1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 EXPORT_SYMBOL_GPL(linear_hugepage_index); 631 632 /* 633 * Return the size of the pages allocated when backing a VMA. In the majority 634 * cases this will be same size as used by the page table entries. 635 */ 636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 637 { 638 struct hstate *hstate; 639 640 if (!is_vm_hugetlb_page(vma)) 641 return PAGE_SIZE; 642 643 hstate = hstate_vma(vma); 644 645 return 1UL << huge_page_shift(hstate); 646 } 647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 648 649 /* 650 * Return the page size being used by the MMU to back a VMA. In the majority 651 * of cases, the page size used by the kernel matches the MMU size. On 652 * architectures where it differs, an architecture-specific version of this 653 * function is required. 654 */ 655 #ifndef vma_mmu_pagesize 656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 657 { 658 return vma_kernel_pagesize(vma); 659 } 660 #endif 661 662 /* 663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 664 * bits of the reservation map pointer, which are always clear due to 665 * alignment. 666 */ 667 #define HPAGE_RESV_OWNER (1UL << 0) 668 #define HPAGE_RESV_UNMAPPED (1UL << 1) 669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 670 671 /* 672 * These helpers are used to track how many pages are reserved for 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 674 * is guaranteed to have their future faults succeed. 675 * 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 677 * the reserve counters are updated with the hugetlb_lock held. It is safe 678 * to reset the VMA at fork() time as it is not in use yet and there is no 679 * chance of the global counters getting corrupted as a result of the values. 680 * 681 * The private mapping reservation is represented in a subtly different 682 * manner to a shared mapping. A shared mapping has a region map associated 683 * with the underlying file, this region map represents the backing file 684 * pages which have ever had a reservation assigned which this persists even 685 * after the page is instantiated. A private mapping has a region map 686 * associated with the original mmap which is attached to all VMAs which 687 * reference it, this region map represents those offsets which have consumed 688 * reservation ie. where pages have been instantiated. 689 */ 690 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 691 { 692 return (unsigned long)vma->vm_private_data; 693 } 694 695 static void set_vma_private_data(struct vm_area_struct *vma, 696 unsigned long value) 697 { 698 vma->vm_private_data = (void *)value; 699 } 700 701 struct resv_map *resv_map_alloc(void) 702 { 703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 705 706 if (!resv_map || !rg) { 707 kfree(resv_map); 708 kfree(rg); 709 return NULL; 710 } 711 712 kref_init(&resv_map->refs); 713 spin_lock_init(&resv_map->lock); 714 INIT_LIST_HEAD(&resv_map->regions); 715 716 resv_map->adds_in_progress = 0; 717 718 INIT_LIST_HEAD(&resv_map->region_cache); 719 list_add(&rg->link, &resv_map->region_cache); 720 resv_map->region_cache_count = 1; 721 722 return resv_map; 723 } 724 725 void resv_map_release(struct kref *ref) 726 { 727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 728 struct list_head *head = &resv_map->region_cache; 729 struct file_region *rg, *trg; 730 731 /* Clear out any active regions before we release the map. */ 732 region_del(resv_map, 0, LONG_MAX); 733 734 /* ... and any entries left in the cache */ 735 list_for_each_entry_safe(rg, trg, head, link) { 736 list_del(&rg->link); 737 kfree(rg); 738 } 739 740 VM_BUG_ON(resv_map->adds_in_progress); 741 742 kfree(resv_map); 743 } 744 745 static inline struct resv_map *inode_resv_map(struct inode *inode) 746 { 747 return inode->i_mapping->private_data; 748 } 749 750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (vma->vm_flags & VM_MAYSHARE) { 754 struct address_space *mapping = vma->vm_file->f_mapping; 755 struct inode *inode = mapping->host; 756 757 return inode_resv_map(inode); 758 759 } else { 760 return (struct resv_map *)(get_vma_private_data(vma) & 761 ~HPAGE_RESV_MASK); 762 } 763 } 764 765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 766 { 767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 769 770 set_vma_private_data(vma, (get_vma_private_data(vma) & 771 HPAGE_RESV_MASK) | (unsigned long)map); 772 } 773 774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 775 { 776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 778 779 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 780 } 781 782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 783 { 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 785 786 return (get_vma_private_data(vma) & flag) != 0; 787 } 788 789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 791 { 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 793 if (!(vma->vm_flags & VM_MAYSHARE)) 794 vma->vm_private_data = (void *)0; 795 } 796 797 /* Returns true if the VMA has associated reserve pages */ 798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 799 { 800 if (vma->vm_flags & VM_NORESERVE) { 801 /* 802 * This address is already reserved by other process(chg == 0), 803 * so, we should decrement reserved count. Without decrementing, 804 * reserve count remains after releasing inode, because this 805 * allocated page will go into page cache and is regarded as 806 * coming from reserved pool in releasing step. Currently, we 807 * don't have any other solution to deal with this situation 808 * properly, so add work-around here. 809 */ 810 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 811 return true; 812 else 813 return false; 814 } 815 816 /* Shared mappings always use reserves */ 817 if (vma->vm_flags & VM_MAYSHARE) { 818 /* 819 * We know VM_NORESERVE is not set. Therefore, there SHOULD 820 * be a region map for all pages. The only situation where 821 * there is no region map is if a hole was punched via 822 * fallocate. In this case, there really are no reverves to 823 * use. This situation is indicated if chg != 0. 824 */ 825 if (chg) 826 return false; 827 else 828 return true; 829 } 830 831 /* 832 * Only the process that called mmap() has reserves for 833 * private mappings. 834 */ 835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 836 /* 837 * Like the shared case above, a hole punch or truncate 838 * could have been performed on the private mapping. 839 * Examine the value of chg to determine if reserves 840 * actually exist or were previously consumed. 841 * Very Subtle - The value of chg comes from a previous 842 * call to vma_needs_reserves(). The reserve map for 843 * private mappings has different (opposite) semantics 844 * than that of shared mappings. vma_needs_reserves() 845 * has already taken this difference in semantics into 846 * account. Therefore, the meaning of chg is the same 847 * as in the shared case above. Code could easily be 848 * combined, but keeping it separate draws attention to 849 * subtle differences. 850 */ 851 if (chg) 852 return false; 853 else 854 return true; 855 } 856 857 return false; 858 } 859 860 static void enqueue_huge_page(struct hstate *h, struct page *page) 861 { 862 int nid = page_to_nid(page); 863 list_move(&page->lru, &h->hugepage_freelists[nid]); 864 h->free_huge_pages++; 865 h->free_huge_pages_node[nid]++; 866 } 867 868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 869 { 870 struct page *page; 871 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 873 if (!is_migrate_isolate_page(page)) 874 break; 875 /* 876 * if 'non-isolated free hugepage' not found on the list, 877 * the allocation fails. 878 */ 879 if (&h->hugepage_freelists[nid] == &page->lru) 880 return NULL; 881 list_move(&page->lru, &h->hugepage_activelist); 882 set_page_refcounted(page); 883 h->free_huge_pages--; 884 h->free_huge_pages_node[nid]--; 885 return page; 886 } 887 888 /* Movability of hugepages depends on migration support. */ 889 static inline gfp_t htlb_alloc_mask(struct hstate *h) 890 { 891 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 892 return GFP_HIGHUSER_MOVABLE; 893 else 894 return GFP_HIGHUSER; 895 } 896 897 static struct page *dequeue_huge_page_vma(struct hstate *h, 898 struct vm_area_struct *vma, 899 unsigned long address, int avoid_reserve, 900 long chg) 901 { 902 struct page *page = NULL; 903 struct mempolicy *mpol; 904 nodemask_t *nodemask; 905 struct zonelist *zonelist; 906 struct zone *zone; 907 struct zoneref *z; 908 unsigned int cpuset_mems_cookie; 909 910 /* 911 * A child process with MAP_PRIVATE mappings created by their parent 912 * have no page reserves. This check ensures that reservations are 913 * not "stolen". The child may still get SIGKILLed 914 */ 915 if (!vma_has_reserves(vma, chg) && 916 h->free_huge_pages - h->resv_huge_pages == 0) 917 goto err; 918 919 /* If reserves cannot be used, ensure enough pages are in the pool */ 920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 921 goto err; 922 923 retry_cpuset: 924 cpuset_mems_cookie = read_mems_allowed_begin(); 925 zonelist = huge_zonelist(vma, address, 926 htlb_alloc_mask(h), &mpol, &nodemask); 927 928 for_each_zone_zonelist_nodemask(zone, z, zonelist, 929 MAX_NR_ZONES - 1, nodemask) { 930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 931 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 932 if (page) { 933 if (avoid_reserve) 934 break; 935 if (!vma_has_reserves(vma, chg)) 936 break; 937 938 SetPagePrivate(page); 939 h->resv_huge_pages--; 940 break; 941 } 942 } 943 } 944 945 mpol_cond_put(mpol); 946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 947 goto retry_cpuset; 948 return page; 949 950 err: 951 return NULL; 952 } 953 954 /* 955 * common helper functions for hstate_next_node_to_{alloc|free}. 956 * We may have allocated or freed a huge page based on a different 957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 958 * be outside of *nodes_allowed. Ensure that we use an allowed 959 * node for alloc or free. 960 */ 961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 962 { 963 nid = next_node_in(nid, *nodes_allowed); 964 VM_BUG_ON(nid >= MAX_NUMNODES); 965 966 return nid; 967 } 968 969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 970 { 971 if (!node_isset(nid, *nodes_allowed)) 972 nid = next_node_allowed(nid, nodes_allowed); 973 return nid; 974 } 975 976 /* 977 * returns the previously saved node ["this node"] from which to 978 * allocate a persistent huge page for the pool and advance the 979 * next node from which to allocate, handling wrap at end of node 980 * mask. 981 */ 982 static int hstate_next_node_to_alloc(struct hstate *h, 983 nodemask_t *nodes_allowed) 984 { 985 int nid; 986 987 VM_BUG_ON(!nodes_allowed); 988 989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 991 992 return nid; 993 } 994 995 /* 996 * helper for free_pool_huge_page() - return the previously saved 997 * node ["this node"] from which to free a huge page. Advance the 998 * next node id whether or not we find a free huge page to free so 999 * that the next attempt to free addresses the next node. 1000 */ 1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1002 { 1003 int nid; 1004 1005 VM_BUG_ON(!nodes_allowed); 1006 1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1009 1010 return nid; 1011 } 1012 1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1014 for (nr_nodes = nodes_weight(*mask); \ 1015 nr_nodes > 0 && \ 1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1017 nr_nodes--) 1018 1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1020 for (nr_nodes = nodes_weight(*mask); \ 1021 nr_nodes > 0 && \ 1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1023 nr_nodes--) 1024 1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)) 1026 static void destroy_compound_gigantic_page(struct page *page, 1027 unsigned int order) 1028 { 1029 int i; 1030 int nr_pages = 1 << order; 1031 struct page *p = page + 1; 1032 1033 atomic_set(compound_mapcount_ptr(page), 0); 1034 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1035 clear_compound_head(p); 1036 set_page_refcounted(p); 1037 } 1038 1039 set_compound_order(page, 0); 1040 __ClearPageHead(page); 1041 } 1042 1043 static void free_gigantic_page(struct page *page, unsigned int order) 1044 { 1045 free_contig_range(page_to_pfn(page), 1 << order); 1046 } 1047 1048 static int __alloc_gigantic_page(unsigned long start_pfn, 1049 unsigned long nr_pages) 1050 { 1051 unsigned long end_pfn = start_pfn + nr_pages; 1052 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1053 } 1054 1055 static bool pfn_range_valid_gigantic(struct zone *z, 1056 unsigned long start_pfn, unsigned long nr_pages) 1057 { 1058 unsigned long i, end_pfn = start_pfn + nr_pages; 1059 struct page *page; 1060 1061 for (i = start_pfn; i < end_pfn; i++) { 1062 if (!pfn_valid(i)) 1063 return false; 1064 1065 page = pfn_to_page(i); 1066 1067 if (page_zone(page) != z) 1068 return false; 1069 1070 if (PageReserved(page)) 1071 return false; 1072 1073 if (page_count(page) > 0) 1074 return false; 1075 1076 if (PageHuge(page)) 1077 return false; 1078 } 1079 1080 return true; 1081 } 1082 1083 static bool zone_spans_last_pfn(const struct zone *zone, 1084 unsigned long start_pfn, unsigned long nr_pages) 1085 { 1086 unsigned long last_pfn = start_pfn + nr_pages - 1; 1087 return zone_spans_pfn(zone, last_pfn); 1088 } 1089 1090 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1091 { 1092 unsigned long nr_pages = 1 << order; 1093 unsigned long ret, pfn, flags; 1094 struct zone *z; 1095 1096 z = NODE_DATA(nid)->node_zones; 1097 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1098 spin_lock_irqsave(&z->lock, flags); 1099 1100 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1101 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1102 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1103 /* 1104 * We release the zone lock here because 1105 * alloc_contig_range() will also lock the zone 1106 * at some point. If there's an allocation 1107 * spinning on this lock, it may win the race 1108 * and cause alloc_contig_range() to fail... 1109 */ 1110 spin_unlock_irqrestore(&z->lock, flags); 1111 ret = __alloc_gigantic_page(pfn, nr_pages); 1112 if (!ret) 1113 return pfn_to_page(pfn); 1114 spin_lock_irqsave(&z->lock, flags); 1115 } 1116 pfn += nr_pages; 1117 } 1118 1119 spin_unlock_irqrestore(&z->lock, flags); 1120 } 1121 1122 return NULL; 1123 } 1124 1125 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1126 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1127 1128 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1129 { 1130 struct page *page; 1131 1132 page = alloc_gigantic_page(nid, huge_page_order(h)); 1133 if (page) { 1134 prep_compound_gigantic_page(page, huge_page_order(h)); 1135 prep_new_huge_page(h, page, nid); 1136 } 1137 1138 return page; 1139 } 1140 1141 static int alloc_fresh_gigantic_page(struct hstate *h, 1142 nodemask_t *nodes_allowed) 1143 { 1144 struct page *page = NULL; 1145 int nr_nodes, node; 1146 1147 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1148 page = alloc_fresh_gigantic_page_node(h, node); 1149 if (page) 1150 return 1; 1151 } 1152 1153 return 0; 1154 } 1155 1156 static inline bool gigantic_page_supported(void) { return true; } 1157 #else 1158 static inline bool gigantic_page_supported(void) { return false; } 1159 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1160 static inline void destroy_compound_gigantic_page(struct page *page, 1161 unsigned int order) { } 1162 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1163 nodemask_t *nodes_allowed) { return 0; } 1164 #endif 1165 1166 static void update_and_free_page(struct hstate *h, struct page *page) 1167 { 1168 int i; 1169 1170 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1171 return; 1172 1173 h->nr_huge_pages--; 1174 h->nr_huge_pages_node[page_to_nid(page)]--; 1175 for (i = 0; i < pages_per_huge_page(h); i++) { 1176 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1177 1 << PG_referenced | 1 << PG_dirty | 1178 1 << PG_active | 1 << PG_private | 1179 1 << PG_writeback); 1180 } 1181 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1182 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1183 set_page_refcounted(page); 1184 if (hstate_is_gigantic(h)) { 1185 destroy_compound_gigantic_page(page, huge_page_order(h)); 1186 free_gigantic_page(page, huge_page_order(h)); 1187 } else { 1188 __free_pages(page, huge_page_order(h)); 1189 } 1190 } 1191 1192 struct hstate *size_to_hstate(unsigned long size) 1193 { 1194 struct hstate *h; 1195 1196 for_each_hstate(h) { 1197 if (huge_page_size(h) == size) 1198 return h; 1199 } 1200 return NULL; 1201 } 1202 1203 /* 1204 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1205 * to hstate->hugepage_activelist.) 1206 * 1207 * This function can be called for tail pages, but never returns true for them. 1208 */ 1209 bool page_huge_active(struct page *page) 1210 { 1211 VM_BUG_ON_PAGE(!PageHuge(page), page); 1212 return PageHead(page) && PagePrivate(&page[1]); 1213 } 1214 1215 /* never called for tail page */ 1216 static void set_page_huge_active(struct page *page) 1217 { 1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1219 SetPagePrivate(&page[1]); 1220 } 1221 1222 static void clear_page_huge_active(struct page *page) 1223 { 1224 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1225 ClearPagePrivate(&page[1]); 1226 } 1227 1228 void free_huge_page(struct page *page) 1229 { 1230 /* 1231 * Can't pass hstate in here because it is called from the 1232 * compound page destructor. 1233 */ 1234 struct hstate *h = page_hstate(page); 1235 int nid = page_to_nid(page); 1236 struct hugepage_subpool *spool = 1237 (struct hugepage_subpool *)page_private(page); 1238 bool restore_reserve; 1239 1240 set_page_private(page, 0); 1241 page->mapping = NULL; 1242 VM_BUG_ON_PAGE(page_count(page), page); 1243 VM_BUG_ON_PAGE(page_mapcount(page), page); 1244 restore_reserve = PagePrivate(page); 1245 ClearPagePrivate(page); 1246 1247 /* 1248 * A return code of zero implies that the subpool will be under its 1249 * minimum size if the reservation is not restored after page is free. 1250 * Therefore, force restore_reserve operation. 1251 */ 1252 if (hugepage_subpool_put_pages(spool, 1) == 0) 1253 restore_reserve = true; 1254 1255 spin_lock(&hugetlb_lock); 1256 clear_page_huge_active(page); 1257 hugetlb_cgroup_uncharge_page(hstate_index(h), 1258 pages_per_huge_page(h), page); 1259 if (restore_reserve) 1260 h->resv_huge_pages++; 1261 1262 if (h->surplus_huge_pages_node[nid]) { 1263 /* remove the page from active list */ 1264 list_del(&page->lru); 1265 update_and_free_page(h, page); 1266 h->surplus_huge_pages--; 1267 h->surplus_huge_pages_node[nid]--; 1268 } else { 1269 arch_clear_hugepage_flags(page); 1270 enqueue_huge_page(h, page); 1271 } 1272 spin_unlock(&hugetlb_lock); 1273 } 1274 1275 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1276 { 1277 INIT_LIST_HEAD(&page->lru); 1278 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1279 spin_lock(&hugetlb_lock); 1280 set_hugetlb_cgroup(page, NULL); 1281 h->nr_huge_pages++; 1282 h->nr_huge_pages_node[nid]++; 1283 spin_unlock(&hugetlb_lock); 1284 put_page(page); /* free it into the hugepage allocator */ 1285 } 1286 1287 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1288 { 1289 int i; 1290 int nr_pages = 1 << order; 1291 struct page *p = page + 1; 1292 1293 /* we rely on prep_new_huge_page to set the destructor */ 1294 set_compound_order(page, order); 1295 __ClearPageReserved(page); 1296 __SetPageHead(page); 1297 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1298 /* 1299 * For gigantic hugepages allocated through bootmem at 1300 * boot, it's safer to be consistent with the not-gigantic 1301 * hugepages and clear the PG_reserved bit from all tail pages 1302 * too. Otherwse drivers using get_user_pages() to access tail 1303 * pages may get the reference counting wrong if they see 1304 * PG_reserved set on a tail page (despite the head page not 1305 * having PG_reserved set). Enforcing this consistency between 1306 * head and tail pages allows drivers to optimize away a check 1307 * on the head page when they need know if put_page() is needed 1308 * after get_user_pages(). 1309 */ 1310 __ClearPageReserved(p); 1311 set_page_count(p, 0); 1312 set_compound_head(p, page); 1313 } 1314 atomic_set(compound_mapcount_ptr(page), -1); 1315 } 1316 1317 /* 1318 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1319 * transparent huge pages. See the PageTransHuge() documentation for more 1320 * details. 1321 */ 1322 int PageHuge(struct page *page) 1323 { 1324 if (!PageCompound(page)) 1325 return 0; 1326 1327 page = compound_head(page); 1328 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1329 } 1330 EXPORT_SYMBOL_GPL(PageHuge); 1331 1332 /* 1333 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1334 * normal or transparent huge pages. 1335 */ 1336 int PageHeadHuge(struct page *page_head) 1337 { 1338 if (!PageHead(page_head)) 1339 return 0; 1340 1341 return get_compound_page_dtor(page_head) == free_huge_page; 1342 } 1343 1344 pgoff_t __basepage_index(struct page *page) 1345 { 1346 struct page *page_head = compound_head(page); 1347 pgoff_t index = page_index(page_head); 1348 unsigned long compound_idx; 1349 1350 if (!PageHuge(page_head)) 1351 return page_index(page); 1352 1353 if (compound_order(page_head) >= MAX_ORDER) 1354 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1355 else 1356 compound_idx = page - page_head; 1357 1358 return (index << compound_order(page_head)) + compound_idx; 1359 } 1360 1361 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1362 { 1363 struct page *page; 1364 1365 page = __alloc_pages_node(nid, 1366 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1367 __GFP_REPEAT|__GFP_NOWARN, 1368 huge_page_order(h)); 1369 if (page) { 1370 prep_new_huge_page(h, page, nid); 1371 } 1372 1373 return page; 1374 } 1375 1376 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1377 { 1378 struct page *page; 1379 int nr_nodes, node; 1380 int ret = 0; 1381 1382 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1383 page = alloc_fresh_huge_page_node(h, node); 1384 if (page) { 1385 ret = 1; 1386 break; 1387 } 1388 } 1389 1390 if (ret) 1391 count_vm_event(HTLB_BUDDY_PGALLOC); 1392 else 1393 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * Free huge page from pool from next node to free. 1400 * Attempt to keep persistent huge pages more or less 1401 * balanced over allowed nodes. 1402 * Called with hugetlb_lock locked. 1403 */ 1404 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1405 bool acct_surplus) 1406 { 1407 int nr_nodes, node; 1408 int ret = 0; 1409 1410 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1411 /* 1412 * If we're returning unused surplus pages, only examine 1413 * nodes with surplus pages. 1414 */ 1415 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1416 !list_empty(&h->hugepage_freelists[node])) { 1417 struct page *page = 1418 list_entry(h->hugepage_freelists[node].next, 1419 struct page, lru); 1420 list_del(&page->lru); 1421 h->free_huge_pages--; 1422 h->free_huge_pages_node[node]--; 1423 if (acct_surplus) { 1424 h->surplus_huge_pages--; 1425 h->surplus_huge_pages_node[node]--; 1426 } 1427 update_and_free_page(h, page); 1428 ret = 1; 1429 break; 1430 } 1431 } 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * Dissolve a given free hugepage into free buddy pages. This function does 1438 * nothing for in-use (including surplus) hugepages. 1439 */ 1440 static void dissolve_free_huge_page(struct page *page) 1441 { 1442 spin_lock(&hugetlb_lock); 1443 if (PageHuge(page) && !page_count(page)) { 1444 struct hstate *h = page_hstate(page); 1445 int nid = page_to_nid(page); 1446 list_del(&page->lru); 1447 h->free_huge_pages--; 1448 h->free_huge_pages_node[nid]--; 1449 update_and_free_page(h, page); 1450 } 1451 spin_unlock(&hugetlb_lock); 1452 } 1453 1454 /* 1455 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1456 * make specified memory blocks removable from the system. 1457 * Note that start_pfn should aligned with (minimum) hugepage size. 1458 */ 1459 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1460 { 1461 unsigned long pfn; 1462 1463 if (!hugepages_supported()) 1464 return; 1465 1466 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1467 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1468 dissolve_free_huge_page(pfn_to_page(pfn)); 1469 } 1470 1471 /* 1472 * There are 3 ways this can get called: 1473 * 1. With vma+addr: we use the VMA's memory policy 1474 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1475 * page from any node, and let the buddy allocator itself figure 1476 * it out. 1477 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1478 * strictly from 'nid' 1479 */ 1480 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1481 struct vm_area_struct *vma, unsigned long addr, int nid) 1482 { 1483 int order = huge_page_order(h); 1484 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1485 unsigned int cpuset_mems_cookie; 1486 1487 /* 1488 * We need a VMA to get a memory policy. If we do not 1489 * have one, we use the 'nid' argument. 1490 * 1491 * The mempolicy stuff below has some non-inlined bits 1492 * and calls ->vm_ops. That makes it hard to optimize at 1493 * compile-time, even when NUMA is off and it does 1494 * nothing. This helps the compiler optimize it out. 1495 */ 1496 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1497 /* 1498 * If a specific node is requested, make sure to 1499 * get memory from there, but only when a node 1500 * is explicitly specified. 1501 */ 1502 if (nid != NUMA_NO_NODE) 1503 gfp |= __GFP_THISNODE; 1504 /* 1505 * Make sure to call something that can handle 1506 * nid=NUMA_NO_NODE 1507 */ 1508 return alloc_pages_node(nid, gfp, order); 1509 } 1510 1511 /* 1512 * OK, so we have a VMA. Fetch the mempolicy and try to 1513 * allocate a huge page with it. We will only reach this 1514 * when CONFIG_NUMA=y. 1515 */ 1516 do { 1517 struct page *page; 1518 struct mempolicy *mpol; 1519 struct zonelist *zl; 1520 nodemask_t *nodemask; 1521 1522 cpuset_mems_cookie = read_mems_allowed_begin(); 1523 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1524 mpol_cond_put(mpol); 1525 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1526 if (page) 1527 return page; 1528 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1529 1530 return NULL; 1531 } 1532 1533 /* 1534 * There are two ways to allocate a huge page: 1535 * 1. When you have a VMA and an address (like a fault) 1536 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1537 * 1538 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1539 * this case which signifies that the allocation should be done with 1540 * respect for the VMA's memory policy. 1541 * 1542 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1543 * implies that memory policies will not be taken in to account. 1544 */ 1545 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1546 struct vm_area_struct *vma, unsigned long addr, int nid) 1547 { 1548 struct page *page; 1549 unsigned int r_nid; 1550 1551 if (hstate_is_gigantic(h)) 1552 return NULL; 1553 1554 /* 1555 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1556 * This makes sure the caller is picking _one_ of the modes with which 1557 * we can call this function, not both. 1558 */ 1559 if (vma || (addr != -1)) { 1560 VM_WARN_ON_ONCE(addr == -1); 1561 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1562 } 1563 /* 1564 * Assume we will successfully allocate the surplus page to 1565 * prevent racing processes from causing the surplus to exceed 1566 * overcommit 1567 * 1568 * This however introduces a different race, where a process B 1569 * tries to grow the static hugepage pool while alloc_pages() is 1570 * called by process A. B will only examine the per-node 1571 * counters in determining if surplus huge pages can be 1572 * converted to normal huge pages in adjust_pool_surplus(). A 1573 * won't be able to increment the per-node counter, until the 1574 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1575 * no more huge pages can be converted from surplus to normal 1576 * state (and doesn't try to convert again). Thus, we have a 1577 * case where a surplus huge page exists, the pool is grown, and 1578 * the surplus huge page still exists after, even though it 1579 * should just have been converted to a normal huge page. This 1580 * does not leak memory, though, as the hugepage will be freed 1581 * once it is out of use. It also does not allow the counters to 1582 * go out of whack in adjust_pool_surplus() as we don't modify 1583 * the node values until we've gotten the hugepage and only the 1584 * per-node value is checked there. 1585 */ 1586 spin_lock(&hugetlb_lock); 1587 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1588 spin_unlock(&hugetlb_lock); 1589 return NULL; 1590 } else { 1591 h->nr_huge_pages++; 1592 h->surplus_huge_pages++; 1593 } 1594 spin_unlock(&hugetlb_lock); 1595 1596 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1597 1598 spin_lock(&hugetlb_lock); 1599 if (page) { 1600 INIT_LIST_HEAD(&page->lru); 1601 r_nid = page_to_nid(page); 1602 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1603 set_hugetlb_cgroup(page, NULL); 1604 /* 1605 * We incremented the global counters already 1606 */ 1607 h->nr_huge_pages_node[r_nid]++; 1608 h->surplus_huge_pages_node[r_nid]++; 1609 __count_vm_event(HTLB_BUDDY_PGALLOC); 1610 } else { 1611 h->nr_huge_pages--; 1612 h->surplus_huge_pages--; 1613 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1614 } 1615 spin_unlock(&hugetlb_lock); 1616 1617 return page; 1618 } 1619 1620 /* 1621 * Allocate a huge page from 'nid'. Note, 'nid' may be 1622 * NUMA_NO_NODE, which means that it may be allocated 1623 * anywhere. 1624 */ 1625 static 1626 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1627 { 1628 unsigned long addr = -1; 1629 1630 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1631 } 1632 1633 /* 1634 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1635 */ 1636 static 1637 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1638 struct vm_area_struct *vma, unsigned long addr) 1639 { 1640 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1641 } 1642 1643 /* 1644 * This allocation function is useful in the context where vma is irrelevant. 1645 * E.g. soft-offlining uses this function because it only cares physical 1646 * address of error page. 1647 */ 1648 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1649 { 1650 struct page *page = NULL; 1651 1652 spin_lock(&hugetlb_lock); 1653 if (h->free_huge_pages - h->resv_huge_pages > 0) 1654 page = dequeue_huge_page_node(h, nid); 1655 spin_unlock(&hugetlb_lock); 1656 1657 if (!page) 1658 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1659 1660 return page; 1661 } 1662 1663 /* 1664 * Increase the hugetlb pool such that it can accommodate a reservation 1665 * of size 'delta'. 1666 */ 1667 static int gather_surplus_pages(struct hstate *h, int delta) 1668 { 1669 struct list_head surplus_list; 1670 struct page *page, *tmp; 1671 int ret, i; 1672 int needed, allocated; 1673 bool alloc_ok = true; 1674 1675 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1676 if (needed <= 0) { 1677 h->resv_huge_pages += delta; 1678 return 0; 1679 } 1680 1681 allocated = 0; 1682 INIT_LIST_HEAD(&surplus_list); 1683 1684 ret = -ENOMEM; 1685 retry: 1686 spin_unlock(&hugetlb_lock); 1687 for (i = 0; i < needed; i++) { 1688 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1689 if (!page) { 1690 alloc_ok = false; 1691 break; 1692 } 1693 list_add(&page->lru, &surplus_list); 1694 } 1695 allocated += i; 1696 1697 /* 1698 * After retaking hugetlb_lock, we need to recalculate 'needed' 1699 * because either resv_huge_pages or free_huge_pages may have changed. 1700 */ 1701 spin_lock(&hugetlb_lock); 1702 needed = (h->resv_huge_pages + delta) - 1703 (h->free_huge_pages + allocated); 1704 if (needed > 0) { 1705 if (alloc_ok) 1706 goto retry; 1707 /* 1708 * We were not able to allocate enough pages to 1709 * satisfy the entire reservation so we free what 1710 * we've allocated so far. 1711 */ 1712 goto free; 1713 } 1714 /* 1715 * The surplus_list now contains _at_least_ the number of extra pages 1716 * needed to accommodate the reservation. Add the appropriate number 1717 * of pages to the hugetlb pool and free the extras back to the buddy 1718 * allocator. Commit the entire reservation here to prevent another 1719 * process from stealing the pages as they are added to the pool but 1720 * before they are reserved. 1721 */ 1722 needed += allocated; 1723 h->resv_huge_pages += delta; 1724 ret = 0; 1725 1726 /* Free the needed pages to the hugetlb pool */ 1727 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1728 if ((--needed) < 0) 1729 break; 1730 /* 1731 * This page is now managed by the hugetlb allocator and has 1732 * no users -- drop the buddy allocator's reference. 1733 */ 1734 put_page_testzero(page); 1735 VM_BUG_ON_PAGE(page_count(page), page); 1736 enqueue_huge_page(h, page); 1737 } 1738 free: 1739 spin_unlock(&hugetlb_lock); 1740 1741 /* Free unnecessary surplus pages to the buddy allocator */ 1742 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1743 put_page(page); 1744 spin_lock(&hugetlb_lock); 1745 1746 return ret; 1747 } 1748 1749 /* 1750 * When releasing a hugetlb pool reservation, any surplus pages that were 1751 * allocated to satisfy the reservation must be explicitly freed if they were 1752 * never used. 1753 * Called with hugetlb_lock held. 1754 */ 1755 static void return_unused_surplus_pages(struct hstate *h, 1756 unsigned long unused_resv_pages) 1757 { 1758 unsigned long nr_pages; 1759 1760 /* Uncommit the reservation */ 1761 h->resv_huge_pages -= unused_resv_pages; 1762 1763 /* Cannot return gigantic pages currently */ 1764 if (hstate_is_gigantic(h)) 1765 return; 1766 1767 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1768 1769 /* 1770 * We want to release as many surplus pages as possible, spread 1771 * evenly across all nodes with memory. Iterate across these nodes 1772 * until we can no longer free unreserved surplus pages. This occurs 1773 * when the nodes with surplus pages have no free pages. 1774 * free_pool_huge_page() will balance the the freed pages across the 1775 * on-line nodes with memory and will handle the hstate accounting. 1776 */ 1777 while (nr_pages--) { 1778 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1779 break; 1780 cond_resched_lock(&hugetlb_lock); 1781 } 1782 } 1783 1784 1785 /* 1786 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1787 * are used by the huge page allocation routines to manage reservations. 1788 * 1789 * vma_needs_reservation is called to determine if the huge page at addr 1790 * within the vma has an associated reservation. If a reservation is 1791 * needed, the value 1 is returned. The caller is then responsible for 1792 * managing the global reservation and subpool usage counts. After 1793 * the huge page has been allocated, vma_commit_reservation is called 1794 * to add the page to the reservation map. If the page allocation fails, 1795 * the reservation must be ended instead of committed. vma_end_reservation 1796 * is called in such cases. 1797 * 1798 * In the normal case, vma_commit_reservation returns the same value 1799 * as the preceding vma_needs_reservation call. The only time this 1800 * is not the case is if a reserve map was changed between calls. It 1801 * is the responsibility of the caller to notice the difference and 1802 * take appropriate action. 1803 */ 1804 enum vma_resv_mode { 1805 VMA_NEEDS_RESV, 1806 VMA_COMMIT_RESV, 1807 VMA_END_RESV, 1808 }; 1809 static long __vma_reservation_common(struct hstate *h, 1810 struct vm_area_struct *vma, unsigned long addr, 1811 enum vma_resv_mode mode) 1812 { 1813 struct resv_map *resv; 1814 pgoff_t idx; 1815 long ret; 1816 1817 resv = vma_resv_map(vma); 1818 if (!resv) 1819 return 1; 1820 1821 idx = vma_hugecache_offset(h, vma, addr); 1822 switch (mode) { 1823 case VMA_NEEDS_RESV: 1824 ret = region_chg(resv, idx, idx + 1); 1825 break; 1826 case VMA_COMMIT_RESV: 1827 ret = region_add(resv, idx, idx + 1); 1828 break; 1829 case VMA_END_RESV: 1830 region_abort(resv, idx, idx + 1); 1831 ret = 0; 1832 break; 1833 default: 1834 BUG(); 1835 } 1836 1837 if (vma->vm_flags & VM_MAYSHARE) 1838 return ret; 1839 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1840 /* 1841 * In most cases, reserves always exist for private mappings. 1842 * However, a file associated with mapping could have been 1843 * hole punched or truncated after reserves were consumed. 1844 * As subsequent fault on such a range will not use reserves. 1845 * Subtle - The reserve map for private mappings has the 1846 * opposite meaning than that of shared mappings. If NO 1847 * entry is in the reserve map, it means a reservation exists. 1848 * If an entry exists in the reserve map, it means the 1849 * reservation has already been consumed. As a result, the 1850 * return value of this routine is the opposite of the 1851 * value returned from reserve map manipulation routines above. 1852 */ 1853 if (ret) 1854 return 0; 1855 else 1856 return 1; 1857 } 1858 else 1859 return ret < 0 ? ret : 0; 1860 } 1861 1862 static long vma_needs_reservation(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr) 1864 { 1865 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1866 } 1867 1868 static long vma_commit_reservation(struct hstate *h, 1869 struct vm_area_struct *vma, unsigned long addr) 1870 { 1871 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1872 } 1873 1874 static void vma_end_reservation(struct hstate *h, 1875 struct vm_area_struct *vma, unsigned long addr) 1876 { 1877 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1878 } 1879 1880 struct page *alloc_huge_page(struct vm_area_struct *vma, 1881 unsigned long addr, int avoid_reserve) 1882 { 1883 struct hugepage_subpool *spool = subpool_vma(vma); 1884 struct hstate *h = hstate_vma(vma); 1885 struct page *page; 1886 long map_chg, map_commit; 1887 long gbl_chg; 1888 int ret, idx; 1889 struct hugetlb_cgroup *h_cg; 1890 1891 idx = hstate_index(h); 1892 /* 1893 * Examine the region/reserve map to determine if the process 1894 * has a reservation for the page to be allocated. A return 1895 * code of zero indicates a reservation exists (no change). 1896 */ 1897 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1898 if (map_chg < 0) 1899 return ERR_PTR(-ENOMEM); 1900 1901 /* 1902 * Processes that did not create the mapping will have no 1903 * reserves as indicated by the region/reserve map. Check 1904 * that the allocation will not exceed the subpool limit. 1905 * Allocations for MAP_NORESERVE mappings also need to be 1906 * checked against any subpool limit. 1907 */ 1908 if (map_chg || avoid_reserve) { 1909 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1910 if (gbl_chg < 0) { 1911 vma_end_reservation(h, vma, addr); 1912 return ERR_PTR(-ENOSPC); 1913 } 1914 1915 /* 1916 * Even though there was no reservation in the region/reserve 1917 * map, there could be reservations associated with the 1918 * subpool that can be used. This would be indicated if the 1919 * return value of hugepage_subpool_get_pages() is zero. 1920 * However, if avoid_reserve is specified we still avoid even 1921 * the subpool reservations. 1922 */ 1923 if (avoid_reserve) 1924 gbl_chg = 1; 1925 } 1926 1927 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1928 if (ret) 1929 goto out_subpool_put; 1930 1931 spin_lock(&hugetlb_lock); 1932 /* 1933 * glb_chg is passed to indicate whether or not a page must be taken 1934 * from the global free pool (global change). gbl_chg == 0 indicates 1935 * a reservation exists for the allocation. 1936 */ 1937 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1938 if (!page) { 1939 spin_unlock(&hugetlb_lock); 1940 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1941 if (!page) 1942 goto out_uncharge_cgroup; 1943 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1944 SetPagePrivate(page); 1945 h->resv_huge_pages--; 1946 } 1947 spin_lock(&hugetlb_lock); 1948 list_move(&page->lru, &h->hugepage_activelist); 1949 /* Fall through */ 1950 } 1951 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1952 spin_unlock(&hugetlb_lock); 1953 1954 set_page_private(page, (unsigned long)spool); 1955 1956 map_commit = vma_commit_reservation(h, vma, addr); 1957 if (unlikely(map_chg > map_commit)) { 1958 /* 1959 * The page was added to the reservation map between 1960 * vma_needs_reservation and vma_commit_reservation. 1961 * This indicates a race with hugetlb_reserve_pages. 1962 * Adjust for the subpool count incremented above AND 1963 * in hugetlb_reserve_pages for the same page. Also, 1964 * the reservation count added in hugetlb_reserve_pages 1965 * no longer applies. 1966 */ 1967 long rsv_adjust; 1968 1969 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1970 hugetlb_acct_memory(h, -rsv_adjust); 1971 } 1972 return page; 1973 1974 out_uncharge_cgroup: 1975 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1976 out_subpool_put: 1977 if (map_chg || avoid_reserve) 1978 hugepage_subpool_put_pages(spool, 1); 1979 vma_end_reservation(h, vma, addr); 1980 return ERR_PTR(-ENOSPC); 1981 } 1982 1983 /* 1984 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1985 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1986 * where no ERR_VALUE is expected to be returned. 1987 */ 1988 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1989 unsigned long addr, int avoid_reserve) 1990 { 1991 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1992 if (IS_ERR(page)) 1993 page = NULL; 1994 return page; 1995 } 1996 1997 int __weak alloc_bootmem_huge_page(struct hstate *h) 1998 { 1999 struct huge_bootmem_page *m; 2000 int nr_nodes, node; 2001 2002 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2003 void *addr; 2004 2005 addr = memblock_virt_alloc_try_nid_nopanic( 2006 huge_page_size(h), huge_page_size(h), 2007 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2008 if (addr) { 2009 /* 2010 * Use the beginning of the huge page to store the 2011 * huge_bootmem_page struct (until gather_bootmem 2012 * puts them into the mem_map). 2013 */ 2014 m = addr; 2015 goto found; 2016 } 2017 } 2018 return 0; 2019 2020 found: 2021 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2022 /* Put them into a private list first because mem_map is not up yet */ 2023 list_add(&m->list, &huge_boot_pages); 2024 m->hstate = h; 2025 return 1; 2026 } 2027 2028 static void __init prep_compound_huge_page(struct page *page, 2029 unsigned int order) 2030 { 2031 if (unlikely(order > (MAX_ORDER - 1))) 2032 prep_compound_gigantic_page(page, order); 2033 else 2034 prep_compound_page(page, order); 2035 } 2036 2037 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2038 static void __init gather_bootmem_prealloc(void) 2039 { 2040 struct huge_bootmem_page *m; 2041 2042 list_for_each_entry(m, &huge_boot_pages, list) { 2043 struct hstate *h = m->hstate; 2044 struct page *page; 2045 2046 #ifdef CONFIG_HIGHMEM 2047 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2048 memblock_free_late(__pa(m), 2049 sizeof(struct huge_bootmem_page)); 2050 #else 2051 page = virt_to_page(m); 2052 #endif 2053 WARN_ON(page_count(page) != 1); 2054 prep_compound_huge_page(page, h->order); 2055 WARN_ON(PageReserved(page)); 2056 prep_new_huge_page(h, page, page_to_nid(page)); 2057 /* 2058 * If we had gigantic hugepages allocated at boot time, we need 2059 * to restore the 'stolen' pages to totalram_pages in order to 2060 * fix confusing memory reports from free(1) and another 2061 * side-effects, like CommitLimit going negative. 2062 */ 2063 if (hstate_is_gigantic(h)) 2064 adjust_managed_page_count(page, 1 << h->order); 2065 } 2066 } 2067 2068 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2069 { 2070 unsigned long i; 2071 2072 for (i = 0; i < h->max_huge_pages; ++i) { 2073 if (hstate_is_gigantic(h)) { 2074 if (!alloc_bootmem_huge_page(h)) 2075 break; 2076 } else if (!alloc_fresh_huge_page(h, 2077 &node_states[N_MEMORY])) 2078 break; 2079 } 2080 h->max_huge_pages = i; 2081 } 2082 2083 static void __init hugetlb_init_hstates(void) 2084 { 2085 struct hstate *h; 2086 2087 for_each_hstate(h) { 2088 if (minimum_order > huge_page_order(h)) 2089 minimum_order = huge_page_order(h); 2090 2091 /* oversize hugepages were init'ed in early boot */ 2092 if (!hstate_is_gigantic(h)) 2093 hugetlb_hstate_alloc_pages(h); 2094 } 2095 VM_BUG_ON(minimum_order == UINT_MAX); 2096 } 2097 2098 static char * __init memfmt(char *buf, unsigned long n) 2099 { 2100 if (n >= (1UL << 30)) 2101 sprintf(buf, "%lu GB", n >> 30); 2102 else if (n >= (1UL << 20)) 2103 sprintf(buf, "%lu MB", n >> 20); 2104 else 2105 sprintf(buf, "%lu KB", n >> 10); 2106 return buf; 2107 } 2108 2109 static void __init report_hugepages(void) 2110 { 2111 struct hstate *h; 2112 2113 for_each_hstate(h) { 2114 char buf[32]; 2115 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2116 memfmt(buf, huge_page_size(h)), 2117 h->free_huge_pages); 2118 } 2119 } 2120 2121 #ifdef CONFIG_HIGHMEM 2122 static void try_to_free_low(struct hstate *h, unsigned long count, 2123 nodemask_t *nodes_allowed) 2124 { 2125 int i; 2126 2127 if (hstate_is_gigantic(h)) 2128 return; 2129 2130 for_each_node_mask(i, *nodes_allowed) { 2131 struct page *page, *next; 2132 struct list_head *freel = &h->hugepage_freelists[i]; 2133 list_for_each_entry_safe(page, next, freel, lru) { 2134 if (count >= h->nr_huge_pages) 2135 return; 2136 if (PageHighMem(page)) 2137 continue; 2138 list_del(&page->lru); 2139 update_and_free_page(h, page); 2140 h->free_huge_pages--; 2141 h->free_huge_pages_node[page_to_nid(page)]--; 2142 } 2143 } 2144 } 2145 #else 2146 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2147 nodemask_t *nodes_allowed) 2148 { 2149 } 2150 #endif 2151 2152 /* 2153 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2154 * balanced by operating on them in a round-robin fashion. 2155 * Returns 1 if an adjustment was made. 2156 */ 2157 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2158 int delta) 2159 { 2160 int nr_nodes, node; 2161 2162 VM_BUG_ON(delta != -1 && delta != 1); 2163 2164 if (delta < 0) { 2165 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2166 if (h->surplus_huge_pages_node[node]) 2167 goto found; 2168 } 2169 } else { 2170 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2171 if (h->surplus_huge_pages_node[node] < 2172 h->nr_huge_pages_node[node]) 2173 goto found; 2174 } 2175 } 2176 return 0; 2177 2178 found: 2179 h->surplus_huge_pages += delta; 2180 h->surplus_huge_pages_node[node] += delta; 2181 return 1; 2182 } 2183 2184 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2185 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2186 nodemask_t *nodes_allowed) 2187 { 2188 unsigned long min_count, ret; 2189 2190 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2191 return h->max_huge_pages; 2192 2193 /* 2194 * Increase the pool size 2195 * First take pages out of surplus state. Then make up the 2196 * remaining difference by allocating fresh huge pages. 2197 * 2198 * We might race with __alloc_buddy_huge_page() here and be unable 2199 * to convert a surplus huge page to a normal huge page. That is 2200 * not critical, though, it just means the overall size of the 2201 * pool might be one hugepage larger than it needs to be, but 2202 * within all the constraints specified by the sysctls. 2203 */ 2204 spin_lock(&hugetlb_lock); 2205 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2206 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2207 break; 2208 } 2209 2210 while (count > persistent_huge_pages(h)) { 2211 /* 2212 * If this allocation races such that we no longer need the 2213 * page, free_huge_page will handle it by freeing the page 2214 * and reducing the surplus. 2215 */ 2216 spin_unlock(&hugetlb_lock); 2217 if (hstate_is_gigantic(h)) 2218 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2219 else 2220 ret = alloc_fresh_huge_page(h, nodes_allowed); 2221 spin_lock(&hugetlb_lock); 2222 if (!ret) 2223 goto out; 2224 2225 /* Bail for signals. Probably ctrl-c from user */ 2226 if (signal_pending(current)) 2227 goto out; 2228 } 2229 2230 /* 2231 * Decrease the pool size 2232 * First return free pages to the buddy allocator (being careful 2233 * to keep enough around to satisfy reservations). Then place 2234 * pages into surplus state as needed so the pool will shrink 2235 * to the desired size as pages become free. 2236 * 2237 * By placing pages into the surplus state independent of the 2238 * overcommit value, we are allowing the surplus pool size to 2239 * exceed overcommit. There are few sane options here. Since 2240 * __alloc_buddy_huge_page() is checking the global counter, 2241 * though, we'll note that we're not allowed to exceed surplus 2242 * and won't grow the pool anywhere else. Not until one of the 2243 * sysctls are changed, or the surplus pages go out of use. 2244 */ 2245 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2246 min_count = max(count, min_count); 2247 try_to_free_low(h, min_count, nodes_allowed); 2248 while (min_count < persistent_huge_pages(h)) { 2249 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2250 break; 2251 cond_resched_lock(&hugetlb_lock); 2252 } 2253 while (count < persistent_huge_pages(h)) { 2254 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2255 break; 2256 } 2257 out: 2258 ret = persistent_huge_pages(h); 2259 spin_unlock(&hugetlb_lock); 2260 return ret; 2261 } 2262 2263 #define HSTATE_ATTR_RO(_name) \ 2264 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2265 2266 #define HSTATE_ATTR(_name) \ 2267 static struct kobj_attribute _name##_attr = \ 2268 __ATTR(_name, 0644, _name##_show, _name##_store) 2269 2270 static struct kobject *hugepages_kobj; 2271 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2272 2273 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2274 2275 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2276 { 2277 int i; 2278 2279 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2280 if (hstate_kobjs[i] == kobj) { 2281 if (nidp) 2282 *nidp = NUMA_NO_NODE; 2283 return &hstates[i]; 2284 } 2285 2286 return kobj_to_node_hstate(kobj, nidp); 2287 } 2288 2289 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2290 struct kobj_attribute *attr, char *buf) 2291 { 2292 struct hstate *h; 2293 unsigned long nr_huge_pages; 2294 int nid; 2295 2296 h = kobj_to_hstate(kobj, &nid); 2297 if (nid == NUMA_NO_NODE) 2298 nr_huge_pages = h->nr_huge_pages; 2299 else 2300 nr_huge_pages = h->nr_huge_pages_node[nid]; 2301 2302 return sprintf(buf, "%lu\n", nr_huge_pages); 2303 } 2304 2305 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2306 struct hstate *h, int nid, 2307 unsigned long count, size_t len) 2308 { 2309 int err; 2310 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2311 2312 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2313 err = -EINVAL; 2314 goto out; 2315 } 2316 2317 if (nid == NUMA_NO_NODE) { 2318 /* 2319 * global hstate attribute 2320 */ 2321 if (!(obey_mempolicy && 2322 init_nodemask_of_mempolicy(nodes_allowed))) { 2323 NODEMASK_FREE(nodes_allowed); 2324 nodes_allowed = &node_states[N_MEMORY]; 2325 } 2326 } else if (nodes_allowed) { 2327 /* 2328 * per node hstate attribute: adjust count to global, 2329 * but restrict alloc/free to the specified node. 2330 */ 2331 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2332 init_nodemask_of_node(nodes_allowed, nid); 2333 } else 2334 nodes_allowed = &node_states[N_MEMORY]; 2335 2336 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2337 2338 if (nodes_allowed != &node_states[N_MEMORY]) 2339 NODEMASK_FREE(nodes_allowed); 2340 2341 return len; 2342 out: 2343 NODEMASK_FREE(nodes_allowed); 2344 return err; 2345 } 2346 2347 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2348 struct kobject *kobj, const char *buf, 2349 size_t len) 2350 { 2351 struct hstate *h; 2352 unsigned long count; 2353 int nid; 2354 int err; 2355 2356 err = kstrtoul(buf, 10, &count); 2357 if (err) 2358 return err; 2359 2360 h = kobj_to_hstate(kobj, &nid); 2361 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2362 } 2363 2364 static ssize_t nr_hugepages_show(struct kobject *kobj, 2365 struct kobj_attribute *attr, char *buf) 2366 { 2367 return nr_hugepages_show_common(kobj, attr, buf); 2368 } 2369 2370 static ssize_t nr_hugepages_store(struct kobject *kobj, 2371 struct kobj_attribute *attr, const char *buf, size_t len) 2372 { 2373 return nr_hugepages_store_common(false, kobj, buf, len); 2374 } 2375 HSTATE_ATTR(nr_hugepages); 2376 2377 #ifdef CONFIG_NUMA 2378 2379 /* 2380 * hstate attribute for optionally mempolicy-based constraint on persistent 2381 * huge page alloc/free. 2382 */ 2383 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2384 struct kobj_attribute *attr, char *buf) 2385 { 2386 return nr_hugepages_show_common(kobj, attr, buf); 2387 } 2388 2389 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2390 struct kobj_attribute *attr, const char *buf, size_t len) 2391 { 2392 return nr_hugepages_store_common(true, kobj, buf, len); 2393 } 2394 HSTATE_ATTR(nr_hugepages_mempolicy); 2395 #endif 2396 2397 2398 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2399 struct kobj_attribute *attr, char *buf) 2400 { 2401 struct hstate *h = kobj_to_hstate(kobj, NULL); 2402 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2403 } 2404 2405 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2406 struct kobj_attribute *attr, const char *buf, size_t count) 2407 { 2408 int err; 2409 unsigned long input; 2410 struct hstate *h = kobj_to_hstate(kobj, NULL); 2411 2412 if (hstate_is_gigantic(h)) 2413 return -EINVAL; 2414 2415 err = kstrtoul(buf, 10, &input); 2416 if (err) 2417 return err; 2418 2419 spin_lock(&hugetlb_lock); 2420 h->nr_overcommit_huge_pages = input; 2421 spin_unlock(&hugetlb_lock); 2422 2423 return count; 2424 } 2425 HSTATE_ATTR(nr_overcommit_hugepages); 2426 2427 static ssize_t free_hugepages_show(struct kobject *kobj, 2428 struct kobj_attribute *attr, char *buf) 2429 { 2430 struct hstate *h; 2431 unsigned long free_huge_pages; 2432 int nid; 2433 2434 h = kobj_to_hstate(kobj, &nid); 2435 if (nid == NUMA_NO_NODE) 2436 free_huge_pages = h->free_huge_pages; 2437 else 2438 free_huge_pages = h->free_huge_pages_node[nid]; 2439 2440 return sprintf(buf, "%lu\n", free_huge_pages); 2441 } 2442 HSTATE_ATTR_RO(free_hugepages); 2443 2444 static ssize_t resv_hugepages_show(struct kobject *kobj, 2445 struct kobj_attribute *attr, char *buf) 2446 { 2447 struct hstate *h = kobj_to_hstate(kobj, NULL); 2448 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2449 } 2450 HSTATE_ATTR_RO(resv_hugepages); 2451 2452 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2453 struct kobj_attribute *attr, char *buf) 2454 { 2455 struct hstate *h; 2456 unsigned long surplus_huge_pages; 2457 int nid; 2458 2459 h = kobj_to_hstate(kobj, &nid); 2460 if (nid == NUMA_NO_NODE) 2461 surplus_huge_pages = h->surplus_huge_pages; 2462 else 2463 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2464 2465 return sprintf(buf, "%lu\n", surplus_huge_pages); 2466 } 2467 HSTATE_ATTR_RO(surplus_hugepages); 2468 2469 static struct attribute *hstate_attrs[] = { 2470 &nr_hugepages_attr.attr, 2471 &nr_overcommit_hugepages_attr.attr, 2472 &free_hugepages_attr.attr, 2473 &resv_hugepages_attr.attr, 2474 &surplus_hugepages_attr.attr, 2475 #ifdef CONFIG_NUMA 2476 &nr_hugepages_mempolicy_attr.attr, 2477 #endif 2478 NULL, 2479 }; 2480 2481 static struct attribute_group hstate_attr_group = { 2482 .attrs = hstate_attrs, 2483 }; 2484 2485 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2486 struct kobject **hstate_kobjs, 2487 struct attribute_group *hstate_attr_group) 2488 { 2489 int retval; 2490 int hi = hstate_index(h); 2491 2492 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2493 if (!hstate_kobjs[hi]) 2494 return -ENOMEM; 2495 2496 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2497 if (retval) 2498 kobject_put(hstate_kobjs[hi]); 2499 2500 return retval; 2501 } 2502 2503 static void __init hugetlb_sysfs_init(void) 2504 { 2505 struct hstate *h; 2506 int err; 2507 2508 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2509 if (!hugepages_kobj) 2510 return; 2511 2512 for_each_hstate(h) { 2513 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2514 hstate_kobjs, &hstate_attr_group); 2515 if (err) 2516 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2517 } 2518 } 2519 2520 #ifdef CONFIG_NUMA 2521 2522 /* 2523 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2524 * with node devices in node_devices[] using a parallel array. The array 2525 * index of a node device or _hstate == node id. 2526 * This is here to avoid any static dependency of the node device driver, in 2527 * the base kernel, on the hugetlb module. 2528 */ 2529 struct node_hstate { 2530 struct kobject *hugepages_kobj; 2531 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2532 }; 2533 static struct node_hstate node_hstates[MAX_NUMNODES]; 2534 2535 /* 2536 * A subset of global hstate attributes for node devices 2537 */ 2538 static struct attribute *per_node_hstate_attrs[] = { 2539 &nr_hugepages_attr.attr, 2540 &free_hugepages_attr.attr, 2541 &surplus_hugepages_attr.attr, 2542 NULL, 2543 }; 2544 2545 static struct attribute_group per_node_hstate_attr_group = { 2546 .attrs = per_node_hstate_attrs, 2547 }; 2548 2549 /* 2550 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2551 * Returns node id via non-NULL nidp. 2552 */ 2553 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2554 { 2555 int nid; 2556 2557 for (nid = 0; nid < nr_node_ids; nid++) { 2558 struct node_hstate *nhs = &node_hstates[nid]; 2559 int i; 2560 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2561 if (nhs->hstate_kobjs[i] == kobj) { 2562 if (nidp) 2563 *nidp = nid; 2564 return &hstates[i]; 2565 } 2566 } 2567 2568 BUG(); 2569 return NULL; 2570 } 2571 2572 /* 2573 * Unregister hstate attributes from a single node device. 2574 * No-op if no hstate attributes attached. 2575 */ 2576 static void hugetlb_unregister_node(struct node *node) 2577 { 2578 struct hstate *h; 2579 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2580 2581 if (!nhs->hugepages_kobj) 2582 return; /* no hstate attributes */ 2583 2584 for_each_hstate(h) { 2585 int idx = hstate_index(h); 2586 if (nhs->hstate_kobjs[idx]) { 2587 kobject_put(nhs->hstate_kobjs[idx]); 2588 nhs->hstate_kobjs[idx] = NULL; 2589 } 2590 } 2591 2592 kobject_put(nhs->hugepages_kobj); 2593 nhs->hugepages_kobj = NULL; 2594 } 2595 2596 2597 /* 2598 * Register hstate attributes for a single node device. 2599 * No-op if attributes already registered. 2600 */ 2601 static void hugetlb_register_node(struct node *node) 2602 { 2603 struct hstate *h; 2604 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2605 int err; 2606 2607 if (nhs->hugepages_kobj) 2608 return; /* already allocated */ 2609 2610 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2611 &node->dev.kobj); 2612 if (!nhs->hugepages_kobj) 2613 return; 2614 2615 for_each_hstate(h) { 2616 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2617 nhs->hstate_kobjs, 2618 &per_node_hstate_attr_group); 2619 if (err) { 2620 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2621 h->name, node->dev.id); 2622 hugetlb_unregister_node(node); 2623 break; 2624 } 2625 } 2626 } 2627 2628 /* 2629 * hugetlb init time: register hstate attributes for all registered node 2630 * devices of nodes that have memory. All on-line nodes should have 2631 * registered their associated device by this time. 2632 */ 2633 static void __init hugetlb_register_all_nodes(void) 2634 { 2635 int nid; 2636 2637 for_each_node_state(nid, N_MEMORY) { 2638 struct node *node = node_devices[nid]; 2639 if (node->dev.id == nid) 2640 hugetlb_register_node(node); 2641 } 2642 2643 /* 2644 * Let the node device driver know we're here so it can 2645 * [un]register hstate attributes on node hotplug. 2646 */ 2647 register_hugetlbfs_with_node(hugetlb_register_node, 2648 hugetlb_unregister_node); 2649 } 2650 #else /* !CONFIG_NUMA */ 2651 2652 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2653 { 2654 BUG(); 2655 if (nidp) 2656 *nidp = -1; 2657 return NULL; 2658 } 2659 2660 static void hugetlb_register_all_nodes(void) { } 2661 2662 #endif 2663 2664 static int __init hugetlb_init(void) 2665 { 2666 int i; 2667 2668 if (!hugepages_supported()) 2669 return 0; 2670 2671 if (!size_to_hstate(default_hstate_size)) { 2672 default_hstate_size = HPAGE_SIZE; 2673 if (!size_to_hstate(default_hstate_size)) 2674 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2675 } 2676 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2677 if (default_hstate_max_huge_pages) { 2678 if (!default_hstate.max_huge_pages) 2679 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2680 } 2681 2682 hugetlb_init_hstates(); 2683 gather_bootmem_prealloc(); 2684 report_hugepages(); 2685 2686 hugetlb_sysfs_init(); 2687 hugetlb_register_all_nodes(); 2688 hugetlb_cgroup_file_init(); 2689 2690 #ifdef CONFIG_SMP 2691 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2692 #else 2693 num_fault_mutexes = 1; 2694 #endif 2695 hugetlb_fault_mutex_table = 2696 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2697 BUG_ON(!hugetlb_fault_mutex_table); 2698 2699 for (i = 0; i < num_fault_mutexes; i++) 2700 mutex_init(&hugetlb_fault_mutex_table[i]); 2701 return 0; 2702 } 2703 subsys_initcall(hugetlb_init); 2704 2705 /* Should be called on processing a hugepagesz=... option */ 2706 void __init hugetlb_bad_size(void) 2707 { 2708 parsed_valid_hugepagesz = false; 2709 } 2710 2711 void __init hugetlb_add_hstate(unsigned int order) 2712 { 2713 struct hstate *h; 2714 unsigned long i; 2715 2716 if (size_to_hstate(PAGE_SIZE << order)) { 2717 pr_warn("hugepagesz= specified twice, ignoring\n"); 2718 return; 2719 } 2720 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2721 BUG_ON(order == 0); 2722 h = &hstates[hugetlb_max_hstate++]; 2723 h->order = order; 2724 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2725 h->nr_huge_pages = 0; 2726 h->free_huge_pages = 0; 2727 for (i = 0; i < MAX_NUMNODES; ++i) 2728 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2729 INIT_LIST_HEAD(&h->hugepage_activelist); 2730 h->next_nid_to_alloc = first_memory_node; 2731 h->next_nid_to_free = first_memory_node; 2732 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2733 huge_page_size(h)/1024); 2734 2735 parsed_hstate = h; 2736 } 2737 2738 static int __init hugetlb_nrpages_setup(char *s) 2739 { 2740 unsigned long *mhp; 2741 static unsigned long *last_mhp; 2742 2743 if (!parsed_valid_hugepagesz) { 2744 pr_warn("hugepages = %s preceded by " 2745 "an unsupported hugepagesz, ignoring\n", s); 2746 parsed_valid_hugepagesz = true; 2747 return 1; 2748 } 2749 /* 2750 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2751 * so this hugepages= parameter goes to the "default hstate". 2752 */ 2753 else if (!hugetlb_max_hstate) 2754 mhp = &default_hstate_max_huge_pages; 2755 else 2756 mhp = &parsed_hstate->max_huge_pages; 2757 2758 if (mhp == last_mhp) { 2759 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2760 return 1; 2761 } 2762 2763 if (sscanf(s, "%lu", mhp) <= 0) 2764 *mhp = 0; 2765 2766 /* 2767 * Global state is always initialized later in hugetlb_init. 2768 * But we need to allocate >= MAX_ORDER hstates here early to still 2769 * use the bootmem allocator. 2770 */ 2771 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2772 hugetlb_hstate_alloc_pages(parsed_hstate); 2773 2774 last_mhp = mhp; 2775 2776 return 1; 2777 } 2778 __setup("hugepages=", hugetlb_nrpages_setup); 2779 2780 static int __init hugetlb_default_setup(char *s) 2781 { 2782 default_hstate_size = memparse(s, &s); 2783 return 1; 2784 } 2785 __setup("default_hugepagesz=", hugetlb_default_setup); 2786 2787 static unsigned int cpuset_mems_nr(unsigned int *array) 2788 { 2789 int node; 2790 unsigned int nr = 0; 2791 2792 for_each_node_mask(node, cpuset_current_mems_allowed) 2793 nr += array[node]; 2794 2795 return nr; 2796 } 2797 2798 #ifdef CONFIG_SYSCTL 2799 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2800 struct ctl_table *table, int write, 2801 void __user *buffer, size_t *length, loff_t *ppos) 2802 { 2803 struct hstate *h = &default_hstate; 2804 unsigned long tmp = h->max_huge_pages; 2805 int ret; 2806 2807 if (!hugepages_supported()) 2808 return -EOPNOTSUPP; 2809 2810 table->data = &tmp; 2811 table->maxlen = sizeof(unsigned long); 2812 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2813 if (ret) 2814 goto out; 2815 2816 if (write) 2817 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2818 NUMA_NO_NODE, tmp, *length); 2819 out: 2820 return ret; 2821 } 2822 2823 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2824 void __user *buffer, size_t *length, loff_t *ppos) 2825 { 2826 2827 return hugetlb_sysctl_handler_common(false, table, write, 2828 buffer, length, ppos); 2829 } 2830 2831 #ifdef CONFIG_NUMA 2832 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2833 void __user *buffer, size_t *length, loff_t *ppos) 2834 { 2835 return hugetlb_sysctl_handler_common(true, table, write, 2836 buffer, length, ppos); 2837 } 2838 #endif /* CONFIG_NUMA */ 2839 2840 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2841 void __user *buffer, 2842 size_t *length, loff_t *ppos) 2843 { 2844 struct hstate *h = &default_hstate; 2845 unsigned long tmp; 2846 int ret; 2847 2848 if (!hugepages_supported()) 2849 return -EOPNOTSUPP; 2850 2851 tmp = h->nr_overcommit_huge_pages; 2852 2853 if (write && hstate_is_gigantic(h)) 2854 return -EINVAL; 2855 2856 table->data = &tmp; 2857 table->maxlen = sizeof(unsigned long); 2858 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2859 if (ret) 2860 goto out; 2861 2862 if (write) { 2863 spin_lock(&hugetlb_lock); 2864 h->nr_overcommit_huge_pages = tmp; 2865 spin_unlock(&hugetlb_lock); 2866 } 2867 out: 2868 return ret; 2869 } 2870 2871 #endif /* CONFIG_SYSCTL */ 2872 2873 void hugetlb_report_meminfo(struct seq_file *m) 2874 { 2875 struct hstate *h = &default_hstate; 2876 if (!hugepages_supported()) 2877 return; 2878 seq_printf(m, 2879 "HugePages_Total: %5lu\n" 2880 "HugePages_Free: %5lu\n" 2881 "HugePages_Rsvd: %5lu\n" 2882 "HugePages_Surp: %5lu\n" 2883 "Hugepagesize: %8lu kB\n", 2884 h->nr_huge_pages, 2885 h->free_huge_pages, 2886 h->resv_huge_pages, 2887 h->surplus_huge_pages, 2888 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2889 } 2890 2891 int hugetlb_report_node_meminfo(int nid, char *buf) 2892 { 2893 struct hstate *h = &default_hstate; 2894 if (!hugepages_supported()) 2895 return 0; 2896 return sprintf(buf, 2897 "Node %d HugePages_Total: %5u\n" 2898 "Node %d HugePages_Free: %5u\n" 2899 "Node %d HugePages_Surp: %5u\n", 2900 nid, h->nr_huge_pages_node[nid], 2901 nid, h->free_huge_pages_node[nid], 2902 nid, h->surplus_huge_pages_node[nid]); 2903 } 2904 2905 void hugetlb_show_meminfo(void) 2906 { 2907 struct hstate *h; 2908 int nid; 2909 2910 if (!hugepages_supported()) 2911 return; 2912 2913 for_each_node_state(nid, N_MEMORY) 2914 for_each_hstate(h) 2915 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2916 nid, 2917 h->nr_huge_pages_node[nid], 2918 h->free_huge_pages_node[nid], 2919 h->surplus_huge_pages_node[nid], 2920 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2921 } 2922 2923 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2924 { 2925 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2926 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2927 } 2928 2929 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2930 unsigned long hugetlb_total_pages(void) 2931 { 2932 struct hstate *h; 2933 unsigned long nr_total_pages = 0; 2934 2935 for_each_hstate(h) 2936 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2937 return nr_total_pages; 2938 } 2939 2940 static int hugetlb_acct_memory(struct hstate *h, long delta) 2941 { 2942 int ret = -ENOMEM; 2943 2944 spin_lock(&hugetlb_lock); 2945 /* 2946 * When cpuset is configured, it breaks the strict hugetlb page 2947 * reservation as the accounting is done on a global variable. Such 2948 * reservation is completely rubbish in the presence of cpuset because 2949 * the reservation is not checked against page availability for the 2950 * current cpuset. Application can still potentially OOM'ed by kernel 2951 * with lack of free htlb page in cpuset that the task is in. 2952 * Attempt to enforce strict accounting with cpuset is almost 2953 * impossible (or too ugly) because cpuset is too fluid that 2954 * task or memory node can be dynamically moved between cpusets. 2955 * 2956 * The change of semantics for shared hugetlb mapping with cpuset is 2957 * undesirable. However, in order to preserve some of the semantics, 2958 * we fall back to check against current free page availability as 2959 * a best attempt and hopefully to minimize the impact of changing 2960 * semantics that cpuset has. 2961 */ 2962 if (delta > 0) { 2963 if (gather_surplus_pages(h, delta) < 0) 2964 goto out; 2965 2966 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2967 return_unused_surplus_pages(h, delta); 2968 goto out; 2969 } 2970 } 2971 2972 ret = 0; 2973 if (delta < 0) 2974 return_unused_surplus_pages(h, (unsigned long) -delta); 2975 2976 out: 2977 spin_unlock(&hugetlb_lock); 2978 return ret; 2979 } 2980 2981 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2982 { 2983 struct resv_map *resv = vma_resv_map(vma); 2984 2985 /* 2986 * This new VMA should share its siblings reservation map if present. 2987 * The VMA will only ever have a valid reservation map pointer where 2988 * it is being copied for another still existing VMA. As that VMA 2989 * has a reference to the reservation map it cannot disappear until 2990 * after this open call completes. It is therefore safe to take a 2991 * new reference here without additional locking. 2992 */ 2993 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2994 kref_get(&resv->refs); 2995 } 2996 2997 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2998 { 2999 struct hstate *h = hstate_vma(vma); 3000 struct resv_map *resv = vma_resv_map(vma); 3001 struct hugepage_subpool *spool = subpool_vma(vma); 3002 unsigned long reserve, start, end; 3003 long gbl_reserve; 3004 3005 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3006 return; 3007 3008 start = vma_hugecache_offset(h, vma, vma->vm_start); 3009 end = vma_hugecache_offset(h, vma, vma->vm_end); 3010 3011 reserve = (end - start) - region_count(resv, start, end); 3012 3013 kref_put(&resv->refs, resv_map_release); 3014 3015 if (reserve) { 3016 /* 3017 * Decrement reserve counts. The global reserve count may be 3018 * adjusted if the subpool has a minimum size. 3019 */ 3020 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3021 hugetlb_acct_memory(h, -gbl_reserve); 3022 } 3023 } 3024 3025 /* 3026 * We cannot handle pagefaults against hugetlb pages at all. They cause 3027 * handle_mm_fault() to try to instantiate regular-sized pages in the 3028 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3029 * this far. 3030 */ 3031 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3032 { 3033 BUG(); 3034 return 0; 3035 } 3036 3037 const struct vm_operations_struct hugetlb_vm_ops = { 3038 .fault = hugetlb_vm_op_fault, 3039 .open = hugetlb_vm_op_open, 3040 .close = hugetlb_vm_op_close, 3041 }; 3042 3043 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3044 int writable) 3045 { 3046 pte_t entry; 3047 3048 if (writable) { 3049 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3050 vma->vm_page_prot))); 3051 } else { 3052 entry = huge_pte_wrprotect(mk_huge_pte(page, 3053 vma->vm_page_prot)); 3054 } 3055 entry = pte_mkyoung(entry); 3056 entry = pte_mkhuge(entry); 3057 entry = arch_make_huge_pte(entry, vma, page, writable); 3058 3059 return entry; 3060 } 3061 3062 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3063 unsigned long address, pte_t *ptep) 3064 { 3065 pte_t entry; 3066 3067 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3068 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3069 update_mmu_cache(vma, address, ptep); 3070 } 3071 3072 static int is_hugetlb_entry_migration(pte_t pte) 3073 { 3074 swp_entry_t swp; 3075 3076 if (huge_pte_none(pte) || pte_present(pte)) 3077 return 0; 3078 swp = pte_to_swp_entry(pte); 3079 if (non_swap_entry(swp) && is_migration_entry(swp)) 3080 return 1; 3081 else 3082 return 0; 3083 } 3084 3085 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3086 { 3087 swp_entry_t swp; 3088 3089 if (huge_pte_none(pte) || pte_present(pte)) 3090 return 0; 3091 swp = pte_to_swp_entry(pte); 3092 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3093 return 1; 3094 else 3095 return 0; 3096 } 3097 3098 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3099 struct vm_area_struct *vma) 3100 { 3101 pte_t *src_pte, *dst_pte, entry; 3102 struct page *ptepage; 3103 unsigned long addr; 3104 int cow; 3105 struct hstate *h = hstate_vma(vma); 3106 unsigned long sz = huge_page_size(h); 3107 unsigned long mmun_start; /* For mmu_notifiers */ 3108 unsigned long mmun_end; /* For mmu_notifiers */ 3109 int ret = 0; 3110 3111 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3112 3113 mmun_start = vma->vm_start; 3114 mmun_end = vma->vm_end; 3115 if (cow) 3116 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3117 3118 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3119 spinlock_t *src_ptl, *dst_ptl; 3120 src_pte = huge_pte_offset(src, addr); 3121 if (!src_pte) 3122 continue; 3123 dst_pte = huge_pte_alloc(dst, addr, sz); 3124 if (!dst_pte) { 3125 ret = -ENOMEM; 3126 break; 3127 } 3128 3129 /* If the pagetables are shared don't copy or take references */ 3130 if (dst_pte == src_pte) 3131 continue; 3132 3133 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3134 src_ptl = huge_pte_lockptr(h, src, src_pte); 3135 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3136 entry = huge_ptep_get(src_pte); 3137 if (huge_pte_none(entry)) { /* skip none entry */ 3138 ; 3139 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3140 is_hugetlb_entry_hwpoisoned(entry))) { 3141 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3142 3143 if (is_write_migration_entry(swp_entry) && cow) { 3144 /* 3145 * COW mappings require pages in both 3146 * parent and child to be set to read. 3147 */ 3148 make_migration_entry_read(&swp_entry); 3149 entry = swp_entry_to_pte(swp_entry); 3150 set_huge_pte_at(src, addr, src_pte, entry); 3151 } 3152 set_huge_pte_at(dst, addr, dst_pte, entry); 3153 } else { 3154 if (cow) { 3155 huge_ptep_set_wrprotect(src, addr, src_pte); 3156 mmu_notifier_invalidate_range(src, mmun_start, 3157 mmun_end); 3158 } 3159 entry = huge_ptep_get(src_pte); 3160 ptepage = pte_page(entry); 3161 get_page(ptepage); 3162 page_dup_rmap(ptepage, true); 3163 set_huge_pte_at(dst, addr, dst_pte, entry); 3164 hugetlb_count_add(pages_per_huge_page(h), dst); 3165 } 3166 spin_unlock(src_ptl); 3167 spin_unlock(dst_ptl); 3168 } 3169 3170 if (cow) 3171 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3172 3173 return ret; 3174 } 3175 3176 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3177 unsigned long start, unsigned long end, 3178 struct page *ref_page) 3179 { 3180 int force_flush = 0; 3181 struct mm_struct *mm = vma->vm_mm; 3182 unsigned long address; 3183 pte_t *ptep; 3184 pte_t pte; 3185 spinlock_t *ptl; 3186 struct page *page; 3187 struct hstate *h = hstate_vma(vma); 3188 unsigned long sz = huge_page_size(h); 3189 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3190 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3191 3192 WARN_ON(!is_vm_hugetlb_page(vma)); 3193 BUG_ON(start & ~huge_page_mask(h)); 3194 BUG_ON(end & ~huge_page_mask(h)); 3195 3196 tlb_start_vma(tlb, vma); 3197 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3198 address = start; 3199 again: 3200 for (; address < end; address += sz) { 3201 ptep = huge_pte_offset(mm, address); 3202 if (!ptep) 3203 continue; 3204 3205 ptl = huge_pte_lock(h, mm, ptep); 3206 if (huge_pmd_unshare(mm, &address, ptep)) 3207 goto unlock; 3208 3209 pte = huge_ptep_get(ptep); 3210 if (huge_pte_none(pte)) 3211 goto unlock; 3212 3213 /* 3214 * Migrating hugepage or HWPoisoned hugepage is already 3215 * unmapped and its refcount is dropped, so just clear pte here. 3216 */ 3217 if (unlikely(!pte_present(pte))) { 3218 huge_pte_clear(mm, address, ptep); 3219 goto unlock; 3220 } 3221 3222 page = pte_page(pte); 3223 /* 3224 * If a reference page is supplied, it is because a specific 3225 * page is being unmapped, not a range. Ensure the page we 3226 * are about to unmap is the actual page of interest. 3227 */ 3228 if (ref_page) { 3229 if (page != ref_page) 3230 goto unlock; 3231 3232 /* 3233 * Mark the VMA as having unmapped its page so that 3234 * future faults in this VMA will fail rather than 3235 * looking like data was lost 3236 */ 3237 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3238 } 3239 3240 pte = huge_ptep_get_and_clear(mm, address, ptep); 3241 tlb_remove_tlb_entry(tlb, ptep, address); 3242 if (huge_pte_dirty(pte)) 3243 set_page_dirty(page); 3244 3245 hugetlb_count_sub(pages_per_huge_page(h), mm); 3246 page_remove_rmap(page, true); 3247 force_flush = !__tlb_remove_page(tlb, page); 3248 if (force_flush) { 3249 address += sz; 3250 spin_unlock(ptl); 3251 break; 3252 } 3253 /* Bail out after unmapping reference page if supplied */ 3254 if (ref_page) { 3255 spin_unlock(ptl); 3256 break; 3257 } 3258 unlock: 3259 spin_unlock(ptl); 3260 } 3261 /* 3262 * mmu_gather ran out of room to batch pages, we break out of 3263 * the PTE lock to avoid doing the potential expensive TLB invalidate 3264 * and page-free while holding it. 3265 */ 3266 if (force_flush) { 3267 force_flush = 0; 3268 tlb_flush_mmu(tlb); 3269 if (address < end && !ref_page) 3270 goto again; 3271 } 3272 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3273 tlb_end_vma(tlb, vma); 3274 } 3275 3276 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3277 struct vm_area_struct *vma, unsigned long start, 3278 unsigned long end, struct page *ref_page) 3279 { 3280 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3281 3282 /* 3283 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3284 * test will fail on a vma being torn down, and not grab a page table 3285 * on its way out. We're lucky that the flag has such an appropriate 3286 * name, and can in fact be safely cleared here. We could clear it 3287 * before the __unmap_hugepage_range above, but all that's necessary 3288 * is to clear it before releasing the i_mmap_rwsem. This works 3289 * because in the context this is called, the VMA is about to be 3290 * destroyed and the i_mmap_rwsem is held. 3291 */ 3292 vma->vm_flags &= ~VM_MAYSHARE; 3293 } 3294 3295 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3296 unsigned long end, struct page *ref_page) 3297 { 3298 struct mm_struct *mm; 3299 struct mmu_gather tlb; 3300 3301 mm = vma->vm_mm; 3302 3303 tlb_gather_mmu(&tlb, mm, start, end); 3304 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3305 tlb_finish_mmu(&tlb, start, end); 3306 } 3307 3308 /* 3309 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3310 * mappping it owns the reserve page for. The intention is to unmap the page 3311 * from other VMAs and let the children be SIGKILLed if they are faulting the 3312 * same region. 3313 */ 3314 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3315 struct page *page, unsigned long address) 3316 { 3317 struct hstate *h = hstate_vma(vma); 3318 struct vm_area_struct *iter_vma; 3319 struct address_space *mapping; 3320 pgoff_t pgoff; 3321 3322 /* 3323 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3324 * from page cache lookup which is in HPAGE_SIZE units. 3325 */ 3326 address = address & huge_page_mask(h); 3327 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3328 vma->vm_pgoff; 3329 mapping = file_inode(vma->vm_file)->i_mapping; 3330 3331 /* 3332 * Take the mapping lock for the duration of the table walk. As 3333 * this mapping should be shared between all the VMAs, 3334 * __unmap_hugepage_range() is called as the lock is already held 3335 */ 3336 i_mmap_lock_write(mapping); 3337 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3338 /* Do not unmap the current VMA */ 3339 if (iter_vma == vma) 3340 continue; 3341 3342 /* 3343 * Shared VMAs have their own reserves and do not affect 3344 * MAP_PRIVATE accounting but it is possible that a shared 3345 * VMA is using the same page so check and skip such VMAs. 3346 */ 3347 if (iter_vma->vm_flags & VM_MAYSHARE) 3348 continue; 3349 3350 /* 3351 * Unmap the page from other VMAs without their own reserves. 3352 * They get marked to be SIGKILLed if they fault in these 3353 * areas. This is because a future no-page fault on this VMA 3354 * could insert a zeroed page instead of the data existing 3355 * from the time of fork. This would look like data corruption 3356 */ 3357 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3358 unmap_hugepage_range(iter_vma, address, 3359 address + huge_page_size(h), page); 3360 } 3361 i_mmap_unlock_write(mapping); 3362 } 3363 3364 /* 3365 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3366 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3367 * cannot race with other handlers or page migration. 3368 * Keep the pte_same checks anyway to make transition from the mutex easier. 3369 */ 3370 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3371 unsigned long address, pte_t *ptep, pte_t pte, 3372 struct page *pagecache_page, spinlock_t *ptl) 3373 { 3374 struct hstate *h = hstate_vma(vma); 3375 struct page *old_page, *new_page; 3376 int ret = 0, outside_reserve = 0; 3377 unsigned long mmun_start; /* For mmu_notifiers */ 3378 unsigned long mmun_end; /* For mmu_notifiers */ 3379 3380 old_page = pte_page(pte); 3381 3382 retry_avoidcopy: 3383 /* If no-one else is actually using this page, avoid the copy 3384 * and just make the page writable */ 3385 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3386 page_move_anon_rmap(old_page, vma); 3387 set_huge_ptep_writable(vma, address, ptep); 3388 return 0; 3389 } 3390 3391 /* 3392 * If the process that created a MAP_PRIVATE mapping is about to 3393 * perform a COW due to a shared page count, attempt to satisfy 3394 * the allocation without using the existing reserves. The pagecache 3395 * page is used to determine if the reserve at this address was 3396 * consumed or not. If reserves were used, a partial faulted mapping 3397 * at the time of fork() could consume its reserves on COW instead 3398 * of the full address range. 3399 */ 3400 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3401 old_page != pagecache_page) 3402 outside_reserve = 1; 3403 3404 get_page(old_page); 3405 3406 /* 3407 * Drop page table lock as buddy allocator may be called. It will 3408 * be acquired again before returning to the caller, as expected. 3409 */ 3410 spin_unlock(ptl); 3411 new_page = alloc_huge_page(vma, address, outside_reserve); 3412 3413 if (IS_ERR(new_page)) { 3414 /* 3415 * If a process owning a MAP_PRIVATE mapping fails to COW, 3416 * it is due to references held by a child and an insufficient 3417 * huge page pool. To guarantee the original mappers 3418 * reliability, unmap the page from child processes. The child 3419 * may get SIGKILLed if it later faults. 3420 */ 3421 if (outside_reserve) { 3422 put_page(old_page); 3423 BUG_ON(huge_pte_none(pte)); 3424 unmap_ref_private(mm, vma, old_page, address); 3425 BUG_ON(huge_pte_none(pte)); 3426 spin_lock(ptl); 3427 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3428 if (likely(ptep && 3429 pte_same(huge_ptep_get(ptep), pte))) 3430 goto retry_avoidcopy; 3431 /* 3432 * race occurs while re-acquiring page table 3433 * lock, and our job is done. 3434 */ 3435 return 0; 3436 } 3437 3438 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3439 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3440 goto out_release_old; 3441 } 3442 3443 /* 3444 * When the original hugepage is shared one, it does not have 3445 * anon_vma prepared. 3446 */ 3447 if (unlikely(anon_vma_prepare(vma))) { 3448 ret = VM_FAULT_OOM; 3449 goto out_release_all; 3450 } 3451 3452 copy_user_huge_page(new_page, old_page, address, vma, 3453 pages_per_huge_page(h)); 3454 __SetPageUptodate(new_page); 3455 set_page_huge_active(new_page); 3456 3457 mmun_start = address & huge_page_mask(h); 3458 mmun_end = mmun_start + huge_page_size(h); 3459 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3460 3461 /* 3462 * Retake the page table lock to check for racing updates 3463 * before the page tables are altered 3464 */ 3465 spin_lock(ptl); 3466 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3467 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3468 ClearPagePrivate(new_page); 3469 3470 /* Break COW */ 3471 huge_ptep_clear_flush(vma, address, ptep); 3472 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3473 set_huge_pte_at(mm, address, ptep, 3474 make_huge_pte(vma, new_page, 1)); 3475 page_remove_rmap(old_page, true); 3476 hugepage_add_new_anon_rmap(new_page, vma, address); 3477 /* Make the old page be freed below */ 3478 new_page = old_page; 3479 } 3480 spin_unlock(ptl); 3481 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3482 out_release_all: 3483 put_page(new_page); 3484 out_release_old: 3485 put_page(old_page); 3486 3487 spin_lock(ptl); /* Caller expects lock to be held */ 3488 return ret; 3489 } 3490 3491 /* Return the pagecache page at a given address within a VMA */ 3492 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3493 struct vm_area_struct *vma, unsigned long address) 3494 { 3495 struct address_space *mapping; 3496 pgoff_t idx; 3497 3498 mapping = vma->vm_file->f_mapping; 3499 idx = vma_hugecache_offset(h, vma, address); 3500 3501 return find_lock_page(mapping, idx); 3502 } 3503 3504 /* 3505 * Return whether there is a pagecache page to back given address within VMA. 3506 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3507 */ 3508 static bool hugetlbfs_pagecache_present(struct hstate *h, 3509 struct vm_area_struct *vma, unsigned long address) 3510 { 3511 struct address_space *mapping; 3512 pgoff_t idx; 3513 struct page *page; 3514 3515 mapping = vma->vm_file->f_mapping; 3516 idx = vma_hugecache_offset(h, vma, address); 3517 3518 page = find_get_page(mapping, idx); 3519 if (page) 3520 put_page(page); 3521 return page != NULL; 3522 } 3523 3524 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3525 pgoff_t idx) 3526 { 3527 struct inode *inode = mapping->host; 3528 struct hstate *h = hstate_inode(inode); 3529 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3530 3531 if (err) 3532 return err; 3533 ClearPagePrivate(page); 3534 3535 spin_lock(&inode->i_lock); 3536 inode->i_blocks += blocks_per_huge_page(h); 3537 spin_unlock(&inode->i_lock); 3538 return 0; 3539 } 3540 3541 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3542 struct address_space *mapping, pgoff_t idx, 3543 unsigned long address, pte_t *ptep, unsigned int flags) 3544 { 3545 struct hstate *h = hstate_vma(vma); 3546 int ret = VM_FAULT_SIGBUS; 3547 int anon_rmap = 0; 3548 unsigned long size; 3549 struct page *page; 3550 pte_t new_pte; 3551 spinlock_t *ptl; 3552 3553 /* 3554 * Currently, we are forced to kill the process in the event the 3555 * original mapper has unmapped pages from the child due to a failed 3556 * COW. Warn that such a situation has occurred as it may not be obvious 3557 */ 3558 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3559 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3560 current->pid); 3561 return ret; 3562 } 3563 3564 /* 3565 * Use page lock to guard against racing truncation 3566 * before we get page_table_lock. 3567 */ 3568 retry: 3569 page = find_lock_page(mapping, idx); 3570 if (!page) { 3571 size = i_size_read(mapping->host) >> huge_page_shift(h); 3572 if (idx >= size) 3573 goto out; 3574 page = alloc_huge_page(vma, address, 0); 3575 if (IS_ERR(page)) { 3576 ret = PTR_ERR(page); 3577 if (ret == -ENOMEM) 3578 ret = VM_FAULT_OOM; 3579 else 3580 ret = VM_FAULT_SIGBUS; 3581 goto out; 3582 } 3583 clear_huge_page(page, address, pages_per_huge_page(h)); 3584 __SetPageUptodate(page); 3585 set_page_huge_active(page); 3586 3587 if (vma->vm_flags & VM_MAYSHARE) { 3588 int err = huge_add_to_page_cache(page, mapping, idx); 3589 if (err) { 3590 put_page(page); 3591 if (err == -EEXIST) 3592 goto retry; 3593 goto out; 3594 } 3595 } else { 3596 lock_page(page); 3597 if (unlikely(anon_vma_prepare(vma))) { 3598 ret = VM_FAULT_OOM; 3599 goto backout_unlocked; 3600 } 3601 anon_rmap = 1; 3602 } 3603 } else { 3604 /* 3605 * If memory error occurs between mmap() and fault, some process 3606 * don't have hwpoisoned swap entry for errored virtual address. 3607 * So we need to block hugepage fault by PG_hwpoison bit check. 3608 */ 3609 if (unlikely(PageHWPoison(page))) { 3610 ret = VM_FAULT_HWPOISON | 3611 VM_FAULT_SET_HINDEX(hstate_index(h)); 3612 goto backout_unlocked; 3613 } 3614 } 3615 3616 /* 3617 * If we are going to COW a private mapping later, we examine the 3618 * pending reservations for this page now. This will ensure that 3619 * any allocations necessary to record that reservation occur outside 3620 * the spinlock. 3621 */ 3622 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3623 if (vma_needs_reservation(h, vma, address) < 0) { 3624 ret = VM_FAULT_OOM; 3625 goto backout_unlocked; 3626 } 3627 /* Just decrements count, does not deallocate */ 3628 vma_end_reservation(h, vma, address); 3629 } 3630 3631 ptl = huge_pte_lockptr(h, mm, ptep); 3632 spin_lock(ptl); 3633 size = i_size_read(mapping->host) >> huge_page_shift(h); 3634 if (idx >= size) 3635 goto backout; 3636 3637 ret = 0; 3638 if (!huge_pte_none(huge_ptep_get(ptep))) 3639 goto backout; 3640 3641 if (anon_rmap) { 3642 ClearPagePrivate(page); 3643 hugepage_add_new_anon_rmap(page, vma, address); 3644 } else 3645 page_dup_rmap(page, true); 3646 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3647 && (vma->vm_flags & VM_SHARED))); 3648 set_huge_pte_at(mm, address, ptep, new_pte); 3649 3650 hugetlb_count_add(pages_per_huge_page(h), mm); 3651 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3652 /* Optimization, do the COW without a second fault */ 3653 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3654 } 3655 3656 spin_unlock(ptl); 3657 unlock_page(page); 3658 out: 3659 return ret; 3660 3661 backout: 3662 spin_unlock(ptl); 3663 backout_unlocked: 3664 unlock_page(page); 3665 put_page(page); 3666 goto out; 3667 } 3668 3669 #ifdef CONFIG_SMP 3670 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3671 struct vm_area_struct *vma, 3672 struct address_space *mapping, 3673 pgoff_t idx, unsigned long address) 3674 { 3675 unsigned long key[2]; 3676 u32 hash; 3677 3678 if (vma->vm_flags & VM_SHARED) { 3679 key[0] = (unsigned long) mapping; 3680 key[1] = idx; 3681 } else { 3682 key[0] = (unsigned long) mm; 3683 key[1] = address >> huge_page_shift(h); 3684 } 3685 3686 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3687 3688 return hash & (num_fault_mutexes - 1); 3689 } 3690 #else 3691 /* 3692 * For uniprocesor systems we always use a single mutex, so just 3693 * return 0 and avoid the hashing overhead. 3694 */ 3695 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3696 struct vm_area_struct *vma, 3697 struct address_space *mapping, 3698 pgoff_t idx, unsigned long address) 3699 { 3700 return 0; 3701 } 3702 #endif 3703 3704 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3705 unsigned long address, unsigned int flags) 3706 { 3707 pte_t *ptep, entry; 3708 spinlock_t *ptl; 3709 int ret; 3710 u32 hash; 3711 pgoff_t idx; 3712 struct page *page = NULL; 3713 struct page *pagecache_page = NULL; 3714 struct hstate *h = hstate_vma(vma); 3715 struct address_space *mapping; 3716 int need_wait_lock = 0; 3717 3718 address &= huge_page_mask(h); 3719 3720 ptep = huge_pte_offset(mm, address); 3721 if (ptep) { 3722 entry = huge_ptep_get(ptep); 3723 if (unlikely(is_hugetlb_entry_migration(entry))) { 3724 migration_entry_wait_huge(vma, mm, ptep); 3725 return 0; 3726 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3727 return VM_FAULT_HWPOISON_LARGE | 3728 VM_FAULT_SET_HINDEX(hstate_index(h)); 3729 } else { 3730 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3731 if (!ptep) 3732 return VM_FAULT_OOM; 3733 } 3734 3735 mapping = vma->vm_file->f_mapping; 3736 idx = vma_hugecache_offset(h, vma, address); 3737 3738 /* 3739 * Serialize hugepage allocation and instantiation, so that we don't 3740 * get spurious allocation failures if two CPUs race to instantiate 3741 * the same page in the page cache. 3742 */ 3743 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3744 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3745 3746 entry = huge_ptep_get(ptep); 3747 if (huge_pte_none(entry)) { 3748 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3749 goto out_mutex; 3750 } 3751 3752 ret = 0; 3753 3754 /* 3755 * entry could be a migration/hwpoison entry at this point, so this 3756 * check prevents the kernel from going below assuming that we have 3757 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3758 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3759 * handle it. 3760 */ 3761 if (!pte_present(entry)) 3762 goto out_mutex; 3763 3764 /* 3765 * If we are going to COW the mapping later, we examine the pending 3766 * reservations for this page now. This will ensure that any 3767 * allocations necessary to record that reservation occur outside the 3768 * spinlock. For private mappings, we also lookup the pagecache 3769 * page now as it is used to determine if a reservation has been 3770 * consumed. 3771 */ 3772 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3773 if (vma_needs_reservation(h, vma, address) < 0) { 3774 ret = VM_FAULT_OOM; 3775 goto out_mutex; 3776 } 3777 /* Just decrements count, does not deallocate */ 3778 vma_end_reservation(h, vma, address); 3779 3780 if (!(vma->vm_flags & VM_MAYSHARE)) 3781 pagecache_page = hugetlbfs_pagecache_page(h, 3782 vma, address); 3783 } 3784 3785 ptl = huge_pte_lock(h, mm, ptep); 3786 3787 /* Check for a racing update before calling hugetlb_cow */ 3788 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3789 goto out_ptl; 3790 3791 /* 3792 * hugetlb_cow() requires page locks of pte_page(entry) and 3793 * pagecache_page, so here we need take the former one 3794 * when page != pagecache_page or !pagecache_page. 3795 */ 3796 page = pte_page(entry); 3797 if (page != pagecache_page) 3798 if (!trylock_page(page)) { 3799 need_wait_lock = 1; 3800 goto out_ptl; 3801 } 3802 3803 get_page(page); 3804 3805 if (flags & FAULT_FLAG_WRITE) { 3806 if (!huge_pte_write(entry)) { 3807 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3808 pagecache_page, ptl); 3809 goto out_put_page; 3810 } 3811 entry = huge_pte_mkdirty(entry); 3812 } 3813 entry = pte_mkyoung(entry); 3814 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3815 flags & FAULT_FLAG_WRITE)) 3816 update_mmu_cache(vma, address, ptep); 3817 out_put_page: 3818 if (page != pagecache_page) 3819 unlock_page(page); 3820 put_page(page); 3821 out_ptl: 3822 spin_unlock(ptl); 3823 3824 if (pagecache_page) { 3825 unlock_page(pagecache_page); 3826 put_page(pagecache_page); 3827 } 3828 out_mutex: 3829 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3830 /* 3831 * Generally it's safe to hold refcount during waiting page lock. But 3832 * here we just wait to defer the next page fault to avoid busy loop and 3833 * the page is not used after unlocked before returning from the current 3834 * page fault. So we are safe from accessing freed page, even if we wait 3835 * here without taking refcount. 3836 */ 3837 if (need_wait_lock) 3838 wait_on_page_locked(page); 3839 return ret; 3840 } 3841 3842 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3843 struct page **pages, struct vm_area_struct **vmas, 3844 unsigned long *position, unsigned long *nr_pages, 3845 long i, unsigned int flags) 3846 { 3847 unsigned long pfn_offset; 3848 unsigned long vaddr = *position; 3849 unsigned long remainder = *nr_pages; 3850 struct hstate *h = hstate_vma(vma); 3851 3852 while (vaddr < vma->vm_end && remainder) { 3853 pte_t *pte; 3854 spinlock_t *ptl = NULL; 3855 int absent; 3856 struct page *page; 3857 3858 /* 3859 * If we have a pending SIGKILL, don't keep faulting pages and 3860 * potentially allocating memory. 3861 */ 3862 if (unlikely(fatal_signal_pending(current))) { 3863 remainder = 0; 3864 break; 3865 } 3866 3867 /* 3868 * Some archs (sparc64, sh*) have multiple pte_ts to 3869 * each hugepage. We have to make sure we get the 3870 * first, for the page indexing below to work. 3871 * 3872 * Note that page table lock is not held when pte is null. 3873 */ 3874 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3875 if (pte) 3876 ptl = huge_pte_lock(h, mm, pte); 3877 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3878 3879 /* 3880 * When coredumping, it suits get_dump_page if we just return 3881 * an error where there's an empty slot with no huge pagecache 3882 * to back it. This way, we avoid allocating a hugepage, and 3883 * the sparse dumpfile avoids allocating disk blocks, but its 3884 * huge holes still show up with zeroes where they need to be. 3885 */ 3886 if (absent && (flags & FOLL_DUMP) && 3887 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3888 if (pte) 3889 spin_unlock(ptl); 3890 remainder = 0; 3891 break; 3892 } 3893 3894 /* 3895 * We need call hugetlb_fault for both hugepages under migration 3896 * (in which case hugetlb_fault waits for the migration,) and 3897 * hwpoisoned hugepages (in which case we need to prevent the 3898 * caller from accessing to them.) In order to do this, we use 3899 * here is_swap_pte instead of is_hugetlb_entry_migration and 3900 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3901 * both cases, and because we can't follow correct pages 3902 * directly from any kind of swap entries. 3903 */ 3904 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3905 ((flags & FOLL_WRITE) && 3906 !huge_pte_write(huge_ptep_get(pte)))) { 3907 int ret; 3908 3909 if (pte) 3910 spin_unlock(ptl); 3911 ret = hugetlb_fault(mm, vma, vaddr, 3912 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3913 if (!(ret & VM_FAULT_ERROR)) 3914 continue; 3915 3916 remainder = 0; 3917 break; 3918 } 3919 3920 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3921 page = pte_page(huge_ptep_get(pte)); 3922 same_page: 3923 if (pages) { 3924 pages[i] = mem_map_offset(page, pfn_offset); 3925 get_page(pages[i]); 3926 } 3927 3928 if (vmas) 3929 vmas[i] = vma; 3930 3931 vaddr += PAGE_SIZE; 3932 ++pfn_offset; 3933 --remainder; 3934 ++i; 3935 if (vaddr < vma->vm_end && remainder && 3936 pfn_offset < pages_per_huge_page(h)) { 3937 /* 3938 * We use pfn_offset to avoid touching the pageframes 3939 * of this compound page. 3940 */ 3941 goto same_page; 3942 } 3943 spin_unlock(ptl); 3944 } 3945 *nr_pages = remainder; 3946 *position = vaddr; 3947 3948 return i ? i : -EFAULT; 3949 } 3950 3951 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3952 unsigned long address, unsigned long end, pgprot_t newprot) 3953 { 3954 struct mm_struct *mm = vma->vm_mm; 3955 unsigned long start = address; 3956 pte_t *ptep; 3957 pte_t pte; 3958 struct hstate *h = hstate_vma(vma); 3959 unsigned long pages = 0; 3960 3961 BUG_ON(address >= end); 3962 flush_cache_range(vma, address, end); 3963 3964 mmu_notifier_invalidate_range_start(mm, start, end); 3965 i_mmap_lock_write(vma->vm_file->f_mapping); 3966 for (; address < end; address += huge_page_size(h)) { 3967 spinlock_t *ptl; 3968 ptep = huge_pte_offset(mm, address); 3969 if (!ptep) 3970 continue; 3971 ptl = huge_pte_lock(h, mm, ptep); 3972 if (huge_pmd_unshare(mm, &address, ptep)) { 3973 pages++; 3974 spin_unlock(ptl); 3975 continue; 3976 } 3977 pte = huge_ptep_get(ptep); 3978 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3979 spin_unlock(ptl); 3980 continue; 3981 } 3982 if (unlikely(is_hugetlb_entry_migration(pte))) { 3983 swp_entry_t entry = pte_to_swp_entry(pte); 3984 3985 if (is_write_migration_entry(entry)) { 3986 pte_t newpte; 3987 3988 make_migration_entry_read(&entry); 3989 newpte = swp_entry_to_pte(entry); 3990 set_huge_pte_at(mm, address, ptep, newpte); 3991 pages++; 3992 } 3993 spin_unlock(ptl); 3994 continue; 3995 } 3996 if (!huge_pte_none(pte)) { 3997 pte = huge_ptep_get_and_clear(mm, address, ptep); 3998 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3999 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4000 set_huge_pte_at(mm, address, ptep, pte); 4001 pages++; 4002 } 4003 spin_unlock(ptl); 4004 } 4005 /* 4006 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4007 * may have cleared our pud entry and done put_page on the page table: 4008 * once we release i_mmap_rwsem, another task can do the final put_page 4009 * and that page table be reused and filled with junk. 4010 */ 4011 flush_tlb_range(vma, start, end); 4012 mmu_notifier_invalidate_range(mm, start, end); 4013 i_mmap_unlock_write(vma->vm_file->f_mapping); 4014 mmu_notifier_invalidate_range_end(mm, start, end); 4015 4016 return pages << h->order; 4017 } 4018 4019 int hugetlb_reserve_pages(struct inode *inode, 4020 long from, long to, 4021 struct vm_area_struct *vma, 4022 vm_flags_t vm_flags) 4023 { 4024 long ret, chg; 4025 struct hstate *h = hstate_inode(inode); 4026 struct hugepage_subpool *spool = subpool_inode(inode); 4027 struct resv_map *resv_map; 4028 long gbl_reserve; 4029 4030 /* 4031 * Only apply hugepage reservation if asked. At fault time, an 4032 * attempt will be made for VM_NORESERVE to allocate a page 4033 * without using reserves 4034 */ 4035 if (vm_flags & VM_NORESERVE) 4036 return 0; 4037 4038 /* 4039 * Shared mappings base their reservation on the number of pages that 4040 * are already allocated on behalf of the file. Private mappings need 4041 * to reserve the full area even if read-only as mprotect() may be 4042 * called to make the mapping read-write. Assume !vma is a shm mapping 4043 */ 4044 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4045 resv_map = inode_resv_map(inode); 4046 4047 chg = region_chg(resv_map, from, to); 4048 4049 } else { 4050 resv_map = resv_map_alloc(); 4051 if (!resv_map) 4052 return -ENOMEM; 4053 4054 chg = to - from; 4055 4056 set_vma_resv_map(vma, resv_map); 4057 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4058 } 4059 4060 if (chg < 0) { 4061 ret = chg; 4062 goto out_err; 4063 } 4064 4065 /* 4066 * There must be enough pages in the subpool for the mapping. If 4067 * the subpool has a minimum size, there may be some global 4068 * reservations already in place (gbl_reserve). 4069 */ 4070 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4071 if (gbl_reserve < 0) { 4072 ret = -ENOSPC; 4073 goto out_err; 4074 } 4075 4076 /* 4077 * Check enough hugepages are available for the reservation. 4078 * Hand the pages back to the subpool if there are not 4079 */ 4080 ret = hugetlb_acct_memory(h, gbl_reserve); 4081 if (ret < 0) { 4082 /* put back original number of pages, chg */ 4083 (void)hugepage_subpool_put_pages(spool, chg); 4084 goto out_err; 4085 } 4086 4087 /* 4088 * Account for the reservations made. Shared mappings record regions 4089 * that have reservations as they are shared by multiple VMAs. 4090 * When the last VMA disappears, the region map says how much 4091 * the reservation was and the page cache tells how much of 4092 * the reservation was consumed. Private mappings are per-VMA and 4093 * only the consumed reservations are tracked. When the VMA 4094 * disappears, the original reservation is the VMA size and the 4095 * consumed reservations are stored in the map. Hence, nothing 4096 * else has to be done for private mappings here 4097 */ 4098 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4099 long add = region_add(resv_map, from, to); 4100 4101 if (unlikely(chg > add)) { 4102 /* 4103 * pages in this range were added to the reserve 4104 * map between region_chg and region_add. This 4105 * indicates a race with alloc_huge_page. Adjust 4106 * the subpool and reserve counts modified above 4107 * based on the difference. 4108 */ 4109 long rsv_adjust; 4110 4111 rsv_adjust = hugepage_subpool_put_pages(spool, 4112 chg - add); 4113 hugetlb_acct_memory(h, -rsv_adjust); 4114 } 4115 } 4116 return 0; 4117 out_err: 4118 if (!vma || vma->vm_flags & VM_MAYSHARE) 4119 region_abort(resv_map, from, to); 4120 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4121 kref_put(&resv_map->refs, resv_map_release); 4122 return ret; 4123 } 4124 4125 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4126 long freed) 4127 { 4128 struct hstate *h = hstate_inode(inode); 4129 struct resv_map *resv_map = inode_resv_map(inode); 4130 long chg = 0; 4131 struct hugepage_subpool *spool = subpool_inode(inode); 4132 long gbl_reserve; 4133 4134 if (resv_map) { 4135 chg = region_del(resv_map, start, end); 4136 /* 4137 * region_del() can fail in the rare case where a region 4138 * must be split and another region descriptor can not be 4139 * allocated. If end == LONG_MAX, it will not fail. 4140 */ 4141 if (chg < 0) 4142 return chg; 4143 } 4144 4145 spin_lock(&inode->i_lock); 4146 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4147 spin_unlock(&inode->i_lock); 4148 4149 /* 4150 * If the subpool has a minimum size, the number of global 4151 * reservations to be released may be adjusted. 4152 */ 4153 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4154 hugetlb_acct_memory(h, -gbl_reserve); 4155 4156 return 0; 4157 } 4158 4159 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4160 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4161 struct vm_area_struct *vma, 4162 unsigned long addr, pgoff_t idx) 4163 { 4164 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4165 svma->vm_start; 4166 unsigned long sbase = saddr & PUD_MASK; 4167 unsigned long s_end = sbase + PUD_SIZE; 4168 4169 /* Allow segments to share if only one is marked locked */ 4170 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4171 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4172 4173 /* 4174 * match the virtual addresses, permission and the alignment of the 4175 * page table page. 4176 */ 4177 if (pmd_index(addr) != pmd_index(saddr) || 4178 vm_flags != svm_flags || 4179 sbase < svma->vm_start || svma->vm_end < s_end) 4180 return 0; 4181 4182 return saddr; 4183 } 4184 4185 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4186 { 4187 unsigned long base = addr & PUD_MASK; 4188 unsigned long end = base + PUD_SIZE; 4189 4190 /* 4191 * check on proper vm_flags and page table alignment 4192 */ 4193 if (vma->vm_flags & VM_MAYSHARE && 4194 vma->vm_start <= base && end <= vma->vm_end) 4195 return true; 4196 return false; 4197 } 4198 4199 /* 4200 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4201 * and returns the corresponding pte. While this is not necessary for the 4202 * !shared pmd case because we can allocate the pmd later as well, it makes the 4203 * code much cleaner. pmd allocation is essential for the shared case because 4204 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4205 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4206 * bad pmd for sharing. 4207 */ 4208 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4209 { 4210 struct vm_area_struct *vma = find_vma(mm, addr); 4211 struct address_space *mapping = vma->vm_file->f_mapping; 4212 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4213 vma->vm_pgoff; 4214 struct vm_area_struct *svma; 4215 unsigned long saddr; 4216 pte_t *spte = NULL; 4217 pte_t *pte; 4218 spinlock_t *ptl; 4219 4220 if (!vma_shareable(vma, addr)) 4221 return (pte_t *)pmd_alloc(mm, pud, addr); 4222 4223 i_mmap_lock_write(mapping); 4224 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4225 if (svma == vma) 4226 continue; 4227 4228 saddr = page_table_shareable(svma, vma, addr, idx); 4229 if (saddr) { 4230 spte = huge_pte_offset(svma->vm_mm, saddr); 4231 if (spte) { 4232 get_page(virt_to_page(spte)); 4233 break; 4234 } 4235 } 4236 } 4237 4238 if (!spte) 4239 goto out; 4240 4241 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4242 spin_lock(ptl); 4243 if (pud_none(*pud)) { 4244 pud_populate(mm, pud, 4245 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4246 mm_inc_nr_pmds(mm); 4247 } else { 4248 put_page(virt_to_page(spte)); 4249 } 4250 spin_unlock(ptl); 4251 out: 4252 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4253 i_mmap_unlock_write(mapping); 4254 return pte; 4255 } 4256 4257 /* 4258 * unmap huge page backed by shared pte. 4259 * 4260 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4261 * indicated by page_count > 1, unmap is achieved by clearing pud and 4262 * decrementing the ref count. If count == 1, the pte page is not shared. 4263 * 4264 * called with page table lock held. 4265 * 4266 * returns: 1 successfully unmapped a shared pte page 4267 * 0 the underlying pte page is not shared, or it is the last user 4268 */ 4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4270 { 4271 pgd_t *pgd = pgd_offset(mm, *addr); 4272 pud_t *pud = pud_offset(pgd, *addr); 4273 4274 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4275 if (page_count(virt_to_page(ptep)) == 1) 4276 return 0; 4277 4278 pud_clear(pud); 4279 put_page(virt_to_page(ptep)); 4280 mm_dec_nr_pmds(mm); 4281 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4282 return 1; 4283 } 4284 #define want_pmd_share() (1) 4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4287 { 4288 return NULL; 4289 } 4290 4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4292 { 4293 return 0; 4294 } 4295 #define want_pmd_share() (0) 4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4297 4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4299 pte_t *huge_pte_alloc(struct mm_struct *mm, 4300 unsigned long addr, unsigned long sz) 4301 { 4302 pgd_t *pgd; 4303 pud_t *pud; 4304 pte_t *pte = NULL; 4305 4306 pgd = pgd_offset(mm, addr); 4307 pud = pud_alloc(mm, pgd, addr); 4308 if (pud) { 4309 if (sz == PUD_SIZE) { 4310 pte = (pte_t *)pud; 4311 } else { 4312 BUG_ON(sz != PMD_SIZE); 4313 if (want_pmd_share() && pud_none(*pud)) 4314 pte = huge_pmd_share(mm, addr, pud); 4315 else 4316 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4317 } 4318 } 4319 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4320 4321 return pte; 4322 } 4323 4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4325 { 4326 pgd_t *pgd; 4327 pud_t *pud; 4328 pmd_t *pmd = NULL; 4329 4330 pgd = pgd_offset(mm, addr); 4331 if (pgd_present(*pgd)) { 4332 pud = pud_offset(pgd, addr); 4333 if (pud_present(*pud)) { 4334 if (pud_huge(*pud)) 4335 return (pte_t *)pud; 4336 pmd = pmd_offset(pud, addr); 4337 } 4338 } 4339 return (pte_t *) pmd; 4340 } 4341 4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4343 4344 /* 4345 * These functions are overwritable if your architecture needs its own 4346 * behavior. 4347 */ 4348 struct page * __weak 4349 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4350 int write) 4351 { 4352 return ERR_PTR(-EINVAL); 4353 } 4354 4355 struct page * __weak 4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4357 pmd_t *pmd, int flags) 4358 { 4359 struct page *page = NULL; 4360 spinlock_t *ptl; 4361 retry: 4362 ptl = pmd_lockptr(mm, pmd); 4363 spin_lock(ptl); 4364 /* 4365 * make sure that the address range covered by this pmd is not 4366 * unmapped from other threads. 4367 */ 4368 if (!pmd_huge(*pmd)) 4369 goto out; 4370 if (pmd_present(*pmd)) { 4371 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4372 if (flags & FOLL_GET) 4373 get_page(page); 4374 } else { 4375 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4376 spin_unlock(ptl); 4377 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4378 goto retry; 4379 } 4380 /* 4381 * hwpoisoned entry is treated as no_page_table in 4382 * follow_page_mask(). 4383 */ 4384 } 4385 out: 4386 spin_unlock(ptl); 4387 return page; 4388 } 4389 4390 struct page * __weak 4391 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4392 pud_t *pud, int flags) 4393 { 4394 if (flags & FOLL_GET) 4395 return NULL; 4396 4397 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4398 } 4399 4400 #ifdef CONFIG_MEMORY_FAILURE 4401 4402 /* 4403 * This function is called from memory failure code. 4404 * Assume the caller holds page lock of the head page. 4405 */ 4406 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4407 { 4408 struct hstate *h = page_hstate(hpage); 4409 int nid = page_to_nid(hpage); 4410 int ret = -EBUSY; 4411 4412 spin_lock(&hugetlb_lock); 4413 /* 4414 * Just checking !page_huge_active is not enough, because that could be 4415 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4416 */ 4417 if (!page_huge_active(hpage) && !page_count(hpage)) { 4418 /* 4419 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4420 * but dangling hpage->lru can trigger list-debug warnings 4421 * (this happens when we call unpoison_memory() on it), 4422 * so let it point to itself with list_del_init(). 4423 */ 4424 list_del_init(&hpage->lru); 4425 set_page_refcounted(hpage); 4426 h->free_huge_pages--; 4427 h->free_huge_pages_node[nid]--; 4428 ret = 0; 4429 } 4430 spin_unlock(&hugetlb_lock); 4431 return ret; 4432 } 4433 #endif 4434 4435 bool isolate_huge_page(struct page *page, struct list_head *list) 4436 { 4437 bool ret = true; 4438 4439 VM_BUG_ON_PAGE(!PageHead(page), page); 4440 spin_lock(&hugetlb_lock); 4441 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4442 ret = false; 4443 goto unlock; 4444 } 4445 clear_page_huge_active(page); 4446 list_move_tail(&page->lru, list); 4447 unlock: 4448 spin_unlock(&hugetlb_lock); 4449 return ret; 4450 } 4451 4452 void putback_active_hugepage(struct page *page) 4453 { 4454 VM_BUG_ON_PAGE(!PageHead(page), page); 4455 spin_lock(&hugetlb_lock); 4456 set_page_huge_active(page); 4457 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4458 spin_unlock(&hugetlb_lock); 4459 put_page(page); 4460 } 4461