xref: /openbmc/linux/mm/hugetlb.c (revision 034f90b3)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 
44 __initdata LIST_HEAD(huge_boot_pages);
45 
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50 
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56 
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63 
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
67 
68 	spin_unlock(&spool->lock);
69 
70 	/* If no pages are used, and no other handles to the subpool
71 	 * remain, free the subpool the subpool remain */
72 	if (free)
73 		kfree(spool);
74 }
75 
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78 	struct hugepage_subpool *spool;
79 
80 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 	if (!spool)
82 		return NULL;
83 
84 	spin_lock_init(&spool->lock);
85 	spool->count = 1;
86 	spool->max_hpages = nr_blocks;
87 	spool->used_hpages = 0;
88 
89 	return spool;
90 }
91 
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94 	spin_lock(&spool->lock);
95 	BUG_ON(!spool->count);
96 	spool->count--;
97 	unlock_or_release_subpool(spool);
98 }
99 
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 				      long delta)
102 {
103 	int ret = 0;
104 
105 	if (!spool)
106 		return 0;
107 
108 	spin_lock(&spool->lock);
109 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 		spool->used_hpages += delta;
111 	} else {
112 		ret = -ENOMEM;
113 	}
114 	spin_unlock(&spool->lock);
115 
116 	return ret;
117 }
118 
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 				       long delta)
121 {
122 	if (!spool)
123 		return;
124 
125 	spin_lock(&spool->lock);
126 	spool->used_hpages -= delta;
127 	/* If hugetlbfs_put_super couldn't free spool due to
128 	* an outstanding quota reference, free it now. */
129 	unlock_or_release_subpool(spool);
130 }
131 
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134 	return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136 
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139 	return subpool_inode(file_inode(vma->vm_file));
140 }
141 
142 /*
143  * Region tracking -- allows tracking of reservations and instantiated pages
144  *                    across the pages in a mapping.
145  *
146  * The region data structures are embedded into a resv_map and
147  * protected by a resv_map's lock
148  */
149 struct file_region {
150 	struct list_head link;
151 	long from;
152 	long to;
153 };
154 
155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157 	struct list_head *head = &resv->regions;
158 	struct file_region *rg, *nrg, *trg;
159 
160 	spin_lock(&resv->lock);
161 	/* Locate the region we are either in or before. */
162 	list_for_each_entry(rg, head, link)
163 		if (f <= rg->to)
164 			break;
165 
166 	/* Round our left edge to the current segment if it encloses us. */
167 	if (f > rg->from)
168 		f = rg->from;
169 
170 	/* Check for and consume any regions we now overlap with. */
171 	nrg = rg;
172 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 		if (&rg->link == head)
174 			break;
175 		if (rg->from > t)
176 			break;
177 
178 		/* If this area reaches higher then extend our area to
179 		 * include it completely.  If this is not the first area
180 		 * which we intend to reuse, free it. */
181 		if (rg->to > t)
182 			t = rg->to;
183 		if (rg != nrg) {
184 			list_del(&rg->link);
185 			kfree(rg);
186 		}
187 	}
188 	nrg->from = f;
189 	nrg->to = t;
190 	spin_unlock(&resv->lock);
191 	return 0;
192 }
193 
194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196 	struct list_head *head = &resv->regions;
197 	struct file_region *rg, *nrg = NULL;
198 	long chg = 0;
199 
200 retry:
201 	spin_lock(&resv->lock);
202 	/* Locate the region we are before or in. */
203 	list_for_each_entry(rg, head, link)
204 		if (f <= rg->to)
205 			break;
206 
207 	/* If we are below the current region then a new region is required.
208 	 * Subtle, allocate a new region at the position but make it zero
209 	 * size such that we can guarantee to record the reservation. */
210 	if (&rg->link == head || t < rg->from) {
211 		if (!nrg) {
212 			spin_unlock(&resv->lock);
213 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 			if (!nrg)
215 				return -ENOMEM;
216 
217 			nrg->from = f;
218 			nrg->to   = f;
219 			INIT_LIST_HEAD(&nrg->link);
220 			goto retry;
221 		}
222 
223 		list_add(&nrg->link, rg->link.prev);
224 		chg = t - f;
225 		goto out_nrg;
226 	}
227 
228 	/* Round our left edge to the current segment if it encloses us. */
229 	if (f > rg->from)
230 		f = rg->from;
231 	chg = t - f;
232 
233 	/* Check for and consume any regions we now overlap with. */
234 	list_for_each_entry(rg, rg->link.prev, link) {
235 		if (&rg->link == head)
236 			break;
237 		if (rg->from > t)
238 			goto out;
239 
240 		/* We overlap with this area, if it extends further than
241 		 * us then we must extend ourselves.  Account for its
242 		 * existing reservation. */
243 		if (rg->to > t) {
244 			chg += rg->to - t;
245 			t = rg->to;
246 		}
247 		chg -= rg->to - rg->from;
248 	}
249 
250 out:
251 	spin_unlock(&resv->lock);
252 	/*  We already know we raced and no longer need the new region */
253 	kfree(nrg);
254 	return chg;
255 out_nrg:
256 	spin_unlock(&resv->lock);
257 	return chg;
258 }
259 
260 static long region_truncate(struct resv_map *resv, long end)
261 {
262 	struct list_head *head = &resv->regions;
263 	struct file_region *rg, *trg;
264 	long chg = 0;
265 
266 	spin_lock(&resv->lock);
267 	/* Locate the region we are either in or before. */
268 	list_for_each_entry(rg, head, link)
269 		if (end <= rg->to)
270 			break;
271 	if (&rg->link == head)
272 		goto out;
273 
274 	/* If we are in the middle of a region then adjust it. */
275 	if (end > rg->from) {
276 		chg = rg->to - end;
277 		rg->to = end;
278 		rg = list_entry(rg->link.next, typeof(*rg), link);
279 	}
280 
281 	/* Drop any remaining regions. */
282 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 		if (&rg->link == head)
284 			break;
285 		chg += rg->to - rg->from;
286 		list_del(&rg->link);
287 		kfree(rg);
288 	}
289 
290 out:
291 	spin_unlock(&resv->lock);
292 	return chg;
293 }
294 
295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297 	struct list_head *head = &resv->regions;
298 	struct file_region *rg;
299 	long chg = 0;
300 
301 	spin_lock(&resv->lock);
302 	/* Locate each segment we overlap with, and count that overlap. */
303 	list_for_each_entry(rg, head, link) {
304 		long seg_from;
305 		long seg_to;
306 
307 		if (rg->to <= f)
308 			continue;
309 		if (rg->from >= t)
310 			break;
311 
312 		seg_from = max(rg->from, f);
313 		seg_to = min(rg->to, t);
314 
315 		chg += seg_to - seg_from;
316 	}
317 	spin_unlock(&resv->lock);
318 
319 	return chg;
320 }
321 
322 /*
323  * Convert the address within this vma to the page offset within
324  * the mapping, in pagecache page units; huge pages here.
325  */
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 			struct vm_area_struct *vma, unsigned long address)
328 {
329 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 			(vma->vm_pgoff >> huge_page_order(h));
331 }
332 
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 				     unsigned long address)
335 {
336 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338 
339 /*
340  * Return the size of the pages allocated when backing a VMA. In the majority
341  * cases this will be same size as used by the page table entries.
342  */
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345 	struct hstate *hstate;
346 
347 	if (!is_vm_hugetlb_page(vma))
348 		return PAGE_SIZE;
349 
350 	hstate = hstate_vma(vma);
351 
352 	return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355 
356 /*
357  * Return the page size being used by the MMU to back a VMA. In the majority
358  * of cases, the page size used by the kernel matches the MMU size. On
359  * architectures where it differs, an architecture-specific version of this
360  * function is required.
361  */
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365 	return vma_kernel_pagesize(vma);
366 }
367 #endif
368 
369 /*
370  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371  * bits of the reservation map pointer, which are always clear due to
372  * alignment.
373  */
374 #define HPAGE_RESV_OWNER    (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377 
378 /*
379  * These helpers are used to track how many pages are reserved for
380  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381  * is guaranteed to have their future faults succeed.
382  *
383  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384  * the reserve counters are updated with the hugetlb_lock held. It is safe
385  * to reset the VMA at fork() time as it is not in use yet and there is no
386  * chance of the global counters getting corrupted as a result of the values.
387  *
388  * The private mapping reservation is represented in a subtly different
389  * manner to a shared mapping.  A shared mapping has a region map associated
390  * with the underlying file, this region map represents the backing file
391  * pages which have ever had a reservation assigned which this persists even
392  * after the page is instantiated.  A private mapping has a region map
393  * associated with the original mmap which is attached to all VMAs which
394  * reference it, this region map represents those offsets which have consumed
395  * reservation ie. where pages have been instantiated.
396  */
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399 	return (unsigned long)vma->vm_private_data;
400 }
401 
402 static void set_vma_private_data(struct vm_area_struct *vma,
403 							unsigned long value)
404 {
405 	vma->vm_private_data = (void *)value;
406 }
407 
408 struct resv_map *resv_map_alloc(void)
409 {
410 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 	if (!resv_map)
412 		return NULL;
413 
414 	kref_init(&resv_map->refs);
415 	spin_lock_init(&resv_map->lock);
416 	INIT_LIST_HEAD(&resv_map->regions);
417 
418 	return resv_map;
419 }
420 
421 void resv_map_release(struct kref *ref)
422 {
423 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424 
425 	/* Clear out any active regions before we release the map. */
426 	region_truncate(resv_map, 0);
427 	kfree(resv_map);
428 }
429 
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432 	return inode->i_mapping->private_data;
433 }
434 
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 	if (vma->vm_flags & VM_MAYSHARE) {
439 		struct address_space *mapping = vma->vm_file->f_mapping;
440 		struct inode *inode = mapping->host;
441 
442 		return inode_resv_map(inode);
443 
444 	} else {
445 		return (struct resv_map *)(get_vma_private_data(vma) &
446 							~HPAGE_RESV_MASK);
447 	}
448 }
449 
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
454 
455 	set_vma_private_data(vma, (get_vma_private_data(vma) &
456 				HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458 
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
463 
464 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466 
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
470 
471 	return (get_vma_private_data(vma) & flag) != 0;
472 }
473 
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478 	if (!(vma->vm_flags & VM_MAYSHARE))
479 		vma->vm_private_data = (void *)0;
480 }
481 
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485 	if (vma->vm_flags & VM_NORESERVE) {
486 		/*
487 		 * This address is already reserved by other process(chg == 0),
488 		 * so, we should decrement reserved count. Without decrementing,
489 		 * reserve count remains after releasing inode, because this
490 		 * allocated page will go into page cache and is regarded as
491 		 * coming from reserved pool in releasing step.  Currently, we
492 		 * don't have any other solution to deal with this situation
493 		 * properly, so add work-around here.
494 		 */
495 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 			return 1;
497 		else
498 			return 0;
499 	}
500 
501 	/* Shared mappings always use reserves */
502 	if (vma->vm_flags & VM_MAYSHARE)
503 		return 1;
504 
505 	/*
506 	 * Only the process that called mmap() has reserves for
507 	 * private mappings.
508 	 */
509 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 		return 1;
511 
512 	return 0;
513 }
514 
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517 	int nid = page_to_nid(page);
518 	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 	h->free_huge_pages++;
520 	h->free_huge_pages_node[nid]++;
521 }
522 
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525 	struct page *page;
526 
527 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 		if (!is_migrate_isolate_page(page))
529 			break;
530 	/*
531 	 * if 'non-isolated free hugepage' not found on the list,
532 	 * the allocation fails.
533 	 */
534 	if (&h->hugepage_freelists[nid] == &page->lru)
535 		return NULL;
536 	list_move(&page->lru, &h->hugepage_activelist);
537 	set_page_refcounted(page);
538 	h->free_huge_pages--;
539 	h->free_huge_pages_node[nid]--;
540 	return page;
541 }
542 
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 		return GFP_HIGHUSER_MOVABLE;
548 	else
549 		return GFP_HIGHUSER;
550 }
551 
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 				struct vm_area_struct *vma,
554 				unsigned long address, int avoid_reserve,
555 				long chg)
556 {
557 	struct page *page = NULL;
558 	struct mempolicy *mpol;
559 	nodemask_t *nodemask;
560 	struct zonelist *zonelist;
561 	struct zone *zone;
562 	struct zoneref *z;
563 	unsigned int cpuset_mems_cookie;
564 
565 	/*
566 	 * A child process with MAP_PRIVATE mappings created by their parent
567 	 * have no page reserves. This check ensures that reservations are
568 	 * not "stolen". The child may still get SIGKILLed
569 	 */
570 	if (!vma_has_reserves(vma, chg) &&
571 			h->free_huge_pages - h->resv_huge_pages == 0)
572 		goto err;
573 
574 	/* If reserves cannot be used, ensure enough pages are in the pool */
575 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 		goto err;
577 
578 retry_cpuset:
579 	cpuset_mems_cookie = read_mems_allowed_begin();
580 	zonelist = huge_zonelist(vma, address,
581 					htlb_alloc_mask(h), &mpol, &nodemask);
582 
583 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 						MAX_NR_ZONES - 1, nodemask) {
585 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
586 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 			if (page) {
588 				if (avoid_reserve)
589 					break;
590 				if (!vma_has_reserves(vma, chg))
591 					break;
592 
593 				SetPagePrivate(page);
594 				h->resv_huge_pages--;
595 				break;
596 			}
597 		}
598 	}
599 
600 	mpol_cond_put(mpol);
601 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 		goto retry_cpuset;
603 	return page;
604 
605 err:
606 	return NULL;
607 }
608 
609 /*
610  * common helper functions for hstate_next_node_to_{alloc|free}.
611  * We may have allocated or freed a huge page based on a different
612  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613  * be outside of *nodes_allowed.  Ensure that we use an allowed
614  * node for alloc or free.
615  */
616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617 {
618 	nid = next_node(nid, *nodes_allowed);
619 	if (nid == MAX_NUMNODES)
620 		nid = first_node(*nodes_allowed);
621 	VM_BUG_ON(nid >= MAX_NUMNODES);
622 
623 	return nid;
624 }
625 
626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628 	if (!node_isset(nid, *nodes_allowed))
629 		nid = next_node_allowed(nid, nodes_allowed);
630 	return nid;
631 }
632 
633 /*
634  * returns the previously saved node ["this node"] from which to
635  * allocate a persistent huge page for the pool and advance the
636  * next node from which to allocate, handling wrap at end of node
637  * mask.
638  */
639 static int hstate_next_node_to_alloc(struct hstate *h,
640 					nodemask_t *nodes_allowed)
641 {
642 	int nid;
643 
644 	VM_BUG_ON(!nodes_allowed);
645 
646 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648 
649 	return nid;
650 }
651 
652 /*
653  * helper for free_pool_huge_page() - return the previously saved
654  * node ["this node"] from which to free a huge page.  Advance the
655  * next node id whether or not we find a free huge page to free so
656  * that the next attempt to free addresses the next node.
657  */
658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659 {
660 	int nid;
661 
662 	VM_BUG_ON(!nodes_allowed);
663 
664 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666 
667 	return nid;
668 }
669 
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
671 	for (nr_nodes = nodes_weight(*mask);				\
672 		nr_nodes > 0 &&						\
673 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
674 		nr_nodes--)
675 
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
677 	for (nr_nodes = nodes_weight(*mask);				\
678 		nr_nodes > 0 &&						\
679 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
680 		nr_nodes--)
681 
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683 static void destroy_compound_gigantic_page(struct page *page,
684 					unsigned long order)
685 {
686 	int i;
687 	int nr_pages = 1 << order;
688 	struct page *p = page + 1;
689 
690 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 		__ClearPageTail(p);
692 		set_page_refcounted(p);
693 		p->first_page = NULL;
694 	}
695 
696 	set_compound_order(page, 0);
697 	__ClearPageHead(page);
698 }
699 
700 static void free_gigantic_page(struct page *page, unsigned order)
701 {
702 	free_contig_range(page_to_pfn(page), 1 << order);
703 }
704 
705 static int __alloc_gigantic_page(unsigned long start_pfn,
706 				unsigned long nr_pages)
707 {
708 	unsigned long end_pfn = start_pfn + nr_pages;
709 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710 }
711 
712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 				unsigned long nr_pages)
714 {
715 	unsigned long i, end_pfn = start_pfn + nr_pages;
716 	struct page *page;
717 
718 	for (i = start_pfn; i < end_pfn; i++) {
719 		if (!pfn_valid(i))
720 			return false;
721 
722 		page = pfn_to_page(i);
723 
724 		if (PageReserved(page))
725 			return false;
726 
727 		if (page_count(page) > 0)
728 			return false;
729 
730 		if (PageHuge(page))
731 			return false;
732 	}
733 
734 	return true;
735 }
736 
737 static bool zone_spans_last_pfn(const struct zone *zone,
738 			unsigned long start_pfn, unsigned long nr_pages)
739 {
740 	unsigned long last_pfn = start_pfn + nr_pages - 1;
741 	return zone_spans_pfn(zone, last_pfn);
742 }
743 
744 static struct page *alloc_gigantic_page(int nid, unsigned order)
745 {
746 	unsigned long nr_pages = 1 << order;
747 	unsigned long ret, pfn, flags;
748 	struct zone *z;
749 
750 	z = NODE_DATA(nid)->node_zones;
751 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 		spin_lock_irqsave(&z->lock, flags);
753 
754 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 				/*
758 				 * We release the zone lock here because
759 				 * alloc_contig_range() will also lock the zone
760 				 * at some point. If there's an allocation
761 				 * spinning on this lock, it may win the race
762 				 * and cause alloc_contig_range() to fail...
763 				 */
764 				spin_unlock_irqrestore(&z->lock, flags);
765 				ret = __alloc_gigantic_page(pfn, nr_pages);
766 				if (!ret)
767 					return pfn_to_page(pfn);
768 				spin_lock_irqsave(&z->lock, flags);
769 			}
770 			pfn += nr_pages;
771 		}
772 
773 		spin_unlock_irqrestore(&z->lock, flags);
774 	}
775 
776 	return NULL;
777 }
778 
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781 
782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783 {
784 	struct page *page;
785 
786 	page = alloc_gigantic_page(nid, huge_page_order(h));
787 	if (page) {
788 		prep_compound_gigantic_page(page, huge_page_order(h));
789 		prep_new_huge_page(h, page, nid);
790 	}
791 
792 	return page;
793 }
794 
795 static int alloc_fresh_gigantic_page(struct hstate *h,
796 				nodemask_t *nodes_allowed)
797 {
798 	struct page *page = NULL;
799 	int nr_nodes, node;
800 
801 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 		page = alloc_fresh_gigantic_page_node(h, node);
803 		if (page)
804 			return 1;
805 	}
806 
807 	return 0;
808 }
809 
810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
812 static inline bool gigantic_page_supported(void) { return false; }
813 static inline void free_gigantic_page(struct page *page, unsigned order) { }
814 static inline void destroy_compound_gigantic_page(struct page *page,
815 						unsigned long order) { }
816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 					nodemask_t *nodes_allowed) { return 0; }
818 #endif
819 
820 static void update_and_free_page(struct hstate *h, struct page *page)
821 {
822 	int i;
823 
824 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 		return;
826 
827 	h->nr_huge_pages--;
828 	h->nr_huge_pages_node[page_to_nid(page)]--;
829 	for (i = 0; i < pages_per_huge_page(h); i++) {
830 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 				1 << PG_referenced | 1 << PG_dirty |
832 				1 << PG_active | 1 << PG_private |
833 				1 << PG_writeback);
834 	}
835 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836 	set_compound_page_dtor(page, NULL);
837 	set_page_refcounted(page);
838 	if (hstate_is_gigantic(h)) {
839 		destroy_compound_gigantic_page(page, huge_page_order(h));
840 		free_gigantic_page(page, huge_page_order(h));
841 	} else {
842 		arch_release_hugepage(page);
843 		__free_pages(page, huge_page_order(h));
844 	}
845 }
846 
847 struct hstate *size_to_hstate(unsigned long size)
848 {
849 	struct hstate *h;
850 
851 	for_each_hstate(h) {
852 		if (huge_page_size(h) == size)
853 			return h;
854 	}
855 	return NULL;
856 }
857 
858 void free_huge_page(struct page *page)
859 {
860 	/*
861 	 * Can't pass hstate in here because it is called from the
862 	 * compound page destructor.
863 	 */
864 	struct hstate *h = page_hstate(page);
865 	int nid = page_to_nid(page);
866 	struct hugepage_subpool *spool =
867 		(struct hugepage_subpool *)page_private(page);
868 	bool restore_reserve;
869 
870 	set_page_private(page, 0);
871 	page->mapping = NULL;
872 	BUG_ON(page_count(page));
873 	BUG_ON(page_mapcount(page));
874 	restore_reserve = PagePrivate(page);
875 	ClearPagePrivate(page);
876 
877 	spin_lock(&hugetlb_lock);
878 	hugetlb_cgroup_uncharge_page(hstate_index(h),
879 				     pages_per_huge_page(h), page);
880 	if (restore_reserve)
881 		h->resv_huge_pages++;
882 
883 	if (h->surplus_huge_pages_node[nid]) {
884 		/* remove the page from active list */
885 		list_del(&page->lru);
886 		update_and_free_page(h, page);
887 		h->surplus_huge_pages--;
888 		h->surplus_huge_pages_node[nid]--;
889 	} else {
890 		arch_clear_hugepage_flags(page);
891 		enqueue_huge_page(h, page);
892 	}
893 	spin_unlock(&hugetlb_lock);
894 	hugepage_subpool_put_pages(spool, 1);
895 }
896 
897 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
898 {
899 	INIT_LIST_HEAD(&page->lru);
900 	set_compound_page_dtor(page, free_huge_page);
901 	spin_lock(&hugetlb_lock);
902 	set_hugetlb_cgroup(page, NULL);
903 	h->nr_huge_pages++;
904 	h->nr_huge_pages_node[nid]++;
905 	spin_unlock(&hugetlb_lock);
906 	put_page(page); /* free it into the hugepage allocator */
907 }
908 
909 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
910 {
911 	int i;
912 	int nr_pages = 1 << order;
913 	struct page *p = page + 1;
914 
915 	/* we rely on prep_new_huge_page to set the destructor */
916 	set_compound_order(page, order);
917 	__SetPageHead(page);
918 	__ClearPageReserved(page);
919 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920 		/*
921 		 * For gigantic hugepages allocated through bootmem at
922 		 * boot, it's safer to be consistent with the not-gigantic
923 		 * hugepages and clear the PG_reserved bit from all tail pages
924 		 * too.  Otherwse drivers using get_user_pages() to access tail
925 		 * pages may get the reference counting wrong if they see
926 		 * PG_reserved set on a tail page (despite the head page not
927 		 * having PG_reserved set).  Enforcing this consistency between
928 		 * head and tail pages allows drivers to optimize away a check
929 		 * on the head page when they need know if put_page() is needed
930 		 * after get_user_pages().
931 		 */
932 		__ClearPageReserved(p);
933 		set_page_count(p, 0);
934 		p->first_page = page;
935 		/* Make sure p->first_page is always valid for PageTail() */
936 		smp_wmb();
937 		__SetPageTail(p);
938 	}
939 }
940 
941 /*
942  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
943  * transparent huge pages.  See the PageTransHuge() documentation for more
944  * details.
945  */
946 int PageHuge(struct page *page)
947 {
948 	if (!PageCompound(page))
949 		return 0;
950 
951 	page = compound_head(page);
952 	return get_compound_page_dtor(page) == free_huge_page;
953 }
954 EXPORT_SYMBOL_GPL(PageHuge);
955 
956 /*
957  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
958  * normal or transparent huge pages.
959  */
960 int PageHeadHuge(struct page *page_head)
961 {
962 	if (!PageHead(page_head))
963 		return 0;
964 
965 	return get_compound_page_dtor(page_head) == free_huge_page;
966 }
967 
968 pgoff_t __basepage_index(struct page *page)
969 {
970 	struct page *page_head = compound_head(page);
971 	pgoff_t index = page_index(page_head);
972 	unsigned long compound_idx;
973 
974 	if (!PageHuge(page_head))
975 		return page_index(page);
976 
977 	if (compound_order(page_head) >= MAX_ORDER)
978 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
979 	else
980 		compound_idx = page - page_head;
981 
982 	return (index << compound_order(page_head)) + compound_idx;
983 }
984 
985 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
986 {
987 	struct page *page;
988 
989 	page = alloc_pages_exact_node(nid,
990 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
991 						__GFP_REPEAT|__GFP_NOWARN,
992 		huge_page_order(h));
993 	if (page) {
994 		if (arch_prepare_hugepage(page)) {
995 			__free_pages(page, huge_page_order(h));
996 			return NULL;
997 		}
998 		prep_new_huge_page(h, page, nid);
999 	}
1000 
1001 	return page;
1002 }
1003 
1004 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1005 {
1006 	struct page *page;
1007 	int nr_nodes, node;
1008 	int ret = 0;
1009 
1010 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1011 		page = alloc_fresh_huge_page_node(h, node);
1012 		if (page) {
1013 			ret = 1;
1014 			break;
1015 		}
1016 	}
1017 
1018 	if (ret)
1019 		count_vm_event(HTLB_BUDDY_PGALLOC);
1020 	else
1021 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1022 
1023 	return ret;
1024 }
1025 
1026 /*
1027  * Free huge page from pool from next node to free.
1028  * Attempt to keep persistent huge pages more or less
1029  * balanced over allowed nodes.
1030  * Called with hugetlb_lock locked.
1031  */
1032 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1033 							 bool acct_surplus)
1034 {
1035 	int nr_nodes, node;
1036 	int ret = 0;
1037 
1038 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1039 		/*
1040 		 * If we're returning unused surplus pages, only examine
1041 		 * nodes with surplus pages.
1042 		 */
1043 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1044 		    !list_empty(&h->hugepage_freelists[node])) {
1045 			struct page *page =
1046 				list_entry(h->hugepage_freelists[node].next,
1047 					  struct page, lru);
1048 			list_del(&page->lru);
1049 			h->free_huge_pages--;
1050 			h->free_huge_pages_node[node]--;
1051 			if (acct_surplus) {
1052 				h->surplus_huge_pages--;
1053 				h->surplus_huge_pages_node[node]--;
1054 			}
1055 			update_and_free_page(h, page);
1056 			ret = 1;
1057 			break;
1058 		}
1059 	}
1060 
1061 	return ret;
1062 }
1063 
1064 /*
1065  * Dissolve a given free hugepage into free buddy pages. This function does
1066  * nothing for in-use (including surplus) hugepages.
1067  */
1068 static void dissolve_free_huge_page(struct page *page)
1069 {
1070 	spin_lock(&hugetlb_lock);
1071 	if (PageHuge(page) && !page_count(page)) {
1072 		struct hstate *h = page_hstate(page);
1073 		int nid = page_to_nid(page);
1074 		list_del(&page->lru);
1075 		h->free_huge_pages--;
1076 		h->free_huge_pages_node[nid]--;
1077 		update_and_free_page(h, page);
1078 	}
1079 	spin_unlock(&hugetlb_lock);
1080 }
1081 
1082 /*
1083  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1084  * make specified memory blocks removable from the system.
1085  * Note that start_pfn should aligned with (minimum) hugepage size.
1086  */
1087 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1088 {
1089 	unsigned int order = 8 * sizeof(void *);
1090 	unsigned long pfn;
1091 	struct hstate *h;
1092 
1093 	if (!hugepages_supported())
1094 		return;
1095 
1096 	/* Set scan step to minimum hugepage size */
1097 	for_each_hstate(h)
1098 		if (order > huge_page_order(h))
1099 			order = huge_page_order(h);
1100 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1101 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1102 		dissolve_free_huge_page(pfn_to_page(pfn));
1103 }
1104 
1105 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1106 {
1107 	struct page *page;
1108 	unsigned int r_nid;
1109 
1110 	if (hstate_is_gigantic(h))
1111 		return NULL;
1112 
1113 	/*
1114 	 * Assume we will successfully allocate the surplus page to
1115 	 * prevent racing processes from causing the surplus to exceed
1116 	 * overcommit
1117 	 *
1118 	 * This however introduces a different race, where a process B
1119 	 * tries to grow the static hugepage pool while alloc_pages() is
1120 	 * called by process A. B will only examine the per-node
1121 	 * counters in determining if surplus huge pages can be
1122 	 * converted to normal huge pages in adjust_pool_surplus(). A
1123 	 * won't be able to increment the per-node counter, until the
1124 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1125 	 * no more huge pages can be converted from surplus to normal
1126 	 * state (and doesn't try to convert again). Thus, we have a
1127 	 * case where a surplus huge page exists, the pool is grown, and
1128 	 * the surplus huge page still exists after, even though it
1129 	 * should just have been converted to a normal huge page. This
1130 	 * does not leak memory, though, as the hugepage will be freed
1131 	 * once it is out of use. It also does not allow the counters to
1132 	 * go out of whack in adjust_pool_surplus() as we don't modify
1133 	 * the node values until we've gotten the hugepage and only the
1134 	 * per-node value is checked there.
1135 	 */
1136 	spin_lock(&hugetlb_lock);
1137 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1138 		spin_unlock(&hugetlb_lock);
1139 		return NULL;
1140 	} else {
1141 		h->nr_huge_pages++;
1142 		h->surplus_huge_pages++;
1143 	}
1144 	spin_unlock(&hugetlb_lock);
1145 
1146 	if (nid == NUMA_NO_NODE)
1147 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1148 				   __GFP_REPEAT|__GFP_NOWARN,
1149 				   huge_page_order(h));
1150 	else
1151 		page = alloc_pages_exact_node(nid,
1152 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1153 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1154 
1155 	if (page && arch_prepare_hugepage(page)) {
1156 		__free_pages(page, huge_page_order(h));
1157 		page = NULL;
1158 	}
1159 
1160 	spin_lock(&hugetlb_lock);
1161 	if (page) {
1162 		INIT_LIST_HEAD(&page->lru);
1163 		r_nid = page_to_nid(page);
1164 		set_compound_page_dtor(page, free_huge_page);
1165 		set_hugetlb_cgroup(page, NULL);
1166 		/*
1167 		 * We incremented the global counters already
1168 		 */
1169 		h->nr_huge_pages_node[r_nid]++;
1170 		h->surplus_huge_pages_node[r_nid]++;
1171 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1172 	} else {
1173 		h->nr_huge_pages--;
1174 		h->surplus_huge_pages--;
1175 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1176 	}
1177 	spin_unlock(&hugetlb_lock);
1178 
1179 	return page;
1180 }
1181 
1182 /*
1183  * This allocation function is useful in the context where vma is irrelevant.
1184  * E.g. soft-offlining uses this function because it only cares physical
1185  * address of error page.
1186  */
1187 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1188 {
1189 	struct page *page = NULL;
1190 
1191 	spin_lock(&hugetlb_lock);
1192 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1193 		page = dequeue_huge_page_node(h, nid);
1194 	spin_unlock(&hugetlb_lock);
1195 
1196 	if (!page)
1197 		page = alloc_buddy_huge_page(h, nid);
1198 
1199 	return page;
1200 }
1201 
1202 /*
1203  * Increase the hugetlb pool such that it can accommodate a reservation
1204  * of size 'delta'.
1205  */
1206 static int gather_surplus_pages(struct hstate *h, int delta)
1207 {
1208 	struct list_head surplus_list;
1209 	struct page *page, *tmp;
1210 	int ret, i;
1211 	int needed, allocated;
1212 	bool alloc_ok = true;
1213 
1214 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1215 	if (needed <= 0) {
1216 		h->resv_huge_pages += delta;
1217 		return 0;
1218 	}
1219 
1220 	allocated = 0;
1221 	INIT_LIST_HEAD(&surplus_list);
1222 
1223 	ret = -ENOMEM;
1224 retry:
1225 	spin_unlock(&hugetlb_lock);
1226 	for (i = 0; i < needed; i++) {
1227 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1228 		if (!page) {
1229 			alloc_ok = false;
1230 			break;
1231 		}
1232 		list_add(&page->lru, &surplus_list);
1233 	}
1234 	allocated += i;
1235 
1236 	/*
1237 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1238 	 * because either resv_huge_pages or free_huge_pages may have changed.
1239 	 */
1240 	spin_lock(&hugetlb_lock);
1241 	needed = (h->resv_huge_pages + delta) -
1242 			(h->free_huge_pages + allocated);
1243 	if (needed > 0) {
1244 		if (alloc_ok)
1245 			goto retry;
1246 		/*
1247 		 * We were not able to allocate enough pages to
1248 		 * satisfy the entire reservation so we free what
1249 		 * we've allocated so far.
1250 		 */
1251 		goto free;
1252 	}
1253 	/*
1254 	 * The surplus_list now contains _at_least_ the number of extra pages
1255 	 * needed to accommodate the reservation.  Add the appropriate number
1256 	 * of pages to the hugetlb pool and free the extras back to the buddy
1257 	 * allocator.  Commit the entire reservation here to prevent another
1258 	 * process from stealing the pages as they are added to the pool but
1259 	 * before they are reserved.
1260 	 */
1261 	needed += allocated;
1262 	h->resv_huge_pages += delta;
1263 	ret = 0;
1264 
1265 	/* Free the needed pages to the hugetlb pool */
1266 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1267 		if ((--needed) < 0)
1268 			break;
1269 		/*
1270 		 * This page is now managed by the hugetlb allocator and has
1271 		 * no users -- drop the buddy allocator's reference.
1272 		 */
1273 		put_page_testzero(page);
1274 		VM_BUG_ON_PAGE(page_count(page), page);
1275 		enqueue_huge_page(h, page);
1276 	}
1277 free:
1278 	spin_unlock(&hugetlb_lock);
1279 
1280 	/* Free unnecessary surplus pages to the buddy allocator */
1281 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1282 		put_page(page);
1283 	spin_lock(&hugetlb_lock);
1284 
1285 	return ret;
1286 }
1287 
1288 /*
1289  * When releasing a hugetlb pool reservation, any surplus pages that were
1290  * allocated to satisfy the reservation must be explicitly freed if they were
1291  * never used.
1292  * Called with hugetlb_lock held.
1293  */
1294 static void return_unused_surplus_pages(struct hstate *h,
1295 					unsigned long unused_resv_pages)
1296 {
1297 	unsigned long nr_pages;
1298 
1299 	/* Uncommit the reservation */
1300 	h->resv_huge_pages -= unused_resv_pages;
1301 
1302 	/* Cannot return gigantic pages currently */
1303 	if (hstate_is_gigantic(h))
1304 		return;
1305 
1306 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1307 
1308 	/*
1309 	 * We want to release as many surplus pages as possible, spread
1310 	 * evenly across all nodes with memory. Iterate across these nodes
1311 	 * until we can no longer free unreserved surplus pages. This occurs
1312 	 * when the nodes with surplus pages have no free pages.
1313 	 * free_pool_huge_page() will balance the the freed pages across the
1314 	 * on-line nodes with memory and will handle the hstate accounting.
1315 	 */
1316 	while (nr_pages--) {
1317 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1318 			break;
1319 		cond_resched_lock(&hugetlb_lock);
1320 	}
1321 }
1322 
1323 /*
1324  * Determine if the huge page at addr within the vma has an associated
1325  * reservation.  Where it does not we will need to logically increase
1326  * reservation and actually increase subpool usage before an allocation
1327  * can occur.  Where any new reservation would be required the
1328  * reservation change is prepared, but not committed.  Once the page
1329  * has been allocated from the subpool and instantiated the change should
1330  * be committed via vma_commit_reservation.  No action is required on
1331  * failure.
1332  */
1333 static long vma_needs_reservation(struct hstate *h,
1334 			struct vm_area_struct *vma, unsigned long addr)
1335 {
1336 	struct resv_map *resv;
1337 	pgoff_t idx;
1338 	long chg;
1339 
1340 	resv = vma_resv_map(vma);
1341 	if (!resv)
1342 		return 1;
1343 
1344 	idx = vma_hugecache_offset(h, vma, addr);
1345 	chg = region_chg(resv, idx, idx + 1);
1346 
1347 	if (vma->vm_flags & VM_MAYSHARE)
1348 		return chg;
1349 	else
1350 		return chg < 0 ? chg : 0;
1351 }
1352 static void vma_commit_reservation(struct hstate *h,
1353 			struct vm_area_struct *vma, unsigned long addr)
1354 {
1355 	struct resv_map *resv;
1356 	pgoff_t idx;
1357 
1358 	resv = vma_resv_map(vma);
1359 	if (!resv)
1360 		return;
1361 
1362 	idx = vma_hugecache_offset(h, vma, addr);
1363 	region_add(resv, idx, idx + 1);
1364 }
1365 
1366 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1367 				    unsigned long addr, int avoid_reserve)
1368 {
1369 	struct hugepage_subpool *spool = subpool_vma(vma);
1370 	struct hstate *h = hstate_vma(vma);
1371 	struct page *page;
1372 	long chg;
1373 	int ret, idx;
1374 	struct hugetlb_cgroup *h_cg;
1375 
1376 	idx = hstate_index(h);
1377 	/*
1378 	 * Processes that did not create the mapping will have no
1379 	 * reserves and will not have accounted against subpool
1380 	 * limit. Check that the subpool limit can be made before
1381 	 * satisfying the allocation MAP_NORESERVE mappings may also
1382 	 * need pages and subpool limit allocated allocated if no reserve
1383 	 * mapping overlaps.
1384 	 */
1385 	chg = vma_needs_reservation(h, vma, addr);
1386 	if (chg < 0)
1387 		return ERR_PTR(-ENOMEM);
1388 	if (chg || avoid_reserve)
1389 		if (hugepage_subpool_get_pages(spool, 1))
1390 			return ERR_PTR(-ENOSPC);
1391 
1392 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1393 	if (ret)
1394 		goto out_subpool_put;
1395 
1396 	spin_lock(&hugetlb_lock);
1397 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1398 	if (!page) {
1399 		spin_unlock(&hugetlb_lock);
1400 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1401 		if (!page)
1402 			goto out_uncharge_cgroup;
1403 
1404 		spin_lock(&hugetlb_lock);
1405 		list_move(&page->lru, &h->hugepage_activelist);
1406 		/* Fall through */
1407 	}
1408 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1409 	spin_unlock(&hugetlb_lock);
1410 
1411 	set_page_private(page, (unsigned long)spool);
1412 
1413 	vma_commit_reservation(h, vma, addr);
1414 	return page;
1415 
1416 out_uncharge_cgroup:
1417 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1418 out_subpool_put:
1419 	if (chg || avoid_reserve)
1420 		hugepage_subpool_put_pages(spool, 1);
1421 	return ERR_PTR(-ENOSPC);
1422 }
1423 
1424 /*
1425  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1426  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1427  * where no ERR_VALUE is expected to be returned.
1428  */
1429 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1430 				unsigned long addr, int avoid_reserve)
1431 {
1432 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1433 	if (IS_ERR(page))
1434 		page = NULL;
1435 	return page;
1436 }
1437 
1438 int __weak alloc_bootmem_huge_page(struct hstate *h)
1439 {
1440 	struct huge_bootmem_page *m;
1441 	int nr_nodes, node;
1442 
1443 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1444 		void *addr;
1445 
1446 		addr = memblock_virt_alloc_try_nid_nopanic(
1447 				huge_page_size(h), huge_page_size(h),
1448 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1449 		if (addr) {
1450 			/*
1451 			 * Use the beginning of the huge page to store the
1452 			 * huge_bootmem_page struct (until gather_bootmem
1453 			 * puts them into the mem_map).
1454 			 */
1455 			m = addr;
1456 			goto found;
1457 		}
1458 	}
1459 	return 0;
1460 
1461 found:
1462 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1463 	/* Put them into a private list first because mem_map is not up yet */
1464 	list_add(&m->list, &huge_boot_pages);
1465 	m->hstate = h;
1466 	return 1;
1467 }
1468 
1469 static void __init prep_compound_huge_page(struct page *page, int order)
1470 {
1471 	if (unlikely(order > (MAX_ORDER - 1)))
1472 		prep_compound_gigantic_page(page, order);
1473 	else
1474 		prep_compound_page(page, order);
1475 }
1476 
1477 /* Put bootmem huge pages into the standard lists after mem_map is up */
1478 static void __init gather_bootmem_prealloc(void)
1479 {
1480 	struct huge_bootmem_page *m;
1481 
1482 	list_for_each_entry(m, &huge_boot_pages, list) {
1483 		struct hstate *h = m->hstate;
1484 		struct page *page;
1485 
1486 #ifdef CONFIG_HIGHMEM
1487 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1488 		memblock_free_late(__pa(m),
1489 				   sizeof(struct huge_bootmem_page));
1490 #else
1491 		page = virt_to_page(m);
1492 #endif
1493 		WARN_ON(page_count(page) != 1);
1494 		prep_compound_huge_page(page, h->order);
1495 		WARN_ON(PageReserved(page));
1496 		prep_new_huge_page(h, page, page_to_nid(page));
1497 		/*
1498 		 * If we had gigantic hugepages allocated at boot time, we need
1499 		 * to restore the 'stolen' pages to totalram_pages in order to
1500 		 * fix confusing memory reports from free(1) and another
1501 		 * side-effects, like CommitLimit going negative.
1502 		 */
1503 		if (hstate_is_gigantic(h))
1504 			adjust_managed_page_count(page, 1 << h->order);
1505 	}
1506 }
1507 
1508 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1509 {
1510 	unsigned long i;
1511 
1512 	for (i = 0; i < h->max_huge_pages; ++i) {
1513 		if (hstate_is_gigantic(h)) {
1514 			if (!alloc_bootmem_huge_page(h))
1515 				break;
1516 		} else if (!alloc_fresh_huge_page(h,
1517 					 &node_states[N_MEMORY]))
1518 			break;
1519 	}
1520 	h->max_huge_pages = i;
1521 }
1522 
1523 static void __init hugetlb_init_hstates(void)
1524 {
1525 	struct hstate *h;
1526 
1527 	for_each_hstate(h) {
1528 		/* oversize hugepages were init'ed in early boot */
1529 		if (!hstate_is_gigantic(h))
1530 			hugetlb_hstate_alloc_pages(h);
1531 	}
1532 }
1533 
1534 static char * __init memfmt(char *buf, unsigned long n)
1535 {
1536 	if (n >= (1UL << 30))
1537 		sprintf(buf, "%lu GB", n >> 30);
1538 	else if (n >= (1UL << 20))
1539 		sprintf(buf, "%lu MB", n >> 20);
1540 	else
1541 		sprintf(buf, "%lu KB", n >> 10);
1542 	return buf;
1543 }
1544 
1545 static void __init report_hugepages(void)
1546 {
1547 	struct hstate *h;
1548 
1549 	for_each_hstate(h) {
1550 		char buf[32];
1551 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1552 			memfmt(buf, huge_page_size(h)),
1553 			h->free_huge_pages);
1554 	}
1555 }
1556 
1557 #ifdef CONFIG_HIGHMEM
1558 static void try_to_free_low(struct hstate *h, unsigned long count,
1559 						nodemask_t *nodes_allowed)
1560 {
1561 	int i;
1562 
1563 	if (hstate_is_gigantic(h))
1564 		return;
1565 
1566 	for_each_node_mask(i, *nodes_allowed) {
1567 		struct page *page, *next;
1568 		struct list_head *freel = &h->hugepage_freelists[i];
1569 		list_for_each_entry_safe(page, next, freel, lru) {
1570 			if (count >= h->nr_huge_pages)
1571 				return;
1572 			if (PageHighMem(page))
1573 				continue;
1574 			list_del(&page->lru);
1575 			update_and_free_page(h, page);
1576 			h->free_huge_pages--;
1577 			h->free_huge_pages_node[page_to_nid(page)]--;
1578 		}
1579 	}
1580 }
1581 #else
1582 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1583 						nodemask_t *nodes_allowed)
1584 {
1585 }
1586 #endif
1587 
1588 /*
1589  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1590  * balanced by operating on them in a round-robin fashion.
1591  * Returns 1 if an adjustment was made.
1592  */
1593 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1594 				int delta)
1595 {
1596 	int nr_nodes, node;
1597 
1598 	VM_BUG_ON(delta != -1 && delta != 1);
1599 
1600 	if (delta < 0) {
1601 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1602 			if (h->surplus_huge_pages_node[node])
1603 				goto found;
1604 		}
1605 	} else {
1606 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1607 			if (h->surplus_huge_pages_node[node] <
1608 					h->nr_huge_pages_node[node])
1609 				goto found;
1610 		}
1611 	}
1612 	return 0;
1613 
1614 found:
1615 	h->surplus_huge_pages += delta;
1616 	h->surplus_huge_pages_node[node] += delta;
1617 	return 1;
1618 }
1619 
1620 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1621 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1622 						nodemask_t *nodes_allowed)
1623 {
1624 	unsigned long min_count, ret;
1625 
1626 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1627 		return h->max_huge_pages;
1628 
1629 	/*
1630 	 * Increase the pool size
1631 	 * First take pages out of surplus state.  Then make up the
1632 	 * remaining difference by allocating fresh huge pages.
1633 	 *
1634 	 * We might race with alloc_buddy_huge_page() here and be unable
1635 	 * to convert a surplus huge page to a normal huge page. That is
1636 	 * not critical, though, it just means the overall size of the
1637 	 * pool might be one hugepage larger than it needs to be, but
1638 	 * within all the constraints specified by the sysctls.
1639 	 */
1640 	spin_lock(&hugetlb_lock);
1641 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1642 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1643 			break;
1644 	}
1645 
1646 	while (count > persistent_huge_pages(h)) {
1647 		/*
1648 		 * If this allocation races such that we no longer need the
1649 		 * page, free_huge_page will handle it by freeing the page
1650 		 * and reducing the surplus.
1651 		 */
1652 		spin_unlock(&hugetlb_lock);
1653 		if (hstate_is_gigantic(h))
1654 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1655 		else
1656 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1657 		spin_lock(&hugetlb_lock);
1658 		if (!ret)
1659 			goto out;
1660 
1661 		/* Bail for signals. Probably ctrl-c from user */
1662 		if (signal_pending(current))
1663 			goto out;
1664 	}
1665 
1666 	/*
1667 	 * Decrease the pool size
1668 	 * First return free pages to the buddy allocator (being careful
1669 	 * to keep enough around to satisfy reservations).  Then place
1670 	 * pages into surplus state as needed so the pool will shrink
1671 	 * to the desired size as pages become free.
1672 	 *
1673 	 * By placing pages into the surplus state independent of the
1674 	 * overcommit value, we are allowing the surplus pool size to
1675 	 * exceed overcommit. There are few sane options here. Since
1676 	 * alloc_buddy_huge_page() is checking the global counter,
1677 	 * though, we'll note that we're not allowed to exceed surplus
1678 	 * and won't grow the pool anywhere else. Not until one of the
1679 	 * sysctls are changed, or the surplus pages go out of use.
1680 	 */
1681 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1682 	min_count = max(count, min_count);
1683 	try_to_free_low(h, min_count, nodes_allowed);
1684 	while (min_count < persistent_huge_pages(h)) {
1685 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1686 			break;
1687 		cond_resched_lock(&hugetlb_lock);
1688 	}
1689 	while (count < persistent_huge_pages(h)) {
1690 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1691 			break;
1692 	}
1693 out:
1694 	ret = persistent_huge_pages(h);
1695 	spin_unlock(&hugetlb_lock);
1696 	return ret;
1697 }
1698 
1699 #define HSTATE_ATTR_RO(_name) \
1700 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1701 
1702 #define HSTATE_ATTR(_name) \
1703 	static struct kobj_attribute _name##_attr = \
1704 		__ATTR(_name, 0644, _name##_show, _name##_store)
1705 
1706 static struct kobject *hugepages_kobj;
1707 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1708 
1709 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1710 
1711 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1712 {
1713 	int i;
1714 
1715 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1716 		if (hstate_kobjs[i] == kobj) {
1717 			if (nidp)
1718 				*nidp = NUMA_NO_NODE;
1719 			return &hstates[i];
1720 		}
1721 
1722 	return kobj_to_node_hstate(kobj, nidp);
1723 }
1724 
1725 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1726 					struct kobj_attribute *attr, char *buf)
1727 {
1728 	struct hstate *h;
1729 	unsigned long nr_huge_pages;
1730 	int nid;
1731 
1732 	h = kobj_to_hstate(kobj, &nid);
1733 	if (nid == NUMA_NO_NODE)
1734 		nr_huge_pages = h->nr_huge_pages;
1735 	else
1736 		nr_huge_pages = h->nr_huge_pages_node[nid];
1737 
1738 	return sprintf(buf, "%lu\n", nr_huge_pages);
1739 }
1740 
1741 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1742 					   struct hstate *h, int nid,
1743 					   unsigned long count, size_t len)
1744 {
1745 	int err;
1746 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1747 
1748 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1749 		err = -EINVAL;
1750 		goto out;
1751 	}
1752 
1753 	if (nid == NUMA_NO_NODE) {
1754 		/*
1755 		 * global hstate attribute
1756 		 */
1757 		if (!(obey_mempolicy &&
1758 				init_nodemask_of_mempolicy(nodes_allowed))) {
1759 			NODEMASK_FREE(nodes_allowed);
1760 			nodes_allowed = &node_states[N_MEMORY];
1761 		}
1762 	} else if (nodes_allowed) {
1763 		/*
1764 		 * per node hstate attribute: adjust count to global,
1765 		 * but restrict alloc/free to the specified node.
1766 		 */
1767 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1768 		init_nodemask_of_node(nodes_allowed, nid);
1769 	} else
1770 		nodes_allowed = &node_states[N_MEMORY];
1771 
1772 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1773 
1774 	if (nodes_allowed != &node_states[N_MEMORY])
1775 		NODEMASK_FREE(nodes_allowed);
1776 
1777 	return len;
1778 out:
1779 	NODEMASK_FREE(nodes_allowed);
1780 	return err;
1781 }
1782 
1783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1784 					 struct kobject *kobj, const char *buf,
1785 					 size_t len)
1786 {
1787 	struct hstate *h;
1788 	unsigned long count;
1789 	int nid;
1790 	int err;
1791 
1792 	err = kstrtoul(buf, 10, &count);
1793 	if (err)
1794 		return err;
1795 
1796 	h = kobj_to_hstate(kobj, &nid);
1797 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1798 }
1799 
1800 static ssize_t nr_hugepages_show(struct kobject *kobj,
1801 				       struct kobj_attribute *attr, char *buf)
1802 {
1803 	return nr_hugepages_show_common(kobj, attr, buf);
1804 }
1805 
1806 static ssize_t nr_hugepages_store(struct kobject *kobj,
1807 	       struct kobj_attribute *attr, const char *buf, size_t len)
1808 {
1809 	return nr_hugepages_store_common(false, kobj, buf, len);
1810 }
1811 HSTATE_ATTR(nr_hugepages);
1812 
1813 #ifdef CONFIG_NUMA
1814 
1815 /*
1816  * hstate attribute for optionally mempolicy-based constraint on persistent
1817  * huge page alloc/free.
1818  */
1819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1820 				       struct kobj_attribute *attr, char *buf)
1821 {
1822 	return nr_hugepages_show_common(kobj, attr, buf);
1823 }
1824 
1825 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1826 	       struct kobj_attribute *attr, const char *buf, size_t len)
1827 {
1828 	return nr_hugepages_store_common(true, kobj, buf, len);
1829 }
1830 HSTATE_ATTR(nr_hugepages_mempolicy);
1831 #endif
1832 
1833 
1834 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1835 					struct kobj_attribute *attr, char *buf)
1836 {
1837 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1838 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1839 }
1840 
1841 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1842 		struct kobj_attribute *attr, const char *buf, size_t count)
1843 {
1844 	int err;
1845 	unsigned long input;
1846 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1847 
1848 	if (hstate_is_gigantic(h))
1849 		return -EINVAL;
1850 
1851 	err = kstrtoul(buf, 10, &input);
1852 	if (err)
1853 		return err;
1854 
1855 	spin_lock(&hugetlb_lock);
1856 	h->nr_overcommit_huge_pages = input;
1857 	spin_unlock(&hugetlb_lock);
1858 
1859 	return count;
1860 }
1861 HSTATE_ATTR(nr_overcommit_hugepages);
1862 
1863 static ssize_t free_hugepages_show(struct kobject *kobj,
1864 					struct kobj_attribute *attr, char *buf)
1865 {
1866 	struct hstate *h;
1867 	unsigned long free_huge_pages;
1868 	int nid;
1869 
1870 	h = kobj_to_hstate(kobj, &nid);
1871 	if (nid == NUMA_NO_NODE)
1872 		free_huge_pages = h->free_huge_pages;
1873 	else
1874 		free_huge_pages = h->free_huge_pages_node[nid];
1875 
1876 	return sprintf(buf, "%lu\n", free_huge_pages);
1877 }
1878 HSTATE_ATTR_RO(free_hugepages);
1879 
1880 static ssize_t resv_hugepages_show(struct kobject *kobj,
1881 					struct kobj_attribute *attr, char *buf)
1882 {
1883 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1884 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1885 }
1886 HSTATE_ATTR_RO(resv_hugepages);
1887 
1888 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1889 					struct kobj_attribute *attr, char *buf)
1890 {
1891 	struct hstate *h;
1892 	unsigned long surplus_huge_pages;
1893 	int nid;
1894 
1895 	h = kobj_to_hstate(kobj, &nid);
1896 	if (nid == NUMA_NO_NODE)
1897 		surplus_huge_pages = h->surplus_huge_pages;
1898 	else
1899 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1900 
1901 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1902 }
1903 HSTATE_ATTR_RO(surplus_hugepages);
1904 
1905 static struct attribute *hstate_attrs[] = {
1906 	&nr_hugepages_attr.attr,
1907 	&nr_overcommit_hugepages_attr.attr,
1908 	&free_hugepages_attr.attr,
1909 	&resv_hugepages_attr.attr,
1910 	&surplus_hugepages_attr.attr,
1911 #ifdef CONFIG_NUMA
1912 	&nr_hugepages_mempolicy_attr.attr,
1913 #endif
1914 	NULL,
1915 };
1916 
1917 static struct attribute_group hstate_attr_group = {
1918 	.attrs = hstate_attrs,
1919 };
1920 
1921 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1922 				    struct kobject **hstate_kobjs,
1923 				    struct attribute_group *hstate_attr_group)
1924 {
1925 	int retval;
1926 	int hi = hstate_index(h);
1927 
1928 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1929 	if (!hstate_kobjs[hi])
1930 		return -ENOMEM;
1931 
1932 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1933 	if (retval)
1934 		kobject_put(hstate_kobjs[hi]);
1935 
1936 	return retval;
1937 }
1938 
1939 static void __init hugetlb_sysfs_init(void)
1940 {
1941 	struct hstate *h;
1942 	int err;
1943 
1944 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1945 	if (!hugepages_kobj)
1946 		return;
1947 
1948 	for_each_hstate(h) {
1949 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1950 					 hstate_kobjs, &hstate_attr_group);
1951 		if (err)
1952 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1953 	}
1954 }
1955 
1956 #ifdef CONFIG_NUMA
1957 
1958 /*
1959  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1960  * with node devices in node_devices[] using a parallel array.  The array
1961  * index of a node device or _hstate == node id.
1962  * This is here to avoid any static dependency of the node device driver, in
1963  * the base kernel, on the hugetlb module.
1964  */
1965 struct node_hstate {
1966 	struct kobject		*hugepages_kobj;
1967 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1968 };
1969 struct node_hstate node_hstates[MAX_NUMNODES];
1970 
1971 /*
1972  * A subset of global hstate attributes for node devices
1973  */
1974 static struct attribute *per_node_hstate_attrs[] = {
1975 	&nr_hugepages_attr.attr,
1976 	&free_hugepages_attr.attr,
1977 	&surplus_hugepages_attr.attr,
1978 	NULL,
1979 };
1980 
1981 static struct attribute_group per_node_hstate_attr_group = {
1982 	.attrs = per_node_hstate_attrs,
1983 };
1984 
1985 /*
1986  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1987  * Returns node id via non-NULL nidp.
1988  */
1989 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1990 {
1991 	int nid;
1992 
1993 	for (nid = 0; nid < nr_node_ids; nid++) {
1994 		struct node_hstate *nhs = &node_hstates[nid];
1995 		int i;
1996 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1997 			if (nhs->hstate_kobjs[i] == kobj) {
1998 				if (nidp)
1999 					*nidp = nid;
2000 				return &hstates[i];
2001 			}
2002 	}
2003 
2004 	BUG();
2005 	return NULL;
2006 }
2007 
2008 /*
2009  * Unregister hstate attributes from a single node device.
2010  * No-op if no hstate attributes attached.
2011  */
2012 static void hugetlb_unregister_node(struct node *node)
2013 {
2014 	struct hstate *h;
2015 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2016 
2017 	if (!nhs->hugepages_kobj)
2018 		return;		/* no hstate attributes */
2019 
2020 	for_each_hstate(h) {
2021 		int idx = hstate_index(h);
2022 		if (nhs->hstate_kobjs[idx]) {
2023 			kobject_put(nhs->hstate_kobjs[idx]);
2024 			nhs->hstate_kobjs[idx] = NULL;
2025 		}
2026 	}
2027 
2028 	kobject_put(nhs->hugepages_kobj);
2029 	nhs->hugepages_kobj = NULL;
2030 }
2031 
2032 /*
2033  * hugetlb module exit:  unregister hstate attributes from node devices
2034  * that have them.
2035  */
2036 static void hugetlb_unregister_all_nodes(void)
2037 {
2038 	int nid;
2039 
2040 	/*
2041 	 * disable node device registrations.
2042 	 */
2043 	register_hugetlbfs_with_node(NULL, NULL);
2044 
2045 	/*
2046 	 * remove hstate attributes from any nodes that have them.
2047 	 */
2048 	for (nid = 0; nid < nr_node_ids; nid++)
2049 		hugetlb_unregister_node(node_devices[nid]);
2050 }
2051 
2052 /*
2053  * Register hstate attributes for a single node device.
2054  * No-op if attributes already registered.
2055  */
2056 static void hugetlb_register_node(struct node *node)
2057 {
2058 	struct hstate *h;
2059 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2060 	int err;
2061 
2062 	if (nhs->hugepages_kobj)
2063 		return;		/* already allocated */
2064 
2065 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2066 							&node->dev.kobj);
2067 	if (!nhs->hugepages_kobj)
2068 		return;
2069 
2070 	for_each_hstate(h) {
2071 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2072 						nhs->hstate_kobjs,
2073 						&per_node_hstate_attr_group);
2074 		if (err) {
2075 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2076 				h->name, node->dev.id);
2077 			hugetlb_unregister_node(node);
2078 			break;
2079 		}
2080 	}
2081 }
2082 
2083 /*
2084  * hugetlb init time:  register hstate attributes for all registered node
2085  * devices of nodes that have memory.  All on-line nodes should have
2086  * registered their associated device by this time.
2087  */
2088 static void __init hugetlb_register_all_nodes(void)
2089 {
2090 	int nid;
2091 
2092 	for_each_node_state(nid, N_MEMORY) {
2093 		struct node *node = node_devices[nid];
2094 		if (node->dev.id == nid)
2095 			hugetlb_register_node(node);
2096 	}
2097 
2098 	/*
2099 	 * Let the node device driver know we're here so it can
2100 	 * [un]register hstate attributes on node hotplug.
2101 	 */
2102 	register_hugetlbfs_with_node(hugetlb_register_node,
2103 				     hugetlb_unregister_node);
2104 }
2105 #else	/* !CONFIG_NUMA */
2106 
2107 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2108 {
2109 	BUG();
2110 	if (nidp)
2111 		*nidp = -1;
2112 	return NULL;
2113 }
2114 
2115 static void hugetlb_unregister_all_nodes(void) { }
2116 
2117 static void hugetlb_register_all_nodes(void) { }
2118 
2119 #endif
2120 
2121 static void __exit hugetlb_exit(void)
2122 {
2123 	struct hstate *h;
2124 
2125 	hugetlb_unregister_all_nodes();
2126 
2127 	for_each_hstate(h) {
2128 		kobject_put(hstate_kobjs[hstate_index(h)]);
2129 	}
2130 
2131 	kobject_put(hugepages_kobj);
2132 	kfree(htlb_fault_mutex_table);
2133 }
2134 module_exit(hugetlb_exit);
2135 
2136 static int __init hugetlb_init(void)
2137 {
2138 	int i;
2139 
2140 	if (!hugepages_supported())
2141 		return 0;
2142 
2143 	if (!size_to_hstate(default_hstate_size)) {
2144 		default_hstate_size = HPAGE_SIZE;
2145 		if (!size_to_hstate(default_hstate_size))
2146 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2147 	}
2148 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2149 	if (default_hstate_max_huge_pages)
2150 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2151 
2152 	hugetlb_init_hstates();
2153 	gather_bootmem_prealloc();
2154 	report_hugepages();
2155 
2156 	hugetlb_sysfs_init();
2157 	hugetlb_register_all_nodes();
2158 	hugetlb_cgroup_file_init();
2159 
2160 #ifdef CONFIG_SMP
2161 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2162 #else
2163 	num_fault_mutexes = 1;
2164 #endif
2165 	htlb_fault_mutex_table =
2166 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2167 	BUG_ON(!htlb_fault_mutex_table);
2168 
2169 	for (i = 0; i < num_fault_mutexes; i++)
2170 		mutex_init(&htlb_fault_mutex_table[i]);
2171 	return 0;
2172 }
2173 module_init(hugetlb_init);
2174 
2175 /* Should be called on processing a hugepagesz=... option */
2176 void __init hugetlb_add_hstate(unsigned order)
2177 {
2178 	struct hstate *h;
2179 	unsigned long i;
2180 
2181 	if (size_to_hstate(PAGE_SIZE << order)) {
2182 		pr_warning("hugepagesz= specified twice, ignoring\n");
2183 		return;
2184 	}
2185 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2186 	BUG_ON(order == 0);
2187 	h = &hstates[hugetlb_max_hstate++];
2188 	h->order = order;
2189 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2190 	h->nr_huge_pages = 0;
2191 	h->free_huge_pages = 0;
2192 	for (i = 0; i < MAX_NUMNODES; ++i)
2193 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2194 	INIT_LIST_HEAD(&h->hugepage_activelist);
2195 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2196 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2197 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2198 					huge_page_size(h)/1024);
2199 
2200 	parsed_hstate = h;
2201 }
2202 
2203 static int __init hugetlb_nrpages_setup(char *s)
2204 {
2205 	unsigned long *mhp;
2206 	static unsigned long *last_mhp;
2207 
2208 	/*
2209 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2210 	 * so this hugepages= parameter goes to the "default hstate".
2211 	 */
2212 	if (!hugetlb_max_hstate)
2213 		mhp = &default_hstate_max_huge_pages;
2214 	else
2215 		mhp = &parsed_hstate->max_huge_pages;
2216 
2217 	if (mhp == last_mhp) {
2218 		pr_warning("hugepages= specified twice without "
2219 			   "interleaving hugepagesz=, ignoring\n");
2220 		return 1;
2221 	}
2222 
2223 	if (sscanf(s, "%lu", mhp) <= 0)
2224 		*mhp = 0;
2225 
2226 	/*
2227 	 * Global state is always initialized later in hugetlb_init.
2228 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2229 	 * use the bootmem allocator.
2230 	 */
2231 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2232 		hugetlb_hstate_alloc_pages(parsed_hstate);
2233 
2234 	last_mhp = mhp;
2235 
2236 	return 1;
2237 }
2238 __setup("hugepages=", hugetlb_nrpages_setup);
2239 
2240 static int __init hugetlb_default_setup(char *s)
2241 {
2242 	default_hstate_size = memparse(s, &s);
2243 	return 1;
2244 }
2245 __setup("default_hugepagesz=", hugetlb_default_setup);
2246 
2247 static unsigned int cpuset_mems_nr(unsigned int *array)
2248 {
2249 	int node;
2250 	unsigned int nr = 0;
2251 
2252 	for_each_node_mask(node, cpuset_current_mems_allowed)
2253 		nr += array[node];
2254 
2255 	return nr;
2256 }
2257 
2258 #ifdef CONFIG_SYSCTL
2259 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2260 			 struct ctl_table *table, int write,
2261 			 void __user *buffer, size_t *length, loff_t *ppos)
2262 {
2263 	struct hstate *h = &default_hstate;
2264 	unsigned long tmp = h->max_huge_pages;
2265 	int ret;
2266 
2267 	if (!hugepages_supported())
2268 		return -ENOTSUPP;
2269 
2270 	table->data = &tmp;
2271 	table->maxlen = sizeof(unsigned long);
2272 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2273 	if (ret)
2274 		goto out;
2275 
2276 	if (write)
2277 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2278 						  NUMA_NO_NODE, tmp, *length);
2279 out:
2280 	return ret;
2281 }
2282 
2283 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2284 			  void __user *buffer, size_t *length, loff_t *ppos)
2285 {
2286 
2287 	return hugetlb_sysctl_handler_common(false, table, write,
2288 							buffer, length, ppos);
2289 }
2290 
2291 #ifdef CONFIG_NUMA
2292 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2293 			  void __user *buffer, size_t *length, loff_t *ppos)
2294 {
2295 	return hugetlb_sysctl_handler_common(true, table, write,
2296 							buffer, length, ppos);
2297 }
2298 #endif /* CONFIG_NUMA */
2299 
2300 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2301 			void __user *buffer,
2302 			size_t *length, loff_t *ppos)
2303 {
2304 	struct hstate *h = &default_hstate;
2305 	unsigned long tmp;
2306 	int ret;
2307 
2308 	if (!hugepages_supported())
2309 		return -ENOTSUPP;
2310 
2311 	tmp = h->nr_overcommit_huge_pages;
2312 
2313 	if (write && hstate_is_gigantic(h))
2314 		return -EINVAL;
2315 
2316 	table->data = &tmp;
2317 	table->maxlen = sizeof(unsigned long);
2318 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2319 	if (ret)
2320 		goto out;
2321 
2322 	if (write) {
2323 		spin_lock(&hugetlb_lock);
2324 		h->nr_overcommit_huge_pages = tmp;
2325 		spin_unlock(&hugetlb_lock);
2326 	}
2327 out:
2328 	return ret;
2329 }
2330 
2331 #endif /* CONFIG_SYSCTL */
2332 
2333 void hugetlb_report_meminfo(struct seq_file *m)
2334 {
2335 	struct hstate *h = &default_hstate;
2336 	if (!hugepages_supported())
2337 		return;
2338 	seq_printf(m,
2339 			"HugePages_Total:   %5lu\n"
2340 			"HugePages_Free:    %5lu\n"
2341 			"HugePages_Rsvd:    %5lu\n"
2342 			"HugePages_Surp:    %5lu\n"
2343 			"Hugepagesize:   %8lu kB\n",
2344 			h->nr_huge_pages,
2345 			h->free_huge_pages,
2346 			h->resv_huge_pages,
2347 			h->surplus_huge_pages,
2348 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2349 }
2350 
2351 int hugetlb_report_node_meminfo(int nid, char *buf)
2352 {
2353 	struct hstate *h = &default_hstate;
2354 	if (!hugepages_supported())
2355 		return 0;
2356 	return sprintf(buf,
2357 		"Node %d HugePages_Total: %5u\n"
2358 		"Node %d HugePages_Free:  %5u\n"
2359 		"Node %d HugePages_Surp:  %5u\n",
2360 		nid, h->nr_huge_pages_node[nid],
2361 		nid, h->free_huge_pages_node[nid],
2362 		nid, h->surplus_huge_pages_node[nid]);
2363 }
2364 
2365 void hugetlb_show_meminfo(void)
2366 {
2367 	struct hstate *h;
2368 	int nid;
2369 
2370 	if (!hugepages_supported())
2371 		return;
2372 
2373 	for_each_node_state(nid, N_MEMORY)
2374 		for_each_hstate(h)
2375 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2376 				nid,
2377 				h->nr_huge_pages_node[nid],
2378 				h->free_huge_pages_node[nid],
2379 				h->surplus_huge_pages_node[nid],
2380 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2381 }
2382 
2383 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2384 unsigned long hugetlb_total_pages(void)
2385 {
2386 	struct hstate *h;
2387 	unsigned long nr_total_pages = 0;
2388 
2389 	for_each_hstate(h)
2390 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2391 	return nr_total_pages;
2392 }
2393 
2394 static int hugetlb_acct_memory(struct hstate *h, long delta)
2395 {
2396 	int ret = -ENOMEM;
2397 
2398 	spin_lock(&hugetlb_lock);
2399 	/*
2400 	 * When cpuset is configured, it breaks the strict hugetlb page
2401 	 * reservation as the accounting is done on a global variable. Such
2402 	 * reservation is completely rubbish in the presence of cpuset because
2403 	 * the reservation is not checked against page availability for the
2404 	 * current cpuset. Application can still potentially OOM'ed by kernel
2405 	 * with lack of free htlb page in cpuset that the task is in.
2406 	 * Attempt to enforce strict accounting with cpuset is almost
2407 	 * impossible (or too ugly) because cpuset is too fluid that
2408 	 * task or memory node can be dynamically moved between cpusets.
2409 	 *
2410 	 * The change of semantics for shared hugetlb mapping with cpuset is
2411 	 * undesirable. However, in order to preserve some of the semantics,
2412 	 * we fall back to check against current free page availability as
2413 	 * a best attempt and hopefully to minimize the impact of changing
2414 	 * semantics that cpuset has.
2415 	 */
2416 	if (delta > 0) {
2417 		if (gather_surplus_pages(h, delta) < 0)
2418 			goto out;
2419 
2420 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2421 			return_unused_surplus_pages(h, delta);
2422 			goto out;
2423 		}
2424 	}
2425 
2426 	ret = 0;
2427 	if (delta < 0)
2428 		return_unused_surplus_pages(h, (unsigned long) -delta);
2429 
2430 out:
2431 	spin_unlock(&hugetlb_lock);
2432 	return ret;
2433 }
2434 
2435 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2436 {
2437 	struct resv_map *resv = vma_resv_map(vma);
2438 
2439 	/*
2440 	 * This new VMA should share its siblings reservation map if present.
2441 	 * The VMA will only ever have a valid reservation map pointer where
2442 	 * it is being copied for another still existing VMA.  As that VMA
2443 	 * has a reference to the reservation map it cannot disappear until
2444 	 * after this open call completes.  It is therefore safe to take a
2445 	 * new reference here without additional locking.
2446 	 */
2447 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2448 		kref_get(&resv->refs);
2449 }
2450 
2451 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2452 {
2453 	struct hstate *h = hstate_vma(vma);
2454 	struct resv_map *resv = vma_resv_map(vma);
2455 	struct hugepage_subpool *spool = subpool_vma(vma);
2456 	unsigned long reserve, start, end;
2457 
2458 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2459 		return;
2460 
2461 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2462 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2463 
2464 	reserve = (end - start) - region_count(resv, start, end);
2465 
2466 	kref_put(&resv->refs, resv_map_release);
2467 
2468 	if (reserve) {
2469 		hugetlb_acct_memory(h, -reserve);
2470 		hugepage_subpool_put_pages(spool, reserve);
2471 	}
2472 }
2473 
2474 /*
2475  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2476  * handle_mm_fault() to try to instantiate regular-sized pages in the
2477  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2478  * this far.
2479  */
2480 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2481 {
2482 	BUG();
2483 	return 0;
2484 }
2485 
2486 const struct vm_operations_struct hugetlb_vm_ops = {
2487 	.fault = hugetlb_vm_op_fault,
2488 	.open = hugetlb_vm_op_open,
2489 	.close = hugetlb_vm_op_close,
2490 };
2491 
2492 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2493 				int writable)
2494 {
2495 	pte_t entry;
2496 
2497 	if (writable) {
2498 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2499 					 vma->vm_page_prot)));
2500 	} else {
2501 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2502 					   vma->vm_page_prot));
2503 	}
2504 	entry = pte_mkyoung(entry);
2505 	entry = pte_mkhuge(entry);
2506 	entry = arch_make_huge_pte(entry, vma, page, writable);
2507 
2508 	return entry;
2509 }
2510 
2511 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2512 				   unsigned long address, pte_t *ptep)
2513 {
2514 	pte_t entry;
2515 
2516 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2517 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2518 		update_mmu_cache(vma, address, ptep);
2519 }
2520 
2521 static int is_hugetlb_entry_migration(pte_t pte)
2522 {
2523 	swp_entry_t swp;
2524 
2525 	if (huge_pte_none(pte) || pte_present(pte))
2526 		return 0;
2527 	swp = pte_to_swp_entry(pte);
2528 	if (non_swap_entry(swp) && is_migration_entry(swp))
2529 		return 1;
2530 	else
2531 		return 0;
2532 }
2533 
2534 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2535 {
2536 	swp_entry_t swp;
2537 
2538 	if (huge_pte_none(pte) || pte_present(pte))
2539 		return 0;
2540 	swp = pte_to_swp_entry(pte);
2541 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2542 		return 1;
2543 	else
2544 		return 0;
2545 }
2546 
2547 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2548 			    struct vm_area_struct *vma)
2549 {
2550 	pte_t *src_pte, *dst_pte, entry;
2551 	struct page *ptepage;
2552 	unsigned long addr;
2553 	int cow;
2554 	struct hstate *h = hstate_vma(vma);
2555 	unsigned long sz = huge_page_size(h);
2556 	unsigned long mmun_start;	/* For mmu_notifiers */
2557 	unsigned long mmun_end;		/* For mmu_notifiers */
2558 	int ret = 0;
2559 
2560 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2561 
2562 	mmun_start = vma->vm_start;
2563 	mmun_end = vma->vm_end;
2564 	if (cow)
2565 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2566 
2567 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2568 		spinlock_t *src_ptl, *dst_ptl;
2569 		src_pte = huge_pte_offset(src, addr);
2570 		if (!src_pte)
2571 			continue;
2572 		dst_pte = huge_pte_alloc(dst, addr, sz);
2573 		if (!dst_pte) {
2574 			ret = -ENOMEM;
2575 			break;
2576 		}
2577 
2578 		/* If the pagetables are shared don't copy or take references */
2579 		if (dst_pte == src_pte)
2580 			continue;
2581 
2582 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2583 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2584 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2585 		entry = huge_ptep_get(src_pte);
2586 		if (huge_pte_none(entry)) { /* skip none entry */
2587 			;
2588 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2589 				    is_hugetlb_entry_hwpoisoned(entry))) {
2590 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2591 
2592 			if (is_write_migration_entry(swp_entry) && cow) {
2593 				/*
2594 				 * COW mappings require pages in both
2595 				 * parent and child to be set to read.
2596 				 */
2597 				make_migration_entry_read(&swp_entry);
2598 				entry = swp_entry_to_pte(swp_entry);
2599 				set_huge_pte_at(src, addr, src_pte, entry);
2600 			}
2601 			set_huge_pte_at(dst, addr, dst_pte, entry);
2602 		} else {
2603 			if (cow) {
2604 				huge_ptep_set_wrprotect(src, addr, src_pte);
2605 				mmu_notifier_invalidate_range(src, mmun_start,
2606 								   mmun_end);
2607 			}
2608 			entry = huge_ptep_get(src_pte);
2609 			ptepage = pte_page(entry);
2610 			get_page(ptepage);
2611 			page_dup_rmap(ptepage);
2612 			set_huge_pte_at(dst, addr, dst_pte, entry);
2613 		}
2614 		spin_unlock(src_ptl);
2615 		spin_unlock(dst_ptl);
2616 	}
2617 
2618 	if (cow)
2619 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2620 
2621 	return ret;
2622 }
2623 
2624 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2625 			    unsigned long start, unsigned long end,
2626 			    struct page *ref_page)
2627 {
2628 	int force_flush = 0;
2629 	struct mm_struct *mm = vma->vm_mm;
2630 	unsigned long address;
2631 	pte_t *ptep;
2632 	pte_t pte;
2633 	spinlock_t *ptl;
2634 	struct page *page;
2635 	struct hstate *h = hstate_vma(vma);
2636 	unsigned long sz = huge_page_size(h);
2637 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2638 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2639 
2640 	WARN_ON(!is_vm_hugetlb_page(vma));
2641 	BUG_ON(start & ~huge_page_mask(h));
2642 	BUG_ON(end & ~huge_page_mask(h));
2643 
2644 	tlb_start_vma(tlb, vma);
2645 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2646 	address = start;
2647 again:
2648 	for (; address < end; address += sz) {
2649 		ptep = huge_pte_offset(mm, address);
2650 		if (!ptep)
2651 			continue;
2652 
2653 		ptl = huge_pte_lock(h, mm, ptep);
2654 		if (huge_pmd_unshare(mm, &address, ptep))
2655 			goto unlock;
2656 
2657 		pte = huge_ptep_get(ptep);
2658 		if (huge_pte_none(pte))
2659 			goto unlock;
2660 
2661 		/*
2662 		 * Migrating hugepage or HWPoisoned hugepage is already
2663 		 * unmapped and its refcount is dropped, so just clear pte here.
2664 		 */
2665 		if (unlikely(!pte_present(pte))) {
2666 			huge_pte_clear(mm, address, ptep);
2667 			goto unlock;
2668 		}
2669 
2670 		page = pte_page(pte);
2671 		/*
2672 		 * If a reference page is supplied, it is because a specific
2673 		 * page is being unmapped, not a range. Ensure the page we
2674 		 * are about to unmap is the actual page of interest.
2675 		 */
2676 		if (ref_page) {
2677 			if (page != ref_page)
2678 				goto unlock;
2679 
2680 			/*
2681 			 * Mark the VMA as having unmapped its page so that
2682 			 * future faults in this VMA will fail rather than
2683 			 * looking like data was lost
2684 			 */
2685 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2686 		}
2687 
2688 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2689 		tlb_remove_tlb_entry(tlb, ptep, address);
2690 		if (huge_pte_dirty(pte))
2691 			set_page_dirty(page);
2692 
2693 		page_remove_rmap(page);
2694 		force_flush = !__tlb_remove_page(tlb, page);
2695 		if (force_flush) {
2696 			address += sz;
2697 			spin_unlock(ptl);
2698 			break;
2699 		}
2700 		/* Bail out after unmapping reference page if supplied */
2701 		if (ref_page) {
2702 			spin_unlock(ptl);
2703 			break;
2704 		}
2705 unlock:
2706 		spin_unlock(ptl);
2707 	}
2708 	/*
2709 	 * mmu_gather ran out of room to batch pages, we break out of
2710 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2711 	 * and page-free while holding it.
2712 	 */
2713 	if (force_flush) {
2714 		force_flush = 0;
2715 		tlb_flush_mmu(tlb);
2716 		if (address < end && !ref_page)
2717 			goto again;
2718 	}
2719 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 	tlb_end_vma(tlb, vma);
2721 }
2722 
2723 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2724 			  struct vm_area_struct *vma, unsigned long start,
2725 			  unsigned long end, struct page *ref_page)
2726 {
2727 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2728 
2729 	/*
2730 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2731 	 * test will fail on a vma being torn down, and not grab a page table
2732 	 * on its way out.  We're lucky that the flag has such an appropriate
2733 	 * name, and can in fact be safely cleared here. We could clear it
2734 	 * before the __unmap_hugepage_range above, but all that's necessary
2735 	 * is to clear it before releasing the i_mmap_rwsem. This works
2736 	 * because in the context this is called, the VMA is about to be
2737 	 * destroyed and the i_mmap_rwsem is held.
2738 	 */
2739 	vma->vm_flags &= ~VM_MAYSHARE;
2740 }
2741 
2742 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2743 			  unsigned long end, struct page *ref_page)
2744 {
2745 	struct mm_struct *mm;
2746 	struct mmu_gather tlb;
2747 
2748 	mm = vma->vm_mm;
2749 
2750 	tlb_gather_mmu(&tlb, mm, start, end);
2751 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2752 	tlb_finish_mmu(&tlb, start, end);
2753 }
2754 
2755 /*
2756  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2757  * mappping it owns the reserve page for. The intention is to unmap the page
2758  * from other VMAs and let the children be SIGKILLed if they are faulting the
2759  * same region.
2760  */
2761 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2762 			      struct page *page, unsigned long address)
2763 {
2764 	struct hstate *h = hstate_vma(vma);
2765 	struct vm_area_struct *iter_vma;
2766 	struct address_space *mapping;
2767 	pgoff_t pgoff;
2768 
2769 	/*
2770 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2771 	 * from page cache lookup which is in HPAGE_SIZE units.
2772 	 */
2773 	address = address & huge_page_mask(h);
2774 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2775 			vma->vm_pgoff;
2776 	mapping = file_inode(vma->vm_file)->i_mapping;
2777 
2778 	/*
2779 	 * Take the mapping lock for the duration of the table walk. As
2780 	 * this mapping should be shared between all the VMAs,
2781 	 * __unmap_hugepage_range() is called as the lock is already held
2782 	 */
2783 	i_mmap_lock_write(mapping);
2784 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2785 		/* Do not unmap the current VMA */
2786 		if (iter_vma == vma)
2787 			continue;
2788 
2789 		/*
2790 		 * Unmap the page from other VMAs without their own reserves.
2791 		 * They get marked to be SIGKILLed if they fault in these
2792 		 * areas. This is because a future no-page fault on this VMA
2793 		 * could insert a zeroed page instead of the data existing
2794 		 * from the time of fork. This would look like data corruption
2795 		 */
2796 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2797 			unmap_hugepage_range(iter_vma, address,
2798 					     address + huge_page_size(h), page);
2799 	}
2800 	i_mmap_unlock_write(mapping);
2801 }
2802 
2803 /*
2804  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2805  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2806  * cannot race with other handlers or page migration.
2807  * Keep the pte_same checks anyway to make transition from the mutex easier.
2808  */
2809 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2810 			unsigned long address, pte_t *ptep, pte_t pte,
2811 			struct page *pagecache_page, spinlock_t *ptl)
2812 {
2813 	struct hstate *h = hstate_vma(vma);
2814 	struct page *old_page, *new_page;
2815 	int ret = 0, outside_reserve = 0;
2816 	unsigned long mmun_start;	/* For mmu_notifiers */
2817 	unsigned long mmun_end;		/* For mmu_notifiers */
2818 
2819 	old_page = pte_page(pte);
2820 
2821 retry_avoidcopy:
2822 	/* If no-one else is actually using this page, avoid the copy
2823 	 * and just make the page writable */
2824 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2825 		page_move_anon_rmap(old_page, vma, address);
2826 		set_huge_ptep_writable(vma, address, ptep);
2827 		return 0;
2828 	}
2829 
2830 	/*
2831 	 * If the process that created a MAP_PRIVATE mapping is about to
2832 	 * perform a COW due to a shared page count, attempt to satisfy
2833 	 * the allocation without using the existing reserves. The pagecache
2834 	 * page is used to determine if the reserve at this address was
2835 	 * consumed or not. If reserves were used, a partial faulted mapping
2836 	 * at the time of fork() could consume its reserves on COW instead
2837 	 * of the full address range.
2838 	 */
2839 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2840 			old_page != pagecache_page)
2841 		outside_reserve = 1;
2842 
2843 	page_cache_get(old_page);
2844 
2845 	/*
2846 	 * Drop page table lock as buddy allocator may be called. It will
2847 	 * be acquired again before returning to the caller, as expected.
2848 	 */
2849 	spin_unlock(ptl);
2850 	new_page = alloc_huge_page(vma, address, outside_reserve);
2851 
2852 	if (IS_ERR(new_page)) {
2853 		/*
2854 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2855 		 * it is due to references held by a child and an insufficient
2856 		 * huge page pool. To guarantee the original mappers
2857 		 * reliability, unmap the page from child processes. The child
2858 		 * may get SIGKILLed if it later faults.
2859 		 */
2860 		if (outside_reserve) {
2861 			page_cache_release(old_page);
2862 			BUG_ON(huge_pte_none(pte));
2863 			unmap_ref_private(mm, vma, old_page, address);
2864 			BUG_ON(huge_pte_none(pte));
2865 			spin_lock(ptl);
2866 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2867 			if (likely(ptep &&
2868 				   pte_same(huge_ptep_get(ptep), pte)))
2869 				goto retry_avoidcopy;
2870 			/*
2871 			 * race occurs while re-acquiring page table
2872 			 * lock, and our job is done.
2873 			 */
2874 			return 0;
2875 		}
2876 
2877 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2878 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2879 		goto out_release_old;
2880 	}
2881 
2882 	/*
2883 	 * When the original hugepage is shared one, it does not have
2884 	 * anon_vma prepared.
2885 	 */
2886 	if (unlikely(anon_vma_prepare(vma))) {
2887 		ret = VM_FAULT_OOM;
2888 		goto out_release_all;
2889 	}
2890 
2891 	copy_user_huge_page(new_page, old_page, address, vma,
2892 			    pages_per_huge_page(h));
2893 	__SetPageUptodate(new_page);
2894 
2895 	mmun_start = address & huge_page_mask(h);
2896 	mmun_end = mmun_start + huge_page_size(h);
2897 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2898 
2899 	/*
2900 	 * Retake the page table lock to check for racing updates
2901 	 * before the page tables are altered
2902 	 */
2903 	spin_lock(ptl);
2904 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2905 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2906 		ClearPagePrivate(new_page);
2907 
2908 		/* Break COW */
2909 		huge_ptep_clear_flush(vma, address, ptep);
2910 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2911 		set_huge_pte_at(mm, address, ptep,
2912 				make_huge_pte(vma, new_page, 1));
2913 		page_remove_rmap(old_page);
2914 		hugepage_add_new_anon_rmap(new_page, vma, address);
2915 		/* Make the old page be freed below */
2916 		new_page = old_page;
2917 	}
2918 	spin_unlock(ptl);
2919 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2920 out_release_all:
2921 	page_cache_release(new_page);
2922 out_release_old:
2923 	page_cache_release(old_page);
2924 
2925 	spin_lock(ptl); /* Caller expects lock to be held */
2926 	return ret;
2927 }
2928 
2929 /* Return the pagecache page at a given address within a VMA */
2930 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2931 			struct vm_area_struct *vma, unsigned long address)
2932 {
2933 	struct address_space *mapping;
2934 	pgoff_t idx;
2935 
2936 	mapping = vma->vm_file->f_mapping;
2937 	idx = vma_hugecache_offset(h, vma, address);
2938 
2939 	return find_lock_page(mapping, idx);
2940 }
2941 
2942 /*
2943  * Return whether there is a pagecache page to back given address within VMA.
2944  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2945  */
2946 static bool hugetlbfs_pagecache_present(struct hstate *h,
2947 			struct vm_area_struct *vma, unsigned long address)
2948 {
2949 	struct address_space *mapping;
2950 	pgoff_t idx;
2951 	struct page *page;
2952 
2953 	mapping = vma->vm_file->f_mapping;
2954 	idx = vma_hugecache_offset(h, vma, address);
2955 
2956 	page = find_get_page(mapping, idx);
2957 	if (page)
2958 		put_page(page);
2959 	return page != NULL;
2960 }
2961 
2962 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2963 			   struct address_space *mapping, pgoff_t idx,
2964 			   unsigned long address, pte_t *ptep, unsigned int flags)
2965 {
2966 	struct hstate *h = hstate_vma(vma);
2967 	int ret = VM_FAULT_SIGBUS;
2968 	int anon_rmap = 0;
2969 	unsigned long size;
2970 	struct page *page;
2971 	pte_t new_pte;
2972 	spinlock_t *ptl;
2973 
2974 	/*
2975 	 * Currently, we are forced to kill the process in the event the
2976 	 * original mapper has unmapped pages from the child due to a failed
2977 	 * COW. Warn that such a situation has occurred as it may not be obvious
2978 	 */
2979 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2980 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2981 			   current->pid);
2982 		return ret;
2983 	}
2984 
2985 	/*
2986 	 * Use page lock to guard against racing truncation
2987 	 * before we get page_table_lock.
2988 	 */
2989 retry:
2990 	page = find_lock_page(mapping, idx);
2991 	if (!page) {
2992 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2993 		if (idx >= size)
2994 			goto out;
2995 		page = alloc_huge_page(vma, address, 0);
2996 		if (IS_ERR(page)) {
2997 			ret = PTR_ERR(page);
2998 			if (ret == -ENOMEM)
2999 				ret = VM_FAULT_OOM;
3000 			else
3001 				ret = VM_FAULT_SIGBUS;
3002 			goto out;
3003 		}
3004 		clear_huge_page(page, address, pages_per_huge_page(h));
3005 		__SetPageUptodate(page);
3006 
3007 		if (vma->vm_flags & VM_MAYSHARE) {
3008 			int err;
3009 			struct inode *inode = mapping->host;
3010 
3011 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3012 			if (err) {
3013 				put_page(page);
3014 				if (err == -EEXIST)
3015 					goto retry;
3016 				goto out;
3017 			}
3018 			ClearPagePrivate(page);
3019 
3020 			spin_lock(&inode->i_lock);
3021 			inode->i_blocks += blocks_per_huge_page(h);
3022 			spin_unlock(&inode->i_lock);
3023 		} else {
3024 			lock_page(page);
3025 			if (unlikely(anon_vma_prepare(vma))) {
3026 				ret = VM_FAULT_OOM;
3027 				goto backout_unlocked;
3028 			}
3029 			anon_rmap = 1;
3030 		}
3031 	} else {
3032 		/*
3033 		 * If memory error occurs between mmap() and fault, some process
3034 		 * don't have hwpoisoned swap entry for errored virtual address.
3035 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3036 		 */
3037 		if (unlikely(PageHWPoison(page))) {
3038 			ret = VM_FAULT_HWPOISON |
3039 				VM_FAULT_SET_HINDEX(hstate_index(h));
3040 			goto backout_unlocked;
3041 		}
3042 	}
3043 
3044 	/*
3045 	 * If we are going to COW a private mapping later, we examine the
3046 	 * pending reservations for this page now. This will ensure that
3047 	 * any allocations necessary to record that reservation occur outside
3048 	 * the spinlock.
3049 	 */
3050 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3051 		if (vma_needs_reservation(h, vma, address) < 0) {
3052 			ret = VM_FAULT_OOM;
3053 			goto backout_unlocked;
3054 		}
3055 
3056 	ptl = huge_pte_lockptr(h, mm, ptep);
3057 	spin_lock(ptl);
3058 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3059 	if (idx >= size)
3060 		goto backout;
3061 
3062 	ret = 0;
3063 	if (!huge_pte_none(huge_ptep_get(ptep)))
3064 		goto backout;
3065 
3066 	if (anon_rmap) {
3067 		ClearPagePrivate(page);
3068 		hugepage_add_new_anon_rmap(page, vma, address);
3069 	} else
3070 		page_dup_rmap(page);
3071 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3072 				&& (vma->vm_flags & VM_SHARED)));
3073 	set_huge_pte_at(mm, address, ptep, new_pte);
3074 
3075 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3076 		/* Optimization, do the COW without a second fault */
3077 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3078 	}
3079 
3080 	spin_unlock(ptl);
3081 	unlock_page(page);
3082 out:
3083 	return ret;
3084 
3085 backout:
3086 	spin_unlock(ptl);
3087 backout_unlocked:
3088 	unlock_page(page);
3089 	put_page(page);
3090 	goto out;
3091 }
3092 
3093 #ifdef CONFIG_SMP
3094 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3095 			    struct vm_area_struct *vma,
3096 			    struct address_space *mapping,
3097 			    pgoff_t idx, unsigned long address)
3098 {
3099 	unsigned long key[2];
3100 	u32 hash;
3101 
3102 	if (vma->vm_flags & VM_SHARED) {
3103 		key[0] = (unsigned long) mapping;
3104 		key[1] = idx;
3105 	} else {
3106 		key[0] = (unsigned long) mm;
3107 		key[1] = address >> huge_page_shift(h);
3108 	}
3109 
3110 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3111 
3112 	return hash & (num_fault_mutexes - 1);
3113 }
3114 #else
3115 /*
3116  * For uniprocesor systems we always use a single mutex, so just
3117  * return 0 and avoid the hashing overhead.
3118  */
3119 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3120 			    struct vm_area_struct *vma,
3121 			    struct address_space *mapping,
3122 			    pgoff_t idx, unsigned long address)
3123 {
3124 	return 0;
3125 }
3126 #endif
3127 
3128 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3129 			unsigned long address, unsigned int flags)
3130 {
3131 	pte_t *ptep, entry;
3132 	spinlock_t *ptl;
3133 	int ret;
3134 	u32 hash;
3135 	pgoff_t idx;
3136 	struct page *page = NULL;
3137 	struct page *pagecache_page = NULL;
3138 	struct hstate *h = hstate_vma(vma);
3139 	struct address_space *mapping;
3140 	int need_wait_lock = 0;
3141 
3142 	address &= huge_page_mask(h);
3143 
3144 	ptep = huge_pte_offset(mm, address);
3145 	if (ptep) {
3146 		entry = huge_ptep_get(ptep);
3147 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3148 			migration_entry_wait_huge(vma, mm, ptep);
3149 			return 0;
3150 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3151 			return VM_FAULT_HWPOISON_LARGE |
3152 				VM_FAULT_SET_HINDEX(hstate_index(h));
3153 	}
3154 
3155 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3156 	if (!ptep)
3157 		return VM_FAULT_OOM;
3158 
3159 	mapping = vma->vm_file->f_mapping;
3160 	idx = vma_hugecache_offset(h, vma, address);
3161 
3162 	/*
3163 	 * Serialize hugepage allocation and instantiation, so that we don't
3164 	 * get spurious allocation failures if two CPUs race to instantiate
3165 	 * the same page in the page cache.
3166 	 */
3167 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3168 	mutex_lock(&htlb_fault_mutex_table[hash]);
3169 
3170 	entry = huge_ptep_get(ptep);
3171 	if (huge_pte_none(entry)) {
3172 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3173 		goto out_mutex;
3174 	}
3175 
3176 	ret = 0;
3177 
3178 	/*
3179 	 * entry could be a migration/hwpoison entry at this point, so this
3180 	 * check prevents the kernel from going below assuming that we have
3181 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3182 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3183 	 * handle it.
3184 	 */
3185 	if (!pte_present(entry))
3186 		goto out_mutex;
3187 
3188 	/*
3189 	 * If we are going to COW the mapping later, we examine the pending
3190 	 * reservations for this page now. This will ensure that any
3191 	 * allocations necessary to record that reservation occur outside the
3192 	 * spinlock. For private mappings, we also lookup the pagecache
3193 	 * page now as it is used to determine if a reservation has been
3194 	 * consumed.
3195 	 */
3196 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3197 		if (vma_needs_reservation(h, vma, address) < 0) {
3198 			ret = VM_FAULT_OOM;
3199 			goto out_mutex;
3200 		}
3201 
3202 		if (!(vma->vm_flags & VM_MAYSHARE))
3203 			pagecache_page = hugetlbfs_pagecache_page(h,
3204 								vma, address);
3205 	}
3206 
3207 	ptl = huge_pte_lock(h, mm, ptep);
3208 
3209 	/* Check for a racing update before calling hugetlb_cow */
3210 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3211 		goto out_ptl;
3212 
3213 	/*
3214 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3215 	 * pagecache_page, so here we need take the former one
3216 	 * when page != pagecache_page or !pagecache_page.
3217 	 */
3218 	page = pte_page(entry);
3219 	if (page != pagecache_page)
3220 		if (!trylock_page(page)) {
3221 			need_wait_lock = 1;
3222 			goto out_ptl;
3223 		}
3224 
3225 	get_page(page);
3226 
3227 	if (flags & FAULT_FLAG_WRITE) {
3228 		if (!huge_pte_write(entry)) {
3229 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3230 					pagecache_page, ptl);
3231 			goto out_put_page;
3232 		}
3233 		entry = huge_pte_mkdirty(entry);
3234 	}
3235 	entry = pte_mkyoung(entry);
3236 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3237 						flags & FAULT_FLAG_WRITE))
3238 		update_mmu_cache(vma, address, ptep);
3239 out_put_page:
3240 	if (page != pagecache_page)
3241 		unlock_page(page);
3242 	put_page(page);
3243 out_ptl:
3244 	spin_unlock(ptl);
3245 
3246 	if (pagecache_page) {
3247 		unlock_page(pagecache_page);
3248 		put_page(pagecache_page);
3249 	}
3250 out_mutex:
3251 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3252 	/*
3253 	 * Generally it's safe to hold refcount during waiting page lock. But
3254 	 * here we just wait to defer the next page fault to avoid busy loop and
3255 	 * the page is not used after unlocked before returning from the current
3256 	 * page fault. So we are safe from accessing freed page, even if we wait
3257 	 * here without taking refcount.
3258 	 */
3259 	if (need_wait_lock)
3260 		wait_on_page_locked(page);
3261 	return ret;
3262 }
3263 
3264 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3265 			 struct page **pages, struct vm_area_struct **vmas,
3266 			 unsigned long *position, unsigned long *nr_pages,
3267 			 long i, unsigned int flags)
3268 {
3269 	unsigned long pfn_offset;
3270 	unsigned long vaddr = *position;
3271 	unsigned long remainder = *nr_pages;
3272 	struct hstate *h = hstate_vma(vma);
3273 
3274 	while (vaddr < vma->vm_end && remainder) {
3275 		pte_t *pte;
3276 		spinlock_t *ptl = NULL;
3277 		int absent;
3278 		struct page *page;
3279 
3280 		/*
3281 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3282 		 * each hugepage.  We have to make sure we get the
3283 		 * first, for the page indexing below to work.
3284 		 *
3285 		 * Note that page table lock is not held when pte is null.
3286 		 */
3287 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3288 		if (pte)
3289 			ptl = huge_pte_lock(h, mm, pte);
3290 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3291 
3292 		/*
3293 		 * When coredumping, it suits get_dump_page if we just return
3294 		 * an error where there's an empty slot with no huge pagecache
3295 		 * to back it.  This way, we avoid allocating a hugepage, and
3296 		 * the sparse dumpfile avoids allocating disk blocks, but its
3297 		 * huge holes still show up with zeroes where they need to be.
3298 		 */
3299 		if (absent && (flags & FOLL_DUMP) &&
3300 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3301 			if (pte)
3302 				spin_unlock(ptl);
3303 			remainder = 0;
3304 			break;
3305 		}
3306 
3307 		/*
3308 		 * We need call hugetlb_fault for both hugepages under migration
3309 		 * (in which case hugetlb_fault waits for the migration,) and
3310 		 * hwpoisoned hugepages (in which case we need to prevent the
3311 		 * caller from accessing to them.) In order to do this, we use
3312 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3313 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3314 		 * both cases, and because we can't follow correct pages
3315 		 * directly from any kind of swap entries.
3316 		 */
3317 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3318 		    ((flags & FOLL_WRITE) &&
3319 		      !huge_pte_write(huge_ptep_get(pte)))) {
3320 			int ret;
3321 
3322 			if (pte)
3323 				spin_unlock(ptl);
3324 			ret = hugetlb_fault(mm, vma, vaddr,
3325 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3326 			if (!(ret & VM_FAULT_ERROR))
3327 				continue;
3328 
3329 			remainder = 0;
3330 			break;
3331 		}
3332 
3333 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3334 		page = pte_page(huge_ptep_get(pte));
3335 same_page:
3336 		if (pages) {
3337 			pages[i] = mem_map_offset(page, pfn_offset);
3338 			get_page_foll(pages[i]);
3339 		}
3340 
3341 		if (vmas)
3342 			vmas[i] = vma;
3343 
3344 		vaddr += PAGE_SIZE;
3345 		++pfn_offset;
3346 		--remainder;
3347 		++i;
3348 		if (vaddr < vma->vm_end && remainder &&
3349 				pfn_offset < pages_per_huge_page(h)) {
3350 			/*
3351 			 * We use pfn_offset to avoid touching the pageframes
3352 			 * of this compound page.
3353 			 */
3354 			goto same_page;
3355 		}
3356 		spin_unlock(ptl);
3357 	}
3358 	*nr_pages = remainder;
3359 	*position = vaddr;
3360 
3361 	return i ? i : -EFAULT;
3362 }
3363 
3364 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3365 		unsigned long address, unsigned long end, pgprot_t newprot)
3366 {
3367 	struct mm_struct *mm = vma->vm_mm;
3368 	unsigned long start = address;
3369 	pte_t *ptep;
3370 	pte_t pte;
3371 	struct hstate *h = hstate_vma(vma);
3372 	unsigned long pages = 0;
3373 
3374 	BUG_ON(address >= end);
3375 	flush_cache_range(vma, address, end);
3376 
3377 	mmu_notifier_invalidate_range_start(mm, start, end);
3378 	i_mmap_lock_write(vma->vm_file->f_mapping);
3379 	for (; address < end; address += huge_page_size(h)) {
3380 		spinlock_t *ptl;
3381 		ptep = huge_pte_offset(mm, address);
3382 		if (!ptep)
3383 			continue;
3384 		ptl = huge_pte_lock(h, mm, ptep);
3385 		if (huge_pmd_unshare(mm, &address, ptep)) {
3386 			pages++;
3387 			spin_unlock(ptl);
3388 			continue;
3389 		}
3390 		pte = huge_ptep_get(ptep);
3391 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3392 			spin_unlock(ptl);
3393 			continue;
3394 		}
3395 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3396 			swp_entry_t entry = pte_to_swp_entry(pte);
3397 
3398 			if (is_write_migration_entry(entry)) {
3399 				pte_t newpte;
3400 
3401 				make_migration_entry_read(&entry);
3402 				newpte = swp_entry_to_pte(entry);
3403 				set_huge_pte_at(mm, address, ptep, newpte);
3404 				pages++;
3405 			}
3406 			spin_unlock(ptl);
3407 			continue;
3408 		}
3409 		if (!huge_pte_none(pte)) {
3410 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3411 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3412 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3413 			set_huge_pte_at(mm, address, ptep, pte);
3414 			pages++;
3415 		}
3416 		spin_unlock(ptl);
3417 	}
3418 	/*
3419 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3420 	 * may have cleared our pud entry and done put_page on the page table:
3421 	 * once we release i_mmap_rwsem, another task can do the final put_page
3422 	 * and that page table be reused and filled with junk.
3423 	 */
3424 	flush_tlb_range(vma, start, end);
3425 	mmu_notifier_invalidate_range(mm, start, end);
3426 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3427 	mmu_notifier_invalidate_range_end(mm, start, end);
3428 
3429 	return pages << h->order;
3430 }
3431 
3432 int hugetlb_reserve_pages(struct inode *inode,
3433 					long from, long to,
3434 					struct vm_area_struct *vma,
3435 					vm_flags_t vm_flags)
3436 {
3437 	long ret, chg;
3438 	struct hstate *h = hstate_inode(inode);
3439 	struct hugepage_subpool *spool = subpool_inode(inode);
3440 	struct resv_map *resv_map;
3441 
3442 	/*
3443 	 * Only apply hugepage reservation if asked. At fault time, an
3444 	 * attempt will be made for VM_NORESERVE to allocate a page
3445 	 * without using reserves
3446 	 */
3447 	if (vm_flags & VM_NORESERVE)
3448 		return 0;
3449 
3450 	/*
3451 	 * Shared mappings base their reservation on the number of pages that
3452 	 * are already allocated on behalf of the file. Private mappings need
3453 	 * to reserve the full area even if read-only as mprotect() may be
3454 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3455 	 */
3456 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3457 		resv_map = inode_resv_map(inode);
3458 
3459 		chg = region_chg(resv_map, from, to);
3460 
3461 	} else {
3462 		resv_map = resv_map_alloc();
3463 		if (!resv_map)
3464 			return -ENOMEM;
3465 
3466 		chg = to - from;
3467 
3468 		set_vma_resv_map(vma, resv_map);
3469 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3470 	}
3471 
3472 	if (chg < 0) {
3473 		ret = chg;
3474 		goto out_err;
3475 	}
3476 
3477 	/* There must be enough pages in the subpool for the mapping */
3478 	if (hugepage_subpool_get_pages(spool, chg)) {
3479 		ret = -ENOSPC;
3480 		goto out_err;
3481 	}
3482 
3483 	/*
3484 	 * Check enough hugepages are available for the reservation.
3485 	 * Hand the pages back to the subpool if there are not
3486 	 */
3487 	ret = hugetlb_acct_memory(h, chg);
3488 	if (ret < 0) {
3489 		hugepage_subpool_put_pages(spool, chg);
3490 		goto out_err;
3491 	}
3492 
3493 	/*
3494 	 * Account for the reservations made. Shared mappings record regions
3495 	 * that have reservations as they are shared by multiple VMAs.
3496 	 * When the last VMA disappears, the region map says how much
3497 	 * the reservation was and the page cache tells how much of
3498 	 * the reservation was consumed. Private mappings are per-VMA and
3499 	 * only the consumed reservations are tracked. When the VMA
3500 	 * disappears, the original reservation is the VMA size and the
3501 	 * consumed reservations are stored in the map. Hence, nothing
3502 	 * else has to be done for private mappings here
3503 	 */
3504 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3505 		region_add(resv_map, from, to);
3506 	return 0;
3507 out_err:
3508 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3509 		kref_put(&resv_map->refs, resv_map_release);
3510 	return ret;
3511 }
3512 
3513 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3514 {
3515 	struct hstate *h = hstate_inode(inode);
3516 	struct resv_map *resv_map = inode_resv_map(inode);
3517 	long chg = 0;
3518 	struct hugepage_subpool *spool = subpool_inode(inode);
3519 
3520 	if (resv_map)
3521 		chg = region_truncate(resv_map, offset);
3522 	spin_lock(&inode->i_lock);
3523 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3524 	spin_unlock(&inode->i_lock);
3525 
3526 	hugepage_subpool_put_pages(spool, (chg - freed));
3527 	hugetlb_acct_memory(h, -(chg - freed));
3528 }
3529 
3530 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3531 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3532 				struct vm_area_struct *vma,
3533 				unsigned long addr, pgoff_t idx)
3534 {
3535 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3536 				svma->vm_start;
3537 	unsigned long sbase = saddr & PUD_MASK;
3538 	unsigned long s_end = sbase + PUD_SIZE;
3539 
3540 	/* Allow segments to share if only one is marked locked */
3541 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3542 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3543 
3544 	/*
3545 	 * match the virtual addresses, permission and the alignment of the
3546 	 * page table page.
3547 	 */
3548 	if (pmd_index(addr) != pmd_index(saddr) ||
3549 	    vm_flags != svm_flags ||
3550 	    sbase < svma->vm_start || svma->vm_end < s_end)
3551 		return 0;
3552 
3553 	return saddr;
3554 }
3555 
3556 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3557 {
3558 	unsigned long base = addr & PUD_MASK;
3559 	unsigned long end = base + PUD_SIZE;
3560 
3561 	/*
3562 	 * check on proper vm_flags and page table alignment
3563 	 */
3564 	if (vma->vm_flags & VM_MAYSHARE &&
3565 	    vma->vm_start <= base && end <= vma->vm_end)
3566 		return 1;
3567 	return 0;
3568 }
3569 
3570 /*
3571  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3572  * and returns the corresponding pte. While this is not necessary for the
3573  * !shared pmd case because we can allocate the pmd later as well, it makes the
3574  * code much cleaner. pmd allocation is essential for the shared case because
3575  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3576  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3577  * bad pmd for sharing.
3578  */
3579 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3580 {
3581 	struct vm_area_struct *vma = find_vma(mm, addr);
3582 	struct address_space *mapping = vma->vm_file->f_mapping;
3583 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3584 			vma->vm_pgoff;
3585 	struct vm_area_struct *svma;
3586 	unsigned long saddr;
3587 	pte_t *spte = NULL;
3588 	pte_t *pte;
3589 	spinlock_t *ptl;
3590 
3591 	if (!vma_shareable(vma, addr))
3592 		return (pte_t *)pmd_alloc(mm, pud, addr);
3593 
3594 	i_mmap_lock_write(mapping);
3595 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3596 		if (svma == vma)
3597 			continue;
3598 
3599 		saddr = page_table_shareable(svma, vma, addr, idx);
3600 		if (saddr) {
3601 			spte = huge_pte_offset(svma->vm_mm, saddr);
3602 			if (spte) {
3603 				mm_inc_nr_pmds(mm);
3604 				get_page(virt_to_page(spte));
3605 				break;
3606 			}
3607 		}
3608 	}
3609 
3610 	if (!spte)
3611 		goto out;
3612 
3613 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3614 	spin_lock(ptl);
3615 	if (pud_none(*pud)) {
3616 		pud_populate(mm, pud,
3617 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3618 	} else {
3619 		put_page(virt_to_page(spte));
3620 		mm_inc_nr_pmds(mm);
3621 	}
3622 	spin_unlock(ptl);
3623 out:
3624 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3625 	i_mmap_unlock_write(mapping);
3626 	return pte;
3627 }
3628 
3629 /*
3630  * unmap huge page backed by shared pte.
3631  *
3632  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3633  * indicated by page_count > 1, unmap is achieved by clearing pud and
3634  * decrementing the ref count. If count == 1, the pte page is not shared.
3635  *
3636  * called with page table lock held.
3637  *
3638  * returns: 1 successfully unmapped a shared pte page
3639  *	    0 the underlying pte page is not shared, or it is the last user
3640  */
3641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3642 {
3643 	pgd_t *pgd = pgd_offset(mm, *addr);
3644 	pud_t *pud = pud_offset(pgd, *addr);
3645 
3646 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3647 	if (page_count(virt_to_page(ptep)) == 1)
3648 		return 0;
3649 
3650 	pud_clear(pud);
3651 	put_page(virt_to_page(ptep));
3652 	mm_dec_nr_pmds(mm);
3653 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3654 	return 1;
3655 }
3656 #define want_pmd_share()	(1)
3657 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3658 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3659 {
3660 	return NULL;
3661 }
3662 #define want_pmd_share()	(0)
3663 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3664 
3665 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3666 pte_t *huge_pte_alloc(struct mm_struct *mm,
3667 			unsigned long addr, unsigned long sz)
3668 {
3669 	pgd_t *pgd;
3670 	pud_t *pud;
3671 	pte_t *pte = NULL;
3672 
3673 	pgd = pgd_offset(mm, addr);
3674 	pud = pud_alloc(mm, pgd, addr);
3675 	if (pud) {
3676 		if (sz == PUD_SIZE) {
3677 			pte = (pte_t *)pud;
3678 		} else {
3679 			BUG_ON(sz != PMD_SIZE);
3680 			if (want_pmd_share() && pud_none(*pud))
3681 				pte = huge_pmd_share(mm, addr, pud);
3682 			else
3683 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3684 		}
3685 	}
3686 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3687 
3688 	return pte;
3689 }
3690 
3691 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3692 {
3693 	pgd_t *pgd;
3694 	pud_t *pud;
3695 	pmd_t *pmd = NULL;
3696 
3697 	pgd = pgd_offset(mm, addr);
3698 	if (pgd_present(*pgd)) {
3699 		pud = pud_offset(pgd, addr);
3700 		if (pud_present(*pud)) {
3701 			if (pud_huge(*pud))
3702 				return (pte_t *)pud;
3703 			pmd = pmd_offset(pud, addr);
3704 		}
3705 	}
3706 	return (pte_t *) pmd;
3707 }
3708 
3709 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3710 
3711 /*
3712  * These functions are overwritable if your architecture needs its own
3713  * behavior.
3714  */
3715 struct page * __weak
3716 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3717 			      int write)
3718 {
3719 	return ERR_PTR(-EINVAL);
3720 }
3721 
3722 struct page * __weak
3723 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3724 		pmd_t *pmd, int flags)
3725 {
3726 	struct page *page = NULL;
3727 	spinlock_t *ptl;
3728 retry:
3729 	ptl = pmd_lockptr(mm, pmd);
3730 	spin_lock(ptl);
3731 	/*
3732 	 * make sure that the address range covered by this pmd is not
3733 	 * unmapped from other threads.
3734 	 */
3735 	if (!pmd_huge(*pmd))
3736 		goto out;
3737 	if (pmd_present(*pmd)) {
3738 		page = pte_page(*(pte_t *)pmd) +
3739 			((address & ~PMD_MASK) >> PAGE_SHIFT);
3740 		if (flags & FOLL_GET)
3741 			get_page(page);
3742 	} else {
3743 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3744 			spin_unlock(ptl);
3745 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3746 			goto retry;
3747 		}
3748 		/*
3749 		 * hwpoisoned entry is treated as no_page_table in
3750 		 * follow_page_mask().
3751 		 */
3752 	}
3753 out:
3754 	spin_unlock(ptl);
3755 	return page;
3756 }
3757 
3758 struct page * __weak
3759 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3760 		pud_t *pud, int flags)
3761 {
3762 	if (flags & FOLL_GET)
3763 		return NULL;
3764 
3765 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3766 }
3767 
3768 #ifdef CONFIG_MEMORY_FAILURE
3769 
3770 /* Should be called in hugetlb_lock */
3771 static int is_hugepage_on_freelist(struct page *hpage)
3772 {
3773 	struct page *page;
3774 	struct page *tmp;
3775 	struct hstate *h = page_hstate(hpage);
3776 	int nid = page_to_nid(hpage);
3777 
3778 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3779 		if (page == hpage)
3780 			return 1;
3781 	return 0;
3782 }
3783 
3784 /*
3785  * This function is called from memory failure code.
3786  * Assume the caller holds page lock of the head page.
3787  */
3788 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3789 {
3790 	struct hstate *h = page_hstate(hpage);
3791 	int nid = page_to_nid(hpage);
3792 	int ret = -EBUSY;
3793 
3794 	spin_lock(&hugetlb_lock);
3795 	if (is_hugepage_on_freelist(hpage)) {
3796 		/*
3797 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3798 		 * but dangling hpage->lru can trigger list-debug warnings
3799 		 * (this happens when we call unpoison_memory() on it),
3800 		 * so let it point to itself with list_del_init().
3801 		 */
3802 		list_del_init(&hpage->lru);
3803 		set_page_refcounted(hpage);
3804 		h->free_huge_pages--;
3805 		h->free_huge_pages_node[nid]--;
3806 		ret = 0;
3807 	}
3808 	spin_unlock(&hugetlb_lock);
3809 	return ret;
3810 }
3811 #endif
3812 
3813 bool isolate_huge_page(struct page *page, struct list_head *list)
3814 {
3815 	VM_BUG_ON_PAGE(!PageHead(page), page);
3816 	if (!get_page_unless_zero(page))
3817 		return false;
3818 	spin_lock(&hugetlb_lock);
3819 	list_move_tail(&page->lru, list);
3820 	spin_unlock(&hugetlb_lock);
3821 	return true;
3822 }
3823 
3824 void putback_active_hugepage(struct page *page)
3825 {
3826 	VM_BUG_ON_PAGE(!PageHead(page), page);
3827 	spin_lock(&hugetlb_lock);
3828 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3829 	spin_unlock(&hugetlb_lock);
3830 	put_page(page);
3831 }
3832 
3833 bool is_hugepage_active(struct page *page)
3834 {
3835 	VM_BUG_ON_PAGE(!PageHuge(page), page);
3836 	/*
3837 	 * This function can be called for a tail page because the caller,
3838 	 * scan_movable_pages, scans through a given pfn-range which typically
3839 	 * covers one memory block. In systems using gigantic hugepage (1GB
3840 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3841 	 * support migrating such large hugepages for now, so return false
3842 	 * when called for tail pages.
3843 	 */
3844 	if (PageTail(page))
3845 		return false;
3846 	/*
3847 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3848 	 * so we should return false for them.
3849 	 */
3850 	if (unlikely(PageHWPoison(page)))
3851 		return false;
3852 	return page_count(page) > 0;
3853 }
3854