xref: /openbmc/linux/mm/hugetlb.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
88 
89 	spin_unlock(&spool->lock);
90 
91 	/* If no pages are used, and no other handles to the subpool
92 	 * remain, give up any reservations based on minimum size and
93 	 * free the subpool */
94 	if (free) {
95 		if (spool->min_hpages != -1)
96 			hugetlb_acct_memory(spool->hstate,
97 						-spool->min_hpages);
98 		kfree(spool);
99 	}
100 }
101 
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 						long min_hpages)
104 {
105 	struct hugepage_subpool *spool;
106 
107 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 	if (!spool)
109 		return NULL;
110 
111 	spin_lock_init(&spool->lock);
112 	spool->count = 1;
113 	spool->max_hpages = max_hpages;
114 	spool->hstate = h;
115 	spool->min_hpages = min_hpages;
116 
117 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 		kfree(spool);
119 		return NULL;
120 	}
121 	spool->rsv_hpages = min_hpages;
122 
123 	return spool;
124 }
125 
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 	spin_lock(&spool->lock);
129 	BUG_ON(!spool->count);
130 	spool->count--;
131 	unlock_or_release_subpool(spool);
132 }
133 
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 				      long delta)
144 {
145 	long ret = delta;
146 
147 	if (!spool)
148 		return ret;
149 
150 	spin_lock(&spool->lock);
151 
152 	if (spool->max_hpages != -1) {		/* maximum size accounting */
153 		if ((spool->used_hpages + delta) <= spool->max_hpages)
154 			spool->used_hpages += delta;
155 		else {
156 			ret = -ENOMEM;
157 			goto unlock_ret;
158 		}
159 	}
160 
161 	/* minimum size accounting */
162 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 		if (delta > spool->rsv_hpages) {
164 			/*
165 			 * Asking for more reserves than those already taken on
166 			 * behalf of subpool.  Return difference.
167 			 */
168 			ret = delta - spool->rsv_hpages;
169 			spool->rsv_hpages = 0;
170 		} else {
171 			ret = 0;	/* reserves already accounted for */
172 			spool->rsv_hpages -= delta;
173 		}
174 	}
175 
176 unlock_ret:
177 	spin_unlock(&spool->lock);
178 	return ret;
179 }
180 
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 				       long delta)
189 {
190 	long ret = delta;
191 
192 	if (!spool)
193 		return delta;
194 
195 	spin_lock(&spool->lock);
196 
197 	if (spool->max_hpages != -1)		/* maximum size accounting */
198 		spool->used_hpages -= delta;
199 
200 	 /* minimum size accounting */
201 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 	struct file_region *nrg = NULL;
238 
239 	VM_BUG_ON(resv->region_cache_count <= 0);
240 
241 	resv->region_cache_count--;
242 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 	list_del(&nrg->link);
244 
245 	nrg->from = from;
246 	nrg->to = to;
247 
248 	return nrg;
249 }
250 
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 					      struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255 	nrg->reservation_counter = rg->reservation_counter;
256 	nrg->css = rg->css;
257 	if (rg->css)
258 		css_get(rg->css);
259 #endif
260 }
261 
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 						struct hstate *h,
265 						struct resv_map *resv,
266 						struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	if (h_cg) {
270 		nrg->reservation_counter =
271 			&h_cg->rsvd_hugepage[hstate_index(h)];
272 		nrg->css = &h_cg->css;
273 		if (!resv->pages_per_hpage)
274 			resv->pages_per_hpage = pages_per_huge_page(h);
275 		/* pages_per_hpage should be the same for all entries in
276 		 * a resv_map.
277 		 */
278 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 	} else {
280 		nrg->reservation_counter = NULL;
281 		nrg->css = NULL;
282 	}
283 #endif
284 }
285 
286 static bool has_same_uncharge_info(struct file_region *rg,
287 				   struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290 	return rg && org &&
291 	       rg->reservation_counter == org->reservation_counter &&
292 	       rg->css == org->css;
293 
294 #else
295 	return true;
296 #endif
297 }
298 
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301 	struct file_region *nrg = NULL, *prg = NULL;
302 
303 	prg = list_prev_entry(rg, link);
304 	if (&prg->link != &resv->regions && prg->to == rg->from &&
305 	    has_same_uncharge_info(prg, rg)) {
306 		prg->to = rg->to;
307 
308 		list_del(&rg->link);
309 		kfree(rg);
310 
311 		rg = prg;
312 	}
313 
314 	nrg = list_next_entry(rg, link);
315 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 	    has_same_uncharge_info(nrg, rg)) {
317 		nrg->from = rg->from;
318 
319 		list_del(&rg->link);
320 		kfree(rg);
321 	}
322 }
323 
324 /*
325  * Must be called with resv->lock held.
326  *
327  * Calling this with regions_needed != NULL will count the number of pages
328  * to be added but will not modify the linked list. And regions_needed will
329  * indicate the number of file_regions needed in the cache to carry out to add
330  * the regions for this range.
331  */
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333 				     struct hugetlb_cgroup *h_cg,
334 				     struct hstate *h, long *regions_needed)
335 {
336 	long add = 0;
337 	struct list_head *head = &resv->regions;
338 	long last_accounted_offset = f;
339 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 
341 	if (regions_needed)
342 		*regions_needed = 0;
343 
344 	/* In this loop, we essentially handle an entry for the range
345 	 * [last_accounted_offset, rg->from), at every iteration, with some
346 	 * bounds checking.
347 	 */
348 	list_for_each_entry_safe(rg, trg, head, link) {
349 		/* Skip irrelevant regions that start before our range. */
350 		if (rg->from < f) {
351 			/* If this region ends after the last accounted offset,
352 			 * then we need to update last_accounted_offset.
353 			 */
354 			if (rg->to > last_accounted_offset)
355 				last_accounted_offset = rg->to;
356 			continue;
357 		}
358 
359 		/* When we find a region that starts beyond our range, we've
360 		 * finished.
361 		 */
362 		if (rg->from > t)
363 			break;
364 
365 		/* Add an entry for last_accounted_offset -> rg->from, and
366 		 * update last_accounted_offset.
367 		 */
368 		if (rg->from > last_accounted_offset) {
369 			add += rg->from - last_accounted_offset;
370 			if (!regions_needed) {
371 				nrg = get_file_region_entry_from_cache(
372 					resv, last_accounted_offset, rg->from);
373 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 								    resv, nrg);
375 				list_add(&nrg->link, rg->link.prev);
376 				coalesce_file_region(resv, nrg);
377 			} else
378 				*regions_needed += 1;
379 		}
380 
381 		last_accounted_offset = rg->to;
382 	}
383 
384 	/* Handle the case where our range extends beyond
385 	 * last_accounted_offset.
386 	 */
387 	if (last_accounted_offset < t) {
388 		add += t - last_accounted_offset;
389 		if (!regions_needed) {
390 			nrg = get_file_region_entry_from_cache(
391 				resv, last_accounted_offset, t);
392 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 			list_add(&nrg->link, rg->link.prev);
394 			coalesce_file_region(resv, nrg);
395 		} else
396 			*regions_needed += 1;
397 	}
398 
399 	VM_BUG_ON(add < 0);
400 	return add;
401 }
402 
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406 					int regions_needed)
407 	__must_hold(&resv->lock)
408 {
409 	struct list_head allocated_regions;
410 	int to_allocate = 0, i = 0;
411 	struct file_region *trg = NULL, *rg = NULL;
412 
413 	VM_BUG_ON(regions_needed < 0);
414 
415 	INIT_LIST_HEAD(&allocated_regions);
416 
417 	/*
418 	 * Check for sufficient descriptors in the cache to accommodate
419 	 * the number of in progress add operations plus regions_needed.
420 	 *
421 	 * This is a while loop because when we drop the lock, some other call
422 	 * to region_add or region_del may have consumed some region_entries,
423 	 * so we keep looping here until we finally have enough entries for
424 	 * (adds_in_progress + regions_needed).
425 	 */
426 	while (resv->region_cache_count <
427 	       (resv->adds_in_progress + regions_needed)) {
428 		to_allocate = resv->adds_in_progress + regions_needed -
429 			      resv->region_cache_count;
430 
431 		/* At this point, we should have enough entries in the cache
432 		 * for all the existings adds_in_progress. We should only be
433 		 * needing to allocate for regions_needed.
434 		 */
435 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436 
437 		spin_unlock(&resv->lock);
438 		for (i = 0; i < to_allocate; i++) {
439 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 			if (!trg)
441 				goto out_of_memory;
442 			list_add(&trg->link, &allocated_regions);
443 		}
444 
445 		spin_lock(&resv->lock);
446 
447 		list_splice(&allocated_regions, &resv->region_cache);
448 		resv->region_cache_count += to_allocate;
449 	}
450 
451 	return 0;
452 
453 out_of_memory:
454 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 		list_del(&rg->link);
456 		kfree(rg);
457 	}
458 	return -ENOMEM;
459 }
460 
461 /*
462  * Add the huge page range represented by [f, t) to the reserve
463  * map.  Regions will be taken from the cache to fill in this range.
464  * Sufficient regions should exist in the cache due to the previous
465  * call to region_chg with the same range, but in some cases the cache will not
466  * have sufficient entries due to races with other code doing region_add or
467  * region_del.  The extra needed entries will be allocated.
468  *
469  * regions_needed is the out value provided by a previous call to region_chg.
470  *
471  * Return the number of new huge pages added to the map.  This number is greater
472  * than or equal to zero.  If file_region entries needed to be allocated for
473  * this operation and we were not able to allocate, it returns -ENOMEM.
474  * region_add of regions of length 1 never allocate file_regions and cannot
475  * fail; region_chg will always allocate at least 1 entry and a region_add for
476  * 1 page will only require at most 1 entry.
477  */
478 static long region_add(struct resv_map *resv, long f, long t,
479 		       long in_regions_needed, struct hstate *h,
480 		       struct hugetlb_cgroup *h_cg)
481 {
482 	long add = 0, actual_regions_needed = 0;
483 
484 	spin_lock(&resv->lock);
485 retry:
486 
487 	/* Count how many regions are actually needed to execute this add. */
488 	add_reservation_in_range(resv, f, t, NULL, NULL,
489 				 &actual_regions_needed);
490 
491 	/*
492 	 * Check for sufficient descriptors in the cache to accommodate
493 	 * this add operation. Note that actual_regions_needed may be greater
494 	 * than in_regions_needed, as the resv_map may have been modified since
495 	 * the region_chg call. In this case, we need to make sure that we
496 	 * allocate extra entries, such that we have enough for all the
497 	 * existing adds_in_progress, plus the excess needed for this
498 	 * operation.
499 	 */
500 	if (actual_regions_needed > in_regions_needed &&
501 	    resv->region_cache_count <
502 		    resv->adds_in_progress +
503 			    (actual_regions_needed - in_regions_needed)) {
504 		/* region_add operation of range 1 should never need to
505 		 * allocate file_region entries.
506 		 */
507 		VM_BUG_ON(t - f <= 1);
508 
509 		if (allocate_file_region_entries(
510 			    resv, actual_regions_needed - in_regions_needed)) {
511 			return -ENOMEM;
512 		}
513 
514 		goto retry;
515 	}
516 
517 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
518 
519 	resv->adds_in_progress -= in_regions_needed;
520 
521 	spin_unlock(&resv->lock);
522 	VM_BUG_ON(add < 0);
523 	return add;
524 }
525 
526 /*
527  * Examine the existing reserve map and determine how many
528  * huge pages in the specified range [f, t) are NOT currently
529  * represented.  This routine is called before a subsequent
530  * call to region_add that will actually modify the reserve
531  * map to add the specified range [f, t).  region_chg does
532  * not change the number of huge pages represented by the
533  * map.  A number of new file_region structures is added to the cache as a
534  * placeholder, for the subsequent region_add call to use. At least 1
535  * file_region structure is added.
536  *
537  * out_regions_needed is the number of regions added to the
538  * resv->adds_in_progress.  This value needs to be provided to a follow up call
539  * to region_add or region_abort for proper accounting.
540  *
541  * Returns the number of huge pages that need to be added to the existing
542  * reservation map for the range [f, t).  This number is greater or equal to
543  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
544  * is needed and can not be allocated.
545  */
546 static long region_chg(struct resv_map *resv, long f, long t,
547 		       long *out_regions_needed)
548 {
549 	long chg = 0;
550 
551 	spin_lock(&resv->lock);
552 
553 	/* Count how many hugepages in this range are NOT represented. */
554 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555 				       out_regions_needed);
556 
557 	if (*out_regions_needed == 0)
558 		*out_regions_needed = 1;
559 
560 	if (allocate_file_region_entries(resv, *out_regions_needed))
561 		return -ENOMEM;
562 
563 	resv->adds_in_progress += *out_regions_needed;
564 
565 	spin_unlock(&resv->lock);
566 	return chg;
567 }
568 
569 /*
570  * Abort the in progress add operation.  The adds_in_progress field
571  * of the resv_map keeps track of the operations in progress between
572  * calls to region_chg and region_add.  Operations are sometimes
573  * aborted after the call to region_chg.  In such cases, region_abort
574  * is called to decrement the adds_in_progress counter. regions_needed
575  * is the value returned by the region_chg call, it is used to decrement
576  * the adds_in_progress counter.
577  *
578  * NOTE: The range arguments [f, t) are not needed or used in this
579  * routine.  They are kept to make reading the calling code easier as
580  * arguments will match the associated region_chg call.
581  */
582 static void region_abort(struct resv_map *resv, long f, long t,
583 			 long regions_needed)
584 {
585 	spin_lock(&resv->lock);
586 	VM_BUG_ON(!resv->region_cache_count);
587 	resv->adds_in_progress -= regions_needed;
588 	spin_unlock(&resv->lock);
589 }
590 
591 /*
592  * Delete the specified range [f, t) from the reserve map.  If the
593  * t parameter is LONG_MAX, this indicates that ALL regions after f
594  * should be deleted.  Locate the regions which intersect [f, t)
595  * and either trim, delete or split the existing regions.
596  *
597  * Returns the number of huge pages deleted from the reserve map.
598  * In the normal case, the return value is zero or more.  In the
599  * case where a region must be split, a new region descriptor must
600  * be allocated.  If the allocation fails, -ENOMEM will be returned.
601  * NOTE: If the parameter t == LONG_MAX, then we will never split
602  * a region and possibly return -ENOMEM.  Callers specifying
603  * t == LONG_MAX do not need to check for -ENOMEM error.
604  */
605 static long region_del(struct resv_map *resv, long f, long t)
606 {
607 	struct list_head *head = &resv->regions;
608 	struct file_region *rg, *trg;
609 	struct file_region *nrg = NULL;
610 	long del = 0;
611 
612 retry:
613 	spin_lock(&resv->lock);
614 	list_for_each_entry_safe(rg, trg, head, link) {
615 		/*
616 		 * Skip regions before the range to be deleted.  file_region
617 		 * ranges are normally of the form [from, to).  However, there
618 		 * may be a "placeholder" entry in the map which is of the form
619 		 * (from, to) with from == to.  Check for placeholder entries
620 		 * at the beginning of the range to be deleted.
621 		 */
622 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623 			continue;
624 
625 		if (rg->from >= t)
626 			break;
627 
628 		if (f > rg->from && t < rg->to) { /* Must split region */
629 			/*
630 			 * Check for an entry in the cache before dropping
631 			 * lock and attempting allocation.
632 			 */
633 			if (!nrg &&
634 			    resv->region_cache_count > resv->adds_in_progress) {
635 				nrg = list_first_entry(&resv->region_cache,
636 							struct file_region,
637 							link);
638 				list_del(&nrg->link);
639 				resv->region_cache_count--;
640 			}
641 
642 			if (!nrg) {
643 				spin_unlock(&resv->lock);
644 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 				if (!nrg)
646 					return -ENOMEM;
647 				goto retry;
648 			}
649 
650 			del += t - f;
651 
652 			/* New entry for end of split region */
653 			nrg->from = t;
654 			nrg->to = rg->to;
655 
656 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
657 
658 			INIT_LIST_HEAD(&nrg->link);
659 
660 			/* Original entry is trimmed */
661 			rg->to = f;
662 
663 			hugetlb_cgroup_uncharge_file_region(
664 				resv, rg, nrg->to - nrg->from);
665 
666 			list_add(&nrg->link, &rg->link);
667 			nrg = NULL;
668 			break;
669 		}
670 
671 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
672 			del += rg->to - rg->from;
673 			hugetlb_cgroup_uncharge_file_region(resv, rg,
674 							    rg->to - rg->from);
675 			list_del(&rg->link);
676 			kfree(rg);
677 			continue;
678 		}
679 
680 		if (f <= rg->from) {	/* Trim beginning of region */
681 			del += t - rg->from;
682 			rg->from = t;
683 
684 			hugetlb_cgroup_uncharge_file_region(resv, rg,
685 							    t - rg->from);
686 		} else {		/* Trim end of region */
687 			del += rg->to - f;
688 			rg->to = f;
689 
690 			hugetlb_cgroup_uncharge_file_region(resv, rg,
691 							    rg->to - f);
692 		}
693 	}
694 
695 	spin_unlock(&resv->lock);
696 	kfree(nrg);
697 	return del;
698 }
699 
700 /*
701  * A rare out of memory error was encountered which prevented removal of
702  * the reserve map region for a page.  The huge page itself was free'ed
703  * and removed from the page cache.  This routine will adjust the subpool
704  * usage count, and the global reserve count if needed.  By incrementing
705  * these counts, the reserve map entry which could not be deleted will
706  * appear as a "reserved" entry instead of simply dangling with incorrect
707  * counts.
708  */
709 void hugetlb_fix_reserve_counts(struct inode *inode)
710 {
711 	struct hugepage_subpool *spool = subpool_inode(inode);
712 	long rsv_adjust;
713 
714 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
715 	if (rsv_adjust) {
716 		struct hstate *h = hstate_inode(inode);
717 
718 		hugetlb_acct_memory(h, 1);
719 	}
720 }
721 
722 /*
723  * Count and return the number of huge pages in the reserve map
724  * that intersect with the range [f, t).
725  */
726 static long region_count(struct resv_map *resv, long f, long t)
727 {
728 	struct list_head *head = &resv->regions;
729 	struct file_region *rg;
730 	long chg = 0;
731 
732 	spin_lock(&resv->lock);
733 	/* Locate each segment we overlap with, and count that overlap. */
734 	list_for_each_entry(rg, head, link) {
735 		long seg_from;
736 		long seg_to;
737 
738 		if (rg->to <= f)
739 			continue;
740 		if (rg->from >= t)
741 			break;
742 
743 		seg_from = max(rg->from, f);
744 		seg_to = min(rg->to, t);
745 
746 		chg += seg_to - seg_from;
747 	}
748 	spin_unlock(&resv->lock);
749 
750 	return chg;
751 }
752 
753 /*
754  * Convert the address within this vma to the page offset within
755  * the mapping, in pagecache page units; huge pages here.
756  */
757 static pgoff_t vma_hugecache_offset(struct hstate *h,
758 			struct vm_area_struct *vma, unsigned long address)
759 {
760 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
761 			(vma->vm_pgoff >> huge_page_order(h));
762 }
763 
764 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
765 				     unsigned long address)
766 {
767 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
768 }
769 EXPORT_SYMBOL_GPL(linear_hugepage_index);
770 
771 /*
772  * Return the size of the pages allocated when backing a VMA. In the majority
773  * cases this will be same size as used by the page table entries.
774  */
775 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
776 {
777 	if (vma->vm_ops && vma->vm_ops->pagesize)
778 		return vma->vm_ops->pagesize(vma);
779 	return PAGE_SIZE;
780 }
781 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
782 
783 /*
784  * Return the page size being used by the MMU to back a VMA. In the majority
785  * of cases, the page size used by the kernel matches the MMU size. On
786  * architectures where it differs, an architecture-specific 'strong'
787  * version of this symbol is required.
788  */
789 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
790 {
791 	return vma_kernel_pagesize(vma);
792 }
793 
794 /*
795  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
796  * bits of the reservation map pointer, which are always clear due to
797  * alignment.
798  */
799 #define HPAGE_RESV_OWNER    (1UL << 0)
800 #define HPAGE_RESV_UNMAPPED (1UL << 1)
801 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
802 
803 /*
804  * These helpers are used to track how many pages are reserved for
805  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
806  * is guaranteed to have their future faults succeed.
807  *
808  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
809  * the reserve counters are updated with the hugetlb_lock held. It is safe
810  * to reset the VMA at fork() time as it is not in use yet and there is no
811  * chance of the global counters getting corrupted as a result of the values.
812  *
813  * The private mapping reservation is represented in a subtly different
814  * manner to a shared mapping.  A shared mapping has a region map associated
815  * with the underlying file, this region map represents the backing file
816  * pages which have ever had a reservation assigned which this persists even
817  * after the page is instantiated.  A private mapping has a region map
818  * associated with the original mmap which is attached to all VMAs which
819  * reference it, this region map represents those offsets which have consumed
820  * reservation ie. where pages have been instantiated.
821  */
822 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
823 {
824 	return (unsigned long)vma->vm_private_data;
825 }
826 
827 static void set_vma_private_data(struct vm_area_struct *vma,
828 							unsigned long value)
829 {
830 	vma->vm_private_data = (void *)value;
831 }
832 
833 static void
834 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
835 					  struct hugetlb_cgroup *h_cg,
836 					  struct hstate *h)
837 {
838 #ifdef CONFIG_CGROUP_HUGETLB
839 	if (!h_cg || !h) {
840 		resv_map->reservation_counter = NULL;
841 		resv_map->pages_per_hpage = 0;
842 		resv_map->css = NULL;
843 	} else {
844 		resv_map->reservation_counter =
845 			&h_cg->rsvd_hugepage[hstate_index(h)];
846 		resv_map->pages_per_hpage = pages_per_huge_page(h);
847 		resv_map->css = &h_cg->css;
848 	}
849 #endif
850 }
851 
852 struct resv_map *resv_map_alloc(void)
853 {
854 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
855 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
856 
857 	if (!resv_map || !rg) {
858 		kfree(resv_map);
859 		kfree(rg);
860 		return NULL;
861 	}
862 
863 	kref_init(&resv_map->refs);
864 	spin_lock_init(&resv_map->lock);
865 	INIT_LIST_HEAD(&resv_map->regions);
866 
867 	resv_map->adds_in_progress = 0;
868 	/*
869 	 * Initialize these to 0. On shared mappings, 0's here indicate these
870 	 * fields don't do cgroup accounting. On private mappings, these will be
871 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
872 	 * reservations are to be un-charged from here.
873 	 */
874 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
875 
876 	INIT_LIST_HEAD(&resv_map->region_cache);
877 	list_add(&rg->link, &resv_map->region_cache);
878 	resv_map->region_cache_count = 1;
879 
880 	return resv_map;
881 }
882 
883 void resv_map_release(struct kref *ref)
884 {
885 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
886 	struct list_head *head = &resv_map->region_cache;
887 	struct file_region *rg, *trg;
888 
889 	/* Clear out any active regions before we release the map. */
890 	region_del(resv_map, 0, LONG_MAX);
891 
892 	/* ... and any entries left in the cache */
893 	list_for_each_entry_safe(rg, trg, head, link) {
894 		list_del(&rg->link);
895 		kfree(rg);
896 	}
897 
898 	VM_BUG_ON(resv_map->adds_in_progress);
899 
900 	kfree(resv_map);
901 }
902 
903 static inline struct resv_map *inode_resv_map(struct inode *inode)
904 {
905 	/*
906 	 * At inode evict time, i_mapping may not point to the original
907 	 * address space within the inode.  This original address space
908 	 * contains the pointer to the resv_map.  So, always use the
909 	 * address space embedded within the inode.
910 	 * The VERY common case is inode->mapping == &inode->i_data but,
911 	 * this may not be true for device special inodes.
912 	 */
913 	return (struct resv_map *)(&inode->i_data)->private_data;
914 }
915 
916 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
917 {
918 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
919 	if (vma->vm_flags & VM_MAYSHARE) {
920 		struct address_space *mapping = vma->vm_file->f_mapping;
921 		struct inode *inode = mapping->host;
922 
923 		return inode_resv_map(inode);
924 
925 	} else {
926 		return (struct resv_map *)(get_vma_private_data(vma) &
927 							~HPAGE_RESV_MASK);
928 	}
929 }
930 
931 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
932 {
933 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
934 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
935 
936 	set_vma_private_data(vma, (get_vma_private_data(vma) &
937 				HPAGE_RESV_MASK) | (unsigned long)map);
938 }
939 
940 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
941 {
942 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944 
945 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
946 }
947 
948 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
949 {
950 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
951 
952 	return (get_vma_private_data(vma) & flag) != 0;
953 }
954 
955 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
956 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
957 {
958 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
959 	if (!(vma->vm_flags & VM_MAYSHARE))
960 		vma->vm_private_data = (void *)0;
961 }
962 
963 /* Returns true if the VMA has associated reserve pages */
964 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
965 {
966 	if (vma->vm_flags & VM_NORESERVE) {
967 		/*
968 		 * This address is already reserved by other process(chg == 0),
969 		 * so, we should decrement reserved count. Without decrementing,
970 		 * reserve count remains after releasing inode, because this
971 		 * allocated page will go into page cache and is regarded as
972 		 * coming from reserved pool in releasing step.  Currently, we
973 		 * don't have any other solution to deal with this situation
974 		 * properly, so add work-around here.
975 		 */
976 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
977 			return true;
978 		else
979 			return false;
980 	}
981 
982 	/* Shared mappings always use reserves */
983 	if (vma->vm_flags & VM_MAYSHARE) {
984 		/*
985 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
986 		 * be a region map for all pages.  The only situation where
987 		 * there is no region map is if a hole was punched via
988 		 * fallocate.  In this case, there really are no reserves to
989 		 * use.  This situation is indicated if chg != 0.
990 		 */
991 		if (chg)
992 			return false;
993 		else
994 			return true;
995 	}
996 
997 	/*
998 	 * Only the process that called mmap() has reserves for
999 	 * private mappings.
1000 	 */
1001 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002 		/*
1003 		 * Like the shared case above, a hole punch or truncate
1004 		 * could have been performed on the private mapping.
1005 		 * Examine the value of chg to determine if reserves
1006 		 * actually exist or were previously consumed.
1007 		 * Very Subtle - The value of chg comes from a previous
1008 		 * call to vma_needs_reserves().  The reserve map for
1009 		 * private mappings has different (opposite) semantics
1010 		 * than that of shared mappings.  vma_needs_reserves()
1011 		 * has already taken this difference in semantics into
1012 		 * account.  Therefore, the meaning of chg is the same
1013 		 * as in the shared case above.  Code could easily be
1014 		 * combined, but keeping it separate draws attention to
1015 		 * subtle differences.
1016 		 */
1017 		if (chg)
1018 			return false;
1019 		else
1020 			return true;
1021 	}
1022 
1023 	return false;
1024 }
1025 
1026 static void enqueue_huge_page(struct hstate *h, struct page *page)
1027 {
1028 	int nid = page_to_nid(page);
1029 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1030 	h->free_huge_pages++;
1031 	h->free_huge_pages_node[nid]++;
1032 }
1033 
1034 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1035 {
1036 	struct page *page;
1037 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1038 
1039 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1040 		if (nocma && is_migrate_cma_page(page))
1041 			continue;
1042 
1043 		if (PageHWPoison(page))
1044 			continue;
1045 
1046 		list_move(&page->lru, &h->hugepage_activelist);
1047 		set_page_refcounted(page);
1048 		h->free_huge_pages--;
1049 		h->free_huge_pages_node[nid]--;
1050 		return page;
1051 	}
1052 
1053 	return NULL;
1054 }
1055 
1056 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1057 		nodemask_t *nmask)
1058 {
1059 	unsigned int cpuset_mems_cookie;
1060 	struct zonelist *zonelist;
1061 	struct zone *zone;
1062 	struct zoneref *z;
1063 	int node = NUMA_NO_NODE;
1064 
1065 	zonelist = node_zonelist(nid, gfp_mask);
1066 
1067 retry_cpuset:
1068 	cpuset_mems_cookie = read_mems_allowed_begin();
1069 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1070 		struct page *page;
1071 
1072 		if (!cpuset_zone_allowed(zone, gfp_mask))
1073 			continue;
1074 		/*
1075 		 * no need to ask again on the same node. Pool is node rather than
1076 		 * zone aware
1077 		 */
1078 		if (zone_to_nid(zone) == node)
1079 			continue;
1080 		node = zone_to_nid(zone);
1081 
1082 		page = dequeue_huge_page_node_exact(h, node);
1083 		if (page)
1084 			return page;
1085 	}
1086 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1087 		goto retry_cpuset;
1088 
1089 	return NULL;
1090 }
1091 
1092 static struct page *dequeue_huge_page_vma(struct hstate *h,
1093 				struct vm_area_struct *vma,
1094 				unsigned long address, int avoid_reserve,
1095 				long chg)
1096 {
1097 	struct page *page;
1098 	struct mempolicy *mpol;
1099 	gfp_t gfp_mask;
1100 	nodemask_t *nodemask;
1101 	int nid;
1102 
1103 	/*
1104 	 * A child process with MAP_PRIVATE mappings created by their parent
1105 	 * have no page reserves. This check ensures that reservations are
1106 	 * not "stolen". The child may still get SIGKILLed
1107 	 */
1108 	if (!vma_has_reserves(vma, chg) &&
1109 			h->free_huge_pages - h->resv_huge_pages == 0)
1110 		goto err;
1111 
1112 	/* If reserves cannot be used, ensure enough pages are in the pool */
1113 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1114 		goto err;
1115 
1116 	gfp_mask = htlb_alloc_mask(h);
1117 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1118 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1119 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1120 		SetPagePrivate(page);
1121 		h->resv_huge_pages--;
1122 	}
1123 
1124 	mpol_cond_put(mpol);
1125 	return page;
1126 
1127 err:
1128 	return NULL;
1129 }
1130 
1131 /*
1132  * common helper functions for hstate_next_node_to_{alloc|free}.
1133  * We may have allocated or freed a huge page based on a different
1134  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1135  * be outside of *nodes_allowed.  Ensure that we use an allowed
1136  * node for alloc or free.
1137  */
1138 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1139 {
1140 	nid = next_node_in(nid, *nodes_allowed);
1141 	VM_BUG_ON(nid >= MAX_NUMNODES);
1142 
1143 	return nid;
1144 }
1145 
1146 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1147 {
1148 	if (!node_isset(nid, *nodes_allowed))
1149 		nid = next_node_allowed(nid, nodes_allowed);
1150 	return nid;
1151 }
1152 
1153 /*
1154  * returns the previously saved node ["this node"] from which to
1155  * allocate a persistent huge page for the pool and advance the
1156  * next node from which to allocate, handling wrap at end of node
1157  * mask.
1158  */
1159 static int hstate_next_node_to_alloc(struct hstate *h,
1160 					nodemask_t *nodes_allowed)
1161 {
1162 	int nid;
1163 
1164 	VM_BUG_ON(!nodes_allowed);
1165 
1166 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1167 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1168 
1169 	return nid;
1170 }
1171 
1172 /*
1173  * helper for free_pool_huge_page() - return the previously saved
1174  * node ["this node"] from which to free a huge page.  Advance the
1175  * next node id whether or not we find a free huge page to free so
1176  * that the next attempt to free addresses the next node.
1177  */
1178 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1179 {
1180 	int nid;
1181 
1182 	VM_BUG_ON(!nodes_allowed);
1183 
1184 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1185 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1186 
1187 	return nid;
1188 }
1189 
1190 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1191 	for (nr_nodes = nodes_weight(*mask);				\
1192 		nr_nodes > 0 &&						\
1193 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1194 		nr_nodes--)
1195 
1196 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1197 	for (nr_nodes = nodes_weight(*mask);				\
1198 		nr_nodes > 0 &&						\
1199 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1200 		nr_nodes--)
1201 
1202 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1203 static void destroy_compound_gigantic_page(struct page *page,
1204 					unsigned int order)
1205 {
1206 	int i;
1207 	int nr_pages = 1 << order;
1208 	struct page *p = page + 1;
1209 
1210 	atomic_set(compound_mapcount_ptr(page), 0);
1211 	if (hpage_pincount_available(page))
1212 		atomic_set(compound_pincount_ptr(page), 0);
1213 
1214 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1215 		clear_compound_head(p);
1216 		set_page_refcounted(p);
1217 	}
1218 
1219 	set_compound_order(page, 0);
1220 	__ClearPageHead(page);
1221 }
1222 
1223 static void free_gigantic_page(struct page *page, unsigned int order)
1224 {
1225 	/*
1226 	 * If the page isn't allocated using the cma allocator,
1227 	 * cma_release() returns false.
1228 	 */
1229 #ifdef CONFIG_CMA
1230 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1231 		return;
1232 #endif
1233 
1234 	free_contig_range(page_to_pfn(page), 1 << order);
1235 }
1236 
1237 #ifdef CONFIG_CONTIG_ALLOC
1238 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239 		int nid, nodemask_t *nodemask)
1240 {
1241 	unsigned long nr_pages = 1UL << huge_page_order(h);
1242 	if (nid == NUMA_NO_NODE)
1243 		nid = numa_mem_id();
1244 
1245 #ifdef CONFIG_CMA
1246 	{
1247 		struct page *page;
1248 		int node;
1249 
1250 		if (hugetlb_cma[nid]) {
1251 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252 					huge_page_order(h), true);
1253 			if (page)
1254 				return page;
1255 		}
1256 
1257 		if (!(gfp_mask & __GFP_THISNODE)) {
1258 			for_each_node_mask(node, *nodemask) {
1259 				if (node == nid || !hugetlb_cma[node])
1260 					continue;
1261 
1262 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1263 						huge_page_order(h), true);
1264 				if (page)
1265 					return page;
1266 			}
1267 		}
1268 	}
1269 #endif
1270 
1271 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 }
1273 
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 					int nid, nodemask_t *nodemask)
1279 {
1280 	return NULL;
1281 }
1282 #endif /* CONFIG_CONTIG_ALLOC */
1283 
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 					int nid, nodemask_t *nodemask)
1287 {
1288 	return NULL;
1289 }
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292 						unsigned int order) { }
1293 #endif
1294 
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1296 {
1297 	int i;
1298 
1299 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300 		return;
1301 
1302 	h->nr_huge_pages--;
1303 	h->nr_huge_pages_node[page_to_nid(page)]--;
1304 	for (i = 0; i < pages_per_huge_page(h); i++) {
1305 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 				1 << PG_referenced | 1 << PG_dirty |
1307 				1 << PG_active | 1 << PG_private |
1308 				1 << PG_writeback);
1309 	}
1310 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313 	set_page_refcounted(page);
1314 	if (hstate_is_gigantic(h)) {
1315 		/*
1316 		 * Temporarily drop the hugetlb_lock, because
1317 		 * we might block in free_gigantic_page().
1318 		 */
1319 		spin_unlock(&hugetlb_lock);
1320 		destroy_compound_gigantic_page(page, huge_page_order(h));
1321 		free_gigantic_page(page, huge_page_order(h));
1322 		spin_lock(&hugetlb_lock);
1323 	} else {
1324 		__free_pages(page, huge_page_order(h));
1325 	}
1326 }
1327 
1328 struct hstate *size_to_hstate(unsigned long size)
1329 {
1330 	struct hstate *h;
1331 
1332 	for_each_hstate(h) {
1333 		if (huge_page_size(h) == size)
1334 			return h;
1335 	}
1336 	return NULL;
1337 }
1338 
1339 /*
1340  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341  * to hstate->hugepage_activelist.)
1342  *
1343  * This function can be called for tail pages, but never returns true for them.
1344  */
1345 bool page_huge_active(struct page *page)
1346 {
1347 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 	return PageHead(page) && PagePrivate(&page[1]);
1349 }
1350 
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1353 {
1354 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 	SetPagePrivate(&page[1]);
1356 }
1357 
1358 static void clear_page_huge_active(struct page *page)
1359 {
1360 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 	ClearPagePrivate(&page[1]);
1362 }
1363 
1364 /*
1365  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366  * code
1367  */
1368 static inline bool PageHugeTemporary(struct page *page)
1369 {
1370 	if (!PageHuge(page))
1371 		return false;
1372 
1373 	return (unsigned long)page[2].mapping == -1U;
1374 }
1375 
1376 static inline void SetPageHugeTemporary(struct page *page)
1377 {
1378 	page[2].mapping = (void *)-1U;
1379 }
1380 
1381 static inline void ClearPageHugeTemporary(struct page *page)
1382 {
1383 	page[2].mapping = NULL;
1384 }
1385 
1386 static void __free_huge_page(struct page *page)
1387 {
1388 	/*
1389 	 * Can't pass hstate in here because it is called from the
1390 	 * compound page destructor.
1391 	 */
1392 	struct hstate *h = page_hstate(page);
1393 	int nid = page_to_nid(page);
1394 	struct hugepage_subpool *spool =
1395 		(struct hugepage_subpool *)page_private(page);
1396 	bool restore_reserve;
1397 
1398 	VM_BUG_ON_PAGE(page_count(page), page);
1399 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1400 
1401 	set_page_private(page, 0);
1402 	page->mapping = NULL;
1403 	restore_reserve = PagePrivate(page);
1404 	ClearPagePrivate(page);
1405 
1406 	/*
1407 	 * If PagePrivate() was set on page, page allocation consumed a
1408 	 * reservation.  If the page was associated with a subpool, there
1409 	 * would have been a page reserved in the subpool before allocation
1410 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1411 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 	 * remove the reserved page from the subpool.
1413 	 */
1414 	if (!restore_reserve) {
1415 		/*
1416 		 * A return code of zero implies that the subpool will be
1417 		 * under its minimum size if the reservation is not restored
1418 		 * after page is free.  Therefore, force restore_reserve
1419 		 * operation.
1420 		 */
1421 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 			restore_reserve = true;
1423 	}
1424 
1425 	spin_lock(&hugetlb_lock);
1426 	clear_page_huge_active(page);
1427 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 				     pages_per_huge_page(h), page);
1429 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 					  pages_per_huge_page(h), page);
1431 	if (restore_reserve)
1432 		h->resv_huge_pages++;
1433 
1434 	if (PageHugeTemporary(page)) {
1435 		list_del(&page->lru);
1436 		ClearPageHugeTemporary(page);
1437 		update_and_free_page(h, page);
1438 	} else if (h->surplus_huge_pages_node[nid]) {
1439 		/* remove the page from active list */
1440 		list_del(&page->lru);
1441 		update_and_free_page(h, page);
1442 		h->surplus_huge_pages--;
1443 		h->surplus_huge_pages_node[nid]--;
1444 	} else {
1445 		arch_clear_hugepage_flags(page);
1446 		enqueue_huge_page(h, page);
1447 	}
1448 	spin_unlock(&hugetlb_lock);
1449 }
1450 
1451 /*
1452  * As free_huge_page() can be called from a non-task context, we have
1453  * to defer the actual freeing in a workqueue to prevent potential
1454  * hugetlb_lock deadlock.
1455  *
1456  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457  * be freed and frees them one-by-one. As the page->mapping pointer is
1458  * going to be cleared in __free_huge_page() anyway, it is reused as the
1459  * llist_node structure of a lockless linked list of huge pages to be freed.
1460  */
1461 static LLIST_HEAD(hpage_freelist);
1462 
1463 static void free_hpage_workfn(struct work_struct *work)
1464 {
1465 	struct llist_node *node;
1466 	struct page *page;
1467 
1468 	node = llist_del_all(&hpage_freelist);
1469 
1470 	while (node) {
1471 		page = container_of((struct address_space **)node,
1472 				     struct page, mapping);
1473 		node = node->next;
1474 		__free_huge_page(page);
1475 	}
1476 }
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478 
1479 void free_huge_page(struct page *page)
1480 {
1481 	/*
1482 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483 	 */
1484 	if (!in_task()) {
1485 		/*
1486 		 * Only call schedule_work() if hpage_freelist is previously
1487 		 * empty. Otherwise, schedule_work() had been called but the
1488 		 * workfn hasn't retrieved the list yet.
1489 		 */
1490 		if (llist_add((struct llist_node *)&page->mapping,
1491 			      &hpage_freelist))
1492 			schedule_work(&free_hpage_work);
1493 		return;
1494 	}
1495 
1496 	__free_huge_page(page);
1497 }
1498 
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500 {
1501 	INIT_LIST_HEAD(&page->lru);
1502 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503 	set_hugetlb_cgroup(page, NULL);
1504 	set_hugetlb_cgroup_rsvd(page, NULL);
1505 	spin_lock(&hugetlb_lock);
1506 	h->nr_huge_pages++;
1507 	h->nr_huge_pages_node[nid]++;
1508 	spin_unlock(&hugetlb_lock);
1509 }
1510 
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 {
1513 	int i;
1514 	int nr_pages = 1 << order;
1515 	struct page *p = page + 1;
1516 
1517 	/* we rely on prep_new_huge_page to set the destructor */
1518 	set_compound_order(page, order);
1519 	__ClearPageReserved(page);
1520 	__SetPageHead(page);
1521 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522 		/*
1523 		 * For gigantic hugepages allocated through bootmem at
1524 		 * boot, it's safer to be consistent with the not-gigantic
1525 		 * hugepages and clear the PG_reserved bit from all tail pages
1526 		 * too.  Otherwise drivers using get_user_pages() to access tail
1527 		 * pages may get the reference counting wrong if they see
1528 		 * PG_reserved set on a tail page (despite the head page not
1529 		 * having PG_reserved set).  Enforcing this consistency between
1530 		 * head and tail pages allows drivers to optimize away a check
1531 		 * on the head page when they need know if put_page() is needed
1532 		 * after get_user_pages().
1533 		 */
1534 		__ClearPageReserved(p);
1535 		set_page_count(p, 0);
1536 		set_compound_head(p, page);
1537 	}
1538 	atomic_set(compound_mapcount_ptr(page), -1);
1539 
1540 	if (hpage_pincount_available(page))
1541 		atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543 
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551 	if (!PageCompound(page))
1552 		return 0;
1553 
1554 	page = compound_head(page);
1555 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558 
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 	if (!PageHead(page_head))
1566 		return 0;
1567 
1568 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570 
1571 /*
1572  * Find address_space associated with hugetlbfs page.
1573  * Upon entry page is locked and page 'was' mapped although mapped state
1574  * could change.  If necessary, use anon_vma to find vma and associated
1575  * address space.  The returned mapping may be stale, but it can not be
1576  * invalid as page lock (which is held) is required to destroy mapping.
1577  */
1578 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1579 {
1580 	struct anon_vma *anon_vma;
1581 	pgoff_t pgoff_start, pgoff_end;
1582 	struct anon_vma_chain *avc;
1583 	struct address_space *mapping = page_mapping(hpage);
1584 
1585 	/* Simple file based mapping */
1586 	if (mapping)
1587 		return mapping;
1588 
1589 	/*
1590 	 * Even anonymous hugetlbfs mappings are associated with an
1591 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1592 	 * code).  Find a vma associated with the anonymous vma, and
1593 	 * use the file pointer to get address_space.
1594 	 */
1595 	anon_vma = page_lock_anon_vma_read(hpage);
1596 	if (!anon_vma)
1597 		return mapping;  /* NULL */
1598 
1599 	/* Use first found vma */
1600 	pgoff_start = page_to_pgoff(hpage);
1601 	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1602 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1603 					pgoff_start, pgoff_end) {
1604 		struct vm_area_struct *vma = avc->vma;
1605 
1606 		mapping = vma->vm_file->f_mapping;
1607 		break;
1608 	}
1609 
1610 	anon_vma_unlock_read(anon_vma);
1611 	return mapping;
1612 }
1613 
1614 /*
1615  * Find and lock address space (mapping) in write mode.
1616  *
1617  * Upon entry, the page is locked which allows us to find the mapping
1618  * even in the case of an anon page.  However, locking order dictates
1619  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1620  * specific.  So, we first try to lock the sema while still holding the
1621  * page lock.  If this works, great!  If not, then we need to drop the
1622  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1623  * course, need to revalidate state along the way.
1624  */
1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1626 {
1627 	struct address_space *mapping, *mapping2;
1628 
1629 	mapping = _get_hugetlb_page_mapping(hpage);
1630 retry:
1631 	if (!mapping)
1632 		return mapping;
1633 
1634 	/*
1635 	 * If no contention, take lock and return
1636 	 */
1637 	if (i_mmap_trylock_write(mapping))
1638 		return mapping;
1639 
1640 	/*
1641 	 * Must drop page lock and wait on mapping sema.
1642 	 * Note:  Once page lock is dropped, mapping could become invalid.
1643 	 * As a hack, increase map count until we lock page again.
1644 	 */
1645 	atomic_inc(&hpage->_mapcount);
1646 	unlock_page(hpage);
1647 	i_mmap_lock_write(mapping);
1648 	lock_page(hpage);
1649 	atomic_add_negative(-1, &hpage->_mapcount);
1650 
1651 	/* verify page is still mapped */
1652 	if (!page_mapped(hpage)) {
1653 		i_mmap_unlock_write(mapping);
1654 		return NULL;
1655 	}
1656 
1657 	/*
1658 	 * Get address space again and verify it is the same one
1659 	 * we locked.  If not, drop lock and retry.
1660 	 */
1661 	mapping2 = _get_hugetlb_page_mapping(hpage);
1662 	if (mapping2 != mapping) {
1663 		i_mmap_unlock_write(mapping);
1664 		mapping = mapping2;
1665 		goto retry;
1666 	}
1667 
1668 	return mapping;
1669 }
1670 
1671 pgoff_t __basepage_index(struct page *page)
1672 {
1673 	struct page *page_head = compound_head(page);
1674 	pgoff_t index = page_index(page_head);
1675 	unsigned long compound_idx;
1676 
1677 	if (!PageHuge(page_head))
1678 		return page_index(page);
1679 
1680 	if (compound_order(page_head) >= MAX_ORDER)
1681 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1682 	else
1683 		compound_idx = page - page_head;
1684 
1685 	return (index << compound_order(page_head)) + compound_idx;
1686 }
1687 
1688 static struct page *alloc_buddy_huge_page(struct hstate *h,
1689 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1690 		nodemask_t *node_alloc_noretry)
1691 {
1692 	int order = huge_page_order(h);
1693 	struct page *page;
1694 	bool alloc_try_hard = true;
1695 
1696 	/*
1697 	 * By default we always try hard to allocate the page with
1698 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1699 	 * a loop (to adjust global huge page counts) and previous allocation
1700 	 * failed, do not continue to try hard on the same node.  Use the
1701 	 * node_alloc_noretry bitmap to manage this state information.
1702 	 */
1703 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1704 		alloc_try_hard = false;
1705 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1706 	if (alloc_try_hard)
1707 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1708 	if (nid == NUMA_NO_NODE)
1709 		nid = numa_mem_id();
1710 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1711 	if (page)
1712 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1713 	else
1714 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1715 
1716 	/*
1717 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1718 	 * indicates an overall state change.  Clear bit so that we resume
1719 	 * normal 'try hard' allocations.
1720 	 */
1721 	if (node_alloc_noretry && page && !alloc_try_hard)
1722 		node_clear(nid, *node_alloc_noretry);
1723 
1724 	/*
1725 	 * If we tried hard to get a page but failed, set bit so that
1726 	 * subsequent attempts will not try as hard until there is an
1727 	 * overall state change.
1728 	 */
1729 	if (node_alloc_noretry && !page && alloc_try_hard)
1730 		node_set(nid, *node_alloc_noretry);
1731 
1732 	return page;
1733 }
1734 
1735 /*
1736  * Common helper to allocate a fresh hugetlb page. All specific allocators
1737  * should use this function to get new hugetlb pages
1738  */
1739 static struct page *alloc_fresh_huge_page(struct hstate *h,
1740 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1741 		nodemask_t *node_alloc_noretry)
1742 {
1743 	struct page *page;
1744 
1745 	if (hstate_is_gigantic(h))
1746 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1747 	else
1748 		page = alloc_buddy_huge_page(h, gfp_mask,
1749 				nid, nmask, node_alloc_noretry);
1750 	if (!page)
1751 		return NULL;
1752 
1753 	if (hstate_is_gigantic(h))
1754 		prep_compound_gigantic_page(page, huge_page_order(h));
1755 	prep_new_huge_page(h, page, page_to_nid(page));
1756 
1757 	return page;
1758 }
1759 
1760 /*
1761  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1762  * manner.
1763  */
1764 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1765 				nodemask_t *node_alloc_noretry)
1766 {
1767 	struct page *page;
1768 	int nr_nodes, node;
1769 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1770 
1771 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1772 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1773 						node_alloc_noretry);
1774 		if (page)
1775 			break;
1776 	}
1777 
1778 	if (!page)
1779 		return 0;
1780 
1781 	put_page(page); /* free it into the hugepage allocator */
1782 
1783 	return 1;
1784 }
1785 
1786 /*
1787  * Free huge page from pool from next node to free.
1788  * Attempt to keep persistent huge pages more or less
1789  * balanced over allowed nodes.
1790  * Called with hugetlb_lock locked.
1791  */
1792 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1793 							 bool acct_surplus)
1794 {
1795 	int nr_nodes, node;
1796 	int ret = 0;
1797 
1798 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799 		/*
1800 		 * If we're returning unused surplus pages, only examine
1801 		 * nodes with surplus pages.
1802 		 */
1803 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1804 		    !list_empty(&h->hugepage_freelists[node])) {
1805 			struct page *page =
1806 				list_entry(h->hugepage_freelists[node].next,
1807 					  struct page, lru);
1808 			list_del(&page->lru);
1809 			h->free_huge_pages--;
1810 			h->free_huge_pages_node[node]--;
1811 			if (acct_surplus) {
1812 				h->surplus_huge_pages--;
1813 				h->surplus_huge_pages_node[node]--;
1814 			}
1815 			update_and_free_page(h, page);
1816 			ret = 1;
1817 			break;
1818 		}
1819 	}
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Dissolve a given free hugepage into free buddy pages. This function does
1826  * nothing for in-use hugepages and non-hugepages.
1827  * This function returns values like below:
1828  *
1829  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1830  *          (allocated or reserved.)
1831  *       0: successfully dissolved free hugepages or the page is not a
1832  *          hugepage (considered as already dissolved)
1833  */
1834 int dissolve_free_huge_page(struct page *page)
1835 {
1836 	int rc = -EBUSY;
1837 
1838 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1839 	if (!PageHuge(page))
1840 		return 0;
1841 
1842 	spin_lock(&hugetlb_lock);
1843 	if (!PageHuge(page)) {
1844 		rc = 0;
1845 		goto out;
1846 	}
1847 
1848 	if (!page_count(page)) {
1849 		struct page *head = compound_head(page);
1850 		struct hstate *h = page_hstate(head);
1851 		int nid = page_to_nid(head);
1852 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1853 			goto out;
1854 		/*
1855 		 * Move PageHWPoison flag from head page to the raw error page,
1856 		 * which makes any subpages rather than the error page reusable.
1857 		 */
1858 		if (PageHWPoison(head) && page != head) {
1859 			SetPageHWPoison(page);
1860 			ClearPageHWPoison(head);
1861 		}
1862 		list_del(&head->lru);
1863 		h->free_huge_pages--;
1864 		h->free_huge_pages_node[nid]--;
1865 		h->max_huge_pages--;
1866 		update_and_free_page(h, head);
1867 		rc = 0;
1868 	}
1869 out:
1870 	spin_unlock(&hugetlb_lock);
1871 	return rc;
1872 }
1873 
1874 /*
1875  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1876  * make specified memory blocks removable from the system.
1877  * Note that this will dissolve a free gigantic hugepage completely, if any
1878  * part of it lies within the given range.
1879  * Also note that if dissolve_free_huge_page() returns with an error, all
1880  * free hugepages that were dissolved before that error are lost.
1881  */
1882 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1883 {
1884 	unsigned long pfn;
1885 	struct page *page;
1886 	int rc = 0;
1887 
1888 	if (!hugepages_supported())
1889 		return rc;
1890 
1891 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1892 		page = pfn_to_page(pfn);
1893 		rc = dissolve_free_huge_page(page);
1894 		if (rc)
1895 			break;
1896 	}
1897 
1898 	return rc;
1899 }
1900 
1901 /*
1902  * Allocates a fresh surplus page from the page allocator.
1903  */
1904 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1905 		int nid, nodemask_t *nmask)
1906 {
1907 	struct page *page = NULL;
1908 
1909 	if (hstate_is_gigantic(h))
1910 		return NULL;
1911 
1912 	spin_lock(&hugetlb_lock);
1913 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1914 		goto out_unlock;
1915 	spin_unlock(&hugetlb_lock);
1916 
1917 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1918 	if (!page)
1919 		return NULL;
1920 
1921 	spin_lock(&hugetlb_lock);
1922 	/*
1923 	 * We could have raced with the pool size change.
1924 	 * Double check that and simply deallocate the new page
1925 	 * if we would end up overcommiting the surpluses. Abuse
1926 	 * temporary page to workaround the nasty free_huge_page
1927 	 * codeflow
1928 	 */
1929 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1930 		SetPageHugeTemporary(page);
1931 		spin_unlock(&hugetlb_lock);
1932 		put_page(page);
1933 		return NULL;
1934 	} else {
1935 		h->surplus_huge_pages++;
1936 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1937 	}
1938 
1939 out_unlock:
1940 	spin_unlock(&hugetlb_lock);
1941 
1942 	return page;
1943 }
1944 
1945 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1946 				     int nid, nodemask_t *nmask)
1947 {
1948 	struct page *page;
1949 
1950 	if (hstate_is_gigantic(h))
1951 		return NULL;
1952 
1953 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1954 	if (!page)
1955 		return NULL;
1956 
1957 	/*
1958 	 * We do not account these pages as surplus because they are only
1959 	 * temporary and will be released properly on the last reference
1960 	 */
1961 	SetPageHugeTemporary(page);
1962 
1963 	return page;
1964 }
1965 
1966 /*
1967  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1968  */
1969 static
1970 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1971 		struct vm_area_struct *vma, unsigned long addr)
1972 {
1973 	struct page *page;
1974 	struct mempolicy *mpol;
1975 	gfp_t gfp_mask = htlb_alloc_mask(h);
1976 	int nid;
1977 	nodemask_t *nodemask;
1978 
1979 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1980 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1981 	mpol_cond_put(mpol);
1982 
1983 	return page;
1984 }
1985 
1986 /* page migration callback function */
1987 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1988 		nodemask_t *nmask, gfp_t gfp_mask)
1989 {
1990 	spin_lock(&hugetlb_lock);
1991 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1992 		struct page *page;
1993 
1994 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1995 		if (page) {
1996 			spin_unlock(&hugetlb_lock);
1997 			return page;
1998 		}
1999 	}
2000 	spin_unlock(&hugetlb_lock);
2001 
2002 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2003 }
2004 
2005 /* mempolicy aware migration callback */
2006 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2007 		unsigned long address)
2008 {
2009 	struct mempolicy *mpol;
2010 	nodemask_t *nodemask;
2011 	struct page *page;
2012 	gfp_t gfp_mask;
2013 	int node;
2014 
2015 	gfp_mask = htlb_alloc_mask(h);
2016 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2017 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2018 	mpol_cond_put(mpol);
2019 
2020 	return page;
2021 }
2022 
2023 /*
2024  * Increase the hugetlb pool such that it can accommodate a reservation
2025  * of size 'delta'.
2026  */
2027 static int gather_surplus_pages(struct hstate *h, int delta)
2028 	__must_hold(&hugetlb_lock)
2029 {
2030 	struct list_head surplus_list;
2031 	struct page *page, *tmp;
2032 	int ret, i;
2033 	int needed, allocated;
2034 	bool alloc_ok = true;
2035 
2036 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2037 	if (needed <= 0) {
2038 		h->resv_huge_pages += delta;
2039 		return 0;
2040 	}
2041 
2042 	allocated = 0;
2043 	INIT_LIST_HEAD(&surplus_list);
2044 
2045 	ret = -ENOMEM;
2046 retry:
2047 	spin_unlock(&hugetlb_lock);
2048 	for (i = 0; i < needed; i++) {
2049 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2050 				NUMA_NO_NODE, NULL);
2051 		if (!page) {
2052 			alloc_ok = false;
2053 			break;
2054 		}
2055 		list_add(&page->lru, &surplus_list);
2056 		cond_resched();
2057 	}
2058 	allocated += i;
2059 
2060 	/*
2061 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2062 	 * because either resv_huge_pages or free_huge_pages may have changed.
2063 	 */
2064 	spin_lock(&hugetlb_lock);
2065 	needed = (h->resv_huge_pages + delta) -
2066 			(h->free_huge_pages + allocated);
2067 	if (needed > 0) {
2068 		if (alloc_ok)
2069 			goto retry;
2070 		/*
2071 		 * We were not able to allocate enough pages to
2072 		 * satisfy the entire reservation so we free what
2073 		 * we've allocated so far.
2074 		 */
2075 		goto free;
2076 	}
2077 	/*
2078 	 * The surplus_list now contains _at_least_ the number of extra pages
2079 	 * needed to accommodate the reservation.  Add the appropriate number
2080 	 * of pages to the hugetlb pool and free the extras back to the buddy
2081 	 * allocator.  Commit the entire reservation here to prevent another
2082 	 * process from stealing the pages as they are added to the pool but
2083 	 * before they are reserved.
2084 	 */
2085 	needed += allocated;
2086 	h->resv_huge_pages += delta;
2087 	ret = 0;
2088 
2089 	/* Free the needed pages to the hugetlb pool */
2090 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2091 		if ((--needed) < 0)
2092 			break;
2093 		/*
2094 		 * This page is now managed by the hugetlb allocator and has
2095 		 * no users -- drop the buddy allocator's reference.
2096 		 */
2097 		put_page_testzero(page);
2098 		VM_BUG_ON_PAGE(page_count(page), page);
2099 		enqueue_huge_page(h, page);
2100 	}
2101 free:
2102 	spin_unlock(&hugetlb_lock);
2103 
2104 	/* Free unnecessary surplus pages to the buddy allocator */
2105 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2106 		put_page(page);
2107 	spin_lock(&hugetlb_lock);
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * This routine has two main purposes:
2114  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2115  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2116  *    to the associated reservation map.
2117  * 2) Free any unused surplus pages that may have been allocated to satisfy
2118  *    the reservation.  As many as unused_resv_pages may be freed.
2119  *
2120  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2121  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2122  * we must make sure nobody else can claim pages we are in the process of
2123  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2124  * number of huge pages we plan to free when dropping the lock.
2125  */
2126 static void return_unused_surplus_pages(struct hstate *h,
2127 					unsigned long unused_resv_pages)
2128 {
2129 	unsigned long nr_pages;
2130 
2131 	/* Cannot return gigantic pages currently */
2132 	if (hstate_is_gigantic(h))
2133 		goto out;
2134 
2135 	/*
2136 	 * Part (or even all) of the reservation could have been backed
2137 	 * by pre-allocated pages. Only free surplus pages.
2138 	 */
2139 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2140 
2141 	/*
2142 	 * We want to release as many surplus pages as possible, spread
2143 	 * evenly across all nodes with memory. Iterate across these nodes
2144 	 * until we can no longer free unreserved surplus pages. This occurs
2145 	 * when the nodes with surplus pages have no free pages.
2146 	 * free_pool_huge_page() will balance the freed pages across the
2147 	 * on-line nodes with memory and will handle the hstate accounting.
2148 	 *
2149 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2150 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2151 	 * to cover subsequent pages we may free.
2152 	 */
2153 	while (nr_pages--) {
2154 		h->resv_huge_pages--;
2155 		unused_resv_pages--;
2156 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2157 			goto out;
2158 		cond_resched_lock(&hugetlb_lock);
2159 	}
2160 
2161 out:
2162 	/* Fully uncommit the reservation */
2163 	h->resv_huge_pages -= unused_resv_pages;
2164 }
2165 
2166 
2167 /*
2168  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169  * are used by the huge page allocation routines to manage reservations.
2170  *
2171  * vma_needs_reservation is called to determine if the huge page at addr
2172  * within the vma has an associated reservation.  If a reservation is
2173  * needed, the value 1 is returned.  The caller is then responsible for
2174  * managing the global reservation and subpool usage counts.  After
2175  * the huge page has been allocated, vma_commit_reservation is called
2176  * to add the page to the reservation map.  If the page allocation fails,
2177  * the reservation must be ended instead of committed.  vma_end_reservation
2178  * is called in such cases.
2179  *
2180  * In the normal case, vma_commit_reservation returns the same value
2181  * as the preceding vma_needs_reservation call.  The only time this
2182  * is not the case is if a reserve map was changed between calls.  It
2183  * is the responsibility of the caller to notice the difference and
2184  * take appropriate action.
2185  *
2186  * vma_add_reservation is used in error paths where a reservation must
2187  * be restored when a newly allocated huge page must be freed.  It is
2188  * to be called after calling vma_needs_reservation to determine if a
2189  * reservation exists.
2190  */
2191 enum vma_resv_mode {
2192 	VMA_NEEDS_RESV,
2193 	VMA_COMMIT_RESV,
2194 	VMA_END_RESV,
2195 	VMA_ADD_RESV,
2196 };
2197 static long __vma_reservation_common(struct hstate *h,
2198 				struct vm_area_struct *vma, unsigned long addr,
2199 				enum vma_resv_mode mode)
2200 {
2201 	struct resv_map *resv;
2202 	pgoff_t idx;
2203 	long ret;
2204 	long dummy_out_regions_needed;
2205 
2206 	resv = vma_resv_map(vma);
2207 	if (!resv)
2208 		return 1;
2209 
2210 	idx = vma_hugecache_offset(h, vma, addr);
2211 	switch (mode) {
2212 	case VMA_NEEDS_RESV:
2213 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2214 		/* We assume that vma_reservation_* routines always operate on
2215 		 * 1 page, and that adding to resv map a 1 page entry can only
2216 		 * ever require 1 region.
2217 		 */
2218 		VM_BUG_ON(dummy_out_regions_needed != 1);
2219 		break;
2220 	case VMA_COMMIT_RESV:
2221 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2222 		/* region_add calls of range 1 should never fail. */
2223 		VM_BUG_ON(ret < 0);
2224 		break;
2225 	case VMA_END_RESV:
2226 		region_abort(resv, idx, idx + 1, 1);
2227 		ret = 0;
2228 		break;
2229 	case VMA_ADD_RESV:
2230 		if (vma->vm_flags & VM_MAYSHARE) {
2231 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2232 			/* region_add calls of range 1 should never fail. */
2233 			VM_BUG_ON(ret < 0);
2234 		} else {
2235 			region_abort(resv, idx, idx + 1, 1);
2236 			ret = region_del(resv, idx, idx + 1);
2237 		}
2238 		break;
2239 	default:
2240 		BUG();
2241 	}
2242 
2243 	if (vma->vm_flags & VM_MAYSHARE)
2244 		return ret;
2245 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2246 		/*
2247 		 * In most cases, reserves always exist for private mappings.
2248 		 * However, a file associated with mapping could have been
2249 		 * hole punched or truncated after reserves were consumed.
2250 		 * As subsequent fault on such a range will not use reserves.
2251 		 * Subtle - The reserve map for private mappings has the
2252 		 * opposite meaning than that of shared mappings.  If NO
2253 		 * entry is in the reserve map, it means a reservation exists.
2254 		 * If an entry exists in the reserve map, it means the
2255 		 * reservation has already been consumed.  As a result, the
2256 		 * return value of this routine is the opposite of the
2257 		 * value returned from reserve map manipulation routines above.
2258 		 */
2259 		if (ret)
2260 			return 0;
2261 		else
2262 			return 1;
2263 	}
2264 	else
2265 		return ret < 0 ? ret : 0;
2266 }
2267 
2268 static long vma_needs_reservation(struct hstate *h,
2269 			struct vm_area_struct *vma, unsigned long addr)
2270 {
2271 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2272 }
2273 
2274 static long vma_commit_reservation(struct hstate *h,
2275 			struct vm_area_struct *vma, unsigned long addr)
2276 {
2277 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2278 }
2279 
2280 static void vma_end_reservation(struct hstate *h,
2281 			struct vm_area_struct *vma, unsigned long addr)
2282 {
2283 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2284 }
2285 
2286 static long vma_add_reservation(struct hstate *h,
2287 			struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2290 }
2291 
2292 /*
2293  * This routine is called to restore a reservation on error paths.  In the
2294  * specific error paths, a huge page was allocated (via alloc_huge_page)
2295  * and is about to be freed.  If a reservation for the page existed,
2296  * alloc_huge_page would have consumed the reservation and set PagePrivate
2297  * in the newly allocated page.  When the page is freed via free_huge_page,
2298  * the global reservation count will be incremented if PagePrivate is set.
2299  * However, free_huge_page can not adjust the reserve map.  Adjust the
2300  * reserve map here to be consistent with global reserve count adjustments
2301  * to be made by free_huge_page.
2302  */
2303 static void restore_reserve_on_error(struct hstate *h,
2304 			struct vm_area_struct *vma, unsigned long address,
2305 			struct page *page)
2306 {
2307 	if (unlikely(PagePrivate(page))) {
2308 		long rc = vma_needs_reservation(h, vma, address);
2309 
2310 		if (unlikely(rc < 0)) {
2311 			/*
2312 			 * Rare out of memory condition in reserve map
2313 			 * manipulation.  Clear PagePrivate so that
2314 			 * global reserve count will not be incremented
2315 			 * by free_huge_page.  This will make it appear
2316 			 * as though the reservation for this page was
2317 			 * consumed.  This may prevent the task from
2318 			 * faulting in the page at a later time.  This
2319 			 * is better than inconsistent global huge page
2320 			 * accounting of reserve counts.
2321 			 */
2322 			ClearPagePrivate(page);
2323 		} else if (rc) {
2324 			rc = vma_add_reservation(h, vma, address);
2325 			if (unlikely(rc < 0))
2326 				/*
2327 				 * See above comment about rare out of
2328 				 * memory condition.
2329 				 */
2330 				ClearPagePrivate(page);
2331 		} else
2332 			vma_end_reservation(h, vma, address);
2333 	}
2334 }
2335 
2336 struct page *alloc_huge_page(struct vm_area_struct *vma,
2337 				    unsigned long addr, int avoid_reserve)
2338 {
2339 	struct hugepage_subpool *spool = subpool_vma(vma);
2340 	struct hstate *h = hstate_vma(vma);
2341 	struct page *page;
2342 	long map_chg, map_commit;
2343 	long gbl_chg;
2344 	int ret, idx;
2345 	struct hugetlb_cgroup *h_cg;
2346 	bool deferred_reserve;
2347 
2348 	idx = hstate_index(h);
2349 	/*
2350 	 * Examine the region/reserve map to determine if the process
2351 	 * has a reservation for the page to be allocated.  A return
2352 	 * code of zero indicates a reservation exists (no change).
2353 	 */
2354 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2355 	if (map_chg < 0)
2356 		return ERR_PTR(-ENOMEM);
2357 
2358 	/*
2359 	 * Processes that did not create the mapping will have no
2360 	 * reserves as indicated by the region/reserve map. Check
2361 	 * that the allocation will not exceed the subpool limit.
2362 	 * Allocations for MAP_NORESERVE mappings also need to be
2363 	 * checked against any subpool limit.
2364 	 */
2365 	if (map_chg || avoid_reserve) {
2366 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2367 		if (gbl_chg < 0) {
2368 			vma_end_reservation(h, vma, addr);
2369 			return ERR_PTR(-ENOSPC);
2370 		}
2371 
2372 		/*
2373 		 * Even though there was no reservation in the region/reserve
2374 		 * map, there could be reservations associated with the
2375 		 * subpool that can be used.  This would be indicated if the
2376 		 * return value of hugepage_subpool_get_pages() is zero.
2377 		 * However, if avoid_reserve is specified we still avoid even
2378 		 * the subpool reservations.
2379 		 */
2380 		if (avoid_reserve)
2381 			gbl_chg = 1;
2382 	}
2383 
2384 	/* If this allocation is not consuming a reservation, charge it now.
2385 	 */
2386 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2387 	if (deferred_reserve) {
2388 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2389 			idx, pages_per_huge_page(h), &h_cg);
2390 		if (ret)
2391 			goto out_subpool_put;
2392 	}
2393 
2394 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2395 	if (ret)
2396 		goto out_uncharge_cgroup_reservation;
2397 
2398 	spin_lock(&hugetlb_lock);
2399 	/*
2400 	 * glb_chg is passed to indicate whether or not a page must be taken
2401 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2402 	 * a reservation exists for the allocation.
2403 	 */
2404 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2405 	if (!page) {
2406 		spin_unlock(&hugetlb_lock);
2407 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2408 		if (!page)
2409 			goto out_uncharge_cgroup;
2410 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411 			SetPagePrivate(page);
2412 			h->resv_huge_pages--;
2413 		}
2414 		spin_lock(&hugetlb_lock);
2415 		list_add(&page->lru, &h->hugepage_activelist);
2416 		/* Fall through */
2417 	}
2418 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2419 	/* If allocation is not consuming a reservation, also store the
2420 	 * hugetlb_cgroup pointer on the page.
2421 	 */
2422 	if (deferred_reserve) {
2423 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2424 						  h_cg, page);
2425 	}
2426 
2427 	spin_unlock(&hugetlb_lock);
2428 
2429 	set_page_private(page, (unsigned long)spool);
2430 
2431 	map_commit = vma_commit_reservation(h, vma, addr);
2432 	if (unlikely(map_chg > map_commit)) {
2433 		/*
2434 		 * The page was added to the reservation map between
2435 		 * vma_needs_reservation and vma_commit_reservation.
2436 		 * This indicates a race with hugetlb_reserve_pages.
2437 		 * Adjust for the subpool count incremented above AND
2438 		 * in hugetlb_reserve_pages for the same page.  Also,
2439 		 * the reservation count added in hugetlb_reserve_pages
2440 		 * no longer applies.
2441 		 */
2442 		long rsv_adjust;
2443 
2444 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2445 		hugetlb_acct_memory(h, -rsv_adjust);
2446 	}
2447 	return page;
2448 
2449 out_uncharge_cgroup:
2450 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2451 out_uncharge_cgroup_reservation:
2452 	if (deferred_reserve)
2453 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2454 						    h_cg);
2455 out_subpool_put:
2456 	if (map_chg || avoid_reserve)
2457 		hugepage_subpool_put_pages(spool, 1);
2458 	vma_end_reservation(h, vma, addr);
2459 	return ERR_PTR(-ENOSPC);
2460 }
2461 
2462 int alloc_bootmem_huge_page(struct hstate *h)
2463 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2464 int __alloc_bootmem_huge_page(struct hstate *h)
2465 {
2466 	struct huge_bootmem_page *m;
2467 	int nr_nodes, node;
2468 
2469 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2470 		void *addr;
2471 
2472 		addr = memblock_alloc_try_nid_raw(
2473 				huge_page_size(h), huge_page_size(h),
2474 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2475 		if (addr) {
2476 			/*
2477 			 * Use the beginning of the huge page to store the
2478 			 * huge_bootmem_page struct (until gather_bootmem
2479 			 * puts them into the mem_map).
2480 			 */
2481 			m = addr;
2482 			goto found;
2483 		}
2484 	}
2485 	return 0;
2486 
2487 found:
2488 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2489 	/* Put them into a private list first because mem_map is not up yet */
2490 	INIT_LIST_HEAD(&m->list);
2491 	list_add(&m->list, &huge_boot_pages);
2492 	m->hstate = h;
2493 	return 1;
2494 }
2495 
2496 static void __init prep_compound_huge_page(struct page *page,
2497 		unsigned int order)
2498 {
2499 	if (unlikely(order > (MAX_ORDER - 1)))
2500 		prep_compound_gigantic_page(page, order);
2501 	else
2502 		prep_compound_page(page, order);
2503 }
2504 
2505 /* Put bootmem huge pages into the standard lists after mem_map is up */
2506 static void __init gather_bootmem_prealloc(void)
2507 {
2508 	struct huge_bootmem_page *m;
2509 
2510 	list_for_each_entry(m, &huge_boot_pages, list) {
2511 		struct page *page = virt_to_page(m);
2512 		struct hstate *h = m->hstate;
2513 
2514 		WARN_ON(page_count(page) != 1);
2515 		prep_compound_huge_page(page, h->order);
2516 		WARN_ON(PageReserved(page));
2517 		prep_new_huge_page(h, page, page_to_nid(page));
2518 		put_page(page); /* free it into the hugepage allocator */
2519 
2520 		/*
2521 		 * If we had gigantic hugepages allocated at boot time, we need
2522 		 * to restore the 'stolen' pages to totalram_pages in order to
2523 		 * fix confusing memory reports from free(1) and another
2524 		 * side-effects, like CommitLimit going negative.
2525 		 */
2526 		if (hstate_is_gigantic(h))
2527 			adjust_managed_page_count(page, 1 << h->order);
2528 		cond_resched();
2529 	}
2530 }
2531 
2532 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2533 {
2534 	unsigned long i;
2535 	nodemask_t *node_alloc_noretry;
2536 
2537 	if (!hstate_is_gigantic(h)) {
2538 		/*
2539 		 * Bit mask controlling how hard we retry per-node allocations.
2540 		 * Ignore errors as lower level routines can deal with
2541 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2542 		 * time, we are likely in bigger trouble.
2543 		 */
2544 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2545 						GFP_KERNEL);
2546 	} else {
2547 		/* allocations done at boot time */
2548 		node_alloc_noretry = NULL;
2549 	}
2550 
2551 	/* bit mask controlling how hard we retry per-node allocations */
2552 	if (node_alloc_noretry)
2553 		nodes_clear(*node_alloc_noretry);
2554 
2555 	for (i = 0; i < h->max_huge_pages; ++i) {
2556 		if (hstate_is_gigantic(h)) {
2557 			if (hugetlb_cma_size) {
2558 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2559 				break;
2560 			}
2561 			if (!alloc_bootmem_huge_page(h))
2562 				break;
2563 		} else if (!alloc_pool_huge_page(h,
2564 					 &node_states[N_MEMORY],
2565 					 node_alloc_noretry))
2566 			break;
2567 		cond_resched();
2568 	}
2569 	if (i < h->max_huge_pages) {
2570 		char buf[32];
2571 
2572 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2573 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2574 			h->max_huge_pages, buf, i);
2575 		h->max_huge_pages = i;
2576 	}
2577 
2578 	kfree(node_alloc_noretry);
2579 }
2580 
2581 static void __init hugetlb_init_hstates(void)
2582 {
2583 	struct hstate *h;
2584 
2585 	for_each_hstate(h) {
2586 		if (minimum_order > huge_page_order(h))
2587 			minimum_order = huge_page_order(h);
2588 
2589 		/* oversize hugepages were init'ed in early boot */
2590 		if (!hstate_is_gigantic(h))
2591 			hugetlb_hstate_alloc_pages(h);
2592 	}
2593 	VM_BUG_ON(minimum_order == UINT_MAX);
2594 }
2595 
2596 static void __init report_hugepages(void)
2597 {
2598 	struct hstate *h;
2599 
2600 	for_each_hstate(h) {
2601 		char buf[32];
2602 
2603 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2604 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2605 			buf, h->free_huge_pages);
2606 	}
2607 }
2608 
2609 #ifdef CONFIG_HIGHMEM
2610 static void try_to_free_low(struct hstate *h, unsigned long count,
2611 						nodemask_t *nodes_allowed)
2612 {
2613 	int i;
2614 
2615 	if (hstate_is_gigantic(h))
2616 		return;
2617 
2618 	for_each_node_mask(i, *nodes_allowed) {
2619 		struct page *page, *next;
2620 		struct list_head *freel = &h->hugepage_freelists[i];
2621 		list_for_each_entry_safe(page, next, freel, lru) {
2622 			if (count >= h->nr_huge_pages)
2623 				return;
2624 			if (PageHighMem(page))
2625 				continue;
2626 			list_del(&page->lru);
2627 			update_and_free_page(h, page);
2628 			h->free_huge_pages--;
2629 			h->free_huge_pages_node[page_to_nid(page)]--;
2630 		}
2631 	}
2632 }
2633 #else
2634 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2635 						nodemask_t *nodes_allowed)
2636 {
2637 }
2638 #endif
2639 
2640 /*
2641  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2642  * balanced by operating on them in a round-robin fashion.
2643  * Returns 1 if an adjustment was made.
2644  */
2645 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2646 				int delta)
2647 {
2648 	int nr_nodes, node;
2649 
2650 	VM_BUG_ON(delta != -1 && delta != 1);
2651 
2652 	if (delta < 0) {
2653 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2654 			if (h->surplus_huge_pages_node[node])
2655 				goto found;
2656 		}
2657 	} else {
2658 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2659 			if (h->surplus_huge_pages_node[node] <
2660 					h->nr_huge_pages_node[node])
2661 				goto found;
2662 		}
2663 	}
2664 	return 0;
2665 
2666 found:
2667 	h->surplus_huge_pages += delta;
2668 	h->surplus_huge_pages_node[node] += delta;
2669 	return 1;
2670 }
2671 
2672 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2673 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2674 			      nodemask_t *nodes_allowed)
2675 {
2676 	unsigned long min_count, ret;
2677 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2678 
2679 	/*
2680 	 * Bit mask controlling how hard we retry per-node allocations.
2681 	 * If we can not allocate the bit mask, do not attempt to allocate
2682 	 * the requested huge pages.
2683 	 */
2684 	if (node_alloc_noretry)
2685 		nodes_clear(*node_alloc_noretry);
2686 	else
2687 		return -ENOMEM;
2688 
2689 	spin_lock(&hugetlb_lock);
2690 
2691 	/*
2692 	 * Check for a node specific request.
2693 	 * Changing node specific huge page count may require a corresponding
2694 	 * change to the global count.  In any case, the passed node mask
2695 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2696 	 */
2697 	if (nid != NUMA_NO_NODE) {
2698 		unsigned long old_count = count;
2699 
2700 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2701 		/*
2702 		 * User may have specified a large count value which caused the
2703 		 * above calculation to overflow.  In this case, they wanted
2704 		 * to allocate as many huge pages as possible.  Set count to
2705 		 * largest possible value to align with their intention.
2706 		 */
2707 		if (count < old_count)
2708 			count = ULONG_MAX;
2709 	}
2710 
2711 	/*
2712 	 * Gigantic pages runtime allocation depend on the capability for large
2713 	 * page range allocation.
2714 	 * If the system does not provide this feature, return an error when
2715 	 * the user tries to allocate gigantic pages but let the user free the
2716 	 * boottime allocated gigantic pages.
2717 	 */
2718 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2719 		if (count > persistent_huge_pages(h)) {
2720 			spin_unlock(&hugetlb_lock);
2721 			NODEMASK_FREE(node_alloc_noretry);
2722 			return -EINVAL;
2723 		}
2724 		/* Fall through to decrease pool */
2725 	}
2726 
2727 	/*
2728 	 * Increase the pool size
2729 	 * First take pages out of surplus state.  Then make up the
2730 	 * remaining difference by allocating fresh huge pages.
2731 	 *
2732 	 * We might race with alloc_surplus_huge_page() here and be unable
2733 	 * to convert a surplus huge page to a normal huge page. That is
2734 	 * not critical, though, it just means the overall size of the
2735 	 * pool might be one hugepage larger than it needs to be, but
2736 	 * within all the constraints specified by the sysctls.
2737 	 */
2738 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2739 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2740 			break;
2741 	}
2742 
2743 	while (count > persistent_huge_pages(h)) {
2744 		/*
2745 		 * If this allocation races such that we no longer need the
2746 		 * page, free_huge_page will handle it by freeing the page
2747 		 * and reducing the surplus.
2748 		 */
2749 		spin_unlock(&hugetlb_lock);
2750 
2751 		/* yield cpu to avoid soft lockup */
2752 		cond_resched();
2753 
2754 		ret = alloc_pool_huge_page(h, nodes_allowed,
2755 						node_alloc_noretry);
2756 		spin_lock(&hugetlb_lock);
2757 		if (!ret)
2758 			goto out;
2759 
2760 		/* Bail for signals. Probably ctrl-c from user */
2761 		if (signal_pending(current))
2762 			goto out;
2763 	}
2764 
2765 	/*
2766 	 * Decrease the pool size
2767 	 * First return free pages to the buddy allocator (being careful
2768 	 * to keep enough around to satisfy reservations).  Then place
2769 	 * pages into surplus state as needed so the pool will shrink
2770 	 * to the desired size as pages become free.
2771 	 *
2772 	 * By placing pages into the surplus state independent of the
2773 	 * overcommit value, we are allowing the surplus pool size to
2774 	 * exceed overcommit. There are few sane options here. Since
2775 	 * alloc_surplus_huge_page() is checking the global counter,
2776 	 * though, we'll note that we're not allowed to exceed surplus
2777 	 * and won't grow the pool anywhere else. Not until one of the
2778 	 * sysctls are changed, or the surplus pages go out of use.
2779 	 */
2780 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2781 	min_count = max(count, min_count);
2782 	try_to_free_low(h, min_count, nodes_allowed);
2783 	while (min_count < persistent_huge_pages(h)) {
2784 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2785 			break;
2786 		cond_resched_lock(&hugetlb_lock);
2787 	}
2788 	while (count < persistent_huge_pages(h)) {
2789 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2790 			break;
2791 	}
2792 out:
2793 	h->max_huge_pages = persistent_huge_pages(h);
2794 	spin_unlock(&hugetlb_lock);
2795 
2796 	NODEMASK_FREE(node_alloc_noretry);
2797 
2798 	return 0;
2799 }
2800 
2801 #define HSTATE_ATTR_RO(_name) \
2802 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2803 
2804 #define HSTATE_ATTR(_name) \
2805 	static struct kobj_attribute _name##_attr = \
2806 		__ATTR(_name, 0644, _name##_show, _name##_store)
2807 
2808 static struct kobject *hugepages_kobj;
2809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2810 
2811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2812 
2813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2814 {
2815 	int i;
2816 
2817 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2818 		if (hstate_kobjs[i] == kobj) {
2819 			if (nidp)
2820 				*nidp = NUMA_NO_NODE;
2821 			return &hstates[i];
2822 		}
2823 
2824 	return kobj_to_node_hstate(kobj, nidp);
2825 }
2826 
2827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2828 					struct kobj_attribute *attr, char *buf)
2829 {
2830 	struct hstate *h;
2831 	unsigned long nr_huge_pages;
2832 	int nid;
2833 
2834 	h = kobj_to_hstate(kobj, &nid);
2835 	if (nid == NUMA_NO_NODE)
2836 		nr_huge_pages = h->nr_huge_pages;
2837 	else
2838 		nr_huge_pages = h->nr_huge_pages_node[nid];
2839 
2840 	return sprintf(buf, "%lu\n", nr_huge_pages);
2841 }
2842 
2843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2844 					   struct hstate *h, int nid,
2845 					   unsigned long count, size_t len)
2846 {
2847 	int err;
2848 	nodemask_t nodes_allowed, *n_mask;
2849 
2850 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2851 		return -EINVAL;
2852 
2853 	if (nid == NUMA_NO_NODE) {
2854 		/*
2855 		 * global hstate attribute
2856 		 */
2857 		if (!(obey_mempolicy &&
2858 				init_nodemask_of_mempolicy(&nodes_allowed)))
2859 			n_mask = &node_states[N_MEMORY];
2860 		else
2861 			n_mask = &nodes_allowed;
2862 	} else {
2863 		/*
2864 		 * Node specific request.  count adjustment happens in
2865 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2866 		 */
2867 		init_nodemask_of_node(&nodes_allowed, nid);
2868 		n_mask = &nodes_allowed;
2869 	}
2870 
2871 	err = set_max_huge_pages(h, count, nid, n_mask);
2872 
2873 	return err ? err : len;
2874 }
2875 
2876 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2877 					 struct kobject *kobj, const char *buf,
2878 					 size_t len)
2879 {
2880 	struct hstate *h;
2881 	unsigned long count;
2882 	int nid;
2883 	int err;
2884 
2885 	err = kstrtoul(buf, 10, &count);
2886 	if (err)
2887 		return err;
2888 
2889 	h = kobj_to_hstate(kobj, &nid);
2890 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2891 }
2892 
2893 static ssize_t nr_hugepages_show(struct kobject *kobj,
2894 				       struct kobj_attribute *attr, char *buf)
2895 {
2896 	return nr_hugepages_show_common(kobj, attr, buf);
2897 }
2898 
2899 static ssize_t nr_hugepages_store(struct kobject *kobj,
2900 	       struct kobj_attribute *attr, const char *buf, size_t len)
2901 {
2902 	return nr_hugepages_store_common(false, kobj, buf, len);
2903 }
2904 HSTATE_ATTR(nr_hugepages);
2905 
2906 #ifdef CONFIG_NUMA
2907 
2908 /*
2909  * hstate attribute for optionally mempolicy-based constraint on persistent
2910  * huge page alloc/free.
2911  */
2912 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2913 				       struct kobj_attribute *attr, char *buf)
2914 {
2915 	return nr_hugepages_show_common(kobj, attr, buf);
2916 }
2917 
2918 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2919 	       struct kobj_attribute *attr, const char *buf, size_t len)
2920 {
2921 	return nr_hugepages_store_common(true, kobj, buf, len);
2922 }
2923 HSTATE_ATTR(nr_hugepages_mempolicy);
2924 #endif
2925 
2926 
2927 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2928 					struct kobj_attribute *attr, char *buf)
2929 {
2930 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2931 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2932 }
2933 
2934 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2935 		struct kobj_attribute *attr, const char *buf, size_t count)
2936 {
2937 	int err;
2938 	unsigned long input;
2939 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2940 
2941 	if (hstate_is_gigantic(h))
2942 		return -EINVAL;
2943 
2944 	err = kstrtoul(buf, 10, &input);
2945 	if (err)
2946 		return err;
2947 
2948 	spin_lock(&hugetlb_lock);
2949 	h->nr_overcommit_huge_pages = input;
2950 	spin_unlock(&hugetlb_lock);
2951 
2952 	return count;
2953 }
2954 HSTATE_ATTR(nr_overcommit_hugepages);
2955 
2956 static ssize_t free_hugepages_show(struct kobject *kobj,
2957 					struct kobj_attribute *attr, char *buf)
2958 {
2959 	struct hstate *h;
2960 	unsigned long free_huge_pages;
2961 	int nid;
2962 
2963 	h = kobj_to_hstate(kobj, &nid);
2964 	if (nid == NUMA_NO_NODE)
2965 		free_huge_pages = h->free_huge_pages;
2966 	else
2967 		free_huge_pages = h->free_huge_pages_node[nid];
2968 
2969 	return sprintf(buf, "%lu\n", free_huge_pages);
2970 }
2971 HSTATE_ATTR_RO(free_hugepages);
2972 
2973 static ssize_t resv_hugepages_show(struct kobject *kobj,
2974 					struct kobj_attribute *attr, char *buf)
2975 {
2976 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2977 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2978 }
2979 HSTATE_ATTR_RO(resv_hugepages);
2980 
2981 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2982 					struct kobj_attribute *attr, char *buf)
2983 {
2984 	struct hstate *h;
2985 	unsigned long surplus_huge_pages;
2986 	int nid;
2987 
2988 	h = kobj_to_hstate(kobj, &nid);
2989 	if (nid == NUMA_NO_NODE)
2990 		surplus_huge_pages = h->surplus_huge_pages;
2991 	else
2992 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2993 
2994 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(surplus_hugepages);
2997 
2998 static struct attribute *hstate_attrs[] = {
2999 	&nr_hugepages_attr.attr,
3000 	&nr_overcommit_hugepages_attr.attr,
3001 	&free_hugepages_attr.attr,
3002 	&resv_hugepages_attr.attr,
3003 	&surplus_hugepages_attr.attr,
3004 #ifdef CONFIG_NUMA
3005 	&nr_hugepages_mempolicy_attr.attr,
3006 #endif
3007 	NULL,
3008 };
3009 
3010 static const struct attribute_group hstate_attr_group = {
3011 	.attrs = hstate_attrs,
3012 };
3013 
3014 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3015 				    struct kobject **hstate_kobjs,
3016 				    const struct attribute_group *hstate_attr_group)
3017 {
3018 	int retval;
3019 	int hi = hstate_index(h);
3020 
3021 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3022 	if (!hstate_kobjs[hi])
3023 		return -ENOMEM;
3024 
3025 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3026 	if (retval)
3027 		kobject_put(hstate_kobjs[hi]);
3028 
3029 	return retval;
3030 }
3031 
3032 static void __init hugetlb_sysfs_init(void)
3033 {
3034 	struct hstate *h;
3035 	int err;
3036 
3037 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3038 	if (!hugepages_kobj)
3039 		return;
3040 
3041 	for_each_hstate(h) {
3042 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3043 					 hstate_kobjs, &hstate_attr_group);
3044 		if (err)
3045 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3046 	}
3047 }
3048 
3049 #ifdef CONFIG_NUMA
3050 
3051 /*
3052  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3053  * with node devices in node_devices[] using a parallel array.  The array
3054  * index of a node device or _hstate == node id.
3055  * This is here to avoid any static dependency of the node device driver, in
3056  * the base kernel, on the hugetlb module.
3057  */
3058 struct node_hstate {
3059 	struct kobject		*hugepages_kobj;
3060 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3061 };
3062 static struct node_hstate node_hstates[MAX_NUMNODES];
3063 
3064 /*
3065  * A subset of global hstate attributes for node devices
3066  */
3067 static struct attribute *per_node_hstate_attrs[] = {
3068 	&nr_hugepages_attr.attr,
3069 	&free_hugepages_attr.attr,
3070 	&surplus_hugepages_attr.attr,
3071 	NULL,
3072 };
3073 
3074 static const struct attribute_group per_node_hstate_attr_group = {
3075 	.attrs = per_node_hstate_attrs,
3076 };
3077 
3078 /*
3079  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3080  * Returns node id via non-NULL nidp.
3081  */
3082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3083 {
3084 	int nid;
3085 
3086 	for (nid = 0; nid < nr_node_ids; nid++) {
3087 		struct node_hstate *nhs = &node_hstates[nid];
3088 		int i;
3089 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3090 			if (nhs->hstate_kobjs[i] == kobj) {
3091 				if (nidp)
3092 					*nidp = nid;
3093 				return &hstates[i];
3094 			}
3095 	}
3096 
3097 	BUG();
3098 	return NULL;
3099 }
3100 
3101 /*
3102  * Unregister hstate attributes from a single node device.
3103  * No-op if no hstate attributes attached.
3104  */
3105 static void hugetlb_unregister_node(struct node *node)
3106 {
3107 	struct hstate *h;
3108 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3109 
3110 	if (!nhs->hugepages_kobj)
3111 		return;		/* no hstate attributes */
3112 
3113 	for_each_hstate(h) {
3114 		int idx = hstate_index(h);
3115 		if (nhs->hstate_kobjs[idx]) {
3116 			kobject_put(nhs->hstate_kobjs[idx]);
3117 			nhs->hstate_kobjs[idx] = NULL;
3118 		}
3119 	}
3120 
3121 	kobject_put(nhs->hugepages_kobj);
3122 	nhs->hugepages_kobj = NULL;
3123 }
3124 
3125 
3126 /*
3127  * Register hstate attributes for a single node device.
3128  * No-op if attributes already registered.
3129  */
3130 static void hugetlb_register_node(struct node *node)
3131 {
3132 	struct hstate *h;
3133 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3134 	int err;
3135 
3136 	if (nhs->hugepages_kobj)
3137 		return;		/* already allocated */
3138 
3139 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3140 							&node->dev.kobj);
3141 	if (!nhs->hugepages_kobj)
3142 		return;
3143 
3144 	for_each_hstate(h) {
3145 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3146 						nhs->hstate_kobjs,
3147 						&per_node_hstate_attr_group);
3148 		if (err) {
3149 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3150 				h->name, node->dev.id);
3151 			hugetlb_unregister_node(node);
3152 			break;
3153 		}
3154 	}
3155 }
3156 
3157 /*
3158  * hugetlb init time:  register hstate attributes for all registered node
3159  * devices of nodes that have memory.  All on-line nodes should have
3160  * registered their associated device by this time.
3161  */
3162 static void __init hugetlb_register_all_nodes(void)
3163 {
3164 	int nid;
3165 
3166 	for_each_node_state(nid, N_MEMORY) {
3167 		struct node *node = node_devices[nid];
3168 		if (node->dev.id == nid)
3169 			hugetlb_register_node(node);
3170 	}
3171 
3172 	/*
3173 	 * Let the node device driver know we're here so it can
3174 	 * [un]register hstate attributes on node hotplug.
3175 	 */
3176 	register_hugetlbfs_with_node(hugetlb_register_node,
3177 				     hugetlb_unregister_node);
3178 }
3179 #else	/* !CONFIG_NUMA */
3180 
3181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3182 {
3183 	BUG();
3184 	if (nidp)
3185 		*nidp = -1;
3186 	return NULL;
3187 }
3188 
3189 static void hugetlb_register_all_nodes(void) { }
3190 
3191 #endif
3192 
3193 static int __init hugetlb_init(void)
3194 {
3195 	int i;
3196 
3197 	if (!hugepages_supported()) {
3198 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3199 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3200 		return 0;
3201 	}
3202 
3203 	/*
3204 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3205 	 * architectures depend on setup being done here.
3206 	 */
3207 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3208 	if (!parsed_default_hugepagesz) {
3209 		/*
3210 		 * If we did not parse a default huge page size, set
3211 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3212 		 * number of huge pages for this default size was implicitly
3213 		 * specified, set that here as well.
3214 		 * Note that the implicit setting will overwrite an explicit
3215 		 * setting.  A warning will be printed in this case.
3216 		 */
3217 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3218 		if (default_hstate_max_huge_pages) {
3219 			if (default_hstate.max_huge_pages) {
3220 				char buf[32];
3221 
3222 				string_get_size(huge_page_size(&default_hstate),
3223 					1, STRING_UNITS_2, buf, 32);
3224 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3225 					default_hstate.max_huge_pages, buf);
3226 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3227 					default_hstate_max_huge_pages);
3228 			}
3229 			default_hstate.max_huge_pages =
3230 				default_hstate_max_huge_pages;
3231 		}
3232 	}
3233 
3234 	hugetlb_cma_check();
3235 	hugetlb_init_hstates();
3236 	gather_bootmem_prealloc();
3237 	report_hugepages();
3238 
3239 	hugetlb_sysfs_init();
3240 	hugetlb_register_all_nodes();
3241 	hugetlb_cgroup_file_init();
3242 
3243 #ifdef CONFIG_SMP
3244 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3245 #else
3246 	num_fault_mutexes = 1;
3247 #endif
3248 	hugetlb_fault_mutex_table =
3249 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3250 			      GFP_KERNEL);
3251 	BUG_ON(!hugetlb_fault_mutex_table);
3252 
3253 	for (i = 0; i < num_fault_mutexes; i++)
3254 		mutex_init(&hugetlb_fault_mutex_table[i]);
3255 	return 0;
3256 }
3257 subsys_initcall(hugetlb_init);
3258 
3259 /* Overwritten by architectures with more huge page sizes */
3260 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3261 {
3262 	return size == HPAGE_SIZE;
3263 }
3264 
3265 void __init hugetlb_add_hstate(unsigned int order)
3266 {
3267 	struct hstate *h;
3268 	unsigned long i;
3269 
3270 	if (size_to_hstate(PAGE_SIZE << order)) {
3271 		return;
3272 	}
3273 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3274 	BUG_ON(order == 0);
3275 	h = &hstates[hugetlb_max_hstate++];
3276 	h->order = order;
3277 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3278 	h->nr_huge_pages = 0;
3279 	h->free_huge_pages = 0;
3280 	for (i = 0; i < MAX_NUMNODES; ++i)
3281 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3282 	INIT_LIST_HEAD(&h->hugepage_activelist);
3283 	h->next_nid_to_alloc = first_memory_node;
3284 	h->next_nid_to_free = first_memory_node;
3285 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3286 					huge_page_size(h)/1024);
3287 
3288 	parsed_hstate = h;
3289 }
3290 
3291 /*
3292  * hugepages command line processing
3293  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3294  * specification.  If not, ignore the hugepages value.  hugepages can also
3295  * be the first huge page command line  option in which case it implicitly
3296  * specifies the number of huge pages for the default size.
3297  */
3298 static int __init hugepages_setup(char *s)
3299 {
3300 	unsigned long *mhp;
3301 	static unsigned long *last_mhp;
3302 
3303 	if (!parsed_valid_hugepagesz) {
3304 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3305 		parsed_valid_hugepagesz = true;
3306 		return 0;
3307 	}
3308 
3309 	/*
3310 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3311 	 * yet, so this hugepages= parameter goes to the "default hstate".
3312 	 * Otherwise, it goes with the previously parsed hugepagesz or
3313 	 * default_hugepagesz.
3314 	 */
3315 	else if (!hugetlb_max_hstate)
3316 		mhp = &default_hstate_max_huge_pages;
3317 	else
3318 		mhp = &parsed_hstate->max_huge_pages;
3319 
3320 	if (mhp == last_mhp) {
3321 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3322 		return 0;
3323 	}
3324 
3325 	if (sscanf(s, "%lu", mhp) <= 0)
3326 		*mhp = 0;
3327 
3328 	/*
3329 	 * Global state is always initialized later in hugetlb_init.
3330 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3331 	 * use the bootmem allocator.
3332 	 */
3333 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3334 		hugetlb_hstate_alloc_pages(parsed_hstate);
3335 
3336 	last_mhp = mhp;
3337 
3338 	return 1;
3339 }
3340 __setup("hugepages=", hugepages_setup);
3341 
3342 /*
3343  * hugepagesz command line processing
3344  * A specific huge page size can only be specified once with hugepagesz.
3345  * hugepagesz is followed by hugepages on the command line.  The global
3346  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3347  * hugepagesz argument was valid.
3348  */
3349 static int __init hugepagesz_setup(char *s)
3350 {
3351 	unsigned long size;
3352 	struct hstate *h;
3353 
3354 	parsed_valid_hugepagesz = false;
3355 	size = (unsigned long)memparse(s, NULL);
3356 
3357 	if (!arch_hugetlb_valid_size(size)) {
3358 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3359 		return 0;
3360 	}
3361 
3362 	h = size_to_hstate(size);
3363 	if (h) {
3364 		/*
3365 		 * hstate for this size already exists.  This is normally
3366 		 * an error, but is allowed if the existing hstate is the
3367 		 * default hstate.  More specifically, it is only allowed if
3368 		 * the number of huge pages for the default hstate was not
3369 		 * previously specified.
3370 		 */
3371 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3372 		    default_hstate.max_huge_pages) {
3373 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3374 			return 0;
3375 		}
3376 
3377 		/*
3378 		 * No need to call hugetlb_add_hstate() as hstate already
3379 		 * exists.  But, do set parsed_hstate so that a following
3380 		 * hugepages= parameter will be applied to this hstate.
3381 		 */
3382 		parsed_hstate = h;
3383 		parsed_valid_hugepagesz = true;
3384 		return 1;
3385 	}
3386 
3387 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3388 	parsed_valid_hugepagesz = true;
3389 	return 1;
3390 }
3391 __setup("hugepagesz=", hugepagesz_setup);
3392 
3393 /*
3394  * default_hugepagesz command line input
3395  * Only one instance of default_hugepagesz allowed on command line.
3396  */
3397 static int __init default_hugepagesz_setup(char *s)
3398 {
3399 	unsigned long size;
3400 
3401 	parsed_valid_hugepagesz = false;
3402 	if (parsed_default_hugepagesz) {
3403 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3404 		return 0;
3405 	}
3406 
3407 	size = (unsigned long)memparse(s, NULL);
3408 
3409 	if (!arch_hugetlb_valid_size(size)) {
3410 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3411 		return 0;
3412 	}
3413 
3414 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3415 	parsed_valid_hugepagesz = true;
3416 	parsed_default_hugepagesz = true;
3417 	default_hstate_idx = hstate_index(size_to_hstate(size));
3418 
3419 	/*
3420 	 * The number of default huge pages (for this size) could have been
3421 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3422 	 * then default_hstate_max_huge_pages is set.  If the default huge
3423 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3424 	 * allocated here from bootmem allocator.
3425 	 */
3426 	if (default_hstate_max_huge_pages) {
3427 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3428 		if (hstate_is_gigantic(&default_hstate))
3429 			hugetlb_hstate_alloc_pages(&default_hstate);
3430 		default_hstate_max_huge_pages = 0;
3431 	}
3432 
3433 	return 1;
3434 }
3435 __setup("default_hugepagesz=", default_hugepagesz_setup);
3436 
3437 static unsigned int allowed_mems_nr(struct hstate *h)
3438 {
3439 	int node;
3440 	unsigned int nr = 0;
3441 	nodemask_t *mpol_allowed;
3442 	unsigned int *array = h->free_huge_pages_node;
3443 	gfp_t gfp_mask = htlb_alloc_mask(h);
3444 
3445 	mpol_allowed = policy_nodemask_current(gfp_mask);
3446 
3447 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3448 		if (!mpol_allowed ||
3449 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3450 			nr += array[node];
3451 	}
3452 
3453 	return nr;
3454 }
3455 
3456 #ifdef CONFIG_SYSCTL
3457 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3458 					  void *buffer, size_t *length,
3459 					  loff_t *ppos, unsigned long *out)
3460 {
3461 	struct ctl_table dup_table;
3462 
3463 	/*
3464 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3465 	 * can duplicate the @table and alter the duplicate of it.
3466 	 */
3467 	dup_table = *table;
3468 	dup_table.data = out;
3469 
3470 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3471 }
3472 
3473 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3474 			 struct ctl_table *table, int write,
3475 			 void *buffer, size_t *length, loff_t *ppos)
3476 {
3477 	struct hstate *h = &default_hstate;
3478 	unsigned long tmp = h->max_huge_pages;
3479 	int ret;
3480 
3481 	if (!hugepages_supported())
3482 		return -EOPNOTSUPP;
3483 
3484 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3485 					     &tmp);
3486 	if (ret)
3487 		goto out;
3488 
3489 	if (write)
3490 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3491 						  NUMA_NO_NODE, tmp, *length);
3492 out:
3493 	return ret;
3494 }
3495 
3496 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3497 			  void *buffer, size_t *length, loff_t *ppos)
3498 {
3499 
3500 	return hugetlb_sysctl_handler_common(false, table, write,
3501 							buffer, length, ppos);
3502 }
3503 
3504 #ifdef CONFIG_NUMA
3505 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3506 			  void *buffer, size_t *length, loff_t *ppos)
3507 {
3508 	return hugetlb_sysctl_handler_common(true, table, write,
3509 							buffer, length, ppos);
3510 }
3511 #endif /* CONFIG_NUMA */
3512 
3513 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3514 		void *buffer, size_t *length, loff_t *ppos)
3515 {
3516 	struct hstate *h = &default_hstate;
3517 	unsigned long tmp;
3518 	int ret;
3519 
3520 	if (!hugepages_supported())
3521 		return -EOPNOTSUPP;
3522 
3523 	tmp = h->nr_overcommit_huge_pages;
3524 
3525 	if (write && hstate_is_gigantic(h))
3526 		return -EINVAL;
3527 
3528 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3529 					     &tmp);
3530 	if (ret)
3531 		goto out;
3532 
3533 	if (write) {
3534 		spin_lock(&hugetlb_lock);
3535 		h->nr_overcommit_huge_pages = tmp;
3536 		spin_unlock(&hugetlb_lock);
3537 	}
3538 out:
3539 	return ret;
3540 }
3541 
3542 #endif /* CONFIG_SYSCTL */
3543 
3544 void hugetlb_report_meminfo(struct seq_file *m)
3545 {
3546 	struct hstate *h;
3547 	unsigned long total = 0;
3548 
3549 	if (!hugepages_supported())
3550 		return;
3551 
3552 	for_each_hstate(h) {
3553 		unsigned long count = h->nr_huge_pages;
3554 
3555 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3556 
3557 		if (h == &default_hstate)
3558 			seq_printf(m,
3559 				   "HugePages_Total:   %5lu\n"
3560 				   "HugePages_Free:    %5lu\n"
3561 				   "HugePages_Rsvd:    %5lu\n"
3562 				   "HugePages_Surp:    %5lu\n"
3563 				   "Hugepagesize:   %8lu kB\n",
3564 				   count,
3565 				   h->free_huge_pages,
3566 				   h->resv_huge_pages,
3567 				   h->surplus_huge_pages,
3568 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3569 	}
3570 
3571 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3572 }
3573 
3574 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3575 {
3576 	struct hstate *h = &default_hstate;
3577 
3578 	if (!hugepages_supported())
3579 		return 0;
3580 
3581 	return sysfs_emit_at(buf, len,
3582 			     "Node %d HugePages_Total: %5u\n"
3583 			     "Node %d HugePages_Free:  %5u\n"
3584 			     "Node %d HugePages_Surp:  %5u\n",
3585 			     nid, h->nr_huge_pages_node[nid],
3586 			     nid, h->free_huge_pages_node[nid],
3587 			     nid, h->surplus_huge_pages_node[nid]);
3588 }
3589 
3590 void hugetlb_show_meminfo(void)
3591 {
3592 	struct hstate *h;
3593 	int nid;
3594 
3595 	if (!hugepages_supported())
3596 		return;
3597 
3598 	for_each_node_state(nid, N_MEMORY)
3599 		for_each_hstate(h)
3600 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3601 				nid,
3602 				h->nr_huge_pages_node[nid],
3603 				h->free_huge_pages_node[nid],
3604 				h->surplus_huge_pages_node[nid],
3605 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3606 }
3607 
3608 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3609 {
3610 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3611 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3612 }
3613 
3614 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3615 unsigned long hugetlb_total_pages(void)
3616 {
3617 	struct hstate *h;
3618 	unsigned long nr_total_pages = 0;
3619 
3620 	for_each_hstate(h)
3621 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3622 	return nr_total_pages;
3623 }
3624 
3625 static int hugetlb_acct_memory(struct hstate *h, long delta)
3626 {
3627 	int ret = -ENOMEM;
3628 
3629 	spin_lock(&hugetlb_lock);
3630 	/*
3631 	 * When cpuset is configured, it breaks the strict hugetlb page
3632 	 * reservation as the accounting is done on a global variable. Such
3633 	 * reservation is completely rubbish in the presence of cpuset because
3634 	 * the reservation is not checked against page availability for the
3635 	 * current cpuset. Application can still potentially OOM'ed by kernel
3636 	 * with lack of free htlb page in cpuset that the task is in.
3637 	 * Attempt to enforce strict accounting with cpuset is almost
3638 	 * impossible (or too ugly) because cpuset is too fluid that
3639 	 * task or memory node can be dynamically moved between cpusets.
3640 	 *
3641 	 * The change of semantics for shared hugetlb mapping with cpuset is
3642 	 * undesirable. However, in order to preserve some of the semantics,
3643 	 * we fall back to check against current free page availability as
3644 	 * a best attempt and hopefully to minimize the impact of changing
3645 	 * semantics that cpuset has.
3646 	 *
3647 	 * Apart from cpuset, we also have memory policy mechanism that
3648 	 * also determines from which node the kernel will allocate memory
3649 	 * in a NUMA system. So similar to cpuset, we also should consider
3650 	 * the memory policy of the current task. Similar to the description
3651 	 * above.
3652 	 */
3653 	if (delta > 0) {
3654 		if (gather_surplus_pages(h, delta) < 0)
3655 			goto out;
3656 
3657 		if (delta > allowed_mems_nr(h)) {
3658 			return_unused_surplus_pages(h, delta);
3659 			goto out;
3660 		}
3661 	}
3662 
3663 	ret = 0;
3664 	if (delta < 0)
3665 		return_unused_surplus_pages(h, (unsigned long) -delta);
3666 
3667 out:
3668 	spin_unlock(&hugetlb_lock);
3669 	return ret;
3670 }
3671 
3672 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3673 {
3674 	struct resv_map *resv = vma_resv_map(vma);
3675 
3676 	/*
3677 	 * This new VMA should share its siblings reservation map if present.
3678 	 * The VMA will only ever have a valid reservation map pointer where
3679 	 * it is being copied for another still existing VMA.  As that VMA
3680 	 * has a reference to the reservation map it cannot disappear until
3681 	 * after this open call completes.  It is therefore safe to take a
3682 	 * new reference here without additional locking.
3683 	 */
3684 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685 		kref_get(&resv->refs);
3686 }
3687 
3688 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3689 {
3690 	struct hstate *h = hstate_vma(vma);
3691 	struct resv_map *resv = vma_resv_map(vma);
3692 	struct hugepage_subpool *spool = subpool_vma(vma);
3693 	unsigned long reserve, start, end;
3694 	long gbl_reserve;
3695 
3696 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3697 		return;
3698 
3699 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3700 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3701 
3702 	reserve = (end - start) - region_count(resv, start, end);
3703 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3704 	if (reserve) {
3705 		/*
3706 		 * Decrement reserve counts.  The global reserve count may be
3707 		 * adjusted if the subpool has a minimum size.
3708 		 */
3709 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3710 		hugetlb_acct_memory(h, -gbl_reserve);
3711 	}
3712 
3713 	kref_put(&resv->refs, resv_map_release);
3714 }
3715 
3716 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3717 {
3718 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3719 		return -EINVAL;
3720 	return 0;
3721 }
3722 
3723 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3724 {
3725 	struct hstate *hstate = hstate_vma(vma);
3726 
3727 	return 1UL << huge_page_shift(hstate);
3728 }
3729 
3730 /*
3731  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3732  * handle_mm_fault() to try to instantiate regular-sized pages in the
3733  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3734  * this far.
3735  */
3736 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3737 {
3738 	BUG();
3739 	return 0;
3740 }
3741 
3742 /*
3743  * When a new function is introduced to vm_operations_struct and added
3744  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3745  * This is because under System V memory model, mappings created via
3746  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3747  * their original vm_ops are overwritten with shm_vm_ops.
3748  */
3749 const struct vm_operations_struct hugetlb_vm_ops = {
3750 	.fault = hugetlb_vm_op_fault,
3751 	.open = hugetlb_vm_op_open,
3752 	.close = hugetlb_vm_op_close,
3753 	.split = hugetlb_vm_op_split,
3754 	.pagesize = hugetlb_vm_op_pagesize,
3755 };
3756 
3757 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3758 				int writable)
3759 {
3760 	pte_t entry;
3761 
3762 	if (writable) {
3763 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3764 					 vma->vm_page_prot)));
3765 	} else {
3766 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3767 					   vma->vm_page_prot));
3768 	}
3769 	entry = pte_mkyoung(entry);
3770 	entry = pte_mkhuge(entry);
3771 	entry = arch_make_huge_pte(entry, vma, page, writable);
3772 
3773 	return entry;
3774 }
3775 
3776 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3777 				   unsigned long address, pte_t *ptep)
3778 {
3779 	pte_t entry;
3780 
3781 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3782 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3783 		update_mmu_cache(vma, address, ptep);
3784 }
3785 
3786 bool is_hugetlb_entry_migration(pte_t pte)
3787 {
3788 	swp_entry_t swp;
3789 
3790 	if (huge_pte_none(pte) || pte_present(pte))
3791 		return false;
3792 	swp = pte_to_swp_entry(pte);
3793 	if (is_migration_entry(swp))
3794 		return true;
3795 	else
3796 		return false;
3797 }
3798 
3799 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3800 {
3801 	swp_entry_t swp;
3802 
3803 	if (huge_pte_none(pte) || pte_present(pte))
3804 		return false;
3805 	swp = pte_to_swp_entry(pte);
3806 	if (is_hwpoison_entry(swp))
3807 		return true;
3808 	else
3809 		return false;
3810 }
3811 
3812 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3813 			    struct vm_area_struct *vma)
3814 {
3815 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3816 	struct page *ptepage;
3817 	unsigned long addr;
3818 	int cow;
3819 	struct hstate *h = hstate_vma(vma);
3820 	unsigned long sz = huge_page_size(h);
3821 	struct address_space *mapping = vma->vm_file->f_mapping;
3822 	struct mmu_notifier_range range;
3823 	int ret = 0;
3824 
3825 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3826 
3827 	if (cow) {
3828 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3829 					vma->vm_start,
3830 					vma->vm_end);
3831 		mmu_notifier_invalidate_range_start(&range);
3832 	} else {
3833 		/*
3834 		 * For shared mappings i_mmap_rwsem must be held to call
3835 		 * huge_pte_alloc, otherwise the returned ptep could go
3836 		 * away if part of a shared pmd and another thread calls
3837 		 * huge_pmd_unshare.
3838 		 */
3839 		i_mmap_lock_read(mapping);
3840 	}
3841 
3842 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3843 		spinlock_t *src_ptl, *dst_ptl;
3844 		src_pte = huge_pte_offset(src, addr, sz);
3845 		if (!src_pte)
3846 			continue;
3847 		dst_pte = huge_pte_alloc(dst, addr, sz);
3848 		if (!dst_pte) {
3849 			ret = -ENOMEM;
3850 			break;
3851 		}
3852 
3853 		/*
3854 		 * If the pagetables are shared don't copy or take references.
3855 		 * dst_pte == src_pte is the common case of src/dest sharing.
3856 		 *
3857 		 * However, src could have 'unshared' and dst shares with
3858 		 * another vma.  If dst_pte !none, this implies sharing.
3859 		 * Check here before taking page table lock, and once again
3860 		 * after taking the lock below.
3861 		 */
3862 		dst_entry = huge_ptep_get(dst_pte);
3863 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3864 			continue;
3865 
3866 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3867 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3868 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3869 		entry = huge_ptep_get(src_pte);
3870 		dst_entry = huge_ptep_get(dst_pte);
3871 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3872 			/*
3873 			 * Skip if src entry none.  Also, skip in the
3874 			 * unlikely case dst entry !none as this implies
3875 			 * sharing with another vma.
3876 			 */
3877 			;
3878 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3879 				    is_hugetlb_entry_hwpoisoned(entry))) {
3880 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3881 
3882 			if (is_write_migration_entry(swp_entry) && cow) {
3883 				/*
3884 				 * COW mappings require pages in both
3885 				 * parent and child to be set to read.
3886 				 */
3887 				make_migration_entry_read(&swp_entry);
3888 				entry = swp_entry_to_pte(swp_entry);
3889 				set_huge_swap_pte_at(src, addr, src_pte,
3890 						     entry, sz);
3891 			}
3892 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3893 		} else {
3894 			if (cow) {
3895 				/*
3896 				 * No need to notify as we are downgrading page
3897 				 * table protection not changing it to point
3898 				 * to a new page.
3899 				 *
3900 				 * See Documentation/vm/mmu_notifier.rst
3901 				 */
3902 				huge_ptep_set_wrprotect(src, addr, src_pte);
3903 			}
3904 			entry = huge_ptep_get(src_pte);
3905 			ptepage = pte_page(entry);
3906 			get_page(ptepage);
3907 			page_dup_rmap(ptepage, true);
3908 			set_huge_pte_at(dst, addr, dst_pte, entry);
3909 			hugetlb_count_add(pages_per_huge_page(h), dst);
3910 		}
3911 		spin_unlock(src_ptl);
3912 		spin_unlock(dst_ptl);
3913 	}
3914 
3915 	if (cow)
3916 		mmu_notifier_invalidate_range_end(&range);
3917 	else
3918 		i_mmap_unlock_read(mapping);
3919 
3920 	return ret;
3921 }
3922 
3923 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3924 			    unsigned long start, unsigned long end,
3925 			    struct page *ref_page)
3926 {
3927 	struct mm_struct *mm = vma->vm_mm;
3928 	unsigned long address;
3929 	pte_t *ptep;
3930 	pte_t pte;
3931 	spinlock_t *ptl;
3932 	struct page *page;
3933 	struct hstate *h = hstate_vma(vma);
3934 	unsigned long sz = huge_page_size(h);
3935 	struct mmu_notifier_range range;
3936 
3937 	WARN_ON(!is_vm_hugetlb_page(vma));
3938 	BUG_ON(start & ~huge_page_mask(h));
3939 	BUG_ON(end & ~huge_page_mask(h));
3940 
3941 	/*
3942 	 * This is a hugetlb vma, all the pte entries should point
3943 	 * to huge page.
3944 	 */
3945 	tlb_change_page_size(tlb, sz);
3946 	tlb_start_vma(tlb, vma);
3947 
3948 	/*
3949 	 * If sharing possible, alert mmu notifiers of worst case.
3950 	 */
3951 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3952 				end);
3953 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3954 	mmu_notifier_invalidate_range_start(&range);
3955 	address = start;
3956 	for (; address < end; address += sz) {
3957 		ptep = huge_pte_offset(mm, address, sz);
3958 		if (!ptep)
3959 			continue;
3960 
3961 		ptl = huge_pte_lock(h, mm, ptep);
3962 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3963 			spin_unlock(ptl);
3964 			/*
3965 			 * We just unmapped a page of PMDs by clearing a PUD.
3966 			 * The caller's TLB flush range should cover this area.
3967 			 */
3968 			continue;
3969 		}
3970 
3971 		pte = huge_ptep_get(ptep);
3972 		if (huge_pte_none(pte)) {
3973 			spin_unlock(ptl);
3974 			continue;
3975 		}
3976 
3977 		/*
3978 		 * Migrating hugepage or HWPoisoned hugepage is already
3979 		 * unmapped and its refcount is dropped, so just clear pte here.
3980 		 */
3981 		if (unlikely(!pte_present(pte))) {
3982 			huge_pte_clear(mm, address, ptep, sz);
3983 			spin_unlock(ptl);
3984 			continue;
3985 		}
3986 
3987 		page = pte_page(pte);
3988 		/*
3989 		 * If a reference page is supplied, it is because a specific
3990 		 * page is being unmapped, not a range. Ensure the page we
3991 		 * are about to unmap is the actual page of interest.
3992 		 */
3993 		if (ref_page) {
3994 			if (page != ref_page) {
3995 				spin_unlock(ptl);
3996 				continue;
3997 			}
3998 			/*
3999 			 * Mark the VMA as having unmapped its page so that
4000 			 * future faults in this VMA will fail rather than
4001 			 * looking like data was lost
4002 			 */
4003 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4004 		}
4005 
4006 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4007 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4008 		if (huge_pte_dirty(pte))
4009 			set_page_dirty(page);
4010 
4011 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4012 		page_remove_rmap(page, true);
4013 
4014 		spin_unlock(ptl);
4015 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4016 		/*
4017 		 * Bail out after unmapping reference page if supplied
4018 		 */
4019 		if (ref_page)
4020 			break;
4021 	}
4022 	mmu_notifier_invalidate_range_end(&range);
4023 	tlb_end_vma(tlb, vma);
4024 }
4025 
4026 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4027 			  struct vm_area_struct *vma, unsigned long start,
4028 			  unsigned long end, struct page *ref_page)
4029 {
4030 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4031 
4032 	/*
4033 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4034 	 * test will fail on a vma being torn down, and not grab a page table
4035 	 * on its way out.  We're lucky that the flag has such an appropriate
4036 	 * name, and can in fact be safely cleared here. We could clear it
4037 	 * before the __unmap_hugepage_range above, but all that's necessary
4038 	 * is to clear it before releasing the i_mmap_rwsem. This works
4039 	 * because in the context this is called, the VMA is about to be
4040 	 * destroyed and the i_mmap_rwsem is held.
4041 	 */
4042 	vma->vm_flags &= ~VM_MAYSHARE;
4043 }
4044 
4045 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4046 			  unsigned long end, struct page *ref_page)
4047 {
4048 	struct mm_struct *mm;
4049 	struct mmu_gather tlb;
4050 	unsigned long tlb_start = start;
4051 	unsigned long tlb_end = end;
4052 
4053 	/*
4054 	 * If shared PMDs were possibly used within this vma range, adjust
4055 	 * start/end for worst case tlb flushing.
4056 	 * Note that we can not be sure if PMDs are shared until we try to
4057 	 * unmap pages.  However, we want to make sure TLB flushing covers
4058 	 * the largest possible range.
4059 	 */
4060 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4061 
4062 	mm = vma->vm_mm;
4063 
4064 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4065 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4066 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4067 }
4068 
4069 /*
4070  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4071  * mappping it owns the reserve page for. The intention is to unmap the page
4072  * from other VMAs and let the children be SIGKILLed if they are faulting the
4073  * same region.
4074  */
4075 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4076 			      struct page *page, unsigned long address)
4077 {
4078 	struct hstate *h = hstate_vma(vma);
4079 	struct vm_area_struct *iter_vma;
4080 	struct address_space *mapping;
4081 	pgoff_t pgoff;
4082 
4083 	/*
4084 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4085 	 * from page cache lookup which is in HPAGE_SIZE units.
4086 	 */
4087 	address = address & huge_page_mask(h);
4088 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4089 			vma->vm_pgoff;
4090 	mapping = vma->vm_file->f_mapping;
4091 
4092 	/*
4093 	 * Take the mapping lock for the duration of the table walk. As
4094 	 * this mapping should be shared between all the VMAs,
4095 	 * __unmap_hugepage_range() is called as the lock is already held
4096 	 */
4097 	i_mmap_lock_write(mapping);
4098 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4099 		/* Do not unmap the current VMA */
4100 		if (iter_vma == vma)
4101 			continue;
4102 
4103 		/*
4104 		 * Shared VMAs have their own reserves and do not affect
4105 		 * MAP_PRIVATE accounting but it is possible that a shared
4106 		 * VMA is using the same page so check and skip such VMAs.
4107 		 */
4108 		if (iter_vma->vm_flags & VM_MAYSHARE)
4109 			continue;
4110 
4111 		/*
4112 		 * Unmap the page from other VMAs without their own reserves.
4113 		 * They get marked to be SIGKILLed if they fault in these
4114 		 * areas. This is because a future no-page fault on this VMA
4115 		 * could insert a zeroed page instead of the data existing
4116 		 * from the time of fork. This would look like data corruption
4117 		 */
4118 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4119 			unmap_hugepage_range(iter_vma, address,
4120 					     address + huge_page_size(h), page);
4121 	}
4122 	i_mmap_unlock_write(mapping);
4123 }
4124 
4125 /*
4126  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4127  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4128  * cannot race with other handlers or page migration.
4129  * Keep the pte_same checks anyway to make transition from the mutex easier.
4130  */
4131 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4132 		       unsigned long address, pte_t *ptep,
4133 		       struct page *pagecache_page, spinlock_t *ptl)
4134 {
4135 	pte_t pte;
4136 	struct hstate *h = hstate_vma(vma);
4137 	struct page *old_page, *new_page;
4138 	int outside_reserve = 0;
4139 	vm_fault_t ret = 0;
4140 	unsigned long haddr = address & huge_page_mask(h);
4141 	struct mmu_notifier_range range;
4142 
4143 	pte = huge_ptep_get(ptep);
4144 	old_page = pte_page(pte);
4145 
4146 retry_avoidcopy:
4147 	/* If no-one else is actually using this page, avoid the copy
4148 	 * and just make the page writable */
4149 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4150 		page_move_anon_rmap(old_page, vma);
4151 		set_huge_ptep_writable(vma, haddr, ptep);
4152 		return 0;
4153 	}
4154 
4155 	/*
4156 	 * If the process that created a MAP_PRIVATE mapping is about to
4157 	 * perform a COW due to a shared page count, attempt to satisfy
4158 	 * the allocation without using the existing reserves. The pagecache
4159 	 * page is used to determine if the reserve at this address was
4160 	 * consumed or not. If reserves were used, a partial faulted mapping
4161 	 * at the time of fork() could consume its reserves on COW instead
4162 	 * of the full address range.
4163 	 */
4164 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4165 			old_page != pagecache_page)
4166 		outside_reserve = 1;
4167 
4168 	get_page(old_page);
4169 
4170 	/*
4171 	 * Drop page table lock as buddy allocator may be called. It will
4172 	 * be acquired again before returning to the caller, as expected.
4173 	 */
4174 	spin_unlock(ptl);
4175 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4176 
4177 	if (IS_ERR(new_page)) {
4178 		/*
4179 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4180 		 * it is due to references held by a child and an insufficient
4181 		 * huge page pool. To guarantee the original mappers
4182 		 * reliability, unmap the page from child processes. The child
4183 		 * may get SIGKILLed if it later faults.
4184 		 */
4185 		if (outside_reserve) {
4186 			put_page(old_page);
4187 			BUG_ON(huge_pte_none(pte));
4188 			unmap_ref_private(mm, vma, old_page, haddr);
4189 			BUG_ON(huge_pte_none(pte));
4190 			spin_lock(ptl);
4191 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4192 			if (likely(ptep &&
4193 				   pte_same(huge_ptep_get(ptep), pte)))
4194 				goto retry_avoidcopy;
4195 			/*
4196 			 * race occurs while re-acquiring page table
4197 			 * lock, and our job is done.
4198 			 */
4199 			return 0;
4200 		}
4201 
4202 		ret = vmf_error(PTR_ERR(new_page));
4203 		goto out_release_old;
4204 	}
4205 
4206 	/*
4207 	 * When the original hugepage is shared one, it does not have
4208 	 * anon_vma prepared.
4209 	 */
4210 	if (unlikely(anon_vma_prepare(vma))) {
4211 		ret = VM_FAULT_OOM;
4212 		goto out_release_all;
4213 	}
4214 
4215 	copy_user_huge_page(new_page, old_page, address, vma,
4216 			    pages_per_huge_page(h));
4217 	__SetPageUptodate(new_page);
4218 
4219 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4220 				haddr + huge_page_size(h));
4221 	mmu_notifier_invalidate_range_start(&range);
4222 
4223 	/*
4224 	 * Retake the page table lock to check for racing updates
4225 	 * before the page tables are altered
4226 	 */
4227 	spin_lock(ptl);
4228 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4229 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4230 		ClearPagePrivate(new_page);
4231 
4232 		/* Break COW */
4233 		huge_ptep_clear_flush(vma, haddr, ptep);
4234 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4235 		set_huge_pte_at(mm, haddr, ptep,
4236 				make_huge_pte(vma, new_page, 1));
4237 		page_remove_rmap(old_page, true);
4238 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4239 		set_page_huge_active(new_page);
4240 		/* Make the old page be freed below */
4241 		new_page = old_page;
4242 	}
4243 	spin_unlock(ptl);
4244 	mmu_notifier_invalidate_range_end(&range);
4245 out_release_all:
4246 	restore_reserve_on_error(h, vma, haddr, new_page);
4247 	put_page(new_page);
4248 out_release_old:
4249 	put_page(old_page);
4250 
4251 	spin_lock(ptl); /* Caller expects lock to be held */
4252 	return ret;
4253 }
4254 
4255 /* Return the pagecache page at a given address within a VMA */
4256 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4257 			struct vm_area_struct *vma, unsigned long address)
4258 {
4259 	struct address_space *mapping;
4260 	pgoff_t idx;
4261 
4262 	mapping = vma->vm_file->f_mapping;
4263 	idx = vma_hugecache_offset(h, vma, address);
4264 
4265 	return find_lock_page(mapping, idx);
4266 }
4267 
4268 /*
4269  * Return whether there is a pagecache page to back given address within VMA.
4270  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4271  */
4272 static bool hugetlbfs_pagecache_present(struct hstate *h,
4273 			struct vm_area_struct *vma, unsigned long address)
4274 {
4275 	struct address_space *mapping;
4276 	pgoff_t idx;
4277 	struct page *page;
4278 
4279 	mapping = vma->vm_file->f_mapping;
4280 	idx = vma_hugecache_offset(h, vma, address);
4281 
4282 	page = find_get_page(mapping, idx);
4283 	if (page)
4284 		put_page(page);
4285 	return page != NULL;
4286 }
4287 
4288 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4289 			   pgoff_t idx)
4290 {
4291 	struct inode *inode = mapping->host;
4292 	struct hstate *h = hstate_inode(inode);
4293 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4294 
4295 	if (err)
4296 		return err;
4297 	ClearPagePrivate(page);
4298 
4299 	/*
4300 	 * set page dirty so that it will not be removed from cache/file
4301 	 * by non-hugetlbfs specific code paths.
4302 	 */
4303 	set_page_dirty(page);
4304 
4305 	spin_lock(&inode->i_lock);
4306 	inode->i_blocks += blocks_per_huge_page(h);
4307 	spin_unlock(&inode->i_lock);
4308 	return 0;
4309 }
4310 
4311 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4312 			struct vm_area_struct *vma,
4313 			struct address_space *mapping, pgoff_t idx,
4314 			unsigned long address, pte_t *ptep, unsigned int flags)
4315 {
4316 	struct hstate *h = hstate_vma(vma);
4317 	vm_fault_t ret = VM_FAULT_SIGBUS;
4318 	int anon_rmap = 0;
4319 	unsigned long size;
4320 	struct page *page;
4321 	pte_t new_pte;
4322 	spinlock_t *ptl;
4323 	unsigned long haddr = address & huge_page_mask(h);
4324 	bool new_page = false;
4325 
4326 	/*
4327 	 * Currently, we are forced to kill the process in the event the
4328 	 * original mapper has unmapped pages from the child due to a failed
4329 	 * COW. Warn that such a situation has occurred as it may not be obvious
4330 	 */
4331 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4332 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4333 			   current->pid);
4334 		return ret;
4335 	}
4336 
4337 	/*
4338 	 * We can not race with truncation due to holding i_mmap_rwsem.
4339 	 * i_size is modified when holding i_mmap_rwsem, so check here
4340 	 * once for faults beyond end of file.
4341 	 */
4342 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4343 	if (idx >= size)
4344 		goto out;
4345 
4346 retry:
4347 	page = find_lock_page(mapping, idx);
4348 	if (!page) {
4349 		/*
4350 		 * Check for page in userfault range
4351 		 */
4352 		if (userfaultfd_missing(vma)) {
4353 			u32 hash;
4354 			struct vm_fault vmf = {
4355 				.vma = vma,
4356 				.address = haddr,
4357 				.flags = flags,
4358 				/*
4359 				 * Hard to debug if it ends up being
4360 				 * used by a callee that assumes
4361 				 * something about the other
4362 				 * uninitialized fields... same as in
4363 				 * memory.c
4364 				 */
4365 			};
4366 
4367 			/*
4368 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4369 			 * dropped before handling userfault.  Reacquire
4370 			 * after handling fault to make calling code simpler.
4371 			 */
4372 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4373 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4374 			i_mmap_unlock_read(mapping);
4375 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4376 			i_mmap_lock_read(mapping);
4377 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4378 			goto out;
4379 		}
4380 
4381 		page = alloc_huge_page(vma, haddr, 0);
4382 		if (IS_ERR(page)) {
4383 			/*
4384 			 * Returning error will result in faulting task being
4385 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4386 			 * tasks from racing to fault in the same page which
4387 			 * could result in false unable to allocate errors.
4388 			 * Page migration does not take the fault mutex, but
4389 			 * does a clear then write of pte's under page table
4390 			 * lock.  Page fault code could race with migration,
4391 			 * notice the clear pte and try to allocate a page
4392 			 * here.  Before returning error, get ptl and make
4393 			 * sure there really is no pte entry.
4394 			 */
4395 			ptl = huge_pte_lock(h, mm, ptep);
4396 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4397 				ret = 0;
4398 				spin_unlock(ptl);
4399 				goto out;
4400 			}
4401 			spin_unlock(ptl);
4402 			ret = vmf_error(PTR_ERR(page));
4403 			goto out;
4404 		}
4405 		clear_huge_page(page, address, pages_per_huge_page(h));
4406 		__SetPageUptodate(page);
4407 		new_page = true;
4408 
4409 		if (vma->vm_flags & VM_MAYSHARE) {
4410 			int err = huge_add_to_page_cache(page, mapping, idx);
4411 			if (err) {
4412 				put_page(page);
4413 				if (err == -EEXIST)
4414 					goto retry;
4415 				goto out;
4416 			}
4417 		} else {
4418 			lock_page(page);
4419 			if (unlikely(anon_vma_prepare(vma))) {
4420 				ret = VM_FAULT_OOM;
4421 				goto backout_unlocked;
4422 			}
4423 			anon_rmap = 1;
4424 		}
4425 	} else {
4426 		/*
4427 		 * If memory error occurs between mmap() and fault, some process
4428 		 * don't have hwpoisoned swap entry for errored virtual address.
4429 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4430 		 */
4431 		if (unlikely(PageHWPoison(page))) {
4432 			ret = VM_FAULT_HWPOISON |
4433 				VM_FAULT_SET_HINDEX(hstate_index(h));
4434 			goto backout_unlocked;
4435 		}
4436 	}
4437 
4438 	/*
4439 	 * If we are going to COW a private mapping later, we examine the
4440 	 * pending reservations for this page now. This will ensure that
4441 	 * any allocations necessary to record that reservation occur outside
4442 	 * the spinlock.
4443 	 */
4444 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4445 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4446 			ret = VM_FAULT_OOM;
4447 			goto backout_unlocked;
4448 		}
4449 		/* Just decrements count, does not deallocate */
4450 		vma_end_reservation(h, vma, haddr);
4451 	}
4452 
4453 	ptl = huge_pte_lock(h, mm, ptep);
4454 	ret = 0;
4455 	if (!huge_pte_none(huge_ptep_get(ptep)))
4456 		goto backout;
4457 
4458 	if (anon_rmap) {
4459 		ClearPagePrivate(page);
4460 		hugepage_add_new_anon_rmap(page, vma, haddr);
4461 	} else
4462 		page_dup_rmap(page, true);
4463 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4464 				&& (vma->vm_flags & VM_SHARED)));
4465 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4466 
4467 	hugetlb_count_add(pages_per_huge_page(h), mm);
4468 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4469 		/* Optimization, do the COW without a second fault */
4470 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4471 	}
4472 
4473 	spin_unlock(ptl);
4474 
4475 	/*
4476 	 * Only make newly allocated pages active.  Existing pages found
4477 	 * in the pagecache could be !page_huge_active() if they have been
4478 	 * isolated for migration.
4479 	 */
4480 	if (new_page)
4481 		set_page_huge_active(page);
4482 
4483 	unlock_page(page);
4484 out:
4485 	return ret;
4486 
4487 backout:
4488 	spin_unlock(ptl);
4489 backout_unlocked:
4490 	unlock_page(page);
4491 	restore_reserve_on_error(h, vma, haddr, page);
4492 	put_page(page);
4493 	goto out;
4494 }
4495 
4496 #ifdef CONFIG_SMP
4497 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4498 {
4499 	unsigned long key[2];
4500 	u32 hash;
4501 
4502 	key[0] = (unsigned long) mapping;
4503 	key[1] = idx;
4504 
4505 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4506 
4507 	return hash & (num_fault_mutexes - 1);
4508 }
4509 #else
4510 /*
4511  * For uniprocesor systems we always use a single mutex, so just
4512  * return 0 and avoid the hashing overhead.
4513  */
4514 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4515 {
4516 	return 0;
4517 }
4518 #endif
4519 
4520 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4521 			unsigned long address, unsigned int flags)
4522 {
4523 	pte_t *ptep, entry;
4524 	spinlock_t *ptl;
4525 	vm_fault_t ret;
4526 	u32 hash;
4527 	pgoff_t idx;
4528 	struct page *page = NULL;
4529 	struct page *pagecache_page = NULL;
4530 	struct hstate *h = hstate_vma(vma);
4531 	struct address_space *mapping;
4532 	int need_wait_lock = 0;
4533 	unsigned long haddr = address & huge_page_mask(h);
4534 
4535 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4536 	if (ptep) {
4537 		/*
4538 		 * Since we hold no locks, ptep could be stale.  That is
4539 		 * OK as we are only making decisions based on content and
4540 		 * not actually modifying content here.
4541 		 */
4542 		entry = huge_ptep_get(ptep);
4543 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4544 			migration_entry_wait_huge(vma, mm, ptep);
4545 			return 0;
4546 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4547 			return VM_FAULT_HWPOISON_LARGE |
4548 				VM_FAULT_SET_HINDEX(hstate_index(h));
4549 	}
4550 
4551 	/*
4552 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4553 	 * until finished with ptep.  This serves two purposes:
4554 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4555 	 *    and making the ptep no longer valid.
4556 	 * 2) It synchronizes us with i_size modifications during truncation.
4557 	 *
4558 	 * ptep could have already be assigned via huge_pte_offset.  That
4559 	 * is OK, as huge_pte_alloc will return the same value unless
4560 	 * something has changed.
4561 	 */
4562 	mapping = vma->vm_file->f_mapping;
4563 	i_mmap_lock_read(mapping);
4564 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4565 	if (!ptep) {
4566 		i_mmap_unlock_read(mapping);
4567 		return VM_FAULT_OOM;
4568 	}
4569 
4570 	/*
4571 	 * Serialize hugepage allocation and instantiation, so that we don't
4572 	 * get spurious allocation failures if two CPUs race to instantiate
4573 	 * the same page in the page cache.
4574 	 */
4575 	idx = vma_hugecache_offset(h, vma, haddr);
4576 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4577 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4578 
4579 	entry = huge_ptep_get(ptep);
4580 	if (huge_pte_none(entry)) {
4581 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4582 		goto out_mutex;
4583 	}
4584 
4585 	ret = 0;
4586 
4587 	/*
4588 	 * entry could be a migration/hwpoison entry at this point, so this
4589 	 * check prevents the kernel from going below assuming that we have
4590 	 * an active hugepage in pagecache. This goto expects the 2nd page
4591 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4592 	 * properly handle it.
4593 	 */
4594 	if (!pte_present(entry))
4595 		goto out_mutex;
4596 
4597 	/*
4598 	 * If we are going to COW the mapping later, we examine the pending
4599 	 * reservations for this page now. This will ensure that any
4600 	 * allocations necessary to record that reservation occur outside the
4601 	 * spinlock. For private mappings, we also lookup the pagecache
4602 	 * page now as it is used to determine if a reservation has been
4603 	 * consumed.
4604 	 */
4605 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4606 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4607 			ret = VM_FAULT_OOM;
4608 			goto out_mutex;
4609 		}
4610 		/* Just decrements count, does not deallocate */
4611 		vma_end_reservation(h, vma, haddr);
4612 
4613 		if (!(vma->vm_flags & VM_MAYSHARE))
4614 			pagecache_page = hugetlbfs_pagecache_page(h,
4615 								vma, haddr);
4616 	}
4617 
4618 	ptl = huge_pte_lock(h, mm, ptep);
4619 
4620 	/* Check for a racing update before calling hugetlb_cow */
4621 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4622 		goto out_ptl;
4623 
4624 	/*
4625 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4626 	 * pagecache_page, so here we need take the former one
4627 	 * when page != pagecache_page or !pagecache_page.
4628 	 */
4629 	page = pte_page(entry);
4630 	if (page != pagecache_page)
4631 		if (!trylock_page(page)) {
4632 			need_wait_lock = 1;
4633 			goto out_ptl;
4634 		}
4635 
4636 	get_page(page);
4637 
4638 	if (flags & FAULT_FLAG_WRITE) {
4639 		if (!huge_pte_write(entry)) {
4640 			ret = hugetlb_cow(mm, vma, address, ptep,
4641 					  pagecache_page, ptl);
4642 			goto out_put_page;
4643 		}
4644 		entry = huge_pte_mkdirty(entry);
4645 	}
4646 	entry = pte_mkyoung(entry);
4647 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4648 						flags & FAULT_FLAG_WRITE))
4649 		update_mmu_cache(vma, haddr, ptep);
4650 out_put_page:
4651 	if (page != pagecache_page)
4652 		unlock_page(page);
4653 	put_page(page);
4654 out_ptl:
4655 	spin_unlock(ptl);
4656 
4657 	if (pagecache_page) {
4658 		unlock_page(pagecache_page);
4659 		put_page(pagecache_page);
4660 	}
4661 out_mutex:
4662 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4663 	i_mmap_unlock_read(mapping);
4664 	/*
4665 	 * Generally it's safe to hold refcount during waiting page lock. But
4666 	 * here we just wait to defer the next page fault to avoid busy loop and
4667 	 * the page is not used after unlocked before returning from the current
4668 	 * page fault. So we are safe from accessing freed page, even if we wait
4669 	 * here without taking refcount.
4670 	 */
4671 	if (need_wait_lock)
4672 		wait_on_page_locked(page);
4673 	return ret;
4674 }
4675 
4676 /*
4677  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4678  * modifications for huge pages.
4679  */
4680 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4681 			    pte_t *dst_pte,
4682 			    struct vm_area_struct *dst_vma,
4683 			    unsigned long dst_addr,
4684 			    unsigned long src_addr,
4685 			    struct page **pagep)
4686 {
4687 	struct address_space *mapping;
4688 	pgoff_t idx;
4689 	unsigned long size;
4690 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4691 	struct hstate *h = hstate_vma(dst_vma);
4692 	pte_t _dst_pte;
4693 	spinlock_t *ptl;
4694 	int ret;
4695 	struct page *page;
4696 
4697 	if (!*pagep) {
4698 		ret = -ENOMEM;
4699 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4700 		if (IS_ERR(page))
4701 			goto out;
4702 
4703 		ret = copy_huge_page_from_user(page,
4704 						(const void __user *) src_addr,
4705 						pages_per_huge_page(h), false);
4706 
4707 		/* fallback to copy_from_user outside mmap_lock */
4708 		if (unlikely(ret)) {
4709 			ret = -ENOENT;
4710 			*pagep = page;
4711 			/* don't free the page */
4712 			goto out;
4713 		}
4714 	} else {
4715 		page = *pagep;
4716 		*pagep = NULL;
4717 	}
4718 
4719 	/*
4720 	 * The memory barrier inside __SetPageUptodate makes sure that
4721 	 * preceding stores to the page contents become visible before
4722 	 * the set_pte_at() write.
4723 	 */
4724 	__SetPageUptodate(page);
4725 
4726 	mapping = dst_vma->vm_file->f_mapping;
4727 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4728 
4729 	/*
4730 	 * If shared, add to page cache
4731 	 */
4732 	if (vm_shared) {
4733 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4734 		ret = -EFAULT;
4735 		if (idx >= size)
4736 			goto out_release_nounlock;
4737 
4738 		/*
4739 		 * Serialization between remove_inode_hugepages() and
4740 		 * huge_add_to_page_cache() below happens through the
4741 		 * hugetlb_fault_mutex_table that here must be hold by
4742 		 * the caller.
4743 		 */
4744 		ret = huge_add_to_page_cache(page, mapping, idx);
4745 		if (ret)
4746 			goto out_release_nounlock;
4747 	}
4748 
4749 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4750 	spin_lock(ptl);
4751 
4752 	/*
4753 	 * Recheck the i_size after holding PT lock to make sure not
4754 	 * to leave any page mapped (as page_mapped()) beyond the end
4755 	 * of the i_size (remove_inode_hugepages() is strict about
4756 	 * enforcing that). If we bail out here, we'll also leave a
4757 	 * page in the radix tree in the vm_shared case beyond the end
4758 	 * of the i_size, but remove_inode_hugepages() will take care
4759 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4760 	 */
4761 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4762 	ret = -EFAULT;
4763 	if (idx >= size)
4764 		goto out_release_unlock;
4765 
4766 	ret = -EEXIST;
4767 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4768 		goto out_release_unlock;
4769 
4770 	if (vm_shared) {
4771 		page_dup_rmap(page, true);
4772 	} else {
4773 		ClearPagePrivate(page);
4774 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4775 	}
4776 
4777 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4778 	if (dst_vma->vm_flags & VM_WRITE)
4779 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4780 	_dst_pte = pte_mkyoung(_dst_pte);
4781 
4782 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4783 
4784 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4785 					dst_vma->vm_flags & VM_WRITE);
4786 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4787 
4788 	/* No need to invalidate - it was non-present before */
4789 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4790 
4791 	spin_unlock(ptl);
4792 	set_page_huge_active(page);
4793 	if (vm_shared)
4794 		unlock_page(page);
4795 	ret = 0;
4796 out:
4797 	return ret;
4798 out_release_unlock:
4799 	spin_unlock(ptl);
4800 	if (vm_shared)
4801 		unlock_page(page);
4802 out_release_nounlock:
4803 	put_page(page);
4804 	goto out;
4805 }
4806 
4807 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4808 			 struct page **pages, struct vm_area_struct **vmas,
4809 			 unsigned long *position, unsigned long *nr_pages,
4810 			 long i, unsigned int flags, int *locked)
4811 {
4812 	unsigned long pfn_offset;
4813 	unsigned long vaddr = *position;
4814 	unsigned long remainder = *nr_pages;
4815 	struct hstate *h = hstate_vma(vma);
4816 	int err = -EFAULT;
4817 
4818 	while (vaddr < vma->vm_end && remainder) {
4819 		pte_t *pte;
4820 		spinlock_t *ptl = NULL;
4821 		int absent;
4822 		struct page *page;
4823 
4824 		/*
4825 		 * If we have a pending SIGKILL, don't keep faulting pages and
4826 		 * potentially allocating memory.
4827 		 */
4828 		if (fatal_signal_pending(current)) {
4829 			remainder = 0;
4830 			break;
4831 		}
4832 
4833 		/*
4834 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4835 		 * each hugepage.  We have to make sure we get the
4836 		 * first, for the page indexing below to work.
4837 		 *
4838 		 * Note that page table lock is not held when pte is null.
4839 		 */
4840 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4841 				      huge_page_size(h));
4842 		if (pte)
4843 			ptl = huge_pte_lock(h, mm, pte);
4844 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4845 
4846 		/*
4847 		 * When coredumping, it suits get_dump_page if we just return
4848 		 * an error where there's an empty slot with no huge pagecache
4849 		 * to back it.  This way, we avoid allocating a hugepage, and
4850 		 * the sparse dumpfile avoids allocating disk blocks, but its
4851 		 * huge holes still show up with zeroes where they need to be.
4852 		 */
4853 		if (absent && (flags & FOLL_DUMP) &&
4854 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4855 			if (pte)
4856 				spin_unlock(ptl);
4857 			remainder = 0;
4858 			break;
4859 		}
4860 
4861 		/*
4862 		 * We need call hugetlb_fault for both hugepages under migration
4863 		 * (in which case hugetlb_fault waits for the migration,) and
4864 		 * hwpoisoned hugepages (in which case we need to prevent the
4865 		 * caller from accessing to them.) In order to do this, we use
4866 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4867 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4868 		 * both cases, and because we can't follow correct pages
4869 		 * directly from any kind of swap entries.
4870 		 */
4871 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4872 		    ((flags & FOLL_WRITE) &&
4873 		      !huge_pte_write(huge_ptep_get(pte)))) {
4874 			vm_fault_t ret;
4875 			unsigned int fault_flags = 0;
4876 
4877 			if (pte)
4878 				spin_unlock(ptl);
4879 			if (flags & FOLL_WRITE)
4880 				fault_flags |= FAULT_FLAG_WRITE;
4881 			if (locked)
4882 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4883 					FAULT_FLAG_KILLABLE;
4884 			if (flags & FOLL_NOWAIT)
4885 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4886 					FAULT_FLAG_RETRY_NOWAIT;
4887 			if (flags & FOLL_TRIED) {
4888 				/*
4889 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4890 				 * FAULT_FLAG_TRIED can co-exist
4891 				 */
4892 				fault_flags |= FAULT_FLAG_TRIED;
4893 			}
4894 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4895 			if (ret & VM_FAULT_ERROR) {
4896 				err = vm_fault_to_errno(ret, flags);
4897 				remainder = 0;
4898 				break;
4899 			}
4900 			if (ret & VM_FAULT_RETRY) {
4901 				if (locked &&
4902 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4903 					*locked = 0;
4904 				*nr_pages = 0;
4905 				/*
4906 				 * VM_FAULT_RETRY must not return an
4907 				 * error, it will return zero
4908 				 * instead.
4909 				 *
4910 				 * No need to update "position" as the
4911 				 * caller will not check it after
4912 				 * *nr_pages is set to 0.
4913 				 */
4914 				return i;
4915 			}
4916 			continue;
4917 		}
4918 
4919 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4920 		page = pte_page(huge_ptep_get(pte));
4921 
4922 		/*
4923 		 * If subpage information not requested, update counters
4924 		 * and skip the same_page loop below.
4925 		 */
4926 		if (!pages && !vmas && !pfn_offset &&
4927 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4928 		    (remainder >= pages_per_huge_page(h))) {
4929 			vaddr += huge_page_size(h);
4930 			remainder -= pages_per_huge_page(h);
4931 			i += pages_per_huge_page(h);
4932 			spin_unlock(ptl);
4933 			continue;
4934 		}
4935 
4936 same_page:
4937 		if (pages) {
4938 			pages[i] = mem_map_offset(page, pfn_offset);
4939 			/*
4940 			 * try_grab_page() should always succeed here, because:
4941 			 * a) we hold the ptl lock, and b) we've just checked
4942 			 * that the huge page is present in the page tables. If
4943 			 * the huge page is present, then the tail pages must
4944 			 * also be present. The ptl prevents the head page and
4945 			 * tail pages from being rearranged in any way. So this
4946 			 * page must be available at this point, unless the page
4947 			 * refcount overflowed:
4948 			 */
4949 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4950 				spin_unlock(ptl);
4951 				remainder = 0;
4952 				err = -ENOMEM;
4953 				break;
4954 			}
4955 		}
4956 
4957 		if (vmas)
4958 			vmas[i] = vma;
4959 
4960 		vaddr += PAGE_SIZE;
4961 		++pfn_offset;
4962 		--remainder;
4963 		++i;
4964 		if (vaddr < vma->vm_end && remainder &&
4965 				pfn_offset < pages_per_huge_page(h)) {
4966 			/*
4967 			 * We use pfn_offset to avoid touching the pageframes
4968 			 * of this compound page.
4969 			 */
4970 			goto same_page;
4971 		}
4972 		spin_unlock(ptl);
4973 	}
4974 	*nr_pages = remainder;
4975 	/*
4976 	 * setting position is actually required only if remainder is
4977 	 * not zero but it's faster not to add a "if (remainder)"
4978 	 * branch.
4979 	 */
4980 	*position = vaddr;
4981 
4982 	return i ? i : err;
4983 }
4984 
4985 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4986 /*
4987  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4988  * implement this.
4989  */
4990 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4991 #endif
4992 
4993 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4994 		unsigned long address, unsigned long end, pgprot_t newprot)
4995 {
4996 	struct mm_struct *mm = vma->vm_mm;
4997 	unsigned long start = address;
4998 	pte_t *ptep;
4999 	pte_t pte;
5000 	struct hstate *h = hstate_vma(vma);
5001 	unsigned long pages = 0;
5002 	bool shared_pmd = false;
5003 	struct mmu_notifier_range range;
5004 
5005 	/*
5006 	 * In the case of shared PMDs, the area to flush could be beyond
5007 	 * start/end.  Set range.start/range.end to cover the maximum possible
5008 	 * range if PMD sharing is possible.
5009 	 */
5010 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5011 				0, vma, mm, start, end);
5012 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5013 
5014 	BUG_ON(address >= end);
5015 	flush_cache_range(vma, range.start, range.end);
5016 
5017 	mmu_notifier_invalidate_range_start(&range);
5018 	i_mmap_lock_write(vma->vm_file->f_mapping);
5019 	for (; address < end; address += huge_page_size(h)) {
5020 		spinlock_t *ptl;
5021 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5022 		if (!ptep)
5023 			continue;
5024 		ptl = huge_pte_lock(h, mm, ptep);
5025 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5026 			pages++;
5027 			spin_unlock(ptl);
5028 			shared_pmd = true;
5029 			continue;
5030 		}
5031 		pte = huge_ptep_get(ptep);
5032 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5033 			spin_unlock(ptl);
5034 			continue;
5035 		}
5036 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5037 			swp_entry_t entry = pte_to_swp_entry(pte);
5038 
5039 			if (is_write_migration_entry(entry)) {
5040 				pte_t newpte;
5041 
5042 				make_migration_entry_read(&entry);
5043 				newpte = swp_entry_to_pte(entry);
5044 				set_huge_swap_pte_at(mm, address, ptep,
5045 						     newpte, huge_page_size(h));
5046 				pages++;
5047 			}
5048 			spin_unlock(ptl);
5049 			continue;
5050 		}
5051 		if (!huge_pte_none(pte)) {
5052 			pte_t old_pte;
5053 
5054 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5055 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5056 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5057 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5058 			pages++;
5059 		}
5060 		spin_unlock(ptl);
5061 	}
5062 	/*
5063 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5064 	 * may have cleared our pud entry and done put_page on the page table:
5065 	 * once we release i_mmap_rwsem, another task can do the final put_page
5066 	 * and that page table be reused and filled with junk.  If we actually
5067 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5068 	 */
5069 	if (shared_pmd)
5070 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5071 	else
5072 		flush_hugetlb_tlb_range(vma, start, end);
5073 	/*
5074 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5075 	 * page table protection not changing it to point to a new page.
5076 	 *
5077 	 * See Documentation/vm/mmu_notifier.rst
5078 	 */
5079 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5080 	mmu_notifier_invalidate_range_end(&range);
5081 
5082 	return pages << h->order;
5083 }
5084 
5085 int hugetlb_reserve_pages(struct inode *inode,
5086 					long from, long to,
5087 					struct vm_area_struct *vma,
5088 					vm_flags_t vm_flags)
5089 {
5090 	long ret, chg, add = -1;
5091 	struct hstate *h = hstate_inode(inode);
5092 	struct hugepage_subpool *spool = subpool_inode(inode);
5093 	struct resv_map *resv_map;
5094 	struct hugetlb_cgroup *h_cg = NULL;
5095 	long gbl_reserve, regions_needed = 0;
5096 
5097 	/* This should never happen */
5098 	if (from > to) {
5099 		VM_WARN(1, "%s called with a negative range\n", __func__);
5100 		return -EINVAL;
5101 	}
5102 
5103 	/*
5104 	 * Only apply hugepage reservation if asked. At fault time, an
5105 	 * attempt will be made for VM_NORESERVE to allocate a page
5106 	 * without using reserves
5107 	 */
5108 	if (vm_flags & VM_NORESERVE)
5109 		return 0;
5110 
5111 	/*
5112 	 * Shared mappings base their reservation on the number of pages that
5113 	 * are already allocated on behalf of the file. Private mappings need
5114 	 * to reserve the full area even if read-only as mprotect() may be
5115 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5116 	 */
5117 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5118 		/*
5119 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5120 		 * called for inodes for which resv_maps were created (see
5121 		 * hugetlbfs_get_inode).
5122 		 */
5123 		resv_map = inode_resv_map(inode);
5124 
5125 		chg = region_chg(resv_map, from, to, &regions_needed);
5126 
5127 	} else {
5128 		/* Private mapping. */
5129 		resv_map = resv_map_alloc();
5130 		if (!resv_map)
5131 			return -ENOMEM;
5132 
5133 		chg = to - from;
5134 
5135 		set_vma_resv_map(vma, resv_map);
5136 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5137 	}
5138 
5139 	if (chg < 0) {
5140 		ret = chg;
5141 		goto out_err;
5142 	}
5143 
5144 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5145 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5146 
5147 	if (ret < 0) {
5148 		ret = -ENOMEM;
5149 		goto out_err;
5150 	}
5151 
5152 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5153 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5154 		 * of the resv_map.
5155 		 */
5156 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5157 	}
5158 
5159 	/*
5160 	 * There must be enough pages in the subpool for the mapping. If
5161 	 * the subpool has a minimum size, there may be some global
5162 	 * reservations already in place (gbl_reserve).
5163 	 */
5164 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5165 	if (gbl_reserve < 0) {
5166 		ret = -ENOSPC;
5167 		goto out_uncharge_cgroup;
5168 	}
5169 
5170 	/*
5171 	 * Check enough hugepages are available for the reservation.
5172 	 * Hand the pages back to the subpool if there are not
5173 	 */
5174 	ret = hugetlb_acct_memory(h, gbl_reserve);
5175 	if (ret < 0) {
5176 		goto out_put_pages;
5177 	}
5178 
5179 	/*
5180 	 * Account for the reservations made. Shared mappings record regions
5181 	 * that have reservations as they are shared by multiple VMAs.
5182 	 * When the last VMA disappears, the region map says how much
5183 	 * the reservation was and the page cache tells how much of
5184 	 * the reservation was consumed. Private mappings are per-VMA and
5185 	 * only the consumed reservations are tracked. When the VMA
5186 	 * disappears, the original reservation is the VMA size and the
5187 	 * consumed reservations are stored in the map. Hence, nothing
5188 	 * else has to be done for private mappings here
5189 	 */
5190 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5191 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5192 
5193 		if (unlikely(add < 0)) {
5194 			hugetlb_acct_memory(h, -gbl_reserve);
5195 			goto out_put_pages;
5196 		} else if (unlikely(chg > add)) {
5197 			/*
5198 			 * pages in this range were added to the reserve
5199 			 * map between region_chg and region_add.  This
5200 			 * indicates a race with alloc_huge_page.  Adjust
5201 			 * the subpool and reserve counts modified above
5202 			 * based on the difference.
5203 			 */
5204 			long rsv_adjust;
5205 
5206 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5207 				hstate_index(h),
5208 				(chg - add) * pages_per_huge_page(h), h_cg);
5209 
5210 			rsv_adjust = hugepage_subpool_put_pages(spool,
5211 								chg - add);
5212 			hugetlb_acct_memory(h, -rsv_adjust);
5213 		}
5214 	}
5215 	return 0;
5216 out_put_pages:
5217 	/* put back original number of pages, chg */
5218 	(void)hugepage_subpool_put_pages(spool, chg);
5219 out_uncharge_cgroup:
5220 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5221 					    chg * pages_per_huge_page(h), h_cg);
5222 out_err:
5223 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5224 		/* Only call region_abort if the region_chg succeeded but the
5225 		 * region_add failed or didn't run.
5226 		 */
5227 		if (chg >= 0 && add < 0)
5228 			region_abort(resv_map, from, to, regions_needed);
5229 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5230 		kref_put(&resv_map->refs, resv_map_release);
5231 	return ret;
5232 }
5233 
5234 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5235 								long freed)
5236 {
5237 	struct hstate *h = hstate_inode(inode);
5238 	struct resv_map *resv_map = inode_resv_map(inode);
5239 	long chg = 0;
5240 	struct hugepage_subpool *spool = subpool_inode(inode);
5241 	long gbl_reserve;
5242 
5243 	/*
5244 	 * Since this routine can be called in the evict inode path for all
5245 	 * hugetlbfs inodes, resv_map could be NULL.
5246 	 */
5247 	if (resv_map) {
5248 		chg = region_del(resv_map, start, end);
5249 		/*
5250 		 * region_del() can fail in the rare case where a region
5251 		 * must be split and another region descriptor can not be
5252 		 * allocated.  If end == LONG_MAX, it will not fail.
5253 		 */
5254 		if (chg < 0)
5255 			return chg;
5256 	}
5257 
5258 	spin_lock(&inode->i_lock);
5259 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5260 	spin_unlock(&inode->i_lock);
5261 
5262 	/*
5263 	 * If the subpool has a minimum size, the number of global
5264 	 * reservations to be released may be adjusted.
5265 	 */
5266 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5267 	hugetlb_acct_memory(h, -gbl_reserve);
5268 
5269 	return 0;
5270 }
5271 
5272 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5273 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5274 				struct vm_area_struct *vma,
5275 				unsigned long addr, pgoff_t idx)
5276 {
5277 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5278 				svma->vm_start;
5279 	unsigned long sbase = saddr & PUD_MASK;
5280 	unsigned long s_end = sbase + PUD_SIZE;
5281 
5282 	/* Allow segments to share if only one is marked locked */
5283 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5284 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5285 
5286 	/*
5287 	 * match the virtual addresses, permission and the alignment of the
5288 	 * page table page.
5289 	 */
5290 	if (pmd_index(addr) != pmd_index(saddr) ||
5291 	    vm_flags != svm_flags ||
5292 	    sbase < svma->vm_start || svma->vm_end < s_end)
5293 		return 0;
5294 
5295 	return saddr;
5296 }
5297 
5298 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5299 {
5300 	unsigned long base = addr & PUD_MASK;
5301 	unsigned long end = base + PUD_SIZE;
5302 
5303 	/*
5304 	 * check on proper vm_flags and page table alignment
5305 	 */
5306 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5307 		return true;
5308 	return false;
5309 }
5310 
5311 /*
5312  * Determine if start,end range within vma could be mapped by shared pmd.
5313  * If yes, adjust start and end to cover range associated with possible
5314  * shared pmd mappings.
5315  */
5316 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5317 				unsigned long *start, unsigned long *end)
5318 {
5319 	unsigned long a_start, a_end;
5320 
5321 	if (!(vma->vm_flags & VM_MAYSHARE))
5322 		return;
5323 
5324 	/* Extend the range to be PUD aligned for a worst case scenario */
5325 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5326 	a_end = ALIGN(*end, PUD_SIZE);
5327 
5328 	/*
5329 	 * Intersect the range with the vma range, since pmd sharing won't be
5330 	 * across vma after all
5331 	 */
5332 	*start = max(vma->vm_start, a_start);
5333 	*end = min(vma->vm_end, a_end);
5334 }
5335 
5336 /*
5337  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5338  * and returns the corresponding pte. While this is not necessary for the
5339  * !shared pmd case because we can allocate the pmd later as well, it makes the
5340  * code much cleaner.
5341  *
5342  * This routine must be called with i_mmap_rwsem held in at least read mode if
5343  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5344  * table entries associated with the address space.  This is important as we
5345  * are setting up sharing based on existing page table entries (mappings).
5346  *
5347  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5348  * huge_pte_alloc know that sharing is not possible and do not take
5349  * i_mmap_rwsem as a performance optimization.  This is handled by the
5350  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5351  * only required for subsequent processing.
5352  */
5353 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5354 {
5355 	struct vm_area_struct *vma = find_vma(mm, addr);
5356 	struct address_space *mapping = vma->vm_file->f_mapping;
5357 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5358 			vma->vm_pgoff;
5359 	struct vm_area_struct *svma;
5360 	unsigned long saddr;
5361 	pte_t *spte = NULL;
5362 	pte_t *pte;
5363 	spinlock_t *ptl;
5364 
5365 	if (!vma_shareable(vma, addr))
5366 		return (pte_t *)pmd_alloc(mm, pud, addr);
5367 
5368 	i_mmap_assert_locked(mapping);
5369 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5370 		if (svma == vma)
5371 			continue;
5372 
5373 		saddr = page_table_shareable(svma, vma, addr, idx);
5374 		if (saddr) {
5375 			spte = huge_pte_offset(svma->vm_mm, saddr,
5376 					       vma_mmu_pagesize(svma));
5377 			if (spte) {
5378 				get_page(virt_to_page(spte));
5379 				break;
5380 			}
5381 		}
5382 	}
5383 
5384 	if (!spte)
5385 		goto out;
5386 
5387 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5388 	if (pud_none(*pud)) {
5389 		pud_populate(mm, pud,
5390 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5391 		mm_inc_nr_pmds(mm);
5392 	} else {
5393 		put_page(virt_to_page(spte));
5394 	}
5395 	spin_unlock(ptl);
5396 out:
5397 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5398 	return pte;
5399 }
5400 
5401 /*
5402  * unmap huge page backed by shared pte.
5403  *
5404  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5405  * indicated by page_count > 1, unmap is achieved by clearing pud and
5406  * decrementing the ref count. If count == 1, the pte page is not shared.
5407  *
5408  * Called with page table lock held and i_mmap_rwsem held in write mode.
5409  *
5410  * returns: 1 successfully unmapped a shared pte page
5411  *	    0 the underlying pte page is not shared, or it is the last user
5412  */
5413 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5414 					unsigned long *addr, pte_t *ptep)
5415 {
5416 	pgd_t *pgd = pgd_offset(mm, *addr);
5417 	p4d_t *p4d = p4d_offset(pgd, *addr);
5418 	pud_t *pud = pud_offset(p4d, *addr);
5419 
5420 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5421 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5422 	if (page_count(virt_to_page(ptep)) == 1)
5423 		return 0;
5424 
5425 	pud_clear(pud);
5426 	put_page(virt_to_page(ptep));
5427 	mm_dec_nr_pmds(mm);
5428 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5429 	return 1;
5430 }
5431 #define want_pmd_share()	(1)
5432 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5433 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5434 {
5435 	return NULL;
5436 }
5437 
5438 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5439 				unsigned long *addr, pte_t *ptep)
5440 {
5441 	return 0;
5442 }
5443 
5444 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5445 				unsigned long *start, unsigned long *end)
5446 {
5447 }
5448 #define want_pmd_share()	(0)
5449 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5450 
5451 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5452 pte_t *huge_pte_alloc(struct mm_struct *mm,
5453 			unsigned long addr, unsigned long sz)
5454 {
5455 	pgd_t *pgd;
5456 	p4d_t *p4d;
5457 	pud_t *pud;
5458 	pte_t *pte = NULL;
5459 
5460 	pgd = pgd_offset(mm, addr);
5461 	p4d = p4d_alloc(mm, pgd, addr);
5462 	if (!p4d)
5463 		return NULL;
5464 	pud = pud_alloc(mm, p4d, addr);
5465 	if (pud) {
5466 		if (sz == PUD_SIZE) {
5467 			pte = (pte_t *)pud;
5468 		} else {
5469 			BUG_ON(sz != PMD_SIZE);
5470 			if (want_pmd_share() && pud_none(*pud))
5471 				pte = huge_pmd_share(mm, addr, pud);
5472 			else
5473 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5474 		}
5475 	}
5476 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5477 
5478 	return pte;
5479 }
5480 
5481 /*
5482  * huge_pte_offset() - Walk the page table to resolve the hugepage
5483  * entry at address @addr
5484  *
5485  * Return: Pointer to page table entry (PUD or PMD) for
5486  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5487  * size @sz doesn't match the hugepage size at this level of the page
5488  * table.
5489  */
5490 pte_t *huge_pte_offset(struct mm_struct *mm,
5491 		       unsigned long addr, unsigned long sz)
5492 {
5493 	pgd_t *pgd;
5494 	p4d_t *p4d;
5495 	pud_t *pud;
5496 	pmd_t *pmd;
5497 
5498 	pgd = pgd_offset(mm, addr);
5499 	if (!pgd_present(*pgd))
5500 		return NULL;
5501 	p4d = p4d_offset(pgd, addr);
5502 	if (!p4d_present(*p4d))
5503 		return NULL;
5504 
5505 	pud = pud_offset(p4d, addr);
5506 	if (sz == PUD_SIZE)
5507 		/* must be pud huge, non-present or none */
5508 		return (pte_t *)pud;
5509 	if (!pud_present(*pud))
5510 		return NULL;
5511 	/* must have a valid entry and size to go further */
5512 
5513 	pmd = pmd_offset(pud, addr);
5514 	/* must be pmd huge, non-present or none */
5515 	return (pte_t *)pmd;
5516 }
5517 
5518 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5519 
5520 /*
5521  * These functions are overwritable if your architecture needs its own
5522  * behavior.
5523  */
5524 struct page * __weak
5525 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5526 			      int write)
5527 {
5528 	return ERR_PTR(-EINVAL);
5529 }
5530 
5531 struct page * __weak
5532 follow_huge_pd(struct vm_area_struct *vma,
5533 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5534 {
5535 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5536 	return NULL;
5537 }
5538 
5539 struct page * __weak
5540 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5541 		pmd_t *pmd, int flags)
5542 {
5543 	struct page *page = NULL;
5544 	spinlock_t *ptl;
5545 	pte_t pte;
5546 
5547 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5548 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5549 			 (FOLL_PIN | FOLL_GET)))
5550 		return NULL;
5551 
5552 retry:
5553 	ptl = pmd_lockptr(mm, pmd);
5554 	spin_lock(ptl);
5555 	/*
5556 	 * make sure that the address range covered by this pmd is not
5557 	 * unmapped from other threads.
5558 	 */
5559 	if (!pmd_huge(*pmd))
5560 		goto out;
5561 	pte = huge_ptep_get((pte_t *)pmd);
5562 	if (pte_present(pte)) {
5563 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5564 		/*
5565 		 * try_grab_page() should always succeed here, because: a) we
5566 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5567 		 * huge pmd (head) page is present in the page tables. The ptl
5568 		 * prevents the head page and tail pages from being rearranged
5569 		 * in any way. So this page must be available at this point,
5570 		 * unless the page refcount overflowed:
5571 		 */
5572 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5573 			page = NULL;
5574 			goto out;
5575 		}
5576 	} else {
5577 		if (is_hugetlb_entry_migration(pte)) {
5578 			spin_unlock(ptl);
5579 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5580 			goto retry;
5581 		}
5582 		/*
5583 		 * hwpoisoned entry is treated as no_page_table in
5584 		 * follow_page_mask().
5585 		 */
5586 	}
5587 out:
5588 	spin_unlock(ptl);
5589 	return page;
5590 }
5591 
5592 struct page * __weak
5593 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5594 		pud_t *pud, int flags)
5595 {
5596 	if (flags & (FOLL_GET | FOLL_PIN))
5597 		return NULL;
5598 
5599 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5600 }
5601 
5602 struct page * __weak
5603 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5604 {
5605 	if (flags & (FOLL_GET | FOLL_PIN))
5606 		return NULL;
5607 
5608 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5609 }
5610 
5611 bool isolate_huge_page(struct page *page, struct list_head *list)
5612 {
5613 	bool ret = true;
5614 
5615 	VM_BUG_ON_PAGE(!PageHead(page), page);
5616 	spin_lock(&hugetlb_lock);
5617 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5618 		ret = false;
5619 		goto unlock;
5620 	}
5621 	clear_page_huge_active(page);
5622 	list_move_tail(&page->lru, list);
5623 unlock:
5624 	spin_unlock(&hugetlb_lock);
5625 	return ret;
5626 }
5627 
5628 void putback_active_hugepage(struct page *page)
5629 {
5630 	VM_BUG_ON_PAGE(!PageHead(page), page);
5631 	spin_lock(&hugetlb_lock);
5632 	set_page_huge_active(page);
5633 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5634 	spin_unlock(&hugetlb_lock);
5635 	put_page(page);
5636 }
5637 
5638 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5639 {
5640 	struct hstate *h = page_hstate(oldpage);
5641 
5642 	hugetlb_cgroup_migrate(oldpage, newpage);
5643 	set_page_owner_migrate_reason(newpage, reason);
5644 
5645 	/*
5646 	 * transfer temporary state of the new huge page. This is
5647 	 * reverse to other transitions because the newpage is going to
5648 	 * be final while the old one will be freed so it takes over
5649 	 * the temporary status.
5650 	 *
5651 	 * Also note that we have to transfer the per-node surplus state
5652 	 * here as well otherwise the global surplus count will not match
5653 	 * the per-node's.
5654 	 */
5655 	if (PageHugeTemporary(newpage)) {
5656 		int old_nid = page_to_nid(oldpage);
5657 		int new_nid = page_to_nid(newpage);
5658 
5659 		SetPageHugeTemporary(oldpage);
5660 		ClearPageHugeTemporary(newpage);
5661 
5662 		spin_lock(&hugetlb_lock);
5663 		if (h->surplus_huge_pages_node[old_nid]) {
5664 			h->surplus_huge_pages_node[old_nid]--;
5665 			h->surplus_huge_pages_node[new_nid]++;
5666 		}
5667 		spin_unlock(&hugetlb_lock);
5668 	}
5669 }
5670 
5671 #ifdef CONFIG_CMA
5672 static bool cma_reserve_called __initdata;
5673 
5674 static int __init cmdline_parse_hugetlb_cma(char *p)
5675 {
5676 	hugetlb_cma_size = memparse(p, &p);
5677 	return 0;
5678 }
5679 
5680 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5681 
5682 void __init hugetlb_cma_reserve(int order)
5683 {
5684 	unsigned long size, reserved, per_node;
5685 	int nid;
5686 
5687 	cma_reserve_called = true;
5688 
5689 	if (!hugetlb_cma_size)
5690 		return;
5691 
5692 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5693 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5694 			(PAGE_SIZE << order) / SZ_1M);
5695 		return;
5696 	}
5697 
5698 	/*
5699 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5700 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5701 	 */
5702 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5703 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5704 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5705 
5706 	reserved = 0;
5707 	for_each_node_state(nid, N_ONLINE) {
5708 		int res;
5709 		char name[CMA_MAX_NAME];
5710 
5711 		size = min(per_node, hugetlb_cma_size - reserved);
5712 		size = round_up(size, PAGE_SIZE << order);
5713 
5714 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5715 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5716 						 0, false, name,
5717 						 &hugetlb_cma[nid], nid);
5718 		if (res) {
5719 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5720 				res, nid);
5721 			continue;
5722 		}
5723 
5724 		reserved += size;
5725 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5726 			size / SZ_1M, nid);
5727 
5728 		if (reserved >= hugetlb_cma_size)
5729 			break;
5730 	}
5731 }
5732 
5733 void __init hugetlb_cma_check(void)
5734 {
5735 	if (!hugetlb_cma_size || cma_reserve_called)
5736 		return;
5737 
5738 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5739 }
5740 
5741 #endif /* CONFIG_CMA */
5742