xref: /openbmc/linux/mm/hugetlb.c (revision 160b8e75)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
38 #include "internal.h"
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56 
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62 
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 
77 	spin_unlock(&spool->lock);
78 
79 	/* If no pages are used, and no other handles to the subpool
80 	 * remain, give up any reservations mased on minimum size and
81 	 * free the subpool */
82 	if (free) {
83 		if (spool->min_hpages != -1)
84 			hugetlb_acct_memory(spool->hstate,
85 						-spool->min_hpages);
86 		kfree(spool);
87 	}
88 }
89 
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 						long min_hpages)
92 {
93 	struct hugepage_subpool *spool;
94 
95 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 	if (!spool)
97 		return NULL;
98 
99 	spin_lock_init(&spool->lock);
100 	spool->count = 1;
101 	spool->max_hpages = max_hpages;
102 	spool->hstate = h;
103 	spool->min_hpages = min_hpages;
104 
105 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 		kfree(spool);
107 		return NULL;
108 	}
109 	spool->rsv_hpages = min_hpages;
110 
111 	return spool;
112 }
113 
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116 	spin_lock(&spool->lock);
117 	BUG_ON(!spool->count);
118 	spool->count--;
119 	unlock_or_release_subpool(spool);
120 }
121 
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 				      long delta)
132 {
133 	long ret = delta;
134 
135 	if (!spool)
136 		return ret;
137 
138 	spin_lock(&spool->lock);
139 
140 	if (spool->max_hpages != -1) {		/* maximum size accounting */
141 		if ((spool->used_hpages + delta) <= spool->max_hpages)
142 			spool->used_hpages += delta;
143 		else {
144 			ret = -ENOMEM;
145 			goto unlock_ret;
146 		}
147 	}
148 
149 	/* minimum size accounting */
150 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 		if (delta > spool->rsv_hpages) {
152 			/*
153 			 * Asking for more reserves than those already taken on
154 			 * behalf of subpool.  Return difference.
155 			 */
156 			ret = delta - spool->rsv_hpages;
157 			spool->rsv_hpages = 0;
158 		} else {
159 			ret = 0;	/* reserves already accounted for */
160 			spool->rsv_hpages -= delta;
161 		}
162 	}
163 
164 unlock_ret:
165 	spin_unlock(&spool->lock);
166 	return ret;
167 }
168 
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 				       long delta)
177 {
178 	long ret = delta;
179 
180 	if (!spool)
181 		return delta;
182 
183 	spin_lock(&spool->lock);
184 
185 	if (spool->max_hpages != -1)		/* maximum size accounting */
186 		spool->used_hpages -= delta;
187 
188 	 /* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 		if (spool->rsv_hpages + delta <= spool->min_hpages)
191 			ret = 0;
192 		else
193 			ret = spool->rsv_hpages + delta - spool->min_hpages;
194 
195 		spool->rsv_hpages += delta;
196 		if (spool->rsv_hpages > spool->min_hpages)
197 			spool->rsv_hpages = spool->min_hpages;
198 	}
199 
200 	/*
201 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 	 * quota reference, free it now.
203 	 */
204 	unlock_or_release_subpool(spool);
205 
206 	return ret;
207 }
208 
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211 	return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213 
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216 	return subpool_inode(file_inode(vma->vm_file));
217 }
218 
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239 	struct list_head link;
240 	long from;
241 	long to;
242 };
243 
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260 	struct list_head *head = &resv->regions;
261 	struct file_region *rg, *nrg, *trg;
262 	long add = 0;
263 
264 	spin_lock(&resv->lock);
265 	/* Locate the region we are either in or before. */
266 	list_for_each_entry(rg, head, link)
267 		if (f <= rg->to)
268 			break;
269 
270 	/*
271 	 * If no region exists which can be expanded to include the
272 	 * specified range, the list must have been modified by an
273 	 * interleving call to region_del().  Pull a region descriptor
274 	 * from the cache and use it for this range.
275 	 */
276 	if (&rg->link == head || t < rg->from) {
277 		VM_BUG_ON(resv->region_cache_count <= 0);
278 
279 		resv->region_cache_count--;
280 		nrg = list_first_entry(&resv->region_cache, struct file_region,
281 					link);
282 		list_del(&nrg->link);
283 
284 		nrg->from = f;
285 		nrg->to = t;
286 		list_add(&nrg->link, rg->link.prev);
287 
288 		add += t - f;
289 		goto out_locked;
290 	}
291 
292 	/* Round our left edge to the current segment if it encloses us. */
293 	if (f > rg->from)
294 		f = rg->from;
295 
296 	/* Check for and consume any regions we now overlap with. */
297 	nrg = rg;
298 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 		if (&rg->link == head)
300 			break;
301 		if (rg->from > t)
302 			break;
303 
304 		/* If this area reaches higher then extend our area to
305 		 * include it completely.  If this is not the first area
306 		 * which we intend to reuse, free it. */
307 		if (rg->to > t)
308 			t = rg->to;
309 		if (rg != nrg) {
310 			/* Decrement return value by the deleted range.
311 			 * Another range will span this area so that by
312 			 * end of routine add will be >= zero
313 			 */
314 			add -= (rg->to - rg->from);
315 			list_del(&rg->link);
316 			kfree(rg);
317 		}
318 	}
319 
320 	add += (nrg->from - f);		/* Added to beginning of region */
321 	nrg->from = f;
322 	add += t - nrg->to;		/* Added to end of region */
323 	nrg->to = t;
324 
325 out_locked:
326 	resv->adds_in_progress--;
327 	spin_unlock(&resv->lock);
328 	VM_BUG_ON(add < 0);
329 	return add;
330 }
331 
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356 	struct list_head *head = &resv->regions;
357 	struct file_region *rg, *nrg = NULL;
358 	long chg = 0;
359 
360 retry:
361 	spin_lock(&resv->lock);
362 retry_locked:
363 	resv->adds_in_progress++;
364 
365 	/*
366 	 * Check for sufficient descriptors in the cache to accommodate
367 	 * the number of in progress add operations.
368 	 */
369 	if (resv->adds_in_progress > resv->region_cache_count) {
370 		struct file_region *trg;
371 
372 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 		/* Must drop lock to allocate a new descriptor. */
374 		resv->adds_in_progress--;
375 		spin_unlock(&resv->lock);
376 
377 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 		if (!trg) {
379 			kfree(nrg);
380 			return -ENOMEM;
381 		}
382 
383 		spin_lock(&resv->lock);
384 		list_add(&trg->link, &resv->region_cache);
385 		resv->region_cache_count++;
386 		goto retry_locked;
387 	}
388 
389 	/* Locate the region we are before or in. */
390 	list_for_each_entry(rg, head, link)
391 		if (f <= rg->to)
392 			break;
393 
394 	/* If we are below the current region then a new region is required.
395 	 * Subtle, allocate a new region at the position but make it zero
396 	 * size such that we can guarantee to record the reservation. */
397 	if (&rg->link == head || t < rg->from) {
398 		if (!nrg) {
399 			resv->adds_in_progress--;
400 			spin_unlock(&resv->lock);
401 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 			if (!nrg)
403 				return -ENOMEM;
404 
405 			nrg->from = f;
406 			nrg->to   = f;
407 			INIT_LIST_HEAD(&nrg->link);
408 			goto retry;
409 		}
410 
411 		list_add(&nrg->link, rg->link.prev);
412 		chg = t - f;
413 		goto out_nrg;
414 	}
415 
416 	/* Round our left edge to the current segment if it encloses us. */
417 	if (f > rg->from)
418 		f = rg->from;
419 	chg = t - f;
420 
421 	/* Check for and consume any regions we now overlap with. */
422 	list_for_each_entry(rg, rg->link.prev, link) {
423 		if (&rg->link == head)
424 			break;
425 		if (rg->from > t)
426 			goto out;
427 
428 		/* We overlap with this area, if it extends further than
429 		 * us then we must extend ourselves.  Account for its
430 		 * existing reservation. */
431 		if (rg->to > t) {
432 			chg += rg->to - t;
433 			t = rg->to;
434 		}
435 		chg -= rg->to - rg->from;
436 	}
437 
438 out:
439 	spin_unlock(&resv->lock);
440 	/*  We already know we raced and no longer need the new region */
441 	kfree(nrg);
442 	return chg;
443 out_nrg:
444 	spin_unlock(&resv->lock);
445 	return chg;
446 }
447 
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461 	spin_lock(&resv->lock);
462 	VM_BUG_ON(!resv->region_cache_count);
463 	resv->adds_in_progress--;
464 	spin_unlock(&resv->lock);
465 }
466 
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483 	struct list_head *head = &resv->regions;
484 	struct file_region *rg, *trg;
485 	struct file_region *nrg = NULL;
486 	long del = 0;
487 
488 retry:
489 	spin_lock(&resv->lock);
490 	list_for_each_entry_safe(rg, trg, head, link) {
491 		/*
492 		 * Skip regions before the range to be deleted.  file_region
493 		 * ranges are normally of the form [from, to).  However, there
494 		 * may be a "placeholder" entry in the map which is of the form
495 		 * (from, to) with from == to.  Check for placeholder entries
496 		 * at the beginning of the range to be deleted.
497 		 */
498 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499 			continue;
500 
501 		if (rg->from >= t)
502 			break;
503 
504 		if (f > rg->from && t < rg->to) { /* Must split region */
505 			/*
506 			 * Check for an entry in the cache before dropping
507 			 * lock and attempting allocation.
508 			 */
509 			if (!nrg &&
510 			    resv->region_cache_count > resv->adds_in_progress) {
511 				nrg = list_first_entry(&resv->region_cache,
512 							struct file_region,
513 							link);
514 				list_del(&nrg->link);
515 				resv->region_cache_count--;
516 			}
517 
518 			if (!nrg) {
519 				spin_unlock(&resv->lock);
520 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 				if (!nrg)
522 					return -ENOMEM;
523 				goto retry;
524 			}
525 
526 			del += t - f;
527 
528 			/* New entry for end of split region */
529 			nrg->from = t;
530 			nrg->to = rg->to;
531 			INIT_LIST_HEAD(&nrg->link);
532 
533 			/* Original entry is trimmed */
534 			rg->to = f;
535 
536 			list_add(&nrg->link, &rg->link);
537 			nrg = NULL;
538 			break;
539 		}
540 
541 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 			del += rg->to - rg->from;
543 			list_del(&rg->link);
544 			kfree(rg);
545 			continue;
546 		}
547 
548 		if (f <= rg->from) {	/* Trim beginning of region */
549 			del += t - rg->from;
550 			rg->from = t;
551 		} else {		/* Trim end of region */
552 			del += rg->to - f;
553 			rg->to = f;
554 		}
555 	}
556 
557 	spin_unlock(&resv->lock);
558 	kfree(nrg);
559 	return del;
560 }
561 
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573 	struct hugepage_subpool *spool = subpool_inode(inode);
574 	long rsv_adjust;
575 
576 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 	if (rsv_adjust) {
578 		struct hstate *h = hstate_inode(inode);
579 
580 		hugetlb_acct_memory(h, 1);
581 	}
582 }
583 
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590 	struct list_head *head = &resv->regions;
591 	struct file_region *rg;
592 	long chg = 0;
593 
594 	spin_lock(&resv->lock);
595 	/* Locate each segment we overlap with, and count that overlap. */
596 	list_for_each_entry(rg, head, link) {
597 		long seg_from;
598 		long seg_to;
599 
600 		if (rg->to <= f)
601 			continue;
602 		if (rg->from >= t)
603 			break;
604 
605 		seg_from = max(rg->from, f);
606 		seg_to = min(rg->to, t);
607 
608 		chg += seg_to - seg_from;
609 	}
610 	spin_unlock(&resv->lock);
611 
612 	return chg;
613 }
614 
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 			struct vm_area_struct *vma, unsigned long address)
621 {
622 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 			(vma->vm_pgoff >> huge_page_order(h));
624 }
625 
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 				     unsigned long address)
628 {
629 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632 
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639 	struct hstate *hstate;
640 
641 	if (!is_vm_hugetlb_page(vma))
642 		return PAGE_SIZE;
643 
644 	hstate = hstate_vma(vma);
645 
646 	return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649 
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659 	return vma_kernel_pagesize(vma);
660 }
661 #endif
662 
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671 
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693 	return (unsigned long)vma->vm_private_data;
694 }
695 
696 static void set_vma_private_data(struct vm_area_struct *vma,
697 							unsigned long value)
698 {
699 	vma->vm_private_data = (void *)value;
700 }
701 
702 struct resv_map *resv_map_alloc(void)
703 {
704 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 
707 	if (!resv_map || !rg) {
708 		kfree(resv_map);
709 		kfree(rg);
710 		return NULL;
711 	}
712 
713 	kref_init(&resv_map->refs);
714 	spin_lock_init(&resv_map->lock);
715 	INIT_LIST_HEAD(&resv_map->regions);
716 
717 	resv_map->adds_in_progress = 0;
718 
719 	INIT_LIST_HEAD(&resv_map->region_cache);
720 	list_add(&rg->link, &resv_map->region_cache);
721 	resv_map->region_cache_count = 1;
722 
723 	return resv_map;
724 }
725 
726 void resv_map_release(struct kref *ref)
727 {
728 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 	struct list_head *head = &resv_map->region_cache;
730 	struct file_region *rg, *trg;
731 
732 	/* Clear out any active regions before we release the map. */
733 	region_del(resv_map, 0, LONG_MAX);
734 
735 	/* ... and any entries left in the cache */
736 	list_for_each_entry_safe(rg, trg, head, link) {
737 		list_del(&rg->link);
738 		kfree(rg);
739 	}
740 
741 	VM_BUG_ON(resv_map->adds_in_progress);
742 
743 	kfree(resv_map);
744 }
745 
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748 	return inode->i_mapping->private_data;
749 }
750 
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 	if (vma->vm_flags & VM_MAYSHARE) {
755 		struct address_space *mapping = vma->vm_file->f_mapping;
756 		struct inode *inode = mapping->host;
757 
758 		return inode_resv_map(inode);
759 
760 	} else {
761 		return (struct resv_map *)(get_vma_private_data(vma) &
762 							~HPAGE_RESV_MASK);
763 	}
764 }
765 
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 
771 	set_vma_private_data(vma, (get_vma_private_data(vma) &
772 				HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774 
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 
780 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782 
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 
787 	return (get_vma_private_data(vma) & flag) != 0;
788 }
789 
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 	if (!(vma->vm_flags & VM_MAYSHARE))
795 		vma->vm_private_data = (void *)0;
796 }
797 
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801 	if (vma->vm_flags & VM_NORESERVE) {
802 		/*
803 		 * This address is already reserved by other process(chg == 0),
804 		 * so, we should decrement reserved count. Without decrementing,
805 		 * reserve count remains after releasing inode, because this
806 		 * allocated page will go into page cache and is regarded as
807 		 * coming from reserved pool in releasing step.  Currently, we
808 		 * don't have any other solution to deal with this situation
809 		 * properly, so add work-around here.
810 		 */
811 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812 			return true;
813 		else
814 			return false;
815 	}
816 
817 	/* Shared mappings always use reserves */
818 	if (vma->vm_flags & VM_MAYSHARE) {
819 		/*
820 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821 		 * be a region map for all pages.  The only situation where
822 		 * there is no region map is if a hole was punched via
823 		 * fallocate.  In this case, there really are no reverves to
824 		 * use.  This situation is indicated if chg != 0.
825 		 */
826 		if (chg)
827 			return false;
828 		else
829 			return true;
830 	}
831 
832 	/*
833 	 * Only the process that called mmap() has reserves for
834 	 * private mappings.
835 	 */
836 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 		/*
838 		 * Like the shared case above, a hole punch or truncate
839 		 * could have been performed on the private mapping.
840 		 * Examine the value of chg to determine if reserves
841 		 * actually exist or were previously consumed.
842 		 * Very Subtle - The value of chg comes from a previous
843 		 * call to vma_needs_reserves().  The reserve map for
844 		 * private mappings has different (opposite) semantics
845 		 * than that of shared mappings.  vma_needs_reserves()
846 		 * has already taken this difference in semantics into
847 		 * account.  Therefore, the meaning of chg is the same
848 		 * as in the shared case above.  Code could easily be
849 		 * combined, but keeping it separate draws attention to
850 		 * subtle differences.
851 		 */
852 		if (chg)
853 			return false;
854 		else
855 			return true;
856 	}
857 
858 	return false;
859 }
860 
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863 	int nid = page_to_nid(page);
864 	list_move(&page->lru, &h->hugepage_freelists[nid]);
865 	h->free_huge_pages++;
866 	h->free_huge_pages_node[nid]++;
867 }
868 
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871 	struct page *page;
872 
873 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 		if (!PageHWPoison(page))
875 			break;
876 	/*
877 	 * if 'non-isolated free hugepage' not found on the list,
878 	 * the allocation fails.
879 	 */
880 	if (&h->hugepage_freelists[nid] == &page->lru)
881 		return NULL;
882 	list_move(&page->lru, &h->hugepage_activelist);
883 	set_page_refcounted(page);
884 	h->free_huge_pages--;
885 	h->free_huge_pages_node[nid]--;
886 	return page;
887 }
888 
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890 		nodemask_t *nmask)
891 {
892 	unsigned int cpuset_mems_cookie;
893 	struct zonelist *zonelist;
894 	struct zone *zone;
895 	struct zoneref *z;
896 	int node = -1;
897 
898 	zonelist = node_zonelist(nid, gfp_mask);
899 
900 retry_cpuset:
901 	cpuset_mems_cookie = read_mems_allowed_begin();
902 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903 		struct page *page;
904 
905 		if (!cpuset_zone_allowed(zone, gfp_mask))
906 			continue;
907 		/*
908 		 * no need to ask again on the same node. Pool is node rather than
909 		 * zone aware
910 		 */
911 		if (zone_to_nid(zone) == node)
912 			continue;
913 		node = zone_to_nid(zone);
914 
915 		page = dequeue_huge_page_node_exact(h, node);
916 		if (page)
917 			return page;
918 	}
919 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920 		goto retry_cpuset;
921 
922 	return NULL;
923 }
924 
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
927 {
928 	if (hugepage_migration_supported(h))
929 		return GFP_HIGHUSER_MOVABLE;
930 	else
931 		return GFP_HIGHUSER;
932 }
933 
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935 				struct vm_area_struct *vma,
936 				unsigned long address, int avoid_reserve,
937 				long chg)
938 {
939 	struct page *page;
940 	struct mempolicy *mpol;
941 	gfp_t gfp_mask;
942 	nodemask_t *nodemask;
943 	int nid;
944 
945 	/*
946 	 * A child process with MAP_PRIVATE mappings created by their parent
947 	 * have no page reserves. This check ensures that reservations are
948 	 * not "stolen". The child may still get SIGKILLed
949 	 */
950 	if (!vma_has_reserves(vma, chg) &&
951 			h->free_huge_pages - h->resv_huge_pages == 0)
952 		goto err;
953 
954 	/* If reserves cannot be used, ensure enough pages are in the pool */
955 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956 		goto err;
957 
958 	gfp_mask = htlb_alloc_mask(h);
959 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962 		SetPagePrivate(page);
963 		h->resv_huge_pages--;
964 	}
965 
966 	mpol_cond_put(mpol);
967 	return page;
968 
969 err:
970 	return NULL;
971 }
972 
973 /*
974  * common helper functions for hstate_next_node_to_{alloc|free}.
975  * We may have allocated or freed a huge page based on a different
976  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977  * be outside of *nodes_allowed.  Ensure that we use an allowed
978  * node for alloc or free.
979  */
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981 {
982 	nid = next_node_in(nid, *nodes_allowed);
983 	VM_BUG_ON(nid >= MAX_NUMNODES);
984 
985 	return nid;
986 }
987 
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989 {
990 	if (!node_isset(nid, *nodes_allowed))
991 		nid = next_node_allowed(nid, nodes_allowed);
992 	return nid;
993 }
994 
995 /*
996  * returns the previously saved node ["this node"] from which to
997  * allocate a persistent huge page for the pool and advance the
998  * next node from which to allocate, handling wrap at end of node
999  * mask.
1000  */
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002 					nodemask_t *nodes_allowed)
1003 {
1004 	int nid;
1005 
1006 	VM_BUG_ON(!nodes_allowed);
1007 
1008 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010 
1011 	return nid;
1012 }
1013 
1014 /*
1015  * helper for free_pool_huge_page() - return the previously saved
1016  * node ["this node"] from which to free a huge page.  Advance the
1017  * next node id whether or not we find a free huge page to free so
1018  * that the next attempt to free addresses the next node.
1019  */
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021 {
1022 	int nid;
1023 
1024 	VM_BUG_ON(!nodes_allowed);
1025 
1026 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028 
1029 	return nid;
1030 }
1031 
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1033 	for (nr_nodes = nodes_weight(*mask);				\
1034 		nr_nodes > 0 &&						\
1035 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1036 		nr_nodes--)
1037 
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1039 	for (nr_nodes = nodes_weight(*mask);				\
1040 		nr_nodes > 0 &&						\
1041 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1042 		nr_nodes--)
1043 
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1046 					unsigned int order)
1047 {
1048 	int i;
1049 	int nr_pages = 1 << order;
1050 	struct page *p = page + 1;
1051 
1052 	atomic_set(compound_mapcount_ptr(page), 0);
1053 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054 		clear_compound_head(p);
1055 		set_page_refcounted(p);
1056 	}
1057 
1058 	set_compound_order(page, 0);
1059 	__ClearPageHead(page);
1060 }
1061 
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1063 {
1064 	free_contig_range(page_to_pfn(page), 1 << order);
1065 }
1066 
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068 				unsigned long nr_pages, gfp_t gfp_mask)
1069 {
1070 	unsigned long end_pfn = start_pfn + nr_pages;
1071 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072 				  gfp_mask);
1073 }
1074 
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076 			unsigned long start_pfn, unsigned long nr_pages)
1077 {
1078 	unsigned long i, end_pfn = start_pfn + nr_pages;
1079 	struct page *page;
1080 
1081 	for (i = start_pfn; i < end_pfn; i++) {
1082 		if (!pfn_valid(i))
1083 			return false;
1084 
1085 		page = pfn_to_page(i);
1086 
1087 		if (page_zone(page) != z)
1088 			return false;
1089 
1090 		if (PageReserved(page))
1091 			return false;
1092 
1093 		if (page_count(page) > 0)
1094 			return false;
1095 
1096 		if (PageHuge(page))
1097 			return false;
1098 	}
1099 
1100 	return true;
1101 }
1102 
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104 			unsigned long start_pfn, unsigned long nr_pages)
1105 {
1106 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1107 	return zone_spans_pfn(zone, last_pfn);
1108 }
1109 
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111 		int nid, nodemask_t *nodemask)
1112 {
1113 	unsigned int order = huge_page_order(h);
1114 	unsigned long nr_pages = 1 << order;
1115 	unsigned long ret, pfn, flags;
1116 	struct zonelist *zonelist;
1117 	struct zone *zone;
1118 	struct zoneref *z;
1119 
1120 	zonelist = node_zonelist(nid, gfp_mask);
1121 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122 		spin_lock_irqsave(&zone->lock, flags);
1123 
1124 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127 				/*
1128 				 * We release the zone lock here because
1129 				 * alloc_contig_range() will also lock the zone
1130 				 * at some point. If there's an allocation
1131 				 * spinning on this lock, it may win the race
1132 				 * and cause alloc_contig_range() to fail...
1133 				 */
1134 				spin_unlock_irqrestore(&zone->lock, flags);
1135 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136 				if (!ret)
1137 					return pfn_to_page(pfn);
1138 				spin_lock_irqsave(&zone->lock, flags);
1139 			}
1140 			pfn += nr_pages;
1141 		}
1142 
1143 		spin_unlock_irqrestore(&zone->lock, flags);
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151 
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155 		int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158 						unsigned int order) { }
1159 #endif
1160 
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1162 {
1163 	int i;
1164 
1165 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166 		return;
1167 
1168 	h->nr_huge_pages--;
1169 	h->nr_huge_pages_node[page_to_nid(page)]--;
1170 	for (i = 0; i < pages_per_huge_page(h); i++) {
1171 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172 				1 << PG_referenced | 1 << PG_dirty |
1173 				1 << PG_active | 1 << PG_private |
1174 				1 << PG_writeback);
1175 	}
1176 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178 	set_page_refcounted(page);
1179 	if (hstate_is_gigantic(h)) {
1180 		destroy_compound_gigantic_page(page, huge_page_order(h));
1181 		free_gigantic_page(page, huge_page_order(h));
1182 	} else {
1183 		__free_pages(page, huge_page_order(h));
1184 	}
1185 }
1186 
1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189 	struct hstate *h;
1190 
1191 	for_each_hstate(h) {
1192 		if (huge_page_size(h) == size)
1193 			return h;
1194 	}
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200  * to hstate->hugepage_activelist.)
1201  *
1202  * This function can be called for tail pages, but never returns true for them.
1203  */
1204 bool page_huge_active(struct page *page)
1205 {
1206 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1207 	return PageHead(page) && PagePrivate(&page[1]);
1208 }
1209 
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1212 {
1213 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 	SetPagePrivate(&page[1]);
1215 }
1216 
1217 static void clear_page_huge_active(struct page *page)
1218 {
1219 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220 	ClearPagePrivate(&page[1]);
1221 }
1222 
1223 /*
1224  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225  * code
1226  */
1227 static inline bool PageHugeTemporary(struct page *page)
1228 {
1229 	if (!PageHuge(page))
1230 		return false;
1231 
1232 	return (unsigned long)page[2].mapping == -1U;
1233 }
1234 
1235 static inline void SetPageHugeTemporary(struct page *page)
1236 {
1237 	page[2].mapping = (void *)-1U;
1238 }
1239 
1240 static inline void ClearPageHugeTemporary(struct page *page)
1241 {
1242 	page[2].mapping = NULL;
1243 }
1244 
1245 void free_huge_page(struct page *page)
1246 {
1247 	/*
1248 	 * Can't pass hstate in here because it is called from the
1249 	 * compound page destructor.
1250 	 */
1251 	struct hstate *h = page_hstate(page);
1252 	int nid = page_to_nid(page);
1253 	struct hugepage_subpool *spool =
1254 		(struct hugepage_subpool *)page_private(page);
1255 	bool restore_reserve;
1256 
1257 	set_page_private(page, 0);
1258 	page->mapping = NULL;
1259 	VM_BUG_ON_PAGE(page_count(page), page);
1260 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1261 	restore_reserve = PagePrivate(page);
1262 	ClearPagePrivate(page);
1263 
1264 	/*
1265 	 * A return code of zero implies that the subpool will be under its
1266 	 * minimum size if the reservation is not restored after page is free.
1267 	 * Therefore, force restore_reserve operation.
1268 	 */
1269 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1270 		restore_reserve = true;
1271 
1272 	spin_lock(&hugetlb_lock);
1273 	clear_page_huge_active(page);
1274 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1275 				     pages_per_huge_page(h), page);
1276 	if (restore_reserve)
1277 		h->resv_huge_pages++;
1278 
1279 	if (PageHugeTemporary(page)) {
1280 		list_del(&page->lru);
1281 		ClearPageHugeTemporary(page);
1282 		update_and_free_page(h, page);
1283 	} else if (h->surplus_huge_pages_node[nid]) {
1284 		/* remove the page from active list */
1285 		list_del(&page->lru);
1286 		update_and_free_page(h, page);
1287 		h->surplus_huge_pages--;
1288 		h->surplus_huge_pages_node[nid]--;
1289 	} else {
1290 		arch_clear_hugepage_flags(page);
1291 		enqueue_huge_page(h, page);
1292 	}
1293 	spin_unlock(&hugetlb_lock);
1294 }
1295 
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298 	INIT_LIST_HEAD(&page->lru);
1299 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300 	spin_lock(&hugetlb_lock);
1301 	set_hugetlb_cgroup(page, NULL);
1302 	h->nr_huge_pages++;
1303 	h->nr_huge_pages_node[nid]++;
1304 	spin_unlock(&hugetlb_lock);
1305 }
1306 
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	/* we rely on prep_new_huge_page to set the destructor */
1314 	set_compound_order(page, order);
1315 	__ClearPageReserved(page);
1316 	__SetPageHead(page);
1317 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 		/*
1319 		 * For gigantic hugepages allocated through bootmem at
1320 		 * boot, it's safer to be consistent with the not-gigantic
1321 		 * hugepages and clear the PG_reserved bit from all tail pages
1322 		 * too.  Otherwse drivers using get_user_pages() to access tail
1323 		 * pages may get the reference counting wrong if they see
1324 		 * PG_reserved set on a tail page (despite the head page not
1325 		 * having PG_reserved set).  Enforcing this consistency between
1326 		 * head and tail pages allows drivers to optimize away a check
1327 		 * on the head page when they need know if put_page() is needed
1328 		 * after get_user_pages().
1329 		 */
1330 		__ClearPageReserved(p);
1331 		set_page_count(p, 0);
1332 		set_compound_head(p, page);
1333 	}
1334 	atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336 
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344 	if (!PageCompound(page))
1345 		return 0;
1346 
1347 	page = compound_head(page);
1348 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351 
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358 	if (!PageHead(page_head))
1359 		return 0;
1360 
1361 	return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363 
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366 	struct page *page_head = compound_head(page);
1367 	pgoff_t index = page_index(page_head);
1368 	unsigned long compound_idx;
1369 
1370 	if (!PageHuge(page_head))
1371 		return page_index(page);
1372 
1373 	if (compound_order(page_head) >= MAX_ORDER)
1374 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 	else
1376 		compound_idx = page - page_head;
1377 
1378 	return (index << compound_order(page_head)) + compound_idx;
1379 }
1380 
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1383 {
1384 	int order = huge_page_order(h);
1385 	struct page *page;
1386 
1387 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388 	if (nid == NUMA_NO_NODE)
1389 		nid = numa_mem_id();
1390 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391 	if (page)
1392 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1393 	else
1394 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395 
1396 	return page;
1397 }
1398 
1399 /*
1400  * Common helper to allocate a fresh hugetlb page. All specific allocators
1401  * should use this function to get new hugetlb pages
1402  */
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405 {
1406 	struct page *page;
1407 
1408 	if (hstate_is_gigantic(h))
1409 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410 	else
1411 		page = alloc_buddy_huge_page(h, gfp_mask,
1412 				nid, nmask);
1413 	if (!page)
1414 		return NULL;
1415 
1416 	if (hstate_is_gigantic(h))
1417 		prep_compound_gigantic_page(page, huge_page_order(h));
1418 	prep_new_huge_page(h, page, page_to_nid(page));
1419 
1420 	return page;
1421 }
1422 
1423 /*
1424  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425  * manner.
1426  */
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 {
1429 	struct page *page;
1430 	int nr_nodes, node;
1431 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432 
1433 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435 		if (page)
1436 			break;
1437 	}
1438 
1439 	if (!page)
1440 		return 0;
1441 
1442 	put_page(page); /* free it into the hugepage allocator */
1443 
1444 	return 1;
1445 }
1446 
1447 /*
1448  * Free huge page from pool from next node to free.
1449  * Attempt to keep persistent huge pages more or less
1450  * balanced over allowed nodes.
1451  * Called with hugetlb_lock locked.
1452  */
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454 							 bool acct_surplus)
1455 {
1456 	int nr_nodes, node;
1457 	int ret = 0;
1458 
1459 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460 		/*
1461 		 * If we're returning unused surplus pages, only examine
1462 		 * nodes with surplus pages.
1463 		 */
1464 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465 		    !list_empty(&h->hugepage_freelists[node])) {
1466 			struct page *page =
1467 				list_entry(h->hugepage_freelists[node].next,
1468 					  struct page, lru);
1469 			list_del(&page->lru);
1470 			h->free_huge_pages--;
1471 			h->free_huge_pages_node[node]--;
1472 			if (acct_surplus) {
1473 				h->surplus_huge_pages--;
1474 				h->surplus_huge_pages_node[node]--;
1475 			}
1476 			update_and_free_page(h, page);
1477 			ret = 1;
1478 			break;
1479 		}
1480 	}
1481 
1482 	return ret;
1483 }
1484 
1485 /*
1486  * Dissolve a given free hugepage into free buddy pages. This function does
1487  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488  * number of free hugepages would be reduced below the number of reserved
1489  * hugepages.
1490  */
1491 int dissolve_free_huge_page(struct page *page)
1492 {
1493 	int rc = 0;
1494 
1495 	spin_lock(&hugetlb_lock);
1496 	if (PageHuge(page) && !page_count(page)) {
1497 		struct page *head = compound_head(page);
1498 		struct hstate *h = page_hstate(head);
1499 		int nid = page_to_nid(head);
1500 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501 			rc = -EBUSY;
1502 			goto out;
1503 		}
1504 		/*
1505 		 * Move PageHWPoison flag from head page to the raw error page,
1506 		 * which makes any subpages rather than the error page reusable.
1507 		 */
1508 		if (PageHWPoison(head) && page != head) {
1509 			SetPageHWPoison(page);
1510 			ClearPageHWPoison(head);
1511 		}
1512 		list_del(&head->lru);
1513 		h->free_huge_pages--;
1514 		h->free_huge_pages_node[nid]--;
1515 		h->max_huge_pages--;
1516 		update_and_free_page(h, head);
1517 	}
1518 out:
1519 	spin_unlock(&hugetlb_lock);
1520 	return rc;
1521 }
1522 
1523 /*
1524  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525  * make specified memory blocks removable from the system.
1526  * Note that this will dissolve a free gigantic hugepage completely, if any
1527  * part of it lies within the given range.
1528  * Also note that if dissolve_free_huge_page() returns with an error, all
1529  * free hugepages that were dissolved before that error are lost.
1530  */
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 {
1533 	unsigned long pfn;
1534 	struct page *page;
1535 	int rc = 0;
1536 
1537 	if (!hugepages_supported())
1538 		return rc;
1539 
1540 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541 		page = pfn_to_page(pfn);
1542 		if (PageHuge(page) && !page_count(page)) {
1543 			rc = dissolve_free_huge_page(page);
1544 			if (rc)
1545 				break;
1546 		}
1547 	}
1548 
1549 	return rc;
1550 }
1551 
1552 /*
1553  * Allocates a fresh surplus page from the page allocator.
1554  */
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556 		int nid, nodemask_t *nmask)
1557 {
1558 	struct page *page = NULL;
1559 
1560 	if (hstate_is_gigantic(h))
1561 		return NULL;
1562 
1563 	spin_lock(&hugetlb_lock);
1564 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565 		goto out_unlock;
1566 	spin_unlock(&hugetlb_lock);
1567 
1568 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569 	if (!page)
1570 		return NULL;
1571 
1572 	spin_lock(&hugetlb_lock);
1573 	/*
1574 	 * We could have raced with the pool size change.
1575 	 * Double check that and simply deallocate the new page
1576 	 * if we would end up overcommiting the surpluses. Abuse
1577 	 * temporary page to workaround the nasty free_huge_page
1578 	 * codeflow
1579 	 */
1580 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581 		SetPageHugeTemporary(page);
1582 		put_page(page);
1583 		page = NULL;
1584 	} else {
1585 		h->surplus_huge_pages++;
1586 		h->nr_huge_pages_node[page_to_nid(page)]++;
1587 	}
1588 
1589 out_unlock:
1590 	spin_unlock(&hugetlb_lock);
1591 
1592 	return page;
1593 }
1594 
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596 		int nid, nodemask_t *nmask)
1597 {
1598 	struct page *page;
1599 
1600 	if (hstate_is_gigantic(h))
1601 		return NULL;
1602 
1603 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604 	if (!page)
1605 		return NULL;
1606 
1607 	/*
1608 	 * We do not account these pages as surplus because they are only
1609 	 * temporary and will be released properly on the last reference
1610 	 */
1611 	SetPageHugeTemporary(page);
1612 
1613 	return page;
1614 }
1615 
1616 /*
1617  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618  */
1619 static
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 		struct vm_area_struct *vma, unsigned long addr)
1622 {
1623 	struct page *page;
1624 	struct mempolicy *mpol;
1625 	gfp_t gfp_mask = htlb_alloc_mask(h);
1626 	int nid;
1627 	nodemask_t *nodemask;
1628 
1629 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631 	mpol_cond_put(mpol);
1632 
1633 	return page;
1634 }
1635 
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638 {
1639 	gfp_t gfp_mask = htlb_alloc_mask(h);
1640 	struct page *page = NULL;
1641 
1642 	if (nid != NUMA_NO_NODE)
1643 		gfp_mask |= __GFP_THISNODE;
1644 
1645 	spin_lock(&hugetlb_lock);
1646 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1647 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648 	spin_unlock(&hugetlb_lock);
1649 
1650 	if (!page)
1651 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652 
1653 	return page;
1654 }
1655 
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658 		nodemask_t *nmask)
1659 {
1660 	gfp_t gfp_mask = htlb_alloc_mask(h);
1661 
1662 	spin_lock(&hugetlb_lock);
1663 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664 		struct page *page;
1665 
1666 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667 		if (page) {
1668 			spin_unlock(&hugetlb_lock);
1669 			return page;
1670 		}
1671 	}
1672 	spin_unlock(&hugetlb_lock);
1673 
1674 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 }
1676 
1677 /* mempolicy aware migration callback */
1678 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1679 		unsigned long address)
1680 {
1681 	struct mempolicy *mpol;
1682 	nodemask_t *nodemask;
1683 	struct page *page;
1684 	gfp_t gfp_mask;
1685 	int node;
1686 
1687 	gfp_mask = htlb_alloc_mask(h);
1688 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1689 	page = alloc_huge_page_nodemask(h, node, nodemask);
1690 	mpol_cond_put(mpol);
1691 
1692 	return page;
1693 }
1694 
1695 /*
1696  * Increase the hugetlb pool such that it can accommodate a reservation
1697  * of size 'delta'.
1698  */
1699 static int gather_surplus_pages(struct hstate *h, int delta)
1700 {
1701 	struct list_head surplus_list;
1702 	struct page *page, *tmp;
1703 	int ret, i;
1704 	int needed, allocated;
1705 	bool alloc_ok = true;
1706 
1707 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1708 	if (needed <= 0) {
1709 		h->resv_huge_pages += delta;
1710 		return 0;
1711 	}
1712 
1713 	allocated = 0;
1714 	INIT_LIST_HEAD(&surplus_list);
1715 
1716 	ret = -ENOMEM;
1717 retry:
1718 	spin_unlock(&hugetlb_lock);
1719 	for (i = 0; i < needed; i++) {
1720 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1721 				NUMA_NO_NODE, NULL);
1722 		if (!page) {
1723 			alloc_ok = false;
1724 			break;
1725 		}
1726 		list_add(&page->lru, &surplus_list);
1727 		cond_resched();
1728 	}
1729 	allocated += i;
1730 
1731 	/*
1732 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1733 	 * because either resv_huge_pages or free_huge_pages may have changed.
1734 	 */
1735 	spin_lock(&hugetlb_lock);
1736 	needed = (h->resv_huge_pages + delta) -
1737 			(h->free_huge_pages + allocated);
1738 	if (needed > 0) {
1739 		if (alloc_ok)
1740 			goto retry;
1741 		/*
1742 		 * We were not able to allocate enough pages to
1743 		 * satisfy the entire reservation so we free what
1744 		 * we've allocated so far.
1745 		 */
1746 		goto free;
1747 	}
1748 	/*
1749 	 * The surplus_list now contains _at_least_ the number of extra pages
1750 	 * needed to accommodate the reservation.  Add the appropriate number
1751 	 * of pages to the hugetlb pool and free the extras back to the buddy
1752 	 * allocator.  Commit the entire reservation here to prevent another
1753 	 * process from stealing the pages as they are added to the pool but
1754 	 * before they are reserved.
1755 	 */
1756 	needed += allocated;
1757 	h->resv_huge_pages += delta;
1758 	ret = 0;
1759 
1760 	/* Free the needed pages to the hugetlb pool */
1761 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1762 		if ((--needed) < 0)
1763 			break;
1764 		/*
1765 		 * This page is now managed by the hugetlb allocator and has
1766 		 * no users -- drop the buddy allocator's reference.
1767 		 */
1768 		put_page_testzero(page);
1769 		VM_BUG_ON_PAGE(page_count(page), page);
1770 		enqueue_huge_page(h, page);
1771 	}
1772 free:
1773 	spin_unlock(&hugetlb_lock);
1774 
1775 	/* Free unnecessary surplus pages to the buddy allocator */
1776 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1777 		put_page(page);
1778 	spin_lock(&hugetlb_lock);
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * This routine has two main purposes:
1785  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1786  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1787  *    to the associated reservation map.
1788  * 2) Free any unused surplus pages that may have been allocated to satisfy
1789  *    the reservation.  As many as unused_resv_pages may be freed.
1790  *
1791  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1792  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1793  * we must make sure nobody else can claim pages we are in the process of
1794  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1795  * number of huge pages we plan to free when dropping the lock.
1796  */
1797 static void return_unused_surplus_pages(struct hstate *h,
1798 					unsigned long unused_resv_pages)
1799 {
1800 	unsigned long nr_pages;
1801 
1802 	/* Cannot return gigantic pages currently */
1803 	if (hstate_is_gigantic(h))
1804 		goto out;
1805 
1806 	/*
1807 	 * Part (or even all) of the reservation could have been backed
1808 	 * by pre-allocated pages. Only free surplus pages.
1809 	 */
1810 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1811 
1812 	/*
1813 	 * We want to release as many surplus pages as possible, spread
1814 	 * evenly across all nodes with memory. Iterate across these nodes
1815 	 * until we can no longer free unreserved surplus pages. This occurs
1816 	 * when the nodes with surplus pages have no free pages.
1817 	 * free_pool_huge_page() will balance the the freed pages across the
1818 	 * on-line nodes with memory and will handle the hstate accounting.
1819 	 *
1820 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1821 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1822 	 * to cover subsequent pages we may free.
1823 	 */
1824 	while (nr_pages--) {
1825 		h->resv_huge_pages--;
1826 		unused_resv_pages--;
1827 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1828 			goto out;
1829 		cond_resched_lock(&hugetlb_lock);
1830 	}
1831 
1832 out:
1833 	/* Fully uncommit the reservation */
1834 	h->resv_huge_pages -= unused_resv_pages;
1835 }
1836 
1837 
1838 /*
1839  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1840  * are used by the huge page allocation routines to manage reservations.
1841  *
1842  * vma_needs_reservation is called to determine if the huge page at addr
1843  * within the vma has an associated reservation.  If a reservation is
1844  * needed, the value 1 is returned.  The caller is then responsible for
1845  * managing the global reservation and subpool usage counts.  After
1846  * the huge page has been allocated, vma_commit_reservation is called
1847  * to add the page to the reservation map.  If the page allocation fails,
1848  * the reservation must be ended instead of committed.  vma_end_reservation
1849  * is called in such cases.
1850  *
1851  * In the normal case, vma_commit_reservation returns the same value
1852  * as the preceding vma_needs_reservation call.  The only time this
1853  * is not the case is if a reserve map was changed between calls.  It
1854  * is the responsibility of the caller to notice the difference and
1855  * take appropriate action.
1856  *
1857  * vma_add_reservation is used in error paths where a reservation must
1858  * be restored when a newly allocated huge page must be freed.  It is
1859  * to be called after calling vma_needs_reservation to determine if a
1860  * reservation exists.
1861  */
1862 enum vma_resv_mode {
1863 	VMA_NEEDS_RESV,
1864 	VMA_COMMIT_RESV,
1865 	VMA_END_RESV,
1866 	VMA_ADD_RESV,
1867 };
1868 static long __vma_reservation_common(struct hstate *h,
1869 				struct vm_area_struct *vma, unsigned long addr,
1870 				enum vma_resv_mode mode)
1871 {
1872 	struct resv_map *resv;
1873 	pgoff_t idx;
1874 	long ret;
1875 
1876 	resv = vma_resv_map(vma);
1877 	if (!resv)
1878 		return 1;
1879 
1880 	idx = vma_hugecache_offset(h, vma, addr);
1881 	switch (mode) {
1882 	case VMA_NEEDS_RESV:
1883 		ret = region_chg(resv, idx, idx + 1);
1884 		break;
1885 	case VMA_COMMIT_RESV:
1886 		ret = region_add(resv, idx, idx + 1);
1887 		break;
1888 	case VMA_END_RESV:
1889 		region_abort(resv, idx, idx + 1);
1890 		ret = 0;
1891 		break;
1892 	case VMA_ADD_RESV:
1893 		if (vma->vm_flags & VM_MAYSHARE)
1894 			ret = region_add(resv, idx, idx + 1);
1895 		else {
1896 			region_abort(resv, idx, idx + 1);
1897 			ret = region_del(resv, idx, idx + 1);
1898 		}
1899 		break;
1900 	default:
1901 		BUG();
1902 	}
1903 
1904 	if (vma->vm_flags & VM_MAYSHARE)
1905 		return ret;
1906 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1907 		/*
1908 		 * In most cases, reserves always exist for private mappings.
1909 		 * However, a file associated with mapping could have been
1910 		 * hole punched or truncated after reserves were consumed.
1911 		 * As subsequent fault on such a range will not use reserves.
1912 		 * Subtle - The reserve map for private mappings has the
1913 		 * opposite meaning than that of shared mappings.  If NO
1914 		 * entry is in the reserve map, it means a reservation exists.
1915 		 * If an entry exists in the reserve map, it means the
1916 		 * reservation has already been consumed.  As a result, the
1917 		 * return value of this routine is the opposite of the
1918 		 * value returned from reserve map manipulation routines above.
1919 		 */
1920 		if (ret)
1921 			return 0;
1922 		else
1923 			return 1;
1924 	}
1925 	else
1926 		return ret < 0 ? ret : 0;
1927 }
1928 
1929 static long vma_needs_reservation(struct hstate *h,
1930 			struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1933 }
1934 
1935 static long vma_commit_reservation(struct hstate *h,
1936 			struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1939 }
1940 
1941 static void vma_end_reservation(struct hstate *h,
1942 			struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1945 }
1946 
1947 static long vma_add_reservation(struct hstate *h,
1948 			struct vm_area_struct *vma, unsigned long addr)
1949 {
1950 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1951 }
1952 
1953 /*
1954  * This routine is called to restore a reservation on error paths.  In the
1955  * specific error paths, a huge page was allocated (via alloc_huge_page)
1956  * and is about to be freed.  If a reservation for the page existed,
1957  * alloc_huge_page would have consumed the reservation and set PagePrivate
1958  * in the newly allocated page.  When the page is freed via free_huge_page,
1959  * the global reservation count will be incremented if PagePrivate is set.
1960  * However, free_huge_page can not adjust the reserve map.  Adjust the
1961  * reserve map here to be consistent with global reserve count adjustments
1962  * to be made by free_huge_page.
1963  */
1964 static void restore_reserve_on_error(struct hstate *h,
1965 			struct vm_area_struct *vma, unsigned long address,
1966 			struct page *page)
1967 {
1968 	if (unlikely(PagePrivate(page))) {
1969 		long rc = vma_needs_reservation(h, vma, address);
1970 
1971 		if (unlikely(rc < 0)) {
1972 			/*
1973 			 * Rare out of memory condition in reserve map
1974 			 * manipulation.  Clear PagePrivate so that
1975 			 * global reserve count will not be incremented
1976 			 * by free_huge_page.  This will make it appear
1977 			 * as though the reservation for this page was
1978 			 * consumed.  This may prevent the task from
1979 			 * faulting in the page at a later time.  This
1980 			 * is better than inconsistent global huge page
1981 			 * accounting of reserve counts.
1982 			 */
1983 			ClearPagePrivate(page);
1984 		} else if (rc) {
1985 			rc = vma_add_reservation(h, vma, address);
1986 			if (unlikely(rc < 0))
1987 				/*
1988 				 * See above comment about rare out of
1989 				 * memory condition.
1990 				 */
1991 				ClearPagePrivate(page);
1992 		} else
1993 			vma_end_reservation(h, vma, address);
1994 	}
1995 }
1996 
1997 struct page *alloc_huge_page(struct vm_area_struct *vma,
1998 				    unsigned long addr, int avoid_reserve)
1999 {
2000 	struct hugepage_subpool *spool = subpool_vma(vma);
2001 	struct hstate *h = hstate_vma(vma);
2002 	struct page *page;
2003 	long map_chg, map_commit;
2004 	long gbl_chg;
2005 	int ret, idx;
2006 	struct hugetlb_cgroup *h_cg;
2007 
2008 	idx = hstate_index(h);
2009 	/*
2010 	 * Examine the region/reserve map to determine if the process
2011 	 * has a reservation for the page to be allocated.  A return
2012 	 * code of zero indicates a reservation exists (no change).
2013 	 */
2014 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2015 	if (map_chg < 0)
2016 		return ERR_PTR(-ENOMEM);
2017 
2018 	/*
2019 	 * Processes that did not create the mapping will have no
2020 	 * reserves as indicated by the region/reserve map. Check
2021 	 * that the allocation will not exceed the subpool limit.
2022 	 * Allocations for MAP_NORESERVE mappings also need to be
2023 	 * checked against any subpool limit.
2024 	 */
2025 	if (map_chg || avoid_reserve) {
2026 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2027 		if (gbl_chg < 0) {
2028 			vma_end_reservation(h, vma, addr);
2029 			return ERR_PTR(-ENOSPC);
2030 		}
2031 
2032 		/*
2033 		 * Even though there was no reservation in the region/reserve
2034 		 * map, there could be reservations associated with the
2035 		 * subpool that can be used.  This would be indicated if the
2036 		 * return value of hugepage_subpool_get_pages() is zero.
2037 		 * However, if avoid_reserve is specified we still avoid even
2038 		 * the subpool reservations.
2039 		 */
2040 		if (avoid_reserve)
2041 			gbl_chg = 1;
2042 	}
2043 
2044 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2045 	if (ret)
2046 		goto out_subpool_put;
2047 
2048 	spin_lock(&hugetlb_lock);
2049 	/*
2050 	 * glb_chg is passed to indicate whether or not a page must be taken
2051 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2052 	 * a reservation exists for the allocation.
2053 	 */
2054 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2055 	if (!page) {
2056 		spin_unlock(&hugetlb_lock);
2057 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2058 		if (!page)
2059 			goto out_uncharge_cgroup;
2060 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2061 			SetPagePrivate(page);
2062 			h->resv_huge_pages--;
2063 		}
2064 		spin_lock(&hugetlb_lock);
2065 		list_move(&page->lru, &h->hugepage_activelist);
2066 		/* Fall through */
2067 	}
2068 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2069 	spin_unlock(&hugetlb_lock);
2070 
2071 	set_page_private(page, (unsigned long)spool);
2072 
2073 	map_commit = vma_commit_reservation(h, vma, addr);
2074 	if (unlikely(map_chg > map_commit)) {
2075 		/*
2076 		 * The page was added to the reservation map between
2077 		 * vma_needs_reservation and vma_commit_reservation.
2078 		 * This indicates a race with hugetlb_reserve_pages.
2079 		 * Adjust for the subpool count incremented above AND
2080 		 * in hugetlb_reserve_pages for the same page.  Also,
2081 		 * the reservation count added in hugetlb_reserve_pages
2082 		 * no longer applies.
2083 		 */
2084 		long rsv_adjust;
2085 
2086 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2087 		hugetlb_acct_memory(h, -rsv_adjust);
2088 	}
2089 	return page;
2090 
2091 out_uncharge_cgroup:
2092 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2093 out_subpool_put:
2094 	if (map_chg || avoid_reserve)
2095 		hugepage_subpool_put_pages(spool, 1);
2096 	vma_end_reservation(h, vma, addr);
2097 	return ERR_PTR(-ENOSPC);
2098 }
2099 
2100 int alloc_bootmem_huge_page(struct hstate *h)
2101 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2102 int __alloc_bootmem_huge_page(struct hstate *h)
2103 {
2104 	struct huge_bootmem_page *m;
2105 	int nr_nodes, node;
2106 
2107 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2108 		void *addr;
2109 
2110 		addr = memblock_virt_alloc_try_nid_nopanic(
2111 				huge_page_size(h), huge_page_size(h),
2112 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2113 		if (addr) {
2114 			/*
2115 			 * Use the beginning of the huge page to store the
2116 			 * huge_bootmem_page struct (until gather_bootmem
2117 			 * puts them into the mem_map).
2118 			 */
2119 			m = addr;
2120 			goto found;
2121 		}
2122 	}
2123 	return 0;
2124 
2125 found:
2126 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2127 	/* Put them into a private list first because mem_map is not up yet */
2128 	list_add(&m->list, &huge_boot_pages);
2129 	m->hstate = h;
2130 	return 1;
2131 }
2132 
2133 static void __init prep_compound_huge_page(struct page *page,
2134 		unsigned int order)
2135 {
2136 	if (unlikely(order > (MAX_ORDER - 1)))
2137 		prep_compound_gigantic_page(page, order);
2138 	else
2139 		prep_compound_page(page, order);
2140 }
2141 
2142 /* Put bootmem huge pages into the standard lists after mem_map is up */
2143 static void __init gather_bootmem_prealloc(void)
2144 {
2145 	struct huge_bootmem_page *m;
2146 
2147 	list_for_each_entry(m, &huge_boot_pages, list) {
2148 		struct hstate *h = m->hstate;
2149 		struct page *page;
2150 
2151 #ifdef CONFIG_HIGHMEM
2152 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2153 		memblock_free_late(__pa(m),
2154 				   sizeof(struct huge_bootmem_page));
2155 #else
2156 		page = virt_to_page(m);
2157 #endif
2158 		WARN_ON(page_count(page) != 1);
2159 		prep_compound_huge_page(page, h->order);
2160 		WARN_ON(PageReserved(page));
2161 		prep_new_huge_page(h, page, page_to_nid(page));
2162 		put_page(page); /* free it into the hugepage allocator */
2163 
2164 		/*
2165 		 * If we had gigantic hugepages allocated at boot time, we need
2166 		 * to restore the 'stolen' pages to totalram_pages in order to
2167 		 * fix confusing memory reports from free(1) and another
2168 		 * side-effects, like CommitLimit going negative.
2169 		 */
2170 		if (hstate_is_gigantic(h))
2171 			adjust_managed_page_count(page, 1 << h->order);
2172 	}
2173 }
2174 
2175 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2176 {
2177 	unsigned long i;
2178 
2179 	for (i = 0; i < h->max_huge_pages; ++i) {
2180 		if (hstate_is_gigantic(h)) {
2181 			if (!alloc_bootmem_huge_page(h))
2182 				break;
2183 		} else if (!alloc_pool_huge_page(h,
2184 					 &node_states[N_MEMORY]))
2185 			break;
2186 		cond_resched();
2187 	}
2188 	if (i < h->max_huge_pages) {
2189 		char buf[32];
2190 
2191 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2192 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2193 			h->max_huge_pages, buf, i);
2194 		h->max_huge_pages = i;
2195 	}
2196 }
2197 
2198 static void __init hugetlb_init_hstates(void)
2199 {
2200 	struct hstate *h;
2201 
2202 	for_each_hstate(h) {
2203 		if (minimum_order > huge_page_order(h))
2204 			minimum_order = huge_page_order(h);
2205 
2206 		/* oversize hugepages were init'ed in early boot */
2207 		if (!hstate_is_gigantic(h))
2208 			hugetlb_hstate_alloc_pages(h);
2209 	}
2210 	VM_BUG_ON(minimum_order == UINT_MAX);
2211 }
2212 
2213 static void __init report_hugepages(void)
2214 {
2215 	struct hstate *h;
2216 
2217 	for_each_hstate(h) {
2218 		char buf[32];
2219 
2220 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2221 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2222 			buf, h->free_huge_pages);
2223 	}
2224 }
2225 
2226 #ifdef CONFIG_HIGHMEM
2227 static void try_to_free_low(struct hstate *h, unsigned long count,
2228 						nodemask_t *nodes_allowed)
2229 {
2230 	int i;
2231 
2232 	if (hstate_is_gigantic(h))
2233 		return;
2234 
2235 	for_each_node_mask(i, *nodes_allowed) {
2236 		struct page *page, *next;
2237 		struct list_head *freel = &h->hugepage_freelists[i];
2238 		list_for_each_entry_safe(page, next, freel, lru) {
2239 			if (count >= h->nr_huge_pages)
2240 				return;
2241 			if (PageHighMem(page))
2242 				continue;
2243 			list_del(&page->lru);
2244 			update_and_free_page(h, page);
2245 			h->free_huge_pages--;
2246 			h->free_huge_pages_node[page_to_nid(page)]--;
2247 		}
2248 	}
2249 }
2250 #else
2251 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2252 						nodemask_t *nodes_allowed)
2253 {
2254 }
2255 #endif
2256 
2257 /*
2258  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2259  * balanced by operating on them in a round-robin fashion.
2260  * Returns 1 if an adjustment was made.
2261  */
2262 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2263 				int delta)
2264 {
2265 	int nr_nodes, node;
2266 
2267 	VM_BUG_ON(delta != -1 && delta != 1);
2268 
2269 	if (delta < 0) {
2270 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2271 			if (h->surplus_huge_pages_node[node])
2272 				goto found;
2273 		}
2274 	} else {
2275 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2276 			if (h->surplus_huge_pages_node[node] <
2277 					h->nr_huge_pages_node[node])
2278 				goto found;
2279 		}
2280 	}
2281 	return 0;
2282 
2283 found:
2284 	h->surplus_huge_pages += delta;
2285 	h->surplus_huge_pages_node[node] += delta;
2286 	return 1;
2287 }
2288 
2289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2290 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2291 						nodemask_t *nodes_allowed)
2292 {
2293 	unsigned long min_count, ret;
2294 
2295 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2296 		return h->max_huge_pages;
2297 
2298 	/*
2299 	 * Increase the pool size
2300 	 * First take pages out of surplus state.  Then make up the
2301 	 * remaining difference by allocating fresh huge pages.
2302 	 *
2303 	 * We might race with alloc_surplus_huge_page() here and be unable
2304 	 * to convert a surplus huge page to a normal huge page. That is
2305 	 * not critical, though, it just means the overall size of the
2306 	 * pool might be one hugepage larger than it needs to be, but
2307 	 * within all the constraints specified by the sysctls.
2308 	 */
2309 	spin_lock(&hugetlb_lock);
2310 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2311 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2312 			break;
2313 	}
2314 
2315 	while (count > persistent_huge_pages(h)) {
2316 		/*
2317 		 * If this allocation races such that we no longer need the
2318 		 * page, free_huge_page will handle it by freeing the page
2319 		 * and reducing the surplus.
2320 		 */
2321 		spin_unlock(&hugetlb_lock);
2322 
2323 		/* yield cpu to avoid soft lockup */
2324 		cond_resched();
2325 
2326 		ret = alloc_pool_huge_page(h, nodes_allowed);
2327 		spin_lock(&hugetlb_lock);
2328 		if (!ret)
2329 			goto out;
2330 
2331 		/* Bail for signals. Probably ctrl-c from user */
2332 		if (signal_pending(current))
2333 			goto out;
2334 	}
2335 
2336 	/*
2337 	 * Decrease the pool size
2338 	 * First return free pages to the buddy allocator (being careful
2339 	 * to keep enough around to satisfy reservations).  Then place
2340 	 * pages into surplus state as needed so the pool will shrink
2341 	 * to the desired size as pages become free.
2342 	 *
2343 	 * By placing pages into the surplus state independent of the
2344 	 * overcommit value, we are allowing the surplus pool size to
2345 	 * exceed overcommit. There are few sane options here. Since
2346 	 * alloc_surplus_huge_page() is checking the global counter,
2347 	 * though, we'll note that we're not allowed to exceed surplus
2348 	 * and won't grow the pool anywhere else. Not until one of the
2349 	 * sysctls are changed, or the surplus pages go out of use.
2350 	 */
2351 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2352 	min_count = max(count, min_count);
2353 	try_to_free_low(h, min_count, nodes_allowed);
2354 	while (min_count < persistent_huge_pages(h)) {
2355 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2356 			break;
2357 		cond_resched_lock(&hugetlb_lock);
2358 	}
2359 	while (count < persistent_huge_pages(h)) {
2360 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2361 			break;
2362 	}
2363 out:
2364 	ret = persistent_huge_pages(h);
2365 	spin_unlock(&hugetlb_lock);
2366 	return ret;
2367 }
2368 
2369 #define HSTATE_ATTR_RO(_name) \
2370 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2371 
2372 #define HSTATE_ATTR(_name) \
2373 	static struct kobj_attribute _name##_attr = \
2374 		__ATTR(_name, 0644, _name##_show, _name##_store)
2375 
2376 static struct kobject *hugepages_kobj;
2377 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378 
2379 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2380 
2381 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2382 {
2383 	int i;
2384 
2385 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2386 		if (hstate_kobjs[i] == kobj) {
2387 			if (nidp)
2388 				*nidp = NUMA_NO_NODE;
2389 			return &hstates[i];
2390 		}
2391 
2392 	return kobj_to_node_hstate(kobj, nidp);
2393 }
2394 
2395 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2396 					struct kobj_attribute *attr, char *buf)
2397 {
2398 	struct hstate *h;
2399 	unsigned long nr_huge_pages;
2400 	int nid;
2401 
2402 	h = kobj_to_hstate(kobj, &nid);
2403 	if (nid == NUMA_NO_NODE)
2404 		nr_huge_pages = h->nr_huge_pages;
2405 	else
2406 		nr_huge_pages = h->nr_huge_pages_node[nid];
2407 
2408 	return sprintf(buf, "%lu\n", nr_huge_pages);
2409 }
2410 
2411 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2412 					   struct hstate *h, int nid,
2413 					   unsigned long count, size_t len)
2414 {
2415 	int err;
2416 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2417 
2418 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2419 		err = -EINVAL;
2420 		goto out;
2421 	}
2422 
2423 	if (nid == NUMA_NO_NODE) {
2424 		/*
2425 		 * global hstate attribute
2426 		 */
2427 		if (!(obey_mempolicy &&
2428 				init_nodemask_of_mempolicy(nodes_allowed))) {
2429 			NODEMASK_FREE(nodes_allowed);
2430 			nodes_allowed = &node_states[N_MEMORY];
2431 		}
2432 	} else if (nodes_allowed) {
2433 		/*
2434 		 * per node hstate attribute: adjust count to global,
2435 		 * but restrict alloc/free to the specified node.
2436 		 */
2437 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2438 		init_nodemask_of_node(nodes_allowed, nid);
2439 	} else
2440 		nodes_allowed = &node_states[N_MEMORY];
2441 
2442 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2443 
2444 	if (nodes_allowed != &node_states[N_MEMORY])
2445 		NODEMASK_FREE(nodes_allowed);
2446 
2447 	return len;
2448 out:
2449 	NODEMASK_FREE(nodes_allowed);
2450 	return err;
2451 }
2452 
2453 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2454 					 struct kobject *kobj, const char *buf,
2455 					 size_t len)
2456 {
2457 	struct hstate *h;
2458 	unsigned long count;
2459 	int nid;
2460 	int err;
2461 
2462 	err = kstrtoul(buf, 10, &count);
2463 	if (err)
2464 		return err;
2465 
2466 	h = kobj_to_hstate(kobj, &nid);
2467 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2468 }
2469 
2470 static ssize_t nr_hugepages_show(struct kobject *kobj,
2471 				       struct kobj_attribute *attr, char *buf)
2472 {
2473 	return nr_hugepages_show_common(kobj, attr, buf);
2474 }
2475 
2476 static ssize_t nr_hugepages_store(struct kobject *kobj,
2477 	       struct kobj_attribute *attr, const char *buf, size_t len)
2478 {
2479 	return nr_hugepages_store_common(false, kobj, buf, len);
2480 }
2481 HSTATE_ATTR(nr_hugepages);
2482 
2483 #ifdef CONFIG_NUMA
2484 
2485 /*
2486  * hstate attribute for optionally mempolicy-based constraint on persistent
2487  * huge page alloc/free.
2488  */
2489 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2490 				       struct kobj_attribute *attr, char *buf)
2491 {
2492 	return nr_hugepages_show_common(kobj, attr, buf);
2493 }
2494 
2495 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2496 	       struct kobj_attribute *attr, const char *buf, size_t len)
2497 {
2498 	return nr_hugepages_store_common(true, kobj, buf, len);
2499 }
2500 HSTATE_ATTR(nr_hugepages_mempolicy);
2501 #endif
2502 
2503 
2504 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2505 					struct kobj_attribute *attr, char *buf)
2506 {
2507 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2508 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2509 }
2510 
2511 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2512 		struct kobj_attribute *attr, const char *buf, size_t count)
2513 {
2514 	int err;
2515 	unsigned long input;
2516 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2517 
2518 	if (hstate_is_gigantic(h))
2519 		return -EINVAL;
2520 
2521 	err = kstrtoul(buf, 10, &input);
2522 	if (err)
2523 		return err;
2524 
2525 	spin_lock(&hugetlb_lock);
2526 	h->nr_overcommit_huge_pages = input;
2527 	spin_unlock(&hugetlb_lock);
2528 
2529 	return count;
2530 }
2531 HSTATE_ATTR(nr_overcommit_hugepages);
2532 
2533 static ssize_t free_hugepages_show(struct kobject *kobj,
2534 					struct kobj_attribute *attr, char *buf)
2535 {
2536 	struct hstate *h;
2537 	unsigned long free_huge_pages;
2538 	int nid;
2539 
2540 	h = kobj_to_hstate(kobj, &nid);
2541 	if (nid == NUMA_NO_NODE)
2542 		free_huge_pages = h->free_huge_pages;
2543 	else
2544 		free_huge_pages = h->free_huge_pages_node[nid];
2545 
2546 	return sprintf(buf, "%lu\n", free_huge_pages);
2547 }
2548 HSTATE_ATTR_RO(free_hugepages);
2549 
2550 static ssize_t resv_hugepages_show(struct kobject *kobj,
2551 					struct kobj_attribute *attr, char *buf)
2552 {
2553 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2554 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2555 }
2556 HSTATE_ATTR_RO(resv_hugepages);
2557 
2558 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2559 					struct kobj_attribute *attr, char *buf)
2560 {
2561 	struct hstate *h;
2562 	unsigned long surplus_huge_pages;
2563 	int nid;
2564 
2565 	h = kobj_to_hstate(kobj, &nid);
2566 	if (nid == NUMA_NO_NODE)
2567 		surplus_huge_pages = h->surplus_huge_pages;
2568 	else
2569 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2570 
2571 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2572 }
2573 HSTATE_ATTR_RO(surplus_hugepages);
2574 
2575 static struct attribute *hstate_attrs[] = {
2576 	&nr_hugepages_attr.attr,
2577 	&nr_overcommit_hugepages_attr.attr,
2578 	&free_hugepages_attr.attr,
2579 	&resv_hugepages_attr.attr,
2580 	&surplus_hugepages_attr.attr,
2581 #ifdef CONFIG_NUMA
2582 	&nr_hugepages_mempolicy_attr.attr,
2583 #endif
2584 	NULL,
2585 };
2586 
2587 static const struct attribute_group hstate_attr_group = {
2588 	.attrs = hstate_attrs,
2589 };
2590 
2591 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2592 				    struct kobject **hstate_kobjs,
2593 				    const struct attribute_group *hstate_attr_group)
2594 {
2595 	int retval;
2596 	int hi = hstate_index(h);
2597 
2598 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2599 	if (!hstate_kobjs[hi])
2600 		return -ENOMEM;
2601 
2602 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2603 	if (retval)
2604 		kobject_put(hstate_kobjs[hi]);
2605 
2606 	return retval;
2607 }
2608 
2609 static void __init hugetlb_sysfs_init(void)
2610 {
2611 	struct hstate *h;
2612 	int err;
2613 
2614 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2615 	if (!hugepages_kobj)
2616 		return;
2617 
2618 	for_each_hstate(h) {
2619 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2620 					 hstate_kobjs, &hstate_attr_group);
2621 		if (err)
2622 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2623 	}
2624 }
2625 
2626 #ifdef CONFIG_NUMA
2627 
2628 /*
2629  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2630  * with node devices in node_devices[] using a parallel array.  The array
2631  * index of a node device or _hstate == node id.
2632  * This is here to avoid any static dependency of the node device driver, in
2633  * the base kernel, on the hugetlb module.
2634  */
2635 struct node_hstate {
2636 	struct kobject		*hugepages_kobj;
2637 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2638 };
2639 static struct node_hstate node_hstates[MAX_NUMNODES];
2640 
2641 /*
2642  * A subset of global hstate attributes for node devices
2643  */
2644 static struct attribute *per_node_hstate_attrs[] = {
2645 	&nr_hugepages_attr.attr,
2646 	&free_hugepages_attr.attr,
2647 	&surplus_hugepages_attr.attr,
2648 	NULL,
2649 };
2650 
2651 static const struct attribute_group per_node_hstate_attr_group = {
2652 	.attrs = per_node_hstate_attrs,
2653 };
2654 
2655 /*
2656  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2657  * Returns node id via non-NULL nidp.
2658  */
2659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660 {
2661 	int nid;
2662 
2663 	for (nid = 0; nid < nr_node_ids; nid++) {
2664 		struct node_hstate *nhs = &node_hstates[nid];
2665 		int i;
2666 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2667 			if (nhs->hstate_kobjs[i] == kobj) {
2668 				if (nidp)
2669 					*nidp = nid;
2670 				return &hstates[i];
2671 			}
2672 	}
2673 
2674 	BUG();
2675 	return NULL;
2676 }
2677 
2678 /*
2679  * Unregister hstate attributes from a single node device.
2680  * No-op if no hstate attributes attached.
2681  */
2682 static void hugetlb_unregister_node(struct node *node)
2683 {
2684 	struct hstate *h;
2685 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2686 
2687 	if (!nhs->hugepages_kobj)
2688 		return;		/* no hstate attributes */
2689 
2690 	for_each_hstate(h) {
2691 		int idx = hstate_index(h);
2692 		if (nhs->hstate_kobjs[idx]) {
2693 			kobject_put(nhs->hstate_kobjs[idx]);
2694 			nhs->hstate_kobjs[idx] = NULL;
2695 		}
2696 	}
2697 
2698 	kobject_put(nhs->hugepages_kobj);
2699 	nhs->hugepages_kobj = NULL;
2700 }
2701 
2702 
2703 /*
2704  * Register hstate attributes for a single node device.
2705  * No-op if attributes already registered.
2706  */
2707 static void hugetlb_register_node(struct node *node)
2708 {
2709 	struct hstate *h;
2710 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2711 	int err;
2712 
2713 	if (nhs->hugepages_kobj)
2714 		return;		/* already allocated */
2715 
2716 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2717 							&node->dev.kobj);
2718 	if (!nhs->hugepages_kobj)
2719 		return;
2720 
2721 	for_each_hstate(h) {
2722 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2723 						nhs->hstate_kobjs,
2724 						&per_node_hstate_attr_group);
2725 		if (err) {
2726 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2727 				h->name, node->dev.id);
2728 			hugetlb_unregister_node(node);
2729 			break;
2730 		}
2731 	}
2732 }
2733 
2734 /*
2735  * hugetlb init time:  register hstate attributes for all registered node
2736  * devices of nodes that have memory.  All on-line nodes should have
2737  * registered their associated device by this time.
2738  */
2739 static void __init hugetlb_register_all_nodes(void)
2740 {
2741 	int nid;
2742 
2743 	for_each_node_state(nid, N_MEMORY) {
2744 		struct node *node = node_devices[nid];
2745 		if (node->dev.id == nid)
2746 			hugetlb_register_node(node);
2747 	}
2748 
2749 	/*
2750 	 * Let the node device driver know we're here so it can
2751 	 * [un]register hstate attributes on node hotplug.
2752 	 */
2753 	register_hugetlbfs_with_node(hugetlb_register_node,
2754 				     hugetlb_unregister_node);
2755 }
2756 #else	/* !CONFIG_NUMA */
2757 
2758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2759 {
2760 	BUG();
2761 	if (nidp)
2762 		*nidp = -1;
2763 	return NULL;
2764 }
2765 
2766 static void hugetlb_register_all_nodes(void) { }
2767 
2768 #endif
2769 
2770 static int __init hugetlb_init(void)
2771 {
2772 	int i;
2773 
2774 	if (!hugepages_supported())
2775 		return 0;
2776 
2777 	if (!size_to_hstate(default_hstate_size)) {
2778 		if (default_hstate_size != 0) {
2779 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2780 			       default_hstate_size, HPAGE_SIZE);
2781 		}
2782 
2783 		default_hstate_size = HPAGE_SIZE;
2784 		if (!size_to_hstate(default_hstate_size))
2785 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2786 	}
2787 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2788 	if (default_hstate_max_huge_pages) {
2789 		if (!default_hstate.max_huge_pages)
2790 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2791 	}
2792 
2793 	hugetlb_init_hstates();
2794 	gather_bootmem_prealloc();
2795 	report_hugepages();
2796 
2797 	hugetlb_sysfs_init();
2798 	hugetlb_register_all_nodes();
2799 	hugetlb_cgroup_file_init();
2800 
2801 #ifdef CONFIG_SMP
2802 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2803 #else
2804 	num_fault_mutexes = 1;
2805 #endif
2806 	hugetlb_fault_mutex_table =
2807 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2808 	BUG_ON(!hugetlb_fault_mutex_table);
2809 
2810 	for (i = 0; i < num_fault_mutexes; i++)
2811 		mutex_init(&hugetlb_fault_mutex_table[i]);
2812 	return 0;
2813 }
2814 subsys_initcall(hugetlb_init);
2815 
2816 /* Should be called on processing a hugepagesz=... option */
2817 void __init hugetlb_bad_size(void)
2818 {
2819 	parsed_valid_hugepagesz = false;
2820 }
2821 
2822 void __init hugetlb_add_hstate(unsigned int order)
2823 {
2824 	struct hstate *h;
2825 	unsigned long i;
2826 
2827 	if (size_to_hstate(PAGE_SIZE << order)) {
2828 		pr_warn("hugepagesz= specified twice, ignoring\n");
2829 		return;
2830 	}
2831 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2832 	BUG_ON(order == 0);
2833 	h = &hstates[hugetlb_max_hstate++];
2834 	h->order = order;
2835 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2836 	h->nr_huge_pages = 0;
2837 	h->free_huge_pages = 0;
2838 	for (i = 0; i < MAX_NUMNODES; ++i)
2839 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2840 	INIT_LIST_HEAD(&h->hugepage_activelist);
2841 	h->next_nid_to_alloc = first_memory_node;
2842 	h->next_nid_to_free = first_memory_node;
2843 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2844 					huge_page_size(h)/1024);
2845 
2846 	parsed_hstate = h;
2847 }
2848 
2849 static int __init hugetlb_nrpages_setup(char *s)
2850 {
2851 	unsigned long *mhp;
2852 	static unsigned long *last_mhp;
2853 
2854 	if (!parsed_valid_hugepagesz) {
2855 		pr_warn("hugepages = %s preceded by "
2856 			"an unsupported hugepagesz, ignoring\n", s);
2857 		parsed_valid_hugepagesz = true;
2858 		return 1;
2859 	}
2860 	/*
2861 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2862 	 * so this hugepages= parameter goes to the "default hstate".
2863 	 */
2864 	else if (!hugetlb_max_hstate)
2865 		mhp = &default_hstate_max_huge_pages;
2866 	else
2867 		mhp = &parsed_hstate->max_huge_pages;
2868 
2869 	if (mhp == last_mhp) {
2870 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2871 		return 1;
2872 	}
2873 
2874 	if (sscanf(s, "%lu", mhp) <= 0)
2875 		*mhp = 0;
2876 
2877 	/*
2878 	 * Global state is always initialized later in hugetlb_init.
2879 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2880 	 * use the bootmem allocator.
2881 	 */
2882 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2883 		hugetlb_hstate_alloc_pages(parsed_hstate);
2884 
2885 	last_mhp = mhp;
2886 
2887 	return 1;
2888 }
2889 __setup("hugepages=", hugetlb_nrpages_setup);
2890 
2891 static int __init hugetlb_default_setup(char *s)
2892 {
2893 	default_hstate_size = memparse(s, &s);
2894 	return 1;
2895 }
2896 __setup("default_hugepagesz=", hugetlb_default_setup);
2897 
2898 static unsigned int cpuset_mems_nr(unsigned int *array)
2899 {
2900 	int node;
2901 	unsigned int nr = 0;
2902 
2903 	for_each_node_mask(node, cpuset_current_mems_allowed)
2904 		nr += array[node];
2905 
2906 	return nr;
2907 }
2908 
2909 #ifdef CONFIG_SYSCTL
2910 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2911 			 struct ctl_table *table, int write,
2912 			 void __user *buffer, size_t *length, loff_t *ppos)
2913 {
2914 	struct hstate *h = &default_hstate;
2915 	unsigned long tmp = h->max_huge_pages;
2916 	int ret;
2917 
2918 	if (!hugepages_supported())
2919 		return -EOPNOTSUPP;
2920 
2921 	table->data = &tmp;
2922 	table->maxlen = sizeof(unsigned long);
2923 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2924 	if (ret)
2925 		goto out;
2926 
2927 	if (write)
2928 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2929 						  NUMA_NO_NODE, tmp, *length);
2930 out:
2931 	return ret;
2932 }
2933 
2934 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2935 			  void __user *buffer, size_t *length, loff_t *ppos)
2936 {
2937 
2938 	return hugetlb_sysctl_handler_common(false, table, write,
2939 							buffer, length, ppos);
2940 }
2941 
2942 #ifdef CONFIG_NUMA
2943 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2944 			  void __user *buffer, size_t *length, loff_t *ppos)
2945 {
2946 	return hugetlb_sysctl_handler_common(true, table, write,
2947 							buffer, length, ppos);
2948 }
2949 #endif /* CONFIG_NUMA */
2950 
2951 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2952 			void __user *buffer,
2953 			size_t *length, loff_t *ppos)
2954 {
2955 	struct hstate *h = &default_hstate;
2956 	unsigned long tmp;
2957 	int ret;
2958 
2959 	if (!hugepages_supported())
2960 		return -EOPNOTSUPP;
2961 
2962 	tmp = h->nr_overcommit_huge_pages;
2963 
2964 	if (write && hstate_is_gigantic(h))
2965 		return -EINVAL;
2966 
2967 	table->data = &tmp;
2968 	table->maxlen = sizeof(unsigned long);
2969 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 	if (ret)
2971 		goto out;
2972 
2973 	if (write) {
2974 		spin_lock(&hugetlb_lock);
2975 		h->nr_overcommit_huge_pages = tmp;
2976 		spin_unlock(&hugetlb_lock);
2977 	}
2978 out:
2979 	return ret;
2980 }
2981 
2982 #endif /* CONFIG_SYSCTL */
2983 
2984 void hugetlb_report_meminfo(struct seq_file *m)
2985 {
2986 	struct hstate *h;
2987 	unsigned long total = 0;
2988 
2989 	if (!hugepages_supported())
2990 		return;
2991 
2992 	for_each_hstate(h) {
2993 		unsigned long count = h->nr_huge_pages;
2994 
2995 		total += (PAGE_SIZE << huge_page_order(h)) * count;
2996 
2997 		if (h == &default_hstate)
2998 			seq_printf(m,
2999 				   "HugePages_Total:   %5lu\n"
3000 				   "HugePages_Free:    %5lu\n"
3001 				   "HugePages_Rsvd:    %5lu\n"
3002 				   "HugePages_Surp:    %5lu\n"
3003 				   "Hugepagesize:   %8lu kB\n",
3004 				   count,
3005 				   h->free_huge_pages,
3006 				   h->resv_huge_pages,
3007 				   h->surplus_huge_pages,
3008 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3009 	}
3010 
3011 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3012 }
3013 
3014 int hugetlb_report_node_meminfo(int nid, char *buf)
3015 {
3016 	struct hstate *h = &default_hstate;
3017 	if (!hugepages_supported())
3018 		return 0;
3019 	return sprintf(buf,
3020 		"Node %d HugePages_Total: %5u\n"
3021 		"Node %d HugePages_Free:  %5u\n"
3022 		"Node %d HugePages_Surp:  %5u\n",
3023 		nid, h->nr_huge_pages_node[nid],
3024 		nid, h->free_huge_pages_node[nid],
3025 		nid, h->surplus_huge_pages_node[nid]);
3026 }
3027 
3028 void hugetlb_show_meminfo(void)
3029 {
3030 	struct hstate *h;
3031 	int nid;
3032 
3033 	if (!hugepages_supported())
3034 		return;
3035 
3036 	for_each_node_state(nid, N_MEMORY)
3037 		for_each_hstate(h)
3038 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3039 				nid,
3040 				h->nr_huge_pages_node[nid],
3041 				h->free_huge_pages_node[nid],
3042 				h->surplus_huge_pages_node[nid],
3043 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3044 }
3045 
3046 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3047 {
3048 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3049 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3050 }
3051 
3052 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3053 unsigned long hugetlb_total_pages(void)
3054 {
3055 	struct hstate *h;
3056 	unsigned long nr_total_pages = 0;
3057 
3058 	for_each_hstate(h)
3059 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3060 	return nr_total_pages;
3061 }
3062 
3063 static int hugetlb_acct_memory(struct hstate *h, long delta)
3064 {
3065 	int ret = -ENOMEM;
3066 
3067 	spin_lock(&hugetlb_lock);
3068 	/*
3069 	 * When cpuset is configured, it breaks the strict hugetlb page
3070 	 * reservation as the accounting is done on a global variable. Such
3071 	 * reservation is completely rubbish in the presence of cpuset because
3072 	 * the reservation is not checked against page availability for the
3073 	 * current cpuset. Application can still potentially OOM'ed by kernel
3074 	 * with lack of free htlb page in cpuset that the task is in.
3075 	 * Attempt to enforce strict accounting with cpuset is almost
3076 	 * impossible (or too ugly) because cpuset is too fluid that
3077 	 * task or memory node can be dynamically moved between cpusets.
3078 	 *
3079 	 * The change of semantics for shared hugetlb mapping with cpuset is
3080 	 * undesirable. However, in order to preserve some of the semantics,
3081 	 * we fall back to check against current free page availability as
3082 	 * a best attempt and hopefully to minimize the impact of changing
3083 	 * semantics that cpuset has.
3084 	 */
3085 	if (delta > 0) {
3086 		if (gather_surplus_pages(h, delta) < 0)
3087 			goto out;
3088 
3089 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3090 			return_unused_surplus_pages(h, delta);
3091 			goto out;
3092 		}
3093 	}
3094 
3095 	ret = 0;
3096 	if (delta < 0)
3097 		return_unused_surplus_pages(h, (unsigned long) -delta);
3098 
3099 out:
3100 	spin_unlock(&hugetlb_lock);
3101 	return ret;
3102 }
3103 
3104 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3105 {
3106 	struct resv_map *resv = vma_resv_map(vma);
3107 
3108 	/*
3109 	 * This new VMA should share its siblings reservation map if present.
3110 	 * The VMA will only ever have a valid reservation map pointer where
3111 	 * it is being copied for another still existing VMA.  As that VMA
3112 	 * has a reference to the reservation map it cannot disappear until
3113 	 * after this open call completes.  It is therefore safe to take a
3114 	 * new reference here without additional locking.
3115 	 */
3116 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3117 		kref_get(&resv->refs);
3118 }
3119 
3120 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3121 {
3122 	struct hstate *h = hstate_vma(vma);
3123 	struct resv_map *resv = vma_resv_map(vma);
3124 	struct hugepage_subpool *spool = subpool_vma(vma);
3125 	unsigned long reserve, start, end;
3126 	long gbl_reserve;
3127 
3128 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3129 		return;
3130 
3131 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3132 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3133 
3134 	reserve = (end - start) - region_count(resv, start, end);
3135 
3136 	kref_put(&resv->refs, resv_map_release);
3137 
3138 	if (reserve) {
3139 		/*
3140 		 * Decrement reserve counts.  The global reserve count may be
3141 		 * adjusted if the subpool has a minimum size.
3142 		 */
3143 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3144 		hugetlb_acct_memory(h, -gbl_reserve);
3145 	}
3146 }
3147 
3148 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3149 {
3150 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3151 		return -EINVAL;
3152 	return 0;
3153 }
3154 
3155 /*
3156  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3157  * handle_mm_fault() to try to instantiate regular-sized pages in the
3158  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3159  * this far.
3160  */
3161 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3162 {
3163 	BUG();
3164 	return 0;
3165 }
3166 
3167 const struct vm_operations_struct hugetlb_vm_ops = {
3168 	.fault = hugetlb_vm_op_fault,
3169 	.open = hugetlb_vm_op_open,
3170 	.close = hugetlb_vm_op_close,
3171 	.split = hugetlb_vm_op_split,
3172 };
3173 
3174 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3175 				int writable)
3176 {
3177 	pte_t entry;
3178 
3179 	if (writable) {
3180 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3181 					 vma->vm_page_prot)));
3182 	} else {
3183 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3184 					   vma->vm_page_prot));
3185 	}
3186 	entry = pte_mkyoung(entry);
3187 	entry = pte_mkhuge(entry);
3188 	entry = arch_make_huge_pte(entry, vma, page, writable);
3189 
3190 	return entry;
3191 }
3192 
3193 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3194 				   unsigned long address, pte_t *ptep)
3195 {
3196 	pte_t entry;
3197 
3198 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3199 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3200 		update_mmu_cache(vma, address, ptep);
3201 }
3202 
3203 bool is_hugetlb_entry_migration(pte_t pte)
3204 {
3205 	swp_entry_t swp;
3206 
3207 	if (huge_pte_none(pte) || pte_present(pte))
3208 		return false;
3209 	swp = pte_to_swp_entry(pte);
3210 	if (non_swap_entry(swp) && is_migration_entry(swp))
3211 		return true;
3212 	else
3213 		return false;
3214 }
3215 
3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3217 {
3218 	swp_entry_t swp;
3219 
3220 	if (huge_pte_none(pte) || pte_present(pte))
3221 		return 0;
3222 	swp = pte_to_swp_entry(pte);
3223 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3224 		return 1;
3225 	else
3226 		return 0;
3227 }
3228 
3229 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3230 			    struct vm_area_struct *vma)
3231 {
3232 	pte_t *src_pte, *dst_pte, entry;
3233 	struct page *ptepage;
3234 	unsigned long addr;
3235 	int cow;
3236 	struct hstate *h = hstate_vma(vma);
3237 	unsigned long sz = huge_page_size(h);
3238 	unsigned long mmun_start;	/* For mmu_notifiers */
3239 	unsigned long mmun_end;		/* For mmu_notifiers */
3240 	int ret = 0;
3241 
3242 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3243 
3244 	mmun_start = vma->vm_start;
3245 	mmun_end = vma->vm_end;
3246 	if (cow)
3247 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3248 
3249 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3250 		spinlock_t *src_ptl, *dst_ptl;
3251 		src_pte = huge_pte_offset(src, addr, sz);
3252 		if (!src_pte)
3253 			continue;
3254 		dst_pte = huge_pte_alloc(dst, addr, sz);
3255 		if (!dst_pte) {
3256 			ret = -ENOMEM;
3257 			break;
3258 		}
3259 
3260 		/* If the pagetables are shared don't copy or take references */
3261 		if (dst_pte == src_pte)
3262 			continue;
3263 
3264 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3266 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3267 		entry = huge_ptep_get(src_pte);
3268 		if (huge_pte_none(entry)) { /* skip none entry */
3269 			;
3270 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3271 				    is_hugetlb_entry_hwpoisoned(entry))) {
3272 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3273 
3274 			if (is_write_migration_entry(swp_entry) && cow) {
3275 				/*
3276 				 * COW mappings require pages in both
3277 				 * parent and child to be set to read.
3278 				 */
3279 				make_migration_entry_read(&swp_entry);
3280 				entry = swp_entry_to_pte(swp_entry);
3281 				set_huge_swap_pte_at(src, addr, src_pte,
3282 						     entry, sz);
3283 			}
3284 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3285 		} else {
3286 			if (cow) {
3287 				/*
3288 				 * No need to notify as we are downgrading page
3289 				 * table protection not changing it to point
3290 				 * to a new page.
3291 				 *
3292 				 * See Documentation/vm/mmu_notifier.txt
3293 				 */
3294 				huge_ptep_set_wrprotect(src, addr, src_pte);
3295 			}
3296 			entry = huge_ptep_get(src_pte);
3297 			ptepage = pte_page(entry);
3298 			get_page(ptepage);
3299 			page_dup_rmap(ptepage, true);
3300 			set_huge_pte_at(dst, addr, dst_pte, entry);
3301 			hugetlb_count_add(pages_per_huge_page(h), dst);
3302 		}
3303 		spin_unlock(src_ptl);
3304 		spin_unlock(dst_ptl);
3305 	}
3306 
3307 	if (cow)
3308 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309 
3310 	return ret;
3311 }
3312 
3313 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3314 			    unsigned long start, unsigned long end,
3315 			    struct page *ref_page)
3316 {
3317 	struct mm_struct *mm = vma->vm_mm;
3318 	unsigned long address;
3319 	pte_t *ptep;
3320 	pte_t pte;
3321 	spinlock_t *ptl;
3322 	struct page *page;
3323 	struct hstate *h = hstate_vma(vma);
3324 	unsigned long sz = huge_page_size(h);
3325 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3326 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3327 
3328 	WARN_ON(!is_vm_hugetlb_page(vma));
3329 	BUG_ON(start & ~huge_page_mask(h));
3330 	BUG_ON(end & ~huge_page_mask(h));
3331 
3332 	/*
3333 	 * This is a hugetlb vma, all the pte entries should point
3334 	 * to huge page.
3335 	 */
3336 	tlb_remove_check_page_size_change(tlb, sz);
3337 	tlb_start_vma(tlb, vma);
3338 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3339 	address = start;
3340 	for (; address < end; address += sz) {
3341 		ptep = huge_pte_offset(mm, address, sz);
3342 		if (!ptep)
3343 			continue;
3344 
3345 		ptl = huge_pte_lock(h, mm, ptep);
3346 		if (huge_pmd_unshare(mm, &address, ptep)) {
3347 			spin_unlock(ptl);
3348 			continue;
3349 		}
3350 
3351 		pte = huge_ptep_get(ptep);
3352 		if (huge_pte_none(pte)) {
3353 			spin_unlock(ptl);
3354 			continue;
3355 		}
3356 
3357 		/*
3358 		 * Migrating hugepage or HWPoisoned hugepage is already
3359 		 * unmapped and its refcount is dropped, so just clear pte here.
3360 		 */
3361 		if (unlikely(!pte_present(pte))) {
3362 			huge_pte_clear(mm, address, ptep, sz);
3363 			spin_unlock(ptl);
3364 			continue;
3365 		}
3366 
3367 		page = pte_page(pte);
3368 		/*
3369 		 * If a reference page is supplied, it is because a specific
3370 		 * page is being unmapped, not a range. Ensure the page we
3371 		 * are about to unmap is the actual page of interest.
3372 		 */
3373 		if (ref_page) {
3374 			if (page != ref_page) {
3375 				spin_unlock(ptl);
3376 				continue;
3377 			}
3378 			/*
3379 			 * Mark the VMA as having unmapped its page so that
3380 			 * future faults in this VMA will fail rather than
3381 			 * looking like data was lost
3382 			 */
3383 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3384 		}
3385 
3386 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3387 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3388 		if (huge_pte_dirty(pte))
3389 			set_page_dirty(page);
3390 
3391 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3392 		page_remove_rmap(page, true);
3393 
3394 		spin_unlock(ptl);
3395 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3396 		/*
3397 		 * Bail out after unmapping reference page if supplied
3398 		 */
3399 		if (ref_page)
3400 			break;
3401 	}
3402 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3403 	tlb_end_vma(tlb, vma);
3404 }
3405 
3406 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3407 			  struct vm_area_struct *vma, unsigned long start,
3408 			  unsigned long end, struct page *ref_page)
3409 {
3410 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3411 
3412 	/*
3413 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3414 	 * test will fail on a vma being torn down, and not grab a page table
3415 	 * on its way out.  We're lucky that the flag has such an appropriate
3416 	 * name, and can in fact be safely cleared here. We could clear it
3417 	 * before the __unmap_hugepage_range above, but all that's necessary
3418 	 * is to clear it before releasing the i_mmap_rwsem. This works
3419 	 * because in the context this is called, the VMA is about to be
3420 	 * destroyed and the i_mmap_rwsem is held.
3421 	 */
3422 	vma->vm_flags &= ~VM_MAYSHARE;
3423 }
3424 
3425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3426 			  unsigned long end, struct page *ref_page)
3427 {
3428 	struct mm_struct *mm;
3429 	struct mmu_gather tlb;
3430 
3431 	mm = vma->vm_mm;
3432 
3433 	tlb_gather_mmu(&tlb, mm, start, end);
3434 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3435 	tlb_finish_mmu(&tlb, start, end);
3436 }
3437 
3438 /*
3439  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3440  * mappping it owns the reserve page for. The intention is to unmap the page
3441  * from other VMAs and let the children be SIGKILLed if they are faulting the
3442  * same region.
3443  */
3444 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3445 			      struct page *page, unsigned long address)
3446 {
3447 	struct hstate *h = hstate_vma(vma);
3448 	struct vm_area_struct *iter_vma;
3449 	struct address_space *mapping;
3450 	pgoff_t pgoff;
3451 
3452 	/*
3453 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3454 	 * from page cache lookup which is in HPAGE_SIZE units.
3455 	 */
3456 	address = address & huge_page_mask(h);
3457 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3458 			vma->vm_pgoff;
3459 	mapping = vma->vm_file->f_mapping;
3460 
3461 	/*
3462 	 * Take the mapping lock for the duration of the table walk. As
3463 	 * this mapping should be shared between all the VMAs,
3464 	 * __unmap_hugepage_range() is called as the lock is already held
3465 	 */
3466 	i_mmap_lock_write(mapping);
3467 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3468 		/* Do not unmap the current VMA */
3469 		if (iter_vma == vma)
3470 			continue;
3471 
3472 		/*
3473 		 * Shared VMAs have their own reserves and do not affect
3474 		 * MAP_PRIVATE accounting but it is possible that a shared
3475 		 * VMA is using the same page so check and skip such VMAs.
3476 		 */
3477 		if (iter_vma->vm_flags & VM_MAYSHARE)
3478 			continue;
3479 
3480 		/*
3481 		 * Unmap the page from other VMAs without their own reserves.
3482 		 * They get marked to be SIGKILLed if they fault in these
3483 		 * areas. This is because a future no-page fault on this VMA
3484 		 * could insert a zeroed page instead of the data existing
3485 		 * from the time of fork. This would look like data corruption
3486 		 */
3487 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3488 			unmap_hugepage_range(iter_vma, address,
3489 					     address + huge_page_size(h), page);
3490 	}
3491 	i_mmap_unlock_write(mapping);
3492 }
3493 
3494 /*
3495  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3496  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3497  * cannot race with other handlers or page migration.
3498  * Keep the pte_same checks anyway to make transition from the mutex easier.
3499  */
3500 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3501 		       unsigned long address, pte_t *ptep,
3502 		       struct page *pagecache_page, spinlock_t *ptl)
3503 {
3504 	pte_t pte;
3505 	struct hstate *h = hstate_vma(vma);
3506 	struct page *old_page, *new_page;
3507 	int ret = 0, outside_reserve = 0;
3508 	unsigned long mmun_start;	/* For mmu_notifiers */
3509 	unsigned long mmun_end;		/* For mmu_notifiers */
3510 
3511 	pte = huge_ptep_get(ptep);
3512 	old_page = pte_page(pte);
3513 
3514 retry_avoidcopy:
3515 	/* If no-one else is actually using this page, avoid the copy
3516 	 * and just make the page writable */
3517 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3518 		page_move_anon_rmap(old_page, vma);
3519 		set_huge_ptep_writable(vma, address, ptep);
3520 		return 0;
3521 	}
3522 
3523 	/*
3524 	 * If the process that created a MAP_PRIVATE mapping is about to
3525 	 * perform a COW due to a shared page count, attempt to satisfy
3526 	 * the allocation without using the existing reserves. The pagecache
3527 	 * page is used to determine if the reserve at this address was
3528 	 * consumed or not. If reserves were used, a partial faulted mapping
3529 	 * at the time of fork() could consume its reserves on COW instead
3530 	 * of the full address range.
3531 	 */
3532 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3533 			old_page != pagecache_page)
3534 		outside_reserve = 1;
3535 
3536 	get_page(old_page);
3537 
3538 	/*
3539 	 * Drop page table lock as buddy allocator may be called. It will
3540 	 * be acquired again before returning to the caller, as expected.
3541 	 */
3542 	spin_unlock(ptl);
3543 	new_page = alloc_huge_page(vma, address, outside_reserve);
3544 
3545 	if (IS_ERR(new_page)) {
3546 		/*
3547 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3548 		 * it is due to references held by a child and an insufficient
3549 		 * huge page pool. To guarantee the original mappers
3550 		 * reliability, unmap the page from child processes. The child
3551 		 * may get SIGKILLed if it later faults.
3552 		 */
3553 		if (outside_reserve) {
3554 			put_page(old_page);
3555 			BUG_ON(huge_pte_none(pte));
3556 			unmap_ref_private(mm, vma, old_page, address);
3557 			BUG_ON(huge_pte_none(pte));
3558 			spin_lock(ptl);
3559 			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560 					       huge_page_size(h));
3561 			if (likely(ptep &&
3562 				   pte_same(huge_ptep_get(ptep), pte)))
3563 				goto retry_avoidcopy;
3564 			/*
3565 			 * race occurs while re-acquiring page table
3566 			 * lock, and our job is done.
3567 			 */
3568 			return 0;
3569 		}
3570 
3571 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3572 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3573 		goto out_release_old;
3574 	}
3575 
3576 	/*
3577 	 * When the original hugepage is shared one, it does not have
3578 	 * anon_vma prepared.
3579 	 */
3580 	if (unlikely(anon_vma_prepare(vma))) {
3581 		ret = VM_FAULT_OOM;
3582 		goto out_release_all;
3583 	}
3584 
3585 	copy_user_huge_page(new_page, old_page, address, vma,
3586 			    pages_per_huge_page(h));
3587 	__SetPageUptodate(new_page);
3588 	set_page_huge_active(new_page);
3589 
3590 	mmun_start = address & huge_page_mask(h);
3591 	mmun_end = mmun_start + huge_page_size(h);
3592 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3593 
3594 	/*
3595 	 * Retake the page table lock to check for racing updates
3596 	 * before the page tables are altered
3597 	 */
3598 	spin_lock(ptl);
3599 	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3600 			       huge_page_size(h));
3601 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3602 		ClearPagePrivate(new_page);
3603 
3604 		/* Break COW */
3605 		huge_ptep_clear_flush(vma, address, ptep);
3606 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3607 		set_huge_pte_at(mm, address, ptep,
3608 				make_huge_pte(vma, new_page, 1));
3609 		page_remove_rmap(old_page, true);
3610 		hugepage_add_new_anon_rmap(new_page, vma, address);
3611 		/* Make the old page be freed below */
3612 		new_page = old_page;
3613 	}
3614 	spin_unlock(ptl);
3615 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3616 out_release_all:
3617 	restore_reserve_on_error(h, vma, address, new_page);
3618 	put_page(new_page);
3619 out_release_old:
3620 	put_page(old_page);
3621 
3622 	spin_lock(ptl); /* Caller expects lock to be held */
3623 	return ret;
3624 }
3625 
3626 /* Return the pagecache page at a given address within a VMA */
3627 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3628 			struct vm_area_struct *vma, unsigned long address)
3629 {
3630 	struct address_space *mapping;
3631 	pgoff_t idx;
3632 
3633 	mapping = vma->vm_file->f_mapping;
3634 	idx = vma_hugecache_offset(h, vma, address);
3635 
3636 	return find_lock_page(mapping, idx);
3637 }
3638 
3639 /*
3640  * Return whether there is a pagecache page to back given address within VMA.
3641  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3642  */
3643 static bool hugetlbfs_pagecache_present(struct hstate *h,
3644 			struct vm_area_struct *vma, unsigned long address)
3645 {
3646 	struct address_space *mapping;
3647 	pgoff_t idx;
3648 	struct page *page;
3649 
3650 	mapping = vma->vm_file->f_mapping;
3651 	idx = vma_hugecache_offset(h, vma, address);
3652 
3653 	page = find_get_page(mapping, idx);
3654 	if (page)
3655 		put_page(page);
3656 	return page != NULL;
3657 }
3658 
3659 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3660 			   pgoff_t idx)
3661 {
3662 	struct inode *inode = mapping->host;
3663 	struct hstate *h = hstate_inode(inode);
3664 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3665 
3666 	if (err)
3667 		return err;
3668 	ClearPagePrivate(page);
3669 
3670 	spin_lock(&inode->i_lock);
3671 	inode->i_blocks += blocks_per_huge_page(h);
3672 	spin_unlock(&inode->i_lock);
3673 	return 0;
3674 }
3675 
3676 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3677 			   struct address_space *mapping, pgoff_t idx,
3678 			   unsigned long address, pte_t *ptep, unsigned int flags)
3679 {
3680 	struct hstate *h = hstate_vma(vma);
3681 	int ret = VM_FAULT_SIGBUS;
3682 	int anon_rmap = 0;
3683 	unsigned long size;
3684 	struct page *page;
3685 	pte_t new_pte;
3686 	spinlock_t *ptl;
3687 
3688 	/*
3689 	 * Currently, we are forced to kill the process in the event the
3690 	 * original mapper has unmapped pages from the child due to a failed
3691 	 * COW. Warn that such a situation has occurred as it may not be obvious
3692 	 */
3693 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3694 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3695 			   current->pid);
3696 		return ret;
3697 	}
3698 
3699 	/*
3700 	 * Use page lock to guard against racing truncation
3701 	 * before we get page_table_lock.
3702 	 */
3703 retry:
3704 	page = find_lock_page(mapping, idx);
3705 	if (!page) {
3706 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3707 		if (idx >= size)
3708 			goto out;
3709 
3710 		/*
3711 		 * Check for page in userfault range
3712 		 */
3713 		if (userfaultfd_missing(vma)) {
3714 			u32 hash;
3715 			struct vm_fault vmf = {
3716 				.vma = vma,
3717 				.address = address,
3718 				.flags = flags,
3719 				/*
3720 				 * Hard to debug if it ends up being
3721 				 * used by a callee that assumes
3722 				 * something about the other
3723 				 * uninitialized fields... same as in
3724 				 * memory.c
3725 				 */
3726 			};
3727 
3728 			/*
3729 			 * hugetlb_fault_mutex must be dropped before
3730 			 * handling userfault.  Reacquire after handling
3731 			 * fault to make calling code simpler.
3732 			 */
3733 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3734 							idx, address);
3735 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3736 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3737 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3738 			goto out;
3739 		}
3740 
3741 		page = alloc_huge_page(vma, address, 0);
3742 		if (IS_ERR(page)) {
3743 			ret = PTR_ERR(page);
3744 			if (ret == -ENOMEM)
3745 				ret = VM_FAULT_OOM;
3746 			else
3747 				ret = VM_FAULT_SIGBUS;
3748 			goto out;
3749 		}
3750 		clear_huge_page(page, address, pages_per_huge_page(h));
3751 		__SetPageUptodate(page);
3752 		set_page_huge_active(page);
3753 
3754 		if (vma->vm_flags & VM_MAYSHARE) {
3755 			int err = huge_add_to_page_cache(page, mapping, idx);
3756 			if (err) {
3757 				put_page(page);
3758 				if (err == -EEXIST)
3759 					goto retry;
3760 				goto out;
3761 			}
3762 		} else {
3763 			lock_page(page);
3764 			if (unlikely(anon_vma_prepare(vma))) {
3765 				ret = VM_FAULT_OOM;
3766 				goto backout_unlocked;
3767 			}
3768 			anon_rmap = 1;
3769 		}
3770 	} else {
3771 		/*
3772 		 * If memory error occurs between mmap() and fault, some process
3773 		 * don't have hwpoisoned swap entry for errored virtual address.
3774 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3775 		 */
3776 		if (unlikely(PageHWPoison(page))) {
3777 			ret = VM_FAULT_HWPOISON |
3778 				VM_FAULT_SET_HINDEX(hstate_index(h));
3779 			goto backout_unlocked;
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * If we are going to COW a private mapping later, we examine the
3785 	 * pending reservations for this page now. This will ensure that
3786 	 * any allocations necessary to record that reservation occur outside
3787 	 * the spinlock.
3788 	 */
3789 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3790 		if (vma_needs_reservation(h, vma, address) < 0) {
3791 			ret = VM_FAULT_OOM;
3792 			goto backout_unlocked;
3793 		}
3794 		/* Just decrements count, does not deallocate */
3795 		vma_end_reservation(h, vma, address);
3796 	}
3797 
3798 	ptl = huge_pte_lock(h, mm, ptep);
3799 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3800 	if (idx >= size)
3801 		goto backout;
3802 
3803 	ret = 0;
3804 	if (!huge_pte_none(huge_ptep_get(ptep)))
3805 		goto backout;
3806 
3807 	if (anon_rmap) {
3808 		ClearPagePrivate(page);
3809 		hugepage_add_new_anon_rmap(page, vma, address);
3810 	} else
3811 		page_dup_rmap(page, true);
3812 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3813 				&& (vma->vm_flags & VM_SHARED)));
3814 	set_huge_pte_at(mm, address, ptep, new_pte);
3815 
3816 	hugetlb_count_add(pages_per_huge_page(h), mm);
3817 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3818 		/* Optimization, do the COW without a second fault */
3819 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3820 	}
3821 
3822 	spin_unlock(ptl);
3823 	unlock_page(page);
3824 out:
3825 	return ret;
3826 
3827 backout:
3828 	spin_unlock(ptl);
3829 backout_unlocked:
3830 	unlock_page(page);
3831 	restore_reserve_on_error(h, vma, address, page);
3832 	put_page(page);
3833 	goto out;
3834 }
3835 
3836 #ifdef CONFIG_SMP
3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838 			    struct vm_area_struct *vma,
3839 			    struct address_space *mapping,
3840 			    pgoff_t idx, unsigned long address)
3841 {
3842 	unsigned long key[2];
3843 	u32 hash;
3844 
3845 	if (vma->vm_flags & VM_SHARED) {
3846 		key[0] = (unsigned long) mapping;
3847 		key[1] = idx;
3848 	} else {
3849 		key[0] = (unsigned long) mm;
3850 		key[1] = address >> huge_page_shift(h);
3851 	}
3852 
3853 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3854 
3855 	return hash & (num_fault_mutexes - 1);
3856 }
3857 #else
3858 /*
3859  * For uniprocesor systems we always use a single mutex, so just
3860  * return 0 and avoid the hashing overhead.
3861  */
3862 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3863 			    struct vm_area_struct *vma,
3864 			    struct address_space *mapping,
3865 			    pgoff_t idx, unsigned long address)
3866 {
3867 	return 0;
3868 }
3869 #endif
3870 
3871 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3872 			unsigned long address, unsigned int flags)
3873 {
3874 	pte_t *ptep, entry;
3875 	spinlock_t *ptl;
3876 	int ret;
3877 	u32 hash;
3878 	pgoff_t idx;
3879 	struct page *page = NULL;
3880 	struct page *pagecache_page = NULL;
3881 	struct hstate *h = hstate_vma(vma);
3882 	struct address_space *mapping;
3883 	int need_wait_lock = 0;
3884 
3885 	address &= huge_page_mask(h);
3886 
3887 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3888 	if (ptep) {
3889 		entry = huge_ptep_get(ptep);
3890 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3891 			migration_entry_wait_huge(vma, mm, ptep);
3892 			return 0;
3893 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3894 			return VM_FAULT_HWPOISON_LARGE |
3895 				VM_FAULT_SET_HINDEX(hstate_index(h));
3896 	} else {
3897 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3898 		if (!ptep)
3899 			return VM_FAULT_OOM;
3900 	}
3901 
3902 	mapping = vma->vm_file->f_mapping;
3903 	idx = vma_hugecache_offset(h, vma, address);
3904 
3905 	/*
3906 	 * Serialize hugepage allocation and instantiation, so that we don't
3907 	 * get spurious allocation failures if two CPUs race to instantiate
3908 	 * the same page in the page cache.
3909 	 */
3910 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3911 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3912 
3913 	entry = huge_ptep_get(ptep);
3914 	if (huge_pte_none(entry)) {
3915 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3916 		goto out_mutex;
3917 	}
3918 
3919 	ret = 0;
3920 
3921 	/*
3922 	 * entry could be a migration/hwpoison entry at this point, so this
3923 	 * check prevents the kernel from going below assuming that we have
3924 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926 	 * handle it.
3927 	 */
3928 	if (!pte_present(entry))
3929 		goto out_mutex;
3930 
3931 	/*
3932 	 * If we are going to COW the mapping later, we examine the pending
3933 	 * reservations for this page now. This will ensure that any
3934 	 * allocations necessary to record that reservation occur outside the
3935 	 * spinlock. For private mappings, we also lookup the pagecache
3936 	 * page now as it is used to determine if a reservation has been
3937 	 * consumed.
3938 	 */
3939 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3940 		if (vma_needs_reservation(h, vma, address) < 0) {
3941 			ret = VM_FAULT_OOM;
3942 			goto out_mutex;
3943 		}
3944 		/* Just decrements count, does not deallocate */
3945 		vma_end_reservation(h, vma, address);
3946 
3947 		if (!(vma->vm_flags & VM_MAYSHARE))
3948 			pagecache_page = hugetlbfs_pagecache_page(h,
3949 								vma, address);
3950 	}
3951 
3952 	ptl = huge_pte_lock(h, mm, ptep);
3953 
3954 	/* Check for a racing update before calling hugetlb_cow */
3955 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956 		goto out_ptl;
3957 
3958 	/*
3959 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 	 * pagecache_page, so here we need take the former one
3961 	 * when page != pagecache_page or !pagecache_page.
3962 	 */
3963 	page = pte_page(entry);
3964 	if (page != pagecache_page)
3965 		if (!trylock_page(page)) {
3966 			need_wait_lock = 1;
3967 			goto out_ptl;
3968 		}
3969 
3970 	get_page(page);
3971 
3972 	if (flags & FAULT_FLAG_WRITE) {
3973 		if (!huge_pte_write(entry)) {
3974 			ret = hugetlb_cow(mm, vma, address, ptep,
3975 					  pagecache_page, ptl);
3976 			goto out_put_page;
3977 		}
3978 		entry = huge_pte_mkdirty(entry);
3979 	}
3980 	entry = pte_mkyoung(entry);
3981 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3982 						flags & FAULT_FLAG_WRITE))
3983 		update_mmu_cache(vma, address, ptep);
3984 out_put_page:
3985 	if (page != pagecache_page)
3986 		unlock_page(page);
3987 	put_page(page);
3988 out_ptl:
3989 	spin_unlock(ptl);
3990 
3991 	if (pagecache_page) {
3992 		unlock_page(pagecache_page);
3993 		put_page(pagecache_page);
3994 	}
3995 out_mutex:
3996 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3997 	/*
3998 	 * Generally it's safe to hold refcount during waiting page lock. But
3999 	 * here we just wait to defer the next page fault to avoid busy loop and
4000 	 * the page is not used after unlocked before returning from the current
4001 	 * page fault. So we are safe from accessing freed page, even if we wait
4002 	 * here without taking refcount.
4003 	 */
4004 	if (need_wait_lock)
4005 		wait_on_page_locked(page);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4011  * modifications for huge pages.
4012  */
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014 			    pte_t *dst_pte,
4015 			    struct vm_area_struct *dst_vma,
4016 			    unsigned long dst_addr,
4017 			    unsigned long src_addr,
4018 			    struct page **pagep)
4019 {
4020 	struct address_space *mapping;
4021 	pgoff_t idx;
4022 	unsigned long size;
4023 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024 	struct hstate *h = hstate_vma(dst_vma);
4025 	pte_t _dst_pte;
4026 	spinlock_t *ptl;
4027 	int ret;
4028 	struct page *page;
4029 
4030 	if (!*pagep) {
4031 		ret = -ENOMEM;
4032 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 		if (IS_ERR(page))
4034 			goto out;
4035 
4036 		ret = copy_huge_page_from_user(page,
4037 						(const void __user *) src_addr,
4038 						pages_per_huge_page(h), false);
4039 
4040 		/* fallback to copy_from_user outside mmap_sem */
4041 		if (unlikely(ret)) {
4042 			ret = -EFAULT;
4043 			*pagep = page;
4044 			/* don't free the page */
4045 			goto out;
4046 		}
4047 	} else {
4048 		page = *pagep;
4049 		*pagep = NULL;
4050 	}
4051 
4052 	/*
4053 	 * The memory barrier inside __SetPageUptodate makes sure that
4054 	 * preceding stores to the page contents become visible before
4055 	 * the set_pte_at() write.
4056 	 */
4057 	__SetPageUptodate(page);
4058 	set_page_huge_active(page);
4059 
4060 	mapping = dst_vma->vm_file->f_mapping;
4061 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062 
4063 	/*
4064 	 * If shared, add to page cache
4065 	 */
4066 	if (vm_shared) {
4067 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 		ret = -EFAULT;
4069 		if (idx >= size)
4070 			goto out_release_nounlock;
4071 
4072 		/*
4073 		 * Serialization between remove_inode_hugepages() and
4074 		 * huge_add_to_page_cache() below happens through the
4075 		 * hugetlb_fault_mutex_table that here must be hold by
4076 		 * the caller.
4077 		 */
4078 		ret = huge_add_to_page_cache(page, mapping, idx);
4079 		if (ret)
4080 			goto out_release_nounlock;
4081 	}
4082 
4083 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084 	spin_lock(ptl);
4085 
4086 	/*
4087 	 * Recheck the i_size after holding PT lock to make sure not
4088 	 * to leave any page mapped (as page_mapped()) beyond the end
4089 	 * of the i_size (remove_inode_hugepages() is strict about
4090 	 * enforcing that). If we bail out here, we'll also leave a
4091 	 * page in the radix tree in the vm_shared case beyond the end
4092 	 * of the i_size, but remove_inode_hugepages() will take care
4093 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4094 	 */
4095 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4096 	ret = -EFAULT;
4097 	if (idx >= size)
4098 		goto out_release_unlock;
4099 
4100 	ret = -EEXIST;
4101 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 		goto out_release_unlock;
4103 
4104 	if (vm_shared) {
4105 		page_dup_rmap(page, true);
4106 	} else {
4107 		ClearPagePrivate(page);
4108 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109 	}
4110 
4111 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 	if (dst_vma->vm_flags & VM_WRITE)
4113 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4114 	_dst_pte = pte_mkyoung(_dst_pte);
4115 
4116 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117 
4118 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 					dst_vma->vm_flags & VM_WRITE);
4120 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121 
4122 	/* No need to invalidate - it was non-present before */
4123 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124 
4125 	spin_unlock(ptl);
4126 	if (vm_shared)
4127 		unlock_page(page);
4128 	ret = 0;
4129 out:
4130 	return ret;
4131 out_release_unlock:
4132 	spin_unlock(ptl);
4133 	if (vm_shared)
4134 		unlock_page(page);
4135 out_release_nounlock:
4136 	put_page(page);
4137 	goto out;
4138 }
4139 
4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 			 struct page **pages, struct vm_area_struct **vmas,
4142 			 unsigned long *position, unsigned long *nr_pages,
4143 			 long i, unsigned int flags, int *nonblocking)
4144 {
4145 	unsigned long pfn_offset;
4146 	unsigned long vaddr = *position;
4147 	unsigned long remainder = *nr_pages;
4148 	struct hstate *h = hstate_vma(vma);
4149 	int err = -EFAULT;
4150 
4151 	while (vaddr < vma->vm_end && remainder) {
4152 		pte_t *pte;
4153 		spinlock_t *ptl = NULL;
4154 		int absent;
4155 		struct page *page;
4156 
4157 		/*
4158 		 * If we have a pending SIGKILL, don't keep faulting pages and
4159 		 * potentially allocating memory.
4160 		 */
4161 		if (unlikely(fatal_signal_pending(current))) {
4162 			remainder = 0;
4163 			break;
4164 		}
4165 
4166 		/*
4167 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4168 		 * each hugepage.  We have to make sure we get the
4169 		 * first, for the page indexing below to work.
4170 		 *
4171 		 * Note that page table lock is not held when pte is null.
4172 		 */
4173 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174 				      huge_page_size(h));
4175 		if (pte)
4176 			ptl = huge_pte_lock(h, mm, pte);
4177 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178 
4179 		/*
4180 		 * When coredumping, it suits get_dump_page if we just return
4181 		 * an error where there's an empty slot with no huge pagecache
4182 		 * to back it.  This way, we avoid allocating a hugepage, and
4183 		 * the sparse dumpfile avoids allocating disk blocks, but its
4184 		 * huge holes still show up with zeroes where they need to be.
4185 		 */
4186 		if (absent && (flags & FOLL_DUMP) &&
4187 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4188 			if (pte)
4189 				spin_unlock(ptl);
4190 			remainder = 0;
4191 			break;
4192 		}
4193 
4194 		/*
4195 		 * We need call hugetlb_fault for both hugepages under migration
4196 		 * (in which case hugetlb_fault waits for the migration,) and
4197 		 * hwpoisoned hugepages (in which case we need to prevent the
4198 		 * caller from accessing to them.) In order to do this, we use
4199 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 		 * both cases, and because we can't follow correct pages
4202 		 * directly from any kind of swap entries.
4203 		 */
4204 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4205 		    ((flags & FOLL_WRITE) &&
4206 		      !huge_pte_write(huge_ptep_get(pte)))) {
4207 			int ret;
4208 			unsigned int fault_flags = 0;
4209 
4210 			if (pte)
4211 				spin_unlock(ptl);
4212 			if (flags & FOLL_WRITE)
4213 				fault_flags |= FAULT_FLAG_WRITE;
4214 			if (nonblocking)
4215 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 			if (flags & FOLL_NOWAIT)
4217 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 					FAULT_FLAG_RETRY_NOWAIT;
4219 			if (flags & FOLL_TRIED) {
4220 				VM_WARN_ON_ONCE(fault_flags &
4221 						FAULT_FLAG_ALLOW_RETRY);
4222 				fault_flags |= FAULT_FLAG_TRIED;
4223 			}
4224 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 			if (ret & VM_FAULT_ERROR) {
4226 				err = vm_fault_to_errno(ret, flags);
4227 				remainder = 0;
4228 				break;
4229 			}
4230 			if (ret & VM_FAULT_RETRY) {
4231 				if (nonblocking)
4232 					*nonblocking = 0;
4233 				*nr_pages = 0;
4234 				/*
4235 				 * VM_FAULT_RETRY must not return an
4236 				 * error, it will return zero
4237 				 * instead.
4238 				 *
4239 				 * No need to update "position" as the
4240 				 * caller will not check it after
4241 				 * *nr_pages is set to 0.
4242 				 */
4243 				return i;
4244 			}
4245 			continue;
4246 		}
4247 
4248 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4249 		page = pte_page(huge_ptep_get(pte));
4250 same_page:
4251 		if (pages) {
4252 			pages[i] = mem_map_offset(page, pfn_offset);
4253 			get_page(pages[i]);
4254 		}
4255 
4256 		if (vmas)
4257 			vmas[i] = vma;
4258 
4259 		vaddr += PAGE_SIZE;
4260 		++pfn_offset;
4261 		--remainder;
4262 		++i;
4263 		if (vaddr < vma->vm_end && remainder &&
4264 				pfn_offset < pages_per_huge_page(h)) {
4265 			/*
4266 			 * We use pfn_offset to avoid touching the pageframes
4267 			 * of this compound page.
4268 			 */
4269 			goto same_page;
4270 		}
4271 		spin_unlock(ptl);
4272 	}
4273 	*nr_pages = remainder;
4274 	/*
4275 	 * setting position is actually required only if remainder is
4276 	 * not zero but it's faster not to add a "if (remainder)"
4277 	 * branch.
4278 	 */
4279 	*position = vaddr;
4280 
4281 	return i ? i : err;
4282 }
4283 
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285 /*
4286  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287  * implement this.
4288  */
4289 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4290 #endif
4291 
4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4293 		unsigned long address, unsigned long end, pgprot_t newprot)
4294 {
4295 	struct mm_struct *mm = vma->vm_mm;
4296 	unsigned long start = address;
4297 	pte_t *ptep;
4298 	pte_t pte;
4299 	struct hstate *h = hstate_vma(vma);
4300 	unsigned long pages = 0;
4301 
4302 	BUG_ON(address >= end);
4303 	flush_cache_range(vma, address, end);
4304 
4305 	mmu_notifier_invalidate_range_start(mm, start, end);
4306 	i_mmap_lock_write(vma->vm_file->f_mapping);
4307 	for (; address < end; address += huge_page_size(h)) {
4308 		spinlock_t *ptl;
4309 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4310 		if (!ptep)
4311 			continue;
4312 		ptl = huge_pte_lock(h, mm, ptep);
4313 		if (huge_pmd_unshare(mm, &address, ptep)) {
4314 			pages++;
4315 			spin_unlock(ptl);
4316 			continue;
4317 		}
4318 		pte = huge_ptep_get(ptep);
4319 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320 			spin_unlock(ptl);
4321 			continue;
4322 		}
4323 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 			swp_entry_t entry = pte_to_swp_entry(pte);
4325 
4326 			if (is_write_migration_entry(entry)) {
4327 				pte_t newpte;
4328 
4329 				make_migration_entry_read(&entry);
4330 				newpte = swp_entry_to_pte(entry);
4331 				set_huge_swap_pte_at(mm, address, ptep,
4332 						     newpte, huge_page_size(h));
4333 				pages++;
4334 			}
4335 			spin_unlock(ptl);
4336 			continue;
4337 		}
4338 		if (!huge_pte_none(pte)) {
4339 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4340 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4341 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4342 			set_huge_pte_at(mm, address, ptep, pte);
4343 			pages++;
4344 		}
4345 		spin_unlock(ptl);
4346 	}
4347 	/*
4348 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349 	 * may have cleared our pud entry and done put_page on the page table:
4350 	 * once we release i_mmap_rwsem, another task can do the final put_page
4351 	 * and that page table be reused and filled with junk.
4352 	 */
4353 	flush_hugetlb_tlb_range(vma, start, end);
4354 	/*
4355 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 	 * page table protection not changing it to point to a new page.
4357 	 *
4358 	 * See Documentation/vm/mmu_notifier.txt
4359 	 */
4360 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4361 	mmu_notifier_invalidate_range_end(mm, start, end);
4362 
4363 	return pages << h->order;
4364 }
4365 
4366 int hugetlb_reserve_pages(struct inode *inode,
4367 					long from, long to,
4368 					struct vm_area_struct *vma,
4369 					vm_flags_t vm_flags)
4370 {
4371 	long ret, chg;
4372 	struct hstate *h = hstate_inode(inode);
4373 	struct hugepage_subpool *spool = subpool_inode(inode);
4374 	struct resv_map *resv_map;
4375 	long gbl_reserve;
4376 
4377 	/*
4378 	 * Only apply hugepage reservation if asked. At fault time, an
4379 	 * attempt will be made for VM_NORESERVE to allocate a page
4380 	 * without using reserves
4381 	 */
4382 	if (vm_flags & VM_NORESERVE)
4383 		return 0;
4384 
4385 	/*
4386 	 * Shared mappings base their reservation on the number of pages that
4387 	 * are already allocated on behalf of the file. Private mappings need
4388 	 * to reserve the full area even if read-only as mprotect() may be
4389 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4390 	 */
4391 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4392 		resv_map = inode_resv_map(inode);
4393 
4394 		chg = region_chg(resv_map, from, to);
4395 
4396 	} else {
4397 		resv_map = resv_map_alloc();
4398 		if (!resv_map)
4399 			return -ENOMEM;
4400 
4401 		chg = to - from;
4402 
4403 		set_vma_resv_map(vma, resv_map);
4404 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4405 	}
4406 
4407 	if (chg < 0) {
4408 		ret = chg;
4409 		goto out_err;
4410 	}
4411 
4412 	/*
4413 	 * There must be enough pages in the subpool for the mapping. If
4414 	 * the subpool has a minimum size, there may be some global
4415 	 * reservations already in place (gbl_reserve).
4416 	 */
4417 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4418 	if (gbl_reserve < 0) {
4419 		ret = -ENOSPC;
4420 		goto out_err;
4421 	}
4422 
4423 	/*
4424 	 * Check enough hugepages are available for the reservation.
4425 	 * Hand the pages back to the subpool if there are not
4426 	 */
4427 	ret = hugetlb_acct_memory(h, gbl_reserve);
4428 	if (ret < 0) {
4429 		/* put back original number of pages, chg */
4430 		(void)hugepage_subpool_put_pages(spool, chg);
4431 		goto out_err;
4432 	}
4433 
4434 	/*
4435 	 * Account for the reservations made. Shared mappings record regions
4436 	 * that have reservations as they are shared by multiple VMAs.
4437 	 * When the last VMA disappears, the region map says how much
4438 	 * the reservation was and the page cache tells how much of
4439 	 * the reservation was consumed. Private mappings are per-VMA and
4440 	 * only the consumed reservations are tracked. When the VMA
4441 	 * disappears, the original reservation is the VMA size and the
4442 	 * consumed reservations are stored in the map. Hence, nothing
4443 	 * else has to be done for private mappings here
4444 	 */
4445 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4446 		long add = region_add(resv_map, from, to);
4447 
4448 		if (unlikely(chg > add)) {
4449 			/*
4450 			 * pages in this range were added to the reserve
4451 			 * map between region_chg and region_add.  This
4452 			 * indicates a race with alloc_huge_page.  Adjust
4453 			 * the subpool and reserve counts modified above
4454 			 * based on the difference.
4455 			 */
4456 			long rsv_adjust;
4457 
4458 			rsv_adjust = hugepage_subpool_put_pages(spool,
4459 								chg - add);
4460 			hugetlb_acct_memory(h, -rsv_adjust);
4461 		}
4462 	}
4463 	return 0;
4464 out_err:
4465 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4466 		/* Don't call region_abort if region_chg failed */
4467 		if (chg >= 0)
4468 			region_abort(resv_map, from, to);
4469 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4470 		kref_put(&resv_map->refs, resv_map_release);
4471 	return ret;
4472 }
4473 
4474 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4475 								long freed)
4476 {
4477 	struct hstate *h = hstate_inode(inode);
4478 	struct resv_map *resv_map = inode_resv_map(inode);
4479 	long chg = 0;
4480 	struct hugepage_subpool *spool = subpool_inode(inode);
4481 	long gbl_reserve;
4482 
4483 	if (resv_map) {
4484 		chg = region_del(resv_map, start, end);
4485 		/*
4486 		 * region_del() can fail in the rare case where a region
4487 		 * must be split and another region descriptor can not be
4488 		 * allocated.  If end == LONG_MAX, it will not fail.
4489 		 */
4490 		if (chg < 0)
4491 			return chg;
4492 	}
4493 
4494 	spin_lock(&inode->i_lock);
4495 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4496 	spin_unlock(&inode->i_lock);
4497 
4498 	/*
4499 	 * If the subpool has a minimum size, the number of global
4500 	 * reservations to be released may be adjusted.
4501 	 */
4502 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4503 	hugetlb_acct_memory(h, -gbl_reserve);
4504 
4505 	return 0;
4506 }
4507 
4508 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4509 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4510 				struct vm_area_struct *vma,
4511 				unsigned long addr, pgoff_t idx)
4512 {
4513 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4514 				svma->vm_start;
4515 	unsigned long sbase = saddr & PUD_MASK;
4516 	unsigned long s_end = sbase + PUD_SIZE;
4517 
4518 	/* Allow segments to share if only one is marked locked */
4519 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4520 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4521 
4522 	/*
4523 	 * match the virtual addresses, permission and the alignment of the
4524 	 * page table page.
4525 	 */
4526 	if (pmd_index(addr) != pmd_index(saddr) ||
4527 	    vm_flags != svm_flags ||
4528 	    sbase < svma->vm_start || svma->vm_end < s_end)
4529 		return 0;
4530 
4531 	return saddr;
4532 }
4533 
4534 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4535 {
4536 	unsigned long base = addr & PUD_MASK;
4537 	unsigned long end = base + PUD_SIZE;
4538 
4539 	/*
4540 	 * check on proper vm_flags and page table alignment
4541 	 */
4542 	if (vma->vm_flags & VM_MAYSHARE &&
4543 	    vma->vm_start <= base && end <= vma->vm_end)
4544 		return true;
4545 	return false;
4546 }
4547 
4548 /*
4549  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4550  * and returns the corresponding pte. While this is not necessary for the
4551  * !shared pmd case because we can allocate the pmd later as well, it makes the
4552  * code much cleaner. pmd allocation is essential for the shared case because
4553  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4554  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4555  * bad pmd for sharing.
4556  */
4557 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4558 {
4559 	struct vm_area_struct *vma = find_vma(mm, addr);
4560 	struct address_space *mapping = vma->vm_file->f_mapping;
4561 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4562 			vma->vm_pgoff;
4563 	struct vm_area_struct *svma;
4564 	unsigned long saddr;
4565 	pte_t *spte = NULL;
4566 	pte_t *pte;
4567 	spinlock_t *ptl;
4568 
4569 	if (!vma_shareable(vma, addr))
4570 		return (pte_t *)pmd_alloc(mm, pud, addr);
4571 
4572 	i_mmap_lock_write(mapping);
4573 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4574 		if (svma == vma)
4575 			continue;
4576 
4577 		saddr = page_table_shareable(svma, vma, addr, idx);
4578 		if (saddr) {
4579 			spte = huge_pte_offset(svma->vm_mm, saddr,
4580 					       vma_mmu_pagesize(svma));
4581 			if (spte) {
4582 				get_page(virt_to_page(spte));
4583 				break;
4584 			}
4585 		}
4586 	}
4587 
4588 	if (!spte)
4589 		goto out;
4590 
4591 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4592 	if (pud_none(*pud)) {
4593 		pud_populate(mm, pud,
4594 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4595 		mm_inc_nr_pmds(mm);
4596 	} else {
4597 		put_page(virt_to_page(spte));
4598 	}
4599 	spin_unlock(ptl);
4600 out:
4601 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602 	i_mmap_unlock_write(mapping);
4603 	return pte;
4604 }
4605 
4606 /*
4607  * unmap huge page backed by shared pte.
4608  *
4609  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4610  * indicated by page_count > 1, unmap is achieved by clearing pud and
4611  * decrementing the ref count. If count == 1, the pte page is not shared.
4612  *
4613  * called with page table lock held.
4614  *
4615  * returns: 1 successfully unmapped a shared pte page
4616  *	    0 the underlying pte page is not shared, or it is the last user
4617  */
4618 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4619 {
4620 	pgd_t *pgd = pgd_offset(mm, *addr);
4621 	p4d_t *p4d = p4d_offset(pgd, *addr);
4622 	pud_t *pud = pud_offset(p4d, *addr);
4623 
4624 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4625 	if (page_count(virt_to_page(ptep)) == 1)
4626 		return 0;
4627 
4628 	pud_clear(pud);
4629 	put_page(virt_to_page(ptep));
4630 	mm_dec_nr_pmds(mm);
4631 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4632 	return 1;
4633 }
4634 #define want_pmd_share()	(1)
4635 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4636 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4637 {
4638 	return NULL;
4639 }
4640 
4641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4642 {
4643 	return 0;
4644 }
4645 #define want_pmd_share()	(0)
4646 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4647 
4648 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4649 pte_t *huge_pte_alloc(struct mm_struct *mm,
4650 			unsigned long addr, unsigned long sz)
4651 {
4652 	pgd_t *pgd;
4653 	p4d_t *p4d;
4654 	pud_t *pud;
4655 	pte_t *pte = NULL;
4656 
4657 	pgd = pgd_offset(mm, addr);
4658 	p4d = p4d_alloc(mm, pgd, addr);
4659 	if (!p4d)
4660 		return NULL;
4661 	pud = pud_alloc(mm, p4d, addr);
4662 	if (pud) {
4663 		if (sz == PUD_SIZE) {
4664 			pte = (pte_t *)pud;
4665 		} else {
4666 			BUG_ON(sz != PMD_SIZE);
4667 			if (want_pmd_share() && pud_none(*pud))
4668 				pte = huge_pmd_share(mm, addr, pud);
4669 			else
4670 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4671 		}
4672 	}
4673 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4674 
4675 	return pte;
4676 }
4677 
4678 /*
4679  * huge_pte_offset() - Walk the page table to resolve the hugepage
4680  * entry at address @addr
4681  *
4682  * Return: Pointer to page table or swap entry (PUD or PMD) for
4683  * address @addr, or NULL if a p*d_none() entry is encountered and the
4684  * size @sz doesn't match the hugepage size at this level of the page
4685  * table.
4686  */
4687 pte_t *huge_pte_offset(struct mm_struct *mm,
4688 		       unsigned long addr, unsigned long sz)
4689 {
4690 	pgd_t *pgd;
4691 	p4d_t *p4d;
4692 	pud_t *pud;
4693 	pmd_t *pmd;
4694 
4695 	pgd = pgd_offset(mm, addr);
4696 	if (!pgd_present(*pgd))
4697 		return NULL;
4698 	p4d = p4d_offset(pgd, addr);
4699 	if (!p4d_present(*p4d))
4700 		return NULL;
4701 
4702 	pud = pud_offset(p4d, addr);
4703 	if (sz != PUD_SIZE && pud_none(*pud))
4704 		return NULL;
4705 	/* hugepage or swap? */
4706 	if (pud_huge(*pud) || !pud_present(*pud))
4707 		return (pte_t *)pud;
4708 
4709 	pmd = pmd_offset(pud, addr);
4710 	if (sz != PMD_SIZE && pmd_none(*pmd))
4711 		return NULL;
4712 	/* hugepage or swap? */
4713 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4714 		return (pte_t *)pmd;
4715 
4716 	return NULL;
4717 }
4718 
4719 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4720 
4721 /*
4722  * These functions are overwritable if your architecture needs its own
4723  * behavior.
4724  */
4725 struct page * __weak
4726 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4727 			      int write)
4728 {
4729 	return ERR_PTR(-EINVAL);
4730 }
4731 
4732 struct page * __weak
4733 follow_huge_pd(struct vm_area_struct *vma,
4734 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4735 {
4736 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4737 	return NULL;
4738 }
4739 
4740 struct page * __weak
4741 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4742 		pmd_t *pmd, int flags)
4743 {
4744 	struct page *page = NULL;
4745 	spinlock_t *ptl;
4746 	pte_t pte;
4747 retry:
4748 	ptl = pmd_lockptr(mm, pmd);
4749 	spin_lock(ptl);
4750 	/*
4751 	 * make sure that the address range covered by this pmd is not
4752 	 * unmapped from other threads.
4753 	 */
4754 	if (!pmd_huge(*pmd))
4755 		goto out;
4756 	pte = huge_ptep_get((pte_t *)pmd);
4757 	if (pte_present(pte)) {
4758 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4759 		if (flags & FOLL_GET)
4760 			get_page(page);
4761 	} else {
4762 		if (is_hugetlb_entry_migration(pte)) {
4763 			spin_unlock(ptl);
4764 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4765 			goto retry;
4766 		}
4767 		/*
4768 		 * hwpoisoned entry is treated as no_page_table in
4769 		 * follow_page_mask().
4770 		 */
4771 	}
4772 out:
4773 	spin_unlock(ptl);
4774 	return page;
4775 }
4776 
4777 struct page * __weak
4778 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4779 		pud_t *pud, int flags)
4780 {
4781 	if (flags & FOLL_GET)
4782 		return NULL;
4783 
4784 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4785 }
4786 
4787 struct page * __weak
4788 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4789 {
4790 	if (flags & FOLL_GET)
4791 		return NULL;
4792 
4793 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4794 }
4795 
4796 bool isolate_huge_page(struct page *page, struct list_head *list)
4797 {
4798 	bool ret = true;
4799 
4800 	VM_BUG_ON_PAGE(!PageHead(page), page);
4801 	spin_lock(&hugetlb_lock);
4802 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4803 		ret = false;
4804 		goto unlock;
4805 	}
4806 	clear_page_huge_active(page);
4807 	list_move_tail(&page->lru, list);
4808 unlock:
4809 	spin_unlock(&hugetlb_lock);
4810 	return ret;
4811 }
4812 
4813 void putback_active_hugepage(struct page *page)
4814 {
4815 	VM_BUG_ON_PAGE(!PageHead(page), page);
4816 	spin_lock(&hugetlb_lock);
4817 	set_page_huge_active(page);
4818 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4819 	spin_unlock(&hugetlb_lock);
4820 	put_page(page);
4821 }
4822 
4823 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4824 {
4825 	struct hstate *h = page_hstate(oldpage);
4826 
4827 	hugetlb_cgroup_migrate(oldpage, newpage);
4828 	set_page_owner_migrate_reason(newpage, reason);
4829 
4830 	/*
4831 	 * transfer temporary state of the new huge page. This is
4832 	 * reverse to other transitions because the newpage is going to
4833 	 * be final while the old one will be freed so it takes over
4834 	 * the temporary status.
4835 	 *
4836 	 * Also note that we have to transfer the per-node surplus state
4837 	 * here as well otherwise the global surplus count will not match
4838 	 * the per-node's.
4839 	 */
4840 	if (PageHugeTemporary(newpage)) {
4841 		int old_nid = page_to_nid(oldpage);
4842 		int new_nid = page_to_nid(newpage);
4843 
4844 		SetPageHugeTemporary(oldpage);
4845 		ClearPageHugeTemporary(newpage);
4846 
4847 		spin_lock(&hugetlb_lock);
4848 		if (h->surplus_huge_pages_node[old_nid]) {
4849 			h->surplus_huge_pages_node[old_nid]--;
4850 			h->surplus_huge_pages_node[new_nid]++;
4851 		}
4852 		spin_unlock(&hugetlb_lock);
4853 	}
4854 }
4855