1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_page(struct page *page, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_page(struct page *page, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg, *prg; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *iter, *trg = NULL; 405 struct list_head *rg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, iter->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(iter, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (iter->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (iter->to > last_accounted_offset) 421 last_accounted_offset = iter->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (iter->from >= t) { 429 rg = iter->link.prev; 430 break; 431 } 432 433 /* Add an entry for last_accounted_offset -> iter->from, and 434 * update last_accounted_offset. 435 */ 436 if (iter->from > last_accounted_offset) 437 add += hugetlb_resv_map_add(resv, iter->link.prev, 438 last_accounted_offset, 439 iter->from, h, h_cg, 440 regions_needed); 441 442 last_accounted_offset = iter->to; 443 } 444 445 /* Handle the case where our range extends beyond 446 * last_accounted_offset. 447 */ 448 if (!rg) 449 rg = head->prev; 450 if (last_accounted_offset < t) 451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 452 t, h, h_cg, regions_needed); 453 454 return add; 455 } 456 457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 458 */ 459 static int allocate_file_region_entries(struct resv_map *resv, 460 int regions_needed) 461 __must_hold(&resv->lock) 462 { 463 LIST_HEAD(allocated_regions); 464 int to_allocate = 0, i = 0; 465 struct file_region *trg = NULL, *rg = NULL; 466 467 VM_BUG_ON(regions_needed < 0); 468 469 /* 470 * Check for sufficient descriptors in the cache to accommodate 471 * the number of in progress add operations plus regions_needed. 472 * 473 * This is a while loop because when we drop the lock, some other call 474 * to region_add or region_del may have consumed some region_entries, 475 * so we keep looping here until we finally have enough entries for 476 * (adds_in_progress + regions_needed). 477 */ 478 while (resv->region_cache_count < 479 (resv->adds_in_progress + regions_needed)) { 480 to_allocate = resv->adds_in_progress + regions_needed - 481 resv->region_cache_count; 482 483 /* At this point, we should have enough entries in the cache 484 * for all the existing adds_in_progress. We should only be 485 * needing to allocate for regions_needed. 486 */ 487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 488 489 spin_unlock(&resv->lock); 490 for (i = 0; i < to_allocate; i++) { 491 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 492 if (!trg) 493 goto out_of_memory; 494 list_add(&trg->link, &allocated_regions); 495 } 496 497 spin_lock(&resv->lock); 498 499 list_splice(&allocated_regions, &resv->region_cache); 500 resv->region_cache_count += to_allocate; 501 } 502 503 return 0; 504 505 out_of_memory: 506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 507 list_del(&rg->link); 508 kfree(rg); 509 } 510 return -ENOMEM; 511 } 512 513 /* 514 * Add the huge page range represented by [f, t) to the reserve 515 * map. Regions will be taken from the cache to fill in this range. 516 * Sufficient regions should exist in the cache due to the previous 517 * call to region_chg with the same range, but in some cases the cache will not 518 * have sufficient entries due to races with other code doing region_add or 519 * region_del. The extra needed entries will be allocated. 520 * 521 * regions_needed is the out value provided by a previous call to region_chg. 522 * 523 * Return the number of new huge pages added to the map. This number is greater 524 * than or equal to zero. If file_region entries needed to be allocated for 525 * this operation and we were not able to allocate, it returns -ENOMEM. 526 * region_add of regions of length 1 never allocate file_regions and cannot 527 * fail; region_chg will always allocate at least 1 entry and a region_add for 528 * 1 page will only require at most 1 entry. 529 */ 530 static long region_add(struct resv_map *resv, long f, long t, 531 long in_regions_needed, struct hstate *h, 532 struct hugetlb_cgroup *h_cg) 533 { 534 long add = 0, actual_regions_needed = 0; 535 536 spin_lock(&resv->lock); 537 retry: 538 539 /* Count how many regions are actually needed to execute this add. */ 540 add_reservation_in_range(resv, f, t, NULL, NULL, 541 &actual_regions_needed); 542 543 /* 544 * Check for sufficient descriptors in the cache to accommodate 545 * this add operation. Note that actual_regions_needed may be greater 546 * than in_regions_needed, as the resv_map may have been modified since 547 * the region_chg call. In this case, we need to make sure that we 548 * allocate extra entries, such that we have enough for all the 549 * existing adds_in_progress, plus the excess needed for this 550 * operation. 551 */ 552 if (actual_regions_needed > in_regions_needed && 553 resv->region_cache_count < 554 resv->adds_in_progress + 555 (actual_regions_needed - in_regions_needed)) { 556 /* region_add operation of range 1 should never need to 557 * allocate file_region entries. 558 */ 559 VM_BUG_ON(t - f <= 1); 560 561 if (allocate_file_region_entries( 562 resv, actual_regions_needed - in_regions_needed)) { 563 return -ENOMEM; 564 } 565 566 goto retry; 567 } 568 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 570 571 resv->adds_in_progress -= in_regions_needed; 572 573 spin_unlock(&resv->lock); 574 return add; 575 } 576 577 /* 578 * Examine the existing reserve map and determine how many 579 * huge pages in the specified range [f, t) are NOT currently 580 * represented. This routine is called before a subsequent 581 * call to region_add that will actually modify the reserve 582 * map to add the specified range [f, t). region_chg does 583 * not change the number of huge pages represented by the 584 * map. A number of new file_region structures is added to the cache as a 585 * placeholder, for the subsequent region_add call to use. At least 1 586 * file_region structure is added. 587 * 588 * out_regions_needed is the number of regions added to the 589 * resv->adds_in_progress. This value needs to be provided to a follow up call 590 * to region_add or region_abort for proper accounting. 591 * 592 * Returns the number of huge pages that need to be added to the existing 593 * reservation map for the range [f, t). This number is greater or equal to 594 * zero. -ENOMEM is returned if a new file_region structure or cache entry 595 * is needed and can not be allocated. 596 */ 597 static long region_chg(struct resv_map *resv, long f, long t, 598 long *out_regions_needed) 599 { 600 long chg = 0; 601 602 spin_lock(&resv->lock); 603 604 /* Count how many hugepages in this range are NOT represented. */ 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 606 out_regions_needed); 607 608 if (*out_regions_needed == 0) 609 *out_regions_needed = 1; 610 611 if (allocate_file_region_entries(resv, *out_regions_needed)) 612 return -ENOMEM; 613 614 resv->adds_in_progress += *out_regions_needed; 615 616 spin_unlock(&resv->lock); 617 return chg; 618 } 619 620 /* 621 * Abort the in progress add operation. The adds_in_progress field 622 * of the resv_map keeps track of the operations in progress between 623 * calls to region_chg and region_add. Operations are sometimes 624 * aborted after the call to region_chg. In such cases, region_abort 625 * is called to decrement the adds_in_progress counter. regions_needed 626 * is the value returned by the region_chg call, it is used to decrement 627 * the adds_in_progress counter. 628 * 629 * NOTE: The range arguments [f, t) are not needed or used in this 630 * routine. They are kept to make reading the calling code easier as 631 * arguments will match the associated region_chg call. 632 */ 633 static void region_abort(struct resv_map *resv, long f, long t, 634 long regions_needed) 635 { 636 spin_lock(&resv->lock); 637 VM_BUG_ON(!resv->region_cache_count); 638 resv->adds_in_progress -= regions_needed; 639 spin_unlock(&resv->lock); 640 } 641 642 /* 643 * Delete the specified range [f, t) from the reserve map. If the 644 * t parameter is LONG_MAX, this indicates that ALL regions after f 645 * should be deleted. Locate the regions which intersect [f, t) 646 * and either trim, delete or split the existing regions. 647 * 648 * Returns the number of huge pages deleted from the reserve map. 649 * In the normal case, the return value is zero or more. In the 650 * case where a region must be split, a new region descriptor must 651 * be allocated. If the allocation fails, -ENOMEM will be returned. 652 * NOTE: If the parameter t == LONG_MAX, then we will never split 653 * a region and possibly return -ENOMEM. Callers specifying 654 * t == LONG_MAX do not need to check for -ENOMEM error. 655 */ 656 static long region_del(struct resv_map *resv, long f, long t) 657 { 658 struct list_head *head = &resv->regions; 659 struct file_region *rg, *trg; 660 struct file_region *nrg = NULL; 661 long del = 0; 662 663 retry: 664 spin_lock(&resv->lock); 665 list_for_each_entry_safe(rg, trg, head, link) { 666 /* 667 * Skip regions before the range to be deleted. file_region 668 * ranges are normally of the form [from, to). However, there 669 * may be a "placeholder" entry in the map which is of the form 670 * (from, to) with from == to. Check for placeholder entries 671 * at the beginning of the range to be deleted. 672 */ 673 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 674 continue; 675 676 if (rg->from >= t) 677 break; 678 679 if (f > rg->from && t < rg->to) { /* Must split region */ 680 /* 681 * Check for an entry in the cache before dropping 682 * lock and attempting allocation. 683 */ 684 if (!nrg && 685 resv->region_cache_count > resv->adds_in_progress) { 686 nrg = list_first_entry(&resv->region_cache, 687 struct file_region, 688 link); 689 list_del(&nrg->link); 690 resv->region_cache_count--; 691 } 692 693 if (!nrg) { 694 spin_unlock(&resv->lock); 695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 696 if (!nrg) 697 return -ENOMEM; 698 goto retry; 699 } 700 701 del += t - f; 702 hugetlb_cgroup_uncharge_file_region( 703 resv, rg, t - f, false); 704 705 /* New entry for end of split region */ 706 nrg->from = t; 707 nrg->to = rg->to; 708 709 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 710 711 INIT_LIST_HEAD(&nrg->link); 712 713 /* Original entry is trimmed */ 714 rg->to = f; 715 716 list_add(&nrg->link, &rg->link); 717 nrg = NULL; 718 break; 719 } 720 721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 722 del += rg->to - rg->from; 723 hugetlb_cgroup_uncharge_file_region(resv, rg, 724 rg->to - rg->from, true); 725 list_del(&rg->link); 726 kfree(rg); 727 continue; 728 } 729 730 if (f <= rg->from) { /* Trim beginning of region */ 731 hugetlb_cgroup_uncharge_file_region(resv, rg, 732 t - rg->from, false); 733 734 del += t - rg->from; 735 rg->from = t; 736 } else { /* Trim end of region */ 737 hugetlb_cgroup_uncharge_file_region(resv, rg, 738 rg->to - f, false); 739 740 del += rg->to - f; 741 rg->to = f; 742 } 743 } 744 745 spin_unlock(&resv->lock); 746 kfree(nrg); 747 return del; 748 } 749 750 /* 751 * A rare out of memory error was encountered which prevented removal of 752 * the reserve map region for a page. The huge page itself was free'ed 753 * and removed from the page cache. This routine will adjust the subpool 754 * usage count, and the global reserve count if needed. By incrementing 755 * these counts, the reserve map entry which could not be deleted will 756 * appear as a "reserved" entry instead of simply dangling with incorrect 757 * counts. 758 */ 759 void hugetlb_fix_reserve_counts(struct inode *inode) 760 { 761 struct hugepage_subpool *spool = subpool_inode(inode); 762 long rsv_adjust; 763 bool reserved = false; 764 765 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 766 if (rsv_adjust > 0) { 767 struct hstate *h = hstate_inode(inode); 768 769 if (!hugetlb_acct_memory(h, 1)) 770 reserved = true; 771 } else if (!rsv_adjust) { 772 reserved = true; 773 } 774 775 if (!reserved) 776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 777 } 778 779 /* 780 * Count and return the number of huge pages in the reserve map 781 * that intersect with the range [f, t). 782 */ 783 static long region_count(struct resv_map *resv, long f, long t) 784 { 785 struct list_head *head = &resv->regions; 786 struct file_region *rg; 787 long chg = 0; 788 789 spin_lock(&resv->lock); 790 /* Locate each segment we overlap with, and count that overlap. */ 791 list_for_each_entry(rg, head, link) { 792 long seg_from; 793 long seg_to; 794 795 if (rg->to <= f) 796 continue; 797 if (rg->from >= t) 798 break; 799 800 seg_from = max(rg->from, f); 801 seg_to = min(rg->to, t); 802 803 chg += seg_to - seg_from; 804 } 805 spin_unlock(&resv->lock); 806 807 return chg; 808 } 809 810 /* 811 * Convert the address within this vma to the page offset within 812 * the mapping, in pagecache page units; huge pages here. 813 */ 814 static pgoff_t vma_hugecache_offset(struct hstate *h, 815 struct vm_area_struct *vma, unsigned long address) 816 { 817 return ((address - vma->vm_start) >> huge_page_shift(h)) + 818 (vma->vm_pgoff >> huge_page_order(h)); 819 } 820 821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 822 unsigned long address) 823 { 824 return vma_hugecache_offset(hstate_vma(vma), vma, address); 825 } 826 EXPORT_SYMBOL_GPL(linear_hugepage_index); 827 828 /* 829 * Return the size of the pages allocated when backing a VMA. In the majority 830 * cases this will be same size as used by the page table entries. 831 */ 832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 833 { 834 if (vma->vm_ops && vma->vm_ops->pagesize) 835 return vma->vm_ops->pagesize(vma); 836 return PAGE_SIZE; 837 } 838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 839 840 /* 841 * Return the page size being used by the MMU to back a VMA. In the majority 842 * of cases, the page size used by the kernel matches the MMU size. On 843 * architectures where it differs, an architecture-specific 'strong' 844 * version of this symbol is required. 845 */ 846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 847 { 848 return vma_kernel_pagesize(vma); 849 } 850 851 /* 852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 853 * bits of the reservation map pointer, which are always clear due to 854 * alignment. 855 */ 856 #define HPAGE_RESV_OWNER (1UL << 0) 857 #define HPAGE_RESV_UNMAPPED (1UL << 1) 858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 859 860 /* 861 * These helpers are used to track how many pages are reserved for 862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 863 * is guaranteed to have their future faults succeed. 864 * 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 866 * the reserve counters are updated with the hugetlb_lock held. It is safe 867 * to reset the VMA at fork() time as it is not in use yet and there is no 868 * chance of the global counters getting corrupted as a result of the values. 869 * 870 * The private mapping reservation is represented in a subtly different 871 * manner to a shared mapping. A shared mapping has a region map associated 872 * with the underlying file, this region map represents the backing file 873 * pages which have ever had a reservation assigned which this persists even 874 * after the page is instantiated. A private mapping has a region map 875 * associated with the original mmap which is attached to all VMAs which 876 * reference it, this region map represents those offsets which have consumed 877 * reservation ie. where pages have been instantiated. 878 */ 879 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 880 { 881 return (unsigned long)vma->vm_private_data; 882 } 883 884 static void set_vma_private_data(struct vm_area_struct *vma, 885 unsigned long value) 886 { 887 vma->vm_private_data = (void *)value; 888 } 889 890 static void 891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 892 struct hugetlb_cgroup *h_cg, 893 struct hstate *h) 894 { 895 #ifdef CONFIG_CGROUP_HUGETLB 896 if (!h_cg || !h) { 897 resv_map->reservation_counter = NULL; 898 resv_map->pages_per_hpage = 0; 899 resv_map->css = NULL; 900 } else { 901 resv_map->reservation_counter = 902 &h_cg->rsvd_hugepage[hstate_index(h)]; 903 resv_map->pages_per_hpage = pages_per_huge_page(h); 904 resv_map->css = &h_cg->css; 905 } 906 #endif 907 } 908 909 struct resv_map *resv_map_alloc(void) 910 { 911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 913 914 if (!resv_map || !rg) { 915 kfree(resv_map); 916 kfree(rg); 917 return NULL; 918 } 919 920 kref_init(&resv_map->refs); 921 spin_lock_init(&resv_map->lock); 922 INIT_LIST_HEAD(&resv_map->regions); 923 924 resv_map->adds_in_progress = 0; 925 /* 926 * Initialize these to 0. On shared mappings, 0's here indicate these 927 * fields don't do cgroup accounting. On private mappings, these will be 928 * re-initialized to the proper values, to indicate that hugetlb cgroup 929 * reservations are to be un-charged from here. 930 */ 931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 932 933 INIT_LIST_HEAD(&resv_map->region_cache); 934 list_add(&rg->link, &resv_map->region_cache); 935 resv_map->region_cache_count = 1; 936 937 return resv_map; 938 } 939 940 void resv_map_release(struct kref *ref) 941 { 942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 943 struct list_head *head = &resv_map->region_cache; 944 struct file_region *rg, *trg; 945 946 /* Clear out any active regions before we release the map. */ 947 region_del(resv_map, 0, LONG_MAX); 948 949 /* ... and any entries left in the cache */ 950 list_for_each_entry_safe(rg, trg, head, link) { 951 list_del(&rg->link); 952 kfree(rg); 953 } 954 955 VM_BUG_ON(resv_map->adds_in_progress); 956 957 kfree(resv_map); 958 } 959 960 static inline struct resv_map *inode_resv_map(struct inode *inode) 961 { 962 /* 963 * At inode evict time, i_mapping may not point to the original 964 * address space within the inode. This original address space 965 * contains the pointer to the resv_map. So, always use the 966 * address space embedded within the inode. 967 * The VERY common case is inode->mapping == &inode->i_data but, 968 * this may not be true for device special inodes. 969 */ 970 return (struct resv_map *)(&inode->i_data)->private_data; 971 } 972 973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 if (vma->vm_flags & VM_MAYSHARE) { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 return inode_resv_map(inode); 981 982 } else { 983 return (struct resv_map *)(get_vma_private_data(vma) & 984 ~HPAGE_RESV_MASK); 985 } 986 } 987 988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 989 { 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 992 993 set_vma_private_data(vma, (get_vma_private_data(vma) & 994 HPAGE_RESV_MASK) | (unsigned long)map); 995 } 996 997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 998 { 999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1001 1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1003 } 1004 1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1006 { 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1008 1009 return (get_vma_private_data(vma) & flag) != 0; 1010 } 1011 1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1013 { 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1015 /* 1016 * Clear vm_private_data 1017 * - For shared mappings this is a per-vma semaphore that may be 1018 * allocated in a subsequent call to hugetlb_vm_op_open. 1019 * Before clearing, make sure pointer is not associated with vma 1020 * as this will leak the structure. This is the case when called 1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1022 * been called to allocate a new structure. 1023 * - For MAP_PRIVATE mappings, this is the reserve map which does 1024 * not apply to children. Faults generated by the children are 1025 * not guaranteed to succeed, even if read-only. 1026 */ 1027 if (vma->vm_flags & VM_MAYSHARE) { 1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1029 1030 if (vma_lock && vma_lock->vma != vma) 1031 vma->vm_private_data = NULL; 1032 } else 1033 vma->vm_private_data = NULL; 1034 } 1035 1036 /* 1037 * Reset and decrement one ref on hugepage private reservation. 1038 * Called with mm->mmap_sem writer semaphore held. 1039 * This function should be only used by move_vma() and operate on 1040 * same sized vma. It should never come here with last ref on the 1041 * reservation. 1042 */ 1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1044 { 1045 /* 1046 * Clear the old hugetlb private page reservation. 1047 * It has already been transferred to new_vma. 1048 * 1049 * During a mremap() operation of a hugetlb vma we call move_vma() 1050 * which copies vma into new_vma and unmaps vma. After the copy 1051 * operation both new_vma and vma share a reference to the resv_map 1052 * struct, and at that point vma is about to be unmapped. We don't 1053 * want to return the reservation to the pool at unmap of vma because 1054 * the reservation still lives on in new_vma, so simply decrement the 1055 * ref here and remove the resv_map reference from this vma. 1056 */ 1057 struct resv_map *reservations = vma_resv_map(vma); 1058 1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1061 kref_put(&reservations->refs, resv_map_release); 1062 } 1063 1064 hugetlb_dup_vma_private(vma); 1065 } 1066 1067 /* Returns true if the VMA has associated reserve pages */ 1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1069 { 1070 if (vma->vm_flags & VM_NORESERVE) { 1071 /* 1072 * This address is already reserved by other process(chg == 0), 1073 * so, we should decrement reserved count. Without decrementing, 1074 * reserve count remains after releasing inode, because this 1075 * allocated page will go into page cache and is regarded as 1076 * coming from reserved pool in releasing step. Currently, we 1077 * don't have any other solution to deal with this situation 1078 * properly, so add work-around here. 1079 */ 1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1081 return true; 1082 else 1083 return false; 1084 } 1085 1086 /* Shared mappings always use reserves */ 1087 if (vma->vm_flags & VM_MAYSHARE) { 1088 /* 1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1090 * be a region map for all pages. The only situation where 1091 * there is no region map is if a hole was punched via 1092 * fallocate. In this case, there really are no reserves to 1093 * use. This situation is indicated if chg != 0. 1094 */ 1095 if (chg) 1096 return false; 1097 else 1098 return true; 1099 } 1100 1101 /* 1102 * Only the process that called mmap() has reserves for 1103 * private mappings. 1104 */ 1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1106 /* 1107 * Like the shared case above, a hole punch or truncate 1108 * could have been performed on the private mapping. 1109 * Examine the value of chg to determine if reserves 1110 * actually exist or were previously consumed. 1111 * Very Subtle - The value of chg comes from a previous 1112 * call to vma_needs_reserves(). The reserve map for 1113 * private mappings has different (opposite) semantics 1114 * than that of shared mappings. vma_needs_reserves() 1115 * has already taken this difference in semantics into 1116 * account. Therefore, the meaning of chg is the same 1117 * as in the shared case above. Code could easily be 1118 * combined, but keeping it separate draws attention to 1119 * subtle differences. 1120 */ 1121 if (chg) 1122 return false; 1123 else 1124 return true; 1125 } 1126 1127 return false; 1128 } 1129 1130 static void enqueue_huge_page(struct hstate *h, struct page *page) 1131 { 1132 int nid = page_to_nid(page); 1133 1134 lockdep_assert_held(&hugetlb_lock); 1135 VM_BUG_ON_PAGE(page_count(page), page); 1136 1137 list_move(&page->lru, &h->hugepage_freelists[nid]); 1138 h->free_huge_pages++; 1139 h->free_huge_pages_node[nid]++; 1140 SetHPageFreed(page); 1141 } 1142 1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1144 { 1145 struct page *page; 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1147 1148 lockdep_assert_held(&hugetlb_lock); 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1150 if (pin && !is_longterm_pinnable_page(page)) 1151 continue; 1152 1153 if (PageHWPoison(page)) 1154 continue; 1155 1156 list_move(&page->lru, &h->hugepage_activelist); 1157 set_page_refcounted(page); 1158 ClearHPageFreed(page); 1159 h->free_huge_pages--; 1160 h->free_huge_pages_node[nid]--; 1161 return page; 1162 } 1163 1164 return NULL; 1165 } 1166 1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1168 nodemask_t *nmask) 1169 { 1170 unsigned int cpuset_mems_cookie; 1171 struct zonelist *zonelist; 1172 struct zone *zone; 1173 struct zoneref *z; 1174 int node = NUMA_NO_NODE; 1175 1176 zonelist = node_zonelist(nid, gfp_mask); 1177 1178 retry_cpuset: 1179 cpuset_mems_cookie = read_mems_allowed_begin(); 1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1181 struct page *page; 1182 1183 if (!cpuset_zone_allowed(zone, gfp_mask)) 1184 continue; 1185 /* 1186 * no need to ask again on the same node. Pool is node rather than 1187 * zone aware 1188 */ 1189 if (zone_to_nid(zone) == node) 1190 continue; 1191 node = zone_to_nid(zone); 1192 1193 page = dequeue_huge_page_node_exact(h, node); 1194 if (page) 1195 return page; 1196 } 1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1198 goto retry_cpuset; 1199 1200 return NULL; 1201 } 1202 1203 static unsigned long available_huge_pages(struct hstate *h) 1204 { 1205 return h->free_huge_pages - h->resv_huge_pages; 1206 } 1207 1208 static struct page *dequeue_huge_page_vma(struct hstate *h, 1209 struct vm_area_struct *vma, 1210 unsigned long address, int avoid_reserve, 1211 long chg) 1212 { 1213 struct page *page = NULL; 1214 struct mempolicy *mpol; 1215 gfp_t gfp_mask; 1216 nodemask_t *nodemask; 1217 int nid; 1218 1219 /* 1220 * A child process with MAP_PRIVATE mappings created by their parent 1221 * have no page reserves. This check ensures that reservations are 1222 * not "stolen". The child may still get SIGKILLed 1223 */ 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1225 goto err; 1226 1227 /* If reserves cannot be used, ensure enough pages are in the pool */ 1228 if (avoid_reserve && !available_huge_pages(h)) 1229 goto err; 1230 1231 gfp_mask = htlb_alloc_mask(h); 1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1233 1234 if (mpol_is_preferred_many(mpol)) { 1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1236 1237 /* Fallback to all nodes if page==NULL */ 1238 nodemask = NULL; 1239 } 1240 1241 if (!page) 1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1243 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1245 SetHPageRestoreReserve(page); 1246 h->resv_huge_pages--; 1247 } 1248 1249 mpol_cond_put(mpol); 1250 return page; 1251 1252 err: 1253 return NULL; 1254 } 1255 1256 /* 1257 * common helper functions for hstate_next_node_to_{alloc|free}. 1258 * We may have allocated or freed a huge page based on a different 1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1260 * be outside of *nodes_allowed. Ensure that we use an allowed 1261 * node for alloc or free. 1262 */ 1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1264 { 1265 nid = next_node_in(nid, *nodes_allowed); 1266 VM_BUG_ON(nid >= MAX_NUMNODES); 1267 1268 return nid; 1269 } 1270 1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1272 { 1273 if (!node_isset(nid, *nodes_allowed)) 1274 nid = next_node_allowed(nid, nodes_allowed); 1275 return nid; 1276 } 1277 1278 /* 1279 * returns the previously saved node ["this node"] from which to 1280 * allocate a persistent huge page for the pool and advance the 1281 * next node from which to allocate, handling wrap at end of node 1282 * mask. 1283 */ 1284 static int hstate_next_node_to_alloc(struct hstate *h, 1285 nodemask_t *nodes_allowed) 1286 { 1287 int nid; 1288 1289 VM_BUG_ON(!nodes_allowed); 1290 1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1293 1294 return nid; 1295 } 1296 1297 /* 1298 * helper for remove_pool_huge_page() - return the previously saved 1299 * node ["this node"] from which to free a huge page. Advance the 1300 * next node id whether or not we find a free huge page to free so 1301 * that the next attempt to free addresses the next node. 1302 */ 1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1304 { 1305 int nid; 1306 1307 VM_BUG_ON(!nodes_allowed); 1308 1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1311 1312 return nid; 1313 } 1314 1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1316 for (nr_nodes = nodes_weight(*mask); \ 1317 nr_nodes > 0 && \ 1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1319 nr_nodes--) 1320 1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1322 for (nr_nodes = nodes_weight(*mask); \ 1323 nr_nodes > 0 && \ 1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1325 nr_nodes--) 1326 1327 /* used to demote non-gigantic_huge pages as well */ 1328 static void __destroy_compound_gigantic_page(struct page *page, 1329 unsigned int order, bool demote) 1330 { 1331 int i; 1332 int nr_pages = 1 << order; 1333 struct page *p; 1334 1335 atomic_set(compound_mapcount_ptr(page), 0); 1336 atomic_set(compound_pincount_ptr(page), 0); 1337 1338 for (i = 1; i < nr_pages; i++) { 1339 p = nth_page(page, i); 1340 p->mapping = NULL; 1341 clear_compound_head(p); 1342 if (!demote) 1343 set_page_refcounted(p); 1344 } 1345 1346 set_compound_order(page, 0); 1347 #ifdef CONFIG_64BIT 1348 page[1].compound_nr = 0; 1349 #endif 1350 __ClearPageHead(page); 1351 } 1352 1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1354 unsigned int order) 1355 { 1356 __destroy_compound_gigantic_page(page, order, true); 1357 } 1358 1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1360 static void destroy_compound_gigantic_page(struct page *page, 1361 unsigned int order) 1362 { 1363 __destroy_compound_gigantic_page(page, order, false); 1364 } 1365 1366 static void free_gigantic_page(struct page *page, unsigned int order) 1367 { 1368 /* 1369 * If the page isn't allocated using the cma allocator, 1370 * cma_release() returns false. 1371 */ 1372 #ifdef CONFIG_CMA 1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1374 return; 1375 #endif 1376 1377 free_contig_range(page_to_pfn(page), 1 << order); 1378 } 1379 1380 #ifdef CONFIG_CONTIG_ALLOC 1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1382 int nid, nodemask_t *nodemask) 1383 { 1384 unsigned long nr_pages = pages_per_huge_page(h); 1385 if (nid == NUMA_NO_NODE) 1386 nid = numa_mem_id(); 1387 1388 #ifdef CONFIG_CMA 1389 { 1390 struct page *page; 1391 int node; 1392 1393 if (hugetlb_cma[nid]) { 1394 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1395 huge_page_order(h), true); 1396 if (page) 1397 return page; 1398 } 1399 1400 if (!(gfp_mask & __GFP_THISNODE)) { 1401 for_each_node_mask(node, *nodemask) { 1402 if (node == nid || !hugetlb_cma[node]) 1403 continue; 1404 1405 page = cma_alloc(hugetlb_cma[node], nr_pages, 1406 huge_page_order(h), true); 1407 if (page) 1408 return page; 1409 } 1410 } 1411 } 1412 #endif 1413 1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1415 } 1416 1417 #else /* !CONFIG_CONTIG_ALLOC */ 1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1419 int nid, nodemask_t *nodemask) 1420 { 1421 return NULL; 1422 } 1423 #endif /* CONFIG_CONTIG_ALLOC */ 1424 1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1427 int nid, nodemask_t *nodemask) 1428 { 1429 return NULL; 1430 } 1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1432 static inline void destroy_compound_gigantic_page(struct page *page, 1433 unsigned int order) { } 1434 #endif 1435 1436 /* 1437 * Remove hugetlb page from lists, and update dtor so that page appears 1438 * as just a compound page. 1439 * 1440 * A reference is held on the page, except in the case of demote. 1441 * 1442 * Must be called with hugetlb lock held. 1443 */ 1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1445 bool adjust_surplus, 1446 bool demote) 1447 { 1448 int nid = page_to_nid(page); 1449 1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1452 1453 lockdep_assert_held(&hugetlb_lock); 1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1455 return; 1456 1457 list_del(&page->lru); 1458 1459 if (HPageFreed(page)) { 1460 h->free_huge_pages--; 1461 h->free_huge_pages_node[nid]--; 1462 } 1463 if (adjust_surplus) { 1464 h->surplus_huge_pages--; 1465 h->surplus_huge_pages_node[nid]--; 1466 } 1467 1468 /* 1469 * Very subtle 1470 * 1471 * For non-gigantic pages set the destructor to the normal compound 1472 * page dtor. This is needed in case someone takes an additional 1473 * temporary ref to the page, and freeing is delayed until they drop 1474 * their reference. 1475 * 1476 * For gigantic pages set the destructor to the null dtor. This 1477 * destructor will never be called. Before freeing the gigantic 1478 * page destroy_compound_gigantic_page will turn the compound page 1479 * into a simple group of pages. After this the destructor does not 1480 * apply. 1481 * 1482 * This handles the case where more than one ref is held when and 1483 * after update_and_free_page is called. 1484 * 1485 * In the case of demote we do not ref count the page as it will soon 1486 * be turned into a page of smaller size. 1487 */ 1488 if (!demote) 1489 set_page_refcounted(page); 1490 if (hstate_is_gigantic(h)) 1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1492 else 1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1494 1495 h->nr_huge_pages--; 1496 h->nr_huge_pages_node[nid]--; 1497 } 1498 1499 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1500 bool adjust_surplus) 1501 { 1502 __remove_hugetlb_page(h, page, adjust_surplus, false); 1503 } 1504 1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1506 bool adjust_surplus) 1507 { 1508 __remove_hugetlb_page(h, page, adjust_surplus, true); 1509 } 1510 1511 static void add_hugetlb_page(struct hstate *h, struct page *page, 1512 bool adjust_surplus) 1513 { 1514 int zeroed; 1515 int nid = page_to_nid(page); 1516 1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1518 1519 lockdep_assert_held(&hugetlb_lock); 1520 1521 INIT_LIST_HEAD(&page->lru); 1522 h->nr_huge_pages++; 1523 h->nr_huge_pages_node[nid]++; 1524 1525 if (adjust_surplus) { 1526 h->surplus_huge_pages++; 1527 h->surplus_huge_pages_node[nid]++; 1528 } 1529 1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1531 set_page_private(page, 0); 1532 /* 1533 * We have to set HPageVmemmapOptimized again as above 1534 * set_page_private(page, 0) cleared it. 1535 */ 1536 SetHPageVmemmapOptimized(page); 1537 1538 /* 1539 * This page is about to be managed by the hugetlb allocator and 1540 * should have no users. Drop our reference, and check for others 1541 * just in case. 1542 */ 1543 zeroed = put_page_testzero(page); 1544 if (!zeroed) 1545 /* 1546 * It is VERY unlikely soneone else has taken a ref on 1547 * the page. In this case, we simply return as the 1548 * hugetlb destructor (free_huge_page) will be called 1549 * when this other ref is dropped. 1550 */ 1551 return; 1552 1553 arch_clear_hugepage_flags(page); 1554 enqueue_huge_page(h, page); 1555 } 1556 1557 static void __update_and_free_page(struct hstate *h, struct page *page) 1558 { 1559 int i; 1560 struct page *subpage; 1561 1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1563 return; 1564 1565 /* 1566 * If we don't know which subpages are hwpoisoned, we can't free 1567 * the hugepage, so it's leaked intentionally. 1568 */ 1569 if (HPageRawHwpUnreliable(page)) 1570 return; 1571 1572 if (hugetlb_vmemmap_restore(h, page)) { 1573 spin_lock_irq(&hugetlb_lock); 1574 /* 1575 * If we cannot allocate vmemmap pages, just refuse to free the 1576 * page and put the page back on the hugetlb free list and treat 1577 * as a surplus page. 1578 */ 1579 add_hugetlb_page(h, page, true); 1580 spin_unlock_irq(&hugetlb_lock); 1581 return; 1582 } 1583 1584 /* 1585 * Move PageHWPoison flag from head page to the raw error pages, 1586 * which makes any healthy subpages reusable. 1587 */ 1588 if (unlikely(PageHWPoison(page))) 1589 hugetlb_clear_page_hwpoison(page); 1590 1591 for (i = 0; i < pages_per_huge_page(h); i++) { 1592 subpage = nth_page(page, i); 1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1594 1 << PG_referenced | 1 << PG_dirty | 1595 1 << PG_active | 1 << PG_private | 1596 1 << PG_writeback); 1597 } 1598 1599 /* 1600 * Non-gigantic pages demoted from CMA allocated gigantic pages 1601 * need to be given back to CMA in free_gigantic_page. 1602 */ 1603 if (hstate_is_gigantic(h) || 1604 hugetlb_cma_page(page, huge_page_order(h))) { 1605 destroy_compound_gigantic_page(page, huge_page_order(h)); 1606 free_gigantic_page(page, huge_page_order(h)); 1607 } else { 1608 __free_pages(page, huge_page_order(h)); 1609 } 1610 } 1611 1612 /* 1613 * As update_and_free_page() can be called under any context, so we cannot 1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1616 * the vmemmap pages. 1617 * 1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1619 * freed and frees them one-by-one. As the page->mapping pointer is going 1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1621 * structure of a lockless linked list of huge pages to be freed. 1622 */ 1623 static LLIST_HEAD(hpage_freelist); 1624 1625 static void free_hpage_workfn(struct work_struct *work) 1626 { 1627 struct llist_node *node; 1628 1629 node = llist_del_all(&hpage_freelist); 1630 1631 while (node) { 1632 struct page *page; 1633 struct hstate *h; 1634 1635 page = container_of((struct address_space **)node, 1636 struct page, mapping); 1637 node = node->next; 1638 page->mapping = NULL; 1639 /* 1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1641 * is going to trigger because a previous call to 1642 * remove_hugetlb_page() will set_compound_page_dtor(page, 1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1644 */ 1645 h = size_to_hstate(page_size(page)); 1646 1647 __update_and_free_page(h, page); 1648 1649 cond_resched(); 1650 } 1651 } 1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1653 1654 static inline void flush_free_hpage_work(struct hstate *h) 1655 { 1656 if (hugetlb_vmemmap_optimizable(h)) 1657 flush_work(&free_hpage_work); 1658 } 1659 1660 static void update_and_free_page(struct hstate *h, struct page *page, 1661 bool atomic) 1662 { 1663 if (!HPageVmemmapOptimized(page) || !atomic) { 1664 __update_and_free_page(h, page); 1665 return; 1666 } 1667 1668 /* 1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1670 * 1671 * Only call schedule_work() if hpage_freelist is previously 1672 * empty. Otherwise, schedule_work() had been called but the workfn 1673 * hasn't retrieved the list yet. 1674 */ 1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1676 schedule_work(&free_hpage_work); 1677 } 1678 1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1680 { 1681 struct page *page, *t_page; 1682 1683 list_for_each_entry_safe(page, t_page, list, lru) { 1684 update_and_free_page(h, page, false); 1685 cond_resched(); 1686 } 1687 } 1688 1689 struct hstate *size_to_hstate(unsigned long size) 1690 { 1691 struct hstate *h; 1692 1693 for_each_hstate(h) { 1694 if (huge_page_size(h) == size) 1695 return h; 1696 } 1697 return NULL; 1698 } 1699 1700 void free_huge_page(struct page *page) 1701 { 1702 /* 1703 * Can't pass hstate in here because it is called from the 1704 * compound page destructor. 1705 */ 1706 struct hstate *h = page_hstate(page); 1707 int nid = page_to_nid(page); 1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1709 bool restore_reserve; 1710 unsigned long flags; 1711 1712 VM_BUG_ON_PAGE(page_count(page), page); 1713 VM_BUG_ON_PAGE(page_mapcount(page), page); 1714 1715 hugetlb_set_page_subpool(page, NULL); 1716 if (PageAnon(page)) 1717 __ClearPageAnonExclusive(page); 1718 page->mapping = NULL; 1719 restore_reserve = HPageRestoreReserve(page); 1720 ClearHPageRestoreReserve(page); 1721 1722 /* 1723 * If HPageRestoreReserve was set on page, page allocation consumed a 1724 * reservation. If the page was associated with a subpool, there 1725 * would have been a page reserved in the subpool before allocation 1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1727 * reservation, do not call hugepage_subpool_put_pages() as this will 1728 * remove the reserved page from the subpool. 1729 */ 1730 if (!restore_reserve) { 1731 /* 1732 * A return code of zero implies that the subpool will be 1733 * under its minimum size if the reservation is not restored 1734 * after page is free. Therefore, force restore_reserve 1735 * operation. 1736 */ 1737 if (hugepage_subpool_put_pages(spool, 1) == 0) 1738 restore_reserve = true; 1739 } 1740 1741 spin_lock_irqsave(&hugetlb_lock, flags); 1742 ClearHPageMigratable(page); 1743 hugetlb_cgroup_uncharge_page(hstate_index(h), 1744 pages_per_huge_page(h), page); 1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1746 pages_per_huge_page(h), page); 1747 if (restore_reserve) 1748 h->resv_huge_pages++; 1749 1750 if (HPageTemporary(page)) { 1751 remove_hugetlb_page(h, page, false); 1752 spin_unlock_irqrestore(&hugetlb_lock, flags); 1753 update_and_free_page(h, page, true); 1754 } else if (h->surplus_huge_pages_node[nid]) { 1755 /* remove the page from active list */ 1756 remove_hugetlb_page(h, page, true); 1757 spin_unlock_irqrestore(&hugetlb_lock, flags); 1758 update_and_free_page(h, page, true); 1759 } else { 1760 arch_clear_hugepage_flags(page); 1761 enqueue_huge_page(h, page); 1762 spin_unlock_irqrestore(&hugetlb_lock, flags); 1763 } 1764 } 1765 1766 /* 1767 * Must be called with the hugetlb lock held 1768 */ 1769 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1770 { 1771 lockdep_assert_held(&hugetlb_lock); 1772 h->nr_huge_pages++; 1773 h->nr_huge_pages_node[nid]++; 1774 } 1775 1776 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1777 { 1778 hugetlb_vmemmap_optimize(h, page); 1779 INIT_LIST_HEAD(&page->lru); 1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1781 hugetlb_set_page_subpool(page, NULL); 1782 set_hugetlb_cgroup(page, NULL); 1783 set_hugetlb_cgroup_rsvd(page, NULL); 1784 } 1785 1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1787 { 1788 __prep_new_huge_page(h, page); 1789 spin_lock_irq(&hugetlb_lock); 1790 __prep_account_new_huge_page(h, nid); 1791 spin_unlock_irq(&hugetlb_lock); 1792 } 1793 1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1795 bool demote) 1796 { 1797 int i, j; 1798 int nr_pages = 1 << order; 1799 struct page *p; 1800 1801 /* we rely on prep_new_huge_page to set the destructor */ 1802 set_compound_order(page, order); 1803 __ClearPageReserved(page); 1804 __SetPageHead(page); 1805 for (i = 0; i < nr_pages; i++) { 1806 p = nth_page(page, i); 1807 1808 /* 1809 * For gigantic hugepages allocated through bootmem at 1810 * boot, it's safer to be consistent with the not-gigantic 1811 * hugepages and clear the PG_reserved bit from all tail pages 1812 * too. Otherwise drivers using get_user_pages() to access tail 1813 * pages may get the reference counting wrong if they see 1814 * PG_reserved set on a tail page (despite the head page not 1815 * having PG_reserved set). Enforcing this consistency between 1816 * head and tail pages allows drivers to optimize away a check 1817 * on the head page when they need know if put_page() is needed 1818 * after get_user_pages(). 1819 */ 1820 if (i != 0) /* head page cleared above */ 1821 __ClearPageReserved(p); 1822 /* 1823 * Subtle and very unlikely 1824 * 1825 * Gigantic 'page allocators' such as memblock or cma will 1826 * return a set of pages with each page ref counted. We need 1827 * to turn this set of pages into a compound page with tail 1828 * page ref counts set to zero. Code such as speculative page 1829 * cache adding could take a ref on a 'to be' tail page. 1830 * We need to respect any increased ref count, and only set 1831 * the ref count to zero if count is currently 1. If count 1832 * is not 1, we return an error. An error return indicates 1833 * the set of pages can not be converted to a gigantic page. 1834 * The caller who allocated the pages should then discard the 1835 * pages using the appropriate free interface. 1836 * 1837 * In the case of demote, the ref count will be zero. 1838 */ 1839 if (!demote) { 1840 if (!page_ref_freeze(p, 1)) { 1841 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1842 goto out_error; 1843 } 1844 } else { 1845 VM_BUG_ON_PAGE(page_count(p), p); 1846 } 1847 if (i != 0) 1848 set_compound_head(p, page); 1849 } 1850 atomic_set(compound_mapcount_ptr(page), -1); 1851 atomic_set(compound_pincount_ptr(page), 0); 1852 return true; 1853 1854 out_error: 1855 /* undo page modifications made above */ 1856 for (j = 0; j < i; j++) { 1857 p = nth_page(page, j); 1858 if (j != 0) 1859 clear_compound_head(p); 1860 set_page_refcounted(p); 1861 } 1862 /* need to clear PG_reserved on remaining tail pages */ 1863 for (; j < nr_pages; j++) { 1864 p = nth_page(page, j); 1865 __ClearPageReserved(p); 1866 } 1867 set_compound_order(page, 0); 1868 #ifdef CONFIG_64BIT 1869 page[1].compound_nr = 0; 1870 #endif 1871 __ClearPageHead(page); 1872 return false; 1873 } 1874 1875 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1876 { 1877 return __prep_compound_gigantic_page(page, order, false); 1878 } 1879 1880 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1881 unsigned int order) 1882 { 1883 return __prep_compound_gigantic_page(page, order, true); 1884 } 1885 1886 /* 1887 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1888 * transparent huge pages. See the PageTransHuge() documentation for more 1889 * details. 1890 */ 1891 int PageHuge(struct page *page) 1892 { 1893 if (!PageCompound(page)) 1894 return 0; 1895 1896 page = compound_head(page); 1897 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1898 } 1899 EXPORT_SYMBOL_GPL(PageHuge); 1900 1901 /* 1902 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1903 * normal or transparent huge pages. 1904 */ 1905 int PageHeadHuge(struct page *page_head) 1906 { 1907 if (!PageHead(page_head)) 1908 return 0; 1909 1910 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1911 } 1912 EXPORT_SYMBOL_GPL(PageHeadHuge); 1913 1914 /* 1915 * Find and lock address space (mapping) in write mode. 1916 * 1917 * Upon entry, the page is locked which means that page_mapping() is 1918 * stable. Due to locking order, we can only trylock_write. If we can 1919 * not get the lock, simply return NULL to caller. 1920 */ 1921 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1922 { 1923 struct address_space *mapping = page_mapping(hpage); 1924 1925 if (!mapping) 1926 return mapping; 1927 1928 if (i_mmap_trylock_write(mapping)) 1929 return mapping; 1930 1931 return NULL; 1932 } 1933 1934 pgoff_t hugetlb_basepage_index(struct page *page) 1935 { 1936 struct page *page_head = compound_head(page); 1937 pgoff_t index = page_index(page_head); 1938 unsigned long compound_idx; 1939 1940 if (compound_order(page_head) >= MAX_ORDER) 1941 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1942 else 1943 compound_idx = page - page_head; 1944 1945 return (index << compound_order(page_head)) + compound_idx; 1946 } 1947 1948 static struct page *alloc_buddy_huge_page(struct hstate *h, 1949 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1950 nodemask_t *node_alloc_noretry) 1951 { 1952 int order = huge_page_order(h); 1953 struct page *page; 1954 bool alloc_try_hard = true; 1955 bool retry = true; 1956 1957 /* 1958 * By default we always try hard to allocate the page with 1959 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1960 * a loop (to adjust global huge page counts) and previous allocation 1961 * failed, do not continue to try hard on the same node. Use the 1962 * node_alloc_noretry bitmap to manage this state information. 1963 */ 1964 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1965 alloc_try_hard = false; 1966 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1967 if (alloc_try_hard) 1968 gfp_mask |= __GFP_RETRY_MAYFAIL; 1969 if (nid == NUMA_NO_NODE) 1970 nid = numa_mem_id(); 1971 retry: 1972 page = __alloc_pages(gfp_mask, order, nid, nmask); 1973 1974 /* Freeze head page */ 1975 if (page && !page_ref_freeze(page, 1)) { 1976 __free_pages(page, order); 1977 if (retry) { /* retry once */ 1978 retry = false; 1979 goto retry; 1980 } 1981 /* WOW! twice in a row. */ 1982 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 1983 page = NULL; 1984 } 1985 1986 if (page) 1987 __count_vm_event(HTLB_BUDDY_PGALLOC); 1988 else 1989 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1990 1991 /* 1992 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1993 * indicates an overall state change. Clear bit so that we resume 1994 * normal 'try hard' allocations. 1995 */ 1996 if (node_alloc_noretry && page && !alloc_try_hard) 1997 node_clear(nid, *node_alloc_noretry); 1998 1999 /* 2000 * If we tried hard to get a page but failed, set bit so that 2001 * subsequent attempts will not try as hard until there is an 2002 * overall state change. 2003 */ 2004 if (node_alloc_noretry && !page && alloc_try_hard) 2005 node_set(nid, *node_alloc_noretry); 2006 2007 return page; 2008 } 2009 2010 /* 2011 * Common helper to allocate a fresh hugetlb page. All specific allocators 2012 * should use this function to get new hugetlb pages 2013 * 2014 * Note that returned page is 'frozen': ref count of head page and all tail 2015 * pages is zero. 2016 */ 2017 static struct page *alloc_fresh_huge_page(struct hstate *h, 2018 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2019 nodemask_t *node_alloc_noretry) 2020 { 2021 struct page *page; 2022 bool retry = false; 2023 2024 retry: 2025 if (hstate_is_gigantic(h)) 2026 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 2027 else 2028 page = alloc_buddy_huge_page(h, gfp_mask, 2029 nid, nmask, node_alloc_noretry); 2030 if (!page) 2031 return NULL; 2032 2033 if (hstate_is_gigantic(h)) { 2034 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 2035 /* 2036 * Rare failure to convert pages to compound page. 2037 * Free pages and try again - ONCE! 2038 */ 2039 free_gigantic_page(page, huge_page_order(h)); 2040 if (!retry) { 2041 retry = true; 2042 goto retry; 2043 } 2044 return NULL; 2045 } 2046 } 2047 prep_new_huge_page(h, page, page_to_nid(page)); 2048 2049 return page; 2050 } 2051 2052 /* 2053 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2054 * manner. 2055 */ 2056 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2057 nodemask_t *node_alloc_noretry) 2058 { 2059 struct page *page; 2060 int nr_nodes, node; 2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2062 2063 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2064 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2065 node_alloc_noretry); 2066 if (page) 2067 break; 2068 } 2069 2070 if (!page) 2071 return 0; 2072 2073 free_huge_page(page); /* free it into the hugepage allocator */ 2074 2075 return 1; 2076 } 2077 2078 /* 2079 * Remove huge page from pool from next node to free. Attempt to keep 2080 * persistent huge pages more or less balanced over allowed nodes. 2081 * This routine only 'removes' the hugetlb page. The caller must make 2082 * an additional call to free the page to low level allocators. 2083 * Called with hugetlb_lock locked. 2084 */ 2085 static struct page *remove_pool_huge_page(struct hstate *h, 2086 nodemask_t *nodes_allowed, 2087 bool acct_surplus) 2088 { 2089 int nr_nodes, node; 2090 struct page *page = NULL; 2091 2092 lockdep_assert_held(&hugetlb_lock); 2093 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2094 /* 2095 * If we're returning unused surplus pages, only examine 2096 * nodes with surplus pages. 2097 */ 2098 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2099 !list_empty(&h->hugepage_freelists[node])) { 2100 page = list_entry(h->hugepage_freelists[node].next, 2101 struct page, lru); 2102 remove_hugetlb_page(h, page, acct_surplus); 2103 break; 2104 } 2105 } 2106 2107 return page; 2108 } 2109 2110 /* 2111 * Dissolve a given free hugepage into free buddy pages. This function does 2112 * nothing for in-use hugepages and non-hugepages. 2113 * This function returns values like below: 2114 * 2115 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2116 * when the system is under memory pressure and the feature of 2117 * freeing unused vmemmap pages associated with each hugetlb page 2118 * is enabled. 2119 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2120 * (allocated or reserved.) 2121 * 0: successfully dissolved free hugepages or the page is not a 2122 * hugepage (considered as already dissolved) 2123 */ 2124 int dissolve_free_huge_page(struct page *page) 2125 { 2126 int rc = -EBUSY; 2127 2128 retry: 2129 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2130 if (!PageHuge(page)) 2131 return 0; 2132 2133 spin_lock_irq(&hugetlb_lock); 2134 if (!PageHuge(page)) { 2135 rc = 0; 2136 goto out; 2137 } 2138 2139 if (!page_count(page)) { 2140 struct page *head = compound_head(page); 2141 struct hstate *h = page_hstate(head); 2142 if (!available_huge_pages(h)) 2143 goto out; 2144 2145 /* 2146 * We should make sure that the page is already on the free list 2147 * when it is dissolved. 2148 */ 2149 if (unlikely(!HPageFreed(head))) { 2150 spin_unlock_irq(&hugetlb_lock); 2151 cond_resched(); 2152 2153 /* 2154 * Theoretically, we should return -EBUSY when we 2155 * encounter this race. In fact, we have a chance 2156 * to successfully dissolve the page if we do a 2157 * retry. Because the race window is quite small. 2158 * If we seize this opportunity, it is an optimization 2159 * for increasing the success rate of dissolving page. 2160 */ 2161 goto retry; 2162 } 2163 2164 remove_hugetlb_page(h, head, false); 2165 h->max_huge_pages--; 2166 spin_unlock_irq(&hugetlb_lock); 2167 2168 /* 2169 * Normally update_and_free_page will allocate required vmemmmap 2170 * before freeing the page. update_and_free_page will fail to 2171 * free the page if it can not allocate required vmemmap. We 2172 * need to adjust max_huge_pages if the page is not freed. 2173 * Attempt to allocate vmemmmap here so that we can take 2174 * appropriate action on failure. 2175 */ 2176 rc = hugetlb_vmemmap_restore(h, head); 2177 if (!rc) { 2178 update_and_free_page(h, head, false); 2179 } else { 2180 spin_lock_irq(&hugetlb_lock); 2181 add_hugetlb_page(h, head, false); 2182 h->max_huge_pages++; 2183 spin_unlock_irq(&hugetlb_lock); 2184 } 2185 2186 return rc; 2187 } 2188 out: 2189 spin_unlock_irq(&hugetlb_lock); 2190 return rc; 2191 } 2192 2193 /* 2194 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2195 * make specified memory blocks removable from the system. 2196 * Note that this will dissolve a free gigantic hugepage completely, if any 2197 * part of it lies within the given range. 2198 * Also note that if dissolve_free_huge_page() returns with an error, all 2199 * free hugepages that were dissolved before that error are lost. 2200 */ 2201 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2202 { 2203 unsigned long pfn; 2204 struct page *page; 2205 int rc = 0; 2206 unsigned int order; 2207 struct hstate *h; 2208 2209 if (!hugepages_supported()) 2210 return rc; 2211 2212 order = huge_page_order(&default_hstate); 2213 for_each_hstate(h) 2214 order = min(order, huge_page_order(h)); 2215 2216 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2217 page = pfn_to_page(pfn); 2218 rc = dissolve_free_huge_page(page); 2219 if (rc) 2220 break; 2221 } 2222 2223 return rc; 2224 } 2225 2226 /* 2227 * Allocates a fresh surplus page from the page allocator. 2228 */ 2229 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2230 int nid, nodemask_t *nmask) 2231 { 2232 struct page *page = NULL; 2233 2234 if (hstate_is_gigantic(h)) 2235 return NULL; 2236 2237 spin_lock_irq(&hugetlb_lock); 2238 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2239 goto out_unlock; 2240 spin_unlock_irq(&hugetlb_lock); 2241 2242 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2243 if (!page) 2244 return NULL; 2245 2246 spin_lock_irq(&hugetlb_lock); 2247 /* 2248 * We could have raced with the pool size change. 2249 * Double check that and simply deallocate the new page 2250 * if we would end up overcommiting the surpluses. Abuse 2251 * temporary page to workaround the nasty free_huge_page 2252 * codeflow 2253 */ 2254 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2255 SetHPageTemporary(page); 2256 spin_unlock_irq(&hugetlb_lock); 2257 free_huge_page(page); 2258 return NULL; 2259 } 2260 2261 h->surplus_huge_pages++; 2262 h->surplus_huge_pages_node[page_to_nid(page)]++; 2263 2264 out_unlock: 2265 spin_unlock_irq(&hugetlb_lock); 2266 2267 return page; 2268 } 2269 2270 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2271 int nid, nodemask_t *nmask) 2272 { 2273 struct page *page; 2274 2275 if (hstate_is_gigantic(h)) 2276 return NULL; 2277 2278 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2279 if (!page) 2280 return NULL; 2281 2282 /* fresh huge pages are frozen */ 2283 set_page_refcounted(page); 2284 2285 /* 2286 * We do not account these pages as surplus because they are only 2287 * temporary and will be released properly on the last reference 2288 */ 2289 SetHPageTemporary(page); 2290 2291 return page; 2292 } 2293 2294 /* 2295 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2296 */ 2297 static 2298 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2299 struct vm_area_struct *vma, unsigned long addr) 2300 { 2301 struct page *page = NULL; 2302 struct mempolicy *mpol; 2303 gfp_t gfp_mask = htlb_alloc_mask(h); 2304 int nid; 2305 nodemask_t *nodemask; 2306 2307 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2308 if (mpol_is_preferred_many(mpol)) { 2309 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2310 2311 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2312 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2313 2314 /* Fallback to all nodes if page==NULL */ 2315 nodemask = NULL; 2316 } 2317 2318 if (!page) 2319 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2320 mpol_cond_put(mpol); 2321 return page; 2322 } 2323 2324 /* page migration callback function */ 2325 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2326 nodemask_t *nmask, gfp_t gfp_mask) 2327 { 2328 spin_lock_irq(&hugetlb_lock); 2329 if (available_huge_pages(h)) { 2330 struct page *page; 2331 2332 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2333 if (page) { 2334 spin_unlock_irq(&hugetlb_lock); 2335 return page; 2336 } 2337 } 2338 spin_unlock_irq(&hugetlb_lock); 2339 2340 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2341 } 2342 2343 /* mempolicy aware migration callback */ 2344 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2345 unsigned long address) 2346 { 2347 struct mempolicy *mpol; 2348 nodemask_t *nodemask; 2349 struct page *page; 2350 gfp_t gfp_mask; 2351 int node; 2352 2353 gfp_mask = htlb_alloc_mask(h); 2354 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2355 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2356 mpol_cond_put(mpol); 2357 2358 return page; 2359 } 2360 2361 /* 2362 * Increase the hugetlb pool such that it can accommodate a reservation 2363 * of size 'delta'. 2364 */ 2365 static int gather_surplus_pages(struct hstate *h, long delta) 2366 __must_hold(&hugetlb_lock) 2367 { 2368 LIST_HEAD(surplus_list); 2369 struct page *page, *tmp; 2370 int ret; 2371 long i; 2372 long needed, allocated; 2373 bool alloc_ok = true; 2374 2375 lockdep_assert_held(&hugetlb_lock); 2376 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2377 if (needed <= 0) { 2378 h->resv_huge_pages += delta; 2379 return 0; 2380 } 2381 2382 allocated = 0; 2383 2384 ret = -ENOMEM; 2385 retry: 2386 spin_unlock_irq(&hugetlb_lock); 2387 for (i = 0; i < needed; i++) { 2388 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2389 NUMA_NO_NODE, NULL); 2390 if (!page) { 2391 alloc_ok = false; 2392 break; 2393 } 2394 list_add(&page->lru, &surplus_list); 2395 cond_resched(); 2396 } 2397 allocated += i; 2398 2399 /* 2400 * After retaking hugetlb_lock, we need to recalculate 'needed' 2401 * because either resv_huge_pages or free_huge_pages may have changed. 2402 */ 2403 spin_lock_irq(&hugetlb_lock); 2404 needed = (h->resv_huge_pages + delta) - 2405 (h->free_huge_pages + allocated); 2406 if (needed > 0) { 2407 if (alloc_ok) 2408 goto retry; 2409 /* 2410 * We were not able to allocate enough pages to 2411 * satisfy the entire reservation so we free what 2412 * we've allocated so far. 2413 */ 2414 goto free; 2415 } 2416 /* 2417 * The surplus_list now contains _at_least_ the number of extra pages 2418 * needed to accommodate the reservation. Add the appropriate number 2419 * of pages to the hugetlb pool and free the extras back to the buddy 2420 * allocator. Commit the entire reservation here to prevent another 2421 * process from stealing the pages as they are added to the pool but 2422 * before they are reserved. 2423 */ 2424 needed += allocated; 2425 h->resv_huge_pages += delta; 2426 ret = 0; 2427 2428 /* Free the needed pages to the hugetlb pool */ 2429 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2430 if ((--needed) < 0) 2431 break; 2432 /* Add the page to the hugetlb allocator */ 2433 enqueue_huge_page(h, page); 2434 } 2435 free: 2436 spin_unlock_irq(&hugetlb_lock); 2437 2438 /* 2439 * Free unnecessary surplus pages to the buddy allocator. 2440 * Pages have no ref count, call free_huge_page directly. 2441 */ 2442 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2443 free_huge_page(page); 2444 spin_lock_irq(&hugetlb_lock); 2445 2446 return ret; 2447 } 2448 2449 /* 2450 * This routine has two main purposes: 2451 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2452 * in unused_resv_pages. This corresponds to the prior adjustments made 2453 * to the associated reservation map. 2454 * 2) Free any unused surplus pages that may have been allocated to satisfy 2455 * the reservation. As many as unused_resv_pages may be freed. 2456 */ 2457 static void return_unused_surplus_pages(struct hstate *h, 2458 unsigned long unused_resv_pages) 2459 { 2460 unsigned long nr_pages; 2461 struct page *page; 2462 LIST_HEAD(page_list); 2463 2464 lockdep_assert_held(&hugetlb_lock); 2465 /* Uncommit the reservation */ 2466 h->resv_huge_pages -= unused_resv_pages; 2467 2468 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2469 goto out; 2470 2471 /* 2472 * Part (or even all) of the reservation could have been backed 2473 * by pre-allocated pages. Only free surplus pages. 2474 */ 2475 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2476 2477 /* 2478 * We want to release as many surplus pages as possible, spread 2479 * evenly across all nodes with memory. Iterate across these nodes 2480 * until we can no longer free unreserved surplus pages. This occurs 2481 * when the nodes with surplus pages have no free pages. 2482 * remove_pool_huge_page() will balance the freed pages across the 2483 * on-line nodes with memory and will handle the hstate accounting. 2484 */ 2485 while (nr_pages--) { 2486 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2487 if (!page) 2488 goto out; 2489 2490 list_add(&page->lru, &page_list); 2491 } 2492 2493 out: 2494 spin_unlock_irq(&hugetlb_lock); 2495 update_and_free_pages_bulk(h, &page_list); 2496 spin_lock_irq(&hugetlb_lock); 2497 } 2498 2499 2500 /* 2501 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2502 * are used by the huge page allocation routines to manage reservations. 2503 * 2504 * vma_needs_reservation is called to determine if the huge page at addr 2505 * within the vma has an associated reservation. If a reservation is 2506 * needed, the value 1 is returned. The caller is then responsible for 2507 * managing the global reservation and subpool usage counts. After 2508 * the huge page has been allocated, vma_commit_reservation is called 2509 * to add the page to the reservation map. If the page allocation fails, 2510 * the reservation must be ended instead of committed. vma_end_reservation 2511 * is called in such cases. 2512 * 2513 * In the normal case, vma_commit_reservation returns the same value 2514 * as the preceding vma_needs_reservation call. The only time this 2515 * is not the case is if a reserve map was changed between calls. It 2516 * is the responsibility of the caller to notice the difference and 2517 * take appropriate action. 2518 * 2519 * vma_add_reservation is used in error paths where a reservation must 2520 * be restored when a newly allocated huge page must be freed. It is 2521 * to be called after calling vma_needs_reservation to determine if a 2522 * reservation exists. 2523 * 2524 * vma_del_reservation is used in error paths where an entry in the reserve 2525 * map was created during huge page allocation and must be removed. It is to 2526 * be called after calling vma_needs_reservation to determine if a reservation 2527 * exists. 2528 */ 2529 enum vma_resv_mode { 2530 VMA_NEEDS_RESV, 2531 VMA_COMMIT_RESV, 2532 VMA_END_RESV, 2533 VMA_ADD_RESV, 2534 VMA_DEL_RESV, 2535 }; 2536 static long __vma_reservation_common(struct hstate *h, 2537 struct vm_area_struct *vma, unsigned long addr, 2538 enum vma_resv_mode mode) 2539 { 2540 struct resv_map *resv; 2541 pgoff_t idx; 2542 long ret; 2543 long dummy_out_regions_needed; 2544 2545 resv = vma_resv_map(vma); 2546 if (!resv) 2547 return 1; 2548 2549 idx = vma_hugecache_offset(h, vma, addr); 2550 switch (mode) { 2551 case VMA_NEEDS_RESV: 2552 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2553 /* We assume that vma_reservation_* routines always operate on 2554 * 1 page, and that adding to resv map a 1 page entry can only 2555 * ever require 1 region. 2556 */ 2557 VM_BUG_ON(dummy_out_regions_needed != 1); 2558 break; 2559 case VMA_COMMIT_RESV: 2560 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2561 /* region_add calls of range 1 should never fail. */ 2562 VM_BUG_ON(ret < 0); 2563 break; 2564 case VMA_END_RESV: 2565 region_abort(resv, idx, idx + 1, 1); 2566 ret = 0; 2567 break; 2568 case VMA_ADD_RESV: 2569 if (vma->vm_flags & VM_MAYSHARE) { 2570 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2571 /* region_add calls of range 1 should never fail. */ 2572 VM_BUG_ON(ret < 0); 2573 } else { 2574 region_abort(resv, idx, idx + 1, 1); 2575 ret = region_del(resv, idx, idx + 1); 2576 } 2577 break; 2578 case VMA_DEL_RESV: 2579 if (vma->vm_flags & VM_MAYSHARE) { 2580 region_abort(resv, idx, idx + 1, 1); 2581 ret = region_del(resv, idx, idx + 1); 2582 } else { 2583 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2584 /* region_add calls of range 1 should never fail. */ 2585 VM_BUG_ON(ret < 0); 2586 } 2587 break; 2588 default: 2589 BUG(); 2590 } 2591 2592 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2593 return ret; 2594 /* 2595 * We know private mapping must have HPAGE_RESV_OWNER set. 2596 * 2597 * In most cases, reserves always exist for private mappings. 2598 * However, a file associated with mapping could have been 2599 * hole punched or truncated after reserves were consumed. 2600 * As subsequent fault on such a range will not use reserves. 2601 * Subtle - The reserve map for private mappings has the 2602 * opposite meaning than that of shared mappings. If NO 2603 * entry is in the reserve map, it means a reservation exists. 2604 * If an entry exists in the reserve map, it means the 2605 * reservation has already been consumed. As a result, the 2606 * return value of this routine is the opposite of the 2607 * value returned from reserve map manipulation routines above. 2608 */ 2609 if (ret > 0) 2610 return 0; 2611 if (ret == 0) 2612 return 1; 2613 return ret; 2614 } 2615 2616 static long vma_needs_reservation(struct hstate *h, 2617 struct vm_area_struct *vma, unsigned long addr) 2618 { 2619 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2620 } 2621 2622 static long vma_commit_reservation(struct hstate *h, 2623 struct vm_area_struct *vma, unsigned long addr) 2624 { 2625 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2626 } 2627 2628 static void vma_end_reservation(struct hstate *h, 2629 struct vm_area_struct *vma, unsigned long addr) 2630 { 2631 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2632 } 2633 2634 static long vma_add_reservation(struct hstate *h, 2635 struct vm_area_struct *vma, unsigned long addr) 2636 { 2637 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2638 } 2639 2640 static long vma_del_reservation(struct hstate *h, 2641 struct vm_area_struct *vma, unsigned long addr) 2642 { 2643 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2644 } 2645 2646 /* 2647 * This routine is called to restore reservation information on error paths. 2648 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2649 * the hugetlb mutex should remain held when calling this routine. 2650 * 2651 * It handles two specific cases: 2652 * 1) A reservation was in place and the page consumed the reservation. 2653 * HPageRestoreReserve is set in the page. 2654 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2655 * not set. However, alloc_huge_page always updates the reserve map. 2656 * 2657 * In case 1, free_huge_page later in the error path will increment the 2658 * global reserve count. But, free_huge_page does not have enough context 2659 * to adjust the reservation map. This case deals primarily with private 2660 * mappings. Adjust the reserve map here to be consistent with global 2661 * reserve count adjustments to be made by free_huge_page. Make sure the 2662 * reserve map indicates there is a reservation present. 2663 * 2664 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2665 */ 2666 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2667 unsigned long address, struct page *page) 2668 { 2669 long rc = vma_needs_reservation(h, vma, address); 2670 2671 if (HPageRestoreReserve(page)) { 2672 if (unlikely(rc < 0)) 2673 /* 2674 * Rare out of memory condition in reserve map 2675 * manipulation. Clear HPageRestoreReserve so that 2676 * global reserve count will not be incremented 2677 * by free_huge_page. This will make it appear 2678 * as though the reservation for this page was 2679 * consumed. This may prevent the task from 2680 * faulting in the page at a later time. This 2681 * is better than inconsistent global huge page 2682 * accounting of reserve counts. 2683 */ 2684 ClearHPageRestoreReserve(page); 2685 else if (rc) 2686 (void)vma_add_reservation(h, vma, address); 2687 else 2688 vma_end_reservation(h, vma, address); 2689 } else { 2690 if (!rc) { 2691 /* 2692 * This indicates there is an entry in the reserve map 2693 * not added by alloc_huge_page. We know it was added 2694 * before the alloc_huge_page call, otherwise 2695 * HPageRestoreReserve would be set on the page. 2696 * Remove the entry so that a subsequent allocation 2697 * does not consume a reservation. 2698 */ 2699 rc = vma_del_reservation(h, vma, address); 2700 if (rc < 0) 2701 /* 2702 * VERY rare out of memory condition. Since 2703 * we can not delete the entry, set 2704 * HPageRestoreReserve so that the reserve 2705 * count will be incremented when the page 2706 * is freed. This reserve will be consumed 2707 * on a subsequent allocation. 2708 */ 2709 SetHPageRestoreReserve(page); 2710 } else if (rc < 0) { 2711 /* 2712 * Rare out of memory condition from 2713 * vma_needs_reservation call. Memory allocation is 2714 * only attempted if a new entry is needed. Therefore, 2715 * this implies there is not an entry in the 2716 * reserve map. 2717 * 2718 * For shared mappings, no entry in the map indicates 2719 * no reservation. We are done. 2720 */ 2721 if (!(vma->vm_flags & VM_MAYSHARE)) 2722 /* 2723 * For private mappings, no entry indicates 2724 * a reservation is present. Since we can 2725 * not add an entry, set SetHPageRestoreReserve 2726 * on the page so reserve count will be 2727 * incremented when freed. This reserve will 2728 * be consumed on a subsequent allocation. 2729 */ 2730 SetHPageRestoreReserve(page); 2731 } else 2732 /* 2733 * No reservation present, do nothing 2734 */ 2735 vma_end_reservation(h, vma, address); 2736 } 2737 } 2738 2739 /* 2740 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2741 * @h: struct hstate old page belongs to 2742 * @old_page: Old page to dissolve 2743 * @list: List to isolate the page in case we need to 2744 * Returns 0 on success, otherwise negated error. 2745 */ 2746 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2747 struct list_head *list) 2748 { 2749 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2750 int nid = page_to_nid(old_page); 2751 struct page *new_page; 2752 int ret = 0; 2753 2754 /* 2755 * Before dissolving the page, we need to allocate a new one for the 2756 * pool to remain stable. Here, we allocate the page and 'prep' it 2757 * by doing everything but actually updating counters and adding to 2758 * the pool. This simplifies and let us do most of the processing 2759 * under the lock. 2760 */ 2761 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2762 if (!new_page) 2763 return -ENOMEM; 2764 __prep_new_huge_page(h, new_page); 2765 2766 retry: 2767 spin_lock_irq(&hugetlb_lock); 2768 if (!PageHuge(old_page)) { 2769 /* 2770 * Freed from under us. Drop new_page too. 2771 */ 2772 goto free_new; 2773 } else if (page_count(old_page)) { 2774 /* 2775 * Someone has grabbed the page, try to isolate it here. 2776 * Fail with -EBUSY if not possible. 2777 */ 2778 spin_unlock_irq(&hugetlb_lock); 2779 ret = isolate_hugetlb(old_page, list); 2780 spin_lock_irq(&hugetlb_lock); 2781 goto free_new; 2782 } else if (!HPageFreed(old_page)) { 2783 /* 2784 * Page's refcount is 0 but it has not been enqueued in the 2785 * freelist yet. Race window is small, so we can succeed here if 2786 * we retry. 2787 */ 2788 spin_unlock_irq(&hugetlb_lock); 2789 cond_resched(); 2790 goto retry; 2791 } else { 2792 /* 2793 * Ok, old_page is still a genuine free hugepage. Remove it from 2794 * the freelist and decrease the counters. These will be 2795 * incremented again when calling __prep_account_new_huge_page() 2796 * and enqueue_huge_page() for new_page. The counters will remain 2797 * stable since this happens under the lock. 2798 */ 2799 remove_hugetlb_page(h, old_page, false); 2800 2801 /* 2802 * Ref count on new page is already zero as it was dropped 2803 * earlier. It can be directly added to the pool free list. 2804 */ 2805 __prep_account_new_huge_page(h, nid); 2806 enqueue_huge_page(h, new_page); 2807 2808 /* 2809 * Pages have been replaced, we can safely free the old one. 2810 */ 2811 spin_unlock_irq(&hugetlb_lock); 2812 update_and_free_page(h, old_page, false); 2813 } 2814 2815 return ret; 2816 2817 free_new: 2818 spin_unlock_irq(&hugetlb_lock); 2819 /* Page has a zero ref count, but needs a ref to be freed */ 2820 set_page_refcounted(new_page); 2821 update_and_free_page(h, new_page, false); 2822 2823 return ret; 2824 } 2825 2826 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2827 { 2828 struct hstate *h; 2829 struct page *head; 2830 int ret = -EBUSY; 2831 2832 /* 2833 * The page might have been dissolved from under our feet, so make sure 2834 * to carefully check the state under the lock. 2835 * Return success when racing as if we dissolved the page ourselves. 2836 */ 2837 spin_lock_irq(&hugetlb_lock); 2838 if (PageHuge(page)) { 2839 head = compound_head(page); 2840 h = page_hstate(head); 2841 } else { 2842 spin_unlock_irq(&hugetlb_lock); 2843 return 0; 2844 } 2845 spin_unlock_irq(&hugetlb_lock); 2846 2847 /* 2848 * Fence off gigantic pages as there is a cyclic dependency between 2849 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2850 * of bailing out right away without further retrying. 2851 */ 2852 if (hstate_is_gigantic(h)) 2853 return -ENOMEM; 2854 2855 if (page_count(head) && !isolate_hugetlb(head, list)) 2856 ret = 0; 2857 else if (!page_count(head)) 2858 ret = alloc_and_dissolve_huge_page(h, head, list); 2859 2860 return ret; 2861 } 2862 2863 struct page *alloc_huge_page(struct vm_area_struct *vma, 2864 unsigned long addr, int avoid_reserve) 2865 { 2866 struct hugepage_subpool *spool = subpool_vma(vma); 2867 struct hstate *h = hstate_vma(vma); 2868 struct page *page; 2869 long map_chg, map_commit; 2870 long gbl_chg; 2871 int ret, idx; 2872 struct hugetlb_cgroup *h_cg; 2873 bool deferred_reserve; 2874 2875 idx = hstate_index(h); 2876 /* 2877 * Examine the region/reserve map to determine if the process 2878 * has a reservation for the page to be allocated. A return 2879 * code of zero indicates a reservation exists (no change). 2880 */ 2881 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2882 if (map_chg < 0) 2883 return ERR_PTR(-ENOMEM); 2884 2885 /* 2886 * Processes that did not create the mapping will have no 2887 * reserves as indicated by the region/reserve map. Check 2888 * that the allocation will not exceed the subpool limit. 2889 * Allocations for MAP_NORESERVE mappings also need to be 2890 * checked against any subpool limit. 2891 */ 2892 if (map_chg || avoid_reserve) { 2893 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2894 if (gbl_chg < 0) { 2895 vma_end_reservation(h, vma, addr); 2896 return ERR_PTR(-ENOSPC); 2897 } 2898 2899 /* 2900 * Even though there was no reservation in the region/reserve 2901 * map, there could be reservations associated with the 2902 * subpool that can be used. This would be indicated if the 2903 * return value of hugepage_subpool_get_pages() is zero. 2904 * However, if avoid_reserve is specified we still avoid even 2905 * the subpool reservations. 2906 */ 2907 if (avoid_reserve) 2908 gbl_chg = 1; 2909 } 2910 2911 /* If this allocation is not consuming a reservation, charge it now. 2912 */ 2913 deferred_reserve = map_chg || avoid_reserve; 2914 if (deferred_reserve) { 2915 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2916 idx, pages_per_huge_page(h), &h_cg); 2917 if (ret) 2918 goto out_subpool_put; 2919 } 2920 2921 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2922 if (ret) 2923 goto out_uncharge_cgroup_reservation; 2924 2925 spin_lock_irq(&hugetlb_lock); 2926 /* 2927 * glb_chg is passed to indicate whether or not a page must be taken 2928 * from the global free pool (global change). gbl_chg == 0 indicates 2929 * a reservation exists for the allocation. 2930 */ 2931 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2932 if (!page) { 2933 spin_unlock_irq(&hugetlb_lock); 2934 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2935 if (!page) 2936 goto out_uncharge_cgroup; 2937 spin_lock_irq(&hugetlb_lock); 2938 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2939 SetHPageRestoreReserve(page); 2940 h->resv_huge_pages--; 2941 } 2942 list_add(&page->lru, &h->hugepage_activelist); 2943 set_page_refcounted(page); 2944 /* Fall through */ 2945 } 2946 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2947 /* If allocation is not consuming a reservation, also store the 2948 * hugetlb_cgroup pointer on the page. 2949 */ 2950 if (deferred_reserve) { 2951 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2952 h_cg, page); 2953 } 2954 2955 spin_unlock_irq(&hugetlb_lock); 2956 2957 hugetlb_set_page_subpool(page, spool); 2958 2959 map_commit = vma_commit_reservation(h, vma, addr); 2960 if (unlikely(map_chg > map_commit)) { 2961 /* 2962 * The page was added to the reservation map between 2963 * vma_needs_reservation and vma_commit_reservation. 2964 * This indicates a race with hugetlb_reserve_pages. 2965 * Adjust for the subpool count incremented above AND 2966 * in hugetlb_reserve_pages for the same page. Also, 2967 * the reservation count added in hugetlb_reserve_pages 2968 * no longer applies. 2969 */ 2970 long rsv_adjust; 2971 2972 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2973 hugetlb_acct_memory(h, -rsv_adjust); 2974 if (deferred_reserve) 2975 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2976 pages_per_huge_page(h), page); 2977 } 2978 return page; 2979 2980 out_uncharge_cgroup: 2981 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2982 out_uncharge_cgroup_reservation: 2983 if (deferred_reserve) 2984 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2985 h_cg); 2986 out_subpool_put: 2987 if (map_chg || avoid_reserve) 2988 hugepage_subpool_put_pages(spool, 1); 2989 vma_end_reservation(h, vma, addr); 2990 return ERR_PTR(-ENOSPC); 2991 } 2992 2993 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2994 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2995 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2996 { 2997 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2998 int nr_nodes, node; 2999 3000 /* do node specific alloc */ 3001 if (nid != NUMA_NO_NODE) { 3002 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3003 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3004 if (!m) 3005 return 0; 3006 goto found; 3007 } 3008 /* allocate from next node when distributing huge pages */ 3009 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3010 m = memblock_alloc_try_nid_raw( 3011 huge_page_size(h), huge_page_size(h), 3012 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3013 /* 3014 * Use the beginning of the huge page to store the 3015 * huge_bootmem_page struct (until gather_bootmem 3016 * puts them into the mem_map). 3017 */ 3018 if (!m) 3019 return 0; 3020 goto found; 3021 } 3022 3023 found: 3024 /* Put them into a private list first because mem_map is not up yet */ 3025 INIT_LIST_HEAD(&m->list); 3026 list_add(&m->list, &huge_boot_pages); 3027 m->hstate = h; 3028 return 1; 3029 } 3030 3031 /* 3032 * Put bootmem huge pages into the standard lists after mem_map is up. 3033 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3034 */ 3035 static void __init gather_bootmem_prealloc(void) 3036 { 3037 struct huge_bootmem_page *m; 3038 3039 list_for_each_entry(m, &huge_boot_pages, list) { 3040 struct page *page = virt_to_page(m); 3041 struct hstate *h = m->hstate; 3042 3043 VM_BUG_ON(!hstate_is_gigantic(h)); 3044 WARN_ON(page_count(page) != 1); 3045 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3046 WARN_ON(PageReserved(page)); 3047 prep_new_huge_page(h, page, page_to_nid(page)); 3048 free_huge_page(page); /* add to the hugepage allocator */ 3049 } else { 3050 /* VERY unlikely inflated ref count on a tail page */ 3051 free_gigantic_page(page, huge_page_order(h)); 3052 } 3053 3054 /* 3055 * We need to restore the 'stolen' pages to totalram_pages 3056 * in order to fix confusing memory reports from free(1) and 3057 * other side-effects, like CommitLimit going negative. 3058 */ 3059 adjust_managed_page_count(page, pages_per_huge_page(h)); 3060 cond_resched(); 3061 } 3062 } 3063 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3064 { 3065 unsigned long i; 3066 char buf[32]; 3067 3068 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3069 if (hstate_is_gigantic(h)) { 3070 if (!alloc_bootmem_huge_page(h, nid)) 3071 break; 3072 } else { 3073 struct page *page; 3074 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3075 3076 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3077 &node_states[N_MEMORY], NULL); 3078 if (!page) 3079 break; 3080 free_huge_page(page); /* free it into the hugepage allocator */ 3081 } 3082 cond_resched(); 3083 } 3084 if (i == h->max_huge_pages_node[nid]) 3085 return; 3086 3087 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3088 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3089 h->max_huge_pages_node[nid], buf, nid, i); 3090 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3091 h->max_huge_pages_node[nid] = i; 3092 } 3093 3094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3095 { 3096 unsigned long i; 3097 nodemask_t *node_alloc_noretry; 3098 bool node_specific_alloc = false; 3099 3100 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3101 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3102 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3103 return; 3104 } 3105 3106 /* do node specific alloc */ 3107 for_each_online_node(i) { 3108 if (h->max_huge_pages_node[i] > 0) { 3109 hugetlb_hstate_alloc_pages_onenode(h, i); 3110 node_specific_alloc = true; 3111 } 3112 } 3113 3114 if (node_specific_alloc) 3115 return; 3116 3117 /* below will do all node balanced alloc */ 3118 if (!hstate_is_gigantic(h)) { 3119 /* 3120 * Bit mask controlling how hard we retry per-node allocations. 3121 * Ignore errors as lower level routines can deal with 3122 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3123 * time, we are likely in bigger trouble. 3124 */ 3125 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3126 GFP_KERNEL); 3127 } else { 3128 /* allocations done at boot time */ 3129 node_alloc_noretry = NULL; 3130 } 3131 3132 /* bit mask controlling how hard we retry per-node allocations */ 3133 if (node_alloc_noretry) 3134 nodes_clear(*node_alloc_noretry); 3135 3136 for (i = 0; i < h->max_huge_pages; ++i) { 3137 if (hstate_is_gigantic(h)) { 3138 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3139 break; 3140 } else if (!alloc_pool_huge_page(h, 3141 &node_states[N_MEMORY], 3142 node_alloc_noretry)) 3143 break; 3144 cond_resched(); 3145 } 3146 if (i < h->max_huge_pages) { 3147 char buf[32]; 3148 3149 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3150 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3151 h->max_huge_pages, buf, i); 3152 h->max_huge_pages = i; 3153 } 3154 kfree(node_alloc_noretry); 3155 } 3156 3157 static void __init hugetlb_init_hstates(void) 3158 { 3159 struct hstate *h, *h2; 3160 3161 for_each_hstate(h) { 3162 /* oversize hugepages were init'ed in early boot */ 3163 if (!hstate_is_gigantic(h)) 3164 hugetlb_hstate_alloc_pages(h); 3165 3166 /* 3167 * Set demote order for each hstate. Note that 3168 * h->demote_order is initially 0. 3169 * - We can not demote gigantic pages if runtime freeing 3170 * is not supported, so skip this. 3171 * - If CMA allocation is possible, we can not demote 3172 * HUGETLB_PAGE_ORDER or smaller size pages. 3173 */ 3174 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3175 continue; 3176 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3177 continue; 3178 for_each_hstate(h2) { 3179 if (h2 == h) 3180 continue; 3181 if (h2->order < h->order && 3182 h2->order > h->demote_order) 3183 h->demote_order = h2->order; 3184 } 3185 } 3186 } 3187 3188 static void __init report_hugepages(void) 3189 { 3190 struct hstate *h; 3191 3192 for_each_hstate(h) { 3193 char buf[32]; 3194 3195 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3196 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3197 buf, h->free_huge_pages); 3198 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3199 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3200 } 3201 } 3202 3203 #ifdef CONFIG_HIGHMEM 3204 static void try_to_free_low(struct hstate *h, unsigned long count, 3205 nodemask_t *nodes_allowed) 3206 { 3207 int i; 3208 LIST_HEAD(page_list); 3209 3210 lockdep_assert_held(&hugetlb_lock); 3211 if (hstate_is_gigantic(h)) 3212 return; 3213 3214 /* 3215 * Collect pages to be freed on a list, and free after dropping lock 3216 */ 3217 for_each_node_mask(i, *nodes_allowed) { 3218 struct page *page, *next; 3219 struct list_head *freel = &h->hugepage_freelists[i]; 3220 list_for_each_entry_safe(page, next, freel, lru) { 3221 if (count >= h->nr_huge_pages) 3222 goto out; 3223 if (PageHighMem(page)) 3224 continue; 3225 remove_hugetlb_page(h, page, false); 3226 list_add(&page->lru, &page_list); 3227 } 3228 } 3229 3230 out: 3231 spin_unlock_irq(&hugetlb_lock); 3232 update_and_free_pages_bulk(h, &page_list); 3233 spin_lock_irq(&hugetlb_lock); 3234 } 3235 #else 3236 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3237 nodemask_t *nodes_allowed) 3238 { 3239 } 3240 #endif 3241 3242 /* 3243 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3244 * balanced by operating on them in a round-robin fashion. 3245 * Returns 1 if an adjustment was made. 3246 */ 3247 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3248 int delta) 3249 { 3250 int nr_nodes, node; 3251 3252 lockdep_assert_held(&hugetlb_lock); 3253 VM_BUG_ON(delta != -1 && delta != 1); 3254 3255 if (delta < 0) { 3256 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3257 if (h->surplus_huge_pages_node[node]) 3258 goto found; 3259 } 3260 } else { 3261 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3262 if (h->surplus_huge_pages_node[node] < 3263 h->nr_huge_pages_node[node]) 3264 goto found; 3265 } 3266 } 3267 return 0; 3268 3269 found: 3270 h->surplus_huge_pages += delta; 3271 h->surplus_huge_pages_node[node] += delta; 3272 return 1; 3273 } 3274 3275 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3276 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3277 nodemask_t *nodes_allowed) 3278 { 3279 unsigned long min_count, ret; 3280 struct page *page; 3281 LIST_HEAD(page_list); 3282 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3283 3284 /* 3285 * Bit mask controlling how hard we retry per-node allocations. 3286 * If we can not allocate the bit mask, do not attempt to allocate 3287 * the requested huge pages. 3288 */ 3289 if (node_alloc_noretry) 3290 nodes_clear(*node_alloc_noretry); 3291 else 3292 return -ENOMEM; 3293 3294 /* 3295 * resize_lock mutex prevents concurrent adjustments to number of 3296 * pages in hstate via the proc/sysfs interfaces. 3297 */ 3298 mutex_lock(&h->resize_lock); 3299 flush_free_hpage_work(h); 3300 spin_lock_irq(&hugetlb_lock); 3301 3302 /* 3303 * Check for a node specific request. 3304 * Changing node specific huge page count may require a corresponding 3305 * change to the global count. In any case, the passed node mask 3306 * (nodes_allowed) will restrict alloc/free to the specified node. 3307 */ 3308 if (nid != NUMA_NO_NODE) { 3309 unsigned long old_count = count; 3310 3311 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3312 /* 3313 * User may have specified a large count value which caused the 3314 * above calculation to overflow. In this case, they wanted 3315 * to allocate as many huge pages as possible. Set count to 3316 * largest possible value to align with their intention. 3317 */ 3318 if (count < old_count) 3319 count = ULONG_MAX; 3320 } 3321 3322 /* 3323 * Gigantic pages runtime allocation depend on the capability for large 3324 * page range allocation. 3325 * If the system does not provide this feature, return an error when 3326 * the user tries to allocate gigantic pages but let the user free the 3327 * boottime allocated gigantic pages. 3328 */ 3329 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3330 if (count > persistent_huge_pages(h)) { 3331 spin_unlock_irq(&hugetlb_lock); 3332 mutex_unlock(&h->resize_lock); 3333 NODEMASK_FREE(node_alloc_noretry); 3334 return -EINVAL; 3335 } 3336 /* Fall through to decrease pool */ 3337 } 3338 3339 /* 3340 * Increase the pool size 3341 * First take pages out of surplus state. Then make up the 3342 * remaining difference by allocating fresh huge pages. 3343 * 3344 * We might race with alloc_surplus_huge_page() here and be unable 3345 * to convert a surplus huge page to a normal huge page. That is 3346 * not critical, though, it just means the overall size of the 3347 * pool might be one hugepage larger than it needs to be, but 3348 * within all the constraints specified by the sysctls. 3349 */ 3350 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3351 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3352 break; 3353 } 3354 3355 while (count > persistent_huge_pages(h)) { 3356 /* 3357 * If this allocation races such that we no longer need the 3358 * page, free_huge_page will handle it by freeing the page 3359 * and reducing the surplus. 3360 */ 3361 spin_unlock_irq(&hugetlb_lock); 3362 3363 /* yield cpu to avoid soft lockup */ 3364 cond_resched(); 3365 3366 ret = alloc_pool_huge_page(h, nodes_allowed, 3367 node_alloc_noretry); 3368 spin_lock_irq(&hugetlb_lock); 3369 if (!ret) 3370 goto out; 3371 3372 /* Bail for signals. Probably ctrl-c from user */ 3373 if (signal_pending(current)) 3374 goto out; 3375 } 3376 3377 /* 3378 * Decrease the pool size 3379 * First return free pages to the buddy allocator (being careful 3380 * to keep enough around to satisfy reservations). Then place 3381 * pages into surplus state as needed so the pool will shrink 3382 * to the desired size as pages become free. 3383 * 3384 * By placing pages into the surplus state independent of the 3385 * overcommit value, we are allowing the surplus pool size to 3386 * exceed overcommit. There are few sane options here. Since 3387 * alloc_surplus_huge_page() is checking the global counter, 3388 * though, we'll note that we're not allowed to exceed surplus 3389 * and won't grow the pool anywhere else. Not until one of the 3390 * sysctls are changed, or the surplus pages go out of use. 3391 */ 3392 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3393 min_count = max(count, min_count); 3394 try_to_free_low(h, min_count, nodes_allowed); 3395 3396 /* 3397 * Collect pages to be removed on list without dropping lock 3398 */ 3399 while (min_count < persistent_huge_pages(h)) { 3400 page = remove_pool_huge_page(h, nodes_allowed, 0); 3401 if (!page) 3402 break; 3403 3404 list_add(&page->lru, &page_list); 3405 } 3406 /* free the pages after dropping lock */ 3407 spin_unlock_irq(&hugetlb_lock); 3408 update_and_free_pages_bulk(h, &page_list); 3409 flush_free_hpage_work(h); 3410 spin_lock_irq(&hugetlb_lock); 3411 3412 while (count < persistent_huge_pages(h)) { 3413 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3414 break; 3415 } 3416 out: 3417 h->max_huge_pages = persistent_huge_pages(h); 3418 spin_unlock_irq(&hugetlb_lock); 3419 mutex_unlock(&h->resize_lock); 3420 3421 NODEMASK_FREE(node_alloc_noretry); 3422 3423 return 0; 3424 } 3425 3426 static int demote_free_huge_page(struct hstate *h, struct page *page) 3427 { 3428 int i, nid = page_to_nid(page); 3429 struct hstate *target_hstate; 3430 struct page *subpage; 3431 int rc = 0; 3432 3433 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3434 3435 remove_hugetlb_page_for_demote(h, page, false); 3436 spin_unlock_irq(&hugetlb_lock); 3437 3438 rc = hugetlb_vmemmap_restore(h, page); 3439 if (rc) { 3440 /* Allocation of vmemmmap failed, we can not demote page */ 3441 spin_lock_irq(&hugetlb_lock); 3442 set_page_refcounted(page); 3443 add_hugetlb_page(h, page, false); 3444 return rc; 3445 } 3446 3447 /* 3448 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3449 * sizes as it will not ref count pages. 3450 */ 3451 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3452 3453 /* 3454 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3455 * Without the mutex, pages added to target hstate could be marked 3456 * as surplus. 3457 * 3458 * Note that we already hold h->resize_lock. To prevent deadlock, 3459 * use the convention of always taking larger size hstate mutex first. 3460 */ 3461 mutex_lock(&target_hstate->resize_lock); 3462 for (i = 0; i < pages_per_huge_page(h); 3463 i += pages_per_huge_page(target_hstate)) { 3464 subpage = nth_page(page, i); 3465 if (hstate_is_gigantic(target_hstate)) 3466 prep_compound_gigantic_page_for_demote(subpage, 3467 target_hstate->order); 3468 else 3469 prep_compound_page(subpage, target_hstate->order); 3470 set_page_private(subpage, 0); 3471 prep_new_huge_page(target_hstate, subpage, nid); 3472 free_huge_page(subpage); 3473 } 3474 mutex_unlock(&target_hstate->resize_lock); 3475 3476 spin_lock_irq(&hugetlb_lock); 3477 3478 /* 3479 * Not absolutely necessary, but for consistency update max_huge_pages 3480 * based on pool changes for the demoted page. 3481 */ 3482 h->max_huge_pages--; 3483 target_hstate->max_huge_pages += 3484 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3485 3486 return rc; 3487 } 3488 3489 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3490 __must_hold(&hugetlb_lock) 3491 { 3492 int nr_nodes, node; 3493 struct page *page; 3494 3495 lockdep_assert_held(&hugetlb_lock); 3496 3497 /* We should never get here if no demote order */ 3498 if (!h->demote_order) { 3499 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3500 return -EINVAL; /* internal error */ 3501 } 3502 3503 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3504 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3505 if (PageHWPoison(page)) 3506 continue; 3507 3508 return demote_free_huge_page(h, page); 3509 } 3510 } 3511 3512 /* 3513 * Only way to get here is if all pages on free lists are poisoned. 3514 * Return -EBUSY so that caller will not retry. 3515 */ 3516 return -EBUSY; 3517 } 3518 3519 #define HSTATE_ATTR_RO(_name) \ 3520 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3521 3522 #define HSTATE_ATTR_WO(_name) \ 3523 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3524 3525 #define HSTATE_ATTR(_name) \ 3526 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3527 3528 static struct kobject *hugepages_kobj; 3529 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3530 3531 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3532 3533 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3534 { 3535 int i; 3536 3537 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3538 if (hstate_kobjs[i] == kobj) { 3539 if (nidp) 3540 *nidp = NUMA_NO_NODE; 3541 return &hstates[i]; 3542 } 3543 3544 return kobj_to_node_hstate(kobj, nidp); 3545 } 3546 3547 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3548 struct kobj_attribute *attr, char *buf) 3549 { 3550 struct hstate *h; 3551 unsigned long nr_huge_pages; 3552 int nid; 3553 3554 h = kobj_to_hstate(kobj, &nid); 3555 if (nid == NUMA_NO_NODE) 3556 nr_huge_pages = h->nr_huge_pages; 3557 else 3558 nr_huge_pages = h->nr_huge_pages_node[nid]; 3559 3560 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3561 } 3562 3563 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3564 struct hstate *h, int nid, 3565 unsigned long count, size_t len) 3566 { 3567 int err; 3568 nodemask_t nodes_allowed, *n_mask; 3569 3570 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3571 return -EINVAL; 3572 3573 if (nid == NUMA_NO_NODE) { 3574 /* 3575 * global hstate attribute 3576 */ 3577 if (!(obey_mempolicy && 3578 init_nodemask_of_mempolicy(&nodes_allowed))) 3579 n_mask = &node_states[N_MEMORY]; 3580 else 3581 n_mask = &nodes_allowed; 3582 } else { 3583 /* 3584 * Node specific request. count adjustment happens in 3585 * set_max_huge_pages() after acquiring hugetlb_lock. 3586 */ 3587 init_nodemask_of_node(&nodes_allowed, nid); 3588 n_mask = &nodes_allowed; 3589 } 3590 3591 err = set_max_huge_pages(h, count, nid, n_mask); 3592 3593 return err ? err : len; 3594 } 3595 3596 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3597 struct kobject *kobj, const char *buf, 3598 size_t len) 3599 { 3600 struct hstate *h; 3601 unsigned long count; 3602 int nid; 3603 int err; 3604 3605 err = kstrtoul(buf, 10, &count); 3606 if (err) 3607 return err; 3608 3609 h = kobj_to_hstate(kobj, &nid); 3610 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3611 } 3612 3613 static ssize_t nr_hugepages_show(struct kobject *kobj, 3614 struct kobj_attribute *attr, char *buf) 3615 { 3616 return nr_hugepages_show_common(kobj, attr, buf); 3617 } 3618 3619 static ssize_t nr_hugepages_store(struct kobject *kobj, 3620 struct kobj_attribute *attr, const char *buf, size_t len) 3621 { 3622 return nr_hugepages_store_common(false, kobj, buf, len); 3623 } 3624 HSTATE_ATTR(nr_hugepages); 3625 3626 #ifdef CONFIG_NUMA 3627 3628 /* 3629 * hstate attribute for optionally mempolicy-based constraint on persistent 3630 * huge page alloc/free. 3631 */ 3632 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3633 struct kobj_attribute *attr, 3634 char *buf) 3635 { 3636 return nr_hugepages_show_common(kobj, attr, buf); 3637 } 3638 3639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3640 struct kobj_attribute *attr, const char *buf, size_t len) 3641 { 3642 return nr_hugepages_store_common(true, kobj, buf, len); 3643 } 3644 HSTATE_ATTR(nr_hugepages_mempolicy); 3645 #endif 3646 3647 3648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3649 struct kobj_attribute *attr, char *buf) 3650 { 3651 struct hstate *h = kobj_to_hstate(kobj, NULL); 3652 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3653 } 3654 3655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3656 struct kobj_attribute *attr, const char *buf, size_t count) 3657 { 3658 int err; 3659 unsigned long input; 3660 struct hstate *h = kobj_to_hstate(kobj, NULL); 3661 3662 if (hstate_is_gigantic(h)) 3663 return -EINVAL; 3664 3665 err = kstrtoul(buf, 10, &input); 3666 if (err) 3667 return err; 3668 3669 spin_lock_irq(&hugetlb_lock); 3670 h->nr_overcommit_huge_pages = input; 3671 spin_unlock_irq(&hugetlb_lock); 3672 3673 return count; 3674 } 3675 HSTATE_ATTR(nr_overcommit_hugepages); 3676 3677 static ssize_t free_hugepages_show(struct kobject *kobj, 3678 struct kobj_attribute *attr, char *buf) 3679 { 3680 struct hstate *h; 3681 unsigned long free_huge_pages; 3682 int nid; 3683 3684 h = kobj_to_hstate(kobj, &nid); 3685 if (nid == NUMA_NO_NODE) 3686 free_huge_pages = h->free_huge_pages; 3687 else 3688 free_huge_pages = h->free_huge_pages_node[nid]; 3689 3690 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3691 } 3692 HSTATE_ATTR_RO(free_hugepages); 3693 3694 static ssize_t resv_hugepages_show(struct kobject *kobj, 3695 struct kobj_attribute *attr, char *buf) 3696 { 3697 struct hstate *h = kobj_to_hstate(kobj, NULL); 3698 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3699 } 3700 HSTATE_ATTR_RO(resv_hugepages); 3701 3702 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3703 struct kobj_attribute *attr, char *buf) 3704 { 3705 struct hstate *h; 3706 unsigned long surplus_huge_pages; 3707 int nid; 3708 3709 h = kobj_to_hstate(kobj, &nid); 3710 if (nid == NUMA_NO_NODE) 3711 surplus_huge_pages = h->surplus_huge_pages; 3712 else 3713 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3714 3715 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3716 } 3717 HSTATE_ATTR_RO(surplus_hugepages); 3718 3719 static ssize_t demote_store(struct kobject *kobj, 3720 struct kobj_attribute *attr, const char *buf, size_t len) 3721 { 3722 unsigned long nr_demote; 3723 unsigned long nr_available; 3724 nodemask_t nodes_allowed, *n_mask; 3725 struct hstate *h; 3726 int err; 3727 int nid; 3728 3729 err = kstrtoul(buf, 10, &nr_demote); 3730 if (err) 3731 return err; 3732 h = kobj_to_hstate(kobj, &nid); 3733 3734 if (nid != NUMA_NO_NODE) { 3735 init_nodemask_of_node(&nodes_allowed, nid); 3736 n_mask = &nodes_allowed; 3737 } else { 3738 n_mask = &node_states[N_MEMORY]; 3739 } 3740 3741 /* Synchronize with other sysfs operations modifying huge pages */ 3742 mutex_lock(&h->resize_lock); 3743 spin_lock_irq(&hugetlb_lock); 3744 3745 while (nr_demote) { 3746 /* 3747 * Check for available pages to demote each time thorough the 3748 * loop as demote_pool_huge_page will drop hugetlb_lock. 3749 */ 3750 if (nid != NUMA_NO_NODE) 3751 nr_available = h->free_huge_pages_node[nid]; 3752 else 3753 nr_available = h->free_huge_pages; 3754 nr_available -= h->resv_huge_pages; 3755 if (!nr_available) 3756 break; 3757 3758 err = demote_pool_huge_page(h, n_mask); 3759 if (err) 3760 break; 3761 3762 nr_demote--; 3763 } 3764 3765 spin_unlock_irq(&hugetlb_lock); 3766 mutex_unlock(&h->resize_lock); 3767 3768 if (err) 3769 return err; 3770 return len; 3771 } 3772 HSTATE_ATTR_WO(demote); 3773 3774 static ssize_t demote_size_show(struct kobject *kobj, 3775 struct kobj_attribute *attr, char *buf) 3776 { 3777 struct hstate *h = kobj_to_hstate(kobj, NULL); 3778 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3779 3780 return sysfs_emit(buf, "%lukB\n", demote_size); 3781 } 3782 3783 static ssize_t demote_size_store(struct kobject *kobj, 3784 struct kobj_attribute *attr, 3785 const char *buf, size_t count) 3786 { 3787 struct hstate *h, *demote_hstate; 3788 unsigned long demote_size; 3789 unsigned int demote_order; 3790 3791 demote_size = (unsigned long)memparse(buf, NULL); 3792 3793 demote_hstate = size_to_hstate(demote_size); 3794 if (!demote_hstate) 3795 return -EINVAL; 3796 demote_order = demote_hstate->order; 3797 if (demote_order < HUGETLB_PAGE_ORDER) 3798 return -EINVAL; 3799 3800 /* demote order must be smaller than hstate order */ 3801 h = kobj_to_hstate(kobj, NULL); 3802 if (demote_order >= h->order) 3803 return -EINVAL; 3804 3805 /* resize_lock synchronizes access to demote size and writes */ 3806 mutex_lock(&h->resize_lock); 3807 h->demote_order = demote_order; 3808 mutex_unlock(&h->resize_lock); 3809 3810 return count; 3811 } 3812 HSTATE_ATTR(demote_size); 3813 3814 static struct attribute *hstate_attrs[] = { 3815 &nr_hugepages_attr.attr, 3816 &nr_overcommit_hugepages_attr.attr, 3817 &free_hugepages_attr.attr, 3818 &resv_hugepages_attr.attr, 3819 &surplus_hugepages_attr.attr, 3820 #ifdef CONFIG_NUMA 3821 &nr_hugepages_mempolicy_attr.attr, 3822 #endif 3823 NULL, 3824 }; 3825 3826 static const struct attribute_group hstate_attr_group = { 3827 .attrs = hstate_attrs, 3828 }; 3829 3830 static struct attribute *hstate_demote_attrs[] = { 3831 &demote_size_attr.attr, 3832 &demote_attr.attr, 3833 NULL, 3834 }; 3835 3836 static const struct attribute_group hstate_demote_attr_group = { 3837 .attrs = hstate_demote_attrs, 3838 }; 3839 3840 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3841 struct kobject **hstate_kobjs, 3842 const struct attribute_group *hstate_attr_group) 3843 { 3844 int retval; 3845 int hi = hstate_index(h); 3846 3847 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3848 if (!hstate_kobjs[hi]) 3849 return -ENOMEM; 3850 3851 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3852 if (retval) { 3853 kobject_put(hstate_kobjs[hi]); 3854 hstate_kobjs[hi] = NULL; 3855 return retval; 3856 } 3857 3858 if (h->demote_order) { 3859 retval = sysfs_create_group(hstate_kobjs[hi], 3860 &hstate_demote_attr_group); 3861 if (retval) { 3862 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3863 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 3864 kobject_put(hstate_kobjs[hi]); 3865 hstate_kobjs[hi] = NULL; 3866 return retval; 3867 } 3868 } 3869 3870 return 0; 3871 } 3872 3873 #ifdef CONFIG_NUMA 3874 static bool hugetlb_sysfs_initialized __ro_after_init; 3875 3876 /* 3877 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3878 * with node devices in node_devices[] using a parallel array. The array 3879 * index of a node device or _hstate == node id. 3880 * This is here to avoid any static dependency of the node device driver, in 3881 * the base kernel, on the hugetlb module. 3882 */ 3883 struct node_hstate { 3884 struct kobject *hugepages_kobj; 3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3886 }; 3887 static struct node_hstate node_hstates[MAX_NUMNODES]; 3888 3889 /* 3890 * A subset of global hstate attributes for node devices 3891 */ 3892 static struct attribute *per_node_hstate_attrs[] = { 3893 &nr_hugepages_attr.attr, 3894 &free_hugepages_attr.attr, 3895 &surplus_hugepages_attr.attr, 3896 NULL, 3897 }; 3898 3899 static const struct attribute_group per_node_hstate_attr_group = { 3900 .attrs = per_node_hstate_attrs, 3901 }; 3902 3903 /* 3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3905 * Returns node id via non-NULL nidp. 3906 */ 3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3908 { 3909 int nid; 3910 3911 for (nid = 0; nid < nr_node_ids; nid++) { 3912 struct node_hstate *nhs = &node_hstates[nid]; 3913 int i; 3914 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3915 if (nhs->hstate_kobjs[i] == kobj) { 3916 if (nidp) 3917 *nidp = nid; 3918 return &hstates[i]; 3919 } 3920 } 3921 3922 BUG(); 3923 return NULL; 3924 } 3925 3926 /* 3927 * Unregister hstate attributes from a single node device. 3928 * No-op if no hstate attributes attached. 3929 */ 3930 void hugetlb_unregister_node(struct node *node) 3931 { 3932 struct hstate *h; 3933 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3934 3935 if (!nhs->hugepages_kobj) 3936 return; /* no hstate attributes */ 3937 3938 for_each_hstate(h) { 3939 int idx = hstate_index(h); 3940 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 3941 3942 if (!hstate_kobj) 3943 continue; 3944 if (h->demote_order) 3945 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 3946 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 3947 kobject_put(hstate_kobj); 3948 nhs->hstate_kobjs[idx] = NULL; 3949 } 3950 3951 kobject_put(nhs->hugepages_kobj); 3952 nhs->hugepages_kobj = NULL; 3953 } 3954 3955 3956 /* 3957 * Register hstate attributes for a single node device. 3958 * No-op if attributes already registered. 3959 */ 3960 void hugetlb_register_node(struct node *node) 3961 { 3962 struct hstate *h; 3963 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3964 int err; 3965 3966 if (!hugetlb_sysfs_initialized) 3967 return; 3968 3969 if (nhs->hugepages_kobj) 3970 return; /* already allocated */ 3971 3972 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3973 &node->dev.kobj); 3974 if (!nhs->hugepages_kobj) 3975 return; 3976 3977 for_each_hstate(h) { 3978 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3979 nhs->hstate_kobjs, 3980 &per_node_hstate_attr_group); 3981 if (err) { 3982 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3983 h->name, node->dev.id); 3984 hugetlb_unregister_node(node); 3985 break; 3986 } 3987 } 3988 } 3989 3990 /* 3991 * hugetlb init time: register hstate attributes for all registered node 3992 * devices of nodes that have memory. All on-line nodes should have 3993 * registered their associated device by this time. 3994 */ 3995 static void __init hugetlb_register_all_nodes(void) 3996 { 3997 int nid; 3998 3999 for_each_online_node(nid) 4000 hugetlb_register_node(node_devices[nid]); 4001 } 4002 #else /* !CONFIG_NUMA */ 4003 4004 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4005 { 4006 BUG(); 4007 if (nidp) 4008 *nidp = -1; 4009 return NULL; 4010 } 4011 4012 static void hugetlb_register_all_nodes(void) { } 4013 4014 #endif 4015 4016 #ifdef CONFIG_CMA 4017 static void __init hugetlb_cma_check(void); 4018 #else 4019 static inline __init void hugetlb_cma_check(void) 4020 { 4021 } 4022 #endif 4023 4024 static void __init hugetlb_sysfs_init(void) 4025 { 4026 struct hstate *h; 4027 int err; 4028 4029 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4030 if (!hugepages_kobj) 4031 return; 4032 4033 for_each_hstate(h) { 4034 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4035 hstate_kobjs, &hstate_attr_group); 4036 if (err) 4037 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4038 } 4039 4040 #ifdef CONFIG_NUMA 4041 hugetlb_sysfs_initialized = true; 4042 #endif 4043 hugetlb_register_all_nodes(); 4044 } 4045 4046 static int __init hugetlb_init(void) 4047 { 4048 int i; 4049 4050 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4051 __NR_HPAGEFLAGS); 4052 4053 if (!hugepages_supported()) { 4054 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4055 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4056 return 0; 4057 } 4058 4059 /* 4060 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4061 * architectures depend on setup being done here. 4062 */ 4063 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4064 if (!parsed_default_hugepagesz) { 4065 /* 4066 * If we did not parse a default huge page size, set 4067 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4068 * number of huge pages for this default size was implicitly 4069 * specified, set that here as well. 4070 * Note that the implicit setting will overwrite an explicit 4071 * setting. A warning will be printed in this case. 4072 */ 4073 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4074 if (default_hstate_max_huge_pages) { 4075 if (default_hstate.max_huge_pages) { 4076 char buf[32]; 4077 4078 string_get_size(huge_page_size(&default_hstate), 4079 1, STRING_UNITS_2, buf, 32); 4080 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4081 default_hstate.max_huge_pages, buf); 4082 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4083 default_hstate_max_huge_pages); 4084 } 4085 default_hstate.max_huge_pages = 4086 default_hstate_max_huge_pages; 4087 4088 for_each_online_node(i) 4089 default_hstate.max_huge_pages_node[i] = 4090 default_hugepages_in_node[i]; 4091 } 4092 } 4093 4094 hugetlb_cma_check(); 4095 hugetlb_init_hstates(); 4096 gather_bootmem_prealloc(); 4097 report_hugepages(); 4098 4099 hugetlb_sysfs_init(); 4100 hugetlb_cgroup_file_init(); 4101 4102 #ifdef CONFIG_SMP 4103 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4104 #else 4105 num_fault_mutexes = 1; 4106 #endif 4107 hugetlb_fault_mutex_table = 4108 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4109 GFP_KERNEL); 4110 BUG_ON(!hugetlb_fault_mutex_table); 4111 4112 for (i = 0; i < num_fault_mutexes; i++) 4113 mutex_init(&hugetlb_fault_mutex_table[i]); 4114 return 0; 4115 } 4116 subsys_initcall(hugetlb_init); 4117 4118 /* Overwritten by architectures with more huge page sizes */ 4119 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4120 { 4121 return size == HPAGE_SIZE; 4122 } 4123 4124 void __init hugetlb_add_hstate(unsigned int order) 4125 { 4126 struct hstate *h; 4127 unsigned long i; 4128 4129 if (size_to_hstate(PAGE_SIZE << order)) { 4130 return; 4131 } 4132 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4133 BUG_ON(order == 0); 4134 h = &hstates[hugetlb_max_hstate++]; 4135 mutex_init(&h->resize_lock); 4136 h->order = order; 4137 h->mask = ~(huge_page_size(h) - 1); 4138 for (i = 0; i < MAX_NUMNODES; ++i) 4139 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4140 INIT_LIST_HEAD(&h->hugepage_activelist); 4141 h->next_nid_to_alloc = first_memory_node; 4142 h->next_nid_to_free = first_memory_node; 4143 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4144 huge_page_size(h)/SZ_1K); 4145 4146 parsed_hstate = h; 4147 } 4148 4149 bool __init __weak hugetlb_node_alloc_supported(void) 4150 { 4151 return true; 4152 } 4153 4154 static void __init hugepages_clear_pages_in_node(void) 4155 { 4156 if (!hugetlb_max_hstate) { 4157 default_hstate_max_huge_pages = 0; 4158 memset(default_hugepages_in_node, 0, 4159 sizeof(default_hugepages_in_node)); 4160 } else { 4161 parsed_hstate->max_huge_pages = 0; 4162 memset(parsed_hstate->max_huge_pages_node, 0, 4163 sizeof(parsed_hstate->max_huge_pages_node)); 4164 } 4165 } 4166 4167 /* 4168 * hugepages command line processing 4169 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4170 * specification. If not, ignore the hugepages value. hugepages can also 4171 * be the first huge page command line option in which case it implicitly 4172 * specifies the number of huge pages for the default size. 4173 */ 4174 static int __init hugepages_setup(char *s) 4175 { 4176 unsigned long *mhp; 4177 static unsigned long *last_mhp; 4178 int node = NUMA_NO_NODE; 4179 int count; 4180 unsigned long tmp; 4181 char *p = s; 4182 4183 if (!parsed_valid_hugepagesz) { 4184 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4185 parsed_valid_hugepagesz = true; 4186 return 1; 4187 } 4188 4189 /* 4190 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4191 * yet, so this hugepages= parameter goes to the "default hstate". 4192 * Otherwise, it goes with the previously parsed hugepagesz or 4193 * default_hugepagesz. 4194 */ 4195 else if (!hugetlb_max_hstate) 4196 mhp = &default_hstate_max_huge_pages; 4197 else 4198 mhp = &parsed_hstate->max_huge_pages; 4199 4200 if (mhp == last_mhp) { 4201 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4202 return 1; 4203 } 4204 4205 while (*p) { 4206 count = 0; 4207 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4208 goto invalid; 4209 /* Parameter is node format */ 4210 if (p[count] == ':') { 4211 if (!hugetlb_node_alloc_supported()) { 4212 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4213 return 1; 4214 } 4215 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4216 goto invalid; 4217 node = array_index_nospec(tmp, MAX_NUMNODES); 4218 p += count + 1; 4219 /* Parse hugepages */ 4220 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4221 goto invalid; 4222 if (!hugetlb_max_hstate) 4223 default_hugepages_in_node[node] = tmp; 4224 else 4225 parsed_hstate->max_huge_pages_node[node] = tmp; 4226 *mhp += tmp; 4227 /* Go to parse next node*/ 4228 if (p[count] == ',') 4229 p += count + 1; 4230 else 4231 break; 4232 } else { 4233 if (p != s) 4234 goto invalid; 4235 *mhp = tmp; 4236 break; 4237 } 4238 } 4239 4240 /* 4241 * Global state is always initialized later in hugetlb_init. 4242 * But we need to allocate gigantic hstates here early to still 4243 * use the bootmem allocator. 4244 */ 4245 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4246 hugetlb_hstate_alloc_pages(parsed_hstate); 4247 4248 last_mhp = mhp; 4249 4250 return 1; 4251 4252 invalid: 4253 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4254 hugepages_clear_pages_in_node(); 4255 return 1; 4256 } 4257 __setup("hugepages=", hugepages_setup); 4258 4259 /* 4260 * hugepagesz command line processing 4261 * A specific huge page size can only be specified once with hugepagesz. 4262 * hugepagesz is followed by hugepages on the command line. The global 4263 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4264 * hugepagesz argument was valid. 4265 */ 4266 static int __init hugepagesz_setup(char *s) 4267 { 4268 unsigned long size; 4269 struct hstate *h; 4270 4271 parsed_valid_hugepagesz = false; 4272 size = (unsigned long)memparse(s, NULL); 4273 4274 if (!arch_hugetlb_valid_size(size)) { 4275 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4276 return 1; 4277 } 4278 4279 h = size_to_hstate(size); 4280 if (h) { 4281 /* 4282 * hstate for this size already exists. This is normally 4283 * an error, but is allowed if the existing hstate is the 4284 * default hstate. More specifically, it is only allowed if 4285 * the number of huge pages for the default hstate was not 4286 * previously specified. 4287 */ 4288 if (!parsed_default_hugepagesz || h != &default_hstate || 4289 default_hstate.max_huge_pages) { 4290 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4291 return 1; 4292 } 4293 4294 /* 4295 * No need to call hugetlb_add_hstate() as hstate already 4296 * exists. But, do set parsed_hstate so that a following 4297 * hugepages= parameter will be applied to this hstate. 4298 */ 4299 parsed_hstate = h; 4300 parsed_valid_hugepagesz = true; 4301 return 1; 4302 } 4303 4304 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4305 parsed_valid_hugepagesz = true; 4306 return 1; 4307 } 4308 __setup("hugepagesz=", hugepagesz_setup); 4309 4310 /* 4311 * default_hugepagesz command line input 4312 * Only one instance of default_hugepagesz allowed on command line. 4313 */ 4314 static int __init default_hugepagesz_setup(char *s) 4315 { 4316 unsigned long size; 4317 int i; 4318 4319 parsed_valid_hugepagesz = false; 4320 if (parsed_default_hugepagesz) { 4321 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4322 return 1; 4323 } 4324 4325 size = (unsigned long)memparse(s, NULL); 4326 4327 if (!arch_hugetlb_valid_size(size)) { 4328 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4329 return 1; 4330 } 4331 4332 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4333 parsed_valid_hugepagesz = true; 4334 parsed_default_hugepagesz = true; 4335 default_hstate_idx = hstate_index(size_to_hstate(size)); 4336 4337 /* 4338 * The number of default huge pages (for this size) could have been 4339 * specified as the first hugetlb parameter: hugepages=X. If so, 4340 * then default_hstate_max_huge_pages is set. If the default huge 4341 * page size is gigantic (>= MAX_ORDER), then the pages must be 4342 * allocated here from bootmem allocator. 4343 */ 4344 if (default_hstate_max_huge_pages) { 4345 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4346 for_each_online_node(i) 4347 default_hstate.max_huge_pages_node[i] = 4348 default_hugepages_in_node[i]; 4349 if (hstate_is_gigantic(&default_hstate)) 4350 hugetlb_hstate_alloc_pages(&default_hstate); 4351 default_hstate_max_huge_pages = 0; 4352 } 4353 4354 return 1; 4355 } 4356 __setup("default_hugepagesz=", default_hugepagesz_setup); 4357 4358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4359 { 4360 #ifdef CONFIG_NUMA 4361 struct mempolicy *mpol = get_task_policy(current); 4362 4363 /* 4364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4365 * (from policy_nodemask) specifically for hugetlb case 4366 */ 4367 if (mpol->mode == MPOL_BIND && 4368 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4370 return &mpol->nodes; 4371 #endif 4372 return NULL; 4373 } 4374 4375 static unsigned int allowed_mems_nr(struct hstate *h) 4376 { 4377 int node; 4378 unsigned int nr = 0; 4379 nodemask_t *mbind_nodemask; 4380 unsigned int *array = h->free_huge_pages_node; 4381 gfp_t gfp_mask = htlb_alloc_mask(h); 4382 4383 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4384 for_each_node_mask(node, cpuset_current_mems_allowed) { 4385 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4386 nr += array[node]; 4387 } 4388 4389 return nr; 4390 } 4391 4392 #ifdef CONFIG_SYSCTL 4393 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4394 void *buffer, size_t *length, 4395 loff_t *ppos, unsigned long *out) 4396 { 4397 struct ctl_table dup_table; 4398 4399 /* 4400 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4401 * can duplicate the @table and alter the duplicate of it. 4402 */ 4403 dup_table = *table; 4404 dup_table.data = out; 4405 4406 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4407 } 4408 4409 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4410 struct ctl_table *table, int write, 4411 void *buffer, size_t *length, loff_t *ppos) 4412 { 4413 struct hstate *h = &default_hstate; 4414 unsigned long tmp = h->max_huge_pages; 4415 int ret; 4416 4417 if (!hugepages_supported()) 4418 return -EOPNOTSUPP; 4419 4420 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4421 &tmp); 4422 if (ret) 4423 goto out; 4424 4425 if (write) 4426 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4427 NUMA_NO_NODE, tmp, *length); 4428 out: 4429 return ret; 4430 } 4431 4432 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4433 void *buffer, size_t *length, loff_t *ppos) 4434 { 4435 4436 return hugetlb_sysctl_handler_common(false, table, write, 4437 buffer, length, ppos); 4438 } 4439 4440 #ifdef CONFIG_NUMA 4441 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4442 void *buffer, size_t *length, loff_t *ppos) 4443 { 4444 return hugetlb_sysctl_handler_common(true, table, write, 4445 buffer, length, ppos); 4446 } 4447 #endif /* CONFIG_NUMA */ 4448 4449 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4450 void *buffer, size_t *length, loff_t *ppos) 4451 { 4452 struct hstate *h = &default_hstate; 4453 unsigned long tmp; 4454 int ret; 4455 4456 if (!hugepages_supported()) 4457 return -EOPNOTSUPP; 4458 4459 tmp = h->nr_overcommit_huge_pages; 4460 4461 if (write && hstate_is_gigantic(h)) 4462 return -EINVAL; 4463 4464 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4465 &tmp); 4466 if (ret) 4467 goto out; 4468 4469 if (write) { 4470 spin_lock_irq(&hugetlb_lock); 4471 h->nr_overcommit_huge_pages = tmp; 4472 spin_unlock_irq(&hugetlb_lock); 4473 } 4474 out: 4475 return ret; 4476 } 4477 4478 #endif /* CONFIG_SYSCTL */ 4479 4480 void hugetlb_report_meminfo(struct seq_file *m) 4481 { 4482 struct hstate *h; 4483 unsigned long total = 0; 4484 4485 if (!hugepages_supported()) 4486 return; 4487 4488 for_each_hstate(h) { 4489 unsigned long count = h->nr_huge_pages; 4490 4491 total += huge_page_size(h) * count; 4492 4493 if (h == &default_hstate) 4494 seq_printf(m, 4495 "HugePages_Total: %5lu\n" 4496 "HugePages_Free: %5lu\n" 4497 "HugePages_Rsvd: %5lu\n" 4498 "HugePages_Surp: %5lu\n" 4499 "Hugepagesize: %8lu kB\n", 4500 count, 4501 h->free_huge_pages, 4502 h->resv_huge_pages, 4503 h->surplus_huge_pages, 4504 huge_page_size(h) / SZ_1K); 4505 } 4506 4507 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4508 } 4509 4510 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4511 { 4512 struct hstate *h = &default_hstate; 4513 4514 if (!hugepages_supported()) 4515 return 0; 4516 4517 return sysfs_emit_at(buf, len, 4518 "Node %d HugePages_Total: %5u\n" 4519 "Node %d HugePages_Free: %5u\n" 4520 "Node %d HugePages_Surp: %5u\n", 4521 nid, h->nr_huge_pages_node[nid], 4522 nid, h->free_huge_pages_node[nid], 4523 nid, h->surplus_huge_pages_node[nid]); 4524 } 4525 4526 void hugetlb_show_meminfo_node(int nid) 4527 { 4528 struct hstate *h; 4529 4530 if (!hugepages_supported()) 4531 return; 4532 4533 for_each_hstate(h) 4534 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4535 nid, 4536 h->nr_huge_pages_node[nid], 4537 h->free_huge_pages_node[nid], 4538 h->surplus_huge_pages_node[nid], 4539 huge_page_size(h) / SZ_1K); 4540 } 4541 4542 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4543 { 4544 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4545 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4546 } 4547 4548 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4549 unsigned long hugetlb_total_pages(void) 4550 { 4551 struct hstate *h; 4552 unsigned long nr_total_pages = 0; 4553 4554 for_each_hstate(h) 4555 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4556 return nr_total_pages; 4557 } 4558 4559 static int hugetlb_acct_memory(struct hstate *h, long delta) 4560 { 4561 int ret = -ENOMEM; 4562 4563 if (!delta) 4564 return 0; 4565 4566 spin_lock_irq(&hugetlb_lock); 4567 /* 4568 * When cpuset is configured, it breaks the strict hugetlb page 4569 * reservation as the accounting is done on a global variable. Such 4570 * reservation is completely rubbish in the presence of cpuset because 4571 * the reservation is not checked against page availability for the 4572 * current cpuset. Application can still potentially OOM'ed by kernel 4573 * with lack of free htlb page in cpuset that the task is in. 4574 * Attempt to enforce strict accounting with cpuset is almost 4575 * impossible (or too ugly) because cpuset is too fluid that 4576 * task or memory node can be dynamically moved between cpusets. 4577 * 4578 * The change of semantics for shared hugetlb mapping with cpuset is 4579 * undesirable. However, in order to preserve some of the semantics, 4580 * we fall back to check against current free page availability as 4581 * a best attempt and hopefully to minimize the impact of changing 4582 * semantics that cpuset has. 4583 * 4584 * Apart from cpuset, we also have memory policy mechanism that 4585 * also determines from which node the kernel will allocate memory 4586 * in a NUMA system. So similar to cpuset, we also should consider 4587 * the memory policy of the current task. Similar to the description 4588 * above. 4589 */ 4590 if (delta > 0) { 4591 if (gather_surplus_pages(h, delta) < 0) 4592 goto out; 4593 4594 if (delta > allowed_mems_nr(h)) { 4595 return_unused_surplus_pages(h, delta); 4596 goto out; 4597 } 4598 } 4599 4600 ret = 0; 4601 if (delta < 0) 4602 return_unused_surplus_pages(h, (unsigned long) -delta); 4603 4604 out: 4605 spin_unlock_irq(&hugetlb_lock); 4606 return ret; 4607 } 4608 4609 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4610 { 4611 struct resv_map *resv = vma_resv_map(vma); 4612 4613 /* 4614 * HPAGE_RESV_OWNER indicates a private mapping. 4615 * This new VMA should share its siblings reservation map if present. 4616 * The VMA will only ever have a valid reservation map pointer where 4617 * it is being copied for another still existing VMA. As that VMA 4618 * has a reference to the reservation map it cannot disappear until 4619 * after this open call completes. It is therefore safe to take a 4620 * new reference here without additional locking. 4621 */ 4622 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4623 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4624 kref_get(&resv->refs); 4625 } 4626 4627 /* 4628 * vma_lock structure for sharable mappings is vma specific. 4629 * Clear old pointer (if copied via vm_area_dup) and allocate 4630 * new structure. Before clearing, make sure vma_lock is not 4631 * for this vma. 4632 */ 4633 if (vma->vm_flags & VM_MAYSHARE) { 4634 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4635 4636 if (vma_lock) { 4637 if (vma_lock->vma != vma) { 4638 vma->vm_private_data = NULL; 4639 hugetlb_vma_lock_alloc(vma); 4640 } else 4641 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4642 } else 4643 hugetlb_vma_lock_alloc(vma); 4644 } 4645 } 4646 4647 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4648 { 4649 struct hstate *h = hstate_vma(vma); 4650 struct resv_map *resv; 4651 struct hugepage_subpool *spool = subpool_vma(vma); 4652 unsigned long reserve, start, end; 4653 long gbl_reserve; 4654 4655 hugetlb_vma_lock_free(vma); 4656 4657 resv = vma_resv_map(vma); 4658 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4659 return; 4660 4661 start = vma_hugecache_offset(h, vma, vma->vm_start); 4662 end = vma_hugecache_offset(h, vma, vma->vm_end); 4663 4664 reserve = (end - start) - region_count(resv, start, end); 4665 hugetlb_cgroup_uncharge_counter(resv, start, end); 4666 if (reserve) { 4667 /* 4668 * Decrement reserve counts. The global reserve count may be 4669 * adjusted if the subpool has a minimum size. 4670 */ 4671 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4672 hugetlb_acct_memory(h, -gbl_reserve); 4673 } 4674 4675 kref_put(&resv->refs, resv_map_release); 4676 } 4677 4678 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4679 { 4680 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4681 return -EINVAL; 4682 return 0; 4683 } 4684 4685 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4686 { 4687 return huge_page_size(hstate_vma(vma)); 4688 } 4689 4690 /* 4691 * We cannot handle pagefaults against hugetlb pages at all. They cause 4692 * handle_mm_fault() to try to instantiate regular-sized pages in the 4693 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4694 * this far. 4695 */ 4696 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4697 { 4698 BUG(); 4699 return 0; 4700 } 4701 4702 /* 4703 * When a new function is introduced to vm_operations_struct and added 4704 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4705 * This is because under System V memory model, mappings created via 4706 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4707 * their original vm_ops are overwritten with shm_vm_ops. 4708 */ 4709 const struct vm_operations_struct hugetlb_vm_ops = { 4710 .fault = hugetlb_vm_op_fault, 4711 .open = hugetlb_vm_op_open, 4712 .close = hugetlb_vm_op_close, 4713 .may_split = hugetlb_vm_op_split, 4714 .pagesize = hugetlb_vm_op_pagesize, 4715 }; 4716 4717 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4718 int writable) 4719 { 4720 pte_t entry; 4721 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4722 4723 if (writable) { 4724 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4725 vma->vm_page_prot))); 4726 } else { 4727 entry = huge_pte_wrprotect(mk_huge_pte(page, 4728 vma->vm_page_prot)); 4729 } 4730 entry = pte_mkyoung(entry); 4731 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4732 4733 return entry; 4734 } 4735 4736 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4737 unsigned long address, pte_t *ptep) 4738 { 4739 pte_t entry; 4740 4741 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4742 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4743 update_mmu_cache(vma, address, ptep); 4744 } 4745 4746 bool is_hugetlb_entry_migration(pte_t pte) 4747 { 4748 swp_entry_t swp; 4749 4750 if (huge_pte_none(pte) || pte_present(pte)) 4751 return false; 4752 swp = pte_to_swp_entry(pte); 4753 if (is_migration_entry(swp)) 4754 return true; 4755 else 4756 return false; 4757 } 4758 4759 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4760 { 4761 swp_entry_t swp; 4762 4763 if (huge_pte_none(pte) || pte_present(pte)) 4764 return false; 4765 swp = pte_to_swp_entry(pte); 4766 if (is_hwpoison_entry(swp)) 4767 return true; 4768 else 4769 return false; 4770 } 4771 4772 static void 4773 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4774 struct page *new_page) 4775 { 4776 __SetPageUptodate(new_page); 4777 hugepage_add_new_anon_rmap(new_page, vma, addr); 4778 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4779 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4780 ClearHPageRestoreReserve(new_page); 4781 SetHPageMigratable(new_page); 4782 } 4783 4784 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4785 struct vm_area_struct *dst_vma, 4786 struct vm_area_struct *src_vma) 4787 { 4788 pte_t *src_pte, *dst_pte, entry; 4789 struct page *ptepage; 4790 unsigned long addr; 4791 bool cow = is_cow_mapping(src_vma->vm_flags); 4792 struct hstate *h = hstate_vma(src_vma); 4793 unsigned long sz = huge_page_size(h); 4794 unsigned long npages = pages_per_huge_page(h); 4795 struct mmu_notifier_range range; 4796 unsigned long last_addr_mask; 4797 int ret = 0; 4798 4799 if (cow) { 4800 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4801 src_vma->vm_start, 4802 src_vma->vm_end); 4803 mmu_notifier_invalidate_range_start(&range); 4804 mmap_assert_write_locked(src); 4805 raw_write_seqcount_begin(&src->write_protect_seq); 4806 } else { 4807 /* 4808 * For shared mappings the vma lock must be held before 4809 * calling huge_pte_offset in the src vma. Otherwise, the 4810 * returned ptep could go away if part of a shared pmd and 4811 * another thread calls huge_pmd_unshare. 4812 */ 4813 hugetlb_vma_lock_read(src_vma); 4814 } 4815 4816 last_addr_mask = hugetlb_mask_last_page(h); 4817 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4818 spinlock_t *src_ptl, *dst_ptl; 4819 src_pte = huge_pte_offset(src, addr, sz); 4820 if (!src_pte) { 4821 addr |= last_addr_mask; 4822 continue; 4823 } 4824 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4825 if (!dst_pte) { 4826 ret = -ENOMEM; 4827 break; 4828 } 4829 4830 /* 4831 * If the pagetables are shared don't copy or take references. 4832 * 4833 * dst_pte == src_pte is the common case of src/dest sharing. 4834 * However, src could have 'unshared' and dst shares with 4835 * another vma. So page_count of ptep page is checked instead 4836 * to reliably determine whether pte is shared. 4837 */ 4838 if (page_count(virt_to_page(dst_pte)) > 1) { 4839 addr |= last_addr_mask; 4840 continue; 4841 } 4842 4843 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4844 src_ptl = huge_pte_lockptr(h, src, src_pte); 4845 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4846 entry = huge_ptep_get(src_pte); 4847 again: 4848 if (huge_pte_none(entry)) { 4849 /* 4850 * Skip if src entry none. 4851 */ 4852 ; 4853 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4854 bool uffd_wp = huge_pte_uffd_wp(entry); 4855 4856 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4857 entry = huge_pte_clear_uffd_wp(entry); 4858 set_huge_pte_at(dst, addr, dst_pte, entry); 4859 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4860 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4861 bool uffd_wp = huge_pte_uffd_wp(entry); 4862 4863 if (!is_readable_migration_entry(swp_entry) && cow) { 4864 /* 4865 * COW mappings require pages in both 4866 * parent and child to be set to read. 4867 */ 4868 swp_entry = make_readable_migration_entry( 4869 swp_offset(swp_entry)); 4870 entry = swp_entry_to_pte(swp_entry); 4871 if (userfaultfd_wp(src_vma) && uffd_wp) 4872 entry = huge_pte_mkuffd_wp(entry); 4873 set_huge_pte_at(src, addr, src_pte, entry); 4874 } 4875 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4876 entry = huge_pte_clear_uffd_wp(entry); 4877 set_huge_pte_at(dst, addr, dst_pte, entry); 4878 } else if (unlikely(is_pte_marker(entry))) { 4879 /* 4880 * We copy the pte marker only if the dst vma has 4881 * uffd-wp enabled. 4882 */ 4883 if (userfaultfd_wp(dst_vma)) 4884 set_huge_pte_at(dst, addr, dst_pte, entry); 4885 } else { 4886 entry = huge_ptep_get(src_pte); 4887 ptepage = pte_page(entry); 4888 get_page(ptepage); 4889 4890 /* 4891 * Failing to duplicate the anon rmap is a rare case 4892 * where we see pinned hugetlb pages while they're 4893 * prone to COW. We need to do the COW earlier during 4894 * fork. 4895 * 4896 * When pre-allocating the page or copying data, we 4897 * need to be without the pgtable locks since we could 4898 * sleep during the process. 4899 */ 4900 if (!PageAnon(ptepage)) { 4901 page_dup_file_rmap(ptepage, true); 4902 } else if (page_try_dup_anon_rmap(ptepage, true, 4903 src_vma)) { 4904 pte_t src_pte_old = entry; 4905 struct page *new; 4906 4907 spin_unlock(src_ptl); 4908 spin_unlock(dst_ptl); 4909 /* Do not use reserve as it's private owned */ 4910 new = alloc_huge_page(dst_vma, addr, 1); 4911 if (IS_ERR(new)) { 4912 put_page(ptepage); 4913 ret = PTR_ERR(new); 4914 break; 4915 } 4916 copy_user_huge_page(new, ptepage, addr, dst_vma, 4917 npages); 4918 put_page(ptepage); 4919 4920 /* Install the new huge page if src pte stable */ 4921 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4922 src_ptl = huge_pte_lockptr(h, src, src_pte); 4923 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4924 entry = huge_ptep_get(src_pte); 4925 if (!pte_same(src_pte_old, entry)) { 4926 restore_reserve_on_error(h, dst_vma, addr, 4927 new); 4928 put_page(new); 4929 /* huge_ptep of dst_pte won't change as in child */ 4930 goto again; 4931 } 4932 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4933 spin_unlock(src_ptl); 4934 spin_unlock(dst_ptl); 4935 continue; 4936 } 4937 4938 if (cow) { 4939 /* 4940 * No need to notify as we are downgrading page 4941 * table protection not changing it to point 4942 * to a new page. 4943 * 4944 * See Documentation/mm/mmu_notifier.rst 4945 */ 4946 huge_ptep_set_wrprotect(src, addr, src_pte); 4947 entry = huge_pte_wrprotect(entry); 4948 } 4949 4950 set_huge_pte_at(dst, addr, dst_pte, entry); 4951 hugetlb_count_add(npages, dst); 4952 } 4953 spin_unlock(src_ptl); 4954 spin_unlock(dst_ptl); 4955 } 4956 4957 if (cow) { 4958 raw_write_seqcount_end(&src->write_protect_seq); 4959 mmu_notifier_invalidate_range_end(&range); 4960 } else { 4961 hugetlb_vma_unlock_read(src_vma); 4962 } 4963 4964 return ret; 4965 } 4966 4967 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4968 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4969 { 4970 struct hstate *h = hstate_vma(vma); 4971 struct mm_struct *mm = vma->vm_mm; 4972 spinlock_t *src_ptl, *dst_ptl; 4973 pte_t pte; 4974 4975 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4976 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4977 4978 /* 4979 * We don't have to worry about the ordering of src and dst ptlocks 4980 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4981 */ 4982 if (src_ptl != dst_ptl) 4983 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4984 4985 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4986 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4987 4988 if (src_ptl != dst_ptl) 4989 spin_unlock(src_ptl); 4990 spin_unlock(dst_ptl); 4991 } 4992 4993 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4994 struct vm_area_struct *new_vma, 4995 unsigned long old_addr, unsigned long new_addr, 4996 unsigned long len) 4997 { 4998 struct hstate *h = hstate_vma(vma); 4999 struct address_space *mapping = vma->vm_file->f_mapping; 5000 unsigned long sz = huge_page_size(h); 5001 struct mm_struct *mm = vma->vm_mm; 5002 unsigned long old_end = old_addr + len; 5003 unsigned long last_addr_mask; 5004 pte_t *src_pte, *dst_pte; 5005 struct mmu_notifier_range range; 5006 bool shared_pmd = false; 5007 5008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5009 old_end); 5010 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5011 /* 5012 * In case of shared PMDs, we should cover the maximum possible 5013 * range. 5014 */ 5015 flush_cache_range(vma, range.start, range.end); 5016 5017 mmu_notifier_invalidate_range_start(&range); 5018 last_addr_mask = hugetlb_mask_last_page(h); 5019 /* Prevent race with file truncation */ 5020 hugetlb_vma_lock_write(vma); 5021 i_mmap_lock_write(mapping); 5022 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5023 src_pte = huge_pte_offset(mm, old_addr, sz); 5024 if (!src_pte) { 5025 old_addr |= last_addr_mask; 5026 new_addr |= last_addr_mask; 5027 continue; 5028 } 5029 if (huge_pte_none(huge_ptep_get(src_pte))) 5030 continue; 5031 5032 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5033 shared_pmd = true; 5034 old_addr |= last_addr_mask; 5035 new_addr |= last_addr_mask; 5036 continue; 5037 } 5038 5039 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5040 if (!dst_pte) 5041 break; 5042 5043 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5044 } 5045 5046 if (shared_pmd) 5047 flush_tlb_range(vma, range.start, range.end); 5048 else 5049 flush_tlb_range(vma, old_end - len, old_end); 5050 mmu_notifier_invalidate_range_end(&range); 5051 i_mmap_unlock_write(mapping); 5052 hugetlb_vma_unlock_write(vma); 5053 5054 return len + old_addr - old_end; 5055 } 5056 5057 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5058 unsigned long start, unsigned long end, 5059 struct page *ref_page, zap_flags_t zap_flags) 5060 { 5061 struct mm_struct *mm = vma->vm_mm; 5062 unsigned long address; 5063 pte_t *ptep; 5064 pte_t pte; 5065 spinlock_t *ptl; 5066 struct page *page; 5067 struct hstate *h = hstate_vma(vma); 5068 unsigned long sz = huge_page_size(h); 5069 struct mmu_notifier_range range; 5070 unsigned long last_addr_mask; 5071 bool force_flush = false; 5072 5073 WARN_ON(!is_vm_hugetlb_page(vma)); 5074 BUG_ON(start & ~huge_page_mask(h)); 5075 BUG_ON(end & ~huge_page_mask(h)); 5076 5077 /* 5078 * This is a hugetlb vma, all the pte entries should point 5079 * to huge page. 5080 */ 5081 tlb_change_page_size(tlb, sz); 5082 tlb_start_vma(tlb, vma); 5083 5084 /* 5085 * If sharing possible, alert mmu notifiers of worst case. 5086 */ 5087 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5088 end); 5089 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5090 mmu_notifier_invalidate_range_start(&range); 5091 last_addr_mask = hugetlb_mask_last_page(h); 5092 address = start; 5093 for (; address < end; address += sz) { 5094 ptep = huge_pte_offset(mm, address, sz); 5095 if (!ptep) { 5096 address |= last_addr_mask; 5097 continue; 5098 } 5099 5100 ptl = huge_pte_lock(h, mm, ptep); 5101 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5102 spin_unlock(ptl); 5103 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5104 force_flush = true; 5105 address |= last_addr_mask; 5106 continue; 5107 } 5108 5109 pte = huge_ptep_get(ptep); 5110 if (huge_pte_none(pte)) { 5111 spin_unlock(ptl); 5112 continue; 5113 } 5114 5115 /* 5116 * Migrating hugepage or HWPoisoned hugepage is already 5117 * unmapped and its refcount is dropped, so just clear pte here. 5118 */ 5119 if (unlikely(!pte_present(pte))) { 5120 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5121 /* 5122 * If the pte was wr-protected by uffd-wp in any of the 5123 * swap forms, meanwhile the caller does not want to 5124 * drop the uffd-wp bit in this zap, then replace the 5125 * pte with a marker. 5126 */ 5127 if (pte_swp_uffd_wp_any(pte) && 5128 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5129 set_huge_pte_at(mm, address, ptep, 5130 make_pte_marker(PTE_MARKER_UFFD_WP)); 5131 else 5132 #endif 5133 huge_pte_clear(mm, address, ptep, sz); 5134 spin_unlock(ptl); 5135 continue; 5136 } 5137 5138 page = pte_page(pte); 5139 /* 5140 * If a reference page is supplied, it is because a specific 5141 * page is being unmapped, not a range. Ensure the page we 5142 * are about to unmap is the actual page of interest. 5143 */ 5144 if (ref_page) { 5145 if (page != ref_page) { 5146 spin_unlock(ptl); 5147 continue; 5148 } 5149 /* 5150 * Mark the VMA as having unmapped its page so that 5151 * future faults in this VMA will fail rather than 5152 * looking like data was lost 5153 */ 5154 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5155 } 5156 5157 pte = huge_ptep_get_and_clear(mm, address, ptep); 5158 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5159 if (huge_pte_dirty(pte)) 5160 set_page_dirty(page); 5161 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5162 /* Leave a uffd-wp pte marker if needed */ 5163 if (huge_pte_uffd_wp(pte) && 5164 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5165 set_huge_pte_at(mm, address, ptep, 5166 make_pte_marker(PTE_MARKER_UFFD_WP)); 5167 #endif 5168 hugetlb_count_sub(pages_per_huge_page(h), mm); 5169 page_remove_rmap(page, vma, true); 5170 5171 spin_unlock(ptl); 5172 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5173 /* 5174 * Bail out after unmapping reference page if supplied 5175 */ 5176 if (ref_page) 5177 break; 5178 } 5179 mmu_notifier_invalidate_range_end(&range); 5180 tlb_end_vma(tlb, vma); 5181 5182 /* 5183 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5184 * could defer the flush until now, since by holding i_mmap_rwsem we 5185 * guaranteed that the last refernece would not be dropped. But we must 5186 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5187 * dropped and the last reference to the shared PMDs page might be 5188 * dropped as well. 5189 * 5190 * In theory we could defer the freeing of the PMD pages as well, but 5191 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5192 * detect sharing, so we cannot defer the release of the page either. 5193 * Instead, do flush now. 5194 */ 5195 if (force_flush) 5196 tlb_flush_mmu_tlbonly(tlb); 5197 } 5198 5199 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5200 struct vm_area_struct *vma, unsigned long start, 5201 unsigned long end, struct page *ref_page, 5202 zap_flags_t zap_flags) 5203 { 5204 hugetlb_vma_lock_write(vma); 5205 i_mmap_lock_write(vma->vm_file->f_mapping); 5206 5207 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5208 5209 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5210 /* 5211 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5212 * When the vma_lock is freed, this makes the vma ineligible 5213 * for pmd sharing. And, i_mmap_rwsem is required to set up 5214 * pmd sharing. This is important as page tables for this 5215 * unmapped range will be asynchrously deleted. If the page 5216 * tables are shared, there will be issues when accessed by 5217 * someone else. 5218 */ 5219 __hugetlb_vma_unlock_write_free(vma); 5220 i_mmap_unlock_write(vma->vm_file->f_mapping); 5221 } else { 5222 i_mmap_unlock_write(vma->vm_file->f_mapping); 5223 hugetlb_vma_unlock_write(vma); 5224 } 5225 } 5226 5227 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5228 unsigned long end, struct page *ref_page, 5229 zap_flags_t zap_flags) 5230 { 5231 struct mmu_gather tlb; 5232 5233 tlb_gather_mmu(&tlb, vma->vm_mm); 5234 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5235 tlb_finish_mmu(&tlb); 5236 } 5237 5238 /* 5239 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5240 * mapping it owns the reserve page for. The intention is to unmap the page 5241 * from other VMAs and let the children be SIGKILLed if they are faulting the 5242 * same region. 5243 */ 5244 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5245 struct page *page, unsigned long address) 5246 { 5247 struct hstate *h = hstate_vma(vma); 5248 struct vm_area_struct *iter_vma; 5249 struct address_space *mapping; 5250 pgoff_t pgoff; 5251 5252 /* 5253 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5254 * from page cache lookup which is in HPAGE_SIZE units. 5255 */ 5256 address = address & huge_page_mask(h); 5257 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5258 vma->vm_pgoff; 5259 mapping = vma->vm_file->f_mapping; 5260 5261 /* 5262 * Take the mapping lock for the duration of the table walk. As 5263 * this mapping should be shared between all the VMAs, 5264 * __unmap_hugepage_range() is called as the lock is already held 5265 */ 5266 i_mmap_lock_write(mapping); 5267 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5268 /* Do not unmap the current VMA */ 5269 if (iter_vma == vma) 5270 continue; 5271 5272 /* 5273 * Shared VMAs have their own reserves and do not affect 5274 * MAP_PRIVATE accounting but it is possible that a shared 5275 * VMA is using the same page so check and skip such VMAs. 5276 */ 5277 if (iter_vma->vm_flags & VM_MAYSHARE) 5278 continue; 5279 5280 /* 5281 * Unmap the page from other VMAs without their own reserves. 5282 * They get marked to be SIGKILLed if they fault in these 5283 * areas. This is because a future no-page fault on this VMA 5284 * could insert a zeroed page instead of the data existing 5285 * from the time of fork. This would look like data corruption 5286 */ 5287 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5288 unmap_hugepage_range(iter_vma, address, 5289 address + huge_page_size(h), page, 0); 5290 } 5291 i_mmap_unlock_write(mapping); 5292 } 5293 5294 /* 5295 * hugetlb_wp() should be called with page lock of the original hugepage held. 5296 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5297 * cannot race with other handlers or page migration. 5298 * Keep the pte_same checks anyway to make transition from the mutex easier. 5299 */ 5300 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5301 unsigned long address, pte_t *ptep, unsigned int flags, 5302 struct page *pagecache_page, spinlock_t *ptl) 5303 { 5304 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5305 pte_t pte; 5306 struct hstate *h = hstate_vma(vma); 5307 struct page *old_page, *new_page; 5308 int outside_reserve = 0; 5309 vm_fault_t ret = 0; 5310 unsigned long haddr = address & huge_page_mask(h); 5311 struct mmu_notifier_range range; 5312 5313 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5314 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5315 5316 /* 5317 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5318 * PTE mapped R/O such as maybe_mkwrite() would do. 5319 */ 5320 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5321 return VM_FAULT_SIGSEGV; 5322 5323 /* Let's take out MAP_SHARED mappings first. */ 5324 if (vma->vm_flags & VM_MAYSHARE) { 5325 if (unlikely(unshare)) 5326 return 0; 5327 set_huge_ptep_writable(vma, haddr, ptep); 5328 return 0; 5329 } 5330 5331 pte = huge_ptep_get(ptep); 5332 old_page = pte_page(pte); 5333 5334 delayacct_wpcopy_start(); 5335 5336 retry_avoidcopy: 5337 /* 5338 * If no-one else is actually using this page, we're the exclusive 5339 * owner and can reuse this page. 5340 */ 5341 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5342 if (!PageAnonExclusive(old_page)) 5343 page_move_anon_rmap(old_page, vma); 5344 if (likely(!unshare)) 5345 set_huge_ptep_writable(vma, haddr, ptep); 5346 5347 delayacct_wpcopy_end(); 5348 return 0; 5349 } 5350 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5351 old_page); 5352 5353 /* 5354 * If the process that created a MAP_PRIVATE mapping is about to 5355 * perform a COW due to a shared page count, attempt to satisfy 5356 * the allocation without using the existing reserves. The pagecache 5357 * page is used to determine if the reserve at this address was 5358 * consumed or not. If reserves were used, a partial faulted mapping 5359 * at the time of fork() could consume its reserves on COW instead 5360 * of the full address range. 5361 */ 5362 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5363 old_page != pagecache_page) 5364 outside_reserve = 1; 5365 5366 get_page(old_page); 5367 5368 /* 5369 * Drop page table lock as buddy allocator may be called. It will 5370 * be acquired again before returning to the caller, as expected. 5371 */ 5372 spin_unlock(ptl); 5373 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5374 5375 if (IS_ERR(new_page)) { 5376 /* 5377 * If a process owning a MAP_PRIVATE mapping fails to COW, 5378 * it is due to references held by a child and an insufficient 5379 * huge page pool. To guarantee the original mappers 5380 * reliability, unmap the page from child processes. The child 5381 * may get SIGKILLed if it later faults. 5382 */ 5383 if (outside_reserve) { 5384 struct address_space *mapping = vma->vm_file->f_mapping; 5385 pgoff_t idx; 5386 u32 hash; 5387 5388 put_page(old_page); 5389 /* 5390 * Drop hugetlb_fault_mutex and vma_lock before 5391 * unmapping. unmapping needs to hold vma_lock 5392 * in write mode. Dropping vma_lock in read mode 5393 * here is OK as COW mappings do not interact with 5394 * PMD sharing. 5395 * 5396 * Reacquire both after unmap operation. 5397 */ 5398 idx = vma_hugecache_offset(h, vma, haddr); 5399 hash = hugetlb_fault_mutex_hash(mapping, idx); 5400 hugetlb_vma_unlock_read(vma); 5401 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5402 5403 unmap_ref_private(mm, vma, old_page, haddr); 5404 5405 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5406 hugetlb_vma_lock_read(vma); 5407 spin_lock(ptl); 5408 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5409 if (likely(ptep && 5410 pte_same(huge_ptep_get(ptep), pte))) 5411 goto retry_avoidcopy; 5412 /* 5413 * race occurs while re-acquiring page table 5414 * lock, and our job is done. 5415 */ 5416 delayacct_wpcopy_end(); 5417 return 0; 5418 } 5419 5420 ret = vmf_error(PTR_ERR(new_page)); 5421 goto out_release_old; 5422 } 5423 5424 /* 5425 * When the original hugepage is shared one, it does not have 5426 * anon_vma prepared. 5427 */ 5428 if (unlikely(anon_vma_prepare(vma))) { 5429 ret = VM_FAULT_OOM; 5430 goto out_release_all; 5431 } 5432 5433 copy_user_huge_page(new_page, old_page, address, vma, 5434 pages_per_huge_page(h)); 5435 __SetPageUptodate(new_page); 5436 5437 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5438 haddr + huge_page_size(h)); 5439 mmu_notifier_invalidate_range_start(&range); 5440 5441 /* 5442 * Retake the page table lock to check for racing updates 5443 * before the page tables are altered 5444 */ 5445 spin_lock(ptl); 5446 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5447 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5448 ClearHPageRestoreReserve(new_page); 5449 5450 /* Break COW or unshare */ 5451 huge_ptep_clear_flush(vma, haddr, ptep); 5452 mmu_notifier_invalidate_range(mm, range.start, range.end); 5453 page_remove_rmap(old_page, vma, true); 5454 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5455 set_huge_pte_at(mm, haddr, ptep, 5456 make_huge_pte(vma, new_page, !unshare)); 5457 SetHPageMigratable(new_page); 5458 /* Make the old page be freed below */ 5459 new_page = old_page; 5460 } 5461 spin_unlock(ptl); 5462 mmu_notifier_invalidate_range_end(&range); 5463 out_release_all: 5464 /* 5465 * No restore in case of successful pagetable update (Break COW or 5466 * unshare) 5467 */ 5468 if (new_page != old_page) 5469 restore_reserve_on_error(h, vma, haddr, new_page); 5470 put_page(new_page); 5471 out_release_old: 5472 put_page(old_page); 5473 5474 spin_lock(ptl); /* Caller expects lock to be held */ 5475 5476 delayacct_wpcopy_end(); 5477 return ret; 5478 } 5479 5480 /* 5481 * Return whether there is a pagecache page to back given address within VMA. 5482 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5483 */ 5484 static bool hugetlbfs_pagecache_present(struct hstate *h, 5485 struct vm_area_struct *vma, unsigned long address) 5486 { 5487 struct address_space *mapping; 5488 pgoff_t idx; 5489 struct page *page; 5490 5491 mapping = vma->vm_file->f_mapping; 5492 idx = vma_hugecache_offset(h, vma, address); 5493 5494 page = find_get_page(mapping, idx); 5495 if (page) 5496 put_page(page); 5497 return page != NULL; 5498 } 5499 5500 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5501 pgoff_t idx) 5502 { 5503 struct folio *folio = page_folio(page); 5504 struct inode *inode = mapping->host; 5505 struct hstate *h = hstate_inode(inode); 5506 int err; 5507 5508 __folio_set_locked(folio); 5509 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5510 5511 if (unlikely(err)) { 5512 __folio_clear_locked(folio); 5513 return err; 5514 } 5515 ClearHPageRestoreReserve(page); 5516 5517 /* 5518 * mark folio dirty so that it will not be removed from cache/file 5519 * by non-hugetlbfs specific code paths. 5520 */ 5521 folio_mark_dirty(folio); 5522 5523 spin_lock(&inode->i_lock); 5524 inode->i_blocks += blocks_per_huge_page(h); 5525 spin_unlock(&inode->i_lock); 5526 return 0; 5527 } 5528 5529 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5530 struct address_space *mapping, 5531 pgoff_t idx, 5532 unsigned int flags, 5533 unsigned long haddr, 5534 unsigned long addr, 5535 unsigned long reason) 5536 { 5537 u32 hash; 5538 struct vm_fault vmf = { 5539 .vma = vma, 5540 .address = haddr, 5541 .real_address = addr, 5542 .flags = flags, 5543 5544 /* 5545 * Hard to debug if it ends up being 5546 * used by a callee that assumes 5547 * something about the other 5548 * uninitialized fields... same as in 5549 * memory.c 5550 */ 5551 }; 5552 5553 /* 5554 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5555 * userfault. Also mmap_lock could be dropped due to handling 5556 * userfault, any vma operation should be careful from here. 5557 */ 5558 hugetlb_vma_unlock_read(vma); 5559 hash = hugetlb_fault_mutex_hash(mapping, idx); 5560 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5561 return handle_userfault(&vmf, reason); 5562 } 5563 5564 /* 5565 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5566 * false if pte changed or is changing. 5567 */ 5568 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5569 pte_t *ptep, pte_t old_pte) 5570 { 5571 spinlock_t *ptl; 5572 bool same; 5573 5574 ptl = huge_pte_lock(h, mm, ptep); 5575 same = pte_same(huge_ptep_get(ptep), old_pte); 5576 spin_unlock(ptl); 5577 5578 return same; 5579 } 5580 5581 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5582 struct vm_area_struct *vma, 5583 struct address_space *mapping, pgoff_t idx, 5584 unsigned long address, pte_t *ptep, 5585 pte_t old_pte, unsigned int flags) 5586 { 5587 struct hstate *h = hstate_vma(vma); 5588 vm_fault_t ret = VM_FAULT_SIGBUS; 5589 int anon_rmap = 0; 5590 unsigned long size; 5591 struct page *page; 5592 pte_t new_pte; 5593 spinlock_t *ptl; 5594 unsigned long haddr = address & huge_page_mask(h); 5595 bool new_page, new_pagecache_page = false; 5596 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5597 5598 /* 5599 * Currently, we are forced to kill the process in the event the 5600 * original mapper has unmapped pages from the child due to a failed 5601 * COW/unsharing. Warn that such a situation has occurred as it may not 5602 * be obvious. 5603 */ 5604 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5605 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5606 current->pid); 5607 goto out; 5608 } 5609 5610 /* 5611 * Use page lock to guard against racing truncation 5612 * before we get page_table_lock. 5613 */ 5614 new_page = false; 5615 page = find_lock_page(mapping, idx); 5616 if (!page) { 5617 size = i_size_read(mapping->host) >> huge_page_shift(h); 5618 if (idx >= size) 5619 goto out; 5620 /* Check for page in userfault range */ 5621 if (userfaultfd_missing(vma)) { 5622 /* 5623 * Since hugetlb_no_page() was examining pte 5624 * without pgtable lock, we need to re-test under 5625 * lock because the pte may not be stable and could 5626 * have changed from under us. Try to detect 5627 * either changed or during-changing ptes and retry 5628 * properly when needed. 5629 * 5630 * Note that userfaultfd is actually fine with 5631 * false positives (e.g. caused by pte changed), 5632 * but not wrong logical events (e.g. caused by 5633 * reading a pte during changing). The latter can 5634 * confuse the userspace, so the strictness is very 5635 * much preferred. E.g., MISSING event should 5636 * never happen on the page after UFFDIO_COPY has 5637 * correctly installed the page and returned. 5638 */ 5639 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5640 ret = 0; 5641 goto out; 5642 } 5643 5644 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5645 haddr, address, 5646 VM_UFFD_MISSING); 5647 } 5648 5649 page = alloc_huge_page(vma, haddr, 0); 5650 if (IS_ERR(page)) { 5651 /* 5652 * Returning error will result in faulting task being 5653 * sent SIGBUS. The hugetlb fault mutex prevents two 5654 * tasks from racing to fault in the same page which 5655 * could result in false unable to allocate errors. 5656 * Page migration does not take the fault mutex, but 5657 * does a clear then write of pte's under page table 5658 * lock. Page fault code could race with migration, 5659 * notice the clear pte and try to allocate a page 5660 * here. Before returning error, get ptl and make 5661 * sure there really is no pte entry. 5662 */ 5663 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5664 ret = vmf_error(PTR_ERR(page)); 5665 else 5666 ret = 0; 5667 goto out; 5668 } 5669 clear_huge_page(page, address, pages_per_huge_page(h)); 5670 __SetPageUptodate(page); 5671 new_page = true; 5672 5673 if (vma->vm_flags & VM_MAYSHARE) { 5674 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5675 if (err) { 5676 /* 5677 * err can't be -EEXIST which implies someone 5678 * else consumed the reservation since hugetlb 5679 * fault mutex is held when add a hugetlb page 5680 * to the page cache. So it's safe to call 5681 * restore_reserve_on_error() here. 5682 */ 5683 restore_reserve_on_error(h, vma, haddr, page); 5684 put_page(page); 5685 goto out; 5686 } 5687 new_pagecache_page = true; 5688 } else { 5689 lock_page(page); 5690 if (unlikely(anon_vma_prepare(vma))) { 5691 ret = VM_FAULT_OOM; 5692 goto backout_unlocked; 5693 } 5694 anon_rmap = 1; 5695 } 5696 } else { 5697 /* 5698 * If memory error occurs between mmap() and fault, some process 5699 * don't have hwpoisoned swap entry for errored virtual address. 5700 * So we need to block hugepage fault by PG_hwpoison bit check. 5701 */ 5702 if (unlikely(PageHWPoison(page))) { 5703 ret = VM_FAULT_HWPOISON_LARGE | 5704 VM_FAULT_SET_HINDEX(hstate_index(h)); 5705 goto backout_unlocked; 5706 } 5707 5708 /* Check for page in userfault range. */ 5709 if (userfaultfd_minor(vma)) { 5710 unlock_page(page); 5711 put_page(page); 5712 /* See comment in userfaultfd_missing() block above */ 5713 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5714 ret = 0; 5715 goto out; 5716 } 5717 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5718 haddr, address, 5719 VM_UFFD_MINOR); 5720 } 5721 } 5722 5723 /* 5724 * If we are going to COW a private mapping later, we examine the 5725 * pending reservations for this page now. This will ensure that 5726 * any allocations necessary to record that reservation occur outside 5727 * the spinlock. 5728 */ 5729 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5730 if (vma_needs_reservation(h, vma, haddr) < 0) { 5731 ret = VM_FAULT_OOM; 5732 goto backout_unlocked; 5733 } 5734 /* Just decrements count, does not deallocate */ 5735 vma_end_reservation(h, vma, haddr); 5736 } 5737 5738 ptl = huge_pte_lock(h, mm, ptep); 5739 ret = 0; 5740 /* If pte changed from under us, retry */ 5741 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5742 goto backout; 5743 5744 if (anon_rmap) { 5745 ClearHPageRestoreReserve(page); 5746 hugepage_add_new_anon_rmap(page, vma, haddr); 5747 } else 5748 page_dup_file_rmap(page, true); 5749 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5750 && (vma->vm_flags & VM_SHARED))); 5751 /* 5752 * If this pte was previously wr-protected, keep it wr-protected even 5753 * if populated. 5754 */ 5755 if (unlikely(pte_marker_uffd_wp(old_pte))) 5756 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5757 set_huge_pte_at(mm, haddr, ptep, new_pte); 5758 5759 hugetlb_count_add(pages_per_huge_page(h), mm); 5760 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5761 /* Optimization, do the COW without a second fault */ 5762 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5763 } 5764 5765 spin_unlock(ptl); 5766 5767 /* 5768 * Only set HPageMigratable in newly allocated pages. Existing pages 5769 * found in the pagecache may not have HPageMigratableset if they have 5770 * been isolated for migration. 5771 */ 5772 if (new_page) 5773 SetHPageMigratable(page); 5774 5775 unlock_page(page); 5776 out: 5777 hugetlb_vma_unlock_read(vma); 5778 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5779 return ret; 5780 5781 backout: 5782 spin_unlock(ptl); 5783 backout_unlocked: 5784 if (new_page && !new_pagecache_page) 5785 restore_reserve_on_error(h, vma, haddr, page); 5786 5787 unlock_page(page); 5788 put_page(page); 5789 goto out; 5790 } 5791 5792 #ifdef CONFIG_SMP 5793 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5794 { 5795 unsigned long key[2]; 5796 u32 hash; 5797 5798 key[0] = (unsigned long) mapping; 5799 key[1] = idx; 5800 5801 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5802 5803 return hash & (num_fault_mutexes - 1); 5804 } 5805 #else 5806 /* 5807 * For uniprocessor systems we always use a single mutex, so just 5808 * return 0 and avoid the hashing overhead. 5809 */ 5810 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5811 { 5812 return 0; 5813 } 5814 #endif 5815 5816 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5817 unsigned long address, unsigned int flags) 5818 { 5819 pte_t *ptep, entry; 5820 spinlock_t *ptl; 5821 vm_fault_t ret; 5822 u32 hash; 5823 pgoff_t idx; 5824 struct page *page = NULL; 5825 struct page *pagecache_page = NULL; 5826 struct hstate *h = hstate_vma(vma); 5827 struct address_space *mapping; 5828 int need_wait_lock = 0; 5829 unsigned long haddr = address & huge_page_mask(h); 5830 5831 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5832 if (ptep) { 5833 /* 5834 * Since we hold no locks, ptep could be stale. That is 5835 * OK as we are only making decisions based on content and 5836 * not actually modifying content here. 5837 */ 5838 entry = huge_ptep_get(ptep); 5839 if (unlikely(is_hugetlb_entry_migration(entry))) { 5840 migration_entry_wait_huge(vma, ptep); 5841 return 0; 5842 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5843 return VM_FAULT_HWPOISON_LARGE | 5844 VM_FAULT_SET_HINDEX(hstate_index(h)); 5845 } 5846 5847 /* 5848 * Serialize hugepage allocation and instantiation, so that we don't 5849 * get spurious allocation failures if two CPUs race to instantiate 5850 * the same page in the page cache. 5851 */ 5852 mapping = vma->vm_file->f_mapping; 5853 idx = vma_hugecache_offset(h, vma, haddr); 5854 hash = hugetlb_fault_mutex_hash(mapping, idx); 5855 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5856 5857 /* 5858 * Acquire vma lock before calling huge_pte_alloc and hold 5859 * until finished with ptep. This prevents huge_pmd_unshare from 5860 * being called elsewhere and making the ptep no longer valid. 5861 * 5862 * ptep could have already be assigned via huge_pte_offset. That 5863 * is OK, as huge_pte_alloc will return the same value unless 5864 * something has changed. 5865 */ 5866 hugetlb_vma_lock_read(vma); 5867 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5868 if (!ptep) { 5869 hugetlb_vma_unlock_read(vma); 5870 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5871 return VM_FAULT_OOM; 5872 } 5873 5874 entry = huge_ptep_get(ptep); 5875 /* PTE markers should be handled the same way as none pte */ 5876 if (huge_pte_none_mostly(entry)) 5877 /* 5878 * hugetlb_no_page will drop vma lock and hugetlb fault 5879 * mutex internally, which make us return immediately. 5880 */ 5881 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5882 entry, flags); 5883 5884 ret = 0; 5885 5886 /* 5887 * entry could be a migration/hwpoison entry at this point, so this 5888 * check prevents the kernel from going below assuming that we have 5889 * an active hugepage in pagecache. This goto expects the 2nd page 5890 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5891 * properly handle it. 5892 */ 5893 if (!pte_present(entry)) 5894 goto out_mutex; 5895 5896 /* 5897 * If we are going to COW/unshare the mapping later, we examine the 5898 * pending reservations for this page now. This will ensure that any 5899 * allocations necessary to record that reservation occur outside the 5900 * spinlock. Also lookup the pagecache page now as it is used to 5901 * determine if a reservation has been consumed. 5902 */ 5903 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5904 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5905 if (vma_needs_reservation(h, vma, haddr) < 0) { 5906 ret = VM_FAULT_OOM; 5907 goto out_mutex; 5908 } 5909 /* Just decrements count, does not deallocate */ 5910 vma_end_reservation(h, vma, haddr); 5911 5912 pagecache_page = find_lock_page(mapping, idx); 5913 } 5914 5915 ptl = huge_pte_lock(h, mm, ptep); 5916 5917 /* Check for a racing update before calling hugetlb_wp() */ 5918 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5919 goto out_ptl; 5920 5921 /* Handle userfault-wp first, before trying to lock more pages */ 5922 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5923 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5924 struct vm_fault vmf = { 5925 .vma = vma, 5926 .address = haddr, 5927 .real_address = address, 5928 .flags = flags, 5929 }; 5930 5931 spin_unlock(ptl); 5932 if (pagecache_page) { 5933 unlock_page(pagecache_page); 5934 put_page(pagecache_page); 5935 } 5936 hugetlb_vma_unlock_read(vma); 5937 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5938 return handle_userfault(&vmf, VM_UFFD_WP); 5939 } 5940 5941 /* 5942 * hugetlb_wp() requires page locks of pte_page(entry) and 5943 * pagecache_page, so here we need take the former one 5944 * when page != pagecache_page or !pagecache_page. 5945 */ 5946 page = pte_page(entry); 5947 if (page != pagecache_page) 5948 if (!trylock_page(page)) { 5949 need_wait_lock = 1; 5950 goto out_ptl; 5951 } 5952 5953 get_page(page); 5954 5955 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5956 if (!huge_pte_write(entry)) { 5957 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5958 pagecache_page, ptl); 5959 goto out_put_page; 5960 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5961 entry = huge_pte_mkdirty(entry); 5962 } 5963 } 5964 entry = pte_mkyoung(entry); 5965 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5966 flags & FAULT_FLAG_WRITE)) 5967 update_mmu_cache(vma, haddr, ptep); 5968 out_put_page: 5969 if (page != pagecache_page) 5970 unlock_page(page); 5971 put_page(page); 5972 out_ptl: 5973 spin_unlock(ptl); 5974 5975 if (pagecache_page) { 5976 unlock_page(pagecache_page); 5977 put_page(pagecache_page); 5978 } 5979 out_mutex: 5980 hugetlb_vma_unlock_read(vma); 5981 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5982 /* 5983 * Generally it's safe to hold refcount during waiting page lock. But 5984 * here we just wait to defer the next page fault to avoid busy loop and 5985 * the page is not used after unlocked before returning from the current 5986 * page fault. So we are safe from accessing freed page, even if we wait 5987 * here without taking refcount. 5988 */ 5989 if (need_wait_lock) 5990 wait_on_page_locked(page); 5991 return ret; 5992 } 5993 5994 #ifdef CONFIG_USERFAULTFD 5995 /* 5996 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5997 * modifications for huge pages. 5998 */ 5999 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 6000 pte_t *dst_pte, 6001 struct vm_area_struct *dst_vma, 6002 unsigned long dst_addr, 6003 unsigned long src_addr, 6004 enum mcopy_atomic_mode mode, 6005 struct page **pagep, 6006 bool wp_copy) 6007 { 6008 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6009 struct hstate *h = hstate_vma(dst_vma); 6010 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6011 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6012 unsigned long size; 6013 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6014 pte_t _dst_pte; 6015 spinlock_t *ptl; 6016 int ret = -ENOMEM; 6017 struct page *page; 6018 int writable; 6019 bool page_in_pagecache = false; 6020 6021 if (is_continue) { 6022 ret = -EFAULT; 6023 page = find_lock_page(mapping, idx); 6024 if (!page) 6025 goto out; 6026 page_in_pagecache = true; 6027 } else if (!*pagep) { 6028 /* If a page already exists, then it's UFFDIO_COPY for 6029 * a non-missing case. Return -EEXIST. 6030 */ 6031 if (vm_shared && 6032 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6033 ret = -EEXIST; 6034 goto out; 6035 } 6036 6037 page = alloc_huge_page(dst_vma, dst_addr, 0); 6038 if (IS_ERR(page)) { 6039 ret = -ENOMEM; 6040 goto out; 6041 } 6042 6043 ret = copy_huge_page_from_user(page, 6044 (const void __user *) src_addr, 6045 pages_per_huge_page(h), false); 6046 6047 /* fallback to copy_from_user outside mmap_lock */ 6048 if (unlikely(ret)) { 6049 ret = -ENOENT; 6050 /* Free the allocated page which may have 6051 * consumed a reservation. 6052 */ 6053 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6054 put_page(page); 6055 6056 /* Allocate a temporary page to hold the copied 6057 * contents. 6058 */ 6059 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6060 if (!page) { 6061 ret = -ENOMEM; 6062 goto out; 6063 } 6064 *pagep = page; 6065 /* Set the outparam pagep and return to the caller to 6066 * copy the contents outside the lock. Don't free the 6067 * page. 6068 */ 6069 goto out; 6070 } 6071 } else { 6072 if (vm_shared && 6073 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6074 put_page(*pagep); 6075 ret = -EEXIST; 6076 *pagep = NULL; 6077 goto out; 6078 } 6079 6080 page = alloc_huge_page(dst_vma, dst_addr, 0); 6081 if (IS_ERR(page)) { 6082 put_page(*pagep); 6083 ret = -ENOMEM; 6084 *pagep = NULL; 6085 goto out; 6086 } 6087 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6088 pages_per_huge_page(h)); 6089 put_page(*pagep); 6090 *pagep = NULL; 6091 } 6092 6093 /* 6094 * The memory barrier inside __SetPageUptodate makes sure that 6095 * preceding stores to the page contents become visible before 6096 * the set_pte_at() write. 6097 */ 6098 __SetPageUptodate(page); 6099 6100 /* Add shared, newly allocated pages to the page cache. */ 6101 if (vm_shared && !is_continue) { 6102 size = i_size_read(mapping->host) >> huge_page_shift(h); 6103 ret = -EFAULT; 6104 if (idx >= size) 6105 goto out_release_nounlock; 6106 6107 /* 6108 * Serialization between remove_inode_hugepages() and 6109 * hugetlb_add_to_page_cache() below happens through the 6110 * hugetlb_fault_mutex_table that here must be hold by 6111 * the caller. 6112 */ 6113 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6114 if (ret) 6115 goto out_release_nounlock; 6116 page_in_pagecache = true; 6117 } 6118 6119 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6120 6121 ret = -EIO; 6122 if (PageHWPoison(page)) 6123 goto out_release_unlock; 6124 6125 /* 6126 * We allow to overwrite a pte marker: consider when both MISSING|WP 6127 * registered, we firstly wr-protect a none pte which has no page cache 6128 * page backing it, then access the page. 6129 */ 6130 ret = -EEXIST; 6131 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6132 goto out_release_unlock; 6133 6134 if (page_in_pagecache) { 6135 page_dup_file_rmap(page, true); 6136 } else { 6137 ClearHPageRestoreReserve(page); 6138 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6139 } 6140 6141 /* 6142 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6143 * with wp flag set, don't set pte write bit. 6144 */ 6145 if (wp_copy || (is_continue && !vm_shared)) 6146 writable = 0; 6147 else 6148 writable = dst_vma->vm_flags & VM_WRITE; 6149 6150 _dst_pte = make_huge_pte(dst_vma, page, writable); 6151 /* 6152 * Always mark UFFDIO_COPY page dirty; note that this may not be 6153 * extremely important for hugetlbfs for now since swapping is not 6154 * supported, but we should still be clear in that this page cannot be 6155 * thrown away at will, even if write bit not set. 6156 */ 6157 _dst_pte = huge_pte_mkdirty(_dst_pte); 6158 _dst_pte = pte_mkyoung(_dst_pte); 6159 6160 if (wp_copy) 6161 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6162 6163 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6164 6165 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6166 6167 /* No need to invalidate - it was non-present before */ 6168 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6169 6170 spin_unlock(ptl); 6171 if (!is_continue) 6172 SetHPageMigratable(page); 6173 if (vm_shared || is_continue) 6174 unlock_page(page); 6175 ret = 0; 6176 out: 6177 return ret; 6178 out_release_unlock: 6179 spin_unlock(ptl); 6180 if (vm_shared || is_continue) 6181 unlock_page(page); 6182 out_release_nounlock: 6183 if (!page_in_pagecache) 6184 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6185 put_page(page); 6186 goto out; 6187 } 6188 #endif /* CONFIG_USERFAULTFD */ 6189 6190 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6191 int refs, struct page **pages, 6192 struct vm_area_struct **vmas) 6193 { 6194 int nr; 6195 6196 for (nr = 0; nr < refs; nr++) { 6197 if (likely(pages)) 6198 pages[nr] = nth_page(page, nr); 6199 if (vmas) 6200 vmas[nr] = vma; 6201 } 6202 } 6203 6204 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6205 bool *unshare) 6206 { 6207 pte_t pteval = huge_ptep_get(pte); 6208 6209 *unshare = false; 6210 if (is_swap_pte(pteval)) 6211 return true; 6212 if (huge_pte_write(pteval)) 6213 return false; 6214 if (flags & FOLL_WRITE) 6215 return true; 6216 if (gup_must_unshare(flags, pte_page(pteval))) { 6217 *unshare = true; 6218 return true; 6219 } 6220 return false; 6221 } 6222 6223 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6224 struct page **pages, struct vm_area_struct **vmas, 6225 unsigned long *position, unsigned long *nr_pages, 6226 long i, unsigned int flags, int *locked) 6227 { 6228 unsigned long pfn_offset; 6229 unsigned long vaddr = *position; 6230 unsigned long remainder = *nr_pages; 6231 struct hstate *h = hstate_vma(vma); 6232 int err = -EFAULT, refs; 6233 6234 while (vaddr < vma->vm_end && remainder) { 6235 pte_t *pte; 6236 spinlock_t *ptl = NULL; 6237 bool unshare = false; 6238 int absent; 6239 struct page *page; 6240 6241 /* 6242 * If we have a pending SIGKILL, don't keep faulting pages and 6243 * potentially allocating memory. 6244 */ 6245 if (fatal_signal_pending(current)) { 6246 remainder = 0; 6247 break; 6248 } 6249 6250 /* 6251 * Some archs (sparc64, sh*) have multiple pte_ts to 6252 * each hugepage. We have to make sure we get the 6253 * first, for the page indexing below to work. 6254 * 6255 * Note that page table lock is not held when pte is null. 6256 */ 6257 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6258 huge_page_size(h)); 6259 if (pte) 6260 ptl = huge_pte_lock(h, mm, pte); 6261 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6262 6263 /* 6264 * When coredumping, it suits get_dump_page if we just return 6265 * an error where there's an empty slot with no huge pagecache 6266 * to back it. This way, we avoid allocating a hugepage, and 6267 * the sparse dumpfile avoids allocating disk blocks, but its 6268 * huge holes still show up with zeroes where they need to be. 6269 */ 6270 if (absent && (flags & FOLL_DUMP) && 6271 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6272 if (pte) 6273 spin_unlock(ptl); 6274 remainder = 0; 6275 break; 6276 } 6277 6278 /* 6279 * We need call hugetlb_fault for both hugepages under migration 6280 * (in which case hugetlb_fault waits for the migration,) and 6281 * hwpoisoned hugepages (in which case we need to prevent the 6282 * caller from accessing to them.) In order to do this, we use 6283 * here is_swap_pte instead of is_hugetlb_entry_migration and 6284 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6285 * both cases, and because we can't follow correct pages 6286 * directly from any kind of swap entries. 6287 */ 6288 if (absent || 6289 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6290 vm_fault_t ret; 6291 unsigned int fault_flags = 0; 6292 6293 if (pte) 6294 spin_unlock(ptl); 6295 if (flags & FOLL_WRITE) 6296 fault_flags |= FAULT_FLAG_WRITE; 6297 else if (unshare) 6298 fault_flags |= FAULT_FLAG_UNSHARE; 6299 if (locked) 6300 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6301 FAULT_FLAG_KILLABLE; 6302 if (flags & FOLL_NOWAIT) 6303 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6304 FAULT_FLAG_RETRY_NOWAIT; 6305 if (flags & FOLL_TRIED) { 6306 /* 6307 * Note: FAULT_FLAG_ALLOW_RETRY and 6308 * FAULT_FLAG_TRIED can co-exist 6309 */ 6310 fault_flags |= FAULT_FLAG_TRIED; 6311 } 6312 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6313 if (ret & VM_FAULT_ERROR) { 6314 err = vm_fault_to_errno(ret, flags); 6315 remainder = 0; 6316 break; 6317 } 6318 if (ret & VM_FAULT_RETRY) { 6319 if (locked && 6320 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6321 *locked = 0; 6322 *nr_pages = 0; 6323 /* 6324 * VM_FAULT_RETRY must not return an 6325 * error, it will return zero 6326 * instead. 6327 * 6328 * No need to update "position" as the 6329 * caller will not check it after 6330 * *nr_pages is set to 0. 6331 */ 6332 return i; 6333 } 6334 continue; 6335 } 6336 6337 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6338 page = pte_page(huge_ptep_get(pte)); 6339 6340 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6341 !PageAnonExclusive(page), page); 6342 6343 /* 6344 * If subpage information not requested, update counters 6345 * and skip the same_page loop below. 6346 */ 6347 if (!pages && !vmas && !pfn_offset && 6348 (vaddr + huge_page_size(h) < vma->vm_end) && 6349 (remainder >= pages_per_huge_page(h))) { 6350 vaddr += huge_page_size(h); 6351 remainder -= pages_per_huge_page(h); 6352 i += pages_per_huge_page(h); 6353 spin_unlock(ptl); 6354 continue; 6355 } 6356 6357 /* vaddr may not be aligned to PAGE_SIZE */ 6358 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6359 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6360 6361 if (pages || vmas) 6362 record_subpages_vmas(nth_page(page, pfn_offset), 6363 vma, refs, 6364 likely(pages) ? pages + i : NULL, 6365 vmas ? vmas + i : NULL); 6366 6367 if (pages) { 6368 /* 6369 * try_grab_folio() should always succeed here, 6370 * because: a) we hold the ptl lock, and b) we've just 6371 * checked that the huge page is present in the page 6372 * tables. If the huge page is present, then the tail 6373 * pages must also be present. The ptl prevents the 6374 * head page and tail pages from being rearranged in 6375 * any way. As this is hugetlb, the pages will never 6376 * be p2pdma or not longterm pinable. So this page 6377 * must be available at this point, unless the page 6378 * refcount overflowed: 6379 */ 6380 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6381 flags))) { 6382 spin_unlock(ptl); 6383 remainder = 0; 6384 err = -ENOMEM; 6385 break; 6386 } 6387 } 6388 6389 vaddr += (refs << PAGE_SHIFT); 6390 remainder -= refs; 6391 i += refs; 6392 6393 spin_unlock(ptl); 6394 } 6395 *nr_pages = remainder; 6396 /* 6397 * setting position is actually required only if remainder is 6398 * not zero but it's faster not to add a "if (remainder)" 6399 * branch. 6400 */ 6401 *position = vaddr; 6402 6403 return i ? i : err; 6404 } 6405 6406 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6407 unsigned long address, unsigned long end, 6408 pgprot_t newprot, unsigned long cp_flags) 6409 { 6410 struct mm_struct *mm = vma->vm_mm; 6411 unsigned long start = address; 6412 pte_t *ptep; 6413 pte_t pte; 6414 struct hstate *h = hstate_vma(vma); 6415 unsigned long pages = 0, psize = huge_page_size(h); 6416 bool shared_pmd = false; 6417 struct mmu_notifier_range range; 6418 unsigned long last_addr_mask; 6419 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6420 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6421 6422 /* 6423 * In the case of shared PMDs, the area to flush could be beyond 6424 * start/end. Set range.start/range.end to cover the maximum possible 6425 * range if PMD sharing is possible. 6426 */ 6427 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6428 0, vma, mm, start, end); 6429 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6430 6431 BUG_ON(address >= end); 6432 flush_cache_range(vma, range.start, range.end); 6433 6434 mmu_notifier_invalidate_range_start(&range); 6435 hugetlb_vma_lock_write(vma); 6436 i_mmap_lock_write(vma->vm_file->f_mapping); 6437 last_addr_mask = hugetlb_mask_last_page(h); 6438 for (; address < end; address += psize) { 6439 spinlock_t *ptl; 6440 ptep = huge_pte_offset(mm, address, psize); 6441 if (!ptep) { 6442 address |= last_addr_mask; 6443 continue; 6444 } 6445 ptl = huge_pte_lock(h, mm, ptep); 6446 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6447 /* 6448 * When uffd-wp is enabled on the vma, unshare 6449 * shouldn't happen at all. Warn about it if it 6450 * happened due to some reason. 6451 */ 6452 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6453 pages++; 6454 spin_unlock(ptl); 6455 shared_pmd = true; 6456 address |= last_addr_mask; 6457 continue; 6458 } 6459 pte = huge_ptep_get(ptep); 6460 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6461 spin_unlock(ptl); 6462 continue; 6463 } 6464 if (unlikely(is_hugetlb_entry_migration(pte))) { 6465 swp_entry_t entry = pte_to_swp_entry(pte); 6466 struct page *page = pfn_swap_entry_to_page(entry); 6467 6468 if (!is_readable_migration_entry(entry)) { 6469 pte_t newpte; 6470 6471 if (PageAnon(page)) 6472 entry = make_readable_exclusive_migration_entry( 6473 swp_offset(entry)); 6474 else 6475 entry = make_readable_migration_entry( 6476 swp_offset(entry)); 6477 newpte = swp_entry_to_pte(entry); 6478 if (uffd_wp) 6479 newpte = pte_swp_mkuffd_wp(newpte); 6480 else if (uffd_wp_resolve) 6481 newpte = pte_swp_clear_uffd_wp(newpte); 6482 set_huge_pte_at(mm, address, ptep, newpte); 6483 pages++; 6484 } 6485 spin_unlock(ptl); 6486 continue; 6487 } 6488 if (unlikely(pte_marker_uffd_wp(pte))) { 6489 /* 6490 * This is changing a non-present pte into a none pte, 6491 * no need for huge_ptep_modify_prot_start/commit(). 6492 */ 6493 if (uffd_wp_resolve) 6494 huge_pte_clear(mm, address, ptep, psize); 6495 } 6496 if (!huge_pte_none(pte)) { 6497 pte_t old_pte; 6498 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6499 6500 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6501 pte = huge_pte_modify(old_pte, newprot); 6502 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6503 if (uffd_wp) 6504 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6505 else if (uffd_wp_resolve) 6506 pte = huge_pte_clear_uffd_wp(pte); 6507 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6508 pages++; 6509 } else { 6510 /* None pte */ 6511 if (unlikely(uffd_wp)) 6512 /* Safe to modify directly (none->non-present). */ 6513 set_huge_pte_at(mm, address, ptep, 6514 make_pte_marker(PTE_MARKER_UFFD_WP)); 6515 } 6516 spin_unlock(ptl); 6517 } 6518 /* 6519 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6520 * may have cleared our pud entry and done put_page on the page table: 6521 * once we release i_mmap_rwsem, another task can do the final put_page 6522 * and that page table be reused and filled with junk. If we actually 6523 * did unshare a page of pmds, flush the range corresponding to the pud. 6524 */ 6525 if (shared_pmd) 6526 flush_hugetlb_tlb_range(vma, range.start, range.end); 6527 else 6528 flush_hugetlb_tlb_range(vma, start, end); 6529 /* 6530 * No need to call mmu_notifier_invalidate_range() we are downgrading 6531 * page table protection not changing it to point to a new page. 6532 * 6533 * See Documentation/mm/mmu_notifier.rst 6534 */ 6535 i_mmap_unlock_write(vma->vm_file->f_mapping); 6536 hugetlb_vma_unlock_write(vma); 6537 mmu_notifier_invalidate_range_end(&range); 6538 6539 return pages << h->order; 6540 } 6541 6542 /* Return true if reservation was successful, false otherwise. */ 6543 bool hugetlb_reserve_pages(struct inode *inode, 6544 long from, long to, 6545 struct vm_area_struct *vma, 6546 vm_flags_t vm_flags) 6547 { 6548 long chg, add = -1; 6549 struct hstate *h = hstate_inode(inode); 6550 struct hugepage_subpool *spool = subpool_inode(inode); 6551 struct resv_map *resv_map; 6552 struct hugetlb_cgroup *h_cg = NULL; 6553 long gbl_reserve, regions_needed = 0; 6554 6555 /* This should never happen */ 6556 if (from > to) { 6557 VM_WARN(1, "%s called with a negative range\n", __func__); 6558 return false; 6559 } 6560 6561 /* 6562 * vma specific semaphore used for pmd sharing synchronization 6563 */ 6564 hugetlb_vma_lock_alloc(vma); 6565 6566 /* 6567 * Only apply hugepage reservation if asked. At fault time, an 6568 * attempt will be made for VM_NORESERVE to allocate a page 6569 * without using reserves 6570 */ 6571 if (vm_flags & VM_NORESERVE) 6572 return true; 6573 6574 /* 6575 * Shared mappings base their reservation on the number of pages that 6576 * are already allocated on behalf of the file. Private mappings need 6577 * to reserve the full area even if read-only as mprotect() may be 6578 * called to make the mapping read-write. Assume !vma is a shm mapping 6579 */ 6580 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6581 /* 6582 * resv_map can not be NULL as hugetlb_reserve_pages is only 6583 * called for inodes for which resv_maps were created (see 6584 * hugetlbfs_get_inode). 6585 */ 6586 resv_map = inode_resv_map(inode); 6587 6588 chg = region_chg(resv_map, from, to, ®ions_needed); 6589 } else { 6590 /* Private mapping. */ 6591 resv_map = resv_map_alloc(); 6592 if (!resv_map) 6593 goto out_err; 6594 6595 chg = to - from; 6596 6597 set_vma_resv_map(vma, resv_map); 6598 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6599 } 6600 6601 if (chg < 0) 6602 goto out_err; 6603 6604 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6605 chg * pages_per_huge_page(h), &h_cg) < 0) 6606 goto out_err; 6607 6608 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6609 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6610 * of the resv_map. 6611 */ 6612 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6613 } 6614 6615 /* 6616 * There must be enough pages in the subpool for the mapping. If 6617 * the subpool has a minimum size, there may be some global 6618 * reservations already in place (gbl_reserve). 6619 */ 6620 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6621 if (gbl_reserve < 0) 6622 goto out_uncharge_cgroup; 6623 6624 /* 6625 * Check enough hugepages are available for the reservation. 6626 * Hand the pages back to the subpool if there are not 6627 */ 6628 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6629 goto out_put_pages; 6630 6631 /* 6632 * Account for the reservations made. Shared mappings record regions 6633 * that have reservations as they are shared by multiple VMAs. 6634 * When the last VMA disappears, the region map says how much 6635 * the reservation was and the page cache tells how much of 6636 * the reservation was consumed. Private mappings are per-VMA and 6637 * only the consumed reservations are tracked. When the VMA 6638 * disappears, the original reservation is the VMA size and the 6639 * consumed reservations are stored in the map. Hence, nothing 6640 * else has to be done for private mappings here 6641 */ 6642 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6643 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6644 6645 if (unlikely(add < 0)) { 6646 hugetlb_acct_memory(h, -gbl_reserve); 6647 goto out_put_pages; 6648 } else if (unlikely(chg > add)) { 6649 /* 6650 * pages in this range were added to the reserve 6651 * map between region_chg and region_add. This 6652 * indicates a race with alloc_huge_page. Adjust 6653 * the subpool and reserve counts modified above 6654 * based on the difference. 6655 */ 6656 long rsv_adjust; 6657 6658 /* 6659 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6660 * reference to h_cg->css. See comment below for detail. 6661 */ 6662 hugetlb_cgroup_uncharge_cgroup_rsvd( 6663 hstate_index(h), 6664 (chg - add) * pages_per_huge_page(h), h_cg); 6665 6666 rsv_adjust = hugepage_subpool_put_pages(spool, 6667 chg - add); 6668 hugetlb_acct_memory(h, -rsv_adjust); 6669 } else if (h_cg) { 6670 /* 6671 * The file_regions will hold their own reference to 6672 * h_cg->css. So we should release the reference held 6673 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6674 * done. 6675 */ 6676 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6677 } 6678 } 6679 return true; 6680 6681 out_put_pages: 6682 /* put back original number of pages, chg */ 6683 (void)hugepage_subpool_put_pages(spool, chg); 6684 out_uncharge_cgroup: 6685 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6686 chg * pages_per_huge_page(h), h_cg); 6687 out_err: 6688 hugetlb_vma_lock_free(vma); 6689 if (!vma || vma->vm_flags & VM_MAYSHARE) 6690 /* Only call region_abort if the region_chg succeeded but the 6691 * region_add failed or didn't run. 6692 */ 6693 if (chg >= 0 && add < 0) 6694 region_abort(resv_map, from, to, regions_needed); 6695 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6696 kref_put(&resv_map->refs, resv_map_release); 6697 return false; 6698 } 6699 6700 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6701 long freed) 6702 { 6703 struct hstate *h = hstate_inode(inode); 6704 struct resv_map *resv_map = inode_resv_map(inode); 6705 long chg = 0; 6706 struct hugepage_subpool *spool = subpool_inode(inode); 6707 long gbl_reserve; 6708 6709 /* 6710 * Since this routine can be called in the evict inode path for all 6711 * hugetlbfs inodes, resv_map could be NULL. 6712 */ 6713 if (resv_map) { 6714 chg = region_del(resv_map, start, end); 6715 /* 6716 * region_del() can fail in the rare case where a region 6717 * must be split and another region descriptor can not be 6718 * allocated. If end == LONG_MAX, it will not fail. 6719 */ 6720 if (chg < 0) 6721 return chg; 6722 } 6723 6724 spin_lock(&inode->i_lock); 6725 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6726 spin_unlock(&inode->i_lock); 6727 6728 /* 6729 * If the subpool has a minimum size, the number of global 6730 * reservations to be released may be adjusted. 6731 * 6732 * Note that !resv_map implies freed == 0. So (chg - freed) 6733 * won't go negative. 6734 */ 6735 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6736 hugetlb_acct_memory(h, -gbl_reserve); 6737 6738 return 0; 6739 } 6740 6741 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6742 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6743 struct vm_area_struct *vma, 6744 unsigned long addr, pgoff_t idx) 6745 { 6746 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6747 svma->vm_start; 6748 unsigned long sbase = saddr & PUD_MASK; 6749 unsigned long s_end = sbase + PUD_SIZE; 6750 6751 /* Allow segments to share if only one is marked locked */ 6752 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6753 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6754 6755 /* 6756 * match the virtual addresses, permission and the alignment of the 6757 * page table page. 6758 * 6759 * Also, vma_lock (vm_private_data) is required for sharing. 6760 */ 6761 if (pmd_index(addr) != pmd_index(saddr) || 6762 vm_flags != svm_flags || 6763 !range_in_vma(svma, sbase, s_end) || 6764 !svma->vm_private_data) 6765 return 0; 6766 6767 return saddr; 6768 } 6769 6770 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6771 { 6772 unsigned long start = addr & PUD_MASK; 6773 unsigned long end = start + PUD_SIZE; 6774 6775 #ifdef CONFIG_USERFAULTFD 6776 if (uffd_disable_huge_pmd_share(vma)) 6777 return false; 6778 #endif 6779 /* 6780 * check on proper vm_flags and page table alignment 6781 */ 6782 if (!(vma->vm_flags & VM_MAYSHARE)) 6783 return false; 6784 if (!vma->vm_private_data) /* vma lock required for sharing */ 6785 return false; 6786 if (!range_in_vma(vma, start, end)) 6787 return false; 6788 return true; 6789 } 6790 6791 /* 6792 * Determine if start,end range within vma could be mapped by shared pmd. 6793 * If yes, adjust start and end to cover range associated with possible 6794 * shared pmd mappings. 6795 */ 6796 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6797 unsigned long *start, unsigned long *end) 6798 { 6799 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6800 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6801 6802 /* 6803 * vma needs to span at least one aligned PUD size, and the range 6804 * must be at least partially within in. 6805 */ 6806 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6807 (*end <= v_start) || (*start >= v_end)) 6808 return; 6809 6810 /* Extend the range to be PUD aligned for a worst case scenario */ 6811 if (*start > v_start) 6812 *start = ALIGN_DOWN(*start, PUD_SIZE); 6813 6814 if (*end < v_end) 6815 *end = ALIGN(*end, PUD_SIZE); 6816 } 6817 6818 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma) 6819 { 6820 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 6821 vma->vm_private_data; 6822 } 6823 6824 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 6825 { 6826 if (__vma_shareable_flags_pmd(vma)) { 6827 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6828 6829 down_read(&vma_lock->rw_sema); 6830 } 6831 } 6832 6833 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 6834 { 6835 if (__vma_shareable_flags_pmd(vma)) { 6836 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6837 6838 up_read(&vma_lock->rw_sema); 6839 } 6840 } 6841 6842 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 6843 { 6844 if (__vma_shareable_flags_pmd(vma)) { 6845 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6846 6847 down_write(&vma_lock->rw_sema); 6848 } 6849 } 6850 6851 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 6852 { 6853 if (__vma_shareable_flags_pmd(vma)) { 6854 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6855 6856 up_write(&vma_lock->rw_sema); 6857 } 6858 } 6859 6860 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 6861 { 6862 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6863 6864 if (!__vma_shareable_flags_pmd(vma)) 6865 return 1; 6866 6867 return down_write_trylock(&vma_lock->rw_sema); 6868 } 6869 6870 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 6871 { 6872 if (__vma_shareable_flags_pmd(vma)) { 6873 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6874 6875 lockdep_assert_held(&vma_lock->rw_sema); 6876 } 6877 } 6878 6879 void hugetlb_vma_lock_release(struct kref *kref) 6880 { 6881 struct hugetlb_vma_lock *vma_lock = container_of(kref, 6882 struct hugetlb_vma_lock, refs); 6883 6884 kfree(vma_lock); 6885 } 6886 6887 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 6888 { 6889 struct vm_area_struct *vma = vma_lock->vma; 6890 6891 /* 6892 * vma_lock structure may or not be released as a result of put, 6893 * it certainly will no longer be attached to vma so clear pointer. 6894 * Semaphore synchronizes access to vma_lock->vma field. 6895 */ 6896 vma_lock->vma = NULL; 6897 vma->vm_private_data = NULL; 6898 up_write(&vma_lock->rw_sema); 6899 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 6900 } 6901 6902 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 6903 { 6904 if (__vma_shareable_flags_pmd(vma)) { 6905 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6906 6907 __hugetlb_vma_unlock_write_put(vma_lock); 6908 } 6909 } 6910 6911 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 6912 { 6913 /* 6914 * Only present in sharable vmas. 6915 */ 6916 if (!vma || !__vma_shareable_flags_pmd(vma)) 6917 return; 6918 6919 if (vma->vm_private_data) { 6920 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6921 6922 down_write(&vma_lock->rw_sema); 6923 __hugetlb_vma_unlock_write_put(vma_lock); 6924 } 6925 } 6926 6927 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 6928 { 6929 struct hugetlb_vma_lock *vma_lock; 6930 6931 /* Only establish in (flags) sharable vmas */ 6932 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 6933 return; 6934 6935 /* Should never get here with non-NULL vm_private_data */ 6936 if (vma->vm_private_data) 6937 return; 6938 6939 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 6940 if (!vma_lock) { 6941 /* 6942 * If we can not allocate structure, then vma can not 6943 * participate in pmd sharing. This is only a possible 6944 * performance enhancement and memory saving issue. 6945 * However, the lock is also used to synchronize page 6946 * faults with truncation. If the lock is not present, 6947 * unlikely races could leave pages in a file past i_size 6948 * until the file is removed. Warn in the unlikely case of 6949 * allocation failure. 6950 */ 6951 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 6952 return; 6953 } 6954 6955 kref_init(&vma_lock->refs); 6956 init_rwsem(&vma_lock->rw_sema); 6957 vma_lock->vma = vma; 6958 vma->vm_private_data = vma_lock; 6959 } 6960 6961 /* 6962 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6963 * and returns the corresponding pte. While this is not necessary for the 6964 * !shared pmd case because we can allocate the pmd later as well, it makes the 6965 * code much cleaner. pmd allocation is essential for the shared case because 6966 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6967 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6968 * bad pmd for sharing. 6969 */ 6970 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6971 unsigned long addr, pud_t *pud) 6972 { 6973 struct address_space *mapping = vma->vm_file->f_mapping; 6974 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6975 vma->vm_pgoff; 6976 struct vm_area_struct *svma; 6977 unsigned long saddr; 6978 pte_t *spte = NULL; 6979 pte_t *pte; 6980 spinlock_t *ptl; 6981 6982 i_mmap_lock_read(mapping); 6983 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6984 if (svma == vma) 6985 continue; 6986 6987 saddr = page_table_shareable(svma, vma, addr, idx); 6988 if (saddr) { 6989 spte = huge_pte_offset(svma->vm_mm, saddr, 6990 vma_mmu_pagesize(svma)); 6991 if (spte) { 6992 get_page(virt_to_page(spte)); 6993 break; 6994 } 6995 } 6996 } 6997 6998 if (!spte) 6999 goto out; 7000 7001 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7002 if (pud_none(*pud)) { 7003 pud_populate(mm, pud, 7004 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7005 mm_inc_nr_pmds(mm); 7006 } else { 7007 put_page(virt_to_page(spte)); 7008 } 7009 spin_unlock(ptl); 7010 out: 7011 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7012 i_mmap_unlock_read(mapping); 7013 return pte; 7014 } 7015 7016 /* 7017 * unmap huge page backed by shared pte. 7018 * 7019 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7020 * indicated by page_count > 1, unmap is achieved by clearing pud and 7021 * decrementing the ref count. If count == 1, the pte page is not shared. 7022 * 7023 * Called with page table lock held. 7024 * 7025 * returns: 1 successfully unmapped a shared pte page 7026 * 0 the underlying pte page is not shared, or it is the last user 7027 */ 7028 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7029 unsigned long addr, pte_t *ptep) 7030 { 7031 pgd_t *pgd = pgd_offset(mm, addr); 7032 p4d_t *p4d = p4d_offset(pgd, addr); 7033 pud_t *pud = pud_offset(p4d, addr); 7034 7035 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7036 hugetlb_vma_assert_locked(vma); 7037 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7038 if (page_count(virt_to_page(ptep)) == 1) 7039 return 0; 7040 7041 pud_clear(pud); 7042 put_page(virt_to_page(ptep)); 7043 mm_dec_nr_pmds(mm); 7044 return 1; 7045 } 7046 7047 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7048 7049 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 7050 { 7051 } 7052 7053 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 7054 { 7055 } 7056 7057 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 7058 { 7059 } 7060 7061 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 7062 { 7063 } 7064 7065 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 7066 { 7067 return 1; 7068 } 7069 7070 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 7071 { 7072 } 7073 7074 void hugetlb_vma_lock_release(struct kref *kref) 7075 { 7076 } 7077 7078 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 7079 { 7080 } 7081 7082 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 7083 { 7084 } 7085 7086 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 7087 { 7088 } 7089 7090 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7091 unsigned long addr, pud_t *pud) 7092 { 7093 return NULL; 7094 } 7095 7096 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7097 unsigned long addr, pte_t *ptep) 7098 { 7099 return 0; 7100 } 7101 7102 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7103 unsigned long *start, unsigned long *end) 7104 { 7105 } 7106 7107 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7108 { 7109 return false; 7110 } 7111 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7112 7113 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7114 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7115 unsigned long addr, unsigned long sz) 7116 { 7117 pgd_t *pgd; 7118 p4d_t *p4d; 7119 pud_t *pud; 7120 pte_t *pte = NULL; 7121 7122 pgd = pgd_offset(mm, addr); 7123 p4d = p4d_alloc(mm, pgd, addr); 7124 if (!p4d) 7125 return NULL; 7126 pud = pud_alloc(mm, p4d, addr); 7127 if (pud) { 7128 if (sz == PUD_SIZE) { 7129 pte = (pte_t *)pud; 7130 } else { 7131 BUG_ON(sz != PMD_SIZE); 7132 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7133 pte = huge_pmd_share(mm, vma, addr, pud); 7134 else 7135 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7136 } 7137 } 7138 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7139 7140 return pte; 7141 } 7142 7143 /* 7144 * huge_pte_offset() - Walk the page table to resolve the hugepage 7145 * entry at address @addr 7146 * 7147 * Return: Pointer to page table entry (PUD or PMD) for 7148 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7149 * size @sz doesn't match the hugepage size at this level of the page 7150 * table. 7151 */ 7152 pte_t *huge_pte_offset(struct mm_struct *mm, 7153 unsigned long addr, unsigned long sz) 7154 { 7155 pgd_t *pgd; 7156 p4d_t *p4d; 7157 pud_t *pud; 7158 pmd_t *pmd; 7159 7160 pgd = pgd_offset(mm, addr); 7161 if (!pgd_present(*pgd)) 7162 return NULL; 7163 p4d = p4d_offset(pgd, addr); 7164 if (!p4d_present(*p4d)) 7165 return NULL; 7166 7167 pud = pud_offset(p4d, addr); 7168 if (sz == PUD_SIZE) 7169 /* must be pud huge, non-present or none */ 7170 return (pte_t *)pud; 7171 if (!pud_present(*pud)) 7172 return NULL; 7173 /* must have a valid entry and size to go further */ 7174 7175 pmd = pmd_offset(pud, addr); 7176 /* must be pmd huge, non-present or none */ 7177 return (pte_t *)pmd; 7178 } 7179 7180 /* 7181 * Return a mask that can be used to update an address to the last huge 7182 * page in a page table page mapping size. Used to skip non-present 7183 * page table entries when linearly scanning address ranges. Architectures 7184 * with unique huge page to page table relationships can define their own 7185 * version of this routine. 7186 */ 7187 unsigned long hugetlb_mask_last_page(struct hstate *h) 7188 { 7189 unsigned long hp_size = huge_page_size(h); 7190 7191 if (hp_size == PUD_SIZE) 7192 return P4D_SIZE - PUD_SIZE; 7193 else if (hp_size == PMD_SIZE) 7194 return PUD_SIZE - PMD_SIZE; 7195 else 7196 return 0UL; 7197 } 7198 7199 #else 7200 7201 /* See description above. Architectures can provide their own version. */ 7202 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7203 { 7204 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7205 if (huge_page_size(h) == PMD_SIZE) 7206 return PUD_SIZE - PMD_SIZE; 7207 #endif 7208 return 0UL; 7209 } 7210 7211 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7212 7213 /* 7214 * These functions are overwritable if your architecture needs its own 7215 * behavior. 7216 */ 7217 struct page * __weak 7218 follow_huge_addr(struct mm_struct *mm, unsigned long address, 7219 int write) 7220 { 7221 return ERR_PTR(-EINVAL); 7222 } 7223 7224 struct page * __weak 7225 follow_huge_pd(struct vm_area_struct *vma, 7226 unsigned long address, hugepd_t hpd, int flags, int pdshift) 7227 { 7228 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 7229 return NULL; 7230 } 7231 7232 struct page * __weak 7233 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags) 7234 { 7235 struct hstate *h = hstate_vma(vma); 7236 struct mm_struct *mm = vma->vm_mm; 7237 struct page *page = NULL; 7238 spinlock_t *ptl; 7239 pte_t *ptep, pte; 7240 7241 /* 7242 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 7243 * follow_hugetlb_page(). 7244 */ 7245 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7246 return NULL; 7247 7248 retry: 7249 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 7250 if (!ptep) 7251 return NULL; 7252 7253 ptl = huge_pte_lock(h, mm, ptep); 7254 pte = huge_ptep_get(ptep); 7255 if (pte_present(pte)) { 7256 page = pte_page(pte) + 7257 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 7258 /* 7259 * try_grab_page() should always be able to get the page here, 7260 * because: a) we hold the pmd (ptl) lock, and b) we've just 7261 * checked that the huge pmd (head) page is present in the 7262 * page tables. The ptl prevents the head page and tail pages 7263 * from being rearranged in any way. So this page must be 7264 * available at this point, unless the page refcount 7265 * overflowed: 7266 */ 7267 if (try_grab_page(page, flags)) { 7268 page = NULL; 7269 goto out; 7270 } 7271 } else { 7272 if (is_hugetlb_entry_migration(pte)) { 7273 spin_unlock(ptl); 7274 __migration_entry_wait_huge(ptep, ptl); 7275 goto retry; 7276 } 7277 /* 7278 * hwpoisoned entry is treated as no_page_table in 7279 * follow_page_mask(). 7280 */ 7281 } 7282 out: 7283 spin_unlock(ptl); 7284 return page; 7285 } 7286 7287 struct page * __weak 7288 follow_huge_pud(struct mm_struct *mm, unsigned long address, 7289 pud_t *pud, int flags) 7290 { 7291 struct page *page = NULL; 7292 spinlock_t *ptl; 7293 pte_t pte; 7294 7295 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7296 return NULL; 7297 7298 retry: 7299 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud); 7300 if (!pud_huge(*pud)) 7301 goto out; 7302 pte = huge_ptep_get((pte_t *)pud); 7303 if (pte_present(pte)) { 7304 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 7305 if (try_grab_page(page, flags)) { 7306 page = NULL; 7307 goto out; 7308 } 7309 } else { 7310 if (is_hugetlb_entry_migration(pte)) { 7311 spin_unlock(ptl); 7312 __migration_entry_wait(mm, (pte_t *)pud, ptl); 7313 goto retry; 7314 } 7315 /* 7316 * hwpoisoned entry is treated as no_page_table in 7317 * follow_page_mask(). 7318 */ 7319 } 7320 out: 7321 spin_unlock(ptl); 7322 return page; 7323 } 7324 7325 struct page * __weak 7326 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 7327 { 7328 if (flags & (FOLL_GET | FOLL_PIN)) 7329 return NULL; 7330 7331 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 7332 } 7333 7334 int isolate_hugetlb(struct page *page, struct list_head *list) 7335 { 7336 int ret = 0; 7337 7338 spin_lock_irq(&hugetlb_lock); 7339 if (!PageHeadHuge(page) || 7340 !HPageMigratable(page) || 7341 !get_page_unless_zero(page)) { 7342 ret = -EBUSY; 7343 goto unlock; 7344 } 7345 ClearHPageMigratable(page); 7346 list_move_tail(&page->lru, list); 7347 unlock: 7348 spin_unlock_irq(&hugetlb_lock); 7349 return ret; 7350 } 7351 7352 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 7353 { 7354 int ret = 0; 7355 7356 *hugetlb = false; 7357 spin_lock_irq(&hugetlb_lock); 7358 if (PageHeadHuge(page)) { 7359 *hugetlb = true; 7360 if (HPageFreed(page)) 7361 ret = 0; 7362 else if (HPageMigratable(page)) 7363 ret = get_page_unless_zero(page); 7364 else 7365 ret = -EBUSY; 7366 } 7367 spin_unlock_irq(&hugetlb_lock); 7368 return ret; 7369 } 7370 7371 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7372 { 7373 int ret; 7374 7375 spin_lock_irq(&hugetlb_lock); 7376 ret = __get_huge_page_for_hwpoison(pfn, flags); 7377 spin_unlock_irq(&hugetlb_lock); 7378 return ret; 7379 } 7380 7381 void putback_active_hugepage(struct page *page) 7382 { 7383 spin_lock_irq(&hugetlb_lock); 7384 SetHPageMigratable(page); 7385 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7386 spin_unlock_irq(&hugetlb_lock); 7387 put_page(page); 7388 } 7389 7390 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7391 { 7392 struct hstate *h = page_hstate(oldpage); 7393 7394 hugetlb_cgroup_migrate(oldpage, newpage); 7395 set_page_owner_migrate_reason(newpage, reason); 7396 7397 /* 7398 * transfer temporary state of the new huge page. This is 7399 * reverse to other transitions because the newpage is going to 7400 * be final while the old one will be freed so it takes over 7401 * the temporary status. 7402 * 7403 * Also note that we have to transfer the per-node surplus state 7404 * here as well otherwise the global surplus count will not match 7405 * the per-node's. 7406 */ 7407 if (HPageTemporary(newpage)) { 7408 int old_nid = page_to_nid(oldpage); 7409 int new_nid = page_to_nid(newpage); 7410 7411 SetHPageTemporary(oldpage); 7412 ClearHPageTemporary(newpage); 7413 7414 /* 7415 * There is no need to transfer the per-node surplus state 7416 * when we do not cross the node. 7417 */ 7418 if (new_nid == old_nid) 7419 return; 7420 spin_lock_irq(&hugetlb_lock); 7421 if (h->surplus_huge_pages_node[old_nid]) { 7422 h->surplus_huge_pages_node[old_nid]--; 7423 h->surplus_huge_pages_node[new_nid]++; 7424 } 7425 spin_unlock_irq(&hugetlb_lock); 7426 } 7427 } 7428 7429 /* 7430 * This function will unconditionally remove all the shared pmd pgtable entries 7431 * within the specific vma for a hugetlbfs memory range. 7432 */ 7433 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7434 { 7435 struct hstate *h = hstate_vma(vma); 7436 unsigned long sz = huge_page_size(h); 7437 struct mm_struct *mm = vma->vm_mm; 7438 struct mmu_notifier_range range; 7439 unsigned long address, start, end; 7440 spinlock_t *ptl; 7441 pte_t *ptep; 7442 7443 if (!(vma->vm_flags & VM_MAYSHARE)) 7444 return; 7445 7446 start = ALIGN(vma->vm_start, PUD_SIZE); 7447 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7448 7449 if (start >= end) 7450 return; 7451 7452 flush_cache_range(vma, start, end); 7453 /* 7454 * No need to call adjust_range_if_pmd_sharing_possible(), because 7455 * we have already done the PUD_SIZE alignment. 7456 */ 7457 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7458 start, end); 7459 mmu_notifier_invalidate_range_start(&range); 7460 hugetlb_vma_lock_write(vma); 7461 i_mmap_lock_write(vma->vm_file->f_mapping); 7462 for (address = start; address < end; address += PUD_SIZE) { 7463 ptep = huge_pte_offset(mm, address, sz); 7464 if (!ptep) 7465 continue; 7466 ptl = huge_pte_lock(h, mm, ptep); 7467 huge_pmd_unshare(mm, vma, address, ptep); 7468 spin_unlock(ptl); 7469 } 7470 flush_hugetlb_tlb_range(vma, start, end); 7471 i_mmap_unlock_write(vma->vm_file->f_mapping); 7472 hugetlb_vma_unlock_write(vma); 7473 /* 7474 * No need to call mmu_notifier_invalidate_range(), see 7475 * Documentation/mm/mmu_notifier.rst. 7476 */ 7477 mmu_notifier_invalidate_range_end(&range); 7478 } 7479 7480 #ifdef CONFIG_CMA 7481 static bool cma_reserve_called __initdata; 7482 7483 static int __init cmdline_parse_hugetlb_cma(char *p) 7484 { 7485 int nid, count = 0; 7486 unsigned long tmp; 7487 char *s = p; 7488 7489 while (*s) { 7490 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7491 break; 7492 7493 if (s[count] == ':') { 7494 if (tmp >= MAX_NUMNODES) 7495 break; 7496 nid = array_index_nospec(tmp, MAX_NUMNODES); 7497 7498 s += count + 1; 7499 tmp = memparse(s, &s); 7500 hugetlb_cma_size_in_node[nid] = tmp; 7501 hugetlb_cma_size += tmp; 7502 7503 /* 7504 * Skip the separator if have one, otherwise 7505 * break the parsing. 7506 */ 7507 if (*s == ',') 7508 s++; 7509 else 7510 break; 7511 } else { 7512 hugetlb_cma_size = memparse(p, &p); 7513 break; 7514 } 7515 } 7516 7517 return 0; 7518 } 7519 7520 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7521 7522 void __init hugetlb_cma_reserve(int order) 7523 { 7524 unsigned long size, reserved, per_node; 7525 bool node_specific_cma_alloc = false; 7526 int nid; 7527 7528 cma_reserve_called = true; 7529 7530 if (!hugetlb_cma_size) 7531 return; 7532 7533 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7534 if (hugetlb_cma_size_in_node[nid] == 0) 7535 continue; 7536 7537 if (!node_online(nid)) { 7538 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7539 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7540 hugetlb_cma_size_in_node[nid] = 0; 7541 continue; 7542 } 7543 7544 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7545 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7546 nid, (PAGE_SIZE << order) / SZ_1M); 7547 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7548 hugetlb_cma_size_in_node[nid] = 0; 7549 } else { 7550 node_specific_cma_alloc = true; 7551 } 7552 } 7553 7554 /* Validate the CMA size again in case some invalid nodes specified. */ 7555 if (!hugetlb_cma_size) 7556 return; 7557 7558 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7559 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7560 (PAGE_SIZE << order) / SZ_1M); 7561 hugetlb_cma_size = 0; 7562 return; 7563 } 7564 7565 if (!node_specific_cma_alloc) { 7566 /* 7567 * If 3 GB area is requested on a machine with 4 numa nodes, 7568 * let's allocate 1 GB on first three nodes and ignore the last one. 7569 */ 7570 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7571 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7572 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7573 } 7574 7575 reserved = 0; 7576 for_each_online_node(nid) { 7577 int res; 7578 char name[CMA_MAX_NAME]; 7579 7580 if (node_specific_cma_alloc) { 7581 if (hugetlb_cma_size_in_node[nid] == 0) 7582 continue; 7583 7584 size = hugetlb_cma_size_in_node[nid]; 7585 } else { 7586 size = min(per_node, hugetlb_cma_size - reserved); 7587 } 7588 7589 size = round_up(size, PAGE_SIZE << order); 7590 7591 snprintf(name, sizeof(name), "hugetlb%d", nid); 7592 /* 7593 * Note that 'order per bit' is based on smallest size that 7594 * may be returned to CMA allocator in the case of 7595 * huge page demotion. 7596 */ 7597 res = cma_declare_contiguous_nid(0, size, 0, 7598 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7599 0, false, name, 7600 &hugetlb_cma[nid], nid); 7601 if (res) { 7602 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7603 res, nid); 7604 continue; 7605 } 7606 7607 reserved += size; 7608 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7609 size / SZ_1M, nid); 7610 7611 if (reserved >= hugetlb_cma_size) 7612 break; 7613 } 7614 7615 if (!reserved) 7616 /* 7617 * hugetlb_cma_size is used to determine if allocations from 7618 * cma are possible. Set to zero if no cma regions are set up. 7619 */ 7620 hugetlb_cma_size = 0; 7621 } 7622 7623 static void __init hugetlb_cma_check(void) 7624 { 7625 if (!hugetlb_cma_size || cma_reserve_called) 7626 return; 7627 7628 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7629 } 7630 7631 #endif /* CONFIG_CMA */ 7632