xref: /openbmc/linux/mm/hugetlb.c (revision 05bcf503)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28 
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34 
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54 
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
58 
59 	spin_unlock(&spool->lock);
60 
61 	/* If no pages are used, and no other handles to the subpool
62 	 * remain, free the subpool the subpool remain */
63 	if (free)
64 		kfree(spool);
65 }
66 
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69 	struct hugepage_subpool *spool;
70 
71 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 	if (!spool)
73 		return NULL;
74 
75 	spin_lock_init(&spool->lock);
76 	spool->count = 1;
77 	spool->max_hpages = nr_blocks;
78 	spool->used_hpages = 0;
79 
80 	return spool;
81 }
82 
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85 	spin_lock(&spool->lock);
86 	BUG_ON(!spool->count);
87 	spool->count--;
88 	unlock_or_release_subpool(spool);
89 }
90 
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 				      long delta)
93 {
94 	int ret = 0;
95 
96 	if (!spool)
97 		return 0;
98 
99 	spin_lock(&spool->lock);
100 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 		spool->used_hpages += delta;
102 	} else {
103 		ret = -ENOMEM;
104 	}
105 	spin_unlock(&spool->lock);
106 
107 	return ret;
108 }
109 
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 				       long delta)
112 {
113 	if (!spool)
114 		return;
115 
116 	spin_lock(&spool->lock);
117 	spool->used_hpages -= delta;
118 	/* If hugetlbfs_put_super couldn't free spool due to
119 	* an outstanding quota reference, free it now. */
120 	unlock_or_release_subpool(spool);
121 }
122 
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125 	return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127 
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130 	return subpool_inode(vma->vm_file->f_dentry->d_inode);
131 }
132 
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *	down_write(&mm->mmap_sem);
143  * or
144  *	down_read(&mm->mmap_sem);
145  *	mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148 	struct list_head link;
149 	long from;
150 	long to;
151 };
152 
153 static long region_add(struct list_head *head, long f, long t)
154 {
155 	struct file_region *rg, *nrg, *trg;
156 
157 	/* Locate the region we are either in or before. */
158 	list_for_each_entry(rg, head, link)
159 		if (f <= rg->to)
160 			break;
161 
162 	/* Round our left edge to the current segment if it encloses us. */
163 	if (f > rg->from)
164 		f = rg->from;
165 
166 	/* Check for and consume any regions we now overlap with. */
167 	nrg = rg;
168 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 		if (&rg->link == head)
170 			break;
171 		if (rg->from > t)
172 			break;
173 
174 		/* If this area reaches higher then extend our area to
175 		 * include it completely.  If this is not the first area
176 		 * which we intend to reuse, free it. */
177 		if (rg->to > t)
178 			t = rg->to;
179 		if (rg != nrg) {
180 			list_del(&rg->link);
181 			kfree(rg);
182 		}
183 	}
184 	nrg->from = f;
185 	nrg->to = t;
186 	return 0;
187 }
188 
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191 	struct file_region *rg, *nrg;
192 	long chg = 0;
193 
194 	/* Locate the region we are before or in. */
195 	list_for_each_entry(rg, head, link)
196 		if (f <= rg->to)
197 			break;
198 
199 	/* If we are below the current region then a new region is required.
200 	 * Subtle, allocate a new region at the position but make it zero
201 	 * size such that we can guarantee to record the reservation. */
202 	if (&rg->link == head || t < rg->from) {
203 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 		if (!nrg)
205 			return -ENOMEM;
206 		nrg->from = f;
207 		nrg->to   = f;
208 		INIT_LIST_HEAD(&nrg->link);
209 		list_add(&nrg->link, rg->link.prev);
210 
211 		return t - f;
212 	}
213 
214 	/* Round our left edge to the current segment if it encloses us. */
215 	if (f > rg->from)
216 		f = rg->from;
217 	chg = t - f;
218 
219 	/* Check for and consume any regions we now overlap with. */
220 	list_for_each_entry(rg, rg->link.prev, link) {
221 		if (&rg->link == head)
222 			break;
223 		if (rg->from > t)
224 			return chg;
225 
226 		/* We overlap with this area, if it extends further than
227 		 * us then we must extend ourselves.  Account for its
228 		 * existing reservation. */
229 		if (rg->to > t) {
230 			chg += rg->to - t;
231 			t = rg->to;
232 		}
233 		chg -= rg->to - rg->from;
234 	}
235 	return chg;
236 }
237 
238 static long region_truncate(struct list_head *head, long end)
239 {
240 	struct file_region *rg, *trg;
241 	long chg = 0;
242 
243 	/* Locate the region we are either in or before. */
244 	list_for_each_entry(rg, head, link)
245 		if (end <= rg->to)
246 			break;
247 	if (&rg->link == head)
248 		return 0;
249 
250 	/* If we are in the middle of a region then adjust it. */
251 	if (end > rg->from) {
252 		chg = rg->to - end;
253 		rg->to = end;
254 		rg = list_entry(rg->link.next, typeof(*rg), link);
255 	}
256 
257 	/* Drop any remaining regions. */
258 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 		if (&rg->link == head)
260 			break;
261 		chg += rg->to - rg->from;
262 		list_del(&rg->link);
263 		kfree(rg);
264 	}
265 	return chg;
266 }
267 
268 static long region_count(struct list_head *head, long f, long t)
269 {
270 	struct file_region *rg;
271 	long chg = 0;
272 
273 	/* Locate each segment we overlap with, and count that overlap. */
274 	list_for_each_entry(rg, head, link) {
275 		long seg_from;
276 		long seg_to;
277 
278 		if (rg->to <= f)
279 			continue;
280 		if (rg->from >= t)
281 			break;
282 
283 		seg_from = max(rg->from, f);
284 		seg_to = min(rg->to, t);
285 
286 		chg += seg_to - seg_from;
287 	}
288 
289 	return chg;
290 }
291 
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 			struct vm_area_struct *vma, unsigned long address)
298 {
299 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 			(vma->vm_pgoff >> huge_page_order(h));
301 }
302 
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 				     unsigned long address)
305 {
306 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308 
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315 	struct hstate *hstate;
316 
317 	if (!is_vm_hugetlb_page(vma))
318 		return PAGE_SIZE;
319 
320 	hstate = hstate_vma(vma);
321 
322 	return 1UL << (hstate->order + PAGE_SHIFT);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325 
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335 	return vma_kernel_pagesize(vma);
336 }
337 #endif
338 
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347 
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369 	return (unsigned long)vma->vm_private_data;
370 }
371 
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 							unsigned long value)
374 {
375 	vma->vm_private_data = (void *)value;
376 }
377 
378 struct resv_map {
379 	struct kref refs;
380 	struct list_head regions;
381 };
382 
383 static struct resv_map *resv_map_alloc(void)
384 {
385 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 	if (!resv_map)
387 		return NULL;
388 
389 	kref_init(&resv_map->refs);
390 	INIT_LIST_HEAD(&resv_map->regions);
391 
392 	return resv_map;
393 }
394 
395 static void resv_map_release(struct kref *ref)
396 {
397 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398 
399 	/* Clear out any active regions before we release the map. */
400 	region_truncate(&resv_map->regions, 0);
401 	kfree(resv_map);
402 }
403 
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 	if (!(vma->vm_flags & VM_MAYSHARE))
408 		return (struct resv_map *)(get_vma_private_data(vma) &
409 							~HPAGE_RESV_MASK);
410 	return NULL;
411 }
412 
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417 
418 	set_vma_private_data(vma, (get_vma_private_data(vma) &
419 				HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421 
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 
427 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429 
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 
434 	return (get_vma_private_data(vma) & flag) != 0;
435 }
436 
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439 			struct vm_area_struct *vma)
440 {
441 	if (vma->vm_flags & VM_NORESERVE)
442 		return;
443 
444 	if (vma->vm_flags & VM_MAYSHARE) {
445 		/* Shared mappings always use reserves */
446 		h->resv_huge_pages--;
447 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 		/*
449 		 * Only the process that called mmap() has reserves for
450 		 * private mappings.
451 		 */
452 		h->resv_huge_pages--;
453 	}
454 }
455 
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460 	if (!(vma->vm_flags & VM_MAYSHARE))
461 		vma->vm_private_data = (void *)0;
462 }
463 
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467 	if (vma->vm_flags & VM_MAYSHARE)
468 		return 1;
469 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 		return 1;
471 	return 0;
472 }
473 
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476 	int i;
477 	struct hstate *h = page_hstate(src);
478 	struct page *dst_base = dst;
479 	struct page *src_base = src;
480 
481 	for (i = 0; i < pages_per_huge_page(h); ) {
482 		cond_resched();
483 		copy_highpage(dst, src);
484 
485 		i++;
486 		dst = mem_map_next(dst, dst_base, i);
487 		src = mem_map_next(src, src_base, i);
488 	}
489 }
490 
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493 	int i;
494 	struct hstate *h = page_hstate(src);
495 
496 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 		copy_gigantic_page(dst, src);
498 		return;
499 	}
500 
501 	might_sleep();
502 	for (i = 0; i < pages_per_huge_page(h); i++) {
503 		cond_resched();
504 		copy_highpage(dst + i, src + i);
505 	}
506 }
507 
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510 	int nid = page_to_nid(page);
511 	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 	h->free_huge_pages++;
513 	h->free_huge_pages_node[nid]++;
514 }
515 
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518 	struct page *page;
519 
520 	if (list_empty(&h->hugepage_freelists[nid]))
521 		return NULL;
522 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523 	list_move(&page->lru, &h->hugepage_activelist);
524 	set_page_refcounted(page);
525 	h->free_huge_pages--;
526 	h->free_huge_pages_node[nid]--;
527 	return page;
528 }
529 
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531 				struct vm_area_struct *vma,
532 				unsigned long address, int avoid_reserve)
533 {
534 	struct page *page = NULL;
535 	struct mempolicy *mpol;
536 	nodemask_t *nodemask;
537 	struct zonelist *zonelist;
538 	struct zone *zone;
539 	struct zoneref *z;
540 	unsigned int cpuset_mems_cookie;
541 
542 retry_cpuset:
543 	cpuset_mems_cookie = get_mems_allowed();
544 	zonelist = huge_zonelist(vma, address,
545 					htlb_alloc_mask, &mpol, &nodemask);
546 	/*
547 	 * A child process with MAP_PRIVATE mappings created by their parent
548 	 * have no page reserves. This check ensures that reservations are
549 	 * not "stolen". The child may still get SIGKILLed
550 	 */
551 	if (!vma_has_reserves(vma) &&
552 			h->free_huge_pages - h->resv_huge_pages == 0)
553 		goto err;
554 
555 	/* If reserves cannot be used, ensure enough pages are in the pool */
556 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557 		goto err;
558 
559 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 						MAX_NR_ZONES - 1, nodemask) {
561 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 			if (page) {
564 				if (!avoid_reserve)
565 					decrement_hugepage_resv_vma(h, vma);
566 				break;
567 			}
568 		}
569 	}
570 
571 	mpol_cond_put(mpol);
572 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 		goto retry_cpuset;
574 	return page;
575 
576 err:
577 	mpol_cond_put(mpol);
578 	return NULL;
579 }
580 
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583 	int i;
584 
585 	VM_BUG_ON(h->order >= MAX_ORDER);
586 
587 	h->nr_huge_pages--;
588 	h->nr_huge_pages_node[page_to_nid(page)]--;
589 	for (i = 0; i < pages_per_huge_page(h); i++) {
590 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 				1 << PG_referenced | 1 << PG_dirty |
592 				1 << PG_active | 1 << PG_reserved |
593 				1 << PG_private | 1 << PG_writeback);
594 	}
595 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
596 	set_compound_page_dtor(page, NULL);
597 	set_page_refcounted(page);
598 	arch_release_hugepage(page);
599 	__free_pages(page, huge_page_order(h));
600 }
601 
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604 	struct hstate *h;
605 
606 	for_each_hstate(h) {
607 		if (huge_page_size(h) == size)
608 			return h;
609 	}
610 	return NULL;
611 }
612 
613 static void free_huge_page(struct page *page)
614 {
615 	/*
616 	 * Can't pass hstate in here because it is called from the
617 	 * compound page destructor.
618 	 */
619 	struct hstate *h = page_hstate(page);
620 	int nid = page_to_nid(page);
621 	struct hugepage_subpool *spool =
622 		(struct hugepage_subpool *)page_private(page);
623 
624 	set_page_private(page, 0);
625 	page->mapping = NULL;
626 	BUG_ON(page_count(page));
627 	BUG_ON(page_mapcount(page));
628 
629 	spin_lock(&hugetlb_lock);
630 	hugetlb_cgroup_uncharge_page(hstate_index(h),
631 				     pages_per_huge_page(h), page);
632 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 		/* remove the page from active list */
634 		list_del(&page->lru);
635 		update_and_free_page(h, page);
636 		h->surplus_huge_pages--;
637 		h->surplus_huge_pages_node[nid]--;
638 	} else {
639 		arch_clear_hugepage_flags(page);
640 		enqueue_huge_page(h, page);
641 	}
642 	spin_unlock(&hugetlb_lock);
643 	hugepage_subpool_put_pages(spool, 1);
644 }
645 
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648 	INIT_LIST_HEAD(&page->lru);
649 	set_compound_page_dtor(page, free_huge_page);
650 	spin_lock(&hugetlb_lock);
651 	set_hugetlb_cgroup(page, NULL);
652 	h->nr_huge_pages++;
653 	h->nr_huge_pages_node[nid]++;
654 	spin_unlock(&hugetlb_lock);
655 	put_page(page); /* free it into the hugepage allocator */
656 }
657 
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660 	int i;
661 	int nr_pages = 1 << order;
662 	struct page *p = page + 1;
663 
664 	/* we rely on prep_new_huge_page to set the destructor */
665 	set_compound_order(page, order);
666 	__SetPageHead(page);
667 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 		__SetPageTail(p);
669 		set_page_count(p, 0);
670 		p->first_page = page;
671 	}
672 }
673 
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages.  See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681 	compound_page_dtor *dtor;
682 
683 	if (!PageCompound(page))
684 		return 0;
685 
686 	page = compound_head(page);
687 	dtor = get_compound_page_dtor(page);
688 
689 	return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692 
693 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
694 {
695 	struct page *page;
696 
697 	if (h->order >= MAX_ORDER)
698 		return NULL;
699 
700 	page = alloc_pages_exact_node(nid,
701 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
702 						__GFP_REPEAT|__GFP_NOWARN,
703 		huge_page_order(h));
704 	if (page) {
705 		if (arch_prepare_hugepage(page)) {
706 			__free_pages(page, huge_page_order(h));
707 			return NULL;
708 		}
709 		prep_new_huge_page(h, page, nid);
710 	}
711 
712 	return page;
713 }
714 
715 /*
716  * common helper functions for hstate_next_node_to_{alloc|free}.
717  * We may have allocated or freed a huge page based on a different
718  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719  * be outside of *nodes_allowed.  Ensure that we use an allowed
720  * node for alloc or free.
721  */
722 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
723 {
724 	nid = next_node(nid, *nodes_allowed);
725 	if (nid == MAX_NUMNODES)
726 		nid = first_node(*nodes_allowed);
727 	VM_BUG_ON(nid >= MAX_NUMNODES);
728 
729 	return nid;
730 }
731 
732 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
733 {
734 	if (!node_isset(nid, *nodes_allowed))
735 		nid = next_node_allowed(nid, nodes_allowed);
736 	return nid;
737 }
738 
739 /*
740  * returns the previously saved node ["this node"] from which to
741  * allocate a persistent huge page for the pool and advance the
742  * next node from which to allocate, handling wrap at end of node
743  * mask.
744  */
745 static int hstate_next_node_to_alloc(struct hstate *h,
746 					nodemask_t *nodes_allowed)
747 {
748 	int nid;
749 
750 	VM_BUG_ON(!nodes_allowed);
751 
752 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
754 
755 	return nid;
756 }
757 
758 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
759 {
760 	struct page *page;
761 	int start_nid;
762 	int next_nid;
763 	int ret = 0;
764 
765 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
766 	next_nid = start_nid;
767 
768 	do {
769 		page = alloc_fresh_huge_page_node(h, next_nid);
770 		if (page) {
771 			ret = 1;
772 			break;
773 		}
774 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
775 	} while (next_nid != start_nid);
776 
777 	if (ret)
778 		count_vm_event(HTLB_BUDDY_PGALLOC);
779 	else
780 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781 
782 	return ret;
783 }
784 
785 /*
786  * helper for free_pool_huge_page() - return the previously saved
787  * node ["this node"] from which to free a huge page.  Advance the
788  * next node id whether or not we find a free huge page to free so
789  * that the next attempt to free addresses the next node.
790  */
791 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
792 {
793 	int nid;
794 
795 	VM_BUG_ON(!nodes_allowed);
796 
797 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
799 
800 	return nid;
801 }
802 
803 /*
804  * Free huge page from pool from next node to free.
805  * Attempt to keep persistent huge pages more or less
806  * balanced over allowed nodes.
807  * Called with hugetlb_lock locked.
808  */
809 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810 							 bool acct_surplus)
811 {
812 	int start_nid;
813 	int next_nid;
814 	int ret = 0;
815 
816 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
817 	next_nid = start_nid;
818 
819 	do {
820 		/*
821 		 * If we're returning unused surplus pages, only examine
822 		 * nodes with surplus pages.
823 		 */
824 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825 		    !list_empty(&h->hugepage_freelists[next_nid])) {
826 			struct page *page =
827 				list_entry(h->hugepage_freelists[next_nid].next,
828 					  struct page, lru);
829 			list_del(&page->lru);
830 			h->free_huge_pages--;
831 			h->free_huge_pages_node[next_nid]--;
832 			if (acct_surplus) {
833 				h->surplus_huge_pages--;
834 				h->surplus_huge_pages_node[next_nid]--;
835 			}
836 			update_and_free_page(h, page);
837 			ret = 1;
838 			break;
839 		}
840 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
841 	} while (next_nid != start_nid);
842 
843 	return ret;
844 }
845 
846 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
847 {
848 	struct page *page;
849 	unsigned int r_nid;
850 
851 	if (h->order >= MAX_ORDER)
852 		return NULL;
853 
854 	/*
855 	 * Assume we will successfully allocate the surplus page to
856 	 * prevent racing processes from causing the surplus to exceed
857 	 * overcommit
858 	 *
859 	 * This however introduces a different race, where a process B
860 	 * tries to grow the static hugepage pool while alloc_pages() is
861 	 * called by process A. B will only examine the per-node
862 	 * counters in determining if surplus huge pages can be
863 	 * converted to normal huge pages in adjust_pool_surplus(). A
864 	 * won't be able to increment the per-node counter, until the
865 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
866 	 * no more huge pages can be converted from surplus to normal
867 	 * state (and doesn't try to convert again). Thus, we have a
868 	 * case where a surplus huge page exists, the pool is grown, and
869 	 * the surplus huge page still exists after, even though it
870 	 * should just have been converted to a normal huge page. This
871 	 * does not leak memory, though, as the hugepage will be freed
872 	 * once it is out of use. It also does not allow the counters to
873 	 * go out of whack in adjust_pool_surplus() as we don't modify
874 	 * the node values until we've gotten the hugepage and only the
875 	 * per-node value is checked there.
876 	 */
877 	spin_lock(&hugetlb_lock);
878 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
879 		spin_unlock(&hugetlb_lock);
880 		return NULL;
881 	} else {
882 		h->nr_huge_pages++;
883 		h->surplus_huge_pages++;
884 	}
885 	spin_unlock(&hugetlb_lock);
886 
887 	if (nid == NUMA_NO_NODE)
888 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
889 				   __GFP_REPEAT|__GFP_NOWARN,
890 				   huge_page_order(h));
891 	else
892 		page = alloc_pages_exact_node(nid,
893 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
894 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
895 
896 	if (page && arch_prepare_hugepage(page)) {
897 		__free_pages(page, huge_page_order(h));
898 		page = NULL;
899 	}
900 
901 	spin_lock(&hugetlb_lock);
902 	if (page) {
903 		INIT_LIST_HEAD(&page->lru);
904 		r_nid = page_to_nid(page);
905 		set_compound_page_dtor(page, free_huge_page);
906 		set_hugetlb_cgroup(page, NULL);
907 		/*
908 		 * We incremented the global counters already
909 		 */
910 		h->nr_huge_pages_node[r_nid]++;
911 		h->surplus_huge_pages_node[r_nid]++;
912 		__count_vm_event(HTLB_BUDDY_PGALLOC);
913 	} else {
914 		h->nr_huge_pages--;
915 		h->surplus_huge_pages--;
916 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
917 	}
918 	spin_unlock(&hugetlb_lock);
919 
920 	return page;
921 }
922 
923 /*
924  * This allocation function is useful in the context where vma is irrelevant.
925  * E.g. soft-offlining uses this function because it only cares physical
926  * address of error page.
927  */
928 struct page *alloc_huge_page_node(struct hstate *h, int nid)
929 {
930 	struct page *page;
931 
932 	spin_lock(&hugetlb_lock);
933 	page = dequeue_huge_page_node(h, nid);
934 	spin_unlock(&hugetlb_lock);
935 
936 	if (!page)
937 		page = alloc_buddy_huge_page(h, nid);
938 
939 	return page;
940 }
941 
942 /*
943  * Increase the hugetlb pool such that it can accommodate a reservation
944  * of size 'delta'.
945  */
946 static int gather_surplus_pages(struct hstate *h, int delta)
947 {
948 	struct list_head surplus_list;
949 	struct page *page, *tmp;
950 	int ret, i;
951 	int needed, allocated;
952 	bool alloc_ok = true;
953 
954 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
955 	if (needed <= 0) {
956 		h->resv_huge_pages += delta;
957 		return 0;
958 	}
959 
960 	allocated = 0;
961 	INIT_LIST_HEAD(&surplus_list);
962 
963 	ret = -ENOMEM;
964 retry:
965 	spin_unlock(&hugetlb_lock);
966 	for (i = 0; i < needed; i++) {
967 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
968 		if (!page) {
969 			alloc_ok = false;
970 			break;
971 		}
972 		list_add(&page->lru, &surplus_list);
973 	}
974 	allocated += i;
975 
976 	/*
977 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
978 	 * because either resv_huge_pages or free_huge_pages may have changed.
979 	 */
980 	spin_lock(&hugetlb_lock);
981 	needed = (h->resv_huge_pages + delta) -
982 			(h->free_huge_pages + allocated);
983 	if (needed > 0) {
984 		if (alloc_ok)
985 			goto retry;
986 		/*
987 		 * We were not able to allocate enough pages to
988 		 * satisfy the entire reservation so we free what
989 		 * we've allocated so far.
990 		 */
991 		goto free;
992 	}
993 	/*
994 	 * The surplus_list now contains _at_least_ the number of extra pages
995 	 * needed to accommodate the reservation.  Add the appropriate number
996 	 * of pages to the hugetlb pool and free the extras back to the buddy
997 	 * allocator.  Commit the entire reservation here to prevent another
998 	 * process from stealing the pages as they are added to the pool but
999 	 * before they are reserved.
1000 	 */
1001 	needed += allocated;
1002 	h->resv_huge_pages += delta;
1003 	ret = 0;
1004 
1005 	/* Free the needed pages to the hugetlb pool */
1006 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007 		if ((--needed) < 0)
1008 			break;
1009 		/*
1010 		 * This page is now managed by the hugetlb allocator and has
1011 		 * no users -- drop the buddy allocator's reference.
1012 		 */
1013 		put_page_testzero(page);
1014 		VM_BUG_ON(page_count(page));
1015 		enqueue_huge_page(h, page);
1016 	}
1017 free:
1018 	spin_unlock(&hugetlb_lock);
1019 
1020 	/* Free unnecessary surplus pages to the buddy allocator */
1021 	if (!list_empty(&surplus_list)) {
1022 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1023 			put_page(page);
1024 		}
1025 	}
1026 	spin_lock(&hugetlb_lock);
1027 
1028 	return ret;
1029 }
1030 
1031 /*
1032  * When releasing a hugetlb pool reservation, any surplus pages that were
1033  * allocated to satisfy the reservation must be explicitly freed if they were
1034  * never used.
1035  * Called with hugetlb_lock held.
1036  */
1037 static void return_unused_surplus_pages(struct hstate *h,
1038 					unsigned long unused_resv_pages)
1039 {
1040 	unsigned long nr_pages;
1041 
1042 	/* Uncommit the reservation */
1043 	h->resv_huge_pages -= unused_resv_pages;
1044 
1045 	/* Cannot return gigantic pages currently */
1046 	if (h->order >= MAX_ORDER)
1047 		return;
1048 
1049 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1050 
1051 	/*
1052 	 * We want to release as many surplus pages as possible, spread
1053 	 * evenly across all nodes with memory. Iterate across these nodes
1054 	 * until we can no longer free unreserved surplus pages. This occurs
1055 	 * when the nodes with surplus pages have no free pages.
1056 	 * free_pool_huge_page() will balance the the freed pages across the
1057 	 * on-line nodes with memory and will handle the hstate accounting.
1058 	 */
1059 	while (nr_pages--) {
1060 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1061 			break;
1062 	}
1063 }
1064 
1065 /*
1066  * Determine if the huge page at addr within the vma has an associated
1067  * reservation.  Where it does not we will need to logically increase
1068  * reservation and actually increase subpool usage before an allocation
1069  * can occur.  Where any new reservation would be required the
1070  * reservation change is prepared, but not committed.  Once the page
1071  * has been allocated from the subpool and instantiated the change should
1072  * be committed via vma_commit_reservation.  No action is required on
1073  * failure.
1074  */
1075 static long vma_needs_reservation(struct hstate *h,
1076 			struct vm_area_struct *vma, unsigned long addr)
1077 {
1078 	struct address_space *mapping = vma->vm_file->f_mapping;
1079 	struct inode *inode = mapping->host;
1080 
1081 	if (vma->vm_flags & VM_MAYSHARE) {
1082 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083 		return region_chg(&inode->i_mapping->private_list,
1084 							idx, idx + 1);
1085 
1086 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 		return 1;
1088 
1089 	} else  {
1090 		long err;
1091 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092 		struct resv_map *reservations = vma_resv_map(vma);
1093 
1094 		err = region_chg(&reservations->regions, idx, idx + 1);
1095 		if (err < 0)
1096 			return err;
1097 		return 0;
1098 	}
1099 }
1100 static void vma_commit_reservation(struct hstate *h,
1101 			struct vm_area_struct *vma, unsigned long addr)
1102 {
1103 	struct address_space *mapping = vma->vm_file->f_mapping;
1104 	struct inode *inode = mapping->host;
1105 
1106 	if (vma->vm_flags & VM_MAYSHARE) {
1107 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1109 
1110 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112 		struct resv_map *reservations = vma_resv_map(vma);
1113 
1114 		/* Mark this page used in the map. */
1115 		region_add(&reservations->regions, idx, idx + 1);
1116 	}
1117 }
1118 
1119 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1120 				    unsigned long addr, int avoid_reserve)
1121 {
1122 	struct hugepage_subpool *spool = subpool_vma(vma);
1123 	struct hstate *h = hstate_vma(vma);
1124 	struct page *page;
1125 	long chg;
1126 	int ret, idx;
1127 	struct hugetlb_cgroup *h_cg;
1128 
1129 	idx = hstate_index(h);
1130 	/*
1131 	 * Processes that did not create the mapping will have no
1132 	 * reserves and will not have accounted against subpool
1133 	 * limit. Check that the subpool limit can be made before
1134 	 * satisfying the allocation MAP_NORESERVE mappings may also
1135 	 * need pages and subpool limit allocated allocated if no reserve
1136 	 * mapping overlaps.
1137 	 */
1138 	chg = vma_needs_reservation(h, vma, addr);
1139 	if (chg < 0)
1140 		return ERR_PTR(-ENOMEM);
1141 	if (chg)
1142 		if (hugepage_subpool_get_pages(spool, chg))
1143 			return ERR_PTR(-ENOSPC);
1144 
1145 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146 	if (ret) {
1147 		hugepage_subpool_put_pages(spool, chg);
1148 		return ERR_PTR(-ENOSPC);
1149 	}
1150 	spin_lock(&hugetlb_lock);
1151 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1152 	if (page) {
1153 		/* update page cgroup details */
1154 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155 					     h_cg, page);
1156 		spin_unlock(&hugetlb_lock);
1157 	} else {
1158 		spin_unlock(&hugetlb_lock);
1159 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1160 		if (!page) {
1161 			hugetlb_cgroup_uncharge_cgroup(idx,
1162 						       pages_per_huge_page(h),
1163 						       h_cg);
1164 			hugepage_subpool_put_pages(spool, chg);
1165 			return ERR_PTR(-ENOSPC);
1166 		}
1167 		spin_lock(&hugetlb_lock);
1168 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169 					     h_cg, page);
1170 		list_move(&page->lru, &h->hugepage_activelist);
1171 		spin_unlock(&hugetlb_lock);
1172 	}
1173 
1174 	set_page_private(page, (unsigned long)spool);
1175 
1176 	vma_commit_reservation(h, vma, addr);
1177 	return page;
1178 }
1179 
1180 int __weak alloc_bootmem_huge_page(struct hstate *h)
1181 {
1182 	struct huge_bootmem_page *m;
1183 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1184 
1185 	while (nr_nodes) {
1186 		void *addr;
1187 
1188 		addr = __alloc_bootmem_node_nopanic(
1189 				NODE_DATA(hstate_next_node_to_alloc(h,
1190 						&node_states[N_HIGH_MEMORY])),
1191 				huge_page_size(h), huge_page_size(h), 0);
1192 
1193 		if (addr) {
1194 			/*
1195 			 * Use the beginning of the huge page to store the
1196 			 * huge_bootmem_page struct (until gather_bootmem
1197 			 * puts them into the mem_map).
1198 			 */
1199 			m = addr;
1200 			goto found;
1201 		}
1202 		nr_nodes--;
1203 	}
1204 	return 0;
1205 
1206 found:
1207 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208 	/* Put them into a private list first because mem_map is not up yet */
1209 	list_add(&m->list, &huge_boot_pages);
1210 	m->hstate = h;
1211 	return 1;
1212 }
1213 
1214 static void prep_compound_huge_page(struct page *page, int order)
1215 {
1216 	if (unlikely(order > (MAX_ORDER - 1)))
1217 		prep_compound_gigantic_page(page, order);
1218 	else
1219 		prep_compound_page(page, order);
1220 }
1221 
1222 /* Put bootmem huge pages into the standard lists after mem_map is up */
1223 static void __init gather_bootmem_prealloc(void)
1224 {
1225 	struct huge_bootmem_page *m;
1226 
1227 	list_for_each_entry(m, &huge_boot_pages, list) {
1228 		struct hstate *h = m->hstate;
1229 		struct page *page;
1230 
1231 #ifdef CONFIG_HIGHMEM
1232 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233 		free_bootmem_late((unsigned long)m,
1234 				  sizeof(struct huge_bootmem_page));
1235 #else
1236 		page = virt_to_page(m);
1237 #endif
1238 		__ClearPageReserved(page);
1239 		WARN_ON(page_count(page) != 1);
1240 		prep_compound_huge_page(page, h->order);
1241 		prep_new_huge_page(h, page, page_to_nid(page));
1242 		/*
1243 		 * If we had gigantic hugepages allocated at boot time, we need
1244 		 * to restore the 'stolen' pages to totalram_pages in order to
1245 		 * fix confusing memory reports from free(1) and another
1246 		 * side-effects, like CommitLimit going negative.
1247 		 */
1248 		if (h->order > (MAX_ORDER - 1))
1249 			totalram_pages += 1 << h->order;
1250 	}
1251 }
1252 
1253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1254 {
1255 	unsigned long i;
1256 
1257 	for (i = 0; i < h->max_huge_pages; ++i) {
1258 		if (h->order >= MAX_ORDER) {
1259 			if (!alloc_bootmem_huge_page(h))
1260 				break;
1261 		} else if (!alloc_fresh_huge_page(h,
1262 					 &node_states[N_HIGH_MEMORY]))
1263 			break;
1264 	}
1265 	h->max_huge_pages = i;
1266 }
1267 
1268 static void __init hugetlb_init_hstates(void)
1269 {
1270 	struct hstate *h;
1271 
1272 	for_each_hstate(h) {
1273 		/* oversize hugepages were init'ed in early boot */
1274 		if (h->order < MAX_ORDER)
1275 			hugetlb_hstate_alloc_pages(h);
1276 	}
1277 }
1278 
1279 static char * __init memfmt(char *buf, unsigned long n)
1280 {
1281 	if (n >= (1UL << 30))
1282 		sprintf(buf, "%lu GB", n >> 30);
1283 	else if (n >= (1UL << 20))
1284 		sprintf(buf, "%lu MB", n >> 20);
1285 	else
1286 		sprintf(buf, "%lu KB", n >> 10);
1287 	return buf;
1288 }
1289 
1290 static void __init report_hugepages(void)
1291 {
1292 	struct hstate *h;
1293 
1294 	for_each_hstate(h) {
1295 		char buf[32];
1296 		printk(KERN_INFO "HugeTLB registered %s page size, "
1297 				 "pre-allocated %ld pages\n",
1298 			memfmt(buf, huge_page_size(h)),
1299 			h->free_huge_pages);
1300 	}
1301 }
1302 
1303 #ifdef CONFIG_HIGHMEM
1304 static void try_to_free_low(struct hstate *h, unsigned long count,
1305 						nodemask_t *nodes_allowed)
1306 {
1307 	int i;
1308 
1309 	if (h->order >= MAX_ORDER)
1310 		return;
1311 
1312 	for_each_node_mask(i, *nodes_allowed) {
1313 		struct page *page, *next;
1314 		struct list_head *freel = &h->hugepage_freelists[i];
1315 		list_for_each_entry_safe(page, next, freel, lru) {
1316 			if (count >= h->nr_huge_pages)
1317 				return;
1318 			if (PageHighMem(page))
1319 				continue;
1320 			list_del(&page->lru);
1321 			update_and_free_page(h, page);
1322 			h->free_huge_pages--;
1323 			h->free_huge_pages_node[page_to_nid(page)]--;
1324 		}
1325 	}
1326 }
1327 #else
1328 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329 						nodemask_t *nodes_allowed)
1330 {
1331 }
1332 #endif
1333 
1334 /*
1335  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1336  * balanced by operating on them in a round-robin fashion.
1337  * Returns 1 if an adjustment was made.
1338  */
1339 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340 				int delta)
1341 {
1342 	int start_nid, next_nid;
1343 	int ret = 0;
1344 
1345 	VM_BUG_ON(delta != -1 && delta != 1);
1346 
1347 	if (delta < 0)
1348 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1349 	else
1350 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1351 	next_nid = start_nid;
1352 
1353 	do {
1354 		int nid = next_nid;
1355 		if (delta < 0)  {
1356 			/*
1357 			 * To shrink on this node, there must be a surplus page
1358 			 */
1359 			if (!h->surplus_huge_pages_node[nid]) {
1360 				next_nid = hstate_next_node_to_alloc(h,
1361 								nodes_allowed);
1362 				continue;
1363 			}
1364 		}
1365 		if (delta > 0) {
1366 			/*
1367 			 * Surplus cannot exceed the total number of pages
1368 			 */
1369 			if (h->surplus_huge_pages_node[nid] >=
1370 						h->nr_huge_pages_node[nid]) {
1371 				next_nid = hstate_next_node_to_free(h,
1372 								nodes_allowed);
1373 				continue;
1374 			}
1375 		}
1376 
1377 		h->surplus_huge_pages += delta;
1378 		h->surplus_huge_pages_node[nid] += delta;
1379 		ret = 1;
1380 		break;
1381 	} while (next_nid != start_nid);
1382 
1383 	return ret;
1384 }
1385 
1386 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1387 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1388 						nodemask_t *nodes_allowed)
1389 {
1390 	unsigned long min_count, ret;
1391 
1392 	if (h->order >= MAX_ORDER)
1393 		return h->max_huge_pages;
1394 
1395 	/*
1396 	 * Increase the pool size
1397 	 * First take pages out of surplus state.  Then make up the
1398 	 * remaining difference by allocating fresh huge pages.
1399 	 *
1400 	 * We might race with alloc_buddy_huge_page() here and be unable
1401 	 * to convert a surplus huge page to a normal huge page. That is
1402 	 * not critical, though, it just means the overall size of the
1403 	 * pool might be one hugepage larger than it needs to be, but
1404 	 * within all the constraints specified by the sysctls.
1405 	 */
1406 	spin_lock(&hugetlb_lock);
1407 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1408 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1409 			break;
1410 	}
1411 
1412 	while (count > persistent_huge_pages(h)) {
1413 		/*
1414 		 * If this allocation races such that we no longer need the
1415 		 * page, free_huge_page will handle it by freeing the page
1416 		 * and reducing the surplus.
1417 		 */
1418 		spin_unlock(&hugetlb_lock);
1419 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1420 		spin_lock(&hugetlb_lock);
1421 		if (!ret)
1422 			goto out;
1423 
1424 		/* Bail for signals. Probably ctrl-c from user */
1425 		if (signal_pending(current))
1426 			goto out;
1427 	}
1428 
1429 	/*
1430 	 * Decrease the pool size
1431 	 * First return free pages to the buddy allocator (being careful
1432 	 * to keep enough around to satisfy reservations).  Then place
1433 	 * pages into surplus state as needed so the pool will shrink
1434 	 * to the desired size as pages become free.
1435 	 *
1436 	 * By placing pages into the surplus state independent of the
1437 	 * overcommit value, we are allowing the surplus pool size to
1438 	 * exceed overcommit. There are few sane options here. Since
1439 	 * alloc_buddy_huge_page() is checking the global counter,
1440 	 * though, we'll note that we're not allowed to exceed surplus
1441 	 * and won't grow the pool anywhere else. Not until one of the
1442 	 * sysctls are changed, or the surplus pages go out of use.
1443 	 */
1444 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1445 	min_count = max(count, min_count);
1446 	try_to_free_low(h, min_count, nodes_allowed);
1447 	while (min_count < persistent_huge_pages(h)) {
1448 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1449 			break;
1450 	}
1451 	while (count < persistent_huge_pages(h)) {
1452 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1453 			break;
1454 	}
1455 out:
1456 	ret = persistent_huge_pages(h);
1457 	spin_unlock(&hugetlb_lock);
1458 	return ret;
1459 }
1460 
1461 #define HSTATE_ATTR_RO(_name) \
1462 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1463 
1464 #define HSTATE_ATTR(_name) \
1465 	static struct kobj_attribute _name##_attr = \
1466 		__ATTR(_name, 0644, _name##_show, _name##_store)
1467 
1468 static struct kobject *hugepages_kobj;
1469 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1470 
1471 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1472 
1473 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1474 {
1475 	int i;
1476 
1477 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1478 		if (hstate_kobjs[i] == kobj) {
1479 			if (nidp)
1480 				*nidp = NUMA_NO_NODE;
1481 			return &hstates[i];
1482 		}
1483 
1484 	return kobj_to_node_hstate(kobj, nidp);
1485 }
1486 
1487 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1488 					struct kobj_attribute *attr, char *buf)
1489 {
1490 	struct hstate *h;
1491 	unsigned long nr_huge_pages;
1492 	int nid;
1493 
1494 	h = kobj_to_hstate(kobj, &nid);
1495 	if (nid == NUMA_NO_NODE)
1496 		nr_huge_pages = h->nr_huge_pages;
1497 	else
1498 		nr_huge_pages = h->nr_huge_pages_node[nid];
1499 
1500 	return sprintf(buf, "%lu\n", nr_huge_pages);
1501 }
1502 
1503 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1504 			struct kobject *kobj, struct kobj_attribute *attr,
1505 			const char *buf, size_t len)
1506 {
1507 	int err;
1508 	int nid;
1509 	unsigned long count;
1510 	struct hstate *h;
1511 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1512 
1513 	err = strict_strtoul(buf, 10, &count);
1514 	if (err)
1515 		goto out;
1516 
1517 	h = kobj_to_hstate(kobj, &nid);
1518 	if (h->order >= MAX_ORDER) {
1519 		err = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	if (nid == NUMA_NO_NODE) {
1524 		/*
1525 		 * global hstate attribute
1526 		 */
1527 		if (!(obey_mempolicy &&
1528 				init_nodemask_of_mempolicy(nodes_allowed))) {
1529 			NODEMASK_FREE(nodes_allowed);
1530 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1531 		}
1532 	} else if (nodes_allowed) {
1533 		/*
1534 		 * per node hstate attribute: adjust count to global,
1535 		 * but restrict alloc/free to the specified node.
1536 		 */
1537 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1538 		init_nodemask_of_node(nodes_allowed, nid);
1539 	} else
1540 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1541 
1542 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1543 
1544 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1545 		NODEMASK_FREE(nodes_allowed);
1546 
1547 	return len;
1548 out:
1549 	NODEMASK_FREE(nodes_allowed);
1550 	return err;
1551 }
1552 
1553 static ssize_t nr_hugepages_show(struct kobject *kobj,
1554 				       struct kobj_attribute *attr, char *buf)
1555 {
1556 	return nr_hugepages_show_common(kobj, attr, buf);
1557 }
1558 
1559 static ssize_t nr_hugepages_store(struct kobject *kobj,
1560 	       struct kobj_attribute *attr, const char *buf, size_t len)
1561 {
1562 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1563 }
1564 HSTATE_ATTR(nr_hugepages);
1565 
1566 #ifdef CONFIG_NUMA
1567 
1568 /*
1569  * hstate attribute for optionally mempolicy-based constraint on persistent
1570  * huge page alloc/free.
1571  */
1572 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1573 				       struct kobj_attribute *attr, char *buf)
1574 {
1575 	return nr_hugepages_show_common(kobj, attr, buf);
1576 }
1577 
1578 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1579 	       struct kobj_attribute *attr, const char *buf, size_t len)
1580 {
1581 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1582 }
1583 HSTATE_ATTR(nr_hugepages_mempolicy);
1584 #endif
1585 
1586 
1587 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1588 					struct kobj_attribute *attr, char *buf)
1589 {
1590 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1591 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1592 }
1593 
1594 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1595 		struct kobj_attribute *attr, const char *buf, size_t count)
1596 {
1597 	int err;
1598 	unsigned long input;
1599 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1600 
1601 	if (h->order >= MAX_ORDER)
1602 		return -EINVAL;
1603 
1604 	err = strict_strtoul(buf, 10, &input);
1605 	if (err)
1606 		return err;
1607 
1608 	spin_lock(&hugetlb_lock);
1609 	h->nr_overcommit_huge_pages = input;
1610 	spin_unlock(&hugetlb_lock);
1611 
1612 	return count;
1613 }
1614 HSTATE_ATTR(nr_overcommit_hugepages);
1615 
1616 static ssize_t free_hugepages_show(struct kobject *kobj,
1617 					struct kobj_attribute *attr, char *buf)
1618 {
1619 	struct hstate *h;
1620 	unsigned long free_huge_pages;
1621 	int nid;
1622 
1623 	h = kobj_to_hstate(kobj, &nid);
1624 	if (nid == NUMA_NO_NODE)
1625 		free_huge_pages = h->free_huge_pages;
1626 	else
1627 		free_huge_pages = h->free_huge_pages_node[nid];
1628 
1629 	return sprintf(buf, "%lu\n", free_huge_pages);
1630 }
1631 HSTATE_ATTR_RO(free_hugepages);
1632 
1633 static ssize_t resv_hugepages_show(struct kobject *kobj,
1634 					struct kobj_attribute *attr, char *buf)
1635 {
1636 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1637 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1638 }
1639 HSTATE_ATTR_RO(resv_hugepages);
1640 
1641 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1642 					struct kobj_attribute *attr, char *buf)
1643 {
1644 	struct hstate *h;
1645 	unsigned long surplus_huge_pages;
1646 	int nid;
1647 
1648 	h = kobj_to_hstate(kobj, &nid);
1649 	if (nid == NUMA_NO_NODE)
1650 		surplus_huge_pages = h->surplus_huge_pages;
1651 	else
1652 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1653 
1654 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1655 }
1656 HSTATE_ATTR_RO(surplus_hugepages);
1657 
1658 static struct attribute *hstate_attrs[] = {
1659 	&nr_hugepages_attr.attr,
1660 	&nr_overcommit_hugepages_attr.attr,
1661 	&free_hugepages_attr.attr,
1662 	&resv_hugepages_attr.attr,
1663 	&surplus_hugepages_attr.attr,
1664 #ifdef CONFIG_NUMA
1665 	&nr_hugepages_mempolicy_attr.attr,
1666 #endif
1667 	NULL,
1668 };
1669 
1670 static struct attribute_group hstate_attr_group = {
1671 	.attrs = hstate_attrs,
1672 };
1673 
1674 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1675 				    struct kobject **hstate_kobjs,
1676 				    struct attribute_group *hstate_attr_group)
1677 {
1678 	int retval;
1679 	int hi = hstate_index(h);
1680 
1681 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1682 	if (!hstate_kobjs[hi])
1683 		return -ENOMEM;
1684 
1685 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1686 	if (retval)
1687 		kobject_put(hstate_kobjs[hi]);
1688 
1689 	return retval;
1690 }
1691 
1692 static void __init hugetlb_sysfs_init(void)
1693 {
1694 	struct hstate *h;
1695 	int err;
1696 
1697 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1698 	if (!hugepages_kobj)
1699 		return;
1700 
1701 	for_each_hstate(h) {
1702 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1703 					 hstate_kobjs, &hstate_attr_group);
1704 		if (err)
1705 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1706 								h->name);
1707 	}
1708 }
1709 
1710 #ifdef CONFIG_NUMA
1711 
1712 /*
1713  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1714  * with node devices in node_devices[] using a parallel array.  The array
1715  * index of a node device or _hstate == node id.
1716  * This is here to avoid any static dependency of the node device driver, in
1717  * the base kernel, on the hugetlb module.
1718  */
1719 struct node_hstate {
1720 	struct kobject		*hugepages_kobj;
1721 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1722 };
1723 struct node_hstate node_hstates[MAX_NUMNODES];
1724 
1725 /*
1726  * A subset of global hstate attributes for node devices
1727  */
1728 static struct attribute *per_node_hstate_attrs[] = {
1729 	&nr_hugepages_attr.attr,
1730 	&free_hugepages_attr.attr,
1731 	&surplus_hugepages_attr.attr,
1732 	NULL,
1733 };
1734 
1735 static struct attribute_group per_node_hstate_attr_group = {
1736 	.attrs = per_node_hstate_attrs,
1737 };
1738 
1739 /*
1740  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1741  * Returns node id via non-NULL nidp.
1742  */
1743 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1744 {
1745 	int nid;
1746 
1747 	for (nid = 0; nid < nr_node_ids; nid++) {
1748 		struct node_hstate *nhs = &node_hstates[nid];
1749 		int i;
1750 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1751 			if (nhs->hstate_kobjs[i] == kobj) {
1752 				if (nidp)
1753 					*nidp = nid;
1754 				return &hstates[i];
1755 			}
1756 	}
1757 
1758 	BUG();
1759 	return NULL;
1760 }
1761 
1762 /*
1763  * Unregister hstate attributes from a single node device.
1764  * No-op if no hstate attributes attached.
1765  */
1766 void hugetlb_unregister_node(struct node *node)
1767 {
1768 	struct hstate *h;
1769 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1770 
1771 	if (!nhs->hugepages_kobj)
1772 		return;		/* no hstate attributes */
1773 
1774 	for_each_hstate(h) {
1775 		int idx = hstate_index(h);
1776 		if (nhs->hstate_kobjs[idx]) {
1777 			kobject_put(nhs->hstate_kobjs[idx]);
1778 			nhs->hstate_kobjs[idx] = NULL;
1779 		}
1780 	}
1781 
1782 	kobject_put(nhs->hugepages_kobj);
1783 	nhs->hugepages_kobj = NULL;
1784 }
1785 
1786 /*
1787  * hugetlb module exit:  unregister hstate attributes from node devices
1788  * that have them.
1789  */
1790 static void hugetlb_unregister_all_nodes(void)
1791 {
1792 	int nid;
1793 
1794 	/*
1795 	 * disable node device registrations.
1796 	 */
1797 	register_hugetlbfs_with_node(NULL, NULL);
1798 
1799 	/*
1800 	 * remove hstate attributes from any nodes that have them.
1801 	 */
1802 	for (nid = 0; nid < nr_node_ids; nid++)
1803 		hugetlb_unregister_node(&node_devices[nid]);
1804 }
1805 
1806 /*
1807  * Register hstate attributes for a single node device.
1808  * No-op if attributes already registered.
1809  */
1810 void hugetlb_register_node(struct node *node)
1811 {
1812 	struct hstate *h;
1813 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1814 	int err;
1815 
1816 	if (nhs->hugepages_kobj)
1817 		return;		/* already allocated */
1818 
1819 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820 							&node->dev.kobj);
1821 	if (!nhs->hugepages_kobj)
1822 		return;
1823 
1824 	for_each_hstate(h) {
1825 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826 						nhs->hstate_kobjs,
1827 						&per_node_hstate_attr_group);
1828 		if (err) {
1829 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830 					" for node %d\n",
1831 						h->name, node->dev.id);
1832 			hugetlb_unregister_node(node);
1833 			break;
1834 		}
1835 	}
1836 }
1837 
1838 /*
1839  * hugetlb init time:  register hstate attributes for all registered node
1840  * devices of nodes that have memory.  All on-line nodes should have
1841  * registered their associated device by this time.
1842  */
1843 static void hugetlb_register_all_nodes(void)
1844 {
1845 	int nid;
1846 
1847 	for_each_node_state(nid, N_HIGH_MEMORY) {
1848 		struct node *node = &node_devices[nid];
1849 		if (node->dev.id == nid)
1850 			hugetlb_register_node(node);
1851 	}
1852 
1853 	/*
1854 	 * Let the node device driver know we're here so it can
1855 	 * [un]register hstate attributes on node hotplug.
1856 	 */
1857 	register_hugetlbfs_with_node(hugetlb_register_node,
1858 				     hugetlb_unregister_node);
1859 }
1860 #else	/* !CONFIG_NUMA */
1861 
1862 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1863 {
1864 	BUG();
1865 	if (nidp)
1866 		*nidp = -1;
1867 	return NULL;
1868 }
1869 
1870 static void hugetlb_unregister_all_nodes(void) { }
1871 
1872 static void hugetlb_register_all_nodes(void) { }
1873 
1874 #endif
1875 
1876 static void __exit hugetlb_exit(void)
1877 {
1878 	struct hstate *h;
1879 
1880 	hugetlb_unregister_all_nodes();
1881 
1882 	for_each_hstate(h) {
1883 		kobject_put(hstate_kobjs[hstate_index(h)]);
1884 	}
1885 
1886 	kobject_put(hugepages_kobj);
1887 }
1888 module_exit(hugetlb_exit);
1889 
1890 static int __init hugetlb_init(void)
1891 {
1892 	/* Some platform decide whether they support huge pages at boot
1893 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894 	 * there is no such support
1895 	 */
1896 	if (HPAGE_SHIFT == 0)
1897 		return 0;
1898 
1899 	if (!size_to_hstate(default_hstate_size)) {
1900 		default_hstate_size = HPAGE_SIZE;
1901 		if (!size_to_hstate(default_hstate_size))
1902 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1903 	}
1904 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1905 	if (default_hstate_max_huge_pages)
1906 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907 
1908 	hugetlb_init_hstates();
1909 
1910 	gather_bootmem_prealloc();
1911 
1912 	report_hugepages();
1913 
1914 	hugetlb_sysfs_init();
1915 
1916 	hugetlb_register_all_nodes();
1917 
1918 	return 0;
1919 }
1920 module_init(hugetlb_init);
1921 
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1924 {
1925 	struct hstate *h;
1926 	unsigned long i;
1927 
1928 	if (size_to_hstate(PAGE_SIZE << order)) {
1929 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930 		return;
1931 	}
1932 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1933 	BUG_ON(order == 0);
1934 	h = &hstates[hugetlb_max_hstate++];
1935 	h->order = order;
1936 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937 	h->nr_huge_pages = 0;
1938 	h->free_huge_pages = 0;
1939 	for (i = 0; i < MAX_NUMNODES; ++i)
1940 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941 	INIT_LIST_HEAD(&h->hugepage_activelist);
1942 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1943 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1944 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1945 					huge_page_size(h)/1024);
1946 	/*
1947 	 * Add cgroup control files only if the huge page consists
1948 	 * of more than two normal pages. This is because we use
1949 	 * page[2].lru.next for storing cgoup details.
1950 	 */
1951 	if (order >= HUGETLB_CGROUP_MIN_ORDER)
1952 		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1953 
1954 	parsed_hstate = h;
1955 }
1956 
1957 static int __init hugetlb_nrpages_setup(char *s)
1958 {
1959 	unsigned long *mhp;
1960 	static unsigned long *last_mhp;
1961 
1962 	/*
1963 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1964 	 * so this hugepages= parameter goes to the "default hstate".
1965 	 */
1966 	if (!hugetlb_max_hstate)
1967 		mhp = &default_hstate_max_huge_pages;
1968 	else
1969 		mhp = &parsed_hstate->max_huge_pages;
1970 
1971 	if (mhp == last_mhp) {
1972 		printk(KERN_WARNING "hugepages= specified twice without "
1973 			"interleaving hugepagesz=, ignoring\n");
1974 		return 1;
1975 	}
1976 
1977 	if (sscanf(s, "%lu", mhp) <= 0)
1978 		*mhp = 0;
1979 
1980 	/*
1981 	 * Global state is always initialized later in hugetlb_init.
1982 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1983 	 * use the bootmem allocator.
1984 	 */
1985 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1986 		hugetlb_hstate_alloc_pages(parsed_hstate);
1987 
1988 	last_mhp = mhp;
1989 
1990 	return 1;
1991 }
1992 __setup("hugepages=", hugetlb_nrpages_setup);
1993 
1994 static int __init hugetlb_default_setup(char *s)
1995 {
1996 	default_hstate_size = memparse(s, &s);
1997 	return 1;
1998 }
1999 __setup("default_hugepagesz=", hugetlb_default_setup);
2000 
2001 static unsigned int cpuset_mems_nr(unsigned int *array)
2002 {
2003 	int node;
2004 	unsigned int nr = 0;
2005 
2006 	for_each_node_mask(node, cpuset_current_mems_allowed)
2007 		nr += array[node];
2008 
2009 	return nr;
2010 }
2011 
2012 #ifdef CONFIG_SYSCTL
2013 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014 			 struct ctl_table *table, int write,
2015 			 void __user *buffer, size_t *length, loff_t *ppos)
2016 {
2017 	struct hstate *h = &default_hstate;
2018 	unsigned long tmp;
2019 	int ret;
2020 
2021 	tmp = h->max_huge_pages;
2022 
2023 	if (write && h->order >= MAX_ORDER)
2024 		return -EINVAL;
2025 
2026 	table->data = &tmp;
2027 	table->maxlen = sizeof(unsigned long);
2028 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029 	if (ret)
2030 		goto out;
2031 
2032 	if (write) {
2033 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2034 						GFP_KERNEL | __GFP_NORETRY);
2035 		if (!(obey_mempolicy &&
2036 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2037 			NODEMASK_FREE(nodes_allowed);
2038 			nodes_allowed = &node_states[N_HIGH_MEMORY];
2039 		}
2040 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2041 
2042 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2043 			NODEMASK_FREE(nodes_allowed);
2044 	}
2045 out:
2046 	return ret;
2047 }
2048 
2049 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050 			  void __user *buffer, size_t *length, loff_t *ppos)
2051 {
2052 
2053 	return hugetlb_sysctl_handler_common(false, table, write,
2054 							buffer, length, ppos);
2055 }
2056 
2057 #ifdef CONFIG_NUMA
2058 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059 			  void __user *buffer, size_t *length, loff_t *ppos)
2060 {
2061 	return hugetlb_sysctl_handler_common(true, table, write,
2062 							buffer, length, ppos);
2063 }
2064 #endif /* CONFIG_NUMA */
2065 
2066 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2067 			void __user *buffer,
2068 			size_t *length, loff_t *ppos)
2069 {
2070 	proc_dointvec(table, write, buffer, length, ppos);
2071 	if (hugepages_treat_as_movable)
2072 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073 	else
2074 		htlb_alloc_mask = GFP_HIGHUSER;
2075 	return 0;
2076 }
2077 
2078 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2079 			void __user *buffer,
2080 			size_t *length, loff_t *ppos)
2081 {
2082 	struct hstate *h = &default_hstate;
2083 	unsigned long tmp;
2084 	int ret;
2085 
2086 	tmp = h->nr_overcommit_huge_pages;
2087 
2088 	if (write && h->order >= MAX_ORDER)
2089 		return -EINVAL;
2090 
2091 	table->data = &tmp;
2092 	table->maxlen = sizeof(unsigned long);
2093 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094 	if (ret)
2095 		goto out;
2096 
2097 	if (write) {
2098 		spin_lock(&hugetlb_lock);
2099 		h->nr_overcommit_huge_pages = tmp;
2100 		spin_unlock(&hugetlb_lock);
2101 	}
2102 out:
2103 	return ret;
2104 }
2105 
2106 #endif /* CONFIG_SYSCTL */
2107 
2108 void hugetlb_report_meminfo(struct seq_file *m)
2109 {
2110 	struct hstate *h = &default_hstate;
2111 	seq_printf(m,
2112 			"HugePages_Total:   %5lu\n"
2113 			"HugePages_Free:    %5lu\n"
2114 			"HugePages_Rsvd:    %5lu\n"
2115 			"HugePages_Surp:    %5lu\n"
2116 			"Hugepagesize:   %8lu kB\n",
2117 			h->nr_huge_pages,
2118 			h->free_huge_pages,
2119 			h->resv_huge_pages,
2120 			h->surplus_huge_pages,
2121 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2122 }
2123 
2124 int hugetlb_report_node_meminfo(int nid, char *buf)
2125 {
2126 	struct hstate *h = &default_hstate;
2127 	return sprintf(buf,
2128 		"Node %d HugePages_Total: %5u\n"
2129 		"Node %d HugePages_Free:  %5u\n"
2130 		"Node %d HugePages_Surp:  %5u\n",
2131 		nid, h->nr_huge_pages_node[nid],
2132 		nid, h->free_huge_pages_node[nid],
2133 		nid, h->surplus_huge_pages_node[nid]);
2134 }
2135 
2136 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137 unsigned long hugetlb_total_pages(void)
2138 {
2139 	struct hstate *h = &default_hstate;
2140 	return h->nr_huge_pages * pages_per_huge_page(h);
2141 }
2142 
2143 static int hugetlb_acct_memory(struct hstate *h, long delta)
2144 {
2145 	int ret = -ENOMEM;
2146 
2147 	spin_lock(&hugetlb_lock);
2148 	/*
2149 	 * When cpuset is configured, it breaks the strict hugetlb page
2150 	 * reservation as the accounting is done on a global variable. Such
2151 	 * reservation is completely rubbish in the presence of cpuset because
2152 	 * the reservation is not checked against page availability for the
2153 	 * current cpuset. Application can still potentially OOM'ed by kernel
2154 	 * with lack of free htlb page in cpuset that the task is in.
2155 	 * Attempt to enforce strict accounting with cpuset is almost
2156 	 * impossible (or too ugly) because cpuset is too fluid that
2157 	 * task or memory node can be dynamically moved between cpusets.
2158 	 *
2159 	 * The change of semantics for shared hugetlb mapping with cpuset is
2160 	 * undesirable. However, in order to preserve some of the semantics,
2161 	 * we fall back to check against current free page availability as
2162 	 * a best attempt and hopefully to minimize the impact of changing
2163 	 * semantics that cpuset has.
2164 	 */
2165 	if (delta > 0) {
2166 		if (gather_surplus_pages(h, delta) < 0)
2167 			goto out;
2168 
2169 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170 			return_unused_surplus_pages(h, delta);
2171 			goto out;
2172 		}
2173 	}
2174 
2175 	ret = 0;
2176 	if (delta < 0)
2177 		return_unused_surplus_pages(h, (unsigned long) -delta);
2178 
2179 out:
2180 	spin_unlock(&hugetlb_lock);
2181 	return ret;
2182 }
2183 
2184 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2185 {
2186 	struct resv_map *reservations = vma_resv_map(vma);
2187 
2188 	/*
2189 	 * This new VMA should share its siblings reservation map if present.
2190 	 * The VMA will only ever have a valid reservation map pointer where
2191 	 * it is being copied for another still existing VMA.  As that VMA
2192 	 * has a reference to the reservation map it cannot disappear until
2193 	 * after this open call completes.  It is therefore safe to take a
2194 	 * new reference here without additional locking.
2195 	 */
2196 	if (reservations)
2197 		kref_get(&reservations->refs);
2198 }
2199 
2200 static void resv_map_put(struct vm_area_struct *vma)
2201 {
2202 	struct resv_map *reservations = vma_resv_map(vma);
2203 
2204 	if (!reservations)
2205 		return;
2206 	kref_put(&reservations->refs, resv_map_release);
2207 }
2208 
2209 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2210 {
2211 	struct hstate *h = hstate_vma(vma);
2212 	struct resv_map *reservations = vma_resv_map(vma);
2213 	struct hugepage_subpool *spool = subpool_vma(vma);
2214 	unsigned long reserve;
2215 	unsigned long start;
2216 	unsigned long end;
2217 
2218 	if (reservations) {
2219 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2220 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2221 
2222 		reserve = (end - start) -
2223 			region_count(&reservations->regions, start, end);
2224 
2225 		resv_map_put(vma);
2226 
2227 		if (reserve) {
2228 			hugetlb_acct_memory(h, -reserve);
2229 			hugepage_subpool_put_pages(spool, reserve);
2230 		}
2231 	}
2232 }
2233 
2234 /*
2235  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2236  * handle_mm_fault() to try to instantiate regular-sized pages in the
2237  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2238  * this far.
2239  */
2240 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2241 {
2242 	BUG();
2243 	return 0;
2244 }
2245 
2246 const struct vm_operations_struct hugetlb_vm_ops = {
2247 	.fault = hugetlb_vm_op_fault,
2248 	.open = hugetlb_vm_op_open,
2249 	.close = hugetlb_vm_op_close,
2250 };
2251 
2252 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253 				int writable)
2254 {
2255 	pte_t entry;
2256 
2257 	if (writable) {
2258 		entry =
2259 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2260 	} else {
2261 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2262 	}
2263 	entry = pte_mkyoung(entry);
2264 	entry = pte_mkhuge(entry);
2265 	entry = arch_make_huge_pte(entry, vma, page, writable);
2266 
2267 	return entry;
2268 }
2269 
2270 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2271 				   unsigned long address, pte_t *ptep)
2272 {
2273 	pte_t entry;
2274 
2275 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2276 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2277 		update_mmu_cache(vma, address, ptep);
2278 }
2279 
2280 
2281 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2282 			    struct vm_area_struct *vma)
2283 {
2284 	pte_t *src_pte, *dst_pte, entry;
2285 	struct page *ptepage;
2286 	unsigned long addr;
2287 	int cow;
2288 	struct hstate *h = hstate_vma(vma);
2289 	unsigned long sz = huge_page_size(h);
2290 
2291 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2292 
2293 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2294 		src_pte = huge_pte_offset(src, addr);
2295 		if (!src_pte)
2296 			continue;
2297 		dst_pte = huge_pte_alloc(dst, addr, sz);
2298 		if (!dst_pte)
2299 			goto nomem;
2300 
2301 		/* If the pagetables are shared don't copy or take references */
2302 		if (dst_pte == src_pte)
2303 			continue;
2304 
2305 		spin_lock(&dst->page_table_lock);
2306 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2307 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2308 			if (cow)
2309 				huge_ptep_set_wrprotect(src, addr, src_pte);
2310 			entry = huge_ptep_get(src_pte);
2311 			ptepage = pte_page(entry);
2312 			get_page(ptepage);
2313 			page_dup_rmap(ptepage);
2314 			set_huge_pte_at(dst, addr, dst_pte, entry);
2315 		}
2316 		spin_unlock(&src->page_table_lock);
2317 		spin_unlock(&dst->page_table_lock);
2318 	}
2319 	return 0;
2320 
2321 nomem:
2322 	return -ENOMEM;
2323 }
2324 
2325 static int is_hugetlb_entry_migration(pte_t pte)
2326 {
2327 	swp_entry_t swp;
2328 
2329 	if (huge_pte_none(pte) || pte_present(pte))
2330 		return 0;
2331 	swp = pte_to_swp_entry(pte);
2332 	if (non_swap_entry(swp) && is_migration_entry(swp))
2333 		return 1;
2334 	else
2335 		return 0;
2336 }
2337 
2338 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2339 {
2340 	swp_entry_t swp;
2341 
2342 	if (huge_pte_none(pte) || pte_present(pte))
2343 		return 0;
2344 	swp = pte_to_swp_entry(pte);
2345 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2346 		return 1;
2347 	else
2348 		return 0;
2349 }
2350 
2351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 			    unsigned long start, unsigned long end,
2353 			    struct page *ref_page)
2354 {
2355 	int force_flush = 0;
2356 	struct mm_struct *mm = vma->vm_mm;
2357 	unsigned long address;
2358 	pte_t *ptep;
2359 	pte_t pte;
2360 	struct page *page;
2361 	struct hstate *h = hstate_vma(vma);
2362 	unsigned long sz = huge_page_size(h);
2363 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2364 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2365 
2366 	WARN_ON(!is_vm_hugetlb_page(vma));
2367 	BUG_ON(start & ~huge_page_mask(h));
2368 	BUG_ON(end & ~huge_page_mask(h));
2369 
2370 	tlb_start_vma(tlb, vma);
2371 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2372 again:
2373 	spin_lock(&mm->page_table_lock);
2374 	for (address = start; address < end; address += sz) {
2375 		ptep = huge_pte_offset(mm, address);
2376 		if (!ptep)
2377 			continue;
2378 
2379 		if (huge_pmd_unshare(mm, &address, ptep))
2380 			continue;
2381 
2382 		pte = huge_ptep_get(ptep);
2383 		if (huge_pte_none(pte))
2384 			continue;
2385 
2386 		/*
2387 		 * HWPoisoned hugepage is already unmapped and dropped reference
2388 		 */
2389 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2390 			continue;
2391 
2392 		page = pte_page(pte);
2393 		/*
2394 		 * If a reference page is supplied, it is because a specific
2395 		 * page is being unmapped, not a range. Ensure the page we
2396 		 * are about to unmap is the actual page of interest.
2397 		 */
2398 		if (ref_page) {
2399 			if (page != ref_page)
2400 				continue;
2401 
2402 			/*
2403 			 * Mark the VMA as having unmapped its page so that
2404 			 * future faults in this VMA will fail rather than
2405 			 * looking like data was lost
2406 			 */
2407 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2408 		}
2409 
2410 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2411 		tlb_remove_tlb_entry(tlb, ptep, address);
2412 		if (pte_dirty(pte))
2413 			set_page_dirty(page);
2414 
2415 		page_remove_rmap(page);
2416 		force_flush = !__tlb_remove_page(tlb, page);
2417 		if (force_flush)
2418 			break;
2419 		/* Bail out after unmapping reference page if supplied */
2420 		if (ref_page)
2421 			break;
2422 	}
2423 	spin_unlock(&mm->page_table_lock);
2424 	/*
2425 	 * mmu_gather ran out of room to batch pages, we break out of
2426 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2427 	 * and page-free while holding it.
2428 	 */
2429 	if (force_flush) {
2430 		force_flush = 0;
2431 		tlb_flush_mmu(tlb);
2432 		if (address < end && !ref_page)
2433 			goto again;
2434 	}
2435 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2436 	tlb_end_vma(tlb, vma);
2437 }
2438 
2439 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2440 			  struct vm_area_struct *vma, unsigned long start,
2441 			  unsigned long end, struct page *ref_page)
2442 {
2443 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2444 
2445 	/*
2446 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2447 	 * test will fail on a vma being torn down, and not grab a page table
2448 	 * on its way out.  We're lucky that the flag has such an appropriate
2449 	 * name, and can in fact be safely cleared here. We could clear it
2450 	 * before the __unmap_hugepage_range above, but all that's necessary
2451 	 * is to clear it before releasing the i_mmap_mutex. This works
2452 	 * because in the context this is called, the VMA is about to be
2453 	 * destroyed and the i_mmap_mutex is held.
2454 	 */
2455 	vma->vm_flags &= ~VM_MAYSHARE;
2456 }
2457 
2458 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2459 			  unsigned long end, struct page *ref_page)
2460 {
2461 	struct mm_struct *mm;
2462 	struct mmu_gather tlb;
2463 
2464 	mm = vma->vm_mm;
2465 
2466 	tlb_gather_mmu(&tlb, mm, 0);
2467 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2468 	tlb_finish_mmu(&tlb, start, end);
2469 }
2470 
2471 /*
2472  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2473  * mappping it owns the reserve page for. The intention is to unmap the page
2474  * from other VMAs and let the children be SIGKILLed if they are faulting the
2475  * same region.
2476  */
2477 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2478 				struct page *page, unsigned long address)
2479 {
2480 	struct hstate *h = hstate_vma(vma);
2481 	struct vm_area_struct *iter_vma;
2482 	struct address_space *mapping;
2483 	pgoff_t pgoff;
2484 
2485 	/*
2486 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2487 	 * from page cache lookup which is in HPAGE_SIZE units.
2488 	 */
2489 	address = address & huge_page_mask(h);
2490 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2491 			vma->vm_pgoff;
2492 	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2493 
2494 	/*
2495 	 * Take the mapping lock for the duration of the table walk. As
2496 	 * this mapping should be shared between all the VMAs,
2497 	 * __unmap_hugepage_range() is called as the lock is already held
2498 	 */
2499 	mutex_lock(&mapping->i_mmap_mutex);
2500 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2501 		/* Do not unmap the current VMA */
2502 		if (iter_vma == vma)
2503 			continue;
2504 
2505 		/*
2506 		 * Unmap the page from other VMAs without their own reserves.
2507 		 * They get marked to be SIGKILLed if they fault in these
2508 		 * areas. This is because a future no-page fault on this VMA
2509 		 * could insert a zeroed page instead of the data existing
2510 		 * from the time of fork. This would look like data corruption
2511 		 */
2512 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2513 			unmap_hugepage_range(iter_vma, address,
2514 					     address + huge_page_size(h), page);
2515 	}
2516 	mutex_unlock(&mapping->i_mmap_mutex);
2517 
2518 	return 1;
2519 }
2520 
2521 /*
2522  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2523  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2524  * cannot race with other handlers or page migration.
2525  * Keep the pte_same checks anyway to make transition from the mutex easier.
2526  */
2527 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2528 			unsigned long address, pte_t *ptep, pte_t pte,
2529 			struct page *pagecache_page)
2530 {
2531 	struct hstate *h = hstate_vma(vma);
2532 	struct page *old_page, *new_page;
2533 	int avoidcopy;
2534 	int outside_reserve = 0;
2535 	unsigned long mmun_start;	/* For mmu_notifiers */
2536 	unsigned long mmun_end;		/* For mmu_notifiers */
2537 
2538 	old_page = pte_page(pte);
2539 
2540 retry_avoidcopy:
2541 	/* If no-one else is actually using this page, avoid the copy
2542 	 * and just make the page writable */
2543 	avoidcopy = (page_mapcount(old_page) == 1);
2544 	if (avoidcopy) {
2545 		if (PageAnon(old_page))
2546 			page_move_anon_rmap(old_page, vma, address);
2547 		set_huge_ptep_writable(vma, address, ptep);
2548 		return 0;
2549 	}
2550 
2551 	/*
2552 	 * If the process that created a MAP_PRIVATE mapping is about to
2553 	 * perform a COW due to a shared page count, attempt to satisfy
2554 	 * the allocation without using the existing reserves. The pagecache
2555 	 * page is used to determine if the reserve at this address was
2556 	 * consumed or not. If reserves were used, a partial faulted mapping
2557 	 * at the time of fork() could consume its reserves on COW instead
2558 	 * of the full address range.
2559 	 */
2560 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2561 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2562 			old_page != pagecache_page)
2563 		outside_reserve = 1;
2564 
2565 	page_cache_get(old_page);
2566 
2567 	/* Drop page_table_lock as buddy allocator may be called */
2568 	spin_unlock(&mm->page_table_lock);
2569 	new_page = alloc_huge_page(vma, address, outside_reserve);
2570 
2571 	if (IS_ERR(new_page)) {
2572 		long err = PTR_ERR(new_page);
2573 		page_cache_release(old_page);
2574 
2575 		/*
2576 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2577 		 * it is due to references held by a child and an insufficient
2578 		 * huge page pool. To guarantee the original mappers
2579 		 * reliability, unmap the page from child processes. The child
2580 		 * may get SIGKILLed if it later faults.
2581 		 */
2582 		if (outside_reserve) {
2583 			BUG_ON(huge_pte_none(pte));
2584 			if (unmap_ref_private(mm, vma, old_page, address)) {
2585 				BUG_ON(huge_pte_none(pte));
2586 				spin_lock(&mm->page_table_lock);
2587 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2588 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2589 					goto retry_avoidcopy;
2590 				/*
2591 				 * race occurs while re-acquiring page_table_lock, and
2592 				 * our job is done.
2593 				 */
2594 				return 0;
2595 			}
2596 			WARN_ON_ONCE(1);
2597 		}
2598 
2599 		/* Caller expects lock to be held */
2600 		spin_lock(&mm->page_table_lock);
2601 		if (err == -ENOMEM)
2602 			return VM_FAULT_OOM;
2603 		else
2604 			return VM_FAULT_SIGBUS;
2605 	}
2606 
2607 	/*
2608 	 * When the original hugepage is shared one, it does not have
2609 	 * anon_vma prepared.
2610 	 */
2611 	if (unlikely(anon_vma_prepare(vma))) {
2612 		page_cache_release(new_page);
2613 		page_cache_release(old_page);
2614 		/* Caller expects lock to be held */
2615 		spin_lock(&mm->page_table_lock);
2616 		return VM_FAULT_OOM;
2617 	}
2618 
2619 	copy_user_huge_page(new_page, old_page, address, vma,
2620 			    pages_per_huge_page(h));
2621 	__SetPageUptodate(new_page);
2622 
2623 	mmun_start = address & huge_page_mask(h);
2624 	mmun_end = mmun_start + huge_page_size(h);
2625 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2626 	/*
2627 	 * Retake the page_table_lock to check for racing updates
2628 	 * before the page tables are altered
2629 	 */
2630 	spin_lock(&mm->page_table_lock);
2631 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2632 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2633 		/* Break COW */
2634 		huge_ptep_clear_flush(vma, address, ptep);
2635 		set_huge_pte_at(mm, address, ptep,
2636 				make_huge_pte(vma, new_page, 1));
2637 		page_remove_rmap(old_page);
2638 		hugepage_add_new_anon_rmap(new_page, vma, address);
2639 		/* Make the old page be freed below */
2640 		new_page = old_page;
2641 	}
2642 	spin_unlock(&mm->page_table_lock);
2643 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2644 	/* Caller expects lock to be held */
2645 	spin_lock(&mm->page_table_lock);
2646 	page_cache_release(new_page);
2647 	page_cache_release(old_page);
2648 	return 0;
2649 }
2650 
2651 /* Return the pagecache page at a given address within a VMA */
2652 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2653 			struct vm_area_struct *vma, unsigned long address)
2654 {
2655 	struct address_space *mapping;
2656 	pgoff_t idx;
2657 
2658 	mapping = vma->vm_file->f_mapping;
2659 	idx = vma_hugecache_offset(h, vma, address);
2660 
2661 	return find_lock_page(mapping, idx);
2662 }
2663 
2664 /*
2665  * Return whether there is a pagecache page to back given address within VMA.
2666  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2667  */
2668 static bool hugetlbfs_pagecache_present(struct hstate *h,
2669 			struct vm_area_struct *vma, unsigned long address)
2670 {
2671 	struct address_space *mapping;
2672 	pgoff_t idx;
2673 	struct page *page;
2674 
2675 	mapping = vma->vm_file->f_mapping;
2676 	idx = vma_hugecache_offset(h, vma, address);
2677 
2678 	page = find_get_page(mapping, idx);
2679 	if (page)
2680 		put_page(page);
2681 	return page != NULL;
2682 }
2683 
2684 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685 			unsigned long address, pte_t *ptep, unsigned int flags)
2686 {
2687 	struct hstate *h = hstate_vma(vma);
2688 	int ret = VM_FAULT_SIGBUS;
2689 	int anon_rmap = 0;
2690 	pgoff_t idx;
2691 	unsigned long size;
2692 	struct page *page;
2693 	struct address_space *mapping;
2694 	pte_t new_pte;
2695 
2696 	/*
2697 	 * Currently, we are forced to kill the process in the event the
2698 	 * original mapper has unmapped pages from the child due to a failed
2699 	 * COW. Warn that such a situation has occurred as it may not be obvious
2700 	 */
2701 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2702 		printk(KERN_WARNING
2703 			"PID %d killed due to inadequate hugepage pool\n",
2704 			current->pid);
2705 		return ret;
2706 	}
2707 
2708 	mapping = vma->vm_file->f_mapping;
2709 	idx = vma_hugecache_offset(h, vma, address);
2710 
2711 	/*
2712 	 * Use page lock to guard against racing truncation
2713 	 * before we get page_table_lock.
2714 	 */
2715 retry:
2716 	page = find_lock_page(mapping, idx);
2717 	if (!page) {
2718 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2719 		if (idx >= size)
2720 			goto out;
2721 		page = alloc_huge_page(vma, address, 0);
2722 		if (IS_ERR(page)) {
2723 			ret = PTR_ERR(page);
2724 			if (ret == -ENOMEM)
2725 				ret = VM_FAULT_OOM;
2726 			else
2727 				ret = VM_FAULT_SIGBUS;
2728 			goto out;
2729 		}
2730 		clear_huge_page(page, address, pages_per_huge_page(h));
2731 		__SetPageUptodate(page);
2732 
2733 		if (vma->vm_flags & VM_MAYSHARE) {
2734 			int err;
2735 			struct inode *inode = mapping->host;
2736 
2737 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2738 			if (err) {
2739 				put_page(page);
2740 				if (err == -EEXIST)
2741 					goto retry;
2742 				goto out;
2743 			}
2744 
2745 			spin_lock(&inode->i_lock);
2746 			inode->i_blocks += blocks_per_huge_page(h);
2747 			spin_unlock(&inode->i_lock);
2748 		} else {
2749 			lock_page(page);
2750 			if (unlikely(anon_vma_prepare(vma))) {
2751 				ret = VM_FAULT_OOM;
2752 				goto backout_unlocked;
2753 			}
2754 			anon_rmap = 1;
2755 		}
2756 	} else {
2757 		/*
2758 		 * If memory error occurs between mmap() and fault, some process
2759 		 * don't have hwpoisoned swap entry for errored virtual address.
2760 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2761 		 */
2762 		if (unlikely(PageHWPoison(page))) {
2763 			ret = VM_FAULT_HWPOISON |
2764 				VM_FAULT_SET_HINDEX(hstate_index(h));
2765 			goto backout_unlocked;
2766 		}
2767 	}
2768 
2769 	/*
2770 	 * If we are going to COW a private mapping later, we examine the
2771 	 * pending reservations for this page now. This will ensure that
2772 	 * any allocations necessary to record that reservation occur outside
2773 	 * the spinlock.
2774 	 */
2775 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2776 		if (vma_needs_reservation(h, vma, address) < 0) {
2777 			ret = VM_FAULT_OOM;
2778 			goto backout_unlocked;
2779 		}
2780 
2781 	spin_lock(&mm->page_table_lock);
2782 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2783 	if (idx >= size)
2784 		goto backout;
2785 
2786 	ret = 0;
2787 	if (!huge_pte_none(huge_ptep_get(ptep)))
2788 		goto backout;
2789 
2790 	if (anon_rmap)
2791 		hugepage_add_new_anon_rmap(page, vma, address);
2792 	else
2793 		page_dup_rmap(page);
2794 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2795 				&& (vma->vm_flags & VM_SHARED)));
2796 	set_huge_pte_at(mm, address, ptep, new_pte);
2797 
2798 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2799 		/* Optimization, do the COW without a second fault */
2800 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2801 	}
2802 
2803 	spin_unlock(&mm->page_table_lock);
2804 	unlock_page(page);
2805 out:
2806 	return ret;
2807 
2808 backout:
2809 	spin_unlock(&mm->page_table_lock);
2810 backout_unlocked:
2811 	unlock_page(page);
2812 	put_page(page);
2813 	goto out;
2814 }
2815 
2816 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2817 			unsigned long address, unsigned int flags)
2818 {
2819 	pte_t *ptep;
2820 	pte_t entry;
2821 	int ret;
2822 	struct page *page = NULL;
2823 	struct page *pagecache_page = NULL;
2824 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2825 	struct hstate *h = hstate_vma(vma);
2826 
2827 	address &= huge_page_mask(h);
2828 
2829 	ptep = huge_pte_offset(mm, address);
2830 	if (ptep) {
2831 		entry = huge_ptep_get(ptep);
2832 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2833 			migration_entry_wait(mm, (pmd_t *)ptep, address);
2834 			return 0;
2835 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2836 			return VM_FAULT_HWPOISON_LARGE |
2837 				VM_FAULT_SET_HINDEX(hstate_index(h));
2838 	}
2839 
2840 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2841 	if (!ptep)
2842 		return VM_FAULT_OOM;
2843 
2844 	/*
2845 	 * Serialize hugepage allocation and instantiation, so that we don't
2846 	 * get spurious allocation failures if two CPUs race to instantiate
2847 	 * the same page in the page cache.
2848 	 */
2849 	mutex_lock(&hugetlb_instantiation_mutex);
2850 	entry = huge_ptep_get(ptep);
2851 	if (huge_pte_none(entry)) {
2852 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2853 		goto out_mutex;
2854 	}
2855 
2856 	ret = 0;
2857 
2858 	/*
2859 	 * If we are going to COW the mapping later, we examine the pending
2860 	 * reservations for this page now. This will ensure that any
2861 	 * allocations necessary to record that reservation occur outside the
2862 	 * spinlock. For private mappings, we also lookup the pagecache
2863 	 * page now as it is used to determine if a reservation has been
2864 	 * consumed.
2865 	 */
2866 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2867 		if (vma_needs_reservation(h, vma, address) < 0) {
2868 			ret = VM_FAULT_OOM;
2869 			goto out_mutex;
2870 		}
2871 
2872 		if (!(vma->vm_flags & VM_MAYSHARE))
2873 			pagecache_page = hugetlbfs_pagecache_page(h,
2874 								vma, address);
2875 	}
2876 
2877 	/*
2878 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2879 	 * pagecache_page, so here we need take the former one
2880 	 * when page != pagecache_page or !pagecache_page.
2881 	 * Note that locking order is always pagecache_page -> page,
2882 	 * so no worry about deadlock.
2883 	 */
2884 	page = pte_page(entry);
2885 	get_page(page);
2886 	if (page != pagecache_page)
2887 		lock_page(page);
2888 
2889 	spin_lock(&mm->page_table_lock);
2890 	/* Check for a racing update before calling hugetlb_cow */
2891 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2892 		goto out_page_table_lock;
2893 
2894 
2895 	if (flags & FAULT_FLAG_WRITE) {
2896 		if (!pte_write(entry)) {
2897 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2898 							pagecache_page);
2899 			goto out_page_table_lock;
2900 		}
2901 		entry = pte_mkdirty(entry);
2902 	}
2903 	entry = pte_mkyoung(entry);
2904 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2905 						flags & FAULT_FLAG_WRITE))
2906 		update_mmu_cache(vma, address, ptep);
2907 
2908 out_page_table_lock:
2909 	spin_unlock(&mm->page_table_lock);
2910 
2911 	if (pagecache_page) {
2912 		unlock_page(pagecache_page);
2913 		put_page(pagecache_page);
2914 	}
2915 	if (page != pagecache_page)
2916 		unlock_page(page);
2917 	put_page(page);
2918 
2919 out_mutex:
2920 	mutex_unlock(&hugetlb_instantiation_mutex);
2921 
2922 	return ret;
2923 }
2924 
2925 /* Can be overriden by architectures */
2926 __attribute__((weak)) struct page *
2927 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2928 	       pud_t *pud, int write)
2929 {
2930 	BUG();
2931 	return NULL;
2932 }
2933 
2934 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2935 			struct page **pages, struct vm_area_struct **vmas,
2936 			unsigned long *position, int *length, int i,
2937 			unsigned int flags)
2938 {
2939 	unsigned long pfn_offset;
2940 	unsigned long vaddr = *position;
2941 	int remainder = *length;
2942 	struct hstate *h = hstate_vma(vma);
2943 
2944 	spin_lock(&mm->page_table_lock);
2945 	while (vaddr < vma->vm_end && remainder) {
2946 		pte_t *pte;
2947 		int absent;
2948 		struct page *page;
2949 
2950 		/*
2951 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2952 		 * each hugepage.  We have to make sure we get the
2953 		 * first, for the page indexing below to work.
2954 		 */
2955 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2956 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2957 
2958 		/*
2959 		 * When coredumping, it suits get_dump_page if we just return
2960 		 * an error where there's an empty slot with no huge pagecache
2961 		 * to back it.  This way, we avoid allocating a hugepage, and
2962 		 * the sparse dumpfile avoids allocating disk blocks, but its
2963 		 * huge holes still show up with zeroes where they need to be.
2964 		 */
2965 		if (absent && (flags & FOLL_DUMP) &&
2966 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2967 			remainder = 0;
2968 			break;
2969 		}
2970 
2971 		if (absent ||
2972 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2973 			int ret;
2974 
2975 			spin_unlock(&mm->page_table_lock);
2976 			ret = hugetlb_fault(mm, vma, vaddr,
2977 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2978 			spin_lock(&mm->page_table_lock);
2979 			if (!(ret & VM_FAULT_ERROR))
2980 				continue;
2981 
2982 			remainder = 0;
2983 			break;
2984 		}
2985 
2986 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2987 		page = pte_page(huge_ptep_get(pte));
2988 same_page:
2989 		if (pages) {
2990 			pages[i] = mem_map_offset(page, pfn_offset);
2991 			get_page(pages[i]);
2992 		}
2993 
2994 		if (vmas)
2995 			vmas[i] = vma;
2996 
2997 		vaddr += PAGE_SIZE;
2998 		++pfn_offset;
2999 		--remainder;
3000 		++i;
3001 		if (vaddr < vma->vm_end && remainder &&
3002 				pfn_offset < pages_per_huge_page(h)) {
3003 			/*
3004 			 * We use pfn_offset to avoid touching the pageframes
3005 			 * of this compound page.
3006 			 */
3007 			goto same_page;
3008 		}
3009 	}
3010 	spin_unlock(&mm->page_table_lock);
3011 	*length = remainder;
3012 	*position = vaddr;
3013 
3014 	return i ? i : -EFAULT;
3015 }
3016 
3017 void hugetlb_change_protection(struct vm_area_struct *vma,
3018 		unsigned long address, unsigned long end, pgprot_t newprot)
3019 {
3020 	struct mm_struct *mm = vma->vm_mm;
3021 	unsigned long start = address;
3022 	pte_t *ptep;
3023 	pte_t pte;
3024 	struct hstate *h = hstate_vma(vma);
3025 
3026 	BUG_ON(address >= end);
3027 	flush_cache_range(vma, address, end);
3028 
3029 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3030 	spin_lock(&mm->page_table_lock);
3031 	for (; address < end; address += huge_page_size(h)) {
3032 		ptep = huge_pte_offset(mm, address);
3033 		if (!ptep)
3034 			continue;
3035 		if (huge_pmd_unshare(mm, &address, ptep))
3036 			continue;
3037 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3038 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3039 			pte = pte_mkhuge(pte_modify(pte, newprot));
3040 			set_huge_pte_at(mm, address, ptep, pte);
3041 		}
3042 	}
3043 	spin_unlock(&mm->page_table_lock);
3044 	/*
3045 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3046 	 * may have cleared our pud entry and done put_page on the page table:
3047 	 * once we release i_mmap_mutex, another task can do the final put_page
3048 	 * and that page table be reused and filled with junk.
3049 	 */
3050 	flush_tlb_range(vma, start, end);
3051 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3052 }
3053 
3054 int hugetlb_reserve_pages(struct inode *inode,
3055 					long from, long to,
3056 					struct vm_area_struct *vma,
3057 					vm_flags_t vm_flags)
3058 {
3059 	long ret, chg;
3060 	struct hstate *h = hstate_inode(inode);
3061 	struct hugepage_subpool *spool = subpool_inode(inode);
3062 
3063 	/*
3064 	 * Only apply hugepage reservation if asked. At fault time, an
3065 	 * attempt will be made for VM_NORESERVE to allocate a page
3066 	 * without using reserves
3067 	 */
3068 	if (vm_flags & VM_NORESERVE)
3069 		return 0;
3070 
3071 	/*
3072 	 * Shared mappings base their reservation on the number of pages that
3073 	 * are already allocated on behalf of the file. Private mappings need
3074 	 * to reserve the full area even if read-only as mprotect() may be
3075 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3076 	 */
3077 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3078 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3079 	else {
3080 		struct resv_map *resv_map = resv_map_alloc();
3081 		if (!resv_map)
3082 			return -ENOMEM;
3083 
3084 		chg = to - from;
3085 
3086 		set_vma_resv_map(vma, resv_map);
3087 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3088 	}
3089 
3090 	if (chg < 0) {
3091 		ret = chg;
3092 		goto out_err;
3093 	}
3094 
3095 	/* There must be enough pages in the subpool for the mapping */
3096 	if (hugepage_subpool_get_pages(spool, chg)) {
3097 		ret = -ENOSPC;
3098 		goto out_err;
3099 	}
3100 
3101 	/*
3102 	 * Check enough hugepages are available for the reservation.
3103 	 * Hand the pages back to the subpool if there are not
3104 	 */
3105 	ret = hugetlb_acct_memory(h, chg);
3106 	if (ret < 0) {
3107 		hugepage_subpool_put_pages(spool, chg);
3108 		goto out_err;
3109 	}
3110 
3111 	/*
3112 	 * Account for the reservations made. Shared mappings record regions
3113 	 * that have reservations as they are shared by multiple VMAs.
3114 	 * When the last VMA disappears, the region map says how much
3115 	 * the reservation was and the page cache tells how much of
3116 	 * the reservation was consumed. Private mappings are per-VMA and
3117 	 * only the consumed reservations are tracked. When the VMA
3118 	 * disappears, the original reservation is the VMA size and the
3119 	 * consumed reservations are stored in the map. Hence, nothing
3120 	 * else has to be done for private mappings here
3121 	 */
3122 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3123 		region_add(&inode->i_mapping->private_list, from, to);
3124 	return 0;
3125 out_err:
3126 	if (vma)
3127 		resv_map_put(vma);
3128 	return ret;
3129 }
3130 
3131 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3132 {
3133 	struct hstate *h = hstate_inode(inode);
3134 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3135 	struct hugepage_subpool *spool = subpool_inode(inode);
3136 
3137 	spin_lock(&inode->i_lock);
3138 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3139 	spin_unlock(&inode->i_lock);
3140 
3141 	hugepage_subpool_put_pages(spool, (chg - freed));
3142 	hugetlb_acct_memory(h, -(chg - freed));
3143 }
3144 
3145 #ifdef CONFIG_MEMORY_FAILURE
3146 
3147 /* Should be called in hugetlb_lock */
3148 static int is_hugepage_on_freelist(struct page *hpage)
3149 {
3150 	struct page *page;
3151 	struct page *tmp;
3152 	struct hstate *h = page_hstate(hpage);
3153 	int nid = page_to_nid(hpage);
3154 
3155 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3156 		if (page == hpage)
3157 			return 1;
3158 	return 0;
3159 }
3160 
3161 /*
3162  * This function is called from memory failure code.
3163  * Assume the caller holds page lock of the head page.
3164  */
3165 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3166 {
3167 	struct hstate *h = page_hstate(hpage);
3168 	int nid = page_to_nid(hpage);
3169 	int ret = -EBUSY;
3170 
3171 	spin_lock(&hugetlb_lock);
3172 	if (is_hugepage_on_freelist(hpage)) {
3173 		list_del(&hpage->lru);
3174 		set_page_refcounted(hpage);
3175 		h->free_huge_pages--;
3176 		h->free_huge_pages_node[nid]--;
3177 		ret = 0;
3178 	}
3179 	spin_unlock(&hugetlb_lock);
3180 	return ret;
3181 }
3182 #endif
3183