1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 int hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 44 __initdata LIST_HEAD(huge_boot_pages); 45 46 /* for command line parsing */ 47 static struct hstate * __initdata parsed_hstate; 48 static unsigned long __initdata default_hstate_max_huge_pages; 49 static unsigned long __initdata default_hstate_size; 50 51 /* 52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 53 * free_huge_pages, and surplus_huge_pages. 54 */ 55 DEFINE_SPINLOCK(hugetlb_lock); 56 57 /* 58 * Serializes faults on the same logical page. This is used to 59 * prevent spurious OOMs when the hugepage pool is fully utilized. 60 */ 61 static int num_fault_mutexes; 62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; 63 64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 65 { 66 bool free = (spool->count == 0) && (spool->used_hpages == 0); 67 68 spin_unlock(&spool->lock); 69 70 /* If no pages are used, and no other handles to the subpool 71 * remain, free the subpool the subpool remain */ 72 if (free) 73 kfree(spool); 74 } 75 76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 77 { 78 struct hugepage_subpool *spool; 79 80 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 81 if (!spool) 82 return NULL; 83 84 spin_lock_init(&spool->lock); 85 spool->count = 1; 86 spool->max_hpages = nr_blocks; 87 spool->used_hpages = 0; 88 89 return spool; 90 } 91 92 void hugepage_put_subpool(struct hugepage_subpool *spool) 93 { 94 spin_lock(&spool->lock); 95 BUG_ON(!spool->count); 96 spool->count--; 97 unlock_or_release_subpool(spool); 98 } 99 100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 101 long delta) 102 { 103 int ret = 0; 104 105 if (!spool) 106 return 0; 107 108 spin_lock(&spool->lock); 109 if ((spool->used_hpages + delta) <= spool->max_hpages) { 110 spool->used_hpages += delta; 111 } else { 112 ret = -ENOMEM; 113 } 114 spin_unlock(&spool->lock); 115 116 return ret; 117 } 118 119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 120 long delta) 121 { 122 if (!spool) 123 return; 124 125 spin_lock(&spool->lock); 126 spool->used_hpages -= delta; 127 /* If hugetlbfs_put_super couldn't free spool due to 128 * an outstanding quota reference, free it now. */ 129 unlock_or_release_subpool(spool); 130 } 131 132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 133 { 134 return HUGETLBFS_SB(inode->i_sb)->spool; 135 } 136 137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 138 { 139 return subpool_inode(file_inode(vma->vm_file)); 140 } 141 142 /* 143 * Region tracking -- allows tracking of reservations and instantiated pages 144 * across the pages in a mapping. 145 * 146 * The region data structures are embedded into a resv_map and 147 * protected by a resv_map's lock 148 */ 149 struct file_region { 150 struct list_head link; 151 long from; 152 long to; 153 }; 154 155 static long region_add(struct resv_map *resv, long f, long t) 156 { 157 struct list_head *head = &resv->regions; 158 struct file_region *rg, *nrg, *trg; 159 160 spin_lock(&resv->lock); 161 /* Locate the region we are either in or before. */ 162 list_for_each_entry(rg, head, link) 163 if (f <= rg->to) 164 break; 165 166 /* Round our left edge to the current segment if it encloses us. */ 167 if (f > rg->from) 168 f = rg->from; 169 170 /* Check for and consume any regions we now overlap with. */ 171 nrg = rg; 172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 173 if (&rg->link == head) 174 break; 175 if (rg->from > t) 176 break; 177 178 /* If this area reaches higher then extend our area to 179 * include it completely. If this is not the first area 180 * which we intend to reuse, free it. */ 181 if (rg->to > t) 182 t = rg->to; 183 if (rg != nrg) { 184 list_del(&rg->link); 185 kfree(rg); 186 } 187 } 188 nrg->from = f; 189 nrg->to = t; 190 spin_unlock(&resv->lock); 191 return 0; 192 } 193 194 static long region_chg(struct resv_map *resv, long f, long t) 195 { 196 struct list_head *head = &resv->regions; 197 struct file_region *rg, *nrg = NULL; 198 long chg = 0; 199 200 retry: 201 spin_lock(&resv->lock); 202 /* Locate the region we are before or in. */ 203 list_for_each_entry(rg, head, link) 204 if (f <= rg->to) 205 break; 206 207 /* If we are below the current region then a new region is required. 208 * Subtle, allocate a new region at the position but make it zero 209 * size such that we can guarantee to record the reservation. */ 210 if (&rg->link == head || t < rg->from) { 211 if (!nrg) { 212 spin_unlock(&resv->lock); 213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 214 if (!nrg) 215 return -ENOMEM; 216 217 nrg->from = f; 218 nrg->to = f; 219 INIT_LIST_HEAD(&nrg->link); 220 goto retry; 221 } 222 223 list_add(&nrg->link, rg->link.prev); 224 chg = t - f; 225 goto out_nrg; 226 } 227 228 /* Round our left edge to the current segment if it encloses us. */ 229 if (f > rg->from) 230 f = rg->from; 231 chg = t - f; 232 233 /* Check for and consume any regions we now overlap with. */ 234 list_for_each_entry(rg, rg->link.prev, link) { 235 if (&rg->link == head) 236 break; 237 if (rg->from > t) 238 goto out; 239 240 /* We overlap with this area, if it extends further than 241 * us then we must extend ourselves. Account for its 242 * existing reservation. */ 243 if (rg->to > t) { 244 chg += rg->to - t; 245 t = rg->to; 246 } 247 chg -= rg->to - rg->from; 248 } 249 250 out: 251 spin_unlock(&resv->lock); 252 /* We already know we raced and no longer need the new region */ 253 kfree(nrg); 254 return chg; 255 out_nrg: 256 spin_unlock(&resv->lock); 257 return chg; 258 } 259 260 static long region_truncate(struct resv_map *resv, long end) 261 { 262 struct list_head *head = &resv->regions; 263 struct file_region *rg, *trg; 264 long chg = 0; 265 266 spin_lock(&resv->lock); 267 /* Locate the region we are either in or before. */ 268 list_for_each_entry(rg, head, link) 269 if (end <= rg->to) 270 break; 271 if (&rg->link == head) 272 goto out; 273 274 /* If we are in the middle of a region then adjust it. */ 275 if (end > rg->from) { 276 chg = rg->to - end; 277 rg->to = end; 278 rg = list_entry(rg->link.next, typeof(*rg), link); 279 } 280 281 /* Drop any remaining regions. */ 282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 283 if (&rg->link == head) 284 break; 285 chg += rg->to - rg->from; 286 list_del(&rg->link); 287 kfree(rg); 288 } 289 290 out: 291 spin_unlock(&resv->lock); 292 return chg; 293 } 294 295 static long region_count(struct resv_map *resv, long f, long t) 296 { 297 struct list_head *head = &resv->regions; 298 struct file_region *rg; 299 long chg = 0; 300 301 spin_lock(&resv->lock); 302 /* Locate each segment we overlap with, and count that overlap. */ 303 list_for_each_entry(rg, head, link) { 304 long seg_from; 305 long seg_to; 306 307 if (rg->to <= f) 308 continue; 309 if (rg->from >= t) 310 break; 311 312 seg_from = max(rg->from, f); 313 seg_to = min(rg->to, t); 314 315 chg += seg_to - seg_from; 316 } 317 spin_unlock(&resv->lock); 318 319 return chg; 320 } 321 322 /* 323 * Convert the address within this vma to the page offset within 324 * the mapping, in pagecache page units; huge pages here. 325 */ 326 static pgoff_t vma_hugecache_offset(struct hstate *h, 327 struct vm_area_struct *vma, unsigned long address) 328 { 329 return ((address - vma->vm_start) >> huge_page_shift(h)) + 330 (vma->vm_pgoff >> huge_page_order(h)); 331 } 332 333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 334 unsigned long address) 335 { 336 return vma_hugecache_offset(hstate_vma(vma), vma, address); 337 } 338 339 /* 340 * Return the size of the pages allocated when backing a VMA. In the majority 341 * cases this will be same size as used by the page table entries. 342 */ 343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 344 { 345 struct hstate *hstate; 346 347 if (!is_vm_hugetlb_page(vma)) 348 return PAGE_SIZE; 349 350 hstate = hstate_vma(vma); 351 352 return 1UL << huge_page_shift(hstate); 353 } 354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 355 356 /* 357 * Return the page size being used by the MMU to back a VMA. In the majority 358 * of cases, the page size used by the kernel matches the MMU size. On 359 * architectures where it differs, an architecture-specific version of this 360 * function is required. 361 */ 362 #ifndef vma_mmu_pagesize 363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 364 { 365 return vma_kernel_pagesize(vma); 366 } 367 #endif 368 369 /* 370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 371 * bits of the reservation map pointer, which are always clear due to 372 * alignment. 373 */ 374 #define HPAGE_RESV_OWNER (1UL << 0) 375 #define HPAGE_RESV_UNMAPPED (1UL << 1) 376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 377 378 /* 379 * These helpers are used to track how many pages are reserved for 380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 381 * is guaranteed to have their future faults succeed. 382 * 383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 384 * the reserve counters are updated with the hugetlb_lock held. It is safe 385 * to reset the VMA at fork() time as it is not in use yet and there is no 386 * chance of the global counters getting corrupted as a result of the values. 387 * 388 * The private mapping reservation is represented in a subtly different 389 * manner to a shared mapping. A shared mapping has a region map associated 390 * with the underlying file, this region map represents the backing file 391 * pages which have ever had a reservation assigned which this persists even 392 * after the page is instantiated. A private mapping has a region map 393 * associated with the original mmap which is attached to all VMAs which 394 * reference it, this region map represents those offsets which have consumed 395 * reservation ie. where pages have been instantiated. 396 */ 397 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 398 { 399 return (unsigned long)vma->vm_private_data; 400 } 401 402 static void set_vma_private_data(struct vm_area_struct *vma, 403 unsigned long value) 404 { 405 vma->vm_private_data = (void *)value; 406 } 407 408 struct resv_map *resv_map_alloc(void) 409 { 410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 411 if (!resv_map) 412 return NULL; 413 414 kref_init(&resv_map->refs); 415 spin_lock_init(&resv_map->lock); 416 INIT_LIST_HEAD(&resv_map->regions); 417 418 return resv_map; 419 } 420 421 void resv_map_release(struct kref *ref) 422 { 423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 424 425 /* Clear out any active regions before we release the map. */ 426 region_truncate(resv_map, 0); 427 kfree(resv_map); 428 } 429 430 static inline struct resv_map *inode_resv_map(struct inode *inode) 431 { 432 return inode->i_mapping->private_data; 433 } 434 435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 436 { 437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 438 if (vma->vm_flags & VM_MAYSHARE) { 439 struct address_space *mapping = vma->vm_file->f_mapping; 440 struct inode *inode = mapping->host; 441 442 return inode_resv_map(inode); 443 444 } else { 445 return (struct resv_map *)(get_vma_private_data(vma) & 446 ~HPAGE_RESV_MASK); 447 } 448 } 449 450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 451 { 452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 453 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 454 455 set_vma_private_data(vma, (get_vma_private_data(vma) & 456 HPAGE_RESV_MASK) | (unsigned long)map); 457 } 458 459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 460 { 461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 462 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 463 464 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 465 } 466 467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 468 { 469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 470 471 return (get_vma_private_data(vma) & flag) != 0; 472 } 473 474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 476 { 477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 478 if (!(vma->vm_flags & VM_MAYSHARE)) 479 vma->vm_private_data = (void *)0; 480 } 481 482 /* Returns true if the VMA has associated reserve pages */ 483 static int vma_has_reserves(struct vm_area_struct *vma, long chg) 484 { 485 if (vma->vm_flags & VM_NORESERVE) { 486 /* 487 * This address is already reserved by other process(chg == 0), 488 * so, we should decrement reserved count. Without decrementing, 489 * reserve count remains after releasing inode, because this 490 * allocated page will go into page cache and is regarded as 491 * coming from reserved pool in releasing step. Currently, we 492 * don't have any other solution to deal with this situation 493 * properly, so add work-around here. 494 */ 495 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 496 return 1; 497 else 498 return 0; 499 } 500 501 /* Shared mappings always use reserves */ 502 if (vma->vm_flags & VM_MAYSHARE) 503 return 1; 504 505 /* 506 * Only the process that called mmap() has reserves for 507 * private mappings. 508 */ 509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 510 return 1; 511 512 return 0; 513 } 514 515 static void enqueue_huge_page(struct hstate *h, struct page *page) 516 { 517 int nid = page_to_nid(page); 518 list_move(&page->lru, &h->hugepage_freelists[nid]); 519 h->free_huge_pages++; 520 h->free_huge_pages_node[nid]++; 521 } 522 523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 524 { 525 struct page *page; 526 527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 528 if (!is_migrate_isolate_page(page)) 529 break; 530 /* 531 * if 'non-isolated free hugepage' not found on the list, 532 * the allocation fails. 533 */ 534 if (&h->hugepage_freelists[nid] == &page->lru) 535 return NULL; 536 list_move(&page->lru, &h->hugepage_activelist); 537 set_page_refcounted(page); 538 h->free_huge_pages--; 539 h->free_huge_pages_node[nid]--; 540 return page; 541 } 542 543 /* Movability of hugepages depends on migration support. */ 544 static inline gfp_t htlb_alloc_mask(struct hstate *h) 545 { 546 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 547 return GFP_HIGHUSER_MOVABLE; 548 else 549 return GFP_HIGHUSER; 550 } 551 552 static struct page *dequeue_huge_page_vma(struct hstate *h, 553 struct vm_area_struct *vma, 554 unsigned long address, int avoid_reserve, 555 long chg) 556 { 557 struct page *page = NULL; 558 struct mempolicy *mpol; 559 nodemask_t *nodemask; 560 struct zonelist *zonelist; 561 struct zone *zone; 562 struct zoneref *z; 563 unsigned int cpuset_mems_cookie; 564 565 /* 566 * A child process with MAP_PRIVATE mappings created by their parent 567 * have no page reserves. This check ensures that reservations are 568 * not "stolen". The child may still get SIGKILLed 569 */ 570 if (!vma_has_reserves(vma, chg) && 571 h->free_huge_pages - h->resv_huge_pages == 0) 572 goto err; 573 574 /* If reserves cannot be used, ensure enough pages are in the pool */ 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 576 goto err; 577 578 retry_cpuset: 579 cpuset_mems_cookie = read_mems_allowed_begin(); 580 zonelist = huge_zonelist(vma, address, 581 htlb_alloc_mask(h), &mpol, &nodemask); 582 583 for_each_zone_zonelist_nodemask(zone, z, zonelist, 584 MAX_NR_ZONES - 1, nodemask) { 585 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 586 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 587 if (page) { 588 if (avoid_reserve) 589 break; 590 if (!vma_has_reserves(vma, chg)) 591 break; 592 593 SetPagePrivate(page); 594 h->resv_huge_pages--; 595 break; 596 } 597 } 598 } 599 600 mpol_cond_put(mpol); 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 602 goto retry_cpuset; 603 return page; 604 605 err: 606 return NULL; 607 } 608 609 /* 610 * common helper functions for hstate_next_node_to_{alloc|free}. 611 * We may have allocated or freed a huge page based on a different 612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 613 * be outside of *nodes_allowed. Ensure that we use an allowed 614 * node for alloc or free. 615 */ 616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 617 { 618 nid = next_node(nid, *nodes_allowed); 619 if (nid == MAX_NUMNODES) 620 nid = first_node(*nodes_allowed); 621 VM_BUG_ON(nid >= MAX_NUMNODES); 622 623 return nid; 624 } 625 626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 627 { 628 if (!node_isset(nid, *nodes_allowed)) 629 nid = next_node_allowed(nid, nodes_allowed); 630 return nid; 631 } 632 633 /* 634 * returns the previously saved node ["this node"] from which to 635 * allocate a persistent huge page for the pool and advance the 636 * next node from which to allocate, handling wrap at end of node 637 * mask. 638 */ 639 static int hstate_next_node_to_alloc(struct hstate *h, 640 nodemask_t *nodes_allowed) 641 { 642 int nid; 643 644 VM_BUG_ON(!nodes_allowed); 645 646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 648 649 return nid; 650 } 651 652 /* 653 * helper for free_pool_huge_page() - return the previously saved 654 * node ["this node"] from which to free a huge page. Advance the 655 * next node id whether or not we find a free huge page to free so 656 * that the next attempt to free addresses the next node. 657 */ 658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 659 { 660 int nid; 661 662 VM_BUG_ON(!nodes_allowed); 663 664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 666 667 return nid; 668 } 669 670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 671 for (nr_nodes = nodes_weight(*mask); \ 672 nr_nodes > 0 && \ 673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 674 nr_nodes--) 675 676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 677 for (nr_nodes = nodes_weight(*mask); \ 678 nr_nodes > 0 && \ 679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 680 nr_nodes--) 681 682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) 683 static void destroy_compound_gigantic_page(struct page *page, 684 unsigned long order) 685 { 686 int i; 687 int nr_pages = 1 << order; 688 struct page *p = page + 1; 689 690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 691 __ClearPageTail(p); 692 set_page_refcounted(p); 693 p->first_page = NULL; 694 } 695 696 set_compound_order(page, 0); 697 __ClearPageHead(page); 698 } 699 700 static void free_gigantic_page(struct page *page, unsigned order) 701 { 702 free_contig_range(page_to_pfn(page), 1 << order); 703 } 704 705 static int __alloc_gigantic_page(unsigned long start_pfn, 706 unsigned long nr_pages) 707 { 708 unsigned long end_pfn = start_pfn + nr_pages; 709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 710 } 711 712 static bool pfn_range_valid_gigantic(unsigned long start_pfn, 713 unsigned long nr_pages) 714 { 715 unsigned long i, end_pfn = start_pfn + nr_pages; 716 struct page *page; 717 718 for (i = start_pfn; i < end_pfn; i++) { 719 if (!pfn_valid(i)) 720 return false; 721 722 page = pfn_to_page(i); 723 724 if (PageReserved(page)) 725 return false; 726 727 if (page_count(page) > 0) 728 return false; 729 730 if (PageHuge(page)) 731 return false; 732 } 733 734 return true; 735 } 736 737 static bool zone_spans_last_pfn(const struct zone *zone, 738 unsigned long start_pfn, unsigned long nr_pages) 739 { 740 unsigned long last_pfn = start_pfn + nr_pages - 1; 741 return zone_spans_pfn(zone, last_pfn); 742 } 743 744 static struct page *alloc_gigantic_page(int nid, unsigned order) 745 { 746 unsigned long nr_pages = 1 << order; 747 unsigned long ret, pfn, flags; 748 struct zone *z; 749 750 z = NODE_DATA(nid)->node_zones; 751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 752 spin_lock_irqsave(&z->lock, flags); 753 754 pfn = ALIGN(z->zone_start_pfn, nr_pages); 755 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 756 if (pfn_range_valid_gigantic(pfn, nr_pages)) { 757 /* 758 * We release the zone lock here because 759 * alloc_contig_range() will also lock the zone 760 * at some point. If there's an allocation 761 * spinning on this lock, it may win the race 762 * and cause alloc_contig_range() to fail... 763 */ 764 spin_unlock_irqrestore(&z->lock, flags); 765 ret = __alloc_gigantic_page(pfn, nr_pages); 766 if (!ret) 767 return pfn_to_page(pfn); 768 spin_lock_irqsave(&z->lock, flags); 769 } 770 pfn += nr_pages; 771 } 772 773 spin_unlock_irqrestore(&z->lock, flags); 774 } 775 776 return NULL; 777 } 778 779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 780 static void prep_compound_gigantic_page(struct page *page, unsigned long order); 781 782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 783 { 784 struct page *page; 785 786 page = alloc_gigantic_page(nid, huge_page_order(h)); 787 if (page) { 788 prep_compound_gigantic_page(page, huge_page_order(h)); 789 prep_new_huge_page(h, page, nid); 790 } 791 792 return page; 793 } 794 795 static int alloc_fresh_gigantic_page(struct hstate *h, 796 nodemask_t *nodes_allowed) 797 { 798 struct page *page = NULL; 799 int nr_nodes, node; 800 801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 802 page = alloc_fresh_gigantic_page_node(h, node); 803 if (page) 804 return 1; 805 } 806 807 return 0; 808 } 809 810 static inline bool gigantic_page_supported(void) { return true; } 811 #else 812 static inline bool gigantic_page_supported(void) { return false; } 813 static inline void free_gigantic_page(struct page *page, unsigned order) { } 814 static inline void destroy_compound_gigantic_page(struct page *page, 815 unsigned long order) { } 816 static inline int alloc_fresh_gigantic_page(struct hstate *h, 817 nodemask_t *nodes_allowed) { return 0; } 818 #endif 819 820 static void update_and_free_page(struct hstate *h, struct page *page) 821 { 822 int i; 823 824 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 825 return; 826 827 h->nr_huge_pages--; 828 h->nr_huge_pages_node[page_to_nid(page)]--; 829 for (i = 0; i < pages_per_huge_page(h); i++) { 830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 831 1 << PG_referenced | 1 << PG_dirty | 832 1 << PG_active | 1 << PG_private | 833 1 << PG_writeback); 834 } 835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 836 set_compound_page_dtor(page, NULL); 837 set_page_refcounted(page); 838 if (hstate_is_gigantic(h)) { 839 destroy_compound_gigantic_page(page, huge_page_order(h)); 840 free_gigantic_page(page, huge_page_order(h)); 841 } else { 842 arch_release_hugepage(page); 843 __free_pages(page, huge_page_order(h)); 844 } 845 } 846 847 struct hstate *size_to_hstate(unsigned long size) 848 { 849 struct hstate *h; 850 851 for_each_hstate(h) { 852 if (huge_page_size(h) == size) 853 return h; 854 } 855 return NULL; 856 } 857 858 void free_huge_page(struct page *page) 859 { 860 /* 861 * Can't pass hstate in here because it is called from the 862 * compound page destructor. 863 */ 864 struct hstate *h = page_hstate(page); 865 int nid = page_to_nid(page); 866 struct hugepage_subpool *spool = 867 (struct hugepage_subpool *)page_private(page); 868 bool restore_reserve; 869 870 set_page_private(page, 0); 871 page->mapping = NULL; 872 BUG_ON(page_count(page)); 873 BUG_ON(page_mapcount(page)); 874 restore_reserve = PagePrivate(page); 875 ClearPagePrivate(page); 876 877 spin_lock(&hugetlb_lock); 878 hugetlb_cgroup_uncharge_page(hstate_index(h), 879 pages_per_huge_page(h), page); 880 if (restore_reserve) 881 h->resv_huge_pages++; 882 883 if (h->surplus_huge_pages_node[nid]) { 884 /* remove the page from active list */ 885 list_del(&page->lru); 886 update_and_free_page(h, page); 887 h->surplus_huge_pages--; 888 h->surplus_huge_pages_node[nid]--; 889 } else { 890 arch_clear_hugepage_flags(page); 891 enqueue_huge_page(h, page); 892 } 893 spin_unlock(&hugetlb_lock); 894 hugepage_subpool_put_pages(spool, 1); 895 } 896 897 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 898 { 899 INIT_LIST_HEAD(&page->lru); 900 set_compound_page_dtor(page, free_huge_page); 901 spin_lock(&hugetlb_lock); 902 set_hugetlb_cgroup(page, NULL); 903 h->nr_huge_pages++; 904 h->nr_huge_pages_node[nid]++; 905 spin_unlock(&hugetlb_lock); 906 put_page(page); /* free it into the hugepage allocator */ 907 } 908 909 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 910 { 911 int i; 912 int nr_pages = 1 << order; 913 struct page *p = page + 1; 914 915 /* we rely on prep_new_huge_page to set the destructor */ 916 set_compound_order(page, order); 917 __SetPageHead(page); 918 __ClearPageReserved(page); 919 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 920 /* 921 * For gigantic hugepages allocated through bootmem at 922 * boot, it's safer to be consistent with the not-gigantic 923 * hugepages and clear the PG_reserved bit from all tail pages 924 * too. Otherwse drivers using get_user_pages() to access tail 925 * pages may get the reference counting wrong if they see 926 * PG_reserved set on a tail page (despite the head page not 927 * having PG_reserved set). Enforcing this consistency between 928 * head and tail pages allows drivers to optimize away a check 929 * on the head page when they need know if put_page() is needed 930 * after get_user_pages(). 931 */ 932 __ClearPageReserved(p); 933 set_page_count(p, 0); 934 p->first_page = page; 935 /* Make sure p->first_page is always valid for PageTail() */ 936 smp_wmb(); 937 __SetPageTail(p); 938 } 939 } 940 941 /* 942 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 943 * transparent huge pages. See the PageTransHuge() documentation for more 944 * details. 945 */ 946 int PageHuge(struct page *page) 947 { 948 if (!PageCompound(page)) 949 return 0; 950 951 page = compound_head(page); 952 return get_compound_page_dtor(page) == free_huge_page; 953 } 954 EXPORT_SYMBOL_GPL(PageHuge); 955 956 /* 957 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 958 * normal or transparent huge pages. 959 */ 960 int PageHeadHuge(struct page *page_head) 961 { 962 if (!PageHead(page_head)) 963 return 0; 964 965 return get_compound_page_dtor(page_head) == free_huge_page; 966 } 967 968 pgoff_t __basepage_index(struct page *page) 969 { 970 struct page *page_head = compound_head(page); 971 pgoff_t index = page_index(page_head); 972 unsigned long compound_idx; 973 974 if (!PageHuge(page_head)) 975 return page_index(page); 976 977 if (compound_order(page_head) >= MAX_ORDER) 978 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 979 else 980 compound_idx = page - page_head; 981 982 return (index << compound_order(page_head)) + compound_idx; 983 } 984 985 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 986 { 987 struct page *page; 988 989 page = alloc_pages_exact_node(nid, 990 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 991 __GFP_REPEAT|__GFP_NOWARN, 992 huge_page_order(h)); 993 if (page) { 994 if (arch_prepare_hugepage(page)) { 995 __free_pages(page, huge_page_order(h)); 996 return NULL; 997 } 998 prep_new_huge_page(h, page, nid); 999 } 1000 1001 return page; 1002 } 1003 1004 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1005 { 1006 struct page *page; 1007 int nr_nodes, node; 1008 int ret = 0; 1009 1010 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1011 page = alloc_fresh_huge_page_node(h, node); 1012 if (page) { 1013 ret = 1; 1014 break; 1015 } 1016 } 1017 1018 if (ret) 1019 count_vm_event(HTLB_BUDDY_PGALLOC); 1020 else 1021 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * Free huge page from pool from next node to free. 1028 * Attempt to keep persistent huge pages more or less 1029 * balanced over allowed nodes. 1030 * Called with hugetlb_lock locked. 1031 */ 1032 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1033 bool acct_surplus) 1034 { 1035 int nr_nodes, node; 1036 int ret = 0; 1037 1038 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1039 /* 1040 * If we're returning unused surplus pages, only examine 1041 * nodes with surplus pages. 1042 */ 1043 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1044 !list_empty(&h->hugepage_freelists[node])) { 1045 struct page *page = 1046 list_entry(h->hugepage_freelists[node].next, 1047 struct page, lru); 1048 list_del(&page->lru); 1049 h->free_huge_pages--; 1050 h->free_huge_pages_node[node]--; 1051 if (acct_surplus) { 1052 h->surplus_huge_pages--; 1053 h->surplus_huge_pages_node[node]--; 1054 } 1055 update_and_free_page(h, page); 1056 ret = 1; 1057 break; 1058 } 1059 } 1060 1061 return ret; 1062 } 1063 1064 /* 1065 * Dissolve a given free hugepage into free buddy pages. This function does 1066 * nothing for in-use (including surplus) hugepages. 1067 */ 1068 static void dissolve_free_huge_page(struct page *page) 1069 { 1070 spin_lock(&hugetlb_lock); 1071 if (PageHuge(page) && !page_count(page)) { 1072 struct hstate *h = page_hstate(page); 1073 int nid = page_to_nid(page); 1074 list_del(&page->lru); 1075 h->free_huge_pages--; 1076 h->free_huge_pages_node[nid]--; 1077 update_and_free_page(h, page); 1078 } 1079 spin_unlock(&hugetlb_lock); 1080 } 1081 1082 /* 1083 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1084 * make specified memory blocks removable from the system. 1085 * Note that start_pfn should aligned with (minimum) hugepage size. 1086 */ 1087 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1088 { 1089 unsigned int order = 8 * sizeof(void *); 1090 unsigned long pfn; 1091 struct hstate *h; 1092 1093 if (!hugepages_supported()) 1094 return; 1095 1096 /* Set scan step to minimum hugepage size */ 1097 for_each_hstate(h) 1098 if (order > huge_page_order(h)) 1099 order = huge_page_order(h); 1100 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); 1101 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) 1102 dissolve_free_huge_page(pfn_to_page(pfn)); 1103 } 1104 1105 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 1106 { 1107 struct page *page; 1108 unsigned int r_nid; 1109 1110 if (hstate_is_gigantic(h)) 1111 return NULL; 1112 1113 /* 1114 * Assume we will successfully allocate the surplus page to 1115 * prevent racing processes from causing the surplus to exceed 1116 * overcommit 1117 * 1118 * This however introduces a different race, where a process B 1119 * tries to grow the static hugepage pool while alloc_pages() is 1120 * called by process A. B will only examine the per-node 1121 * counters in determining if surplus huge pages can be 1122 * converted to normal huge pages in adjust_pool_surplus(). A 1123 * won't be able to increment the per-node counter, until the 1124 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1125 * no more huge pages can be converted from surplus to normal 1126 * state (and doesn't try to convert again). Thus, we have a 1127 * case where a surplus huge page exists, the pool is grown, and 1128 * the surplus huge page still exists after, even though it 1129 * should just have been converted to a normal huge page. This 1130 * does not leak memory, though, as the hugepage will be freed 1131 * once it is out of use. It also does not allow the counters to 1132 * go out of whack in adjust_pool_surplus() as we don't modify 1133 * the node values until we've gotten the hugepage and only the 1134 * per-node value is checked there. 1135 */ 1136 spin_lock(&hugetlb_lock); 1137 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1138 spin_unlock(&hugetlb_lock); 1139 return NULL; 1140 } else { 1141 h->nr_huge_pages++; 1142 h->surplus_huge_pages++; 1143 } 1144 spin_unlock(&hugetlb_lock); 1145 1146 if (nid == NUMA_NO_NODE) 1147 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 1148 __GFP_REPEAT|__GFP_NOWARN, 1149 huge_page_order(h)); 1150 else 1151 page = alloc_pages_exact_node(nid, 1152 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1153 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 1154 1155 if (page && arch_prepare_hugepage(page)) { 1156 __free_pages(page, huge_page_order(h)); 1157 page = NULL; 1158 } 1159 1160 spin_lock(&hugetlb_lock); 1161 if (page) { 1162 INIT_LIST_HEAD(&page->lru); 1163 r_nid = page_to_nid(page); 1164 set_compound_page_dtor(page, free_huge_page); 1165 set_hugetlb_cgroup(page, NULL); 1166 /* 1167 * We incremented the global counters already 1168 */ 1169 h->nr_huge_pages_node[r_nid]++; 1170 h->surplus_huge_pages_node[r_nid]++; 1171 __count_vm_event(HTLB_BUDDY_PGALLOC); 1172 } else { 1173 h->nr_huge_pages--; 1174 h->surplus_huge_pages--; 1175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1176 } 1177 spin_unlock(&hugetlb_lock); 1178 1179 return page; 1180 } 1181 1182 /* 1183 * This allocation function is useful in the context where vma is irrelevant. 1184 * E.g. soft-offlining uses this function because it only cares physical 1185 * address of error page. 1186 */ 1187 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1188 { 1189 struct page *page = NULL; 1190 1191 spin_lock(&hugetlb_lock); 1192 if (h->free_huge_pages - h->resv_huge_pages > 0) 1193 page = dequeue_huge_page_node(h, nid); 1194 spin_unlock(&hugetlb_lock); 1195 1196 if (!page) 1197 page = alloc_buddy_huge_page(h, nid); 1198 1199 return page; 1200 } 1201 1202 /* 1203 * Increase the hugetlb pool such that it can accommodate a reservation 1204 * of size 'delta'. 1205 */ 1206 static int gather_surplus_pages(struct hstate *h, int delta) 1207 { 1208 struct list_head surplus_list; 1209 struct page *page, *tmp; 1210 int ret, i; 1211 int needed, allocated; 1212 bool alloc_ok = true; 1213 1214 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1215 if (needed <= 0) { 1216 h->resv_huge_pages += delta; 1217 return 0; 1218 } 1219 1220 allocated = 0; 1221 INIT_LIST_HEAD(&surplus_list); 1222 1223 ret = -ENOMEM; 1224 retry: 1225 spin_unlock(&hugetlb_lock); 1226 for (i = 0; i < needed; i++) { 1227 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1228 if (!page) { 1229 alloc_ok = false; 1230 break; 1231 } 1232 list_add(&page->lru, &surplus_list); 1233 } 1234 allocated += i; 1235 1236 /* 1237 * After retaking hugetlb_lock, we need to recalculate 'needed' 1238 * because either resv_huge_pages or free_huge_pages may have changed. 1239 */ 1240 spin_lock(&hugetlb_lock); 1241 needed = (h->resv_huge_pages + delta) - 1242 (h->free_huge_pages + allocated); 1243 if (needed > 0) { 1244 if (alloc_ok) 1245 goto retry; 1246 /* 1247 * We were not able to allocate enough pages to 1248 * satisfy the entire reservation so we free what 1249 * we've allocated so far. 1250 */ 1251 goto free; 1252 } 1253 /* 1254 * The surplus_list now contains _at_least_ the number of extra pages 1255 * needed to accommodate the reservation. Add the appropriate number 1256 * of pages to the hugetlb pool and free the extras back to the buddy 1257 * allocator. Commit the entire reservation here to prevent another 1258 * process from stealing the pages as they are added to the pool but 1259 * before they are reserved. 1260 */ 1261 needed += allocated; 1262 h->resv_huge_pages += delta; 1263 ret = 0; 1264 1265 /* Free the needed pages to the hugetlb pool */ 1266 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1267 if ((--needed) < 0) 1268 break; 1269 /* 1270 * This page is now managed by the hugetlb allocator and has 1271 * no users -- drop the buddy allocator's reference. 1272 */ 1273 put_page_testzero(page); 1274 VM_BUG_ON_PAGE(page_count(page), page); 1275 enqueue_huge_page(h, page); 1276 } 1277 free: 1278 spin_unlock(&hugetlb_lock); 1279 1280 /* Free unnecessary surplus pages to the buddy allocator */ 1281 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1282 put_page(page); 1283 spin_lock(&hugetlb_lock); 1284 1285 return ret; 1286 } 1287 1288 /* 1289 * When releasing a hugetlb pool reservation, any surplus pages that were 1290 * allocated to satisfy the reservation must be explicitly freed if they were 1291 * never used. 1292 * Called with hugetlb_lock held. 1293 */ 1294 static void return_unused_surplus_pages(struct hstate *h, 1295 unsigned long unused_resv_pages) 1296 { 1297 unsigned long nr_pages; 1298 1299 /* Uncommit the reservation */ 1300 h->resv_huge_pages -= unused_resv_pages; 1301 1302 /* Cannot return gigantic pages currently */ 1303 if (hstate_is_gigantic(h)) 1304 return; 1305 1306 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1307 1308 /* 1309 * We want to release as many surplus pages as possible, spread 1310 * evenly across all nodes with memory. Iterate across these nodes 1311 * until we can no longer free unreserved surplus pages. This occurs 1312 * when the nodes with surplus pages have no free pages. 1313 * free_pool_huge_page() will balance the the freed pages across the 1314 * on-line nodes with memory and will handle the hstate accounting. 1315 */ 1316 while (nr_pages--) { 1317 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1318 break; 1319 cond_resched_lock(&hugetlb_lock); 1320 } 1321 } 1322 1323 /* 1324 * Determine if the huge page at addr within the vma has an associated 1325 * reservation. Where it does not we will need to logically increase 1326 * reservation and actually increase subpool usage before an allocation 1327 * can occur. Where any new reservation would be required the 1328 * reservation change is prepared, but not committed. Once the page 1329 * has been allocated from the subpool and instantiated the change should 1330 * be committed via vma_commit_reservation. No action is required on 1331 * failure. 1332 */ 1333 static long vma_needs_reservation(struct hstate *h, 1334 struct vm_area_struct *vma, unsigned long addr) 1335 { 1336 struct resv_map *resv; 1337 pgoff_t idx; 1338 long chg; 1339 1340 resv = vma_resv_map(vma); 1341 if (!resv) 1342 return 1; 1343 1344 idx = vma_hugecache_offset(h, vma, addr); 1345 chg = region_chg(resv, idx, idx + 1); 1346 1347 if (vma->vm_flags & VM_MAYSHARE) 1348 return chg; 1349 else 1350 return chg < 0 ? chg : 0; 1351 } 1352 static void vma_commit_reservation(struct hstate *h, 1353 struct vm_area_struct *vma, unsigned long addr) 1354 { 1355 struct resv_map *resv; 1356 pgoff_t idx; 1357 1358 resv = vma_resv_map(vma); 1359 if (!resv) 1360 return; 1361 1362 idx = vma_hugecache_offset(h, vma, addr); 1363 region_add(resv, idx, idx + 1); 1364 } 1365 1366 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1367 unsigned long addr, int avoid_reserve) 1368 { 1369 struct hugepage_subpool *spool = subpool_vma(vma); 1370 struct hstate *h = hstate_vma(vma); 1371 struct page *page; 1372 long chg; 1373 int ret, idx; 1374 struct hugetlb_cgroup *h_cg; 1375 1376 idx = hstate_index(h); 1377 /* 1378 * Processes that did not create the mapping will have no 1379 * reserves and will not have accounted against subpool 1380 * limit. Check that the subpool limit can be made before 1381 * satisfying the allocation MAP_NORESERVE mappings may also 1382 * need pages and subpool limit allocated allocated if no reserve 1383 * mapping overlaps. 1384 */ 1385 chg = vma_needs_reservation(h, vma, addr); 1386 if (chg < 0) 1387 return ERR_PTR(-ENOMEM); 1388 if (chg || avoid_reserve) 1389 if (hugepage_subpool_get_pages(spool, 1)) 1390 return ERR_PTR(-ENOSPC); 1391 1392 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1393 if (ret) 1394 goto out_subpool_put; 1395 1396 spin_lock(&hugetlb_lock); 1397 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); 1398 if (!page) { 1399 spin_unlock(&hugetlb_lock); 1400 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1401 if (!page) 1402 goto out_uncharge_cgroup; 1403 1404 spin_lock(&hugetlb_lock); 1405 list_move(&page->lru, &h->hugepage_activelist); 1406 /* Fall through */ 1407 } 1408 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1409 spin_unlock(&hugetlb_lock); 1410 1411 set_page_private(page, (unsigned long)spool); 1412 1413 vma_commit_reservation(h, vma, addr); 1414 return page; 1415 1416 out_uncharge_cgroup: 1417 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1418 out_subpool_put: 1419 if (chg || avoid_reserve) 1420 hugepage_subpool_put_pages(spool, 1); 1421 return ERR_PTR(-ENOSPC); 1422 } 1423 1424 /* 1425 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1426 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1427 * where no ERR_VALUE is expected to be returned. 1428 */ 1429 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1430 unsigned long addr, int avoid_reserve) 1431 { 1432 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1433 if (IS_ERR(page)) 1434 page = NULL; 1435 return page; 1436 } 1437 1438 int __weak alloc_bootmem_huge_page(struct hstate *h) 1439 { 1440 struct huge_bootmem_page *m; 1441 int nr_nodes, node; 1442 1443 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1444 void *addr; 1445 1446 addr = memblock_virt_alloc_try_nid_nopanic( 1447 huge_page_size(h), huge_page_size(h), 1448 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1449 if (addr) { 1450 /* 1451 * Use the beginning of the huge page to store the 1452 * huge_bootmem_page struct (until gather_bootmem 1453 * puts them into the mem_map). 1454 */ 1455 m = addr; 1456 goto found; 1457 } 1458 } 1459 return 0; 1460 1461 found: 1462 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1463 /* Put them into a private list first because mem_map is not up yet */ 1464 list_add(&m->list, &huge_boot_pages); 1465 m->hstate = h; 1466 return 1; 1467 } 1468 1469 static void __init prep_compound_huge_page(struct page *page, int order) 1470 { 1471 if (unlikely(order > (MAX_ORDER - 1))) 1472 prep_compound_gigantic_page(page, order); 1473 else 1474 prep_compound_page(page, order); 1475 } 1476 1477 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1478 static void __init gather_bootmem_prealloc(void) 1479 { 1480 struct huge_bootmem_page *m; 1481 1482 list_for_each_entry(m, &huge_boot_pages, list) { 1483 struct hstate *h = m->hstate; 1484 struct page *page; 1485 1486 #ifdef CONFIG_HIGHMEM 1487 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1488 memblock_free_late(__pa(m), 1489 sizeof(struct huge_bootmem_page)); 1490 #else 1491 page = virt_to_page(m); 1492 #endif 1493 WARN_ON(page_count(page) != 1); 1494 prep_compound_huge_page(page, h->order); 1495 WARN_ON(PageReserved(page)); 1496 prep_new_huge_page(h, page, page_to_nid(page)); 1497 /* 1498 * If we had gigantic hugepages allocated at boot time, we need 1499 * to restore the 'stolen' pages to totalram_pages in order to 1500 * fix confusing memory reports from free(1) and another 1501 * side-effects, like CommitLimit going negative. 1502 */ 1503 if (hstate_is_gigantic(h)) 1504 adjust_managed_page_count(page, 1 << h->order); 1505 } 1506 } 1507 1508 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1509 { 1510 unsigned long i; 1511 1512 for (i = 0; i < h->max_huge_pages; ++i) { 1513 if (hstate_is_gigantic(h)) { 1514 if (!alloc_bootmem_huge_page(h)) 1515 break; 1516 } else if (!alloc_fresh_huge_page(h, 1517 &node_states[N_MEMORY])) 1518 break; 1519 } 1520 h->max_huge_pages = i; 1521 } 1522 1523 static void __init hugetlb_init_hstates(void) 1524 { 1525 struct hstate *h; 1526 1527 for_each_hstate(h) { 1528 /* oversize hugepages were init'ed in early boot */ 1529 if (!hstate_is_gigantic(h)) 1530 hugetlb_hstate_alloc_pages(h); 1531 } 1532 } 1533 1534 static char * __init memfmt(char *buf, unsigned long n) 1535 { 1536 if (n >= (1UL << 30)) 1537 sprintf(buf, "%lu GB", n >> 30); 1538 else if (n >= (1UL << 20)) 1539 sprintf(buf, "%lu MB", n >> 20); 1540 else 1541 sprintf(buf, "%lu KB", n >> 10); 1542 return buf; 1543 } 1544 1545 static void __init report_hugepages(void) 1546 { 1547 struct hstate *h; 1548 1549 for_each_hstate(h) { 1550 char buf[32]; 1551 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1552 memfmt(buf, huge_page_size(h)), 1553 h->free_huge_pages); 1554 } 1555 } 1556 1557 #ifdef CONFIG_HIGHMEM 1558 static void try_to_free_low(struct hstate *h, unsigned long count, 1559 nodemask_t *nodes_allowed) 1560 { 1561 int i; 1562 1563 if (hstate_is_gigantic(h)) 1564 return; 1565 1566 for_each_node_mask(i, *nodes_allowed) { 1567 struct page *page, *next; 1568 struct list_head *freel = &h->hugepage_freelists[i]; 1569 list_for_each_entry_safe(page, next, freel, lru) { 1570 if (count >= h->nr_huge_pages) 1571 return; 1572 if (PageHighMem(page)) 1573 continue; 1574 list_del(&page->lru); 1575 update_and_free_page(h, page); 1576 h->free_huge_pages--; 1577 h->free_huge_pages_node[page_to_nid(page)]--; 1578 } 1579 } 1580 } 1581 #else 1582 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1583 nodemask_t *nodes_allowed) 1584 { 1585 } 1586 #endif 1587 1588 /* 1589 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1590 * balanced by operating on them in a round-robin fashion. 1591 * Returns 1 if an adjustment was made. 1592 */ 1593 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1594 int delta) 1595 { 1596 int nr_nodes, node; 1597 1598 VM_BUG_ON(delta != -1 && delta != 1); 1599 1600 if (delta < 0) { 1601 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1602 if (h->surplus_huge_pages_node[node]) 1603 goto found; 1604 } 1605 } else { 1606 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1607 if (h->surplus_huge_pages_node[node] < 1608 h->nr_huge_pages_node[node]) 1609 goto found; 1610 } 1611 } 1612 return 0; 1613 1614 found: 1615 h->surplus_huge_pages += delta; 1616 h->surplus_huge_pages_node[node] += delta; 1617 return 1; 1618 } 1619 1620 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1621 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1622 nodemask_t *nodes_allowed) 1623 { 1624 unsigned long min_count, ret; 1625 1626 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1627 return h->max_huge_pages; 1628 1629 /* 1630 * Increase the pool size 1631 * First take pages out of surplus state. Then make up the 1632 * remaining difference by allocating fresh huge pages. 1633 * 1634 * We might race with alloc_buddy_huge_page() here and be unable 1635 * to convert a surplus huge page to a normal huge page. That is 1636 * not critical, though, it just means the overall size of the 1637 * pool might be one hugepage larger than it needs to be, but 1638 * within all the constraints specified by the sysctls. 1639 */ 1640 spin_lock(&hugetlb_lock); 1641 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1642 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1643 break; 1644 } 1645 1646 while (count > persistent_huge_pages(h)) { 1647 /* 1648 * If this allocation races such that we no longer need the 1649 * page, free_huge_page will handle it by freeing the page 1650 * and reducing the surplus. 1651 */ 1652 spin_unlock(&hugetlb_lock); 1653 if (hstate_is_gigantic(h)) 1654 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 1655 else 1656 ret = alloc_fresh_huge_page(h, nodes_allowed); 1657 spin_lock(&hugetlb_lock); 1658 if (!ret) 1659 goto out; 1660 1661 /* Bail for signals. Probably ctrl-c from user */ 1662 if (signal_pending(current)) 1663 goto out; 1664 } 1665 1666 /* 1667 * Decrease the pool size 1668 * First return free pages to the buddy allocator (being careful 1669 * to keep enough around to satisfy reservations). Then place 1670 * pages into surplus state as needed so the pool will shrink 1671 * to the desired size as pages become free. 1672 * 1673 * By placing pages into the surplus state independent of the 1674 * overcommit value, we are allowing the surplus pool size to 1675 * exceed overcommit. There are few sane options here. Since 1676 * alloc_buddy_huge_page() is checking the global counter, 1677 * though, we'll note that we're not allowed to exceed surplus 1678 * and won't grow the pool anywhere else. Not until one of the 1679 * sysctls are changed, or the surplus pages go out of use. 1680 */ 1681 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1682 min_count = max(count, min_count); 1683 try_to_free_low(h, min_count, nodes_allowed); 1684 while (min_count < persistent_huge_pages(h)) { 1685 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1686 break; 1687 cond_resched_lock(&hugetlb_lock); 1688 } 1689 while (count < persistent_huge_pages(h)) { 1690 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1691 break; 1692 } 1693 out: 1694 ret = persistent_huge_pages(h); 1695 spin_unlock(&hugetlb_lock); 1696 return ret; 1697 } 1698 1699 #define HSTATE_ATTR_RO(_name) \ 1700 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1701 1702 #define HSTATE_ATTR(_name) \ 1703 static struct kobj_attribute _name##_attr = \ 1704 __ATTR(_name, 0644, _name##_show, _name##_store) 1705 1706 static struct kobject *hugepages_kobj; 1707 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1708 1709 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1710 1711 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1712 { 1713 int i; 1714 1715 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1716 if (hstate_kobjs[i] == kobj) { 1717 if (nidp) 1718 *nidp = NUMA_NO_NODE; 1719 return &hstates[i]; 1720 } 1721 1722 return kobj_to_node_hstate(kobj, nidp); 1723 } 1724 1725 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1726 struct kobj_attribute *attr, char *buf) 1727 { 1728 struct hstate *h; 1729 unsigned long nr_huge_pages; 1730 int nid; 1731 1732 h = kobj_to_hstate(kobj, &nid); 1733 if (nid == NUMA_NO_NODE) 1734 nr_huge_pages = h->nr_huge_pages; 1735 else 1736 nr_huge_pages = h->nr_huge_pages_node[nid]; 1737 1738 return sprintf(buf, "%lu\n", nr_huge_pages); 1739 } 1740 1741 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 1742 struct hstate *h, int nid, 1743 unsigned long count, size_t len) 1744 { 1745 int err; 1746 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1747 1748 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 1749 err = -EINVAL; 1750 goto out; 1751 } 1752 1753 if (nid == NUMA_NO_NODE) { 1754 /* 1755 * global hstate attribute 1756 */ 1757 if (!(obey_mempolicy && 1758 init_nodemask_of_mempolicy(nodes_allowed))) { 1759 NODEMASK_FREE(nodes_allowed); 1760 nodes_allowed = &node_states[N_MEMORY]; 1761 } 1762 } else if (nodes_allowed) { 1763 /* 1764 * per node hstate attribute: adjust count to global, 1765 * but restrict alloc/free to the specified node. 1766 */ 1767 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1768 init_nodemask_of_node(nodes_allowed, nid); 1769 } else 1770 nodes_allowed = &node_states[N_MEMORY]; 1771 1772 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1773 1774 if (nodes_allowed != &node_states[N_MEMORY]) 1775 NODEMASK_FREE(nodes_allowed); 1776 1777 return len; 1778 out: 1779 NODEMASK_FREE(nodes_allowed); 1780 return err; 1781 } 1782 1783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1784 struct kobject *kobj, const char *buf, 1785 size_t len) 1786 { 1787 struct hstate *h; 1788 unsigned long count; 1789 int nid; 1790 int err; 1791 1792 err = kstrtoul(buf, 10, &count); 1793 if (err) 1794 return err; 1795 1796 h = kobj_to_hstate(kobj, &nid); 1797 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 1798 } 1799 1800 static ssize_t nr_hugepages_show(struct kobject *kobj, 1801 struct kobj_attribute *attr, char *buf) 1802 { 1803 return nr_hugepages_show_common(kobj, attr, buf); 1804 } 1805 1806 static ssize_t nr_hugepages_store(struct kobject *kobj, 1807 struct kobj_attribute *attr, const char *buf, size_t len) 1808 { 1809 return nr_hugepages_store_common(false, kobj, buf, len); 1810 } 1811 HSTATE_ATTR(nr_hugepages); 1812 1813 #ifdef CONFIG_NUMA 1814 1815 /* 1816 * hstate attribute for optionally mempolicy-based constraint on persistent 1817 * huge page alloc/free. 1818 */ 1819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1820 struct kobj_attribute *attr, char *buf) 1821 { 1822 return nr_hugepages_show_common(kobj, attr, buf); 1823 } 1824 1825 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1826 struct kobj_attribute *attr, const char *buf, size_t len) 1827 { 1828 return nr_hugepages_store_common(true, kobj, buf, len); 1829 } 1830 HSTATE_ATTR(nr_hugepages_mempolicy); 1831 #endif 1832 1833 1834 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1835 struct kobj_attribute *attr, char *buf) 1836 { 1837 struct hstate *h = kobj_to_hstate(kobj, NULL); 1838 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1839 } 1840 1841 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1842 struct kobj_attribute *attr, const char *buf, size_t count) 1843 { 1844 int err; 1845 unsigned long input; 1846 struct hstate *h = kobj_to_hstate(kobj, NULL); 1847 1848 if (hstate_is_gigantic(h)) 1849 return -EINVAL; 1850 1851 err = kstrtoul(buf, 10, &input); 1852 if (err) 1853 return err; 1854 1855 spin_lock(&hugetlb_lock); 1856 h->nr_overcommit_huge_pages = input; 1857 spin_unlock(&hugetlb_lock); 1858 1859 return count; 1860 } 1861 HSTATE_ATTR(nr_overcommit_hugepages); 1862 1863 static ssize_t free_hugepages_show(struct kobject *kobj, 1864 struct kobj_attribute *attr, char *buf) 1865 { 1866 struct hstate *h; 1867 unsigned long free_huge_pages; 1868 int nid; 1869 1870 h = kobj_to_hstate(kobj, &nid); 1871 if (nid == NUMA_NO_NODE) 1872 free_huge_pages = h->free_huge_pages; 1873 else 1874 free_huge_pages = h->free_huge_pages_node[nid]; 1875 1876 return sprintf(buf, "%lu\n", free_huge_pages); 1877 } 1878 HSTATE_ATTR_RO(free_hugepages); 1879 1880 static ssize_t resv_hugepages_show(struct kobject *kobj, 1881 struct kobj_attribute *attr, char *buf) 1882 { 1883 struct hstate *h = kobj_to_hstate(kobj, NULL); 1884 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1885 } 1886 HSTATE_ATTR_RO(resv_hugepages); 1887 1888 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1889 struct kobj_attribute *attr, char *buf) 1890 { 1891 struct hstate *h; 1892 unsigned long surplus_huge_pages; 1893 int nid; 1894 1895 h = kobj_to_hstate(kobj, &nid); 1896 if (nid == NUMA_NO_NODE) 1897 surplus_huge_pages = h->surplus_huge_pages; 1898 else 1899 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1900 1901 return sprintf(buf, "%lu\n", surplus_huge_pages); 1902 } 1903 HSTATE_ATTR_RO(surplus_hugepages); 1904 1905 static struct attribute *hstate_attrs[] = { 1906 &nr_hugepages_attr.attr, 1907 &nr_overcommit_hugepages_attr.attr, 1908 &free_hugepages_attr.attr, 1909 &resv_hugepages_attr.attr, 1910 &surplus_hugepages_attr.attr, 1911 #ifdef CONFIG_NUMA 1912 &nr_hugepages_mempolicy_attr.attr, 1913 #endif 1914 NULL, 1915 }; 1916 1917 static struct attribute_group hstate_attr_group = { 1918 .attrs = hstate_attrs, 1919 }; 1920 1921 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1922 struct kobject **hstate_kobjs, 1923 struct attribute_group *hstate_attr_group) 1924 { 1925 int retval; 1926 int hi = hstate_index(h); 1927 1928 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1929 if (!hstate_kobjs[hi]) 1930 return -ENOMEM; 1931 1932 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1933 if (retval) 1934 kobject_put(hstate_kobjs[hi]); 1935 1936 return retval; 1937 } 1938 1939 static void __init hugetlb_sysfs_init(void) 1940 { 1941 struct hstate *h; 1942 int err; 1943 1944 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1945 if (!hugepages_kobj) 1946 return; 1947 1948 for_each_hstate(h) { 1949 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1950 hstate_kobjs, &hstate_attr_group); 1951 if (err) 1952 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1953 } 1954 } 1955 1956 #ifdef CONFIG_NUMA 1957 1958 /* 1959 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1960 * with node devices in node_devices[] using a parallel array. The array 1961 * index of a node device or _hstate == node id. 1962 * This is here to avoid any static dependency of the node device driver, in 1963 * the base kernel, on the hugetlb module. 1964 */ 1965 struct node_hstate { 1966 struct kobject *hugepages_kobj; 1967 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1968 }; 1969 struct node_hstate node_hstates[MAX_NUMNODES]; 1970 1971 /* 1972 * A subset of global hstate attributes for node devices 1973 */ 1974 static struct attribute *per_node_hstate_attrs[] = { 1975 &nr_hugepages_attr.attr, 1976 &free_hugepages_attr.attr, 1977 &surplus_hugepages_attr.attr, 1978 NULL, 1979 }; 1980 1981 static struct attribute_group per_node_hstate_attr_group = { 1982 .attrs = per_node_hstate_attrs, 1983 }; 1984 1985 /* 1986 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1987 * Returns node id via non-NULL nidp. 1988 */ 1989 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1990 { 1991 int nid; 1992 1993 for (nid = 0; nid < nr_node_ids; nid++) { 1994 struct node_hstate *nhs = &node_hstates[nid]; 1995 int i; 1996 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1997 if (nhs->hstate_kobjs[i] == kobj) { 1998 if (nidp) 1999 *nidp = nid; 2000 return &hstates[i]; 2001 } 2002 } 2003 2004 BUG(); 2005 return NULL; 2006 } 2007 2008 /* 2009 * Unregister hstate attributes from a single node device. 2010 * No-op if no hstate attributes attached. 2011 */ 2012 static void hugetlb_unregister_node(struct node *node) 2013 { 2014 struct hstate *h; 2015 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2016 2017 if (!nhs->hugepages_kobj) 2018 return; /* no hstate attributes */ 2019 2020 for_each_hstate(h) { 2021 int idx = hstate_index(h); 2022 if (nhs->hstate_kobjs[idx]) { 2023 kobject_put(nhs->hstate_kobjs[idx]); 2024 nhs->hstate_kobjs[idx] = NULL; 2025 } 2026 } 2027 2028 kobject_put(nhs->hugepages_kobj); 2029 nhs->hugepages_kobj = NULL; 2030 } 2031 2032 /* 2033 * hugetlb module exit: unregister hstate attributes from node devices 2034 * that have them. 2035 */ 2036 static void hugetlb_unregister_all_nodes(void) 2037 { 2038 int nid; 2039 2040 /* 2041 * disable node device registrations. 2042 */ 2043 register_hugetlbfs_with_node(NULL, NULL); 2044 2045 /* 2046 * remove hstate attributes from any nodes that have them. 2047 */ 2048 for (nid = 0; nid < nr_node_ids; nid++) 2049 hugetlb_unregister_node(node_devices[nid]); 2050 } 2051 2052 /* 2053 * Register hstate attributes for a single node device. 2054 * No-op if attributes already registered. 2055 */ 2056 static void hugetlb_register_node(struct node *node) 2057 { 2058 struct hstate *h; 2059 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2060 int err; 2061 2062 if (nhs->hugepages_kobj) 2063 return; /* already allocated */ 2064 2065 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2066 &node->dev.kobj); 2067 if (!nhs->hugepages_kobj) 2068 return; 2069 2070 for_each_hstate(h) { 2071 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2072 nhs->hstate_kobjs, 2073 &per_node_hstate_attr_group); 2074 if (err) { 2075 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2076 h->name, node->dev.id); 2077 hugetlb_unregister_node(node); 2078 break; 2079 } 2080 } 2081 } 2082 2083 /* 2084 * hugetlb init time: register hstate attributes for all registered node 2085 * devices of nodes that have memory. All on-line nodes should have 2086 * registered their associated device by this time. 2087 */ 2088 static void __init hugetlb_register_all_nodes(void) 2089 { 2090 int nid; 2091 2092 for_each_node_state(nid, N_MEMORY) { 2093 struct node *node = node_devices[nid]; 2094 if (node->dev.id == nid) 2095 hugetlb_register_node(node); 2096 } 2097 2098 /* 2099 * Let the node device driver know we're here so it can 2100 * [un]register hstate attributes on node hotplug. 2101 */ 2102 register_hugetlbfs_with_node(hugetlb_register_node, 2103 hugetlb_unregister_node); 2104 } 2105 #else /* !CONFIG_NUMA */ 2106 2107 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2108 { 2109 BUG(); 2110 if (nidp) 2111 *nidp = -1; 2112 return NULL; 2113 } 2114 2115 static void hugetlb_unregister_all_nodes(void) { } 2116 2117 static void hugetlb_register_all_nodes(void) { } 2118 2119 #endif 2120 2121 static void __exit hugetlb_exit(void) 2122 { 2123 struct hstate *h; 2124 2125 hugetlb_unregister_all_nodes(); 2126 2127 for_each_hstate(h) { 2128 kobject_put(hstate_kobjs[hstate_index(h)]); 2129 } 2130 2131 kobject_put(hugepages_kobj); 2132 kfree(htlb_fault_mutex_table); 2133 } 2134 module_exit(hugetlb_exit); 2135 2136 static int __init hugetlb_init(void) 2137 { 2138 int i; 2139 2140 if (!hugepages_supported()) 2141 return 0; 2142 2143 if (!size_to_hstate(default_hstate_size)) { 2144 default_hstate_size = HPAGE_SIZE; 2145 if (!size_to_hstate(default_hstate_size)) 2146 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2147 } 2148 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2149 if (default_hstate_max_huge_pages) 2150 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2151 2152 hugetlb_init_hstates(); 2153 gather_bootmem_prealloc(); 2154 report_hugepages(); 2155 2156 hugetlb_sysfs_init(); 2157 hugetlb_register_all_nodes(); 2158 hugetlb_cgroup_file_init(); 2159 2160 #ifdef CONFIG_SMP 2161 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2162 #else 2163 num_fault_mutexes = 1; 2164 #endif 2165 htlb_fault_mutex_table = 2166 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2167 BUG_ON(!htlb_fault_mutex_table); 2168 2169 for (i = 0; i < num_fault_mutexes; i++) 2170 mutex_init(&htlb_fault_mutex_table[i]); 2171 return 0; 2172 } 2173 module_init(hugetlb_init); 2174 2175 /* Should be called on processing a hugepagesz=... option */ 2176 void __init hugetlb_add_hstate(unsigned order) 2177 { 2178 struct hstate *h; 2179 unsigned long i; 2180 2181 if (size_to_hstate(PAGE_SIZE << order)) { 2182 pr_warning("hugepagesz= specified twice, ignoring\n"); 2183 return; 2184 } 2185 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2186 BUG_ON(order == 0); 2187 h = &hstates[hugetlb_max_hstate++]; 2188 h->order = order; 2189 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2190 h->nr_huge_pages = 0; 2191 h->free_huge_pages = 0; 2192 for (i = 0; i < MAX_NUMNODES; ++i) 2193 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2194 INIT_LIST_HEAD(&h->hugepage_activelist); 2195 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2196 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2197 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2198 huge_page_size(h)/1024); 2199 2200 parsed_hstate = h; 2201 } 2202 2203 static int __init hugetlb_nrpages_setup(char *s) 2204 { 2205 unsigned long *mhp; 2206 static unsigned long *last_mhp; 2207 2208 /* 2209 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2210 * so this hugepages= parameter goes to the "default hstate". 2211 */ 2212 if (!hugetlb_max_hstate) 2213 mhp = &default_hstate_max_huge_pages; 2214 else 2215 mhp = &parsed_hstate->max_huge_pages; 2216 2217 if (mhp == last_mhp) { 2218 pr_warning("hugepages= specified twice without " 2219 "interleaving hugepagesz=, ignoring\n"); 2220 return 1; 2221 } 2222 2223 if (sscanf(s, "%lu", mhp) <= 0) 2224 *mhp = 0; 2225 2226 /* 2227 * Global state is always initialized later in hugetlb_init. 2228 * But we need to allocate >= MAX_ORDER hstates here early to still 2229 * use the bootmem allocator. 2230 */ 2231 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2232 hugetlb_hstate_alloc_pages(parsed_hstate); 2233 2234 last_mhp = mhp; 2235 2236 return 1; 2237 } 2238 __setup("hugepages=", hugetlb_nrpages_setup); 2239 2240 static int __init hugetlb_default_setup(char *s) 2241 { 2242 default_hstate_size = memparse(s, &s); 2243 return 1; 2244 } 2245 __setup("default_hugepagesz=", hugetlb_default_setup); 2246 2247 static unsigned int cpuset_mems_nr(unsigned int *array) 2248 { 2249 int node; 2250 unsigned int nr = 0; 2251 2252 for_each_node_mask(node, cpuset_current_mems_allowed) 2253 nr += array[node]; 2254 2255 return nr; 2256 } 2257 2258 #ifdef CONFIG_SYSCTL 2259 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2260 struct ctl_table *table, int write, 2261 void __user *buffer, size_t *length, loff_t *ppos) 2262 { 2263 struct hstate *h = &default_hstate; 2264 unsigned long tmp = h->max_huge_pages; 2265 int ret; 2266 2267 if (!hugepages_supported()) 2268 return -ENOTSUPP; 2269 2270 table->data = &tmp; 2271 table->maxlen = sizeof(unsigned long); 2272 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2273 if (ret) 2274 goto out; 2275 2276 if (write) 2277 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2278 NUMA_NO_NODE, tmp, *length); 2279 out: 2280 return ret; 2281 } 2282 2283 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2284 void __user *buffer, size_t *length, loff_t *ppos) 2285 { 2286 2287 return hugetlb_sysctl_handler_common(false, table, write, 2288 buffer, length, ppos); 2289 } 2290 2291 #ifdef CONFIG_NUMA 2292 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2293 void __user *buffer, size_t *length, loff_t *ppos) 2294 { 2295 return hugetlb_sysctl_handler_common(true, table, write, 2296 buffer, length, ppos); 2297 } 2298 #endif /* CONFIG_NUMA */ 2299 2300 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2301 void __user *buffer, 2302 size_t *length, loff_t *ppos) 2303 { 2304 struct hstate *h = &default_hstate; 2305 unsigned long tmp; 2306 int ret; 2307 2308 if (!hugepages_supported()) 2309 return -ENOTSUPP; 2310 2311 tmp = h->nr_overcommit_huge_pages; 2312 2313 if (write && hstate_is_gigantic(h)) 2314 return -EINVAL; 2315 2316 table->data = &tmp; 2317 table->maxlen = sizeof(unsigned long); 2318 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2319 if (ret) 2320 goto out; 2321 2322 if (write) { 2323 spin_lock(&hugetlb_lock); 2324 h->nr_overcommit_huge_pages = tmp; 2325 spin_unlock(&hugetlb_lock); 2326 } 2327 out: 2328 return ret; 2329 } 2330 2331 #endif /* CONFIG_SYSCTL */ 2332 2333 void hugetlb_report_meminfo(struct seq_file *m) 2334 { 2335 struct hstate *h = &default_hstate; 2336 if (!hugepages_supported()) 2337 return; 2338 seq_printf(m, 2339 "HugePages_Total: %5lu\n" 2340 "HugePages_Free: %5lu\n" 2341 "HugePages_Rsvd: %5lu\n" 2342 "HugePages_Surp: %5lu\n" 2343 "Hugepagesize: %8lu kB\n", 2344 h->nr_huge_pages, 2345 h->free_huge_pages, 2346 h->resv_huge_pages, 2347 h->surplus_huge_pages, 2348 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2349 } 2350 2351 int hugetlb_report_node_meminfo(int nid, char *buf) 2352 { 2353 struct hstate *h = &default_hstate; 2354 if (!hugepages_supported()) 2355 return 0; 2356 return sprintf(buf, 2357 "Node %d HugePages_Total: %5u\n" 2358 "Node %d HugePages_Free: %5u\n" 2359 "Node %d HugePages_Surp: %5u\n", 2360 nid, h->nr_huge_pages_node[nid], 2361 nid, h->free_huge_pages_node[nid], 2362 nid, h->surplus_huge_pages_node[nid]); 2363 } 2364 2365 void hugetlb_show_meminfo(void) 2366 { 2367 struct hstate *h; 2368 int nid; 2369 2370 if (!hugepages_supported()) 2371 return; 2372 2373 for_each_node_state(nid, N_MEMORY) 2374 for_each_hstate(h) 2375 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2376 nid, 2377 h->nr_huge_pages_node[nid], 2378 h->free_huge_pages_node[nid], 2379 h->surplus_huge_pages_node[nid], 2380 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2381 } 2382 2383 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2384 unsigned long hugetlb_total_pages(void) 2385 { 2386 struct hstate *h; 2387 unsigned long nr_total_pages = 0; 2388 2389 for_each_hstate(h) 2390 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2391 return nr_total_pages; 2392 } 2393 2394 static int hugetlb_acct_memory(struct hstate *h, long delta) 2395 { 2396 int ret = -ENOMEM; 2397 2398 spin_lock(&hugetlb_lock); 2399 /* 2400 * When cpuset is configured, it breaks the strict hugetlb page 2401 * reservation as the accounting is done on a global variable. Such 2402 * reservation is completely rubbish in the presence of cpuset because 2403 * the reservation is not checked against page availability for the 2404 * current cpuset. Application can still potentially OOM'ed by kernel 2405 * with lack of free htlb page in cpuset that the task is in. 2406 * Attempt to enforce strict accounting with cpuset is almost 2407 * impossible (or too ugly) because cpuset is too fluid that 2408 * task or memory node can be dynamically moved between cpusets. 2409 * 2410 * The change of semantics for shared hugetlb mapping with cpuset is 2411 * undesirable. However, in order to preserve some of the semantics, 2412 * we fall back to check against current free page availability as 2413 * a best attempt and hopefully to minimize the impact of changing 2414 * semantics that cpuset has. 2415 */ 2416 if (delta > 0) { 2417 if (gather_surplus_pages(h, delta) < 0) 2418 goto out; 2419 2420 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2421 return_unused_surplus_pages(h, delta); 2422 goto out; 2423 } 2424 } 2425 2426 ret = 0; 2427 if (delta < 0) 2428 return_unused_surplus_pages(h, (unsigned long) -delta); 2429 2430 out: 2431 spin_unlock(&hugetlb_lock); 2432 return ret; 2433 } 2434 2435 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2436 { 2437 struct resv_map *resv = vma_resv_map(vma); 2438 2439 /* 2440 * This new VMA should share its siblings reservation map if present. 2441 * The VMA will only ever have a valid reservation map pointer where 2442 * it is being copied for another still existing VMA. As that VMA 2443 * has a reference to the reservation map it cannot disappear until 2444 * after this open call completes. It is therefore safe to take a 2445 * new reference here without additional locking. 2446 */ 2447 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2448 kref_get(&resv->refs); 2449 } 2450 2451 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2452 { 2453 struct hstate *h = hstate_vma(vma); 2454 struct resv_map *resv = vma_resv_map(vma); 2455 struct hugepage_subpool *spool = subpool_vma(vma); 2456 unsigned long reserve, start, end; 2457 2458 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2459 return; 2460 2461 start = vma_hugecache_offset(h, vma, vma->vm_start); 2462 end = vma_hugecache_offset(h, vma, vma->vm_end); 2463 2464 reserve = (end - start) - region_count(resv, start, end); 2465 2466 kref_put(&resv->refs, resv_map_release); 2467 2468 if (reserve) { 2469 hugetlb_acct_memory(h, -reserve); 2470 hugepage_subpool_put_pages(spool, reserve); 2471 } 2472 } 2473 2474 /* 2475 * We cannot handle pagefaults against hugetlb pages at all. They cause 2476 * handle_mm_fault() to try to instantiate regular-sized pages in the 2477 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2478 * this far. 2479 */ 2480 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2481 { 2482 BUG(); 2483 return 0; 2484 } 2485 2486 const struct vm_operations_struct hugetlb_vm_ops = { 2487 .fault = hugetlb_vm_op_fault, 2488 .open = hugetlb_vm_op_open, 2489 .close = hugetlb_vm_op_close, 2490 }; 2491 2492 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2493 int writable) 2494 { 2495 pte_t entry; 2496 2497 if (writable) { 2498 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2499 vma->vm_page_prot))); 2500 } else { 2501 entry = huge_pte_wrprotect(mk_huge_pte(page, 2502 vma->vm_page_prot)); 2503 } 2504 entry = pte_mkyoung(entry); 2505 entry = pte_mkhuge(entry); 2506 entry = arch_make_huge_pte(entry, vma, page, writable); 2507 2508 return entry; 2509 } 2510 2511 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2512 unsigned long address, pte_t *ptep) 2513 { 2514 pte_t entry; 2515 2516 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2517 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2518 update_mmu_cache(vma, address, ptep); 2519 } 2520 2521 static int is_hugetlb_entry_migration(pte_t pte) 2522 { 2523 swp_entry_t swp; 2524 2525 if (huge_pte_none(pte) || pte_present(pte)) 2526 return 0; 2527 swp = pte_to_swp_entry(pte); 2528 if (non_swap_entry(swp) && is_migration_entry(swp)) 2529 return 1; 2530 else 2531 return 0; 2532 } 2533 2534 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2535 { 2536 swp_entry_t swp; 2537 2538 if (huge_pte_none(pte) || pte_present(pte)) 2539 return 0; 2540 swp = pte_to_swp_entry(pte); 2541 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2542 return 1; 2543 else 2544 return 0; 2545 } 2546 2547 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2548 struct vm_area_struct *vma) 2549 { 2550 pte_t *src_pte, *dst_pte, entry; 2551 struct page *ptepage; 2552 unsigned long addr; 2553 int cow; 2554 struct hstate *h = hstate_vma(vma); 2555 unsigned long sz = huge_page_size(h); 2556 unsigned long mmun_start; /* For mmu_notifiers */ 2557 unsigned long mmun_end; /* For mmu_notifiers */ 2558 int ret = 0; 2559 2560 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2561 2562 mmun_start = vma->vm_start; 2563 mmun_end = vma->vm_end; 2564 if (cow) 2565 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 2566 2567 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2568 spinlock_t *src_ptl, *dst_ptl; 2569 src_pte = huge_pte_offset(src, addr); 2570 if (!src_pte) 2571 continue; 2572 dst_pte = huge_pte_alloc(dst, addr, sz); 2573 if (!dst_pte) { 2574 ret = -ENOMEM; 2575 break; 2576 } 2577 2578 /* If the pagetables are shared don't copy or take references */ 2579 if (dst_pte == src_pte) 2580 continue; 2581 2582 dst_ptl = huge_pte_lock(h, dst, dst_pte); 2583 src_ptl = huge_pte_lockptr(h, src, src_pte); 2584 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 2585 entry = huge_ptep_get(src_pte); 2586 if (huge_pte_none(entry)) { /* skip none entry */ 2587 ; 2588 } else if (unlikely(is_hugetlb_entry_migration(entry) || 2589 is_hugetlb_entry_hwpoisoned(entry))) { 2590 swp_entry_t swp_entry = pte_to_swp_entry(entry); 2591 2592 if (is_write_migration_entry(swp_entry) && cow) { 2593 /* 2594 * COW mappings require pages in both 2595 * parent and child to be set to read. 2596 */ 2597 make_migration_entry_read(&swp_entry); 2598 entry = swp_entry_to_pte(swp_entry); 2599 set_huge_pte_at(src, addr, src_pte, entry); 2600 } 2601 set_huge_pte_at(dst, addr, dst_pte, entry); 2602 } else { 2603 if (cow) { 2604 huge_ptep_set_wrprotect(src, addr, src_pte); 2605 mmu_notifier_invalidate_range(src, mmun_start, 2606 mmun_end); 2607 } 2608 entry = huge_ptep_get(src_pte); 2609 ptepage = pte_page(entry); 2610 get_page(ptepage); 2611 page_dup_rmap(ptepage); 2612 set_huge_pte_at(dst, addr, dst_pte, entry); 2613 } 2614 spin_unlock(src_ptl); 2615 spin_unlock(dst_ptl); 2616 } 2617 2618 if (cow) 2619 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 2620 2621 return ret; 2622 } 2623 2624 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2625 unsigned long start, unsigned long end, 2626 struct page *ref_page) 2627 { 2628 int force_flush = 0; 2629 struct mm_struct *mm = vma->vm_mm; 2630 unsigned long address; 2631 pte_t *ptep; 2632 pte_t pte; 2633 spinlock_t *ptl; 2634 struct page *page; 2635 struct hstate *h = hstate_vma(vma); 2636 unsigned long sz = huge_page_size(h); 2637 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2638 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2639 2640 WARN_ON(!is_vm_hugetlb_page(vma)); 2641 BUG_ON(start & ~huge_page_mask(h)); 2642 BUG_ON(end & ~huge_page_mask(h)); 2643 2644 tlb_start_vma(tlb, vma); 2645 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2646 address = start; 2647 again: 2648 for (; address < end; address += sz) { 2649 ptep = huge_pte_offset(mm, address); 2650 if (!ptep) 2651 continue; 2652 2653 ptl = huge_pte_lock(h, mm, ptep); 2654 if (huge_pmd_unshare(mm, &address, ptep)) 2655 goto unlock; 2656 2657 pte = huge_ptep_get(ptep); 2658 if (huge_pte_none(pte)) 2659 goto unlock; 2660 2661 /* 2662 * Migrating hugepage or HWPoisoned hugepage is already 2663 * unmapped and its refcount is dropped, so just clear pte here. 2664 */ 2665 if (unlikely(!pte_present(pte))) { 2666 huge_pte_clear(mm, address, ptep); 2667 goto unlock; 2668 } 2669 2670 page = pte_page(pte); 2671 /* 2672 * If a reference page is supplied, it is because a specific 2673 * page is being unmapped, not a range. Ensure the page we 2674 * are about to unmap is the actual page of interest. 2675 */ 2676 if (ref_page) { 2677 if (page != ref_page) 2678 goto unlock; 2679 2680 /* 2681 * Mark the VMA as having unmapped its page so that 2682 * future faults in this VMA will fail rather than 2683 * looking like data was lost 2684 */ 2685 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2686 } 2687 2688 pte = huge_ptep_get_and_clear(mm, address, ptep); 2689 tlb_remove_tlb_entry(tlb, ptep, address); 2690 if (huge_pte_dirty(pte)) 2691 set_page_dirty(page); 2692 2693 page_remove_rmap(page); 2694 force_flush = !__tlb_remove_page(tlb, page); 2695 if (force_flush) { 2696 address += sz; 2697 spin_unlock(ptl); 2698 break; 2699 } 2700 /* Bail out after unmapping reference page if supplied */ 2701 if (ref_page) { 2702 spin_unlock(ptl); 2703 break; 2704 } 2705 unlock: 2706 spin_unlock(ptl); 2707 } 2708 /* 2709 * mmu_gather ran out of room to batch pages, we break out of 2710 * the PTE lock to avoid doing the potential expensive TLB invalidate 2711 * and page-free while holding it. 2712 */ 2713 if (force_flush) { 2714 force_flush = 0; 2715 tlb_flush_mmu(tlb); 2716 if (address < end && !ref_page) 2717 goto again; 2718 } 2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2720 tlb_end_vma(tlb, vma); 2721 } 2722 2723 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2724 struct vm_area_struct *vma, unsigned long start, 2725 unsigned long end, struct page *ref_page) 2726 { 2727 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2728 2729 /* 2730 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2731 * test will fail on a vma being torn down, and not grab a page table 2732 * on its way out. We're lucky that the flag has such an appropriate 2733 * name, and can in fact be safely cleared here. We could clear it 2734 * before the __unmap_hugepage_range above, but all that's necessary 2735 * is to clear it before releasing the i_mmap_rwsem. This works 2736 * because in the context this is called, the VMA is about to be 2737 * destroyed and the i_mmap_rwsem is held. 2738 */ 2739 vma->vm_flags &= ~VM_MAYSHARE; 2740 } 2741 2742 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2743 unsigned long end, struct page *ref_page) 2744 { 2745 struct mm_struct *mm; 2746 struct mmu_gather tlb; 2747 2748 mm = vma->vm_mm; 2749 2750 tlb_gather_mmu(&tlb, mm, start, end); 2751 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2752 tlb_finish_mmu(&tlb, start, end); 2753 } 2754 2755 /* 2756 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2757 * mappping it owns the reserve page for. The intention is to unmap the page 2758 * from other VMAs and let the children be SIGKILLed if they are faulting the 2759 * same region. 2760 */ 2761 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2762 struct page *page, unsigned long address) 2763 { 2764 struct hstate *h = hstate_vma(vma); 2765 struct vm_area_struct *iter_vma; 2766 struct address_space *mapping; 2767 pgoff_t pgoff; 2768 2769 /* 2770 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2771 * from page cache lookup which is in HPAGE_SIZE units. 2772 */ 2773 address = address & huge_page_mask(h); 2774 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2775 vma->vm_pgoff; 2776 mapping = file_inode(vma->vm_file)->i_mapping; 2777 2778 /* 2779 * Take the mapping lock for the duration of the table walk. As 2780 * this mapping should be shared between all the VMAs, 2781 * __unmap_hugepage_range() is called as the lock is already held 2782 */ 2783 i_mmap_lock_write(mapping); 2784 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2785 /* Do not unmap the current VMA */ 2786 if (iter_vma == vma) 2787 continue; 2788 2789 /* 2790 * Unmap the page from other VMAs without their own reserves. 2791 * They get marked to be SIGKILLed if they fault in these 2792 * areas. This is because a future no-page fault on this VMA 2793 * could insert a zeroed page instead of the data existing 2794 * from the time of fork. This would look like data corruption 2795 */ 2796 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2797 unmap_hugepage_range(iter_vma, address, 2798 address + huge_page_size(h), page); 2799 } 2800 i_mmap_unlock_write(mapping); 2801 } 2802 2803 /* 2804 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2805 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2806 * cannot race with other handlers or page migration. 2807 * Keep the pte_same checks anyway to make transition from the mutex easier. 2808 */ 2809 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2810 unsigned long address, pte_t *ptep, pte_t pte, 2811 struct page *pagecache_page, spinlock_t *ptl) 2812 { 2813 struct hstate *h = hstate_vma(vma); 2814 struct page *old_page, *new_page; 2815 int ret = 0, outside_reserve = 0; 2816 unsigned long mmun_start; /* For mmu_notifiers */ 2817 unsigned long mmun_end; /* For mmu_notifiers */ 2818 2819 old_page = pte_page(pte); 2820 2821 retry_avoidcopy: 2822 /* If no-one else is actually using this page, avoid the copy 2823 * and just make the page writable */ 2824 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 2825 page_move_anon_rmap(old_page, vma, address); 2826 set_huge_ptep_writable(vma, address, ptep); 2827 return 0; 2828 } 2829 2830 /* 2831 * If the process that created a MAP_PRIVATE mapping is about to 2832 * perform a COW due to a shared page count, attempt to satisfy 2833 * the allocation without using the existing reserves. The pagecache 2834 * page is used to determine if the reserve at this address was 2835 * consumed or not. If reserves were used, a partial faulted mapping 2836 * at the time of fork() could consume its reserves on COW instead 2837 * of the full address range. 2838 */ 2839 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2840 old_page != pagecache_page) 2841 outside_reserve = 1; 2842 2843 page_cache_get(old_page); 2844 2845 /* 2846 * Drop page table lock as buddy allocator may be called. It will 2847 * be acquired again before returning to the caller, as expected. 2848 */ 2849 spin_unlock(ptl); 2850 new_page = alloc_huge_page(vma, address, outside_reserve); 2851 2852 if (IS_ERR(new_page)) { 2853 /* 2854 * If a process owning a MAP_PRIVATE mapping fails to COW, 2855 * it is due to references held by a child and an insufficient 2856 * huge page pool. To guarantee the original mappers 2857 * reliability, unmap the page from child processes. The child 2858 * may get SIGKILLed if it later faults. 2859 */ 2860 if (outside_reserve) { 2861 page_cache_release(old_page); 2862 BUG_ON(huge_pte_none(pte)); 2863 unmap_ref_private(mm, vma, old_page, address); 2864 BUG_ON(huge_pte_none(pte)); 2865 spin_lock(ptl); 2866 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2867 if (likely(ptep && 2868 pte_same(huge_ptep_get(ptep), pte))) 2869 goto retry_avoidcopy; 2870 /* 2871 * race occurs while re-acquiring page table 2872 * lock, and our job is done. 2873 */ 2874 return 0; 2875 } 2876 2877 ret = (PTR_ERR(new_page) == -ENOMEM) ? 2878 VM_FAULT_OOM : VM_FAULT_SIGBUS; 2879 goto out_release_old; 2880 } 2881 2882 /* 2883 * When the original hugepage is shared one, it does not have 2884 * anon_vma prepared. 2885 */ 2886 if (unlikely(anon_vma_prepare(vma))) { 2887 ret = VM_FAULT_OOM; 2888 goto out_release_all; 2889 } 2890 2891 copy_user_huge_page(new_page, old_page, address, vma, 2892 pages_per_huge_page(h)); 2893 __SetPageUptodate(new_page); 2894 2895 mmun_start = address & huge_page_mask(h); 2896 mmun_end = mmun_start + huge_page_size(h); 2897 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2898 2899 /* 2900 * Retake the page table lock to check for racing updates 2901 * before the page tables are altered 2902 */ 2903 spin_lock(ptl); 2904 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2905 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 2906 ClearPagePrivate(new_page); 2907 2908 /* Break COW */ 2909 huge_ptep_clear_flush(vma, address, ptep); 2910 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2911 set_huge_pte_at(mm, address, ptep, 2912 make_huge_pte(vma, new_page, 1)); 2913 page_remove_rmap(old_page); 2914 hugepage_add_new_anon_rmap(new_page, vma, address); 2915 /* Make the old page be freed below */ 2916 new_page = old_page; 2917 } 2918 spin_unlock(ptl); 2919 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2920 out_release_all: 2921 page_cache_release(new_page); 2922 out_release_old: 2923 page_cache_release(old_page); 2924 2925 spin_lock(ptl); /* Caller expects lock to be held */ 2926 return ret; 2927 } 2928 2929 /* Return the pagecache page at a given address within a VMA */ 2930 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2931 struct vm_area_struct *vma, unsigned long address) 2932 { 2933 struct address_space *mapping; 2934 pgoff_t idx; 2935 2936 mapping = vma->vm_file->f_mapping; 2937 idx = vma_hugecache_offset(h, vma, address); 2938 2939 return find_lock_page(mapping, idx); 2940 } 2941 2942 /* 2943 * Return whether there is a pagecache page to back given address within VMA. 2944 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2945 */ 2946 static bool hugetlbfs_pagecache_present(struct hstate *h, 2947 struct vm_area_struct *vma, unsigned long address) 2948 { 2949 struct address_space *mapping; 2950 pgoff_t idx; 2951 struct page *page; 2952 2953 mapping = vma->vm_file->f_mapping; 2954 idx = vma_hugecache_offset(h, vma, address); 2955 2956 page = find_get_page(mapping, idx); 2957 if (page) 2958 put_page(page); 2959 return page != NULL; 2960 } 2961 2962 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2963 struct address_space *mapping, pgoff_t idx, 2964 unsigned long address, pte_t *ptep, unsigned int flags) 2965 { 2966 struct hstate *h = hstate_vma(vma); 2967 int ret = VM_FAULT_SIGBUS; 2968 int anon_rmap = 0; 2969 unsigned long size; 2970 struct page *page; 2971 pte_t new_pte; 2972 spinlock_t *ptl; 2973 2974 /* 2975 * Currently, we are forced to kill the process in the event the 2976 * original mapper has unmapped pages from the child due to a failed 2977 * COW. Warn that such a situation has occurred as it may not be obvious 2978 */ 2979 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2980 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2981 current->pid); 2982 return ret; 2983 } 2984 2985 /* 2986 * Use page lock to guard against racing truncation 2987 * before we get page_table_lock. 2988 */ 2989 retry: 2990 page = find_lock_page(mapping, idx); 2991 if (!page) { 2992 size = i_size_read(mapping->host) >> huge_page_shift(h); 2993 if (idx >= size) 2994 goto out; 2995 page = alloc_huge_page(vma, address, 0); 2996 if (IS_ERR(page)) { 2997 ret = PTR_ERR(page); 2998 if (ret == -ENOMEM) 2999 ret = VM_FAULT_OOM; 3000 else 3001 ret = VM_FAULT_SIGBUS; 3002 goto out; 3003 } 3004 clear_huge_page(page, address, pages_per_huge_page(h)); 3005 __SetPageUptodate(page); 3006 3007 if (vma->vm_flags & VM_MAYSHARE) { 3008 int err; 3009 struct inode *inode = mapping->host; 3010 3011 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3012 if (err) { 3013 put_page(page); 3014 if (err == -EEXIST) 3015 goto retry; 3016 goto out; 3017 } 3018 ClearPagePrivate(page); 3019 3020 spin_lock(&inode->i_lock); 3021 inode->i_blocks += blocks_per_huge_page(h); 3022 spin_unlock(&inode->i_lock); 3023 } else { 3024 lock_page(page); 3025 if (unlikely(anon_vma_prepare(vma))) { 3026 ret = VM_FAULT_OOM; 3027 goto backout_unlocked; 3028 } 3029 anon_rmap = 1; 3030 } 3031 } else { 3032 /* 3033 * If memory error occurs between mmap() and fault, some process 3034 * don't have hwpoisoned swap entry for errored virtual address. 3035 * So we need to block hugepage fault by PG_hwpoison bit check. 3036 */ 3037 if (unlikely(PageHWPoison(page))) { 3038 ret = VM_FAULT_HWPOISON | 3039 VM_FAULT_SET_HINDEX(hstate_index(h)); 3040 goto backout_unlocked; 3041 } 3042 } 3043 3044 /* 3045 * If we are going to COW a private mapping later, we examine the 3046 * pending reservations for this page now. This will ensure that 3047 * any allocations necessary to record that reservation occur outside 3048 * the spinlock. 3049 */ 3050 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 3051 if (vma_needs_reservation(h, vma, address) < 0) { 3052 ret = VM_FAULT_OOM; 3053 goto backout_unlocked; 3054 } 3055 3056 ptl = huge_pte_lockptr(h, mm, ptep); 3057 spin_lock(ptl); 3058 size = i_size_read(mapping->host) >> huge_page_shift(h); 3059 if (idx >= size) 3060 goto backout; 3061 3062 ret = 0; 3063 if (!huge_pte_none(huge_ptep_get(ptep))) 3064 goto backout; 3065 3066 if (anon_rmap) { 3067 ClearPagePrivate(page); 3068 hugepage_add_new_anon_rmap(page, vma, address); 3069 } else 3070 page_dup_rmap(page); 3071 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3072 && (vma->vm_flags & VM_SHARED))); 3073 set_huge_pte_at(mm, address, ptep, new_pte); 3074 3075 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3076 /* Optimization, do the COW without a second fault */ 3077 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3078 } 3079 3080 spin_unlock(ptl); 3081 unlock_page(page); 3082 out: 3083 return ret; 3084 3085 backout: 3086 spin_unlock(ptl); 3087 backout_unlocked: 3088 unlock_page(page); 3089 put_page(page); 3090 goto out; 3091 } 3092 3093 #ifdef CONFIG_SMP 3094 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3095 struct vm_area_struct *vma, 3096 struct address_space *mapping, 3097 pgoff_t idx, unsigned long address) 3098 { 3099 unsigned long key[2]; 3100 u32 hash; 3101 3102 if (vma->vm_flags & VM_SHARED) { 3103 key[0] = (unsigned long) mapping; 3104 key[1] = idx; 3105 } else { 3106 key[0] = (unsigned long) mm; 3107 key[1] = address >> huge_page_shift(h); 3108 } 3109 3110 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3111 3112 return hash & (num_fault_mutexes - 1); 3113 } 3114 #else 3115 /* 3116 * For uniprocesor systems we always use a single mutex, so just 3117 * return 0 and avoid the hashing overhead. 3118 */ 3119 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3120 struct vm_area_struct *vma, 3121 struct address_space *mapping, 3122 pgoff_t idx, unsigned long address) 3123 { 3124 return 0; 3125 } 3126 #endif 3127 3128 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3129 unsigned long address, unsigned int flags) 3130 { 3131 pte_t *ptep, entry; 3132 spinlock_t *ptl; 3133 int ret; 3134 u32 hash; 3135 pgoff_t idx; 3136 struct page *page = NULL; 3137 struct page *pagecache_page = NULL; 3138 struct hstate *h = hstate_vma(vma); 3139 struct address_space *mapping; 3140 int need_wait_lock = 0; 3141 3142 address &= huge_page_mask(h); 3143 3144 ptep = huge_pte_offset(mm, address); 3145 if (ptep) { 3146 entry = huge_ptep_get(ptep); 3147 if (unlikely(is_hugetlb_entry_migration(entry))) { 3148 migration_entry_wait_huge(vma, mm, ptep); 3149 return 0; 3150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3151 return VM_FAULT_HWPOISON_LARGE | 3152 VM_FAULT_SET_HINDEX(hstate_index(h)); 3153 } 3154 3155 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3156 if (!ptep) 3157 return VM_FAULT_OOM; 3158 3159 mapping = vma->vm_file->f_mapping; 3160 idx = vma_hugecache_offset(h, vma, address); 3161 3162 /* 3163 * Serialize hugepage allocation and instantiation, so that we don't 3164 * get spurious allocation failures if two CPUs race to instantiate 3165 * the same page in the page cache. 3166 */ 3167 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); 3168 mutex_lock(&htlb_fault_mutex_table[hash]); 3169 3170 entry = huge_ptep_get(ptep); 3171 if (huge_pte_none(entry)) { 3172 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3173 goto out_mutex; 3174 } 3175 3176 ret = 0; 3177 3178 /* 3179 * entry could be a migration/hwpoison entry at this point, so this 3180 * check prevents the kernel from going below assuming that we have 3181 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3182 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3183 * handle it. 3184 */ 3185 if (!pte_present(entry)) 3186 goto out_mutex; 3187 3188 /* 3189 * If we are going to COW the mapping later, we examine the pending 3190 * reservations for this page now. This will ensure that any 3191 * allocations necessary to record that reservation occur outside the 3192 * spinlock. For private mappings, we also lookup the pagecache 3193 * page now as it is used to determine if a reservation has been 3194 * consumed. 3195 */ 3196 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3197 if (vma_needs_reservation(h, vma, address) < 0) { 3198 ret = VM_FAULT_OOM; 3199 goto out_mutex; 3200 } 3201 3202 if (!(vma->vm_flags & VM_MAYSHARE)) 3203 pagecache_page = hugetlbfs_pagecache_page(h, 3204 vma, address); 3205 } 3206 3207 ptl = huge_pte_lock(h, mm, ptep); 3208 3209 /* Check for a racing update before calling hugetlb_cow */ 3210 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3211 goto out_ptl; 3212 3213 /* 3214 * hugetlb_cow() requires page locks of pte_page(entry) and 3215 * pagecache_page, so here we need take the former one 3216 * when page != pagecache_page or !pagecache_page. 3217 */ 3218 page = pte_page(entry); 3219 if (page != pagecache_page) 3220 if (!trylock_page(page)) { 3221 need_wait_lock = 1; 3222 goto out_ptl; 3223 } 3224 3225 get_page(page); 3226 3227 if (flags & FAULT_FLAG_WRITE) { 3228 if (!huge_pte_write(entry)) { 3229 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3230 pagecache_page, ptl); 3231 goto out_put_page; 3232 } 3233 entry = huge_pte_mkdirty(entry); 3234 } 3235 entry = pte_mkyoung(entry); 3236 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3237 flags & FAULT_FLAG_WRITE)) 3238 update_mmu_cache(vma, address, ptep); 3239 out_put_page: 3240 if (page != pagecache_page) 3241 unlock_page(page); 3242 put_page(page); 3243 out_ptl: 3244 spin_unlock(ptl); 3245 3246 if (pagecache_page) { 3247 unlock_page(pagecache_page); 3248 put_page(pagecache_page); 3249 } 3250 out_mutex: 3251 mutex_unlock(&htlb_fault_mutex_table[hash]); 3252 /* 3253 * Generally it's safe to hold refcount during waiting page lock. But 3254 * here we just wait to defer the next page fault to avoid busy loop and 3255 * the page is not used after unlocked before returning from the current 3256 * page fault. So we are safe from accessing freed page, even if we wait 3257 * here without taking refcount. 3258 */ 3259 if (need_wait_lock) 3260 wait_on_page_locked(page); 3261 return ret; 3262 } 3263 3264 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3265 struct page **pages, struct vm_area_struct **vmas, 3266 unsigned long *position, unsigned long *nr_pages, 3267 long i, unsigned int flags) 3268 { 3269 unsigned long pfn_offset; 3270 unsigned long vaddr = *position; 3271 unsigned long remainder = *nr_pages; 3272 struct hstate *h = hstate_vma(vma); 3273 3274 while (vaddr < vma->vm_end && remainder) { 3275 pte_t *pte; 3276 spinlock_t *ptl = NULL; 3277 int absent; 3278 struct page *page; 3279 3280 /* 3281 * Some archs (sparc64, sh*) have multiple pte_ts to 3282 * each hugepage. We have to make sure we get the 3283 * first, for the page indexing below to work. 3284 * 3285 * Note that page table lock is not held when pte is null. 3286 */ 3287 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3288 if (pte) 3289 ptl = huge_pte_lock(h, mm, pte); 3290 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3291 3292 /* 3293 * When coredumping, it suits get_dump_page if we just return 3294 * an error where there's an empty slot with no huge pagecache 3295 * to back it. This way, we avoid allocating a hugepage, and 3296 * the sparse dumpfile avoids allocating disk blocks, but its 3297 * huge holes still show up with zeroes where they need to be. 3298 */ 3299 if (absent && (flags & FOLL_DUMP) && 3300 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3301 if (pte) 3302 spin_unlock(ptl); 3303 remainder = 0; 3304 break; 3305 } 3306 3307 /* 3308 * We need call hugetlb_fault for both hugepages under migration 3309 * (in which case hugetlb_fault waits for the migration,) and 3310 * hwpoisoned hugepages (in which case we need to prevent the 3311 * caller from accessing to them.) In order to do this, we use 3312 * here is_swap_pte instead of is_hugetlb_entry_migration and 3313 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3314 * both cases, and because we can't follow correct pages 3315 * directly from any kind of swap entries. 3316 */ 3317 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3318 ((flags & FOLL_WRITE) && 3319 !huge_pte_write(huge_ptep_get(pte)))) { 3320 int ret; 3321 3322 if (pte) 3323 spin_unlock(ptl); 3324 ret = hugetlb_fault(mm, vma, vaddr, 3325 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3326 if (!(ret & VM_FAULT_ERROR)) 3327 continue; 3328 3329 remainder = 0; 3330 break; 3331 } 3332 3333 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3334 page = pte_page(huge_ptep_get(pte)); 3335 same_page: 3336 if (pages) { 3337 pages[i] = mem_map_offset(page, pfn_offset); 3338 get_page_foll(pages[i]); 3339 } 3340 3341 if (vmas) 3342 vmas[i] = vma; 3343 3344 vaddr += PAGE_SIZE; 3345 ++pfn_offset; 3346 --remainder; 3347 ++i; 3348 if (vaddr < vma->vm_end && remainder && 3349 pfn_offset < pages_per_huge_page(h)) { 3350 /* 3351 * We use pfn_offset to avoid touching the pageframes 3352 * of this compound page. 3353 */ 3354 goto same_page; 3355 } 3356 spin_unlock(ptl); 3357 } 3358 *nr_pages = remainder; 3359 *position = vaddr; 3360 3361 return i ? i : -EFAULT; 3362 } 3363 3364 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3365 unsigned long address, unsigned long end, pgprot_t newprot) 3366 { 3367 struct mm_struct *mm = vma->vm_mm; 3368 unsigned long start = address; 3369 pte_t *ptep; 3370 pte_t pte; 3371 struct hstate *h = hstate_vma(vma); 3372 unsigned long pages = 0; 3373 3374 BUG_ON(address >= end); 3375 flush_cache_range(vma, address, end); 3376 3377 mmu_notifier_invalidate_range_start(mm, start, end); 3378 i_mmap_lock_write(vma->vm_file->f_mapping); 3379 for (; address < end; address += huge_page_size(h)) { 3380 spinlock_t *ptl; 3381 ptep = huge_pte_offset(mm, address); 3382 if (!ptep) 3383 continue; 3384 ptl = huge_pte_lock(h, mm, ptep); 3385 if (huge_pmd_unshare(mm, &address, ptep)) { 3386 pages++; 3387 spin_unlock(ptl); 3388 continue; 3389 } 3390 pte = huge_ptep_get(ptep); 3391 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3392 spin_unlock(ptl); 3393 continue; 3394 } 3395 if (unlikely(is_hugetlb_entry_migration(pte))) { 3396 swp_entry_t entry = pte_to_swp_entry(pte); 3397 3398 if (is_write_migration_entry(entry)) { 3399 pte_t newpte; 3400 3401 make_migration_entry_read(&entry); 3402 newpte = swp_entry_to_pte(entry); 3403 set_huge_pte_at(mm, address, ptep, newpte); 3404 pages++; 3405 } 3406 spin_unlock(ptl); 3407 continue; 3408 } 3409 if (!huge_pte_none(pte)) { 3410 pte = huge_ptep_get_and_clear(mm, address, ptep); 3411 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3412 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3413 set_huge_pte_at(mm, address, ptep, pte); 3414 pages++; 3415 } 3416 spin_unlock(ptl); 3417 } 3418 /* 3419 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3420 * may have cleared our pud entry and done put_page on the page table: 3421 * once we release i_mmap_rwsem, another task can do the final put_page 3422 * and that page table be reused and filled with junk. 3423 */ 3424 flush_tlb_range(vma, start, end); 3425 mmu_notifier_invalidate_range(mm, start, end); 3426 i_mmap_unlock_write(vma->vm_file->f_mapping); 3427 mmu_notifier_invalidate_range_end(mm, start, end); 3428 3429 return pages << h->order; 3430 } 3431 3432 int hugetlb_reserve_pages(struct inode *inode, 3433 long from, long to, 3434 struct vm_area_struct *vma, 3435 vm_flags_t vm_flags) 3436 { 3437 long ret, chg; 3438 struct hstate *h = hstate_inode(inode); 3439 struct hugepage_subpool *spool = subpool_inode(inode); 3440 struct resv_map *resv_map; 3441 3442 /* 3443 * Only apply hugepage reservation if asked. At fault time, an 3444 * attempt will be made for VM_NORESERVE to allocate a page 3445 * without using reserves 3446 */ 3447 if (vm_flags & VM_NORESERVE) 3448 return 0; 3449 3450 /* 3451 * Shared mappings base their reservation on the number of pages that 3452 * are already allocated on behalf of the file. Private mappings need 3453 * to reserve the full area even if read-only as mprotect() may be 3454 * called to make the mapping read-write. Assume !vma is a shm mapping 3455 */ 3456 if (!vma || vma->vm_flags & VM_MAYSHARE) { 3457 resv_map = inode_resv_map(inode); 3458 3459 chg = region_chg(resv_map, from, to); 3460 3461 } else { 3462 resv_map = resv_map_alloc(); 3463 if (!resv_map) 3464 return -ENOMEM; 3465 3466 chg = to - from; 3467 3468 set_vma_resv_map(vma, resv_map); 3469 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3470 } 3471 3472 if (chg < 0) { 3473 ret = chg; 3474 goto out_err; 3475 } 3476 3477 /* There must be enough pages in the subpool for the mapping */ 3478 if (hugepage_subpool_get_pages(spool, chg)) { 3479 ret = -ENOSPC; 3480 goto out_err; 3481 } 3482 3483 /* 3484 * Check enough hugepages are available for the reservation. 3485 * Hand the pages back to the subpool if there are not 3486 */ 3487 ret = hugetlb_acct_memory(h, chg); 3488 if (ret < 0) { 3489 hugepage_subpool_put_pages(spool, chg); 3490 goto out_err; 3491 } 3492 3493 /* 3494 * Account for the reservations made. Shared mappings record regions 3495 * that have reservations as they are shared by multiple VMAs. 3496 * When the last VMA disappears, the region map says how much 3497 * the reservation was and the page cache tells how much of 3498 * the reservation was consumed. Private mappings are per-VMA and 3499 * only the consumed reservations are tracked. When the VMA 3500 * disappears, the original reservation is the VMA size and the 3501 * consumed reservations are stored in the map. Hence, nothing 3502 * else has to be done for private mappings here 3503 */ 3504 if (!vma || vma->vm_flags & VM_MAYSHARE) 3505 region_add(resv_map, from, to); 3506 return 0; 3507 out_err: 3508 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3509 kref_put(&resv_map->refs, resv_map_release); 3510 return ret; 3511 } 3512 3513 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3514 { 3515 struct hstate *h = hstate_inode(inode); 3516 struct resv_map *resv_map = inode_resv_map(inode); 3517 long chg = 0; 3518 struct hugepage_subpool *spool = subpool_inode(inode); 3519 3520 if (resv_map) 3521 chg = region_truncate(resv_map, offset); 3522 spin_lock(&inode->i_lock); 3523 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3524 spin_unlock(&inode->i_lock); 3525 3526 hugepage_subpool_put_pages(spool, (chg - freed)); 3527 hugetlb_acct_memory(h, -(chg - freed)); 3528 } 3529 3530 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3531 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3532 struct vm_area_struct *vma, 3533 unsigned long addr, pgoff_t idx) 3534 { 3535 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3536 svma->vm_start; 3537 unsigned long sbase = saddr & PUD_MASK; 3538 unsigned long s_end = sbase + PUD_SIZE; 3539 3540 /* Allow segments to share if only one is marked locked */ 3541 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3542 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3543 3544 /* 3545 * match the virtual addresses, permission and the alignment of the 3546 * page table page. 3547 */ 3548 if (pmd_index(addr) != pmd_index(saddr) || 3549 vm_flags != svm_flags || 3550 sbase < svma->vm_start || svma->vm_end < s_end) 3551 return 0; 3552 3553 return saddr; 3554 } 3555 3556 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3557 { 3558 unsigned long base = addr & PUD_MASK; 3559 unsigned long end = base + PUD_SIZE; 3560 3561 /* 3562 * check on proper vm_flags and page table alignment 3563 */ 3564 if (vma->vm_flags & VM_MAYSHARE && 3565 vma->vm_start <= base && end <= vma->vm_end) 3566 return 1; 3567 return 0; 3568 } 3569 3570 /* 3571 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3572 * and returns the corresponding pte. While this is not necessary for the 3573 * !shared pmd case because we can allocate the pmd later as well, it makes the 3574 * code much cleaner. pmd allocation is essential for the shared case because 3575 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 3576 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3577 * bad pmd for sharing. 3578 */ 3579 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3580 { 3581 struct vm_area_struct *vma = find_vma(mm, addr); 3582 struct address_space *mapping = vma->vm_file->f_mapping; 3583 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3584 vma->vm_pgoff; 3585 struct vm_area_struct *svma; 3586 unsigned long saddr; 3587 pte_t *spte = NULL; 3588 pte_t *pte; 3589 spinlock_t *ptl; 3590 3591 if (!vma_shareable(vma, addr)) 3592 return (pte_t *)pmd_alloc(mm, pud, addr); 3593 3594 i_mmap_lock_write(mapping); 3595 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3596 if (svma == vma) 3597 continue; 3598 3599 saddr = page_table_shareable(svma, vma, addr, idx); 3600 if (saddr) { 3601 spte = huge_pte_offset(svma->vm_mm, saddr); 3602 if (spte) { 3603 mm_inc_nr_pmds(mm); 3604 get_page(virt_to_page(spte)); 3605 break; 3606 } 3607 } 3608 } 3609 3610 if (!spte) 3611 goto out; 3612 3613 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 3614 spin_lock(ptl); 3615 if (pud_none(*pud)) { 3616 pud_populate(mm, pud, 3617 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3618 } else { 3619 put_page(virt_to_page(spte)); 3620 mm_inc_nr_pmds(mm); 3621 } 3622 spin_unlock(ptl); 3623 out: 3624 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3625 i_mmap_unlock_write(mapping); 3626 return pte; 3627 } 3628 3629 /* 3630 * unmap huge page backed by shared pte. 3631 * 3632 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3633 * indicated by page_count > 1, unmap is achieved by clearing pud and 3634 * decrementing the ref count. If count == 1, the pte page is not shared. 3635 * 3636 * called with page table lock held. 3637 * 3638 * returns: 1 successfully unmapped a shared pte page 3639 * 0 the underlying pte page is not shared, or it is the last user 3640 */ 3641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3642 { 3643 pgd_t *pgd = pgd_offset(mm, *addr); 3644 pud_t *pud = pud_offset(pgd, *addr); 3645 3646 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3647 if (page_count(virt_to_page(ptep)) == 1) 3648 return 0; 3649 3650 pud_clear(pud); 3651 put_page(virt_to_page(ptep)); 3652 mm_dec_nr_pmds(mm); 3653 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3654 return 1; 3655 } 3656 #define want_pmd_share() (1) 3657 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3658 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3659 { 3660 return NULL; 3661 } 3662 #define want_pmd_share() (0) 3663 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3664 3665 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3666 pte_t *huge_pte_alloc(struct mm_struct *mm, 3667 unsigned long addr, unsigned long sz) 3668 { 3669 pgd_t *pgd; 3670 pud_t *pud; 3671 pte_t *pte = NULL; 3672 3673 pgd = pgd_offset(mm, addr); 3674 pud = pud_alloc(mm, pgd, addr); 3675 if (pud) { 3676 if (sz == PUD_SIZE) { 3677 pte = (pte_t *)pud; 3678 } else { 3679 BUG_ON(sz != PMD_SIZE); 3680 if (want_pmd_share() && pud_none(*pud)) 3681 pte = huge_pmd_share(mm, addr, pud); 3682 else 3683 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3684 } 3685 } 3686 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3687 3688 return pte; 3689 } 3690 3691 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3692 { 3693 pgd_t *pgd; 3694 pud_t *pud; 3695 pmd_t *pmd = NULL; 3696 3697 pgd = pgd_offset(mm, addr); 3698 if (pgd_present(*pgd)) { 3699 pud = pud_offset(pgd, addr); 3700 if (pud_present(*pud)) { 3701 if (pud_huge(*pud)) 3702 return (pte_t *)pud; 3703 pmd = pmd_offset(pud, addr); 3704 } 3705 } 3706 return (pte_t *) pmd; 3707 } 3708 3709 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3710 3711 /* 3712 * These functions are overwritable if your architecture needs its own 3713 * behavior. 3714 */ 3715 struct page * __weak 3716 follow_huge_addr(struct mm_struct *mm, unsigned long address, 3717 int write) 3718 { 3719 return ERR_PTR(-EINVAL); 3720 } 3721 3722 struct page * __weak 3723 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3724 pmd_t *pmd, int flags) 3725 { 3726 struct page *page = NULL; 3727 spinlock_t *ptl; 3728 retry: 3729 ptl = pmd_lockptr(mm, pmd); 3730 spin_lock(ptl); 3731 /* 3732 * make sure that the address range covered by this pmd is not 3733 * unmapped from other threads. 3734 */ 3735 if (!pmd_huge(*pmd)) 3736 goto out; 3737 if (pmd_present(*pmd)) { 3738 page = pte_page(*(pte_t *)pmd) + 3739 ((address & ~PMD_MASK) >> PAGE_SHIFT); 3740 if (flags & FOLL_GET) 3741 get_page(page); 3742 } else { 3743 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 3744 spin_unlock(ptl); 3745 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 3746 goto retry; 3747 } 3748 /* 3749 * hwpoisoned entry is treated as no_page_table in 3750 * follow_page_mask(). 3751 */ 3752 } 3753 out: 3754 spin_unlock(ptl); 3755 return page; 3756 } 3757 3758 struct page * __weak 3759 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3760 pud_t *pud, int flags) 3761 { 3762 if (flags & FOLL_GET) 3763 return NULL; 3764 3765 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 3766 } 3767 3768 #ifdef CONFIG_MEMORY_FAILURE 3769 3770 /* Should be called in hugetlb_lock */ 3771 static int is_hugepage_on_freelist(struct page *hpage) 3772 { 3773 struct page *page; 3774 struct page *tmp; 3775 struct hstate *h = page_hstate(hpage); 3776 int nid = page_to_nid(hpage); 3777 3778 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3779 if (page == hpage) 3780 return 1; 3781 return 0; 3782 } 3783 3784 /* 3785 * This function is called from memory failure code. 3786 * Assume the caller holds page lock of the head page. 3787 */ 3788 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3789 { 3790 struct hstate *h = page_hstate(hpage); 3791 int nid = page_to_nid(hpage); 3792 int ret = -EBUSY; 3793 3794 spin_lock(&hugetlb_lock); 3795 if (is_hugepage_on_freelist(hpage)) { 3796 /* 3797 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3798 * but dangling hpage->lru can trigger list-debug warnings 3799 * (this happens when we call unpoison_memory() on it), 3800 * so let it point to itself with list_del_init(). 3801 */ 3802 list_del_init(&hpage->lru); 3803 set_page_refcounted(hpage); 3804 h->free_huge_pages--; 3805 h->free_huge_pages_node[nid]--; 3806 ret = 0; 3807 } 3808 spin_unlock(&hugetlb_lock); 3809 return ret; 3810 } 3811 #endif 3812 3813 bool isolate_huge_page(struct page *page, struct list_head *list) 3814 { 3815 VM_BUG_ON_PAGE(!PageHead(page), page); 3816 if (!get_page_unless_zero(page)) 3817 return false; 3818 spin_lock(&hugetlb_lock); 3819 list_move_tail(&page->lru, list); 3820 spin_unlock(&hugetlb_lock); 3821 return true; 3822 } 3823 3824 void putback_active_hugepage(struct page *page) 3825 { 3826 VM_BUG_ON_PAGE(!PageHead(page), page); 3827 spin_lock(&hugetlb_lock); 3828 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 3829 spin_unlock(&hugetlb_lock); 3830 put_page(page); 3831 } 3832 3833 bool is_hugepage_active(struct page *page) 3834 { 3835 VM_BUG_ON_PAGE(!PageHuge(page), page); 3836 /* 3837 * This function can be called for a tail page because the caller, 3838 * scan_movable_pages, scans through a given pfn-range which typically 3839 * covers one memory block. In systems using gigantic hugepage (1GB 3840 * for x86_64,) a hugepage is larger than a memory block, and we don't 3841 * support migrating such large hugepages for now, so return false 3842 * when called for tail pages. 3843 */ 3844 if (PageTail(page)) 3845 return false; 3846 /* 3847 * Refcount of a hwpoisoned hugepages is 1, but they are not active, 3848 * so we should return false for them. 3849 */ 3850 if (unlikely(PageHWPoison(page))) 3851 return false; 3852 return page_count(page) > 0; 3853 } 3854