xref: /openbmc/linux/mm/hugetlb.c (revision 110e6f26)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 
55 /*
56  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
57  * free_huge_pages, and surplus_huge_pages.
58  */
59 DEFINE_SPINLOCK(hugetlb_lock);
60 
61 /*
62  * Serializes faults on the same logical page.  This is used to
63  * prevent spurious OOMs when the hugepage pool is fully utilized.
64  */
65 static int num_fault_mutexes;
66 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
67 
68 /* Forward declaration */
69 static int hugetlb_acct_memory(struct hstate *h, long delta);
70 
71 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
72 {
73 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
74 
75 	spin_unlock(&spool->lock);
76 
77 	/* If no pages are used, and no other handles to the subpool
78 	 * remain, give up any reservations mased on minimum size and
79 	 * free the subpool */
80 	if (free) {
81 		if (spool->min_hpages != -1)
82 			hugetlb_acct_memory(spool->hstate,
83 						-spool->min_hpages);
84 		kfree(spool);
85 	}
86 }
87 
88 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
89 						long min_hpages)
90 {
91 	struct hugepage_subpool *spool;
92 
93 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
94 	if (!spool)
95 		return NULL;
96 
97 	spin_lock_init(&spool->lock);
98 	spool->count = 1;
99 	spool->max_hpages = max_hpages;
100 	spool->hstate = h;
101 	spool->min_hpages = min_hpages;
102 
103 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
104 		kfree(spool);
105 		return NULL;
106 	}
107 	spool->rsv_hpages = min_hpages;
108 
109 	return spool;
110 }
111 
112 void hugepage_put_subpool(struct hugepage_subpool *spool)
113 {
114 	spin_lock(&spool->lock);
115 	BUG_ON(!spool->count);
116 	spool->count--;
117 	unlock_or_release_subpool(spool);
118 }
119 
120 /*
121  * Subpool accounting for allocating and reserving pages.
122  * Return -ENOMEM if there are not enough resources to satisfy the
123  * the request.  Otherwise, return the number of pages by which the
124  * global pools must be adjusted (upward).  The returned value may
125  * only be different than the passed value (delta) in the case where
126  * a subpool minimum size must be manitained.
127  */
128 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
129 				      long delta)
130 {
131 	long ret = delta;
132 
133 	if (!spool)
134 		return ret;
135 
136 	spin_lock(&spool->lock);
137 
138 	if (spool->max_hpages != -1) {		/* maximum size accounting */
139 		if ((spool->used_hpages + delta) <= spool->max_hpages)
140 			spool->used_hpages += delta;
141 		else {
142 			ret = -ENOMEM;
143 			goto unlock_ret;
144 		}
145 	}
146 
147 	if (spool->min_hpages != -1) {		/* minimum size accounting */
148 		if (delta > spool->rsv_hpages) {
149 			/*
150 			 * Asking for more reserves than those already taken on
151 			 * behalf of subpool.  Return difference.
152 			 */
153 			ret = delta - spool->rsv_hpages;
154 			spool->rsv_hpages = 0;
155 		} else {
156 			ret = 0;	/* reserves already accounted for */
157 			spool->rsv_hpages -= delta;
158 		}
159 	}
160 
161 unlock_ret:
162 	spin_unlock(&spool->lock);
163 	return ret;
164 }
165 
166 /*
167  * Subpool accounting for freeing and unreserving pages.
168  * Return the number of global page reservations that must be dropped.
169  * The return value may only be different than the passed value (delta)
170  * in the case where a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
173 				       long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return delta;
179 
180 	spin_lock(&spool->lock);
181 
182 	if (spool->max_hpages != -1)		/* maximum size accounting */
183 		spool->used_hpages -= delta;
184 
185 	if (spool->min_hpages != -1) {		/* minimum size accounting */
186 		if (spool->rsv_hpages + delta <= spool->min_hpages)
187 			ret = 0;
188 		else
189 			ret = spool->rsv_hpages + delta - spool->min_hpages;
190 
191 		spool->rsv_hpages += delta;
192 		if (spool->rsv_hpages > spool->min_hpages)
193 			spool->rsv_hpages = spool->min_hpages;
194 	}
195 
196 	/*
197 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
198 	 * quota reference, free it now.
199 	 */
200 	unlock_or_release_subpool(spool);
201 
202 	return ret;
203 }
204 
205 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
206 {
207 	return HUGETLBFS_SB(inode->i_sb)->spool;
208 }
209 
210 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
211 {
212 	return subpool_inode(file_inode(vma->vm_file));
213 }
214 
215 /*
216  * Region tracking -- allows tracking of reservations and instantiated pages
217  *                    across the pages in a mapping.
218  *
219  * The region data structures are embedded into a resv_map and protected
220  * by a resv_map's lock.  The set of regions within the resv_map represent
221  * reservations for huge pages, or huge pages that have already been
222  * instantiated within the map.  The from and to elements are huge page
223  * indicies into the associated mapping.  from indicates the starting index
224  * of the region.  to represents the first index past the end of  the region.
225  *
226  * For example, a file region structure with from == 0 and to == 4 represents
227  * four huge pages in a mapping.  It is important to note that the to element
228  * represents the first element past the end of the region. This is used in
229  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
230  *
231  * Interval notation of the form [from, to) will be used to indicate that
232  * the endpoint from is inclusive and to is exclusive.
233  */
234 struct file_region {
235 	struct list_head link;
236 	long from;
237 	long to;
238 };
239 
240 /*
241  * Add the huge page range represented by [f, t) to the reserve
242  * map.  In the normal case, existing regions will be expanded
243  * to accommodate the specified range.  Sufficient regions should
244  * exist for expansion due to the previous call to region_chg
245  * with the same range.  However, it is possible that region_del
246  * could have been called after region_chg and modifed the map
247  * in such a way that no region exists to be expanded.  In this
248  * case, pull a region descriptor from the cache associated with
249  * the map and use that for the new range.
250  *
251  * Return the number of new huge pages added to the map.  This
252  * number is greater than or equal to zero.
253  */
254 static long region_add(struct resv_map *resv, long f, long t)
255 {
256 	struct list_head *head = &resv->regions;
257 	struct file_region *rg, *nrg, *trg;
258 	long add = 0;
259 
260 	spin_lock(&resv->lock);
261 	/* Locate the region we are either in or before. */
262 	list_for_each_entry(rg, head, link)
263 		if (f <= rg->to)
264 			break;
265 
266 	/*
267 	 * If no region exists which can be expanded to include the
268 	 * specified range, the list must have been modified by an
269 	 * interleving call to region_del().  Pull a region descriptor
270 	 * from the cache and use it for this range.
271 	 */
272 	if (&rg->link == head || t < rg->from) {
273 		VM_BUG_ON(resv->region_cache_count <= 0);
274 
275 		resv->region_cache_count--;
276 		nrg = list_first_entry(&resv->region_cache, struct file_region,
277 					link);
278 		list_del(&nrg->link);
279 
280 		nrg->from = f;
281 		nrg->to = t;
282 		list_add(&nrg->link, rg->link.prev);
283 
284 		add += t - f;
285 		goto out_locked;
286 	}
287 
288 	/* Round our left edge to the current segment if it encloses us. */
289 	if (f > rg->from)
290 		f = rg->from;
291 
292 	/* Check for and consume any regions we now overlap with. */
293 	nrg = rg;
294 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
295 		if (&rg->link == head)
296 			break;
297 		if (rg->from > t)
298 			break;
299 
300 		/* If this area reaches higher then extend our area to
301 		 * include it completely.  If this is not the first area
302 		 * which we intend to reuse, free it. */
303 		if (rg->to > t)
304 			t = rg->to;
305 		if (rg != nrg) {
306 			/* Decrement return value by the deleted range.
307 			 * Another range will span this area so that by
308 			 * end of routine add will be >= zero
309 			 */
310 			add -= (rg->to - rg->from);
311 			list_del(&rg->link);
312 			kfree(rg);
313 		}
314 	}
315 
316 	add += (nrg->from - f);		/* Added to beginning of region */
317 	nrg->from = f;
318 	add += t - nrg->to;		/* Added to end of region */
319 	nrg->to = t;
320 
321 out_locked:
322 	resv->adds_in_progress--;
323 	spin_unlock(&resv->lock);
324 	VM_BUG_ON(add < 0);
325 	return add;
326 }
327 
328 /*
329  * Examine the existing reserve map and determine how many
330  * huge pages in the specified range [f, t) are NOT currently
331  * represented.  This routine is called before a subsequent
332  * call to region_add that will actually modify the reserve
333  * map to add the specified range [f, t).  region_chg does
334  * not change the number of huge pages represented by the
335  * map.  However, if the existing regions in the map can not
336  * be expanded to represent the new range, a new file_region
337  * structure is added to the map as a placeholder.  This is
338  * so that the subsequent region_add call will have all the
339  * regions it needs and will not fail.
340  *
341  * Upon entry, region_chg will also examine the cache of region descriptors
342  * associated with the map.  If there are not enough descriptors cached, one
343  * will be allocated for the in progress add operation.
344  *
345  * Returns the number of huge pages that need to be added to the existing
346  * reservation map for the range [f, t).  This number is greater or equal to
347  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
348  * is needed and can not be allocated.
349  */
350 static long region_chg(struct resv_map *resv, long f, long t)
351 {
352 	struct list_head *head = &resv->regions;
353 	struct file_region *rg, *nrg = NULL;
354 	long chg = 0;
355 
356 retry:
357 	spin_lock(&resv->lock);
358 retry_locked:
359 	resv->adds_in_progress++;
360 
361 	/*
362 	 * Check for sufficient descriptors in the cache to accommodate
363 	 * the number of in progress add operations.
364 	 */
365 	if (resv->adds_in_progress > resv->region_cache_count) {
366 		struct file_region *trg;
367 
368 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
369 		/* Must drop lock to allocate a new descriptor. */
370 		resv->adds_in_progress--;
371 		spin_unlock(&resv->lock);
372 
373 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
374 		if (!trg) {
375 			kfree(nrg);
376 			return -ENOMEM;
377 		}
378 
379 		spin_lock(&resv->lock);
380 		list_add(&trg->link, &resv->region_cache);
381 		resv->region_cache_count++;
382 		goto retry_locked;
383 	}
384 
385 	/* Locate the region we are before or in. */
386 	list_for_each_entry(rg, head, link)
387 		if (f <= rg->to)
388 			break;
389 
390 	/* If we are below the current region then a new region is required.
391 	 * Subtle, allocate a new region at the position but make it zero
392 	 * size such that we can guarantee to record the reservation. */
393 	if (&rg->link == head || t < rg->from) {
394 		if (!nrg) {
395 			resv->adds_in_progress--;
396 			spin_unlock(&resv->lock);
397 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
398 			if (!nrg)
399 				return -ENOMEM;
400 
401 			nrg->from = f;
402 			nrg->to   = f;
403 			INIT_LIST_HEAD(&nrg->link);
404 			goto retry;
405 		}
406 
407 		list_add(&nrg->link, rg->link.prev);
408 		chg = t - f;
409 		goto out_nrg;
410 	}
411 
412 	/* Round our left edge to the current segment if it encloses us. */
413 	if (f > rg->from)
414 		f = rg->from;
415 	chg = t - f;
416 
417 	/* Check for and consume any regions we now overlap with. */
418 	list_for_each_entry(rg, rg->link.prev, link) {
419 		if (&rg->link == head)
420 			break;
421 		if (rg->from > t)
422 			goto out;
423 
424 		/* We overlap with this area, if it extends further than
425 		 * us then we must extend ourselves.  Account for its
426 		 * existing reservation. */
427 		if (rg->to > t) {
428 			chg += rg->to - t;
429 			t = rg->to;
430 		}
431 		chg -= rg->to - rg->from;
432 	}
433 
434 out:
435 	spin_unlock(&resv->lock);
436 	/*  We already know we raced and no longer need the new region */
437 	kfree(nrg);
438 	return chg;
439 out_nrg:
440 	spin_unlock(&resv->lock);
441 	return chg;
442 }
443 
444 /*
445  * Abort the in progress add operation.  The adds_in_progress field
446  * of the resv_map keeps track of the operations in progress between
447  * calls to region_chg and region_add.  Operations are sometimes
448  * aborted after the call to region_chg.  In such cases, region_abort
449  * is called to decrement the adds_in_progress counter.
450  *
451  * NOTE: The range arguments [f, t) are not needed or used in this
452  * routine.  They are kept to make reading the calling code easier as
453  * arguments will match the associated region_chg call.
454  */
455 static void region_abort(struct resv_map *resv, long f, long t)
456 {
457 	spin_lock(&resv->lock);
458 	VM_BUG_ON(!resv->region_cache_count);
459 	resv->adds_in_progress--;
460 	spin_unlock(&resv->lock);
461 }
462 
463 /*
464  * Delete the specified range [f, t) from the reserve map.  If the
465  * t parameter is LONG_MAX, this indicates that ALL regions after f
466  * should be deleted.  Locate the regions which intersect [f, t)
467  * and either trim, delete or split the existing regions.
468  *
469  * Returns the number of huge pages deleted from the reserve map.
470  * In the normal case, the return value is zero or more.  In the
471  * case where a region must be split, a new region descriptor must
472  * be allocated.  If the allocation fails, -ENOMEM will be returned.
473  * NOTE: If the parameter t == LONG_MAX, then we will never split
474  * a region and possibly return -ENOMEM.  Callers specifying
475  * t == LONG_MAX do not need to check for -ENOMEM error.
476  */
477 static long region_del(struct resv_map *resv, long f, long t)
478 {
479 	struct list_head *head = &resv->regions;
480 	struct file_region *rg, *trg;
481 	struct file_region *nrg = NULL;
482 	long del = 0;
483 
484 retry:
485 	spin_lock(&resv->lock);
486 	list_for_each_entry_safe(rg, trg, head, link) {
487 		/*
488 		 * Skip regions before the range to be deleted.  file_region
489 		 * ranges are normally of the form [from, to).  However, there
490 		 * may be a "placeholder" entry in the map which is of the form
491 		 * (from, to) with from == to.  Check for placeholder entries
492 		 * at the beginning of the range to be deleted.
493 		 */
494 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
495 			continue;
496 
497 		if (rg->from >= t)
498 			break;
499 
500 		if (f > rg->from && t < rg->to) { /* Must split region */
501 			/*
502 			 * Check for an entry in the cache before dropping
503 			 * lock and attempting allocation.
504 			 */
505 			if (!nrg &&
506 			    resv->region_cache_count > resv->adds_in_progress) {
507 				nrg = list_first_entry(&resv->region_cache,
508 							struct file_region,
509 							link);
510 				list_del(&nrg->link);
511 				resv->region_cache_count--;
512 			}
513 
514 			if (!nrg) {
515 				spin_unlock(&resv->lock);
516 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
517 				if (!nrg)
518 					return -ENOMEM;
519 				goto retry;
520 			}
521 
522 			del += t - f;
523 
524 			/* New entry for end of split region */
525 			nrg->from = t;
526 			nrg->to = rg->to;
527 			INIT_LIST_HEAD(&nrg->link);
528 
529 			/* Original entry is trimmed */
530 			rg->to = f;
531 
532 			list_add(&nrg->link, &rg->link);
533 			nrg = NULL;
534 			break;
535 		}
536 
537 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
538 			del += rg->to - rg->from;
539 			list_del(&rg->link);
540 			kfree(rg);
541 			continue;
542 		}
543 
544 		if (f <= rg->from) {	/* Trim beginning of region */
545 			del += t - rg->from;
546 			rg->from = t;
547 		} else {		/* Trim end of region */
548 			del += rg->to - f;
549 			rg->to = f;
550 		}
551 	}
552 
553 	spin_unlock(&resv->lock);
554 	kfree(nrg);
555 	return del;
556 }
557 
558 /*
559  * A rare out of memory error was encountered which prevented removal of
560  * the reserve map region for a page.  The huge page itself was free'ed
561  * and removed from the page cache.  This routine will adjust the subpool
562  * usage count, and the global reserve count if needed.  By incrementing
563  * these counts, the reserve map entry which could not be deleted will
564  * appear as a "reserved" entry instead of simply dangling with incorrect
565  * counts.
566  */
567 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
568 {
569 	struct hugepage_subpool *spool = subpool_inode(inode);
570 	long rsv_adjust;
571 
572 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
573 	if (restore_reserve && rsv_adjust) {
574 		struct hstate *h = hstate_inode(inode);
575 
576 		hugetlb_acct_memory(h, 1);
577 	}
578 }
579 
580 /*
581  * Count and return the number of huge pages in the reserve map
582  * that intersect with the range [f, t).
583  */
584 static long region_count(struct resv_map *resv, long f, long t)
585 {
586 	struct list_head *head = &resv->regions;
587 	struct file_region *rg;
588 	long chg = 0;
589 
590 	spin_lock(&resv->lock);
591 	/* Locate each segment we overlap with, and count that overlap. */
592 	list_for_each_entry(rg, head, link) {
593 		long seg_from;
594 		long seg_to;
595 
596 		if (rg->to <= f)
597 			continue;
598 		if (rg->from >= t)
599 			break;
600 
601 		seg_from = max(rg->from, f);
602 		seg_to = min(rg->to, t);
603 
604 		chg += seg_to - seg_from;
605 	}
606 	spin_unlock(&resv->lock);
607 
608 	return chg;
609 }
610 
611 /*
612  * Convert the address within this vma to the page offset within
613  * the mapping, in pagecache page units; huge pages here.
614  */
615 static pgoff_t vma_hugecache_offset(struct hstate *h,
616 			struct vm_area_struct *vma, unsigned long address)
617 {
618 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
619 			(vma->vm_pgoff >> huge_page_order(h));
620 }
621 
622 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
623 				     unsigned long address)
624 {
625 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
626 }
627 
628 /*
629  * Return the size of the pages allocated when backing a VMA. In the majority
630  * cases this will be same size as used by the page table entries.
631  */
632 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
633 {
634 	struct hstate *hstate;
635 
636 	if (!is_vm_hugetlb_page(vma))
637 		return PAGE_SIZE;
638 
639 	hstate = hstate_vma(vma);
640 
641 	return 1UL << huge_page_shift(hstate);
642 }
643 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
644 
645 /*
646  * Return the page size being used by the MMU to back a VMA. In the majority
647  * of cases, the page size used by the kernel matches the MMU size. On
648  * architectures where it differs, an architecture-specific version of this
649  * function is required.
650  */
651 #ifndef vma_mmu_pagesize
652 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 	return vma_kernel_pagesize(vma);
655 }
656 #endif
657 
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666 
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688 	return (unsigned long)vma->vm_private_data;
689 }
690 
691 static void set_vma_private_data(struct vm_area_struct *vma,
692 							unsigned long value)
693 {
694 	vma->vm_private_data = (void *)value;
695 }
696 
697 struct resv_map *resv_map_alloc(void)
698 {
699 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 
702 	if (!resv_map || !rg) {
703 		kfree(resv_map);
704 		kfree(rg);
705 		return NULL;
706 	}
707 
708 	kref_init(&resv_map->refs);
709 	spin_lock_init(&resv_map->lock);
710 	INIT_LIST_HEAD(&resv_map->regions);
711 
712 	resv_map->adds_in_progress = 0;
713 
714 	INIT_LIST_HEAD(&resv_map->region_cache);
715 	list_add(&rg->link, &resv_map->region_cache);
716 	resv_map->region_cache_count = 1;
717 
718 	return resv_map;
719 }
720 
721 void resv_map_release(struct kref *ref)
722 {
723 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 	struct list_head *head = &resv_map->region_cache;
725 	struct file_region *rg, *trg;
726 
727 	/* Clear out any active regions before we release the map. */
728 	region_del(resv_map, 0, LONG_MAX);
729 
730 	/* ... and any entries left in the cache */
731 	list_for_each_entry_safe(rg, trg, head, link) {
732 		list_del(&rg->link);
733 		kfree(rg);
734 	}
735 
736 	VM_BUG_ON(resv_map->adds_in_progress);
737 
738 	kfree(resv_map);
739 }
740 
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743 	return inode->i_mapping->private_data;
744 }
745 
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749 	if (vma->vm_flags & VM_MAYSHARE) {
750 		struct address_space *mapping = vma->vm_file->f_mapping;
751 		struct inode *inode = mapping->host;
752 
753 		return inode_resv_map(inode);
754 
755 	} else {
756 		return (struct resv_map *)(get_vma_private_data(vma) &
757 							~HPAGE_RESV_MASK);
758 	}
759 }
760 
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 
766 	set_vma_private_data(vma, (get_vma_private_data(vma) &
767 				HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769 
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777 
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 
782 	return (get_vma_private_data(vma) & flag) != 0;
783 }
784 
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 	if (!(vma->vm_flags & VM_MAYSHARE))
790 		vma->vm_private_data = (void *)0;
791 }
792 
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796 	if (vma->vm_flags & VM_NORESERVE) {
797 		/*
798 		 * This address is already reserved by other process(chg == 0),
799 		 * so, we should decrement reserved count. Without decrementing,
800 		 * reserve count remains after releasing inode, because this
801 		 * allocated page will go into page cache and is regarded as
802 		 * coming from reserved pool in releasing step.  Currently, we
803 		 * don't have any other solution to deal with this situation
804 		 * properly, so add work-around here.
805 		 */
806 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807 			return true;
808 		else
809 			return false;
810 	}
811 
812 	/* Shared mappings always use reserves */
813 	if (vma->vm_flags & VM_MAYSHARE) {
814 		/*
815 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816 		 * be a region map for all pages.  The only situation where
817 		 * there is no region map is if a hole was punched via
818 		 * fallocate.  In this case, there really are no reverves to
819 		 * use.  This situation is indicated if chg != 0.
820 		 */
821 		if (chg)
822 			return false;
823 		else
824 			return true;
825 	}
826 
827 	/*
828 	 * Only the process that called mmap() has reserves for
829 	 * private mappings.
830 	 */
831 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
832 		return true;
833 
834 	return false;
835 }
836 
837 static void enqueue_huge_page(struct hstate *h, struct page *page)
838 {
839 	int nid = page_to_nid(page);
840 	list_move(&page->lru, &h->hugepage_freelists[nid]);
841 	h->free_huge_pages++;
842 	h->free_huge_pages_node[nid]++;
843 }
844 
845 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
846 {
847 	struct page *page;
848 
849 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
850 		if (!is_migrate_isolate_page(page))
851 			break;
852 	/*
853 	 * if 'non-isolated free hugepage' not found on the list,
854 	 * the allocation fails.
855 	 */
856 	if (&h->hugepage_freelists[nid] == &page->lru)
857 		return NULL;
858 	list_move(&page->lru, &h->hugepage_activelist);
859 	set_page_refcounted(page);
860 	h->free_huge_pages--;
861 	h->free_huge_pages_node[nid]--;
862 	return page;
863 }
864 
865 /* Movability of hugepages depends on migration support. */
866 static inline gfp_t htlb_alloc_mask(struct hstate *h)
867 {
868 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
869 		return GFP_HIGHUSER_MOVABLE;
870 	else
871 		return GFP_HIGHUSER;
872 }
873 
874 static struct page *dequeue_huge_page_vma(struct hstate *h,
875 				struct vm_area_struct *vma,
876 				unsigned long address, int avoid_reserve,
877 				long chg)
878 {
879 	struct page *page = NULL;
880 	struct mempolicy *mpol;
881 	nodemask_t *nodemask;
882 	struct zonelist *zonelist;
883 	struct zone *zone;
884 	struct zoneref *z;
885 	unsigned int cpuset_mems_cookie;
886 
887 	/*
888 	 * A child process with MAP_PRIVATE mappings created by their parent
889 	 * have no page reserves. This check ensures that reservations are
890 	 * not "stolen". The child may still get SIGKILLed
891 	 */
892 	if (!vma_has_reserves(vma, chg) &&
893 			h->free_huge_pages - h->resv_huge_pages == 0)
894 		goto err;
895 
896 	/* If reserves cannot be used, ensure enough pages are in the pool */
897 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
898 		goto err;
899 
900 retry_cpuset:
901 	cpuset_mems_cookie = read_mems_allowed_begin();
902 	zonelist = huge_zonelist(vma, address,
903 					htlb_alloc_mask(h), &mpol, &nodemask);
904 
905 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
906 						MAX_NR_ZONES - 1, nodemask) {
907 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
908 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
909 			if (page) {
910 				if (avoid_reserve)
911 					break;
912 				if (!vma_has_reserves(vma, chg))
913 					break;
914 
915 				SetPagePrivate(page);
916 				h->resv_huge_pages--;
917 				break;
918 			}
919 		}
920 	}
921 
922 	mpol_cond_put(mpol);
923 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
924 		goto retry_cpuset;
925 	return page;
926 
927 err:
928 	return NULL;
929 }
930 
931 /*
932  * common helper functions for hstate_next_node_to_{alloc|free}.
933  * We may have allocated or freed a huge page based on a different
934  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935  * be outside of *nodes_allowed.  Ensure that we use an allowed
936  * node for alloc or free.
937  */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940 	nid = next_node(nid, *nodes_allowed);
941 	if (nid == MAX_NUMNODES)
942 		nid = first_node(*nodes_allowed);
943 	VM_BUG_ON(nid >= MAX_NUMNODES);
944 
945 	return nid;
946 }
947 
948 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949 {
950 	if (!node_isset(nid, *nodes_allowed))
951 		nid = next_node_allowed(nid, nodes_allowed);
952 	return nid;
953 }
954 
955 /*
956  * returns the previously saved node ["this node"] from which to
957  * allocate a persistent huge page for the pool and advance the
958  * next node from which to allocate, handling wrap at end of node
959  * mask.
960  */
961 static int hstate_next_node_to_alloc(struct hstate *h,
962 					nodemask_t *nodes_allowed)
963 {
964 	int nid;
965 
966 	VM_BUG_ON(!nodes_allowed);
967 
968 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
969 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970 
971 	return nid;
972 }
973 
974 /*
975  * helper for free_pool_huge_page() - return the previously saved
976  * node ["this node"] from which to free a huge page.  Advance the
977  * next node id whether or not we find a free huge page to free so
978  * that the next attempt to free addresses the next node.
979  */
980 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981 {
982 	int nid;
983 
984 	VM_BUG_ON(!nodes_allowed);
985 
986 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
987 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988 
989 	return nid;
990 }
991 
992 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
993 	for (nr_nodes = nodes_weight(*mask);				\
994 		nr_nodes > 0 &&						\
995 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
996 		nr_nodes--)
997 
998 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
999 	for (nr_nodes = nodes_weight(*mask);				\
1000 		nr_nodes > 0 &&						\
1001 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1002 		nr_nodes--)
1003 
1004 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005 static void destroy_compound_gigantic_page(struct page *page,
1006 					unsigned int order)
1007 {
1008 	int i;
1009 	int nr_pages = 1 << order;
1010 	struct page *p = page + 1;
1011 
1012 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013 		clear_compound_head(p);
1014 		set_page_refcounted(p);
1015 	}
1016 
1017 	set_compound_order(page, 0);
1018 	__ClearPageHead(page);
1019 }
1020 
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1022 {
1023 	free_contig_range(page_to_pfn(page), 1 << order);
1024 }
1025 
1026 static int __alloc_gigantic_page(unsigned long start_pfn,
1027 				unsigned long nr_pages)
1028 {
1029 	unsigned long end_pfn = start_pfn + nr_pages;
1030 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031 }
1032 
1033 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034 				unsigned long nr_pages)
1035 {
1036 	unsigned long i, end_pfn = start_pfn + nr_pages;
1037 	struct page *page;
1038 
1039 	for (i = start_pfn; i < end_pfn; i++) {
1040 		if (!pfn_valid(i))
1041 			return false;
1042 
1043 		page = pfn_to_page(i);
1044 
1045 		if (PageReserved(page))
1046 			return false;
1047 
1048 		if (page_count(page) > 0)
1049 			return false;
1050 
1051 		if (PageHuge(page))
1052 			return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static bool zone_spans_last_pfn(const struct zone *zone,
1059 			unsigned long start_pfn, unsigned long nr_pages)
1060 {
1061 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1062 	return zone_spans_pfn(zone, last_pfn);
1063 }
1064 
1065 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066 {
1067 	unsigned long nr_pages = 1 << order;
1068 	unsigned long ret, pfn, flags;
1069 	struct zone *z;
1070 
1071 	z = NODE_DATA(nid)->node_zones;
1072 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073 		spin_lock_irqsave(&z->lock, flags);
1074 
1075 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078 				/*
1079 				 * We release the zone lock here because
1080 				 * alloc_contig_range() will also lock the zone
1081 				 * at some point. If there's an allocation
1082 				 * spinning on this lock, it may win the race
1083 				 * and cause alloc_contig_range() to fail...
1084 				 */
1085 				spin_unlock_irqrestore(&z->lock, flags);
1086 				ret = __alloc_gigantic_page(pfn, nr_pages);
1087 				if (!ret)
1088 					return pfn_to_page(pfn);
1089 				spin_lock_irqsave(&z->lock, flags);
1090 			}
1091 			pfn += nr_pages;
1092 		}
1093 
1094 		spin_unlock_irqrestore(&z->lock, flags);
1095 	}
1096 
1097 	return NULL;
1098 }
1099 
1100 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102 
1103 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104 {
1105 	struct page *page;
1106 
1107 	page = alloc_gigantic_page(nid, huge_page_order(h));
1108 	if (page) {
1109 		prep_compound_gigantic_page(page, huge_page_order(h));
1110 		prep_new_huge_page(h, page, nid);
1111 	}
1112 
1113 	return page;
1114 }
1115 
1116 static int alloc_fresh_gigantic_page(struct hstate *h,
1117 				nodemask_t *nodes_allowed)
1118 {
1119 	struct page *page = NULL;
1120 	int nr_nodes, node;
1121 
1122 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123 		page = alloc_fresh_gigantic_page_node(h, node);
1124 		if (page)
1125 			return 1;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static inline bool gigantic_page_supported(void) { return true; }
1132 #else
1133 static inline bool gigantic_page_supported(void) { return false; }
1134 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135 static inline void destroy_compound_gigantic_page(struct page *page,
1136 						unsigned int order) { }
1137 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138 					nodemask_t *nodes_allowed) { return 0; }
1139 #endif
1140 
1141 static void update_and_free_page(struct hstate *h, struct page *page)
1142 {
1143 	int i;
1144 
1145 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146 		return;
1147 
1148 	h->nr_huge_pages--;
1149 	h->nr_huge_pages_node[page_to_nid(page)]--;
1150 	for (i = 0; i < pages_per_huge_page(h); i++) {
1151 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152 				1 << PG_referenced | 1 << PG_dirty |
1153 				1 << PG_active | 1 << PG_private |
1154 				1 << PG_writeback);
1155 	}
1156 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158 	set_page_refcounted(page);
1159 	if (hstate_is_gigantic(h)) {
1160 		destroy_compound_gigantic_page(page, huge_page_order(h));
1161 		free_gigantic_page(page, huge_page_order(h));
1162 	} else {
1163 		__free_pages(page, huge_page_order(h));
1164 	}
1165 }
1166 
1167 struct hstate *size_to_hstate(unsigned long size)
1168 {
1169 	struct hstate *h;
1170 
1171 	for_each_hstate(h) {
1172 		if (huge_page_size(h) == size)
1173 			return h;
1174 	}
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180  * to hstate->hugepage_activelist.)
1181  *
1182  * This function can be called for tail pages, but never returns true for them.
1183  */
1184 bool page_huge_active(struct page *page)
1185 {
1186 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1187 	return PageHead(page) && PagePrivate(&page[1]);
1188 }
1189 
1190 /* never called for tail page */
1191 static void set_page_huge_active(struct page *page)
1192 {
1193 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194 	SetPagePrivate(&page[1]);
1195 }
1196 
1197 static void clear_page_huge_active(struct page *page)
1198 {
1199 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200 	ClearPagePrivate(&page[1]);
1201 }
1202 
1203 void free_huge_page(struct page *page)
1204 {
1205 	/*
1206 	 * Can't pass hstate in here because it is called from the
1207 	 * compound page destructor.
1208 	 */
1209 	struct hstate *h = page_hstate(page);
1210 	int nid = page_to_nid(page);
1211 	struct hugepage_subpool *spool =
1212 		(struct hugepage_subpool *)page_private(page);
1213 	bool restore_reserve;
1214 
1215 	set_page_private(page, 0);
1216 	page->mapping = NULL;
1217 	VM_BUG_ON_PAGE(page_count(page), page);
1218 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1219 	restore_reserve = PagePrivate(page);
1220 	ClearPagePrivate(page);
1221 
1222 	/*
1223 	 * A return code of zero implies that the subpool will be under its
1224 	 * minimum size if the reservation is not restored after page is free.
1225 	 * Therefore, force restore_reserve operation.
1226 	 */
1227 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1228 		restore_reserve = true;
1229 
1230 	spin_lock(&hugetlb_lock);
1231 	clear_page_huge_active(page);
1232 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1233 				     pages_per_huge_page(h), page);
1234 	if (restore_reserve)
1235 		h->resv_huge_pages++;
1236 
1237 	if (h->surplus_huge_pages_node[nid]) {
1238 		/* remove the page from active list */
1239 		list_del(&page->lru);
1240 		update_and_free_page(h, page);
1241 		h->surplus_huge_pages--;
1242 		h->surplus_huge_pages_node[nid]--;
1243 	} else {
1244 		arch_clear_hugepage_flags(page);
1245 		enqueue_huge_page(h, page);
1246 	}
1247 	spin_unlock(&hugetlb_lock);
1248 }
1249 
1250 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251 {
1252 	INIT_LIST_HEAD(&page->lru);
1253 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254 	spin_lock(&hugetlb_lock);
1255 	set_hugetlb_cgroup(page, NULL);
1256 	h->nr_huge_pages++;
1257 	h->nr_huge_pages_node[nid]++;
1258 	spin_unlock(&hugetlb_lock);
1259 	put_page(page); /* free it into the hugepage allocator */
1260 }
1261 
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263 {
1264 	int i;
1265 	int nr_pages = 1 << order;
1266 	struct page *p = page + 1;
1267 
1268 	/* we rely on prep_new_huge_page to set the destructor */
1269 	set_compound_order(page, order);
1270 	__ClearPageReserved(page);
1271 	__SetPageHead(page);
1272 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273 		/*
1274 		 * For gigantic hugepages allocated through bootmem at
1275 		 * boot, it's safer to be consistent with the not-gigantic
1276 		 * hugepages and clear the PG_reserved bit from all tail pages
1277 		 * too.  Otherwse drivers using get_user_pages() to access tail
1278 		 * pages may get the reference counting wrong if they see
1279 		 * PG_reserved set on a tail page (despite the head page not
1280 		 * having PG_reserved set).  Enforcing this consistency between
1281 		 * head and tail pages allows drivers to optimize away a check
1282 		 * on the head page when they need know if put_page() is needed
1283 		 * after get_user_pages().
1284 		 */
1285 		__ClearPageReserved(p);
1286 		set_page_count(p, 0);
1287 		set_compound_head(p, page);
1288 	}
1289 	atomic_set(compound_mapcount_ptr(page), -1);
1290 }
1291 
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299 	if (!PageCompound(page))
1300 		return 0;
1301 
1302 	page = compound_head(page);
1303 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306 
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313 	if (!PageHead(page_head))
1314 		return 0;
1315 
1316 	return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318 
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321 	struct page *page_head = compound_head(page);
1322 	pgoff_t index = page_index(page_head);
1323 	unsigned long compound_idx;
1324 
1325 	if (!PageHuge(page_head))
1326 		return page_index(page);
1327 
1328 	if (compound_order(page_head) >= MAX_ORDER)
1329 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 	else
1331 		compound_idx = page - page_head;
1332 
1333 	return (index << compound_order(page_head)) + compound_idx;
1334 }
1335 
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338 	struct page *page;
1339 
1340 	page = __alloc_pages_node(nid,
1341 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342 						__GFP_REPEAT|__GFP_NOWARN,
1343 		huge_page_order(h));
1344 	if (page) {
1345 		prep_new_huge_page(h, page, nid);
1346 	}
1347 
1348 	return page;
1349 }
1350 
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353 	struct page *page;
1354 	int nr_nodes, node;
1355 	int ret = 0;
1356 
1357 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 		page = alloc_fresh_huge_page_node(h, node);
1359 		if (page) {
1360 			ret = 1;
1361 			break;
1362 		}
1363 	}
1364 
1365 	if (ret)
1366 		count_vm_event(HTLB_BUDDY_PGALLOC);
1367 	else
1368 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369 
1370 	return ret;
1371 }
1372 
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380 							 bool acct_surplus)
1381 {
1382 	int nr_nodes, node;
1383 	int ret = 0;
1384 
1385 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386 		/*
1387 		 * If we're returning unused surplus pages, only examine
1388 		 * nodes with surplus pages.
1389 		 */
1390 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391 		    !list_empty(&h->hugepage_freelists[node])) {
1392 			struct page *page =
1393 				list_entry(h->hugepage_freelists[node].next,
1394 					  struct page, lru);
1395 			list_del(&page->lru);
1396 			h->free_huge_pages--;
1397 			h->free_huge_pages_node[node]--;
1398 			if (acct_surplus) {
1399 				h->surplus_huge_pages--;
1400 				h->surplus_huge_pages_node[node]--;
1401 			}
1402 			update_and_free_page(h, page);
1403 			ret = 1;
1404 			break;
1405 		}
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417 	spin_lock(&hugetlb_lock);
1418 	if (PageHuge(page) && !page_count(page)) {
1419 		struct hstate *h = page_hstate(page);
1420 		int nid = page_to_nid(page);
1421 		list_del(&page->lru);
1422 		h->free_huge_pages--;
1423 		h->free_huge_pages_node[nid]--;
1424 		update_and_free_page(h, page);
1425 	}
1426 	spin_unlock(&hugetlb_lock);
1427 }
1428 
1429 /*
1430  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431  * make specified memory blocks removable from the system.
1432  * Note that start_pfn should aligned with (minimum) hugepage size.
1433  */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436 	unsigned long pfn;
1437 
1438 	if (!hugepages_supported())
1439 		return;
1440 
1441 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443 		dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445 
1446 /*
1447  * There are 3 ways this can get called:
1448  * 1. With vma+addr: we use the VMA's memory policy
1449  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450  *    page from any node, and let the buddy allocator itself figure
1451  *    it out.
1452  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453  *    strictly from 'nid'
1454  */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456 		struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458 	int order = huge_page_order(h);
1459 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460 	unsigned int cpuset_mems_cookie;
1461 
1462 	/*
1463 	 * We need a VMA to get a memory policy.  If we do not
1464 	 * have one, we use the 'nid' argument.
1465 	 *
1466 	 * The mempolicy stuff below has some non-inlined bits
1467 	 * and calls ->vm_ops.  That makes it hard to optimize at
1468 	 * compile-time, even when NUMA is off and it does
1469 	 * nothing.  This helps the compiler optimize it out.
1470 	 */
1471 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472 		/*
1473 		 * If a specific node is requested, make sure to
1474 		 * get memory from there, but only when a node
1475 		 * is explicitly specified.
1476 		 */
1477 		if (nid != NUMA_NO_NODE)
1478 			gfp |= __GFP_THISNODE;
1479 		/*
1480 		 * Make sure to call something that can handle
1481 		 * nid=NUMA_NO_NODE
1482 		 */
1483 		return alloc_pages_node(nid, gfp, order);
1484 	}
1485 
1486 	/*
1487 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1488 	 * allocate a huge page with it.  We will only reach this
1489 	 * when CONFIG_NUMA=y.
1490 	 */
1491 	do {
1492 		struct page *page;
1493 		struct mempolicy *mpol;
1494 		struct zonelist *zl;
1495 		nodemask_t *nodemask;
1496 
1497 		cpuset_mems_cookie = read_mems_allowed_begin();
1498 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499 		mpol_cond_put(mpol);
1500 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501 		if (page)
1502 			return page;
1503 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1504 
1505 	return NULL;
1506 }
1507 
1508 /*
1509  * There are two ways to allocate a huge page:
1510  * 1. When you have a VMA and an address (like a fault)
1511  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512  *
1513  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514  * this case which signifies that the allocation should be done with
1515  * respect for the VMA's memory policy.
1516  *
1517  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518  * implies that memory policies will not be taken in to account.
1519  */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521 		struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523 	struct page *page;
1524 	unsigned int r_nid;
1525 
1526 	if (hstate_is_gigantic(h))
1527 		return NULL;
1528 
1529 	/*
1530 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 	 * This makes sure the caller is picking _one_ of the modes with which
1532 	 * we can call this function, not both.
1533 	 */
1534 	if (vma || (addr != -1)) {
1535 		VM_WARN_ON_ONCE(addr == -1);
1536 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537 	}
1538 	/*
1539 	 * Assume we will successfully allocate the surplus page to
1540 	 * prevent racing processes from causing the surplus to exceed
1541 	 * overcommit
1542 	 *
1543 	 * This however introduces a different race, where a process B
1544 	 * tries to grow the static hugepage pool while alloc_pages() is
1545 	 * called by process A. B will only examine the per-node
1546 	 * counters in determining if surplus huge pages can be
1547 	 * converted to normal huge pages in adjust_pool_surplus(). A
1548 	 * won't be able to increment the per-node counter, until the
1549 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 	 * no more huge pages can be converted from surplus to normal
1551 	 * state (and doesn't try to convert again). Thus, we have a
1552 	 * case where a surplus huge page exists, the pool is grown, and
1553 	 * the surplus huge page still exists after, even though it
1554 	 * should just have been converted to a normal huge page. This
1555 	 * does not leak memory, though, as the hugepage will be freed
1556 	 * once it is out of use. It also does not allow the counters to
1557 	 * go out of whack in adjust_pool_surplus() as we don't modify
1558 	 * the node values until we've gotten the hugepage and only the
1559 	 * per-node value is checked there.
1560 	 */
1561 	spin_lock(&hugetlb_lock);
1562 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563 		spin_unlock(&hugetlb_lock);
1564 		return NULL;
1565 	} else {
1566 		h->nr_huge_pages++;
1567 		h->surplus_huge_pages++;
1568 	}
1569 	spin_unlock(&hugetlb_lock);
1570 
1571 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572 
1573 	spin_lock(&hugetlb_lock);
1574 	if (page) {
1575 		INIT_LIST_HEAD(&page->lru);
1576 		r_nid = page_to_nid(page);
1577 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578 		set_hugetlb_cgroup(page, NULL);
1579 		/*
1580 		 * We incremented the global counters already
1581 		 */
1582 		h->nr_huge_pages_node[r_nid]++;
1583 		h->surplus_huge_pages_node[r_nid]++;
1584 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1585 	} else {
1586 		h->nr_huge_pages--;
1587 		h->surplus_huge_pages--;
1588 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589 	}
1590 	spin_unlock(&hugetlb_lock);
1591 
1592 	return page;
1593 }
1594 
1595 /*
1596  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597  * NUMA_NO_NODE, which means that it may be allocated
1598  * anywhere.
1599  */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603 	unsigned long addr = -1;
1604 
1605 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607 
1608 /*
1609  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610  */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613 		struct vm_area_struct *vma, unsigned long addr)
1614 {
1615 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617 
1618 /*
1619  * This allocation function is useful in the context where vma is irrelevant.
1620  * E.g. soft-offlining uses this function because it only cares physical
1621  * address of error page.
1622  */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625 	struct page *page = NULL;
1626 
1627 	spin_lock(&hugetlb_lock);
1628 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1629 		page = dequeue_huge_page_node(h, nid);
1630 	spin_unlock(&hugetlb_lock);
1631 
1632 	if (!page)
1633 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634 
1635 	return page;
1636 }
1637 
1638 /*
1639  * Increase the hugetlb pool such that it can accommodate a reservation
1640  * of size 'delta'.
1641  */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644 	struct list_head surplus_list;
1645 	struct page *page, *tmp;
1646 	int ret, i;
1647 	int needed, allocated;
1648 	bool alloc_ok = true;
1649 
1650 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651 	if (needed <= 0) {
1652 		h->resv_huge_pages += delta;
1653 		return 0;
1654 	}
1655 
1656 	allocated = 0;
1657 	INIT_LIST_HEAD(&surplus_list);
1658 
1659 	ret = -ENOMEM;
1660 retry:
1661 	spin_unlock(&hugetlb_lock);
1662 	for (i = 0; i < needed; i++) {
1663 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664 		if (!page) {
1665 			alloc_ok = false;
1666 			break;
1667 		}
1668 		list_add(&page->lru, &surplus_list);
1669 	}
1670 	allocated += i;
1671 
1672 	/*
1673 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 	 * because either resv_huge_pages or free_huge_pages may have changed.
1675 	 */
1676 	spin_lock(&hugetlb_lock);
1677 	needed = (h->resv_huge_pages + delta) -
1678 			(h->free_huge_pages + allocated);
1679 	if (needed > 0) {
1680 		if (alloc_ok)
1681 			goto retry;
1682 		/*
1683 		 * We were not able to allocate enough pages to
1684 		 * satisfy the entire reservation so we free what
1685 		 * we've allocated so far.
1686 		 */
1687 		goto free;
1688 	}
1689 	/*
1690 	 * The surplus_list now contains _at_least_ the number of extra pages
1691 	 * needed to accommodate the reservation.  Add the appropriate number
1692 	 * of pages to the hugetlb pool and free the extras back to the buddy
1693 	 * allocator.  Commit the entire reservation here to prevent another
1694 	 * process from stealing the pages as they are added to the pool but
1695 	 * before they are reserved.
1696 	 */
1697 	needed += allocated;
1698 	h->resv_huge_pages += delta;
1699 	ret = 0;
1700 
1701 	/* Free the needed pages to the hugetlb pool */
1702 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703 		if ((--needed) < 0)
1704 			break;
1705 		/*
1706 		 * This page is now managed by the hugetlb allocator and has
1707 		 * no users -- drop the buddy allocator's reference.
1708 		 */
1709 		put_page_testzero(page);
1710 		VM_BUG_ON_PAGE(page_count(page), page);
1711 		enqueue_huge_page(h, page);
1712 	}
1713 free:
1714 	spin_unlock(&hugetlb_lock);
1715 
1716 	/* Free unnecessary surplus pages to the buddy allocator */
1717 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718 		put_page(page);
1719 	spin_lock(&hugetlb_lock);
1720 
1721 	return ret;
1722 }
1723 
1724 /*
1725  * When releasing a hugetlb pool reservation, any surplus pages that were
1726  * allocated to satisfy the reservation must be explicitly freed if they were
1727  * never used.
1728  * Called with hugetlb_lock held.
1729  */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731 					unsigned long unused_resv_pages)
1732 {
1733 	unsigned long nr_pages;
1734 
1735 	/* Uncommit the reservation */
1736 	h->resv_huge_pages -= unused_resv_pages;
1737 
1738 	/* Cannot return gigantic pages currently */
1739 	if (hstate_is_gigantic(h))
1740 		return;
1741 
1742 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743 
1744 	/*
1745 	 * We want to release as many surplus pages as possible, spread
1746 	 * evenly across all nodes with memory. Iterate across these nodes
1747 	 * until we can no longer free unreserved surplus pages. This occurs
1748 	 * when the nodes with surplus pages have no free pages.
1749 	 * free_pool_huge_page() will balance the the freed pages across the
1750 	 * on-line nodes with memory and will handle the hstate accounting.
1751 	 */
1752 	while (nr_pages--) {
1753 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754 			break;
1755 		cond_resched_lock(&hugetlb_lock);
1756 	}
1757 }
1758 
1759 
1760 /*
1761  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762  * are used by the huge page allocation routines to manage reservations.
1763  *
1764  * vma_needs_reservation is called to determine if the huge page at addr
1765  * within the vma has an associated reservation.  If a reservation is
1766  * needed, the value 1 is returned.  The caller is then responsible for
1767  * managing the global reservation and subpool usage counts.  After
1768  * the huge page has been allocated, vma_commit_reservation is called
1769  * to add the page to the reservation map.  If the page allocation fails,
1770  * the reservation must be ended instead of committed.  vma_end_reservation
1771  * is called in such cases.
1772  *
1773  * In the normal case, vma_commit_reservation returns the same value
1774  * as the preceding vma_needs_reservation call.  The only time this
1775  * is not the case is if a reserve map was changed between calls.  It
1776  * is the responsibility of the caller to notice the difference and
1777  * take appropriate action.
1778  */
1779 enum vma_resv_mode {
1780 	VMA_NEEDS_RESV,
1781 	VMA_COMMIT_RESV,
1782 	VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785 				struct vm_area_struct *vma, unsigned long addr,
1786 				enum vma_resv_mode mode)
1787 {
1788 	struct resv_map *resv;
1789 	pgoff_t idx;
1790 	long ret;
1791 
1792 	resv = vma_resv_map(vma);
1793 	if (!resv)
1794 		return 1;
1795 
1796 	idx = vma_hugecache_offset(h, vma, addr);
1797 	switch (mode) {
1798 	case VMA_NEEDS_RESV:
1799 		ret = region_chg(resv, idx, idx + 1);
1800 		break;
1801 	case VMA_COMMIT_RESV:
1802 		ret = region_add(resv, idx, idx + 1);
1803 		break;
1804 	case VMA_END_RESV:
1805 		region_abort(resv, idx, idx + 1);
1806 		ret = 0;
1807 		break;
1808 	default:
1809 		BUG();
1810 	}
1811 
1812 	if (vma->vm_flags & VM_MAYSHARE)
1813 		return ret;
1814 	else
1815 		return ret < 0 ? ret : 0;
1816 }
1817 
1818 static long vma_needs_reservation(struct hstate *h,
1819 			struct vm_area_struct *vma, unsigned long addr)
1820 {
1821 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823 
1824 static long vma_commit_reservation(struct hstate *h,
1825 			struct vm_area_struct *vma, unsigned long addr)
1826 {
1827 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829 
1830 static void vma_end_reservation(struct hstate *h,
1831 			struct vm_area_struct *vma, unsigned long addr)
1832 {
1833 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835 
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837 				    unsigned long addr, int avoid_reserve)
1838 {
1839 	struct hugepage_subpool *spool = subpool_vma(vma);
1840 	struct hstate *h = hstate_vma(vma);
1841 	struct page *page;
1842 	long map_chg, map_commit;
1843 	long gbl_chg;
1844 	int ret, idx;
1845 	struct hugetlb_cgroup *h_cg;
1846 
1847 	idx = hstate_index(h);
1848 	/*
1849 	 * Examine the region/reserve map to determine if the process
1850 	 * has a reservation for the page to be allocated.  A return
1851 	 * code of zero indicates a reservation exists (no change).
1852 	 */
1853 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854 	if (map_chg < 0)
1855 		return ERR_PTR(-ENOMEM);
1856 
1857 	/*
1858 	 * Processes that did not create the mapping will have no
1859 	 * reserves as indicated by the region/reserve map. Check
1860 	 * that the allocation will not exceed the subpool limit.
1861 	 * Allocations for MAP_NORESERVE mappings also need to be
1862 	 * checked against any subpool limit.
1863 	 */
1864 	if (map_chg || avoid_reserve) {
1865 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866 		if (gbl_chg < 0) {
1867 			vma_end_reservation(h, vma, addr);
1868 			return ERR_PTR(-ENOSPC);
1869 		}
1870 
1871 		/*
1872 		 * Even though there was no reservation in the region/reserve
1873 		 * map, there could be reservations associated with the
1874 		 * subpool that can be used.  This would be indicated if the
1875 		 * return value of hugepage_subpool_get_pages() is zero.
1876 		 * However, if avoid_reserve is specified we still avoid even
1877 		 * the subpool reservations.
1878 		 */
1879 		if (avoid_reserve)
1880 			gbl_chg = 1;
1881 	}
1882 
1883 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884 	if (ret)
1885 		goto out_subpool_put;
1886 
1887 	spin_lock(&hugetlb_lock);
1888 	/*
1889 	 * glb_chg is passed to indicate whether or not a page must be taken
1890 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1891 	 * a reservation exists for the allocation.
1892 	 */
1893 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894 	if (!page) {
1895 		spin_unlock(&hugetlb_lock);
1896 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897 		if (!page)
1898 			goto out_uncharge_cgroup;
1899 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900 			SetPagePrivate(page);
1901 			h->resv_huge_pages--;
1902 		}
1903 		spin_lock(&hugetlb_lock);
1904 		list_move(&page->lru, &h->hugepage_activelist);
1905 		/* Fall through */
1906 	}
1907 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908 	spin_unlock(&hugetlb_lock);
1909 
1910 	set_page_private(page, (unsigned long)spool);
1911 
1912 	map_commit = vma_commit_reservation(h, vma, addr);
1913 	if (unlikely(map_chg > map_commit)) {
1914 		/*
1915 		 * The page was added to the reservation map between
1916 		 * vma_needs_reservation and vma_commit_reservation.
1917 		 * This indicates a race with hugetlb_reserve_pages.
1918 		 * Adjust for the subpool count incremented above AND
1919 		 * in hugetlb_reserve_pages for the same page.  Also,
1920 		 * the reservation count added in hugetlb_reserve_pages
1921 		 * no longer applies.
1922 		 */
1923 		long rsv_adjust;
1924 
1925 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926 		hugetlb_acct_memory(h, -rsv_adjust);
1927 	}
1928 	return page;
1929 
1930 out_uncharge_cgroup:
1931 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933 	if (map_chg || avoid_reserve)
1934 		hugepage_subpool_put_pages(spool, 1);
1935 	vma_end_reservation(h, vma, addr);
1936 	return ERR_PTR(-ENOSPC);
1937 }
1938 
1939 /*
1940  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942  * where no ERR_VALUE is expected to be returned.
1943  */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945 				unsigned long addr, int avoid_reserve)
1946 {
1947 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948 	if (IS_ERR(page))
1949 		page = NULL;
1950 	return page;
1951 }
1952 
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955 	struct huge_bootmem_page *m;
1956 	int nr_nodes, node;
1957 
1958 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959 		void *addr;
1960 
1961 		addr = memblock_virt_alloc_try_nid_nopanic(
1962 				huge_page_size(h), huge_page_size(h),
1963 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964 		if (addr) {
1965 			/*
1966 			 * Use the beginning of the huge page to store the
1967 			 * huge_bootmem_page struct (until gather_bootmem
1968 			 * puts them into the mem_map).
1969 			 */
1970 			m = addr;
1971 			goto found;
1972 		}
1973 	}
1974 	return 0;
1975 
1976 found:
1977 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978 	/* Put them into a private list first because mem_map is not up yet */
1979 	list_add(&m->list, &huge_boot_pages);
1980 	m->hstate = h;
1981 	return 1;
1982 }
1983 
1984 static void __init prep_compound_huge_page(struct page *page,
1985 		unsigned int order)
1986 {
1987 	if (unlikely(order > (MAX_ORDER - 1)))
1988 		prep_compound_gigantic_page(page, order);
1989 	else
1990 		prep_compound_page(page, order);
1991 }
1992 
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996 	struct huge_bootmem_page *m;
1997 
1998 	list_for_each_entry(m, &huge_boot_pages, list) {
1999 		struct hstate *h = m->hstate;
2000 		struct page *page;
2001 
2002 #ifdef CONFIG_HIGHMEM
2003 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004 		memblock_free_late(__pa(m),
2005 				   sizeof(struct huge_bootmem_page));
2006 #else
2007 		page = virt_to_page(m);
2008 #endif
2009 		WARN_ON(page_count(page) != 1);
2010 		prep_compound_huge_page(page, h->order);
2011 		WARN_ON(PageReserved(page));
2012 		prep_new_huge_page(h, page, page_to_nid(page));
2013 		/*
2014 		 * If we had gigantic hugepages allocated at boot time, we need
2015 		 * to restore the 'stolen' pages to totalram_pages in order to
2016 		 * fix confusing memory reports from free(1) and another
2017 		 * side-effects, like CommitLimit going negative.
2018 		 */
2019 		if (hstate_is_gigantic(h))
2020 			adjust_managed_page_count(page, 1 << h->order);
2021 	}
2022 }
2023 
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026 	unsigned long i;
2027 
2028 	for (i = 0; i < h->max_huge_pages; ++i) {
2029 		if (hstate_is_gigantic(h)) {
2030 			if (!alloc_bootmem_huge_page(h))
2031 				break;
2032 		} else if (!alloc_fresh_huge_page(h,
2033 					 &node_states[N_MEMORY]))
2034 			break;
2035 	}
2036 	h->max_huge_pages = i;
2037 }
2038 
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041 	struct hstate *h;
2042 
2043 	for_each_hstate(h) {
2044 		if (minimum_order > huge_page_order(h))
2045 			minimum_order = huge_page_order(h);
2046 
2047 		/* oversize hugepages were init'ed in early boot */
2048 		if (!hstate_is_gigantic(h))
2049 			hugetlb_hstate_alloc_pages(h);
2050 	}
2051 	VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053 
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056 	if (n >= (1UL << 30))
2057 		sprintf(buf, "%lu GB", n >> 30);
2058 	else if (n >= (1UL << 20))
2059 		sprintf(buf, "%lu MB", n >> 20);
2060 	else
2061 		sprintf(buf, "%lu KB", n >> 10);
2062 	return buf;
2063 }
2064 
2065 static void __init report_hugepages(void)
2066 {
2067 	struct hstate *h;
2068 
2069 	for_each_hstate(h) {
2070 		char buf[32];
2071 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072 			memfmt(buf, huge_page_size(h)),
2073 			h->free_huge_pages);
2074 	}
2075 }
2076 
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079 						nodemask_t *nodes_allowed)
2080 {
2081 	int i;
2082 
2083 	if (hstate_is_gigantic(h))
2084 		return;
2085 
2086 	for_each_node_mask(i, *nodes_allowed) {
2087 		struct page *page, *next;
2088 		struct list_head *freel = &h->hugepage_freelists[i];
2089 		list_for_each_entry_safe(page, next, freel, lru) {
2090 			if (count >= h->nr_huge_pages)
2091 				return;
2092 			if (PageHighMem(page))
2093 				continue;
2094 			list_del(&page->lru);
2095 			update_and_free_page(h, page);
2096 			h->free_huge_pages--;
2097 			h->free_huge_pages_node[page_to_nid(page)]--;
2098 		}
2099 	}
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103 						nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107 
2108 /*
2109  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110  * balanced by operating on them in a round-robin fashion.
2111  * Returns 1 if an adjustment was made.
2112  */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114 				int delta)
2115 {
2116 	int nr_nodes, node;
2117 
2118 	VM_BUG_ON(delta != -1 && delta != 1);
2119 
2120 	if (delta < 0) {
2121 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122 			if (h->surplus_huge_pages_node[node])
2123 				goto found;
2124 		}
2125 	} else {
2126 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127 			if (h->surplus_huge_pages_node[node] <
2128 					h->nr_huge_pages_node[node])
2129 				goto found;
2130 		}
2131 	}
2132 	return 0;
2133 
2134 found:
2135 	h->surplus_huge_pages += delta;
2136 	h->surplus_huge_pages_node[node] += delta;
2137 	return 1;
2138 }
2139 
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142 						nodemask_t *nodes_allowed)
2143 {
2144 	unsigned long min_count, ret;
2145 
2146 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147 		return h->max_huge_pages;
2148 
2149 	/*
2150 	 * Increase the pool size
2151 	 * First take pages out of surplus state.  Then make up the
2152 	 * remaining difference by allocating fresh huge pages.
2153 	 *
2154 	 * We might race with __alloc_buddy_huge_page() here and be unable
2155 	 * to convert a surplus huge page to a normal huge page. That is
2156 	 * not critical, though, it just means the overall size of the
2157 	 * pool might be one hugepage larger than it needs to be, but
2158 	 * within all the constraints specified by the sysctls.
2159 	 */
2160 	spin_lock(&hugetlb_lock);
2161 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163 			break;
2164 	}
2165 
2166 	while (count > persistent_huge_pages(h)) {
2167 		/*
2168 		 * If this allocation races such that we no longer need the
2169 		 * page, free_huge_page will handle it by freeing the page
2170 		 * and reducing the surplus.
2171 		 */
2172 		spin_unlock(&hugetlb_lock);
2173 		if (hstate_is_gigantic(h))
2174 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175 		else
2176 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2177 		spin_lock(&hugetlb_lock);
2178 		if (!ret)
2179 			goto out;
2180 
2181 		/* Bail for signals. Probably ctrl-c from user */
2182 		if (signal_pending(current))
2183 			goto out;
2184 	}
2185 
2186 	/*
2187 	 * Decrease the pool size
2188 	 * First return free pages to the buddy allocator (being careful
2189 	 * to keep enough around to satisfy reservations).  Then place
2190 	 * pages into surplus state as needed so the pool will shrink
2191 	 * to the desired size as pages become free.
2192 	 *
2193 	 * By placing pages into the surplus state independent of the
2194 	 * overcommit value, we are allowing the surplus pool size to
2195 	 * exceed overcommit. There are few sane options here. Since
2196 	 * __alloc_buddy_huge_page() is checking the global counter,
2197 	 * though, we'll note that we're not allowed to exceed surplus
2198 	 * and won't grow the pool anywhere else. Not until one of the
2199 	 * sysctls are changed, or the surplus pages go out of use.
2200 	 */
2201 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202 	min_count = max(count, min_count);
2203 	try_to_free_low(h, min_count, nodes_allowed);
2204 	while (min_count < persistent_huge_pages(h)) {
2205 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2206 			break;
2207 		cond_resched_lock(&hugetlb_lock);
2208 	}
2209 	while (count < persistent_huge_pages(h)) {
2210 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211 			break;
2212 	}
2213 out:
2214 	ret = persistent_huge_pages(h);
2215 	spin_unlock(&hugetlb_lock);
2216 	return ret;
2217 }
2218 
2219 #define HSTATE_ATTR_RO(_name) \
2220 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221 
2222 #define HSTATE_ATTR(_name) \
2223 	static struct kobj_attribute _name##_attr = \
2224 		__ATTR(_name, 0644, _name##_show, _name##_store)
2225 
2226 static struct kobject *hugepages_kobj;
2227 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228 
2229 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230 
2231 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232 {
2233 	int i;
2234 
2235 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236 		if (hstate_kobjs[i] == kobj) {
2237 			if (nidp)
2238 				*nidp = NUMA_NO_NODE;
2239 			return &hstates[i];
2240 		}
2241 
2242 	return kobj_to_node_hstate(kobj, nidp);
2243 }
2244 
2245 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246 					struct kobj_attribute *attr, char *buf)
2247 {
2248 	struct hstate *h;
2249 	unsigned long nr_huge_pages;
2250 	int nid;
2251 
2252 	h = kobj_to_hstate(kobj, &nid);
2253 	if (nid == NUMA_NO_NODE)
2254 		nr_huge_pages = h->nr_huge_pages;
2255 	else
2256 		nr_huge_pages = h->nr_huge_pages_node[nid];
2257 
2258 	return sprintf(buf, "%lu\n", nr_huge_pages);
2259 }
2260 
2261 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262 					   struct hstate *h, int nid,
2263 					   unsigned long count, size_t len)
2264 {
2265 	int err;
2266 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267 
2268 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269 		err = -EINVAL;
2270 		goto out;
2271 	}
2272 
2273 	if (nid == NUMA_NO_NODE) {
2274 		/*
2275 		 * global hstate attribute
2276 		 */
2277 		if (!(obey_mempolicy &&
2278 				init_nodemask_of_mempolicy(nodes_allowed))) {
2279 			NODEMASK_FREE(nodes_allowed);
2280 			nodes_allowed = &node_states[N_MEMORY];
2281 		}
2282 	} else if (nodes_allowed) {
2283 		/*
2284 		 * per node hstate attribute: adjust count to global,
2285 		 * but restrict alloc/free to the specified node.
2286 		 */
2287 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288 		init_nodemask_of_node(nodes_allowed, nid);
2289 	} else
2290 		nodes_allowed = &node_states[N_MEMORY];
2291 
2292 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293 
2294 	if (nodes_allowed != &node_states[N_MEMORY])
2295 		NODEMASK_FREE(nodes_allowed);
2296 
2297 	return len;
2298 out:
2299 	NODEMASK_FREE(nodes_allowed);
2300 	return err;
2301 }
2302 
2303 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304 					 struct kobject *kobj, const char *buf,
2305 					 size_t len)
2306 {
2307 	struct hstate *h;
2308 	unsigned long count;
2309 	int nid;
2310 	int err;
2311 
2312 	err = kstrtoul(buf, 10, &count);
2313 	if (err)
2314 		return err;
2315 
2316 	h = kobj_to_hstate(kobj, &nid);
2317 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318 }
2319 
2320 static ssize_t nr_hugepages_show(struct kobject *kobj,
2321 				       struct kobj_attribute *attr, char *buf)
2322 {
2323 	return nr_hugepages_show_common(kobj, attr, buf);
2324 }
2325 
2326 static ssize_t nr_hugepages_store(struct kobject *kobj,
2327 	       struct kobj_attribute *attr, const char *buf, size_t len)
2328 {
2329 	return nr_hugepages_store_common(false, kobj, buf, len);
2330 }
2331 HSTATE_ATTR(nr_hugepages);
2332 
2333 #ifdef CONFIG_NUMA
2334 
2335 /*
2336  * hstate attribute for optionally mempolicy-based constraint on persistent
2337  * huge page alloc/free.
2338  */
2339 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340 				       struct kobj_attribute *attr, char *buf)
2341 {
2342 	return nr_hugepages_show_common(kobj, attr, buf);
2343 }
2344 
2345 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346 	       struct kobj_attribute *attr, const char *buf, size_t len)
2347 {
2348 	return nr_hugepages_store_common(true, kobj, buf, len);
2349 }
2350 HSTATE_ATTR(nr_hugepages_mempolicy);
2351 #endif
2352 
2353 
2354 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355 					struct kobj_attribute *attr, char *buf)
2356 {
2357 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2358 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359 }
2360 
2361 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362 		struct kobj_attribute *attr, const char *buf, size_t count)
2363 {
2364 	int err;
2365 	unsigned long input;
2366 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2367 
2368 	if (hstate_is_gigantic(h))
2369 		return -EINVAL;
2370 
2371 	err = kstrtoul(buf, 10, &input);
2372 	if (err)
2373 		return err;
2374 
2375 	spin_lock(&hugetlb_lock);
2376 	h->nr_overcommit_huge_pages = input;
2377 	spin_unlock(&hugetlb_lock);
2378 
2379 	return count;
2380 }
2381 HSTATE_ATTR(nr_overcommit_hugepages);
2382 
2383 static ssize_t free_hugepages_show(struct kobject *kobj,
2384 					struct kobj_attribute *attr, char *buf)
2385 {
2386 	struct hstate *h;
2387 	unsigned long free_huge_pages;
2388 	int nid;
2389 
2390 	h = kobj_to_hstate(kobj, &nid);
2391 	if (nid == NUMA_NO_NODE)
2392 		free_huge_pages = h->free_huge_pages;
2393 	else
2394 		free_huge_pages = h->free_huge_pages_node[nid];
2395 
2396 	return sprintf(buf, "%lu\n", free_huge_pages);
2397 }
2398 HSTATE_ATTR_RO(free_hugepages);
2399 
2400 static ssize_t resv_hugepages_show(struct kobject *kobj,
2401 					struct kobj_attribute *attr, char *buf)
2402 {
2403 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405 }
2406 HSTATE_ATTR_RO(resv_hugepages);
2407 
2408 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409 					struct kobj_attribute *attr, char *buf)
2410 {
2411 	struct hstate *h;
2412 	unsigned long surplus_huge_pages;
2413 	int nid;
2414 
2415 	h = kobj_to_hstate(kobj, &nid);
2416 	if (nid == NUMA_NO_NODE)
2417 		surplus_huge_pages = h->surplus_huge_pages;
2418 	else
2419 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420 
2421 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2422 }
2423 HSTATE_ATTR_RO(surplus_hugepages);
2424 
2425 static struct attribute *hstate_attrs[] = {
2426 	&nr_hugepages_attr.attr,
2427 	&nr_overcommit_hugepages_attr.attr,
2428 	&free_hugepages_attr.attr,
2429 	&resv_hugepages_attr.attr,
2430 	&surplus_hugepages_attr.attr,
2431 #ifdef CONFIG_NUMA
2432 	&nr_hugepages_mempolicy_attr.attr,
2433 #endif
2434 	NULL,
2435 };
2436 
2437 static struct attribute_group hstate_attr_group = {
2438 	.attrs = hstate_attrs,
2439 };
2440 
2441 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442 				    struct kobject **hstate_kobjs,
2443 				    struct attribute_group *hstate_attr_group)
2444 {
2445 	int retval;
2446 	int hi = hstate_index(h);
2447 
2448 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449 	if (!hstate_kobjs[hi])
2450 		return -ENOMEM;
2451 
2452 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453 	if (retval)
2454 		kobject_put(hstate_kobjs[hi]);
2455 
2456 	return retval;
2457 }
2458 
2459 static void __init hugetlb_sysfs_init(void)
2460 {
2461 	struct hstate *h;
2462 	int err;
2463 
2464 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465 	if (!hugepages_kobj)
2466 		return;
2467 
2468 	for_each_hstate(h) {
2469 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470 					 hstate_kobjs, &hstate_attr_group);
2471 		if (err)
2472 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473 	}
2474 }
2475 
2476 #ifdef CONFIG_NUMA
2477 
2478 /*
2479  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480  * with node devices in node_devices[] using a parallel array.  The array
2481  * index of a node device or _hstate == node id.
2482  * This is here to avoid any static dependency of the node device driver, in
2483  * the base kernel, on the hugetlb module.
2484  */
2485 struct node_hstate {
2486 	struct kobject		*hugepages_kobj;
2487 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2488 };
2489 static struct node_hstate node_hstates[MAX_NUMNODES];
2490 
2491 /*
2492  * A subset of global hstate attributes for node devices
2493  */
2494 static struct attribute *per_node_hstate_attrs[] = {
2495 	&nr_hugepages_attr.attr,
2496 	&free_hugepages_attr.attr,
2497 	&surplus_hugepages_attr.attr,
2498 	NULL,
2499 };
2500 
2501 static struct attribute_group per_node_hstate_attr_group = {
2502 	.attrs = per_node_hstate_attrs,
2503 };
2504 
2505 /*
2506  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507  * Returns node id via non-NULL nidp.
2508  */
2509 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510 {
2511 	int nid;
2512 
2513 	for (nid = 0; nid < nr_node_ids; nid++) {
2514 		struct node_hstate *nhs = &node_hstates[nid];
2515 		int i;
2516 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517 			if (nhs->hstate_kobjs[i] == kobj) {
2518 				if (nidp)
2519 					*nidp = nid;
2520 				return &hstates[i];
2521 			}
2522 	}
2523 
2524 	BUG();
2525 	return NULL;
2526 }
2527 
2528 /*
2529  * Unregister hstate attributes from a single node device.
2530  * No-op if no hstate attributes attached.
2531  */
2532 static void hugetlb_unregister_node(struct node *node)
2533 {
2534 	struct hstate *h;
2535 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2536 
2537 	if (!nhs->hugepages_kobj)
2538 		return;		/* no hstate attributes */
2539 
2540 	for_each_hstate(h) {
2541 		int idx = hstate_index(h);
2542 		if (nhs->hstate_kobjs[idx]) {
2543 			kobject_put(nhs->hstate_kobjs[idx]);
2544 			nhs->hstate_kobjs[idx] = NULL;
2545 		}
2546 	}
2547 
2548 	kobject_put(nhs->hugepages_kobj);
2549 	nhs->hugepages_kobj = NULL;
2550 }
2551 
2552 
2553 /*
2554  * Register hstate attributes for a single node device.
2555  * No-op if attributes already registered.
2556  */
2557 static void hugetlb_register_node(struct node *node)
2558 {
2559 	struct hstate *h;
2560 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2561 	int err;
2562 
2563 	if (nhs->hugepages_kobj)
2564 		return;		/* already allocated */
2565 
2566 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567 							&node->dev.kobj);
2568 	if (!nhs->hugepages_kobj)
2569 		return;
2570 
2571 	for_each_hstate(h) {
2572 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573 						nhs->hstate_kobjs,
2574 						&per_node_hstate_attr_group);
2575 		if (err) {
2576 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577 				h->name, node->dev.id);
2578 			hugetlb_unregister_node(node);
2579 			break;
2580 		}
2581 	}
2582 }
2583 
2584 /*
2585  * hugetlb init time:  register hstate attributes for all registered node
2586  * devices of nodes that have memory.  All on-line nodes should have
2587  * registered their associated device by this time.
2588  */
2589 static void __init hugetlb_register_all_nodes(void)
2590 {
2591 	int nid;
2592 
2593 	for_each_node_state(nid, N_MEMORY) {
2594 		struct node *node = node_devices[nid];
2595 		if (node->dev.id == nid)
2596 			hugetlb_register_node(node);
2597 	}
2598 
2599 	/*
2600 	 * Let the node device driver know we're here so it can
2601 	 * [un]register hstate attributes on node hotplug.
2602 	 */
2603 	register_hugetlbfs_with_node(hugetlb_register_node,
2604 				     hugetlb_unregister_node);
2605 }
2606 #else	/* !CONFIG_NUMA */
2607 
2608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609 {
2610 	BUG();
2611 	if (nidp)
2612 		*nidp = -1;
2613 	return NULL;
2614 }
2615 
2616 static void hugetlb_register_all_nodes(void) { }
2617 
2618 #endif
2619 
2620 static int __init hugetlb_init(void)
2621 {
2622 	int i;
2623 
2624 	if (!hugepages_supported())
2625 		return 0;
2626 
2627 	if (!size_to_hstate(default_hstate_size)) {
2628 		default_hstate_size = HPAGE_SIZE;
2629 		if (!size_to_hstate(default_hstate_size))
2630 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631 	}
2632 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633 	if (default_hstate_max_huge_pages) {
2634 		if (!default_hstate.max_huge_pages)
2635 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636 	}
2637 
2638 	hugetlb_init_hstates();
2639 	gather_bootmem_prealloc();
2640 	report_hugepages();
2641 
2642 	hugetlb_sysfs_init();
2643 	hugetlb_register_all_nodes();
2644 	hugetlb_cgroup_file_init();
2645 
2646 #ifdef CONFIG_SMP
2647 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648 #else
2649 	num_fault_mutexes = 1;
2650 #endif
2651 	hugetlb_fault_mutex_table =
2652 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653 	BUG_ON(!hugetlb_fault_mutex_table);
2654 
2655 	for (i = 0; i < num_fault_mutexes; i++)
2656 		mutex_init(&hugetlb_fault_mutex_table[i]);
2657 	return 0;
2658 }
2659 subsys_initcall(hugetlb_init);
2660 
2661 /* Should be called on processing a hugepagesz=... option */
2662 void __init hugetlb_add_hstate(unsigned int order)
2663 {
2664 	struct hstate *h;
2665 	unsigned long i;
2666 
2667 	if (size_to_hstate(PAGE_SIZE << order)) {
2668 		pr_warn("hugepagesz= specified twice, ignoring\n");
2669 		return;
2670 	}
2671 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672 	BUG_ON(order == 0);
2673 	h = &hstates[hugetlb_max_hstate++];
2674 	h->order = order;
2675 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676 	h->nr_huge_pages = 0;
2677 	h->free_huge_pages = 0;
2678 	for (i = 0; i < MAX_NUMNODES; ++i)
2679 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680 	INIT_LIST_HEAD(&h->hugepage_activelist);
2681 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684 					huge_page_size(h)/1024);
2685 
2686 	parsed_hstate = h;
2687 }
2688 
2689 static int __init hugetlb_nrpages_setup(char *s)
2690 {
2691 	unsigned long *mhp;
2692 	static unsigned long *last_mhp;
2693 
2694 	/*
2695 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696 	 * so this hugepages= parameter goes to the "default hstate".
2697 	 */
2698 	if (!hugetlb_max_hstate)
2699 		mhp = &default_hstate_max_huge_pages;
2700 	else
2701 		mhp = &parsed_hstate->max_huge_pages;
2702 
2703 	if (mhp == last_mhp) {
2704 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2705 		return 1;
2706 	}
2707 
2708 	if (sscanf(s, "%lu", mhp) <= 0)
2709 		*mhp = 0;
2710 
2711 	/*
2712 	 * Global state is always initialized later in hugetlb_init.
2713 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2714 	 * use the bootmem allocator.
2715 	 */
2716 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717 		hugetlb_hstate_alloc_pages(parsed_hstate);
2718 
2719 	last_mhp = mhp;
2720 
2721 	return 1;
2722 }
2723 __setup("hugepages=", hugetlb_nrpages_setup);
2724 
2725 static int __init hugetlb_default_setup(char *s)
2726 {
2727 	default_hstate_size = memparse(s, &s);
2728 	return 1;
2729 }
2730 __setup("default_hugepagesz=", hugetlb_default_setup);
2731 
2732 static unsigned int cpuset_mems_nr(unsigned int *array)
2733 {
2734 	int node;
2735 	unsigned int nr = 0;
2736 
2737 	for_each_node_mask(node, cpuset_current_mems_allowed)
2738 		nr += array[node];
2739 
2740 	return nr;
2741 }
2742 
2743 #ifdef CONFIG_SYSCTL
2744 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745 			 struct ctl_table *table, int write,
2746 			 void __user *buffer, size_t *length, loff_t *ppos)
2747 {
2748 	struct hstate *h = &default_hstate;
2749 	unsigned long tmp = h->max_huge_pages;
2750 	int ret;
2751 
2752 	if (!hugepages_supported())
2753 		return -EOPNOTSUPP;
2754 
2755 	table->data = &tmp;
2756 	table->maxlen = sizeof(unsigned long);
2757 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758 	if (ret)
2759 		goto out;
2760 
2761 	if (write)
2762 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763 						  NUMA_NO_NODE, tmp, *length);
2764 out:
2765 	return ret;
2766 }
2767 
2768 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769 			  void __user *buffer, size_t *length, loff_t *ppos)
2770 {
2771 
2772 	return hugetlb_sysctl_handler_common(false, table, write,
2773 							buffer, length, ppos);
2774 }
2775 
2776 #ifdef CONFIG_NUMA
2777 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778 			  void __user *buffer, size_t *length, loff_t *ppos)
2779 {
2780 	return hugetlb_sysctl_handler_common(true, table, write,
2781 							buffer, length, ppos);
2782 }
2783 #endif /* CONFIG_NUMA */
2784 
2785 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786 			void __user *buffer,
2787 			size_t *length, loff_t *ppos)
2788 {
2789 	struct hstate *h = &default_hstate;
2790 	unsigned long tmp;
2791 	int ret;
2792 
2793 	if (!hugepages_supported())
2794 		return -EOPNOTSUPP;
2795 
2796 	tmp = h->nr_overcommit_huge_pages;
2797 
2798 	if (write && hstate_is_gigantic(h))
2799 		return -EINVAL;
2800 
2801 	table->data = &tmp;
2802 	table->maxlen = sizeof(unsigned long);
2803 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804 	if (ret)
2805 		goto out;
2806 
2807 	if (write) {
2808 		spin_lock(&hugetlb_lock);
2809 		h->nr_overcommit_huge_pages = tmp;
2810 		spin_unlock(&hugetlb_lock);
2811 	}
2812 out:
2813 	return ret;
2814 }
2815 
2816 #endif /* CONFIG_SYSCTL */
2817 
2818 void hugetlb_report_meminfo(struct seq_file *m)
2819 {
2820 	struct hstate *h = &default_hstate;
2821 	if (!hugepages_supported())
2822 		return;
2823 	seq_printf(m,
2824 			"HugePages_Total:   %5lu\n"
2825 			"HugePages_Free:    %5lu\n"
2826 			"HugePages_Rsvd:    %5lu\n"
2827 			"HugePages_Surp:    %5lu\n"
2828 			"Hugepagesize:   %8lu kB\n",
2829 			h->nr_huge_pages,
2830 			h->free_huge_pages,
2831 			h->resv_huge_pages,
2832 			h->surplus_huge_pages,
2833 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2834 }
2835 
2836 int hugetlb_report_node_meminfo(int nid, char *buf)
2837 {
2838 	struct hstate *h = &default_hstate;
2839 	if (!hugepages_supported())
2840 		return 0;
2841 	return sprintf(buf,
2842 		"Node %d HugePages_Total: %5u\n"
2843 		"Node %d HugePages_Free:  %5u\n"
2844 		"Node %d HugePages_Surp:  %5u\n",
2845 		nid, h->nr_huge_pages_node[nid],
2846 		nid, h->free_huge_pages_node[nid],
2847 		nid, h->surplus_huge_pages_node[nid]);
2848 }
2849 
2850 void hugetlb_show_meminfo(void)
2851 {
2852 	struct hstate *h;
2853 	int nid;
2854 
2855 	if (!hugepages_supported())
2856 		return;
2857 
2858 	for_each_node_state(nid, N_MEMORY)
2859 		for_each_hstate(h)
2860 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861 				nid,
2862 				h->nr_huge_pages_node[nid],
2863 				h->free_huge_pages_node[nid],
2864 				h->surplus_huge_pages_node[nid],
2865 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866 }
2867 
2868 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869 {
2870 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872 }
2873 
2874 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875 unsigned long hugetlb_total_pages(void)
2876 {
2877 	struct hstate *h;
2878 	unsigned long nr_total_pages = 0;
2879 
2880 	for_each_hstate(h)
2881 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882 	return nr_total_pages;
2883 }
2884 
2885 static int hugetlb_acct_memory(struct hstate *h, long delta)
2886 {
2887 	int ret = -ENOMEM;
2888 
2889 	spin_lock(&hugetlb_lock);
2890 	/*
2891 	 * When cpuset is configured, it breaks the strict hugetlb page
2892 	 * reservation as the accounting is done on a global variable. Such
2893 	 * reservation is completely rubbish in the presence of cpuset because
2894 	 * the reservation is not checked against page availability for the
2895 	 * current cpuset. Application can still potentially OOM'ed by kernel
2896 	 * with lack of free htlb page in cpuset that the task is in.
2897 	 * Attempt to enforce strict accounting with cpuset is almost
2898 	 * impossible (or too ugly) because cpuset is too fluid that
2899 	 * task or memory node can be dynamically moved between cpusets.
2900 	 *
2901 	 * The change of semantics for shared hugetlb mapping with cpuset is
2902 	 * undesirable. However, in order to preserve some of the semantics,
2903 	 * we fall back to check against current free page availability as
2904 	 * a best attempt and hopefully to minimize the impact of changing
2905 	 * semantics that cpuset has.
2906 	 */
2907 	if (delta > 0) {
2908 		if (gather_surplus_pages(h, delta) < 0)
2909 			goto out;
2910 
2911 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912 			return_unused_surplus_pages(h, delta);
2913 			goto out;
2914 		}
2915 	}
2916 
2917 	ret = 0;
2918 	if (delta < 0)
2919 		return_unused_surplus_pages(h, (unsigned long) -delta);
2920 
2921 out:
2922 	spin_unlock(&hugetlb_lock);
2923 	return ret;
2924 }
2925 
2926 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927 {
2928 	struct resv_map *resv = vma_resv_map(vma);
2929 
2930 	/*
2931 	 * This new VMA should share its siblings reservation map if present.
2932 	 * The VMA will only ever have a valid reservation map pointer where
2933 	 * it is being copied for another still existing VMA.  As that VMA
2934 	 * has a reference to the reservation map it cannot disappear until
2935 	 * after this open call completes.  It is therefore safe to take a
2936 	 * new reference here without additional locking.
2937 	 */
2938 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939 		kref_get(&resv->refs);
2940 }
2941 
2942 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943 {
2944 	struct hstate *h = hstate_vma(vma);
2945 	struct resv_map *resv = vma_resv_map(vma);
2946 	struct hugepage_subpool *spool = subpool_vma(vma);
2947 	unsigned long reserve, start, end;
2948 	long gbl_reserve;
2949 
2950 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951 		return;
2952 
2953 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2954 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2955 
2956 	reserve = (end - start) - region_count(resv, start, end);
2957 
2958 	kref_put(&resv->refs, resv_map_release);
2959 
2960 	if (reserve) {
2961 		/*
2962 		 * Decrement reserve counts.  The global reserve count may be
2963 		 * adjusted if the subpool has a minimum size.
2964 		 */
2965 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966 		hugetlb_acct_memory(h, -gbl_reserve);
2967 	}
2968 }
2969 
2970 /*
2971  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972  * handle_mm_fault() to try to instantiate regular-sized pages in the
2973  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974  * this far.
2975  */
2976 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977 {
2978 	BUG();
2979 	return 0;
2980 }
2981 
2982 const struct vm_operations_struct hugetlb_vm_ops = {
2983 	.fault = hugetlb_vm_op_fault,
2984 	.open = hugetlb_vm_op_open,
2985 	.close = hugetlb_vm_op_close,
2986 };
2987 
2988 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989 				int writable)
2990 {
2991 	pte_t entry;
2992 
2993 	if (writable) {
2994 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995 					 vma->vm_page_prot)));
2996 	} else {
2997 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2998 					   vma->vm_page_prot));
2999 	}
3000 	entry = pte_mkyoung(entry);
3001 	entry = pte_mkhuge(entry);
3002 	entry = arch_make_huge_pte(entry, vma, page, writable);
3003 
3004 	return entry;
3005 }
3006 
3007 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008 				   unsigned long address, pte_t *ptep)
3009 {
3010 	pte_t entry;
3011 
3012 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014 		update_mmu_cache(vma, address, ptep);
3015 }
3016 
3017 static int is_hugetlb_entry_migration(pte_t pte)
3018 {
3019 	swp_entry_t swp;
3020 
3021 	if (huge_pte_none(pte) || pte_present(pte))
3022 		return 0;
3023 	swp = pte_to_swp_entry(pte);
3024 	if (non_swap_entry(swp) && is_migration_entry(swp))
3025 		return 1;
3026 	else
3027 		return 0;
3028 }
3029 
3030 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031 {
3032 	swp_entry_t swp;
3033 
3034 	if (huge_pte_none(pte) || pte_present(pte))
3035 		return 0;
3036 	swp = pte_to_swp_entry(pte);
3037 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038 		return 1;
3039 	else
3040 		return 0;
3041 }
3042 
3043 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044 			    struct vm_area_struct *vma)
3045 {
3046 	pte_t *src_pte, *dst_pte, entry;
3047 	struct page *ptepage;
3048 	unsigned long addr;
3049 	int cow;
3050 	struct hstate *h = hstate_vma(vma);
3051 	unsigned long sz = huge_page_size(h);
3052 	unsigned long mmun_start;	/* For mmu_notifiers */
3053 	unsigned long mmun_end;		/* For mmu_notifiers */
3054 	int ret = 0;
3055 
3056 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057 
3058 	mmun_start = vma->vm_start;
3059 	mmun_end = vma->vm_end;
3060 	if (cow)
3061 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062 
3063 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064 		spinlock_t *src_ptl, *dst_ptl;
3065 		src_pte = huge_pte_offset(src, addr);
3066 		if (!src_pte)
3067 			continue;
3068 		dst_pte = huge_pte_alloc(dst, addr, sz);
3069 		if (!dst_pte) {
3070 			ret = -ENOMEM;
3071 			break;
3072 		}
3073 
3074 		/* If the pagetables are shared don't copy or take references */
3075 		if (dst_pte == src_pte)
3076 			continue;
3077 
3078 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3080 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081 		entry = huge_ptep_get(src_pte);
3082 		if (huge_pte_none(entry)) { /* skip none entry */
3083 			;
3084 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085 				    is_hugetlb_entry_hwpoisoned(entry))) {
3086 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087 
3088 			if (is_write_migration_entry(swp_entry) && cow) {
3089 				/*
3090 				 * COW mappings require pages in both
3091 				 * parent and child to be set to read.
3092 				 */
3093 				make_migration_entry_read(&swp_entry);
3094 				entry = swp_entry_to_pte(swp_entry);
3095 				set_huge_pte_at(src, addr, src_pte, entry);
3096 			}
3097 			set_huge_pte_at(dst, addr, dst_pte, entry);
3098 		} else {
3099 			if (cow) {
3100 				huge_ptep_set_wrprotect(src, addr, src_pte);
3101 				mmu_notifier_invalidate_range(src, mmun_start,
3102 								   mmun_end);
3103 			}
3104 			entry = huge_ptep_get(src_pte);
3105 			ptepage = pte_page(entry);
3106 			get_page(ptepage);
3107 			page_dup_rmap(ptepage, true);
3108 			set_huge_pte_at(dst, addr, dst_pte, entry);
3109 			hugetlb_count_add(pages_per_huge_page(h), dst);
3110 		}
3111 		spin_unlock(src_ptl);
3112 		spin_unlock(dst_ptl);
3113 	}
3114 
3115 	if (cow)
3116 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117 
3118 	return ret;
3119 }
3120 
3121 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122 			    unsigned long start, unsigned long end,
3123 			    struct page *ref_page)
3124 {
3125 	int force_flush = 0;
3126 	struct mm_struct *mm = vma->vm_mm;
3127 	unsigned long address;
3128 	pte_t *ptep;
3129 	pte_t pte;
3130 	spinlock_t *ptl;
3131 	struct page *page;
3132 	struct hstate *h = hstate_vma(vma);
3133 	unsigned long sz = huge_page_size(h);
3134 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3135 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3136 
3137 	WARN_ON(!is_vm_hugetlb_page(vma));
3138 	BUG_ON(start & ~huge_page_mask(h));
3139 	BUG_ON(end & ~huge_page_mask(h));
3140 
3141 	tlb_start_vma(tlb, vma);
3142 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143 	address = start;
3144 again:
3145 	for (; address < end; address += sz) {
3146 		ptep = huge_pte_offset(mm, address);
3147 		if (!ptep)
3148 			continue;
3149 
3150 		ptl = huge_pte_lock(h, mm, ptep);
3151 		if (huge_pmd_unshare(mm, &address, ptep))
3152 			goto unlock;
3153 
3154 		pte = huge_ptep_get(ptep);
3155 		if (huge_pte_none(pte))
3156 			goto unlock;
3157 
3158 		/*
3159 		 * Migrating hugepage or HWPoisoned hugepage is already
3160 		 * unmapped and its refcount is dropped, so just clear pte here.
3161 		 */
3162 		if (unlikely(!pte_present(pte))) {
3163 			huge_pte_clear(mm, address, ptep);
3164 			goto unlock;
3165 		}
3166 
3167 		page = pte_page(pte);
3168 		/*
3169 		 * If a reference page is supplied, it is because a specific
3170 		 * page is being unmapped, not a range. Ensure the page we
3171 		 * are about to unmap is the actual page of interest.
3172 		 */
3173 		if (ref_page) {
3174 			if (page != ref_page)
3175 				goto unlock;
3176 
3177 			/*
3178 			 * Mark the VMA as having unmapped its page so that
3179 			 * future faults in this VMA will fail rather than
3180 			 * looking like data was lost
3181 			 */
3182 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183 		}
3184 
3185 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3186 		tlb_remove_tlb_entry(tlb, ptep, address);
3187 		if (huge_pte_dirty(pte))
3188 			set_page_dirty(page);
3189 
3190 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3191 		page_remove_rmap(page, true);
3192 		force_flush = !__tlb_remove_page(tlb, page);
3193 		if (force_flush) {
3194 			address += sz;
3195 			spin_unlock(ptl);
3196 			break;
3197 		}
3198 		/* Bail out after unmapping reference page if supplied */
3199 		if (ref_page) {
3200 			spin_unlock(ptl);
3201 			break;
3202 		}
3203 unlock:
3204 		spin_unlock(ptl);
3205 	}
3206 	/*
3207 	 * mmu_gather ran out of room to batch pages, we break out of
3208 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3209 	 * and page-free while holding it.
3210 	 */
3211 	if (force_flush) {
3212 		force_flush = 0;
3213 		tlb_flush_mmu(tlb);
3214 		if (address < end && !ref_page)
3215 			goto again;
3216 	}
3217 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218 	tlb_end_vma(tlb, vma);
3219 }
3220 
3221 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222 			  struct vm_area_struct *vma, unsigned long start,
3223 			  unsigned long end, struct page *ref_page)
3224 {
3225 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226 
3227 	/*
3228 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229 	 * test will fail on a vma being torn down, and not grab a page table
3230 	 * on its way out.  We're lucky that the flag has such an appropriate
3231 	 * name, and can in fact be safely cleared here. We could clear it
3232 	 * before the __unmap_hugepage_range above, but all that's necessary
3233 	 * is to clear it before releasing the i_mmap_rwsem. This works
3234 	 * because in the context this is called, the VMA is about to be
3235 	 * destroyed and the i_mmap_rwsem is held.
3236 	 */
3237 	vma->vm_flags &= ~VM_MAYSHARE;
3238 }
3239 
3240 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241 			  unsigned long end, struct page *ref_page)
3242 {
3243 	struct mm_struct *mm;
3244 	struct mmu_gather tlb;
3245 
3246 	mm = vma->vm_mm;
3247 
3248 	tlb_gather_mmu(&tlb, mm, start, end);
3249 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250 	tlb_finish_mmu(&tlb, start, end);
3251 }
3252 
3253 /*
3254  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255  * mappping it owns the reserve page for. The intention is to unmap the page
3256  * from other VMAs and let the children be SIGKILLed if they are faulting the
3257  * same region.
3258  */
3259 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260 			      struct page *page, unsigned long address)
3261 {
3262 	struct hstate *h = hstate_vma(vma);
3263 	struct vm_area_struct *iter_vma;
3264 	struct address_space *mapping;
3265 	pgoff_t pgoff;
3266 
3267 	/*
3268 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269 	 * from page cache lookup which is in HPAGE_SIZE units.
3270 	 */
3271 	address = address & huge_page_mask(h);
3272 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273 			vma->vm_pgoff;
3274 	mapping = file_inode(vma->vm_file)->i_mapping;
3275 
3276 	/*
3277 	 * Take the mapping lock for the duration of the table walk. As
3278 	 * this mapping should be shared between all the VMAs,
3279 	 * __unmap_hugepage_range() is called as the lock is already held
3280 	 */
3281 	i_mmap_lock_write(mapping);
3282 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283 		/* Do not unmap the current VMA */
3284 		if (iter_vma == vma)
3285 			continue;
3286 
3287 		/*
3288 		 * Shared VMAs have their own reserves and do not affect
3289 		 * MAP_PRIVATE accounting but it is possible that a shared
3290 		 * VMA is using the same page so check and skip such VMAs.
3291 		 */
3292 		if (iter_vma->vm_flags & VM_MAYSHARE)
3293 			continue;
3294 
3295 		/*
3296 		 * Unmap the page from other VMAs without their own reserves.
3297 		 * They get marked to be SIGKILLed if they fault in these
3298 		 * areas. This is because a future no-page fault on this VMA
3299 		 * could insert a zeroed page instead of the data existing
3300 		 * from the time of fork. This would look like data corruption
3301 		 */
3302 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303 			unmap_hugepage_range(iter_vma, address,
3304 					     address + huge_page_size(h), page);
3305 	}
3306 	i_mmap_unlock_write(mapping);
3307 }
3308 
3309 /*
3310  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312  * cannot race with other handlers or page migration.
3313  * Keep the pte_same checks anyway to make transition from the mutex easier.
3314  */
3315 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316 			unsigned long address, pte_t *ptep, pte_t pte,
3317 			struct page *pagecache_page, spinlock_t *ptl)
3318 {
3319 	struct hstate *h = hstate_vma(vma);
3320 	struct page *old_page, *new_page;
3321 	int ret = 0, outside_reserve = 0;
3322 	unsigned long mmun_start;	/* For mmu_notifiers */
3323 	unsigned long mmun_end;		/* For mmu_notifiers */
3324 
3325 	old_page = pte_page(pte);
3326 
3327 retry_avoidcopy:
3328 	/* If no-one else is actually using this page, avoid the copy
3329 	 * and just make the page writable */
3330 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331 		page_move_anon_rmap(old_page, vma, address);
3332 		set_huge_ptep_writable(vma, address, ptep);
3333 		return 0;
3334 	}
3335 
3336 	/*
3337 	 * If the process that created a MAP_PRIVATE mapping is about to
3338 	 * perform a COW due to a shared page count, attempt to satisfy
3339 	 * the allocation without using the existing reserves. The pagecache
3340 	 * page is used to determine if the reserve at this address was
3341 	 * consumed or not. If reserves were used, a partial faulted mapping
3342 	 * at the time of fork() could consume its reserves on COW instead
3343 	 * of the full address range.
3344 	 */
3345 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3346 			old_page != pagecache_page)
3347 		outside_reserve = 1;
3348 
3349 	get_page(old_page);
3350 
3351 	/*
3352 	 * Drop page table lock as buddy allocator may be called. It will
3353 	 * be acquired again before returning to the caller, as expected.
3354 	 */
3355 	spin_unlock(ptl);
3356 	new_page = alloc_huge_page(vma, address, outside_reserve);
3357 
3358 	if (IS_ERR(new_page)) {
3359 		/*
3360 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361 		 * it is due to references held by a child and an insufficient
3362 		 * huge page pool. To guarantee the original mappers
3363 		 * reliability, unmap the page from child processes. The child
3364 		 * may get SIGKILLed if it later faults.
3365 		 */
3366 		if (outside_reserve) {
3367 			put_page(old_page);
3368 			BUG_ON(huge_pte_none(pte));
3369 			unmap_ref_private(mm, vma, old_page, address);
3370 			BUG_ON(huge_pte_none(pte));
3371 			spin_lock(ptl);
3372 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373 			if (likely(ptep &&
3374 				   pte_same(huge_ptep_get(ptep), pte)))
3375 				goto retry_avoidcopy;
3376 			/*
3377 			 * race occurs while re-acquiring page table
3378 			 * lock, and our job is done.
3379 			 */
3380 			return 0;
3381 		}
3382 
3383 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385 		goto out_release_old;
3386 	}
3387 
3388 	/*
3389 	 * When the original hugepage is shared one, it does not have
3390 	 * anon_vma prepared.
3391 	 */
3392 	if (unlikely(anon_vma_prepare(vma))) {
3393 		ret = VM_FAULT_OOM;
3394 		goto out_release_all;
3395 	}
3396 
3397 	copy_user_huge_page(new_page, old_page, address, vma,
3398 			    pages_per_huge_page(h));
3399 	__SetPageUptodate(new_page);
3400 	set_page_huge_active(new_page);
3401 
3402 	mmun_start = address & huge_page_mask(h);
3403 	mmun_end = mmun_start + huge_page_size(h);
3404 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405 
3406 	/*
3407 	 * Retake the page table lock to check for racing updates
3408 	 * before the page tables are altered
3409 	 */
3410 	spin_lock(ptl);
3411 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413 		ClearPagePrivate(new_page);
3414 
3415 		/* Break COW */
3416 		huge_ptep_clear_flush(vma, address, ptep);
3417 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418 		set_huge_pte_at(mm, address, ptep,
3419 				make_huge_pte(vma, new_page, 1));
3420 		page_remove_rmap(old_page, true);
3421 		hugepage_add_new_anon_rmap(new_page, vma, address);
3422 		/* Make the old page be freed below */
3423 		new_page = old_page;
3424 	}
3425 	spin_unlock(ptl);
3426 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427 out_release_all:
3428 	put_page(new_page);
3429 out_release_old:
3430 	put_page(old_page);
3431 
3432 	spin_lock(ptl); /* Caller expects lock to be held */
3433 	return ret;
3434 }
3435 
3436 /* Return the pagecache page at a given address within a VMA */
3437 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438 			struct vm_area_struct *vma, unsigned long address)
3439 {
3440 	struct address_space *mapping;
3441 	pgoff_t idx;
3442 
3443 	mapping = vma->vm_file->f_mapping;
3444 	idx = vma_hugecache_offset(h, vma, address);
3445 
3446 	return find_lock_page(mapping, idx);
3447 }
3448 
3449 /*
3450  * Return whether there is a pagecache page to back given address within VMA.
3451  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452  */
3453 static bool hugetlbfs_pagecache_present(struct hstate *h,
3454 			struct vm_area_struct *vma, unsigned long address)
3455 {
3456 	struct address_space *mapping;
3457 	pgoff_t idx;
3458 	struct page *page;
3459 
3460 	mapping = vma->vm_file->f_mapping;
3461 	idx = vma_hugecache_offset(h, vma, address);
3462 
3463 	page = find_get_page(mapping, idx);
3464 	if (page)
3465 		put_page(page);
3466 	return page != NULL;
3467 }
3468 
3469 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470 			   pgoff_t idx)
3471 {
3472 	struct inode *inode = mapping->host;
3473 	struct hstate *h = hstate_inode(inode);
3474 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475 
3476 	if (err)
3477 		return err;
3478 	ClearPagePrivate(page);
3479 
3480 	spin_lock(&inode->i_lock);
3481 	inode->i_blocks += blocks_per_huge_page(h);
3482 	spin_unlock(&inode->i_lock);
3483 	return 0;
3484 }
3485 
3486 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487 			   struct address_space *mapping, pgoff_t idx,
3488 			   unsigned long address, pte_t *ptep, unsigned int flags)
3489 {
3490 	struct hstate *h = hstate_vma(vma);
3491 	int ret = VM_FAULT_SIGBUS;
3492 	int anon_rmap = 0;
3493 	unsigned long size;
3494 	struct page *page;
3495 	pte_t new_pte;
3496 	spinlock_t *ptl;
3497 
3498 	/*
3499 	 * Currently, we are forced to kill the process in the event the
3500 	 * original mapper has unmapped pages from the child due to a failed
3501 	 * COW. Warn that such a situation has occurred as it may not be obvious
3502 	 */
3503 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505 			   current->pid);
3506 		return ret;
3507 	}
3508 
3509 	/*
3510 	 * Use page lock to guard against racing truncation
3511 	 * before we get page_table_lock.
3512 	 */
3513 retry:
3514 	page = find_lock_page(mapping, idx);
3515 	if (!page) {
3516 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3517 		if (idx >= size)
3518 			goto out;
3519 		page = alloc_huge_page(vma, address, 0);
3520 		if (IS_ERR(page)) {
3521 			ret = PTR_ERR(page);
3522 			if (ret == -ENOMEM)
3523 				ret = VM_FAULT_OOM;
3524 			else
3525 				ret = VM_FAULT_SIGBUS;
3526 			goto out;
3527 		}
3528 		clear_huge_page(page, address, pages_per_huge_page(h));
3529 		__SetPageUptodate(page);
3530 		set_page_huge_active(page);
3531 
3532 		if (vma->vm_flags & VM_MAYSHARE) {
3533 			int err = huge_add_to_page_cache(page, mapping, idx);
3534 			if (err) {
3535 				put_page(page);
3536 				if (err == -EEXIST)
3537 					goto retry;
3538 				goto out;
3539 			}
3540 		} else {
3541 			lock_page(page);
3542 			if (unlikely(anon_vma_prepare(vma))) {
3543 				ret = VM_FAULT_OOM;
3544 				goto backout_unlocked;
3545 			}
3546 			anon_rmap = 1;
3547 		}
3548 	} else {
3549 		/*
3550 		 * If memory error occurs between mmap() and fault, some process
3551 		 * don't have hwpoisoned swap entry for errored virtual address.
3552 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3553 		 */
3554 		if (unlikely(PageHWPoison(page))) {
3555 			ret = VM_FAULT_HWPOISON |
3556 				VM_FAULT_SET_HINDEX(hstate_index(h));
3557 			goto backout_unlocked;
3558 		}
3559 	}
3560 
3561 	/*
3562 	 * If we are going to COW a private mapping later, we examine the
3563 	 * pending reservations for this page now. This will ensure that
3564 	 * any allocations necessary to record that reservation occur outside
3565 	 * the spinlock.
3566 	 */
3567 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568 		if (vma_needs_reservation(h, vma, address) < 0) {
3569 			ret = VM_FAULT_OOM;
3570 			goto backout_unlocked;
3571 		}
3572 		/* Just decrements count, does not deallocate */
3573 		vma_end_reservation(h, vma, address);
3574 	}
3575 
3576 	ptl = huge_pte_lockptr(h, mm, ptep);
3577 	spin_lock(ptl);
3578 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3579 	if (idx >= size)
3580 		goto backout;
3581 
3582 	ret = 0;
3583 	if (!huge_pte_none(huge_ptep_get(ptep)))
3584 		goto backout;
3585 
3586 	if (anon_rmap) {
3587 		ClearPagePrivate(page);
3588 		hugepage_add_new_anon_rmap(page, vma, address);
3589 	} else
3590 		page_dup_rmap(page, true);
3591 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592 				&& (vma->vm_flags & VM_SHARED)));
3593 	set_huge_pte_at(mm, address, ptep, new_pte);
3594 
3595 	hugetlb_count_add(pages_per_huge_page(h), mm);
3596 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597 		/* Optimization, do the COW without a second fault */
3598 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599 	}
3600 
3601 	spin_unlock(ptl);
3602 	unlock_page(page);
3603 out:
3604 	return ret;
3605 
3606 backout:
3607 	spin_unlock(ptl);
3608 backout_unlocked:
3609 	unlock_page(page);
3610 	put_page(page);
3611 	goto out;
3612 }
3613 
3614 #ifdef CONFIG_SMP
3615 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616 			    struct vm_area_struct *vma,
3617 			    struct address_space *mapping,
3618 			    pgoff_t idx, unsigned long address)
3619 {
3620 	unsigned long key[2];
3621 	u32 hash;
3622 
3623 	if (vma->vm_flags & VM_SHARED) {
3624 		key[0] = (unsigned long) mapping;
3625 		key[1] = idx;
3626 	} else {
3627 		key[0] = (unsigned long) mm;
3628 		key[1] = address >> huge_page_shift(h);
3629 	}
3630 
3631 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632 
3633 	return hash & (num_fault_mutexes - 1);
3634 }
3635 #else
3636 /*
3637  * For uniprocesor systems we always use a single mutex, so just
3638  * return 0 and avoid the hashing overhead.
3639  */
3640 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641 			    struct vm_area_struct *vma,
3642 			    struct address_space *mapping,
3643 			    pgoff_t idx, unsigned long address)
3644 {
3645 	return 0;
3646 }
3647 #endif
3648 
3649 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650 			unsigned long address, unsigned int flags)
3651 {
3652 	pte_t *ptep, entry;
3653 	spinlock_t *ptl;
3654 	int ret;
3655 	u32 hash;
3656 	pgoff_t idx;
3657 	struct page *page = NULL;
3658 	struct page *pagecache_page = NULL;
3659 	struct hstate *h = hstate_vma(vma);
3660 	struct address_space *mapping;
3661 	int need_wait_lock = 0;
3662 
3663 	address &= huge_page_mask(h);
3664 
3665 	ptep = huge_pte_offset(mm, address);
3666 	if (ptep) {
3667 		entry = huge_ptep_get(ptep);
3668 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3669 			migration_entry_wait_huge(vma, mm, ptep);
3670 			return 0;
3671 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672 			return VM_FAULT_HWPOISON_LARGE |
3673 				VM_FAULT_SET_HINDEX(hstate_index(h));
3674 	} else {
3675 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676 		if (!ptep)
3677 			return VM_FAULT_OOM;
3678 	}
3679 
3680 	mapping = vma->vm_file->f_mapping;
3681 	idx = vma_hugecache_offset(h, vma, address);
3682 
3683 	/*
3684 	 * Serialize hugepage allocation and instantiation, so that we don't
3685 	 * get spurious allocation failures if two CPUs race to instantiate
3686 	 * the same page in the page cache.
3687 	 */
3688 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690 
3691 	entry = huge_ptep_get(ptep);
3692 	if (huge_pte_none(entry)) {
3693 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694 		goto out_mutex;
3695 	}
3696 
3697 	ret = 0;
3698 
3699 	/*
3700 	 * entry could be a migration/hwpoison entry at this point, so this
3701 	 * check prevents the kernel from going below assuming that we have
3702 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704 	 * handle it.
3705 	 */
3706 	if (!pte_present(entry))
3707 		goto out_mutex;
3708 
3709 	/*
3710 	 * If we are going to COW the mapping later, we examine the pending
3711 	 * reservations for this page now. This will ensure that any
3712 	 * allocations necessary to record that reservation occur outside the
3713 	 * spinlock. For private mappings, we also lookup the pagecache
3714 	 * page now as it is used to determine if a reservation has been
3715 	 * consumed.
3716 	 */
3717 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718 		if (vma_needs_reservation(h, vma, address) < 0) {
3719 			ret = VM_FAULT_OOM;
3720 			goto out_mutex;
3721 		}
3722 		/* Just decrements count, does not deallocate */
3723 		vma_end_reservation(h, vma, address);
3724 
3725 		if (!(vma->vm_flags & VM_MAYSHARE))
3726 			pagecache_page = hugetlbfs_pagecache_page(h,
3727 								vma, address);
3728 	}
3729 
3730 	ptl = huge_pte_lock(h, mm, ptep);
3731 
3732 	/* Check for a racing update before calling hugetlb_cow */
3733 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734 		goto out_ptl;
3735 
3736 	/*
3737 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3738 	 * pagecache_page, so here we need take the former one
3739 	 * when page != pagecache_page or !pagecache_page.
3740 	 */
3741 	page = pte_page(entry);
3742 	if (page != pagecache_page)
3743 		if (!trylock_page(page)) {
3744 			need_wait_lock = 1;
3745 			goto out_ptl;
3746 		}
3747 
3748 	get_page(page);
3749 
3750 	if (flags & FAULT_FLAG_WRITE) {
3751 		if (!huge_pte_write(entry)) {
3752 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753 					pagecache_page, ptl);
3754 			goto out_put_page;
3755 		}
3756 		entry = huge_pte_mkdirty(entry);
3757 	}
3758 	entry = pte_mkyoung(entry);
3759 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760 						flags & FAULT_FLAG_WRITE))
3761 		update_mmu_cache(vma, address, ptep);
3762 out_put_page:
3763 	if (page != pagecache_page)
3764 		unlock_page(page);
3765 	put_page(page);
3766 out_ptl:
3767 	spin_unlock(ptl);
3768 
3769 	if (pagecache_page) {
3770 		unlock_page(pagecache_page);
3771 		put_page(pagecache_page);
3772 	}
3773 out_mutex:
3774 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775 	/*
3776 	 * Generally it's safe to hold refcount during waiting page lock. But
3777 	 * here we just wait to defer the next page fault to avoid busy loop and
3778 	 * the page is not used after unlocked before returning from the current
3779 	 * page fault. So we are safe from accessing freed page, even if we wait
3780 	 * here without taking refcount.
3781 	 */
3782 	if (need_wait_lock)
3783 		wait_on_page_locked(page);
3784 	return ret;
3785 }
3786 
3787 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788 			 struct page **pages, struct vm_area_struct **vmas,
3789 			 unsigned long *position, unsigned long *nr_pages,
3790 			 long i, unsigned int flags)
3791 {
3792 	unsigned long pfn_offset;
3793 	unsigned long vaddr = *position;
3794 	unsigned long remainder = *nr_pages;
3795 	struct hstate *h = hstate_vma(vma);
3796 
3797 	while (vaddr < vma->vm_end && remainder) {
3798 		pte_t *pte;
3799 		spinlock_t *ptl = NULL;
3800 		int absent;
3801 		struct page *page;
3802 
3803 		/*
3804 		 * If we have a pending SIGKILL, don't keep faulting pages and
3805 		 * potentially allocating memory.
3806 		 */
3807 		if (unlikely(fatal_signal_pending(current))) {
3808 			remainder = 0;
3809 			break;
3810 		}
3811 
3812 		/*
3813 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3814 		 * each hugepage.  We have to make sure we get the
3815 		 * first, for the page indexing below to work.
3816 		 *
3817 		 * Note that page table lock is not held when pte is null.
3818 		 */
3819 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3820 		if (pte)
3821 			ptl = huge_pte_lock(h, mm, pte);
3822 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823 
3824 		/*
3825 		 * When coredumping, it suits get_dump_page if we just return
3826 		 * an error where there's an empty slot with no huge pagecache
3827 		 * to back it.  This way, we avoid allocating a hugepage, and
3828 		 * the sparse dumpfile avoids allocating disk blocks, but its
3829 		 * huge holes still show up with zeroes where they need to be.
3830 		 */
3831 		if (absent && (flags & FOLL_DUMP) &&
3832 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833 			if (pte)
3834 				spin_unlock(ptl);
3835 			remainder = 0;
3836 			break;
3837 		}
3838 
3839 		/*
3840 		 * We need call hugetlb_fault for both hugepages under migration
3841 		 * (in which case hugetlb_fault waits for the migration,) and
3842 		 * hwpoisoned hugepages (in which case we need to prevent the
3843 		 * caller from accessing to them.) In order to do this, we use
3844 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846 		 * both cases, and because we can't follow correct pages
3847 		 * directly from any kind of swap entries.
3848 		 */
3849 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850 		    ((flags & FOLL_WRITE) &&
3851 		      !huge_pte_write(huge_ptep_get(pte)))) {
3852 			int ret;
3853 
3854 			if (pte)
3855 				spin_unlock(ptl);
3856 			ret = hugetlb_fault(mm, vma, vaddr,
3857 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3858 			if (!(ret & VM_FAULT_ERROR))
3859 				continue;
3860 
3861 			remainder = 0;
3862 			break;
3863 		}
3864 
3865 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866 		page = pte_page(huge_ptep_get(pte));
3867 same_page:
3868 		if (pages) {
3869 			pages[i] = mem_map_offset(page, pfn_offset);
3870 			get_page(pages[i]);
3871 		}
3872 
3873 		if (vmas)
3874 			vmas[i] = vma;
3875 
3876 		vaddr += PAGE_SIZE;
3877 		++pfn_offset;
3878 		--remainder;
3879 		++i;
3880 		if (vaddr < vma->vm_end && remainder &&
3881 				pfn_offset < pages_per_huge_page(h)) {
3882 			/*
3883 			 * We use pfn_offset to avoid touching the pageframes
3884 			 * of this compound page.
3885 			 */
3886 			goto same_page;
3887 		}
3888 		spin_unlock(ptl);
3889 	}
3890 	*nr_pages = remainder;
3891 	*position = vaddr;
3892 
3893 	return i ? i : -EFAULT;
3894 }
3895 
3896 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897 		unsigned long address, unsigned long end, pgprot_t newprot)
3898 {
3899 	struct mm_struct *mm = vma->vm_mm;
3900 	unsigned long start = address;
3901 	pte_t *ptep;
3902 	pte_t pte;
3903 	struct hstate *h = hstate_vma(vma);
3904 	unsigned long pages = 0;
3905 
3906 	BUG_ON(address >= end);
3907 	flush_cache_range(vma, address, end);
3908 
3909 	mmu_notifier_invalidate_range_start(mm, start, end);
3910 	i_mmap_lock_write(vma->vm_file->f_mapping);
3911 	for (; address < end; address += huge_page_size(h)) {
3912 		spinlock_t *ptl;
3913 		ptep = huge_pte_offset(mm, address);
3914 		if (!ptep)
3915 			continue;
3916 		ptl = huge_pte_lock(h, mm, ptep);
3917 		if (huge_pmd_unshare(mm, &address, ptep)) {
3918 			pages++;
3919 			spin_unlock(ptl);
3920 			continue;
3921 		}
3922 		pte = huge_ptep_get(ptep);
3923 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924 			spin_unlock(ptl);
3925 			continue;
3926 		}
3927 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3928 			swp_entry_t entry = pte_to_swp_entry(pte);
3929 
3930 			if (is_write_migration_entry(entry)) {
3931 				pte_t newpte;
3932 
3933 				make_migration_entry_read(&entry);
3934 				newpte = swp_entry_to_pte(entry);
3935 				set_huge_pte_at(mm, address, ptep, newpte);
3936 				pages++;
3937 			}
3938 			spin_unlock(ptl);
3939 			continue;
3940 		}
3941 		if (!huge_pte_none(pte)) {
3942 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3943 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945 			set_huge_pte_at(mm, address, ptep, pte);
3946 			pages++;
3947 		}
3948 		spin_unlock(ptl);
3949 	}
3950 	/*
3951 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952 	 * may have cleared our pud entry and done put_page on the page table:
3953 	 * once we release i_mmap_rwsem, another task can do the final put_page
3954 	 * and that page table be reused and filled with junk.
3955 	 */
3956 	flush_tlb_range(vma, start, end);
3957 	mmu_notifier_invalidate_range(mm, start, end);
3958 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3959 	mmu_notifier_invalidate_range_end(mm, start, end);
3960 
3961 	return pages << h->order;
3962 }
3963 
3964 int hugetlb_reserve_pages(struct inode *inode,
3965 					long from, long to,
3966 					struct vm_area_struct *vma,
3967 					vm_flags_t vm_flags)
3968 {
3969 	long ret, chg;
3970 	struct hstate *h = hstate_inode(inode);
3971 	struct hugepage_subpool *spool = subpool_inode(inode);
3972 	struct resv_map *resv_map;
3973 	long gbl_reserve;
3974 
3975 	/*
3976 	 * Only apply hugepage reservation if asked. At fault time, an
3977 	 * attempt will be made for VM_NORESERVE to allocate a page
3978 	 * without using reserves
3979 	 */
3980 	if (vm_flags & VM_NORESERVE)
3981 		return 0;
3982 
3983 	/*
3984 	 * Shared mappings base their reservation on the number of pages that
3985 	 * are already allocated on behalf of the file. Private mappings need
3986 	 * to reserve the full area even if read-only as mprotect() may be
3987 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3988 	 */
3989 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990 		resv_map = inode_resv_map(inode);
3991 
3992 		chg = region_chg(resv_map, from, to);
3993 
3994 	} else {
3995 		resv_map = resv_map_alloc();
3996 		if (!resv_map)
3997 			return -ENOMEM;
3998 
3999 		chg = to - from;
4000 
4001 		set_vma_resv_map(vma, resv_map);
4002 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003 	}
4004 
4005 	if (chg < 0) {
4006 		ret = chg;
4007 		goto out_err;
4008 	}
4009 
4010 	/*
4011 	 * There must be enough pages in the subpool for the mapping. If
4012 	 * the subpool has a minimum size, there may be some global
4013 	 * reservations already in place (gbl_reserve).
4014 	 */
4015 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016 	if (gbl_reserve < 0) {
4017 		ret = -ENOSPC;
4018 		goto out_err;
4019 	}
4020 
4021 	/*
4022 	 * Check enough hugepages are available for the reservation.
4023 	 * Hand the pages back to the subpool if there are not
4024 	 */
4025 	ret = hugetlb_acct_memory(h, gbl_reserve);
4026 	if (ret < 0) {
4027 		/* put back original number of pages, chg */
4028 		(void)hugepage_subpool_put_pages(spool, chg);
4029 		goto out_err;
4030 	}
4031 
4032 	/*
4033 	 * Account for the reservations made. Shared mappings record regions
4034 	 * that have reservations as they are shared by multiple VMAs.
4035 	 * When the last VMA disappears, the region map says how much
4036 	 * the reservation was and the page cache tells how much of
4037 	 * the reservation was consumed. Private mappings are per-VMA and
4038 	 * only the consumed reservations are tracked. When the VMA
4039 	 * disappears, the original reservation is the VMA size and the
4040 	 * consumed reservations are stored in the map. Hence, nothing
4041 	 * else has to be done for private mappings here
4042 	 */
4043 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044 		long add = region_add(resv_map, from, to);
4045 
4046 		if (unlikely(chg > add)) {
4047 			/*
4048 			 * pages in this range were added to the reserve
4049 			 * map between region_chg and region_add.  This
4050 			 * indicates a race with alloc_huge_page.  Adjust
4051 			 * the subpool and reserve counts modified above
4052 			 * based on the difference.
4053 			 */
4054 			long rsv_adjust;
4055 
4056 			rsv_adjust = hugepage_subpool_put_pages(spool,
4057 								chg - add);
4058 			hugetlb_acct_memory(h, -rsv_adjust);
4059 		}
4060 	}
4061 	return 0;
4062 out_err:
4063 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4064 		region_abort(resv_map, from, to);
4065 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066 		kref_put(&resv_map->refs, resv_map_release);
4067 	return ret;
4068 }
4069 
4070 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071 								long freed)
4072 {
4073 	struct hstate *h = hstate_inode(inode);
4074 	struct resv_map *resv_map = inode_resv_map(inode);
4075 	long chg = 0;
4076 	struct hugepage_subpool *spool = subpool_inode(inode);
4077 	long gbl_reserve;
4078 
4079 	if (resv_map) {
4080 		chg = region_del(resv_map, start, end);
4081 		/*
4082 		 * region_del() can fail in the rare case where a region
4083 		 * must be split and another region descriptor can not be
4084 		 * allocated.  If end == LONG_MAX, it will not fail.
4085 		 */
4086 		if (chg < 0)
4087 			return chg;
4088 	}
4089 
4090 	spin_lock(&inode->i_lock);
4091 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092 	spin_unlock(&inode->i_lock);
4093 
4094 	/*
4095 	 * If the subpool has a minimum size, the number of global
4096 	 * reservations to be released may be adjusted.
4097 	 */
4098 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099 	hugetlb_acct_memory(h, -gbl_reserve);
4100 
4101 	return 0;
4102 }
4103 
4104 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106 				struct vm_area_struct *vma,
4107 				unsigned long addr, pgoff_t idx)
4108 {
4109 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110 				svma->vm_start;
4111 	unsigned long sbase = saddr & PUD_MASK;
4112 	unsigned long s_end = sbase + PUD_SIZE;
4113 
4114 	/* Allow segments to share if only one is marked locked */
4115 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117 
4118 	/*
4119 	 * match the virtual addresses, permission and the alignment of the
4120 	 * page table page.
4121 	 */
4122 	if (pmd_index(addr) != pmd_index(saddr) ||
4123 	    vm_flags != svm_flags ||
4124 	    sbase < svma->vm_start || svma->vm_end < s_end)
4125 		return 0;
4126 
4127 	return saddr;
4128 }
4129 
4130 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131 {
4132 	unsigned long base = addr & PUD_MASK;
4133 	unsigned long end = base + PUD_SIZE;
4134 
4135 	/*
4136 	 * check on proper vm_flags and page table alignment
4137 	 */
4138 	if (vma->vm_flags & VM_MAYSHARE &&
4139 	    vma->vm_start <= base && end <= vma->vm_end)
4140 		return true;
4141 	return false;
4142 }
4143 
4144 /*
4145  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146  * and returns the corresponding pte. While this is not necessary for the
4147  * !shared pmd case because we can allocate the pmd later as well, it makes the
4148  * code much cleaner. pmd allocation is essential for the shared case because
4149  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151  * bad pmd for sharing.
4152  */
4153 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154 {
4155 	struct vm_area_struct *vma = find_vma(mm, addr);
4156 	struct address_space *mapping = vma->vm_file->f_mapping;
4157 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158 			vma->vm_pgoff;
4159 	struct vm_area_struct *svma;
4160 	unsigned long saddr;
4161 	pte_t *spte = NULL;
4162 	pte_t *pte;
4163 	spinlock_t *ptl;
4164 
4165 	if (!vma_shareable(vma, addr))
4166 		return (pte_t *)pmd_alloc(mm, pud, addr);
4167 
4168 	i_mmap_lock_write(mapping);
4169 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170 		if (svma == vma)
4171 			continue;
4172 
4173 		saddr = page_table_shareable(svma, vma, addr, idx);
4174 		if (saddr) {
4175 			spte = huge_pte_offset(svma->vm_mm, saddr);
4176 			if (spte) {
4177 				mm_inc_nr_pmds(mm);
4178 				get_page(virt_to_page(spte));
4179 				break;
4180 			}
4181 		}
4182 	}
4183 
4184 	if (!spte)
4185 		goto out;
4186 
4187 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188 	spin_lock(ptl);
4189 	if (pud_none(*pud)) {
4190 		pud_populate(mm, pud,
4191 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4192 	} else {
4193 		put_page(virt_to_page(spte));
4194 		mm_inc_nr_pmds(mm);
4195 	}
4196 	spin_unlock(ptl);
4197 out:
4198 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199 	i_mmap_unlock_write(mapping);
4200 	return pte;
4201 }
4202 
4203 /*
4204  * unmap huge page backed by shared pte.
4205  *
4206  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207  * indicated by page_count > 1, unmap is achieved by clearing pud and
4208  * decrementing the ref count. If count == 1, the pte page is not shared.
4209  *
4210  * called with page table lock held.
4211  *
4212  * returns: 1 successfully unmapped a shared pte page
4213  *	    0 the underlying pte page is not shared, or it is the last user
4214  */
4215 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216 {
4217 	pgd_t *pgd = pgd_offset(mm, *addr);
4218 	pud_t *pud = pud_offset(pgd, *addr);
4219 
4220 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221 	if (page_count(virt_to_page(ptep)) == 1)
4222 		return 0;
4223 
4224 	pud_clear(pud);
4225 	put_page(virt_to_page(ptep));
4226 	mm_dec_nr_pmds(mm);
4227 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228 	return 1;
4229 }
4230 #define want_pmd_share()	(1)
4231 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233 {
4234 	return NULL;
4235 }
4236 
4237 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238 {
4239 	return 0;
4240 }
4241 #define want_pmd_share()	(0)
4242 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243 
4244 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245 pte_t *huge_pte_alloc(struct mm_struct *mm,
4246 			unsigned long addr, unsigned long sz)
4247 {
4248 	pgd_t *pgd;
4249 	pud_t *pud;
4250 	pte_t *pte = NULL;
4251 
4252 	pgd = pgd_offset(mm, addr);
4253 	pud = pud_alloc(mm, pgd, addr);
4254 	if (pud) {
4255 		if (sz == PUD_SIZE) {
4256 			pte = (pte_t *)pud;
4257 		} else {
4258 			BUG_ON(sz != PMD_SIZE);
4259 			if (want_pmd_share() && pud_none(*pud))
4260 				pte = huge_pmd_share(mm, addr, pud);
4261 			else
4262 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263 		}
4264 	}
4265 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266 
4267 	return pte;
4268 }
4269 
4270 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271 {
4272 	pgd_t *pgd;
4273 	pud_t *pud;
4274 	pmd_t *pmd = NULL;
4275 
4276 	pgd = pgd_offset(mm, addr);
4277 	if (pgd_present(*pgd)) {
4278 		pud = pud_offset(pgd, addr);
4279 		if (pud_present(*pud)) {
4280 			if (pud_huge(*pud))
4281 				return (pte_t *)pud;
4282 			pmd = pmd_offset(pud, addr);
4283 		}
4284 	}
4285 	return (pte_t *) pmd;
4286 }
4287 
4288 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289 
4290 /*
4291  * These functions are overwritable if your architecture needs its own
4292  * behavior.
4293  */
4294 struct page * __weak
4295 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296 			      int write)
4297 {
4298 	return ERR_PTR(-EINVAL);
4299 }
4300 
4301 struct page * __weak
4302 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303 		pmd_t *pmd, int flags)
4304 {
4305 	struct page *page = NULL;
4306 	spinlock_t *ptl;
4307 retry:
4308 	ptl = pmd_lockptr(mm, pmd);
4309 	spin_lock(ptl);
4310 	/*
4311 	 * make sure that the address range covered by this pmd is not
4312 	 * unmapped from other threads.
4313 	 */
4314 	if (!pmd_huge(*pmd))
4315 		goto out;
4316 	if (pmd_present(*pmd)) {
4317 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318 		if (flags & FOLL_GET)
4319 			get_page(page);
4320 	} else {
4321 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322 			spin_unlock(ptl);
4323 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324 			goto retry;
4325 		}
4326 		/*
4327 		 * hwpoisoned entry is treated as no_page_table in
4328 		 * follow_page_mask().
4329 		 */
4330 	}
4331 out:
4332 	spin_unlock(ptl);
4333 	return page;
4334 }
4335 
4336 struct page * __weak
4337 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338 		pud_t *pud, int flags)
4339 {
4340 	if (flags & FOLL_GET)
4341 		return NULL;
4342 
4343 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344 }
4345 
4346 #ifdef CONFIG_MEMORY_FAILURE
4347 
4348 /*
4349  * This function is called from memory failure code.
4350  * Assume the caller holds page lock of the head page.
4351  */
4352 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353 {
4354 	struct hstate *h = page_hstate(hpage);
4355 	int nid = page_to_nid(hpage);
4356 	int ret = -EBUSY;
4357 
4358 	spin_lock(&hugetlb_lock);
4359 	/*
4360 	 * Just checking !page_huge_active is not enough, because that could be
4361 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362 	 */
4363 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4364 		/*
4365 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366 		 * but dangling hpage->lru can trigger list-debug warnings
4367 		 * (this happens when we call unpoison_memory() on it),
4368 		 * so let it point to itself with list_del_init().
4369 		 */
4370 		list_del_init(&hpage->lru);
4371 		set_page_refcounted(hpage);
4372 		h->free_huge_pages--;
4373 		h->free_huge_pages_node[nid]--;
4374 		ret = 0;
4375 	}
4376 	spin_unlock(&hugetlb_lock);
4377 	return ret;
4378 }
4379 #endif
4380 
4381 bool isolate_huge_page(struct page *page, struct list_head *list)
4382 {
4383 	bool ret = true;
4384 
4385 	VM_BUG_ON_PAGE(!PageHead(page), page);
4386 	spin_lock(&hugetlb_lock);
4387 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388 		ret = false;
4389 		goto unlock;
4390 	}
4391 	clear_page_huge_active(page);
4392 	list_move_tail(&page->lru, list);
4393 unlock:
4394 	spin_unlock(&hugetlb_lock);
4395 	return ret;
4396 }
4397 
4398 void putback_active_hugepage(struct page *page)
4399 {
4400 	VM_BUG_ON_PAGE(!PageHead(page), page);
4401 	spin_lock(&hugetlb_lock);
4402 	set_page_huge_active(page);
4403 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404 	spin_unlock(&hugetlb_lock);
4405 	put_page(page);
4406 }
4407