xref: /openbmc/linux/mm/hugetlb.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 	if (spool->count)
88 		return false;
89 	if (spool->max_hpages != -1)
90 		return spool->used_hpages == 0;
91 	if (spool->min_hpages != -1)
92 		return spool->rsv_hpages == spool->min_hpages;
93 
94 	return true;
95 }
96 
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99 	spin_unlock(&spool->lock);
100 
101 	/* If no pages are used, and no other handles to the subpool
102 	 * remain, give up any reservations based on minimum size and
103 	 * free the subpool */
104 	if (subpool_is_free(spool)) {
105 		if (spool->min_hpages != -1)
106 			hugetlb_acct_memory(spool->hstate,
107 						-spool->min_hpages);
108 		kfree(spool);
109 	}
110 }
111 
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 						long min_hpages)
114 {
115 	struct hugepage_subpool *spool;
116 
117 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 	if (!spool)
119 		return NULL;
120 
121 	spin_lock_init(&spool->lock);
122 	spool->count = 1;
123 	spool->max_hpages = max_hpages;
124 	spool->hstate = h;
125 	spool->min_hpages = min_hpages;
126 
127 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 		kfree(spool);
129 		return NULL;
130 	}
131 	spool->rsv_hpages = min_hpages;
132 
133 	return spool;
134 }
135 
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 	spin_lock(&spool->lock);
139 	BUG_ON(!spool->count);
140 	spool->count--;
141 	unlock_or_release_subpool(spool);
142 }
143 
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153 				      long delta)
154 {
155 	long ret = delta;
156 
157 	if (!spool)
158 		return ret;
159 
160 	spin_lock(&spool->lock);
161 
162 	if (spool->max_hpages != -1) {		/* maximum size accounting */
163 		if ((spool->used_hpages + delta) <= spool->max_hpages)
164 			spool->used_hpages += delta;
165 		else {
166 			ret = -ENOMEM;
167 			goto unlock_ret;
168 		}
169 	}
170 
171 	/* minimum size accounting */
172 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 		if (delta > spool->rsv_hpages) {
174 			/*
175 			 * Asking for more reserves than those already taken on
176 			 * behalf of subpool.  Return difference.
177 			 */
178 			ret = delta - spool->rsv_hpages;
179 			spool->rsv_hpages = 0;
180 		} else {
181 			ret = 0;	/* reserves already accounted for */
182 			spool->rsv_hpages -= delta;
183 		}
184 	}
185 
186 unlock_ret:
187 	spin_unlock(&spool->lock);
188 	return ret;
189 }
190 
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198 				       long delta)
199 {
200 	long ret = delta;
201 
202 	if (!spool)
203 		return delta;
204 
205 	spin_lock(&spool->lock);
206 
207 	if (spool->max_hpages != -1)		/* maximum size accounting */
208 		spool->used_hpages -= delta;
209 
210 	 /* minimum size accounting */
211 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 		if (spool->rsv_hpages + delta <= spool->min_hpages)
213 			ret = 0;
214 		else
215 			ret = spool->rsv_hpages + delta - spool->min_hpages;
216 
217 		spool->rsv_hpages += delta;
218 		if (spool->rsv_hpages > spool->min_hpages)
219 			spool->rsv_hpages = spool->min_hpages;
220 	}
221 
222 	/*
223 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 	 * quota reference, free it now.
225 	 */
226 	unlock_or_release_subpool(spool);
227 
228 	return ret;
229 }
230 
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233 	return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235 
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238 	return subpool_inode(file_inode(vma->vm_file));
239 }
240 
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247 	struct file_region *nrg = NULL;
248 
249 	VM_BUG_ON(resv->region_cache_count <= 0);
250 
251 	resv->region_cache_count--;
252 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253 	list_del(&nrg->link);
254 
255 	nrg->from = from;
256 	nrg->to = to;
257 
258 	return nrg;
259 }
260 
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 					      struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 	nrg->reservation_counter = rg->reservation_counter;
266 	nrg->css = rg->css;
267 	if (rg->css)
268 		css_get(rg->css);
269 #endif
270 }
271 
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 						struct hstate *h,
275 						struct resv_map *resv,
276 						struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279 	if (h_cg) {
280 		nrg->reservation_counter =
281 			&h_cg->rsvd_hugepage[hstate_index(h)];
282 		nrg->css = &h_cg->css;
283 		if (!resv->pages_per_hpage)
284 			resv->pages_per_hpage = pages_per_huge_page(h);
285 		/* pages_per_hpage should be the same for all entries in
286 		 * a resv_map.
287 		 */
288 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
289 	} else {
290 		nrg->reservation_counter = NULL;
291 		nrg->css = NULL;
292 	}
293 #endif
294 }
295 
296 static bool has_same_uncharge_info(struct file_region *rg,
297 				   struct file_region *org)
298 {
299 #ifdef CONFIG_CGROUP_HUGETLB
300 	return rg && org &&
301 	       rg->reservation_counter == org->reservation_counter &&
302 	       rg->css == org->css;
303 
304 #else
305 	return true;
306 #endif
307 }
308 
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
310 {
311 	struct file_region *nrg = NULL, *prg = NULL;
312 
313 	prg = list_prev_entry(rg, link);
314 	if (&prg->link != &resv->regions && prg->to == rg->from &&
315 	    has_same_uncharge_info(prg, rg)) {
316 		prg->to = rg->to;
317 
318 		list_del(&rg->link);
319 		kfree(rg);
320 
321 		rg = prg;
322 	}
323 
324 	nrg = list_next_entry(rg, link);
325 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326 	    has_same_uncharge_info(nrg, rg)) {
327 		nrg->from = rg->from;
328 
329 		list_del(&rg->link);
330 		kfree(rg);
331 	}
332 }
333 
334 static inline long
335 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
336 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
337 		     long *regions_needed)
338 {
339 	struct file_region *nrg;
340 
341 	if (!regions_needed) {
342 		nrg = get_file_region_entry_from_cache(map, from, to);
343 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
344 		list_add(&nrg->link, rg->link.prev);
345 		coalesce_file_region(map, nrg);
346 	} else
347 		*regions_needed += 1;
348 
349 	return to - from;
350 }
351 
352 /*
353  * Must be called with resv->lock held.
354  *
355  * Calling this with regions_needed != NULL will count the number of pages
356  * to be added but will not modify the linked list. And regions_needed will
357  * indicate the number of file_regions needed in the cache to carry out to add
358  * the regions for this range.
359  */
360 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
361 				     struct hugetlb_cgroup *h_cg,
362 				     struct hstate *h, long *regions_needed)
363 {
364 	long add = 0;
365 	struct list_head *head = &resv->regions;
366 	long last_accounted_offset = f;
367 	struct file_region *rg = NULL, *trg = NULL;
368 
369 	if (regions_needed)
370 		*regions_needed = 0;
371 
372 	/* In this loop, we essentially handle an entry for the range
373 	 * [last_accounted_offset, rg->from), at every iteration, with some
374 	 * bounds checking.
375 	 */
376 	list_for_each_entry_safe(rg, trg, head, link) {
377 		/* Skip irrelevant regions that start before our range. */
378 		if (rg->from < f) {
379 			/* If this region ends after the last accounted offset,
380 			 * then we need to update last_accounted_offset.
381 			 */
382 			if (rg->to > last_accounted_offset)
383 				last_accounted_offset = rg->to;
384 			continue;
385 		}
386 
387 		/* When we find a region that starts beyond our range, we've
388 		 * finished.
389 		 */
390 		if (rg->from >= t)
391 			break;
392 
393 		/* Add an entry for last_accounted_offset -> rg->from, and
394 		 * update last_accounted_offset.
395 		 */
396 		if (rg->from > last_accounted_offset)
397 			add += hugetlb_resv_map_add(resv, rg,
398 						    last_accounted_offset,
399 						    rg->from, h, h_cg,
400 						    regions_needed);
401 
402 		last_accounted_offset = rg->to;
403 	}
404 
405 	/* Handle the case where our range extends beyond
406 	 * last_accounted_offset.
407 	 */
408 	if (last_accounted_offset < t)
409 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
410 					    t, h, h_cg, regions_needed);
411 
412 	VM_BUG_ON(add < 0);
413 	return add;
414 }
415 
416 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
417  */
418 static int allocate_file_region_entries(struct resv_map *resv,
419 					int regions_needed)
420 	__must_hold(&resv->lock)
421 {
422 	struct list_head allocated_regions;
423 	int to_allocate = 0, i = 0;
424 	struct file_region *trg = NULL, *rg = NULL;
425 
426 	VM_BUG_ON(regions_needed < 0);
427 
428 	INIT_LIST_HEAD(&allocated_regions);
429 
430 	/*
431 	 * Check for sufficient descriptors in the cache to accommodate
432 	 * the number of in progress add operations plus regions_needed.
433 	 *
434 	 * This is a while loop because when we drop the lock, some other call
435 	 * to region_add or region_del may have consumed some region_entries,
436 	 * so we keep looping here until we finally have enough entries for
437 	 * (adds_in_progress + regions_needed).
438 	 */
439 	while (resv->region_cache_count <
440 	       (resv->adds_in_progress + regions_needed)) {
441 		to_allocate = resv->adds_in_progress + regions_needed -
442 			      resv->region_cache_count;
443 
444 		/* At this point, we should have enough entries in the cache
445 		 * for all the existings adds_in_progress. We should only be
446 		 * needing to allocate for regions_needed.
447 		 */
448 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
449 
450 		spin_unlock(&resv->lock);
451 		for (i = 0; i < to_allocate; i++) {
452 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
453 			if (!trg)
454 				goto out_of_memory;
455 			list_add(&trg->link, &allocated_regions);
456 		}
457 
458 		spin_lock(&resv->lock);
459 
460 		list_splice(&allocated_regions, &resv->region_cache);
461 		resv->region_cache_count += to_allocate;
462 	}
463 
464 	return 0;
465 
466 out_of_memory:
467 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
468 		list_del(&rg->link);
469 		kfree(rg);
470 	}
471 	return -ENOMEM;
472 }
473 
474 /*
475  * Add the huge page range represented by [f, t) to the reserve
476  * map.  Regions will be taken from the cache to fill in this range.
477  * Sufficient regions should exist in the cache due to the previous
478  * call to region_chg with the same range, but in some cases the cache will not
479  * have sufficient entries due to races with other code doing region_add or
480  * region_del.  The extra needed entries will be allocated.
481  *
482  * regions_needed is the out value provided by a previous call to region_chg.
483  *
484  * Return the number of new huge pages added to the map.  This number is greater
485  * than or equal to zero.  If file_region entries needed to be allocated for
486  * this operation and we were not able to allocate, it returns -ENOMEM.
487  * region_add of regions of length 1 never allocate file_regions and cannot
488  * fail; region_chg will always allocate at least 1 entry and a region_add for
489  * 1 page will only require at most 1 entry.
490  */
491 static long region_add(struct resv_map *resv, long f, long t,
492 		       long in_regions_needed, struct hstate *h,
493 		       struct hugetlb_cgroup *h_cg)
494 {
495 	long add = 0, actual_regions_needed = 0;
496 
497 	spin_lock(&resv->lock);
498 retry:
499 
500 	/* Count how many regions are actually needed to execute this add. */
501 	add_reservation_in_range(resv, f, t, NULL, NULL,
502 				 &actual_regions_needed);
503 
504 	/*
505 	 * Check for sufficient descriptors in the cache to accommodate
506 	 * this add operation. Note that actual_regions_needed may be greater
507 	 * than in_regions_needed, as the resv_map may have been modified since
508 	 * the region_chg call. In this case, we need to make sure that we
509 	 * allocate extra entries, such that we have enough for all the
510 	 * existing adds_in_progress, plus the excess needed for this
511 	 * operation.
512 	 */
513 	if (actual_regions_needed > in_regions_needed &&
514 	    resv->region_cache_count <
515 		    resv->adds_in_progress +
516 			    (actual_regions_needed - in_regions_needed)) {
517 		/* region_add operation of range 1 should never need to
518 		 * allocate file_region entries.
519 		 */
520 		VM_BUG_ON(t - f <= 1);
521 
522 		if (allocate_file_region_entries(
523 			    resv, actual_regions_needed - in_regions_needed)) {
524 			return -ENOMEM;
525 		}
526 
527 		goto retry;
528 	}
529 
530 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
531 
532 	resv->adds_in_progress -= in_regions_needed;
533 
534 	spin_unlock(&resv->lock);
535 	VM_BUG_ON(add < 0);
536 	return add;
537 }
538 
539 /*
540  * Examine the existing reserve map and determine how many
541  * huge pages in the specified range [f, t) are NOT currently
542  * represented.  This routine is called before a subsequent
543  * call to region_add that will actually modify the reserve
544  * map to add the specified range [f, t).  region_chg does
545  * not change the number of huge pages represented by the
546  * map.  A number of new file_region structures is added to the cache as a
547  * placeholder, for the subsequent region_add call to use. At least 1
548  * file_region structure is added.
549  *
550  * out_regions_needed is the number of regions added to the
551  * resv->adds_in_progress.  This value needs to be provided to a follow up call
552  * to region_add or region_abort for proper accounting.
553  *
554  * Returns the number of huge pages that need to be added to the existing
555  * reservation map for the range [f, t).  This number is greater or equal to
556  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
557  * is needed and can not be allocated.
558  */
559 static long region_chg(struct resv_map *resv, long f, long t,
560 		       long *out_regions_needed)
561 {
562 	long chg = 0;
563 
564 	spin_lock(&resv->lock);
565 
566 	/* Count how many hugepages in this range are NOT represented. */
567 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
568 				       out_regions_needed);
569 
570 	if (*out_regions_needed == 0)
571 		*out_regions_needed = 1;
572 
573 	if (allocate_file_region_entries(resv, *out_regions_needed))
574 		return -ENOMEM;
575 
576 	resv->adds_in_progress += *out_regions_needed;
577 
578 	spin_unlock(&resv->lock);
579 	return chg;
580 }
581 
582 /*
583  * Abort the in progress add operation.  The adds_in_progress field
584  * of the resv_map keeps track of the operations in progress between
585  * calls to region_chg and region_add.  Operations are sometimes
586  * aborted after the call to region_chg.  In such cases, region_abort
587  * is called to decrement the adds_in_progress counter. regions_needed
588  * is the value returned by the region_chg call, it is used to decrement
589  * the adds_in_progress counter.
590  *
591  * NOTE: The range arguments [f, t) are not needed or used in this
592  * routine.  They are kept to make reading the calling code easier as
593  * arguments will match the associated region_chg call.
594  */
595 static void region_abort(struct resv_map *resv, long f, long t,
596 			 long regions_needed)
597 {
598 	spin_lock(&resv->lock);
599 	VM_BUG_ON(!resv->region_cache_count);
600 	resv->adds_in_progress -= regions_needed;
601 	spin_unlock(&resv->lock);
602 }
603 
604 /*
605  * Delete the specified range [f, t) from the reserve map.  If the
606  * t parameter is LONG_MAX, this indicates that ALL regions after f
607  * should be deleted.  Locate the regions which intersect [f, t)
608  * and either trim, delete or split the existing regions.
609  *
610  * Returns the number of huge pages deleted from the reserve map.
611  * In the normal case, the return value is zero or more.  In the
612  * case where a region must be split, a new region descriptor must
613  * be allocated.  If the allocation fails, -ENOMEM will be returned.
614  * NOTE: If the parameter t == LONG_MAX, then we will never split
615  * a region and possibly return -ENOMEM.  Callers specifying
616  * t == LONG_MAX do not need to check for -ENOMEM error.
617  */
618 static long region_del(struct resv_map *resv, long f, long t)
619 {
620 	struct list_head *head = &resv->regions;
621 	struct file_region *rg, *trg;
622 	struct file_region *nrg = NULL;
623 	long del = 0;
624 
625 retry:
626 	spin_lock(&resv->lock);
627 	list_for_each_entry_safe(rg, trg, head, link) {
628 		/*
629 		 * Skip regions before the range to be deleted.  file_region
630 		 * ranges are normally of the form [from, to).  However, there
631 		 * may be a "placeholder" entry in the map which is of the form
632 		 * (from, to) with from == to.  Check for placeholder entries
633 		 * at the beginning of the range to be deleted.
634 		 */
635 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
636 			continue;
637 
638 		if (rg->from >= t)
639 			break;
640 
641 		if (f > rg->from && t < rg->to) { /* Must split region */
642 			/*
643 			 * Check for an entry in the cache before dropping
644 			 * lock and attempting allocation.
645 			 */
646 			if (!nrg &&
647 			    resv->region_cache_count > resv->adds_in_progress) {
648 				nrg = list_first_entry(&resv->region_cache,
649 							struct file_region,
650 							link);
651 				list_del(&nrg->link);
652 				resv->region_cache_count--;
653 			}
654 
655 			if (!nrg) {
656 				spin_unlock(&resv->lock);
657 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
658 				if (!nrg)
659 					return -ENOMEM;
660 				goto retry;
661 			}
662 
663 			del += t - f;
664 			hugetlb_cgroup_uncharge_file_region(
665 				resv, rg, t - f);
666 
667 			/* New entry for end of split region */
668 			nrg->from = t;
669 			nrg->to = rg->to;
670 
671 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
672 
673 			INIT_LIST_HEAD(&nrg->link);
674 
675 			/* Original entry is trimmed */
676 			rg->to = f;
677 
678 			list_add(&nrg->link, &rg->link);
679 			nrg = NULL;
680 			break;
681 		}
682 
683 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
684 			del += rg->to - rg->from;
685 			hugetlb_cgroup_uncharge_file_region(resv, rg,
686 							    rg->to - rg->from);
687 			list_del(&rg->link);
688 			kfree(rg);
689 			continue;
690 		}
691 
692 		if (f <= rg->from) {	/* Trim beginning of region */
693 			hugetlb_cgroup_uncharge_file_region(resv, rg,
694 							    t - rg->from);
695 
696 			del += t - rg->from;
697 			rg->from = t;
698 		} else {		/* Trim end of region */
699 			hugetlb_cgroup_uncharge_file_region(resv, rg,
700 							    rg->to - f);
701 
702 			del += rg->to - f;
703 			rg->to = f;
704 		}
705 	}
706 
707 	spin_unlock(&resv->lock);
708 	kfree(nrg);
709 	return del;
710 }
711 
712 /*
713  * A rare out of memory error was encountered which prevented removal of
714  * the reserve map region for a page.  The huge page itself was free'ed
715  * and removed from the page cache.  This routine will adjust the subpool
716  * usage count, and the global reserve count if needed.  By incrementing
717  * these counts, the reserve map entry which could not be deleted will
718  * appear as a "reserved" entry instead of simply dangling with incorrect
719  * counts.
720  */
721 void hugetlb_fix_reserve_counts(struct inode *inode)
722 {
723 	struct hugepage_subpool *spool = subpool_inode(inode);
724 	long rsv_adjust;
725 
726 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
727 	if (rsv_adjust) {
728 		struct hstate *h = hstate_inode(inode);
729 
730 		hugetlb_acct_memory(h, 1);
731 	}
732 }
733 
734 /*
735  * Count and return the number of huge pages in the reserve map
736  * that intersect with the range [f, t).
737  */
738 static long region_count(struct resv_map *resv, long f, long t)
739 {
740 	struct list_head *head = &resv->regions;
741 	struct file_region *rg;
742 	long chg = 0;
743 
744 	spin_lock(&resv->lock);
745 	/* Locate each segment we overlap with, and count that overlap. */
746 	list_for_each_entry(rg, head, link) {
747 		long seg_from;
748 		long seg_to;
749 
750 		if (rg->to <= f)
751 			continue;
752 		if (rg->from >= t)
753 			break;
754 
755 		seg_from = max(rg->from, f);
756 		seg_to = min(rg->to, t);
757 
758 		chg += seg_to - seg_from;
759 	}
760 	spin_unlock(&resv->lock);
761 
762 	return chg;
763 }
764 
765 /*
766  * Convert the address within this vma to the page offset within
767  * the mapping, in pagecache page units; huge pages here.
768  */
769 static pgoff_t vma_hugecache_offset(struct hstate *h,
770 			struct vm_area_struct *vma, unsigned long address)
771 {
772 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
773 			(vma->vm_pgoff >> huge_page_order(h));
774 }
775 
776 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
777 				     unsigned long address)
778 {
779 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
780 }
781 EXPORT_SYMBOL_GPL(linear_hugepage_index);
782 
783 /*
784  * Return the size of the pages allocated when backing a VMA. In the majority
785  * cases this will be same size as used by the page table entries.
786  */
787 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
788 {
789 	if (vma->vm_ops && vma->vm_ops->pagesize)
790 		return vma->vm_ops->pagesize(vma);
791 	return PAGE_SIZE;
792 }
793 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
794 
795 /*
796  * Return the page size being used by the MMU to back a VMA. In the majority
797  * of cases, the page size used by the kernel matches the MMU size. On
798  * architectures where it differs, an architecture-specific 'strong'
799  * version of this symbol is required.
800  */
801 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
802 {
803 	return vma_kernel_pagesize(vma);
804 }
805 
806 /*
807  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
808  * bits of the reservation map pointer, which are always clear due to
809  * alignment.
810  */
811 #define HPAGE_RESV_OWNER    (1UL << 0)
812 #define HPAGE_RESV_UNMAPPED (1UL << 1)
813 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
814 
815 /*
816  * These helpers are used to track how many pages are reserved for
817  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
818  * is guaranteed to have their future faults succeed.
819  *
820  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
821  * the reserve counters are updated with the hugetlb_lock held. It is safe
822  * to reset the VMA at fork() time as it is not in use yet and there is no
823  * chance of the global counters getting corrupted as a result of the values.
824  *
825  * The private mapping reservation is represented in a subtly different
826  * manner to a shared mapping.  A shared mapping has a region map associated
827  * with the underlying file, this region map represents the backing file
828  * pages which have ever had a reservation assigned which this persists even
829  * after the page is instantiated.  A private mapping has a region map
830  * associated with the original mmap which is attached to all VMAs which
831  * reference it, this region map represents those offsets which have consumed
832  * reservation ie. where pages have been instantiated.
833  */
834 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
835 {
836 	return (unsigned long)vma->vm_private_data;
837 }
838 
839 static void set_vma_private_data(struct vm_area_struct *vma,
840 							unsigned long value)
841 {
842 	vma->vm_private_data = (void *)value;
843 }
844 
845 static void
846 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
847 					  struct hugetlb_cgroup *h_cg,
848 					  struct hstate *h)
849 {
850 #ifdef CONFIG_CGROUP_HUGETLB
851 	if (!h_cg || !h) {
852 		resv_map->reservation_counter = NULL;
853 		resv_map->pages_per_hpage = 0;
854 		resv_map->css = NULL;
855 	} else {
856 		resv_map->reservation_counter =
857 			&h_cg->rsvd_hugepage[hstate_index(h)];
858 		resv_map->pages_per_hpage = pages_per_huge_page(h);
859 		resv_map->css = &h_cg->css;
860 	}
861 #endif
862 }
863 
864 struct resv_map *resv_map_alloc(void)
865 {
866 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
867 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
868 
869 	if (!resv_map || !rg) {
870 		kfree(resv_map);
871 		kfree(rg);
872 		return NULL;
873 	}
874 
875 	kref_init(&resv_map->refs);
876 	spin_lock_init(&resv_map->lock);
877 	INIT_LIST_HEAD(&resv_map->regions);
878 
879 	resv_map->adds_in_progress = 0;
880 	/*
881 	 * Initialize these to 0. On shared mappings, 0's here indicate these
882 	 * fields don't do cgroup accounting. On private mappings, these will be
883 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
884 	 * reservations are to be un-charged from here.
885 	 */
886 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
887 
888 	INIT_LIST_HEAD(&resv_map->region_cache);
889 	list_add(&rg->link, &resv_map->region_cache);
890 	resv_map->region_cache_count = 1;
891 
892 	return resv_map;
893 }
894 
895 void resv_map_release(struct kref *ref)
896 {
897 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
898 	struct list_head *head = &resv_map->region_cache;
899 	struct file_region *rg, *trg;
900 
901 	/* Clear out any active regions before we release the map. */
902 	region_del(resv_map, 0, LONG_MAX);
903 
904 	/* ... and any entries left in the cache */
905 	list_for_each_entry_safe(rg, trg, head, link) {
906 		list_del(&rg->link);
907 		kfree(rg);
908 	}
909 
910 	VM_BUG_ON(resv_map->adds_in_progress);
911 
912 	kfree(resv_map);
913 }
914 
915 static inline struct resv_map *inode_resv_map(struct inode *inode)
916 {
917 	/*
918 	 * At inode evict time, i_mapping may not point to the original
919 	 * address space within the inode.  This original address space
920 	 * contains the pointer to the resv_map.  So, always use the
921 	 * address space embedded within the inode.
922 	 * The VERY common case is inode->mapping == &inode->i_data but,
923 	 * this may not be true for device special inodes.
924 	 */
925 	return (struct resv_map *)(&inode->i_data)->private_data;
926 }
927 
928 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
929 {
930 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
931 	if (vma->vm_flags & VM_MAYSHARE) {
932 		struct address_space *mapping = vma->vm_file->f_mapping;
933 		struct inode *inode = mapping->host;
934 
935 		return inode_resv_map(inode);
936 
937 	} else {
938 		return (struct resv_map *)(get_vma_private_data(vma) &
939 							~HPAGE_RESV_MASK);
940 	}
941 }
942 
943 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
944 {
945 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947 
948 	set_vma_private_data(vma, (get_vma_private_data(vma) &
949 				HPAGE_RESV_MASK) | (unsigned long)map);
950 }
951 
952 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
953 {
954 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
955 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
956 
957 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
958 }
959 
960 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
961 {
962 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963 
964 	return (get_vma_private_data(vma) & flag) != 0;
965 }
966 
967 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
968 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
969 {
970 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
971 	if (!(vma->vm_flags & VM_MAYSHARE))
972 		vma->vm_private_data = (void *)0;
973 }
974 
975 /* Returns true if the VMA has associated reserve pages */
976 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
977 {
978 	if (vma->vm_flags & VM_NORESERVE) {
979 		/*
980 		 * This address is already reserved by other process(chg == 0),
981 		 * so, we should decrement reserved count. Without decrementing,
982 		 * reserve count remains after releasing inode, because this
983 		 * allocated page will go into page cache and is regarded as
984 		 * coming from reserved pool in releasing step.  Currently, we
985 		 * don't have any other solution to deal with this situation
986 		 * properly, so add work-around here.
987 		 */
988 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
989 			return true;
990 		else
991 			return false;
992 	}
993 
994 	/* Shared mappings always use reserves */
995 	if (vma->vm_flags & VM_MAYSHARE) {
996 		/*
997 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
998 		 * be a region map for all pages.  The only situation where
999 		 * there is no region map is if a hole was punched via
1000 		 * fallocate.  In this case, there really are no reserves to
1001 		 * use.  This situation is indicated if chg != 0.
1002 		 */
1003 		if (chg)
1004 			return false;
1005 		else
1006 			return true;
1007 	}
1008 
1009 	/*
1010 	 * Only the process that called mmap() has reserves for
1011 	 * private mappings.
1012 	 */
1013 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1014 		/*
1015 		 * Like the shared case above, a hole punch or truncate
1016 		 * could have been performed on the private mapping.
1017 		 * Examine the value of chg to determine if reserves
1018 		 * actually exist or were previously consumed.
1019 		 * Very Subtle - The value of chg comes from a previous
1020 		 * call to vma_needs_reserves().  The reserve map for
1021 		 * private mappings has different (opposite) semantics
1022 		 * than that of shared mappings.  vma_needs_reserves()
1023 		 * has already taken this difference in semantics into
1024 		 * account.  Therefore, the meaning of chg is the same
1025 		 * as in the shared case above.  Code could easily be
1026 		 * combined, but keeping it separate draws attention to
1027 		 * subtle differences.
1028 		 */
1029 		if (chg)
1030 			return false;
1031 		else
1032 			return true;
1033 	}
1034 
1035 	return false;
1036 }
1037 
1038 static void enqueue_huge_page(struct hstate *h, struct page *page)
1039 {
1040 	int nid = page_to_nid(page);
1041 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1042 	h->free_huge_pages++;
1043 	h->free_huge_pages_node[nid]++;
1044 	SetHPageFreed(page);
1045 }
1046 
1047 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1048 {
1049 	struct page *page;
1050 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1051 
1052 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1053 		if (nocma && is_migrate_cma_page(page))
1054 			continue;
1055 
1056 		if (PageHWPoison(page))
1057 			continue;
1058 
1059 		list_move(&page->lru, &h->hugepage_activelist);
1060 		set_page_refcounted(page);
1061 		ClearHPageFreed(page);
1062 		h->free_huge_pages--;
1063 		h->free_huge_pages_node[nid]--;
1064 		return page;
1065 	}
1066 
1067 	return NULL;
1068 }
1069 
1070 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1071 		nodemask_t *nmask)
1072 {
1073 	unsigned int cpuset_mems_cookie;
1074 	struct zonelist *zonelist;
1075 	struct zone *zone;
1076 	struct zoneref *z;
1077 	int node = NUMA_NO_NODE;
1078 
1079 	zonelist = node_zonelist(nid, gfp_mask);
1080 
1081 retry_cpuset:
1082 	cpuset_mems_cookie = read_mems_allowed_begin();
1083 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1084 		struct page *page;
1085 
1086 		if (!cpuset_zone_allowed(zone, gfp_mask))
1087 			continue;
1088 		/*
1089 		 * no need to ask again on the same node. Pool is node rather than
1090 		 * zone aware
1091 		 */
1092 		if (zone_to_nid(zone) == node)
1093 			continue;
1094 		node = zone_to_nid(zone);
1095 
1096 		page = dequeue_huge_page_node_exact(h, node);
1097 		if (page)
1098 			return page;
1099 	}
1100 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1101 		goto retry_cpuset;
1102 
1103 	return NULL;
1104 }
1105 
1106 static struct page *dequeue_huge_page_vma(struct hstate *h,
1107 				struct vm_area_struct *vma,
1108 				unsigned long address, int avoid_reserve,
1109 				long chg)
1110 {
1111 	struct page *page;
1112 	struct mempolicy *mpol;
1113 	gfp_t gfp_mask;
1114 	nodemask_t *nodemask;
1115 	int nid;
1116 
1117 	/*
1118 	 * A child process with MAP_PRIVATE mappings created by their parent
1119 	 * have no page reserves. This check ensures that reservations are
1120 	 * not "stolen". The child may still get SIGKILLed
1121 	 */
1122 	if (!vma_has_reserves(vma, chg) &&
1123 			h->free_huge_pages - h->resv_huge_pages == 0)
1124 		goto err;
1125 
1126 	/* If reserves cannot be used, ensure enough pages are in the pool */
1127 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1128 		goto err;
1129 
1130 	gfp_mask = htlb_alloc_mask(h);
1131 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1132 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1133 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1134 		SetHPageRestoreReserve(page);
1135 		h->resv_huge_pages--;
1136 	}
1137 
1138 	mpol_cond_put(mpol);
1139 	return page;
1140 
1141 err:
1142 	return NULL;
1143 }
1144 
1145 /*
1146  * common helper functions for hstate_next_node_to_{alloc|free}.
1147  * We may have allocated or freed a huge page based on a different
1148  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1149  * be outside of *nodes_allowed.  Ensure that we use an allowed
1150  * node for alloc or free.
1151  */
1152 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1153 {
1154 	nid = next_node_in(nid, *nodes_allowed);
1155 	VM_BUG_ON(nid >= MAX_NUMNODES);
1156 
1157 	return nid;
1158 }
1159 
1160 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1161 {
1162 	if (!node_isset(nid, *nodes_allowed))
1163 		nid = next_node_allowed(nid, nodes_allowed);
1164 	return nid;
1165 }
1166 
1167 /*
1168  * returns the previously saved node ["this node"] from which to
1169  * allocate a persistent huge page for the pool and advance the
1170  * next node from which to allocate, handling wrap at end of node
1171  * mask.
1172  */
1173 static int hstate_next_node_to_alloc(struct hstate *h,
1174 					nodemask_t *nodes_allowed)
1175 {
1176 	int nid;
1177 
1178 	VM_BUG_ON(!nodes_allowed);
1179 
1180 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1181 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1182 
1183 	return nid;
1184 }
1185 
1186 /*
1187  * helper for free_pool_huge_page() - return the previously saved
1188  * node ["this node"] from which to free a huge page.  Advance the
1189  * next node id whether or not we find a free huge page to free so
1190  * that the next attempt to free addresses the next node.
1191  */
1192 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1193 {
1194 	int nid;
1195 
1196 	VM_BUG_ON(!nodes_allowed);
1197 
1198 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1199 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1200 
1201 	return nid;
1202 }
1203 
1204 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1205 	for (nr_nodes = nodes_weight(*mask);				\
1206 		nr_nodes > 0 &&						\
1207 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1208 		nr_nodes--)
1209 
1210 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1211 	for (nr_nodes = nodes_weight(*mask);				\
1212 		nr_nodes > 0 &&						\
1213 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1214 		nr_nodes--)
1215 
1216 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1217 static void destroy_compound_gigantic_page(struct page *page,
1218 					unsigned int order)
1219 {
1220 	int i;
1221 	int nr_pages = 1 << order;
1222 	struct page *p = page + 1;
1223 
1224 	atomic_set(compound_mapcount_ptr(page), 0);
1225 	atomic_set(compound_pincount_ptr(page), 0);
1226 
1227 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1228 		clear_compound_head(p);
1229 		set_page_refcounted(p);
1230 	}
1231 
1232 	set_compound_order(page, 0);
1233 	page[1].compound_nr = 0;
1234 	__ClearPageHead(page);
1235 }
1236 
1237 static void free_gigantic_page(struct page *page, unsigned int order)
1238 {
1239 	/*
1240 	 * If the page isn't allocated using the cma allocator,
1241 	 * cma_release() returns false.
1242 	 */
1243 #ifdef CONFIG_CMA
1244 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1245 		return;
1246 #endif
1247 
1248 	free_contig_range(page_to_pfn(page), 1 << order);
1249 }
1250 
1251 #ifdef CONFIG_CONTIG_ALLOC
1252 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1253 		int nid, nodemask_t *nodemask)
1254 {
1255 	unsigned long nr_pages = 1UL << huge_page_order(h);
1256 	if (nid == NUMA_NO_NODE)
1257 		nid = numa_mem_id();
1258 
1259 #ifdef CONFIG_CMA
1260 	{
1261 		struct page *page;
1262 		int node;
1263 
1264 		if (hugetlb_cma[nid]) {
1265 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1266 					huge_page_order(h), true);
1267 			if (page)
1268 				return page;
1269 		}
1270 
1271 		if (!(gfp_mask & __GFP_THISNODE)) {
1272 			for_each_node_mask(node, *nodemask) {
1273 				if (node == nid || !hugetlb_cma[node])
1274 					continue;
1275 
1276 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1277 						huge_page_order(h), true);
1278 				if (page)
1279 					return page;
1280 			}
1281 		}
1282 	}
1283 #endif
1284 
1285 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1286 }
1287 
1288 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1290 #else /* !CONFIG_CONTIG_ALLOC */
1291 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1292 					int nid, nodemask_t *nodemask)
1293 {
1294 	return NULL;
1295 }
1296 #endif /* CONFIG_CONTIG_ALLOC */
1297 
1298 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300 					int nid, nodemask_t *nodemask)
1301 {
1302 	return NULL;
1303 }
1304 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1305 static inline void destroy_compound_gigantic_page(struct page *page,
1306 						unsigned int order) { }
1307 #endif
1308 
1309 static void update_and_free_page(struct hstate *h, struct page *page)
1310 {
1311 	int i;
1312 	struct page *subpage = page;
1313 
1314 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1315 		return;
1316 
1317 	h->nr_huge_pages--;
1318 	h->nr_huge_pages_node[page_to_nid(page)]--;
1319 	for (i = 0; i < pages_per_huge_page(h);
1320 	     i++, subpage = mem_map_next(subpage, page, i)) {
1321 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1322 				1 << PG_referenced | 1 << PG_dirty |
1323 				1 << PG_active | 1 << PG_private |
1324 				1 << PG_writeback);
1325 	}
1326 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1327 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1328 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1329 	set_page_refcounted(page);
1330 	if (hstate_is_gigantic(h)) {
1331 		/*
1332 		 * Temporarily drop the hugetlb_lock, because
1333 		 * we might block in free_gigantic_page().
1334 		 */
1335 		spin_unlock(&hugetlb_lock);
1336 		destroy_compound_gigantic_page(page, huge_page_order(h));
1337 		free_gigantic_page(page, huge_page_order(h));
1338 		spin_lock(&hugetlb_lock);
1339 	} else {
1340 		__free_pages(page, huge_page_order(h));
1341 	}
1342 }
1343 
1344 struct hstate *size_to_hstate(unsigned long size)
1345 {
1346 	struct hstate *h;
1347 
1348 	for_each_hstate(h) {
1349 		if (huge_page_size(h) == size)
1350 			return h;
1351 	}
1352 	return NULL;
1353 }
1354 
1355 static void __free_huge_page(struct page *page)
1356 {
1357 	/*
1358 	 * Can't pass hstate in here because it is called from the
1359 	 * compound page destructor.
1360 	 */
1361 	struct hstate *h = page_hstate(page);
1362 	int nid = page_to_nid(page);
1363 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1364 	bool restore_reserve;
1365 
1366 	VM_BUG_ON_PAGE(page_count(page), page);
1367 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1368 
1369 	hugetlb_set_page_subpool(page, NULL);
1370 	page->mapping = NULL;
1371 	restore_reserve = HPageRestoreReserve(page);
1372 	ClearHPageRestoreReserve(page);
1373 
1374 	/*
1375 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1376 	 * reservation.  If the page was associated with a subpool, there
1377 	 * would have been a page reserved in the subpool before allocation
1378 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1379 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1380 	 * remove the reserved page from the subpool.
1381 	 */
1382 	if (!restore_reserve) {
1383 		/*
1384 		 * A return code of zero implies that the subpool will be
1385 		 * under its minimum size if the reservation is not restored
1386 		 * after page is free.  Therefore, force restore_reserve
1387 		 * operation.
1388 		 */
1389 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1390 			restore_reserve = true;
1391 	}
1392 
1393 	spin_lock(&hugetlb_lock);
1394 	ClearHPageMigratable(page);
1395 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1396 				     pages_per_huge_page(h), page);
1397 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1398 					  pages_per_huge_page(h), page);
1399 	if (restore_reserve)
1400 		h->resv_huge_pages++;
1401 
1402 	if (HPageTemporary(page)) {
1403 		list_del(&page->lru);
1404 		ClearHPageTemporary(page);
1405 		update_and_free_page(h, page);
1406 	} else if (h->surplus_huge_pages_node[nid]) {
1407 		/* remove the page from active list */
1408 		list_del(&page->lru);
1409 		update_and_free_page(h, page);
1410 		h->surplus_huge_pages--;
1411 		h->surplus_huge_pages_node[nid]--;
1412 	} else {
1413 		arch_clear_hugepage_flags(page);
1414 		enqueue_huge_page(h, page);
1415 	}
1416 	spin_unlock(&hugetlb_lock);
1417 }
1418 
1419 /*
1420  * As free_huge_page() can be called from a non-task context, we have
1421  * to defer the actual freeing in a workqueue to prevent potential
1422  * hugetlb_lock deadlock.
1423  *
1424  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1425  * be freed and frees them one-by-one. As the page->mapping pointer is
1426  * going to be cleared in __free_huge_page() anyway, it is reused as the
1427  * llist_node structure of a lockless linked list of huge pages to be freed.
1428  */
1429 static LLIST_HEAD(hpage_freelist);
1430 
1431 static void free_hpage_workfn(struct work_struct *work)
1432 {
1433 	struct llist_node *node;
1434 	struct page *page;
1435 
1436 	node = llist_del_all(&hpage_freelist);
1437 
1438 	while (node) {
1439 		page = container_of((struct address_space **)node,
1440 				     struct page, mapping);
1441 		node = node->next;
1442 		__free_huge_page(page);
1443 	}
1444 }
1445 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1446 
1447 void free_huge_page(struct page *page)
1448 {
1449 	/*
1450 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1451 	 */
1452 	if (!in_task()) {
1453 		/*
1454 		 * Only call schedule_work() if hpage_freelist is previously
1455 		 * empty. Otherwise, schedule_work() had been called but the
1456 		 * workfn hasn't retrieved the list yet.
1457 		 */
1458 		if (llist_add((struct llist_node *)&page->mapping,
1459 			      &hpage_freelist))
1460 			schedule_work(&free_hpage_work);
1461 		return;
1462 	}
1463 
1464 	__free_huge_page(page);
1465 }
1466 
1467 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1468 {
1469 	INIT_LIST_HEAD(&page->lru);
1470 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1471 	hugetlb_set_page_subpool(page, NULL);
1472 	set_hugetlb_cgroup(page, NULL);
1473 	set_hugetlb_cgroup_rsvd(page, NULL);
1474 	spin_lock(&hugetlb_lock);
1475 	h->nr_huge_pages++;
1476 	h->nr_huge_pages_node[nid]++;
1477 	ClearHPageFreed(page);
1478 	spin_unlock(&hugetlb_lock);
1479 }
1480 
1481 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1482 {
1483 	int i;
1484 	int nr_pages = 1 << order;
1485 	struct page *p = page + 1;
1486 
1487 	/* we rely on prep_new_huge_page to set the destructor */
1488 	set_compound_order(page, order);
1489 	__ClearPageReserved(page);
1490 	__SetPageHead(page);
1491 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1492 		/*
1493 		 * For gigantic hugepages allocated through bootmem at
1494 		 * boot, it's safer to be consistent with the not-gigantic
1495 		 * hugepages and clear the PG_reserved bit from all tail pages
1496 		 * too.  Otherwise drivers using get_user_pages() to access tail
1497 		 * pages may get the reference counting wrong if they see
1498 		 * PG_reserved set on a tail page (despite the head page not
1499 		 * having PG_reserved set).  Enforcing this consistency between
1500 		 * head and tail pages allows drivers to optimize away a check
1501 		 * on the head page when they need know if put_page() is needed
1502 		 * after get_user_pages().
1503 		 */
1504 		__ClearPageReserved(p);
1505 		set_page_count(p, 0);
1506 		set_compound_head(p, page);
1507 	}
1508 	atomic_set(compound_mapcount_ptr(page), -1);
1509 	atomic_set(compound_pincount_ptr(page), 0);
1510 }
1511 
1512 /*
1513  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1514  * transparent huge pages.  See the PageTransHuge() documentation for more
1515  * details.
1516  */
1517 int PageHuge(struct page *page)
1518 {
1519 	if (!PageCompound(page))
1520 		return 0;
1521 
1522 	page = compound_head(page);
1523 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1524 }
1525 EXPORT_SYMBOL_GPL(PageHuge);
1526 
1527 /*
1528  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1529  * normal or transparent huge pages.
1530  */
1531 int PageHeadHuge(struct page *page_head)
1532 {
1533 	if (!PageHead(page_head))
1534 		return 0;
1535 
1536 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1537 }
1538 
1539 /*
1540  * Find and lock address space (mapping) in write mode.
1541  *
1542  * Upon entry, the page is locked which means that page_mapping() is
1543  * stable.  Due to locking order, we can only trylock_write.  If we can
1544  * not get the lock, simply return NULL to caller.
1545  */
1546 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1547 {
1548 	struct address_space *mapping = page_mapping(hpage);
1549 
1550 	if (!mapping)
1551 		return mapping;
1552 
1553 	if (i_mmap_trylock_write(mapping))
1554 		return mapping;
1555 
1556 	return NULL;
1557 }
1558 
1559 pgoff_t __basepage_index(struct page *page)
1560 {
1561 	struct page *page_head = compound_head(page);
1562 	pgoff_t index = page_index(page_head);
1563 	unsigned long compound_idx;
1564 
1565 	if (!PageHuge(page_head))
1566 		return page_index(page);
1567 
1568 	if (compound_order(page_head) >= MAX_ORDER)
1569 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1570 	else
1571 		compound_idx = page - page_head;
1572 
1573 	return (index << compound_order(page_head)) + compound_idx;
1574 }
1575 
1576 static struct page *alloc_buddy_huge_page(struct hstate *h,
1577 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1578 		nodemask_t *node_alloc_noretry)
1579 {
1580 	int order = huge_page_order(h);
1581 	struct page *page;
1582 	bool alloc_try_hard = true;
1583 
1584 	/*
1585 	 * By default we always try hard to allocate the page with
1586 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1587 	 * a loop (to adjust global huge page counts) and previous allocation
1588 	 * failed, do not continue to try hard on the same node.  Use the
1589 	 * node_alloc_noretry bitmap to manage this state information.
1590 	 */
1591 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1592 		alloc_try_hard = false;
1593 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1594 	if (alloc_try_hard)
1595 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1596 	if (nid == NUMA_NO_NODE)
1597 		nid = numa_mem_id();
1598 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1599 	if (page)
1600 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1601 	else
1602 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1603 
1604 	/*
1605 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1606 	 * indicates an overall state change.  Clear bit so that we resume
1607 	 * normal 'try hard' allocations.
1608 	 */
1609 	if (node_alloc_noretry && page && !alloc_try_hard)
1610 		node_clear(nid, *node_alloc_noretry);
1611 
1612 	/*
1613 	 * If we tried hard to get a page but failed, set bit so that
1614 	 * subsequent attempts will not try as hard until there is an
1615 	 * overall state change.
1616 	 */
1617 	if (node_alloc_noretry && !page && alloc_try_hard)
1618 		node_set(nid, *node_alloc_noretry);
1619 
1620 	return page;
1621 }
1622 
1623 /*
1624  * Common helper to allocate a fresh hugetlb page. All specific allocators
1625  * should use this function to get new hugetlb pages
1626  */
1627 static struct page *alloc_fresh_huge_page(struct hstate *h,
1628 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1629 		nodemask_t *node_alloc_noretry)
1630 {
1631 	struct page *page;
1632 
1633 	if (hstate_is_gigantic(h))
1634 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1635 	else
1636 		page = alloc_buddy_huge_page(h, gfp_mask,
1637 				nid, nmask, node_alloc_noretry);
1638 	if (!page)
1639 		return NULL;
1640 
1641 	if (hstate_is_gigantic(h))
1642 		prep_compound_gigantic_page(page, huge_page_order(h));
1643 	prep_new_huge_page(h, page, page_to_nid(page));
1644 
1645 	return page;
1646 }
1647 
1648 /*
1649  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1650  * manner.
1651  */
1652 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1653 				nodemask_t *node_alloc_noretry)
1654 {
1655 	struct page *page;
1656 	int nr_nodes, node;
1657 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1658 
1659 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1660 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1661 						node_alloc_noretry);
1662 		if (page)
1663 			break;
1664 	}
1665 
1666 	if (!page)
1667 		return 0;
1668 
1669 	put_page(page); /* free it into the hugepage allocator */
1670 
1671 	return 1;
1672 }
1673 
1674 /*
1675  * Free huge page from pool from next node to free.
1676  * Attempt to keep persistent huge pages more or less
1677  * balanced over allowed nodes.
1678  * Called with hugetlb_lock locked.
1679  */
1680 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1681 							 bool acct_surplus)
1682 {
1683 	int nr_nodes, node;
1684 	int ret = 0;
1685 
1686 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1687 		/*
1688 		 * If we're returning unused surplus pages, only examine
1689 		 * nodes with surplus pages.
1690 		 */
1691 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1692 		    !list_empty(&h->hugepage_freelists[node])) {
1693 			struct page *page =
1694 				list_entry(h->hugepage_freelists[node].next,
1695 					  struct page, lru);
1696 			list_del(&page->lru);
1697 			h->free_huge_pages--;
1698 			h->free_huge_pages_node[node]--;
1699 			if (acct_surplus) {
1700 				h->surplus_huge_pages--;
1701 				h->surplus_huge_pages_node[node]--;
1702 			}
1703 			update_and_free_page(h, page);
1704 			ret = 1;
1705 			break;
1706 		}
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 /*
1713  * Dissolve a given free hugepage into free buddy pages. This function does
1714  * nothing for in-use hugepages and non-hugepages.
1715  * This function returns values like below:
1716  *
1717  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1718  *          (allocated or reserved.)
1719  *       0: successfully dissolved free hugepages or the page is not a
1720  *          hugepage (considered as already dissolved)
1721  */
1722 int dissolve_free_huge_page(struct page *page)
1723 {
1724 	int rc = -EBUSY;
1725 
1726 retry:
1727 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1728 	if (!PageHuge(page))
1729 		return 0;
1730 
1731 	spin_lock(&hugetlb_lock);
1732 	if (!PageHuge(page)) {
1733 		rc = 0;
1734 		goto out;
1735 	}
1736 
1737 	if (!page_count(page)) {
1738 		struct page *head = compound_head(page);
1739 		struct hstate *h = page_hstate(head);
1740 		int nid = page_to_nid(head);
1741 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1742 			goto out;
1743 
1744 		/*
1745 		 * We should make sure that the page is already on the free list
1746 		 * when it is dissolved.
1747 		 */
1748 		if (unlikely(!HPageFreed(head))) {
1749 			spin_unlock(&hugetlb_lock);
1750 			cond_resched();
1751 
1752 			/*
1753 			 * Theoretically, we should return -EBUSY when we
1754 			 * encounter this race. In fact, we have a chance
1755 			 * to successfully dissolve the page if we do a
1756 			 * retry. Because the race window is quite small.
1757 			 * If we seize this opportunity, it is an optimization
1758 			 * for increasing the success rate of dissolving page.
1759 			 */
1760 			goto retry;
1761 		}
1762 
1763 		/*
1764 		 * Move PageHWPoison flag from head page to the raw error page,
1765 		 * which makes any subpages rather than the error page reusable.
1766 		 */
1767 		if (PageHWPoison(head) && page != head) {
1768 			SetPageHWPoison(page);
1769 			ClearPageHWPoison(head);
1770 		}
1771 		list_del(&head->lru);
1772 		h->free_huge_pages--;
1773 		h->free_huge_pages_node[nid]--;
1774 		h->max_huge_pages--;
1775 		update_and_free_page(h, head);
1776 		rc = 0;
1777 	}
1778 out:
1779 	spin_unlock(&hugetlb_lock);
1780 	return rc;
1781 }
1782 
1783 /*
1784  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1785  * make specified memory blocks removable from the system.
1786  * Note that this will dissolve a free gigantic hugepage completely, if any
1787  * part of it lies within the given range.
1788  * Also note that if dissolve_free_huge_page() returns with an error, all
1789  * free hugepages that were dissolved before that error are lost.
1790  */
1791 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1792 {
1793 	unsigned long pfn;
1794 	struct page *page;
1795 	int rc = 0;
1796 
1797 	if (!hugepages_supported())
1798 		return rc;
1799 
1800 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1801 		page = pfn_to_page(pfn);
1802 		rc = dissolve_free_huge_page(page);
1803 		if (rc)
1804 			break;
1805 	}
1806 
1807 	return rc;
1808 }
1809 
1810 /*
1811  * Allocates a fresh surplus page from the page allocator.
1812  */
1813 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1814 		int nid, nodemask_t *nmask)
1815 {
1816 	struct page *page = NULL;
1817 
1818 	if (hstate_is_gigantic(h))
1819 		return NULL;
1820 
1821 	spin_lock(&hugetlb_lock);
1822 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1823 		goto out_unlock;
1824 	spin_unlock(&hugetlb_lock);
1825 
1826 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1827 	if (!page)
1828 		return NULL;
1829 
1830 	spin_lock(&hugetlb_lock);
1831 	/*
1832 	 * We could have raced with the pool size change.
1833 	 * Double check that and simply deallocate the new page
1834 	 * if we would end up overcommiting the surpluses. Abuse
1835 	 * temporary page to workaround the nasty free_huge_page
1836 	 * codeflow
1837 	 */
1838 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1839 		SetHPageTemporary(page);
1840 		spin_unlock(&hugetlb_lock);
1841 		put_page(page);
1842 		return NULL;
1843 	} else {
1844 		h->surplus_huge_pages++;
1845 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1846 	}
1847 
1848 out_unlock:
1849 	spin_unlock(&hugetlb_lock);
1850 
1851 	return page;
1852 }
1853 
1854 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1855 				     int nid, nodemask_t *nmask)
1856 {
1857 	struct page *page;
1858 
1859 	if (hstate_is_gigantic(h))
1860 		return NULL;
1861 
1862 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1863 	if (!page)
1864 		return NULL;
1865 
1866 	/*
1867 	 * We do not account these pages as surplus because they are only
1868 	 * temporary and will be released properly on the last reference
1869 	 */
1870 	SetHPageTemporary(page);
1871 
1872 	return page;
1873 }
1874 
1875 /*
1876  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1877  */
1878 static
1879 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1880 		struct vm_area_struct *vma, unsigned long addr)
1881 {
1882 	struct page *page;
1883 	struct mempolicy *mpol;
1884 	gfp_t gfp_mask = htlb_alloc_mask(h);
1885 	int nid;
1886 	nodemask_t *nodemask;
1887 
1888 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1889 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1890 	mpol_cond_put(mpol);
1891 
1892 	return page;
1893 }
1894 
1895 /* page migration callback function */
1896 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1897 		nodemask_t *nmask, gfp_t gfp_mask)
1898 {
1899 	spin_lock(&hugetlb_lock);
1900 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1901 		struct page *page;
1902 
1903 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1904 		if (page) {
1905 			spin_unlock(&hugetlb_lock);
1906 			return page;
1907 		}
1908 	}
1909 	spin_unlock(&hugetlb_lock);
1910 
1911 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1912 }
1913 
1914 /* mempolicy aware migration callback */
1915 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1916 		unsigned long address)
1917 {
1918 	struct mempolicy *mpol;
1919 	nodemask_t *nodemask;
1920 	struct page *page;
1921 	gfp_t gfp_mask;
1922 	int node;
1923 
1924 	gfp_mask = htlb_alloc_mask(h);
1925 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1926 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1927 	mpol_cond_put(mpol);
1928 
1929 	return page;
1930 }
1931 
1932 /*
1933  * Increase the hugetlb pool such that it can accommodate a reservation
1934  * of size 'delta'.
1935  */
1936 static int gather_surplus_pages(struct hstate *h, long delta)
1937 	__must_hold(&hugetlb_lock)
1938 {
1939 	struct list_head surplus_list;
1940 	struct page *page, *tmp;
1941 	int ret;
1942 	long i;
1943 	long needed, allocated;
1944 	bool alloc_ok = true;
1945 
1946 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1947 	if (needed <= 0) {
1948 		h->resv_huge_pages += delta;
1949 		return 0;
1950 	}
1951 
1952 	allocated = 0;
1953 	INIT_LIST_HEAD(&surplus_list);
1954 
1955 	ret = -ENOMEM;
1956 retry:
1957 	spin_unlock(&hugetlb_lock);
1958 	for (i = 0; i < needed; i++) {
1959 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1960 				NUMA_NO_NODE, NULL);
1961 		if (!page) {
1962 			alloc_ok = false;
1963 			break;
1964 		}
1965 		list_add(&page->lru, &surplus_list);
1966 		cond_resched();
1967 	}
1968 	allocated += i;
1969 
1970 	/*
1971 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1972 	 * because either resv_huge_pages or free_huge_pages may have changed.
1973 	 */
1974 	spin_lock(&hugetlb_lock);
1975 	needed = (h->resv_huge_pages + delta) -
1976 			(h->free_huge_pages + allocated);
1977 	if (needed > 0) {
1978 		if (alloc_ok)
1979 			goto retry;
1980 		/*
1981 		 * We were not able to allocate enough pages to
1982 		 * satisfy the entire reservation so we free what
1983 		 * we've allocated so far.
1984 		 */
1985 		goto free;
1986 	}
1987 	/*
1988 	 * The surplus_list now contains _at_least_ the number of extra pages
1989 	 * needed to accommodate the reservation.  Add the appropriate number
1990 	 * of pages to the hugetlb pool and free the extras back to the buddy
1991 	 * allocator.  Commit the entire reservation here to prevent another
1992 	 * process from stealing the pages as they are added to the pool but
1993 	 * before they are reserved.
1994 	 */
1995 	needed += allocated;
1996 	h->resv_huge_pages += delta;
1997 	ret = 0;
1998 
1999 	/* Free the needed pages to the hugetlb pool */
2000 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2001 		int zeroed;
2002 
2003 		if ((--needed) < 0)
2004 			break;
2005 		/*
2006 		 * This page is now managed by the hugetlb allocator and has
2007 		 * no users -- drop the buddy allocator's reference.
2008 		 */
2009 		zeroed = put_page_testzero(page);
2010 		VM_BUG_ON_PAGE(!zeroed, page);
2011 		enqueue_huge_page(h, page);
2012 	}
2013 free:
2014 	spin_unlock(&hugetlb_lock);
2015 
2016 	/* Free unnecessary surplus pages to the buddy allocator */
2017 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2018 		put_page(page);
2019 	spin_lock(&hugetlb_lock);
2020 
2021 	return ret;
2022 }
2023 
2024 /*
2025  * This routine has two main purposes:
2026  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2027  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2028  *    to the associated reservation map.
2029  * 2) Free any unused surplus pages that may have been allocated to satisfy
2030  *    the reservation.  As many as unused_resv_pages may be freed.
2031  *
2032  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2033  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2034  * we must make sure nobody else can claim pages we are in the process of
2035  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2036  * number of huge pages we plan to free when dropping the lock.
2037  */
2038 static void return_unused_surplus_pages(struct hstate *h,
2039 					unsigned long unused_resv_pages)
2040 {
2041 	unsigned long nr_pages;
2042 
2043 	/* Cannot return gigantic pages currently */
2044 	if (hstate_is_gigantic(h))
2045 		goto out;
2046 
2047 	/*
2048 	 * Part (or even all) of the reservation could have been backed
2049 	 * by pre-allocated pages. Only free surplus pages.
2050 	 */
2051 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2052 
2053 	/*
2054 	 * We want to release as many surplus pages as possible, spread
2055 	 * evenly across all nodes with memory. Iterate across these nodes
2056 	 * until we can no longer free unreserved surplus pages. This occurs
2057 	 * when the nodes with surplus pages have no free pages.
2058 	 * free_pool_huge_page() will balance the freed pages across the
2059 	 * on-line nodes with memory and will handle the hstate accounting.
2060 	 *
2061 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2062 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2063 	 * to cover subsequent pages we may free.
2064 	 */
2065 	while (nr_pages--) {
2066 		h->resv_huge_pages--;
2067 		unused_resv_pages--;
2068 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2069 			goto out;
2070 		cond_resched_lock(&hugetlb_lock);
2071 	}
2072 
2073 out:
2074 	/* Fully uncommit the reservation */
2075 	h->resv_huge_pages -= unused_resv_pages;
2076 }
2077 
2078 
2079 /*
2080  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2081  * are used by the huge page allocation routines to manage reservations.
2082  *
2083  * vma_needs_reservation is called to determine if the huge page at addr
2084  * within the vma has an associated reservation.  If a reservation is
2085  * needed, the value 1 is returned.  The caller is then responsible for
2086  * managing the global reservation and subpool usage counts.  After
2087  * the huge page has been allocated, vma_commit_reservation is called
2088  * to add the page to the reservation map.  If the page allocation fails,
2089  * the reservation must be ended instead of committed.  vma_end_reservation
2090  * is called in such cases.
2091  *
2092  * In the normal case, vma_commit_reservation returns the same value
2093  * as the preceding vma_needs_reservation call.  The only time this
2094  * is not the case is if a reserve map was changed between calls.  It
2095  * is the responsibility of the caller to notice the difference and
2096  * take appropriate action.
2097  *
2098  * vma_add_reservation is used in error paths where a reservation must
2099  * be restored when a newly allocated huge page must be freed.  It is
2100  * to be called after calling vma_needs_reservation to determine if a
2101  * reservation exists.
2102  */
2103 enum vma_resv_mode {
2104 	VMA_NEEDS_RESV,
2105 	VMA_COMMIT_RESV,
2106 	VMA_END_RESV,
2107 	VMA_ADD_RESV,
2108 };
2109 static long __vma_reservation_common(struct hstate *h,
2110 				struct vm_area_struct *vma, unsigned long addr,
2111 				enum vma_resv_mode mode)
2112 {
2113 	struct resv_map *resv;
2114 	pgoff_t idx;
2115 	long ret;
2116 	long dummy_out_regions_needed;
2117 
2118 	resv = vma_resv_map(vma);
2119 	if (!resv)
2120 		return 1;
2121 
2122 	idx = vma_hugecache_offset(h, vma, addr);
2123 	switch (mode) {
2124 	case VMA_NEEDS_RESV:
2125 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2126 		/* We assume that vma_reservation_* routines always operate on
2127 		 * 1 page, and that adding to resv map a 1 page entry can only
2128 		 * ever require 1 region.
2129 		 */
2130 		VM_BUG_ON(dummy_out_regions_needed != 1);
2131 		break;
2132 	case VMA_COMMIT_RESV:
2133 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2134 		/* region_add calls of range 1 should never fail. */
2135 		VM_BUG_ON(ret < 0);
2136 		break;
2137 	case VMA_END_RESV:
2138 		region_abort(resv, idx, idx + 1, 1);
2139 		ret = 0;
2140 		break;
2141 	case VMA_ADD_RESV:
2142 		if (vma->vm_flags & VM_MAYSHARE) {
2143 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2144 			/* region_add calls of range 1 should never fail. */
2145 			VM_BUG_ON(ret < 0);
2146 		} else {
2147 			region_abort(resv, idx, idx + 1, 1);
2148 			ret = region_del(resv, idx, idx + 1);
2149 		}
2150 		break;
2151 	default:
2152 		BUG();
2153 	}
2154 
2155 	if (vma->vm_flags & VM_MAYSHARE)
2156 		return ret;
2157 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2158 		/*
2159 		 * In most cases, reserves always exist for private mappings.
2160 		 * However, a file associated with mapping could have been
2161 		 * hole punched or truncated after reserves were consumed.
2162 		 * As subsequent fault on such a range will not use reserves.
2163 		 * Subtle - The reserve map for private mappings has the
2164 		 * opposite meaning than that of shared mappings.  If NO
2165 		 * entry is in the reserve map, it means a reservation exists.
2166 		 * If an entry exists in the reserve map, it means the
2167 		 * reservation has already been consumed.  As a result, the
2168 		 * return value of this routine is the opposite of the
2169 		 * value returned from reserve map manipulation routines above.
2170 		 */
2171 		if (ret)
2172 			return 0;
2173 		else
2174 			return 1;
2175 	}
2176 	else
2177 		return ret < 0 ? ret : 0;
2178 }
2179 
2180 static long vma_needs_reservation(struct hstate *h,
2181 			struct vm_area_struct *vma, unsigned long addr)
2182 {
2183 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2184 }
2185 
2186 static long vma_commit_reservation(struct hstate *h,
2187 			struct vm_area_struct *vma, unsigned long addr)
2188 {
2189 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2190 }
2191 
2192 static void vma_end_reservation(struct hstate *h,
2193 			struct vm_area_struct *vma, unsigned long addr)
2194 {
2195 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2196 }
2197 
2198 static long vma_add_reservation(struct hstate *h,
2199 			struct vm_area_struct *vma, unsigned long addr)
2200 {
2201 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2202 }
2203 
2204 /*
2205  * This routine is called to restore a reservation on error paths.  In the
2206  * specific error paths, a huge page was allocated (via alloc_huge_page)
2207  * and is about to be freed.  If a reservation for the page existed,
2208  * alloc_huge_page would have consumed the reservation and set
2209  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2210  * via free_huge_page, the global reservation count will be incremented if
2211  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2212  * reserve map.  Adjust the reserve map here to be consistent with global
2213  * reserve count adjustments to be made by free_huge_page.
2214  */
2215 static void restore_reserve_on_error(struct hstate *h,
2216 			struct vm_area_struct *vma, unsigned long address,
2217 			struct page *page)
2218 {
2219 	if (unlikely(HPageRestoreReserve(page))) {
2220 		long rc = vma_needs_reservation(h, vma, address);
2221 
2222 		if (unlikely(rc < 0)) {
2223 			/*
2224 			 * Rare out of memory condition in reserve map
2225 			 * manipulation.  Clear HPageRestoreReserve so that
2226 			 * global reserve count will not be incremented
2227 			 * by free_huge_page.  This will make it appear
2228 			 * as though the reservation for this page was
2229 			 * consumed.  This may prevent the task from
2230 			 * faulting in the page at a later time.  This
2231 			 * is better than inconsistent global huge page
2232 			 * accounting of reserve counts.
2233 			 */
2234 			ClearHPageRestoreReserve(page);
2235 		} else if (rc) {
2236 			rc = vma_add_reservation(h, vma, address);
2237 			if (unlikely(rc < 0))
2238 				/*
2239 				 * See above comment about rare out of
2240 				 * memory condition.
2241 				 */
2242 				ClearHPageRestoreReserve(page);
2243 		} else
2244 			vma_end_reservation(h, vma, address);
2245 	}
2246 }
2247 
2248 struct page *alloc_huge_page(struct vm_area_struct *vma,
2249 				    unsigned long addr, int avoid_reserve)
2250 {
2251 	struct hugepage_subpool *spool = subpool_vma(vma);
2252 	struct hstate *h = hstate_vma(vma);
2253 	struct page *page;
2254 	long map_chg, map_commit;
2255 	long gbl_chg;
2256 	int ret, idx;
2257 	struct hugetlb_cgroup *h_cg;
2258 	bool deferred_reserve;
2259 
2260 	idx = hstate_index(h);
2261 	/*
2262 	 * Examine the region/reserve map to determine if the process
2263 	 * has a reservation for the page to be allocated.  A return
2264 	 * code of zero indicates a reservation exists (no change).
2265 	 */
2266 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2267 	if (map_chg < 0)
2268 		return ERR_PTR(-ENOMEM);
2269 
2270 	/*
2271 	 * Processes that did not create the mapping will have no
2272 	 * reserves as indicated by the region/reserve map. Check
2273 	 * that the allocation will not exceed the subpool limit.
2274 	 * Allocations for MAP_NORESERVE mappings also need to be
2275 	 * checked against any subpool limit.
2276 	 */
2277 	if (map_chg || avoid_reserve) {
2278 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2279 		if (gbl_chg < 0) {
2280 			vma_end_reservation(h, vma, addr);
2281 			return ERR_PTR(-ENOSPC);
2282 		}
2283 
2284 		/*
2285 		 * Even though there was no reservation in the region/reserve
2286 		 * map, there could be reservations associated with the
2287 		 * subpool that can be used.  This would be indicated if the
2288 		 * return value of hugepage_subpool_get_pages() is zero.
2289 		 * However, if avoid_reserve is specified we still avoid even
2290 		 * the subpool reservations.
2291 		 */
2292 		if (avoid_reserve)
2293 			gbl_chg = 1;
2294 	}
2295 
2296 	/* If this allocation is not consuming a reservation, charge it now.
2297 	 */
2298 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2299 	if (deferred_reserve) {
2300 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2301 			idx, pages_per_huge_page(h), &h_cg);
2302 		if (ret)
2303 			goto out_subpool_put;
2304 	}
2305 
2306 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2307 	if (ret)
2308 		goto out_uncharge_cgroup_reservation;
2309 
2310 	spin_lock(&hugetlb_lock);
2311 	/*
2312 	 * glb_chg is passed to indicate whether or not a page must be taken
2313 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2314 	 * a reservation exists for the allocation.
2315 	 */
2316 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2317 	if (!page) {
2318 		spin_unlock(&hugetlb_lock);
2319 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2320 		if (!page)
2321 			goto out_uncharge_cgroup;
2322 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2323 			SetHPageRestoreReserve(page);
2324 			h->resv_huge_pages--;
2325 		}
2326 		spin_lock(&hugetlb_lock);
2327 		list_add(&page->lru, &h->hugepage_activelist);
2328 		/* Fall through */
2329 	}
2330 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2331 	/* If allocation is not consuming a reservation, also store the
2332 	 * hugetlb_cgroup pointer on the page.
2333 	 */
2334 	if (deferred_reserve) {
2335 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2336 						  h_cg, page);
2337 	}
2338 
2339 	spin_unlock(&hugetlb_lock);
2340 
2341 	hugetlb_set_page_subpool(page, spool);
2342 
2343 	map_commit = vma_commit_reservation(h, vma, addr);
2344 	if (unlikely(map_chg > map_commit)) {
2345 		/*
2346 		 * The page was added to the reservation map between
2347 		 * vma_needs_reservation and vma_commit_reservation.
2348 		 * This indicates a race with hugetlb_reserve_pages.
2349 		 * Adjust for the subpool count incremented above AND
2350 		 * in hugetlb_reserve_pages for the same page.  Also,
2351 		 * the reservation count added in hugetlb_reserve_pages
2352 		 * no longer applies.
2353 		 */
2354 		long rsv_adjust;
2355 
2356 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2357 		hugetlb_acct_memory(h, -rsv_adjust);
2358 		if (deferred_reserve)
2359 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2360 					pages_per_huge_page(h), page);
2361 	}
2362 	return page;
2363 
2364 out_uncharge_cgroup:
2365 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2366 out_uncharge_cgroup_reservation:
2367 	if (deferred_reserve)
2368 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2369 						    h_cg);
2370 out_subpool_put:
2371 	if (map_chg || avoid_reserve)
2372 		hugepage_subpool_put_pages(spool, 1);
2373 	vma_end_reservation(h, vma, addr);
2374 	return ERR_PTR(-ENOSPC);
2375 }
2376 
2377 int alloc_bootmem_huge_page(struct hstate *h)
2378 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2379 int __alloc_bootmem_huge_page(struct hstate *h)
2380 {
2381 	struct huge_bootmem_page *m;
2382 	int nr_nodes, node;
2383 
2384 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2385 		void *addr;
2386 
2387 		addr = memblock_alloc_try_nid_raw(
2388 				huge_page_size(h), huge_page_size(h),
2389 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2390 		if (addr) {
2391 			/*
2392 			 * Use the beginning of the huge page to store the
2393 			 * huge_bootmem_page struct (until gather_bootmem
2394 			 * puts them into the mem_map).
2395 			 */
2396 			m = addr;
2397 			goto found;
2398 		}
2399 	}
2400 	return 0;
2401 
2402 found:
2403 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2404 	/* Put them into a private list first because mem_map is not up yet */
2405 	INIT_LIST_HEAD(&m->list);
2406 	list_add(&m->list, &huge_boot_pages);
2407 	m->hstate = h;
2408 	return 1;
2409 }
2410 
2411 static void __init prep_compound_huge_page(struct page *page,
2412 		unsigned int order)
2413 {
2414 	if (unlikely(order > (MAX_ORDER - 1)))
2415 		prep_compound_gigantic_page(page, order);
2416 	else
2417 		prep_compound_page(page, order);
2418 }
2419 
2420 /* Put bootmem huge pages into the standard lists after mem_map is up */
2421 static void __init gather_bootmem_prealloc(void)
2422 {
2423 	struct huge_bootmem_page *m;
2424 
2425 	list_for_each_entry(m, &huge_boot_pages, list) {
2426 		struct page *page = virt_to_page(m);
2427 		struct hstate *h = m->hstate;
2428 
2429 		WARN_ON(page_count(page) != 1);
2430 		prep_compound_huge_page(page, huge_page_order(h));
2431 		WARN_ON(PageReserved(page));
2432 		prep_new_huge_page(h, page, page_to_nid(page));
2433 		put_page(page); /* free it into the hugepage allocator */
2434 
2435 		/*
2436 		 * If we had gigantic hugepages allocated at boot time, we need
2437 		 * to restore the 'stolen' pages to totalram_pages in order to
2438 		 * fix confusing memory reports from free(1) and another
2439 		 * side-effects, like CommitLimit going negative.
2440 		 */
2441 		if (hstate_is_gigantic(h))
2442 			adjust_managed_page_count(page, pages_per_huge_page(h));
2443 		cond_resched();
2444 	}
2445 }
2446 
2447 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2448 {
2449 	unsigned long i;
2450 	nodemask_t *node_alloc_noretry;
2451 
2452 	if (!hstate_is_gigantic(h)) {
2453 		/*
2454 		 * Bit mask controlling how hard we retry per-node allocations.
2455 		 * Ignore errors as lower level routines can deal with
2456 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2457 		 * time, we are likely in bigger trouble.
2458 		 */
2459 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2460 						GFP_KERNEL);
2461 	} else {
2462 		/* allocations done at boot time */
2463 		node_alloc_noretry = NULL;
2464 	}
2465 
2466 	/* bit mask controlling how hard we retry per-node allocations */
2467 	if (node_alloc_noretry)
2468 		nodes_clear(*node_alloc_noretry);
2469 
2470 	for (i = 0; i < h->max_huge_pages; ++i) {
2471 		if (hstate_is_gigantic(h)) {
2472 			if (hugetlb_cma_size) {
2473 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2474 				goto free;
2475 			}
2476 			if (!alloc_bootmem_huge_page(h))
2477 				break;
2478 		} else if (!alloc_pool_huge_page(h,
2479 					 &node_states[N_MEMORY],
2480 					 node_alloc_noretry))
2481 			break;
2482 		cond_resched();
2483 	}
2484 	if (i < h->max_huge_pages) {
2485 		char buf[32];
2486 
2487 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2488 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2489 			h->max_huge_pages, buf, i);
2490 		h->max_huge_pages = i;
2491 	}
2492 free:
2493 	kfree(node_alloc_noretry);
2494 }
2495 
2496 static void __init hugetlb_init_hstates(void)
2497 {
2498 	struct hstate *h;
2499 
2500 	for_each_hstate(h) {
2501 		if (minimum_order > huge_page_order(h))
2502 			minimum_order = huge_page_order(h);
2503 
2504 		/* oversize hugepages were init'ed in early boot */
2505 		if (!hstate_is_gigantic(h))
2506 			hugetlb_hstate_alloc_pages(h);
2507 	}
2508 	VM_BUG_ON(minimum_order == UINT_MAX);
2509 }
2510 
2511 static void __init report_hugepages(void)
2512 {
2513 	struct hstate *h;
2514 
2515 	for_each_hstate(h) {
2516 		char buf[32];
2517 
2518 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2519 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2520 			buf, h->free_huge_pages);
2521 	}
2522 }
2523 
2524 #ifdef CONFIG_HIGHMEM
2525 static void try_to_free_low(struct hstate *h, unsigned long count,
2526 						nodemask_t *nodes_allowed)
2527 {
2528 	int i;
2529 
2530 	if (hstate_is_gigantic(h))
2531 		return;
2532 
2533 	for_each_node_mask(i, *nodes_allowed) {
2534 		struct page *page, *next;
2535 		struct list_head *freel = &h->hugepage_freelists[i];
2536 		list_for_each_entry_safe(page, next, freel, lru) {
2537 			if (count >= h->nr_huge_pages)
2538 				return;
2539 			if (PageHighMem(page))
2540 				continue;
2541 			list_del(&page->lru);
2542 			update_and_free_page(h, page);
2543 			h->free_huge_pages--;
2544 			h->free_huge_pages_node[page_to_nid(page)]--;
2545 		}
2546 	}
2547 }
2548 #else
2549 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2550 						nodemask_t *nodes_allowed)
2551 {
2552 }
2553 #endif
2554 
2555 /*
2556  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2557  * balanced by operating on them in a round-robin fashion.
2558  * Returns 1 if an adjustment was made.
2559  */
2560 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2561 				int delta)
2562 {
2563 	int nr_nodes, node;
2564 
2565 	VM_BUG_ON(delta != -1 && delta != 1);
2566 
2567 	if (delta < 0) {
2568 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2569 			if (h->surplus_huge_pages_node[node])
2570 				goto found;
2571 		}
2572 	} else {
2573 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2574 			if (h->surplus_huge_pages_node[node] <
2575 					h->nr_huge_pages_node[node])
2576 				goto found;
2577 		}
2578 	}
2579 	return 0;
2580 
2581 found:
2582 	h->surplus_huge_pages += delta;
2583 	h->surplus_huge_pages_node[node] += delta;
2584 	return 1;
2585 }
2586 
2587 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2588 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2589 			      nodemask_t *nodes_allowed)
2590 {
2591 	unsigned long min_count, ret;
2592 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2593 
2594 	/*
2595 	 * Bit mask controlling how hard we retry per-node allocations.
2596 	 * If we can not allocate the bit mask, do not attempt to allocate
2597 	 * the requested huge pages.
2598 	 */
2599 	if (node_alloc_noretry)
2600 		nodes_clear(*node_alloc_noretry);
2601 	else
2602 		return -ENOMEM;
2603 
2604 	spin_lock(&hugetlb_lock);
2605 
2606 	/*
2607 	 * Check for a node specific request.
2608 	 * Changing node specific huge page count may require a corresponding
2609 	 * change to the global count.  In any case, the passed node mask
2610 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2611 	 */
2612 	if (nid != NUMA_NO_NODE) {
2613 		unsigned long old_count = count;
2614 
2615 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2616 		/*
2617 		 * User may have specified a large count value which caused the
2618 		 * above calculation to overflow.  In this case, they wanted
2619 		 * to allocate as many huge pages as possible.  Set count to
2620 		 * largest possible value to align with their intention.
2621 		 */
2622 		if (count < old_count)
2623 			count = ULONG_MAX;
2624 	}
2625 
2626 	/*
2627 	 * Gigantic pages runtime allocation depend on the capability for large
2628 	 * page range allocation.
2629 	 * If the system does not provide this feature, return an error when
2630 	 * the user tries to allocate gigantic pages but let the user free the
2631 	 * boottime allocated gigantic pages.
2632 	 */
2633 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2634 		if (count > persistent_huge_pages(h)) {
2635 			spin_unlock(&hugetlb_lock);
2636 			NODEMASK_FREE(node_alloc_noretry);
2637 			return -EINVAL;
2638 		}
2639 		/* Fall through to decrease pool */
2640 	}
2641 
2642 	/*
2643 	 * Increase the pool size
2644 	 * First take pages out of surplus state.  Then make up the
2645 	 * remaining difference by allocating fresh huge pages.
2646 	 *
2647 	 * We might race with alloc_surplus_huge_page() here and be unable
2648 	 * to convert a surplus huge page to a normal huge page. That is
2649 	 * not critical, though, it just means the overall size of the
2650 	 * pool might be one hugepage larger than it needs to be, but
2651 	 * within all the constraints specified by the sysctls.
2652 	 */
2653 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2654 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2655 			break;
2656 	}
2657 
2658 	while (count > persistent_huge_pages(h)) {
2659 		/*
2660 		 * If this allocation races such that we no longer need the
2661 		 * page, free_huge_page will handle it by freeing the page
2662 		 * and reducing the surplus.
2663 		 */
2664 		spin_unlock(&hugetlb_lock);
2665 
2666 		/* yield cpu to avoid soft lockup */
2667 		cond_resched();
2668 
2669 		ret = alloc_pool_huge_page(h, nodes_allowed,
2670 						node_alloc_noretry);
2671 		spin_lock(&hugetlb_lock);
2672 		if (!ret)
2673 			goto out;
2674 
2675 		/* Bail for signals. Probably ctrl-c from user */
2676 		if (signal_pending(current))
2677 			goto out;
2678 	}
2679 
2680 	/*
2681 	 * Decrease the pool size
2682 	 * First return free pages to the buddy allocator (being careful
2683 	 * to keep enough around to satisfy reservations).  Then place
2684 	 * pages into surplus state as needed so the pool will shrink
2685 	 * to the desired size as pages become free.
2686 	 *
2687 	 * By placing pages into the surplus state independent of the
2688 	 * overcommit value, we are allowing the surplus pool size to
2689 	 * exceed overcommit. There are few sane options here. Since
2690 	 * alloc_surplus_huge_page() is checking the global counter,
2691 	 * though, we'll note that we're not allowed to exceed surplus
2692 	 * and won't grow the pool anywhere else. Not until one of the
2693 	 * sysctls are changed, or the surplus pages go out of use.
2694 	 */
2695 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2696 	min_count = max(count, min_count);
2697 	try_to_free_low(h, min_count, nodes_allowed);
2698 	while (min_count < persistent_huge_pages(h)) {
2699 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2700 			break;
2701 		cond_resched_lock(&hugetlb_lock);
2702 	}
2703 	while (count < persistent_huge_pages(h)) {
2704 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2705 			break;
2706 	}
2707 out:
2708 	h->max_huge_pages = persistent_huge_pages(h);
2709 	spin_unlock(&hugetlb_lock);
2710 
2711 	NODEMASK_FREE(node_alloc_noretry);
2712 
2713 	return 0;
2714 }
2715 
2716 #define HSTATE_ATTR_RO(_name) \
2717 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2718 
2719 #define HSTATE_ATTR(_name) \
2720 	static struct kobj_attribute _name##_attr = \
2721 		__ATTR(_name, 0644, _name##_show, _name##_store)
2722 
2723 static struct kobject *hugepages_kobj;
2724 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2725 
2726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2727 
2728 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2729 {
2730 	int i;
2731 
2732 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2733 		if (hstate_kobjs[i] == kobj) {
2734 			if (nidp)
2735 				*nidp = NUMA_NO_NODE;
2736 			return &hstates[i];
2737 		}
2738 
2739 	return kobj_to_node_hstate(kobj, nidp);
2740 }
2741 
2742 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2743 					struct kobj_attribute *attr, char *buf)
2744 {
2745 	struct hstate *h;
2746 	unsigned long nr_huge_pages;
2747 	int nid;
2748 
2749 	h = kobj_to_hstate(kobj, &nid);
2750 	if (nid == NUMA_NO_NODE)
2751 		nr_huge_pages = h->nr_huge_pages;
2752 	else
2753 		nr_huge_pages = h->nr_huge_pages_node[nid];
2754 
2755 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2756 }
2757 
2758 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2759 					   struct hstate *h, int nid,
2760 					   unsigned long count, size_t len)
2761 {
2762 	int err;
2763 	nodemask_t nodes_allowed, *n_mask;
2764 
2765 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2766 		return -EINVAL;
2767 
2768 	if (nid == NUMA_NO_NODE) {
2769 		/*
2770 		 * global hstate attribute
2771 		 */
2772 		if (!(obey_mempolicy &&
2773 				init_nodemask_of_mempolicy(&nodes_allowed)))
2774 			n_mask = &node_states[N_MEMORY];
2775 		else
2776 			n_mask = &nodes_allowed;
2777 	} else {
2778 		/*
2779 		 * Node specific request.  count adjustment happens in
2780 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2781 		 */
2782 		init_nodemask_of_node(&nodes_allowed, nid);
2783 		n_mask = &nodes_allowed;
2784 	}
2785 
2786 	err = set_max_huge_pages(h, count, nid, n_mask);
2787 
2788 	return err ? err : len;
2789 }
2790 
2791 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2792 					 struct kobject *kobj, const char *buf,
2793 					 size_t len)
2794 {
2795 	struct hstate *h;
2796 	unsigned long count;
2797 	int nid;
2798 	int err;
2799 
2800 	err = kstrtoul(buf, 10, &count);
2801 	if (err)
2802 		return err;
2803 
2804 	h = kobj_to_hstate(kobj, &nid);
2805 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2806 }
2807 
2808 static ssize_t nr_hugepages_show(struct kobject *kobj,
2809 				       struct kobj_attribute *attr, char *buf)
2810 {
2811 	return nr_hugepages_show_common(kobj, attr, buf);
2812 }
2813 
2814 static ssize_t nr_hugepages_store(struct kobject *kobj,
2815 	       struct kobj_attribute *attr, const char *buf, size_t len)
2816 {
2817 	return nr_hugepages_store_common(false, kobj, buf, len);
2818 }
2819 HSTATE_ATTR(nr_hugepages);
2820 
2821 #ifdef CONFIG_NUMA
2822 
2823 /*
2824  * hstate attribute for optionally mempolicy-based constraint on persistent
2825  * huge page alloc/free.
2826  */
2827 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2828 					   struct kobj_attribute *attr,
2829 					   char *buf)
2830 {
2831 	return nr_hugepages_show_common(kobj, attr, buf);
2832 }
2833 
2834 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2835 	       struct kobj_attribute *attr, const char *buf, size_t len)
2836 {
2837 	return nr_hugepages_store_common(true, kobj, buf, len);
2838 }
2839 HSTATE_ATTR(nr_hugepages_mempolicy);
2840 #endif
2841 
2842 
2843 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2844 					struct kobj_attribute *attr, char *buf)
2845 {
2846 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2847 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2848 }
2849 
2850 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2851 		struct kobj_attribute *attr, const char *buf, size_t count)
2852 {
2853 	int err;
2854 	unsigned long input;
2855 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2856 
2857 	if (hstate_is_gigantic(h))
2858 		return -EINVAL;
2859 
2860 	err = kstrtoul(buf, 10, &input);
2861 	if (err)
2862 		return err;
2863 
2864 	spin_lock(&hugetlb_lock);
2865 	h->nr_overcommit_huge_pages = input;
2866 	spin_unlock(&hugetlb_lock);
2867 
2868 	return count;
2869 }
2870 HSTATE_ATTR(nr_overcommit_hugepages);
2871 
2872 static ssize_t free_hugepages_show(struct kobject *kobj,
2873 					struct kobj_attribute *attr, char *buf)
2874 {
2875 	struct hstate *h;
2876 	unsigned long free_huge_pages;
2877 	int nid;
2878 
2879 	h = kobj_to_hstate(kobj, &nid);
2880 	if (nid == NUMA_NO_NODE)
2881 		free_huge_pages = h->free_huge_pages;
2882 	else
2883 		free_huge_pages = h->free_huge_pages_node[nid];
2884 
2885 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2886 }
2887 HSTATE_ATTR_RO(free_hugepages);
2888 
2889 static ssize_t resv_hugepages_show(struct kobject *kobj,
2890 					struct kobj_attribute *attr, char *buf)
2891 {
2892 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2893 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2894 }
2895 HSTATE_ATTR_RO(resv_hugepages);
2896 
2897 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2898 					struct kobj_attribute *attr, char *buf)
2899 {
2900 	struct hstate *h;
2901 	unsigned long surplus_huge_pages;
2902 	int nid;
2903 
2904 	h = kobj_to_hstate(kobj, &nid);
2905 	if (nid == NUMA_NO_NODE)
2906 		surplus_huge_pages = h->surplus_huge_pages;
2907 	else
2908 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2909 
2910 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2911 }
2912 HSTATE_ATTR_RO(surplus_hugepages);
2913 
2914 static struct attribute *hstate_attrs[] = {
2915 	&nr_hugepages_attr.attr,
2916 	&nr_overcommit_hugepages_attr.attr,
2917 	&free_hugepages_attr.attr,
2918 	&resv_hugepages_attr.attr,
2919 	&surplus_hugepages_attr.attr,
2920 #ifdef CONFIG_NUMA
2921 	&nr_hugepages_mempolicy_attr.attr,
2922 #endif
2923 	NULL,
2924 };
2925 
2926 static const struct attribute_group hstate_attr_group = {
2927 	.attrs = hstate_attrs,
2928 };
2929 
2930 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2931 				    struct kobject **hstate_kobjs,
2932 				    const struct attribute_group *hstate_attr_group)
2933 {
2934 	int retval;
2935 	int hi = hstate_index(h);
2936 
2937 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2938 	if (!hstate_kobjs[hi])
2939 		return -ENOMEM;
2940 
2941 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2942 	if (retval) {
2943 		kobject_put(hstate_kobjs[hi]);
2944 		hstate_kobjs[hi] = NULL;
2945 	}
2946 
2947 	return retval;
2948 }
2949 
2950 static void __init hugetlb_sysfs_init(void)
2951 {
2952 	struct hstate *h;
2953 	int err;
2954 
2955 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2956 	if (!hugepages_kobj)
2957 		return;
2958 
2959 	for_each_hstate(h) {
2960 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2961 					 hstate_kobjs, &hstate_attr_group);
2962 		if (err)
2963 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2964 	}
2965 }
2966 
2967 #ifdef CONFIG_NUMA
2968 
2969 /*
2970  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2971  * with node devices in node_devices[] using a parallel array.  The array
2972  * index of a node device or _hstate == node id.
2973  * This is here to avoid any static dependency of the node device driver, in
2974  * the base kernel, on the hugetlb module.
2975  */
2976 struct node_hstate {
2977 	struct kobject		*hugepages_kobj;
2978 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2979 };
2980 static struct node_hstate node_hstates[MAX_NUMNODES];
2981 
2982 /*
2983  * A subset of global hstate attributes for node devices
2984  */
2985 static struct attribute *per_node_hstate_attrs[] = {
2986 	&nr_hugepages_attr.attr,
2987 	&free_hugepages_attr.attr,
2988 	&surplus_hugepages_attr.attr,
2989 	NULL,
2990 };
2991 
2992 static const struct attribute_group per_node_hstate_attr_group = {
2993 	.attrs = per_node_hstate_attrs,
2994 };
2995 
2996 /*
2997  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2998  * Returns node id via non-NULL nidp.
2999  */
3000 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3001 {
3002 	int nid;
3003 
3004 	for (nid = 0; nid < nr_node_ids; nid++) {
3005 		struct node_hstate *nhs = &node_hstates[nid];
3006 		int i;
3007 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3008 			if (nhs->hstate_kobjs[i] == kobj) {
3009 				if (nidp)
3010 					*nidp = nid;
3011 				return &hstates[i];
3012 			}
3013 	}
3014 
3015 	BUG();
3016 	return NULL;
3017 }
3018 
3019 /*
3020  * Unregister hstate attributes from a single node device.
3021  * No-op if no hstate attributes attached.
3022  */
3023 static void hugetlb_unregister_node(struct node *node)
3024 {
3025 	struct hstate *h;
3026 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3027 
3028 	if (!nhs->hugepages_kobj)
3029 		return;		/* no hstate attributes */
3030 
3031 	for_each_hstate(h) {
3032 		int idx = hstate_index(h);
3033 		if (nhs->hstate_kobjs[idx]) {
3034 			kobject_put(nhs->hstate_kobjs[idx]);
3035 			nhs->hstate_kobjs[idx] = NULL;
3036 		}
3037 	}
3038 
3039 	kobject_put(nhs->hugepages_kobj);
3040 	nhs->hugepages_kobj = NULL;
3041 }
3042 
3043 
3044 /*
3045  * Register hstate attributes for a single node device.
3046  * No-op if attributes already registered.
3047  */
3048 static void hugetlb_register_node(struct node *node)
3049 {
3050 	struct hstate *h;
3051 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3052 	int err;
3053 
3054 	if (nhs->hugepages_kobj)
3055 		return;		/* already allocated */
3056 
3057 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3058 							&node->dev.kobj);
3059 	if (!nhs->hugepages_kobj)
3060 		return;
3061 
3062 	for_each_hstate(h) {
3063 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3064 						nhs->hstate_kobjs,
3065 						&per_node_hstate_attr_group);
3066 		if (err) {
3067 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3068 				h->name, node->dev.id);
3069 			hugetlb_unregister_node(node);
3070 			break;
3071 		}
3072 	}
3073 }
3074 
3075 /*
3076  * hugetlb init time:  register hstate attributes for all registered node
3077  * devices of nodes that have memory.  All on-line nodes should have
3078  * registered their associated device by this time.
3079  */
3080 static void __init hugetlb_register_all_nodes(void)
3081 {
3082 	int nid;
3083 
3084 	for_each_node_state(nid, N_MEMORY) {
3085 		struct node *node = node_devices[nid];
3086 		if (node->dev.id == nid)
3087 			hugetlb_register_node(node);
3088 	}
3089 
3090 	/*
3091 	 * Let the node device driver know we're here so it can
3092 	 * [un]register hstate attributes on node hotplug.
3093 	 */
3094 	register_hugetlbfs_with_node(hugetlb_register_node,
3095 				     hugetlb_unregister_node);
3096 }
3097 #else	/* !CONFIG_NUMA */
3098 
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3100 {
3101 	BUG();
3102 	if (nidp)
3103 		*nidp = -1;
3104 	return NULL;
3105 }
3106 
3107 static void hugetlb_register_all_nodes(void) { }
3108 
3109 #endif
3110 
3111 static int __init hugetlb_init(void)
3112 {
3113 	int i;
3114 
3115 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3116 			__NR_HPAGEFLAGS);
3117 
3118 	if (!hugepages_supported()) {
3119 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3120 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3121 		return 0;
3122 	}
3123 
3124 	/*
3125 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3126 	 * architectures depend on setup being done here.
3127 	 */
3128 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3129 	if (!parsed_default_hugepagesz) {
3130 		/*
3131 		 * If we did not parse a default huge page size, set
3132 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3133 		 * number of huge pages for this default size was implicitly
3134 		 * specified, set that here as well.
3135 		 * Note that the implicit setting will overwrite an explicit
3136 		 * setting.  A warning will be printed in this case.
3137 		 */
3138 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3139 		if (default_hstate_max_huge_pages) {
3140 			if (default_hstate.max_huge_pages) {
3141 				char buf[32];
3142 
3143 				string_get_size(huge_page_size(&default_hstate),
3144 					1, STRING_UNITS_2, buf, 32);
3145 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3146 					default_hstate.max_huge_pages, buf);
3147 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3148 					default_hstate_max_huge_pages);
3149 			}
3150 			default_hstate.max_huge_pages =
3151 				default_hstate_max_huge_pages;
3152 		}
3153 	}
3154 
3155 	hugetlb_cma_check();
3156 	hugetlb_init_hstates();
3157 	gather_bootmem_prealloc();
3158 	report_hugepages();
3159 
3160 	hugetlb_sysfs_init();
3161 	hugetlb_register_all_nodes();
3162 	hugetlb_cgroup_file_init();
3163 
3164 #ifdef CONFIG_SMP
3165 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3166 #else
3167 	num_fault_mutexes = 1;
3168 #endif
3169 	hugetlb_fault_mutex_table =
3170 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3171 			      GFP_KERNEL);
3172 	BUG_ON(!hugetlb_fault_mutex_table);
3173 
3174 	for (i = 0; i < num_fault_mutexes; i++)
3175 		mutex_init(&hugetlb_fault_mutex_table[i]);
3176 	return 0;
3177 }
3178 subsys_initcall(hugetlb_init);
3179 
3180 /* Overwritten by architectures with more huge page sizes */
3181 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3182 {
3183 	return size == HPAGE_SIZE;
3184 }
3185 
3186 void __init hugetlb_add_hstate(unsigned int order)
3187 {
3188 	struct hstate *h;
3189 	unsigned long i;
3190 
3191 	if (size_to_hstate(PAGE_SIZE << order)) {
3192 		return;
3193 	}
3194 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3195 	BUG_ON(order == 0);
3196 	h = &hstates[hugetlb_max_hstate++];
3197 	h->order = order;
3198 	h->mask = ~(huge_page_size(h) - 1);
3199 	for (i = 0; i < MAX_NUMNODES; ++i)
3200 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3201 	INIT_LIST_HEAD(&h->hugepage_activelist);
3202 	h->next_nid_to_alloc = first_memory_node;
3203 	h->next_nid_to_free = first_memory_node;
3204 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3205 					huge_page_size(h)/1024);
3206 
3207 	parsed_hstate = h;
3208 }
3209 
3210 /*
3211  * hugepages command line processing
3212  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3213  * specification.  If not, ignore the hugepages value.  hugepages can also
3214  * be the first huge page command line  option in which case it implicitly
3215  * specifies the number of huge pages for the default size.
3216  */
3217 static int __init hugepages_setup(char *s)
3218 {
3219 	unsigned long *mhp;
3220 	static unsigned long *last_mhp;
3221 
3222 	if (!parsed_valid_hugepagesz) {
3223 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3224 		parsed_valid_hugepagesz = true;
3225 		return 0;
3226 	}
3227 
3228 	/*
3229 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3230 	 * yet, so this hugepages= parameter goes to the "default hstate".
3231 	 * Otherwise, it goes with the previously parsed hugepagesz or
3232 	 * default_hugepagesz.
3233 	 */
3234 	else if (!hugetlb_max_hstate)
3235 		mhp = &default_hstate_max_huge_pages;
3236 	else
3237 		mhp = &parsed_hstate->max_huge_pages;
3238 
3239 	if (mhp == last_mhp) {
3240 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3241 		return 0;
3242 	}
3243 
3244 	if (sscanf(s, "%lu", mhp) <= 0)
3245 		*mhp = 0;
3246 
3247 	/*
3248 	 * Global state is always initialized later in hugetlb_init.
3249 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3250 	 * use the bootmem allocator.
3251 	 */
3252 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3253 		hugetlb_hstate_alloc_pages(parsed_hstate);
3254 
3255 	last_mhp = mhp;
3256 
3257 	return 1;
3258 }
3259 __setup("hugepages=", hugepages_setup);
3260 
3261 /*
3262  * hugepagesz command line processing
3263  * A specific huge page size can only be specified once with hugepagesz.
3264  * hugepagesz is followed by hugepages on the command line.  The global
3265  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3266  * hugepagesz argument was valid.
3267  */
3268 static int __init hugepagesz_setup(char *s)
3269 {
3270 	unsigned long size;
3271 	struct hstate *h;
3272 
3273 	parsed_valid_hugepagesz = false;
3274 	size = (unsigned long)memparse(s, NULL);
3275 
3276 	if (!arch_hugetlb_valid_size(size)) {
3277 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3278 		return 0;
3279 	}
3280 
3281 	h = size_to_hstate(size);
3282 	if (h) {
3283 		/*
3284 		 * hstate for this size already exists.  This is normally
3285 		 * an error, but is allowed if the existing hstate is the
3286 		 * default hstate.  More specifically, it is only allowed if
3287 		 * the number of huge pages for the default hstate was not
3288 		 * previously specified.
3289 		 */
3290 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3291 		    default_hstate.max_huge_pages) {
3292 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3293 			return 0;
3294 		}
3295 
3296 		/*
3297 		 * No need to call hugetlb_add_hstate() as hstate already
3298 		 * exists.  But, do set parsed_hstate so that a following
3299 		 * hugepages= parameter will be applied to this hstate.
3300 		 */
3301 		parsed_hstate = h;
3302 		parsed_valid_hugepagesz = true;
3303 		return 1;
3304 	}
3305 
3306 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3307 	parsed_valid_hugepagesz = true;
3308 	return 1;
3309 }
3310 __setup("hugepagesz=", hugepagesz_setup);
3311 
3312 /*
3313  * default_hugepagesz command line input
3314  * Only one instance of default_hugepagesz allowed on command line.
3315  */
3316 static int __init default_hugepagesz_setup(char *s)
3317 {
3318 	unsigned long size;
3319 
3320 	parsed_valid_hugepagesz = false;
3321 	if (parsed_default_hugepagesz) {
3322 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3323 		return 0;
3324 	}
3325 
3326 	size = (unsigned long)memparse(s, NULL);
3327 
3328 	if (!arch_hugetlb_valid_size(size)) {
3329 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3330 		return 0;
3331 	}
3332 
3333 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3334 	parsed_valid_hugepagesz = true;
3335 	parsed_default_hugepagesz = true;
3336 	default_hstate_idx = hstate_index(size_to_hstate(size));
3337 
3338 	/*
3339 	 * The number of default huge pages (for this size) could have been
3340 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3341 	 * then default_hstate_max_huge_pages is set.  If the default huge
3342 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3343 	 * allocated here from bootmem allocator.
3344 	 */
3345 	if (default_hstate_max_huge_pages) {
3346 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3347 		if (hstate_is_gigantic(&default_hstate))
3348 			hugetlb_hstate_alloc_pages(&default_hstate);
3349 		default_hstate_max_huge_pages = 0;
3350 	}
3351 
3352 	return 1;
3353 }
3354 __setup("default_hugepagesz=", default_hugepagesz_setup);
3355 
3356 static unsigned int allowed_mems_nr(struct hstate *h)
3357 {
3358 	int node;
3359 	unsigned int nr = 0;
3360 	nodemask_t *mpol_allowed;
3361 	unsigned int *array = h->free_huge_pages_node;
3362 	gfp_t gfp_mask = htlb_alloc_mask(h);
3363 
3364 	mpol_allowed = policy_nodemask_current(gfp_mask);
3365 
3366 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3367 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3368 			nr += array[node];
3369 	}
3370 
3371 	return nr;
3372 }
3373 
3374 #ifdef CONFIG_SYSCTL
3375 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3376 					  void *buffer, size_t *length,
3377 					  loff_t *ppos, unsigned long *out)
3378 {
3379 	struct ctl_table dup_table;
3380 
3381 	/*
3382 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3383 	 * can duplicate the @table and alter the duplicate of it.
3384 	 */
3385 	dup_table = *table;
3386 	dup_table.data = out;
3387 
3388 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3389 }
3390 
3391 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3392 			 struct ctl_table *table, int write,
3393 			 void *buffer, size_t *length, loff_t *ppos)
3394 {
3395 	struct hstate *h = &default_hstate;
3396 	unsigned long tmp = h->max_huge_pages;
3397 	int ret;
3398 
3399 	if (!hugepages_supported())
3400 		return -EOPNOTSUPP;
3401 
3402 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3403 					     &tmp);
3404 	if (ret)
3405 		goto out;
3406 
3407 	if (write)
3408 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3409 						  NUMA_NO_NODE, tmp, *length);
3410 out:
3411 	return ret;
3412 }
3413 
3414 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3415 			  void *buffer, size_t *length, loff_t *ppos)
3416 {
3417 
3418 	return hugetlb_sysctl_handler_common(false, table, write,
3419 							buffer, length, ppos);
3420 }
3421 
3422 #ifdef CONFIG_NUMA
3423 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3424 			  void *buffer, size_t *length, loff_t *ppos)
3425 {
3426 	return hugetlb_sysctl_handler_common(true, table, write,
3427 							buffer, length, ppos);
3428 }
3429 #endif /* CONFIG_NUMA */
3430 
3431 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3432 		void *buffer, size_t *length, loff_t *ppos)
3433 {
3434 	struct hstate *h = &default_hstate;
3435 	unsigned long tmp;
3436 	int ret;
3437 
3438 	if (!hugepages_supported())
3439 		return -EOPNOTSUPP;
3440 
3441 	tmp = h->nr_overcommit_huge_pages;
3442 
3443 	if (write && hstate_is_gigantic(h))
3444 		return -EINVAL;
3445 
3446 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3447 					     &tmp);
3448 	if (ret)
3449 		goto out;
3450 
3451 	if (write) {
3452 		spin_lock(&hugetlb_lock);
3453 		h->nr_overcommit_huge_pages = tmp;
3454 		spin_unlock(&hugetlb_lock);
3455 	}
3456 out:
3457 	return ret;
3458 }
3459 
3460 #endif /* CONFIG_SYSCTL */
3461 
3462 void hugetlb_report_meminfo(struct seq_file *m)
3463 {
3464 	struct hstate *h;
3465 	unsigned long total = 0;
3466 
3467 	if (!hugepages_supported())
3468 		return;
3469 
3470 	for_each_hstate(h) {
3471 		unsigned long count = h->nr_huge_pages;
3472 
3473 		total += huge_page_size(h) * count;
3474 
3475 		if (h == &default_hstate)
3476 			seq_printf(m,
3477 				   "HugePages_Total:   %5lu\n"
3478 				   "HugePages_Free:    %5lu\n"
3479 				   "HugePages_Rsvd:    %5lu\n"
3480 				   "HugePages_Surp:    %5lu\n"
3481 				   "Hugepagesize:   %8lu kB\n",
3482 				   count,
3483 				   h->free_huge_pages,
3484 				   h->resv_huge_pages,
3485 				   h->surplus_huge_pages,
3486 				   huge_page_size(h) / SZ_1K);
3487 	}
3488 
3489 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3490 }
3491 
3492 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3493 {
3494 	struct hstate *h = &default_hstate;
3495 
3496 	if (!hugepages_supported())
3497 		return 0;
3498 
3499 	return sysfs_emit_at(buf, len,
3500 			     "Node %d HugePages_Total: %5u\n"
3501 			     "Node %d HugePages_Free:  %5u\n"
3502 			     "Node %d HugePages_Surp:  %5u\n",
3503 			     nid, h->nr_huge_pages_node[nid],
3504 			     nid, h->free_huge_pages_node[nid],
3505 			     nid, h->surplus_huge_pages_node[nid]);
3506 }
3507 
3508 void hugetlb_show_meminfo(void)
3509 {
3510 	struct hstate *h;
3511 	int nid;
3512 
3513 	if (!hugepages_supported())
3514 		return;
3515 
3516 	for_each_node_state(nid, N_MEMORY)
3517 		for_each_hstate(h)
3518 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3519 				nid,
3520 				h->nr_huge_pages_node[nid],
3521 				h->free_huge_pages_node[nid],
3522 				h->surplus_huge_pages_node[nid],
3523 				huge_page_size(h) / SZ_1K);
3524 }
3525 
3526 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3527 {
3528 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3529 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3530 }
3531 
3532 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3533 unsigned long hugetlb_total_pages(void)
3534 {
3535 	struct hstate *h;
3536 	unsigned long nr_total_pages = 0;
3537 
3538 	for_each_hstate(h)
3539 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3540 	return nr_total_pages;
3541 }
3542 
3543 static int hugetlb_acct_memory(struct hstate *h, long delta)
3544 {
3545 	int ret = -ENOMEM;
3546 
3547 	if (!delta)
3548 		return 0;
3549 
3550 	spin_lock(&hugetlb_lock);
3551 	/*
3552 	 * When cpuset is configured, it breaks the strict hugetlb page
3553 	 * reservation as the accounting is done on a global variable. Such
3554 	 * reservation is completely rubbish in the presence of cpuset because
3555 	 * the reservation is not checked against page availability for the
3556 	 * current cpuset. Application can still potentially OOM'ed by kernel
3557 	 * with lack of free htlb page in cpuset that the task is in.
3558 	 * Attempt to enforce strict accounting with cpuset is almost
3559 	 * impossible (or too ugly) because cpuset is too fluid that
3560 	 * task or memory node can be dynamically moved between cpusets.
3561 	 *
3562 	 * The change of semantics for shared hugetlb mapping with cpuset is
3563 	 * undesirable. However, in order to preserve some of the semantics,
3564 	 * we fall back to check against current free page availability as
3565 	 * a best attempt and hopefully to minimize the impact of changing
3566 	 * semantics that cpuset has.
3567 	 *
3568 	 * Apart from cpuset, we also have memory policy mechanism that
3569 	 * also determines from which node the kernel will allocate memory
3570 	 * in a NUMA system. So similar to cpuset, we also should consider
3571 	 * the memory policy of the current task. Similar to the description
3572 	 * above.
3573 	 */
3574 	if (delta > 0) {
3575 		if (gather_surplus_pages(h, delta) < 0)
3576 			goto out;
3577 
3578 		if (delta > allowed_mems_nr(h)) {
3579 			return_unused_surplus_pages(h, delta);
3580 			goto out;
3581 		}
3582 	}
3583 
3584 	ret = 0;
3585 	if (delta < 0)
3586 		return_unused_surplus_pages(h, (unsigned long) -delta);
3587 
3588 out:
3589 	spin_unlock(&hugetlb_lock);
3590 	return ret;
3591 }
3592 
3593 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3594 {
3595 	struct resv_map *resv = vma_resv_map(vma);
3596 
3597 	/*
3598 	 * This new VMA should share its siblings reservation map if present.
3599 	 * The VMA will only ever have a valid reservation map pointer where
3600 	 * it is being copied for another still existing VMA.  As that VMA
3601 	 * has a reference to the reservation map it cannot disappear until
3602 	 * after this open call completes.  It is therefore safe to take a
3603 	 * new reference here without additional locking.
3604 	 */
3605 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3606 		kref_get(&resv->refs);
3607 }
3608 
3609 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3610 {
3611 	struct hstate *h = hstate_vma(vma);
3612 	struct resv_map *resv = vma_resv_map(vma);
3613 	struct hugepage_subpool *spool = subpool_vma(vma);
3614 	unsigned long reserve, start, end;
3615 	long gbl_reserve;
3616 
3617 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3618 		return;
3619 
3620 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3621 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3622 
3623 	reserve = (end - start) - region_count(resv, start, end);
3624 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3625 	if (reserve) {
3626 		/*
3627 		 * Decrement reserve counts.  The global reserve count may be
3628 		 * adjusted if the subpool has a minimum size.
3629 		 */
3630 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3631 		hugetlb_acct_memory(h, -gbl_reserve);
3632 	}
3633 
3634 	kref_put(&resv->refs, resv_map_release);
3635 }
3636 
3637 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3638 {
3639 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3640 		return -EINVAL;
3641 	return 0;
3642 }
3643 
3644 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3645 {
3646 	return huge_page_size(hstate_vma(vma));
3647 }
3648 
3649 /*
3650  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3651  * handle_mm_fault() to try to instantiate regular-sized pages in the
3652  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3653  * this far.
3654  */
3655 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3656 {
3657 	BUG();
3658 	return 0;
3659 }
3660 
3661 /*
3662  * When a new function is introduced to vm_operations_struct and added
3663  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3664  * This is because under System V memory model, mappings created via
3665  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3666  * their original vm_ops are overwritten with shm_vm_ops.
3667  */
3668 const struct vm_operations_struct hugetlb_vm_ops = {
3669 	.fault = hugetlb_vm_op_fault,
3670 	.open = hugetlb_vm_op_open,
3671 	.close = hugetlb_vm_op_close,
3672 	.may_split = hugetlb_vm_op_split,
3673 	.pagesize = hugetlb_vm_op_pagesize,
3674 };
3675 
3676 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3677 				int writable)
3678 {
3679 	pte_t entry;
3680 
3681 	if (writable) {
3682 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3683 					 vma->vm_page_prot)));
3684 	} else {
3685 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3686 					   vma->vm_page_prot));
3687 	}
3688 	entry = pte_mkyoung(entry);
3689 	entry = pte_mkhuge(entry);
3690 	entry = arch_make_huge_pte(entry, vma, page, writable);
3691 
3692 	return entry;
3693 }
3694 
3695 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3696 				   unsigned long address, pte_t *ptep)
3697 {
3698 	pte_t entry;
3699 
3700 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3701 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3702 		update_mmu_cache(vma, address, ptep);
3703 }
3704 
3705 bool is_hugetlb_entry_migration(pte_t pte)
3706 {
3707 	swp_entry_t swp;
3708 
3709 	if (huge_pte_none(pte) || pte_present(pte))
3710 		return false;
3711 	swp = pte_to_swp_entry(pte);
3712 	if (is_migration_entry(swp))
3713 		return true;
3714 	else
3715 		return false;
3716 }
3717 
3718 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3719 {
3720 	swp_entry_t swp;
3721 
3722 	if (huge_pte_none(pte) || pte_present(pte))
3723 		return false;
3724 	swp = pte_to_swp_entry(pte);
3725 	if (is_hwpoison_entry(swp))
3726 		return true;
3727 	else
3728 		return false;
3729 }
3730 
3731 static void
3732 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3733 		     struct page *new_page)
3734 {
3735 	__SetPageUptodate(new_page);
3736 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3737 	hugepage_add_new_anon_rmap(new_page, vma, addr);
3738 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3739 	ClearHPageRestoreReserve(new_page);
3740 	SetHPageMigratable(new_page);
3741 }
3742 
3743 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3744 			    struct vm_area_struct *vma)
3745 {
3746 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3747 	struct page *ptepage;
3748 	unsigned long addr;
3749 	bool cow = is_cow_mapping(vma->vm_flags);
3750 	struct hstate *h = hstate_vma(vma);
3751 	unsigned long sz = huge_page_size(h);
3752 	unsigned long npages = pages_per_huge_page(h);
3753 	struct address_space *mapping = vma->vm_file->f_mapping;
3754 	struct mmu_notifier_range range;
3755 	int ret = 0;
3756 
3757 	if (cow) {
3758 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3759 					vma->vm_start,
3760 					vma->vm_end);
3761 		mmu_notifier_invalidate_range_start(&range);
3762 	} else {
3763 		/*
3764 		 * For shared mappings i_mmap_rwsem must be held to call
3765 		 * huge_pte_alloc, otherwise the returned ptep could go
3766 		 * away if part of a shared pmd and another thread calls
3767 		 * huge_pmd_unshare.
3768 		 */
3769 		i_mmap_lock_read(mapping);
3770 	}
3771 
3772 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3773 		spinlock_t *src_ptl, *dst_ptl;
3774 		src_pte = huge_pte_offset(src, addr, sz);
3775 		if (!src_pte)
3776 			continue;
3777 		dst_pte = huge_pte_alloc(dst, addr, sz);
3778 		if (!dst_pte) {
3779 			ret = -ENOMEM;
3780 			break;
3781 		}
3782 
3783 		/*
3784 		 * If the pagetables are shared don't copy or take references.
3785 		 * dst_pte == src_pte is the common case of src/dest sharing.
3786 		 *
3787 		 * However, src could have 'unshared' and dst shares with
3788 		 * another vma.  If dst_pte !none, this implies sharing.
3789 		 * Check here before taking page table lock, and once again
3790 		 * after taking the lock below.
3791 		 */
3792 		dst_entry = huge_ptep_get(dst_pte);
3793 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3794 			continue;
3795 
3796 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3797 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3798 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3799 		entry = huge_ptep_get(src_pte);
3800 		dst_entry = huge_ptep_get(dst_pte);
3801 again:
3802 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3803 			/*
3804 			 * Skip if src entry none.  Also, skip in the
3805 			 * unlikely case dst entry !none as this implies
3806 			 * sharing with another vma.
3807 			 */
3808 			;
3809 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3810 				    is_hugetlb_entry_hwpoisoned(entry))) {
3811 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3812 
3813 			if (is_write_migration_entry(swp_entry) && cow) {
3814 				/*
3815 				 * COW mappings require pages in both
3816 				 * parent and child to be set to read.
3817 				 */
3818 				make_migration_entry_read(&swp_entry);
3819 				entry = swp_entry_to_pte(swp_entry);
3820 				set_huge_swap_pte_at(src, addr, src_pte,
3821 						     entry, sz);
3822 			}
3823 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3824 		} else {
3825 			entry = huge_ptep_get(src_pte);
3826 			ptepage = pte_page(entry);
3827 			get_page(ptepage);
3828 
3829 			/*
3830 			 * This is a rare case where we see pinned hugetlb
3831 			 * pages while they're prone to COW.  We need to do the
3832 			 * COW earlier during fork.
3833 			 *
3834 			 * When pre-allocating the page or copying data, we
3835 			 * need to be without the pgtable locks since we could
3836 			 * sleep during the process.
3837 			 */
3838 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3839 				pte_t src_pte_old = entry;
3840 				struct page *new;
3841 
3842 				spin_unlock(src_ptl);
3843 				spin_unlock(dst_ptl);
3844 				/* Do not use reserve as it's private owned */
3845 				new = alloc_huge_page(vma, addr, 1);
3846 				if (IS_ERR(new)) {
3847 					put_page(ptepage);
3848 					ret = PTR_ERR(new);
3849 					break;
3850 				}
3851 				copy_user_huge_page(new, ptepage, addr, vma,
3852 						    npages);
3853 				put_page(ptepage);
3854 
3855 				/* Install the new huge page if src pte stable */
3856 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
3857 				src_ptl = huge_pte_lockptr(h, src, src_pte);
3858 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3859 				entry = huge_ptep_get(src_pte);
3860 				if (!pte_same(src_pte_old, entry)) {
3861 					put_page(new);
3862 					/* dst_entry won't change as in child */
3863 					goto again;
3864 				}
3865 				hugetlb_install_page(vma, dst_pte, addr, new);
3866 				spin_unlock(src_ptl);
3867 				spin_unlock(dst_ptl);
3868 				continue;
3869 			}
3870 
3871 			if (cow) {
3872 				/*
3873 				 * No need to notify as we are downgrading page
3874 				 * table protection not changing it to point
3875 				 * to a new page.
3876 				 *
3877 				 * See Documentation/vm/mmu_notifier.rst
3878 				 */
3879 				huge_ptep_set_wrprotect(src, addr, src_pte);
3880 			}
3881 
3882 			page_dup_rmap(ptepage, true);
3883 			set_huge_pte_at(dst, addr, dst_pte, entry);
3884 			hugetlb_count_add(npages, dst);
3885 		}
3886 		spin_unlock(src_ptl);
3887 		spin_unlock(dst_ptl);
3888 	}
3889 
3890 	if (cow)
3891 		mmu_notifier_invalidate_range_end(&range);
3892 	else
3893 		i_mmap_unlock_read(mapping);
3894 
3895 	return ret;
3896 }
3897 
3898 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3899 			    unsigned long start, unsigned long end,
3900 			    struct page *ref_page)
3901 {
3902 	struct mm_struct *mm = vma->vm_mm;
3903 	unsigned long address;
3904 	pte_t *ptep;
3905 	pte_t pte;
3906 	spinlock_t *ptl;
3907 	struct page *page;
3908 	struct hstate *h = hstate_vma(vma);
3909 	unsigned long sz = huge_page_size(h);
3910 	struct mmu_notifier_range range;
3911 
3912 	WARN_ON(!is_vm_hugetlb_page(vma));
3913 	BUG_ON(start & ~huge_page_mask(h));
3914 	BUG_ON(end & ~huge_page_mask(h));
3915 
3916 	/*
3917 	 * This is a hugetlb vma, all the pte entries should point
3918 	 * to huge page.
3919 	 */
3920 	tlb_change_page_size(tlb, sz);
3921 	tlb_start_vma(tlb, vma);
3922 
3923 	/*
3924 	 * If sharing possible, alert mmu notifiers of worst case.
3925 	 */
3926 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3927 				end);
3928 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3929 	mmu_notifier_invalidate_range_start(&range);
3930 	address = start;
3931 	for (; address < end; address += sz) {
3932 		ptep = huge_pte_offset(mm, address, sz);
3933 		if (!ptep)
3934 			continue;
3935 
3936 		ptl = huge_pte_lock(h, mm, ptep);
3937 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3938 			spin_unlock(ptl);
3939 			/*
3940 			 * We just unmapped a page of PMDs by clearing a PUD.
3941 			 * The caller's TLB flush range should cover this area.
3942 			 */
3943 			continue;
3944 		}
3945 
3946 		pte = huge_ptep_get(ptep);
3947 		if (huge_pte_none(pte)) {
3948 			spin_unlock(ptl);
3949 			continue;
3950 		}
3951 
3952 		/*
3953 		 * Migrating hugepage or HWPoisoned hugepage is already
3954 		 * unmapped and its refcount is dropped, so just clear pte here.
3955 		 */
3956 		if (unlikely(!pte_present(pte))) {
3957 			huge_pte_clear(mm, address, ptep, sz);
3958 			spin_unlock(ptl);
3959 			continue;
3960 		}
3961 
3962 		page = pte_page(pte);
3963 		/*
3964 		 * If a reference page is supplied, it is because a specific
3965 		 * page is being unmapped, not a range. Ensure the page we
3966 		 * are about to unmap is the actual page of interest.
3967 		 */
3968 		if (ref_page) {
3969 			if (page != ref_page) {
3970 				spin_unlock(ptl);
3971 				continue;
3972 			}
3973 			/*
3974 			 * Mark the VMA as having unmapped its page so that
3975 			 * future faults in this VMA will fail rather than
3976 			 * looking like data was lost
3977 			 */
3978 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3979 		}
3980 
3981 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3982 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3983 		if (huge_pte_dirty(pte))
3984 			set_page_dirty(page);
3985 
3986 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3987 		page_remove_rmap(page, true);
3988 
3989 		spin_unlock(ptl);
3990 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3991 		/*
3992 		 * Bail out after unmapping reference page if supplied
3993 		 */
3994 		if (ref_page)
3995 			break;
3996 	}
3997 	mmu_notifier_invalidate_range_end(&range);
3998 	tlb_end_vma(tlb, vma);
3999 }
4000 
4001 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4002 			  struct vm_area_struct *vma, unsigned long start,
4003 			  unsigned long end, struct page *ref_page)
4004 {
4005 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4006 
4007 	/*
4008 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4009 	 * test will fail on a vma being torn down, and not grab a page table
4010 	 * on its way out.  We're lucky that the flag has such an appropriate
4011 	 * name, and can in fact be safely cleared here. We could clear it
4012 	 * before the __unmap_hugepage_range above, but all that's necessary
4013 	 * is to clear it before releasing the i_mmap_rwsem. This works
4014 	 * because in the context this is called, the VMA is about to be
4015 	 * destroyed and the i_mmap_rwsem is held.
4016 	 */
4017 	vma->vm_flags &= ~VM_MAYSHARE;
4018 }
4019 
4020 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4021 			  unsigned long end, struct page *ref_page)
4022 {
4023 	struct mmu_gather tlb;
4024 
4025 	tlb_gather_mmu(&tlb, vma->vm_mm);
4026 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4027 	tlb_finish_mmu(&tlb);
4028 }
4029 
4030 /*
4031  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4032  * mapping it owns the reserve page for. The intention is to unmap the page
4033  * from other VMAs and let the children be SIGKILLed if they are faulting the
4034  * same region.
4035  */
4036 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4037 			      struct page *page, unsigned long address)
4038 {
4039 	struct hstate *h = hstate_vma(vma);
4040 	struct vm_area_struct *iter_vma;
4041 	struct address_space *mapping;
4042 	pgoff_t pgoff;
4043 
4044 	/*
4045 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4046 	 * from page cache lookup which is in HPAGE_SIZE units.
4047 	 */
4048 	address = address & huge_page_mask(h);
4049 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4050 			vma->vm_pgoff;
4051 	mapping = vma->vm_file->f_mapping;
4052 
4053 	/*
4054 	 * Take the mapping lock for the duration of the table walk. As
4055 	 * this mapping should be shared between all the VMAs,
4056 	 * __unmap_hugepage_range() is called as the lock is already held
4057 	 */
4058 	i_mmap_lock_write(mapping);
4059 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4060 		/* Do not unmap the current VMA */
4061 		if (iter_vma == vma)
4062 			continue;
4063 
4064 		/*
4065 		 * Shared VMAs have their own reserves and do not affect
4066 		 * MAP_PRIVATE accounting but it is possible that a shared
4067 		 * VMA is using the same page so check and skip such VMAs.
4068 		 */
4069 		if (iter_vma->vm_flags & VM_MAYSHARE)
4070 			continue;
4071 
4072 		/*
4073 		 * Unmap the page from other VMAs without their own reserves.
4074 		 * They get marked to be SIGKILLed if they fault in these
4075 		 * areas. This is because a future no-page fault on this VMA
4076 		 * could insert a zeroed page instead of the data existing
4077 		 * from the time of fork. This would look like data corruption
4078 		 */
4079 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4080 			unmap_hugepage_range(iter_vma, address,
4081 					     address + huge_page_size(h), page);
4082 	}
4083 	i_mmap_unlock_write(mapping);
4084 }
4085 
4086 /*
4087  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4088  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4089  * cannot race with other handlers or page migration.
4090  * Keep the pte_same checks anyway to make transition from the mutex easier.
4091  */
4092 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4093 		       unsigned long address, pte_t *ptep,
4094 		       struct page *pagecache_page, spinlock_t *ptl)
4095 {
4096 	pte_t pte;
4097 	struct hstate *h = hstate_vma(vma);
4098 	struct page *old_page, *new_page;
4099 	int outside_reserve = 0;
4100 	vm_fault_t ret = 0;
4101 	unsigned long haddr = address & huge_page_mask(h);
4102 	struct mmu_notifier_range range;
4103 
4104 	pte = huge_ptep_get(ptep);
4105 	old_page = pte_page(pte);
4106 
4107 retry_avoidcopy:
4108 	/* If no-one else is actually using this page, avoid the copy
4109 	 * and just make the page writable */
4110 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4111 		page_move_anon_rmap(old_page, vma);
4112 		set_huge_ptep_writable(vma, haddr, ptep);
4113 		return 0;
4114 	}
4115 
4116 	/*
4117 	 * If the process that created a MAP_PRIVATE mapping is about to
4118 	 * perform a COW due to a shared page count, attempt to satisfy
4119 	 * the allocation without using the existing reserves. The pagecache
4120 	 * page is used to determine if the reserve at this address was
4121 	 * consumed or not. If reserves were used, a partial faulted mapping
4122 	 * at the time of fork() could consume its reserves on COW instead
4123 	 * of the full address range.
4124 	 */
4125 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4126 			old_page != pagecache_page)
4127 		outside_reserve = 1;
4128 
4129 	get_page(old_page);
4130 
4131 	/*
4132 	 * Drop page table lock as buddy allocator may be called. It will
4133 	 * be acquired again before returning to the caller, as expected.
4134 	 */
4135 	spin_unlock(ptl);
4136 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4137 
4138 	if (IS_ERR(new_page)) {
4139 		/*
4140 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4141 		 * it is due to references held by a child and an insufficient
4142 		 * huge page pool. To guarantee the original mappers
4143 		 * reliability, unmap the page from child processes. The child
4144 		 * may get SIGKILLed if it later faults.
4145 		 */
4146 		if (outside_reserve) {
4147 			struct address_space *mapping = vma->vm_file->f_mapping;
4148 			pgoff_t idx;
4149 			u32 hash;
4150 
4151 			put_page(old_page);
4152 			BUG_ON(huge_pte_none(pte));
4153 			/*
4154 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4155 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4156 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4157 			 * here is OK as COW mappings do not interact with
4158 			 * PMD sharing.
4159 			 *
4160 			 * Reacquire both after unmap operation.
4161 			 */
4162 			idx = vma_hugecache_offset(h, vma, haddr);
4163 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4164 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4165 			i_mmap_unlock_read(mapping);
4166 
4167 			unmap_ref_private(mm, vma, old_page, haddr);
4168 
4169 			i_mmap_lock_read(mapping);
4170 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4171 			spin_lock(ptl);
4172 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4173 			if (likely(ptep &&
4174 				   pte_same(huge_ptep_get(ptep), pte)))
4175 				goto retry_avoidcopy;
4176 			/*
4177 			 * race occurs while re-acquiring page table
4178 			 * lock, and our job is done.
4179 			 */
4180 			return 0;
4181 		}
4182 
4183 		ret = vmf_error(PTR_ERR(new_page));
4184 		goto out_release_old;
4185 	}
4186 
4187 	/*
4188 	 * When the original hugepage is shared one, it does not have
4189 	 * anon_vma prepared.
4190 	 */
4191 	if (unlikely(anon_vma_prepare(vma))) {
4192 		ret = VM_FAULT_OOM;
4193 		goto out_release_all;
4194 	}
4195 
4196 	copy_user_huge_page(new_page, old_page, address, vma,
4197 			    pages_per_huge_page(h));
4198 	__SetPageUptodate(new_page);
4199 
4200 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4201 				haddr + huge_page_size(h));
4202 	mmu_notifier_invalidate_range_start(&range);
4203 
4204 	/*
4205 	 * Retake the page table lock to check for racing updates
4206 	 * before the page tables are altered
4207 	 */
4208 	spin_lock(ptl);
4209 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4210 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4211 		ClearHPageRestoreReserve(new_page);
4212 
4213 		/* Break COW */
4214 		huge_ptep_clear_flush(vma, haddr, ptep);
4215 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4216 		set_huge_pte_at(mm, haddr, ptep,
4217 				make_huge_pte(vma, new_page, 1));
4218 		page_remove_rmap(old_page, true);
4219 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4220 		SetHPageMigratable(new_page);
4221 		/* Make the old page be freed below */
4222 		new_page = old_page;
4223 	}
4224 	spin_unlock(ptl);
4225 	mmu_notifier_invalidate_range_end(&range);
4226 out_release_all:
4227 	restore_reserve_on_error(h, vma, haddr, new_page);
4228 	put_page(new_page);
4229 out_release_old:
4230 	put_page(old_page);
4231 
4232 	spin_lock(ptl); /* Caller expects lock to be held */
4233 	return ret;
4234 }
4235 
4236 /* Return the pagecache page at a given address within a VMA */
4237 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4238 			struct vm_area_struct *vma, unsigned long address)
4239 {
4240 	struct address_space *mapping;
4241 	pgoff_t idx;
4242 
4243 	mapping = vma->vm_file->f_mapping;
4244 	idx = vma_hugecache_offset(h, vma, address);
4245 
4246 	return find_lock_page(mapping, idx);
4247 }
4248 
4249 /*
4250  * Return whether there is a pagecache page to back given address within VMA.
4251  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4252  */
4253 static bool hugetlbfs_pagecache_present(struct hstate *h,
4254 			struct vm_area_struct *vma, unsigned long address)
4255 {
4256 	struct address_space *mapping;
4257 	pgoff_t idx;
4258 	struct page *page;
4259 
4260 	mapping = vma->vm_file->f_mapping;
4261 	idx = vma_hugecache_offset(h, vma, address);
4262 
4263 	page = find_get_page(mapping, idx);
4264 	if (page)
4265 		put_page(page);
4266 	return page != NULL;
4267 }
4268 
4269 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4270 			   pgoff_t idx)
4271 {
4272 	struct inode *inode = mapping->host;
4273 	struct hstate *h = hstate_inode(inode);
4274 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4275 
4276 	if (err)
4277 		return err;
4278 	ClearHPageRestoreReserve(page);
4279 
4280 	/*
4281 	 * set page dirty so that it will not be removed from cache/file
4282 	 * by non-hugetlbfs specific code paths.
4283 	 */
4284 	set_page_dirty(page);
4285 
4286 	spin_lock(&inode->i_lock);
4287 	inode->i_blocks += blocks_per_huge_page(h);
4288 	spin_unlock(&inode->i_lock);
4289 	return 0;
4290 }
4291 
4292 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4293 			struct vm_area_struct *vma,
4294 			struct address_space *mapping, pgoff_t idx,
4295 			unsigned long address, pte_t *ptep, unsigned int flags)
4296 {
4297 	struct hstate *h = hstate_vma(vma);
4298 	vm_fault_t ret = VM_FAULT_SIGBUS;
4299 	int anon_rmap = 0;
4300 	unsigned long size;
4301 	struct page *page;
4302 	pte_t new_pte;
4303 	spinlock_t *ptl;
4304 	unsigned long haddr = address & huge_page_mask(h);
4305 	bool new_page = false;
4306 
4307 	/*
4308 	 * Currently, we are forced to kill the process in the event the
4309 	 * original mapper has unmapped pages from the child due to a failed
4310 	 * COW. Warn that such a situation has occurred as it may not be obvious
4311 	 */
4312 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4313 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4314 			   current->pid);
4315 		return ret;
4316 	}
4317 
4318 	/*
4319 	 * We can not race with truncation due to holding i_mmap_rwsem.
4320 	 * i_size is modified when holding i_mmap_rwsem, so check here
4321 	 * once for faults beyond end of file.
4322 	 */
4323 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4324 	if (idx >= size)
4325 		goto out;
4326 
4327 retry:
4328 	page = find_lock_page(mapping, idx);
4329 	if (!page) {
4330 		/*
4331 		 * Check for page in userfault range
4332 		 */
4333 		if (userfaultfd_missing(vma)) {
4334 			u32 hash;
4335 			struct vm_fault vmf = {
4336 				.vma = vma,
4337 				.address = haddr,
4338 				.flags = flags,
4339 				/*
4340 				 * Hard to debug if it ends up being
4341 				 * used by a callee that assumes
4342 				 * something about the other
4343 				 * uninitialized fields... same as in
4344 				 * memory.c
4345 				 */
4346 			};
4347 
4348 			/*
4349 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4350 			 * dropped before handling userfault.  Reacquire
4351 			 * after handling fault to make calling code simpler.
4352 			 */
4353 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4354 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355 			i_mmap_unlock_read(mapping);
4356 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4357 			i_mmap_lock_read(mapping);
4358 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4359 			goto out;
4360 		}
4361 
4362 		page = alloc_huge_page(vma, haddr, 0);
4363 		if (IS_ERR(page)) {
4364 			/*
4365 			 * Returning error will result in faulting task being
4366 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4367 			 * tasks from racing to fault in the same page which
4368 			 * could result in false unable to allocate errors.
4369 			 * Page migration does not take the fault mutex, but
4370 			 * does a clear then write of pte's under page table
4371 			 * lock.  Page fault code could race with migration,
4372 			 * notice the clear pte and try to allocate a page
4373 			 * here.  Before returning error, get ptl and make
4374 			 * sure there really is no pte entry.
4375 			 */
4376 			ptl = huge_pte_lock(h, mm, ptep);
4377 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4378 				ret = 0;
4379 				spin_unlock(ptl);
4380 				goto out;
4381 			}
4382 			spin_unlock(ptl);
4383 			ret = vmf_error(PTR_ERR(page));
4384 			goto out;
4385 		}
4386 		clear_huge_page(page, address, pages_per_huge_page(h));
4387 		__SetPageUptodate(page);
4388 		new_page = true;
4389 
4390 		if (vma->vm_flags & VM_MAYSHARE) {
4391 			int err = huge_add_to_page_cache(page, mapping, idx);
4392 			if (err) {
4393 				put_page(page);
4394 				if (err == -EEXIST)
4395 					goto retry;
4396 				goto out;
4397 			}
4398 		} else {
4399 			lock_page(page);
4400 			if (unlikely(anon_vma_prepare(vma))) {
4401 				ret = VM_FAULT_OOM;
4402 				goto backout_unlocked;
4403 			}
4404 			anon_rmap = 1;
4405 		}
4406 	} else {
4407 		/*
4408 		 * If memory error occurs between mmap() and fault, some process
4409 		 * don't have hwpoisoned swap entry for errored virtual address.
4410 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4411 		 */
4412 		if (unlikely(PageHWPoison(page))) {
4413 			ret = VM_FAULT_HWPOISON_LARGE |
4414 				VM_FAULT_SET_HINDEX(hstate_index(h));
4415 			goto backout_unlocked;
4416 		}
4417 	}
4418 
4419 	/*
4420 	 * If we are going to COW a private mapping later, we examine the
4421 	 * pending reservations for this page now. This will ensure that
4422 	 * any allocations necessary to record that reservation occur outside
4423 	 * the spinlock.
4424 	 */
4425 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4426 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4427 			ret = VM_FAULT_OOM;
4428 			goto backout_unlocked;
4429 		}
4430 		/* Just decrements count, does not deallocate */
4431 		vma_end_reservation(h, vma, haddr);
4432 	}
4433 
4434 	ptl = huge_pte_lock(h, mm, ptep);
4435 	ret = 0;
4436 	if (!huge_pte_none(huge_ptep_get(ptep)))
4437 		goto backout;
4438 
4439 	if (anon_rmap) {
4440 		ClearHPageRestoreReserve(page);
4441 		hugepage_add_new_anon_rmap(page, vma, haddr);
4442 	} else
4443 		page_dup_rmap(page, true);
4444 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4445 				&& (vma->vm_flags & VM_SHARED)));
4446 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4447 
4448 	hugetlb_count_add(pages_per_huge_page(h), mm);
4449 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4450 		/* Optimization, do the COW without a second fault */
4451 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4452 	}
4453 
4454 	spin_unlock(ptl);
4455 
4456 	/*
4457 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4458 	 * found in the pagecache may not have HPageMigratableset if they have
4459 	 * been isolated for migration.
4460 	 */
4461 	if (new_page)
4462 		SetHPageMigratable(page);
4463 
4464 	unlock_page(page);
4465 out:
4466 	return ret;
4467 
4468 backout:
4469 	spin_unlock(ptl);
4470 backout_unlocked:
4471 	unlock_page(page);
4472 	restore_reserve_on_error(h, vma, haddr, page);
4473 	put_page(page);
4474 	goto out;
4475 }
4476 
4477 #ifdef CONFIG_SMP
4478 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4479 {
4480 	unsigned long key[2];
4481 	u32 hash;
4482 
4483 	key[0] = (unsigned long) mapping;
4484 	key[1] = idx;
4485 
4486 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4487 
4488 	return hash & (num_fault_mutexes - 1);
4489 }
4490 #else
4491 /*
4492  * For uniprocessor systems we always use a single mutex, so just
4493  * return 0 and avoid the hashing overhead.
4494  */
4495 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4496 {
4497 	return 0;
4498 }
4499 #endif
4500 
4501 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4502 			unsigned long address, unsigned int flags)
4503 {
4504 	pte_t *ptep, entry;
4505 	spinlock_t *ptl;
4506 	vm_fault_t ret;
4507 	u32 hash;
4508 	pgoff_t idx;
4509 	struct page *page = NULL;
4510 	struct page *pagecache_page = NULL;
4511 	struct hstate *h = hstate_vma(vma);
4512 	struct address_space *mapping;
4513 	int need_wait_lock = 0;
4514 	unsigned long haddr = address & huge_page_mask(h);
4515 
4516 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4517 	if (ptep) {
4518 		/*
4519 		 * Since we hold no locks, ptep could be stale.  That is
4520 		 * OK as we are only making decisions based on content and
4521 		 * not actually modifying content here.
4522 		 */
4523 		entry = huge_ptep_get(ptep);
4524 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4525 			migration_entry_wait_huge(vma, mm, ptep);
4526 			return 0;
4527 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4528 			return VM_FAULT_HWPOISON_LARGE |
4529 				VM_FAULT_SET_HINDEX(hstate_index(h));
4530 	}
4531 
4532 	/*
4533 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4534 	 * until finished with ptep.  This serves two purposes:
4535 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4536 	 *    and making the ptep no longer valid.
4537 	 * 2) It synchronizes us with i_size modifications during truncation.
4538 	 *
4539 	 * ptep could have already be assigned via huge_pte_offset.  That
4540 	 * is OK, as huge_pte_alloc will return the same value unless
4541 	 * something has changed.
4542 	 */
4543 	mapping = vma->vm_file->f_mapping;
4544 	i_mmap_lock_read(mapping);
4545 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4546 	if (!ptep) {
4547 		i_mmap_unlock_read(mapping);
4548 		return VM_FAULT_OOM;
4549 	}
4550 
4551 	/*
4552 	 * Serialize hugepage allocation and instantiation, so that we don't
4553 	 * get spurious allocation failures if two CPUs race to instantiate
4554 	 * the same page in the page cache.
4555 	 */
4556 	idx = vma_hugecache_offset(h, vma, haddr);
4557 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4558 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4559 
4560 	entry = huge_ptep_get(ptep);
4561 	if (huge_pte_none(entry)) {
4562 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4563 		goto out_mutex;
4564 	}
4565 
4566 	ret = 0;
4567 
4568 	/*
4569 	 * entry could be a migration/hwpoison entry at this point, so this
4570 	 * check prevents the kernel from going below assuming that we have
4571 	 * an active hugepage in pagecache. This goto expects the 2nd page
4572 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4573 	 * properly handle it.
4574 	 */
4575 	if (!pte_present(entry))
4576 		goto out_mutex;
4577 
4578 	/*
4579 	 * If we are going to COW the mapping later, we examine the pending
4580 	 * reservations for this page now. This will ensure that any
4581 	 * allocations necessary to record that reservation occur outside the
4582 	 * spinlock. For private mappings, we also lookup the pagecache
4583 	 * page now as it is used to determine if a reservation has been
4584 	 * consumed.
4585 	 */
4586 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4587 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4588 			ret = VM_FAULT_OOM;
4589 			goto out_mutex;
4590 		}
4591 		/* Just decrements count, does not deallocate */
4592 		vma_end_reservation(h, vma, haddr);
4593 
4594 		if (!(vma->vm_flags & VM_MAYSHARE))
4595 			pagecache_page = hugetlbfs_pagecache_page(h,
4596 								vma, haddr);
4597 	}
4598 
4599 	ptl = huge_pte_lock(h, mm, ptep);
4600 
4601 	/* Check for a racing update before calling hugetlb_cow */
4602 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4603 		goto out_ptl;
4604 
4605 	/*
4606 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4607 	 * pagecache_page, so here we need take the former one
4608 	 * when page != pagecache_page or !pagecache_page.
4609 	 */
4610 	page = pte_page(entry);
4611 	if (page != pagecache_page)
4612 		if (!trylock_page(page)) {
4613 			need_wait_lock = 1;
4614 			goto out_ptl;
4615 		}
4616 
4617 	get_page(page);
4618 
4619 	if (flags & FAULT_FLAG_WRITE) {
4620 		if (!huge_pte_write(entry)) {
4621 			ret = hugetlb_cow(mm, vma, address, ptep,
4622 					  pagecache_page, ptl);
4623 			goto out_put_page;
4624 		}
4625 		entry = huge_pte_mkdirty(entry);
4626 	}
4627 	entry = pte_mkyoung(entry);
4628 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4629 						flags & FAULT_FLAG_WRITE))
4630 		update_mmu_cache(vma, haddr, ptep);
4631 out_put_page:
4632 	if (page != pagecache_page)
4633 		unlock_page(page);
4634 	put_page(page);
4635 out_ptl:
4636 	spin_unlock(ptl);
4637 
4638 	if (pagecache_page) {
4639 		unlock_page(pagecache_page);
4640 		put_page(pagecache_page);
4641 	}
4642 out_mutex:
4643 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4644 	i_mmap_unlock_read(mapping);
4645 	/*
4646 	 * Generally it's safe to hold refcount during waiting page lock. But
4647 	 * here we just wait to defer the next page fault to avoid busy loop and
4648 	 * the page is not used after unlocked before returning from the current
4649 	 * page fault. So we are safe from accessing freed page, even if we wait
4650 	 * here without taking refcount.
4651 	 */
4652 	if (need_wait_lock)
4653 		wait_on_page_locked(page);
4654 	return ret;
4655 }
4656 
4657 /*
4658  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4659  * modifications for huge pages.
4660  */
4661 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4662 			    pte_t *dst_pte,
4663 			    struct vm_area_struct *dst_vma,
4664 			    unsigned long dst_addr,
4665 			    unsigned long src_addr,
4666 			    struct page **pagep)
4667 {
4668 	struct address_space *mapping;
4669 	pgoff_t idx;
4670 	unsigned long size;
4671 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4672 	struct hstate *h = hstate_vma(dst_vma);
4673 	pte_t _dst_pte;
4674 	spinlock_t *ptl;
4675 	int ret;
4676 	struct page *page;
4677 
4678 	if (!*pagep) {
4679 		ret = -ENOMEM;
4680 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4681 		if (IS_ERR(page))
4682 			goto out;
4683 
4684 		ret = copy_huge_page_from_user(page,
4685 						(const void __user *) src_addr,
4686 						pages_per_huge_page(h), false);
4687 
4688 		/* fallback to copy_from_user outside mmap_lock */
4689 		if (unlikely(ret)) {
4690 			ret = -ENOENT;
4691 			*pagep = page;
4692 			/* don't free the page */
4693 			goto out;
4694 		}
4695 	} else {
4696 		page = *pagep;
4697 		*pagep = NULL;
4698 	}
4699 
4700 	/*
4701 	 * The memory barrier inside __SetPageUptodate makes sure that
4702 	 * preceding stores to the page contents become visible before
4703 	 * the set_pte_at() write.
4704 	 */
4705 	__SetPageUptodate(page);
4706 
4707 	mapping = dst_vma->vm_file->f_mapping;
4708 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4709 
4710 	/*
4711 	 * If shared, add to page cache
4712 	 */
4713 	if (vm_shared) {
4714 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4715 		ret = -EFAULT;
4716 		if (idx >= size)
4717 			goto out_release_nounlock;
4718 
4719 		/*
4720 		 * Serialization between remove_inode_hugepages() and
4721 		 * huge_add_to_page_cache() below happens through the
4722 		 * hugetlb_fault_mutex_table that here must be hold by
4723 		 * the caller.
4724 		 */
4725 		ret = huge_add_to_page_cache(page, mapping, idx);
4726 		if (ret)
4727 			goto out_release_nounlock;
4728 	}
4729 
4730 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4731 	spin_lock(ptl);
4732 
4733 	/*
4734 	 * Recheck the i_size after holding PT lock to make sure not
4735 	 * to leave any page mapped (as page_mapped()) beyond the end
4736 	 * of the i_size (remove_inode_hugepages() is strict about
4737 	 * enforcing that). If we bail out here, we'll also leave a
4738 	 * page in the radix tree in the vm_shared case beyond the end
4739 	 * of the i_size, but remove_inode_hugepages() will take care
4740 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4741 	 */
4742 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 	ret = -EFAULT;
4744 	if (idx >= size)
4745 		goto out_release_unlock;
4746 
4747 	ret = -EEXIST;
4748 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4749 		goto out_release_unlock;
4750 
4751 	if (vm_shared) {
4752 		page_dup_rmap(page, true);
4753 	} else {
4754 		ClearHPageRestoreReserve(page);
4755 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4756 	}
4757 
4758 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4759 	if (dst_vma->vm_flags & VM_WRITE)
4760 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4761 	_dst_pte = pte_mkyoung(_dst_pte);
4762 
4763 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4764 
4765 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4766 					dst_vma->vm_flags & VM_WRITE);
4767 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4768 
4769 	/* No need to invalidate - it was non-present before */
4770 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4771 
4772 	spin_unlock(ptl);
4773 	SetHPageMigratable(page);
4774 	if (vm_shared)
4775 		unlock_page(page);
4776 	ret = 0;
4777 out:
4778 	return ret;
4779 out_release_unlock:
4780 	spin_unlock(ptl);
4781 	if (vm_shared)
4782 		unlock_page(page);
4783 out_release_nounlock:
4784 	put_page(page);
4785 	goto out;
4786 }
4787 
4788 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4789 				 int refs, struct page **pages,
4790 				 struct vm_area_struct **vmas)
4791 {
4792 	int nr;
4793 
4794 	for (nr = 0; nr < refs; nr++) {
4795 		if (likely(pages))
4796 			pages[nr] = mem_map_offset(page, nr);
4797 		if (vmas)
4798 			vmas[nr] = vma;
4799 	}
4800 }
4801 
4802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4803 			 struct page **pages, struct vm_area_struct **vmas,
4804 			 unsigned long *position, unsigned long *nr_pages,
4805 			 long i, unsigned int flags, int *locked)
4806 {
4807 	unsigned long pfn_offset;
4808 	unsigned long vaddr = *position;
4809 	unsigned long remainder = *nr_pages;
4810 	struct hstate *h = hstate_vma(vma);
4811 	int err = -EFAULT, refs;
4812 
4813 	while (vaddr < vma->vm_end && remainder) {
4814 		pte_t *pte;
4815 		spinlock_t *ptl = NULL;
4816 		int absent;
4817 		struct page *page;
4818 
4819 		/*
4820 		 * If we have a pending SIGKILL, don't keep faulting pages and
4821 		 * potentially allocating memory.
4822 		 */
4823 		if (fatal_signal_pending(current)) {
4824 			remainder = 0;
4825 			break;
4826 		}
4827 
4828 		/*
4829 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4830 		 * each hugepage.  We have to make sure we get the
4831 		 * first, for the page indexing below to work.
4832 		 *
4833 		 * Note that page table lock is not held when pte is null.
4834 		 */
4835 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4836 				      huge_page_size(h));
4837 		if (pte)
4838 			ptl = huge_pte_lock(h, mm, pte);
4839 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4840 
4841 		/*
4842 		 * When coredumping, it suits get_dump_page if we just return
4843 		 * an error where there's an empty slot with no huge pagecache
4844 		 * to back it.  This way, we avoid allocating a hugepage, and
4845 		 * the sparse dumpfile avoids allocating disk blocks, but its
4846 		 * huge holes still show up with zeroes where they need to be.
4847 		 */
4848 		if (absent && (flags & FOLL_DUMP) &&
4849 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4850 			if (pte)
4851 				spin_unlock(ptl);
4852 			remainder = 0;
4853 			break;
4854 		}
4855 
4856 		/*
4857 		 * We need call hugetlb_fault for both hugepages under migration
4858 		 * (in which case hugetlb_fault waits for the migration,) and
4859 		 * hwpoisoned hugepages (in which case we need to prevent the
4860 		 * caller from accessing to them.) In order to do this, we use
4861 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4862 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4863 		 * both cases, and because we can't follow correct pages
4864 		 * directly from any kind of swap entries.
4865 		 */
4866 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4867 		    ((flags & FOLL_WRITE) &&
4868 		      !huge_pte_write(huge_ptep_get(pte)))) {
4869 			vm_fault_t ret;
4870 			unsigned int fault_flags = 0;
4871 
4872 			if (pte)
4873 				spin_unlock(ptl);
4874 			if (flags & FOLL_WRITE)
4875 				fault_flags |= FAULT_FLAG_WRITE;
4876 			if (locked)
4877 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4878 					FAULT_FLAG_KILLABLE;
4879 			if (flags & FOLL_NOWAIT)
4880 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4881 					FAULT_FLAG_RETRY_NOWAIT;
4882 			if (flags & FOLL_TRIED) {
4883 				/*
4884 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4885 				 * FAULT_FLAG_TRIED can co-exist
4886 				 */
4887 				fault_flags |= FAULT_FLAG_TRIED;
4888 			}
4889 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4890 			if (ret & VM_FAULT_ERROR) {
4891 				err = vm_fault_to_errno(ret, flags);
4892 				remainder = 0;
4893 				break;
4894 			}
4895 			if (ret & VM_FAULT_RETRY) {
4896 				if (locked &&
4897 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4898 					*locked = 0;
4899 				*nr_pages = 0;
4900 				/*
4901 				 * VM_FAULT_RETRY must not return an
4902 				 * error, it will return zero
4903 				 * instead.
4904 				 *
4905 				 * No need to update "position" as the
4906 				 * caller will not check it after
4907 				 * *nr_pages is set to 0.
4908 				 */
4909 				return i;
4910 			}
4911 			continue;
4912 		}
4913 
4914 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4915 		page = pte_page(huge_ptep_get(pte));
4916 
4917 		/*
4918 		 * If subpage information not requested, update counters
4919 		 * and skip the same_page loop below.
4920 		 */
4921 		if (!pages && !vmas && !pfn_offset &&
4922 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4923 		    (remainder >= pages_per_huge_page(h))) {
4924 			vaddr += huge_page_size(h);
4925 			remainder -= pages_per_huge_page(h);
4926 			i += pages_per_huge_page(h);
4927 			spin_unlock(ptl);
4928 			continue;
4929 		}
4930 
4931 		refs = min3(pages_per_huge_page(h) - pfn_offset,
4932 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4933 
4934 		if (pages || vmas)
4935 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
4936 					     vma, refs,
4937 					     likely(pages) ? pages + i : NULL,
4938 					     vmas ? vmas + i : NULL);
4939 
4940 		if (pages) {
4941 			/*
4942 			 * try_grab_compound_head() should always succeed here,
4943 			 * because: a) we hold the ptl lock, and b) we've just
4944 			 * checked that the huge page is present in the page
4945 			 * tables. If the huge page is present, then the tail
4946 			 * pages must also be present. The ptl prevents the
4947 			 * head page and tail pages from being rearranged in
4948 			 * any way. So this page must be available at this
4949 			 * point, unless the page refcount overflowed:
4950 			 */
4951 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4952 								 refs,
4953 								 flags))) {
4954 				spin_unlock(ptl);
4955 				remainder = 0;
4956 				err = -ENOMEM;
4957 				break;
4958 			}
4959 		}
4960 
4961 		vaddr += (refs << PAGE_SHIFT);
4962 		remainder -= refs;
4963 		i += refs;
4964 
4965 		spin_unlock(ptl);
4966 	}
4967 	*nr_pages = remainder;
4968 	/*
4969 	 * setting position is actually required only if remainder is
4970 	 * not zero but it's faster not to add a "if (remainder)"
4971 	 * branch.
4972 	 */
4973 	*position = vaddr;
4974 
4975 	return i ? i : err;
4976 }
4977 
4978 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4979 /*
4980  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4981  * implement this.
4982  */
4983 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4984 #endif
4985 
4986 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4987 		unsigned long address, unsigned long end, pgprot_t newprot)
4988 {
4989 	struct mm_struct *mm = vma->vm_mm;
4990 	unsigned long start = address;
4991 	pte_t *ptep;
4992 	pte_t pte;
4993 	struct hstate *h = hstate_vma(vma);
4994 	unsigned long pages = 0;
4995 	bool shared_pmd = false;
4996 	struct mmu_notifier_range range;
4997 
4998 	/*
4999 	 * In the case of shared PMDs, the area to flush could be beyond
5000 	 * start/end.  Set range.start/range.end to cover the maximum possible
5001 	 * range if PMD sharing is possible.
5002 	 */
5003 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5004 				0, vma, mm, start, end);
5005 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5006 
5007 	BUG_ON(address >= end);
5008 	flush_cache_range(vma, range.start, range.end);
5009 
5010 	mmu_notifier_invalidate_range_start(&range);
5011 	i_mmap_lock_write(vma->vm_file->f_mapping);
5012 	for (; address < end; address += huge_page_size(h)) {
5013 		spinlock_t *ptl;
5014 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5015 		if (!ptep)
5016 			continue;
5017 		ptl = huge_pte_lock(h, mm, ptep);
5018 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5019 			pages++;
5020 			spin_unlock(ptl);
5021 			shared_pmd = true;
5022 			continue;
5023 		}
5024 		pte = huge_ptep_get(ptep);
5025 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5026 			spin_unlock(ptl);
5027 			continue;
5028 		}
5029 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5030 			swp_entry_t entry = pte_to_swp_entry(pte);
5031 
5032 			if (is_write_migration_entry(entry)) {
5033 				pte_t newpte;
5034 
5035 				make_migration_entry_read(&entry);
5036 				newpte = swp_entry_to_pte(entry);
5037 				set_huge_swap_pte_at(mm, address, ptep,
5038 						     newpte, huge_page_size(h));
5039 				pages++;
5040 			}
5041 			spin_unlock(ptl);
5042 			continue;
5043 		}
5044 		if (!huge_pte_none(pte)) {
5045 			pte_t old_pte;
5046 
5047 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5048 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5049 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5050 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5051 			pages++;
5052 		}
5053 		spin_unlock(ptl);
5054 	}
5055 	/*
5056 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5057 	 * may have cleared our pud entry and done put_page on the page table:
5058 	 * once we release i_mmap_rwsem, another task can do the final put_page
5059 	 * and that page table be reused and filled with junk.  If we actually
5060 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5061 	 */
5062 	if (shared_pmd)
5063 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5064 	else
5065 		flush_hugetlb_tlb_range(vma, start, end);
5066 	/*
5067 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5068 	 * page table protection not changing it to point to a new page.
5069 	 *
5070 	 * See Documentation/vm/mmu_notifier.rst
5071 	 */
5072 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5073 	mmu_notifier_invalidate_range_end(&range);
5074 
5075 	return pages << h->order;
5076 }
5077 
5078 /* Return true if reservation was successful, false otherwise.  */
5079 bool hugetlb_reserve_pages(struct inode *inode,
5080 					long from, long to,
5081 					struct vm_area_struct *vma,
5082 					vm_flags_t vm_flags)
5083 {
5084 	long chg, add = -1;
5085 	struct hstate *h = hstate_inode(inode);
5086 	struct hugepage_subpool *spool = subpool_inode(inode);
5087 	struct resv_map *resv_map;
5088 	struct hugetlb_cgroup *h_cg = NULL;
5089 	long gbl_reserve, regions_needed = 0;
5090 
5091 	/* This should never happen */
5092 	if (from > to) {
5093 		VM_WARN(1, "%s called with a negative range\n", __func__);
5094 		return false;
5095 	}
5096 
5097 	/*
5098 	 * Only apply hugepage reservation if asked. At fault time, an
5099 	 * attempt will be made for VM_NORESERVE to allocate a page
5100 	 * without using reserves
5101 	 */
5102 	if (vm_flags & VM_NORESERVE)
5103 		return true;
5104 
5105 	/*
5106 	 * Shared mappings base their reservation on the number of pages that
5107 	 * are already allocated on behalf of the file. Private mappings need
5108 	 * to reserve the full area even if read-only as mprotect() may be
5109 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5110 	 */
5111 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5112 		/*
5113 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5114 		 * called for inodes for which resv_maps were created (see
5115 		 * hugetlbfs_get_inode).
5116 		 */
5117 		resv_map = inode_resv_map(inode);
5118 
5119 		chg = region_chg(resv_map, from, to, &regions_needed);
5120 
5121 	} else {
5122 		/* Private mapping. */
5123 		resv_map = resv_map_alloc();
5124 		if (!resv_map)
5125 			return false;
5126 
5127 		chg = to - from;
5128 
5129 		set_vma_resv_map(vma, resv_map);
5130 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5131 	}
5132 
5133 	if (chg < 0)
5134 		goto out_err;
5135 
5136 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5137 				chg * pages_per_huge_page(h), &h_cg) < 0)
5138 		goto out_err;
5139 
5140 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5141 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5142 		 * of the resv_map.
5143 		 */
5144 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5145 	}
5146 
5147 	/*
5148 	 * There must be enough pages in the subpool for the mapping. If
5149 	 * the subpool has a minimum size, there may be some global
5150 	 * reservations already in place (gbl_reserve).
5151 	 */
5152 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5153 	if (gbl_reserve < 0)
5154 		goto out_uncharge_cgroup;
5155 
5156 	/*
5157 	 * Check enough hugepages are available for the reservation.
5158 	 * Hand the pages back to the subpool if there are not
5159 	 */
5160 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5161 		goto out_put_pages;
5162 
5163 	/*
5164 	 * Account for the reservations made. Shared mappings record regions
5165 	 * that have reservations as they are shared by multiple VMAs.
5166 	 * When the last VMA disappears, the region map says how much
5167 	 * the reservation was and the page cache tells how much of
5168 	 * the reservation was consumed. Private mappings are per-VMA and
5169 	 * only the consumed reservations are tracked. When the VMA
5170 	 * disappears, the original reservation is the VMA size and the
5171 	 * consumed reservations are stored in the map. Hence, nothing
5172 	 * else has to be done for private mappings here
5173 	 */
5174 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5176 
5177 		if (unlikely(add < 0)) {
5178 			hugetlb_acct_memory(h, -gbl_reserve);
5179 			goto out_put_pages;
5180 		} else if (unlikely(chg > add)) {
5181 			/*
5182 			 * pages in this range were added to the reserve
5183 			 * map between region_chg and region_add.  This
5184 			 * indicates a race with alloc_huge_page.  Adjust
5185 			 * the subpool and reserve counts modified above
5186 			 * based on the difference.
5187 			 */
5188 			long rsv_adjust;
5189 
5190 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5191 				hstate_index(h),
5192 				(chg - add) * pages_per_huge_page(h), h_cg);
5193 
5194 			rsv_adjust = hugepage_subpool_put_pages(spool,
5195 								chg - add);
5196 			hugetlb_acct_memory(h, -rsv_adjust);
5197 		}
5198 	}
5199 	return true;
5200 
5201 out_put_pages:
5202 	/* put back original number of pages, chg */
5203 	(void)hugepage_subpool_put_pages(spool, chg);
5204 out_uncharge_cgroup:
5205 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5206 					    chg * pages_per_huge_page(h), h_cg);
5207 out_err:
5208 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5209 		/* Only call region_abort if the region_chg succeeded but the
5210 		 * region_add failed or didn't run.
5211 		 */
5212 		if (chg >= 0 && add < 0)
5213 			region_abort(resv_map, from, to, regions_needed);
5214 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5215 		kref_put(&resv_map->refs, resv_map_release);
5216 	return false;
5217 }
5218 
5219 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5220 								long freed)
5221 {
5222 	struct hstate *h = hstate_inode(inode);
5223 	struct resv_map *resv_map = inode_resv_map(inode);
5224 	long chg = 0;
5225 	struct hugepage_subpool *spool = subpool_inode(inode);
5226 	long gbl_reserve;
5227 
5228 	/*
5229 	 * Since this routine can be called in the evict inode path for all
5230 	 * hugetlbfs inodes, resv_map could be NULL.
5231 	 */
5232 	if (resv_map) {
5233 		chg = region_del(resv_map, start, end);
5234 		/*
5235 		 * region_del() can fail in the rare case where a region
5236 		 * must be split and another region descriptor can not be
5237 		 * allocated.  If end == LONG_MAX, it will not fail.
5238 		 */
5239 		if (chg < 0)
5240 			return chg;
5241 	}
5242 
5243 	spin_lock(&inode->i_lock);
5244 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5245 	spin_unlock(&inode->i_lock);
5246 
5247 	/*
5248 	 * If the subpool has a minimum size, the number of global
5249 	 * reservations to be released may be adjusted.
5250 	 */
5251 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5252 	hugetlb_acct_memory(h, -gbl_reserve);
5253 
5254 	return 0;
5255 }
5256 
5257 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5258 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5259 				struct vm_area_struct *vma,
5260 				unsigned long addr, pgoff_t idx)
5261 {
5262 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5263 				svma->vm_start;
5264 	unsigned long sbase = saddr & PUD_MASK;
5265 	unsigned long s_end = sbase + PUD_SIZE;
5266 
5267 	/* Allow segments to share if only one is marked locked */
5268 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5270 
5271 	/*
5272 	 * match the virtual addresses, permission and the alignment of the
5273 	 * page table page.
5274 	 */
5275 	if (pmd_index(addr) != pmd_index(saddr) ||
5276 	    vm_flags != svm_flags ||
5277 	    !range_in_vma(svma, sbase, s_end))
5278 		return 0;
5279 
5280 	return saddr;
5281 }
5282 
5283 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5284 {
5285 	unsigned long base = addr & PUD_MASK;
5286 	unsigned long end = base + PUD_SIZE;
5287 
5288 	/*
5289 	 * check on proper vm_flags and page table alignment
5290 	 */
5291 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5292 		return true;
5293 	return false;
5294 }
5295 
5296 /*
5297  * Determine if start,end range within vma could be mapped by shared pmd.
5298  * If yes, adjust start and end to cover range associated with possible
5299  * shared pmd mappings.
5300  */
5301 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5302 				unsigned long *start, unsigned long *end)
5303 {
5304 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5305 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5306 
5307 	/*
5308 	 * vma need span at least one aligned PUD size and the start,end range
5309 	 * must at least partialy within it.
5310 	 */
5311 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5312 		(*end <= v_start) || (*start >= v_end))
5313 		return;
5314 
5315 	/* Extend the range to be PUD aligned for a worst case scenario */
5316 	if (*start > v_start)
5317 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5318 
5319 	if (*end < v_end)
5320 		*end = ALIGN(*end, PUD_SIZE);
5321 }
5322 
5323 /*
5324  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5325  * and returns the corresponding pte. While this is not necessary for the
5326  * !shared pmd case because we can allocate the pmd later as well, it makes the
5327  * code much cleaner.
5328  *
5329  * This routine must be called with i_mmap_rwsem held in at least read mode if
5330  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5331  * table entries associated with the address space.  This is important as we
5332  * are setting up sharing based on existing page table entries (mappings).
5333  *
5334  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5335  * huge_pte_alloc know that sharing is not possible and do not take
5336  * i_mmap_rwsem as a performance optimization.  This is handled by the
5337  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5338  * only required for subsequent processing.
5339  */
5340 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5341 {
5342 	struct vm_area_struct *vma = find_vma(mm, addr);
5343 	struct address_space *mapping = vma->vm_file->f_mapping;
5344 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5345 			vma->vm_pgoff;
5346 	struct vm_area_struct *svma;
5347 	unsigned long saddr;
5348 	pte_t *spte = NULL;
5349 	pte_t *pte;
5350 	spinlock_t *ptl;
5351 
5352 	if (!vma_shareable(vma, addr))
5353 		return (pte_t *)pmd_alloc(mm, pud, addr);
5354 
5355 	i_mmap_assert_locked(mapping);
5356 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5357 		if (svma == vma)
5358 			continue;
5359 
5360 		saddr = page_table_shareable(svma, vma, addr, idx);
5361 		if (saddr) {
5362 			spte = huge_pte_offset(svma->vm_mm, saddr,
5363 					       vma_mmu_pagesize(svma));
5364 			if (spte) {
5365 				get_page(virt_to_page(spte));
5366 				break;
5367 			}
5368 		}
5369 	}
5370 
5371 	if (!spte)
5372 		goto out;
5373 
5374 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5375 	if (pud_none(*pud)) {
5376 		pud_populate(mm, pud,
5377 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5378 		mm_inc_nr_pmds(mm);
5379 	} else {
5380 		put_page(virt_to_page(spte));
5381 	}
5382 	spin_unlock(ptl);
5383 out:
5384 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5385 	return pte;
5386 }
5387 
5388 /*
5389  * unmap huge page backed by shared pte.
5390  *
5391  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5392  * indicated by page_count > 1, unmap is achieved by clearing pud and
5393  * decrementing the ref count. If count == 1, the pte page is not shared.
5394  *
5395  * Called with page table lock held and i_mmap_rwsem held in write mode.
5396  *
5397  * returns: 1 successfully unmapped a shared pte page
5398  *	    0 the underlying pte page is not shared, or it is the last user
5399  */
5400 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5401 					unsigned long *addr, pte_t *ptep)
5402 {
5403 	pgd_t *pgd = pgd_offset(mm, *addr);
5404 	p4d_t *p4d = p4d_offset(pgd, *addr);
5405 	pud_t *pud = pud_offset(p4d, *addr);
5406 
5407 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5408 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5409 	if (page_count(virt_to_page(ptep)) == 1)
5410 		return 0;
5411 
5412 	pud_clear(pud);
5413 	put_page(virt_to_page(ptep));
5414 	mm_dec_nr_pmds(mm);
5415 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5416 	return 1;
5417 }
5418 #define want_pmd_share()	(1)
5419 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5420 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5421 {
5422 	return NULL;
5423 }
5424 
5425 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5426 				unsigned long *addr, pte_t *ptep)
5427 {
5428 	return 0;
5429 }
5430 
5431 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5432 				unsigned long *start, unsigned long *end)
5433 {
5434 }
5435 #define want_pmd_share()	(0)
5436 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5437 
5438 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5439 pte_t *huge_pte_alloc(struct mm_struct *mm,
5440 			unsigned long addr, unsigned long sz)
5441 {
5442 	pgd_t *pgd;
5443 	p4d_t *p4d;
5444 	pud_t *pud;
5445 	pte_t *pte = NULL;
5446 
5447 	pgd = pgd_offset(mm, addr);
5448 	p4d = p4d_alloc(mm, pgd, addr);
5449 	if (!p4d)
5450 		return NULL;
5451 	pud = pud_alloc(mm, p4d, addr);
5452 	if (pud) {
5453 		if (sz == PUD_SIZE) {
5454 			pte = (pte_t *)pud;
5455 		} else {
5456 			BUG_ON(sz != PMD_SIZE);
5457 			if (want_pmd_share() && pud_none(*pud))
5458 				pte = huge_pmd_share(mm, addr, pud);
5459 			else
5460 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5461 		}
5462 	}
5463 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5464 
5465 	return pte;
5466 }
5467 
5468 /*
5469  * huge_pte_offset() - Walk the page table to resolve the hugepage
5470  * entry at address @addr
5471  *
5472  * Return: Pointer to page table entry (PUD or PMD) for
5473  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5474  * size @sz doesn't match the hugepage size at this level of the page
5475  * table.
5476  */
5477 pte_t *huge_pte_offset(struct mm_struct *mm,
5478 		       unsigned long addr, unsigned long sz)
5479 {
5480 	pgd_t *pgd;
5481 	p4d_t *p4d;
5482 	pud_t *pud;
5483 	pmd_t *pmd;
5484 
5485 	pgd = pgd_offset(mm, addr);
5486 	if (!pgd_present(*pgd))
5487 		return NULL;
5488 	p4d = p4d_offset(pgd, addr);
5489 	if (!p4d_present(*p4d))
5490 		return NULL;
5491 
5492 	pud = pud_offset(p4d, addr);
5493 	if (sz == PUD_SIZE)
5494 		/* must be pud huge, non-present or none */
5495 		return (pte_t *)pud;
5496 	if (!pud_present(*pud))
5497 		return NULL;
5498 	/* must have a valid entry and size to go further */
5499 
5500 	pmd = pmd_offset(pud, addr);
5501 	/* must be pmd huge, non-present or none */
5502 	return (pte_t *)pmd;
5503 }
5504 
5505 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5506 
5507 /*
5508  * These functions are overwritable if your architecture needs its own
5509  * behavior.
5510  */
5511 struct page * __weak
5512 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5513 			      int write)
5514 {
5515 	return ERR_PTR(-EINVAL);
5516 }
5517 
5518 struct page * __weak
5519 follow_huge_pd(struct vm_area_struct *vma,
5520 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5521 {
5522 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5523 	return NULL;
5524 }
5525 
5526 struct page * __weak
5527 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5528 		pmd_t *pmd, int flags)
5529 {
5530 	struct page *page = NULL;
5531 	spinlock_t *ptl;
5532 	pte_t pte;
5533 
5534 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5535 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5536 			 (FOLL_PIN | FOLL_GET)))
5537 		return NULL;
5538 
5539 retry:
5540 	ptl = pmd_lockptr(mm, pmd);
5541 	spin_lock(ptl);
5542 	/*
5543 	 * make sure that the address range covered by this pmd is not
5544 	 * unmapped from other threads.
5545 	 */
5546 	if (!pmd_huge(*pmd))
5547 		goto out;
5548 	pte = huge_ptep_get((pte_t *)pmd);
5549 	if (pte_present(pte)) {
5550 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5551 		/*
5552 		 * try_grab_page() should always succeed here, because: a) we
5553 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5554 		 * huge pmd (head) page is present in the page tables. The ptl
5555 		 * prevents the head page and tail pages from being rearranged
5556 		 * in any way. So this page must be available at this point,
5557 		 * unless the page refcount overflowed:
5558 		 */
5559 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5560 			page = NULL;
5561 			goto out;
5562 		}
5563 	} else {
5564 		if (is_hugetlb_entry_migration(pte)) {
5565 			spin_unlock(ptl);
5566 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5567 			goto retry;
5568 		}
5569 		/*
5570 		 * hwpoisoned entry is treated as no_page_table in
5571 		 * follow_page_mask().
5572 		 */
5573 	}
5574 out:
5575 	spin_unlock(ptl);
5576 	return page;
5577 }
5578 
5579 struct page * __weak
5580 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5581 		pud_t *pud, int flags)
5582 {
5583 	if (flags & (FOLL_GET | FOLL_PIN))
5584 		return NULL;
5585 
5586 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5587 }
5588 
5589 struct page * __weak
5590 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5591 {
5592 	if (flags & (FOLL_GET | FOLL_PIN))
5593 		return NULL;
5594 
5595 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5596 }
5597 
5598 bool isolate_huge_page(struct page *page, struct list_head *list)
5599 {
5600 	bool ret = true;
5601 
5602 	spin_lock(&hugetlb_lock);
5603 	if (!PageHeadHuge(page) ||
5604 	    !HPageMigratable(page) ||
5605 	    !get_page_unless_zero(page)) {
5606 		ret = false;
5607 		goto unlock;
5608 	}
5609 	ClearHPageMigratable(page);
5610 	list_move_tail(&page->lru, list);
5611 unlock:
5612 	spin_unlock(&hugetlb_lock);
5613 	return ret;
5614 }
5615 
5616 void putback_active_hugepage(struct page *page)
5617 {
5618 	spin_lock(&hugetlb_lock);
5619 	SetHPageMigratable(page);
5620 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5621 	spin_unlock(&hugetlb_lock);
5622 	put_page(page);
5623 }
5624 
5625 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5626 {
5627 	struct hstate *h = page_hstate(oldpage);
5628 
5629 	hugetlb_cgroup_migrate(oldpage, newpage);
5630 	set_page_owner_migrate_reason(newpage, reason);
5631 
5632 	/*
5633 	 * transfer temporary state of the new huge page. This is
5634 	 * reverse to other transitions because the newpage is going to
5635 	 * be final while the old one will be freed so it takes over
5636 	 * the temporary status.
5637 	 *
5638 	 * Also note that we have to transfer the per-node surplus state
5639 	 * here as well otherwise the global surplus count will not match
5640 	 * the per-node's.
5641 	 */
5642 	if (HPageTemporary(newpage)) {
5643 		int old_nid = page_to_nid(oldpage);
5644 		int new_nid = page_to_nid(newpage);
5645 
5646 		SetHPageTemporary(oldpage);
5647 		ClearHPageTemporary(newpage);
5648 
5649 		spin_lock(&hugetlb_lock);
5650 		if (h->surplus_huge_pages_node[old_nid]) {
5651 			h->surplus_huge_pages_node[old_nid]--;
5652 			h->surplus_huge_pages_node[new_nid]++;
5653 		}
5654 		spin_unlock(&hugetlb_lock);
5655 	}
5656 }
5657 
5658 #ifdef CONFIG_CMA
5659 static bool cma_reserve_called __initdata;
5660 
5661 static int __init cmdline_parse_hugetlb_cma(char *p)
5662 {
5663 	hugetlb_cma_size = memparse(p, &p);
5664 	return 0;
5665 }
5666 
5667 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5668 
5669 void __init hugetlb_cma_reserve(int order)
5670 {
5671 	unsigned long size, reserved, per_node;
5672 	int nid;
5673 
5674 	cma_reserve_called = true;
5675 
5676 	if (!hugetlb_cma_size)
5677 		return;
5678 
5679 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5680 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5681 			(PAGE_SIZE << order) / SZ_1M);
5682 		return;
5683 	}
5684 
5685 	/*
5686 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5687 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5688 	 */
5689 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5690 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5691 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5692 
5693 	reserved = 0;
5694 	for_each_node_state(nid, N_ONLINE) {
5695 		int res;
5696 		char name[CMA_MAX_NAME];
5697 
5698 		size = min(per_node, hugetlb_cma_size - reserved);
5699 		size = round_up(size, PAGE_SIZE << order);
5700 
5701 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5702 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5703 						 0, false, name,
5704 						 &hugetlb_cma[nid], nid);
5705 		if (res) {
5706 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5707 				res, nid);
5708 			continue;
5709 		}
5710 
5711 		reserved += size;
5712 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5713 			size / SZ_1M, nid);
5714 
5715 		if (reserved >= hugetlb_cma_size)
5716 			break;
5717 	}
5718 }
5719 
5720 void __init hugetlb_cma_check(void)
5721 {
5722 	if (!hugetlb_cma_size || cma_reserve_called)
5723 		return;
5724 
5725 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5726 }
5727 
5728 #endif /* CONFIG_CMA */
5729