1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 39 unsigned long hugepages_treat_as_movable; 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 45 __initdata LIST_HEAD(huge_boot_pages); 46 47 /* for command line parsing */ 48 static struct hstate * __initdata parsed_hstate; 49 static unsigned long __initdata default_hstate_max_huge_pages; 50 static unsigned long __initdata default_hstate_size; 51 52 /* 53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 54 * free_huge_pages, and surplus_huge_pages. 55 */ 56 DEFINE_SPINLOCK(hugetlb_lock); 57 58 /* 59 * Serializes faults on the same logical page. This is used to 60 * prevent spurious OOMs when the hugepage pool is fully utilized. 61 */ 62 static int num_fault_mutexes; 63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; 64 65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 66 { 67 bool free = (spool->count == 0) && (spool->used_hpages == 0); 68 69 spin_unlock(&spool->lock); 70 71 /* If no pages are used, and no other handles to the subpool 72 * remain, free the subpool the subpool remain */ 73 if (free) 74 kfree(spool); 75 } 76 77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 78 { 79 struct hugepage_subpool *spool; 80 81 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 82 if (!spool) 83 return NULL; 84 85 spin_lock_init(&spool->lock); 86 spool->count = 1; 87 spool->max_hpages = nr_blocks; 88 spool->used_hpages = 0; 89 90 return spool; 91 } 92 93 void hugepage_put_subpool(struct hugepage_subpool *spool) 94 { 95 spin_lock(&spool->lock); 96 BUG_ON(!spool->count); 97 spool->count--; 98 unlock_or_release_subpool(spool); 99 } 100 101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 102 long delta) 103 { 104 int ret = 0; 105 106 if (!spool) 107 return 0; 108 109 spin_lock(&spool->lock); 110 if ((spool->used_hpages + delta) <= spool->max_hpages) { 111 spool->used_hpages += delta; 112 } else { 113 ret = -ENOMEM; 114 } 115 spin_unlock(&spool->lock); 116 117 return ret; 118 } 119 120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 121 long delta) 122 { 123 if (!spool) 124 return; 125 126 spin_lock(&spool->lock); 127 spool->used_hpages -= delta; 128 /* If hugetlbfs_put_super couldn't free spool due to 129 * an outstanding quota reference, free it now. */ 130 unlock_or_release_subpool(spool); 131 } 132 133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 134 { 135 return HUGETLBFS_SB(inode->i_sb)->spool; 136 } 137 138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 139 { 140 return subpool_inode(file_inode(vma->vm_file)); 141 } 142 143 /* 144 * Region tracking -- allows tracking of reservations and instantiated pages 145 * across the pages in a mapping. 146 * 147 * The region data structures are embedded into a resv_map and 148 * protected by a resv_map's lock 149 */ 150 struct file_region { 151 struct list_head link; 152 long from; 153 long to; 154 }; 155 156 static long region_add(struct resv_map *resv, long f, long t) 157 { 158 struct list_head *head = &resv->regions; 159 struct file_region *rg, *nrg, *trg; 160 161 spin_lock(&resv->lock); 162 /* Locate the region we are either in or before. */ 163 list_for_each_entry(rg, head, link) 164 if (f <= rg->to) 165 break; 166 167 /* Round our left edge to the current segment if it encloses us. */ 168 if (f > rg->from) 169 f = rg->from; 170 171 /* Check for and consume any regions we now overlap with. */ 172 nrg = rg; 173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 174 if (&rg->link == head) 175 break; 176 if (rg->from > t) 177 break; 178 179 /* If this area reaches higher then extend our area to 180 * include it completely. If this is not the first area 181 * which we intend to reuse, free it. */ 182 if (rg->to > t) 183 t = rg->to; 184 if (rg != nrg) { 185 list_del(&rg->link); 186 kfree(rg); 187 } 188 } 189 nrg->from = f; 190 nrg->to = t; 191 spin_unlock(&resv->lock); 192 return 0; 193 } 194 195 static long region_chg(struct resv_map *resv, long f, long t) 196 { 197 struct list_head *head = &resv->regions; 198 struct file_region *rg, *nrg = NULL; 199 long chg = 0; 200 201 retry: 202 spin_lock(&resv->lock); 203 /* Locate the region we are before or in. */ 204 list_for_each_entry(rg, head, link) 205 if (f <= rg->to) 206 break; 207 208 /* If we are below the current region then a new region is required. 209 * Subtle, allocate a new region at the position but make it zero 210 * size such that we can guarantee to record the reservation. */ 211 if (&rg->link == head || t < rg->from) { 212 if (!nrg) { 213 spin_unlock(&resv->lock); 214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 215 if (!nrg) 216 return -ENOMEM; 217 218 nrg->from = f; 219 nrg->to = f; 220 INIT_LIST_HEAD(&nrg->link); 221 goto retry; 222 } 223 224 list_add(&nrg->link, rg->link.prev); 225 chg = t - f; 226 goto out_nrg; 227 } 228 229 /* Round our left edge to the current segment if it encloses us. */ 230 if (f > rg->from) 231 f = rg->from; 232 chg = t - f; 233 234 /* Check for and consume any regions we now overlap with. */ 235 list_for_each_entry(rg, rg->link.prev, link) { 236 if (&rg->link == head) 237 break; 238 if (rg->from > t) 239 goto out; 240 241 /* We overlap with this area, if it extends further than 242 * us then we must extend ourselves. Account for its 243 * existing reservation. */ 244 if (rg->to > t) { 245 chg += rg->to - t; 246 t = rg->to; 247 } 248 chg -= rg->to - rg->from; 249 } 250 251 out: 252 spin_unlock(&resv->lock); 253 /* We already know we raced and no longer need the new region */ 254 kfree(nrg); 255 return chg; 256 out_nrg: 257 spin_unlock(&resv->lock); 258 return chg; 259 } 260 261 static long region_truncate(struct resv_map *resv, long end) 262 { 263 struct list_head *head = &resv->regions; 264 struct file_region *rg, *trg; 265 long chg = 0; 266 267 spin_lock(&resv->lock); 268 /* Locate the region we are either in or before. */ 269 list_for_each_entry(rg, head, link) 270 if (end <= rg->to) 271 break; 272 if (&rg->link == head) 273 goto out; 274 275 /* If we are in the middle of a region then adjust it. */ 276 if (end > rg->from) { 277 chg = rg->to - end; 278 rg->to = end; 279 rg = list_entry(rg->link.next, typeof(*rg), link); 280 } 281 282 /* Drop any remaining regions. */ 283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 284 if (&rg->link == head) 285 break; 286 chg += rg->to - rg->from; 287 list_del(&rg->link); 288 kfree(rg); 289 } 290 291 out: 292 spin_unlock(&resv->lock); 293 return chg; 294 } 295 296 static long region_count(struct resv_map *resv, long f, long t) 297 { 298 struct list_head *head = &resv->regions; 299 struct file_region *rg; 300 long chg = 0; 301 302 spin_lock(&resv->lock); 303 /* Locate each segment we overlap with, and count that overlap. */ 304 list_for_each_entry(rg, head, link) { 305 long seg_from; 306 long seg_to; 307 308 if (rg->to <= f) 309 continue; 310 if (rg->from >= t) 311 break; 312 313 seg_from = max(rg->from, f); 314 seg_to = min(rg->to, t); 315 316 chg += seg_to - seg_from; 317 } 318 spin_unlock(&resv->lock); 319 320 return chg; 321 } 322 323 /* 324 * Convert the address within this vma to the page offset within 325 * the mapping, in pagecache page units; huge pages here. 326 */ 327 static pgoff_t vma_hugecache_offset(struct hstate *h, 328 struct vm_area_struct *vma, unsigned long address) 329 { 330 return ((address - vma->vm_start) >> huge_page_shift(h)) + 331 (vma->vm_pgoff >> huge_page_order(h)); 332 } 333 334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 335 unsigned long address) 336 { 337 return vma_hugecache_offset(hstate_vma(vma), vma, address); 338 } 339 340 /* 341 * Return the size of the pages allocated when backing a VMA. In the majority 342 * cases this will be same size as used by the page table entries. 343 */ 344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 345 { 346 struct hstate *hstate; 347 348 if (!is_vm_hugetlb_page(vma)) 349 return PAGE_SIZE; 350 351 hstate = hstate_vma(vma); 352 353 return 1UL << huge_page_shift(hstate); 354 } 355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 356 357 /* 358 * Return the page size being used by the MMU to back a VMA. In the majority 359 * of cases, the page size used by the kernel matches the MMU size. On 360 * architectures where it differs, an architecture-specific version of this 361 * function is required. 362 */ 363 #ifndef vma_mmu_pagesize 364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 365 { 366 return vma_kernel_pagesize(vma); 367 } 368 #endif 369 370 /* 371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 372 * bits of the reservation map pointer, which are always clear due to 373 * alignment. 374 */ 375 #define HPAGE_RESV_OWNER (1UL << 0) 376 #define HPAGE_RESV_UNMAPPED (1UL << 1) 377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 378 379 /* 380 * These helpers are used to track how many pages are reserved for 381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 382 * is guaranteed to have their future faults succeed. 383 * 384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 385 * the reserve counters are updated with the hugetlb_lock held. It is safe 386 * to reset the VMA at fork() time as it is not in use yet and there is no 387 * chance of the global counters getting corrupted as a result of the values. 388 * 389 * The private mapping reservation is represented in a subtly different 390 * manner to a shared mapping. A shared mapping has a region map associated 391 * with the underlying file, this region map represents the backing file 392 * pages which have ever had a reservation assigned which this persists even 393 * after the page is instantiated. A private mapping has a region map 394 * associated with the original mmap which is attached to all VMAs which 395 * reference it, this region map represents those offsets which have consumed 396 * reservation ie. where pages have been instantiated. 397 */ 398 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 399 { 400 return (unsigned long)vma->vm_private_data; 401 } 402 403 static void set_vma_private_data(struct vm_area_struct *vma, 404 unsigned long value) 405 { 406 vma->vm_private_data = (void *)value; 407 } 408 409 struct resv_map *resv_map_alloc(void) 410 { 411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 412 if (!resv_map) 413 return NULL; 414 415 kref_init(&resv_map->refs); 416 spin_lock_init(&resv_map->lock); 417 INIT_LIST_HEAD(&resv_map->regions); 418 419 return resv_map; 420 } 421 422 void resv_map_release(struct kref *ref) 423 { 424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 425 426 /* Clear out any active regions before we release the map. */ 427 region_truncate(resv_map, 0); 428 kfree(resv_map); 429 } 430 431 static inline struct resv_map *inode_resv_map(struct inode *inode) 432 { 433 return inode->i_mapping->private_data; 434 } 435 436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 437 { 438 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 439 if (vma->vm_flags & VM_MAYSHARE) { 440 struct address_space *mapping = vma->vm_file->f_mapping; 441 struct inode *inode = mapping->host; 442 443 return inode_resv_map(inode); 444 445 } else { 446 return (struct resv_map *)(get_vma_private_data(vma) & 447 ~HPAGE_RESV_MASK); 448 } 449 } 450 451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 452 { 453 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 455 456 set_vma_private_data(vma, (get_vma_private_data(vma) & 457 HPAGE_RESV_MASK) | (unsigned long)map); 458 } 459 460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 461 { 462 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 464 465 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 466 } 467 468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 469 { 470 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 471 472 return (get_vma_private_data(vma) & flag) != 0; 473 } 474 475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 477 { 478 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 479 if (!(vma->vm_flags & VM_MAYSHARE)) 480 vma->vm_private_data = (void *)0; 481 } 482 483 /* Returns true if the VMA has associated reserve pages */ 484 static int vma_has_reserves(struct vm_area_struct *vma, long chg) 485 { 486 if (vma->vm_flags & VM_NORESERVE) { 487 /* 488 * This address is already reserved by other process(chg == 0), 489 * so, we should decrement reserved count. Without decrementing, 490 * reserve count remains after releasing inode, because this 491 * allocated page will go into page cache and is regarded as 492 * coming from reserved pool in releasing step. Currently, we 493 * don't have any other solution to deal with this situation 494 * properly, so add work-around here. 495 */ 496 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 497 return 1; 498 else 499 return 0; 500 } 501 502 /* Shared mappings always use reserves */ 503 if (vma->vm_flags & VM_MAYSHARE) 504 return 1; 505 506 /* 507 * Only the process that called mmap() has reserves for 508 * private mappings. 509 */ 510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 511 return 1; 512 513 return 0; 514 } 515 516 static void enqueue_huge_page(struct hstate *h, struct page *page) 517 { 518 int nid = page_to_nid(page); 519 list_move(&page->lru, &h->hugepage_freelists[nid]); 520 h->free_huge_pages++; 521 h->free_huge_pages_node[nid]++; 522 } 523 524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 525 { 526 struct page *page; 527 528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 529 if (!is_migrate_isolate_page(page)) 530 break; 531 /* 532 * if 'non-isolated free hugepage' not found on the list, 533 * the allocation fails. 534 */ 535 if (&h->hugepage_freelists[nid] == &page->lru) 536 return NULL; 537 list_move(&page->lru, &h->hugepage_activelist); 538 set_page_refcounted(page); 539 h->free_huge_pages--; 540 h->free_huge_pages_node[nid]--; 541 return page; 542 } 543 544 /* Movability of hugepages depends on migration support. */ 545 static inline gfp_t htlb_alloc_mask(struct hstate *h) 546 { 547 if (hugepages_treat_as_movable || hugepage_migration_support(h)) 548 return GFP_HIGHUSER_MOVABLE; 549 else 550 return GFP_HIGHUSER; 551 } 552 553 static struct page *dequeue_huge_page_vma(struct hstate *h, 554 struct vm_area_struct *vma, 555 unsigned long address, int avoid_reserve, 556 long chg) 557 { 558 struct page *page = NULL; 559 struct mempolicy *mpol; 560 nodemask_t *nodemask; 561 struct zonelist *zonelist; 562 struct zone *zone; 563 struct zoneref *z; 564 unsigned int cpuset_mems_cookie; 565 566 /* 567 * A child process with MAP_PRIVATE mappings created by their parent 568 * have no page reserves. This check ensures that reservations are 569 * not "stolen". The child may still get SIGKILLed 570 */ 571 if (!vma_has_reserves(vma, chg) && 572 h->free_huge_pages - h->resv_huge_pages == 0) 573 goto err; 574 575 /* If reserves cannot be used, ensure enough pages are in the pool */ 576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 577 goto err; 578 579 retry_cpuset: 580 cpuset_mems_cookie = read_mems_allowed_begin(); 581 zonelist = huge_zonelist(vma, address, 582 htlb_alloc_mask(h), &mpol, &nodemask); 583 584 for_each_zone_zonelist_nodemask(zone, z, zonelist, 585 MAX_NR_ZONES - 1, nodemask) { 586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { 587 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 588 if (page) { 589 if (avoid_reserve) 590 break; 591 if (!vma_has_reserves(vma, chg)) 592 break; 593 594 SetPagePrivate(page); 595 h->resv_huge_pages--; 596 break; 597 } 598 } 599 } 600 601 mpol_cond_put(mpol); 602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 603 goto retry_cpuset; 604 return page; 605 606 err: 607 return NULL; 608 } 609 610 static void update_and_free_page(struct hstate *h, struct page *page) 611 { 612 int i; 613 614 VM_BUG_ON(h->order >= MAX_ORDER); 615 616 h->nr_huge_pages--; 617 h->nr_huge_pages_node[page_to_nid(page)]--; 618 for (i = 0; i < pages_per_huge_page(h); i++) { 619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 620 1 << PG_referenced | 1 << PG_dirty | 621 1 << PG_active | 1 << PG_reserved | 622 1 << PG_private | 1 << PG_writeback); 623 } 624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 625 set_compound_page_dtor(page, NULL); 626 set_page_refcounted(page); 627 arch_release_hugepage(page); 628 __free_pages(page, huge_page_order(h)); 629 } 630 631 struct hstate *size_to_hstate(unsigned long size) 632 { 633 struct hstate *h; 634 635 for_each_hstate(h) { 636 if (huge_page_size(h) == size) 637 return h; 638 } 639 return NULL; 640 } 641 642 static void free_huge_page(struct page *page) 643 { 644 /* 645 * Can't pass hstate in here because it is called from the 646 * compound page destructor. 647 */ 648 struct hstate *h = page_hstate(page); 649 int nid = page_to_nid(page); 650 struct hugepage_subpool *spool = 651 (struct hugepage_subpool *)page_private(page); 652 bool restore_reserve; 653 654 set_page_private(page, 0); 655 page->mapping = NULL; 656 BUG_ON(page_count(page)); 657 BUG_ON(page_mapcount(page)); 658 restore_reserve = PagePrivate(page); 659 ClearPagePrivate(page); 660 661 spin_lock(&hugetlb_lock); 662 hugetlb_cgroup_uncharge_page(hstate_index(h), 663 pages_per_huge_page(h), page); 664 if (restore_reserve) 665 h->resv_huge_pages++; 666 667 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 668 /* remove the page from active list */ 669 list_del(&page->lru); 670 update_and_free_page(h, page); 671 h->surplus_huge_pages--; 672 h->surplus_huge_pages_node[nid]--; 673 } else { 674 arch_clear_hugepage_flags(page); 675 enqueue_huge_page(h, page); 676 } 677 spin_unlock(&hugetlb_lock); 678 hugepage_subpool_put_pages(spool, 1); 679 } 680 681 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 682 { 683 INIT_LIST_HEAD(&page->lru); 684 set_compound_page_dtor(page, free_huge_page); 685 spin_lock(&hugetlb_lock); 686 set_hugetlb_cgroup(page, NULL); 687 h->nr_huge_pages++; 688 h->nr_huge_pages_node[nid]++; 689 spin_unlock(&hugetlb_lock); 690 put_page(page); /* free it into the hugepage allocator */ 691 } 692 693 static void __init prep_compound_gigantic_page(struct page *page, 694 unsigned long order) 695 { 696 int i; 697 int nr_pages = 1 << order; 698 struct page *p = page + 1; 699 700 /* we rely on prep_new_huge_page to set the destructor */ 701 set_compound_order(page, order); 702 __SetPageHead(page); 703 __ClearPageReserved(page); 704 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 705 __SetPageTail(p); 706 /* 707 * For gigantic hugepages allocated through bootmem at 708 * boot, it's safer to be consistent with the not-gigantic 709 * hugepages and clear the PG_reserved bit from all tail pages 710 * too. Otherwse drivers using get_user_pages() to access tail 711 * pages may get the reference counting wrong if they see 712 * PG_reserved set on a tail page (despite the head page not 713 * having PG_reserved set). Enforcing this consistency between 714 * head and tail pages allows drivers to optimize away a check 715 * on the head page when they need know if put_page() is needed 716 * after get_user_pages(). 717 */ 718 __ClearPageReserved(p); 719 set_page_count(p, 0); 720 p->first_page = page; 721 } 722 } 723 724 /* 725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 726 * transparent huge pages. See the PageTransHuge() documentation for more 727 * details. 728 */ 729 int PageHuge(struct page *page) 730 { 731 if (!PageCompound(page)) 732 return 0; 733 734 page = compound_head(page); 735 return get_compound_page_dtor(page) == free_huge_page; 736 } 737 EXPORT_SYMBOL_GPL(PageHuge); 738 739 /* 740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 741 * normal or transparent huge pages. 742 */ 743 int PageHeadHuge(struct page *page_head) 744 { 745 if (!PageHead(page_head)) 746 return 0; 747 748 return get_compound_page_dtor(page_head) == free_huge_page; 749 } 750 751 pgoff_t __basepage_index(struct page *page) 752 { 753 struct page *page_head = compound_head(page); 754 pgoff_t index = page_index(page_head); 755 unsigned long compound_idx; 756 757 if (!PageHuge(page_head)) 758 return page_index(page); 759 760 if (compound_order(page_head) >= MAX_ORDER) 761 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 762 else 763 compound_idx = page - page_head; 764 765 return (index << compound_order(page_head)) + compound_idx; 766 } 767 768 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 769 { 770 struct page *page; 771 772 if (h->order >= MAX_ORDER) 773 return NULL; 774 775 page = alloc_pages_exact_node(nid, 776 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 777 __GFP_REPEAT|__GFP_NOWARN, 778 huge_page_order(h)); 779 if (page) { 780 if (arch_prepare_hugepage(page)) { 781 __free_pages(page, huge_page_order(h)); 782 return NULL; 783 } 784 prep_new_huge_page(h, page, nid); 785 } 786 787 return page; 788 } 789 790 /* 791 * common helper functions for hstate_next_node_to_{alloc|free}. 792 * We may have allocated or freed a huge page based on a different 793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 794 * be outside of *nodes_allowed. Ensure that we use an allowed 795 * node for alloc or free. 796 */ 797 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 798 { 799 nid = next_node(nid, *nodes_allowed); 800 if (nid == MAX_NUMNODES) 801 nid = first_node(*nodes_allowed); 802 VM_BUG_ON(nid >= MAX_NUMNODES); 803 804 return nid; 805 } 806 807 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 808 { 809 if (!node_isset(nid, *nodes_allowed)) 810 nid = next_node_allowed(nid, nodes_allowed); 811 return nid; 812 } 813 814 /* 815 * returns the previously saved node ["this node"] from which to 816 * allocate a persistent huge page for the pool and advance the 817 * next node from which to allocate, handling wrap at end of node 818 * mask. 819 */ 820 static int hstate_next_node_to_alloc(struct hstate *h, 821 nodemask_t *nodes_allowed) 822 { 823 int nid; 824 825 VM_BUG_ON(!nodes_allowed); 826 827 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 828 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 829 830 return nid; 831 } 832 833 /* 834 * helper for free_pool_huge_page() - return the previously saved 835 * node ["this node"] from which to free a huge page. Advance the 836 * next node id whether or not we find a free huge page to free so 837 * that the next attempt to free addresses the next node. 838 */ 839 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 840 { 841 int nid; 842 843 VM_BUG_ON(!nodes_allowed); 844 845 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 846 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 847 848 return nid; 849 } 850 851 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 852 for (nr_nodes = nodes_weight(*mask); \ 853 nr_nodes > 0 && \ 854 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 855 nr_nodes--) 856 857 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 858 for (nr_nodes = nodes_weight(*mask); \ 859 nr_nodes > 0 && \ 860 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 861 nr_nodes--) 862 863 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 864 { 865 struct page *page; 866 int nr_nodes, node; 867 int ret = 0; 868 869 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 870 page = alloc_fresh_huge_page_node(h, node); 871 if (page) { 872 ret = 1; 873 break; 874 } 875 } 876 877 if (ret) 878 count_vm_event(HTLB_BUDDY_PGALLOC); 879 else 880 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 881 882 return ret; 883 } 884 885 /* 886 * Free huge page from pool from next node to free. 887 * Attempt to keep persistent huge pages more or less 888 * balanced over allowed nodes. 889 * Called with hugetlb_lock locked. 890 */ 891 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 892 bool acct_surplus) 893 { 894 int nr_nodes, node; 895 int ret = 0; 896 897 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 898 /* 899 * If we're returning unused surplus pages, only examine 900 * nodes with surplus pages. 901 */ 902 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 903 !list_empty(&h->hugepage_freelists[node])) { 904 struct page *page = 905 list_entry(h->hugepage_freelists[node].next, 906 struct page, lru); 907 list_del(&page->lru); 908 h->free_huge_pages--; 909 h->free_huge_pages_node[node]--; 910 if (acct_surplus) { 911 h->surplus_huge_pages--; 912 h->surplus_huge_pages_node[node]--; 913 } 914 update_and_free_page(h, page); 915 ret = 1; 916 break; 917 } 918 } 919 920 return ret; 921 } 922 923 /* 924 * Dissolve a given free hugepage into free buddy pages. This function does 925 * nothing for in-use (including surplus) hugepages. 926 */ 927 static void dissolve_free_huge_page(struct page *page) 928 { 929 spin_lock(&hugetlb_lock); 930 if (PageHuge(page) && !page_count(page)) { 931 struct hstate *h = page_hstate(page); 932 int nid = page_to_nid(page); 933 list_del(&page->lru); 934 h->free_huge_pages--; 935 h->free_huge_pages_node[nid]--; 936 update_and_free_page(h, page); 937 } 938 spin_unlock(&hugetlb_lock); 939 } 940 941 /* 942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 943 * make specified memory blocks removable from the system. 944 * Note that start_pfn should aligned with (minimum) hugepage size. 945 */ 946 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 947 { 948 unsigned int order = 8 * sizeof(void *); 949 unsigned long pfn; 950 struct hstate *h; 951 952 /* Set scan step to minimum hugepage size */ 953 for_each_hstate(h) 954 if (order > huge_page_order(h)) 955 order = huge_page_order(h); 956 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); 957 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) 958 dissolve_free_huge_page(pfn_to_page(pfn)); 959 } 960 961 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 962 { 963 struct page *page; 964 unsigned int r_nid; 965 966 if (h->order >= MAX_ORDER) 967 return NULL; 968 969 /* 970 * Assume we will successfully allocate the surplus page to 971 * prevent racing processes from causing the surplus to exceed 972 * overcommit 973 * 974 * This however introduces a different race, where a process B 975 * tries to grow the static hugepage pool while alloc_pages() is 976 * called by process A. B will only examine the per-node 977 * counters in determining if surplus huge pages can be 978 * converted to normal huge pages in adjust_pool_surplus(). A 979 * won't be able to increment the per-node counter, until the 980 * lock is dropped by B, but B doesn't drop hugetlb_lock until 981 * no more huge pages can be converted from surplus to normal 982 * state (and doesn't try to convert again). Thus, we have a 983 * case where a surplus huge page exists, the pool is grown, and 984 * the surplus huge page still exists after, even though it 985 * should just have been converted to a normal huge page. This 986 * does not leak memory, though, as the hugepage will be freed 987 * once it is out of use. It also does not allow the counters to 988 * go out of whack in adjust_pool_surplus() as we don't modify 989 * the node values until we've gotten the hugepage and only the 990 * per-node value is checked there. 991 */ 992 spin_lock(&hugetlb_lock); 993 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 994 spin_unlock(&hugetlb_lock); 995 return NULL; 996 } else { 997 h->nr_huge_pages++; 998 h->surplus_huge_pages++; 999 } 1000 spin_unlock(&hugetlb_lock); 1001 1002 if (nid == NUMA_NO_NODE) 1003 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 1004 __GFP_REPEAT|__GFP_NOWARN, 1005 huge_page_order(h)); 1006 else 1007 page = alloc_pages_exact_node(nid, 1008 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1009 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 1010 1011 if (page && arch_prepare_hugepage(page)) { 1012 __free_pages(page, huge_page_order(h)); 1013 page = NULL; 1014 } 1015 1016 spin_lock(&hugetlb_lock); 1017 if (page) { 1018 INIT_LIST_HEAD(&page->lru); 1019 r_nid = page_to_nid(page); 1020 set_compound_page_dtor(page, free_huge_page); 1021 set_hugetlb_cgroup(page, NULL); 1022 /* 1023 * We incremented the global counters already 1024 */ 1025 h->nr_huge_pages_node[r_nid]++; 1026 h->surplus_huge_pages_node[r_nid]++; 1027 __count_vm_event(HTLB_BUDDY_PGALLOC); 1028 } else { 1029 h->nr_huge_pages--; 1030 h->surplus_huge_pages--; 1031 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1032 } 1033 spin_unlock(&hugetlb_lock); 1034 1035 return page; 1036 } 1037 1038 /* 1039 * This allocation function is useful in the context where vma is irrelevant. 1040 * E.g. soft-offlining uses this function because it only cares physical 1041 * address of error page. 1042 */ 1043 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1044 { 1045 struct page *page = NULL; 1046 1047 spin_lock(&hugetlb_lock); 1048 if (h->free_huge_pages - h->resv_huge_pages > 0) 1049 page = dequeue_huge_page_node(h, nid); 1050 spin_unlock(&hugetlb_lock); 1051 1052 if (!page) 1053 page = alloc_buddy_huge_page(h, nid); 1054 1055 return page; 1056 } 1057 1058 /* 1059 * Increase the hugetlb pool such that it can accommodate a reservation 1060 * of size 'delta'. 1061 */ 1062 static int gather_surplus_pages(struct hstate *h, int delta) 1063 { 1064 struct list_head surplus_list; 1065 struct page *page, *tmp; 1066 int ret, i; 1067 int needed, allocated; 1068 bool alloc_ok = true; 1069 1070 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1071 if (needed <= 0) { 1072 h->resv_huge_pages += delta; 1073 return 0; 1074 } 1075 1076 allocated = 0; 1077 INIT_LIST_HEAD(&surplus_list); 1078 1079 ret = -ENOMEM; 1080 retry: 1081 spin_unlock(&hugetlb_lock); 1082 for (i = 0; i < needed; i++) { 1083 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1084 if (!page) { 1085 alloc_ok = false; 1086 break; 1087 } 1088 list_add(&page->lru, &surplus_list); 1089 } 1090 allocated += i; 1091 1092 /* 1093 * After retaking hugetlb_lock, we need to recalculate 'needed' 1094 * because either resv_huge_pages or free_huge_pages may have changed. 1095 */ 1096 spin_lock(&hugetlb_lock); 1097 needed = (h->resv_huge_pages + delta) - 1098 (h->free_huge_pages + allocated); 1099 if (needed > 0) { 1100 if (alloc_ok) 1101 goto retry; 1102 /* 1103 * We were not able to allocate enough pages to 1104 * satisfy the entire reservation so we free what 1105 * we've allocated so far. 1106 */ 1107 goto free; 1108 } 1109 /* 1110 * The surplus_list now contains _at_least_ the number of extra pages 1111 * needed to accommodate the reservation. Add the appropriate number 1112 * of pages to the hugetlb pool and free the extras back to the buddy 1113 * allocator. Commit the entire reservation here to prevent another 1114 * process from stealing the pages as they are added to the pool but 1115 * before they are reserved. 1116 */ 1117 needed += allocated; 1118 h->resv_huge_pages += delta; 1119 ret = 0; 1120 1121 /* Free the needed pages to the hugetlb pool */ 1122 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1123 if ((--needed) < 0) 1124 break; 1125 /* 1126 * This page is now managed by the hugetlb allocator and has 1127 * no users -- drop the buddy allocator's reference. 1128 */ 1129 put_page_testzero(page); 1130 VM_BUG_ON_PAGE(page_count(page), page); 1131 enqueue_huge_page(h, page); 1132 } 1133 free: 1134 spin_unlock(&hugetlb_lock); 1135 1136 /* Free unnecessary surplus pages to the buddy allocator */ 1137 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1138 put_page(page); 1139 spin_lock(&hugetlb_lock); 1140 1141 return ret; 1142 } 1143 1144 /* 1145 * When releasing a hugetlb pool reservation, any surplus pages that were 1146 * allocated to satisfy the reservation must be explicitly freed if they were 1147 * never used. 1148 * Called with hugetlb_lock held. 1149 */ 1150 static void return_unused_surplus_pages(struct hstate *h, 1151 unsigned long unused_resv_pages) 1152 { 1153 unsigned long nr_pages; 1154 1155 /* Uncommit the reservation */ 1156 h->resv_huge_pages -= unused_resv_pages; 1157 1158 /* Cannot return gigantic pages currently */ 1159 if (h->order >= MAX_ORDER) 1160 return; 1161 1162 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1163 1164 /* 1165 * We want to release as many surplus pages as possible, spread 1166 * evenly across all nodes with memory. Iterate across these nodes 1167 * until we can no longer free unreserved surplus pages. This occurs 1168 * when the nodes with surplus pages have no free pages. 1169 * free_pool_huge_page() will balance the the freed pages across the 1170 * on-line nodes with memory and will handle the hstate accounting. 1171 */ 1172 while (nr_pages--) { 1173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1174 break; 1175 } 1176 } 1177 1178 /* 1179 * Determine if the huge page at addr within the vma has an associated 1180 * reservation. Where it does not we will need to logically increase 1181 * reservation and actually increase subpool usage before an allocation 1182 * can occur. Where any new reservation would be required the 1183 * reservation change is prepared, but not committed. Once the page 1184 * has been allocated from the subpool and instantiated the change should 1185 * be committed via vma_commit_reservation. No action is required on 1186 * failure. 1187 */ 1188 static long vma_needs_reservation(struct hstate *h, 1189 struct vm_area_struct *vma, unsigned long addr) 1190 { 1191 struct resv_map *resv; 1192 pgoff_t idx; 1193 long chg; 1194 1195 resv = vma_resv_map(vma); 1196 if (!resv) 1197 return 1; 1198 1199 idx = vma_hugecache_offset(h, vma, addr); 1200 chg = region_chg(resv, idx, idx + 1); 1201 1202 if (vma->vm_flags & VM_MAYSHARE) 1203 return chg; 1204 else 1205 return chg < 0 ? chg : 0; 1206 } 1207 static void vma_commit_reservation(struct hstate *h, 1208 struct vm_area_struct *vma, unsigned long addr) 1209 { 1210 struct resv_map *resv; 1211 pgoff_t idx; 1212 1213 resv = vma_resv_map(vma); 1214 if (!resv) 1215 return; 1216 1217 idx = vma_hugecache_offset(h, vma, addr); 1218 region_add(resv, idx, idx + 1); 1219 } 1220 1221 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1222 unsigned long addr, int avoid_reserve) 1223 { 1224 struct hugepage_subpool *spool = subpool_vma(vma); 1225 struct hstate *h = hstate_vma(vma); 1226 struct page *page; 1227 long chg; 1228 int ret, idx; 1229 struct hugetlb_cgroup *h_cg; 1230 1231 idx = hstate_index(h); 1232 /* 1233 * Processes that did not create the mapping will have no 1234 * reserves and will not have accounted against subpool 1235 * limit. Check that the subpool limit can be made before 1236 * satisfying the allocation MAP_NORESERVE mappings may also 1237 * need pages and subpool limit allocated allocated if no reserve 1238 * mapping overlaps. 1239 */ 1240 chg = vma_needs_reservation(h, vma, addr); 1241 if (chg < 0) 1242 return ERR_PTR(-ENOMEM); 1243 if (chg || avoid_reserve) 1244 if (hugepage_subpool_get_pages(spool, 1)) 1245 return ERR_PTR(-ENOSPC); 1246 1247 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1248 if (ret) { 1249 if (chg || avoid_reserve) 1250 hugepage_subpool_put_pages(spool, 1); 1251 return ERR_PTR(-ENOSPC); 1252 } 1253 spin_lock(&hugetlb_lock); 1254 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); 1255 if (!page) { 1256 spin_unlock(&hugetlb_lock); 1257 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1258 if (!page) { 1259 hugetlb_cgroup_uncharge_cgroup(idx, 1260 pages_per_huge_page(h), 1261 h_cg); 1262 if (chg || avoid_reserve) 1263 hugepage_subpool_put_pages(spool, 1); 1264 return ERR_PTR(-ENOSPC); 1265 } 1266 spin_lock(&hugetlb_lock); 1267 list_move(&page->lru, &h->hugepage_activelist); 1268 /* Fall through */ 1269 } 1270 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1271 spin_unlock(&hugetlb_lock); 1272 1273 set_page_private(page, (unsigned long)spool); 1274 1275 vma_commit_reservation(h, vma, addr); 1276 return page; 1277 } 1278 1279 /* 1280 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1281 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1282 * where no ERR_VALUE is expected to be returned. 1283 */ 1284 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1285 unsigned long addr, int avoid_reserve) 1286 { 1287 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1288 if (IS_ERR(page)) 1289 page = NULL; 1290 return page; 1291 } 1292 1293 int __weak alloc_bootmem_huge_page(struct hstate *h) 1294 { 1295 struct huge_bootmem_page *m; 1296 int nr_nodes, node; 1297 1298 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1299 void *addr; 1300 1301 addr = memblock_virt_alloc_try_nid_nopanic( 1302 huge_page_size(h), huge_page_size(h), 1303 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1304 if (addr) { 1305 /* 1306 * Use the beginning of the huge page to store the 1307 * huge_bootmem_page struct (until gather_bootmem 1308 * puts them into the mem_map). 1309 */ 1310 m = addr; 1311 goto found; 1312 } 1313 } 1314 return 0; 1315 1316 found: 1317 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1318 /* Put them into a private list first because mem_map is not up yet */ 1319 list_add(&m->list, &huge_boot_pages); 1320 m->hstate = h; 1321 return 1; 1322 } 1323 1324 static void __init prep_compound_huge_page(struct page *page, int order) 1325 { 1326 if (unlikely(order > (MAX_ORDER - 1))) 1327 prep_compound_gigantic_page(page, order); 1328 else 1329 prep_compound_page(page, order); 1330 } 1331 1332 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1333 static void __init gather_bootmem_prealloc(void) 1334 { 1335 struct huge_bootmem_page *m; 1336 1337 list_for_each_entry(m, &huge_boot_pages, list) { 1338 struct hstate *h = m->hstate; 1339 struct page *page; 1340 1341 #ifdef CONFIG_HIGHMEM 1342 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1343 memblock_free_late(__pa(m), 1344 sizeof(struct huge_bootmem_page)); 1345 #else 1346 page = virt_to_page(m); 1347 #endif 1348 WARN_ON(page_count(page) != 1); 1349 prep_compound_huge_page(page, h->order); 1350 WARN_ON(PageReserved(page)); 1351 prep_new_huge_page(h, page, page_to_nid(page)); 1352 /* 1353 * If we had gigantic hugepages allocated at boot time, we need 1354 * to restore the 'stolen' pages to totalram_pages in order to 1355 * fix confusing memory reports from free(1) and another 1356 * side-effects, like CommitLimit going negative. 1357 */ 1358 if (h->order > (MAX_ORDER - 1)) 1359 adjust_managed_page_count(page, 1 << h->order); 1360 } 1361 } 1362 1363 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1364 { 1365 unsigned long i; 1366 1367 for (i = 0; i < h->max_huge_pages; ++i) { 1368 if (h->order >= MAX_ORDER) { 1369 if (!alloc_bootmem_huge_page(h)) 1370 break; 1371 } else if (!alloc_fresh_huge_page(h, 1372 &node_states[N_MEMORY])) 1373 break; 1374 } 1375 h->max_huge_pages = i; 1376 } 1377 1378 static void __init hugetlb_init_hstates(void) 1379 { 1380 struct hstate *h; 1381 1382 for_each_hstate(h) { 1383 /* oversize hugepages were init'ed in early boot */ 1384 if (h->order < MAX_ORDER) 1385 hugetlb_hstate_alloc_pages(h); 1386 } 1387 } 1388 1389 static char * __init memfmt(char *buf, unsigned long n) 1390 { 1391 if (n >= (1UL << 30)) 1392 sprintf(buf, "%lu GB", n >> 30); 1393 else if (n >= (1UL << 20)) 1394 sprintf(buf, "%lu MB", n >> 20); 1395 else 1396 sprintf(buf, "%lu KB", n >> 10); 1397 return buf; 1398 } 1399 1400 static void __init report_hugepages(void) 1401 { 1402 struct hstate *h; 1403 1404 for_each_hstate(h) { 1405 char buf[32]; 1406 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1407 memfmt(buf, huge_page_size(h)), 1408 h->free_huge_pages); 1409 } 1410 } 1411 1412 #ifdef CONFIG_HIGHMEM 1413 static void try_to_free_low(struct hstate *h, unsigned long count, 1414 nodemask_t *nodes_allowed) 1415 { 1416 int i; 1417 1418 if (h->order >= MAX_ORDER) 1419 return; 1420 1421 for_each_node_mask(i, *nodes_allowed) { 1422 struct page *page, *next; 1423 struct list_head *freel = &h->hugepage_freelists[i]; 1424 list_for_each_entry_safe(page, next, freel, lru) { 1425 if (count >= h->nr_huge_pages) 1426 return; 1427 if (PageHighMem(page)) 1428 continue; 1429 list_del(&page->lru); 1430 update_and_free_page(h, page); 1431 h->free_huge_pages--; 1432 h->free_huge_pages_node[page_to_nid(page)]--; 1433 } 1434 } 1435 } 1436 #else 1437 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1438 nodemask_t *nodes_allowed) 1439 { 1440 } 1441 #endif 1442 1443 /* 1444 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1445 * balanced by operating on them in a round-robin fashion. 1446 * Returns 1 if an adjustment was made. 1447 */ 1448 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1449 int delta) 1450 { 1451 int nr_nodes, node; 1452 1453 VM_BUG_ON(delta != -1 && delta != 1); 1454 1455 if (delta < 0) { 1456 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1457 if (h->surplus_huge_pages_node[node]) 1458 goto found; 1459 } 1460 } else { 1461 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1462 if (h->surplus_huge_pages_node[node] < 1463 h->nr_huge_pages_node[node]) 1464 goto found; 1465 } 1466 } 1467 return 0; 1468 1469 found: 1470 h->surplus_huge_pages += delta; 1471 h->surplus_huge_pages_node[node] += delta; 1472 return 1; 1473 } 1474 1475 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1476 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1477 nodemask_t *nodes_allowed) 1478 { 1479 unsigned long min_count, ret; 1480 1481 if (h->order >= MAX_ORDER) 1482 return h->max_huge_pages; 1483 1484 /* 1485 * Increase the pool size 1486 * First take pages out of surplus state. Then make up the 1487 * remaining difference by allocating fresh huge pages. 1488 * 1489 * We might race with alloc_buddy_huge_page() here and be unable 1490 * to convert a surplus huge page to a normal huge page. That is 1491 * not critical, though, it just means the overall size of the 1492 * pool might be one hugepage larger than it needs to be, but 1493 * within all the constraints specified by the sysctls. 1494 */ 1495 spin_lock(&hugetlb_lock); 1496 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1497 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1498 break; 1499 } 1500 1501 while (count > persistent_huge_pages(h)) { 1502 /* 1503 * If this allocation races such that we no longer need the 1504 * page, free_huge_page will handle it by freeing the page 1505 * and reducing the surplus. 1506 */ 1507 spin_unlock(&hugetlb_lock); 1508 ret = alloc_fresh_huge_page(h, nodes_allowed); 1509 spin_lock(&hugetlb_lock); 1510 if (!ret) 1511 goto out; 1512 1513 /* Bail for signals. Probably ctrl-c from user */ 1514 if (signal_pending(current)) 1515 goto out; 1516 } 1517 1518 /* 1519 * Decrease the pool size 1520 * First return free pages to the buddy allocator (being careful 1521 * to keep enough around to satisfy reservations). Then place 1522 * pages into surplus state as needed so the pool will shrink 1523 * to the desired size as pages become free. 1524 * 1525 * By placing pages into the surplus state independent of the 1526 * overcommit value, we are allowing the surplus pool size to 1527 * exceed overcommit. There are few sane options here. Since 1528 * alloc_buddy_huge_page() is checking the global counter, 1529 * though, we'll note that we're not allowed to exceed surplus 1530 * and won't grow the pool anywhere else. Not until one of the 1531 * sysctls are changed, or the surplus pages go out of use. 1532 */ 1533 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1534 min_count = max(count, min_count); 1535 try_to_free_low(h, min_count, nodes_allowed); 1536 while (min_count < persistent_huge_pages(h)) { 1537 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1538 break; 1539 cond_resched_lock(&hugetlb_lock); 1540 } 1541 while (count < persistent_huge_pages(h)) { 1542 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1543 break; 1544 } 1545 out: 1546 ret = persistent_huge_pages(h); 1547 spin_unlock(&hugetlb_lock); 1548 return ret; 1549 } 1550 1551 #define HSTATE_ATTR_RO(_name) \ 1552 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1553 1554 #define HSTATE_ATTR(_name) \ 1555 static struct kobj_attribute _name##_attr = \ 1556 __ATTR(_name, 0644, _name##_show, _name##_store) 1557 1558 static struct kobject *hugepages_kobj; 1559 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1560 1561 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1562 1563 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1564 { 1565 int i; 1566 1567 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1568 if (hstate_kobjs[i] == kobj) { 1569 if (nidp) 1570 *nidp = NUMA_NO_NODE; 1571 return &hstates[i]; 1572 } 1573 1574 return kobj_to_node_hstate(kobj, nidp); 1575 } 1576 1577 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1578 struct kobj_attribute *attr, char *buf) 1579 { 1580 struct hstate *h; 1581 unsigned long nr_huge_pages; 1582 int nid; 1583 1584 h = kobj_to_hstate(kobj, &nid); 1585 if (nid == NUMA_NO_NODE) 1586 nr_huge_pages = h->nr_huge_pages; 1587 else 1588 nr_huge_pages = h->nr_huge_pages_node[nid]; 1589 1590 return sprintf(buf, "%lu\n", nr_huge_pages); 1591 } 1592 1593 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1594 struct kobject *kobj, struct kobj_attribute *attr, 1595 const char *buf, size_t len) 1596 { 1597 int err; 1598 int nid; 1599 unsigned long count; 1600 struct hstate *h; 1601 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1602 1603 err = kstrtoul(buf, 10, &count); 1604 if (err) 1605 goto out; 1606 1607 h = kobj_to_hstate(kobj, &nid); 1608 if (h->order >= MAX_ORDER) { 1609 err = -EINVAL; 1610 goto out; 1611 } 1612 1613 if (nid == NUMA_NO_NODE) { 1614 /* 1615 * global hstate attribute 1616 */ 1617 if (!(obey_mempolicy && 1618 init_nodemask_of_mempolicy(nodes_allowed))) { 1619 NODEMASK_FREE(nodes_allowed); 1620 nodes_allowed = &node_states[N_MEMORY]; 1621 } 1622 } else if (nodes_allowed) { 1623 /* 1624 * per node hstate attribute: adjust count to global, 1625 * but restrict alloc/free to the specified node. 1626 */ 1627 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1628 init_nodemask_of_node(nodes_allowed, nid); 1629 } else 1630 nodes_allowed = &node_states[N_MEMORY]; 1631 1632 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1633 1634 if (nodes_allowed != &node_states[N_MEMORY]) 1635 NODEMASK_FREE(nodes_allowed); 1636 1637 return len; 1638 out: 1639 NODEMASK_FREE(nodes_allowed); 1640 return err; 1641 } 1642 1643 static ssize_t nr_hugepages_show(struct kobject *kobj, 1644 struct kobj_attribute *attr, char *buf) 1645 { 1646 return nr_hugepages_show_common(kobj, attr, buf); 1647 } 1648 1649 static ssize_t nr_hugepages_store(struct kobject *kobj, 1650 struct kobj_attribute *attr, const char *buf, size_t len) 1651 { 1652 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1653 } 1654 HSTATE_ATTR(nr_hugepages); 1655 1656 #ifdef CONFIG_NUMA 1657 1658 /* 1659 * hstate attribute for optionally mempolicy-based constraint on persistent 1660 * huge page alloc/free. 1661 */ 1662 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1663 struct kobj_attribute *attr, char *buf) 1664 { 1665 return nr_hugepages_show_common(kobj, attr, buf); 1666 } 1667 1668 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1669 struct kobj_attribute *attr, const char *buf, size_t len) 1670 { 1671 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1672 } 1673 HSTATE_ATTR(nr_hugepages_mempolicy); 1674 #endif 1675 1676 1677 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1678 struct kobj_attribute *attr, char *buf) 1679 { 1680 struct hstate *h = kobj_to_hstate(kobj, NULL); 1681 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1682 } 1683 1684 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1685 struct kobj_attribute *attr, const char *buf, size_t count) 1686 { 1687 int err; 1688 unsigned long input; 1689 struct hstate *h = kobj_to_hstate(kobj, NULL); 1690 1691 if (h->order >= MAX_ORDER) 1692 return -EINVAL; 1693 1694 err = kstrtoul(buf, 10, &input); 1695 if (err) 1696 return err; 1697 1698 spin_lock(&hugetlb_lock); 1699 h->nr_overcommit_huge_pages = input; 1700 spin_unlock(&hugetlb_lock); 1701 1702 return count; 1703 } 1704 HSTATE_ATTR(nr_overcommit_hugepages); 1705 1706 static ssize_t free_hugepages_show(struct kobject *kobj, 1707 struct kobj_attribute *attr, char *buf) 1708 { 1709 struct hstate *h; 1710 unsigned long free_huge_pages; 1711 int nid; 1712 1713 h = kobj_to_hstate(kobj, &nid); 1714 if (nid == NUMA_NO_NODE) 1715 free_huge_pages = h->free_huge_pages; 1716 else 1717 free_huge_pages = h->free_huge_pages_node[nid]; 1718 1719 return sprintf(buf, "%lu\n", free_huge_pages); 1720 } 1721 HSTATE_ATTR_RO(free_hugepages); 1722 1723 static ssize_t resv_hugepages_show(struct kobject *kobj, 1724 struct kobj_attribute *attr, char *buf) 1725 { 1726 struct hstate *h = kobj_to_hstate(kobj, NULL); 1727 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1728 } 1729 HSTATE_ATTR_RO(resv_hugepages); 1730 1731 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1732 struct kobj_attribute *attr, char *buf) 1733 { 1734 struct hstate *h; 1735 unsigned long surplus_huge_pages; 1736 int nid; 1737 1738 h = kobj_to_hstate(kobj, &nid); 1739 if (nid == NUMA_NO_NODE) 1740 surplus_huge_pages = h->surplus_huge_pages; 1741 else 1742 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1743 1744 return sprintf(buf, "%lu\n", surplus_huge_pages); 1745 } 1746 HSTATE_ATTR_RO(surplus_hugepages); 1747 1748 static struct attribute *hstate_attrs[] = { 1749 &nr_hugepages_attr.attr, 1750 &nr_overcommit_hugepages_attr.attr, 1751 &free_hugepages_attr.attr, 1752 &resv_hugepages_attr.attr, 1753 &surplus_hugepages_attr.attr, 1754 #ifdef CONFIG_NUMA 1755 &nr_hugepages_mempolicy_attr.attr, 1756 #endif 1757 NULL, 1758 }; 1759 1760 static struct attribute_group hstate_attr_group = { 1761 .attrs = hstate_attrs, 1762 }; 1763 1764 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1765 struct kobject **hstate_kobjs, 1766 struct attribute_group *hstate_attr_group) 1767 { 1768 int retval; 1769 int hi = hstate_index(h); 1770 1771 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1772 if (!hstate_kobjs[hi]) 1773 return -ENOMEM; 1774 1775 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1776 if (retval) 1777 kobject_put(hstate_kobjs[hi]); 1778 1779 return retval; 1780 } 1781 1782 static void __init hugetlb_sysfs_init(void) 1783 { 1784 struct hstate *h; 1785 int err; 1786 1787 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1788 if (!hugepages_kobj) 1789 return; 1790 1791 for_each_hstate(h) { 1792 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1793 hstate_kobjs, &hstate_attr_group); 1794 if (err) 1795 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1796 } 1797 } 1798 1799 #ifdef CONFIG_NUMA 1800 1801 /* 1802 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1803 * with node devices in node_devices[] using a parallel array. The array 1804 * index of a node device or _hstate == node id. 1805 * This is here to avoid any static dependency of the node device driver, in 1806 * the base kernel, on the hugetlb module. 1807 */ 1808 struct node_hstate { 1809 struct kobject *hugepages_kobj; 1810 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1811 }; 1812 struct node_hstate node_hstates[MAX_NUMNODES]; 1813 1814 /* 1815 * A subset of global hstate attributes for node devices 1816 */ 1817 static struct attribute *per_node_hstate_attrs[] = { 1818 &nr_hugepages_attr.attr, 1819 &free_hugepages_attr.attr, 1820 &surplus_hugepages_attr.attr, 1821 NULL, 1822 }; 1823 1824 static struct attribute_group per_node_hstate_attr_group = { 1825 .attrs = per_node_hstate_attrs, 1826 }; 1827 1828 /* 1829 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1830 * Returns node id via non-NULL nidp. 1831 */ 1832 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1833 { 1834 int nid; 1835 1836 for (nid = 0; nid < nr_node_ids; nid++) { 1837 struct node_hstate *nhs = &node_hstates[nid]; 1838 int i; 1839 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1840 if (nhs->hstate_kobjs[i] == kobj) { 1841 if (nidp) 1842 *nidp = nid; 1843 return &hstates[i]; 1844 } 1845 } 1846 1847 BUG(); 1848 return NULL; 1849 } 1850 1851 /* 1852 * Unregister hstate attributes from a single node device. 1853 * No-op if no hstate attributes attached. 1854 */ 1855 static void hugetlb_unregister_node(struct node *node) 1856 { 1857 struct hstate *h; 1858 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1859 1860 if (!nhs->hugepages_kobj) 1861 return; /* no hstate attributes */ 1862 1863 for_each_hstate(h) { 1864 int idx = hstate_index(h); 1865 if (nhs->hstate_kobjs[idx]) { 1866 kobject_put(nhs->hstate_kobjs[idx]); 1867 nhs->hstate_kobjs[idx] = NULL; 1868 } 1869 } 1870 1871 kobject_put(nhs->hugepages_kobj); 1872 nhs->hugepages_kobj = NULL; 1873 } 1874 1875 /* 1876 * hugetlb module exit: unregister hstate attributes from node devices 1877 * that have them. 1878 */ 1879 static void hugetlb_unregister_all_nodes(void) 1880 { 1881 int nid; 1882 1883 /* 1884 * disable node device registrations. 1885 */ 1886 register_hugetlbfs_with_node(NULL, NULL); 1887 1888 /* 1889 * remove hstate attributes from any nodes that have them. 1890 */ 1891 for (nid = 0; nid < nr_node_ids; nid++) 1892 hugetlb_unregister_node(node_devices[nid]); 1893 } 1894 1895 /* 1896 * Register hstate attributes for a single node device. 1897 * No-op if attributes already registered. 1898 */ 1899 static void hugetlb_register_node(struct node *node) 1900 { 1901 struct hstate *h; 1902 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1903 int err; 1904 1905 if (nhs->hugepages_kobj) 1906 return; /* already allocated */ 1907 1908 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1909 &node->dev.kobj); 1910 if (!nhs->hugepages_kobj) 1911 return; 1912 1913 for_each_hstate(h) { 1914 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1915 nhs->hstate_kobjs, 1916 &per_node_hstate_attr_group); 1917 if (err) { 1918 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 1919 h->name, node->dev.id); 1920 hugetlb_unregister_node(node); 1921 break; 1922 } 1923 } 1924 } 1925 1926 /* 1927 * hugetlb init time: register hstate attributes for all registered node 1928 * devices of nodes that have memory. All on-line nodes should have 1929 * registered their associated device by this time. 1930 */ 1931 static void hugetlb_register_all_nodes(void) 1932 { 1933 int nid; 1934 1935 for_each_node_state(nid, N_MEMORY) { 1936 struct node *node = node_devices[nid]; 1937 if (node->dev.id == nid) 1938 hugetlb_register_node(node); 1939 } 1940 1941 /* 1942 * Let the node device driver know we're here so it can 1943 * [un]register hstate attributes on node hotplug. 1944 */ 1945 register_hugetlbfs_with_node(hugetlb_register_node, 1946 hugetlb_unregister_node); 1947 } 1948 #else /* !CONFIG_NUMA */ 1949 1950 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1951 { 1952 BUG(); 1953 if (nidp) 1954 *nidp = -1; 1955 return NULL; 1956 } 1957 1958 static void hugetlb_unregister_all_nodes(void) { } 1959 1960 static void hugetlb_register_all_nodes(void) { } 1961 1962 #endif 1963 1964 static void __exit hugetlb_exit(void) 1965 { 1966 struct hstate *h; 1967 1968 hugetlb_unregister_all_nodes(); 1969 1970 for_each_hstate(h) { 1971 kobject_put(hstate_kobjs[hstate_index(h)]); 1972 } 1973 1974 kobject_put(hugepages_kobj); 1975 kfree(htlb_fault_mutex_table); 1976 } 1977 module_exit(hugetlb_exit); 1978 1979 static int __init hugetlb_init(void) 1980 { 1981 int i; 1982 1983 /* Some platform decide whether they support huge pages at boot 1984 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1985 * there is no such support 1986 */ 1987 if (HPAGE_SHIFT == 0) 1988 return 0; 1989 1990 if (!size_to_hstate(default_hstate_size)) { 1991 default_hstate_size = HPAGE_SIZE; 1992 if (!size_to_hstate(default_hstate_size)) 1993 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1994 } 1995 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 1996 if (default_hstate_max_huge_pages) 1997 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1998 1999 hugetlb_init_hstates(); 2000 gather_bootmem_prealloc(); 2001 report_hugepages(); 2002 2003 hugetlb_sysfs_init(); 2004 hugetlb_register_all_nodes(); 2005 hugetlb_cgroup_file_init(); 2006 2007 #ifdef CONFIG_SMP 2008 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2009 #else 2010 num_fault_mutexes = 1; 2011 #endif 2012 htlb_fault_mutex_table = 2013 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2014 BUG_ON(!htlb_fault_mutex_table); 2015 2016 for (i = 0; i < num_fault_mutexes; i++) 2017 mutex_init(&htlb_fault_mutex_table[i]); 2018 return 0; 2019 } 2020 module_init(hugetlb_init); 2021 2022 /* Should be called on processing a hugepagesz=... option */ 2023 void __init hugetlb_add_hstate(unsigned order) 2024 { 2025 struct hstate *h; 2026 unsigned long i; 2027 2028 if (size_to_hstate(PAGE_SIZE << order)) { 2029 pr_warning("hugepagesz= specified twice, ignoring\n"); 2030 return; 2031 } 2032 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2033 BUG_ON(order == 0); 2034 h = &hstates[hugetlb_max_hstate++]; 2035 h->order = order; 2036 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2037 h->nr_huge_pages = 0; 2038 h->free_huge_pages = 0; 2039 for (i = 0; i < MAX_NUMNODES; ++i) 2040 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2041 INIT_LIST_HEAD(&h->hugepage_activelist); 2042 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2043 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2044 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2045 huge_page_size(h)/1024); 2046 2047 parsed_hstate = h; 2048 } 2049 2050 static int __init hugetlb_nrpages_setup(char *s) 2051 { 2052 unsigned long *mhp; 2053 static unsigned long *last_mhp; 2054 2055 /* 2056 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2057 * so this hugepages= parameter goes to the "default hstate". 2058 */ 2059 if (!hugetlb_max_hstate) 2060 mhp = &default_hstate_max_huge_pages; 2061 else 2062 mhp = &parsed_hstate->max_huge_pages; 2063 2064 if (mhp == last_mhp) { 2065 pr_warning("hugepages= specified twice without " 2066 "interleaving hugepagesz=, ignoring\n"); 2067 return 1; 2068 } 2069 2070 if (sscanf(s, "%lu", mhp) <= 0) 2071 *mhp = 0; 2072 2073 /* 2074 * Global state is always initialized later in hugetlb_init. 2075 * But we need to allocate >= MAX_ORDER hstates here early to still 2076 * use the bootmem allocator. 2077 */ 2078 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2079 hugetlb_hstate_alloc_pages(parsed_hstate); 2080 2081 last_mhp = mhp; 2082 2083 return 1; 2084 } 2085 __setup("hugepages=", hugetlb_nrpages_setup); 2086 2087 static int __init hugetlb_default_setup(char *s) 2088 { 2089 default_hstate_size = memparse(s, &s); 2090 return 1; 2091 } 2092 __setup("default_hugepagesz=", hugetlb_default_setup); 2093 2094 static unsigned int cpuset_mems_nr(unsigned int *array) 2095 { 2096 int node; 2097 unsigned int nr = 0; 2098 2099 for_each_node_mask(node, cpuset_current_mems_allowed) 2100 nr += array[node]; 2101 2102 return nr; 2103 } 2104 2105 #ifdef CONFIG_SYSCTL 2106 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2107 struct ctl_table *table, int write, 2108 void __user *buffer, size_t *length, loff_t *ppos) 2109 { 2110 struct hstate *h = &default_hstate; 2111 unsigned long tmp; 2112 int ret; 2113 2114 tmp = h->max_huge_pages; 2115 2116 if (write && h->order >= MAX_ORDER) 2117 return -EINVAL; 2118 2119 table->data = &tmp; 2120 table->maxlen = sizeof(unsigned long); 2121 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2122 if (ret) 2123 goto out; 2124 2125 if (write) { 2126 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2127 GFP_KERNEL | __GFP_NORETRY); 2128 if (!(obey_mempolicy && 2129 init_nodemask_of_mempolicy(nodes_allowed))) { 2130 NODEMASK_FREE(nodes_allowed); 2131 nodes_allowed = &node_states[N_MEMORY]; 2132 } 2133 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2134 2135 if (nodes_allowed != &node_states[N_MEMORY]) 2136 NODEMASK_FREE(nodes_allowed); 2137 } 2138 out: 2139 return ret; 2140 } 2141 2142 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2143 void __user *buffer, size_t *length, loff_t *ppos) 2144 { 2145 2146 return hugetlb_sysctl_handler_common(false, table, write, 2147 buffer, length, ppos); 2148 } 2149 2150 #ifdef CONFIG_NUMA 2151 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2152 void __user *buffer, size_t *length, loff_t *ppos) 2153 { 2154 return hugetlb_sysctl_handler_common(true, table, write, 2155 buffer, length, ppos); 2156 } 2157 #endif /* CONFIG_NUMA */ 2158 2159 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2160 void __user *buffer, 2161 size_t *length, loff_t *ppos) 2162 { 2163 struct hstate *h = &default_hstate; 2164 unsigned long tmp; 2165 int ret; 2166 2167 tmp = h->nr_overcommit_huge_pages; 2168 2169 if (write && h->order >= MAX_ORDER) 2170 return -EINVAL; 2171 2172 table->data = &tmp; 2173 table->maxlen = sizeof(unsigned long); 2174 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2175 if (ret) 2176 goto out; 2177 2178 if (write) { 2179 spin_lock(&hugetlb_lock); 2180 h->nr_overcommit_huge_pages = tmp; 2181 spin_unlock(&hugetlb_lock); 2182 } 2183 out: 2184 return ret; 2185 } 2186 2187 #endif /* CONFIG_SYSCTL */ 2188 2189 void hugetlb_report_meminfo(struct seq_file *m) 2190 { 2191 struct hstate *h = &default_hstate; 2192 seq_printf(m, 2193 "HugePages_Total: %5lu\n" 2194 "HugePages_Free: %5lu\n" 2195 "HugePages_Rsvd: %5lu\n" 2196 "HugePages_Surp: %5lu\n" 2197 "Hugepagesize: %8lu kB\n", 2198 h->nr_huge_pages, 2199 h->free_huge_pages, 2200 h->resv_huge_pages, 2201 h->surplus_huge_pages, 2202 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2203 } 2204 2205 int hugetlb_report_node_meminfo(int nid, char *buf) 2206 { 2207 struct hstate *h = &default_hstate; 2208 return sprintf(buf, 2209 "Node %d HugePages_Total: %5u\n" 2210 "Node %d HugePages_Free: %5u\n" 2211 "Node %d HugePages_Surp: %5u\n", 2212 nid, h->nr_huge_pages_node[nid], 2213 nid, h->free_huge_pages_node[nid], 2214 nid, h->surplus_huge_pages_node[nid]); 2215 } 2216 2217 void hugetlb_show_meminfo(void) 2218 { 2219 struct hstate *h; 2220 int nid; 2221 2222 for_each_node_state(nid, N_MEMORY) 2223 for_each_hstate(h) 2224 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2225 nid, 2226 h->nr_huge_pages_node[nid], 2227 h->free_huge_pages_node[nid], 2228 h->surplus_huge_pages_node[nid], 2229 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2230 } 2231 2232 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2233 unsigned long hugetlb_total_pages(void) 2234 { 2235 struct hstate *h; 2236 unsigned long nr_total_pages = 0; 2237 2238 for_each_hstate(h) 2239 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2240 return nr_total_pages; 2241 } 2242 2243 static int hugetlb_acct_memory(struct hstate *h, long delta) 2244 { 2245 int ret = -ENOMEM; 2246 2247 spin_lock(&hugetlb_lock); 2248 /* 2249 * When cpuset is configured, it breaks the strict hugetlb page 2250 * reservation as the accounting is done on a global variable. Such 2251 * reservation is completely rubbish in the presence of cpuset because 2252 * the reservation is not checked against page availability for the 2253 * current cpuset. Application can still potentially OOM'ed by kernel 2254 * with lack of free htlb page in cpuset that the task is in. 2255 * Attempt to enforce strict accounting with cpuset is almost 2256 * impossible (or too ugly) because cpuset is too fluid that 2257 * task or memory node can be dynamically moved between cpusets. 2258 * 2259 * The change of semantics for shared hugetlb mapping with cpuset is 2260 * undesirable. However, in order to preserve some of the semantics, 2261 * we fall back to check against current free page availability as 2262 * a best attempt and hopefully to minimize the impact of changing 2263 * semantics that cpuset has. 2264 */ 2265 if (delta > 0) { 2266 if (gather_surplus_pages(h, delta) < 0) 2267 goto out; 2268 2269 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2270 return_unused_surplus_pages(h, delta); 2271 goto out; 2272 } 2273 } 2274 2275 ret = 0; 2276 if (delta < 0) 2277 return_unused_surplus_pages(h, (unsigned long) -delta); 2278 2279 out: 2280 spin_unlock(&hugetlb_lock); 2281 return ret; 2282 } 2283 2284 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2285 { 2286 struct resv_map *resv = vma_resv_map(vma); 2287 2288 /* 2289 * This new VMA should share its siblings reservation map if present. 2290 * The VMA will only ever have a valid reservation map pointer where 2291 * it is being copied for another still existing VMA. As that VMA 2292 * has a reference to the reservation map it cannot disappear until 2293 * after this open call completes. It is therefore safe to take a 2294 * new reference here without additional locking. 2295 */ 2296 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2297 kref_get(&resv->refs); 2298 } 2299 2300 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2301 { 2302 struct hstate *h = hstate_vma(vma); 2303 struct resv_map *resv = vma_resv_map(vma); 2304 struct hugepage_subpool *spool = subpool_vma(vma); 2305 unsigned long reserve, start, end; 2306 2307 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2308 return; 2309 2310 start = vma_hugecache_offset(h, vma, vma->vm_start); 2311 end = vma_hugecache_offset(h, vma, vma->vm_end); 2312 2313 reserve = (end - start) - region_count(resv, start, end); 2314 2315 kref_put(&resv->refs, resv_map_release); 2316 2317 if (reserve) { 2318 hugetlb_acct_memory(h, -reserve); 2319 hugepage_subpool_put_pages(spool, reserve); 2320 } 2321 } 2322 2323 /* 2324 * We cannot handle pagefaults against hugetlb pages at all. They cause 2325 * handle_mm_fault() to try to instantiate regular-sized pages in the 2326 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2327 * this far. 2328 */ 2329 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2330 { 2331 BUG(); 2332 return 0; 2333 } 2334 2335 const struct vm_operations_struct hugetlb_vm_ops = { 2336 .fault = hugetlb_vm_op_fault, 2337 .open = hugetlb_vm_op_open, 2338 .close = hugetlb_vm_op_close, 2339 }; 2340 2341 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2342 int writable) 2343 { 2344 pte_t entry; 2345 2346 if (writable) { 2347 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2348 vma->vm_page_prot))); 2349 } else { 2350 entry = huge_pte_wrprotect(mk_huge_pte(page, 2351 vma->vm_page_prot)); 2352 } 2353 entry = pte_mkyoung(entry); 2354 entry = pte_mkhuge(entry); 2355 entry = arch_make_huge_pte(entry, vma, page, writable); 2356 2357 return entry; 2358 } 2359 2360 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2361 unsigned long address, pte_t *ptep) 2362 { 2363 pte_t entry; 2364 2365 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2366 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2367 update_mmu_cache(vma, address, ptep); 2368 } 2369 2370 2371 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2372 struct vm_area_struct *vma) 2373 { 2374 pte_t *src_pte, *dst_pte, entry; 2375 struct page *ptepage; 2376 unsigned long addr; 2377 int cow; 2378 struct hstate *h = hstate_vma(vma); 2379 unsigned long sz = huge_page_size(h); 2380 unsigned long mmun_start; /* For mmu_notifiers */ 2381 unsigned long mmun_end; /* For mmu_notifiers */ 2382 int ret = 0; 2383 2384 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2385 2386 mmun_start = vma->vm_start; 2387 mmun_end = vma->vm_end; 2388 if (cow) 2389 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 2390 2391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2392 spinlock_t *src_ptl, *dst_ptl; 2393 src_pte = huge_pte_offset(src, addr); 2394 if (!src_pte) 2395 continue; 2396 dst_pte = huge_pte_alloc(dst, addr, sz); 2397 if (!dst_pte) { 2398 ret = -ENOMEM; 2399 break; 2400 } 2401 2402 /* If the pagetables are shared don't copy or take references */ 2403 if (dst_pte == src_pte) 2404 continue; 2405 2406 dst_ptl = huge_pte_lock(h, dst, dst_pte); 2407 src_ptl = huge_pte_lockptr(h, src, src_pte); 2408 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 2409 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2410 if (cow) 2411 huge_ptep_set_wrprotect(src, addr, src_pte); 2412 entry = huge_ptep_get(src_pte); 2413 ptepage = pte_page(entry); 2414 get_page(ptepage); 2415 page_dup_rmap(ptepage); 2416 set_huge_pte_at(dst, addr, dst_pte, entry); 2417 } 2418 spin_unlock(src_ptl); 2419 spin_unlock(dst_ptl); 2420 } 2421 2422 if (cow) 2423 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 2424 2425 return ret; 2426 } 2427 2428 static int is_hugetlb_entry_migration(pte_t pte) 2429 { 2430 swp_entry_t swp; 2431 2432 if (huge_pte_none(pte) || pte_present(pte)) 2433 return 0; 2434 swp = pte_to_swp_entry(pte); 2435 if (non_swap_entry(swp) && is_migration_entry(swp)) 2436 return 1; 2437 else 2438 return 0; 2439 } 2440 2441 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2442 { 2443 swp_entry_t swp; 2444 2445 if (huge_pte_none(pte) || pte_present(pte)) 2446 return 0; 2447 swp = pte_to_swp_entry(pte); 2448 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2449 return 1; 2450 else 2451 return 0; 2452 } 2453 2454 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2455 unsigned long start, unsigned long end, 2456 struct page *ref_page) 2457 { 2458 int force_flush = 0; 2459 struct mm_struct *mm = vma->vm_mm; 2460 unsigned long address; 2461 pte_t *ptep; 2462 pte_t pte; 2463 spinlock_t *ptl; 2464 struct page *page; 2465 struct hstate *h = hstate_vma(vma); 2466 unsigned long sz = huge_page_size(h); 2467 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2468 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2469 2470 WARN_ON(!is_vm_hugetlb_page(vma)); 2471 BUG_ON(start & ~huge_page_mask(h)); 2472 BUG_ON(end & ~huge_page_mask(h)); 2473 2474 tlb_start_vma(tlb, vma); 2475 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2476 again: 2477 for (address = start; address < end; address += sz) { 2478 ptep = huge_pte_offset(mm, address); 2479 if (!ptep) 2480 continue; 2481 2482 ptl = huge_pte_lock(h, mm, ptep); 2483 if (huge_pmd_unshare(mm, &address, ptep)) 2484 goto unlock; 2485 2486 pte = huge_ptep_get(ptep); 2487 if (huge_pte_none(pte)) 2488 goto unlock; 2489 2490 /* 2491 * HWPoisoned hugepage is already unmapped and dropped reference 2492 */ 2493 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 2494 huge_pte_clear(mm, address, ptep); 2495 goto unlock; 2496 } 2497 2498 page = pte_page(pte); 2499 /* 2500 * If a reference page is supplied, it is because a specific 2501 * page is being unmapped, not a range. Ensure the page we 2502 * are about to unmap is the actual page of interest. 2503 */ 2504 if (ref_page) { 2505 if (page != ref_page) 2506 goto unlock; 2507 2508 /* 2509 * Mark the VMA as having unmapped its page so that 2510 * future faults in this VMA will fail rather than 2511 * looking like data was lost 2512 */ 2513 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2514 } 2515 2516 pte = huge_ptep_get_and_clear(mm, address, ptep); 2517 tlb_remove_tlb_entry(tlb, ptep, address); 2518 if (huge_pte_dirty(pte)) 2519 set_page_dirty(page); 2520 2521 page_remove_rmap(page); 2522 force_flush = !__tlb_remove_page(tlb, page); 2523 if (force_flush) { 2524 spin_unlock(ptl); 2525 break; 2526 } 2527 /* Bail out after unmapping reference page if supplied */ 2528 if (ref_page) { 2529 spin_unlock(ptl); 2530 break; 2531 } 2532 unlock: 2533 spin_unlock(ptl); 2534 } 2535 /* 2536 * mmu_gather ran out of room to batch pages, we break out of 2537 * the PTE lock to avoid doing the potential expensive TLB invalidate 2538 * and page-free while holding it. 2539 */ 2540 if (force_flush) { 2541 force_flush = 0; 2542 tlb_flush_mmu(tlb); 2543 if (address < end && !ref_page) 2544 goto again; 2545 } 2546 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2547 tlb_end_vma(tlb, vma); 2548 } 2549 2550 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2551 struct vm_area_struct *vma, unsigned long start, 2552 unsigned long end, struct page *ref_page) 2553 { 2554 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2555 2556 /* 2557 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2558 * test will fail on a vma being torn down, and not grab a page table 2559 * on its way out. We're lucky that the flag has such an appropriate 2560 * name, and can in fact be safely cleared here. We could clear it 2561 * before the __unmap_hugepage_range above, but all that's necessary 2562 * is to clear it before releasing the i_mmap_mutex. This works 2563 * because in the context this is called, the VMA is about to be 2564 * destroyed and the i_mmap_mutex is held. 2565 */ 2566 vma->vm_flags &= ~VM_MAYSHARE; 2567 } 2568 2569 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2570 unsigned long end, struct page *ref_page) 2571 { 2572 struct mm_struct *mm; 2573 struct mmu_gather tlb; 2574 2575 mm = vma->vm_mm; 2576 2577 tlb_gather_mmu(&tlb, mm, start, end); 2578 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2579 tlb_finish_mmu(&tlb, start, end); 2580 } 2581 2582 /* 2583 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2584 * mappping it owns the reserve page for. The intention is to unmap the page 2585 * from other VMAs and let the children be SIGKILLed if they are faulting the 2586 * same region. 2587 */ 2588 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2589 struct page *page, unsigned long address) 2590 { 2591 struct hstate *h = hstate_vma(vma); 2592 struct vm_area_struct *iter_vma; 2593 struct address_space *mapping; 2594 pgoff_t pgoff; 2595 2596 /* 2597 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2598 * from page cache lookup which is in HPAGE_SIZE units. 2599 */ 2600 address = address & huge_page_mask(h); 2601 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2602 vma->vm_pgoff; 2603 mapping = file_inode(vma->vm_file)->i_mapping; 2604 2605 /* 2606 * Take the mapping lock for the duration of the table walk. As 2607 * this mapping should be shared between all the VMAs, 2608 * __unmap_hugepage_range() is called as the lock is already held 2609 */ 2610 mutex_lock(&mapping->i_mmap_mutex); 2611 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2612 /* Do not unmap the current VMA */ 2613 if (iter_vma == vma) 2614 continue; 2615 2616 /* 2617 * Unmap the page from other VMAs without their own reserves. 2618 * They get marked to be SIGKILLed if they fault in these 2619 * areas. This is because a future no-page fault on this VMA 2620 * could insert a zeroed page instead of the data existing 2621 * from the time of fork. This would look like data corruption 2622 */ 2623 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2624 unmap_hugepage_range(iter_vma, address, 2625 address + huge_page_size(h), page); 2626 } 2627 mutex_unlock(&mapping->i_mmap_mutex); 2628 2629 return 1; 2630 } 2631 2632 /* 2633 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2634 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2635 * cannot race with other handlers or page migration. 2636 * Keep the pte_same checks anyway to make transition from the mutex easier. 2637 */ 2638 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2639 unsigned long address, pte_t *ptep, pte_t pte, 2640 struct page *pagecache_page, spinlock_t *ptl) 2641 { 2642 struct hstate *h = hstate_vma(vma); 2643 struct page *old_page, *new_page; 2644 int outside_reserve = 0; 2645 unsigned long mmun_start; /* For mmu_notifiers */ 2646 unsigned long mmun_end; /* For mmu_notifiers */ 2647 2648 old_page = pte_page(pte); 2649 2650 retry_avoidcopy: 2651 /* If no-one else is actually using this page, avoid the copy 2652 * and just make the page writable */ 2653 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 2654 page_move_anon_rmap(old_page, vma, address); 2655 set_huge_ptep_writable(vma, address, ptep); 2656 return 0; 2657 } 2658 2659 /* 2660 * If the process that created a MAP_PRIVATE mapping is about to 2661 * perform a COW due to a shared page count, attempt to satisfy 2662 * the allocation without using the existing reserves. The pagecache 2663 * page is used to determine if the reserve at this address was 2664 * consumed or not. If reserves were used, a partial faulted mapping 2665 * at the time of fork() could consume its reserves on COW instead 2666 * of the full address range. 2667 */ 2668 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2669 old_page != pagecache_page) 2670 outside_reserve = 1; 2671 2672 page_cache_get(old_page); 2673 2674 /* Drop page table lock as buddy allocator may be called */ 2675 spin_unlock(ptl); 2676 new_page = alloc_huge_page(vma, address, outside_reserve); 2677 2678 if (IS_ERR(new_page)) { 2679 long err = PTR_ERR(new_page); 2680 page_cache_release(old_page); 2681 2682 /* 2683 * If a process owning a MAP_PRIVATE mapping fails to COW, 2684 * it is due to references held by a child and an insufficient 2685 * huge page pool. To guarantee the original mappers 2686 * reliability, unmap the page from child processes. The child 2687 * may get SIGKILLed if it later faults. 2688 */ 2689 if (outside_reserve) { 2690 BUG_ON(huge_pte_none(pte)); 2691 if (unmap_ref_private(mm, vma, old_page, address)) { 2692 BUG_ON(huge_pte_none(pte)); 2693 spin_lock(ptl); 2694 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2695 if (likely(ptep && 2696 pte_same(huge_ptep_get(ptep), pte))) 2697 goto retry_avoidcopy; 2698 /* 2699 * race occurs while re-acquiring page table 2700 * lock, and our job is done. 2701 */ 2702 return 0; 2703 } 2704 WARN_ON_ONCE(1); 2705 } 2706 2707 /* Caller expects lock to be held */ 2708 spin_lock(ptl); 2709 if (err == -ENOMEM) 2710 return VM_FAULT_OOM; 2711 else 2712 return VM_FAULT_SIGBUS; 2713 } 2714 2715 /* 2716 * When the original hugepage is shared one, it does not have 2717 * anon_vma prepared. 2718 */ 2719 if (unlikely(anon_vma_prepare(vma))) { 2720 page_cache_release(new_page); 2721 page_cache_release(old_page); 2722 /* Caller expects lock to be held */ 2723 spin_lock(ptl); 2724 return VM_FAULT_OOM; 2725 } 2726 2727 copy_user_huge_page(new_page, old_page, address, vma, 2728 pages_per_huge_page(h)); 2729 __SetPageUptodate(new_page); 2730 2731 mmun_start = address & huge_page_mask(h); 2732 mmun_end = mmun_start + huge_page_size(h); 2733 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2734 /* 2735 * Retake the page table lock to check for racing updates 2736 * before the page tables are altered 2737 */ 2738 spin_lock(ptl); 2739 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2740 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 2741 ClearPagePrivate(new_page); 2742 2743 /* Break COW */ 2744 huge_ptep_clear_flush(vma, address, ptep); 2745 set_huge_pte_at(mm, address, ptep, 2746 make_huge_pte(vma, new_page, 1)); 2747 page_remove_rmap(old_page); 2748 hugepage_add_new_anon_rmap(new_page, vma, address); 2749 /* Make the old page be freed below */ 2750 new_page = old_page; 2751 } 2752 spin_unlock(ptl); 2753 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2754 page_cache_release(new_page); 2755 page_cache_release(old_page); 2756 2757 /* Caller expects lock to be held */ 2758 spin_lock(ptl); 2759 return 0; 2760 } 2761 2762 /* Return the pagecache page at a given address within a VMA */ 2763 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2764 struct vm_area_struct *vma, unsigned long address) 2765 { 2766 struct address_space *mapping; 2767 pgoff_t idx; 2768 2769 mapping = vma->vm_file->f_mapping; 2770 idx = vma_hugecache_offset(h, vma, address); 2771 2772 return find_lock_page(mapping, idx); 2773 } 2774 2775 /* 2776 * Return whether there is a pagecache page to back given address within VMA. 2777 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2778 */ 2779 static bool hugetlbfs_pagecache_present(struct hstate *h, 2780 struct vm_area_struct *vma, unsigned long address) 2781 { 2782 struct address_space *mapping; 2783 pgoff_t idx; 2784 struct page *page; 2785 2786 mapping = vma->vm_file->f_mapping; 2787 idx = vma_hugecache_offset(h, vma, address); 2788 2789 page = find_get_page(mapping, idx); 2790 if (page) 2791 put_page(page); 2792 return page != NULL; 2793 } 2794 2795 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2796 struct address_space *mapping, pgoff_t idx, 2797 unsigned long address, pte_t *ptep, unsigned int flags) 2798 { 2799 struct hstate *h = hstate_vma(vma); 2800 int ret = VM_FAULT_SIGBUS; 2801 int anon_rmap = 0; 2802 unsigned long size; 2803 struct page *page; 2804 pte_t new_pte; 2805 spinlock_t *ptl; 2806 2807 /* 2808 * Currently, we are forced to kill the process in the event the 2809 * original mapper has unmapped pages from the child due to a failed 2810 * COW. Warn that such a situation has occurred as it may not be obvious 2811 */ 2812 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2813 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2814 current->pid); 2815 return ret; 2816 } 2817 2818 /* 2819 * Use page lock to guard against racing truncation 2820 * before we get page_table_lock. 2821 */ 2822 retry: 2823 page = find_lock_page(mapping, idx); 2824 if (!page) { 2825 size = i_size_read(mapping->host) >> huge_page_shift(h); 2826 if (idx >= size) 2827 goto out; 2828 page = alloc_huge_page(vma, address, 0); 2829 if (IS_ERR(page)) { 2830 ret = PTR_ERR(page); 2831 if (ret == -ENOMEM) 2832 ret = VM_FAULT_OOM; 2833 else 2834 ret = VM_FAULT_SIGBUS; 2835 goto out; 2836 } 2837 clear_huge_page(page, address, pages_per_huge_page(h)); 2838 __SetPageUptodate(page); 2839 2840 if (vma->vm_flags & VM_MAYSHARE) { 2841 int err; 2842 struct inode *inode = mapping->host; 2843 2844 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2845 if (err) { 2846 put_page(page); 2847 if (err == -EEXIST) 2848 goto retry; 2849 goto out; 2850 } 2851 ClearPagePrivate(page); 2852 2853 spin_lock(&inode->i_lock); 2854 inode->i_blocks += blocks_per_huge_page(h); 2855 spin_unlock(&inode->i_lock); 2856 } else { 2857 lock_page(page); 2858 if (unlikely(anon_vma_prepare(vma))) { 2859 ret = VM_FAULT_OOM; 2860 goto backout_unlocked; 2861 } 2862 anon_rmap = 1; 2863 } 2864 } else { 2865 /* 2866 * If memory error occurs between mmap() and fault, some process 2867 * don't have hwpoisoned swap entry for errored virtual address. 2868 * So we need to block hugepage fault by PG_hwpoison bit check. 2869 */ 2870 if (unlikely(PageHWPoison(page))) { 2871 ret = VM_FAULT_HWPOISON | 2872 VM_FAULT_SET_HINDEX(hstate_index(h)); 2873 goto backout_unlocked; 2874 } 2875 } 2876 2877 /* 2878 * If we are going to COW a private mapping later, we examine the 2879 * pending reservations for this page now. This will ensure that 2880 * any allocations necessary to record that reservation occur outside 2881 * the spinlock. 2882 */ 2883 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2884 if (vma_needs_reservation(h, vma, address) < 0) { 2885 ret = VM_FAULT_OOM; 2886 goto backout_unlocked; 2887 } 2888 2889 ptl = huge_pte_lockptr(h, mm, ptep); 2890 spin_lock(ptl); 2891 size = i_size_read(mapping->host) >> huge_page_shift(h); 2892 if (idx >= size) 2893 goto backout; 2894 2895 ret = 0; 2896 if (!huge_pte_none(huge_ptep_get(ptep))) 2897 goto backout; 2898 2899 if (anon_rmap) { 2900 ClearPagePrivate(page); 2901 hugepage_add_new_anon_rmap(page, vma, address); 2902 } else 2903 page_dup_rmap(page); 2904 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2905 && (vma->vm_flags & VM_SHARED))); 2906 set_huge_pte_at(mm, address, ptep, new_pte); 2907 2908 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2909 /* Optimization, do the COW without a second fault */ 2910 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 2911 } 2912 2913 spin_unlock(ptl); 2914 unlock_page(page); 2915 out: 2916 return ret; 2917 2918 backout: 2919 spin_unlock(ptl); 2920 backout_unlocked: 2921 unlock_page(page); 2922 put_page(page); 2923 goto out; 2924 } 2925 2926 #ifdef CONFIG_SMP 2927 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 2928 struct vm_area_struct *vma, 2929 struct address_space *mapping, 2930 pgoff_t idx, unsigned long address) 2931 { 2932 unsigned long key[2]; 2933 u32 hash; 2934 2935 if (vma->vm_flags & VM_SHARED) { 2936 key[0] = (unsigned long) mapping; 2937 key[1] = idx; 2938 } else { 2939 key[0] = (unsigned long) mm; 2940 key[1] = address >> huge_page_shift(h); 2941 } 2942 2943 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 2944 2945 return hash & (num_fault_mutexes - 1); 2946 } 2947 #else 2948 /* 2949 * For uniprocesor systems we always use a single mutex, so just 2950 * return 0 and avoid the hashing overhead. 2951 */ 2952 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 2953 struct vm_area_struct *vma, 2954 struct address_space *mapping, 2955 pgoff_t idx, unsigned long address) 2956 { 2957 return 0; 2958 } 2959 #endif 2960 2961 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2962 unsigned long address, unsigned int flags) 2963 { 2964 pte_t *ptep, entry; 2965 spinlock_t *ptl; 2966 int ret; 2967 u32 hash; 2968 pgoff_t idx; 2969 struct page *page = NULL; 2970 struct page *pagecache_page = NULL; 2971 struct hstate *h = hstate_vma(vma); 2972 struct address_space *mapping; 2973 2974 address &= huge_page_mask(h); 2975 2976 ptep = huge_pte_offset(mm, address); 2977 if (ptep) { 2978 entry = huge_ptep_get(ptep); 2979 if (unlikely(is_hugetlb_entry_migration(entry))) { 2980 migration_entry_wait_huge(vma, mm, ptep); 2981 return 0; 2982 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2983 return VM_FAULT_HWPOISON_LARGE | 2984 VM_FAULT_SET_HINDEX(hstate_index(h)); 2985 } 2986 2987 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2988 if (!ptep) 2989 return VM_FAULT_OOM; 2990 2991 mapping = vma->vm_file->f_mapping; 2992 idx = vma_hugecache_offset(h, vma, address); 2993 2994 /* 2995 * Serialize hugepage allocation and instantiation, so that we don't 2996 * get spurious allocation failures if two CPUs race to instantiate 2997 * the same page in the page cache. 2998 */ 2999 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); 3000 mutex_lock(&htlb_fault_mutex_table[hash]); 3001 3002 entry = huge_ptep_get(ptep); 3003 if (huge_pte_none(entry)) { 3004 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3005 goto out_mutex; 3006 } 3007 3008 ret = 0; 3009 3010 /* 3011 * If we are going to COW the mapping later, we examine the pending 3012 * reservations for this page now. This will ensure that any 3013 * allocations necessary to record that reservation occur outside the 3014 * spinlock. For private mappings, we also lookup the pagecache 3015 * page now as it is used to determine if a reservation has been 3016 * consumed. 3017 */ 3018 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3019 if (vma_needs_reservation(h, vma, address) < 0) { 3020 ret = VM_FAULT_OOM; 3021 goto out_mutex; 3022 } 3023 3024 if (!(vma->vm_flags & VM_MAYSHARE)) 3025 pagecache_page = hugetlbfs_pagecache_page(h, 3026 vma, address); 3027 } 3028 3029 /* 3030 * hugetlb_cow() requires page locks of pte_page(entry) and 3031 * pagecache_page, so here we need take the former one 3032 * when page != pagecache_page or !pagecache_page. 3033 * Note that locking order is always pagecache_page -> page, 3034 * so no worry about deadlock. 3035 */ 3036 page = pte_page(entry); 3037 get_page(page); 3038 if (page != pagecache_page) 3039 lock_page(page); 3040 3041 ptl = huge_pte_lockptr(h, mm, ptep); 3042 spin_lock(ptl); 3043 /* Check for a racing update before calling hugetlb_cow */ 3044 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3045 goto out_ptl; 3046 3047 3048 if (flags & FAULT_FLAG_WRITE) { 3049 if (!huge_pte_write(entry)) { 3050 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3051 pagecache_page, ptl); 3052 goto out_ptl; 3053 } 3054 entry = huge_pte_mkdirty(entry); 3055 } 3056 entry = pte_mkyoung(entry); 3057 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3058 flags & FAULT_FLAG_WRITE)) 3059 update_mmu_cache(vma, address, ptep); 3060 3061 out_ptl: 3062 spin_unlock(ptl); 3063 3064 if (pagecache_page) { 3065 unlock_page(pagecache_page); 3066 put_page(pagecache_page); 3067 } 3068 if (page != pagecache_page) 3069 unlock_page(page); 3070 put_page(page); 3071 3072 out_mutex: 3073 mutex_unlock(&htlb_fault_mutex_table[hash]); 3074 return ret; 3075 } 3076 3077 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3078 struct page **pages, struct vm_area_struct **vmas, 3079 unsigned long *position, unsigned long *nr_pages, 3080 long i, unsigned int flags) 3081 { 3082 unsigned long pfn_offset; 3083 unsigned long vaddr = *position; 3084 unsigned long remainder = *nr_pages; 3085 struct hstate *h = hstate_vma(vma); 3086 3087 while (vaddr < vma->vm_end && remainder) { 3088 pte_t *pte; 3089 spinlock_t *ptl = NULL; 3090 int absent; 3091 struct page *page; 3092 3093 /* 3094 * Some archs (sparc64, sh*) have multiple pte_ts to 3095 * each hugepage. We have to make sure we get the 3096 * first, for the page indexing below to work. 3097 * 3098 * Note that page table lock is not held when pte is null. 3099 */ 3100 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3101 if (pte) 3102 ptl = huge_pte_lock(h, mm, pte); 3103 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3104 3105 /* 3106 * When coredumping, it suits get_dump_page if we just return 3107 * an error where there's an empty slot with no huge pagecache 3108 * to back it. This way, we avoid allocating a hugepage, and 3109 * the sparse dumpfile avoids allocating disk blocks, but its 3110 * huge holes still show up with zeroes where they need to be. 3111 */ 3112 if (absent && (flags & FOLL_DUMP) && 3113 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3114 if (pte) 3115 spin_unlock(ptl); 3116 remainder = 0; 3117 break; 3118 } 3119 3120 /* 3121 * We need call hugetlb_fault for both hugepages under migration 3122 * (in which case hugetlb_fault waits for the migration,) and 3123 * hwpoisoned hugepages (in which case we need to prevent the 3124 * caller from accessing to them.) In order to do this, we use 3125 * here is_swap_pte instead of is_hugetlb_entry_migration and 3126 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3127 * both cases, and because we can't follow correct pages 3128 * directly from any kind of swap entries. 3129 */ 3130 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3131 ((flags & FOLL_WRITE) && 3132 !huge_pte_write(huge_ptep_get(pte)))) { 3133 int ret; 3134 3135 if (pte) 3136 spin_unlock(ptl); 3137 ret = hugetlb_fault(mm, vma, vaddr, 3138 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3139 if (!(ret & VM_FAULT_ERROR)) 3140 continue; 3141 3142 remainder = 0; 3143 break; 3144 } 3145 3146 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3147 page = pte_page(huge_ptep_get(pte)); 3148 same_page: 3149 if (pages) { 3150 pages[i] = mem_map_offset(page, pfn_offset); 3151 get_page_foll(pages[i]); 3152 } 3153 3154 if (vmas) 3155 vmas[i] = vma; 3156 3157 vaddr += PAGE_SIZE; 3158 ++pfn_offset; 3159 --remainder; 3160 ++i; 3161 if (vaddr < vma->vm_end && remainder && 3162 pfn_offset < pages_per_huge_page(h)) { 3163 /* 3164 * We use pfn_offset to avoid touching the pageframes 3165 * of this compound page. 3166 */ 3167 goto same_page; 3168 } 3169 spin_unlock(ptl); 3170 } 3171 *nr_pages = remainder; 3172 *position = vaddr; 3173 3174 return i ? i : -EFAULT; 3175 } 3176 3177 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3178 unsigned long address, unsigned long end, pgprot_t newprot) 3179 { 3180 struct mm_struct *mm = vma->vm_mm; 3181 unsigned long start = address; 3182 pte_t *ptep; 3183 pte_t pte; 3184 struct hstate *h = hstate_vma(vma); 3185 unsigned long pages = 0; 3186 3187 BUG_ON(address >= end); 3188 flush_cache_range(vma, address, end); 3189 3190 mmu_notifier_invalidate_range_start(mm, start, end); 3191 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3192 for (; address < end; address += huge_page_size(h)) { 3193 spinlock_t *ptl; 3194 ptep = huge_pte_offset(mm, address); 3195 if (!ptep) 3196 continue; 3197 ptl = huge_pte_lock(h, mm, ptep); 3198 if (huge_pmd_unshare(mm, &address, ptep)) { 3199 pages++; 3200 spin_unlock(ptl); 3201 continue; 3202 } 3203 if (!huge_pte_none(huge_ptep_get(ptep))) { 3204 pte = huge_ptep_get_and_clear(mm, address, ptep); 3205 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3206 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3207 set_huge_pte_at(mm, address, ptep, pte); 3208 pages++; 3209 } 3210 spin_unlock(ptl); 3211 } 3212 /* 3213 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3214 * may have cleared our pud entry and done put_page on the page table: 3215 * once we release i_mmap_mutex, another task can do the final put_page 3216 * and that page table be reused and filled with junk. 3217 */ 3218 flush_tlb_range(vma, start, end); 3219 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3220 mmu_notifier_invalidate_range_end(mm, start, end); 3221 3222 return pages << h->order; 3223 } 3224 3225 int hugetlb_reserve_pages(struct inode *inode, 3226 long from, long to, 3227 struct vm_area_struct *vma, 3228 vm_flags_t vm_flags) 3229 { 3230 long ret, chg; 3231 struct hstate *h = hstate_inode(inode); 3232 struct hugepage_subpool *spool = subpool_inode(inode); 3233 struct resv_map *resv_map; 3234 3235 /* 3236 * Only apply hugepage reservation if asked. At fault time, an 3237 * attempt will be made for VM_NORESERVE to allocate a page 3238 * without using reserves 3239 */ 3240 if (vm_flags & VM_NORESERVE) 3241 return 0; 3242 3243 /* 3244 * Shared mappings base their reservation on the number of pages that 3245 * are already allocated on behalf of the file. Private mappings need 3246 * to reserve the full area even if read-only as mprotect() may be 3247 * called to make the mapping read-write. Assume !vma is a shm mapping 3248 */ 3249 if (!vma || vma->vm_flags & VM_MAYSHARE) { 3250 resv_map = inode_resv_map(inode); 3251 3252 chg = region_chg(resv_map, from, to); 3253 3254 } else { 3255 resv_map = resv_map_alloc(); 3256 if (!resv_map) 3257 return -ENOMEM; 3258 3259 chg = to - from; 3260 3261 set_vma_resv_map(vma, resv_map); 3262 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3263 } 3264 3265 if (chg < 0) { 3266 ret = chg; 3267 goto out_err; 3268 } 3269 3270 /* There must be enough pages in the subpool for the mapping */ 3271 if (hugepage_subpool_get_pages(spool, chg)) { 3272 ret = -ENOSPC; 3273 goto out_err; 3274 } 3275 3276 /* 3277 * Check enough hugepages are available for the reservation. 3278 * Hand the pages back to the subpool if there are not 3279 */ 3280 ret = hugetlb_acct_memory(h, chg); 3281 if (ret < 0) { 3282 hugepage_subpool_put_pages(spool, chg); 3283 goto out_err; 3284 } 3285 3286 /* 3287 * Account for the reservations made. Shared mappings record regions 3288 * that have reservations as they are shared by multiple VMAs. 3289 * When the last VMA disappears, the region map says how much 3290 * the reservation was and the page cache tells how much of 3291 * the reservation was consumed. Private mappings are per-VMA and 3292 * only the consumed reservations are tracked. When the VMA 3293 * disappears, the original reservation is the VMA size and the 3294 * consumed reservations are stored in the map. Hence, nothing 3295 * else has to be done for private mappings here 3296 */ 3297 if (!vma || vma->vm_flags & VM_MAYSHARE) 3298 region_add(resv_map, from, to); 3299 return 0; 3300 out_err: 3301 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3302 kref_put(&resv_map->refs, resv_map_release); 3303 return ret; 3304 } 3305 3306 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3307 { 3308 struct hstate *h = hstate_inode(inode); 3309 struct resv_map *resv_map = inode_resv_map(inode); 3310 long chg = 0; 3311 struct hugepage_subpool *spool = subpool_inode(inode); 3312 3313 if (resv_map) 3314 chg = region_truncate(resv_map, offset); 3315 spin_lock(&inode->i_lock); 3316 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3317 spin_unlock(&inode->i_lock); 3318 3319 hugepage_subpool_put_pages(spool, (chg - freed)); 3320 hugetlb_acct_memory(h, -(chg - freed)); 3321 } 3322 3323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3324 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3325 struct vm_area_struct *vma, 3326 unsigned long addr, pgoff_t idx) 3327 { 3328 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3329 svma->vm_start; 3330 unsigned long sbase = saddr & PUD_MASK; 3331 unsigned long s_end = sbase + PUD_SIZE; 3332 3333 /* Allow segments to share if only one is marked locked */ 3334 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3335 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3336 3337 /* 3338 * match the virtual addresses, permission and the alignment of the 3339 * page table page. 3340 */ 3341 if (pmd_index(addr) != pmd_index(saddr) || 3342 vm_flags != svm_flags || 3343 sbase < svma->vm_start || svma->vm_end < s_end) 3344 return 0; 3345 3346 return saddr; 3347 } 3348 3349 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3350 { 3351 unsigned long base = addr & PUD_MASK; 3352 unsigned long end = base + PUD_SIZE; 3353 3354 /* 3355 * check on proper vm_flags and page table alignment 3356 */ 3357 if (vma->vm_flags & VM_MAYSHARE && 3358 vma->vm_start <= base && end <= vma->vm_end) 3359 return 1; 3360 return 0; 3361 } 3362 3363 /* 3364 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3365 * and returns the corresponding pte. While this is not necessary for the 3366 * !shared pmd case because we can allocate the pmd later as well, it makes the 3367 * code much cleaner. pmd allocation is essential for the shared case because 3368 * pud has to be populated inside the same i_mmap_mutex section - otherwise 3369 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3370 * bad pmd for sharing. 3371 */ 3372 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3373 { 3374 struct vm_area_struct *vma = find_vma(mm, addr); 3375 struct address_space *mapping = vma->vm_file->f_mapping; 3376 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3377 vma->vm_pgoff; 3378 struct vm_area_struct *svma; 3379 unsigned long saddr; 3380 pte_t *spte = NULL; 3381 pte_t *pte; 3382 spinlock_t *ptl; 3383 3384 if (!vma_shareable(vma, addr)) 3385 return (pte_t *)pmd_alloc(mm, pud, addr); 3386 3387 mutex_lock(&mapping->i_mmap_mutex); 3388 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3389 if (svma == vma) 3390 continue; 3391 3392 saddr = page_table_shareable(svma, vma, addr, idx); 3393 if (saddr) { 3394 spte = huge_pte_offset(svma->vm_mm, saddr); 3395 if (spte) { 3396 get_page(virt_to_page(spte)); 3397 break; 3398 } 3399 } 3400 } 3401 3402 if (!spte) 3403 goto out; 3404 3405 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 3406 spin_lock(ptl); 3407 if (pud_none(*pud)) 3408 pud_populate(mm, pud, 3409 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3410 else 3411 put_page(virt_to_page(spte)); 3412 spin_unlock(ptl); 3413 out: 3414 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3415 mutex_unlock(&mapping->i_mmap_mutex); 3416 return pte; 3417 } 3418 3419 /* 3420 * unmap huge page backed by shared pte. 3421 * 3422 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3423 * indicated by page_count > 1, unmap is achieved by clearing pud and 3424 * decrementing the ref count. If count == 1, the pte page is not shared. 3425 * 3426 * called with page table lock held. 3427 * 3428 * returns: 1 successfully unmapped a shared pte page 3429 * 0 the underlying pte page is not shared, or it is the last user 3430 */ 3431 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3432 { 3433 pgd_t *pgd = pgd_offset(mm, *addr); 3434 pud_t *pud = pud_offset(pgd, *addr); 3435 3436 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3437 if (page_count(virt_to_page(ptep)) == 1) 3438 return 0; 3439 3440 pud_clear(pud); 3441 put_page(virt_to_page(ptep)); 3442 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3443 return 1; 3444 } 3445 #define want_pmd_share() (1) 3446 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3447 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3448 { 3449 return NULL; 3450 } 3451 #define want_pmd_share() (0) 3452 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3453 3454 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3455 pte_t *huge_pte_alloc(struct mm_struct *mm, 3456 unsigned long addr, unsigned long sz) 3457 { 3458 pgd_t *pgd; 3459 pud_t *pud; 3460 pte_t *pte = NULL; 3461 3462 pgd = pgd_offset(mm, addr); 3463 pud = pud_alloc(mm, pgd, addr); 3464 if (pud) { 3465 if (sz == PUD_SIZE) { 3466 pte = (pte_t *)pud; 3467 } else { 3468 BUG_ON(sz != PMD_SIZE); 3469 if (want_pmd_share() && pud_none(*pud)) 3470 pte = huge_pmd_share(mm, addr, pud); 3471 else 3472 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3473 } 3474 } 3475 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3476 3477 return pte; 3478 } 3479 3480 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3481 { 3482 pgd_t *pgd; 3483 pud_t *pud; 3484 pmd_t *pmd = NULL; 3485 3486 pgd = pgd_offset(mm, addr); 3487 if (pgd_present(*pgd)) { 3488 pud = pud_offset(pgd, addr); 3489 if (pud_present(*pud)) { 3490 if (pud_huge(*pud)) 3491 return (pte_t *)pud; 3492 pmd = pmd_offset(pud, addr); 3493 } 3494 } 3495 return (pte_t *) pmd; 3496 } 3497 3498 struct page * 3499 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3500 pmd_t *pmd, int write) 3501 { 3502 struct page *page; 3503 3504 page = pte_page(*(pte_t *)pmd); 3505 if (page) 3506 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 3507 return page; 3508 } 3509 3510 struct page * 3511 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3512 pud_t *pud, int write) 3513 { 3514 struct page *page; 3515 3516 page = pte_page(*(pte_t *)pud); 3517 if (page) 3518 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 3519 return page; 3520 } 3521 3522 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3523 3524 /* Can be overriden by architectures */ 3525 struct page * __weak 3526 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3527 pud_t *pud, int write) 3528 { 3529 BUG(); 3530 return NULL; 3531 } 3532 3533 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3534 3535 #ifdef CONFIG_MEMORY_FAILURE 3536 3537 /* Should be called in hugetlb_lock */ 3538 static int is_hugepage_on_freelist(struct page *hpage) 3539 { 3540 struct page *page; 3541 struct page *tmp; 3542 struct hstate *h = page_hstate(hpage); 3543 int nid = page_to_nid(hpage); 3544 3545 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3546 if (page == hpage) 3547 return 1; 3548 return 0; 3549 } 3550 3551 /* 3552 * This function is called from memory failure code. 3553 * Assume the caller holds page lock of the head page. 3554 */ 3555 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3556 { 3557 struct hstate *h = page_hstate(hpage); 3558 int nid = page_to_nid(hpage); 3559 int ret = -EBUSY; 3560 3561 spin_lock(&hugetlb_lock); 3562 if (is_hugepage_on_freelist(hpage)) { 3563 /* 3564 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3565 * but dangling hpage->lru can trigger list-debug warnings 3566 * (this happens when we call unpoison_memory() on it), 3567 * so let it point to itself with list_del_init(). 3568 */ 3569 list_del_init(&hpage->lru); 3570 set_page_refcounted(hpage); 3571 h->free_huge_pages--; 3572 h->free_huge_pages_node[nid]--; 3573 ret = 0; 3574 } 3575 spin_unlock(&hugetlb_lock); 3576 return ret; 3577 } 3578 #endif 3579 3580 bool isolate_huge_page(struct page *page, struct list_head *list) 3581 { 3582 VM_BUG_ON_PAGE(!PageHead(page), page); 3583 if (!get_page_unless_zero(page)) 3584 return false; 3585 spin_lock(&hugetlb_lock); 3586 list_move_tail(&page->lru, list); 3587 spin_unlock(&hugetlb_lock); 3588 return true; 3589 } 3590 3591 void putback_active_hugepage(struct page *page) 3592 { 3593 VM_BUG_ON_PAGE(!PageHead(page), page); 3594 spin_lock(&hugetlb_lock); 3595 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 3596 spin_unlock(&hugetlb_lock); 3597 put_page(page); 3598 } 3599 3600 bool is_hugepage_active(struct page *page) 3601 { 3602 VM_BUG_ON_PAGE(!PageHuge(page), page); 3603 /* 3604 * This function can be called for a tail page because the caller, 3605 * scan_movable_pages, scans through a given pfn-range which typically 3606 * covers one memory block. In systems using gigantic hugepage (1GB 3607 * for x86_64,) a hugepage is larger than a memory block, and we don't 3608 * support migrating such large hugepages for now, so return false 3609 * when called for tail pages. 3610 */ 3611 if (PageTail(page)) 3612 return false; 3613 /* 3614 * Refcount of a hwpoisoned hugepages is 1, but they are not active, 3615 * so we should return false for them. 3616 */ 3617 if (unlikely(PageHWPoison(page))) 3618 return false; 3619 return page_count(page) > 0; 3620 } 3621