645 1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus) 1648 { 1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1650 } 1651 1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1653 bool adjust_surplus) 1654 { 1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1656 } 1657 1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1659 bool adjust_surplus) 1660 { 1661 int zeroed; 1662 int nid = folio_nid(folio); 1663 1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1665 1666 lockdep_assert_held(&hugetlb_lock); 1667 1668 INIT_LIST_HEAD(&folio->lru); 1669 h->nr_huge_pages++; 1670 h->nr_huge_pages_node[nid]++; 1671 1672 if (adjust_surplus) { 1673 h->surplus_huge_pages++; 1674 h->surplus_huge_pages_node[nid]++; 1675 } 1676 1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1678 folio_change_private(folio, NULL); 1679 /* 1680 * We have to set hugetlb_vmemmap_optimized again as above 1681 * folio_change_private(folio, NULL) cleared it. 1682 */ 1683 folio_set_hugetlb_vmemmap_optimized(folio); 1684 1685 /* 1686 * This folio is about to be managed by the hugetlb allocator and 1687 * should have no users. Drop our reference, and check for others 1688 * just in case. 1689 */ 1690 zeroed = folio_put_testzero(folio); 1691 if (unlikely(!zeroed)) 1692 /* 1693 * It is VERY unlikely soneone else has taken a ref on 1694 * the page. In this case, we simply return as the 1695 * hugetlb destructor (free_huge_page) will be called 1696 * when this other ref is dropped. 1697 */ 1698 return; 1699 1700 arch_clear_hugepage_flags(&folio->page); 1701 enqueue_hugetlb_folio(h, folio); 1702 } 1703 1704 static void __update_and_free_hugetlb_folio(struct hstate *h, 1705 struct folio *folio) 1706 { 1707 int i; 1708 struct page *subpage; 1709 1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1711 return; 1712 1713 /* 1714 * If we don't know which subpages are hwpoisoned, we can't free 1715 * the hugepage, so it's leaked intentionally. 1716 */ 1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1718 return; 1719 1720 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1721 spin_lock_irq(&hugetlb_lock); 1722 /* 1723 * If we cannot allocate vmemmap pages, just refuse to free the 1724 * page and put the page back on the hugetlb free list and treat 1725 * as a surplus page. 1726 */ 1727 add_hugetlb_folio(h, folio, true); 1728 spin_unlock_irq(&hugetlb_lock); 1729 return; 1730 } 1731 1732 /* 1733 * Move PageHWPoison flag from head page to the raw error pages, 1734 * which makes any healthy subpages reusable. 1735 */ 1736 if (unlikely(folio_test_hwpoison(folio))) 1737 folio_clear_hugetlb_hwpoison(folio); 1738 1739 for (i = 0; i < pages_per_huge_page(h); i++) { 1740 subpage = folio_page(folio, i); 1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1742 1 << PG_referenced | 1 << PG_dirty | 1743 1 << PG_active | 1 << PG_private | 1744 1 << PG_writeback); 1745 } 1746 1747 /* 1748 * Non-gigantic pages demoted from CMA allocated gigantic pages 1749 * need to be given back to CMA in free_gigantic_folio. 1750 */ 1751 if (hstate_is_gigantic(h) || 1752 hugetlb_cma_folio(folio, huge_page_order(h))) { 1753 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1754 free_gigantic_folio(folio, huge_page_order(h)); 1755 } else { 1756 __free_pages(&folio->page, huge_page_order(h)); 1757 } 1758 } 1759 1760 /* 1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1764 * the vmemmap pages. 1765 * 1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1767 * freed and frees them one-by-one. As the page->mapping pointer is going 1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1769 * structure of a lockless linked list of huge pages to be freed. 1770 */ 1771 static LLIST_HEAD(hpage_freelist); 1772 1773 static void free_hpage_workfn(struct work_struct *work) 1774 { 1775 struct llist_node *node; 1776 1777 node = llist_del_all(&hpage_freelist); 1778 1779 while (node) { 1780 struct page *page; 1781 struct hstate *h; 1782 1783 page = container_of((struct address_space **)node, 1784 struct page, mapping); 1785 node = node->next; 1786 page->mapping = NULL; 1787 /* 1788 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1789 * is going to trigger because a previous call to 1790 * remove_hugetlb_folio() will call folio_set_compound_dtor 1791 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1792 * directly. 1793 */ 1794 h = size_to_hstate(page_size(page)); 1795 1796 __update_and_free_hugetlb_folio(h, page_folio(page)); 1797 1798 cond_resched(); 1799 } 1800 } 1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1802 1803 static inline void flush_free_hpage_work(struct hstate *h) 1804 { 1805 if (hugetlb_vmemmap_optimizable(h)) 1806 flush_work(&free_hpage_work); 1807 } 1808 1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1810 bool atomic) 1811 { 1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1813 __update_and_free_hugetlb_folio(h, folio); 1814 return; 1815 } 1816 1817 /* 1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1819 * 1820 * Only call schedule_work() if hpage_freelist is previously 1821 * empty. Otherwise, schedule_work() had been called but the workfn 1822 * hasn't retrieved the list yet. 1823 */ 1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1825 schedule_work(&free_hpage_work); 1826 } 1827 1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1829 { 1830 struct page *page, *t_page; 1831 struct folio *folio; 1832 1833 list_for_each_entry_safe(page, t_page, list, lru) { 1834 folio = page_folio(page); 1835 update_and_free_hugetlb_folio(h, folio, false); 1836 cond_resched(); 1837 } 1838 } 1839 1840 struct hstate *size_to_hstate(unsigned long size) 1841 { 1842 struct hstate *h; 1843 1844 for_each_hstate(h) { 1845 if (huge_page_size(h) == size) 1846 return h; 1847 } 1848 return NULL; 1849 } 1850 1851 void free_huge_page(struct page *page) 1852 { 1853 /* 1854 * Can't pass hstate in here because it is called from the 1855 * compound page destructor. 1856 */ 1857 struct folio *folio = page_folio(page); 1858 struct hstate *h = folio_hstate(folio); 1859 int nid = folio_nid(folio); 1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1861 bool restore_reserve; 1862 unsigned long flags; 1863 1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1866 1867 hugetlb_set_folio_subpool(folio, NULL); 1868 if (folio_test_anon(folio)) 1869 __ClearPageAnonExclusive(&folio->page); 1870 folio->mapping = NULL; 1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1872 folio_clear_hugetlb_restore_reserve(folio); 1873 1874 /* 1875 * If HPageRestoreReserve was set on page, page allocation consumed a 1876 * reservation. If the page was associated with a subpool, there 1877 * would have been a page reserved in the subpool before allocation 1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1879 * reservation, do not call hugepage_subpool_put_pages() as this will 1880 * remove the reserved page from the subpool. 1881 */ 1882 if (!restore_reserve) { 1883 /* 1884 * A return code of zero implies that the subpool will be 1885 * under its minimum size if the reservation is not restored 1886 * after page is free. Therefore, force restore_reserve 1887 * operation. 1888 */ 1889 if (hugepage_subpool_put_pages(spool, 1) == 0) 1890 restore_reserve = true; 1891 } 1892 1893 spin_lock_irqsave(&hugetlb_lock, flags); 1894 folio_clear_hugetlb_migratable(folio); 1895 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1896 pages_per_huge_page(h), folio); 1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1898 pages_per_huge_page(h), folio); 1899 if (restore_reserve) 1900 h->resv_huge_pages++; 1901 1902 if (folio_test_hugetlb_temporary(folio)) { 1903 remove_hugetlb_folio(h, folio, false); 1904 spin_unlock_irqrestore(&hugetlb_lock, flags); 1905 update_and_free_hugetlb_folio(h, folio, true); 1906 } else if (h->surplus_huge_pages_node[nid]) { 1907 /* remove the page from active list */ 1908 remove_hugetlb_folio(h, folio, true); 1909 spin_unlock_irqrestore(&hugetlb_lock, flags); 1910 update_and_free_hugetlb_folio(h, folio, true); 1911 } else { 1912 arch_clear_hugepage_flags(page); 1913 enqueue_hugetlb_folio(h, folio); 1914 spin_unlock_irqrestore(&hugetlb_lock, flags); 1915 } 1916 } 1917 1918 /* 1919 * Must be called with the hugetlb lock held 1920 */ 1921 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1922 { 1923 lockdep_assert_held(&hugetlb_lock); 1924 h->nr_huge_pages++; 1925 h->nr_huge_pages_node[nid]++; 1926 } 1927 1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1929 { 1930 hugetlb_vmemmap_optimize(h, &folio->page); 1931 INIT_LIST_HEAD(&folio->lru); 1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1933 hugetlb_set_folio_subpool(folio, NULL); 1934 set_hugetlb_cgroup(folio, NULL); 1935 set_hugetlb_cgroup_rsvd(folio, NULL); 1936 } 1937 1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1939 { 1940 __prep_new_hugetlb_folio(h, folio); 1941 spin_lock_irq(&hugetlb_lock); 1942 __prep_account_new_huge_page(h, nid); 1943 spin_unlock_irq(&hugetlb_lock); 1944 } 1945 1946 static bool __prep_compound_gigantic_folio(struct folio *folio, 1947 unsigned int order, bool demote) 1948 { 1949 int i, j; 1950 int nr_pages = 1 << order; 1951 struct page *p; 1952 1953 __folio_clear_reserved(folio); 1954 __folio_set_head(folio); 1955 /* we rely on prep_new_hugetlb_folio to set the destructor */ 1956 folio_set_order(folio, order); 1957 for (i = 0; i < nr_pages; i++) { 1958 p = folio_page(folio, i); 1959 1960 /* 1961 * For gigantic hugepages allocated through bootmem at 1962 * boot, it's safer to be consistent with the not-gigantic 1963 * hugepages and clear the PG_reserved bit from all tail pages 1964 * too. Otherwise drivers using get_user_pages() to access tail 1965 * pages may get the reference counting wrong if they see 1966 * PG_reserved set on a tail page (despite the head page not 1967 * having PG_reserved set). Enforcing this consistency between 1968 * head and tail pages allows drivers to optimize away a check 1969 * on the head page when they need know if put_page() is needed 1970 * after get_user_pages(). 1971 */ 1972 if (i != 0) /* head page cleared above */ 1973 __ClearPageReserved(p); 1974 /* 1975 * Subtle and very unlikely 1976 * 1977 * Gigantic 'page allocators' such as memblock or cma will 1978 * return a set of pages with each page ref counted. We need 1979 * to turn this set of pages into a compound page with tail 1980 * page ref counts set to zero. Code such as speculative page 1981 * cache adding could take a ref on a 'to be' tail page. 1982 * We need to respect any increased ref count, and only set 1983 * the ref count to zero if count is currently 1. If count 1984 * is not 1, we return an error. An error return indicates 1985 * the set of pages can not be converted to a gigantic page. 1986 * The caller who allocated the pages should then discard the 1987 * pages using the appropriate free interface. 1988 * 1989 * In the case of demote, the ref count will be zero. 1990 */ 1991 if (!demote) { 1992 if (!page_ref_freeze(p, 1)) { 1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1994 goto out_error; 1995 } 1996 } else { 1997 VM_BUG_ON_PAGE(page_count(p), p); 1998 } 1999 if (i != 0) 2000 set_compound_head(p, &folio->page); 2001 } 2002 atomic_set(&folio->_entire_mapcount, -1); 2003 atomic_set(&folio->_nr_pages_mapped, 0); 2004 atomic_set(&folio->_pincount, 0); 2005 return true; 2006 2007 out_error: 2008 /* undo page modifications made above */ 2009 for (j = 0; j < i; j++) { 2010 p = folio_page(folio, j); 2011 if (j != 0) 2012 clear_compound_head(p); 2013 set_page_refcounted(p); 2014 } 2015 /* need to clear PG_reserved on remaining tail pages */ 2016 for (; j < nr_pages; j++) { 2017 p = folio_page(folio, j); 2018 __ClearPageReserved(p); 2019 } 2020 folio_set_order(folio, 0); 2021 __folio_clear_head(folio); 2022 return false; 2023 } 2024 2025 static bool prep_compound_gigantic_folio(struct folio *folio, 2026 unsigned int order) 2027 { 2028 return __prep_compound_gigantic_folio(folio, order, false); 2029 } 2030 2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2032 unsigned int order) 2033 { 2034 return __prep_compound_gigantic_folio(folio, order, true); 2035 } 2036 2037 /* 2038 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2039 * transparent huge pages. See the PageTransHuge() documentation for more 2040 * details. 2041 */ 2042 int PageHuge(struct page *page) 2043 { 2044 struct folio *folio; 2045 2046 if (!PageCompound(page)) 2047 return 0; 2048 folio = page_folio(page); 2049 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2050 } 2051 EXPORT_SYMBOL_GPL(PageHuge); 2052 2053 /* 2054 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 2055 * normal or transparent huge pages. 2056 */ 2057 int PageHeadHuge(struct page *page_head) 2058 { 2059 struct folio *folio = (struct folio *)page_head; 2060 if (!folio_test_large(folio)) 2061 return 0; 2062 2063 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2064 } 2065 EXPORT_SYMBOL_GPL(PageHeadHuge); 2066 2067 /* 2068 * Find and lock address space (mapping) in write mode. 2069 * 2070 * Upon entry, the page is locked which means that page_mapping() is 2071 * stable. Due to locking order, we can only trylock_write. If we can 2072 * not get the lock, simply return NULL to caller. 2073 */ 2074 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2075 { 2076 struct address_space *mapping = page_mapping(hpage); 2077 2078 if (!mapping) 2079 return mapping; 2080 2081 if (i_mmap_trylock_write(mapping)) 2082 return mapping; 2083 2084 return NULL; 2085 } 2086 2087 pgoff_t hugetlb_basepage_index(struct page *page) 2088 { 2089 struct page *page_head = compound_head(page); 2090 pgoff_t index = page_index(page_head); 2091 unsigned long compound_idx; 2092 2093 if (compound_order(page_head) >= MAX_ORDER) 2094 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2095 else 2096 compound_idx = page - page_head; 2097 2098 return (index << compound_order(page_head)) + compound_idx; 2099 } 2100 2101 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2102 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2103 nodemask_t *node_alloc_noretry) 2104 { 2105 int order = huge_page_order(h); 2106 struct page *page; 2107 bool alloc_try_hard = true; 2108 bool retry = true; 2109 2110 /* 2111 * By default we always try hard to allocate the page with 2112 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2113 * a loop (to adjust global huge page counts) and previous allocation 2114 * failed, do not continue to try hard on the same node. Use the 2115 * node_alloc_noretry bitmap to manage this state information. 2116 */ 2117 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2118 alloc_try_hard = false; 2119 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2120 if (alloc_try_hard) 2121 gfp_mask |= __GFP_RETRY_MAYFAIL; 2122 if (nid == NUMA_NO_NODE) 2123 nid = numa_mem_id(); 2124 retry: 2125 page = __alloc_pages(gfp_mask, order, nid, nmask); 2126 2127 /* Freeze head page */ 2128 if (page && !page_ref_freeze(page, 1)) { 2129 __free_pages(page, order); 2130 if (retry) { /* retry once */ 2131 retry = false; 2132 goto retry; 2133 } 2134 /* WOW! twice in a row. */ 2135 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2136 page = NULL; 2137 } 2138 2139 /* 2140 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2141 * indicates an overall state change. Clear bit so that we resume 2142 * normal 'try hard' allocations. 2143 */ 2144 if (node_alloc_noretry && page && !alloc_try_hard) 2145 node_clear(nid, *node_alloc_noretry); 2146 2147 /* 2148 * If we tried hard to get a page but failed, set bit so that 2149 * subsequent attempts will not try as hard until there is an 2150 * overall state change. 2151 */ 2152 if (node_alloc_noretry && !page && alloc_try_hard) 2153 node_set(nid, *node_alloc_noretry); 2154 2155 if (!page) { 2156 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2157 return NULL; 2158 } 2159 2160 __count_vm_event(HTLB_BUDDY_PGALLOC); 2161 return page_folio(page); 2162 } 2163 2164 /* 2165 * Common helper to allocate a fresh hugetlb page. All specific allocators 2166 * should use this function to get new hugetlb pages 2167 * 2168 * Note that returned page is 'frozen': ref count of head page and all tail 2169 * pages is zero. 2170 */ 2171 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2172 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2173 nodemask_t *node_alloc_noretry) 2174 { 2175 struct folio *folio; 2176 bool retry = false; 2177 2178 retry: 2179 if (hstate_is_gigantic(h)) 2180 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2181 else 2182 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2183 nid, nmask, node_alloc_noretry); 2184 if (!folio) 2185 return NULL; 2186 if (hstate_is_gigantic(h)) { 2187 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2188 /* 2189 * Rare failure to convert pages to compound page. 2190 * Free pages and try again - ONCE! 2191 */ 2192 free_gigantic_folio(folio, huge_page_order(h)); 2193 if (!retry) { 2194 retry = true; 2195 goto retry; 2196 } 2197 return NULL; 2198 } 2199 } 2200 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2201 2202 return folio; 2203 } 2204 2205 /* 2206 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2207 * manner. 2208 */ 2209 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2210 nodemask_t *node_alloc_noretry) 2211 { 2212 struct folio *folio; 2213 int nr_nodes, node; 2214 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2215 2216 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2217 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2218 nodes_allowed, node_alloc_noretry); 2219 if (folio) { 2220 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2221 return 1; 2222 } 2223 } 2224 2225 return 0; 2226 } 2227 2228 /* 2229 * Remove huge page from pool from next node to free. Attempt to keep 2230 * persistent huge pages more or less balanced over allowed nodes. 2231 * This routine only 'removes' the hugetlb page. The caller must make 2232 * an additional call to free the page to low level allocators. 2233 * Called with hugetlb_lock locked. 2234 */ 2235 static struct page *remove_pool_huge_page(struct hstate *h, 2236 nodemask_t *nodes_allowed, 2237 bool acct_surplus) 2238 { 2239 int nr_nodes, node; 2240 struct page *page = NULL; 2241 struct folio *folio; 2242 2243 lockdep_assert_held(&hugetlb_lock); 2244 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2245 /* 2246 * If we're returning unused surplus pages, only examine 2247 * nodes with surplus pages. 2248 */ 2249 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2250 !list_empty(&h->hugepage_freelists[node])) { 2251 page = list_entry(h->hugepage_freelists[node].next, 2252 struct page, lru); 2253 folio = page_folio(page); 2254 remove_hugetlb_folio(h, folio, acct_surplus); 2255 break; 2256 } 2257 } 2258 2259 return page; 2260 } 2261 2262 /* 2263 * Dissolve a given free hugepage into free buddy pages. This function does 2264 * nothing for in-use hugepages and non-hugepages. 2265 * This function returns values like below: 2266 * 2267 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2268 * when the system is under memory pressure and the feature of 2269 * freeing unused vmemmap pages associated with each hugetlb page 2270 * is enabled. 2271 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2272 * (allocated or reserved.) 2273 * 0: successfully dissolved free hugepages or the page is not a 2274 * hugepage (considered as already dissolved) 2275 */ 2276 int dissolve_free_huge_page(struct page *page) 2277 { 2278 int rc = -EBUSY; 2279 struct folio *folio = page_folio(page); 2280 2281 retry: 2282 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2283 if (!folio_test_hugetlb(folio)) 2284 return 0; 2285 2286 spin_lock_irq(&hugetlb_lock); 2287 if (!folio_test_hugetlb(folio)) { 2288 rc = 0; 2289 goto out; 2290 } 2291 2292 if (!folio_ref_count(folio)) { 2293 struct hstate *h = folio_hstate(folio); 2294 if (!available_huge_pages(h)) 2295 goto out; 2296 2297 /* 2298 * We should make sure that the page is already on the free list 2299 * when it is dissolved. 2300 */ 2301 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2302 spin_unlock_irq(&hugetlb_lock); 2303 cond_resched(); 2304 2305 /* 2306 * Theoretically, we should return -EBUSY when we 2307 * encounter this race. In fact, we have a chance 2308 * to successfully dissolve the page if we do a 2309 * retry. Because the race window is quite small. 2310 * If we seize this opportunity, it is an optimization 2311 * for increasing the success rate of dissolving page. 2312 */ 2313 goto retry; 2314 } 2315 2316 remove_hugetlb_folio(h, folio, false); 2317 h->max_huge_pages--; 2318 spin_unlock_irq(&hugetlb_lock); 2319 2320 /* 2321 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2322 * before freeing the page. update_and_free_hugtlb_folio will fail to 2323 * free the page if it can not allocate required vmemmap. We 2324 * need to adjust max_huge_pages if the page is not freed. 2325 * Attempt to allocate vmemmmap here so that we can take 2326 * appropriate action on failure. 2327 */ 2328 rc = hugetlb_vmemmap_restore(h, &folio->page); 2329 if (!rc) { 2330 update_and_free_hugetlb_folio(h, folio, false); 2331 } else { 2332 spin_lock_irq(&hugetlb_lock); 2333 add_hugetlb_folio(h, folio, false); 2334 h->max_huge_pages++; 2335 spin_unlock_irq(&hugetlb_lock); 2336 } 2337 2338 return rc; 2339 } 2340 out: 2341 spin_unlock_irq(&hugetlb_lock); 2342 return rc; 2343 } 2344 2345 /* 2346 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2347 * make specified memory blocks removable from the system. 2348 * Note that this will dissolve a free gigantic hugepage completely, if any 2349 * part of it lies within the given range. 2350 * Also note that if dissolve_free_huge_page() returns with an error, all 2351 * free hugepages that were dissolved before that error are lost. 2352 */ 2353 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2354 { 2355 unsigned long pfn; 2356 struct page *page; 2357 int rc = 0; 2358 unsigned int order; 2359 struct hstate *h; 2360 2361 if (!hugepages_supported()) 2362 return rc; 2363 2364 order = huge_page_order(&default_hstate); 2365 for_each_hstate(h) 2366 order = min(order, huge_page_order(h)); 2367 2368 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2369 page = pfn_to_page(pfn); 2370 rc = dissolve_free_huge_page(page); 2371 if (rc) 2372 break; 2373 } 2374 2375 return rc; 2376 } 2377 2378 /* 2379 * Allocates a fresh surplus page from the page allocator. 2380 */ 2381 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2382 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2383 { 2384 struct folio *folio = NULL; 2385 2386 if (hstate_is_gigantic(h)) 2387 return NULL; 2388 2389 spin_lock_irq(&hugetlb_lock); 2390 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2391 goto out_unlock; 2392 spin_unlock_irq(&hugetlb_lock); 2393 2394 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2395 if (!folio) 2396 return NULL; 2397 2398 spin_lock_irq(&hugetlb_lock); 2399 /* 2400 * We could have raced with the pool size change. 2401 * Double check that and simply deallocate the new page 2402 * if we would end up overcommiting the surpluses. Abuse 2403 * temporary page to workaround the nasty free_huge_page 2404 * codeflow 2405 */ 2406 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2407 folio_set_hugetlb_temporary(folio); 2408 spin_unlock_irq(&hugetlb_lock); 2409 free_huge_page(&folio->page); 2410 return NULL; 2411 } 2412 2413 h->surplus_huge_pages++; 2414 h->surplus_huge_pages_node[folio_nid(folio)]++; 2415 2416 out_unlock: 2417 spin_unlock_irq(&hugetlb_lock); 2418 2419 return folio; 2420 } 2421 2422 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2423 int nid, nodemask_t *nmask) 2424 { 2425 struct folio *folio; 2426 2427 if (hstate_is_gigantic(h)) 2428 return NULL; 2429 2430 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2431 if (!folio) 2432 return NULL; 2433 2434 /* fresh huge pages are frozen */ 2435 folio_ref_unfreeze(folio, 1); 2436 /* 2437 * We do not account these pages as surplus because they are only 2438 * temporary and will be released properly on the last reference 2439 */ 2440 folio_set_hugetlb_temporary(folio); 2441 2442 return folio; 2443 } 2444 2445 /* 2446 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2447 */ 2448 static 2449 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2450 struct vm_area_struct *vma, unsigned long addr) 2451 { 2452 struct folio *folio = NULL; 2453 struct mempolicy *mpol; 2454 gfp_t gfp_mask = htlb_alloc_mask(h); 2455 int nid; 2456 nodemask_t *nodemask; 2457 2458 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2459 if (mpol_is_preferred_many(mpol)) { 2460 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2461 2462 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2463 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2464 2465 /* Fallback to all nodes if page==NULL */ 2466 nodemask = NULL; 2467 } 2468 2469 if (!folio) 2470 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2471 mpol_cond_put(mpol); 2472 return folio; 2473 } 2474 2475 /* folio migration callback function */ 2476 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2477 nodemask_t *nmask, gfp_t gfp_mask) 2478 { 2479 spin_lock_irq(&hugetlb_lock); 2480 if (available_huge_pages(h)) { 2481 struct folio *folio; 2482 2483 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2484 preferred_nid, nmask); 2485 if (folio) { 2486 spin_unlock_irq(&hugetlb_lock); 2487 return folio; 2488 } 2489 } 2490 spin_unlock_irq(&hugetlb_lock); 2491 2492 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2493 } 2494 2495 /* mempolicy aware migration callback */ 2496 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2497 unsigned long address) 2498 { 2499 struct mempolicy *mpol; 2500 nodemask_t *nodemask; 2501 struct folio *folio; 2502 gfp_t gfp_mask; 2503 int node; 2504 2505 gfp_mask = htlb_alloc_mask(h); 2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2507 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2508 mpol_cond_put(mpol); 2509 2510 return folio; 2511 } 2512 2513 /* 2514 * Increase the hugetlb pool such that it can accommodate a reservation 2515 * of size 'delta'. 2516 */ 2517 static int gather_surplus_pages(struct hstate *h, long delta) 2518 __must_hold(&hugetlb_lock) 2519 { 2520 LIST_HEAD(surplus_list); 2521 struct folio *folio; 2522 struct page *page, *tmp; 2523 int ret; 2524 long i; 2525 long needed, allocated; 2526 bool alloc_ok = true; 2527 2528 lockdep_assert_held(&hugetlb_lock); 2529 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2530 if (needed <= 0) { 2531 h->resv_huge_pages += delta; 2532 return 0; 2533 } 2534 2535 allocated = 0; 2536 2537 ret = -ENOMEM; 2538 retry: 2539 spin_unlock_irq(&hugetlb_lock); 2540 for (i = 0; i < needed; i++) { 2541 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2542 NUMA_NO_NODE, NULL); 2543 if (!folio) { 2544 alloc_ok = false; 2545 break; 2546 } 2547 list_add(&folio->lru, &surplus_list); 2548 cond_resched(); 2549 } 2550 allocated += i; 2551 2552 /* 2553 * After retaking hugetlb_lock, we need to recalculate 'needed' 2554 * because either resv_huge_pages or free_huge_pages may have changed. 2555 */ 2556 spin_lock_irq(&hugetlb_lock); 2557 needed = (h->resv_huge_pages + delta) - 2558 (h->free_huge_pages + allocated); 2559 if (needed > 0) { 2560 if (alloc_ok) 2561 goto retry; 2562 /* 2563 * We were not able to allocate enough pages to 2564 * satisfy the entire reservation so we free what 2565 * we've allocated so far. 2566 */ 2567 goto free; 2568 } 2569 /* 2570 * The surplus_list now contains _at_least_ the number of extra pages 2571 * needed to accommodate the reservation. Add the appropriate number 2572 * of pages to the hugetlb pool and free the extras back to the buddy 2573 * allocator. Commit the entire reservation here to prevent another 2574 * process from stealing the pages as they are added to the pool but 2575 * before they are reserved. 2576 */ 2577 needed += allocated; 2578 h->resv_huge_pages += delta; 2579 ret = 0; 2580 2581 /* Free the needed pages to the hugetlb pool */ 2582 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2583 if ((--needed) < 0) 2584 break; 2585 /* Add the page to the hugetlb allocator */ 2586 enqueue_hugetlb_folio(h, page_folio(page)); 2587 } 2588 free: 2589 spin_unlock_irq(&hugetlb_lock); 2590 2591 /* 2592 * Free unnecessary surplus pages to the buddy allocator. 2593 * Pages have no ref count, call free_huge_page directly. 2594 */ 2595 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2596 free_huge_page(page); 2597 spin_lock_irq(&hugetlb_lock); 2598 2599 return ret; 2600 } 2601 2602 /* 2603 * This routine has two main purposes: 2604 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2605 * in unused_resv_pages. This corresponds to the prior adjustments made 2606 * to the associated reservation map. 2607 * 2) Free any unused surplus pages that may have been allocated to satisfy 2608 * the reservation. As many as unused_resv_pages may be freed. 2609 */ 2610 static void return_unused_surplus_pages(struct hstate *h, 2611 unsigned long unused_resv_pages) 2612 { 2613 unsigned long nr_pages; 2614 struct page *page; 2615 LIST_HEAD(page_list); 2616 2617 lockdep_assert_held(&hugetlb_lock); 2618 /* Uncommit the reservation */ 2619 h->resv_huge_pages -= unused_resv_pages; 2620 2621 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2622 goto out; 2623 2624 /* 2625 * Part (or even all) of the reservation could have been backed 2626 * by pre-allocated pages. Only free surplus pages. 2627 */ 2628 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2629 2630 /* 2631 * We want to release as many surplus pages as possible, spread 2632 * evenly across all nodes with memory. Iterate across these nodes 2633 * until we can no longer free unreserved surplus pages. This occurs 2634 * when the nodes with surplus pages have no free pages. 2635 * remove_pool_huge_page() will balance the freed pages across the 2636 * on-line nodes with memory and will handle the hstate accounting. 2637 */ 2638 while (nr_pages--) { 2639 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2640 if (!page) 2641 goto out; 2642 2643 list_add(&page->lru, &page_list); 2644 } 2645 2646 out: 2647 spin_unlock_irq(&hugetlb_lock); 2648 update_and_free_pages_bulk(h, &page_list); 2649 spin_lock_irq(&hugetlb_lock); 2650 } 2651 2652 2653 /* 2654 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2655 * are used by the huge page allocation routines to manage reservations. 2656 * 2657 * vma_needs_reservation is called to determine if the huge page at addr 2658 * within the vma has an associated reservation. If a reservation is 2659 * needed, the value 1 is returned. The caller is then responsible for 2660 * managing the global reservation and subpool usage counts. After 2661 * the huge page has been allocated, vma_commit_reservation is called 2662 * to add the page to the reservation map. If the page allocation fails, 2663 * the reservation must be ended instead of committed. vma_end_reservation 2664 * is called in such cases. 2665 * 2666 * In the normal case, vma_commit_reservation returns the same value 2667 * as the preceding vma_needs_reservation call. The only time this 2668 * is not the case is if a reserve map was changed between calls. It 2669 * is the responsibility of the caller to notice the difference and 2670 * take appropriate action. 2671 * 2672 * vma_add_reservation is used in error paths where a reservation must 2673 * be restored when a newly allocated huge page must be freed. It is 2674 * to be called after calling vma_needs_reservation to determine if a 2675 * reservation exists. 2676 * 2677 * vma_del_reservation is used in error paths where an entry in the reserve 2678 * map was created during huge page allocation and must be removed. It is to 2679 * be called after calling vma_needs_reservation to determine if a reservation 2680 * exists. 2681 */ 2682 enum vma_resv_mode { 2683 VMA_NEEDS_RESV, 2684 VMA_COMMIT_RESV, 2685 VMA_END_RESV, 2686 VMA_ADD_RESV, 2687 VMA_DEL_RESV, 2688 }; 2689 static long __vma_reservation_common(struct hstate *h, 2690 struct vm_area_struct *vma, unsigned long addr, 2691 enum vma_resv_mode mode) 2692 { 2693 struct resv_map *resv; 2694 pgoff_t idx; 2695 long ret; 2696 long dummy_out_regions_needed; 2697 2698 resv = vma_resv_map(vma); 2699 if (!resv) 2700 return 1; 2701 2702 idx = vma_hugecache_offset(h, vma, addr); 2703 switch (mode) { 2704 case VMA_NEEDS_RESV: 2705 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2706 /* We assume that vma_reservation_* routines always operate on 2707 * 1 page, and that adding to resv map a 1 page entry can only 2708 * ever require 1 region. 2709 */ 2710 VM_BUG_ON(dummy_out_regions_needed != 1); 2711 break; 2712 case VMA_COMMIT_RESV: 2713 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2714 /* region_add calls of range 1 should never fail. */ 2715 VM_BUG_ON(ret < 0); 2716 break; 2717 case VMA_END_RESV: 2718 region_abort(resv, idx, idx + 1, 1); 2719 ret = 0; 2720 break; 2721 case VMA_ADD_RESV: 2722 if (vma->vm_flags & VM_MAYSHARE) { 2723 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2724 /* region_add calls of range 1 should never fail. */ 2725 VM_BUG_ON(ret < 0); 2726 } else { 2727 region_abort(resv, idx, idx + 1, 1); 2728 ret = region_del(resv, idx, idx + 1); 2729 } 2730 break; 2731 case VMA_DEL_RESV: 2732 if (vma->vm_flags & VM_MAYSHARE) { 2733 region_abort(resv, idx, idx + 1, 1); 2734 ret = region_del(resv, idx, idx + 1); 2735 } else { 2736 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2737 /* region_add calls of range 1 should never fail. */ 2738 VM_BUG_ON(ret < 0); 2739 } 2740 break; 2741 default: 2742 BUG(); 2743 } 2744 2745 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2746 return ret; 2747 /* 2748 * We know private mapping must have HPAGE_RESV_OWNER set. 2749 * 2750 * In most cases, reserves always exist for private mappings. 2751 * However, a file associated with mapping could have been 2752 * hole punched or truncated after reserves were consumed. 2753 * As subsequent fault on such a range will not use reserves. 2754 * Subtle - The reserve map for private mappings has the 2755 * opposite meaning than that of shared mappings. If NO 2756 * entry is in the reserve map, it means a reservation exists. 2757 * If an entry exists in the reserve map, it means the 2758 * reservation has already been consumed. As a result, the 2759 * return value of this routine is the opposite of the 2760 * value returned from reserve map manipulation routines above. 2761 */ 2762 if (ret > 0) 2763 return 0; 2764 if (ret == 0) 2765 return 1; 2766 return ret; 2767 } 2768 2769 static long vma_needs_reservation(struct hstate *h, 2770 struct vm_area_struct *vma, unsigned long addr) 2771 { 2772 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2773 } 2774 2775 static long vma_commit_reservation(struct hstate *h, 2776 struct vm_area_struct *vma, unsigned long addr) 2777 { 2778 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2779 } 2780 2781 static void vma_end_reservation(struct hstate *h, 2782 struct vm_area_struct *vma, unsigned long addr) 2783 { 2784 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2785 } 2786 2787 static long vma_add_reservation(struct hstate *h, 2788 struct vm_area_struct *vma, unsigned long addr) 2789 { 2790 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2791 } 2792 2793 static long vma_del_reservation(struct hstate *h, 2794 struct vm_area_struct *vma, unsigned long addr) 2795 { 2796 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2797 } 2798 2799 /* 2800 * This routine is called to restore reservation information on error paths. 2801 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2802 * and the hugetlb mutex should remain held when calling this routine. 2803 * 2804 * It handles two specific cases: 2805 * 1) A reservation was in place and the folio consumed the reservation. 2806 * hugetlb_restore_reserve is set in the folio. 2807 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2808 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2809 * 2810 * In case 1, free_huge_page later in the error path will increment the 2811 * global reserve count. But, free_huge_page does not have enough context 2812 * to adjust the reservation map. This case deals primarily with private 2813 * mappings. Adjust the reserve map here to be consistent with global 2814 * reserve count adjustments to be made by free_huge_page. Make sure the 2815 * reserve map indicates there is a reservation present. 2816 * 2817 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2818 */ 2819 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2820 unsigned long address, struct folio *folio) 2821 { 2822 long rc = vma_needs_reservation(h, vma, address); 2823 2824 if (folio_test_hugetlb_restore_reserve(folio)) { 2825 if (unlikely(rc < 0)) 2826 /* 2827 * Rare out of memory condition in reserve map 2828 * manipulation. Clear hugetlb_restore_reserve so 2829 * that global reserve count will not be incremented 2830 * by free_huge_page. This will make it appear 2831 * as though the reservation for this folio was 2832 * consumed. This may prevent the task from 2833 * faulting in the folio at a later time. This 2834 * is better than inconsistent global huge page 2835 * accounting of reserve counts. 2836 */ 2837 folio_clear_hugetlb_restore_reserve(folio); 2838 else if (rc) 2839 (void)vma_add_reservation(h, vma, address); 2840 else 2841 vma_end_reservation(h, vma, address); 2842 } else { 2843 if (!rc) { 2844 /* 2845 * This indicates there is an entry in the reserve map 2846 * not added by alloc_hugetlb_folio. We know it was added 2847 * before the alloc_hugetlb_folio call, otherwise 2848 * hugetlb_restore_reserve would be set on the folio. 2849 * Remove the entry so that a subsequent allocation 2850 * does not consume a reservation. 2851 */ 2852 rc = vma_del_reservation(h, vma, address); 2853 if (rc < 0) 2854 /* 2855 * VERY rare out of memory condition. Since 2856 * we can not delete the entry, set 2857 * hugetlb_restore_reserve so that the reserve 2858 * count will be incremented when the folio 2859 * is freed. This reserve will be consumed 2860 * on a subsequent allocation. 2861 */ 2862 folio_set_hugetlb_restore_reserve(folio); 2863 } else if (rc < 0) { 2864 /* 2865 * Rare out of memory condition from 2866 * vma_needs_reservation call. Memory allocation is 2867 * only attempted if a new entry is needed. Therefore, 2868 * this implies there is not an entry in the 2869 * reserve map. 2870 * 2871 * For shared mappings, no entry in the map indicates 2872 * no reservation. We are done. 2873 */ 2874 if (!(vma->vm_flags & VM_MAYSHARE)) 2875 /* 2876 * For private mappings, no entry indicates 2877 * a reservation is present. Since we can 2878 * not add an entry, set hugetlb_restore_reserve 2879 * on the folio so reserve count will be 2880 * incremented when freed. This reserve will 2881 * be consumed on a subsequent allocation. 2882 */ 2883 folio_set_hugetlb_restore_reserve(folio); 2884 } else 2885 /* 2886 * No reservation present, do nothing 2887 */ 2888 vma_end_reservation(h, vma, address); 2889 } 2890 } 2891 2892 /* 2893 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2894 * the old one 2895 * @h: struct hstate old page belongs to 2896 * @old_folio: Old folio to dissolve 2897 * @list: List to isolate the page in case we need to 2898 * Returns 0 on success, otherwise negated error. 2899 */ 2900 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2901 struct folio *old_folio, struct list_head *list) 2902 { 2903 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2904 int nid = folio_nid(old_folio); 2905 struct folio *new_folio; 2906 int ret = 0; 2907 2908 /* 2909 * Before dissolving the folio, we need to allocate a new one for the 2910 * pool to remain stable. Here, we allocate the folio and 'prep' it 2911 * by doing everything but actually updating counters and adding to 2912 * the pool. This simplifies and let us do most of the processing 2913 * under the lock. 2914 */ 2915 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2916 if (!new_folio) 2917 return -ENOMEM; 2918 __prep_new_hugetlb_folio(h, new_folio); 2919 2920 retry: 2921 spin_lock_irq(&hugetlb_lock); 2922 if (!folio_test_hugetlb(old_folio)) { 2923 /* 2924 * Freed from under us. Drop new_folio too. 2925 */ 2926 goto free_new; 2927 } else if (folio_ref_count(old_folio)) { 2928 bool isolated; 2929 2930 /* 2931 * Someone has grabbed the folio, try to isolate it here. 2932 * Fail with -EBUSY if not possible. 2933 */ 2934 spin_unlock_irq(&hugetlb_lock); 2935 isolated = isolate_hugetlb(old_folio, list); 2936 ret = isolated ? 0 : -EBUSY; 2937 spin_lock_irq(&hugetlb_lock); 2938 goto free_new; 2939 } else if (!folio_test_hugetlb_freed(old_folio)) { 2940 /* 2941 * Folio's refcount is 0 but it has not been enqueued in the 2942 * freelist yet. Race window is small, so we can succeed here if 2943 * we retry. 2944 */ 2945 spin_unlock_irq(&hugetlb_lock); 2946 cond_resched(); 2947 goto retry; 2948 } else { 2949 /* 2950 * Ok, old_folio is still a genuine free hugepage. Remove it from 2951 * the freelist and decrease the counters. These will be 2952 * incremented again when calling __prep_account_new_huge_page() 2953 * and enqueue_hugetlb_folio() for new_folio. The counters will 2954 * remain stable since this happens under the lock. 2955 */ 2956 remove_hugetlb_folio(h, old_folio, false); 2957 2958 /* 2959 * Ref count on new_folio is already zero as it was dropped 2960 * earlier. It can be directly added to the pool free list. 2961 */ 2962 __prep_account_new_huge_page(h, nid); 2963 enqueue_hugetlb_folio(h, new_folio); 2964 2965 /* 2966 * Folio has been replaced, we can safely free the old one. 2967 */ 2968 spin_unlock_irq(&hugetlb_lock); 2969 update_and_free_hugetlb_folio(h, old_folio, false); 2970 } 2971 2972 return ret; 2973 2974 free_new: 2975 spin_unlock_irq(&hugetlb_lock); 2976 /* Folio has a zero ref count, but needs a ref to be freed */ 2977 folio_ref_unfreeze(new_folio, 1); 2978 update_and_free_hugetlb_folio(h, new_folio, false); 2979 2980 return ret; 2981 } 2982 2983 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2984 { 2985 struct hstate *h; 2986 struct folio *folio = page_folio(page); 2987 int ret = -EBUSY; 2988 2989 /* 2990 * The page might have been dissolved from under our feet, so make sure 2991 * to carefully check the state under the lock. 2992 * Return success when racing as if we dissolved the page ourselves. 2993 */ 2994 spin_lock_irq(&hugetlb_lock); 2995 if (folio_test_hugetlb(folio)) { 2996 h = folio_hstate(folio); 2997 } else { 2998 spin_unlock_irq(&hugetlb_lock); 2999 return 0; 3000 } 3001 spin_unlock_irq(&hugetlb_lock); 3002 3003 /* 3004 * Fence off gigantic pages as there is a cyclic dependency between 3005 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3006 * of bailing out right away without further retrying. 3007 */ 3008 if (hstate_is_gigantic(h)) 3009 return -ENOMEM; 3010 3011 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3012 ret = 0; 3013 else if (!folio_ref_count(folio)) 3014 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3015 3016 return ret; 3017 } 3018 3019 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3020 unsigned long addr, int avoid_reserve) 3021 { 3022 struct hugepage_subpool *spool = subpool_vma(vma); 3023 struct hstate *h = hstate_vma(vma); 3024 struct folio *folio; 3025 long map_chg, map_commit; 3026 long gbl_chg; 3027 int ret, idx; 3028 struct hugetlb_cgroup *h_cg = NULL; 3029 bool deferred_reserve; 3030 3031 idx = hstate_index(h); 3032 /* 3033 * Examine the region/reserve map to determine if the process 3034 * has a reservation for the page to be allocated. A return 3035 * code of zero indicates a reservation exists (no change). 3036 */ 3037 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3038 if (map_chg < 0) 3039 return ERR_PTR(-ENOMEM); 3040 3041 /* 3042 * Processes that did not create the mapping will have no 3043 * reserves as indicated by the region/reserve map. Check 3044 * that the allocation will not exceed the subpool limit. 3045 * Allocations for MAP_NORESERVE mappings also need to be 3046 * checked against any subpool limit. 3047 */ 3048 if (map_chg || avoid_reserve) { 3049 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3050 if (gbl_chg < 0) { 3051 vma_end_reservation(h, vma, addr); 3052 return ERR_PTR(-ENOSPC); 3053 } 3054 3055 /* 3056 * Even though there was no reservation in the region/reserve 3057 * map, there could be reservations associated with the 3058 * subpool that can be used. This would be indicated if the 3059 * return value of hugepage_subpool_get_pages() is zero. 3060 * However, if avoid_reserve is specified we still avoid even 3061 * the subpool reservations. 3062 */ 3063 if (avoid_reserve) 3064 gbl_chg = 1; 3065 } 3066 3067 /* If this allocation is not consuming a reservation, charge it now. 3068 */ 3069 deferred_reserve = map_chg || avoid_reserve; 3070 if (deferred_reserve) { 3071 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3072 idx, pages_per_huge_page(h), &h_cg); 3073 if (ret) 3074 goto out_subpool_put; 3075 } 3076 3077 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3078 if (ret) 3079 goto out_uncharge_cgroup_reservation; 3080 3081 spin_lock_irq(&hugetlb_lock); 3082 /* 3083 * glb_chg is passed to indicate whether or not a page must be taken 3084 * from the global free pool (global change). gbl_chg == 0 indicates 3085 * a reservation exists for the allocation. 3086 */ 3087 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3088 if (!folio) { 3089 spin_unlock_irq(&hugetlb_lock); 3090 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3091 if (!folio) 3092 goto out_uncharge_cgroup; 3093 spin_lock_irq(&hugetlb_lock); 3094 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3095 folio_set_hugetlb_restore_reserve(folio); 3096 h->resv_huge_pages--; 3097 } 3098 list_add(&folio->lru, &h->hugepage_activelist); 3099 folio_ref_unfreeze(folio, 1); 3100 /* Fall through */ 3101 } 3102 3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3104 /* If allocation is not consuming a reservation, also store the 3105 * hugetlb_cgroup pointer on the page. 3106 */ 3107 if (deferred_reserve) { 3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3109 h_cg, folio); 3110 } 3111 3112 spin_unlock_irq(&hugetlb_lock); 3113 3114 hugetlb_set_folio_subpool(folio, spool); 3115 3116 map_commit = vma_commit_reservation(h, vma, addr); 3117 if (unlikely(map_chg > map_commit)) { 3118 /* 3119 * The page was added to the reservation map between 3120 * vma_needs_reservation and vma_commit_reservation. 3121 * This indicates a race with hugetlb_reserve_pages. 3122 * Adjust for the subpool count incremented above AND 3123 * in hugetlb_reserve_pages for the same page. Also, 3124 * the reservation count added in hugetlb_reserve_pages 3125 * no longer applies. 3126 */ 3127 long rsv_adjust; 3128 3129 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3130 hugetlb_acct_memory(h, -rsv_adjust); 3131 if (deferred_reserve) 3132 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3133 pages_per_huge_page(h), folio); 3134 } 3135 return folio; 3136 3137 out_uncharge_cgroup: 3138 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3139 out_uncharge_cgroup_reservation: 3140 if (deferred_reserve) 3141 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3142 h_cg); 3143 out_subpool_put: 3144 if (map_chg || avoid_reserve) 3145 hugepage_subpool_put_pages(spool, 1); 3146 vma_end_reservation(h, vma, addr); 3147 return ERR_PTR(-ENOSPC); 3148 } 3149 3150 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3151 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3152 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3153 { 3154 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3155 int nr_nodes, node; 3156 3157 /* do node specific alloc */ 3158 if (nid != NUMA_NO_NODE) { 3159 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3160 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3161 if (!m) 3162 return 0; 3163 goto found; 3164 } 3165 /* allocate from next node when distributing huge pages */ 3166 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3167 m = memblock_alloc_try_nid_raw( 3168 huge_page_size(h), huge_page_size(h), 3169 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3170 /* 3171 * Use the beginning of the huge page to store the 3172 * huge_bootmem_page struct (until gather_bootmem 3173 * puts them into the mem_map). 3174 */ 3175 if (!m) 3176 return 0; 3177 goto found; 3178 } 3179 3180 found: 3181 /* Put them into a private list first because mem_map is not up yet */ 3182 INIT_LIST_HEAD(&m->list); 3183 list_add(&m->list, &huge_boot_pages); 3184 m->hstate = h; 3185 return 1; 3186 } 3187 3188 /* 3189 * Put bootmem huge pages into the standard lists after mem_map is up. 3190 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3191 */ 3192 static void __init gather_bootmem_prealloc(void) 3193 { 3194 struct huge_bootmem_page *m; 3195 3196 list_for_each_entry(m, &huge_boot_pages, list) { 3197 struct page *page = virt_to_page(m); 3198 struct folio *folio = page_folio(page); 3199 struct hstate *h = m->hstate; 3200 3201 VM_BUG_ON(!hstate_is_gigantic(h)); 3202 WARN_ON(folio_ref_count(folio) != 1); 3203 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3204 WARN_ON(folio_test_reserved(folio)); 3205 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3206 free_huge_page(page); /* add to the hugepage allocator */ 3207 } else { 3208 /* VERY unlikely inflated ref count on a tail page */ 3209 free_gigantic_folio(folio, huge_page_order(h)); 3210 } 3211 3212 /* 3213 * We need to restore the 'stolen' pages to totalram_pages 3214 * in order to fix confusing memory reports from free(1) and 3215 * other side-effects, like CommitLimit going negative. 3216 */ 3217 adjust_managed_page_count(page, pages_per_huge_page(h)); 3218 cond_resched(); 3219 } 3220 } 3221 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3222 { 3223 unsigned long i; 3224 char buf[32]; 3225 3226 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3227 if (hstate_is_gigantic(h)) { 3228 if (!alloc_bootmem_huge_page(h, nid)) 3229 break; 3230 } else { 3231 struct folio *folio; 3232 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3233 3234 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3235 &node_states[N_MEMORY], NULL); 3236 if (!folio) 3237 break; 3238 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3239 } 3240 cond_resched(); 3241 } 3242 if (i == h->max_huge_pages_node[nid]) 3243 return; 3244 3245 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3246 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3247 h->max_huge_pages_node[nid], buf, nid, i); 3248 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3249 h->max_huge_pages_node[nid] = i; 3250 } 3251 3252 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3253 { 3254 unsigned long i; 3255 nodemask_t *node_alloc_noretry; 3256 bool node_specific_alloc = false; 3257 3258 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3259 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3260 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3261 return; 3262 } 3263 3264 /* do node specific alloc */ 3265 for_each_online_node(i) { 3266 if (h->max_huge_pages_node[i] > 0) { 3267 hugetlb_hstate_alloc_pages_onenode(h, i); 3268 node_specific_alloc = true; 3269 } 3270 } 3271 3272 if (node_specific_alloc) 3273 return; 3274 3275 /* below will do all node balanced alloc */ 3276 if (!hstate_is_gigantic(h)) { 3277 /* 3278 * Bit mask controlling how hard we retry per-node allocations. 3279 * Ignore errors as lower level routines can deal with 3280 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3281 * time, we are likely in bigger trouble. 3282 */ 3283 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3284 GFP_KERNEL); 3285 } else { 3286 /* allocations done at boot time */ 3287 node_alloc_noretry = NULL; 3288 } 3289 3290 /* bit mask controlling how hard we retry per-node allocations */ 3291 if (node_alloc_noretry) 3292 nodes_clear(*node_alloc_noretry); 3293 3294 for (i = 0; i < h->max_huge_pages; ++i) { 3295 if (hstate_is_gigantic(h)) { 3296 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3297 break; 3298 } else if (!alloc_pool_huge_page(h, 3299 &node_states[N_MEMORY], 3300 node_alloc_noretry)) 3301 break; 3302 cond_resched(); 3303 } 3304 if (i < h->max_huge_pages) { 3305 char buf[32]; 3306 3307 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3308 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3309 h->max_huge_pages, buf, i); 3310 h->max_huge_pages = i; 3311 } 3312 kfree(node_alloc_noretry); 3313 } 3314 3315 static void __init hugetlb_init_hstates(void) 3316 { 3317 struct hstate *h, *h2; 3318 3319 for_each_hstate(h) { 3320 /* oversize hugepages were init'ed in early boot */ 3321 if (!hstate_is_gigantic(h)) 3322 hugetlb_hstate_alloc_pages(h); 3323 3324 /* 3325 * Set demote order for each hstate. Note that 3326 * h->demote_order is initially 0. 3327 * - We can not demote gigantic pages if runtime freeing 3328 * is not supported, so skip this. 3329 * - If CMA allocation is possible, we can not demote 3330 * HUGETLB_PAGE_ORDER or smaller size pages. 3331 */ 3332 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3333 continue; 3334 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3335 continue; 3336 for_each_hstate(h2) { 3337 if (h2 == h) 3338 continue; 3339 if (h2->order < h->order && 3340 h2->order > h->demote_order) 3341 h->demote_order = h2->order; 3342 } 3343 } 3344 } 3345 3346 static void __init report_hugepages(void) 3347 { 3348 struct hstate *h; 3349 3350 for_each_hstate(h) { 3351 char buf[32]; 3352 3353 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3354 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3355 buf, h->free_huge_pages); 3356 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3357 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3358 } 3359 } 3360 3361 #ifdef CONFIG_HIGHMEM 3362 static void try_to_free_low(struct hstate *h, unsigned long count, 3363 nodemask_t *nodes_allowed) 3364 { 3365 int i; 3366 LIST_HEAD(page_list); 3367 3368 lockdep_assert_held(&hugetlb_lock); 3369 if (hstate_is_gigantic(h)) 3370 return; 3371 3372 /* 3373 * Collect pages to be freed on a list, and free after dropping lock 3374 */ 3375 for_each_node_mask(i, *nodes_allowed) { 3376 struct page *page, *next; 3377 struct list_head *freel = &h->hugepage_freelists[i]; 3378 list_for_each_entry_safe(page, next, freel, lru) { 3379 if (count >= h->nr_huge_pages) 3380 goto out; 3381 if (PageHighMem(page)) 3382 continue; 3383 remove_hugetlb_folio(h, page_folio(page), false); 3384 list_add(&page->lru, &page_list); 3385 } 3386 } 3387 3388 out: 3389 spin_unlock_irq(&hugetlb_lock); 3390 update_and_free_pages_bulk(h, &page_list); 3391 spin_lock_irq(&hugetlb_lock); 3392 } 3393 #else 3394 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3395 nodemask_t *nodes_allowed) 3396 { 3397 } 3398 #endif 3399 3400 /* 3401 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3402 * balanced by operating on them in a round-robin fashion. 3403 * Returns 1 if an adjustment was made. 3404 */ 3405 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3406 int delta) 3407 { 3408 int nr_nodes, node; 3409 3410 lockdep_assert_held(&hugetlb_lock); 3411 VM_BUG_ON(delta != -1 && delta != 1); 3412 3413 if (delta < 0) { 3414 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3415 if (h->surplus_huge_pages_node[node]) 3416 goto found; 3417 } 3418 } else { 3419 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3420 if (h->surplus_huge_pages_node[node] < 3421 h->nr_huge_pages_node[node]) 3422 goto found; 3423 } 3424 } 3425 return 0; 3426 3427 found: 3428 h->surplus_huge_pages += delta; 3429 h->surplus_huge_pages_node[node] += delta; 3430 return 1; 3431 } 3432 3433 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3434 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3435 nodemask_t *nodes_allowed) 3436 { 3437 unsigned long min_count, ret; 3438 struct page *page; 3439 LIST_HEAD(page_list); 3440 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3441 3442 /* 3443 * Bit mask controlling how hard we retry per-node allocations. 3444 * If we can not allocate the bit mask, do not attempt to allocate 3445 * the requested huge pages. 3446 */ 3447 if (node_alloc_noretry) 3448 nodes_clear(*node_alloc_noretry); 3449 else 3450 return -ENOMEM; 3451 3452 /* 3453 * resize_lock mutex prevents concurrent adjustments to number of 3454 * pages in hstate via the proc/sysfs interfaces. 3455 */ 3456 mutex_lock(&h->resize_lock); 3457 flush_free_hpage_work(h); 3458 spin_lock_irq(&hugetlb_lock); 3459 3460 /* 3461 * Check for a node specific request. 3462 * Changing node specific huge page count may require a corresponding 3463 * change to the global count. In any case, the passed node mask 3464 * (nodes_allowed) will restrict alloc/free to the specified node. 3465 */ 3466 if (nid != NUMA_NO_NODE) { 3467 unsigned long old_count = count; 3468 3469 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3470 /* 3471 * User may have specified a large count value which caused the 3472 * above calculation to overflow. In this case, they wanted 3473 * to allocate as many huge pages as possible. Set count to 3474 * largest possible value to align with their intention. 3475 */ 3476 if (count < old_count) 3477 count = ULONG_MAX; 3478 } 3479 3480 /* 3481 * Gigantic pages runtime allocation depend on the capability for large 3482 * page range allocation. 3483 * If the system does not provide this feature, return an error when 3484 * the user tries to allocate gigantic pages but let the user free the 3485 * boottime allocated gigantic pages. 3486 */ 3487 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3488 if (count > persistent_huge_pages(h)) { 3489 spin_unlock_irq(&hugetlb_lock); 3490 mutex_unlock(&h->resize_lock); 3491 NODEMASK_FREE(node_alloc_noretry); 3492 return -EINVAL; 3493 } 3494 /* Fall through to decrease pool */ 3495 } 3496 3497 /* 3498 * Increase the pool size 3499 * First take pages out of surplus state. Then make up the 3500 * remaining difference by allocating fresh huge pages. 3501 * 3502 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3503 * to convert a surplus huge page to a normal huge page. That is 3504 * not critical, though, it just means the overall size of the 3505 * pool might be one hugepage larger than it needs to be, but 3506 * within all the constraints specified by the sysctls. 3507 */ 3508 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3509 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3510 break; 3511 } 3512 3513 while (count > persistent_huge_pages(h)) { 3514 /* 3515 * If this allocation races such that we no longer need the 3516 * page, free_huge_page will handle it by freeing the page 3517 * and reducing the surplus. 3518 */ 3519 spin_unlock_irq(&hugetlb_lock); 3520 3521 /* yield cpu to avoid soft lockup */ 3522 cond_resched(); 3523 3524 ret = alloc_pool_huge_page(h, nodes_allowed, 3525 node_alloc_noretry); 3526 spin_lock_irq(&hugetlb_lock); 3527 if (!ret) 3528 goto out; 3529 3530 /* Bail for signals. Probably ctrl-c from user */ 3531 if (signal_pending(current)) 3532 goto out; 3533 } 3534 3535 /* 3536 * Decrease the pool size 3537 * First return free pages to the buddy allocator (being careful 3538 * to keep enough around to satisfy reservations). Then place 3539 * pages into surplus state as needed so the pool will shrink 3540 * to the desired size as pages become free. 3541 * 3542 * By placing pages into the surplus state independent of the 3543 * overcommit value, we are allowing the surplus pool size to 3544 * exceed overcommit. There are few sane options here. Since 3545 * alloc_surplus_hugetlb_folio() is checking the global counter, 3546 * though, we'll note that we're not allowed to exceed surplus 3547 * and won't grow the pool anywhere else. Not until one of the 3548 * sysctls are changed, or the surplus pages go out of use. 3549 */ 3550 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3551 min_count = max(count, min_count); 3552 try_to_free_low(h, min_count, nodes_allowed); 3553 3554 /* 3555 * Collect pages to be removed on list without dropping lock 3556 */ 3557 while (min_count < persistent_huge_pages(h)) { 3558 page = remove_pool_huge_page(h, nodes_allowed, 0); 3559 if (!page) 3560 break; 3561 3562 list_add(&page->lru, &page_list); 3563 } 3564 /* free the pages after dropping lock */ 3565 spin_unlock_irq(&hugetlb_lock); 3566 update_and_free_pages_bulk(h, &page_list); 3567 flush_free_hpage_work(h); 3568 spin_lock_irq(&hugetlb_lock); 3569 3570 while (count < persistent_huge_pages(h)) { 3571 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3572 break; 3573 } 3574 out: 3575 h->max_huge_pages = persistent_huge_pages(h); 3576 spin_unlock_irq(&hugetlb_lock); 3577 mutex_unlock(&h->resize_lock); 3578 3579 NODEMASK_FREE(node_alloc_noretry); 3580 3581 return 0; 3582 } 3583 3584 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3585 { 3586 int i, nid = folio_nid(folio); 3587 struct hstate *target_hstate; 3588 struct page *subpage; 3589 struct folio *inner_folio; 3590 int rc = 0; 3591 3592 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3593 3594 remove_hugetlb_folio_for_demote(h, folio, false); 3595 spin_unlock_irq(&hugetlb_lock); 3596 3597 rc = hugetlb_vmemmap_restore(h, &folio->page); 3598 if (rc) { 3599 /* Allocation of vmemmmap failed, we can not demote folio */ 3600 spin_lock_irq(&hugetlb_lock); 3601 folio_ref_unfreeze(folio, 1); 3602 add_hugetlb_folio(h, folio, false); 3603 return rc; 3604 } 3605 3606 /* 3607 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3608 * sizes as it will not ref count folios. 3609 */ 3610 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3611 3612 /* 3613 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3614 * Without the mutex, pages added to target hstate could be marked 3615 * as surplus. 3616 * 3617 * Note that we already hold h->resize_lock. To prevent deadlock, 3618 * use the convention of always taking larger size hstate mutex first. 3619 */ 3620 mutex_lock(&target_hstate->resize_lock); 3621 for (i = 0; i < pages_per_huge_page(h); 3622 i += pages_per_huge_page(target_hstate)) { 3623 subpage = folio_page(folio, i); 3624 inner_folio = page_folio(subpage); 3625 if (hstate_is_gigantic(target_hstate)) 3626 prep_compound_gigantic_folio_for_demote(inner_folio, 3627 target_hstate->order); 3628 else 3629 prep_compound_page(subpage, target_hstate->order); 3630 folio_change_private(inner_folio, NULL); 3631 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3632 free_huge_page(subpage); 3633 } 3634 mutex_unlock(&target_hstate->resize_lock); 3635 3636 spin_lock_irq(&hugetlb_lock); 3637 3638 /* 3639 * Not absolutely necessary, but for consistency update max_huge_pages 3640 * based on pool changes for the demoted page. 3641 */ 3642 h->max_huge_pages--; 3643 target_hstate->max_huge_pages += 3644 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3645 3646 return rc; 3647 } 3648 3649 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3650 __must_hold(&hugetlb_lock) 3651 { 3652 int nr_nodes, node; 3653 struct folio *folio; 3654 3655 lockdep_assert_held(&hugetlb_lock); 3656 3657 /* We should never get here if no demote order */ 3658 if (!h->demote_order) { 3659 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3660 return -EINVAL; /* internal error */ 3661 } 3662 3663 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3664 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3665 if (folio_test_hwpoison(folio)) 3666 continue; 3667 return demote_free_hugetlb_folio(h, folio); 3668 } 3669 } 3670 3671 /* 3672 * Only way to get here is if all pages on free lists are poisoned. 3673 * Return -EBUSY so that caller will not retry. 3674 */ 3675 return -EBUSY; 3676 } 3677 3678 #define HSTATE_ATTR_RO(_name) \ 3679 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3680 3681 #define HSTATE_ATTR_WO(_name) \ 3682 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3683 3684 #define HSTATE_ATTR(_name) \ 3685 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3686 3687 static struct kobject *hugepages_kobj; 3688 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3689 3690 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3691 3692 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3693 { 3694 int i; 3695 3696 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3697 if (hstate_kobjs[i] == kobj) { 3698 if (nidp) 3699 *nidp = NUMA_NO_NODE; 3700 return &hstates[i]; 3701 } 3702 3703 return kobj_to_node_hstate(kobj, nidp); 3704 } 3705 3706 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3707 struct kobj_attribute *attr, char *buf) 3708 { 3709 struct hstate *h; 3710 unsigned long nr_huge_pages; 3711 int nid; 3712 3713 h = kobj_to_hstate(kobj, &nid); 3714 if (nid == NUMA_NO_NODE) 3715 nr_huge_pages = h->nr_huge_pages; 3716 else 3717 nr_huge_pages = h->nr_huge_pages_node[nid]; 3718 3719 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3720 } 3721 3722 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3723 struct hstate *h, int nid, 3724 unsigned long count, size_t len) 3725 { 3726 int err; 3727 nodemask_t nodes_allowed, *n_mask; 3728 3729 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3730 return -EINVAL; 3731 3732 if (nid == NUMA_NO_NODE) { 3733 /* 3734 * global hstate attribute 3735 */ 3736 if (!(obey_mempolicy && 3737 init_nodemask_of_mempolicy(&nodes_allowed))) 3738 n_mask = &node_states[N_MEMORY]; 3739 else 3740 n_mask = &nodes_allowed; 3741 } else { 3742 /* 3743 * Node specific request. count adjustment happens in 3744 * set_max_huge_pages() after acquiring hugetlb_lock. 3745 */ 3746 init_nodemask_of_node(&nodes_allowed, nid); 3747 n_mask = &nodes_allowed; 3748 } 3749 3750 err = set_max_huge_pages(h, count, nid, n_mask); 3751 3752 return err ? err : len; 3753 } 3754 3755 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3756 struct kobject *kobj, const char *buf, 3757 size_t len) 3758 { 3759 struct hstate *h; 3760 unsigned long count; 3761 int nid; 3762 int err; 3763 3764 err = kstrtoul(buf, 10, &count); 3765 if (err) 3766 return err; 3767 3768 h = kobj_to_hstate(kobj, &nid); 3769 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3770 } 3771 3772 static ssize_t nr_hugepages_show(struct kobject *kobj, 3773 struct kobj_attribute *attr, char *buf) 3774 { 3775 return nr_hugepages_show_common(kobj, attr, buf); 3776 } 3777 3778 static ssize_t nr_hugepages_store(struct kobject *kobj, 3779 struct kobj_attribute *attr, const char *buf, size_t len) 3780 { 3781 return nr_hugepages_store_common(false, kobj, buf, len); 3782 } 3783 HSTATE_ATTR(nr_hugepages); 3784 3785 #ifdef CONFIG_NUMA 3786 3787 /* 3788 * hstate attribute for optionally mempolicy-based constraint on persistent 3789 * huge page alloc/free. 3790 */ 3791 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3792 struct kobj_attribute *attr, 3793 char *buf) 3794 { 3795 return nr_hugepages_show_common(kobj, attr, buf); 3796 } 3797 3798 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3799 struct kobj_attribute *attr, const char *buf, size_t len) 3800 { 3801 return nr_hugepages_store_common(true, kobj, buf, len); 3802 } 3803 HSTATE_ATTR(nr_hugepages_mempolicy); 3804 #endif 3805 3806 3807 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3808 struct kobj_attribute *attr, char *buf) 3809 { 3810 struct hstate *h = kobj_to_hstate(kobj, NULL); 3811 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3812 } 3813 3814 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3815 struct kobj_attribute *attr, const char *buf, size_t count) 3816 { 3817 int err; 3818 unsigned long input; 3819 struct hstate *h = kobj_to_hstate(kobj, NULL); 3820 3821 if (hstate_is_gigantic(h)) 3822 return -EINVAL; 3823 3824 err = kstrtoul(buf, 10, &input); 3825 if (err) 3826 return err; 3827 3828 spin_lock_irq(&hugetlb_lock); 3829 h->nr_overcommit_huge_pages = input; 3830 spin_unlock_irq(&hugetlb_lock); 3831 3832 return count; 3833 } 3834 HSTATE_ATTR(nr_overcommit_hugepages); 3835 3836 static ssize_t free_hugepages_show(struct kobject *kobj, 3837 struct kobj_attribute *attr, char *buf) 3838 { 3839 struct hstate *h; 3840 unsigned long free_huge_pages; 3841 int nid; 3842 3843 h = kobj_to_hstate(kobj, &nid); 3844 if (nid == NUMA_NO_NODE) 3845 free_huge_pages = h->free_huge_pages; 3846 else 3847 free_huge_pages = h->free_huge_pages_node[nid]; 3848 3849 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3850 } 3851 HSTATE_ATTR_RO(free_hugepages); 3852 3853 static ssize_t resv_hugepages_show(struct kobject *kobj, 3854 struct kobj_attribute *attr, char *buf) 3855 { 3856 struct hstate *h = kobj_to_hstate(kobj, NULL); 3857 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3858 } 3859 HSTATE_ATTR_RO(resv_hugepages); 3860 3861 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3862 struct kobj_attribute *attr, char *buf) 3863 { 3864 struct hstate *h; 3865 unsigned long surplus_huge_pages; 3866 int nid; 3867 3868 h = kobj_to_hstate(kobj, &nid); 3869 if (nid == NUMA_NO_NODE) 3870 surplus_huge_pages = h->surplus_huge_pages; 3871 else 3872 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3873 3874 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3875 } 3876 HSTATE_ATTR_RO(surplus_hugepages); 3877 3878 static ssize_t demote_store(struct kobject *kobj, 3879 struct kobj_attribute *attr, const char *buf, size_t len) 3880 { 3881 unsigned long nr_demote; 3882 unsigned long nr_available; 3883 nodemask_t nodes_allowed, *n_mask; 3884 struct hstate *h; 3885 int err; 3886 int nid; 3887 3888 err = kstrtoul(buf, 10, &nr_demote); 3889 if (err) 3890 return err; 3891 h = kobj_to_hstate(kobj, &nid); 3892 3893 if (nid != NUMA_NO_NODE) { 3894 init_nodemask_of_node(&nodes_allowed, nid); 3895 n_mask = &nodes_allowed; 3896 } else { 3897 n_mask = &node_states[N_MEMORY]; 3898 } 3899 3900 /* Synchronize with other sysfs operations modifying huge pages */ 3901 mutex_lock(&h->resize_lock); 3902 spin_lock_irq(&hugetlb_lock); 3903 3904 while (nr_demote) { 3905 /* 3906 * Check for available pages to demote each time thorough the 3907 * loop as demote_pool_huge_page will drop hugetlb_lock. 3908 */ 3909 if (nid != NUMA_NO_NODE) 3910 nr_available = h->free_huge_pages_node[nid]; 3911 else 3912 nr_available = h->free_huge_pages; 3913 nr_available -= h->resv_huge_pages; 3914 if (!nr_available) 3915 break; 3916 3917 err = demote_pool_huge_page(h, n_mask); 3918 if (err) 3919 break; 3920 3921 nr_demote--; 3922 } 3923 3924 spin_unlock_irq(&hugetlb_lock); 3925 mutex_unlock(&h->resize_lock); 3926 3927 if (err) 3928 return err; 3929 return len; 3930 } 3931 HSTATE_ATTR_WO(demote); 3932 3933 static ssize_t demote_size_show(struct kobject *kobj, 3934 struct kobj_attribute *attr, char *buf) 3935 { 3936 struct hstate *h = kobj_to_hstate(kobj, NULL); 3937 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3938 3939 return sysfs_emit(buf, "%lukB\n", demote_size); 3940 } 3941 3942 static ssize_t demote_size_store(struct kobject *kobj, 3943 struct kobj_attribute *attr, 3944 const char *buf, size_t count) 3945 { 3946 struct hstate *h, *demote_hstate; 3947 unsigned long demote_size; 3948 unsigned int demote_order; 3949 3950 demote_size = (unsigned long)memparse(buf, NULL); 3951 3952 demote_hstate = size_to_hstate(demote_size); 3953 if (!demote_hstate) 3954 return -EINVAL; 3955 demote_order = demote_hstate->order; 3956 if (demote_order < HUGETLB_PAGE_ORDER) 3957 return -EINVAL; 3958 3959 /* demote order must be smaller than hstate order */ 3960 h = kobj_to_hstate(kobj, NULL); 3961 if (demote_order >= h->order) 3962 return -EINVAL; 3963 3964 /* resize_lock synchronizes access to demote size and writes */ 3965 mutex_lock(&h->resize_lock); 3966 h->demote_order = demote_order; 3967 mutex_unlock(&h->resize_lock); 3968 3969 return count; 3970 } 3971 HSTATE_ATTR(demote_size); 3972 3973 static struct attribute *hstate_attrs[] = { 3974 &nr_hugepages_attr.attr, 3975 &nr_overcommit_hugepages_attr.attr, 3976 &free_hugepages_attr.attr, 3977 &resv_hugepages_attr.attr, 3978 &surplus_hugepages_attr.attr, 3979 #ifdef CONFIG_NUMA 3980 &nr_hugepages_mempolicy_attr.attr, 3981 #endif 3982 NULL, 3983 }; 3984 3985 static const struct attribute_group hstate_attr_group = { 3986 .attrs = hstate_attrs, 3987 }; 3988 3989 static struct attribute *hstate_demote_attrs[] = { 3990 &demote_size_attr.attr, 3991 &demote_attr.attr, 3992 NULL, 3993 }; 3994 3995 static const struct attribute_group hstate_demote_attr_group = { 3996 .attrs = hstate_demote_attrs, 3997 }; 3998 3999 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4000 struct kobject **hstate_kobjs, 4001 const struct attribute_group *hstate_attr_group) 4002 { 4003 int retval; 4004 int hi = hstate_index(h); 4005 4006 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4007 if (!hstate_kobjs[hi]) 4008 return -ENOMEM; 4009 4010 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4011 if (retval) { 4012 kobject_put(hstate_kobjs[hi]); 4013 hstate_kobjs[hi] = NULL; 4014 return retval; 4015 } 4016 4017 if (h->demote_order) { 4018 retval = sysfs_create_group(hstate_kobjs[hi], 4019 &hstate_demote_attr_group); 4020 if (retval) { 4021 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4022 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4023 kobject_put(hstate_kobjs[hi]); 4024 hstate_kobjs[hi] = NULL; 4025 return retval; 4026 } 4027 } 4028 4029 return 0; 4030 } 4031 4032 #ifdef CONFIG_NUMA 4033 static bool hugetlb_sysfs_initialized __ro_after_init; 4034 4035 /* 4036 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4037 * with node devices in node_devices[] using a parallel array. The array 4038 * index of a node device or _hstate == node id. 4039 * This is here to avoid any static dependency of the node device driver, in 4040 * the base kernel, on the hugetlb module. 4041 */ 4042 struct node_hstate { 4043 struct kobject *hugepages_kobj; 4044 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4045 }; 4046 static struct node_hstate node_hstates[MAX_NUMNODES]; 4047 4048 /* 4049 * A subset of global hstate attributes for node devices 4050 */ 4051 static struct attribute *per_node_hstate_attrs[] = { 4052 &nr_hugepages_attr.attr, 4053 &free_hugepages_attr.attr, 4054 &surplus_hugepages_attr.attr, 4055 NULL, 4056 }; 4057 4058 static const struct attribute_group per_node_hstate_attr_group = { 4059 .attrs = per_node_hstate_attrs, 4060 }; 4061 4062 /* 4063 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4064 * Returns node id via non-NULL nidp. 4065 */ 4066 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4067 { 4068 int nid; 4069 4070 for (nid = 0; nid < nr_node_ids; nid++) { 4071 struct node_hstate *nhs = &node_hstates[nid]; 4072 int i; 4073 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4074 if (nhs->hstate_kobjs[i] == kobj) { 4075 if (nidp) 4076 *nidp = nid; 4077 return &hstates[i]; 4078 } 4079 } 4080 4081 BUG(); 4082 return NULL; 4083 } 4084 4085 /* 4086 * Unregister hstate attributes from a single node device. 4087 * No-op if no hstate attributes attached. 4088 */ 4089 void hugetlb_unregister_node(struct node *node) 4090 { 4091 struct hstate *h; 4092 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4093 4094 if (!nhs->hugepages_kobj) 4095 return; /* no hstate attributes */ 4096 4097 for_each_hstate(h) { 4098 int idx = hstate_index(h); 4099 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4100 4101 if (!hstate_kobj) 4102 continue; 4103 if (h->demote_order) 4104 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4105 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4106 kobject_put(hstate_kobj); 4107 nhs->hstate_kobjs[idx] = NULL; 4108 } 4109 4110 kobject_put(nhs->hugepages_kobj); 4111 nhs->hugepages_kobj = NULL; 4112 } 4113 4114 4115 /* 4116 * Register hstate attributes for a single node device. 4117 * No-op if attributes already registered. 4118 */ 4119 void hugetlb_register_node(struct node *node) 4120 { 4121 struct hstate *h; 4122 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4123 int err; 4124 4125 if (!hugetlb_sysfs_initialized) 4126 return; 4127 4128 if (nhs->hugepages_kobj) 4129 return; /* already allocated */ 4130 4131 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4132 &node->dev.kobj); 4133 if (!nhs->hugepages_kobj) 4134 return; 4135 4136 for_each_hstate(h) { 4137 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4138 nhs->hstate_kobjs, 4139 &per_node_hstate_attr_group); 4140 if (err) { 4141 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4142 h->name, node->dev.id); 4143 hugetlb_unregister_node(node); 4144 break; 4145 } 4146 } 4147 } 4148 4149 /* 4150 * hugetlb init time: register hstate attributes for all registered node 4151 * devices of nodes that have memory. All on-line nodes should have 4152 * registered their associated device by this time. 4153 */ 4154 static void __init hugetlb_register_all_nodes(void) 4155 { 4156 int nid; 4157 4158 for_each_online_node(nid) 4159 hugetlb_register_node(node_devices[nid]); 4160 } 4161 #else /* !CONFIG_NUMA */ 4162 4163 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4164 { 4165 BUG(); 4166 if (nidp) 4167 *nidp = -1; 4168 return NULL; 4169 } 4170 4171 static void hugetlb_register_all_nodes(void) { } 4172 4173 #endif 4174 4175 #ifdef CONFIG_CMA 4176 static void __init hugetlb_cma_check(void); 4177 #else 4178 static inline __init void hugetlb_cma_check(void) 4179 { 4180 } 4181 #endif 4182 4183 static void __init hugetlb_sysfs_init(void) 4184 { 4185 struct hstate *h; 4186 int err; 4187 4188 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4189 if (!hugepages_kobj) 4190 return; 4191 4192 for_each_hstate(h) { 4193 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4194 hstate_kobjs, &hstate_attr_group); 4195 if (err) 4196 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4197 } 4198 4199 #ifdef CONFIG_NUMA 4200 hugetlb_sysfs_initialized = true; 4201 #endif 4202 hugetlb_register_all_nodes(); 4203 } 4204 4205 static int __init hugetlb_init(void) 4206 { 4207 int i; 4208 4209 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4210 __NR_HPAGEFLAGS); 4211 4212 if (!hugepages_supported()) { 4213 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4214 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4215 return 0; 4216 } 4217 4218 /* 4219 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4220 * architectures depend on setup being done here. 4221 */ 4222 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4223 if (!parsed_default_hugepagesz) { 4224 /* 4225 * If we did not parse a default huge page size, set 4226 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4227 * number of huge pages for this default size was implicitly 4228 * specified, set that here as well. 4229 * Note that the implicit setting will overwrite an explicit 4230 * setting. A warning will be printed in this case. 4231 */ 4232 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4233 if (default_hstate_max_huge_pages) { 4234 if (default_hstate.max_huge_pages) { 4235 char buf[32]; 4236 4237 string_get_size(huge_page_size(&default_hstate), 4238 1, STRING_UNITS_2, buf, 32); 4239 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4240 default_hstate.max_huge_pages, buf); 4241 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4242 default_hstate_max_huge_pages); 4243 } 4244 default_hstate.max_huge_pages = 4245 default_hstate_max_huge_pages; 4246 4247 for_each_online_node(i) 4248 default_hstate.max_huge_pages_node[i] = 4249 default_hugepages_in_node[i]; 4250 } 4251 } 4252 4253 hugetlb_cma_check(); 4254 hugetlb_init_hstates(); 4255 gather_bootmem_prealloc(); 4256 report_hugepages(); 4257 4258 hugetlb_sysfs_init(); 4259 hugetlb_cgroup_file_init(); 4260 4261 #ifdef CONFIG_SMP 4262 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4263 #else 4264 num_fault_mutexes = 1; 4265 #endif 4266 hugetlb_fault_mutex_table = 4267 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4268 GFP_KERNEL); 4269 BUG_ON(!hugetlb_fault_mutex_table); 4270 4271 for (i = 0; i < num_fault_mutexes; i++) 4272 mutex_init(&hugetlb_fault_mutex_table[i]); 4273 return 0; 4274 } 4275 subsys_initcall(hugetlb_init); 4276 4277 /* Overwritten by architectures with more huge page sizes */ 4278 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4279 { 4280 return size == HPAGE_SIZE; 4281 } 4282 4283 void __init hugetlb_add_hstate(unsigned int order) 4284 { 4285 struct hstate *h; 4286 unsigned long i; 4287 4288 if (size_to_hstate(PAGE_SIZE << order)) { 4289 return; 4290 } 4291 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4292 BUG_ON(order == 0); 4293 h = &hstates[hugetlb_max_hstate++]; 4294 mutex_init(&h->resize_lock); 4295 h->order = order; 4296 h->mask = ~(huge_page_size(h) - 1); 4297 for (i = 0; i < MAX_NUMNODES; ++i) 4298 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4299 INIT_LIST_HEAD(&h->hugepage_activelist); 4300 h->next_nid_to_alloc = first_memory_node; 4301 h->next_nid_to_free = first_memory_node; 4302 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4303 huge_page_size(h)/SZ_1K); 4304 4305 parsed_hstate = h; 4306 } 4307 4308 bool __init __weak hugetlb_node_alloc_supported(void) 4309 { 4310 return true; 4311 } 4312 4313 static void __init hugepages_clear_pages_in_node(void) 4314 { 4315 if (!hugetlb_max_hstate) { 4316 default_hstate_max_huge_pages = 0; 4317 memset(default_hugepages_in_node, 0, 4318 sizeof(default_hugepages_in_node)); 4319 } else { 4320 parsed_hstate->max_huge_pages = 0; 4321 memset(parsed_hstate->max_huge_pages_node, 0, 4322 sizeof(parsed_hstate->max_huge_pages_node)); 4323 } 4324 } 4325 4326 /* 4327 * hugepages command line processing 4328 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4329 * specification. If not, ignore the hugepages value. hugepages can also 4330 * be the first huge page command line option in which case it implicitly 4331 * specifies the number of huge pages for the default size. 4332 */ 4333 static int __init hugepages_setup(char *s) 4334 { 4335 unsigned long *mhp; 4336 static unsigned long *last_mhp; 4337 int node = NUMA_NO_NODE; 4338 int count; 4339 unsigned long tmp; 4340 char *p = s; 4341 4342 if (!parsed_valid_hugepagesz) { 4343 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4344 parsed_valid_hugepagesz = true; 4345 return 1; 4346 } 4347 4348 /* 4349 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4350 * yet, so this hugepages= parameter goes to the "default hstate". 4351 * Otherwise, it goes with the previously parsed hugepagesz or 4352 * default_hugepagesz. 4353 */ 4354 else if (!hugetlb_max_hstate) 4355 mhp = &default_hstate_max_huge_pages; 4356 else 4357 mhp = &parsed_hstate->max_huge_pages; 4358 4359 if (mhp == last_mhp) { 4360 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4361 return 1; 4362 } 4363 4364 while (*p) { 4365 count = 0; 4366 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4367 goto invalid; 4368 /* Parameter is node format */ 4369 if (p[count] == ':') { 4370 if (!hugetlb_node_alloc_supported()) { 4371 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4372 return 1; 4373 } 4374 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4375 goto invalid; 4376 node = array_index_nospec(tmp, MAX_NUMNODES); 4377 p += count + 1; 4378 /* Parse hugepages */ 4379 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4380 goto invalid; 4381 if (!hugetlb_max_hstate) 4382 default_hugepages_in_node[node] = tmp; 4383 else 4384 parsed_hstate->max_huge_pages_node[node] = tmp; 4385 *mhp += tmp; 4386 /* Go to parse next node*/ 4387 if (p[count] == ',') 4388 p += count + 1; 4389 else 4390 break; 4391 } else { 4392 if (p != s) 4393 goto invalid; 4394 *mhp = tmp; 4395 break; 4396 } 4397 } 4398 4399 /* 4400 * Global state is always initialized later in hugetlb_init. 4401 * But we need to allocate gigantic hstates here early to still 4402 * use the bootmem allocator. 4403 */ 4404 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4405 hugetlb_hstate_alloc_pages(parsed_hstate); 4406 4407 last_mhp = mhp; 4408 4409 return 1; 4410 4411 invalid: 4412 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4413 hugepages_clear_pages_in_node(); 4414 return 1; 4415 } 4416 __setup("hugepages=", hugepages_setup); 4417 4418 /* 4419 * hugepagesz command line processing 4420 * A specific huge page size can only be specified once with hugepagesz. 4421 * hugepagesz is followed by hugepages on the command line. The global 4422 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4423 * hugepagesz argument was valid. 4424 */ 4425 static int __init hugepagesz_setup(char *s) 4426 { 4427 unsigned long size; 4428 struct hstate *h; 4429 4430 parsed_valid_hugepagesz = false; 4431 size = (unsigned long)memparse(s, NULL); 4432 4433 if (!arch_hugetlb_valid_size(size)) { 4434 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4435 return 1; 4436 } 4437 4438 h = size_to_hstate(size); 4439 if (h) { 4440 /* 4441 * hstate for this size already exists. This is normally 4442 * an error, but is allowed if the existing hstate is the 4443 * default hstate. More specifically, it is only allowed if 4444 * the number of huge pages for the default hstate was not 4445 * previously specified. 4446 */ 4447 if (!parsed_default_hugepagesz || h != &default_hstate || 4448 default_hstate.max_huge_pages) { 4449 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4450 return 1; 4451 } 4452 4453 /* 4454 * No need to call hugetlb_add_hstate() as hstate already 4455 * exists. But, do set parsed_hstate so that a following 4456 * hugepages= parameter will be applied to this hstate. 4457 */ 4458 parsed_hstate = h; 4459 parsed_valid_hugepagesz = true; 4460 return 1; 4461 } 4462 4463 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4464 parsed_valid_hugepagesz = true; 4465 return 1; 4466 } 4467 __setup("hugepagesz=", hugepagesz_setup); 4468 4469 /* 4470 * default_hugepagesz command line input 4471 * Only one instance of default_hugepagesz allowed on command line. 4472 */ 4473 static int __init default_hugepagesz_setup(char *s) 4474 { 4475 unsigned long size; 4476 int i; 4477 4478 parsed_valid_hugepagesz = false; 4479 if (parsed_default_hugepagesz) { 4480 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4481 return 1; 4482 } 4483 4484 size = (unsigned long)memparse(s, NULL); 4485 4486 if (!arch_hugetlb_valid_size(size)) { 4487 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4488 return 1; 4489 } 4490 4491 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4492 parsed_valid_hugepagesz = true; 4493 parsed_default_hugepagesz = true; 4494 default_hstate_idx = hstate_index(size_to_hstate(size)); 4495 4496 /* 4497 * The number of default huge pages (for this size) could have been 4498 * specified as the first hugetlb parameter: hugepages=X. If so, 4499 * then default_hstate_max_huge_pages is set. If the default huge 4500 * page size is gigantic (>= MAX_ORDER), then the pages must be 4501 * allocated here from bootmem allocator. 4502 */ 4503 if (default_hstate_max_huge_pages) { 4504 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4505 for_each_online_node(i) 4506 default_hstate.max_huge_pages_node[i] = 4507 default_hugepages_in_node[i]; 4508 if (hstate_is_gigantic(&default_hstate)) 4509 hugetlb_hstate_alloc_pages(&default_hstate); 4510 default_hstate_max_huge_pages = 0; 4511 } 4512 4513 return 1; 4514 } 4515 __setup("default_hugepagesz=", default_hugepagesz_setup); 4516 4517 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4518 { 4519 #ifdef CONFIG_NUMA 4520 struct mempolicy *mpol = get_task_policy(current); 4521 4522 /* 4523 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4524 * (from policy_nodemask) specifically for hugetlb case 4525 */ 4526 if (mpol->mode == MPOL_BIND && 4527 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4528 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4529 return &mpol->nodes; 4530 #endif 4531 return NULL; 4532 } 4533 4534 static unsigned int allowed_mems_nr(struct hstate *h) 4535 { 4536 int node; 4537 unsigned int nr = 0; 4538 nodemask_t *mbind_nodemask; 4539 unsigned int *array = h->free_huge_pages_node; 4540 gfp_t gfp_mask = htlb_alloc_mask(h); 4541 4542 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4543 for_each_node_mask(node, cpuset_current_mems_allowed) { 4544 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4545 nr += array[node]; 4546 } 4547 4548 return nr; 4549 } 4550 4551 #ifdef CONFIG_SYSCTL 4552 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4553 void *buffer, size_t *length, 4554 loff_t *ppos, unsigned long *out) 4555 { 4556 struct ctl_table dup_table; 4557 4558 /* 4559 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4560 * can duplicate the @table and alter the duplicate of it. 4561 */ 4562 dup_table = *table; 4563 dup_table.data = out; 4564 4565 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4566 } 4567 4568 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4569 struct ctl_table *table, int write, 4570 void *buffer, size_t *length, loff_t *ppos) 4571 { 4572 struct hstate *h = &default_hstate; 4573 unsigned long tmp = h->max_huge_pages; 4574 int ret; 4575 4576 if (!hugepages_supported()) 4577 return -EOPNOTSUPP; 4578 4579 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4580 &tmp); 4581 if (ret) 4582 goto out; 4583 4584 if (write) 4585 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4586 NUMA_NO_NODE, tmp, *length); 4587 out: 4588 return ret; 4589 } 4590 4591 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4592 void *buffer, size_t *length, loff_t *ppos) 4593 { 4594 4595 return hugetlb_sysctl_handler_common(false, table, write, 4596 buffer, length, ppos); 4597 } 4598 4599 #ifdef CONFIG_NUMA 4600 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4601 void *buffer, size_t *length, loff_t *ppos) 4602 { 4603 return hugetlb_sysctl_handler_common(true, table, write, 4604 buffer, length, ppos); 4605 } 4606 #endif /* CONFIG_NUMA */ 4607 4608 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4609 void *buffer, size_t *length, loff_t *ppos) 4610 { 4611 struct hstate *h = &default_hstate; 4612 unsigned long tmp; 4613 int ret; 4614 4615 if (!hugepages_supported()) 4616 return -EOPNOTSUPP; 4617 4618 tmp = h->nr_overcommit_huge_pages; 4619 4620 if (write && hstate_is_gigantic(h)) 4621 return -EINVAL; 4622 4623 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4624 &tmp); 4625 if (ret) 4626 goto out; 4627 4628 if (write) { 4629 spin_lock_irq(&hugetlb_lock); 4630 h->nr_overcommit_huge_pages = tmp; 4631 spin_unlock_irq(&hugetlb_lock); 4632 } 4633 out: 4634 return ret; 4635 } 4636 4637 #endif /* CONFIG_SYSCTL */ 4638 4639 void hugetlb_report_meminfo(struct seq_file *m) 4640 { 4641 struct hstate *h; 4642 unsigned long total = 0; 4643 4644 if (!hugepages_supported()) 4645 return; 4646 4647 for_each_hstate(h) { 4648 unsigned long count = h->nr_huge_pages; 4649 4650 total += huge_page_size(h) * count; 4651 4652 if (h == &default_hstate) 4653 seq_printf(m, 4654 "HugePages_Total: %5lu\n" 4655 "HugePages_Free: %5lu\n" 4656 "HugePages_Rsvd: %5lu\n" 4657 "HugePages_Surp: %5lu\n" 4658 "Hugepagesize: %8lu kB\n", 4659 count, 4660 h->free_huge_pages, 4661 h->resv_huge_pages, 4662 h->surplus_huge_pages, 4663 huge_page_size(h) / SZ_1K); 4664 } 4665 4666 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4667 } 4668 4669 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4670 { 4671 struct hstate *h = &default_hstate; 4672 4673 if (!hugepages_supported()) 4674 return 0; 4675 4676 return sysfs_emit_at(buf, len, 4677 "Node %d HugePages_Total: %5u\n" 4678 "Node %d HugePages_Free: %5u\n" 4679 "Node %d HugePages_Surp: %5u\n", 4680 nid, h->nr_huge_pages_node[nid], 4681 nid, h->free_huge_pages_node[nid], 4682 nid, h->surplus_huge_pages_node[nid]); 4683 } 4684 4685 void hugetlb_show_meminfo_node(int nid) 4686 { 4687 struct hstate *h; 4688 4689 if (!hugepages_supported()) 4690 return; 4691 4692 for_each_hstate(h) 4693 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4694 nid, 4695 h->nr_huge_pages_node[nid], 4696 h->free_huge_pages_node[nid], 4697 h->surplus_huge_pages_node[nid], 4698 huge_page_size(h) / SZ_1K); 4699 } 4700 4701 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4702 { 4703 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4704 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4705 } 4706 4707 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4708 unsigned long hugetlb_total_pages(void) 4709 { 4710 struct hstate *h; 4711 unsigned long nr_total_pages = 0; 4712 4713 for_each_hstate(h) 4714 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4715 return nr_total_pages; 4716 } 4717 4718 static int hugetlb_acct_memory(struct hstate *h, long delta) 4719 { 4720 int ret = -ENOMEM; 4721 4722 if (!delta) 4723 return 0; 4724 4725 spin_lock_irq(&hugetlb_lock); 4726 /* 4727 * When cpuset is configured, it breaks the strict hugetlb page 4728 * reservation as the accounting is done on a global variable. Such 4729 * reservation is completely rubbish in the presence of cpuset because 4730 * the reservation is not checked against page availability for the 4731 * current cpuset. Application can still potentially OOM'ed by kernel 4732 * with lack of free htlb page in cpuset that the task is in. 4733 * Attempt to enforce strict accounting with cpuset is almost 4734 * impossible (or too ugly) because cpuset is too fluid that 4735 * task or memory node can be dynamically moved between cpusets. 4736 * 4737 * The change of semantics for shared hugetlb mapping with cpuset is 4738 * undesirable. However, in order to preserve some of the semantics, 4739 * we fall back to check against current free page availability as 4740 * a best attempt and hopefully to minimize the impact of changing 4741 * semantics that cpuset has. 4742 * 4743 * Apart from cpuset, we also have memory policy mechanism that 4744 * also determines from which node the kernel will allocate memory 4745 * in a NUMA system. So similar to cpuset, we also should consider 4746 * the memory policy of the current task. Similar to the description 4747 * above. 4748 */ 4749 if (delta > 0) { 4750 if (gather_surplus_pages(h, delta) < 0) 4751 goto out; 4752 4753 if (delta > allowed_mems_nr(h)) { 4754 return_unused_surplus_pages(h, delta); 4755 goto out; 4756 } 4757 } 4758 4759 ret = 0; 4760 if (delta < 0) 4761 return_unused_surplus_pages(h, (unsigned long) -delta); 4762 4763 out: 4764 spin_unlock_irq(&hugetlb_lock); 4765 return ret; 4766 } 4767 4768 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4769 { 4770 struct resv_map *resv = vma_resv_map(vma); 4771 4772 /* 4773 * HPAGE_RESV_OWNER indicates a private mapping. 4774 * This new VMA should share its siblings reservation map if present. 4775 * The VMA will only ever have a valid reservation map pointer where 4776 * it is being copied for another still existing VMA. As that VMA 4777 * has a reference to the reservation map it cannot disappear until 4778 * after this open call completes. It is therefore safe to take a 4779 * new reference here without additional locking. 4780 */ 4781 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4782 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4783 kref_get(&resv->refs); 4784 } 4785 4786 /* 4787 * vma_lock structure for sharable mappings is vma specific. 4788 * Clear old pointer (if copied via vm_area_dup) and allocate 4789 * new structure. Before clearing, make sure vma_lock is not 4790 * for this vma. 4791 */ 4792 if (vma->vm_flags & VM_MAYSHARE) { 4793 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4794 4795 if (vma_lock) { 4796 if (vma_lock->vma != vma) { 4797 vma->vm_private_data = NULL; 4798 hugetlb_vma_lock_alloc(vma); 4799 } else 4800 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4801 } else 4802 hugetlb_vma_lock_alloc(vma); 4803 } 4804 } 4805 4806 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4807 { 4808 struct hstate *h = hstate_vma(vma); 4809 struct resv_map *resv; 4810 struct hugepage_subpool *spool = subpool_vma(vma); 4811 unsigned long reserve, start, end; 4812 long gbl_reserve; 4813 4814 hugetlb_vma_lock_free(vma); 4815 4816 resv = vma_resv_map(vma); 4817 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4818 return; 4819 4820 start = vma_hugecache_offset(h, vma, vma->vm_start); 4821 end = vma_hugecache_offset(h, vma, vma->vm_end); 4822 4823 reserve = (end - start) - region_count(resv, start, end); 4824 hugetlb_cgroup_uncharge_counter(resv, start, end); 4825 if (reserve) { 4826 /* 4827 * Decrement reserve counts. The global reserve count may be 4828 * adjusted if the subpool has a minimum size. 4829 */ 4830 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4831 hugetlb_acct_memory(h, -gbl_reserve); 4832 } 4833 4834 kref_put(&resv->refs, resv_map_release); 4835 } 4836 4837 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4838 { 4839 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4840 return -EINVAL; 4841 4842 /* 4843 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4844 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4845 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4846 */ 4847 if (addr & ~PUD_MASK) { 4848 /* 4849 * hugetlb_vm_op_split is called right before we attempt to 4850 * split the VMA. We will need to unshare PMDs in the old and 4851 * new VMAs, so let's unshare before we split. 4852 */ 4853 unsigned long floor = addr & PUD_MASK; 4854 unsigned long ceil = floor + PUD_SIZE; 4855 4856 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4857 hugetlb_unshare_pmds(vma, floor, ceil); 4858 } 4859 4860 return 0; 4861 } 4862 4863 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4864 { 4865 return huge_page_size(hstate_vma(vma)); 4866 } 4867 4868 /* 4869 * We cannot handle pagefaults against hugetlb pages at all. They cause 4870 * handle_mm_fault() to try to instantiate regular-sized pages in the 4871 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4872 * this far. 4873 */ 4874 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4875 { 4876 BUG(); 4877 return 0; 4878 } 4879 4880 /* 4881 * When a new function is introduced to vm_operations_struct and added 4882 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4883 * This is because under System V memory model, mappings created via 4884 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4885 * their original vm_ops are overwritten with shm_vm_ops. 4886 */ 4887 const struct vm_operations_struct hugetlb_vm_ops = { 4888 .fault = hugetlb_vm_op_fault, 4889 .open = hugetlb_vm_op_open, 4890 .close = hugetlb_vm_op_close, 4891 .may_split = hugetlb_vm_op_split, 4892 .pagesize = hugetlb_vm_op_pagesize, 4893 }; 4894 4895 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4896 int writable) 4897 { 4898 pte_t entry; 4899 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4900 4901 if (writable) { 4902 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4903 vma->vm_page_prot))); 4904 } else { 4905 entry = huge_pte_wrprotect(mk_huge_pte(page, 4906 vma->vm_page_prot)); 4907 } 4908 entry = pte_mkyoung(entry); 4909 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4910 4911 return entry; 4912 } 4913 4914 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4915 unsigned long address, pte_t *ptep) 4916 { 4917 pte_t entry; 4918 4919 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4920 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4921 update_mmu_cache(vma, address, ptep); 4922 } 4923 4924 bool is_hugetlb_entry_migration(pte_t pte) 4925 { 4926 swp_entry_t swp; 4927 4928 if (huge_pte_none(pte) || pte_present(pte)) 4929 return false; 4930 swp = pte_to_swp_entry(pte); 4931 if (is_migration_entry(swp)) 4932 return true; 4933 else 4934 return false; 4935 } 4936 4937 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4938 { 4939 swp_entry_t swp; 4940 4941 if (huge_pte_none(pte) || pte_present(pte)) 4942 return false; 4943 swp = pte_to_swp_entry(pte); 4944 if (is_hwpoison_entry(swp)) 4945 return true; 4946 else 4947 return false; 4948 } 4949 4950 static void 4951 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4952 struct folio *new_folio) 4953 { 4954 __folio_mark_uptodate(new_folio); 4955 hugepage_add_new_anon_rmap(new_folio, vma, addr); 4956 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1)); 4957 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4958 folio_set_hugetlb_migratable(new_folio); 4959 } 4960 4961 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4962 struct vm_area_struct *dst_vma, 4963 struct vm_area_struct *src_vma) 4964 { 4965 pte_t *src_pte, *dst_pte, entry; 4966 struct page *ptepage; 4967 unsigned long addr; 4968 bool cow = is_cow_mapping(src_vma->vm_flags); 4969 struct hstate *h = hstate_vma(src_vma); 4970 unsigned long sz = huge_page_size(h); 4971 unsigned long npages = pages_per_huge_page(h); 4972 struct mmu_notifier_range range; 4973 unsigned long last_addr_mask; 4974 int ret = 0; 4975 4976 if (cow) { 4977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 4978 src_vma->vm_start, 4979 src_vma->vm_end); 4980 mmu_notifier_invalidate_range_start(&range); 4981 mmap_assert_write_locked(src); 4982 raw_write_seqcount_begin(&src->write_protect_seq); 4983 } else { 4984 /* 4985 * For shared mappings the vma lock must be held before 4986 * calling hugetlb_walk() in the src vma. Otherwise, the 4987 * returned ptep could go away if part of a shared pmd and 4988 * another thread calls huge_pmd_unshare. 4989 */ 4990 hugetlb_vma_lock_read(src_vma); 4991 } 4992 4993 last_addr_mask = hugetlb_mask_last_page(h); 4994 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4995 spinlock_t *src_ptl, *dst_ptl; 4996 src_pte = hugetlb_walk(src_vma, addr, sz); 4997 if (!src_pte) { 4998 addr |= last_addr_mask; 4999 continue; 5000 } 5001 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5002 if (!dst_pte) { 5003 ret = -ENOMEM; 5004 break; 5005 } 5006 5007 /* 5008 * If the pagetables are shared don't copy or take references. 5009 * 5010 * dst_pte == src_pte is the common case of src/dest sharing. 5011 * However, src could have 'unshared' and dst shares with 5012 * another vma. So page_count of ptep page is checked instead 5013 * to reliably determine whether pte is shared. 5014 */ 5015 if (page_count(virt_to_page(dst_pte)) > 1) { 5016 addr |= last_addr_mask; 5017 continue; 5018 } 5019 5020 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5021 src_ptl = huge_pte_lockptr(h, src, src_pte); 5022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5023 entry = huge_ptep_get(src_pte); 5024 again: 5025 if (huge_pte_none(entry)) { 5026 /* 5027 * Skip if src entry none. 5028 */ 5029 ; 5030 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5031 bool uffd_wp = huge_pte_uffd_wp(entry); 5032 5033 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5034 entry = huge_pte_clear_uffd_wp(entry); 5035 set_huge_pte_at(dst, addr, dst_pte, entry); 5036 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5037 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5038 bool uffd_wp = huge_pte_uffd_wp(entry); 5039 5040 if (!is_readable_migration_entry(swp_entry) && cow) { 5041 /* 5042 * COW mappings require pages in both 5043 * parent and child to be set to read. 5044 */ 5045 swp_entry = make_readable_migration_entry( 5046 swp_offset(swp_entry)); 5047 entry = swp_entry_to_pte(swp_entry); 5048 if (userfaultfd_wp(src_vma) && uffd_wp) 5049 entry = huge_pte_mkuffd_wp(entry); 5050 set_huge_pte_at(src, addr, src_pte, entry); 5051 } 5052 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5053 entry = huge_pte_clear_uffd_wp(entry); 5054 set_huge_pte_at(dst, addr, dst_pte, entry); 5055 } else if (unlikely(is_pte_marker(entry))) { 5056 /* No swap on hugetlb */ 5057 WARN_ON_ONCE( 5058 is_swapin_error_entry(pte_to_swp_entry(entry))); 5059 /* 5060 * We copy the pte marker only if the dst vma has 5061 * uffd-wp enabled. 5062 */ 5063 if (userfaultfd_wp(dst_vma)) 5064 set_huge_pte_at(dst, addr, dst_pte, entry); 5065 } else { 5066 entry = huge_ptep_get(src_pte); 5067 ptepage = pte_page(entry); 5068 get_page(ptepage); 5069 5070 /* 5071 * Failing to duplicate the anon rmap is a rare case 5072 * where we see pinned hugetlb pages while they're 5073 * prone to COW. We need to do the COW earlier during 5074 * fork. 5075 * 5076 * When pre-allocating the page or copying data, we 5077 * need to be without the pgtable locks since we could 5078 * sleep during the process. 5079 */ 5080 if (!PageAnon(ptepage)) { 5081 page_dup_file_rmap(ptepage, true); 5082 } else if (page_try_dup_anon_rmap(ptepage, true, 5083 src_vma)) { 5084 pte_t src_pte_old = entry; 5085 struct folio *new_folio; 5086 5087 spin_unlock(src_ptl); 5088 spin_unlock(dst_ptl); 5089 /* Do not use reserve as it's private owned */ 5090 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5091 if (IS_ERR(new_folio)) { 5092 put_page(ptepage); 5093 ret = PTR_ERR(new_folio); 5094 break; 5095 } 5096 copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma, 5097 npages); 5098 put_page(ptepage); 5099 5100 /* Install the new hugetlb folio if src pte stable */ 5101 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5102 src_ptl = huge_pte_lockptr(h, src, src_pte); 5103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5104 entry = huge_ptep_get(src_pte); 5105 if (!pte_same(src_pte_old, entry)) { 5106 restore_reserve_on_error(h, dst_vma, addr, 5107 new_folio); 5108 folio_put(new_folio); 5109 /* huge_ptep of dst_pte won't change as in child */ 5110 goto again; 5111 } 5112 hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio); 5113 spin_unlock(src_ptl); 5114 spin_unlock(dst_ptl); 5115 continue; 5116 } 5117 5118 if (cow) { 5119 /* 5120 * No need to notify as we are downgrading page 5121 * table protection not changing it to point 5122 * to a new page. 5123 * 5124 * See Documentation/mm/mmu_notifier.rst 5125 */ 5126 huge_ptep_set_wrprotect(src, addr, src_pte); 5127 entry = huge_pte_wrprotect(entry); 5128 } 5129 5130 set_huge_pte_at(dst, addr, dst_pte, entry); 5131 hugetlb_count_add(npages, dst); 5132 } 5133 spin_unlock(src_ptl); 5134 spin_unlock(dst_ptl); 5135 } 5136 5137 if (cow) { 5138 raw_write_seqcount_end(&src->write_protect_seq); 5139 mmu_notifier_invalidate_range_end(&range); 5140 } else { 5141 hugetlb_vma_unlock_read(src_vma); 5142 } 5143 5144 return ret; 5145 } 5146 5147 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5148 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5149 { 5150 struct hstate *h = hstate_vma(vma); 5151 struct mm_struct *mm = vma->vm_mm; 5152 spinlock_t *src_ptl, *dst_ptl; 5153 pte_t pte; 5154 5155 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5156 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5157 5158 /* 5159 * We don't have to worry about the ordering of src and dst ptlocks 5160 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5161 */ 5162 if (src_ptl != dst_ptl) 5163 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5164 5165 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5166 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5167 5168 if (src_ptl != dst_ptl) 5169 spin_unlock(src_ptl); 5170 spin_unlock(dst_ptl); 5171 } 5172 5173 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5174 struct vm_area_struct *new_vma, 5175 unsigned long old_addr, unsigned long new_addr, 5176 unsigned long len) 5177 { 5178 struct hstate *h = hstate_vma(vma); 5179 struct address_space *mapping = vma->vm_file->f_mapping; 5180 unsigned long sz = huge_page_size(h); 5181 struct mm_struct *mm = vma->vm_mm; 5182 unsigned long old_end = old_addr + len; 5183 unsigned long last_addr_mask; 5184 pte_t *src_pte, *dst_pte; 5185 struct mmu_notifier_range range; 5186 bool shared_pmd = false; 5187 5188 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5189 old_end); 5190 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5191 /* 5192 * In case of shared PMDs, we should cover the maximum possible 5193 * range. 5194 */ 5195 flush_cache_range(vma, range.start, range.end); 5196 5197 mmu_notifier_invalidate_range_start(&range); 5198 last_addr_mask = hugetlb_mask_last_page(h); 5199 /* Prevent race with file truncation */ 5200 hugetlb_vma_lock_write(vma); 5201 i_mmap_lock_write(mapping); 5202 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5203 src_pte = hugetlb_walk(vma, old_addr, sz); 5204 if (!src_pte) { 5205 old_addr |= last_addr_mask; 5206 new_addr |= last_addr_mask; 5207 continue; 5208 } 5209 if (huge_pte_none(huge_ptep_get(src_pte))) 5210 continue; 5211 5212 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5213 shared_pmd = true; 5214 old_addr |= last_addr_mask; 5215 new_addr |= last_addr_mask; 5216 continue; 5217 } 5218 5219 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5220 if (!dst_pte) 5221 break; 5222 5223 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5224 } 5225 5226 if (shared_pmd) 5227 flush_tlb_range(vma, range.start, range.end); 5228 else 5229 flush_tlb_range(vma, old_end - len, old_end); 5230 mmu_notifier_invalidate_range_end(&range); 5231 i_mmap_unlock_write(mapping); 5232 hugetlb_vma_unlock_write(vma); 5233 5234 return len + old_addr - old_end; 5235 } 5236 5237 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5238 unsigned long start, unsigned long end, 5239 struct page *ref_page, zap_flags_t zap_flags) 5240 { 5241 struct mm_struct *mm = vma->vm_mm; 5242 unsigned long address; 5243 pte_t *ptep; 5244 pte_t pte; 5245 spinlock_t *ptl; 5246 struct page *page; 5247 struct hstate *h = hstate_vma(vma); 5248 unsigned long sz = huge_page_size(h); 5249 unsigned long last_addr_mask; 5250 bool force_flush = false; 5251 5252 WARN_ON(!is_vm_hugetlb_page(vma)); 5253 BUG_ON(start & ~huge_page_mask(h)); 5254 BUG_ON(end & ~huge_page_mask(h)); 5255 5256 /* 5257 * This is a hugetlb vma, all the pte entries should point 5258 * to huge page. 5259 */ 5260 tlb_change_page_size(tlb, sz); 5261 tlb_start_vma(tlb, vma); 5262 5263 last_addr_mask = hugetlb_mask_last_page(h); 5264 address = start; 5265 for (; address < end; address += sz) { 5266 ptep = hugetlb_walk(vma, address, sz); 5267 if (!ptep) { 5268 address |= last_addr_mask; 5269 continue; 5270 } 5271 5272 ptl = huge_pte_lock(h, mm, ptep); 5273 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5274 spin_unlock(ptl); 5275 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5276 force_flush = true; 5277 address |= last_addr_mask; 5278 continue; 5279 } 5280 5281 pte = huge_ptep_get(ptep); 5282 if (huge_pte_none(pte)) { 5283 spin_unlock(ptl); 5284 continue; 5285 } 5286 5287 /* 5288 * Migrating hugepage or HWPoisoned hugepage is already 5289 * unmapped and its refcount is dropped, so just clear pte here. 5290 */ 5291 if (unlikely(!pte_present(pte))) { 5292 /* 5293 * If the pte was wr-protected by uffd-wp in any of the 5294 * swap forms, meanwhile the caller does not want to 5295 * drop the uffd-wp bit in this zap, then replace the 5296 * pte with a marker. 5297 */ 5298 if (pte_swp_uffd_wp_any(pte) && 5299 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5300 set_huge_pte_at(mm, address, ptep, 5301 make_pte_marker(PTE_MARKER_UFFD_WP)); 5302 else 5303 huge_pte_clear(mm, address, ptep, sz); 5304 spin_unlock(ptl); 5305 continue; 5306 } 5307 5308 page = pte_page(pte); 5309 /* 5310 * If a reference page is supplied, it is because a specific 5311 * page is being unmapped, not a range. Ensure the page we 5312 * are about to unmap is the actual page of interest. 5313 */ 5314 if (ref_page) { 5315 if (page != ref_page) { 5316 spin_unlock(ptl); 5317 continue; 5318 } 5319 /* 5320 * Mark the VMA as having unmapped its page so that 5321 * future faults in this VMA will fail rather than 5322 * looking like data was lost 5323 */ 5324 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5325 } 5326 5327 pte = huge_ptep_get_and_clear(mm, address, ptep); 5328 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5329 if (huge_pte_dirty(pte)) 5330 set_page_dirty(page); 5331 /* Leave a uffd-wp pte marker if needed */ 5332 if (huge_pte_uffd_wp(pte) && 5333 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5334 set_huge_pte_at(mm, address, ptep, 5335 make_pte_marker(PTE_MARKER_UFFD_WP)); 5336 hugetlb_count_sub(pages_per_huge_page(h), mm); 5337 page_remove_rmap(page, vma, true); 5338 5339 spin_unlock(ptl); 5340 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5341 /* 5342 * Bail out after unmapping reference page if supplied 5343 */ 5344 if (ref_page) 5345 break; 5346 } 5347 tlb_end_vma(tlb, vma); 5348 5349 /* 5350 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5351 * could defer the flush until now, since by holding i_mmap_rwsem we 5352 * guaranteed that the last refernece would not be dropped. But we must 5353 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5354 * dropped and the last reference to the shared PMDs page might be 5355 * dropped as well. 5356 * 5357 * In theory we could defer the freeing of the PMD pages as well, but 5358 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5359 * detect sharing, so we cannot defer the release of the page either. 5360 * Instead, do flush now. 5361 */ 5362 if (force_flush) 5363 tlb_flush_mmu_tlbonly(tlb); 5364 } 5365 5366 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5367 struct vm_area_struct *vma, unsigned long start, 5368 unsigned long end, struct page *ref_page, 5369 zap_flags_t zap_flags) 5370 { 5371 hugetlb_vma_lock_write(vma); 5372 i_mmap_lock_write(vma->vm_file->f_mapping); 5373 5374 /* mmu notification performed in caller */ 5375 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5376 5377 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5378 /* 5379 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5380 * When the vma_lock is freed, this makes the vma ineligible 5381 * for pmd sharing. And, i_mmap_rwsem is required to set up 5382 * pmd sharing. This is important as page tables for this 5383 * unmapped range will be asynchrously deleted. If the page 5384 * tables are shared, there will be issues when accessed by 5385 * someone else. 5386 */ 5387 __hugetlb_vma_unlock_write_free(vma); 5388 i_mmap_unlock_write(vma->vm_file->f_mapping); 5389 } else { 5390 i_mmap_unlock_write(vma->vm_file->f_mapping); 5391 hugetlb_vma_unlock_write(vma); 5392 } 5393 } 5394 5395 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5396 unsigned long end, struct page *ref_page, 5397 zap_flags_t zap_flags) 5398 { 5399 struct mmu_notifier_range range; 5400 struct mmu_gather tlb; 5401 5402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5403 start, end); 5404 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5405 mmu_notifier_invalidate_range_start(&range); 5406 tlb_gather_mmu(&tlb, vma->vm_mm); 5407 5408 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5409 5410 mmu_notifier_invalidate_range_end(&range); 5411 tlb_finish_mmu(&tlb); 5412 } 5413 5414 /* 5415 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5416 * mapping it owns the reserve page for. The intention is to unmap the page 5417 * from other VMAs and let the children be SIGKILLed if they are faulting the 5418 * same region. 5419 */ 5420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5421 struct page *page, unsigned long address) 5422 { 5423 struct hstate *h = hstate_vma(vma); 5424 struct vm_area_struct *iter_vma; 5425 struct address_space *mapping; 5426 pgoff_t pgoff; 5427 5428 /* 5429 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5430 * from page cache lookup which is in HPAGE_SIZE units. 5431 */ 5432 address = address & huge_page_mask(h); 5433 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5434 vma->vm_pgoff; 5435 mapping = vma->vm_file->f_mapping; 5436 5437 /* 5438 * Take the mapping lock for the duration of the table walk. As 5439 * this mapping should be shared between all the VMAs, 5440 * __unmap_hugepage_range() is called as the lock is already held 5441 */ 5442 i_mmap_lock_write(mapping); 5443 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5444 /* Do not unmap the current VMA */ 5445 if (iter_vma == vma) 5446 continue; 5447 5448 /* 5449 * Shared VMAs have their own reserves and do not affect 5450 * MAP_PRIVATE accounting but it is possible that a shared 5451 * VMA is using the same page so check and skip such VMAs. 5452 */ 5453 if (iter_vma->vm_flags & VM_MAYSHARE) 5454 continue; 5455 5456 /* 5457 * Unmap the page from other VMAs without their own reserves. 5458 * They get marked to be SIGKILLed if they fault in these 5459 * areas. This is because a future no-page fault on this VMA 5460 * could insert a zeroed page instead of the data existing 5461 * from the time of fork. This would look like data corruption 5462 */ 5463 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5464 unmap_hugepage_range(iter_vma, address, 5465 address + huge_page_size(h), page, 0); 5466 } 5467 i_mmap_unlock_write(mapping); 5468 } 5469 5470 /* 5471 * hugetlb_wp() should be called with page lock of the original hugepage held. 5472 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5473 * cannot race with other handlers or page migration. 5474 * Keep the pte_same checks anyway to make transition from the mutex easier. 5475 */ 5476 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5477 unsigned long address, pte_t *ptep, unsigned int flags, 5478 struct folio *pagecache_folio, spinlock_t *ptl) 5479 { 5480 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5481 pte_t pte = huge_ptep_get(ptep); 5482 struct hstate *h = hstate_vma(vma); 5483 struct page *old_page; 5484 struct folio *new_folio; 5485 int outside_reserve = 0; 5486 vm_fault_t ret = 0; 5487 unsigned long haddr = address & huge_page_mask(h); 5488 struct mmu_notifier_range range; 5489 5490 /* 5491 * Never handle CoW for uffd-wp protected pages. It should be only 5492 * handled when the uffd-wp protection is removed. 5493 * 5494 * Note that only the CoW optimization path (in hugetlb_no_page()) 5495 * can trigger this, because hugetlb_fault() will always resolve 5496 * uffd-wp bit first. 5497 */ 5498 if (!unshare && huge_pte_uffd_wp(pte)) 5499 return 0; 5500 5501 /* 5502 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5503 * PTE mapped R/O such as maybe_mkwrite() would do. 5504 */ 5505 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5506 return VM_FAULT_SIGSEGV; 5507 5508 /* Let's take out MAP_SHARED mappings first. */ 5509 if (vma->vm_flags & VM_MAYSHARE) { 5510 set_huge_ptep_writable(vma, haddr, ptep); 5511 return 0; 5512 } 5513 5514 old_page = pte_page(pte); 5515 5516 delayacct_wpcopy_start(); 5517 5518 retry_avoidcopy: 5519 /* 5520 * If no-one else is actually using this page, we're the exclusive 5521 * owner and can reuse this page. 5522 */ 5523 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5524 if (!PageAnonExclusive(old_page)) 5525 page_move_anon_rmap(old_page, vma); 5526 if (likely(!unshare)) 5527 set_huge_ptep_writable(vma, haddr, ptep); 5528 5529 delayacct_wpcopy_end(); 5530 return 0; 5531 } 5532 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5533 old_page); 5534 5535 /* 5536 * If the process that created a MAP_PRIVATE mapping is about to 5537 * perform a COW due to a shared page count, attempt to satisfy 5538 * the allocation without using the existing reserves. The pagecache 5539 * page is used to determine if the reserve at this address was 5540 * consumed or not. If reserves were used, a partial faulted mapping 5541 * at the time of fork() could consume its reserves on COW instead 5542 * of the full address range. 5543 */ 5544 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5545 page_folio(old_page) != pagecache_folio) 5546 outside_reserve = 1; 5547 5548 get_page(old_page); 5549 5550 /* 5551 * Drop page table lock as buddy allocator may be called. It will 5552 * be acquired again before returning to the caller, as expected. 5553 */ 5554 spin_unlock(ptl); 5555 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5556 5557 if (IS_ERR(new_folio)) { 5558 /* 5559 * If a process owning a MAP_PRIVATE mapping fails to COW, 5560 * it is due to references held by a child and an insufficient 5561 * huge page pool. To guarantee the original mappers 5562 * reliability, unmap the page from child processes. The child 5563 * may get SIGKILLed if it later faults. 5564 */ 5565 if (outside_reserve) { 5566 struct address_space *mapping = vma->vm_file->f_mapping; 5567 pgoff_t idx; 5568 u32 hash; 5569 5570 put_page(old_page); 5571 /* 5572 * Drop hugetlb_fault_mutex and vma_lock before 5573 * unmapping. unmapping needs to hold vma_lock 5574 * in write mode. Dropping vma_lock in read mode 5575 * here is OK as COW mappings do not interact with 5576 * PMD sharing. 5577 * 5578 * Reacquire both after unmap operation. 5579 */ 5580 idx = vma_hugecache_offset(h, vma, haddr); 5581 hash = hugetlb_fault_mutex_hash(mapping, idx); 5582 hugetlb_vma_unlock_read(vma); 5583 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5584 5585 unmap_ref_private(mm, vma, old_page, haddr); 5586 5587 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5588 hugetlb_vma_lock_read(vma); 5589 spin_lock(ptl); 5590 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5591 if (likely(ptep && 5592 pte_same(huge_ptep_get(ptep), pte))) 5593 goto retry_avoidcopy; 5594 /* 5595 * race occurs while re-acquiring page table 5596 * lock, and our job is done. 5597 */ 5598 delayacct_wpcopy_end(); 5599 return 0; 5600 } 5601 5602 ret = vmf_error(PTR_ERR(new_folio)); 5603 goto out_release_old; 5604 } 5605 5606 /* 5607 * When the original hugepage is shared one, it does not have 5608 * anon_vma prepared. 5609 */ 5610 if (unlikely(anon_vma_prepare(vma))) { 5611 ret = VM_FAULT_OOM; 5612 goto out_release_all; 5613 } 5614 5615 copy_user_huge_page(&new_folio->page, old_page, address, vma, 5616 pages_per_huge_page(h)); 5617 __folio_mark_uptodate(new_folio); 5618 5619 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5620 haddr + huge_page_size(h)); 5621 mmu_notifier_invalidate_range_start(&range); 5622 5623 /* 5624 * Retake the page table lock to check for racing updates 5625 * before the page tables are altered 5626 */ 5627 spin_lock(ptl); 5628 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5629 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5630 /* Break COW or unshare */ 5631 huge_ptep_clear_flush(vma, haddr, ptep); 5632 mmu_notifier_invalidate_range(mm, range.start, range.end); 5633 page_remove_rmap(old_page, vma, true); 5634 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5635 set_huge_pte_at(mm, haddr, ptep, 5636 make_huge_pte(vma, &new_folio->page, !unshare)); 5637 folio_set_hugetlb_migratable(new_folio); 5638 /* Make the old page be freed below */ 5639 new_folio = page_folio(old_page); 5640 } 5641 spin_unlock(ptl); 5642 mmu_notifier_invalidate_range_end(&range); 5643 out_release_all: 5644 /* 5645 * No restore in case of successful pagetable update (Break COW or 5646 * unshare) 5647 */ 5648 if (new_folio != page_folio(old_page)) 5649 restore_reserve_on_error(h, vma, haddr, new_folio); 5650 folio_put(new_folio); 5651 out_release_old: 5652 put_page(old_page); 5653 5654 spin_lock(ptl); /* Caller expects lock to be held */ 5655 5656 delayacct_wpcopy_end(); 5657 return ret; 5658 } 5659 5660 /* 5661 * Return whether there is a pagecache page to back given address within VMA. 5662 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5663 */ 5664 static bool hugetlbfs_pagecache_present(struct hstate *h, 5665 struct vm_area_struct *vma, unsigned long address) 5666 { 5667 struct address_space *mapping = vma->vm_file->f_mapping; 5668 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5669 bool present; 5670 5671 rcu_read_lock(); 5672 present = page_cache_next_miss(mapping, idx, 1) != idx; 5673 rcu_read_unlock(); 5674 5675 return present; 5676 } 5677 5678 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5679 pgoff_t idx) 5680 { 5681 struct inode *inode = mapping->host; 5682 struct hstate *h = hstate_inode(inode); 5683 int err; 5684 5685 __folio_set_locked(folio); 5686 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5687 5688 if (unlikely(err)) { 5689 __folio_clear_locked(folio); 5690 return err; 5691 } 5692 folio_clear_hugetlb_restore_reserve(folio); 5693 5694 /* 5695 * mark folio dirty so that it will not be removed from cache/file 5696 * by non-hugetlbfs specific code paths. 5697 */ 5698 folio_mark_dirty(folio); 5699 5700 spin_lock(&inode->i_lock); 5701 inode->i_blocks += blocks_per_huge_page(h); 5702 spin_unlock(&inode->i_lock); 5703 return 0; 5704 } 5705 5706 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5707 struct address_space *mapping, 5708 pgoff_t idx, 5709 unsigned int flags, 5710 unsigned long haddr, 5711 unsigned long addr, 5712 unsigned long reason) 5713 { 5714 u32 hash; 5715 struct vm_fault vmf = { 5716 .vma = vma, 5717 .address = haddr, 5718 .real_address = addr, 5719 .flags = flags, 5720 5721 /* 5722 * Hard to debug if it ends up being 5723 * used by a callee that assumes 5724 * something about the other 5725 * uninitialized fields... same as in 5726 * memory.c 5727 */ 5728 }; 5729 5730 /* 5731 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5732 * userfault. Also mmap_lock could be dropped due to handling 5733 * userfault, any vma operation should be careful from here. 5734 */ 5735 hugetlb_vma_unlock_read(vma); 5736 hash = hugetlb_fault_mutex_hash(mapping, idx); 5737 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5738 return handle_userfault(&vmf, reason); 5739 } 5740 5741 /* 5742 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5743 * false if pte changed or is changing. 5744 */ 5745 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5746 pte_t *ptep, pte_t old_pte) 5747 { 5748 spinlock_t *ptl; 5749 bool same; 5750 5751 ptl = huge_pte_lock(h, mm, ptep); 5752 same = pte_same(huge_ptep_get(ptep), old_pte); 5753 spin_unlock(ptl); 5754 5755 return same; 5756 } 5757 5758 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5759 struct vm_area_struct *vma, 5760 struct address_space *mapping, pgoff_t idx, 5761 unsigned long address, pte_t *ptep, 5762 pte_t old_pte, unsigned int flags) 5763 { 5764 struct hstate *h = hstate_vma(vma); 5765 vm_fault_t ret = VM_FAULT_SIGBUS; 5766 int anon_rmap = 0; 5767 unsigned long size; 5768 struct folio *folio; 5769 pte_t new_pte; 5770 spinlock_t *ptl; 5771 unsigned long haddr = address & huge_page_mask(h); 5772 bool new_folio, new_pagecache_folio = false; 5773 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5774 5775 /* 5776 * Currently, we are forced to kill the process in the event the 5777 * original mapper has unmapped pages from the child due to a failed 5778 * COW/unsharing. Warn that such a situation has occurred as it may not 5779 * be obvious. 5780 */ 5781 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5782 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5783 current->pid); 5784 goto out; 5785 } 5786 5787 /* 5788 * Use page lock to guard against racing truncation 5789 * before we get page_table_lock. 5790 */ 5791 new_folio = false; 5792 folio = filemap_lock_folio(mapping, idx); 5793 if (!folio) { 5794 size = i_size_read(mapping->host) >> huge_page_shift(h); 5795 if (idx >= size) 5796 goto out; 5797 /* Check for page in userfault range */ 5798 if (userfaultfd_missing(vma)) { 5799 /* 5800 * Since hugetlb_no_page() was examining pte 5801 * without pgtable lock, we need to re-test under 5802 * lock because the pte may not be stable and could 5803 * have changed from under us. Try to detect 5804 * either changed or during-changing ptes and retry 5805 * properly when needed. 5806 * 5807 * Note that userfaultfd is actually fine with 5808 * false positives (e.g. caused by pte changed), 5809 * but not wrong logical events (e.g. caused by 5810 * reading a pte during changing). The latter can 5811 * confuse the userspace, so the strictness is very 5812 * much preferred. E.g., MISSING event should 5813 * never happen on the page after UFFDIO_COPY has 5814 * correctly installed the page and returned. 5815 */ 5816 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5817 ret = 0; 5818 goto out; 5819 } 5820 5821 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5822 haddr, address, 5823 VM_UFFD_MISSING); 5824 } 5825 5826 folio = alloc_hugetlb_folio(vma, haddr, 0); 5827 if (IS_ERR(folio)) { 5828 /* 5829 * Returning error will result in faulting task being 5830 * sent SIGBUS. The hugetlb fault mutex prevents two 5831 * tasks from racing to fault in the same page which 5832 * could result in false unable to allocate errors. 5833 * Page migration does not take the fault mutex, but 5834 * does a clear then write of pte's under page table 5835 * lock. Page fault code could race with migration, 5836 * notice the clear pte and try to allocate a page 5837 * here. Before returning error, get ptl and make 5838 * sure there really is no pte entry. 5839 */ 5840 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5841 ret = vmf_error(PTR_ERR(folio)); 5842 else 5843 ret = 0; 5844 goto out; 5845 } 5846 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5847 __folio_mark_uptodate(folio); 5848 new_folio = true; 5849 5850 if (vma->vm_flags & VM_MAYSHARE) { 5851 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5852 if (err) { 5853 /* 5854 * err can't be -EEXIST which implies someone 5855 * else consumed the reservation since hugetlb 5856 * fault mutex is held when add a hugetlb page 5857 * to the page cache. So it's safe to call 5858 * restore_reserve_on_error() here. 5859 */ 5860 restore_reserve_on_error(h, vma, haddr, folio); 5861 folio_put(folio); 5862 goto out; 5863 } 5864 new_pagecache_folio = true; 5865 } else { 5866 folio_lock(folio); 5867 if (unlikely(anon_vma_prepare(vma))) { 5868 ret = VM_FAULT_OOM; 5869 goto backout_unlocked; 5870 } 5871 anon_rmap = 1; 5872 } 5873 } else { 5874 /* 5875 * If memory error occurs between mmap() and fault, some process 5876 * don't have hwpoisoned swap entry for errored virtual address. 5877 * So we need to block hugepage fault by PG_hwpoison bit check. 5878 */ 5879 if (unlikely(folio_test_hwpoison(folio))) { 5880 ret = VM_FAULT_HWPOISON_LARGE | 5881 VM_FAULT_SET_HINDEX(hstate_index(h)); 5882 goto backout_unlocked; 5883 } 5884 5885 /* Check for page in userfault range. */ 5886 if (userfaultfd_minor(vma)) { 5887 folio_unlock(folio); 5888 folio_put(folio); 5889 /* See comment in userfaultfd_missing() block above */ 5890 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5891 ret = 0; 5892 goto out; 5893 } 5894 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5895 haddr, address, 5896 VM_UFFD_MINOR); 5897 } 5898 } 5899 5900 /* 5901 * If we are going to COW a private mapping later, we examine the 5902 * pending reservations for this page now. This will ensure that 5903 * any allocations necessary to record that reservation occur outside 5904 * the spinlock. 5905 */ 5906 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5907 if (vma_needs_reservation(h, vma, haddr) < 0) { 5908 ret = VM_FAULT_OOM; 5909 goto backout_unlocked; 5910 } 5911 /* Just decrements count, does not deallocate */ 5912 vma_end_reservation(h, vma, haddr); 5913 } 5914 5915 ptl = huge_pte_lock(h, mm, ptep); 5916 ret = 0; 5917 /* If pte changed from under us, retry */ 5918 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5919 goto backout; 5920 5921 if (anon_rmap) 5922 hugepage_add_new_anon_rmap(folio, vma, haddr); 5923 else 5924 page_dup_file_rmap(&folio->page, true); 5925 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 5926 && (vma->vm_flags & VM_SHARED))); 5927 /* 5928 * If this pte was previously wr-protected, keep it wr-protected even 5929 * if populated. 5930 */ 5931 if (unlikely(pte_marker_uffd_wp(old_pte))) 5932 new_pte = huge_pte_mkuffd_wp(new_pte); 5933 set_huge_pte_at(mm, haddr, ptep, new_pte); 5934 5935 hugetlb_count_add(pages_per_huge_page(h), mm); 5936 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5937 /* Optimization, do the COW without a second fault */ 5938 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 5939 } 5940 5941 spin_unlock(ptl); 5942 5943 /* 5944 * Only set hugetlb_migratable in newly allocated pages. Existing pages 5945 * found in the pagecache may not have hugetlb_migratable if they have 5946 * been isolated for migration. 5947 */ 5948 if (new_folio) 5949 folio_set_hugetlb_migratable(folio); 5950 5951 folio_unlock(folio); 5952 out: 5953 hugetlb_vma_unlock_read(vma); 5954 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5955 return ret; 5956 5957 backout: 5958 spin_unlock(ptl); 5959 backout_unlocked: 5960 if (new_folio && !new_pagecache_folio) 5961 restore_reserve_on_error(h, vma, haddr, folio); 5962 5963 folio_unlock(folio); 5964 folio_put(folio); 5965 goto out; 5966 } 5967 5968 #ifdef CONFIG_SMP 5969 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5970 { 5971 unsigned long key[2]; 5972 u32 hash; 5973 5974 key[0] = (unsigned long) mapping; 5975 key[1] = idx; 5976 5977 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5978 5979 return hash & (num_fault_mutexes - 1); 5980 } 5981 #else 5982 /* 5983 * For uniprocessor systems we always use a single mutex, so just 5984 * return 0 and avoid the hashing overhead. 5985 */ 5986 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5987 { 5988 return 0; 5989 } 5990 #endif 5991 5992 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5993 unsigned long address, unsigned int flags) 5994 { 5995 pte_t *ptep, entry; 5996 spinlock_t *ptl; 5997 vm_fault_t ret; 5998 u32 hash; 5999 pgoff_t idx; 6000 struct page *page = NULL; 6001 struct folio *pagecache_folio = NULL; 6002 struct hstate *h = hstate_vma(vma); 6003 struct address_space *mapping; 6004 int need_wait_lock = 0; 6005 unsigned long haddr = address & huge_page_mask(h); 6006 6007 /* 6008 * Serialize hugepage allocation and instantiation, so that we don't 6009 * get spurious allocation failures if two CPUs race to instantiate 6010 * the same page in the page cache. 6011 */ 6012 mapping = vma->vm_file->f_mapping; 6013 idx = vma_hugecache_offset(h, vma, haddr); 6014 hash = hugetlb_fault_mutex_hash(mapping, idx); 6015 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6016 6017 /* 6018 * Acquire vma lock before calling huge_pte_alloc and hold 6019 * until finished with ptep. This prevents huge_pmd_unshare from 6020 * being called elsewhere and making the ptep no longer valid. 6021 */ 6022 hugetlb_vma_lock_read(vma); 6023 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6024 if (!ptep) { 6025 hugetlb_vma_unlock_read(vma); 6026 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6027 return VM_FAULT_OOM; 6028 } 6029 6030 entry = huge_ptep_get(ptep); 6031 /* PTE markers should be handled the same way as none pte */ 6032 if (huge_pte_none_mostly(entry)) 6033 /* 6034 * hugetlb_no_page will drop vma lock and hugetlb fault 6035 * mutex internally, which make us return immediately. 6036 */ 6037 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6038 entry, flags); 6039 6040 ret = 0; 6041 6042 /* 6043 * entry could be a migration/hwpoison entry at this point, so this 6044 * check prevents the kernel from going below assuming that we have 6045 * an active hugepage in pagecache. This goto expects the 2nd page 6046 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6047 * properly handle it. 6048 */ 6049 if (!pte_present(entry)) { 6050 if (unlikely(is_hugetlb_entry_migration(entry))) { 6051 /* 6052 * Release the hugetlb fault lock now, but retain 6053 * the vma lock, because it is needed to guard the 6054 * huge_pte_lockptr() later in 6055 * migration_entry_wait_huge(). The vma lock will 6056 * be released there. 6057 */ 6058 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6059 migration_entry_wait_huge(vma, ptep); 6060 return 0; 6061 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6062 ret = VM_FAULT_HWPOISON_LARGE | 6063 VM_FAULT_SET_HINDEX(hstate_index(h)); 6064 goto out_mutex; 6065 } 6066 6067 /* 6068 * If we are going to COW/unshare the mapping later, we examine the 6069 * pending reservations for this page now. This will ensure that any 6070 * allocations necessary to record that reservation occur outside the 6071 * spinlock. Also lookup the pagecache page now as it is used to 6072 * determine if a reservation has been consumed. 6073 */ 6074 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6075 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6076 if (vma_needs_reservation(h, vma, haddr) < 0) { 6077 ret = VM_FAULT_OOM; 6078 goto out_mutex; 6079 } 6080 /* Just decrements count, does not deallocate */ 6081 vma_end_reservation(h, vma, haddr); 6082 6083 pagecache_folio = filemap_lock_folio(mapping, idx); 6084 } 6085 6086 ptl = huge_pte_lock(h, mm, ptep); 6087 6088 /* Check for a racing update before calling hugetlb_wp() */ 6089 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6090 goto out_ptl; 6091 6092 /* Handle userfault-wp first, before trying to lock more pages */ 6093 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6094 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6095 struct vm_fault vmf = { 6096 .vma = vma, 6097 .address = haddr, 6098 .real_address = address, 6099 .flags = flags, 6100 }; 6101 6102 spin_unlock(ptl); 6103 if (pagecache_folio) { 6104 folio_unlock(pagecache_folio); 6105 folio_put(pagecache_folio); 6106 } 6107 hugetlb_vma_unlock_read(vma); 6108 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6109 return handle_userfault(&vmf, VM_UFFD_WP); 6110 } 6111 6112 /* 6113 * hugetlb_wp() requires page locks of pte_page(entry) and 6114 * pagecache_folio, so here we need take the former one 6115 * when page != pagecache_folio or !pagecache_folio. 6116 */ 6117 page = pte_page(entry); 6118 if (page_folio(page) != pagecache_folio) 6119 if (!trylock_page(page)) { 6120 need_wait_lock = 1; 6121 goto out_ptl; 6122 } 6123 6124 get_page(page); 6125 6126 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6127 if (!huge_pte_write(entry)) { 6128 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6129 pagecache_folio, ptl); 6130 goto out_put_page; 6131 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6132 entry = huge_pte_mkdirty(entry); 6133 } 6134 } 6135 entry = pte_mkyoung(entry); 6136 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6137 flags & FAULT_FLAG_WRITE)) 6138 update_mmu_cache(vma, haddr, ptep); 6139 out_put_page: 6140 if (page_folio(page) != pagecache_folio) 6141 unlock_page(page); 6142 put_page(page); 6143 out_ptl: 6144 spin_unlock(ptl); 6145 6146 if (pagecache_folio) { 6147 folio_unlock(pagecache_folio); 6148 folio_put(pagecache_folio); 6149 } 6150 out_mutex: 6151 hugetlb_vma_unlock_read(vma); 6152 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6153 /* 6154 * Generally it's safe to hold refcount during waiting page lock. But 6155 * here we just wait to defer the next page fault to avoid busy loop and 6156 * the page is not used after unlocked before returning from the current 6157 * page fault. So we are safe from accessing freed page, even if we wait 6158 * here without taking refcount. 6159 */ 6160 if (need_wait_lock) 6161 wait_on_page_locked(page); 6162 return ret; 6163 } 6164 6165 #ifdef CONFIG_USERFAULTFD 6166 /* 6167 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 6168 * modifications for huge pages. 6169 */ 6170 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 6171 pte_t *dst_pte, 6172 struct vm_area_struct *dst_vma, 6173 unsigned long dst_addr, 6174 unsigned long src_addr, 6175 enum mcopy_atomic_mode mode, 6176 struct page **pagep, 6177 bool wp_copy) 6178 { 6179 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6180 struct hstate *h = hstate_vma(dst_vma); 6181 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6182 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6183 unsigned long size; 6184 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6185 pte_t _dst_pte; 6186 spinlock_t *ptl; 6187 int ret = -ENOMEM; 6188 struct folio *folio; 6189 int writable; 6190 bool folio_in_pagecache = false; 6191 6192 if (is_continue) { 6193 ret = -EFAULT; 6194 folio = filemap_lock_folio(mapping, idx); 6195 if (!folio) 6196 goto out; 6197 folio_in_pagecache = true; 6198 } else if (!*pagep) { 6199 /* If a page already exists, then it's UFFDIO_COPY for 6200 * a non-missing case. Return -EEXIST. 6201 */ 6202 if (vm_shared && 6203 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6204 ret = -EEXIST; 6205 goto out; 6206 } 6207 6208 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6209 if (IS_ERR(folio)) { 6210 ret = -ENOMEM; 6211 goto out; 6212 } 6213 6214 ret = copy_huge_page_from_user(&folio->page, 6215 (const void __user *) src_addr, 6216 pages_per_huge_page(h), false); 6217 6218 /* fallback to copy_from_user outside mmap_lock */ 6219 if (unlikely(ret)) { 6220 ret = -ENOENT; 6221 /* Free the allocated folio which may have 6222 * consumed a reservation. 6223 */ 6224 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6225 folio_put(folio); 6226 6227 /* Allocate a temporary folio to hold the copied 6228 * contents. 6229 */ 6230 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6231 if (!folio) { 6232 ret = -ENOMEM; 6233 goto out; 6234 } 6235 *pagep = &folio->page; 6236 /* Set the outparam pagep and return to the caller to 6237 * copy the contents outside the lock. Don't free the 6238 * page. 6239 */ 6240 goto out; 6241 } 6242 } else { 6243 if (vm_shared && 6244 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6245 put_page(*pagep); 6246 ret = -EEXIST; 6247 *pagep = NULL; 6248 goto out; 6249 } 6250 6251 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6252 if (IS_ERR(folio)) { 6253 put_page(*pagep); 6254 ret = -ENOMEM; 6255 *pagep = NULL; 6256 goto out; 6257 } 6258 copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma, 6259 pages_per_huge_page(h)); 6260 put_page(*pagep); 6261 *pagep = NULL; 6262 } 6263 6264 /* 6265 * The memory barrier inside __folio_mark_uptodate makes sure that 6266 * preceding stores to the page contents become visible before 6267 * the set_pte_at() write. 6268 */ 6269 __folio_mark_uptodate(folio); 6270 6271 /* Add shared, newly allocated pages to the page cache. */ 6272 if (vm_shared && !is_continue) { 6273 size = i_size_read(mapping->host) >> huge_page_shift(h); 6274 ret = -EFAULT; 6275 if (idx >= size) 6276 goto out_release_nounlock; 6277 6278 /* 6279 * Serialization between remove_inode_hugepages() and 6280 * hugetlb_add_to_page_cache() below happens through the 6281 * hugetlb_fault_mutex_table that here must be hold by 6282 * the caller. 6283 */ 6284 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6285 if (ret) 6286 goto out_release_nounlock; 6287 folio_in_pagecache = true; 6288 } 6289 6290 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6291 6292 ret = -EIO; 6293 if (folio_test_hwpoison(folio)) 6294 goto out_release_unlock; 6295 6296 /* 6297 * We allow to overwrite a pte marker: consider when both MISSING|WP 6298 * registered, we firstly wr-protect a none pte which has no page cache 6299 * page backing it, then access the page. 6300 */ 6301 ret = -EEXIST; 6302 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6303 goto out_release_unlock; 6304 6305 if (folio_in_pagecache) 6306 page_dup_file_rmap(&folio->page, true); 6307 else 6308 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6309 6310 /* 6311 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6312 * with wp flag set, don't set pte write bit. 6313 */ 6314 if (wp_copy || (is_continue && !vm_shared)) 6315 writable = 0; 6316 else 6317 writable = dst_vma->vm_flags & VM_WRITE; 6318 6319 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6320 /* 6321 * Always mark UFFDIO_COPY page dirty; note that this may not be 6322 * extremely important for hugetlbfs for now since swapping is not 6323 * supported, but we should still be clear in that this page cannot be 6324 * thrown away at will, even if write bit not set. 6325 */ 6326 _dst_pte = huge_pte_mkdirty(_dst_pte); 6327 _dst_pte = pte_mkyoung(_dst_pte); 6328 6329 if (wp_copy) 6330 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6331 6332 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6333 6334 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6335 6336 /* No need to invalidate - it was non-present before */ 6337 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6338 6339 spin_unlock(ptl); 6340 if (!is_continue) 6341 folio_set_hugetlb_migratable(folio); 6342 if (vm_shared || is_continue) 6343 folio_unlock(folio); 6344 ret = 0; 6345 out: 6346 return ret; 6347 out_release_unlock: 6348 spin_unlock(ptl); 6349 if (vm_shared || is_continue) 6350 folio_unlock(folio); 6351 out_release_nounlock: 6352 if (!folio_in_pagecache) 6353 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6354 folio_put(folio); 6355 goto out; 6356 } 6357 #endif /* CONFIG_USERFAULTFD */ 6358 6359 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6360 int refs, struct page **pages, 6361 struct vm_area_struct **vmas) 6362 { 6363 int nr; 6364 6365 for (nr = 0; nr < refs; nr++) { 6366 if (likely(pages)) 6367 pages[nr] = nth_page(page, nr); 6368 if (vmas) 6369 vmas[nr] = vma; 6370 } 6371 } 6372 6373 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6374 unsigned int flags, pte_t *pte, 6375 bool *unshare) 6376 { 6377 pte_t pteval = huge_ptep_get(pte); 6378 6379 *unshare = false; 6380 if (is_swap_pte(pteval)) 6381 return true; 6382 if (huge_pte_write(pteval)) 6383 return false; 6384 if (flags & FOLL_WRITE) 6385 return true; 6386 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6387 *unshare = true; 6388 return true; 6389 } 6390 return false; 6391 } 6392 6393 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6394 unsigned long address, unsigned int flags) 6395 { 6396 struct hstate *h = hstate_vma(vma); 6397 struct mm_struct *mm = vma->vm_mm; 6398 unsigned long haddr = address & huge_page_mask(h); 6399 struct page *page = NULL; 6400 spinlock_t *ptl; 6401 pte_t *pte, entry; 6402 6403 /* 6404 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6405 * follow_hugetlb_page(). 6406 */ 6407 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6408 return NULL; 6409 6410 hugetlb_vma_lock_read(vma); 6411 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6412 if (!pte) 6413 goto out_unlock; 6414 6415 ptl = huge_pte_lock(h, mm, pte); 6416 entry = huge_ptep_get(pte); 6417 if (pte_present(entry)) { 6418 page = pte_page(entry) + 6419 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6420 /* 6421 * Note that page may be a sub-page, and with vmemmap 6422 * optimizations the page struct may be read only. 6423 * try_grab_page() will increase the ref count on the 6424 * head page, so this will be OK. 6425 * 6426 * try_grab_page() should always be able to get the page here, 6427 * because we hold the ptl lock and have verified pte_present(). 6428 */ 6429 if (try_grab_page(page, flags)) { 6430 page = NULL; 6431 goto out; 6432 } 6433 } 6434 out: 6435 spin_unlock(ptl); 6436 out_unlock: 6437 hugetlb_vma_unlock_read(vma); 6438 return page; 6439 } 6440 6441 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6442 struct page **pages, struct vm_area_struct **vmas, 6443 unsigned long *position, unsigned long *nr_pages, 6444 long i, unsigned int flags, int *locked) 6445 { 6446 unsigned long pfn_offset; 6447 unsigned long vaddr = *position; 6448 unsigned long remainder = *nr_pages; 6449 struct hstate *h = hstate_vma(vma); 6450 int err = -EFAULT, refs; 6451 6452 while (vaddr < vma->vm_end && remainder) { 6453 pte_t *pte; 6454 spinlock_t *ptl = NULL; 6455 bool unshare = false; 6456 int absent; 6457 struct page *page; 6458 6459 /* 6460 * If we have a pending SIGKILL, don't keep faulting pages and 6461 * potentially allocating memory. 6462 */ 6463 if (fatal_signal_pending(current)) { 6464 remainder = 0; 6465 break; 6466 } 6467 6468 hugetlb_vma_lock_read(vma); 6469 /* 6470 * Some archs (sparc64, sh*) have multiple pte_ts to 6471 * each hugepage. We have to make sure we get the 6472 * first, for the page indexing below to work. 6473 * 6474 * Note that page table lock is not held when pte is null. 6475 */ 6476 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), 6477 huge_page_size(h)); 6478 if (pte) 6479 ptl = huge_pte_lock(h, mm, pte); 6480 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6481 6482 /* 6483 * When coredumping, it suits get_dump_page if we just return 6484 * an error where there's an empty slot with no huge pagecache 6485 * to back it. This way, we avoid allocating a hugepage, and 6486 * the sparse dumpfile avoids allocating disk blocks, but its 6487 * huge holes still show up with zeroes where they need to be. 6488 */ 6489 if (absent && (flags & FOLL_DUMP) && 6490 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6491 if (pte) 6492 spin_unlock(ptl); 6493 hugetlb_vma_unlock_read(vma); 6494 remainder = 0; 6495 break; 6496 } 6497 6498 /* 6499 * We need call hugetlb_fault for both hugepages under migration 6500 * (in which case hugetlb_fault waits for the migration,) and 6501 * hwpoisoned hugepages (in which case we need to prevent the 6502 * caller from accessing to them.) In order to do this, we use 6503 * here is_swap_pte instead of is_hugetlb_entry_migration and 6504 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6505 * both cases, and because we can't follow correct pages 6506 * directly from any kind of swap entries. 6507 */ 6508 if (absent || 6509 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6510 vm_fault_t ret; 6511 unsigned int fault_flags = 0; 6512 6513 if (pte) 6514 spin_unlock(ptl); 6515 hugetlb_vma_unlock_read(vma); 6516 6517 if (flags & FOLL_WRITE) 6518 fault_flags |= FAULT_FLAG_WRITE; 6519 else if (unshare) 6520 fault_flags |= FAULT_FLAG_UNSHARE; 6521 if (locked) { 6522 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6523 FAULT_FLAG_KILLABLE; 6524 if (flags & FOLL_INTERRUPTIBLE) 6525 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 6526 } 6527 if (flags & FOLL_NOWAIT) 6528 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6529 FAULT_FLAG_RETRY_NOWAIT; 6530 if (flags & FOLL_TRIED) { 6531 /* 6532 * Note: FAULT_FLAG_ALLOW_RETRY and 6533 * FAULT_FLAG_TRIED can co-exist 6534 */ 6535 fault_flags |= FAULT_FLAG_TRIED; 6536 } 6537 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6538 if (ret & VM_FAULT_ERROR) { 6539 err = vm_fault_to_errno(ret, flags); 6540 remainder = 0; 6541 break; 6542 } 6543 if (ret & VM_FAULT_RETRY) { 6544 if (locked && 6545 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6546 *locked = 0; 6547 *nr_pages = 0; 6548 /* 6549 * VM_FAULT_RETRY must not return an 6550 * error, it will return zero 6551 * instead. 6552 * 6553 * No need to update "position" as the 6554 * caller will not check it after 6555 * *nr_pages is set to 0. 6556 */ 6557 return i; 6558 } 6559 continue; 6560 } 6561 6562 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6563 page = pte_page(huge_ptep_get(pte)); 6564 6565 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6566 !PageAnonExclusive(page), page); 6567 6568 /* 6569 * If subpage information not requested, update counters 6570 * and skip the same_page loop below. 6571 */ 6572 if (!pages && !vmas && !pfn_offset && 6573 (vaddr + huge_page_size(h) < vma->vm_end) && 6574 (remainder >= pages_per_huge_page(h))) { 6575 vaddr += huge_page_size(h); 6576 remainder -= pages_per_huge_page(h); 6577 i += pages_per_huge_page(h); 6578 spin_unlock(ptl); 6579 hugetlb_vma_unlock_read(vma); 6580 continue; 6581 } 6582 6583 /* vaddr may not be aligned to PAGE_SIZE */ 6584 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6585 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6586 6587 if (pages || vmas) 6588 record_subpages_vmas(nth_page(page, pfn_offset), 6589 vma, refs, 6590 likely(pages) ? pages + i : NULL, 6591 vmas ? vmas + i : NULL); 6592 6593 if (pages) { 6594 /* 6595 * try_grab_folio() should always succeed here, 6596 * because: a) we hold the ptl lock, and b) we've just 6597 * checked that the huge page is present in the page 6598 * tables. If the huge page is present, then the tail 6599 * pages must also be present. The ptl prevents the 6600 * head page and tail pages from being rearranged in 6601 * any way. As this is hugetlb, the pages will never 6602 * be p2pdma or not longterm pinable. So this page 6603 * must be available at this point, unless the page 6604 * refcount overflowed: 6605 */ 6606 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6607 flags))) { 6608 spin_unlock(ptl); 6609 hugetlb_vma_unlock_read(vma); 6610 remainder = 0; 6611 err = -ENOMEM; 6612 break; 6613 } 6614 } 6615 6616 vaddr += (refs << PAGE_SHIFT); 6617 remainder -= refs; 6618 i += refs; 6619 6620 spin_unlock(ptl); 6621 hugetlb_vma_unlock_read(vma); 6622 } 6623 *nr_pages = remainder; 6624 /* 6625 * setting position is actually required only if remainder is 6626 * not zero but it's faster not to add a "if (remainder)" 6627 * branch. 6628 */ 6629 *position = vaddr; 6630 6631 return i ? i : err; 6632 } 6633 6634 long hugetlb_change_protection(struct vm_area_struct *vma, 6635 unsigned long address, unsigned long end, 6636 pgprot_t newprot, unsigned long cp_flags) 6637 { 6638 struct mm_struct *mm = vma->vm_mm; 6639 unsigned long start = address; 6640 pte_t *ptep; 6641 pte_t pte; 6642 struct hstate *h = hstate_vma(vma); 6643 long pages = 0, psize = huge_page_size(h); 6644 bool shared_pmd = false; 6645 struct mmu_notifier_range range; 6646 unsigned long last_addr_mask; 6647 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6648 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6649 6650 /* 6651 * In the case of shared PMDs, the area to flush could be beyond 6652 * start/end. Set range.start/range.end to cover the maximum possible 6653 * range if PMD sharing is possible. 6654 */ 6655 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6656 0, mm, start, end); 6657 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6658 6659 BUG_ON(address >= end); 6660 flush_cache_range(vma, range.start, range.end); 6661 6662 mmu_notifier_invalidate_range_start(&range); 6663 hugetlb_vma_lock_write(vma); 6664 i_mmap_lock_write(vma->vm_file->f_mapping); 6665 last_addr_mask = hugetlb_mask_last_page(h); 6666 for (; address < end; address += psize) { 6667 spinlock_t *ptl; 6668 ptep = hugetlb_walk(vma, address, psize); 6669 if (!ptep) { 6670 if (!uffd_wp) { 6671 address |= last_addr_mask; 6672 continue; 6673 } 6674 /* 6675 * Userfaultfd wr-protect requires pgtable 6676 * pre-allocations to install pte markers. 6677 */ 6678 ptep = huge_pte_alloc(mm, vma, address, psize); 6679 if (!ptep) { 6680 pages = -ENOMEM; 6681 break; 6682 } 6683 } 6684 ptl = huge_pte_lock(h, mm, ptep); 6685 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6686 /* 6687 * When uffd-wp is enabled on the vma, unshare 6688 * shouldn't happen at all. Warn about it if it 6689 * happened due to some reason. 6690 */ 6691 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6692 pages++; 6693 spin_unlock(ptl); 6694 shared_pmd = true; 6695 address |= last_addr_mask; 6696 continue; 6697 } 6698 pte = huge_ptep_get(ptep); 6699 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6700 /* Nothing to do. */ 6701 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6702 swp_entry_t entry = pte_to_swp_entry(pte); 6703 struct page *page = pfn_swap_entry_to_page(entry); 6704 pte_t newpte = pte; 6705 6706 if (is_writable_migration_entry(entry)) { 6707 if (PageAnon(page)) 6708 entry = make_readable_exclusive_migration_entry( 6709 swp_offset(entry)); 6710 else 6711 entry = make_readable_migration_entry( 6712 swp_offset(entry)); 6713 newpte = swp_entry_to_pte(entry); 6714 pages++; 6715 } 6716 6717 if (uffd_wp) 6718 newpte = pte_swp_mkuffd_wp(newpte); 6719 else if (uffd_wp_resolve) 6720 newpte = pte_swp_clear_uffd_wp(newpte); 6721 if (!pte_same(pte, newpte)) 6722 set_huge_pte_at(mm, address, ptep, newpte); 6723 } else if (unlikely(is_pte_marker(pte))) { 6724 /* No other markers apply for now. */ 6725 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6726 if (uffd_wp_resolve) 6727 /* Safe to modify directly (non-present->none). */ 6728 huge_pte_clear(mm, address, ptep, psize); 6729 } else if (!huge_pte_none(pte)) { 6730 pte_t old_pte; 6731 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6732 6733 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6734 pte = huge_pte_modify(old_pte, newprot); 6735 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6736 if (uffd_wp) 6737 pte = huge_pte_mkuffd_wp(pte); 6738 else if (uffd_wp_resolve) 6739 pte = huge_pte_clear_uffd_wp(pte); 6740 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6741 pages++; 6742 } else { 6743 /* None pte */ 6744 if (unlikely(uffd_wp)) 6745 /* Safe to modify directly (none->non-present). */ 6746 set_huge_pte_at(mm, address, ptep, 6747 make_pte_marker(PTE_MARKER_UFFD_WP)); 6748 } 6749 spin_unlock(ptl); 6750 } 6751 /* 6752 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6753 * may have cleared our pud entry and done put_page on the page table: 6754 * once we release i_mmap_rwsem, another task can do the final put_page 6755 * and that page table be reused and filled with junk. If we actually 6756 * did unshare a page of pmds, flush the range corresponding to the pud. 6757 */ 6758 if (shared_pmd) 6759 flush_hugetlb_tlb_range(vma, range.start, range.end); 6760 else 6761 flush_hugetlb_tlb_range(vma, start, end); 6762 /* 6763 * No need to call mmu_notifier_invalidate_range() we are downgrading 6764 * page table protection not changing it to point to a new page. 6765 * 6766 * See Documentation/mm/mmu_notifier.rst 6767 */ 6768 i_mmap_unlock_write(vma->vm_file->f_mapping); 6769 hugetlb_vma_unlock_write(vma); 6770 mmu_notifier_invalidate_range_end(&range); 6771 6772 return pages > 0 ? (pages << h->order) : pages; 6773 } 6774 6775 /* Return true if reservation was successful, false otherwise. */ 6776 bool hugetlb_reserve_pages(struct inode *inode, 6777 long from, long to, 6778 struct vm_area_struct *vma, 6779 vm_flags_t vm_flags) 6780 { 6781 long chg = -1, add = -1; 6782 struct hstate *h = hstate_inode(inode); 6783 struct hugepage_subpool *spool = subpool_inode(inode); 6784 struct resv_map *resv_map; 6785 struct hugetlb_cgroup *h_cg = NULL; 6786 long gbl_reserve, regions_needed = 0; 6787 6788 /* This should never happen */ 6789 if (from > to) { 6790 VM_WARN(1, "%s called with a negative range\n", __func__); 6791 return false; 6792 } 6793 6794 /* 6795 * vma specific semaphore used for pmd sharing and fault/truncation 6796 * synchronization 6797 */ 6798 hugetlb_vma_lock_alloc(vma); 6799 6800 /* 6801 * Only apply hugepage reservation if asked. At fault time, an 6802 * attempt will be made for VM_NORESERVE to allocate a page 6803 * without using reserves 6804 */ 6805 if (vm_flags & VM_NORESERVE) 6806 return true; 6807 6808 /* 6809 * Shared mappings base their reservation on the number of pages that 6810 * are already allocated on behalf of the file. Private mappings need 6811 * to reserve the full area even if read-only as mprotect() may be 6812 * called to make the mapping read-write. Assume !vma is a shm mapping 6813 */ 6814 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6815 /* 6816 * resv_map can not be NULL as hugetlb_reserve_pages is only 6817 * called for inodes for which resv_maps were created (see 6818 * hugetlbfs_get_inode). 6819 */ 6820 resv_map = inode_resv_map(inode); 6821 6822 chg = region_chg(resv_map, from, to, ®ions_needed); 6823 } else { 6824 /* Private mapping. */ 6825 resv_map = resv_map_alloc(); 6826 if (!resv_map) 6827 goto out_err; 6828 6829 chg = to - from; 6830 6831 set_vma_resv_map(vma, resv_map); 6832 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6833 } 6834 6835 if (chg < 0) 6836 goto out_err; 6837 6838 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6839 chg * pages_per_huge_page(h), &h_cg) < 0) 6840 goto out_err; 6841 6842 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6843 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6844 * of the resv_map. 6845 */ 6846 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6847 } 6848 6849 /* 6850 * There must be enough pages in the subpool for the mapping. If 6851 * the subpool has a minimum size, there may be some global 6852 * reservations already in place (gbl_reserve). 6853 */ 6854 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6855 if (gbl_reserve < 0) 6856 goto out_uncharge_cgroup; 6857 6858 /* 6859 * Check enough hugepages are available for the reservation. 6860 * Hand the pages back to the subpool if there are not 6861 */ 6862 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6863 goto out_put_pages; 6864 6865 /* 6866 * Account for the reservations made. Shared mappings record regions 6867 * that have reservations as they are shared by multiple VMAs. 6868 * When the last VMA disappears, the region map says how much 6869 * the reservation was and the page cache tells how much of 6870 * the reservation was consumed. Private mappings are per-VMA and 6871 * only the consumed reservations are tracked. When the VMA 6872 * disappears, the original reservation is the VMA size and the 6873 * consumed reservations are stored in the map. Hence, nothing 6874 * else has to be done for private mappings here 6875 */ 6876 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6877 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6878 6879 if (unlikely(add < 0)) { 6880 hugetlb_acct_memory(h, -gbl_reserve); 6881 goto out_put_pages; 6882 } else if (unlikely(chg > add)) { 6883 /* 6884 * pages in this range were added to the reserve 6885 * map between region_chg and region_add. This 6886 * indicates a race with alloc_hugetlb_folio. Adjust 6887 * the subpool and reserve counts modified above 6888 * based on the difference. 6889 */ 6890 long rsv_adjust; 6891 6892 /* 6893 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6894 * reference to h_cg->css. See comment below for detail. 6895 */ 6896 hugetlb_cgroup_uncharge_cgroup_rsvd( 6897 hstate_index(h), 6898 (chg - add) * pages_per_huge_page(h), h_cg); 6899 6900 rsv_adjust = hugepage_subpool_put_pages(spool, 6901 chg - add); 6902 hugetlb_acct_memory(h, -rsv_adjust); 6903 } else if (h_cg) { 6904 /* 6905 * The file_regions will hold their own reference to 6906 * h_cg->css. So we should release the reference held 6907 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6908 * done. 6909 */ 6910 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6911 } 6912 } 6913 return true; 6914 6915 out_put_pages: 6916 /* put back original number of pages, chg */ 6917 (void)hugepage_subpool_put_pages(spool, chg); 6918 out_uncharge_cgroup: 6919 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6920 chg * pages_per_huge_page(h), h_cg); 6921 out_err: 6922 hugetlb_vma_lock_free(vma); 6923 if (!vma || vma->vm_flags & VM_MAYSHARE) 6924 /* Only call region_abort if the region_chg succeeded but the 6925 * region_add failed or didn't run. 6926 */ 6927 if (chg >= 0 && add < 0) 6928 region_abort(resv_map, from, to, regions_needed); 6929 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6930 kref_put(&resv_map->refs, resv_map_release); 6931 return false; 6932 } 6933 6934 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6935 long freed) 6936 { 6937 struct hstate *h = hstate_inode(inode); 6938 struct resv_map *resv_map = inode_resv_map(inode); 6939 long chg = 0; 6940 struct hugepage_subpool *spool = subpool_inode(inode); 6941 long gbl_reserve; 6942 6943 /* 6944 * Since this routine can be called in the evict inode path for all 6945 * hugetlbfs inodes, resv_map could be NULL. 6946 */ 6947 if (resv_map) { 6948 chg = region_del(resv_map, start, end); 6949 /* 6950 * region_del() can fail in the rare case where a region 6951 * must be split and another region descriptor can not be 6952 * allocated. If end == LONG_MAX, it will not fail. 6953 */ 6954 if (chg < 0) 6955 return chg; 6956 } 6957 6958 spin_lock(&inode->i_lock); 6959 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6960 spin_unlock(&inode->i_lock); 6961 6962 /* 6963 * If the subpool has a minimum size, the number of global 6964 * reservations to be released may be adjusted. 6965 * 6966 * Note that !resv_map implies freed == 0. So (chg - freed) 6967 * won't go negative. 6968 */ 6969 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6970 hugetlb_acct_memory(h, -gbl_reserve); 6971 6972 return 0; 6973 } 6974 6975 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6976 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6977 struct vm_area_struct *vma, 6978 unsigned long addr, pgoff_t idx) 6979 { 6980 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6981 svma->vm_start; 6982 unsigned long sbase = saddr & PUD_MASK; 6983 unsigned long s_end = sbase + PUD_SIZE; 6984 6985 /* Allow segments to share if only one is marked locked */ 6986 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6987 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6988 6989 /* 6990 * match the virtual addresses, permission and the alignment of the 6991 * page table page. 6992 * 6993 * Also, vma_lock (vm_private_data) is required for sharing. 6994 */ 6995 if (pmd_index(addr) != pmd_index(saddr) || 6996 vm_flags != svm_flags || 6997 !range_in_vma(svma, sbase, s_end) || 6998 !svma->vm_private_data) 6999 return 0; 7000 7001 return saddr; 7002 } 7003 7004 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7005 { 7006 unsigned long start = addr & PUD_MASK; 7007 unsigned long end = start + PUD_SIZE; 7008 7009 #ifdef CONFIG_USERFAULTFD 7010 if (uffd_disable_huge_pmd_share(vma)) 7011 return false; 7012 #endif 7013 /* 7014 * check on proper vm_flags and page table alignment 7015 */ 7016 if (!(vma->vm_flags & VM_MAYSHARE)) 7017 return false; 7018 if (!vma->vm_private_data) /* vma lock required for sharing */ 7019 return false; 7020 if (!range_in_vma(vma, start, end)) 7021 return false; 7022 return true; 7023 } 7024 7025 /* 7026 * Determine if start,end range within vma could be mapped by shared pmd. 7027 * If yes, adjust start and end to cover range associated with possible 7028 * shared pmd mappings. 7029 */ 7030 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7031 unsigned long *start, unsigned long *end) 7032 { 7033 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7034 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7035 7036 /* 7037 * vma needs to span at least one aligned PUD size, and the range 7038 * must be at least partially within in. 7039 */ 7040 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7041 (*end <= v_start) || (*start >= v_end)) 7042 return; 7043 7044 /* Extend the range to be PUD aligned for a worst case scenario */ 7045 if (*start > v_start) 7046 *start = ALIGN_DOWN(*start, PUD_SIZE); 7047 7048 if (*end < v_end) 7049 *end = ALIGN(*end, PUD_SIZE); 7050 } 7051 7052 /* 7053 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7054 * and returns the corresponding pte. While this is not necessary for the 7055 * !shared pmd case because we can allocate the pmd later as well, it makes the 7056 * code much cleaner. pmd allocation is essential for the shared case because 7057 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7058 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7059 * bad pmd for sharing. 7060 */ 7061 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7062 unsigned long addr, pud_t *pud) 7063 { 7064 struct address_space *mapping = vma->vm_file->f_mapping; 7065 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7066 vma->vm_pgoff; 7067 struct vm_area_struct *svma; 7068 unsigned long saddr; 7069 pte_t *spte = NULL; 7070 pte_t *pte; 7071 spinlock_t *ptl; 7072 7073 i_mmap_lock_read(mapping); 7074 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7075 if (svma == vma) 7076 continue; 7077 7078 saddr = page_table_shareable(svma, vma, addr, idx); 7079 if (saddr) { 7080 spte = hugetlb_walk(svma, saddr, 7081 vma_mmu_pagesize(svma)); 7082 if (spte) { 7083 get_page(virt_to_page(spte)); 7084 break; 7085 } 7086 } 7087 } 7088 7089 if (!spte) 7090 goto out; 7091 7092 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7093 if (pud_none(*pud)) { 7094 pud_populate(mm, pud, 7095 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7096 mm_inc_nr_pmds(mm); 7097 } else { 7098 put_page(virt_to_page(spte)); 7099 } 7100 spin_unlock(ptl); 7101 out: 7102 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7103 i_mmap_unlock_read(mapping); 7104 return pte; 7105 } 7106 7107 /* 7108 * unmap huge page backed by shared pte. 7109 * 7110 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7111 * indicated by page_count > 1, unmap is achieved by clearing pud and 7112 * decrementing the ref count. If count == 1, the pte page is not shared. 7113 * 7114 * Called with page table lock held. 7115 * 7116 * returns: 1 successfully unmapped a shared pte page 7117 * 0 the underlying pte page is not shared, or it is the last user 7118 */ 7119 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7120 unsigned long addr, pte_t *ptep) 7121 { 7122 pgd_t *pgd = pgd_offset(mm, addr); 7123 p4d_t *p4d = p4d_offset(pgd, addr); 7124 pud_t *pud = pud_offset(p4d, addr); 7125 7126 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7127 hugetlb_vma_assert_locked(vma); 7128 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7129 if (page_count(virt_to_page(ptep)) == 1) 7130 return 0; 7131 7132 pud_clear(pud); 7133 put_page(virt_to_page(ptep)); 7134 mm_dec_nr_pmds(mm); 7135 return 1; 7136 } 7137 7138 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7139 7140 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7141 unsigned long addr, pud_t *pud) 7142 { 7143 return NULL; 7144 } 7145 7146 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7147 unsigned long addr, pte_t *ptep) 7148 { 7149 return 0; 7150 } 7151 7152 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7153 unsigned long *start, unsigned long *end) 7154 { 7155 } 7156 7157 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7158 { 7159 return false; 7160 } 7161 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7162 7163 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7164 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7165 unsigned long addr, unsigned long sz) 7166 { 7167 pgd_t *pgd; 7168 p4d_t *p4d; 7169 pud_t *pud; 7170 pte_t *pte = NULL; 7171 7172 pgd = pgd_offset(mm, addr); 7173 p4d = p4d_alloc(mm, pgd, addr); 7174 if (!p4d) 7175 return NULL; 7176 pud = pud_alloc(mm, p4d, addr); 7177 if (pud) { 7178 if (sz == PUD_SIZE) { 7179 pte = (pte_t *)pud; 7180 } else { 7181 BUG_ON(sz != PMD_SIZE); 7182 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7183 pte = huge_pmd_share(mm, vma, addr, pud); 7184 else 7185 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7186 } 7187 } 7188 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7189 7190 return pte; 7191 } 7192 7193 /* 7194 * huge_pte_offset() - Walk the page table to resolve the hugepage 7195 * entry at address @addr 7196 * 7197 * Return: Pointer to page table entry (PUD or PMD) for 7198 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7199 * size @sz doesn't match the hugepage size at this level of the page 7200 * table. 7201 */ 7202 pte_t *huge_pte_offset(struct mm_struct *mm, 7203 unsigned long addr, unsigned long sz) 7204 { 7205 pgd_t *pgd; 7206 p4d_t *p4d; 7207 pud_t *pud; 7208 pmd_t *pmd; 7209 7210 pgd = pgd_offset(mm, addr); 7211 if (!pgd_present(*pgd)) 7212 return NULL; 7213 p4d = p4d_offset(pgd, addr); 7214 if (!p4d_present(*p4d)) 7215 return NULL; 7216 7217 pud = pud_offset(p4d, addr); 7218 if (sz == PUD_SIZE) 7219 /* must be pud huge, non-present or none */ 7220 return (pte_t *)pud; 7221 if (!pud_present(*pud)) 7222 return NULL; 7223 /* must have a valid entry and size to go further */ 7224 7225 pmd = pmd_offset(pud, addr); 7226 /* must be pmd huge, non-present or none */ 7227 return (pte_t *)pmd; 7228 } 7229 7230 /* 7231 * Return a mask that can be used to update an address to the last huge 7232 * page in a page table page mapping size. Used to skip non-present 7233 * page table entries when linearly scanning address ranges. Architectures 7234 * with unique huge page to page table relationships can define their own 7235 * version of this routine. 7236 */ 7237 unsigned long hugetlb_mask_last_page(struct hstate *h) 7238 { 7239 unsigned long hp_size = huge_page_size(h); 7240 7241 if (hp_size == PUD_SIZE) 7242 return P4D_SIZE - PUD_SIZE; 7243 else if (hp_size == PMD_SIZE) 7244 return PUD_SIZE - PMD_SIZE; 7245 else 7246 return 0UL; 7247 } 7248 7249 #else 7250 7251 /* See description above. Architectures can provide their own version. */ 7252 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7253 { 7254 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7255 if (huge_page_size(h) == PMD_SIZE) 7256 return PUD_SIZE - PMD_SIZE; 7257 #endif 7258 return 0UL; 7259 } 7260 7261 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7262 7263 /* 7264 * These functions are overwritable if your architecture needs its own 7265 * behavior. 7266 */ 7267 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7268 { 7269 bool ret = true; 7270 7271 spin_lock_irq(&hugetlb_lock); 7272 if (!folio_test_hugetlb(folio) || 7273 !folio_test_hugetlb_migratable(folio) || 7274 !folio_try_get(folio)) { 7275 ret = false; 7276 goto unlock; 7277 } 7278 folio_clear_hugetlb_migratable(folio); 7279 list_move_tail(&folio->lru, list); 7280 unlock: 7281 spin_unlock_irq(&hugetlb_lock); 7282 return ret; 7283 } 7284 7285 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7286 { 7287 int ret = 0; 7288 7289 *hugetlb = false; 7290 spin_lock_irq(&hugetlb_lock); 7291 if (folio_test_hugetlb(folio)) { 7292 *hugetlb = true; 7293 if (folio_test_hugetlb_freed(folio)) 7294 ret = 0; 7295 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7296 ret = folio_try_get(folio); 7297 else 7298 ret = -EBUSY; 7299 } 7300 spin_unlock_irq(&hugetlb_lock); 7301 return ret; 7302 } 7303 7304 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7305 bool *migratable_cleared) 7306 { 7307 int ret; 7308 7309 spin_lock_irq(&hugetlb_lock); 7310 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7311 spin_unlock_irq(&hugetlb_lock); 7312 return ret; 7313 } 7314 7315 void folio_putback_active_hugetlb(struct folio *folio) 7316 { 7317 spin_lock_irq(&hugetlb_lock); 7318 folio_set_hugetlb_migratable(folio); 7319 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7320 spin_unlock_irq(&hugetlb_lock); 7321 folio_put(folio); 7322 } 7323 7324 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7325 { 7326 struct hstate *h = folio_hstate(old_folio); 7327 7328 hugetlb_cgroup_migrate(old_folio, new_folio); 7329 set_page_owner_migrate_reason(&new_folio->page, reason); 7330 7331 /* 7332 * transfer temporary state of the new hugetlb folio. This is 7333 * reverse to other transitions because the newpage is going to 7334 * be final while the old one will be freed so it takes over 7335 * the temporary status. 7336 * 7337 * Also note that we have to transfer the per-node surplus state 7338 * here as well otherwise the global surplus count will not match 7339 * the per-node's. 7340 */ 7341 if (folio_test_hugetlb_temporary(new_folio)) { 7342 int old_nid = folio_nid(old_folio); 7343 int new_nid = folio_nid(new_folio); 7344 7345 folio_set_hugetlb_temporary(old_folio); 7346 folio_clear_hugetlb_temporary(new_folio); 7347 7348 7349 /* 7350 * There is no need to transfer the per-node surplus state 7351 * when we do not cross the node. 7352 */ 7353 if (new_nid == old_nid) 7354 return; 7355 spin_lock_irq(&hugetlb_lock); 7356 if (h->surplus_huge_pages_node[old_nid]) { 7357 h->surplus_huge_pages_node[old_nid]--; 7358 h->surplus_huge_pages_node[new_nid]++; 7359 } 7360 spin_unlock_irq(&hugetlb_lock); 7361 } 7362 } 7363 7364 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7365 unsigned long start, 7366 unsigned long end) 7367 { 7368 struct hstate *h = hstate_vma(vma); 7369 unsigned long sz = huge_page_size(h); 7370 struct mm_struct *mm = vma->vm_mm; 7371 struct mmu_notifier_range range; 7372 unsigned long address; 7373 spinlock_t *ptl; 7374 pte_t *ptep; 7375 7376 if (!(vma->vm_flags & VM_MAYSHARE)) 7377 return; 7378 7379 if (start >= end) 7380 return; 7381 7382 flush_cache_range(vma, start, end); 7383 /* 7384 * No need to call adjust_range_if_pmd_sharing_possible(), because 7385 * we have already done the PUD_SIZE alignment. 7386 */ 7387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7388 start, end); 7389 mmu_notifier_invalidate_range_start(&range); 7390 hugetlb_vma_lock_write(vma); 7391 i_mmap_lock_write(vma->vm_file->f_mapping); 7392 for (address = start; address < end; address += PUD_SIZE) { 7393 ptep = hugetlb_walk(vma, address, sz); 7394 if (!ptep) 7395 continue; 7396 ptl = huge_pte_lock(h, mm, ptep); 7397 huge_pmd_unshare(mm, vma, address, ptep); 7398 spin_unlock(ptl); 7399 } 7400 flush_hugetlb_tlb_range(vma, start, end); 7401 i_mmap_unlock_write(vma->vm_file->f_mapping); 7402 hugetlb_vma_unlock_write(vma); 7403 /* 7404 * No need to call mmu_notifier_invalidate_range(), see 7405 * Documentation/mm/mmu_notifier.rst. 7406 */ 7407 mmu_notifier_invalidate_range_end(&range); 7408 } 7409 7410 /* 7411 * This function will unconditionally remove all the shared pmd pgtable entries 7412 * within the specific vma for a hugetlbfs memory range. 7413 */ 7414 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7415 { 7416 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7417 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7418 } 7419 7420 #ifdef CONFIG_CMA 7421 static bool cma_reserve_called __initdata; 7422 7423 static int __init cmdline_parse_hugetlb_cma(char *p) 7424 { 7425 int nid, count = 0; 7426 unsigned long tmp; 7427 char *s = p; 7428 7429 while (*s) { 7430 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7431 break; 7432 7433 if (s[count] == ':') { 7434 if (tmp >= MAX_NUMNODES) 7435 break; 7436 nid = array_index_nospec(tmp, MAX_NUMNODES); 7437 7438 s += count + 1; 7439 tmp = memparse(s, &s); 7440 hugetlb_cma_size_in_node[nid] = tmp; 7441 hugetlb_cma_size += tmp; 7442 7443 /* 7444 * Skip the separator if have one, otherwise 7445 * break the parsing. 7446 */ 7447 if (*s == ',') 7448 s++; 7449 else 7450 break; 7451 } else { 7452 hugetlb_cma_size = memparse(p, &p); 7453 break; 7454 } 7455 } 7456 7457 return 0; 7458 } 7459 7460 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7461 7462 void __init hugetlb_cma_reserve(int order) 7463 { 7464 unsigned long size, reserved, per_node; 7465 bool node_specific_cma_alloc = false; 7466 int nid; 7467 7468 cma_reserve_called = true; 7469 7470 if (!hugetlb_cma_size) 7471 return; 7472 7473 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7474 if (hugetlb_cma_size_in_node[nid] == 0) 7475 continue; 7476 7477 if (!node_online(nid)) { 7478 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7479 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7480 hugetlb_cma_size_in_node[nid] = 0; 7481 continue; 7482 } 7483 7484 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7485 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7486 nid, (PAGE_SIZE << order) / SZ_1M); 7487 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7488 hugetlb_cma_size_in_node[nid] = 0; 7489 } else { 7490 node_specific_cma_alloc = true; 7491 } 7492 } 7493 7494 /* Validate the CMA size again in case some invalid nodes specified. */ 7495 if (!hugetlb_cma_size) 7496 return; 7497 7498 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7499 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7500 (PAGE_SIZE << order) / SZ_1M); 7501 hugetlb_cma_size = 0; 7502 return; 7503 } 7504 7505 if (!node_specific_cma_alloc) { 7506 /* 7507 * If 3 GB area is requested on a machine with 4 numa nodes, 7508 * let's allocate 1 GB on first three nodes and ignore the last one. 7509 */ 7510 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7511 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7512 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7513 } 7514 7515 reserved = 0; 7516 for_each_online_node(nid) { 7517 int res; 7518 char name[CMA_MAX_NAME]; 7519 7520 if (node_specific_cma_alloc) { 7521 if (hugetlb_cma_size_in_node[nid] == 0) 7522 continue; 7523 7524 size = hugetlb_cma_size_in_node[nid]; 7525 } else { 7526 size = min(per_node, hugetlb_cma_size - reserved); 7527 } 7528 7529 size = round_up(size, PAGE_SIZE << order); 7530 7531 snprintf(name, sizeof(name), "hugetlb%d", nid); 7532 /* 7533 * Note that 'order per bit' is based on smallest size that 7534 * may be returned to CMA allocator in the case of 7535 * huge page demotion. 7536 */ 7537 res = cma_declare_contiguous_nid(0, size, 0, 7538 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7539 0, false, name, 7540 &hugetlb_cma[nid], nid); 7541 if (res) { 7542 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7543 res, nid); 7544 continue; 7545 } 7546 7547 reserved += size; 7548 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7549 size / SZ_1M, nid); 7550 7551 if (reserved >= hugetlb_cma_size) 7552 break; 7553 } 7554 7555 if (!reserved) 7556 /* 7557 * hugetlb_cma_size is used to determine if allocations from 7558 * cma are possible. Set to zero if no cma regions are set up. 7559 */ 7560 hugetlb_cma_size = 0; 7561 } 7562 7563 static void __init hugetlb_cma_check(void) 7564 { 7565 if (!hugetlb_cma_size || cma_reserve_called) 7566 return; 7567 7568 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7569 } 7570 7571 #endif /* CONFIG_CMA */ 7572