xref: /openbmc/linux/mm/hugetlb.c (revision 12a5b00a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
35 
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43 
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 /*
48  * Minimum page order among possible hugepage sizes, set to a proper value
49  * at boot time.
50  */
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
52 
53 __initdata LIST_HEAD(huge_boot_pages);
54 
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
60 
61 /*
62  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63  * free_huge_pages, and surplus_huge_pages.
64  */
65 DEFINE_SPINLOCK(hugetlb_lock);
66 
67 /*
68  * Serializes faults on the same logical page.  This is used to
69  * prevent spurious OOMs when the hugepage pool is fully utilized.
70  */
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73 
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
76 
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 {
79 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
80 
81 	spin_unlock(&spool->lock);
82 
83 	/* If no pages are used, and no other handles to the subpool
84 	 * remain, give up any reservations mased on minimum size and
85 	 * free the subpool */
86 	if (free) {
87 		if (spool->min_hpages != -1)
88 			hugetlb_acct_memory(spool->hstate,
89 						-spool->min_hpages);
90 		kfree(spool);
91 	}
92 }
93 
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 						long min_hpages)
96 {
97 	struct hugepage_subpool *spool;
98 
99 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 	if (!spool)
101 		return NULL;
102 
103 	spin_lock_init(&spool->lock);
104 	spool->count = 1;
105 	spool->max_hpages = max_hpages;
106 	spool->hstate = h;
107 	spool->min_hpages = min_hpages;
108 
109 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 		kfree(spool);
111 		return NULL;
112 	}
113 	spool->rsv_hpages = min_hpages;
114 
115 	return spool;
116 }
117 
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 {
120 	spin_lock(&spool->lock);
121 	BUG_ON(!spool->count);
122 	spool->count--;
123 	unlock_or_release_subpool(spool);
124 }
125 
126 /*
127  * Subpool accounting for allocating and reserving pages.
128  * Return -ENOMEM if there are not enough resources to satisfy the
129  * the request.  Otherwise, return the number of pages by which the
130  * global pools must be adjusted (upward).  The returned value may
131  * only be different than the passed value (delta) in the case where
132  * a subpool minimum size must be manitained.
133  */
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 				      long delta)
136 {
137 	long ret = delta;
138 
139 	if (!spool)
140 		return ret;
141 
142 	spin_lock(&spool->lock);
143 
144 	if (spool->max_hpages != -1) {		/* maximum size accounting */
145 		if ((spool->used_hpages + delta) <= spool->max_hpages)
146 			spool->used_hpages += delta;
147 		else {
148 			ret = -ENOMEM;
149 			goto unlock_ret;
150 		}
151 	}
152 
153 	/* minimum size accounting */
154 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 		if (delta > spool->rsv_hpages) {
156 			/*
157 			 * Asking for more reserves than those already taken on
158 			 * behalf of subpool.  Return difference.
159 			 */
160 			ret = delta - spool->rsv_hpages;
161 			spool->rsv_hpages = 0;
162 		} else {
163 			ret = 0;	/* reserves already accounted for */
164 			spool->rsv_hpages -= delta;
165 		}
166 	}
167 
168 unlock_ret:
169 	spin_unlock(&spool->lock);
170 	return ret;
171 }
172 
173 /*
174  * Subpool accounting for freeing and unreserving pages.
175  * Return the number of global page reservations that must be dropped.
176  * The return value may only be different than the passed value (delta)
177  * in the case where a subpool minimum size must be maintained.
178  */
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 				       long delta)
181 {
182 	long ret = delta;
183 
184 	if (!spool)
185 		return delta;
186 
187 	spin_lock(&spool->lock);
188 
189 	if (spool->max_hpages != -1)		/* maximum size accounting */
190 		spool->used_hpages -= delta;
191 
192 	 /* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 		if (spool->rsv_hpages + delta <= spool->min_hpages)
195 			ret = 0;
196 		else
197 			ret = spool->rsv_hpages + delta - spool->min_hpages;
198 
199 		spool->rsv_hpages += delta;
200 		if (spool->rsv_hpages > spool->min_hpages)
201 			spool->rsv_hpages = spool->min_hpages;
202 	}
203 
204 	/*
205 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 	 * quota reference, free it now.
207 	 */
208 	unlock_or_release_subpool(spool);
209 
210 	return ret;
211 }
212 
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 {
215 	return HUGETLBFS_SB(inode->i_sb)->spool;
216 }
217 
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 {
220 	return subpool_inode(file_inode(vma->vm_file));
221 }
222 
223 /* Helper that removes a struct file_region from the resv_map cache and returns
224  * it for use.
225  */
226 static struct file_region *
227 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
228 {
229 	struct file_region *nrg = NULL;
230 
231 	VM_BUG_ON(resv->region_cache_count <= 0);
232 
233 	resv->region_cache_count--;
234 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
235 	VM_BUG_ON(!nrg);
236 	list_del(&nrg->link);
237 
238 	nrg->from = from;
239 	nrg->to = to;
240 
241 	return nrg;
242 }
243 
244 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
245 					      struct file_region *rg)
246 {
247 #ifdef CONFIG_CGROUP_HUGETLB
248 	nrg->reservation_counter = rg->reservation_counter;
249 	nrg->css = rg->css;
250 	if (rg->css)
251 		css_get(rg->css);
252 #endif
253 }
254 
255 /* Helper that records hugetlb_cgroup uncharge info. */
256 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
257 						struct hstate *h,
258 						struct resv_map *resv,
259 						struct file_region *nrg)
260 {
261 #ifdef CONFIG_CGROUP_HUGETLB
262 	if (h_cg) {
263 		nrg->reservation_counter =
264 			&h_cg->rsvd_hugepage[hstate_index(h)];
265 		nrg->css = &h_cg->css;
266 		if (!resv->pages_per_hpage)
267 			resv->pages_per_hpage = pages_per_huge_page(h);
268 		/* pages_per_hpage should be the same for all entries in
269 		 * a resv_map.
270 		 */
271 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
272 	} else {
273 		nrg->reservation_counter = NULL;
274 		nrg->css = NULL;
275 	}
276 #endif
277 }
278 
279 static bool has_same_uncharge_info(struct file_region *rg,
280 				   struct file_region *org)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	return rg && org &&
284 	       rg->reservation_counter == org->reservation_counter &&
285 	       rg->css == org->css;
286 
287 #else
288 	return true;
289 #endif
290 }
291 
292 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
293 {
294 	struct file_region *nrg = NULL, *prg = NULL;
295 
296 	prg = list_prev_entry(rg, link);
297 	if (&prg->link != &resv->regions && prg->to == rg->from &&
298 	    has_same_uncharge_info(prg, rg)) {
299 		prg->to = rg->to;
300 
301 		list_del(&rg->link);
302 		kfree(rg);
303 
304 		coalesce_file_region(resv, prg);
305 		return;
306 	}
307 
308 	nrg = list_next_entry(rg, link);
309 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
310 	    has_same_uncharge_info(nrg, rg)) {
311 		nrg->from = rg->from;
312 
313 		list_del(&rg->link);
314 		kfree(rg);
315 
316 		coalesce_file_region(resv, nrg);
317 		return;
318 	}
319 }
320 
321 /* Must be called with resv->lock held. Calling this with count_only == true
322  * will count the number of pages to be added but will not modify the linked
323  * list. If regions_needed != NULL and count_only == true, then regions_needed
324  * will indicate the number of file_regions needed in the cache to carry out to
325  * add the regions for this range.
326  */
327 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
328 				     struct hugetlb_cgroup *h_cg,
329 				     struct hstate *h, long *regions_needed,
330 				     bool count_only)
331 {
332 	long add = 0;
333 	struct list_head *head = &resv->regions;
334 	long last_accounted_offset = f;
335 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
336 
337 	if (regions_needed)
338 		*regions_needed = 0;
339 
340 	/* In this loop, we essentially handle an entry for the range
341 	 * [last_accounted_offset, rg->from), at every iteration, with some
342 	 * bounds checking.
343 	 */
344 	list_for_each_entry_safe(rg, trg, head, link) {
345 		/* Skip irrelevant regions that start before our range. */
346 		if (rg->from < f) {
347 			/* If this region ends after the last accounted offset,
348 			 * then we need to update last_accounted_offset.
349 			 */
350 			if (rg->to > last_accounted_offset)
351 				last_accounted_offset = rg->to;
352 			continue;
353 		}
354 
355 		/* When we find a region that starts beyond our range, we've
356 		 * finished.
357 		 */
358 		if (rg->from > t)
359 			break;
360 
361 		/* Add an entry for last_accounted_offset -> rg->from, and
362 		 * update last_accounted_offset.
363 		 */
364 		if (rg->from > last_accounted_offset) {
365 			add += rg->from - last_accounted_offset;
366 			if (!count_only) {
367 				nrg = get_file_region_entry_from_cache(
368 					resv, last_accounted_offset, rg->from);
369 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
370 								    resv, nrg);
371 				list_add(&nrg->link, rg->link.prev);
372 				coalesce_file_region(resv, nrg);
373 			} else if (regions_needed)
374 				*regions_needed += 1;
375 		}
376 
377 		last_accounted_offset = rg->to;
378 	}
379 
380 	/* Handle the case where our range extends beyond
381 	 * last_accounted_offset.
382 	 */
383 	if (last_accounted_offset < t) {
384 		add += t - last_accounted_offset;
385 		if (!count_only) {
386 			nrg = get_file_region_entry_from_cache(
387 				resv, last_accounted_offset, t);
388 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
389 			list_add(&nrg->link, rg->link.prev);
390 			coalesce_file_region(resv, nrg);
391 		} else if (regions_needed)
392 			*regions_needed += 1;
393 	}
394 
395 	VM_BUG_ON(add < 0);
396 	return add;
397 }
398 
399 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
400  */
401 static int allocate_file_region_entries(struct resv_map *resv,
402 					int regions_needed)
403 	__must_hold(&resv->lock)
404 {
405 	struct list_head allocated_regions;
406 	int to_allocate = 0, i = 0;
407 	struct file_region *trg = NULL, *rg = NULL;
408 
409 	VM_BUG_ON(regions_needed < 0);
410 
411 	INIT_LIST_HEAD(&allocated_regions);
412 
413 	/*
414 	 * Check for sufficient descriptors in the cache to accommodate
415 	 * the number of in progress add operations plus regions_needed.
416 	 *
417 	 * This is a while loop because when we drop the lock, some other call
418 	 * to region_add or region_del may have consumed some region_entries,
419 	 * so we keep looping here until we finally have enough entries for
420 	 * (adds_in_progress + regions_needed).
421 	 */
422 	while (resv->region_cache_count <
423 	       (resv->adds_in_progress + regions_needed)) {
424 		to_allocate = resv->adds_in_progress + regions_needed -
425 			      resv->region_cache_count;
426 
427 		/* At this point, we should have enough entries in the cache
428 		 * for all the existings adds_in_progress. We should only be
429 		 * needing to allocate for regions_needed.
430 		 */
431 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
432 
433 		spin_unlock(&resv->lock);
434 		for (i = 0; i < to_allocate; i++) {
435 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
436 			if (!trg)
437 				goto out_of_memory;
438 			list_add(&trg->link, &allocated_regions);
439 		}
440 
441 		spin_lock(&resv->lock);
442 
443 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
444 			list_del(&rg->link);
445 			list_add(&rg->link, &resv->region_cache);
446 			resv->region_cache_count++;
447 		}
448 	}
449 
450 	return 0;
451 
452 out_of_memory:
453 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
454 		list_del(&rg->link);
455 		kfree(rg);
456 	}
457 	return -ENOMEM;
458 }
459 
460 /*
461  * Add the huge page range represented by [f, t) to the reserve
462  * map.  Regions will be taken from the cache to fill in this range.
463  * Sufficient regions should exist in the cache due to the previous
464  * call to region_chg with the same range, but in some cases the cache will not
465  * have sufficient entries due to races with other code doing region_add or
466  * region_del.  The extra needed entries will be allocated.
467  *
468  * regions_needed is the out value provided by a previous call to region_chg.
469  *
470  * Return the number of new huge pages added to the map.  This number is greater
471  * than or equal to zero.  If file_region entries needed to be allocated for
472  * this operation and we were not able to allocate, it ruturns -ENOMEM.
473  * region_add of regions of length 1 never allocate file_regions and cannot
474  * fail; region_chg will always allocate at least 1 entry and a region_add for
475  * 1 page will only require at most 1 entry.
476  */
477 static long region_add(struct resv_map *resv, long f, long t,
478 		       long in_regions_needed, struct hstate *h,
479 		       struct hugetlb_cgroup *h_cg)
480 {
481 	long add = 0, actual_regions_needed = 0;
482 
483 	spin_lock(&resv->lock);
484 retry:
485 
486 	/* Count how many regions are actually needed to execute this add. */
487 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
488 				 true);
489 
490 	/*
491 	 * Check for sufficient descriptors in the cache to accommodate
492 	 * this add operation. Note that actual_regions_needed may be greater
493 	 * than in_regions_needed, as the resv_map may have been modified since
494 	 * the region_chg call. In this case, we need to make sure that we
495 	 * allocate extra entries, such that we have enough for all the
496 	 * existing adds_in_progress, plus the excess needed for this
497 	 * operation.
498 	 */
499 	if (actual_regions_needed > in_regions_needed &&
500 	    resv->region_cache_count <
501 		    resv->adds_in_progress +
502 			    (actual_regions_needed - in_regions_needed)) {
503 		/* region_add operation of range 1 should never need to
504 		 * allocate file_region entries.
505 		 */
506 		VM_BUG_ON(t - f <= 1);
507 
508 		if (allocate_file_region_entries(
509 			    resv, actual_regions_needed - in_regions_needed)) {
510 			return -ENOMEM;
511 		}
512 
513 		goto retry;
514 	}
515 
516 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
517 
518 	resv->adds_in_progress -= in_regions_needed;
519 
520 	spin_unlock(&resv->lock);
521 	VM_BUG_ON(add < 0);
522 	return add;
523 }
524 
525 /*
526  * Examine the existing reserve map and determine how many
527  * huge pages in the specified range [f, t) are NOT currently
528  * represented.  This routine is called before a subsequent
529  * call to region_add that will actually modify the reserve
530  * map to add the specified range [f, t).  region_chg does
531  * not change the number of huge pages represented by the
532  * map.  A number of new file_region structures is added to the cache as a
533  * placeholder, for the subsequent region_add call to use. At least 1
534  * file_region structure is added.
535  *
536  * out_regions_needed is the number of regions added to the
537  * resv->adds_in_progress.  This value needs to be provided to a follow up call
538  * to region_add or region_abort for proper accounting.
539  *
540  * Returns the number of huge pages that need to be added to the existing
541  * reservation map for the range [f, t).  This number is greater or equal to
542  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
543  * is needed and can not be allocated.
544  */
545 static long region_chg(struct resv_map *resv, long f, long t,
546 		       long *out_regions_needed)
547 {
548 	long chg = 0;
549 
550 	spin_lock(&resv->lock);
551 
552 	/* Count how many hugepages in this range are NOT respresented. */
553 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
554 				       out_regions_needed, true);
555 
556 	if (*out_regions_needed == 0)
557 		*out_regions_needed = 1;
558 
559 	if (allocate_file_region_entries(resv, *out_regions_needed))
560 		return -ENOMEM;
561 
562 	resv->adds_in_progress += *out_regions_needed;
563 
564 	spin_unlock(&resv->lock);
565 	return chg;
566 }
567 
568 /*
569  * Abort the in progress add operation.  The adds_in_progress field
570  * of the resv_map keeps track of the operations in progress between
571  * calls to region_chg and region_add.  Operations are sometimes
572  * aborted after the call to region_chg.  In such cases, region_abort
573  * is called to decrement the adds_in_progress counter. regions_needed
574  * is the value returned by the region_chg call, it is used to decrement
575  * the adds_in_progress counter.
576  *
577  * NOTE: The range arguments [f, t) are not needed or used in this
578  * routine.  They are kept to make reading the calling code easier as
579  * arguments will match the associated region_chg call.
580  */
581 static void region_abort(struct resv_map *resv, long f, long t,
582 			 long regions_needed)
583 {
584 	spin_lock(&resv->lock);
585 	VM_BUG_ON(!resv->region_cache_count);
586 	resv->adds_in_progress -= regions_needed;
587 	spin_unlock(&resv->lock);
588 }
589 
590 /*
591  * Delete the specified range [f, t) from the reserve map.  If the
592  * t parameter is LONG_MAX, this indicates that ALL regions after f
593  * should be deleted.  Locate the regions which intersect [f, t)
594  * and either trim, delete or split the existing regions.
595  *
596  * Returns the number of huge pages deleted from the reserve map.
597  * In the normal case, the return value is zero or more.  In the
598  * case where a region must be split, a new region descriptor must
599  * be allocated.  If the allocation fails, -ENOMEM will be returned.
600  * NOTE: If the parameter t == LONG_MAX, then we will never split
601  * a region and possibly return -ENOMEM.  Callers specifying
602  * t == LONG_MAX do not need to check for -ENOMEM error.
603  */
604 static long region_del(struct resv_map *resv, long f, long t)
605 {
606 	struct list_head *head = &resv->regions;
607 	struct file_region *rg, *trg;
608 	struct file_region *nrg = NULL;
609 	long del = 0;
610 
611 retry:
612 	spin_lock(&resv->lock);
613 	list_for_each_entry_safe(rg, trg, head, link) {
614 		/*
615 		 * Skip regions before the range to be deleted.  file_region
616 		 * ranges are normally of the form [from, to).  However, there
617 		 * may be a "placeholder" entry in the map which is of the form
618 		 * (from, to) with from == to.  Check for placeholder entries
619 		 * at the beginning of the range to be deleted.
620 		 */
621 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
622 			continue;
623 
624 		if (rg->from >= t)
625 			break;
626 
627 		if (f > rg->from && t < rg->to) { /* Must split region */
628 			/*
629 			 * Check for an entry in the cache before dropping
630 			 * lock and attempting allocation.
631 			 */
632 			if (!nrg &&
633 			    resv->region_cache_count > resv->adds_in_progress) {
634 				nrg = list_first_entry(&resv->region_cache,
635 							struct file_region,
636 							link);
637 				list_del(&nrg->link);
638 				resv->region_cache_count--;
639 			}
640 
641 			if (!nrg) {
642 				spin_unlock(&resv->lock);
643 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
644 				if (!nrg)
645 					return -ENOMEM;
646 				goto retry;
647 			}
648 
649 			del += t - f;
650 
651 			/* New entry for end of split region */
652 			nrg->from = t;
653 			nrg->to = rg->to;
654 
655 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
656 
657 			INIT_LIST_HEAD(&nrg->link);
658 
659 			/* Original entry is trimmed */
660 			rg->to = f;
661 
662 			hugetlb_cgroup_uncharge_file_region(
663 				resv, rg, nrg->to - nrg->from);
664 
665 			list_add(&nrg->link, &rg->link);
666 			nrg = NULL;
667 			break;
668 		}
669 
670 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 			del += rg->to - rg->from;
672 			hugetlb_cgroup_uncharge_file_region(resv, rg,
673 							    rg->to - rg->from);
674 			list_del(&rg->link);
675 			kfree(rg);
676 			continue;
677 		}
678 
679 		if (f <= rg->from) {	/* Trim beginning of region */
680 			del += t - rg->from;
681 			rg->from = t;
682 
683 			hugetlb_cgroup_uncharge_file_region(resv, rg,
684 							    t - rg->from);
685 		} else {		/* Trim end of region */
686 			del += rg->to - f;
687 			rg->to = f;
688 
689 			hugetlb_cgroup_uncharge_file_region(resv, rg,
690 							    rg->to - f);
691 		}
692 	}
693 
694 	spin_unlock(&resv->lock);
695 	kfree(nrg);
696 	return del;
697 }
698 
699 /*
700  * A rare out of memory error was encountered which prevented removal of
701  * the reserve map region for a page.  The huge page itself was free'ed
702  * and removed from the page cache.  This routine will adjust the subpool
703  * usage count, and the global reserve count if needed.  By incrementing
704  * these counts, the reserve map entry which could not be deleted will
705  * appear as a "reserved" entry instead of simply dangling with incorrect
706  * counts.
707  */
708 void hugetlb_fix_reserve_counts(struct inode *inode)
709 {
710 	struct hugepage_subpool *spool = subpool_inode(inode);
711 	long rsv_adjust;
712 
713 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
714 	if (rsv_adjust) {
715 		struct hstate *h = hstate_inode(inode);
716 
717 		hugetlb_acct_memory(h, 1);
718 	}
719 }
720 
721 /*
722  * Count and return the number of huge pages in the reserve map
723  * that intersect with the range [f, t).
724  */
725 static long region_count(struct resv_map *resv, long f, long t)
726 {
727 	struct list_head *head = &resv->regions;
728 	struct file_region *rg;
729 	long chg = 0;
730 
731 	spin_lock(&resv->lock);
732 	/* Locate each segment we overlap with, and count that overlap. */
733 	list_for_each_entry(rg, head, link) {
734 		long seg_from;
735 		long seg_to;
736 
737 		if (rg->to <= f)
738 			continue;
739 		if (rg->from >= t)
740 			break;
741 
742 		seg_from = max(rg->from, f);
743 		seg_to = min(rg->to, t);
744 
745 		chg += seg_to - seg_from;
746 	}
747 	spin_unlock(&resv->lock);
748 
749 	return chg;
750 }
751 
752 /*
753  * Convert the address within this vma to the page offset within
754  * the mapping, in pagecache page units; huge pages here.
755  */
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757 			struct vm_area_struct *vma, unsigned long address)
758 {
759 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 			(vma->vm_pgoff >> huge_page_order(h));
761 }
762 
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 				     unsigned long address)
765 {
766 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
767 }
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
769 
770 /*
771  * Return the size of the pages allocated when backing a VMA. In the majority
772  * cases this will be same size as used by the page table entries.
773  */
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775 {
776 	if (vma->vm_ops && vma->vm_ops->pagesize)
777 		return vma->vm_ops->pagesize(vma);
778 	return PAGE_SIZE;
779 }
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
781 
782 /*
783  * Return the page size being used by the MMU to back a VMA. In the majority
784  * of cases, the page size used by the kernel matches the MMU size. On
785  * architectures where it differs, an architecture-specific 'strong'
786  * version of this symbol is required.
787  */
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
789 {
790 	return vma_kernel_pagesize(vma);
791 }
792 
793 /*
794  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
795  * bits of the reservation map pointer, which are always clear due to
796  * alignment.
797  */
798 #define HPAGE_RESV_OWNER    (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
801 
802 /*
803  * These helpers are used to track how many pages are reserved for
804  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805  * is guaranteed to have their future faults succeed.
806  *
807  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808  * the reserve counters are updated with the hugetlb_lock held. It is safe
809  * to reset the VMA at fork() time as it is not in use yet and there is no
810  * chance of the global counters getting corrupted as a result of the values.
811  *
812  * The private mapping reservation is represented in a subtly different
813  * manner to a shared mapping.  A shared mapping has a region map associated
814  * with the underlying file, this region map represents the backing file
815  * pages which have ever had a reservation assigned which this persists even
816  * after the page is instantiated.  A private mapping has a region map
817  * associated with the original mmap which is attached to all VMAs which
818  * reference it, this region map represents those offsets which have consumed
819  * reservation ie. where pages have been instantiated.
820  */
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822 {
823 	return (unsigned long)vma->vm_private_data;
824 }
825 
826 static void set_vma_private_data(struct vm_area_struct *vma,
827 							unsigned long value)
828 {
829 	vma->vm_private_data = (void *)value;
830 }
831 
832 static void
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 					  struct hugetlb_cgroup *h_cg,
835 					  struct hstate *h)
836 {
837 #ifdef CONFIG_CGROUP_HUGETLB
838 	if (!h_cg || !h) {
839 		resv_map->reservation_counter = NULL;
840 		resv_map->pages_per_hpage = 0;
841 		resv_map->css = NULL;
842 	} else {
843 		resv_map->reservation_counter =
844 			&h_cg->rsvd_hugepage[hstate_index(h)];
845 		resv_map->pages_per_hpage = pages_per_huge_page(h);
846 		resv_map->css = &h_cg->css;
847 	}
848 #endif
849 }
850 
851 struct resv_map *resv_map_alloc(void)
852 {
853 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855 
856 	if (!resv_map || !rg) {
857 		kfree(resv_map);
858 		kfree(rg);
859 		return NULL;
860 	}
861 
862 	kref_init(&resv_map->refs);
863 	spin_lock_init(&resv_map->lock);
864 	INIT_LIST_HEAD(&resv_map->regions);
865 
866 	resv_map->adds_in_progress = 0;
867 	/*
868 	 * Initialize these to 0. On shared mappings, 0's here indicate these
869 	 * fields don't do cgroup accounting. On private mappings, these will be
870 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 	 * reservations are to be un-charged from here.
872 	 */
873 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
874 
875 	INIT_LIST_HEAD(&resv_map->region_cache);
876 	list_add(&rg->link, &resv_map->region_cache);
877 	resv_map->region_cache_count = 1;
878 
879 	return resv_map;
880 }
881 
882 void resv_map_release(struct kref *ref)
883 {
884 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885 	struct list_head *head = &resv_map->region_cache;
886 	struct file_region *rg, *trg;
887 
888 	/* Clear out any active regions before we release the map. */
889 	region_del(resv_map, 0, LONG_MAX);
890 
891 	/* ... and any entries left in the cache */
892 	list_for_each_entry_safe(rg, trg, head, link) {
893 		list_del(&rg->link);
894 		kfree(rg);
895 	}
896 
897 	VM_BUG_ON(resv_map->adds_in_progress);
898 
899 	kfree(resv_map);
900 }
901 
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
903 {
904 	/*
905 	 * At inode evict time, i_mapping may not point to the original
906 	 * address space within the inode.  This original address space
907 	 * contains the pointer to the resv_map.  So, always use the
908 	 * address space embedded within the inode.
909 	 * The VERY common case is inode->mapping == &inode->i_data but,
910 	 * this may not be true for device special inodes.
911 	 */
912 	return (struct resv_map *)(&inode->i_data)->private_data;
913 }
914 
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
916 {
917 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918 	if (vma->vm_flags & VM_MAYSHARE) {
919 		struct address_space *mapping = vma->vm_file->f_mapping;
920 		struct inode *inode = mapping->host;
921 
922 		return inode_resv_map(inode);
923 
924 	} else {
925 		return (struct resv_map *)(get_vma_private_data(vma) &
926 							~HPAGE_RESV_MASK);
927 	}
928 }
929 
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
931 {
932 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
934 
935 	set_vma_private_data(vma, (get_vma_private_data(vma) &
936 				HPAGE_RESV_MASK) | (unsigned long)map);
937 }
938 
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940 {
941 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
943 
944 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
945 }
946 
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948 {
949 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 
951 	return (get_vma_private_data(vma) & flag) != 0;
952 }
953 
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956 {
957 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 	if (!(vma->vm_flags & VM_MAYSHARE))
959 		vma->vm_private_data = (void *)0;
960 }
961 
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
964 {
965 	if (vma->vm_flags & VM_NORESERVE) {
966 		/*
967 		 * This address is already reserved by other process(chg == 0),
968 		 * so, we should decrement reserved count. Without decrementing,
969 		 * reserve count remains after releasing inode, because this
970 		 * allocated page will go into page cache and is regarded as
971 		 * coming from reserved pool in releasing step.  Currently, we
972 		 * don't have any other solution to deal with this situation
973 		 * properly, so add work-around here.
974 		 */
975 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
976 			return true;
977 		else
978 			return false;
979 	}
980 
981 	/* Shared mappings always use reserves */
982 	if (vma->vm_flags & VM_MAYSHARE) {
983 		/*
984 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
985 		 * be a region map for all pages.  The only situation where
986 		 * there is no region map is if a hole was punched via
987 		 * fallocate.  In this case, there really are no reverves to
988 		 * use.  This situation is indicated if chg != 0.
989 		 */
990 		if (chg)
991 			return false;
992 		else
993 			return true;
994 	}
995 
996 	/*
997 	 * Only the process that called mmap() has reserves for
998 	 * private mappings.
999 	 */
1000 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 		/*
1002 		 * Like the shared case above, a hole punch or truncate
1003 		 * could have been performed on the private mapping.
1004 		 * Examine the value of chg to determine if reserves
1005 		 * actually exist or were previously consumed.
1006 		 * Very Subtle - The value of chg comes from a previous
1007 		 * call to vma_needs_reserves().  The reserve map for
1008 		 * private mappings has different (opposite) semantics
1009 		 * than that of shared mappings.  vma_needs_reserves()
1010 		 * has already taken this difference in semantics into
1011 		 * account.  Therefore, the meaning of chg is the same
1012 		 * as in the shared case above.  Code could easily be
1013 		 * combined, but keeping it separate draws attention to
1014 		 * subtle differences.
1015 		 */
1016 		if (chg)
1017 			return false;
1018 		else
1019 			return true;
1020 	}
1021 
1022 	return false;
1023 }
1024 
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1026 {
1027 	int nid = page_to_nid(page);
1028 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1029 	h->free_huge_pages++;
1030 	h->free_huge_pages_node[nid]++;
1031 }
1032 
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1034 {
1035 	struct page *page;
1036 
1037 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1038 		if (!PageHWPoison(page))
1039 			break;
1040 	/*
1041 	 * if 'non-isolated free hugepage' not found on the list,
1042 	 * the allocation fails.
1043 	 */
1044 	if (&h->hugepage_freelists[nid] == &page->lru)
1045 		return NULL;
1046 	list_move(&page->lru, &h->hugepage_activelist);
1047 	set_page_refcounted(page);
1048 	h->free_huge_pages--;
1049 	h->free_huge_pages_node[nid]--;
1050 	return page;
1051 }
1052 
1053 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1054 		nodemask_t *nmask)
1055 {
1056 	unsigned int cpuset_mems_cookie;
1057 	struct zonelist *zonelist;
1058 	struct zone *zone;
1059 	struct zoneref *z;
1060 	int node = NUMA_NO_NODE;
1061 
1062 	zonelist = node_zonelist(nid, gfp_mask);
1063 
1064 retry_cpuset:
1065 	cpuset_mems_cookie = read_mems_allowed_begin();
1066 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1067 		struct page *page;
1068 
1069 		if (!cpuset_zone_allowed(zone, gfp_mask))
1070 			continue;
1071 		/*
1072 		 * no need to ask again on the same node. Pool is node rather than
1073 		 * zone aware
1074 		 */
1075 		if (zone_to_nid(zone) == node)
1076 			continue;
1077 		node = zone_to_nid(zone);
1078 
1079 		page = dequeue_huge_page_node_exact(h, node);
1080 		if (page)
1081 			return page;
1082 	}
1083 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1084 		goto retry_cpuset;
1085 
1086 	return NULL;
1087 }
1088 
1089 /* Movability of hugepages depends on migration support. */
1090 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1091 {
1092 	if (hugepage_movable_supported(h))
1093 		return GFP_HIGHUSER_MOVABLE;
1094 	else
1095 		return GFP_HIGHUSER;
1096 }
1097 
1098 static struct page *dequeue_huge_page_vma(struct hstate *h,
1099 				struct vm_area_struct *vma,
1100 				unsigned long address, int avoid_reserve,
1101 				long chg)
1102 {
1103 	struct page *page;
1104 	struct mempolicy *mpol;
1105 	gfp_t gfp_mask;
1106 	nodemask_t *nodemask;
1107 	int nid;
1108 
1109 	/*
1110 	 * A child process with MAP_PRIVATE mappings created by their parent
1111 	 * have no page reserves. This check ensures that reservations are
1112 	 * not "stolen". The child may still get SIGKILLed
1113 	 */
1114 	if (!vma_has_reserves(vma, chg) &&
1115 			h->free_huge_pages - h->resv_huge_pages == 0)
1116 		goto err;
1117 
1118 	/* If reserves cannot be used, ensure enough pages are in the pool */
1119 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1120 		goto err;
1121 
1122 	gfp_mask = htlb_alloc_mask(h);
1123 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1124 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1125 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1126 		SetPagePrivate(page);
1127 		h->resv_huge_pages--;
1128 	}
1129 
1130 	mpol_cond_put(mpol);
1131 	return page;
1132 
1133 err:
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * common helper functions for hstate_next_node_to_{alloc|free}.
1139  * We may have allocated or freed a huge page based on a different
1140  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1141  * be outside of *nodes_allowed.  Ensure that we use an allowed
1142  * node for alloc or free.
1143  */
1144 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1145 {
1146 	nid = next_node_in(nid, *nodes_allowed);
1147 	VM_BUG_ON(nid >= MAX_NUMNODES);
1148 
1149 	return nid;
1150 }
1151 
1152 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1153 {
1154 	if (!node_isset(nid, *nodes_allowed))
1155 		nid = next_node_allowed(nid, nodes_allowed);
1156 	return nid;
1157 }
1158 
1159 /*
1160  * returns the previously saved node ["this node"] from which to
1161  * allocate a persistent huge page for the pool and advance the
1162  * next node from which to allocate, handling wrap at end of node
1163  * mask.
1164  */
1165 static int hstate_next_node_to_alloc(struct hstate *h,
1166 					nodemask_t *nodes_allowed)
1167 {
1168 	int nid;
1169 
1170 	VM_BUG_ON(!nodes_allowed);
1171 
1172 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1173 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1174 
1175 	return nid;
1176 }
1177 
1178 /*
1179  * helper for free_pool_huge_page() - return the previously saved
1180  * node ["this node"] from which to free a huge page.  Advance the
1181  * next node id whether or not we find a free huge page to free so
1182  * that the next attempt to free addresses the next node.
1183  */
1184 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1185 {
1186 	int nid;
1187 
1188 	VM_BUG_ON(!nodes_allowed);
1189 
1190 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1191 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1192 
1193 	return nid;
1194 }
1195 
1196 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1197 	for (nr_nodes = nodes_weight(*mask);				\
1198 		nr_nodes > 0 &&						\
1199 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1200 		nr_nodes--)
1201 
1202 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1203 	for (nr_nodes = nodes_weight(*mask);				\
1204 		nr_nodes > 0 &&						\
1205 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1206 		nr_nodes--)
1207 
1208 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1209 static void destroy_compound_gigantic_page(struct page *page,
1210 					unsigned int order)
1211 {
1212 	int i;
1213 	int nr_pages = 1 << order;
1214 	struct page *p = page + 1;
1215 
1216 	atomic_set(compound_mapcount_ptr(page), 0);
1217 	if (hpage_pincount_available(page))
1218 		atomic_set(compound_pincount_ptr(page), 0);
1219 
1220 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1221 		clear_compound_head(p);
1222 		set_page_refcounted(p);
1223 	}
1224 
1225 	set_compound_order(page, 0);
1226 	__ClearPageHead(page);
1227 }
1228 
1229 static void free_gigantic_page(struct page *page, unsigned int order)
1230 {
1231 	free_contig_range(page_to_pfn(page), 1 << order);
1232 }
1233 
1234 #ifdef CONFIG_CONTIG_ALLOC
1235 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1236 		int nid, nodemask_t *nodemask)
1237 {
1238 	unsigned long nr_pages = 1UL << huge_page_order(h);
1239 
1240 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1241 }
1242 
1243 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1244 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1245 #else /* !CONFIG_CONTIG_ALLOC */
1246 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247 					int nid, nodemask_t *nodemask)
1248 {
1249 	return NULL;
1250 }
1251 #endif /* CONFIG_CONTIG_ALLOC */
1252 
1253 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1254 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1255 					int nid, nodemask_t *nodemask)
1256 {
1257 	return NULL;
1258 }
1259 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1260 static inline void destroy_compound_gigantic_page(struct page *page,
1261 						unsigned int order) { }
1262 #endif
1263 
1264 static void update_and_free_page(struct hstate *h, struct page *page)
1265 {
1266 	int i;
1267 
1268 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1269 		return;
1270 
1271 	h->nr_huge_pages--;
1272 	h->nr_huge_pages_node[page_to_nid(page)]--;
1273 	for (i = 0; i < pages_per_huge_page(h); i++) {
1274 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1275 				1 << PG_referenced | 1 << PG_dirty |
1276 				1 << PG_active | 1 << PG_private |
1277 				1 << PG_writeback);
1278 	}
1279 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1280 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1281 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1282 	set_page_refcounted(page);
1283 	if (hstate_is_gigantic(h)) {
1284 		destroy_compound_gigantic_page(page, huge_page_order(h));
1285 		free_gigantic_page(page, huge_page_order(h));
1286 	} else {
1287 		__free_pages(page, huge_page_order(h));
1288 	}
1289 }
1290 
1291 struct hstate *size_to_hstate(unsigned long size)
1292 {
1293 	struct hstate *h;
1294 
1295 	for_each_hstate(h) {
1296 		if (huge_page_size(h) == size)
1297 			return h;
1298 	}
1299 	return NULL;
1300 }
1301 
1302 /*
1303  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1304  * to hstate->hugepage_activelist.)
1305  *
1306  * This function can be called for tail pages, but never returns true for them.
1307  */
1308 bool page_huge_active(struct page *page)
1309 {
1310 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1311 	return PageHead(page) && PagePrivate(&page[1]);
1312 }
1313 
1314 /* never called for tail page */
1315 static void set_page_huge_active(struct page *page)
1316 {
1317 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1318 	SetPagePrivate(&page[1]);
1319 }
1320 
1321 static void clear_page_huge_active(struct page *page)
1322 {
1323 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1324 	ClearPagePrivate(&page[1]);
1325 }
1326 
1327 /*
1328  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1329  * code
1330  */
1331 static inline bool PageHugeTemporary(struct page *page)
1332 {
1333 	if (!PageHuge(page))
1334 		return false;
1335 
1336 	return (unsigned long)page[2].mapping == -1U;
1337 }
1338 
1339 static inline void SetPageHugeTemporary(struct page *page)
1340 {
1341 	page[2].mapping = (void *)-1U;
1342 }
1343 
1344 static inline void ClearPageHugeTemporary(struct page *page)
1345 {
1346 	page[2].mapping = NULL;
1347 }
1348 
1349 static void __free_huge_page(struct page *page)
1350 {
1351 	/*
1352 	 * Can't pass hstate in here because it is called from the
1353 	 * compound page destructor.
1354 	 */
1355 	struct hstate *h = page_hstate(page);
1356 	int nid = page_to_nid(page);
1357 	struct hugepage_subpool *spool =
1358 		(struct hugepage_subpool *)page_private(page);
1359 	bool restore_reserve;
1360 
1361 	VM_BUG_ON_PAGE(page_count(page), page);
1362 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1363 
1364 	set_page_private(page, 0);
1365 	page->mapping = NULL;
1366 	restore_reserve = PagePrivate(page);
1367 	ClearPagePrivate(page);
1368 
1369 	/*
1370 	 * If PagePrivate() was set on page, page allocation consumed a
1371 	 * reservation.  If the page was associated with a subpool, there
1372 	 * would have been a page reserved in the subpool before allocation
1373 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1374 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1375 	 * remove the reserved page from the subpool.
1376 	 */
1377 	if (!restore_reserve) {
1378 		/*
1379 		 * A return code of zero implies that the subpool will be
1380 		 * under its minimum size if the reservation is not restored
1381 		 * after page is free.  Therefore, force restore_reserve
1382 		 * operation.
1383 		 */
1384 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1385 			restore_reserve = true;
1386 	}
1387 
1388 	spin_lock(&hugetlb_lock);
1389 	clear_page_huge_active(page);
1390 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1391 				     pages_per_huge_page(h), page);
1392 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1393 					  pages_per_huge_page(h), page);
1394 	if (restore_reserve)
1395 		h->resv_huge_pages++;
1396 
1397 	if (PageHugeTemporary(page)) {
1398 		list_del(&page->lru);
1399 		ClearPageHugeTemporary(page);
1400 		update_and_free_page(h, page);
1401 	} else if (h->surplus_huge_pages_node[nid]) {
1402 		/* remove the page from active list */
1403 		list_del(&page->lru);
1404 		update_and_free_page(h, page);
1405 		h->surplus_huge_pages--;
1406 		h->surplus_huge_pages_node[nid]--;
1407 	} else {
1408 		arch_clear_hugepage_flags(page);
1409 		enqueue_huge_page(h, page);
1410 	}
1411 	spin_unlock(&hugetlb_lock);
1412 }
1413 
1414 /*
1415  * As free_huge_page() can be called from a non-task context, we have
1416  * to defer the actual freeing in a workqueue to prevent potential
1417  * hugetlb_lock deadlock.
1418  *
1419  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1420  * be freed and frees them one-by-one. As the page->mapping pointer is
1421  * going to be cleared in __free_huge_page() anyway, it is reused as the
1422  * llist_node structure of a lockless linked list of huge pages to be freed.
1423  */
1424 static LLIST_HEAD(hpage_freelist);
1425 
1426 static void free_hpage_workfn(struct work_struct *work)
1427 {
1428 	struct llist_node *node;
1429 	struct page *page;
1430 
1431 	node = llist_del_all(&hpage_freelist);
1432 
1433 	while (node) {
1434 		page = container_of((struct address_space **)node,
1435 				     struct page, mapping);
1436 		node = node->next;
1437 		__free_huge_page(page);
1438 	}
1439 }
1440 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1441 
1442 void free_huge_page(struct page *page)
1443 {
1444 	/*
1445 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1446 	 */
1447 	if (!in_task()) {
1448 		/*
1449 		 * Only call schedule_work() if hpage_freelist is previously
1450 		 * empty. Otherwise, schedule_work() had been called but the
1451 		 * workfn hasn't retrieved the list yet.
1452 		 */
1453 		if (llist_add((struct llist_node *)&page->mapping,
1454 			      &hpage_freelist))
1455 			schedule_work(&free_hpage_work);
1456 		return;
1457 	}
1458 
1459 	__free_huge_page(page);
1460 }
1461 
1462 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1463 {
1464 	INIT_LIST_HEAD(&page->lru);
1465 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1466 	spin_lock(&hugetlb_lock);
1467 	set_hugetlb_cgroup(page, NULL);
1468 	set_hugetlb_cgroup_rsvd(page, NULL);
1469 	h->nr_huge_pages++;
1470 	h->nr_huge_pages_node[nid]++;
1471 	spin_unlock(&hugetlb_lock);
1472 }
1473 
1474 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1475 {
1476 	int i;
1477 	int nr_pages = 1 << order;
1478 	struct page *p = page + 1;
1479 
1480 	/* we rely on prep_new_huge_page to set the destructor */
1481 	set_compound_order(page, order);
1482 	__ClearPageReserved(page);
1483 	__SetPageHead(page);
1484 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1485 		/*
1486 		 * For gigantic hugepages allocated through bootmem at
1487 		 * boot, it's safer to be consistent with the not-gigantic
1488 		 * hugepages and clear the PG_reserved bit from all tail pages
1489 		 * too.  Otherwse drivers using get_user_pages() to access tail
1490 		 * pages may get the reference counting wrong if they see
1491 		 * PG_reserved set on a tail page (despite the head page not
1492 		 * having PG_reserved set).  Enforcing this consistency between
1493 		 * head and tail pages allows drivers to optimize away a check
1494 		 * on the head page when they need know if put_page() is needed
1495 		 * after get_user_pages().
1496 		 */
1497 		__ClearPageReserved(p);
1498 		set_page_count(p, 0);
1499 		set_compound_head(p, page);
1500 	}
1501 	atomic_set(compound_mapcount_ptr(page), -1);
1502 
1503 	if (hpage_pincount_available(page))
1504 		atomic_set(compound_pincount_ptr(page), 0);
1505 }
1506 
1507 /*
1508  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1509  * transparent huge pages.  See the PageTransHuge() documentation for more
1510  * details.
1511  */
1512 int PageHuge(struct page *page)
1513 {
1514 	if (!PageCompound(page))
1515 		return 0;
1516 
1517 	page = compound_head(page);
1518 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1519 }
1520 EXPORT_SYMBOL_GPL(PageHuge);
1521 
1522 /*
1523  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1524  * normal or transparent huge pages.
1525  */
1526 int PageHeadHuge(struct page *page_head)
1527 {
1528 	if (!PageHead(page_head))
1529 		return 0;
1530 
1531 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1532 }
1533 
1534 /*
1535  * Find address_space associated with hugetlbfs page.
1536  * Upon entry page is locked and page 'was' mapped although mapped state
1537  * could change.  If necessary, use anon_vma to find vma and associated
1538  * address space.  The returned mapping may be stale, but it can not be
1539  * invalid as page lock (which is held) is required to destroy mapping.
1540  */
1541 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1542 {
1543 	struct anon_vma *anon_vma;
1544 	pgoff_t pgoff_start, pgoff_end;
1545 	struct anon_vma_chain *avc;
1546 	struct address_space *mapping = page_mapping(hpage);
1547 
1548 	/* Simple file based mapping */
1549 	if (mapping)
1550 		return mapping;
1551 
1552 	/*
1553 	 * Even anonymous hugetlbfs mappings are associated with an
1554 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1555 	 * code).  Find a vma associated with the anonymous vma, and
1556 	 * use the file pointer to get address_space.
1557 	 */
1558 	anon_vma = page_lock_anon_vma_read(hpage);
1559 	if (!anon_vma)
1560 		return mapping;  /* NULL */
1561 
1562 	/* Use first found vma */
1563 	pgoff_start = page_to_pgoff(hpage);
1564 	pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1565 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1566 					pgoff_start, pgoff_end) {
1567 		struct vm_area_struct *vma = avc->vma;
1568 
1569 		mapping = vma->vm_file->f_mapping;
1570 		break;
1571 	}
1572 
1573 	anon_vma_unlock_read(anon_vma);
1574 	return mapping;
1575 }
1576 
1577 /*
1578  * Find and lock address space (mapping) in write mode.
1579  *
1580  * Upon entry, the page is locked which allows us to find the mapping
1581  * even in the case of an anon page.  However, locking order dictates
1582  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1583  * specific.  So, we first try to lock the sema while still holding the
1584  * page lock.  If this works, great!  If not, then we need to drop the
1585  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1586  * course, need to revalidate state along the way.
1587  */
1588 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1589 {
1590 	struct address_space *mapping, *mapping2;
1591 
1592 	mapping = _get_hugetlb_page_mapping(hpage);
1593 retry:
1594 	if (!mapping)
1595 		return mapping;
1596 
1597 	/*
1598 	 * If no contention, take lock and return
1599 	 */
1600 	if (i_mmap_trylock_write(mapping))
1601 		return mapping;
1602 
1603 	/*
1604 	 * Must drop page lock and wait on mapping sema.
1605 	 * Note:  Once page lock is dropped, mapping could become invalid.
1606 	 * As a hack, increase map count until we lock page again.
1607 	 */
1608 	atomic_inc(&hpage->_mapcount);
1609 	unlock_page(hpage);
1610 	i_mmap_lock_write(mapping);
1611 	lock_page(hpage);
1612 	atomic_add_negative(-1, &hpage->_mapcount);
1613 
1614 	/* verify page is still mapped */
1615 	if (!page_mapped(hpage)) {
1616 		i_mmap_unlock_write(mapping);
1617 		return NULL;
1618 	}
1619 
1620 	/*
1621 	 * Get address space again and verify it is the same one
1622 	 * we locked.  If not, drop lock and retry.
1623 	 */
1624 	mapping2 = _get_hugetlb_page_mapping(hpage);
1625 	if (mapping2 != mapping) {
1626 		i_mmap_unlock_write(mapping);
1627 		mapping = mapping2;
1628 		goto retry;
1629 	}
1630 
1631 	return mapping;
1632 }
1633 
1634 pgoff_t __basepage_index(struct page *page)
1635 {
1636 	struct page *page_head = compound_head(page);
1637 	pgoff_t index = page_index(page_head);
1638 	unsigned long compound_idx;
1639 
1640 	if (!PageHuge(page_head))
1641 		return page_index(page);
1642 
1643 	if (compound_order(page_head) >= MAX_ORDER)
1644 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1645 	else
1646 		compound_idx = page - page_head;
1647 
1648 	return (index << compound_order(page_head)) + compound_idx;
1649 }
1650 
1651 static struct page *alloc_buddy_huge_page(struct hstate *h,
1652 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1653 		nodemask_t *node_alloc_noretry)
1654 {
1655 	int order = huge_page_order(h);
1656 	struct page *page;
1657 	bool alloc_try_hard = true;
1658 
1659 	/*
1660 	 * By default we always try hard to allocate the page with
1661 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1662 	 * a loop (to adjust global huge page counts) and previous allocation
1663 	 * failed, do not continue to try hard on the same node.  Use the
1664 	 * node_alloc_noretry bitmap to manage this state information.
1665 	 */
1666 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1667 		alloc_try_hard = false;
1668 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1669 	if (alloc_try_hard)
1670 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1671 	if (nid == NUMA_NO_NODE)
1672 		nid = numa_mem_id();
1673 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1674 	if (page)
1675 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1676 	else
1677 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1678 
1679 	/*
1680 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1681 	 * indicates an overall state change.  Clear bit so that we resume
1682 	 * normal 'try hard' allocations.
1683 	 */
1684 	if (node_alloc_noretry && page && !alloc_try_hard)
1685 		node_clear(nid, *node_alloc_noretry);
1686 
1687 	/*
1688 	 * If we tried hard to get a page but failed, set bit so that
1689 	 * subsequent attempts will not try as hard until there is an
1690 	 * overall state change.
1691 	 */
1692 	if (node_alloc_noretry && !page && alloc_try_hard)
1693 		node_set(nid, *node_alloc_noretry);
1694 
1695 	return page;
1696 }
1697 
1698 /*
1699  * Common helper to allocate a fresh hugetlb page. All specific allocators
1700  * should use this function to get new hugetlb pages
1701  */
1702 static struct page *alloc_fresh_huge_page(struct hstate *h,
1703 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1704 		nodemask_t *node_alloc_noretry)
1705 {
1706 	struct page *page;
1707 
1708 	if (hstate_is_gigantic(h))
1709 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1710 	else
1711 		page = alloc_buddy_huge_page(h, gfp_mask,
1712 				nid, nmask, node_alloc_noretry);
1713 	if (!page)
1714 		return NULL;
1715 
1716 	if (hstate_is_gigantic(h))
1717 		prep_compound_gigantic_page(page, huge_page_order(h));
1718 	prep_new_huge_page(h, page, page_to_nid(page));
1719 
1720 	return page;
1721 }
1722 
1723 /*
1724  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1725  * manner.
1726  */
1727 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1728 				nodemask_t *node_alloc_noretry)
1729 {
1730 	struct page *page;
1731 	int nr_nodes, node;
1732 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1733 
1734 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1735 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1736 						node_alloc_noretry);
1737 		if (page)
1738 			break;
1739 	}
1740 
1741 	if (!page)
1742 		return 0;
1743 
1744 	put_page(page); /* free it into the hugepage allocator */
1745 
1746 	return 1;
1747 }
1748 
1749 /*
1750  * Free huge page from pool from next node to free.
1751  * Attempt to keep persistent huge pages more or less
1752  * balanced over allowed nodes.
1753  * Called with hugetlb_lock locked.
1754  */
1755 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1756 							 bool acct_surplus)
1757 {
1758 	int nr_nodes, node;
1759 	int ret = 0;
1760 
1761 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1762 		/*
1763 		 * If we're returning unused surplus pages, only examine
1764 		 * nodes with surplus pages.
1765 		 */
1766 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1767 		    !list_empty(&h->hugepage_freelists[node])) {
1768 			struct page *page =
1769 				list_entry(h->hugepage_freelists[node].next,
1770 					  struct page, lru);
1771 			list_del(&page->lru);
1772 			h->free_huge_pages--;
1773 			h->free_huge_pages_node[node]--;
1774 			if (acct_surplus) {
1775 				h->surplus_huge_pages--;
1776 				h->surplus_huge_pages_node[node]--;
1777 			}
1778 			update_and_free_page(h, page);
1779 			ret = 1;
1780 			break;
1781 		}
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Dissolve a given free hugepage into free buddy pages. This function does
1789  * nothing for in-use hugepages and non-hugepages.
1790  * This function returns values like below:
1791  *
1792  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1793  *          (allocated or reserved.)
1794  *       0: successfully dissolved free hugepages or the page is not a
1795  *          hugepage (considered as already dissolved)
1796  */
1797 int dissolve_free_huge_page(struct page *page)
1798 {
1799 	int rc = -EBUSY;
1800 
1801 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1802 	if (!PageHuge(page))
1803 		return 0;
1804 
1805 	spin_lock(&hugetlb_lock);
1806 	if (!PageHuge(page)) {
1807 		rc = 0;
1808 		goto out;
1809 	}
1810 
1811 	if (!page_count(page)) {
1812 		struct page *head = compound_head(page);
1813 		struct hstate *h = page_hstate(head);
1814 		int nid = page_to_nid(head);
1815 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1816 			goto out;
1817 		/*
1818 		 * Move PageHWPoison flag from head page to the raw error page,
1819 		 * which makes any subpages rather than the error page reusable.
1820 		 */
1821 		if (PageHWPoison(head) && page != head) {
1822 			SetPageHWPoison(page);
1823 			ClearPageHWPoison(head);
1824 		}
1825 		list_del(&head->lru);
1826 		h->free_huge_pages--;
1827 		h->free_huge_pages_node[nid]--;
1828 		h->max_huge_pages--;
1829 		update_and_free_page(h, head);
1830 		rc = 0;
1831 	}
1832 out:
1833 	spin_unlock(&hugetlb_lock);
1834 	return rc;
1835 }
1836 
1837 /*
1838  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1839  * make specified memory blocks removable from the system.
1840  * Note that this will dissolve a free gigantic hugepage completely, if any
1841  * part of it lies within the given range.
1842  * Also note that if dissolve_free_huge_page() returns with an error, all
1843  * free hugepages that were dissolved before that error are lost.
1844  */
1845 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1846 {
1847 	unsigned long pfn;
1848 	struct page *page;
1849 	int rc = 0;
1850 
1851 	if (!hugepages_supported())
1852 		return rc;
1853 
1854 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1855 		page = pfn_to_page(pfn);
1856 		rc = dissolve_free_huge_page(page);
1857 		if (rc)
1858 			break;
1859 	}
1860 
1861 	return rc;
1862 }
1863 
1864 /*
1865  * Allocates a fresh surplus page from the page allocator.
1866  */
1867 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1868 		int nid, nodemask_t *nmask)
1869 {
1870 	struct page *page = NULL;
1871 
1872 	if (hstate_is_gigantic(h))
1873 		return NULL;
1874 
1875 	spin_lock(&hugetlb_lock);
1876 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1877 		goto out_unlock;
1878 	spin_unlock(&hugetlb_lock);
1879 
1880 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1881 	if (!page)
1882 		return NULL;
1883 
1884 	spin_lock(&hugetlb_lock);
1885 	/*
1886 	 * We could have raced with the pool size change.
1887 	 * Double check that and simply deallocate the new page
1888 	 * if we would end up overcommiting the surpluses. Abuse
1889 	 * temporary page to workaround the nasty free_huge_page
1890 	 * codeflow
1891 	 */
1892 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1893 		SetPageHugeTemporary(page);
1894 		spin_unlock(&hugetlb_lock);
1895 		put_page(page);
1896 		return NULL;
1897 	} else {
1898 		h->surplus_huge_pages++;
1899 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1900 	}
1901 
1902 out_unlock:
1903 	spin_unlock(&hugetlb_lock);
1904 
1905 	return page;
1906 }
1907 
1908 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1909 				     int nid, nodemask_t *nmask)
1910 {
1911 	struct page *page;
1912 
1913 	if (hstate_is_gigantic(h))
1914 		return NULL;
1915 
1916 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1917 	if (!page)
1918 		return NULL;
1919 
1920 	/*
1921 	 * We do not account these pages as surplus because they are only
1922 	 * temporary and will be released properly on the last reference
1923 	 */
1924 	SetPageHugeTemporary(page);
1925 
1926 	return page;
1927 }
1928 
1929 /*
1930  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1931  */
1932 static
1933 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1934 		struct vm_area_struct *vma, unsigned long addr)
1935 {
1936 	struct page *page;
1937 	struct mempolicy *mpol;
1938 	gfp_t gfp_mask = htlb_alloc_mask(h);
1939 	int nid;
1940 	nodemask_t *nodemask;
1941 
1942 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1943 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1944 	mpol_cond_put(mpol);
1945 
1946 	return page;
1947 }
1948 
1949 /* page migration callback function */
1950 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1951 {
1952 	gfp_t gfp_mask = htlb_alloc_mask(h);
1953 	struct page *page = NULL;
1954 
1955 	if (nid != NUMA_NO_NODE)
1956 		gfp_mask |= __GFP_THISNODE;
1957 
1958 	spin_lock(&hugetlb_lock);
1959 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1960 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1961 	spin_unlock(&hugetlb_lock);
1962 
1963 	if (!page)
1964 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1965 
1966 	return page;
1967 }
1968 
1969 /* page migration callback function */
1970 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1971 		nodemask_t *nmask)
1972 {
1973 	gfp_t gfp_mask = htlb_alloc_mask(h);
1974 
1975 	spin_lock(&hugetlb_lock);
1976 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1977 		struct page *page;
1978 
1979 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1980 		if (page) {
1981 			spin_unlock(&hugetlb_lock);
1982 			return page;
1983 		}
1984 	}
1985 	spin_unlock(&hugetlb_lock);
1986 
1987 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1988 }
1989 
1990 /* mempolicy aware migration callback */
1991 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1992 		unsigned long address)
1993 {
1994 	struct mempolicy *mpol;
1995 	nodemask_t *nodemask;
1996 	struct page *page;
1997 	gfp_t gfp_mask;
1998 	int node;
1999 
2000 	gfp_mask = htlb_alloc_mask(h);
2001 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2002 	page = alloc_huge_page_nodemask(h, node, nodemask);
2003 	mpol_cond_put(mpol);
2004 
2005 	return page;
2006 }
2007 
2008 /*
2009  * Increase the hugetlb pool such that it can accommodate a reservation
2010  * of size 'delta'.
2011  */
2012 static int gather_surplus_pages(struct hstate *h, int delta)
2013 	__must_hold(&hugetlb_lock)
2014 {
2015 	struct list_head surplus_list;
2016 	struct page *page, *tmp;
2017 	int ret, i;
2018 	int needed, allocated;
2019 	bool alloc_ok = true;
2020 
2021 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2022 	if (needed <= 0) {
2023 		h->resv_huge_pages += delta;
2024 		return 0;
2025 	}
2026 
2027 	allocated = 0;
2028 	INIT_LIST_HEAD(&surplus_list);
2029 
2030 	ret = -ENOMEM;
2031 retry:
2032 	spin_unlock(&hugetlb_lock);
2033 	for (i = 0; i < needed; i++) {
2034 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2035 				NUMA_NO_NODE, NULL);
2036 		if (!page) {
2037 			alloc_ok = false;
2038 			break;
2039 		}
2040 		list_add(&page->lru, &surplus_list);
2041 		cond_resched();
2042 	}
2043 	allocated += i;
2044 
2045 	/*
2046 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2047 	 * because either resv_huge_pages or free_huge_pages may have changed.
2048 	 */
2049 	spin_lock(&hugetlb_lock);
2050 	needed = (h->resv_huge_pages + delta) -
2051 			(h->free_huge_pages + allocated);
2052 	if (needed > 0) {
2053 		if (alloc_ok)
2054 			goto retry;
2055 		/*
2056 		 * We were not able to allocate enough pages to
2057 		 * satisfy the entire reservation so we free what
2058 		 * we've allocated so far.
2059 		 */
2060 		goto free;
2061 	}
2062 	/*
2063 	 * The surplus_list now contains _at_least_ the number of extra pages
2064 	 * needed to accommodate the reservation.  Add the appropriate number
2065 	 * of pages to the hugetlb pool and free the extras back to the buddy
2066 	 * allocator.  Commit the entire reservation here to prevent another
2067 	 * process from stealing the pages as they are added to the pool but
2068 	 * before they are reserved.
2069 	 */
2070 	needed += allocated;
2071 	h->resv_huge_pages += delta;
2072 	ret = 0;
2073 
2074 	/* Free the needed pages to the hugetlb pool */
2075 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2076 		if ((--needed) < 0)
2077 			break;
2078 		/*
2079 		 * This page is now managed by the hugetlb allocator and has
2080 		 * no users -- drop the buddy allocator's reference.
2081 		 */
2082 		put_page_testzero(page);
2083 		VM_BUG_ON_PAGE(page_count(page), page);
2084 		enqueue_huge_page(h, page);
2085 	}
2086 free:
2087 	spin_unlock(&hugetlb_lock);
2088 
2089 	/* Free unnecessary surplus pages to the buddy allocator */
2090 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2091 		put_page(page);
2092 	spin_lock(&hugetlb_lock);
2093 
2094 	return ret;
2095 }
2096 
2097 /*
2098  * This routine has two main purposes:
2099  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2100  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2101  *    to the associated reservation map.
2102  * 2) Free any unused surplus pages that may have been allocated to satisfy
2103  *    the reservation.  As many as unused_resv_pages may be freed.
2104  *
2105  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2106  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2107  * we must make sure nobody else can claim pages we are in the process of
2108  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2109  * number of huge pages we plan to free when dropping the lock.
2110  */
2111 static void return_unused_surplus_pages(struct hstate *h,
2112 					unsigned long unused_resv_pages)
2113 {
2114 	unsigned long nr_pages;
2115 
2116 	/* Cannot return gigantic pages currently */
2117 	if (hstate_is_gigantic(h))
2118 		goto out;
2119 
2120 	/*
2121 	 * Part (or even all) of the reservation could have been backed
2122 	 * by pre-allocated pages. Only free surplus pages.
2123 	 */
2124 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2125 
2126 	/*
2127 	 * We want to release as many surplus pages as possible, spread
2128 	 * evenly across all nodes with memory. Iterate across these nodes
2129 	 * until we can no longer free unreserved surplus pages. This occurs
2130 	 * when the nodes with surplus pages have no free pages.
2131 	 * free_pool_huge_page() will balance the the freed pages across the
2132 	 * on-line nodes with memory and will handle the hstate accounting.
2133 	 *
2134 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2135 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2136 	 * to cover subsequent pages we may free.
2137 	 */
2138 	while (nr_pages--) {
2139 		h->resv_huge_pages--;
2140 		unused_resv_pages--;
2141 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2142 			goto out;
2143 		cond_resched_lock(&hugetlb_lock);
2144 	}
2145 
2146 out:
2147 	/* Fully uncommit the reservation */
2148 	h->resv_huge_pages -= unused_resv_pages;
2149 }
2150 
2151 
2152 /*
2153  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2154  * are used by the huge page allocation routines to manage reservations.
2155  *
2156  * vma_needs_reservation is called to determine if the huge page at addr
2157  * within the vma has an associated reservation.  If a reservation is
2158  * needed, the value 1 is returned.  The caller is then responsible for
2159  * managing the global reservation and subpool usage counts.  After
2160  * the huge page has been allocated, vma_commit_reservation is called
2161  * to add the page to the reservation map.  If the page allocation fails,
2162  * the reservation must be ended instead of committed.  vma_end_reservation
2163  * is called in such cases.
2164  *
2165  * In the normal case, vma_commit_reservation returns the same value
2166  * as the preceding vma_needs_reservation call.  The only time this
2167  * is not the case is if a reserve map was changed between calls.  It
2168  * is the responsibility of the caller to notice the difference and
2169  * take appropriate action.
2170  *
2171  * vma_add_reservation is used in error paths where a reservation must
2172  * be restored when a newly allocated huge page must be freed.  It is
2173  * to be called after calling vma_needs_reservation to determine if a
2174  * reservation exists.
2175  */
2176 enum vma_resv_mode {
2177 	VMA_NEEDS_RESV,
2178 	VMA_COMMIT_RESV,
2179 	VMA_END_RESV,
2180 	VMA_ADD_RESV,
2181 };
2182 static long __vma_reservation_common(struct hstate *h,
2183 				struct vm_area_struct *vma, unsigned long addr,
2184 				enum vma_resv_mode mode)
2185 {
2186 	struct resv_map *resv;
2187 	pgoff_t idx;
2188 	long ret;
2189 	long dummy_out_regions_needed;
2190 
2191 	resv = vma_resv_map(vma);
2192 	if (!resv)
2193 		return 1;
2194 
2195 	idx = vma_hugecache_offset(h, vma, addr);
2196 	switch (mode) {
2197 	case VMA_NEEDS_RESV:
2198 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2199 		/* We assume that vma_reservation_* routines always operate on
2200 		 * 1 page, and that adding to resv map a 1 page entry can only
2201 		 * ever require 1 region.
2202 		 */
2203 		VM_BUG_ON(dummy_out_regions_needed != 1);
2204 		break;
2205 	case VMA_COMMIT_RESV:
2206 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2207 		/* region_add calls of range 1 should never fail. */
2208 		VM_BUG_ON(ret < 0);
2209 		break;
2210 	case VMA_END_RESV:
2211 		region_abort(resv, idx, idx + 1, 1);
2212 		ret = 0;
2213 		break;
2214 	case VMA_ADD_RESV:
2215 		if (vma->vm_flags & VM_MAYSHARE) {
2216 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2217 			/* region_add calls of range 1 should never fail. */
2218 			VM_BUG_ON(ret < 0);
2219 		} else {
2220 			region_abort(resv, idx, idx + 1, 1);
2221 			ret = region_del(resv, idx, idx + 1);
2222 		}
2223 		break;
2224 	default:
2225 		BUG();
2226 	}
2227 
2228 	if (vma->vm_flags & VM_MAYSHARE)
2229 		return ret;
2230 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2231 		/*
2232 		 * In most cases, reserves always exist for private mappings.
2233 		 * However, a file associated with mapping could have been
2234 		 * hole punched or truncated after reserves were consumed.
2235 		 * As subsequent fault on such a range will not use reserves.
2236 		 * Subtle - The reserve map for private mappings has the
2237 		 * opposite meaning than that of shared mappings.  If NO
2238 		 * entry is in the reserve map, it means a reservation exists.
2239 		 * If an entry exists in the reserve map, it means the
2240 		 * reservation has already been consumed.  As a result, the
2241 		 * return value of this routine is the opposite of the
2242 		 * value returned from reserve map manipulation routines above.
2243 		 */
2244 		if (ret)
2245 			return 0;
2246 		else
2247 			return 1;
2248 	}
2249 	else
2250 		return ret < 0 ? ret : 0;
2251 }
2252 
2253 static long vma_needs_reservation(struct hstate *h,
2254 			struct vm_area_struct *vma, unsigned long addr)
2255 {
2256 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2257 }
2258 
2259 static long vma_commit_reservation(struct hstate *h,
2260 			struct vm_area_struct *vma, unsigned long addr)
2261 {
2262 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2263 }
2264 
2265 static void vma_end_reservation(struct hstate *h,
2266 			struct vm_area_struct *vma, unsigned long addr)
2267 {
2268 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2269 }
2270 
2271 static long vma_add_reservation(struct hstate *h,
2272 			struct vm_area_struct *vma, unsigned long addr)
2273 {
2274 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2275 }
2276 
2277 /*
2278  * This routine is called to restore a reservation on error paths.  In the
2279  * specific error paths, a huge page was allocated (via alloc_huge_page)
2280  * and is about to be freed.  If a reservation for the page existed,
2281  * alloc_huge_page would have consumed the reservation and set PagePrivate
2282  * in the newly allocated page.  When the page is freed via free_huge_page,
2283  * the global reservation count will be incremented if PagePrivate is set.
2284  * However, free_huge_page can not adjust the reserve map.  Adjust the
2285  * reserve map here to be consistent with global reserve count adjustments
2286  * to be made by free_huge_page.
2287  */
2288 static void restore_reserve_on_error(struct hstate *h,
2289 			struct vm_area_struct *vma, unsigned long address,
2290 			struct page *page)
2291 {
2292 	if (unlikely(PagePrivate(page))) {
2293 		long rc = vma_needs_reservation(h, vma, address);
2294 
2295 		if (unlikely(rc < 0)) {
2296 			/*
2297 			 * Rare out of memory condition in reserve map
2298 			 * manipulation.  Clear PagePrivate so that
2299 			 * global reserve count will not be incremented
2300 			 * by free_huge_page.  This will make it appear
2301 			 * as though the reservation for this page was
2302 			 * consumed.  This may prevent the task from
2303 			 * faulting in the page at a later time.  This
2304 			 * is better than inconsistent global huge page
2305 			 * accounting of reserve counts.
2306 			 */
2307 			ClearPagePrivate(page);
2308 		} else if (rc) {
2309 			rc = vma_add_reservation(h, vma, address);
2310 			if (unlikely(rc < 0))
2311 				/*
2312 				 * See above comment about rare out of
2313 				 * memory condition.
2314 				 */
2315 				ClearPagePrivate(page);
2316 		} else
2317 			vma_end_reservation(h, vma, address);
2318 	}
2319 }
2320 
2321 struct page *alloc_huge_page(struct vm_area_struct *vma,
2322 				    unsigned long addr, int avoid_reserve)
2323 {
2324 	struct hugepage_subpool *spool = subpool_vma(vma);
2325 	struct hstate *h = hstate_vma(vma);
2326 	struct page *page;
2327 	long map_chg, map_commit;
2328 	long gbl_chg;
2329 	int ret, idx;
2330 	struct hugetlb_cgroup *h_cg;
2331 	bool deferred_reserve;
2332 
2333 	idx = hstate_index(h);
2334 	/*
2335 	 * Examine the region/reserve map to determine if the process
2336 	 * has a reservation for the page to be allocated.  A return
2337 	 * code of zero indicates a reservation exists (no change).
2338 	 */
2339 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2340 	if (map_chg < 0)
2341 		return ERR_PTR(-ENOMEM);
2342 
2343 	/*
2344 	 * Processes that did not create the mapping will have no
2345 	 * reserves as indicated by the region/reserve map. Check
2346 	 * that the allocation will not exceed the subpool limit.
2347 	 * Allocations for MAP_NORESERVE mappings also need to be
2348 	 * checked against any subpool limit.
2349 	 */
2350 	if (map_chg || avoid_reserve) {
2351 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2352 		if (gbl_chg < 0) {
2353 			vma_end_reservation(h, vma, addr);
2354 			return ERR_PTR(-ENOSPC);
2355 		}
2356 
2357 		/*
2358 		 * Even though there was no reservation in the region/reserve
2359 		 * map, there could be reservations associated with the
2360 		 * subpool that can be used.  This would be indicated if the
2361 		 * return value of hugepage_subpool_get_pages() is zero.
2362 		 * However, if avoid_reserve is specified we still avoid even
2363 		 * the subpool reservations.
2364 		 */
2365 		if (avoid_reserve)
2366 			gbl_chg = 1;
2367 	}
2368 
2369 	/* If this allocation is not consuming a reservation, charge it now.
2370 	 */
2371 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2372 	if (deferred_reserve) {
2373 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2374 			idx, pages_per_huge_page(h), &h_cg);
2375 		if (ret)
2376 			goto out_subpool_put;
2377 	}
2378 
2379 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2380 	if (ret)
2381 		goto out_uncharge_cgroup_reservation;
2382 
2383 	spin_lock(&hugetlb_lock);
2384 	/*
2385 	 * glb_chg is passed to indicate whether or not a page must be taken
2386 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2387 	 * a reservation exists for the allocation.
2388 	 */
2389 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2390 	if (!page) {
2391 		spin_unlock(&hugetlb_lock);
2392 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2393 		if (!page)
2394 			goto out_uncharge_cgroup;
2395 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2396 			SetPagePrivate(page);
2397 			h->resv_huge_pages--;
2398 		}
2399 		spin_lock(&hugetlb_lock);
2400 		list_move(&page->lru, &h->hugepage_activelist);
2401 		/* Fall through */
2402 	}
2403 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2404 	/* If allocation is not consuming a reservation, also store the
2405 	 * hugetlb_cgroup pointer on the page.
2406 	 */
2407 	if (deferred_reserve) {
2408 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2409 						  h_cg, page);
2410 	}
2411 
2412 	spin_unlock(&hugetlb_lock);
2413 
2414 	set_page_private(page, (unsigned long)spool);
2415 
2416 	map_commit = vma_commit_reservation(h, vma, addr);
2417 	if (unlikely(map_chg > map_commit)) {
2418 		/*
2419 		 * The page was added to the reservation map between
2420 		 * vma_needs_reservation and vma_commit_reservation.
2421 		 * This indicates a race with hugetlb_reserve_pages.
2422 		 * Adjust for the subpool count incremented above AND
2423 		 * in hugetlb_reserve_pages for the same page.  Also,
2424 		 * the reservation count added in hugetlb_reserve_pages
2425 		 * no longer applies.
2426 		 */
2427 		long rsv_adjust;
2428 
2429 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2430 		hugetlb_acct_memory(h, -rsv_adjust);
2431 	}
2432 	return page;
2433 
2434 out_uncharge_cgroup:
2435 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2436 out_uncharge_cgroup_reservation:
2437 	if (deferred_reserve)
2438 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2439 						    h_cg);
2440 out_subpool_put:
2441 	if (map_chg || avoid_reserve)
2442 		hugepage_subpool_put_pages(spool, 1);
2443 	vma_end_reservation(h, vma, addr);
2444 	return ERR_PTR(-ENOSPC);
2445 }
2446 
2447 int alloc_bootmem_huge_page(struct hstate *h)
2448 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2449 int __alloc_bootmem_huge_page(struct hstate *h)
2450 {
2451 	struct huge_bootmem_page *m;
2452 	int nr_nodes, node;
2453 
2454 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2455 		void *addr;
2456 
2457 		addr = memblock_alloc_try_nid_raw(
2458 				huge_page_size(h), huge_page_size(h),
2459 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2460 		if (addr) {
2461 			/*
2462 			 * Use the beginning of the huge page to store the
2463 			 * huge_bootmem_page struct (until gather_bootmem
2464 			 * puts them into the mem_map).
2465 			 */
2466 			m = addr;
2467 			goto found;
2468 		}
2469 	}
2470 	return 0;
2471 
2472 found:
2473 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2474 	/* Put them into a private list first because mem_map is not up yet */
2475 	INIT_LIST_HEAD(&m->list);
2476 	list_add(&m->list, &huge_boot_pages);
2477 	m->hstate = h;
2478 	return 1;
2479 }
2480 
2481 static void __init prep_compound_huge_page(struct page *page,
2482 		unsigned int order)
2483 {
2484 	if (unlikely(order > (MAX_ORDER - 1)))
2485 		prep_compound_gigantic_page(page, order);
2486 	else
2487 		prep_compound_page(page, order);
2488 }
2489 
2490 /* Put bootmem huge pages into the standard lists after mem_map is up */
2491 static void __init gather_bootmem_prealloc(void)
2492 {
2493 	struct huge_bootmem_page *m;
2494 
2495 	list_for_each_entry(m, &huge_boot_pages, list) {
2496 		struct page *page = virt_to_page(m);
2497 		struct hstate *h = m->hstate;
2498 
2499 		WARN_ON(page_count(page) != 1);
2500 		prep_compound_huge_page(page, h->order);
2501 		WARN_ON(PageReserved(page));
2502 		prep_new_huge_page(h, page, page_to_nid(page));
2503 		put_page(page); /* free it into the hugepage allocator */
2504 
2505 		/*
2506 		 * If we had gigantic hugepages allocated at boot time, we need
2507 		 * to restore the 'stolen' pages to totalram_pages in order to
2508 		 * fix confusing memory reports from free(1) and another
2509 		 * side-effects, like CommitLimit going negative.
2510 		 */
2511 		if (hstate_is_gigantic(h))
2512 			adjust_managed_page_count(page, 1 << h->order);
2513 		cond_resched();
2514 	}
2515 }
2516 
2517 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2518 {
2519 	unsigned long i;
2520 	nodemask_t *node_alloc_noretry;
2521 
2522 	if (!hstate_is_gigantic(h)) {
2523 		/*
2524 		 * Bit mask controlling how hard we retry per-node allocations.
2525 		 * Ignore errors as lower level routines can deal with
2526 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2527 		 * time, we are likely in bigger trouble.
2528 		 */
2529 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2530 						GFP_KERNEL);
2531 	} else {
2532 		/* allocations done at boot time */
2533 		node_alloc_noretry = NULL;
2534 	}
2535 
2536 	/* bit mask controlling how hard we retry per-node allocations */
2537 	if (node_alloc_noretry)
2538 		nodes_clear(*node_alloc_noretry);
2539 
2540 	for (i = 0; i < h->max_huge_pages; ++i) {
2541 		if (hstate_is_gigantic(h)) {
2542 			if (!alloc_bootmem_huge_page(h))
2543 				break;
2544 		} else if (!alloc_pool_huge_page(h,
2545 					 &node_states[N_MEMORY],
2546 					 node_alloc_noretry))
2547 			break;
2548 		cond_resched();
2549 	}
2550 	if (i < h->max_huge_pages) {
2551 		char buf[32];
2552 
2553 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2554 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2555 			h->max_huge_pages, buf, i);
2556 		h->max_huge_pages = i;
2557 	}
2558 
2559 	kfree(node_alloc_noretry);
2560 }
2561 
2562 static void __init hugetlb_init_hstates(void)
2563 {
2564 	struct hstate *h;
2565 
2566 	for_each_hstate(h) {
2567 		if (minimum_order > huge_page_order(h))
2568 			minimum_order = huge_page_order(h);
2569 
2570 		/* oversize hugepages were init'ed in early boot */
2571 		if (!hstate_is_gigantic(h))
2572 			hugetlb_hstate_alloc_pages(h);
2573 	}
2574 	VM_BUG_ON(minimum_order == UINT_MAX);
2575 }
2576 
2577 static void __init report_hugepages(void)
2578 {
2579 	struct hstate *h;
2580 
2581 	for_each_hstate(h) {
2582 		char buf[32];
2583 
2584 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2585 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2586 			buf, h->free_huge_pages);
2587 	}
2588 }
2589 
2590 #ifdef CONFIG_HIGHMEM
2591 static void try_to_free_low(struct hstate *h, unsigned long count,
2592 						nodemask_t *nodes_allowed)
2593 {
2594 	int i;
2595 
2596 	if (hstate_is_gigantic(h))
2597 		return;
2598 
2599 	for_each_node_mask(i, *nodes_allowed) {
2600 		struct page *page, *next;
2601 		struct list_head *freel = &h->hugepage_freelists[i];
2602 		list_for_each_entry_safe(page, next, freel, lru) {
2603 			if (count >= h->nr_huge_pages)
2604 				return;
2605 			if (PageHighMem(page))
2606 				continue;
2607 			list_del(&page->lru);
2608 			update_and_free_page(h, page);
2609 			h->free_huge_pages--;
2610 			h->free_huge_pages_node[page_to_nid(page)]--;
2611 		}
2612 	}
2613 }
2614 #else
2615 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2616 						nodemask_t *nodes_allowed)
2617 {
2618 }
2619 #endif
2620 
2621 /*
2622  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2623  * balanced by operating on them in a round-robin fashion.
2624  * Returns 1 if an adjustment was made.
2625  */
2626 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2627 				int delta)
2628 {
2629 	int nr_nodes, node;
2630 
2631 	VM_BUG_ON(delta != -1 && delta != 1);
2632 
2633 	if (delta < 0) {
2634 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2635 			if (h->surplus_huge_pages_node[node])
2636 				goto found;
2637 		}
2638 	} else {
2639 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2640 			if (h->surplus_huge_pages_node[node] <
2641 					h->nr_huge_pages_node[node])
2642 				goto found;
2643 		}
2644 	}
2645 	return 0;
2646 
2647 found:
2648 	h->surplus_huge_pages += delta;
2649 	h->surplus_huge_pages_node[node] += delta;
2650 	return 1;
2651 }
2652 
2653 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2654 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2655 			      nodemask_t *nodes_allowed)
2656 {
2657 	unsigned long min_count, ret;
2658 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2659 
2660 	/*
2661 	 * Bit mask controlling how hard we retry per-node allocations.
2662 	 * If we can not allocate the bit mask, do not attempt to allocate
2663 	 * the requested huge pages.
2664 	 */
2665 	if (node_alloc_noretry)
2666 		nodes_clear(*node_alloc_noretry);
2667 	else
2668 		return -ENOMEM;
2669 
2670 	spin_lock(&hugetlb_lock);
2671 
2672 	/*
2673 	 * Check for a node specific request.
2674 	 * Changing node specific huge page count may require a corresponding
2675 	 * change to the global count.  In any case, the passed node mask
2676 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2677 	 */
2678 	if (nid != NUMA_NO_NODE) {
2679 		unsigned long old_count = count;
2680 
2681 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2682 		/*
2683 		 * User may have specified a large count value which caused the
2684 		 * above calculation to overflow.  In this case, they wanted
2685 		 * to allocate as many huge pages as possible.  Set count to
2686 		 * largest possible value to align with their intention.
2687 		 */
2688 		if (count < old_count)
2689 			count = ULONG_MAX;
2690 	}
2691 
2692 	/*
2693 	 * Gigantic pages runtime allocation depend on the capability for large
2694 	 * page range allocation.
2695 	 * If the system does not provide this feature, return an error when
2696 	 * the user tries to allocate gigantic pages but let the user free the
2697 	 * boottime allocated gigantic pages.
2698 	 */
2699 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2700 		if (count > persistent_huge_pages(h)) {
2701 			spin_unlock(&hugetlb_lock);
2702 			NODEMASK_FREE(node_alloc_noretry);
2703 			return -EINVAL;
2704 		}
2705 		/* Fall through to decrease pool */
2706 	}
2707 
2708 	/*
2709 	 * Increase the pool size
2710 	 * First take pages out of surplus state.  Then make up the
2711 	 * remaining difference by allocating fresh huge pages.
2712 	 *
2713 	 * We might race with alloc_surplus_huge_page() here and be unable
2714 	 * to convert a surplus huge page to a normal huge page. That is
2715 	 * not critical, though, it just means the overall size of the
2716 	 * pool might be one hugepage larger than it needs to be, but
2717 	 * within all the constraints specified by the sysctls.
2718 	 */
2719 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2720 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2721 			break;
2722 	}
2723 
2724 	while (count > persistent_huge_pages(h)) {
2725 		/*
2726 		 * If this allocation races such that we no longer need the
2727 		 * page, free_huge_page will handle it by freeing the page
2728 		 * and reducing the surplus.
2729 		 */
2730 		spin_unlock(&hugetlb_lock);
2731 
2732 		/* yield cpu to avoid soft lockup */
2733 		cond_resched();
2734 
2735 		ret = alloc_pool_huge_page(h, nodes_allowed,
2736 						node_alloc_noretry);
2737 		spin_lock(&hugetlb_lock);
2738 		if (!ret)
2739 			goto out;
2740 
2741 		/* Bail for signals. Probably ctrl-c from user */
2742 		if (signal_pending(current))
2743 			goto out;
2744 	}
2745 
2746 	/*
2747 	 * Decrease the pool size
2748 	 * First return free pages to the buddy allocator (being careful
2749 	 * to keep enough around to satisfy reservations).  Then place
2750 	 * pages into surplus state as needed so the pool will shrink
2751 	 * to the desired size as pages become free.
2752 	 *
2753 	 * By placing pages into the surplus state independent of the
2754 	 * overcommit value, we are allowing the surplus pool size to
2755 	 * exceed overcommit. There are few sane options here. Since
2756 	 * alloc_surplus_huge_page() is checking the global counter,
2757 	 * though, we'll note that we're not allowed to exceed surplus
2758 	 * and won't grow the pool anywhere else. Not until one of the
2759 	 * sysctls are changed, or the surplus pages go out of use.
2760 	 */
2761 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2762 	min_count = max(count, min_count);
2763 	try_to_free_low(h, min_count, nodes_allowed);
2764 	while (min_count < persistent_huge_pages(h)) {
2765 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2766 			break;
2767 		cond_resched_lock(&hugetlb_lock);
2768 	}
2769 	while (count < persistent_huge_pages(h)) {
2770 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2771 			break;
2772 	}
2773 out:
2774 	h->max_huge_pages = persistent_huge_pages(h);
2775 	spin_unlock(&hugetlb_lock);
2776 
2777 	NODEMASK_FREE(node_alloc_noretry);
2778 
2779 	return 0;
2780 }
2781 
2782 #define HSTATE_ATTR_RO(_name) \
2783 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2784 
2785 #define HSTATE_ATTR(_name) \
2786 	static struct kobj_attribute _name##_attr = \
2787 		__ATTR(_name, 0644, _name##_show, _name##_store)
2788 
2789 static struct kobject *hugepages_kobj;
2790 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2791 
2792 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2793 
2794 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2795 {
2796 	int i;
2797 
2798 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2799 		if (hstate_kobjs[i] == kobj) {
2800 			if (nidp)
2801 				*nidp = NUMA_NO_NODE;
2802 			return &hstates[i];
2803 		}
2804 
2805 	return kobj_to_node_hstate(kobj, nidp);
2806 }
2807 
2808 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2809 					struct kobj_attribute *attr, char *buf)
2810 {
2811 	struct hstate *h;
2812 	unsigned long nr_huge_pages;
2813 	int nid;
2814 
2815 	h = kobj_to_hstate(kobj, &nid);
2816 	if (nid == NUMA_NO_NODE)
2817 		nr_huge_pages = h->nr_huge_pages;
2818 	else
2819 		nr_huge_pages = h->nr_huge_pages_node[nid];
2820 
2821 	return sprintf(buf, "%lu\n", nr_huge_pages);
2822 }
2823 
2824 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2825 					   struct hstate *h, int nid,
2826 					   unsigned long count, size_t len)
2827 {
2828 	int err;
2829 	nodemask_t nodes_allowed, *n_mask;
2830 
2831 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2832 		return -EINVAL;
2833 
2834 	if (nid == NUMA_NO_NODE) {
2835 		/*
2836 		 * global hstate attribute
2837 		 */
2838 		if (!(obey_mempolicy &&
2839 				init_nodemask_of_mempolicy(&nodes_allowed)))
2840 			n_mask = &node_states[N_MEMORY];
2841 		else
2842 			n_mask = &nodes_allowed;
2843 	} else {
2844 		/*
2845 		 * Node specific request.  count adjustment happens in
2846 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2847 		 */
2848 		init_nodemask_of_node(&nodes_allowed, nid);
2849 		n_mask = &nodes_allowed;
2850 	}
2851 
2852 	err = set_max_huge_pages(h, count, nid, n_mask);
2853 
2854 	return err ? err : len;
2855 }
2856 
2857 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2858 					 struct kobject *kobj, const char *buf,
2859 					 size_t len)
2860 {
2861 	struct hstate *h;
2862 	unsigned long count;
2863 	int nid;
2864 	int err;
2865 
2866 	err = kstrtoul(buf, 10, &count);
2867 	if (err)
2868 		return err;
2869 
2870 	h = kobj_to_hstate(kobj, &nid);
2871 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2872 }
2873 
2874 static ssize_t nr_hugepages_show(struct kobject *kobj,
2875 				       struct kobj_attribute *attr, char *buf)
2876 {
2877 	return nr_hugepages_show_common(kobj, attr, buf);
2878 }
2879 
2880 static ssize_t nr_hugepages_store(struct kobject *kobj,
2881 	       struct kobj_attribute *attr, const char *buf, size_t len)
2882 {
2883 	return nr_hugepages_store_common(false, kobj, buf, len);
2884 }
2885 HSTATE_ATTR(nr_hugepages);
2886 
2887 #ifdef CONFIG_NUMA
2888 
2889 /*
2890  * hstate attribute for optionally mempolicy-based constraint on persistent
2891  * huge page alloc/free.
2892  */
2893 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2894 				       struct kobj_attribute *attr, char *buf)
2895 {
2896 	return nr_hugepages_show_common(kobj, attr, buf);
2897 }
2898 
2899 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2900 	       struct kobj_attribute *attr, const char *buf, size_t len)
2901 {
2902 	return nr_hugepages_store_common(true, kobj, buf, len);
2903 }
2904 HSTATE_ATTR(nr_hugepages_mempolicy);
2905 #endif
2906 
2907 
2908 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2909 					struct kobj_attribute *attr, char *buf)
2910 {
2911 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2912 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2913 }
2914 
2915 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2916 		struct kobj_attribute *attr, const char *buf, size_t count)
2917 {
2918 	int err;
2919 	unsigned long input;
2920 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2921 
2922 	if (hstate_is_gigantic(h))
2923 		return -EINVAL;
2924 
2925 	err = kstrtoul(buf, 10, &input);
2926 	if (err)
2927 		return err;
2928 
2929 	spin_lock(&hugetlb_lock);
2930 	h->nr_overcommit_huge_pages = input;
2931 	spin_unlock(&hugetlb_lock);
2932 
2933 	return count;
2934 }
2935 HSTATE_ATTR(nr_overcommit_hugepages);
2936 
2937 static ssize_t free_hugepages_show(struct kobject *kobj,
2938 					struct kobj_attribute *attr, char *buf)
2939 {
2940 	struct hstate *h;
2941 	unsigned long free_huge_pages;
2942 	int nid;
2943 
2944 	h = kobj_to_hstate(kobj, &nid);
2945 	if (nid == NUMA_NO_NODE)
2946 		free_huge_pages = h->free_huge_pages;
2947 	else
2948 		free_huge_pages = h->free_huge_pages_node[nid];
2949 
2950 	return sprintf(buf, "%lu\n", free_huge_pages);
2951 }
2952 HSTATE_ATTR_RO(free_hugepages);
2953 
2954 static ssize_t resv_hugepages_show(struct kobject *kobj,
2955 					struct kobj_attribute *attr, char *buf)
2956 {
2957 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2958 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2959 }
2960 HSTATE_ATTR_RO(resv_hugepages);
2961 
2962 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2963 					struct kobj_attribute *attr, char *buf)
2964 {
2965 	struct hstate *h;
2966 	unsigned long surplus_huge_pages;
2967 	int nid;
2968 
2969 	h = kobj_to_hstate(kobj, &nid);
2970 	if (nid == NUMA_NO_NODE)
2971 		surplus_huge_pages = h->surplus_huge_pages;
2972 	else
2973 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2974 
2975 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2976 }
2977 HSTATE_ATTR_RO(surplus_hugepages);
2978 
2979 static struct attribute *hstate_attrs[] = {
2980 	&nr_hugepages_attr.attr,
2981 	&nr_overcommit_hugepages_attr.attr,
2982 	&free_hugepages_attr.attr,
2983 	&resv_hugepages_attr.attr,
2984 	&surplus_hugepages_attr.attr,
2985 #ifdef CONFIG_NUMA
2986 	&nr_hugepages_mempolicy_attr.attr,
2987 #endif
2988 	NULL,
2989 };
2990 
2991 static const struct attribute_group hstate_attr_group = {
2992 	.attrs = hstate_attrs,
2993 };
2994 
2995 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2996 				    struct kobject **hstate_kobjs,
2997 				    const struct attribute_group *hstate_attr_group)
2998 {
2999 	int retval;
3000 	int hi = hstate_index(h);
3001 
3002 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3003 	if (!hstate_kobjs[hi])
3004 		return -ENOMEM;
3005 
3006 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3007 	if (retval)
3008 		kobject_put(hstate_kobjs[hi]);
3009 
3010 	return retval;
3011 }
3012 
3013 static void __init hugetlb_sysfs_init(void)
3014 {
3015 	struct hstate *h;
3016 	int err;
3017 
3018 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3019 	if (!hugepages_kobj)
3020 		return;
3021 
3022 	for_each_hstate(h) {
3023 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3024 					 hstate_kobjs, &hstate_attr_group);
3025 		if (err)
3026 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
3027 	}
3028 }
3029 
3030 #ifdef CONFIG_NUMA
3031 
3032 /*
3033  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3034  * with node devices in node_devices[] using a parallel array.  The array
3035  * index of a node device or _hstate == node id.
3036  * This is here to avoid any static dependency of the node device driver, in
3037  * the base kernel, on the hugetlb module.
3038  */
3039 struct node_hstate {
3040 	struct kobject		*hugepages_kobj;
3041 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3042 };
3043 static struct node_hstate node_hstates[MAX_NUMNODES];
3044 
3045 /*
3046  * A subset of global hstate attributes for node devices
3047  */
3048 static struct attribute *per_node_hstate_attrs[] = {
3049 	&nr_hugepages_attr.attr,
3050 	&free_hugepages_attr.attr,
3051 	&surplus_hugepages_attr.attr,
3052 	NULL,
3053 };
3054 
3055 static const struct attribute_group per_node_hstate_attr_group = {
3056 	.attrs = per_node_hstate_attrs,
3057 };
3058 
3059 /*
3060  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3061  * Returns node id via non-NULL nidp.
3062  */
3063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3064 {
3065 	int nid;
3066 
3067 	for (nid = 0; nid < nr_node_ids; nid++) {
3068 		struct node_hstate *nhs = &node_hstates[nid];
3069 		int i;
3070 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3071 			if (nhs->hstate_kobjs[i] == kobj) {
3072 				if (nidp)
3073 					*nidp = nid;
3074 				return &hstates[i];
3075 			}
3076 	}
3077 
3078 	BUG();
3079 	return NULL;
3080 }
3081 
3082 /*
3083  * Unregister hstate attributes from a single node device.
3084  * No-op if no hstate attributes attached.
3085  */
3086 static void hugetlb_unregister_node(struct node *node)
3087 {
3088 	struct hstate *h;
3089 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3090 
3091 	if (!nhs->hugepages_kobj)
3092 		return;		/* no hstate attributes */
3093 
3094 	for_each_hstate(h) {
3095 		int idx = hstate_index(h);
3096 		if (nhs->hstate_kobjs[idx]) {
3097 			kobject_put(nhs->hstate_kobjs[idx]);
3098 			nhs->hstate_kobjs[idx] = NULL;
3099 		}
3100 	}
3101 
3102 	kobject_put(nhs->hugepages_kobj);
3103 	nhs->hugepages_kobj = NULL;
3104 }
3105 
3106 
3107 /*
3108  * Register hstate attributes for a single node device.
3109  * No-op if attributes already registered.
3110  */
3111 static void hugetlb_register_node(struct node *node)
3112 {
3113 	struct hstate *h;
3114 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3115 	int err;
3116 
3117 	if (nhs->hugepages_kobj)
3118 		return;		/* already allocated */
3119 
3120 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3121 							&node->dev.kobj);
3122 	if (!nhs->hugepages_kobj)
3123 		return;
3124 
3125 	for_each_hstate(h) {
3126 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3127 						nhs->hstate_kobjs,
3128 						&per_node_hstate_attr_group);
3129 		if (err) {
3130 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
3131 				h->name, node->dev.id);
3132 			hugetlb_unregister_node(node);
3133 			break;
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * hugetlb init time:  register hstate attributes for all registered node
3140  * devices of nodes that have memory.  All on-line nodes should have
3141  * registered their associated device by this time.
3142  */
3143 static void __init hugetlb_register_all_nodes(void)
3144 {
3145 	int nid;
3146 
3147 	for_each_node_state(nid, N_MEMORY) {
3148 		struct node *node = node_devices[nid];
3149 		if (node->dev.id == nid)
3150 			hugetlb_register_node(node);
3151 	}
3152 
3153 	/*
3154 	 * Let the node device driver know we're here so it can
3155 	 * [un]register hstate attributes on node hotplug.
3156 	 */
3157 	register_hugetlbfs_with_node(hugetlb_register_node,
3158 				     hugetlb_unregister_node);
3159 }
3160 #else	/* !CONFIG_NUMA */
3161 
3162 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3163 {
3164 	BUG();
3165 	if (nidp)
3166 		*nidp = -1;
3167 	return NULL;
3168 }
3169 
3170 static void hugetlb_register_all_nodes(void) { }
3171 
3172 #endif
3173 
3174 static int __init hugetlb_init(void)
3175 {
3176 	int i;
3177 
3178 	if (!hugepages_supported())
3179 		return 0;
3180 
3181 	if (!size_to_hstate(default_hstate_size)) {
3182 		if (default_hstate_size != 0) {
3183 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3184 			       default_hstate_size, HPAGE_SIZE);
3185 		}
3186 
3187 		default_hstate_size = HPAGE_SIZE;
3188 		if (!size_to_hstate(default_hstate_size))
3189 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3190 	}
3191 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
3192 	if (default_hstate_max_huge_pages) {
3193 		if (!default_hstate.max_huge_pages)
3194 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3195 	}
3196 
3197 	hugetlb_init_hstates();
3198 	gather_bootmem_prealloc();
3199 	report_hugepages();
3200 
3201 	hugetlb_sysfs_init();
3202 	hugetlb_register_all_nodes();
3203 	hugetlb_cgroup_file_init();
3204 
3205 #ifdef CONFIG_SMP
3206 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3207 #else
3208 	num_fault_mutexes = 1;
3209 #endif
3210 	hugetlb_fault_mutex_table =
3211 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3212 			      GFP_KERNEL);
3213 	BUG_ON(!hugetlb_fault_mutex_table);
3214 
3215 	for (i = 0; i < num_fault_mutexes; i++)
3216 		mutex_init(&hugetlb_fault_mutex_table[i]);
3217 	return 0;
3218 }
3219 subsys_initcall(hugetlb_init);
3220 
3221 /* Should be called on processing a hugepagesz=... option */
3222 void __init hugetlb_bad_size(void)
3223 {
3224 	parsed_valid_hugepagesz = false;
3225 }
3226 
3227 void __init hugetlb_add_hstate(unsigned int order)
3228 {
3229 	struct hstate *h;
3230 	unsigned long i;
3231 
3232 	if (size_to_hstate(PAGE_SIZE << order)) {
3233 		pr_warn("hugepagesz= specified twice, ignoring\n");
3234 		return;
3235 	}
3236 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3237 	BUG_ON(order == 0);
3238 	h = &hstates[hugetlb_max_hstate++];
3239 	h->order = order;
3240 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3241 	h->nr_huge_pages = 0;
3242 	h->free_huge_pages = 0;
3243 	for (i = 0; i < MAX_NUMNODES; ++i)
3244 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3245 	INIT_LIST_HEAD(&h->hugepage_activelist);
3246 	h->next_nid_to_alloc = first_memory_node;
3247 	h->next_nid_to_free = first_memory_node;
3248 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3249 					huge_page_size(h)/1024);
3250 
3251 	parsed_hstate = h;
3252 }
3253 
3254 static int __init hugetlb_nrpages_setup(char *s)
3255 {
3256 	unsigned long *mhp;
3257 	static unsigned long *last_mhp;
3258 
3259 	if (!parsed_valid_hugepagesz) {
3260 		pr_warn("hugepages = %s preceded by "
3261 			"an unsupported hugepagesz, ignoring\n", s);
3262 		parsed_valid_hugepagesz = true;
3263 		return 1;
3264 	}
3265 	/*
3266 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3267 	 * so this hugepages= parameter goes to the "default hstate".
3268 	 */
3269 	else if (!hugetlb_max_hstate)
3270 		mhp = &default_hstate_max_huge_pages;
3271 	else
3272 		mhp = &parsed_hstate->max_huge_pages;
3273 
3274 	if (mhp == last_mhp) {
3275 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3276 		return 1;
3277 	}
3278 
3279 	if (sscanf(s, "%lu", mhp) <= 0)
3280 		*mhp = 0;
3281 
3282 	/*
3283 	 * Global state is always initialized later in hugetlb_init.
3284 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3285 	 * use the bootmem allocator.
3286 	 */
3287 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3288 		hugetlb_hstate_alloc_pages(parsed_hstate);
3289 
3290 	last_mhp = mhp;
3291 
3292 	return 1;
3293 }
3294 __setup("hugepages=", hugetlb_nrpages_setup);
3295 
3296 static int __init hugetlb_default_setup(char *s)
3297 {
3298 	default_hstate_size = memparse(s, &s);
3299 	return 1;
3300 }
3301 __setup("default_hugepagesz=", hugetlb_default_setup);
3302 
3303 static unsigned int cpuset_mems_nr(unsigned int *array)
3304 {
3305 	int node;
3306 	unsigned int nr = 0;
3307 
3308 	for_each_node_mask(node, cpuset_current_mems_allowed)
3309 		nr += array[node];
3310 
3311 	return nr;
3312 }
3313 
3314 #ifdef CONFIG_SYSCTL
3315 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3316 			 struct ctl_table *table, int write,
3317 			 void __user *buffer, size_t *length, loff_t *ppos)
3318 {
3319 	struct hstate *h = &default_hstate;
3320 	unsigned long tmp = h->max_huge_pages;
3321 	int ret;
3322 
3323 	if (!hugepages_supported())
3324 		return -EOPNOTSUPP;
3325 
3326 	table->data = &tmp;
3327 	table->maxlen = sizeof(unsigned long);
3328 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3329 	if (ret)
3330 		goto out;
3331 
3332 	if (write)
3333 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3334 						  NUMA_NO_NODE, tmp, *length);
3335 out:
3336 	return ret;
3337 }
3338 
3339 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3340 			  void __user *buffer, size_t *length, loff_t *ppos)
3341 {
3342 
3343 	return hugetlb_sysctl_handler_common(false, table, write,
3344 							buffer, length, ppos);
3345 }
3346 
3347 #ifdef CONFIG_NUMA
3348 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3349 			  void __user *buffer, size_t *length, loff_t *ppos)
3350 {
3351 	return hugetlb_sysctl_handler_common(true, table, write,
3352 							buffer, length, ppos);
3353 }
3354 #endif /* CONFIG_NUMA */
3355 
3356 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3357 			void __user *buffer,
3358 			size_t *length, loff_t *ppos)
3359 {
3360 	struct hstate *h = &default_hstate;
3361 	unsigned long tmp;
3362 	int ret;
3363 
3364 	if (!hugepages_supported())
3365 		return -EOPNOTSUPP;
3366 
3367 	tmp = h->nr_overcommit_huge_pages;
3368 
3369 	if (write && hstate_is_gigantic(h))
3370 		return -EINVAL;
3371 
3372 	table->data = &tmp;
3373 	table->maxlen = sizeof(unsigned long);
3374 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3375 	if (ret)
3376 		goto out;
3377 
3378 	if (write) {
3379 		spin_lock(&hugetlb_lock);
3380 		h->nr_overcommit_huge_pages = tmp;
3381 		spin_unlock(&hugetlb_lock);
3382 	}
3383 out:
3384 	return ret;
3385 }
3386 
3387 #endif /* CONFIG_SYSCTL */
3388 
3389 void hugetlb_report_meminfo(struct seq_file *m)
3390 {
3391 	struct hstate *h;
3392 	unsigned long total = 0;
3393 
3394 	if (!hugepages_supported())
3395 		return;
3396 
3397 	for_each_hstate(h) {
3398 		unsigned long count = h->nr_huge_pages;
3399 
3400 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3401 
3402 		if (h == &default_hstate)
3403 			seq_printf(m,
3404 				   "HugePages_Total:   %5lu\n"
3405 				   "HugePages_Free:    %5lu\n"
3406 				   "HugePages_Rsvd:    %5lu\n"
3407 				   "HugePages_Surp:    %5lu\n"
3408 				   "Hugepagesize:   %8lu kB\n",
3409 				   count,
3410 				   h->free_huge_pages,
3411 				   h->resv_huge_pages,
3412 				   h->surplus_huge_pages,
3413 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3414 	}
3415 
3416 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3417 }
3418 
3419 int hugetlb_report_node_meminfo(int nid, char *buf)
3420 {
3421 	struct hstate *h = &default_hstate;
3422 	if (!hugepages_supported())
3423 		return 0;
3424 	return sprintf(buf,
3425 		"Node %d HugePages_Total: %5u\n"
3426 		"Node %d HugePages_Free:  %5u\n"
3427 		"Node %d HugePages_Surp:  %5u\n",
3428 		nid, h->nr_huge_pages_node[nid],
3429 		nid, h->free_huge_pages_node[nid],
3430 		nid, h->surplus_huge_pages_node[nid]);
3431 }
3432 
3433 void hugetlb_show_meminfo(void)
3434 {
3435 	struct hstate *h;
3436 	int nid;
3437 
3438 	if (!hugepages_supported())
3439 		return;
3440 
3441 	for_each_node_state(nid, N_MEMORY)
3442 		for_each_hstate(h)
3443 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3444 				nid,
3445 				h->nr_huge_pages_node[nid],
3446 				h->free_huge_pages_node[nid],
3447 				h->surplus_huge_pages_node[nid],
3448 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3449 }
3450 
3451 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3452 {
3453 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3454 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3455 }
3456 
3457 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3458 unsigned long hugetlb_total_pages(void)
3459 {
3460 	struct hstate *h;
3461 	unsigned long nr_total_pages = 0;
3462 
3463 	for_each_hstate(h)
3464 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3465 	return nr_total_pages;
3466 }
3467 
3468 static int hugetlb_acct_memory(struct hstate *h, long delta)
3469 {
3470 	int ret = -ENOMEM;
3471 
3472 	spin_lock(&hugetlb_lock);
3473 	/*
3474 	 * When cpuset is configured, it breaks the strict hugetlb page
3475 	 * reservation as the accounting is done on a global variable. Such
3476 	 * reservation is completely rubbish in the presence of cpuset because
3477 	 * the reservation is not checked against page availability for the
3478 	 * current cpuset. Application can still potentially OOM'ed by kernel
3479 	 * with lack of free htlb page in cpuset that the task is in.
3480 	 * Attempt to enforce strict accounting with cpuset is almost
3481 	 * impossible (or too ugly) because cpuset is too fluid that
3482 	 * task or memory node can be dynamically moved between cpusets.
3483 	 *
3484 	 * The change of semantics for shared hugetlb mapping with cpuset is
3485 	 * undesirable. However, in order to preserve some of the semantics,
3486 	 * we fall back to check against current free page availability as
3487 	 * a best attempt and hopefully to minimize the impact of changing
3488 	 * semantics that cpuset has.
3489 	 */
3490 	if (delta > 0) {
3491 		if (gather_surplus_pages(h, delta) < 0)
3492 			goto out;
3493 
3494 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3495 			return_unused_surplus_pages(h, delta);
3496 			goto out;
3497 		}
3498 	}
3499 
3500 	ret = 0;
3501 	if (delta < 0)
3502 		return_unused_surplus_pages(h, (unsigned long) -delta);
3503 
3504 out:
3505 	spin_unlock(&hugetlb_lock);
3506 	return ret;
3507 }
3508 
3509 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3510 {
3511 	struct resv_map *resv = vma_resv_map(vma);
3512 
3513 	/*
3514 	 * This new VMA should share its siblings reservation map if present.
3515 	 * The VMA will only ever have a valid reservation map pointer where
3516 	 * it is being copied for another still existing VMA.  As that VMA
3517 	 * has a reference to the reservation map it cannot disappear until
3518 	 * after this open call completes.  It is therefore safe to take a
3519 	 * new reference here without additional locking.
3520 	 */
3521 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3522 		kref_get(&resv->refs);
3523 }
3524 
3525 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3526 {
3527 	struct hstate *h = hstate_vma(vma);
3528 	struct resv_map *resv = vma_resv_map(vma);
3529 	struct hugepage_subpool *spool = subpool_vma(vma);
3530 	unsigned long reserve, start, end;
3531 	long gbl_reserve;
3532 
3533 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3534 		return;
3535 
3536 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3537 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3538 
3539 	reserve = (end - start) - region_count(resv, start, end);
3540 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3541 	if (reserve) {
3542 		/*
3543 		 * Decrement reserve counts.  The global reserve count may be
3544 		 * adjusted if the subpool has a minimum size.
3545 		 */
3546 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3547 		hugetlb_acct_memory(h, -gbl_reserve);
3548 	}
3549 
3550 	kref_put(&resv->refs, resv_map_release);
3551 }
3552 
3553 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3554 {
3555 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3556 		return -EINVAL;
3557 	return 0;
3558 }
3559 
3560 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3561 {
3562 	struct hstate *hstate = hstate_vma(vma);
3563 
3564 	return 1UL << huge_page_shift(hstate);
3565 }
3566 
3567 /*
3568  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3569  * handle_mm_fault() to try to instantiate regular-sized pages in the
3570  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3571  * this far.
3572  */
3573 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3574 {
3575 	BUG();
3576 	return 0;
3577 }
3578 
3579 /*
3580  * When a new function is introduced to vm_operations_struct and added
3581  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3582  * This is because under System V memory model, mappings created via
3583  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3584  * their original vm_ops are overwritten with shm_vm_ops.
3585  */
3586 const struct vm_operations_struct hugetlb_vm_ops = {
3587 	.fault = hugetlb_vm_op_fault,
3588 	.open = hugetlb_vm_op_open,
3589 	.close = hugetlb_vm_op_close,
3590 	.split = hugetlb_vm_op_split,
3591 	.pagesize = hugetlb_vm_op_pagesize,
3592 };
3593 
3594 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3595 				int writable)
3596 {
3597 	pte_t entry;
3598 
3599 	if (writable) {
3600 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3601 					 vma->vm_page_prot)));
3602 	} else {
3603 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3604 					   vma->vm_page_prot));
3605 	}
3606 	entry = pte_mkyoung(entry);
3607 	entry = pte_mkhuge(entry);
3608 	entry = arch_make_huge_pte(entry, vma, page, writable);
3609 
3610 	return entry;
3611 }
3612 
3613 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3614 				   unsigned long address, pte_t *ptep)
3615 {
3616 	pte_t entry;
3617 
3618 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3619 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3620 		update_mmu_cache(vma, address, ptep);
3621 }
3622 
3623 bool is_hugetlb_entry_migration(pte_t pte)
3624 {
3625 	swp_entry_t swp;
3626 
3627 	if (huge_pte_none(pte) || pte_present(pte))
3628 		return false;
3629 	swp = pte_to_swp_entry(pte);
3630 	if (non_swap_entry(swp) && is_migration_entry(swp))
3631 		return true;
3632 	else
3633 		return false;
3634 }
3635 
3636 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3637 {
3638 	swp_entry_t swp;
3639 
3640 	if (huge_pte_none(pte) || pte_present(pte))
3641 		return 0;
3642 	swp = pte_to_swp_entry(pte);
3643 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3644 		return 1;
3645 	else
3646 		return 0;
3647 }
3648 
3649 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3650 			    struct vm_area_struct *vma)
3651 {
3652 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3653 	struct page *ptepage;
3654 	unsigned long addr;
3655 	int cow;
3656 	struct hstate *h = hstate_vma(vma);
3657 	unsigned long sz = huge_page_size(h);
3658 	struct address_space *mapping = vma->vm_file->f_mapping;
3659 	struct mmu_notifier_range range;
3660 	int ret = 0;
3661 
3662 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3663 
3664 	if (cow) {
3665 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3666 					vma->vm_start,
3667 					vma->vm_end);
3668 		mmu_notifier_invalidate_range_start(&range);
3669 	} else {
3670 		/*
3671 		 * For shared mappings i_mmap_rwsem must be held to call
3672 		 * huge_pte_alloc, otherwise the returned ptep could go
3673 		 * away if part of a shared pmd and another thread calls
3674 		 * huge_pmd_unshare.
3675 		 */
3676 		i_mmap_lock_read(mapping);
3677 	}
3678 
3679 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3680 		spinlock_t *src_ptl, *dst_ptl;
3681 		src_pte = huge_pte_offset(src, addr, sz);
3682 		if (!src_pte)
3683 			continue;
3684 		dst_pte = huge_pte_alloc(dst, addr, sz);
3685 		if (!dst_pte) {
3686 			ret = -ENOMEM;
3687 			break;
3688 		}
3689 
3690 		/*
3691 		 * If the pagetables are shared don't copy or take references.
3692 		 * dst_pte == src_pte is the common case of src/dest sharing.
3693 		 *
3694 		 * However, src could have 'unshared' and dst shares with
3695 		 * another vma.  If dst_pte !none, this implies sharing.
3696 		 * Check here before taking page table lock, and once again
3697 		 * after taking the lock below.
3698 		 */
3699 		dst_entry = huge_ptep_get(dst_pte);
3700 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3701 			continue;
3702 
3703 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3704 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3705 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3706 		entry = huge_ptep_get(src_pte);
3707 		dst_entry = huge_ptep_get(dst_pte);
3708 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3709 			/*
3710 			 * Skip if src entry none.  Also, skip in the
3711 			 * unlikely case dst entry !none as this implies
3712 			 * sharing with another vma.
3713 			 */
3714 			;
3715 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3716 				    is_hugetlb_entry_hwpoisoned(entry))) {
3717 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3718 
3719 			if (is_write_migration_entry(swp_entry) && cow) {
3720 				/*
3721 				 * COW mappings require pages in both
3722 				 * parent and child to be set to read.
3723 				 */
3724 				make_migration_entry_read(&swp_entry);
3725 				entry = swp_entry_to_pte(swp_entry);
3726 				set_huge_swap_pte_at(src, addr, src_pte,
3727 						     entry, sz);
3728 			}
3729 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3730 		} else {
3731 			if (cow) {
3732 				/*
3733 				 * No need to notify as we are downgrading page
3734 				 * table protection not changing it to point
3735 				 * to a new page.
3736 				 *
3737 				 * See Documentation/vm/mmu_notifier.rst
3738 				 */
3739 				huge_ptep_set_wrprotect(src, addr, src_pte);
3740 			}
3741 			entry = huge_ptep_get(src_pte);
3742 			ptepage = pte_page(entry);
3743 			get_page(ptepage);
3744 			page_dup_rmap(ptepage, true);
3745 			set_huge_pte_at(dst, addr, dst_pte, entry);
3746 			hugetlb_count_add(pages_per_huge_page(h), dst);
3747 		}
3748 		spin_unlock(src_ptl);
3749 		spin_unlock(dst_ptl);
3750 	}
3751 
3752 	if (cow)
3753 		mmu_notifier_invalidate_range_end(&range);
3754 	else
3755 		i_mmap_unlock_read(mapping);
3756 
3757 	return ret;
3758 }
3759 
3760 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3761 			    unsigned long start, unsigned long end,
3762 			    struct page *ref_page)
3763 {
3764 	struct mm_struct *mm = vma->vm_mm;
3765 	unsigned long address;
3766 	pte_t *ptep;
3767 	pte_t pte;
3768 	spinlock_t *ptl;
3769 	struct page *page;
3770 	struct hstate *h = hstate_vma(vma);
3771 	unsigned long sz = huge_page_size(h);
3772 	struct mmu_notifier_range range;
3773 
3774 	WARN_ON(!is_vm_hugetlb_page(vma));
3775 	BUG_ON(start & ~huge_page_mask(h));
3776 	BUG_ON(end & ~huge_page_mask(h));
3777 
3778 	/*
3779 	 * This is a hugetlb vma, all the pte entries should point
3780 	 * to huge page.
3781 	 */
3782 	tlb_change_page_size(tlb, sz);
3783 	tlb_start_vma(tlb, vma);
3784 
3785 	/*
3786 	 * If sharing possible, alert mmu notifiers of worst case.
3787 	 */
3788 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3789 				end);
3790 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3791 	mmu_notifier_invalidate_range_start(&range);
3792 	address = start;
3793 	for (; address < end; address += sz) {
3794 		ptep = huge_pte_offset(mm, address, sz);
3795 		if (!ptep)
3796 			continue;
3797 
3798 		ptl = huge_pte_lock(h, mm, ptep);
3799 		if (huge_pmd_unshare(mm, &address, ptep)) {
3800 			spin_unlock(ptl);
3801 			/*
3802 			 * We just unmapped a page of PMDs by clearing a PUD.
3803 			 * The caller's TLB flush range should cover this area.
3804 			 */
3805 			continue;
3806 		}
3807 
3808 		pte = huge_ptep_get(ptep);
3809 		if (huge_pte_none(pte)) {
3810 			spin_unlock(ptl);
3811 			continue;
3812 		}
3813 
3814 		/*
3815 		 * Migrating hugepage or HWPoisoned hugepage is already
3816 		 * unmapped and its refcount is dropped, so just clear pte here.
3817 		 */
3818 		if (unlikely(!pte_present(pte))) {
3819 			huge_pte_clear(mm, address, ptep, sz);
3820 			spin_unlock(ptl);
3821 			continue;
3822 		}
3823 
3824 		page = pte_page(pte);
3825 		/*
3826 		 * If a reference page is supplied, it is because a specific
3827 		 * page is being unmapped, not a range. Ensure the page we
3828 		 * are about to unmap is the actual page of interest.
3829 		 */
3830 		if (ref_page) {
3831 			if (page != ref_page) {
3832 				spin_unlock(ptl);
3833 				continue;
3834 			}
3835 			/*
3836 			 * Mark the VMA as having unmapped its page so that
3837 			 * future faults in this VMA will fail rather than
3838 			 * looking like data was lost
3839 			 */
3840 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3841 		}
3842 
3843 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3844 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3845 		if (huge_pte_dirty(pte))
3846 			set_page_dirty(page);
3847 
3848 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3849 		page_remove_rmap(page, true);
3850 
3851 		spin_unlock(ptl);
3852 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3853 		/*
3854 		 * Bail out after unmapping reference page if supplied
3855 		 */
3856 		if (ref_page)
3857 			break;
3858 	}
3859 	mmu_notifier_invalidate_range_end(&range);
3860 	tlb_end_vma(tlb, vma);
3861 }
3862 
3863 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3864 			  struct vm_area_struct *vma, unsigned long start,
3865 			  unsigned long end, struct page *ref_page)
3866 {
3867 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3868 
3869 	/*
3870 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3871 	 * test will fail on a vma being torn down, and not grab a page table
3872 	 * on its way out.  We're lucky that the flag has such an appropriate
3873 	 * name, and can in fact be safely cleared here. We could clear it
3874 	 * before the __unmap_hugepage_range above, but all that's necessary
3875 	 * is to clear it before releasing the i_mmap_rwsem. This works
3876 	 * because in the context this is called, the VMA is about to be
3877 	 * destroyed and the i_mmap_rwsem is held.
3878 	 */
3879 	vma->vm_flags &= ~VM_MAYSHARE;
3880 }
3881 
3882 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3883 			  unsigned long end, struct page *ref_page)
3884 {
3885 	struct mm_struct *mm;
3886 	struct mmu_gather tlb;
3887 	unsigned long tlb_start = start;
3888 	unsigned long tlb_end = end;
3889 
3890 	/*
3891 	 * If shared PMDs were possibly used within this vma range, adjust
3892 	 * start/end for worst case tlb flushing.
3893 	 * Note that we can not be sure if PMDs are shared until we try to
3894 	 * unmap pages.  However, we want to make sure TLB flushing covers
3895 	 * the largest possible range.
3896 	 */
3897 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3898 
3899 	mm = vma->vm_mm;
3900 
3901 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3902 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3903 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3904 }
3905 
3906 /*
3907  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3908  * mappping it owns the reserve page for. The intention is to unmap the page
3909  * from other VMAs and let the children be SIGKILLed if they are faulting the
3910  * same region.
3911  */
3912 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3913 			      struct page *page, unsigned long address)
3914 {
3915 	struct hstate *h = hstate_vma(vma);
3916 	struct vm_area_struct *iter_vma;
3917 	struct address_space *mapping;
3918 	pgoff_t pgoff;
3919 
3920 	/*
3921 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3922 	 * from page cache lookup which is in HPAGE_SIZE units.
3923 	 */
3924 	address = address & huge_page_mask(h);
3925 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3926 			vma->vm_pgoff;
3927 	mapping = vma->vm_file->f_mapping;
3928 
3929 	/*
3930 	 * Take the mapping lock for the duration of the table walk. As
3931 	 * this mapping should be shared between all the VMAs,
3932 	 * __unmap_hugepage_range() is called as the lock is already held
3933 	 */
3934 	i_mmap_lock_write(mapping);
3935 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3936 		/* Do not unmap the current VMA */
3937 		if (iter_vma == vma)
3938 			continue;
3939 
3940 		/*
3941 		 * Shared VMAs have their own reserves and do not affect
3942 		 * MAP_PRIVATE accounting but it is possible that a shared
3943 		 * VMA is using the same page so check and skip such VMAs.
3944 		 */
3945 		if (iter_vma->vm_flags & VM_MAYSHARE)
3946 			continue;
3947 
3948 		/*
3949 		 * Unmap the page from other VMAs without their own reserves.
3950 		 * They get marked to be SIGKILLed if they fault in these
3951 		 * areas. This is because a future no-page fault on this VMA
3952 		 * could insert a zeroed page instead of the data existing
3953 		 * from the time of fork. This would look like data corruption
3954 		 */
3955 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3956 			unmap_hugepage_range(iter_vma, address,
3957 					     address + huge_page_size(h), page);
3958 	}
3959 	i_mmap_unlock_write(mapping);
3960 }
3961 
3962 /*
3963  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3964  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3965  * cannot race with other handlers or page migration.
3966  * Keep the pte_same checks anyway to make transition from the mutex easier.
3967  */
3968 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3969 		       unsigned long address, pte_t *ptep,
3970 		       struct page *pagecache_page, spinlock_t *ptl)
3971 {
3972 	pte_t pte;
3973 	struct hstate *h = hstate_vma(vma);
3974 	struct page *old_page, *new_page;
3975 	int outside_reserve = 0;
3976 	vm_fault_t ret = 0;
3977 	unsigned long haddr = address & huge_page_mask(h);
3978 	struct mmu_notifier_range range;
3979 
3980 	pte = huge_ptep_get(ptep);
3981 	old_page = pte_page(pte);
3982 
3983 retry_avoidcopy:
3984 	/* If no-one else is actually using this page, avoid the copy
3985 	 * and just make the page writable */
3986 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3987 		page_move_anon_rmap(old_page, vma);
3988 		set_huge_ptep_writable(vma, haddr, ptep);
3989 		return 0;
3990 	}
3991 
3992 	/*
3993 	 * If the process that created a MAP_PRIVATE mapping is about to
3994 	 * perform a COW due to a shared page count, attempt to satisfy
3995 	 * the allocation without using the existing reserves. The pagecache
3996 	 * page is used to determine if the reserve at this address was
3997 	 * consumed or not. If reserves were used, a partial faulted mapping
3998 	 * at the time of fork() could consume its reserves on COW instead
3999 	 * of the full address range.
4000 	 */
4001 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4002 			old_page != pagecache_page)
4003 		outside_reserve = 1;
4004 
4005 	get_page(old_page);
4006 
4007 	/*
4008 	 * Drop page table lock as buddy allocator may be called. It will
4009 	 * be acquired again before returning to the caller, as expected.
4010 	 */
4011 	spin_unlock(ptl);
4012 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4013 
4014 	if (IS_ERR(new_page)) {
4015 		/*
4016 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4017 		 * it is due to references held by a child and an insufficient
4018 		 * huge page pool. To guarantee the original mappers
4019 		 * reliability, unmap the page from child processes. The child
4020 		 * may get SIGKILLed if it later faults.
4021 		 */
4022 		if (outside_reserve) {
4023 			put_page(old_page);
4024 			BUG_ON(huge_pte_none(pte));
4025 			unmap_ref_private(mm, vma, old_page, haddr);
4026 			BUG_ON(huge_pte_none(pte));
4027 			spin_lock(ptl);
4028 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4029 			if (likely(ptep &&
4030 				   pte_same(huge_ptep_get(ptep), pte)))
4031 				goto retry_avoidcopy;
4032 			/*
4033 			 * race occurs while re-acquiring page table
4034 			 * lock, and our job is done.
4035 			 */
4036 			return 0;
4037 		}
4038 
4039 		ret = vmf_error(PTR_ERR(new_page));
4040 		goto out_release_old;
4041 	}
4042 
4043 	/*
4044 	 * When the original hugepage is shared one, it does not have
4045 	 * anon_vma prepared.
4046 	 */
4047 	if (unlikely(anon_vma_prepare(vma))) {
4048 		ret = VM_FAULT_OOM;
4049 		goto out_release_all;
4050 	}
4051 
4052 	copy_user_huge_page(new_page, old_page, address, vma,
4053 			    pages_per_huge_page(h));
4054 	__SetPageUptodate(new_page);
4055 
4056 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4057 				haddr + huge_page_size(h));
4058 	mmu_notifier_invalidate_range_start(&range);
4059 
4060 	/*
4061 	 * Retake the page table lock to check for racing updates
4062 	 * before the page tables are altered
4063 	 */
4064 	spin_lock(ptl);
4065 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4066 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4067 		ClearPagePrivate(new_page);
4068 
4069 		/* Break COW */
4070 		huge_ptep_clear_flush(vma, haddr, ptep);
4071 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4072 		set_huge_pte_at(mm, haddr, ptep,
4073 				make_huge_pte(vma, new_page, 1));
4074 		page_remove_rmap(old_page, true);
4075 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4076 		set_page_huge_active(new_page);
4077 		/* Make the old page be freed below */
4078 		new_page = old_page;
4079 	}
4080 	spin_unlock(ptl);
4081 	mmu_notifier_invalidate_range_end(&range);
4082 out_release_all:
4083 	restore_reserve_on_error(h, vma, haddr, new_page);
4084 	put_page(new_page);
4085 out_release_old:
4086 	put_page(old_page);
4087 
4088 	spin_lock(ptl); /* Caller expects lock to be held */
4089 	return ret;
4090 }
4091 
4092 /* Return the pagecache page at a given address within a VMA */
4093 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4094 			struct vm_area_struct *vma, unsigned long address)
4095 {
4096 	struct address_space *mapping;
4097 	pgoff_t idx;
4098 
4099 	mapping = vma->vm_file->f_mapping;
4100 	idx = vma_hugecache_offset(h, vma, address);
4101 
4102 	return find_lock_page(mapping, idx);
4103 }
4104 
4105 /*
4106  * Return whether there is a pagecache page to back given address within VMA.
4107  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4108  */
4109 static bool hugetlbfs_pagecache_present(struct hstate *h,
4110 			struct vm_area_struct *vma, unsigned long address)
4111 {
4112 	struct address_space *mapping;
4113 	pgoff_t idx;
4114 	struct page *page;
4115 
4116 	mapping = vma->vm_file->f_mapping;
4117 	idx = vma_hugecache_offset(h, vma, address);
4118 
4119 	page = find_get_page(mapping, idx);
4120 	if (page)
4121 		put_page(page);
4122 	return page != NULL;
4123 }
4124 
4125 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4126 			   pgoff_t idx)
4127 {
4128 	struct inode *inode = mapping->host;
4129 	struct hstate *h = hstate_inode(inode);
4130 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4131 
4132 	if (err)
4133 		return err;
4134 	ClearPagePrivate(page);
4135 
4136 	/*
4137 	 * set page dirty so that it will not be removed from cache/file
4138 	 * by non-hugetlbfs specific code paths.
4139 	 */
4140 	set_page_dirty(page);
4141 
4142 	spin_lock(&inode->i_lock);
4143 	inode->i_blocks += blocks_per_huge_page(h);
4144 	spin_unlock(&inode->i_lock);
4145 	return 0;
4146 }
4147 
4148 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4149 			struct vm_area_struct *vma,
4150 			struct address_space *mapping, pgoff_t idx,
4151 			unsigned long address, pte_t *ptep, unsigned int flags)
4152 {
4153 	struct hstate *h = hstate_vma(vma);
4154 	vm_fault_t ret = VM_FAULT_SIGBUS;
4155 	int anon_rmap = 0;
4156 	unsigned long size;
4157 	struct page *page;
4158 	pte_t new_pte;
4159 	spinlock_t *ptl;
4160 	unsigned long haddr = address & huge_page_mask(h);
4161 	bool new_page = false;
4162 
4163 	/*
4164 	 * Currently, we are forced to kill the process in the event the
4165 	 * original mapper has unmapped pages from the child due to a failed
4166 	 * COW. Warn that such a situation has occurred as it may not be obvious
4167 	 */
4168 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4169 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4170 			   current->pid);
4171 		return ret;
4172 	}
4173 
4174 	/*
4175 	 * We can not race with truncation due to holding i_mmap_rwsem.
4176 	 * i_size is modified when holding i_mmap_rwsem, so check here
4177 	 * once for faults beyond end of file.
4178 	 */
4179 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4180 	if (idx >= size)
4181 		goto out;
4182 
4183 retry:
4184 	page = find_lock_page(mapping, idx);
4185 	if (!page) {
4186 		/*
4187 		 * Check for page in userfault range
4188 		 */
4189 		if (userfaultfd_missing(vma)) {
4190 			u32 hash;
4191 			struct vm_fault vmf = {
4192 				.vma = vma,
4193 				.address = haddr,
4194 				.flags = flags,
4195 				/*
4196 				 * Hard to debug if it ends up being
4197 				 * used by a callee that assumes
4198 				 * something about the other
4199 				 * uninitialized fields... same as in
4200 				 * memory.c
4201 				 */
4202 			};
4203 
4204 			/*
4205 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4206 			 * dropped before handling userfault.  Reacquire
4207 			 * after handling fault to make calling code simpler.
4208 			 */
4209 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4210 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4211 			i_mmap_unlock_read(mapping);
4212 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4213 			i_mmap_lock_read(mapping);
4214 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4215 			goto out;
4216 		}
4217 
4218 		page = alloc_huge_page(vma, haddr, 0);
4219 		if (IS_ERR(page)) {
4220 			/*
4221 			 * Returning error will result in faulting task being
4222 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4223 			 * tasks from racing to fault in the same page which
4224 			 * could result in false unable to allocate errors.
4225 			 * Page migration does not take the fault mutex, but
4226 			 * does a clear then write of pte's under page table
4227 			 * lock.  Page fault code could race with migration,
4228 			 * notice the clear pte and try to allocate a page
4229 			 * here.  Before returning error, get ptl and make
4230 			 * sure there really is no pte entry.
4231 			 */
4232 			ptl = huge_pte_lock(h, mm, ptep);
4233 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4234 				ret = 0;
4235 				spin_unlock(ptl);
4236 				goto out;
4237 			}
4238 			spin_unlock(ptl);
4239 			ret = vmf_error(PTR_ERR(page));
4240 			goto out;
4241 		}
4242 		clear_huge_page(page, address, pages_per_huge_page(h));
4243 		__SetPageUptodate(page);
4244 		new_page = true;
4245 
4246 		if (vma->vm_flags & VM_MAYSHARE) {
4247 			int err = huge_add_to_page_cache(page, mapping, idx);
4248 			if (err) {
4249 				put_page(page);
4250 				if (err == -EEXIST)
4251 					goto retry;
4252 				goto out;
4253 			}
4254 		} else {
4255 			lock_page(page);
4256 			if (unlikely(anon_vma_prepare(vma))) {
4257 				ret = VM_FAULT_OOM;
4258 				goto backout_unlocked;
4259 			}
4260 			anon_rmap = 1;
4261 		}
4262 	} else {
4263 		/*
4264 		 * If memory error occurs between mmap() and fault, some process
4265 		 * don't have hwpoisoned swap entry for errored virtual address.
4266 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4267 		 */
4268 		if (unlikely(PageHWPoison(page))) {
4269 			ret = VM_FAULT_HWPOISON |
4270 				VM_FAULT_SET_HINDEX(hstate_index(h));
4271 			goto backout_unlocked;
4272 		}
4273 	}
4274 
4275 	/*
4276 	 * If we are going to COW a private mapping later, we examine the
4277 	 * pending reservations for this page now. This will ensure that
4278 	 * any allocations necessary to record that reservation occur outside
4279 	 * the spinlock.
4280 	 */
4281 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4282 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4283 			ret = VM_FAULT_OOM;
4284 			goto backout_unlocked;
4285 		}
4286 		/* Just decrements count, does not deallocate */
4287 		vma_end_reservation(h, vma, haddr);
4288 	}
4289 
4290 	ptl = huge_pte_lock(h, mm, ptep);
4291 	ret = 0;
4292 	if (!huge_pte_none(huge_ptep_get(ptep)))
4293 		goto backout;
4294 
4295 	if (anon_rmap) {
4296 		ClearPagePrivate(page);
4297 		hugepage_add_new_anon_rmap(page, vma, haddr);
4298 	} else
4299 		page_dup_rmap(page, true);
4300 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4301 				&& (vma->vm_flags & VM_SHARED)));
4302 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4303 
4304 	hugetlb_count_add(pages_per_huge_page(h), mm);
4305 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4306 		/* Optimization, do the COW without a second fault */
4307 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4308 	}
4309 
4310 	spin_unlock(ptl);
4311 
4312 	/*
4313 	 * Only make newly allocated pages active.  Existing pages found
4314 	 * in the pagecache could be !page_huge_active() if they have been
4315 	 * isolated for migration.
4316 	 */
4317 	if (new_page)
4318 		set_page_huge_active(page);
4319 
4320 	unlock_page(page);
4321 out:
4322 	return ret;
4323 
4324 backout:
4325 	spin_unlock(ptl);
4326 backout_unlocked:
4327 	unlock_page(page);
4328 	restore_reserve_on_error(h, vma, haddr, page);
4329 	put_page(page);
4330 	goto out;
4331 }
4332 
4333 #ifdef CONFIG_SMP
4334 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4335 {
4336 	unsigned long key[2];
4337 	u32 hash;
4338 
4339 	key[0] = (unsigned long) mapping;
4340 	key[1] = idx;
4341 
4342 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4343 
4344 	return hash & (num_fault_mutexes - 1);
4345 }
4346 #else
4347 /*
4348  * For uniprocesor systems we always use a single mutex, so just
4349  * return 0 and avoid the hashing overhead.
4350  */
4351 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4352 {
4353 	return 0;
4354 }
4355 #endif
4356 
4357 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4358 			unsigned long address, unsigned int flags)
4359 {
4360 	pte_t *ptep, entry;
4361 	spinlock_t *ptl;
4362 	vm_fault_t ret;
4363 	u32 hash;
4364 	pgoff_t idx;
4365 	struct page *page = NULL;
4366 	struct page *pagecache_page = NULL;
4367 	struct hstate *h = hstate_vma(vma);
4368 	struct address_space *mapping;
4369 	int need_wait_lock = 0;
4370 	unsigned long haddr = address & huge_page_mask(h);
4371 
4372 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4373 	if (ptep) {
4374 		/*
4375 		 * Since we hold no locks, ptep could be stale.  That is
4376 		 * OK as we are only making decisions based on content and
4377 		 * not actually modifying content here.
4378 		 */
4379 		entry = huge_ptep_get(ptep);
4380 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4381 			migration_entry_wait_huge(vma, mm, ptep);
4382 			return 0;
4383 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4384 			return VM_FAULT_HWPOISON_LARGE |
4385 				VM_FAULT_SET_HINDEX(hstate_index(h));
4386 	} else {
4387 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4388 		if (!ptep)
4389 			return VM_FAULT_OOM;
4390 	}
4391 
4392 	/*
4393 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4394 	 * until finished with ptep.  This serves two purposes:
4395 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4396 	 *    and making the ptep no longer valid.
4397 	 * 2) It synchronizes us with i_size modifications during truncation.
4398 	 *
4399 	 * ptep could have already be assigned via huge_pte_offset.  That
4400 	 * is OK, as huge_pte_alloc will return the same value unless
4401 	 * something has changed.
4402 	 */
4403 	mapping = vma->vm_file->f_mapping;
4404 	i_mmap_lock_read(mapping);
4405 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4406 	if (!ptep) {
4407 		i_mmap_unlock_read(mapping);
4408 		return VM_FAULT_OOM;
4409 	}
4410 
4411 	/*
4412 	 * Serialize hugepage allocation and instantiation, so that we don't
4413 	 * get spurious allocation failures if two CPUs race to instantiate
4414 	 * the same page in the page cache.
4415 	 */
4416 	idx = vma_hugecache_offset(h, vma, haddr);
4417 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4418 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4419 
4420 	entry = huge_ptep_get(ptep);
4421 	if (huge_pte_none(entry)) {
4422 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4423 		goto out_mutex;
4424 	}
4425 
4426 	ret = 0;
4427 
4428 	/*
4429 	 * entry could be a migration/hwpoison entry at this point, so this
4430 	 * check prevents the kernel from going below assuming that we have
4431 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4432 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4433 	 * handle it.
4434 	 */
4435 	if (!pte_present(entry))
4436 		goto out_mutex;
4437 
4438 	/*
4439 	 * If we are going to COW the mapping later, we examine the pending
4440 	 * reservations for this page now. This will ensure that any
4441 	 * allocations necessary to record that reservation occur outside the
4442 	 * spinlock. For private mappings, we also lookup the pagecache
4443 	 * page now as it is used to determine if a reservation has been
4444 	 * consumed.
4445 	 */
4446 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4447 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4448 			ret = VM_FAULT_OOM;
4449 			goto out_mutex;
4450 		}
4451 		/* Just decrements count, does not deallocate */
4452 		vma_end_reservation(h, vma, haddr);
4453 
4454 		if (!(vma->vm_flags & VM_MAYSHARE))
4455 			pagecache_page = hugetlbfs_pagecache_page(h,
4456 								vma, haddr);
4457 	}
4458 
4459 	ptl = huge_pte_lock(h, mm, ptep);
4460 
4461 	/* Check for a racing update before calling hugetlb_cow */
4462 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4463 		goto out_ptl;
4464 
4465 	/*
4466 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4467 	 * pagecache_page, so here we need take the former one
4468 	 * when page != pagecache_page or !pagecache_page.
4469 	 */
4470 	page = pte_page(entry);
4471 	if (page != pagecache_page)
4472 		if (!trylock_page(page)) {
4473 			need_wait_lock = 1;
4474 			goto out_ptl;
4475 		}
4476 
4477 	get_page(page);
4478 
4479 	if (flags & FAULT_FLAG_WRITE) {
4480 		if (!huge_pte_write(entry)) {
4481 			ret = hugetlb_cow(mm, vma, address, ptep,
4482 					  pagecache_page, ptl);
4483 			goto out_put_page;
4484 		}
4485 		entry = huge_pte_mkdirty(entry);
4486 	}
4487 	entry = pte_mkyoung(entry);
4488 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4489 						flags & FAULT_FLAG_WRITE))
4490 		update_mmu_cache(vma, haddr, ptep);
4491 out_put_page:
4492 	if (page != pagecache_page)
4493 		unlock_page(page);
4494 	put_page(page);
4495 out_ptl:
4496 	spin_unlock(ptl);
4497 
4498 	if (pagecache_page) {
4499 		unlock_page(pagecache_page);
4500 		put_page(pagecache_page);
4501 	}
4502 out_mutex:
4503 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4504 	i_mmap_unlock_read(mapping);
4505 	/*
4506 	 * Generally it's safe to hold refcount during waiting page lock. But
4507 	 * here we just wait to defer the next page fault to avoid busy loop and
4508 	 * the page is not used after unlocked before returning from the current
4509 	 * page fault. So we are safe from accessing freed page, even if we wait
4510 	 * here without taking refcount.
4511 	 */
4512 	if (need_wait_lock)
4513 		wait_on_page_locked(page);
4514 	return ret;
4515 }
4516 
4517 /*
4518  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4519  * modifications for huge pages.
4520  */
4521 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4522 			    pte_t *dst_pte,
4523 			    struct vm_area_struct *dst_vma,
4524 			    unsigned long dst_addr,
4525 			    unsigned long src_addr,
4526 			    struct page **pagep)
4527 {
4528 	struct address_space *mapping;
4529 	pgoff_t idx;
4530 	unsigned long size;
4531 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4532 	struct hstate *h = hstate_vma(dst_vma);
4533 	pte_t _dst_pte;
4534 	spinlock_t *ptl;
4535 	int ret;
4536 	struct page *page;
4537 
4538 	if (!*pagep) {
4539 		ret = -ENOMEM;
4540 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4541 		if (IS_ERR(page))
4542 			goto out;
4543 
4544 		ret = copy_huge_page_from_user(page,
4545 						(const void __user *) src_addr,
4546 						pages_per_huge_page(h), false);
4547 
4548 		/* fallback to copy_from_user outside mmap_sem */
4549 		if (unlikely(ret)) {
4550 			ret = -ENOENT;
4551 			*pagep = page;
4552 			/* don't free the page */
4553 			goto out;
4554 		}
4555 	} else {
4556 		page = *pagep;
4557 		*pagep = NULL;
4558 	}
4559 
4560 	/*
4561 	 * The memory barrier inside __SetPageUptodate makes sure that
4562 	 * preceding stores to the page contents become visible before
4563 	 * the set_pte_at() write.
4564 	 */
4565 	__SetPageUptodate(page);
4566 
4567 	mapping = dst_vma->vm_file->f_mapping;
4568 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4569 
4570 	/*
4571 	 * If shared, add to page cache
4572 	 */
4573 	if (vm_shared) {
4574 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4575 		ret = -EFAULT;
4576 		if (idx >= size)
4577 			goto out_release_nounlock;
4578 
4579 		/*
4580 		 * Serialization between remove_inode_hugepages() and
4581 		 * huge_add_to_page_cache() below happens through the
4582 		 * hugetlb_fault_mutex_table that here must be hold by
4583 		 * the caller.
4584 		 */
4585 		ret = huge_add_to_page_cache(page, mapping, idx);
4586 		if (ret)
4587 			goto out_release_nounlock;
4588 	}
4589 
4590 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4591 	spin_lock(ptl);
4592 
4593 	/*
4594 	 * Recheck the i_size after holding PT lock to make sure not
4595 	 * to leave any page mapped (as page_mapped()) beyond the end
4596 	 * of the i_size (remove_inode_hugepages() is strict about
4597 	 * enforcing that). If we bail out here, we'll also leave a
4598 	 * page in the radix tree in the vm_shared case beyond the end
4599 	 * of the i_size, but remove_inode_hugepages() will take care
4600 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4601 	 */
4602 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4603 	ret = -EFAULT;
4604 	if (idx >= size)
4605 		goto out_release_unlock;
4606 
4607 	ret = -EEXIST;
4608 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4609 		goto out_release_unlock;
4610 
4611 	if (vm_shared) {
4612 		page_dup_rmap(page, true);
4613 	} else {
4614 		ClearPagePrivate(page);
4615 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4616 	}
4617 
4618 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4619 	if (dst_vma->vm_flags & VM_WRITE)
4620 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4621 	_dst_pte = pte_mkyoung(_dst_pte);
4622 
4623 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4624 
4625 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4626 					dst_vma->vm_flags & VM_WRITE);
4627 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4628 
4629 	/* No need to invalidate - it was non-present before */
4630 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4631 
4632 	spin_unlock(ptl);
4633 	set_page_huge_active(page);
4634 	if (vm_shared)
4635 		unlock_page(page);
4636 	ret = 0;
4637 out:
4638 	return ret;
4639 out_release_unlock:
4640 	spin_unlock(ptl);
4641 	if (vm_shared)
4642 		unlock_page(page);
4643 out_release_nounlock:
4644 	put_page(page);
4645 	goto out;
4646 }
4647 
4648 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4649 			 struct page **pages, struct vm_area_struct **vmas,
4650 			 unsigned long *position, unsigned long *nr_pages,
4651 			 long i, unsigned int flags, int *locked)
4652 {
4653 	unsigned long pfn_offset;
4654 	unsigned long vaddr = *position;
4655 	unsigned long remainder = *nr_pages;
4656 	struct hstate *h = hstate_vma(vma);
4657 	int err = -EFAULT;
4658 
4659 	while (vaddr < vma->vm_end && remainder) {
4660 		pte_t *pte;
4661 		spinlock_t *ptl = NULL;
4662 		int absent;
4663 		struct page *page;
4664 
4665 		/*
4666 		 * If we have a pending SIGKILL, don't keep faulting pages and
4667 		 * potentially allocating memory.
4668 		 */
4669 		if (fatal_signal_pending(current)) {
4670 			remainder = 0;
4671 			break;
4672 		}
4673 
4674 		/*
4675 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4676 		 * each hugepage.  We have to make sure we get the
4677 		 * first, for the page indexing below to work.
4678 		 *
4679 		 * Note that page table lock is not held when pte is null.
4680 		 */
4681 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4682 				      huge_page_size(h));
4683 		if (pte)
4684 			ptl = huge_pte_lock(h, mm, pte);
4685 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4686 
4687 		/*
4688 		 * When coredumping, it suits get_dump_page if we just return
4689 		 * an error where there's an empty slot with no huge pagecache
4690 		 * to back it.  This way, we avoid allocating a hugepage, and
4691 		 * the sparse dumpfile avoids allocating disk blocks, but its
4692 		 * huge holes still show up with zeroes where they need to be.
4693 		 */
4694 		if (absent && (flags & FOLL_DUMP) &&
4695 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4696 			if (pte)
4697 				spin_unlock(ptl);
4698 			remainder = 0;
4699 			break;
4700 		}
4701 
4702 		/*
4703 		 * We need call hugetlb_fault for both hugepages under migration
4704 		 * (in which case hugetlb_fault waits for the migration,) and
4705 		 * hwpoisoned hugepages (in which case we need to prevent the
4706 		 * caller from accessing to them.) In order to do this, we use
4707 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4708 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4709 		 * both cases, and because we can't follow correct pages
4710 		 * directly from any kind of swap entries.
4711 		 */
4712 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4713 		    ((flags & FOLL_WRITE) &&
4714 		      !huge_pte_write(huge_ptep_get(pte)))) {
4715 			vm_fault_t ret;
4716 			unsigned int fault_flags = 0;
4717 
4718 			if (pte)
4719 				spin_unlock(ptl);
4720 			if (flags & FOLL_WRITE)
4721 				fault_flags |= FAULT_FLAG_WRITE;
4722 			if (locked)
4723 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4724 					FAULT_FLAG_KILLABLE;
4725 			if (flags & FOLL_NOWAIT)
4726 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4727 					FAULT_FLAG_RETRY_NOWAIT;
4728 			if (flags & FOLL_TRIED) {
4729 				/*
4730 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4731 				 * FAULT_FLAG_TRIED can co-exist
4732 				 */
4733 				fault_flags |= FAULT_FLAG_TRIED;
4734 			}
4735 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4736 			if (ret & VM_FAULT_ERROR) {
4737 				err = vm_fault_to_errno(ret, flags);
4738 				remainder = 0;
4739 				break;
4740 			}
4741 			if (ret & VM_FAULT_RETRY) {
4742 				if (locked &&
4743 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4744 					*locked = 0;
4745 				*nr_pages = 0;
4746 				/*
4747 				 * VM_FAULT_RETRY must not return an
4748 				 * error, it will return zero
4749 				 * instead.
4750 				 *
4751 				 * No need to update "position" as the
4752 				 * caller will not check it after
4753 				 * *nr_pages is set to 0.
4754 				 */
4755 				return i;
4756 			}
4757 			continue;
4758 		}
4759 
4760 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4761 		page = pte_page(huge_ptep_get(pte));
4762 
4763 		/*
4764 		 * If subpage information not requested, update counters
4765 		 * and skip the same_page loop below.
4766 		 */
4767 		if (!pages && !vmas && !pfn_offset &&
4768 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4769 		    (remainder >= pages_per_huge_page(h))) {
4770 			vaddr += huge_page_size(h);
4771 			remainder -= pages_per_huge_page(h);
4772 			i += pages_per_huge_page(h);
4773 			spin_unlock(ptl);
4774 			continue;
4775 		}
4776 
4777 same_page:
4778 		if (pages) {
4779 			pages[i] = mem_map_offset(page, pfn_offset);
4780 			/*
4781 			 * try_grab_page() should always succeed here, because:
4782 			 * a) we hold the ptl lock, and b) we've just checked
4783 			 * that the huge page is present in the page tables. If
4784 			 * the huge page is present, then the tail pages must
4785 			 * also be present. The ptl prevents the head page and
4786 			 * tail pages from being rearranged in any way. So this
4787 			 * page must be available at this point, unless the page
4788 			 * refcount overflowed:
4789 			 */
4790 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4791 				spin_unlock(ptl);
4792 				remainder = 0;
4793 				err = -ENOMEM;
4794 				break;
4795 			}
4796 		}
4797 
4798 		if (vmas)
4799 			vmas[i] = vma;
4800 
4801 		vaddr += PAGE_SIZE;
4802 		++pfn_offset;
4803 		--remainder;
4804 		++i;
4805 		if (vaddr < vma->vm_end && remainder &&
4806 				pfn_offset < pages_per_huge_page(h)) {
4807 			/*
4808 			 * We use pfn_offset to avoid touching the pageframes
4809 			 * of this compound page.
4810 			 */
4811 			goto same_page;
4812 		}
4813 		spin_unlock(ptl);
4814 	}
4815 	*nr_pages = remainder;
4816 	/*
4817 	 * setting position is actually required only if remainder is
4818 	 * not zero but it's faster not to add a "if (remainder)"
4819 	 * branch.
4820 	 */
4821 	*position = vaddr;
4822 
4823 	return i ? i : err;
4824 }
4825 
4826 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4827 /*
4828  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4829  * implement this.
4830  */
4831 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4832 #endif
4833 
4834 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4835 		unsigned long address, unsigned long end, pgprot_t newprot)
4836 {
4837 	struct mm_struct *mm = vma->vm_mm;
4838 	unsigned long start = address;
4839 	pte_t *ptep;
4840 	pte_t pte;
4841 	struct hstate *h = hstate_vma(vma);
4842 	unsigned long pages = 0;
4843 	bool shared_pmd = false;
4844 	struct mmu_notifier_range range;
4845 
4846 	/*
4847 	 * In the case of shared PMDs, the area to flush could be beyond
4848 	 * start/end.  Set range.start/range.end to cover the maximum possible
4849 	 * range if PMD sharing is possible.
4850 	 */
4851 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4852 				0, vma, mm, start, end);
4853 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4854 
4855 	BUG_ON(address >= end);
4856 	flush_cache_range(vma, range.start, range.end);
4857 
4858 	mmu_notifier_invalidate_range_start(&range);
4859 	i_mmap_lock_write(vma->vm_file->f_mapping);
4860 	for (; address < end; address += huge_page_size(h)) {
4861 		spinlock_t *ptl;
4862 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4863 		if (!ptep)
4864 			continue;
4865 		ptl = huge_pte_lock(h, mm, ptep);
4866 		if (huge_pmd_unshare(mm, &address, ptep)) {
4867 			pages++;
4868 			spin_unlock(ptl);
4869 			shared_pmd = true;
4870 			continue;
4871 		}
4872 		pte = huge_ptep_get(ptep);
4873 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4874 			spin_unlock(ptl);
4875 			continue;
4876 		}
4877 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4878 			swp_entry_t entry = pte_to_swp_entry(pte);
4879 
4880 			if (is_write_migration_entry(entry)) {
4881 				pte_t newpte;
4882 
4883 				make_migration_entry_read(&entry);
4884 				newpte = swp_entry_to_pte(entry);
4885 				set_huge_swap_pte_at(mm, address, ptep,
4886 						     newpte, huge_page_size(h));
4887 				pages++;
4888 			}
4889 			spin_unlock(ptl);
4890 			continue;
4891 		}
4892 		if (!huge_pte_none(pte)) {
4893 			pte_t old_pte;
4894 
4895 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4896 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4897 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4898 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4899 			pages++;
4900 		}
4901 		spin_unlock(ptl);
4902 	}
4903 	/*
4904 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4905 	 * may have cleared our pud entry and done put_page on the page table:
4906 	 * once we release i_mmap_rwsem, another task can do the final put_page
4907 	 * and that page table be reused and filled with junk.  If we actually
4908 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4909 	 */
4910 	if (shared_pmd)
4911 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4912 	else
4913 		flush_hugetlb_tlb_range(vma, start, end);
4914 	/*
4915 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4916 	 * page table protection not changing it to point to a new page.
4917 	 *
4918 	 * See Documentation/vm/mmu_notifier.rst
4919 	 */
4920 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4921 	mmu_notifier_invalidate_range_end(&range);
4922 
4923 	return pages << h->order;
4924 }
4925 
4926 int hugetlb_reserve_pages(struct inode *inode,
4927 					long from, long to,
4928 					struct vm_area_struct *vma,
4929 					vm_flags_t vm_flags)
4930 {
4931 	long ret, chg, add = -1;
4932 	struct hstate *h = hstate_inode(inode);
4933 	struct hugepage_subpool *spool = subpool_inode(inode);
4934 	struct resv_map *resv_map;
4935 	struct hugetlb_cgroup *h_cg = NULL;
4936 	long gbl_reserve, regions_needed = 0;
4937 
4938 	/* This should never happen */
4939 	if (from > to) {
4940 		VM_WARN(1, "%s called with a negative range\n", __func__);
4941 		return -EINVAL;
4942 	}
4943 
4944 	/*
4945 	 * Only apply hugepage reservation if asked. At fault time, an
4946 	 * attempt will be made for VM_NORESERVE to allocate a page
4947 	 * without using reserves
4948 	 */
4949 	if (vm_flags & VM_NORESERVE)
4950 		return 0;
4951 
4952 	/*
4953 	 * Shared mappings base their reservation on the number of pages that
4954 	 * are already allocated on behalf of the file. Private mappings need
4955 	 * to reserve the full area even if read-only as mprotect() may be
4956 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4957 	 */
4958 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4959 		/*
4960 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4961 		 * called for inodes for which resv_maps were created (see
4962 		 * hugetlbfs_get_inode).
4963 		 */
4964 		resv_map = inode_resv_map(inode);
4965 
4966 		chg = region_chg(resv_map, from, to, &regions_needed);
4967 
4968 	} else {
4969 		/* Private mapping. */
4970 		resv_map = resv_map_alloc();
4971 		if (!resv_map)
4972 			return -ENOMEM;
4973 
4974 		chg = to - from;
4975 
4976 		set_vma_resv_map(vma, resv_map);
4977 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4978 	}
4979 
4980 	if (chg < 0) {
4981 		ret = chg;
4982 		goto out_err;
4983 	}
4984 
4985 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
4986 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
4987 
4988 	if (ret < 0) {
4989 		ret = -ENOMEM;
4990 		goto out_err;
4991 	}
4992 
4993 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
4994 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
4995 		 * of the resv_map.
4996 		 */
4997 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
4998 	}
4999 
5000 	/*
5001 	 * There must be enough pages in the subpool for the mapping. If
5002 	 * the subpool has a minimum size, there may be some global
5003 	 * reservations already in place (gbl_reserve).
5004 	 */
5005 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5006 	if (gbl_reserve < 0) {
5007 		ret = -ENOSPC;
5008 		goto out_uncharge_cgroup;
5009 	}
5010 
5011 	/*
5012 	 * Check enough hugepages are available for the reservation.
5013 	 * Hand the pages back to the subpool if there are not
5014 	 */
5015 	ret = hugetlb_acct_memory(h, gbl_reserve);
5016 	if (ret < 0) {
5017 		goto out_put_pages;
5018 	}
5019 
5020 	/*
5021 	 * Account for the reservations made. Shared mappings record regions
5022 	 * that have reservations as they are shared by multiple VMAs.
5023 	 * When the last VMA disappears, the region map says how much
5024 	 * the reservation was and the page cache tells how much of
5025 	 * the reservation was consumed. Private mappings are per-VMA and
5026 	 * only the consumed reservations are tracked. When the VMA
5027 	 * disappears, the original reservation is the VMA size and the
5028 	 * consumed reservations are stored in the map. Hence, nothing
5029 	 * else has to be done for private mappings here
5030 	 */
5031 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5032 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5033 
5034 		if (unlikely(add < 0)) {
5035 			hugetlb_acct_memory(h, -gbl_reserve);
5036 			goto out_put_pages;
5037 		} else if (unlikely(chg > add)) {
5038 			/*
5039 			 * pages in this range were added to the reserve
5040 			 * map between region_chg and region_add.  This
5041 			 * indicates a race with alloc_huge_page.  Adjust
5042 			 * the subpool and reserve counts modified above
5043 			 * based on the difference.
5044 			 */
5045 			long rsv_adjust;
5046 
5047 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5048 				hstate_index(h),
5049 				(chg - add) * pages_per_huge_page(h), h_cg);
5050 
5051 			rsv_adjust = hugepage_subpool_put_pages(spool,
5052 								chg - add);
5053 			hugetlb_acct_memory(h, -rsv_adjust);
5054 		}
5055 	}
5056 	return 0;
5057 out_put_pages:
5058 	/* put back original number of pages, chg */
5059 	(void)hugepage_subpool_put_pages(spool, chg);
5060 out_uncharge_cgroup:
5061 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5062 					    chg * pages_per_huge_page(h), h_cg);
5063 out_err:
5064 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5065 		/* Only call region_abort if the region_chg succeeded but the
5066 		 * region_add failed or didn't run.
5067 		 */
5068 		if (chg >= 0 && add < 0)
5069 			region_abort(resv_map, from, to, regions_needed);
5070 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5071 		kref_put(&resv_map->refs, resv_map_release);
5072 	return ret;
5073 }
5074 
5075 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5076 								long freed)
5077 {
5078 	struct hstate *h = hstate_inode(inode);
5079 	struct resv_map *resv_map = inode_resv_map(inode);
5080 	long chg = 0;
5081 	struct hugepage_subpool *spool = subpool_inode(inode);
5082 	long gbl_reserve;
5083 
5084 	/*
5085 	 * Since this routine can be called in the evict inode path for all
5086 	 * hugetlbfs inodes, resv_map could be NULL.
5087 	 */
5088 	if (resv_map) {
5089 		chg = region_del(resv_map, start, end);
5090 		/*
5091 		 * region_del() can fail in the rare case where a region
5092 		 * must be split and another region descriptor can not be
5093 		 * allocated.  If end == LONG_MAX, it will not fail.
5094 		 */
5095 		if (chg < 0)
5096 			return chg;
5097 	}
5098 
5099 	spin_lock(&inode->i_lock);
5100 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5101 	spin_unlock(&inode->i_lock);
5102 
5103 	/*
5104 	 * If the subpool has a minimum size, the number of global
5105 	 * reservations to be released may be adjusted.
5106 	 */
5107 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5108 	hugetlb_acct_memory(h, -gbl_reserve);
5109 
5110 	return 0;
5111 }
5112 
5113 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5114 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5115 				struct vm_area_struct *vma,
5116 				unsigned long addr, pgoff_t idx)
5117 {
5118 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5119 				svma->vm_start;
5120 	unsigned long sbase = saddr & PUD_MASK;
5121 	unsigned long s_end = sbase + PUD_SIZE;
5122 
5123 	/* Allow segments to share if only one is marked locked */
5124 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5125 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5126 
5127 	/*
5128 	 * match the virtual addresses, permission and the alignment of the
5129 	 * page table page.
5130 	 */
5131 	if (pmd_index(addr) != pmd_index(saddr) ||
5132 	    vm_flags != svm_flags ||
5133 	    sbase < svma->vm_start || svma->vm_end < s_end)
5134 		return 0;
5135 
5136 	return saddr;
5137 }
5138 
5139 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5140 {
5141 	unsigned long base = addr & PUD_MASK;
5142 	unsigned long end = base + PUD_SIZE;
5143 
5144 	/*
5145 	 * check on proper vm_flags and page table alignment
5146 	 */
5147 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5148 		return true;
5149 	return false;
5150 }
5151 
5152 /*
5153  * Determine if start,end range within vma could be mapped by shared pmd.
5154  * If yes, adjust start and end to cover range associated with possible
5155  * shared pmd mappings.
5156  */
5157 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5158 				unsigned long *start, unsigned long *end)
5159 {
5160 	unsigned long check_addr;
5161 
5162 	if (!(vma->vm_flags & VM_MAYSHARE))
5163 		return;
5164 
5165 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5166 		unsigned long a_start = check_addr & PUD_MASK;
5167 		unsigned long a_end = a_start + PUD_SIZE;
5168 
5169 		/*
5170 		 * If sharing is possible, adjust start/end if necessary.
5171 		 */
5172 		if (range_in_vma(vma, a_start, a_end)) {
5173 			if (a_start < *start)
5174 				*start = a_start;
5175 			if (a_end > *end)
5176 				*end = a_end;
5177 		}
5178 	}
5179 }
5180 
5181 /*
5182  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5183  * and returns the corresponding pte. While this is not necessary for the
5184  * !shared pmd case because we can allocate the pmd later as well, it makes the
5185  * code much cleaner.
5186  *
5187  * This routine must be called with i_mmap_rwsem held in at least read mode.
5188  * For hugetlbfs, this prevents removal of any page table entries associated
5189  * with the address space.  This is important as we are setting up sharing
5190  * based on existing page table entries (mappings).
5191  */
5192 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5193 {
5194 	struct vm_area_struct *vma = find_vma(mm, addr);
5195 	struct address_space *mapping = vma->vm_file->f_mapping;
5196 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5197 			vma->vm_pgoff;
5198 	struct vm_area_struct *svma;
5199 	unsigned long saddr;
5200 	pte_t *spte = NULL;
5201 	pte_t *pte;
5202 	spinlock_t *ptl;
5203 
5204 	if (!vma_shareable(vma, addr))
5205 		return (pte_t *)pmd_alloc(mm, pud, addr);
5206 
5207 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5208 		if (svma == vma)
5209 			continue;
5210 
5211 		saddr = page_table_shareable(svma, vma, addr, idx);
5212 		if (saddr) {
5213 			spte = huge_pte_offset(svma->vm_mm, saddr,
5214 					       vma_mmu_pagesize(svma));
5215 			if (spte) {
5216 				get_page(virt_to_page(spte));
5217 				break;
5218 			}
5219 		}
5220 	}
5221 
5222 	if (!spte)
5223 		goto out;
5224 
5225 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5226 	if (pud_none(*pud)) {
5227 		pud_populate(mm, pud,
5228 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5229 		mm_inc_nr_pmds(mm);
5230 	} else {
5231 		put_page(virt_to_page(spte));
5232 	}
5233 	spin_unlock(ptl);
5234 out:
5235 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5236 	return pte;
5237 }
5238 
5239 /*
5240  * unmap huge page backed by shared pte.
5241  *
5242  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5243  * indicated by page_count > 1, unmap is achieved by clearing pud and
5244  * decrementing the ref count. If count == 1, the pte page is not shared.
5245  *
5246  * Called with page table lock held and i_mmap_rwsem held in write mode.
5247  *
5248  * returns: 1 successfully unmapped a shared pte page
5249  *	    0 the underlying pte page is not shared, or it is the last user
5250  */
5251 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5252 {
5253 	pgd_t *pgd = pgd_offset(mm, *addr);
5254 	p4d_t *p4d = p4d_offset(pgd, *addr);
5255 	pud_t *pud = pud_offset(p4d, *addr);
5256 
5257 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5258 	if (page_count(virt_to_page(ptep)) == 1)
5259 		return 0;
5260 
5261 	pud_clear(pud);
5262 	put_page(virt_to_page(ptep));
5263 	mm_dec_nr_pmds(mm);
5264 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5265 	return 1;
5266 }
5267 #define want_pmd_share()	(1)
5268 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5269 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5270 {
5271 	return NULL;
5272 }
5273 
5274 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5275 {
5276 	return 0;
5277 }
5278 
5279 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5280 				unsigned long *start, unsigned long *end)
5281 {
5282 }
5283 #define want_pmd_share()	(0)
5284 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5285 
5286 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5287 pte_t *huge_pte_alloc(struct mm_struct *mm,
5288 			unsigned long addr, unsigned long sz)
5289 {
5290 	pgd_t *pgd;
5291 	p4d_t *p4d;
5292 	pud_t *pud;
5293 	pte_t *pte = NULL;
5294 
5295 	pgd = pgd_offset(mm, addr);
5296 	p4d = p4d_alloc(mm, pgd, addr);
5297 	if (!p4d)
5298 		return NULL;
5299 	pud = pud_alloc(mm, p4d, addr);
5300 	if (pud) {
5301 		if (sz == PUD_SIZE) {
5302 			pte = (pte_t *)pud;
5303 		} else {
5304 			BUG_ON(sz != PMD_SIZE);
5305 			if (want_pmd_share() && pud_none(*pud))
5306 				pte = huge_pmd_share(mm, addr, pud);
5307 			else
5308 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5309 		}
5310 	}
5311 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5312 
5313 	return pte;
5314 }
5315 
5316 /*
5317  * huge_pte_offset() - Walk the page table to resolve the hugepage
5318  * entry at address @addr
5319  *
5320  * Return: Pointer to page table or swap entry (PUD or PMD) for
5321  * address @addr, or NULL if a p*d_none() entry is encountered and the
5322  * size @sz doesn't match the hugepage size at this level of the page
5323  * table.
5324  */
5325 pte_t *huge_pte_offset(struct mm_struct *mm,
5326 		       unsigned long addr, unsigned long sz)
5327 {
5328 	pgd_t *pgd;
5329 	p4d_t *p4d;
5330 	pud_t *pud;
5331 	pmd_t *pmd;
5332 
5333 	pgd = pgd_offset(mm, addr);
5334 	if (!pgd_present(*pgd))
5335 		return NULL;
5336 	p4d = p4d_offset(pgd, addr);
5337 	if (!p4d_present(*p4d))
5338 		return NULL;
5339 
5340 	pud = pud_offset(p4d, addr);
5341 	if (sz != PUD_SIZE && pud_none(*pud))
5342 		return NULL;
5343 	/* hugepage or swap? */
5344 	if (pud_huge(*pud) || !pud_present(*pud))
5345 		return (pte_t *)pud;
5346 
5347 	pmd = pmd_offset(pud, addr);
5348 	if (sz != PMD_SIZE && pmd_none(*pmd))
5349 		return NULL;
5350 	/* hugepage or swap? */
5351 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
5352 		return (pte_t *)pmd;
5353 
5354 	return NULL;
5355 }
5356 
5357 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5358 
5359 /*
5360  * These functions are overwritable if your architecture needs its own
5361  * behavior.
5362  */
5363 struct page * __weak
5364 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5365 			      int write)
5366 {
5367 	return ERR_PTR(-EINVAL);
5368 }
5369 
5370 struct page * __weak
5371 follow_huge_pd(struct vm_area_struct *vma,
5372 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5373 {
5374 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5375 	return NULL;
5376 }
5377 
5378 struct page * __weak
5379 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5380 		pmd_t *pmd, int flags)
5381 {
5382 	struct page *page = NULL;
5383 	spinlock_t *ptl;
5384 	pte_t pte;
5385 
5386 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5387 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5388 			 (FOLL_PIN | FOLL_GET)))
5389 		return NULL;
5390 
5391 retry:
5392 	ptl = pmd_lockptr(mm, pmd);
5393 	spin_lock(ptl);
5394 	/*
5395 	 * make sure that the address range covered by this pmd is not
5396 	 * unmapped from other threads.
5397 	 */
5398 	if (!pmd_huge(*pmd))
5399 		goto out;
5400 	pte = huge_ptep_get((pte_t *)pmd);
5401 	if (pte_present(pte)) {
5402 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5403 		/*
5404 		 * try_grab_page() should always succeed here, because: a) we
5405 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5406 		 * huge pmd (head) page is present in the page tables. The ptl
5407 		 * prevents the head page and tail pages from being rearranged
5408 		 * in any way. So this page must be available at this point,
5409 		 * unless the page refcount overflowed:
5410 		 */
5411 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5412 			page = NULL;
5413 			goto out;
5414 		}
5415 	} else {
5416 		if (is_hugetlb_entry_migration(pte)) {
5417 			spin_unlock(ptl);
5418 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5419 			goto retry;
5420 		}
5421 		/*
5422 		 * hwpoisoned entry is treated as no_page_table in
5423 		 * follow_page_mask().
5424 		 */
5425 	}
5426 out:
5427 	spin_unlock(ptl);
5428 	return page;
5429 }
5430 
5431 struct page * __weak
5432 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5433 		pud_t *pud, int flags)
5434 {
5435 	if (flags & (FOLL_GET | FOLL_PIN))
5436 		return NULL;
5437 
5438 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5439 }
5440 
5441 struct page * __weak
5442 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5443 {
5444 	if (flags & (FOLL_GET | FOLL_PIN))
5445 		return NULL;
5446 
5447 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5448 }
5449 
5450 bool isolate_huge_page(struct page *page, struct list_head *list)
5451 {
5452 	bool ret = true;
5453 
5454 	VM_BUG_ON_PAGE(!PageHead(page), page);
5455 	spin_lock(&hugetlb_lock);
5456 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5457 		ret = false;
5458 		goto unlock;
5459 	}
5460 	clear_page_huge_active(page);
5461 	list_move_tail(&page->lru, list);
5462 unlock:
5463 	spin_unlock(&hugetlb_lock);
5464 	return ret;
5465 }
5466 
5467 void putback_active_hugepage(struct page *page)
5468 {
5469 	VM_BUG_ON_PAGE(!PageHead(page), page);
5470 	spin_lock(&hugetlb_lock);
5471 	set_page_huge_active(page);
5472 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5473 	spin_unlock(&hugetlb_lock);
5474 	put_page(page);
5475 }
5476 
5477 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5478 {
5479 	struct hstate *h = page_hstate(oldpage);
5480 
5481 	hugetlb_cgroup_migrate(oldpage, newpage);
5482 	set_page_owner_migrate_reason(newpage, reason);
5483 
5484 	/*
5485 	 * transfer temporary state of the new huge page. This is
5486 	 * reverse to other transitions because the newpage is going to
5487 	 * be final while the old one will be freed so it takes over
5488 	 * the temporary status.
5489 	 *
5490 	 * Also note that we have to transfer the per-node surplus state
5491 	 * here as well otherwise the global surplus count will not match
5492 	 * the per-node's.
5493 	 */
5494 	if (PageHugeTemporary(newpage)) {
5495 		int old_nid = page_to_nid(oldpage);
5496 		int new_nid = page_to_nid(newpage);
5497 
5498 		SetPageHugeTemporary(oldpage);
5499 		ClearPageHugeTemporary(newpage);
5500 
5501 		spin_lock(&hugetlb_lock);
5502 		if (h->surplus_huge_pages_node[old_nid]) {
5503 			h->surplus_huge_pages_node[old_nid]--;
5504 			h->surplus_huge_pages_node[new_nid]++;
5505 		}
5506 		spin_unlock(&hugetlb_lock);
5507 	}
5508 }
5509