1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, in pagecache page units; huge pages here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 997 unsigned long address) 998 { 999 return vma_hugecache_offset(hstate_vma(vma), vma, address); 1000 } 1001 EXPORT_SYMBOL_GPL(linear_hugepage_index); 1002 1003 /** 1004 * vma_kernel_pagesize - Page size granularity for this VMA. 1005 * @vma: The user mapping. 1006 * 1007 * Folios in this VMA will be aligned to, and at least the size of the 1008 * number of bytes returned by this function. 1009 * 1010 * Return: The default size of the folios allocated when backing a VMA. 1011 */ 1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1013 { 1014 if (vma->vm_ops && vma->vm_ops->pagesize) 1015 return vma->vm_ops->pagesize(vma); 1016 return PAGE_SIZE; 1017 } 1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1019 1020 /* 1021 * Return the page size being used by the MMU to back a VMA. In the majority 1022 * of cases, the page size used by the kernel matches the MMU size. On 1023 * architectures where it differs, an architecture-specific 'strong' 1024 * version of this symbol is required. 1025 */ 1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1027 { 1028 return vma_kernel_pagesize(vma); 1029 } 1030 1031 /* 1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1033 * bits of the reservation map pointer, which are always clear due to 1034 * alignment. 1035 */ 1036 #define HPAGE_RESV_OWNER (1UL << 0) 1037 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1039 1040 /* 1041 * These helpers are used to track how many pages are reserved for 1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1043 * is guaranteed to have their future faults succeed. 1044 * 1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1046 * the reserve counters are updated with the hugetlb_lock held. It is safe 1047 * to reset the VMA at fork() time as it is not in use yet and there is no 1048 * chance of the global counters getting corrupted as a result of the values. 1049 * 1050 * The private mapping reservation is represented in a subtly different 1051 * manner to a shared mapping. A shared mapping has a region map associated 1052 * with the underlying file, this region map represents the backing file 1053 * pages which have ever had a reservation assigned which this persists even 1054 * after the page is instantiated. A private mapping has a region map 1055 * associated with the original mmap which is attached to all VMAs which 1056 * reference it, this region map represents those offsets which have consumed 1057 * reservation ie. where pages have been instantiated. 1058 */ 1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1060 { 1061 return (unsigned long)vma->vm_private_data; 1062 } 1063 1064 static void set_vma_private_data(struct vm_area_struct *vma, 1065 unsigned long value) 1066 { 1067 vma->vm_private_data = (void *)value; 1068 } 1069 1070 static void 1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1072 struct hugetlb_cgroup *h_cg, 1073 struct hstate *h) 1074 { 1075 #ifdef CONFIG_CGROUP_HUGETLB 1076 if (!h_cg || !h) { 1077 resv_map->reservation_counter = NULL; 1078 resv_map->pages_per_hpage = 0; 1079 resv_map->css = NULL; 1080 } else { 1081 resv_map->reservation_counter = 1082 &h_cg->rsvd_hugepage[hstate_index(h)]; 1083 resv_map->pages_per_hpage = pages_per_huge_page(h); 1084 resv_map->css = &h_cg->css; 1085 } 1086 #endif 1087 } 1088 1089 struct resv_map *resv_map_alloc(void) 1090 { 1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1093 1094 if (!resv_map || !rg) { 1095 kfree(resv_map); 1096 kfree(rg); 1097 return NULL; 1098 } 1099 1100 kref_init(&resv_map->refs); 1101 spin_lock_init(&resv_map->lock); 1102 INIT_LIST_HEAD(&resv_map->regions); 1103 init_rwsem(&resv_map->rw_sema); 1104 1105 resv_map->adds_in_progress = 0; 1106 /* 1107 * Initialize these to 0. On shared mappings, 0's here indicate these 1108 * fields don't do cgroup accounting. On private mappings, these will be 1109 * re-initialized to the proper values, to indicate that hugetlb cgroup 1110 * reservations are to be un-charged from here. 1111 */ 1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1113 1114 INIT_LIST_HEAD(&resv_map->region_cache); 1115 list_add(&rg->link, &resv_map->region_cache); 1116 resv_map->region_cache_count = 1; 1117 1118 return resv_map; 1119 } 1120 1121 void resv_map_release(struct kref *ref) 1122 { 1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1124 struct list_head *head = &resv_map->region_cache; 1125 struct file_region *rg, *trg; 1126 1127 /* Clear out any active regions before we release the map. */ 1128 region_del(resv_map, 0, LONG_MAX); 1129 1130 /* ... and any entries left in the cache */ 1131 list_for_each_entry_safe(rg, trg, head, link) { 1132 list_del(&rg->link); 1133 kfree(rg); 1134 } 1135 1136 VM_BUG_ON(resv_map->adds_in_progress); 1137 1138 kfree(resv_map); 1139 } 1140 1141 static inline struct resv_map *inode_resv_map(struct inode *inode) 1142 { 1143 /* 1144 * At inode evict time, i_mapping may not point to the original 1145 * address space within the inode. This original address space 1146 * contains the pointer to the resv_map. So, always use the 1147 * address space embedded within the inode. 1148 * The VERY common case is inode->mapping == &inode->i_data but, 1149 * this may not be true for device special inodes. 1150 */ 1151 return (struct resv_map *)(&inode->i_data)->private_data; 1152 } 1153 1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 if (vma->vm_flags & VM_MAYSHARE) { 1158 struct address_space *mapping = vma->vm_file->f_mapping; 1159 struct inode *inode = mapping->host; 1160 1161 return inode_resv_map(inode); 1162 1163 } else { 1164 return (struct resv_map *)(get_vma_private_data(vma) & 1165 ~HPAGE_RESV_MASK); 1166 } 1167 } 1168 1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1170 { 1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1173 1174 set_vma_private_data(vma, (unsigned long)map); 1175 } 1176 1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1178 { 1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1181 1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1183 } 1184 1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 1189 return (get_vma_private_data(vma) & flag) != 0; 1190 } 1191 1192 bool __vma_private_lock(struct vm_area_struct *vma) 1193 { 1194 return !(vma->vm_flags & VM_MAYSHARE) && 1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1197 } 1198 1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1200 { 1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1202 /* 1203 * Clear vm_private_data 1204 * - For shared mappings this is a per-vma semaphore that may be 1205 * allocated in a subsequent call to hugetlb_vm_op_open. 1206 * Before clearing, make sure pointer is not associated with vma 1207 * as this will leak the structure. This is the case when called 1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1209 * been called to allocate a new structure. 1210 * - For MAP_PRIVATE mappings, this is the reserve map which does 1211 * not apply to children. Faults generated by the children are 1212 * not guaranteed to succeed, even if read-only. 1213 */ 1214 if (vma->vm_flags & VM_MAYSHARE) { 1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1216 1217 if (vma_lock && vma_lock->vma != vma) 1218 vma->vm_private_data = NULL; 1219 } else 1220 vma->vm_private_data = NULL; 1221 } 1222 1223 /* 1224 * Reset and decrement one ref on hugepage private reservation. 1225 * Called with mm->mmap_lock writer semaphore held. 1226 * This function should be only used by move_vma() and operate on 1227 * same sized vma. It should never come here with last ref on the 1228 * reservation. 1229 */ 1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1231 { 1232 /* 1233 * Clear the old hugetlb private page reservation. 1234 * It has already been transferred to new_vma. 1235 * 1236 * During a mremap() operation of a hugetlb vma we call move_vma() 1237 * which copies vma into new_vma and unmaps vma. After the copy 1238 * operation both new_vma and vma share a reference to the resv_map 1239 * struct, and at that point vma is about to be unmapped. We don't 1240 * want to return the reservation to the pool at unmap of vma because 1241 * the reservation still lives on in new_vma, so simply decrement the 1242 * ref here and remove the resv_map reference from this vma. 1243 */ 1244 struct resv_map *reservations = vma_resv_map(vma); 1245 1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1248 kref_put(&reservations->refs, resv_map_release); 1249 } 1250 1251 hugetlb_dup_vma_private(vma); 1252 } 1253 1254 /* Returns true if the VMA has associated reserve pages */ 1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1256 { 1257 if (vma->vm_flags & VM_NORESERVE) { 1258 /* 1259 * This address is already reserved by other process(chg == 0), 1260 * so, we should decrement reserved count. Without decrementing, 1261 * reserve count remains after releasing inode, because this 1262 * allocated page will go into page cache and is regarded as 1263 * coming from reserved pool in releasing step. Currently, we 1264 * don't have any other solution to deal with this situation 1265 * properly, so add work-around here. 1266 */ 1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1268 return true; 1269 else 1270 return false; 1271 } 1272 1273 /* Shared mappings always use reserves */ 1274 if (vma->vm_flags & VM_MAYSHARE) { 1275 /* 1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1277 * be a region map for all pages. The only situation where 1278 * there is no region map is if a hole was punched via 1279 * fallocate. In this case, there really are no reserves to 1280 * use. This situation is indicated if chg != 0. 1281 */ 1282 if (chg) 1283 return false; 1284 else 1285 return true; 1286 } 1287 1288 /* 1289 * Only the process that called mmap() has reserves for 1290 * private mappings. 1291 */ 1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1293 /* 1294 * Like the shared case above, a hole punch or truncate 1295 * could have been performed on the private mapping. 1296 * Examine the value of chg to determine if reserves 1297 * actually exist or were previously consumed. 1298 * Very Subtle - The value of chg comes from a previous 1299 * call to vma_needs_reserves(). The reserve map for 1300 * private mappings has different (opposite) semantics 1301 * than that of shared mappings. vma_needs_reserves() 1302 * has already taken this difference in semantics into 1303 * account. Therefore, the meaning of chg is the same 1304 * as in the shared case above. Code could easily be 1305 * combined, but keeping it separate draws attention to 1306 * subtle differences. 1307 */ 1308 if (chg) 1309 return false; 1310 else 1311 return true; 1312 } 1313 1314 return false; 1315 } 1316 1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1318 { 1319 int nid = folio_nid(folio); 1320 1321 lockdep_assert_held(&hugetlb_lock); 1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1323 1324 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1325 h->free_huge_pages++; 1326 h->free_huge_pages_node[nid]++; 1327 folio_set_hugetlb_freed(folio); 1328 } 1329 1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1331 int nid) 1332 { 1333 struct folio *folio; 1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1335 1336 lockdep_assert_held(&hugetlb_lock); 1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1338 if (pin && !folio_is_longterm_pinnable(folio)) 1339 continue; 1340 1341 if (folio_test_hwpoison(folio)) 1342 continue; 1343 1344 list_move(&folio->lru, &h->hugepage_activelist); 1345 folio_ref_unfreeze(folio, 1); 1346 folio_clear_hugetlb_freed(folio); 1347 h->free_huge_pages--; 1348 h->free_huge_pages_node[nid]--; 1349 return folio; 1350 } 1351 1352 return NULL; 1353 } 1354 1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1356 int nid, nodemask_t *nmask) 1357 { 1358 unsigned int cpuset_mems_cookie; 1359 struct zonelist *zonelist; 1360 struct zone *zone; 1361 struct zoneref *z; 1362 int node = NUMA_NO_NODE; 1363 1364 zonelist = node_zonelist(nid, gfp_mask); 1365 1366 retry_cpuset: 1367 cpuset_mems_cookie = read_mems_allowed_begin(); 1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1369 struct folio *folio; 1370 1371 if (!cpuset_zone_allowed(zone, gfp_mask)) 1372 continue; 1373 /* 1374 * no need to ask again on the same node. Pool is node rather than 1375 * zone aware 1376 */ 1377 if (zone_to_nid(zone) == node) 1378 continue; 1379 node = zone_to_nid(zone); 1380 1381 folio = dequeue_hugetlb_folio_node_exact(h, node); 1382 if (folio) 1383 return folio; 1384 } 1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1386 goto retry_cpuset; 1387 1388 return NULL; 1389 } 1390 1391 static unsigned long available_huge_pages(struct hstate *h) 1392 { 1393 return h->free_huge_pages - h->resv_huge_pages; 1394 } 1395 1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1397 struct vm_area_struct *vma, 1398 unsigned long address, int avoid_reserve, 1399 long chg) 1400 { 1401 struct folio *folio = NULL; 1402 struct mempolicy *mpol; 1403 gfp_t gfp_mask; 1404 nodemask_t *nodemask; 1405 int nid; 1406 1407 /* 1408 * A child process with MAP_PRIVATE mappings created by their parent 1409 * have no page reserves. This check ensures that reservations are 1410 * not "stolen". The child may still get SIGKILLed 1411 */ 1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1413 goto err; 1414 1415 /* If reserves cannot be used, ensure enough pages are in the pool */ 1416 if (avoid_reserve && !available_huge_pages(h)) 1417 goto err; 1418 1419 gfp_mask = htlb_alloc_mask(h); 1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1421 1422 if (mpol_is_preferred_many(mpol)) { 1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1424 nid, nodemask); 1425 1426 /* Fallback to all nodes if page==NULL */ 1427 nodemask = NULL; 1428 } 1429 1430 if (!folio) 1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1432 nid, nodemask); 1433 1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1435 folio_set_hugetlb_restore_reserve(folio); 1436 h->resv_huge_pages--; 1437 } 1438 1439 mpol_cond_put(mpol); 1440 return folio; 1441 1442 err: 1443 return NULL; 1444 } 1445 1446 /* 1447 * common helper functions for hstate_next_node_to_{alloc|free}. 1448 * We may have allocated or freed a huge page based on a different 1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1450 * be outside of *nodes_allowed. Ensure that we use an allowed 1451 * node for alloc or free. 1452 */ 1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1454 { 1455 nid = next_node_in(nid, *nodes_allowed); 1456 VM_BUG_ON(nid >= MAX_NUMNODES); 1457 1458 return nid; 1459 } 1460 1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1462 { 1463 if (!node_isset(nid, *nodes_allowed)) 1464 nid = next_node_allowed(nid, nodes_allowed); 1465 return nid; 1466 } 1467 1468 /* 1469 * returns the previously saved node ["this node"] from which to 1470 * allocate a persistent huge page for the pool and advance the 1471 * next node from which to allocate, handling wrap at end of node 1472 * mask. 1473 */ 1474 static int hstate_next_node_to_alloc(struct hstate *h, 1475 nodemask_t *nodes_allowed) 1476 { 1477 int nid; 1478 1479 VM_BUG_ON(!nodes_allowed); 1480 1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1483 1484 return nid; 1485 } 1486 1487 /* 1488 * helper for remove_pool_huge_page() - return the previously saved 1489 * node ["this node"] from which to free a huge page. Advance the 1490 * next node id whether or not we find a free huge page to free so 1491 * that the next attempt to free addresses the next node. 1492 */ 1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1494 { 1495 int nid; 1496 1497 VM_BUG_ON(!nodes_allowed); 1498 1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1501 1502 return nid; 1503 } 1504 1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1512 for (nr_nodes = nodes_weight(*mask); \ 1513 nr_nodes > 0 && \ 1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1515 nr_nodes--) 1516 1517 /* used to demote non-gigantic_huge pages as well */ 1518 static void __destroy_compound_gigantic_folio(struct folio *folio, 1519 unsigned int order, bool demote) 1520 { 1521 int i; 1522 int nr_pages = 1 << order; 1523 struct page *p; 1524 1525 atomic_set(&folio->_entire_mapcount, 0); 1526 atomic_set(&folio->_nr_pages_mapped, 0); 1527 atomic_set(&folio->_pincount, 0); 1528 1529 for (i = 1; i < nr_pages; i++) { 1530 p = folio_page(folio, i); 1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1532 p->mapping = NULL; 1533 clear_compound_head(p); 1534 if (!demote) 1535 set_page_refcounted(p); 1536 } 1537 1538 __folio_clear_head(folio); 1539 } 1540 1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, true); 1545 } 1546 1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1548 static void destroy_compound_gigantic_folio(struct folio *folio, 1549 unsigned int order) 1550 { 1551 __destroy_compound_gigantic_folio(folio, order, false); 1552 } 1553 1554 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1555 { 1556 /* 1557 * If the page isn't allocated using the cma allocator, 1558 * cma_release() returns false. 1559 */ 1560 #ifdef CONFIG_CMA 1561 int nid = folio_nid(folio); 1562 1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1564 return; 1565 #endif 1566 1567 free_contig_range(folio_pfn(folio), 1 << order); 1568 } 1569 1570 #ifdef CONFIG_CONTIG_ALLOC 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 struct page *page; 1575 unsigned long nr_pages = pages_per_huge_page(h); 1576 if (nid == NUMA_NO_NODE) 1577 nid = numa_mem_id(); 1578 1579 #ifdef CONFIG_CMA 1580 { 1581 int node; 1582 1583 if (hugetlb_cma[nid]) { 1584 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1585 huge_page_order(h), true); 1586 if (page) 1587 return page_folio(page); 1588 } 1589 1590 if (!(gfp_mask & __GFP_THISNODE)) { 1591 for_each_node_mask(node, *nodemask) { 1592 if (node == nid || !hugetlb_cma[node]) 1593 continue; 1594 1595 page = cma_alloc(hugetlb_cma[node], nr_pages, 1596 huge_page_order(h), true); 1597 if (page) 1598 return page_folio(page); 1599 } 1600 } 1601 } 1602 #endif 1603 1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1605 return page ? page_folio(page) : NULL; 1606 } 1607 1608 #else /* !CONFIG_CONTIG_ALLOC */ 1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1610 int nid, nodemask_t *nodemask) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_CONTIG_ALLOC */ 1615 1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1618 int nid, nodemask_t *nodemask) 1619 { 1620 return NULL; 1621 } 1622 static inline void free_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1625 unsigned int order) { } 1626 #endif 1627 1628 static inline void __clear_hugetlb_destructor(struct hstate *h, 1629 struct folio *folio) 1630 { 1631 lockdep_assert_held(&hugetlb_lock); 1632 1633 __folio_clear_hugetlb(folio); 1634 } 1635 1636 /* 1637 * Remove hugetlb folio from lists. 1638 * If vmemmap exists for the folio, update dtor so that the folio appears 1639 * as just a compound page. Otherwise, wait until after allocating vmemmap 1640 * to update dtor. 1641 * 1642 * A reference is held on the folio, except in the case of demote. 1643 * 1644 * Must be called with hugetlb lock held. 1645 */ 1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus, 1648 bool demote) 1649 { 1650 int nid = folio_nid(folio); 1651 1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1654 1655 lockdep_assert_held(&hugetlb_lock); 1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1657 return; 1658 1659 list_del(&folio->lru); 1660 1661 if (folio_test_hugetlb_freed(folio)) { 1662 h->free_huge_pages--; 1663 h->free_huge_pages_node[nid]--; 1664 } 1665 if (adjust_surplus) { 1666 h->surplus_huge_pages--; 1667 h->surplus_huge_pages_node[nid]--; 1668 } 1669 1670 /* 1671 * We can only clear the hugetlb destructor after allocating vmemmap 1672 * pages. Otherwise, someone (memory error handling) may try to write 1673 * to tail struct pages. 1674 */ 1675 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1676 __clear_hugetlb_destructor(h, folio); 1677 1678 /* 1679 * In the case of demote we do not ref count the page as it will soon 1680 * be turned into a page of smaller size. 1681 */ 1682 if (!demote) 1683 folio_ref_unfreeze(folio, 1); 1684 1685 h->nr_huge_pages--; 1686 h->nr_huge_pages_node[nid]--; 1687 } 1688 1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1693 } 1694 1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1699 } 1700 1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1702 bool adjust_surplus) 1703 { 1704 int zeroed; 1705 int nid = folio_nid(folio); 1706 1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1708 1709 lockdep_assert_held(&hugetlb_lock); 1710 1711 INIT_LIST_HEAD(&folio->lru); 1712 h->nr_huge_pages++; 1713 h->nr_huge_pages_node[nid]++; 1714 1715 if (adjust_surplus) { 1716 h->surplus_huge_pages++; 1717 h->surplus_huge_pages_node[nid]++; 1718 } 1719 1720 __folio_set_hugetlb(folio); 1721 folio_change_private(folio, NULL); 1722 /* 1723 * We have to set hugetlb_vmemmap_optimized again as above 1724 * folio_change_private(folio, NULL) cleared it. 1725 */ 1726 folio_set_hugetlb_vmemmap_optimized(folio); 1727 1728 /* 1729 * This folio is about to be managed by the hugetlb allocator and 1730 * should have no users. Drop our reference, and check for others 1731 * just in case. 1732 */ 1733 zeroed = folio_put_testzero(folio); 1734 if (unlikely(!zeroed)) 1735 /* 1736 * It is VERY unlikely soneone else has taken a ref 1737 * on the folio. In this case, we simply return as 1738 * free_huge_folio() will be called when this other ref 1739 * is dropped. 1740 */ 1741 return; 1742 1743 arch_clear_hugepage_flags(&folio->page); 1744 enqueue_hugetlb_folio(h, folio); 1745 } 1746 1747 static void __update_and_free_hugetlb_folio(struct hstate *h, 1748 struct folio *folio) 1749 { 1750 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1751 return; 1752 1753 /* 1754 * If we don't know which subpages are hwpoisoned, we can't free 1755 * the hugepage, so it's leaked intentionally. 1756 */ 1757 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1758 return; 1759 1760 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1761 spin_lock_irq(&hugetlb_lock); 1762 /* 1763 * If we cannot allocate vmemmap pages, just refuse to free the 1764 * page and put the page back on the hugetlb free list and treat 1765 * as a surplus page. 1766 */ 1767 add_hugetlb_folio(h, folio, true); 1768 spin_unlock_irq(&hugetlb_lock); 1769 return; 1770 } 1771 1772 /* 1773 * If vmemmap pages were allocated above, then we need to clear the 1774 * hugetlb destructor under the hugetlb lock. 1775 */ 1776 if (folio_test_hugetlb(folio)) { 1777 spin_lock_irq(&hugetlb_lock); 1778 __clear_hugetlb_destructor(h, folio); 1779 spin_unlock_irq(&hugetlb_lock); 1780 } 1781 1782 /* 1783 * Move PageHWPoison flag from head page to the raw error pages, 1784 * which makes any healthy subpages reusable. 1785 */ 1786 if (unlikely(folio_test_hwpoison(folio))) 1787 folio_clear_hugetlb_hwpoison(folio); 1788 1789 /* 1790 * Non-gigantic pages demoted from CMA allocated gigantic pages 1791 * need to be given back to CMA in free_gigantic_folio. 1792 */ 1793 if (hstate_is_gigantic(h) || 1794 hugetlb_cma_folio(folio, huge_page_order(h))) { 1795 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1796 free_gigantic_folio(folio, huge_page_order(h)); 1797 } else { 1798 INIT_LIST_HEAD(&folio->_deferred_list); 1799 __free_pages(&folio->page, huge_page_order(h)); 1800 } 1801 } 1802 1803 /* 1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1807 * the vmemmap pages. 1808 * 1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1810 * freed and frees them one-by-one. As the page->mapping pointer is going 1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1812 * structure of a lockless linked list of huge pages to be freed. 1813 */ 1814 static LLIST_HEAD(hpage_freelist); 1815 1816 static void free_hpage_workfn(struct work_struct *work) 1817 { 1818 struct llist_node *node; 1819 1820 node = llist_del_all(&hpage_freelist); 1821 1822 while (node) { 1823 struct page *page; 1824 struct hstate *h; 1825 1826 page = container_of((struct address_space **)node, 1827 struct page, mapping); 1828 node = node->next; 1829 page->mapping = NULL; 1830 /* 1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1832 * folio_hstate() is going to trigger because a previous call to 1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1834 * not use folio_hstate() directly. 1835 */ 1836 h = size_to_hstate(page_size(page)); 1837 1838 __update_and_free_hugetlb_folio(h, page_folio(page)); 1839 1840 cond_resched(); 1841 } 1842 } 1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1844 1845 static inline void flush_free_hpage_work(struct hstate *h) 1846 { 1847 if (hugetlb_vmemmap_optimizable(h)) 1848 flush_work(&free_hpage_work); 1849 } 1850 1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1852 bool atomic) 1853 { 1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1855 __update_and_free_hugetlb_folio(h, folio); 1856 return; 1857 } 1858 1859 /* 1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1861 * 1862 * Only call schedule_work() if hpage_freelist is previously 1863 * empty. Otherwise, schedule_work() had been called but the workfn 1864 * hasn't retrieved the list yet. 1865 */ 1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1867 schedule_work(&free_hpage_work); 1868 } 1869 1870 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1871 { 1872 struct page *page, *t_page; 1873 struct folio *folio; 1874 1875 list_for_each_entry_safe(page, t_page, list, lru) { 1876 folio = page_folio(page); 1877 update_and_free_hugetlb_folio(h, folio, false); 1878 cond_resched(); 1879 } 1880 } 1881 1882 struct hstate *size_to_hstate(unsigned long size) 1883 { 1884 struct hstate *h; 1885 1886 for_each_hstate(h) { 1887 if (huge_page_size(h) == size) 1888 return h; 1889 } 1890 return NULL; 1891 } 1892 1893 void free_huge_folio(struct folio *folio) 1894 { 1895 /* 1896 * Can't pass hstate in here because it is called from the 1897 * compound page destructor. 1898 */ 1899 struct hstate *h = folio_hstate(folio); 1900 int nid = folio_nid(folio); 1901 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1902 bool restore_reserve; 1903 unsigned long flags; 1904 1905 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1906 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1907 1908 hugetlb_set_folio_subpool(folio, NULL); 1909 if (folio_test_anon(folio)) 1910 __ClearPageAnonExclusive(&folio->page); 1911 folio->mapping = NULL; 1912 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1913 folio_clear_hugetlb_restore_reserve(folio); 1914 1915 /* 1916 * If HPageRestoreReserve was set on page, page allocation consumed a 1917 * reservation. If the page was associated with a subpool, there 1918 * would have been a page reserved in the subpool before allocation 1919 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1920 * reservation, do not call hugepage_subpool_put_pages() as this will 1921 * remove the reserved page from the subpool. 1922 */ 1923 if (!restore_reserve) { 1924 /* 1925 * A return code of zero implies that the subpool will be 1926 * under its minimum size if the reservation is not restored 1927 * after page is free. Therefore, force restore_reserve 1928 * operation. 1929 */ 1930 if (hugepage_subpool_put_pages(spool, 1) == 0) 1931 restore_reserve = true; 1932 } 1933 1934 spin_lock_irqsave(&hugetlb_lock, flags); 1935 folio_clear_hugetlb_migratable(folio); 1936 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1937 pages_per_huge_page(h), folio); 1938 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1939 pages_per_huge_page(h), folio); 1940 if (restore_reserve) 1941 h->resv_huge_pages++; 1942 1943 if (folio_test_hugetlb_temporary(folio)) { 1944 remove_hugetlb_folio(h, folio, false); 1945 spin_unlock_irqrestore(&hugetlb_lock, flags); 1946 update_and_free_hugetlb_folio(h, folio, true); 1947 } else if (h->surplus_huge_pages_node[nid]) { 1948 /* remove the page from active list */ 1949 remove_hugetlb_folio(h, folio, true); 1950 spin_unlock_irqrestore(&hugetlb_lock, flags); 1951 update_and_free_hugetlb_folio(h, folio, true); 1952 } else { 1953 arch_clear_hugepage_flags(&folio->page); 1954 enqueue_hugetlb_folio(h, folio); 1955 spin_unlock_irqrestore(&hugetlb_lock, flags); 1956 } 1957 } 1958 1959 /* 1960 * Must be called with the hugetlb lock held 1961 */ 1962 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1963 { 1964 lockdep_assert_held(&hugetlb_lock); 1965 h->nr_huge_pages++; 1966 h->nr_huge_pages_node[nid]++; 1967 } 1968 1969 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1970 { 1971 hugetlb_vmemmap_optimize(h, &folio->page); 1972 INIT_LIST_HEAD(&folio->lru); 1973 __folio_set_hugetlb(folio); 1974 hugetlb_set_folio_subpool(folio, NULL); 1975 set_hugetlb_cgroup(folio, NULL); 1976 set_hugetlb_cgroup_rsvd(folio, NULL); 1977 } 1978 1979 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1980 { 1981 __prep_new_hugetlb_folio(h, folio); 1982 spin_lock_irq(&hugetlb_lock); 1983 __prep_account_new_huge_page(h, nid); 1984 spin_unlock_irq(&hugetlb_lock); 1985 } 1986 1987 static bool __prep_compound_gigantic_folio(struct folio *folio, 1988 unsigned int order, bool demote) 1989 { 1990 int i, j; 1991 int nr_pages = 1 << order; 1992 struct page *p; 1993 1994 __folio_clear_reserved(folio); 1995 for (i = 0; i < nr_pages; i++) { 1996 p = folio_page(folio, i); 1997 1998 /* 1999 * For gigantic hugepages allocated through bootmem at 2000 * boot, it's safer to be consistent with the not-gigantic 2001 * hugepages and clear the PG_reserved bit from all tail pages 2002 * too. Otherwise drivers using get_user_pages() to access tail 2003 * pages may get the reference counting wrong if they see 2004 * PG_reserved set on a tail page (despite the head page not 2005 * having PG_reserved set). Enforcing this consistency between 2006 * head and tail pages allows drivers to optimize away a check 2007 * on the head page when they need know if put_page() is needed 2008 * after get_user_pages(). 2009 */ 2010 if (i != 0) /* head page cleared above */ 2011 __ClearPageReserved(p); 2012 /* 2013 * Subtle and very unlikely 2014 * 2015 * Gigantic 'page allocators' such as memblock or cma will 2016 * return a set of pages with each page ref counted. We need 2017 * to turn this set of pages into a compound page with tail 2018 * page ref counts set to zero. Code such as speculative page 2019 * cache adding could take a ref on a 'to be' tail page. 2020 * We need to respect any increased ref count, and only set 2021 * the ref count to zero if count is currently 1. If count 2022 * is not 1, we return an error. An error return indicates 2023 * the set of pages can not be converted to a gigantic page. 2024 * The caller who allocated the pages should then discard the 2025 * pages using the appropriate free interface. 2026 * 2027 * In the case of demote, the ref count will be zero. 2028 */ 2029 if (!demote) { 2030 if (!page_ref_freeze(p, 1)) { 2031 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2032 goto out_error; 2033 } 2034 } else { 2035 VM_BUG_ON_PAGE(page_count(p), p); 2036 } 2037 if (i != 0) 2038 set_compound_head(p, &folio->page); 2039 } 2040 __folio_set_head(folio); 2041 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2042 folio_set_order(folio, order); 2043 atomic_set(&folio->_entire_mapcount, -1); 2044 atomic_set(&folio->_nr_pages_mapped, 0); 2045 atomic_set(&folio->_pincount, 0); 2046 return true; 2047 2048 out_error: 2049 /* undo page modifications made above */ 2050 for (j = 0; j < i; j++) { 2051 p = folio_page(folio, j); 2052 if (j != 0) 2053 clear_compound_head(p); 2054 set_page_refcounted(p); 2055 } 2056 /* need to clear PG_reserved on remaining tail pages */ 2057 for (; j < nr_pages; j++) { 2058 p = folio_page(folio, j); 2059 __ClearPageReserved(p); 2060 } 2061 return false; 2062 } 2063 2064 static bool prep_compound_gigantic_folio(struct folio *folio, 2065 unsigned int order) 2066 { 2067 return __prep_compound_gigantic_folio(folio, order, false); 2068 } 2069 2070 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2071 unsigned int order) 2072 { 2073 return __prep_compound_gigantic_folio(folio, order, true); 2074 } 2075 2076 /* 2077 * Find and lock address space (mapping) in write mode. 2078 * 2079 * Upon entry, the page is locked which means that page_mapping() is 2080 * stable. Due to locking order, we can only trylock_write. If we can 2081 * not get the lock, simply return NULL to caller. 2082 */ 2083 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2084 { 2085 struct address_space *mapping = page_mapping(hpage); 2086 2087 if (!mapping) 2088 return mapping; 2089 2090 if (i_mmap_trylock_write(mapping)) 2091 return mapping; 2092 2093 return NULL; 2094 } 2095 2096 pgoff_t hugetlb_basepage_index(struct page *page) 2097 { 2098 struct page *page_head = compound_head(page); 2099 pgoff_t index = page_index(page_head); 2100 unsigned long compound_idx; 2101 2102 if (compound_order(page_head) > MAX_ORDER) 2103 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2104 else 2105 compound_idx = page - page_head; 2106 2107 return (index << compound_order(page_head)) + compound_idx; 2108 } 2109 2110 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2111 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2112 nodemask_t *node_alloc_noretry) 2113 { 2114 int order = huge_page_order(h); 2115 struct page *page; 2116 bool alloc_try_hard = true; 2117 bool retry = true; 2118 2119 /* 2120 * By default we always try hard to allocate the page with 2121 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2122 * a loop (to adjust global huge page counts) and previous allocation 2123 * failed, do not continue to try hard on the same node. Use the 2124 * node_alloc_noretry bitmap to manage this state information. 2125 */ 2126 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2127 alloc_try_hard = false; 2128 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2129 if (alloc_try_hard) 2130 gfp_mask |= __GFP_RETRY_MAYFAIL; 2131 if (nid == NUMA_NO_NODE) 2132 nid = numa_mem_id(); 2133 retry: 2134 page = __alloc_pages(gfp_mask, order, nid, nmask); 2135 2136 /* Freeze head page */ 2137 if (page && !page_ref_freeze(page, 1)) { 2138 __free_pages(page, order); 2139 if (retry) { /* retry once */ 2140 retry = false; 2141 goto retry; 2142 } 2143 /* WOW! twice in a row. */ 2144 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2145 page = NULL; 2146 } 2147 2148 /* 2149 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2150 * indicates an overall state change. Clear bit so that we resume 2151 * normal 'try hard' allocations. 2152 */ 2153 if (node_alloc_noretry && page && !alloc_try_hard) 2154 node_clear(nid, *node_alloc_noretry); 2155 2156 /* 2157 * If we tried hard to get a page but failed, set bit so that 2158 * subsequent attempts will not try as hard until there is an 2159 * overall state change. 2160 */ 2161 if (node_alloc_noretry && !page && alloc_try_hard) 2162 node_set(nid, *node_alloc_noretry); 2163 2164 if (!page) { 2165 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2166 return NULL; 2167 } 2168 2169 __count_vm_event(HTLB_BUDDY_PGALLOC); 2170 return page_folio(page); 2171 } 2172 2173 /* 2174 * Common helper to allocate a fresh hugetlb page. All specific allocators 2175 * should use this function to get new hugetlb pages 2176 * 2177 * Note that returned page is 'frozen': ref count of head page and all tail 2178 * pages is zero. 2179 */ 2180 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2181 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2182 nodemask_t *node_alloc_noretry) 2183 { 2184 struct folio *folio; 2185 bool retry = false; 2186 2187 retry: 2188 if (hstate_is_gigantic(h)) 2189 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2190 else 2191 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2192 nid, nmask, node_alloc_noretry); 2193 if (!folio) 2194 return NULL; 2195 if (hstate_is_gigantic(h)) { 2196 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2197 /* 2198 * Rare failure to convert pages to compound page. 2199 * Free pages and try again - ONCE! 2200 */ 2201 free_gigantic_folio(folio, huge_page_order(h)); 2202 if (!retry) { 2203 retry = true; 2204 goto retry; 2205 } 2206 return NULL; 2207 } 2208 } 2209 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2210 2211 return folio; 2212 } 2213 2214 /* 2215 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2216 * manner. 2217 */ 2218 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2219 nodemask_t *node_alloc_noretry) 2220 { 2221 struct folio *folio; 2222 int nr_nodes, node; 2223 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2224 2225 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2226 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2227 nodes_allowed, node_alloc_noretry); 2228 if (folio) { 2229 free_huge_folio(folio); /* free it into the hugepage allocator */ 2230 return 1; 2231 } 2232 } 2233 2234 return 0; 2235 } 2236 2237 /* 2238 * Remove huge page from pool from next node to free. Attempt to keep 2239 * persistent huge pages more or less balanced over allowed nodes. 2240 * This routine only 'removes' the hugetlb page. The caller must make 2241 * an additional call to free the page to low level allocators. 2242 * Called with hugetlb_lock locked. 2243 */ 2244 static struct page *remove_pool_huge_page(struct hstate *h, 2245 nodemask_t *nodes_allowed, 2246 bool acct_surplus) 2247 { 2248 int nr_nodes, node; 2249 struct page *page = NULL; 2250 struct folio *folio; 2251 2252 lockdep_assert_held(&hugetlb_lock); 2253 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2254 /* 2255 * If we're returning unused surplus pages, only examine 2256 * nodes with surplus pages. 2257 */ 2258 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2259 !list_empty(&h->hugepage_freelists[node])) { 2260 page = list_entry(h->hugepage_freelists[node].next, 2261 struct page, lru); 2262 folio = page_folio(page); 2263 remove_hugetlb_folio(h, folio, acct_surplus); 2264 break; 2265 } 2266 } 2267 2268 return page; 2269 } 2270 2271 /* 2272 * Dissolve a given free hugepage into free buddy pages. This function does 2273 * nothing for in-use hugepages and non-hugepages. 2274 * This function returns values like below: 2275 * 2276 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2277 * when the system is under memory pressure and the feature of 2278 * freeing unused vmemmap pages associated with each hugetlb page 2279 * is enabled. 2280 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2281 * (allocated or reserved.) 2282 * 0: successfully dissolved free hugepages or the page is not a 2283 * hugepage (considered as already dissolved) 2284 */ 2285 int dissolve_free_huge_page(struct page *page) 2286 { 2287 int rc = -EBUSY; 2288 struct folio *folio = page_folio(page); 2289 2290 retry: 2291 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2292 if (!folio_test_hugetlb(folio)) 2293 return 0; 2294 2295 spin_lock_irq(&hugetlb_lock); 2296 if (!folio_test_hugetlb(folio)) { 2297 rc = 0; 2298 goto out; 2299 } 2300 2301 if (!folio_ref_count(folio)) { 2302 struct hstate *h = folio_hstate(folio); 2303 if (!available_huge_pages(h)) 2304 goto out; 2305 2306 /* 2307 * We should make sure that the page is already on the free list 2308 * when it is dissolved. 2309 */ 2310 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2311 spin_unlock_irq(&hugetlb_lock); 2312 cond_resched(); 2313 2314 /* 2315 * Theoretically, we should return -EBUSY when we 2316 * encounter this race. In fact, we have a chance 2317 * to successfully dissolve the page if we do a 2318 * retry. Because the race window is quite small. 2319 * If we seize this opportunity, it is an optimization 2320 * for increasing the success rate of dissolving page. 2321 */ 2322 goto retry; 2323 } 2324 2325 remove_hugetlb_folio(h, folio, false); 2326 h->max_huge_pages--; 2327 spin_unlock_irq(&hugetlb_lock); 2328 2329 /* 2330 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2331 * before freeing the page. update_and_free_hugtlb_folio will fail to 2332 * free the page if it can not allocate required vmemmap. We 2333 * need to adjust max_huge_pages if the page is not freed. 2334 * Attempt to allocate vmemmmap here so that we can take 2335 * appropriate action on failure. 2336 */ 2337 rc = hugetlb_vmemmap_restore(h, &folio->page); 2338 if (!rc) { 2339 update_and_free_hugetlb_folio(h, folio, false); 2340 } else { 2341 spin_lock_irq(&hugetlb_lock); 2342 add_hugetlb_folio(h, folio, false); 2343 h->max_huge_pages++; 2344 spin_unlock_irq(&hugetlb_lock); 2345 } 2346 2347 return rc; 2348 } 2349 out: 2350 spin_unlock_irq(&hugetlb_lock); 2351 return rc; 2352 } 2353 2354 /* 2355 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2356 * make specified memory blocks removable from the system. 2357 * Note that this will dissolve a free gigantic hugepage completely, if any 2358 * part of it lies within the given range. 2359 * Also note that if dissolve_free_huge_page() returns with an error, all 2360 * free hugepages that were dissolved before that error are lost. 2361 */ 2362 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2363 { 2364 unsigned long pfn; 2365 struct page *page; 2366 int rc = 0; 2367 unsigned int order; 2368 struct hstate *h; 2369 2370 if (!hugepages_supported()) 2371 return rc; 2372 2373 order = huge_page_order(&default_hstate); 2374 for_each_hstate(h) 2375 order = min(order, huge_page_order(h)); 2376 2377 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2378 page = pfn_to_page(pfn); 2379 rc = dissolve_free_huge_page(page); 2380 if (rc) 2381 break; 2382 } 2383 2384 return rc; 2385 } 2386 2387 /* 2388 * Allocates a fresh surplus page from the page allocator. 2389 */ 2390 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2391 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2392 { 2393 struct folio *folio = NULL; 2394 2395 if (hstate_is_gigantic(h)) 2396 return NULL; 2397 2398 spin_lock_irq(&hugetlb_lock); 2399 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2400 goto out_unlock; 2401 spin_unlock_irq(&hugetlb_lock); 2402 2403 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2404 if (!folio) 2405 return NULL; 2406 2407 spin_lock_irq(&hugetlb_lock); 2408 /* 2409 * We could have raced with the pool size change. 2410 * Double check that and simply deallocate the new page 2411 * if we would end up overcommiting the surpluses. Abuse 2412 * temporary page to workaround the nasty free_huge_folio 2413 * codeflow 2414 */ 2415 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2416 folio_set_hugetlb_temporary(folio); 2417 spin_unlock_irq(&hugetlb_lock); 2418 free_huge_folio(folio); 2419 return NULL; 2420 } 2421 2422 h->surplus_huge_pages++; 2423 h->surplus_huge_pages_node[folio_nid(folio)]++; 2424 2425 out_unlock: 2426 spin_unlock_irq(&hugetlb_lock); 2427 2428 return folio; 2429 } 2430 2431 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2432 int nid, nodemask_t *nmask) 2433 { 2434 struct folio *folio; 2435 2436 if (hstate_is_gigantic(h)) 2437 return NULL; 2438 2439 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2440 if (!folio) 2441 return NULL; 2442 2443 /* fresh huge pages are frozen */ 2444 folio_ref_unfreeze(folio, 1); 2445 /* 2446 * We do not account these pages as surplus because they are only 2447 * temporary and will be released properly on the last reference 2448 */ 2449 folio_set_hugetlb_temporary(folio); 2450 2451 return folio; 2452 } 2453 2454 /* 2455 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2456 */ 2457 static 2458 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2459 struct vm_area_struct *vma, unsigned long addr) 2460 { 2461 struct folio *folio = NULL; 2462 struct mempolicy *mpol; 2463 gfp_t gfp_mask = htlb_alloc_mask(h); 2464 int nid; 2465 nodemask_t *nodemask; 2466 2467 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2468 if (mpol_is_preferred_many(mpol)) { 2469 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2470 2471 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2472 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2473 2474 /* Fallback to all nodes if page==NULL */ 2475 nodemask = NULL; 2476 } 2477 2478 if (!folio) 2479 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2480 mpol_cond_put(mpol); 2481 return folio; 2482 } 2483 2484 /* folio migration callback function */ 2485 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2486 nodemask_t *nmask, gfp_t gfp_mask) 2487 { 2488 spin_lock_irq(&hugetlb_lock); 2489 if (available_huge_pages(h)) { 2490 struct folio *folio; 2491 2492 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2493 preferred_nid, nmask); 2494 if (folio) { 2495 spin_unlock_irq(&hugetlb_lock); 2496 return folio; 2497 } 2498 } 2499 spin_unlock_irq(&hugetlb_lock); 2500 2501 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2502 } 2503 2504 /* mempolicy aware migration callback */ 2505 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2506 unsigned long address) 2507 { 2508 struct mempolicy *mpol; 2509 nodemask_t *nodemask; 2510 struct folio *folio; 2511 gfp_t gfp_mask; 2512 int node; 2513 2514 gfp_mask = htlb_alloc_mask(h); 2515 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2516 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2517 mpol_cond_put(mpol); 2518 2519 return folio; 2520 } 2521 2522 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2523 { 2524 #ifdef CONFIG_NUMA 2525 struct mempolicy *mpol = get_task_policy(current); 2526 2527 /* 2528 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2529 * (from policy_nodemask) specifically for hugetlb case 2530 */ 2531 if (mpol->mode == MPOL_BIND && 2532 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2533 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2534 return &mpol->nodes; 2535 #endif 2536 return NULL; 2537 } 2538 2539 /* 2540 * Increase the hugetlb pool such that it can accommodate a reservation 2541 * of size 'delta'. 2542 */ 2543 static int gather_surplus_pages(struct hstate *h, long delta) 2544 __must_hold(&hugetlb_lock) 2545 { 2546 LIST_HEAD(surplus_list); 2547 struct folio *folio, *tmp; 2548 int ret; 2549 long i; 2550 long needed, allocated; 2551 bool alloc_ok = true; 2552 int node; 2553 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2554 2555 lockdep_assert_held(&hugetlb_lock); 2556 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2557 if (needed <= 0) { 2558 h->resv_huge_pages += delta; 2559 return 0; 2560 } 2561 2562 allocated = 0; 2563 2564 ret = -ENOMEM; 2565 retry: 2566 spin_unlock_irq(&hugetlb_lock); 2567 for (i = 0; i < needed; i++) { 2568 folio = NULL; 2569 for_each_node_mask(node, cpuset_current_mems_allowed) { 2570 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) { 2571 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2572 node, NULL); 2573 if (folio) 2574 break; 2575 } 2576 } 2577 if (!folio) { 2578 alloc_ok = false; 2579 break; 2580 } 2581 list_add(&folio->lru, &surplus_list); 2582 cond_resched(); 2583 } 2584 allocated += i; 2585 2586 /* 2587 * After retaking hugetlb_lock, we need to recalculate 'needed' 2588 * because either resv_huge_pages or free_huge_pages may have changed. 2589 */ 2590 spin_lock_irq(&hugetlb_lock); 2591 needed = (h->resv_huge_pages + delta) - 2592 (h->free_huge_pages + allocated); 2593 if (needed > 0) { 2594 if (alloc_ok) 2595 goto retry; 2596 /* 2597 * We were not able to allocate enough pages to 2598 * satisfy the entire reservation so we free what 2599 * we've allocated so far. 2600 */ 2601 goto free; 2602 } 2603 /* 2604 * The surplus_list now contains _at_least_ the number of extra pages 2605 * needed to accommodate the reservation. Add the appropriate number 2606 * of pages to the hugetlb pool and free the extras back to the buddy 2607 * allocator. Commit the entire reservation here to prevent another 2608 * process from stealing the pages as they are added to the pool but 2609 * before they are reserved. 2610 */ 2611 needed += allocated; 2612 h->resv_huge_pages += delta; 2613 ret = 0; 2614 2615 /* Free the needed pages to the hugetlb pool */ 2616 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2617 if ((--needed) < 0) 2618 break; 2619 /* Add the page to the hugetlb allocator */ 2620 enqueue_hugetlb_folio(h, folio); 2621 } 2622 free: 2623 spin_unlock_irq(&hugetlb_lock); 2624 2625 /* 2626 * Free unnecessary surplus pages to the buddy allocator. 2627 * Pages have no ref count, call free_huge_folio directly. 2628 */ 2629 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2630 free_huge_folio(folio); 2631 spin_lock_irq(&hugetlb_lock); 2632 2633 return ret; 2634 } 2635 2636 /* 2637 * This routine has two main purposes: 2638 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2639 * in unused_resv_pages. This corresponds to the prior adjustments made 2640 * to the associated reservation map. 2641 * 2) Free any unused surplus pages that may have been allocated to satisfy 2642 * the reservation. As many as unused_resv_pages may be freed. 2643 */ 2644 static void return_unused_surplus_pages(struct hstate *h, 2645 unsigned long unused_resv_pages) 2646 { 2647 unsigned long nr_pages; 2648 struct page *page; 2649 LIST_HEAD(page_list); 2650 2651 lockdep_assert_held(&hugetlb_lock); 2652 /* Uncommit the reservation */ 2653 h->resv_huge_pages -= unused_resv_pages; 2654 2655 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2656 goto out; 2657 2658 /* 2659 * Part (or even all) of the reservation could have been backed 2660 * by pre-allocated pages. Only free surplus pages. 2661 */ 2662 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2663 2664 /* 2665 * We want to release as many surplus pages as possible, spread 2666 * evenly across all nodes with memory. Iterate across these nodes 2667 * until we can no longer free unreserved surplus pages. This occurs 2668 * when the nodes with surplus pages have no free pages. 2669 * remove_pool_huge_page() will balance the freed pages across the 2670 * on-line nodes with memory and will handle the hstate accounting. 2671 */ 2672 while (nr_pages--) { 2673 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2674 if (!page) 2675 goto out; 2676 2677 list_add(&page->lru, &page_list); 2678 } 2679 2680 out: 2681 spin_unlock_irq(&hugetlb_lock); 2682 update_and_free_pages_bulk(h, &page_list); 2683 spin_lock_irq(&hugetlb_lock); 2684 } 2685 2686 2687 /* 2688 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2689 * are used by the huge page allocation routines to manage reservations. 2690 * 2691 * vma_needs_reservation is called to determine if the huge page at addr 2692 * within the vma has an associated reservation. If a reservation is 2693 * needed, the value 1 is returned. The caller is then responsible for 2694 * managing the global reservation and subpool usage counts. After 2695 * the huge page has been allocated, vma_commit_reservation is called 2696 * to add the page to the reservation map. If the page allocation fails, 2697 * the reservation must be ended instead of committed. vma_end_reservation 2698 * is called in such cases. 2699 * 2700 * In the normal case, vma_commit_reservation returns the same value 2701 * as the preceding vma_needs_reservation call. The only time this 2702 * is not the case is if a reserve map was changed between calls. It 2703 * is the responsibility of the caller to notice the difference and 2704 * take appropriate action. 2705 * 2706 * vma_add_reservation is used in error paths where a reservation must 2707 * be restored when a newly allocated huge page must be freed. It is 2708 * to be called after calling vma_needs_reservation to determine if a 2709 * reservation exists. 2710 * 2711 * vma_del_reservation is used in error paths where an entry in the reserve 2712 * map was created during huge page allocation and must be removed. It is to 2713 * be called after calling vma_needs_reservation to determine if a reservation 2714 * exists. 2715 */ 2716 enum vma_resv_mode { 2717 VMA_NEEDS_RESV, 2718 VMA_COMMIT_RESV, 2719 VMA_END_RESV, 2720 VMA_ADD_RESV, 2721 VMA_DEL_RESV, 2722 }; 2723 static long __vma_reservation_common(struct hstate *h, 2724 struct vm_area_struct *vma, unsigned long addr, 2725 enum vma_resv_mode mode) 2726 { 2727 struct resv_map *resv; 2728 pgoff_t idx; 2729 long ret; 2730 long dummy_out_regions_needed; 2731 2732 resv = vma_resv_map(vma); 2733 if (!resv) 2734 return 1; 2735 2736 idx = vma_hugecache_offset(h, vma, addr); 2737 switch (mode) { 2738 case VMA_NEEDS_RESV: 2739 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2740 /* We assume that vma_reservation_* routines always operate on 2741 * 1 page, and that adding to resv map a 1 page entry can only 2742 * ever require 1 region. 2743 */ 2744 VM_BUG_ON(dummy_out_regions_needed != 1); 2745 break; 2746 case VMA_COMMIT_RESV: 2747 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2748 /* region_add calls of range 1 should never fail. */ 2749 VM_BUG_ON(ret < 0); 2750 break; 2751 case VMA_END_RESV: 2752 region_abort(resv, idx, idx + 1, 1); 2753 ret = 0; 2754 break; 2755 case VMA_ADD_RESV: 2756 if (vma->vm_flags & VM_MAYSHARE) { 2757 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2758 /* region_add calls of range 1 should never fail. */ 2759 VM_BUG_ON(ret < 0); 2760 } else { 2761 region_abort(resv, idx, idx + 1, 1); 2762 ret = region_del(resv, idx, idx + 1); 2763 } 2764 break; 2765 case VMA_DEL_RESV: 2766 if (vma->vm_flags & VM_MAYSHARE) { 2767 region_abort(resv, idx, idx + 1, 1); 2768 ret = region_del(resv, idx, idx + 1); 2769 } else { 2770 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2771 /* region_add calls of range 1 should never fail. */ 2772 VM_BUG_ON(ret < 0); 2773 } 2774 break; 2775 default: 2776 BUG(); 2777 } 2778 2779 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2780 return ret; 2781 /* 2782 * We know private mapping must have HPAGE_RESV_OWNER set. 2783 * 2784 * In most cases, reserves always exist for private mappings. 2785 * However, a file associated with mapping could have been 2786 * hole punched or truncated after reserves were consumed. 2787 * As subsequent fault on such a range will not use reserves. 2788 * Subtle - The reserve map for private mappings has the 2789 * opposite meaning than that of shared mappings. If NO 2790 * entry is in the reserve map, it means a reservation exists. 2791 * If an entry exists in the reserve map, it means the 2792 * reservation has already been consumed. As a result, the 2793 * return value of this routine is the opposite of the 2794 * value returned from reserve map manipulation routines above. 2795 */ 2796 if (ret > 0) 2797 return 0; 2798 if (ret == 0) 2799 return 1; 2800 return ret; 2801 } 2802 2803 static long vma_needs_reservation(struct hstate *h, 2804 struct vm_area_struct *vma, unsigned long addr) 2805 { 2806 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2807 } 2808 2809 static long vma_commit_reservation(struct hstate *h, 2810 struct vm_area_struct *vma, unsigned long addr) 2811 { 2812 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2813 } 2814 2815 static void vma_end_reservation(struct hstate *h, 2816 struct vm_area_struct *vma, unsigned long addr) 2817 { 2818 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2819 } 2820 2821 static long vma_add_reservation(struct hstate *h, 2822 struct vm_area_struct *vma, unsigned long addr) 2823 { 2824 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2825 } 2826 2827 static long vma_del_reservation(struct hstate *h, 2828 struct vm_area_struct *vma, unsigned long addr) 2829 { 2830 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2831 } 2832 2833 /* 2834 * This routine is called to restore reservation information on error paths. 2835 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2836 * and the hugetlb mutex should remain held when calling this routine. 2837 * 2838 * It handles two specific cases: 2839 * 1) A reservation was in place and the folio consumed the reservation. 2840 * hugetlb_restore_reserve is set in the folio. 2841 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2842 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2843 * 2844 * In case 1, free_huge_folio later in the error path will increment the 2845 * global reserve count. But, free_huge_folio does not have enough context 2846 * to adjust the reservation map. This case deals primarily with private 2847 * mappings. Adjust the reserve map here to be consistent with global 2848 * reserve count adjustments to be made by free_huge_folio. Make sure the 2849 * reserve map indicates there is a reservation present. 2850 * 2851 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2852 */ 2853 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2854 unsigned long address, struct folio *folio) 2855 { 2856 long rc = vma_needs_reservation(h, vma, address); 2857 2858 if (folio_test_hugetlb_restore_reserve(folio)) { 2859 if (unlikely(rc < 0)) 2860 /* 2861 * Rare out of memory condition in reserve map 2862 * manipulation. Clear hugetlb_restore_reserve so 2863 * that global reserve count will not be incremented 2864 * by free_huge_folio. This will make it appear 2865 * as though the reservation for this folio was 2866 * consumed. This may prevent the task from 2867 * faulting in the folio at a later time. This 2868 * is better than inconsistent global huge page 2869 * accounting of reserve counts. 2870 */ 2871 folio_clear_hugetlb_restore_reserve(folio); 2872 else if (rc) 2873 (void)vma_add_reservation(h, vma, address); 2874 else 2875 vma_end_reservation(h, vma, address); 2876 } else { 2877 if (!rc) { 2878 /* 2879 * This indicates there is an entry in the reserve map 2880 * not added by alloc_hugetlb_folio. We know it was added 2881 * before the alloc_hugetlb_folio call, otherwise 2882 * hugetlb_restore_reserve would be set on the folio. 2883 * Remove the entry so that a subsequent allocation 2884 * does not consume a reservation. 2885 */ 2886 rc = vma_del_reservation(h, vma, address); 2887 if (rc < 0) 2888 /* 2889 * VERY rare out of memory condition. Since 2890 * we can not delete the entry, set 2891 * hugetlb_restore_reserve so that the reserve 2892 * count will be incremented when the folio 2893 * is freed. This reserve will be consumed 2894 * on a subsequent allocation. 2895 */ 2896 folio_set_hugetlb_restore_reserve(folio); 2897 } else if (rc < 0) { 2898 /* 2899 * Rare out of memory condition from 2900 * vma_needs_reservation call. Memory allocation is 2901 * only attempted if a new entry is needed. Therefore, 2902 * this implies there is not an entry in the 2903 * reserve map. 2904 * 2905 * For shared mappings, no entry in the map indicates 2906 * no reservation. We are done. 2907 */ 2908 if (!(vma->vm_flags & VM_MAYSHARE)) 2909 /* 2910 * For private mappings, no entry indicates 2911 * a reservation is present. Since we can 2912 * not add an entry, set hugetlb_restore_reserve 2913 * on the folio so reserve count will be 2914 * incremented when freed. This reserve will 2915 * be consumed on a subsequent allocation. 2916 */ 2917 folio_set_hugetlb_restore_reserve(folio); 2918 } else 2919 /* 2920 * No reservation present, do nothing 2921 */ 2922 vma_end_reservation(h, vma, address); 2923 } 2924 } 2925 2926 /* 2927 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2928 * the old one 2929 * @h: struct hstate old page belongs to 2930 * @old_folio: Old folio to dissolve 2931 * @list: List to isolate the page in case we need to 2932 * Returns 0 on success, otherwise negated error. 2933 */ 2934 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2935 struct folio *old_folio, struct list_head *list) 2936 { 2937 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2938 int nid = folio_nid(old_folio); 2939 struct folio *new_folio; 2940 int ret = 0; 2941 2942 /* 2943 * Before dissolving the folio, we need to allocate a new one for the 2944 * pool to remain stable. Here, we allocate the folio and 'prep' it 2945 * by doing everything but actually updating counters and adding to 2946 * the pool. This simplifies and let us do most of the processing 2947 * under the lock. 2948 */ 2949 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2950 if (!new_folio) 2951 return -ENOMEM; 2952 __prep_new_hugetlb_folio(h, new_folio); 2953 2954 retry: 2955 spin_lock_irq(&hugetlb_lock); 2956 if (!folio_test_hugetlb(old_folio)) { 2957 /* 2958 * Freed from under us. Drop new_folio too. 2959 */ 2960 goto free_new; 2961 } else if (folio_ref_count(old_folio)) { 2962 bool isolated; 2963 2964 /* 2965 * Someone has grabbed the folio, try to isolate it here. 2966 * Fail with -EBUSY if not possible. 2967 */ 2968 spin_unlock_irq(&hugetlb_lock); 2969 isolated = isolate_hugetlb(old_folio, list); 2970 ret = isolated ? 0 : -EBUSY; 2971 spin_lock_irq(&hugetlb_lock); 2972 goto free_new; 2973 } else if (!folio_test_hugetlb_freed(old_folio)) { 2974 /* 2975 * Folio's refcount is 0 but it has not been enqueued in the 2976 * freelist yet. Race window is small, so we can succeed here if 2977 * we retry. 2978 */ 2979 spin_unlock_irq(&hugetlb_lock); 2980 cond_resched(); 2981 goto retry; 2982 } else { 2983 /* 2984 * Ok, old_folio is still a genuine free hugepage. Remove it from 2985 * the freelist and decrease the counters. These will be 2986 * incremented again when calling __prep_account_new_huge_page() 2987 * and enqueue_hugetlb_folio() for new_folio. The counters will 2988 * remain stable since this happens under the lock. 2989 */ 2990 remove_hugetlb_folio(h, old_folio, false); 2991 2992 /* 2993 * Ref count on new_folio is already zero as it was dropped 2994 * earlier. It can be directly added to the pool free list. 2995 */ 2996 __prep_account_new_huge_page(h, nid); 2997 enqueue_hugetlb_folio(h, new_folio); 2998 2999 /* 3000 * Folio has been replaced, we can safely free the old one. 3001 */ 3002 spin_unlock_irq(&hugetlb_lock); 3003 update_and_free_hugetlb_folio(h, old_folio, false); 3004 } 3005 3006 return ret; 3007 3008 free_new: 3009 spin_unlock_irq(&hugetlb_lock); 3010 /* Folio has a zero ref count, but needs a ref to be freed */ 3011 folio_ref_unfreeze(new_folio, 1); 3012 update_and_free_hugetlb_folio(h, new_folio, false); 3013 3014 return ret; 3015 } 3016 3017 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3018 { 3019 struct hstate *h; 3020 struct folio *folio = page_folio(page); 3021 int ret = -EBUSY; 3022 3023 /* 3024 * The page might have been dissolved from under our feet, so make sure 3025 * to carefully check the state under the lock. 3026 * Return success when racing as if we dissolved the page ourselves. 3027 */ 3028 spin_lock_irq(&hugetlb_lock); 3029 if (folio_test_hugetlb(folio)) { 3030 h = folio_hstate(folio); 3031 } else { 3032 spin_unlock_irq(&hugetlb_lock); 3033 return 0; 3034 } 3035 spin_unlock_irq(&hugetlb_lock); 3036 3037 /* 3038 * Fence off gigantic pages as there is a cyclic dependency between 3039 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3040 * of bailing out right away without further retrying. 3041 */ 3042 if (hstate_is_gigantic(h)) 3043 return -ENOMEM; 3044 3045 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3046 ret = 0; 3047 else if (!folio_ref_count(folio)) 3048 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3049 3050 return ret; 3051 } 3052 3053 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3054 unsigned long addr, int avoid_reserve) 3055 { 3056 struct hugepage_subpool *spool = subpool_vma(vma); 3057 struct hstate *h = hstate_vma(vma); 3058 struct folio *folio; 3059 long map_chg, map_commit; 3060 long gbl_chg; 3061 int ret, idx; 3062 struct hugetlb_cgroup *h_cg = NULL; 3063 bool deferred_reserve; 3064 3065 idx = hstate_index(h); 3066 /* 3067 * Examine the region/reserve map to determine if the process 3068 * has a reservation for the page to be allocated. A return 3069 * code of zero indicates a reservation exists (no change). 3070 */ 3071 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3072 if (map_chg < 0) 3073 return ERR_PTR(-ENOMEM); 3074 3075 /* 3076 * Processes that did not create the mapping will have no 3077 * reserves as indicated by the region/reserve map. Check 3078 * that the allocation will not exceed the subpool limit. 3079 * Allocations for MAP_NORESERVE mappings also need to be 3080 * checked against any subpool limit. 3081 */ 3082 if (map_chg || avoid_reserve) { 3083 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3084 if (gbl_chg < 0) { 3085 vma_end_reservation(h, vma, addr); 3086 return ERR_PTR(-ENOSPC); 3087 } 3088 3089 /* 3090 * Even though there was no reservation in the region/reserve 3091 * map, there could be reservations associated with the 3092 * subpool that can be used. This would be indicated if the 3093 * return value of hugepage_subpool_get_pages() is zero. 3094 * However, if avoid_reserve is specified we still avoid even 3095 * the subpool reservations. 3096 */ 3097 if (avoid_reserve) 3098 gbl_chg = 1; 3099 } 3100 3101 /* If this allocation is not consuming a reservation, charge it now. 3102 */ 3103 deferred_reserve = map_chg || avoid_reserve; 3104 if (deferred_reserve) { 3105 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3106 idx, pages_per_huge_page(h), &h_cg); 3107 if (ret) 3108 goto out_subpool_put; 3109 } 3110 3111 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3112 if (ret) 3113 goto out_uncharge_cgroup_reservation; 3114 3115 spin_lock_irq(&hugetlb_lock); 3116 /* 3117 * glb_chg is passed to indicate whether or not a page must be taken 3118 * from the global free pool (global change). gbl_chg == 0 indicates 3119 * a reservation exists for the allocation. 3120 */ 3121 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3122 if (!folio) { 3123 spin_unlock_irq(&hugetlb_lock); 3124 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3125 if (!folio) 3126 goto out_uncharge_cgroup; 3127 spin_lock_irq(&hugetlb_lock); 3128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3129 folio_set_hugetlb_restore_reserve(folio); 3130 h->resv_huge_pages--; 3131 } 3132 list_add(&folio->lru, &h->hugepage_activelist); 3133 folio_ref_unfreeze(folio, 1); 3134 /* Fall through */ 3135 } 3136 3137 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3138 /* If allocation is not consuming a reservation, also store the 3139 * hugetlb_cgroup pointer on the page. 3140 */ 3141 if (deferred_reserve) { 3142 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3143 h_cg, folio); 3144 } 3145 3146 spin_unlock_irq(&hugetlb_lock); 3147 3148 hugetlb_set_folio_subpool(folio, spool); 3149 3150 map_commit = vma_commit_reservation(h, vma, addr); 3151 if (unlikely(map_chg > map_commit)) { 3152 /* 3153 * The page was added to the reservation map between 3154 * vma_needs_reservation and vma_commit_reservation. 3155 * This indicates a race with hugetlb_reserve_pages. 3156 * Adjust for the subpool count incremented above AND 3157 * in hugetlb_reserve_pages for the same page. Also, 3158 * the reservation count added in hugetlb_reserve_pages 3159 * no longer applies. 3160 */ 3161 long rsv_adjust; 3162 3163 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3164 hugetlb_acct_memory(h, -rsv_adjust); 3165 if (deferred_reserve) { 3166 spin_lock_irq(&hugetlb_lock); 3167 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3168 pages_per_huge_page(h), folio); 3169 spin_unlock_irq(&hugetlb_lock); 3170 } 3171 } 3172 return folio; 3173 3174 out_uncharge_cgroup: 3175 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3176 out_uncharge_cgroup_reservation: 3177 if (deferred_reserve) 3178 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3179 h_cg); 3180 out_subpool_put: 3181 if (map_chg || avoid_reserve) 3182 hugepage_subpool_put_pages(spool, 1); 3183 vma_end_reservation(h, vma, addr); 3184 return ERR_PTR(-ENOSPC); 3185 } 3186 3187 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3188 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3189 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3190 { 3191 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3192 int nr_nodes, node; 3193 3194 /* do node specific alloc */ 3195 if (nid != NUMA_NO_NODE) { 3196 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3197 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3198 if (!m) 3199 return 0; 3200 goto found; 3201 } 3202 /* allocate from next node when distributing huge pages */ 3203 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3204 m = memblock_alloc_try_nid_raw( 3205 huge_page_size(h), huge_page_size(h), 3206 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3207 /* 3208 * Use the beginning of the huge page to store the 3209 * huge_bootmem_page struct (until gather_bootmem 3210 * puts them into the mem_map). 3211 */ 3212 if (!m) 3213 return 0; 3214 goto found; 3215 } 3216 3217 found: 3218 /* Put them into a private list first because mem_map is not up yet */ 3219 INIT_LIST_HEAD(&m->list); 3220 list_add(&m->list, &huge_boot_pages); 3221 m->hstate = h; 3222 return 1; 3223 } 3224 3225 /* 3226 * Put bootmem huge pages into the standard lists after mem_map is up. 3227 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3228 */ 3229 static void __init gather_bootmem_prealloc(void) 3230 { 3231 struct huge_bootmem_page *m; 3232 3233 list_for_each_entry(m, &huge_boot_pages, list) { 3234 struct page *page = virt_to_page(m); 3235 struct folio *folio = page_folio(page); 3236 struct hstate *h = m->hstate; 3237 3238 VM_BUG_ON(!hstate_is_gigantic(h)); 3239 WARN_ON(folio_ref_count(folio) != 1); 3240 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3241 WARN_ON(folio_test_reserved(folio)); 3242 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3243 free_huge_folio(folio); /* add to the hugepage allocator */ 3244 } else { 3245 /* VERY unlikely inflated ref count on a tail page */ 3246 free_gigantic_folio(folio, huge_page_order(h)); 3247 } 3248 3249 /* 3250 * We need to restore the 'stolen' pages to totalram_pages 3251 * in order to fix confusing memory reports from free(1) and 3252 * other side-effects, like CommitLimit going negative. 3253 */ 3254 adjust_managed_page_count(page, pages_per_huge_page(h)); 3255 cond_resched(); 3256 } 3257 } 3258 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3259 { 3260 unsigned long i; 3261 char buf[32]; 3262 3263 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3264 if (hstate_is_gigantic(h)) { 3265 if (!alloc_bootmem_huge_page(h, nid)) 3266 break; 3267 } else { 3268 struct folio *folio; 3269 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3270 3271 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3272 &node_states[N_MEMORY], NULL); 3273 if (!folio) 3274 break; 3275 free_huge_folio(folio); /* free it into the hugepage allocator */ 3276 } 3277 cond_resched(); 3278 } 3279 if (i == h->max_huge_pages_node[nid]) 3280 return; 3281 3282 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3283 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3284 h->max_huge_pages_node[nid], buf, nid, i); 3285 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3286 h->max_huge_pages_node[nid] = i; 3287 } 3288 3289 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3290 { 3291 unsigned long i; 3292 nodemask_t *node_alloc_noretry; 3293 bool node_specific_alloc = false; 3294 3295 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3296 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3297 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3298 return; 3299 } 3300 3301 /* do node specific alloc */ 3302 for_each_online_node(i) { 3303 if (h->max_huge_pages_node[i] > 0) { 3304 hugetlb_hstate_alloc_pages_onenode(h, i); 3305 node_specific_alloc = true; 3306 } 3307 } 3308 3309 if (node_specific_alloc) 3310 return; 3311 3312 /* below will do all node balanced alloc */ 3313 if (!hstate_is_gigantic(h)) { 3314 /* 3315 * Bit mask controlling how hard we retry per-node allocations. 3316 * Ignore errors as lower level routines can deal with 3317 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3318 * time, we are likely in bigger trouble. 3319 */ 3320 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3321 GFP_KERNEL); 3322 } else { 3323 /* allocations done at boot time */ 3324 node_alloc_noretry = NULL; 3325 } 3326 3327 /* bit mask controlling how hard we retry per-node allocations */ 3328 if (node_alloc_noretry) 3329 nodes_clear(*node_alloc_noretry); 3330 3331 for (i = 0; i < h->max_huge_pages; ++i) { 3332 if (hstate_is_gigantic(h)) { 3333 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3334 break; 3335 } else if (!alloc_pool_huge_page(h, 3336 &node_states[N_MEMORY], 3337 node_alloc_noretry)) 3338 break; 3339 cond_resched(); 3340 } 3341 if (i < h->max_huge_pages) { 3342 char buf[32]; 3343 3344 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3345 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3346 h->max_huge_pages, buf, i); 3347 h->max_huge_pages = i; 3348 } 3349 kfree(node_alloc_noretry); 3350 } 3351 3352 static void __init hugetlb_init_hstates(void) 3353 { 3354 struct hstate *h, *h2; 3355 3356 for_each_hstate(h) { 3357 /* oversize hugepages were init'ed in early boot */ 3358 if (!hstate_is_gigantic(h)) 3359 hugetlb_hstate_alloc_pages(h); 3360 3361 /* 3362 * Set demote order for each hstate. Note that 3363 * h->demote_order is initially 0. 3364 * - We can not demote gigantic pages if runtime freeing 3365 * is not supported, so skip this. 3366 * - If CMA allocation is possible, we can not demote 3367 * HUGETLB_PAGE_ORDER or smaller size pages. 3368 */ 3369 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3370 continue; 3371 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3372 continue; 3373 for_each_hstate(h2) { 3374 if (h2 == h) 3375 continue; 3376 if (h2->order < h->order && 3377 h2->order > h->demote_order) 3378 h->demote_order = h2->order; 3379 } 3380 } 3381 } 3382 3383 static void __init report_hugepages(void) 3384 { 3385 struct hstate *h; 3386 3387 for_each_hstate(h) { 3388 char buf[32]; 3389 3390 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3391 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3392 buf, h->free_huge_pages); 3393 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3394 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3395 } 3396 } 3397 3398 #ifdef CONFIG_HIGHMEM 3399 static void try_to_free_low(struct hstate *h, unsigned long count, 3400 nodemask_t *nodes_allowed) 3401 { 3402 int i; 3403 LIST_HEAD(page_list); 3404 3405 lockdep_assert_held(&hugetlb_lock); 3406 if (hstate_is_gigantic(h)) 3407 return; 3408 3409 /* 3410 * Collect pages to be freed on a list, and free after dropping lock 3411 */ 3412 for_each_node_mask(i, *nodes_allowed) { 3413 struct page *page, *next; 3414 struct list_head *freel = &h->hugepage_freelists[i]; 3415 list_for_each_entry_safe(page, next, freel, lru) { 3416 if (count >= h->nr_huge_pages) 3417 goto out; 3418 if (PageHighMem(page)) 3419 continue; 3420 remove_hugetlb_folio(h, page_folio(page), false); 3421 list_add(&page->lru, &page_list); 3422 } 3423 } 3424 3425 out: 3426 spin_unlock_irq(&hugetlb_lock); 3427 update_and_free_pages_bulk(h, &page_list); 3428 spin_lock_irq(&hugetlb_lock); 3429 } 3430 #else 3431 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3432 nodemask_t *nodes_allowed) 3433 { 3434 } 3435 #endif 3436 3437 /* 3438 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3439 * balanced by operating on them in a round-robin fashion. 3440 * Returns 1 if an adjustment was made. 3441 */ 3442 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3443 int delta) 3444 { 3445 int nr_nodes, node; 3446 3447 lockdep_assert_held(&hugetlb_lock); 3448 VM_BUG_ON(delta != -1 && delta != 1); 3449 3450 if (delta < 0) { 3451 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3452 if (h->surplus_huge_pages_node[node]) 3453 goto found; 3454 } 3455 } else { 3456 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3457 if (h->surplus_huge_pages_node[node] < 3458 h->nr_huge_pages_node[node]) 3459 goto found; 3460 } 3461 } 3462 return 0; 3463 3464 found: 3465 h->surplus_huge_pages += delta; 3466 h->surplus_huge_pages_node[node] += delta; 3467 return 1; 3468 } 3469 3470 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3471 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3472 nodemask_t *nodes_allowed) 3473 { 3474 unsigned long min_count, ret; 3475 struct page *page; 3476 LIST_HEAD(page_list); 3477 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3478 3479 /* 3480 * Bit mask controlling how hard we retry per-node allocations. 3481 * If we can not allocate the bit mask, do not attempt to allocate 3482 * the requested huge pages. 3483 */ 3484 if (node_alloc_noretry) 3485 nodes_clear(*node_alloc_noretry); 3486 else 3487 return -ENOMEM; 3488 3489 /* 3490 * resize_lock mutex prevents concurrent adjustments to number of 3491 * pages in hstate via the proc/sysfs interfaces. 3492 */ 3493 mutex_lock(&h->resize_lock); 3494 flush_free_hpage_work(h); 3495 spin_lock_irq(&hugetlb_lock); 3496 3497 /* 3498 * Check for a node specific request. 3499 * Changing node specific huge page count may require a corresponding 3500 * change to the global count. In any case, the passed node mask 3501 * (nodes_allowed) will restrict alloc/free to the specified node. 3502 */ 3503 if (nid != NUMA_NO_NODE) { 3504 unsigned long old_count = count; 3505 3506 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3507 /* 3508 * User may have specified a large count value which caused the 3509 * above calculation to overflow. In this case, they wanted 3510 * to allocate as many huge pages as possible. Set count to 3511 * largest possible value to align with their intention. 3512 */ 3513 if (count < old_count) 3514 count = ULONG_MAX; 3515 } 3516 3517 /* 3518 * Gigantic pages runtime allocation depend on the capability for large 3519 * page range allocation. 3520 * If the system does not provide this feature, return an error when 3521 * the user tries to allocate gigantic pages but let the user free the 3522 * boottime allocated gigantic pages. 3523 */ 3524 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3525 if (count > persistent_huge_pages(h)) { 3526 spin_unlock_irq(&hugetlb_lock); 3527 mutex_unlock(&h->resize_lock); 3528 NODEMASK_FREE(node_alloc_noretry); 3529 return -EINVAL; 3530 } 3531 /* Fall through to decrease pool */ 3532 } 3533 3534 /* 3535 * Increase the pool size 3536 * First take pages out of surplus state. Then make up the 3537 * remaining difference by allocating fresh huge pages. 3538 * 3539 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3540 * to convert a surplus huge page to a normal huge page. That is 3541 * not critical, though, it just means the overall size of the 3542 * pool might be one hugepage larger than it needs to be, but 3543 * within all the constraints specified by the sysctls. 3544 */ 3545 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3546 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3547 break; 3548 } 3549 3550 while (count > persistent_huge_pages(h)) { 3551 /* 3552 * If this allocation races such that we no longer need the 3553 * page, free_huge_folio will handle it by freeing the page 3554 * and reducing the surplus. 3555 */ 3556 spin_unlock_irq(&hugetlb_lock); 3557 3558 /* yield cpu to avoid soft lockup */ 3559 cond_resched(); 3560 3561 ret = alloc_pool_huge_page(h, nodes_allowed, 3562 node_alloc_noretry); 3563 spin_lock_irq(&hugetlb_lock); 3564 if (!ret) 3565 goto out; 3566 3567 /* Bail for signals. Probably ctrl-c from user */ 3568 if (signal_pending(current)) 3569 goto out; 3570 } 3571 3572 /* 3573 * Decrease the pool size 3574 * First return free pages to the buddy allocator (being careful 3575 * to keep enough around to satisfy reservations). Then place 3576 * pages into surplus state as needed so the pool will shrink 3577 * to the desired size as pages become free. 3578 * 3579 * By placing pages into the surplus state independent of the 3580 * overcommit value, we are allowing the surplus pool size to 3581 * exceed overcommit. There are few sane options here. Since 3582 * alloc_surplus_hugetlb_folio() is checking the global counter, 3583 * though, we'll note that we're not allowed to exceed surplus 3584 * and won't grow the pool anywhere else. Not until one of the 3585 * sysctls are changed, or the surplus pages go out of use. 3586 */ 3587 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3588 min_count = max(count, min_count); 3589 try_to_free_low(h, min_count, nodes_allowed); 3590 3591 /* 3592 * Collect pages to be removed on list without dropping lock 3593 */ 3594 while (min_count < persistent_huge_pages(h)) { 3595 page = remove_pool_huge_page(h, nodes_allowed, 0); 3596 if (!page) 3597 break; 3598 3599 list_add(&page->lru, &page_list); 3600 } 3601 /* free the pages after dropping lock */ 3602 spin_unlock_irq(&hugetlb_lock); 3603 update_and_free_pages_bulk(h, &page_list); 3604 flush_free_hpage_work(h); 3605 spin_lock_irq(&hugetlb_lock); 3606 3607 while (count < persistent_huge_pages(h)) { 3608 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3609 break; 3610 } 3611 out: 3612 h->max_huge_pages = persistent_huge_pages(h); 3613 spin_unlock_irq(&hugetlb_lock); 3614 mutex_unlock(&h->resize_lock); 3615 3616 NODEMASK_FREE(node_alloc_noretry); 3617 3618 return 0; 3619 } 3620 3621 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3622 { 3623 int i, nid = folio_nid(folio); 3624 struct hstate *target_hstate; 3625 struct page *subpage; 3626 struct folio *inner_folio; 3627 int rc = 0; 3628 3629 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3630 3631 remove_hugetlb_folio_for_demote(h, folio, false); 3632 spin_unlock_irq(&hugetlb_lock); 3633 3634 rc = hugetlb_vmemmap_restore(h, &folio->page); 3635 if (rc) { 3636 /* Allocation of vmemmmap failed, we can not demote folio */ 3637 spin_lock_irq(&hugetlb_lock); 3638 folio_ref_unfreeze(folio, 1); 3639 add_hugetlb_folio(h, folio, false); 3640 return rc; 3641 } 3642 3643 /* 3644 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3645 * sizes as it will not ref count folios. 3646 */ 3647 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3648 3649 /* 3650 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3651 * Without the mutex, pages added to target hstate could be marked 3652 * as surplus. 3653 * 3654 * Note that we already hold h->resize_lock. To prevent deadlock, 3655 * use the convention of always taking larger size hstate mutex first. 3656 */ 3657 mutex_lock(&target_hstate->resize_lock); 3658 for (i = 0; i < pages_per_huge_page(h); 3659 i += pages_per_huge_page(target_hstate)) { 3660 subpage = folio_page(folio, i); 3661 inner_folio = page_folio(subpage); 3662 if (hstate_is_gigantic(target_hstate)) 3663 prep_compound_gigantic_folio_for_demote(inner_folio, 3664 target_hstate->order); 3665 else 3666 prep_compound_page(subpage, target_hstate->order); 3667 folio_change_private(inner_folio, NULL); 3668 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3669 free_huge_folio(inner_folio); 3670 } 3671 mutex_unlock(&target_hstate->resize_lock); 3672 3673 spin_lock_irq(&hugetlb_lock); 3674 3675 /* 3676 * Not absolutely necessary, but for consistency update max_huge_pages 3677 * based on pool changes for the demoted page. 3678 */ 3679 h->max_huge_pages--; 3680 target_hstate->max_huge_pages += 3681 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3682 3683 return rc; 3684 } 3685 3686 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3687 __must_hold(&hugetlb_lock) 3688 { 3689 int nr_nodes, node; 3690 struct folio *folio; 3691 3692 lockdep_assert_held(&hugetlb_lock); 3693 3694 /* We should never get here if no demote order */ 3695 if (!h->demote_order) { 3696 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3697 return -EINVAL; /* internal error */ 3698 } 3699 3700 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3701 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3702 if (folio_test_hwpoison(folio)) 3703 continue; 3704 return demote_free_hugetlb_folio(h, folio); 3705 } 3706 } 3707 3708 /* 3709 * Only way to get here is if all pages on free lists are poisoned. 3710 * Return -EBUSY so that caller will not retry. 3711 */ 3712 return -EBUSY; 3713 } 3714 3715 #define HSTATE_ATTR_RO(_name) \ 3716 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3717 3718 #define HSTATE_ATTR_WO(_name) \ 3719 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3720 3721 #define HSTATE_ATTR(_name) \ 3722 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3723 3724 static struct kobject *hugepages_kobj; 3725 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3726 3727 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3728 3729 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3730 { 3731 int i; 3732 3733 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3734 if (hstate_kobjs[i] == kobj) { 3735 if (nidp) 3736 *nidp = NUMA_NO_NODE; 3737 return &hstates[i]; 3738 } 3739 3740 return kobj_to_node_hstate(kobj, nidp); 3741 } 3742 3743 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3744 struct kobj_attribute *attr, char *buf) 3745 { 3746 struct hstate *h; 3747 unsigned long nr_huge_pages; 3748 int nid; 3749 3750 h = kobj_to_hstate(kobj, &nid); 3751 if (nid == NUMA_NO_NODE) 3752 nr_huge_pages = h->nr_huge_pages; 3753 else 3754 nr_huge_pages = h->nr_huge_pages_node[nid]; 3755 3756 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3757 } 3758 3759 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3760 struct hstate *h, int nid, 3761 unsigned long count, size_t len) 3762 { 3763 int err; 3764 nodemask_t nodes_allowed, *n_mask; 3765 3766 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3767 return -EINVAL; 3768 3769 if (nid == NUMA_NO_NODE) { 3770 /* 3771 * global hstate attribute 3772 */ 3773 if (!(obey_mempolicy && 3774 init_nodemask_of_mempolicy(&nodes_allowed))) 3775 n_mask = &node_states[N_MEMORY]; 3776 else 3777 n_mask = &nodes_allowed; 3778 } else { 3779 /* 3780 * Node specific request. count adjustment happens in 3781 * set_max_huge_pages() after acquiring hugetlb_lock. 3782 */ 3783 init_nodemask_of_node(&nodes_allowed, nid); 3784 n_mask = &nodes_allowed; 3785 } 3786 3787 err = set_max_huge_pages(h, count, nid, n_mask); 3788 3789 return err ? err : len; 3790 } 3791 3792 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3793 struct kobject *kobj, const char *buf, 3794 size_t len) 3795 { 3796 struct hstate *h; 3797 unsigned long count; 3798 int nid; 3799 int err; 3800 3801 err = kstrtoul(buf, 10, &count); 3802 if (err) 3803 return err; 3804 3805 h = kobj_to_hstate(kobj, &nid); 3806 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3807 } 3808 3809 static ssize_t nr_hugepages_show(struct kobject *kobj, 3810 struct kobj_attribute *attr, char *buf) 3811 { 3812 return nr_hugepages_show_common(kobj, attr, buf); 3813 } 3814 3815 static ssize_t nr_hugepages_store(struct kobject *kobj, 3816 struct kobj_attribute *attr, const char *buf, size_t len) 3817 { 3818 return nr_hugepages_store_common(false, kobj, buf, len); 3819 } 3820 HSTATE_ATTR(nr_hugepages); 3821 3822 #ifdef CONFIG_NUMA 3823 3824 /* 3825 * hstate attribute for optionally mempolicy-based constraint on persistent 3826 * huge page alloc/free. 3827 */ 3828 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3829 struct kobj_attribute *attr, 3830 char *buf) 3831 { 3832 return nr_hugepages_show_common(kobj, attr, buf); 3833 } 3834 3835 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3836 struct kobj_attribute *attr, const char *buf, size_t len) 3837 { 3838 return nr_hugepages_store_common(true, kobj, buf, len); 3839 } 3840 HSTATE_ATTR(nr_hugepages_mempolicy); 3841 #endif 3842 3843 3844 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3845 struct kobj_attribute *attr, char *buf) 3846 { 3847 struct hstate *h = kobj_to_hstate(kobj, NULL); 3848 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3849 } 3850 3851 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3852 struct kobj_attribute *attr, const char *buf, size_t count) 3853 { 3854 int err; 3855 unsigned long input; 3856 struct hstate *h = kobj_to_hstate(kobj, NULL); 3857 3858 if (hstate_is_gigantic(h)) 3859 return -EINVAL; 3860 3861 err = kstrtoul(buf, 10, &input); 3862 if (err) 3863 return err; 3864 3865 spin_lock_irq(&hugetlb_lock); 3866 h->nr_overcommit_huge_pages = input; 3867 spin_unlock_irq(&hugetlb_lock); 3868 3869 return count; 3870 } 3871 HSTATE_ATTR(nr_overcommit_hugepages); 3872 3873 static ssize_t free_hugepages_show(struct kobject *kobj, 3874 struct kobj_attribute *attr, char *buf) 3875 { 3876 struct hstate *h; 3877 unsigned long free_huge_pages; 3878 int nid; 3879 3880 h = kobj_to_hstate(kobj, &nid); 3881 if (nid == NUMA_NO_NODE) 3882 free_huge_pages = h->free_huge_pages; 3883 else 3884 free_huge_pages = h->free_huge_pages_node[nid]; 3885 3886 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3887 } 3888 HSTATE_ATTR_RO(free_hugepages); 3889 3890 static ssize_t resv_hugepages_show(struct kobject *kobj, 3891 struct kobj_attribute *attr, char *buf) 3892 { 3893 struct hstate *h = kobj_to_hstate(kobj, NULL); 3894 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3895 } 3896 HSTATE_ATTR_RO(resv_hugepages); 3897 3898 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3899 struct kobj_attribute *attr, char *buf) 3900 { 3901 struct hstate *h; 3902 unsigned long surplus_huge_pages; 3903 int nid; 3904 3905 h = kobj_to_hstate(kobj, &nid); 3906 if (nid == NUMA_NO_NODE) 3907 surplus_huge_pages = h->surplus_huge_pages; 3908 else 3909 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3910 3911 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3912 } 3913 HSTATE_ATTR_RO(surplus_hugepages); 3914 3915 static ssize_t demote_store(struct kobject *kobj, 3916 struct kobj_attribute *attr, const char *buf, size_t len) 3917 { 3918 unsigned long nr_demote; 3919 unsigned long nr_available; 3920 nodemask_t nodes_allowed, *n_mask; 3921 struct hstate *h; 3922 int err; 3923 int nid; 3924 3925 err = kstrtoul(buf, 10, &nr_demote); 3926 if (err) 3927 return err; 3928 h = kobj_to_hstate(kobj, &nid); 3929 3930 if (nid != NUMA_NO_NODE) { 3931 init_nodemask_of_node(&nodes_allowed, nid); 3932 n_mask = &nodes_allowed; 3933 } else { 3934 n_mask = &node_states[N_MEMORY]; 3935 } 3936 3937 /* Synchronize with other sysfs operations modifying huge pages */ 3938 mutex_lock(&h->resize_lock); 3939 spin_lock_irq(&hugetlb_lock); 3940 3941 while (nr_demote) { 3942 /* 3943 * Check for available pages to demote each time thorough the 3944 * loop as demote_pool_huge_page will drop hugetlb_lock. 3945 */ 3946 if (nid != NUMA_NO_NODE) 3947 nr_available = h->free_huge_pages_node[nid]; 3948 else 3949 nr_available = h->free_huge_pages; 3950 nr_available -= h->resv_huge_pages; 3951 if (!nr_available) 3952 break; 3953 3954 err = demote_pool_huge_page(h, n_mask); 3955 if (err) 3956 break; 3957 3958 nr_demote--; 3959 } 3960 3961 spin_unlock_irq(&hugetlb_lock); 3962 mutex_unlock(&h->resize_lock); 3963 3964 if (err) 3965 return err; 3966 return len; 3967 } 3968 HSTATE_ATTR_WO(demote); 3969 3970 static ssize_t demote_size_show(struct kobject *kobj, 3971 struct kobj_attribute *attr, char *buf) 3972 { 3973 struct hstate *h = kobj_to_hstate(kobj, NULL); 3974 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3975 3976 return sysfs_emit(buf, "%lukB\n", demote_size); 3977 } 3978 3979 static ssize_t demote_size_store(struct kobject *kobj, 3980 struct kobj_attribute *attr, 3981 const char *buf, size_t count) 3982 { 3983 struct hstate *h, *demote_hstate; 3984 unsigned long demote_size; 3985 unsigned int demote_order; 3986 3987 demote_size = (unsigned long)memparse(buf, NULL); 3988 3989 demote_hstate = size_to_hstate(demote_size); 3990 if (!demote_hstate) 3991 return -EINVAL; 3992 demote_order = demote_hstate->order; 3993 if (demote_order < HUGETLB_PAGE_ORDER) 3994 return -EINVAL; 3995 3996 /* demote order must be smaller than hstate order */ 3997 h = kobj_to_hstate(kobj, NULL); 3998 if (demote_order >= h->order) 3999 return -EINVAL; 4000 4001 /* resize_lock synchronizes access to demote size and writes */ 4002 mutex_lock(&h->resize_lock); 4003 h->demote_order = demote_order; 4004 mutex_unlock(&h->resize_lock); 4005 4006 return count; 4007 } 4008 HSTATE_ATTR(demote_size); 4009 4010 static struct attribute *hstate_attrs[] = { 4011 &nr_hugepages_attr.attr, 4012 &nr_overcommit_hugepages_attr.attr, 4013 &free_hugepages_attr.attr, 4014 &resv_hugepages_attr.attr, 4015 &surplus_hugepages_attr.attr, 4016 #ifdef CONFIG_NUMA 4017 &nr_hugepages_mempolicy_attr.attr, 4018 #endif 4019 NULL, 4020 }; 4021 4022 static const struct attribute_group hstate_attr_group = { 4023 .attrs = hstate_attrs, 4024 }; 4025 4026 static struct attribute *hstate_demote_attrs[] = { 4027 &demote_size_attr.attr, 4028 &demote_attr.attr, 4029 NULL, 4030 }; 4031 4032 static const struct attribute_group hstate_demote_attr_group = { 4033 .attrs = hstate_demote_attrs, 4034 }; 4035 4036 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4037 struct kobject **hstate_kobjs, 4038 const struct attribute_group *hstate_attr_group) 4039 { 4040 int retval; 4041 int hi = hstate_index(h); 4042 4043 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4044 if (!hstate_kobjs[hi]) 4045 return -ENOMEM; 4046 4047 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4048 if (retval) { 4049 kobject_put(hstate_kobjs[hi]); 4050 hstate_kobjs[hi] = NULL; 4051 return retval; 4052 } 4053 4054 if (h->demote_order) { 4055 retval = sysfs_create_group(hstate_kobjs[hi], 4056 &hstate_demote_attr_group); 4057 if (retval) { 4058 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4059 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4060 kobject_put(hstate_kobjs[hi]); 4061 hstate_kobjs[hi] = NULL; 4062 return retval; 4063 } 4064 } 4065 4066 return 0; 4067 } 4068 4069 #ifdef CONFIG_NUMA 4070 static bool hugetlb_sysfs_initialized __ro_after_init; 4071 4072 /* 4073 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4074 * with node devices in node_devices[] using a parallel array. The array 4075 * index of a node device or _hstate == node id. 4076 * This is here to avoid any static dependency of the node device driver, in 4077 * the base kernel, on the hugetlb module. 4078 */ 4079 struct node_hstate { 4080 struct kobject *hugepages_kobj; 4081 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4082 }; 4083 static struct node_hstate node_hstates[MAX_NUMNODES]; 4084 4085 /* 4086 * A subset of global hstate attributes for node devices 4087 */ 4088 static struct attribute *per_node_hstate_attrs[] = { 4089 &nr_hugepages_attr.attr, 4090 &free_hugepages_attr.attr, 4091 &surplus_hugepages_attr.attr, 4092 NULL, 4093 }; 4094 4095 static const struct attribute_group per_node_hstate_attr_group = { 4096 .attrs = per_node_hstate_attrs, 4097 }; 4098 4099 /* 4100 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4101 * Returns node id via non-NULL nidp. 4102 */ 4103 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4104 { 4105 int nid; 4106 4107 for (nid = 0; nid < nr_node_ids; nid++) { 4108 struct node_hstate *nhs = &node_hstates[nid]; 4109 int i; 4110 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4111 if (nhs->hstate_kobjs[i] == kobj) { 4112 if (nidp) 4113 *nidp = nid; 4114 return &hstates[i]; 4115 } 4116 } 4117 4118 BUG(); 4119 return NULL; 4120 } 4121 4122 /* 4123 * Unregister hstate attributes from a single node device. 4124 * No-op if no hstate attributes attached. 4125 */ 4126 void hugetlb_unregister_node(struct node *node) 4127 { 4128 struct hstate *h; 4129 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4130 4131 if (!nhs->hugepages_kobj) 4132 return; /* no hstate attributes */ 4133 4134 for_each_hstate(h) { 4135 int idx = hstate_index(h); 4136 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4137 4138 if (!hstate_kobj) 4139 continue; 4140 if (h->demote_order) 4141 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4142 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4143 kobject_put(hstate_kobj); 4144 nhs->hstate_kobjs[idx] = NULL; 4145 } 4146 4147 kobject_put(nhs->hugepages_kobj); 4148 nhs->hugepages_kobj = NULL; 4149 } 4150 4151 4152 /* 4153 * Register hstate attributes for a single node device. 4154 * No-op if attributes already registered. 4155 */ 4156 void hugetlb_register_node(struct node *node) 4157 { 4158 struct hstate *h; 4159 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4160 int err; 4161 4162 if (!hugetlb_sysfs_initialized) 4163 return; 4164 4165 if (nhs->hugepages_kobj) 4166 return; /* already allocated */ 4167 4168 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4169 &node->dev.kobj); 4170 if (!nhs->hugepages_kobj) 4171 return; 4172 4173 for_each_hstate(h) { 4174 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4175 nhs->hstate_kobjs, 4176 &per_node_hstate_attr_group); 4177 if (err) { 4178 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4179 h->name, node->dev.id); 4180 hugetlb_unregister_node(node); 4181 break; 4182 } 4183 } 4184 } 4185 4186 /* 4187 * hugetlb init time: register hstate attributes for all registered node 4188 * devices of nodes that have memory. All on-line nodes should have 4189 * registered their associated device by this time. 4190 */ 4191 static void __init hugetlb_register_all_nodes(void) 4192 { 4193 int nid; 4194 4195 for_each_online_node(nid) 4196 hugetlb_register_node(node_devices[nid]); 4197 } 4198 #else /* !CONFIG_NUMA */ 4199 4200 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4201 { 4202 BUG(); 4203 if (nidp) 4204 *nidp = -1; 4205 return NULL; 4206 } 4207 4208 static void hugetlb_register_all_nodes(void) { } 4209 4210 #endif 4211 4212 #ifdef CONFIG_CMA 4213 static void __init hugetlb_cma_check(void); 4214 #else 4215 static inline __init void hugetlb_cma_check(void) 4216 { 4217 } 4218 #endif 4219 4220 static void __init hugetlb_sysfs_init(void) 4221 { 4222 struct hstate *h; 4223 int err; 4224 4225 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4226 if (!hugepages_kobj) 4227 return; 4228 4229 for_each_hstate(h) { 4230 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4231 hstate_kobjs, &hstate_attr_group); 4232 if (err) 4233 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4234 } 4235 4236 #ifdef CONFIG_NUMA 4237 hugetlb_sysfs_initialized = true; 4238 #endif 4239 hugetlb_register_all_nodes(); 4240 } 4241 4242 #ifdef CONFIG_SYSCTL 4243 static void hugetlb_sysctl_init(void); 4244 #else 4245 static inline void hugetlb_sysctl_init(void) { } 4246 #endif 4247 4248 static int __init hugetlb_init(void) 4249 { 4250 int i; 4251 4252 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4253 __NR_HPAGEFLAGS); 4254 4255 if (!hugepages_supported()) { 4256 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4257 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4258 return 0; 4259 } 4260 4261 /* 4262 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4263 * architectures depend on setup being done here. 4264 */ 4265 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4266 if (!parsed_default_hugepagesz) { 4267 /* 4268 * If we did not parse a default huge page size, set 4269 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4270 * number of huge pages for this default size was implicitly 4271 * specified, set that here as well. 4272 * Note that the implicit setting will overwrite an explicit 4273 * setting. A warning will be printed in this case. 4274 */ 4275 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4276 if (default_hstate_max_huge_pages) { 4277 if (default_hstate.max_huge_pages) { 4278 char buf[32]; 4279 4280 string_get_size(huge_page_size(&default_hstate), 4281 1, STRING_UNITS_2, buf, 32); 4282 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4283 default_hstate.max_huge_pages, buf); 4284 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4285 default_hstate_max_huge_pages); 4286 } 4287 default_hstate.max_huge_pages = 4288 default_hstate_max_huge_pages; 4289 4290 for_each_online_node(i) 4291 default_hstate.max_huge_pages_node[i] = 4292 default_hugepages_in_node[i]; 4293 } 4294 } 4295 4296 hugetlb_cma_check(); 4297 hugetlb_init_hstates(); 4298 gather_bootmem_prealloc(); 4299 report_hugepages(); 4300 4301 hugetlb_sysfs_init(); 4302 hugetlb_cgroup_file_init(); 4303 hugetlb_sysctl_init(); 4304 4305 #ifdef CONFIG_SMP 4306 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4307 #else 4308 num_fault_mutexes = 1; 4309 #endif 4310 hugetlb_fault_mutex_table = 4311 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4312 GFP_KERNEL); 4313 BUG_ON(!hugetlb_fault_mutex_table); 4314 4315 for (i = 0; i < num_fault_mutexes; i++) 4316 mutex_init(&hugetlb_fault_mutex_table[i]); 4317 return 0; 4318 } 4319 subsys_initcall(hugetlb_init); 4320 4321 /* Overwritten by architectures with more huge page sizes */ 4322 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4323 { 4324 return size == HPAGE_SIZE; 4325 } 4326 4327 void __init hugetlb_add_hstate(unsigned int order) 4328 { 4329 struct hstate *h; 4330 unsigned long i; 4331 4332 if (size_to_hstate(PAGE_SIZE << order)) { 4333 return; 4334 } 4335 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4336 BUG_ON(order == 0); 4337 h = &hstates[hugetlb_max_hstate++]; 4338 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4339 h->order = order; 4340 h->mask = ~(huge_page_size(h) - 1); 4341 for (i = 0; i < MAX_NUMNODES; ++i) 4342 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4343 INIT_LIST_HEAD(&h->hugepage_activelist); 4344 h->next_nid_to_alloc = first_memory_node; 4345 h->next_nid_to_free = first_memory_node; 4346 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4347 huge_page_size(h)/SZ_1K); 4348 4349 parsed_hstate = h; 4350 } 4351 4352 bool __init __weak hugetlb_node_alloc_supported(void) 4353 { 4354 return true; 4355 } 4356 4357 static void __init hugepages_clear_pages_in_node(void) 4358 { 4359 if (!hugetlb_max_hstate) { 4360 default_hstate_max_huge_pages = 0; 4361 memset(default_hugepages_in_node, 0, 4362 sizeof(default_hugepages_in_node)); 4363 } else { 4364 parsed_hstate->max_huge_pages = 0; 4365 memset(parsed_hstate->max_huge_pages_node, 0, 4366 sizeof(parsed_hstate->max_huge_pages_node)); 4367 } 4368 } 4369 4370 /* 4371 * hugepages command line processing 4372 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4373 * specification. If not, ignore the hugepages value. hugepages can also 4374 * be the first huge page command line option in which case it implicitly 4375 * specifies the number of huge pages for the default size. 4376 */ 4377 static int __init hugepages_setup(char *s) 4378 { 4379 unsigned long *mhp; 4380 static unsigned long *last_mhp; 4381 int node = NUMA_NO_NODE; 4382 int count; 4383 unsigned long tmp; 4384 char *p = s; 4385 4386 if (!parsed_valid_hugepagesz) { 4387 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4388 parsed_valid_hugepagesz = true; 4389 return 1; 4390 } 4391 4392 /* 4393 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4394 * yet, so this hugepages= parameter goes to the "default hstate". 4395 * Otherwise, it goes with the previously parsed hugepagesz or 4396 * default_hugepagesz. 4397 */ 4398 else if (!hugetlb_max_hstate) 4399 mhp = &default_hstate_max_huge_pages; 4400 else 4401 mhp = &parsed_hstate->max_huge_pages; 4402 4403 if (mhp == last_mhp) { 4404 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4405 return 1; 4406 } 4407 4408 while (*p) { 4409 count = 0; 4410 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4411 goto invalid; 4412 /* Parameter is node format */ 4413 if (p[count] == ':') { 4414 if (!hugetlb_node_alloc_supported()) { 4415 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4416 return 1; 4417 } 4418 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4419 goto invalid; 4420 node = array_index_nospec(tmp, MAX_NUMNODES); 4421 p += count + 1; 4422 /* Parse hugepages */ 4423 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4424 goto invalid; 4425 if (!hugetlb_max_hstate) 4426 default_hugepages_in_node[node] = tmp; 4427 else 4428 parsed_hstate->max_huge_pages_node[node] = tmp; 4429 *mhp += tmp; 4430 /* Go to parse next node*/ 4431 if (p[count] == ',') 4432 p += count + 1; 4433 else 4434 break; 4435 } else { 4436 if (p != s) 4437 goto invalid; 4438 *mhp = tmp; 4439 break; 4440 } 4441 } 4442 4443 /* 4444 * Global state is always initialized later in hugetlb_init. 4445 * But we need to allocate gigantic hstates here early to still 4446 * use the bootmem allocator. 4447 */ 4448 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4449 hugetlb_hstate_alloc_pages(parsed_hstate); 4450 4451 last_mhp = mhp; 4452 4453 return 1; 4454 4455 invalid: 4456 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4457 hugepages_clear_pages_in_node(); 4458 return 1; 4459 } 4460 __setup("hugepages=", hugepages_setup); 4461 4462 /* 4463 * hugepagesz command line processing 4464 * A specific huge page size can only be specified once with hugepagesz. 4465 * hugepagesz is followed by hugepages on the command line. The global 4466 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4467 * hugepagesz argument was valid. 4468 */ 4469 static int __init hugepagesz_setup(char *s) 4470 { 4471 unsigned long size; 4472 struct hstate *h; 4473 4474 parsed_valid_hugepagesz = false; 4475 size = (unsigned long)memparse(s, NULL); 4476 4477 if (!arch_hugetlb_valid_size(size)) { 4478 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4479 return 1; 4480 } 4481 4482 h = size_to_hstate(size); 4483 if (h) { 4484 /* 4485 * hstate for this size already exists. This is normally 4486 * an error, but is allowed if the existing hstate is the 4487 * default hstate. More specifically, it is only allowed if 4488 * the number of huge pages for the default hstate was not 4489 * previously specified. 4490 */ 4491 if (!parsed_default_hugepagesz || h != &default_hstate || 4492 default_hstate.max_huge_pages) { 4493 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4494 return 1; 4495 } 4496 4497 /* 4498 * No need to call hugetlb_add_hstate() as hstate already 4499 * exists. But, do set parsed_hstate so that a following 4500 * hugepages= parameter will be applied to this hstate. 4501 */ 4502 parsed_hstate = h; 4503 parsed_valid_hugepagesz = true; 4504 return 1; 4505 } 4506 4507 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4508 parsed_valid_hugepagesz = true; 4509 return 1; 4510 } 4511 __setup("hugepagesz=", hugepagesz_setup); 4512 4513 /* 4514 * default_hugepagesz command line input 4515 * Only one instance of default_hugepagesz allowed on command line. 4516 */ 4517 static int __init default_hugepagesz_setup(char *s) 4518 { 4519 unsigned long size; 4520 int i; 4521 4522 parsed_valid_hugepagesz = false; 4523 if (parsed_default_hugepagesz) { 4524 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4525 return 1; 4526 } 4527 4528 size = (unsigned long)memparse(s, NULL); 4529 4530 if (!arch_hugetlb_valid_size(size)) { 4531 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4532 return 1; 4533 } 4534 4535 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4536 parsed_valid_hugepagesz = true; 4537 parsed_default_hugepagesz = true; 4538 default_hstate_idx = hstate_index(size_to_hstate(size)); 4539 4540 /* 4541 * The number of default huge pages (for this size) could have been 4542 * specified as the first hugetlb parameter: hugepages=X. If so, 4543 * then default_hstate_max_huge_pages is set. If the default huge 4544 * page size is gigantic (> MAX_ORDER), then the pages must be 4545 * allocated here from bootmem allocator. 4546 */ 4547 if (default_hstate_max_huge_pages) { 4548 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4549 for_each_online_node(i) 4550 default_hstate.max_huge_pages_node[i] = 4551 default_hugepages_in_node[i]; 4552 if (hstate_is_gigantic(&default_hstate)) 4553 hugetlb_hstate_alloc_pages(&default_hstate); 4554 default_hstate_max_huge_pages = 0; 4555 } 4556 4557 return 1; 4558 } 4559 __setup("default_hugepagesz=", default_hugepagesz_setup); 4560 4561 static unsigned int allowed_mems_nr(struct hstate *h) 4562 { 4563 int node; 4564 unsigned int nr = 0; 4565 nodemask_t *mbind_nodemask; 4566 unsigned int *array = h->free_huge_pages_node; 4567 gfp_t gfp_mask = htlb_alloc_mask(h); 4568 4569 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4570 for_each_node_mask(node, cpuset_current_mems_allowed) { 4571 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4572 nr += array[node]; 4573 } 4574 4575 return nr; 4576 } 4577 4578 #ifdef CONFIG_SYSCTL 4579 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4580 void *buffer, size_t *length, 4581 loff_t *ppos, unsigned long *out) 4582 { 4583 struct ctl_table dup_table; 4584 4585 /* 4586 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4587 * can duplicate the @table and alter the duplicate of it. 4588 */ 4589 dup_table = *table; 4590 dup_table.data = out; 4591 4592 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4593 } 4594 4595 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4596 struct ctl_table *table, int write, 4597 void *buffer, size_t *length, loff_t *ppos) 4598 { 4599 struct hstate *h = &default_hstate; 4600 unsigned long tmp = h->max_huge_pages; 4601 int ret; 4602 4603 if (!hugepages_supported()) 4604 return -EOPNOTSUPP; 4605 4606 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4607 &tmp); 4608 if (ret) 4609 goto out; 4610 4611 if (write) 4612 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4613 NUMA_NO_NODE, tmp, *length); 4614 out: 4615 return ret; 4616 } 4617 4618 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4619 void *buffer, size_t *length, loff_t *ppos) 4620 { 4621 4622 return hugetlb_sysctl_handler_common(false, table, write, 4623 buffer, length, ppos); 4624 } 4625 4626 #ifdef CONFIG_NUMA 4627 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4628 void *buffer, size_t *length, loff_t *ppos) 4629 { 4630 return hugetlb_sysctl_handler_common(true, table, write, 4631 buffer, length, ppos); 4632 } 4633 #endif /* CONFIG_NUMA */ 4634 4635 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4636 void *buffer, size_t *length, loff_t *ppos) 4637 { 4638 struct hstate *h = &default_hstate; 4639 unsigned long tmp; 4640 int ret; 4641 4642 if (!hugepages_supported()) 4643 return -EOPNOTSUPP; 4644 4645 tmp = h->nr_overcommit_huge_pages; 4646 4647 if (write && hstate_is_gigantic(h)) 4648 return -EINVAL; 4649 4650 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4651 &tmp); 4652 if (ret) 4653 goto out; 4654 4655 if (write) { 4656 spin_lock_irq(&hugetlb_lock); 4657 h->nr_overcommit_huge_pages = tmp; 4658 spin_unlock_irq(&hugetlb_lock); 4659 } 4660 out: 4661 return ret; 4662 } 4663 4664 static struct ctl_table hugetlb_table[] = { 4665 { 4666 .procname = "nr_hugepages", 4667 .data = NULL, 4668 .maxlen = sizeof(unsigned long), 4669 .mode = 0644, 4670 .proc_handler = hugetlb_sysctl_handler, 4671 }, 4672 #ifdef CONFIG_NUMA 4673 { 4674 .procname = "nr_hugepages_mempolicy", 4675 .data = NULL, 4676 .maxlen = sizeof(unsigned long), 4677 .mode = 0644, 4678 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4679 }, 4680 #endif 4681 { 4682 .procname = "hugetlb_shm_group", 4683 .data = &sysctl_hugetlb_shm_group, 4684 .maxlen = sizeof(gid_t), 4685 .mode = 0644, 4686 .proc_handler = proc_dointvec, 4687 }, 4688 { 4689 .procname = "nr_overcommit_hugepages", 4690 .data = NULL, 4691 .maxlen = sizeof(unsigned long), 4692 .mode = 0644, 4693 .proc_handler = hugetlb_overcommit_handler, 4694 }, 4695 { } 4696 }; 4697 4698 static void hugetlb_sysctl_init(void) 4699 { 4700 register_sysctl_init("vm", hugetlb_table); 4701 } 4702 #endif /* CONFIG_SYSCTL */ 4703 4704 void hugetlb_report_meminfo(struct seq_file *m) 4705 { 4706 struct hstate *h; 4707 unsigned long total = 0; 4708 4709 if (!hugepages_supported()) 4710 return; 4711 4712 for_each_hstate(h) { 4713 unsigned long count = h->nr_huge_pages; 4714 4715 total += huge_page_size(h) * count; 4716 4717 if (h == &default_hstate) 4718 seq_printf(m, 4719 "HugePages_Total: %5lu\n" 4720 "HugePages_Free: %5lu\n" 4721 "HugePages_Rsvd: %5lu\n" 4722 "HugePages_Surp: %5lu\n" 4723 "Hugepagesize: %8lu kB\n", 4724 count, 4725 h->free_huge_pages, 4726 h->resv_huge_pages, 4727 h->surplus_huge_pages, 4728 huge_page_size(h) / SZ_1K); 4729 } 4730 4731 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4732 } 4733 4734 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4735 { 4736 struct hstate *h = &default_hstate; 4737 4738 if (!hugepages_supported()) 4739 return 0; 4740 4741 return sysfs_emit_at(buf, len, 4742 "Node %d HugePages_Total: %5u\n" 4743 "Node %d HugePages_Free: %5u\n" 4744 "Node %d HugePages_Surp: %5u\n", 4745 nid, h->nr_huge_pages_node[nid], 4746 nid, h->free_huge_pages_node[nid], 4747 nid, h->surplus_huge_pages_node[nid]); 4748 } 4749 4750 void hugetlb_show_meminfo_node(int nid) 4751 { 4752 struct hstate *h; 4753 4754 if (!hugepages_supported()) 4755 return; 4756 4757 for_each_hstate(h) 4758 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4759 nid, 4760 h->nr_huge_pages_node[nid], 4761 h->free_huge_pages_node[nid], 4762 h->surplus_huge_pages_node[nid], 4763 huge_page_size(h) / SZ_1K); 4764 } 4765 4766 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4767 { 4768 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4769 K(atomic_long_read(&mm->hugetlb_usage))); 4770 } 4771 4772 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4773 unsigned long hugetlb_total_pages(void) 4774 { 4775 struct hstate *h; 4776 unsigned long nr_total_pages = 0; 4777 4778 for_each_hstate(h) 4779 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4780 return nr_total_pages; 4781 } 4782 4783 static int hugetlb_acct_memory(struct hstate *h, long delta) 4784 { 4785 int ret = -ENOMEM; 4786 4787 if (!delta) 4788 return 0; 4789 4790 spin_lock_irq(&hugetlb_lock); 4791 /* 4792 * When cpuset is configured, it breaks the strict hugetlb page 4793 * reservation as the accounting is done on a global variable. Such 4794 * reservation is completely rubbish in the presence of cpuset because 4795 * the reservation is not checked against page availability for the 4796 * current cpuset. Application can still potentially OOM'ed by kernel 4797 * with lack of free htlb page in cpuset that the task is in. 4798 * Attempt to enforce strict accounting with cpuset is almost 4799 * impossible (or too ugly) because cpuset is too fluid that 4800 * task or memory node can be dynamically moved between cpusets. 4801 * 4802 * The change of semantics for shared hugetlb mapping with cpuset is 4803 * undesirable. However, in order to preserve some of the semantics, 4804 * we fall back to check against current free page availability as 4805 * a best attempt and hopefully to minimize the impact of changing 4806 * semantics that cpuset has. 4807 * 4808 * Apart from cpuset, we also have memory policy mechanism that 4809 * also determines from which node the kernel will allocate memory 4810 * in a NUMA system. So similar to cpuset, we also should consider 4811 * the memory policy of the current task. Similar to the description 4812 * above. 4813 */ 4814 if (delta > 0) { 4815 if (gather_surplus_pages(h, delta) < 0) 4816 goto out; 4817 4818 if (delta > allowed_mems_nr(h)) { 4819 return_unused_surplus_pages(h, delta); 4820 goto out; 4821 } 4822 } 4823 4824 ret = 0; 4825 if (delta < 0) 4826 return_unused_surplus_pages(h, (unsigned long) -delta); 4827 4828 out: 4829 spin_unlock_irq(&hugetlb_lock); 4830 return ret; 4831 } 4832 4833 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4834 { 4835 struct resv_map *resv = vma_resv_map(vma); 4836 4837 /* 4838 * HPAGE_RESV_OWNER indicates a private mapping. 4839 * This new VMA should share its siblings reservation map if present. 4840 * The VMA will only ever have a valid reservation map pointer where 4841 * it is being copied for another still existing VMA. As that VMA 4842 * has a reference to the reservation map it cannot disappear until 4843 * after this open call completes. It is therefore safe to take a 4844 * new reference here without additional locking. 4845 */ 4846 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4847 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4848 kref_get(&resv->refs); 4849 } 4850 4851 /* 4852 * vma_lock structure for sharable mappings is vma specific. 4853 * Clear old pointer (if copied via vm_area_dup) and allocate 4854 * new structure. Before clearing, make sure vma_lock is not 4855 * for this vma. 4856 */ 4857 if (vma->vm_flags & VM_MAYSHARE) { 4858 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4859 4860 if (vma_lock) { 4861 if (vma_lock->vma != vma) { 4862 vma->vm_private_data = NULL; 4863 hugetlb_vma_lock_alloc(vma); 4864 } else 4865 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4866 } else 4867 hugetlb_vma_lock_alloc(vma); 4868 } 4869 } 4870 4871 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4872 { 4873 struct hstate *h = hstate_vma(vma); 4874 struct resv_map *resv; 4875 struct hugepage_subpool *spool = subpool_vma(vma); 4876 unsigned long reserve, start, end; 4877 long gbl_reserve; 4878 4879 hugetlb_vma_lock_free(vma); 4880 4881 resv = vma_resv_map(vma); 4882 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4883 return; 4884 4885 start = vma_hugecache_offset(h, vma, vma->vm_start); 4886 end = vma_hugecache_offset(h, vma, vma->vm_end); 4887 4888 reserve = (end - start) - region_count(resv, start, end); 4889 hugetlb_cgroup_uncharge_counter(resv, start, end); 4890 if (reserve) { 4891 /* 4892 * Decrement reserve counts. The global reserve count may be 4893 * adjusted if the subpool has a minimum size. 4894 */ 4895 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4896 hugetlb_acct_memory(h, -gbl_reserve); 4897 } 4898 4899 kref_put(&resv->refs, resv_map_release); 4900 } 4901 4902 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4903 { 4904 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4905 return -EINVAL; 4906 4907 /* 4908 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4909 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4910 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4911 */ 4912 if (addr & ~PUD_MASK) { 4913 /* 4914 * hugetlb_vm_op_split is called right before we attempt to 4915 * split the VMA. We will need to unshare PMDs in the old and 4916 * new VMAs, so let's unshare before we split. 4917 */ 4918 unsigned long floor = addr & PUD_MASK; 4919 unsigned long ceil = floor + PUD_SIZE; 4920 4921 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4922 hugetlb_unshare_pmds(vma, floor, ceil); 4923 } 4924 4925 return 0; 4926 } 4927 4928 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4929 { 4930 return huge_page_size(hstate_vma(vma)); 4931 } 4932 4933 /* 4934 * We cannot handle pagefaults against hugetlb pages at all. They cause 4935 * handle_mm_fault() to try to instantiate regular-sized pages in the 4936 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4937 * this far. 4938 */ 4939 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4940 { 4941 BUG(); 4942 return 0; 4943 } 4944 4945 /* 4946 * When a new function is introduced to vm_operations_struct and added 4947 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4948 * This is because under System V memory model, mappings created via 4949 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4950 * their original vm_ops are overwritten with shm_vm_ops. 4951 */ 4952 const struct vm_operations_struct hugetlb_vm_ops = { 4953 .fault = hugetlb_vm_op_fault, 4954 .open = hugetlb_vm_op_open, 4955 .close = hugetlb_vm_op_close, 4956 .may_split = hugetlb_vm_op_split, 4957 .pagesize = hugetlb_vm_op_pagesize, 4958 }; 4959 4960 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4961 int writable) 4962 { 4963 pte_t entry; 4964 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4965 4966 if (writable) { 4967 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4968 vma->vm_page_prot))); 4969 } else { 4970 entry = huge_pte_wrprotect(mk_huge_pte(page, 4971 vma->vm_page_prot)); 4972 } 4973 entry = pte_mkyoung(entry); 4974 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4975 4976 return entry; 4977 } 4978 4979 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4980 unsigned long address, pte_t *ptep) 4981 { 4982 pte_t entry; 4983 4984 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4985 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4986 update_mmu_cache(vma, address, ptep); 4987 } 4988 4989 bool is_hugetlb_entry_migration(pte_t pte) 4990 { 4991 swp_entry_t swp; 4992 4993 if (huge_pte_none(pte) || pte_present(pte)) 4994 return false; 4995 swp = pte_to_swp_entry(pte); 4996 if (is_migration_entry(swp)) 4997 return true; 4998 else 4999 return false; 5000 } 5001 5002 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5003 { 5004 swp_entry_t swp; 5005 5006 if (huge_pte_none(pte) || pte_present(pte)) 5007 return false; 5008 swp = pte_to_swp_entry(pte); 5009 if (is_hwpoison_entry(swp)) 5010 return true; 5011 else 5012 return false; 5013 } 5014 5015 static void 5016 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5017 struct folio *new_folio, pte_t old, unsigned long sz) 5018 { 5019 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5020 5021 __folio_mark_uptodate(new_folio); 5022 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5023 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5024 newpte = huge_pte_mkuffd_wp(newpte); 5025 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5026 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5027 folio_set_hugetlb_migratable(new_folio); 5028 } 5029 5030 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5031 struct vm_area_struct *dst_vma, 5032 struct vm_area_struct *src_vma) 5033 { 5034 pte_t *src_pte, *dst_pte, entry; 5035 struct folio *pte_folio; 5036 unsigned long addr; 5037 bool cow = is_cow_mapping(src_vma->vm_flags); 5038 struct hstate *h = hstate_vma(src_vma); 5039 unsigned long sz = huge_page_size(h); 5040 unsigned long npages = pages_per_huge_page(h); 5041 struct mmu_notifier_range range; 5042 unsigned long last_addr_mask; 5043 int ret = 0; 5044 5045 if (cow) { 5046 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5047 src_vma->vm_start, 5048 src_vma->vm_end); 5049 mmu_notifier_invalidate_range_start(&range); 5050 vma_assert_write_locked(src_vma); 5051 raw_write_seqcount_begin(&src->write_protect_seq); 5052 } else { 5053 /* 5054 * For shared mappings the vma lock must be held before 5055 * calling hugetlb_walk() in the src vma. Otherwise, the 5056 * returned ptep could go away if part of a shared pmd and 5057 * another thread calls huge_pmd_unshare. 5058 */ 5059 hugetlb_vma_lock_read(src_vma); 5060 } 5061 5062 last_addr_mask = hugetlb_mask_last_page(h); 5063 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5064 spinlock_t *src_ptl, *dst_ptl; 5065 src_pte = hugetlb_walk(src_vma, addr, sz); 5066 if (!src_pte) { 5067 addr |= last_addr_mask; 5068 continue; 5069 } 5070 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5071 if (!dst_pte) { 5072 ret = -ENOMEM; 5073 break; 5074 } 5075 5076 /* 5077 * If the pagetables are shared don't copy or take references. 5078 * 5079 * dst_pte == src_pte is the common case of src/dest sharing. 5080 * However, src could have 'unshared' and dst shares with 5081 * another vma. So page_count of ptep page is checked instead 5082 * to reliably determine whether pte is shared. 5083 */ 5084 if (page_count(virt_to_page(dst_pte)) > 1) { 5085 addr |= last_addr_mask; 5086 continue; 5087 } 5088 5089 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5090 src_ptl = huge_pte_lockptr(h, src, src_pte); 5091 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5092 entry = huge_ptep_get(src_pte); 5093 again: 5094 if (huge_pte_none(entry)) { 5095 /* 5096 * Skip if src entry none. 5097 */ 5098 ; 5099 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5100 if (!userfaultfd_wp(dst_vma)) 5101 entry = huge_pte_clear_uffd_wp(entry); 5102 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5103 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5104 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5105 bool uffd_wp = pte_swp_uffd_wp(entry); 5106 5107 if (!is_readable_migration_entry(swp_entry) && cow) { 5108 /* 5109 * COW mappings require pages in both 5110 * parent and child to be set to read. 5111 */ 5112 swp_entry = make_readable_migration_entry( 5113 swp_offset(swp_entry)); 5114 entry = swp_entry_to_pte(swp_entry); 5115 if (userfaultfd_wp(src_vma) && uffd_wp) 5116 entry = pte_swp_mkuffd_wp(entry); 5117 set_huge_pte_at(src, addr, src_pte, entry, sz); 5118 } 5119 if (!userfaultfd_wp(dst_vma)) 5120 entry = huge_pte_clear_uffd_wp(entry); 5121 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5122 } else if (unlikely(is_pte_marker(entry))) { 5123 pte_marker marker = copy_pte_marker( 5124 pte_to_swp_entry(entry), dst_vma); 5125 5126 if (marker) 5127 set_huge_pte_at(dst, addr, dst_pte, 5128 make_pte_marker(marker), sz); 5129 } else { 5130 entry = huge_ptep_get(src_pte); 5131 pte_folio = page_folio(pte_page(entry)); 5132 folio_get(pte_folio); 5133 5134 /* 5135 * Failing to duplicate the anon rmap is a rare case 5136 * where we see pinned hugetlb pages while they're 5137 * prone to COW. We need to do the COW earlier during 5138 * fork. 5139 * 5140 * When pre-allocating the page or copying data, we 5141 * need to be without the pgtable locks since we could 5142 * sleep during the process. 5143 */ 5144 if (!folio_test_anon(pte_folio)) { 5145 page_dup_file_rmap(&pte_folio->page, true); 5146 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5147 true, src_vma)) { 5148 pte_t src_pte_old = entry; 5149 struct folio *new_folio; 5150 5151 spin_unlock(src_ptl); 5152 spin_unlock(dst_ptl); 5153 /* Do not use reserve as it's private owned */ 5154 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5155 if (IS_ERR(new_folio)) { 5156 folio_put(pte_folio); 5157 ret = PTR_ERR(new_folio); 5158 break; 5159 } 5160 ret = copy_user_large_folio(new_folio, 5161 pte_folio, 5162 addr, dst_vma); 5163 folio_put(pte_folio); 5164 if (ret) { 5165 folio_put(new_folio); 5166 break; 5167 } 5168 5169 /* Install the new hugetlb folio if src pte stable */ 5170 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5171 src_ptl = huge_pte_lockptr(h, src, src_pte); 5172 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5173 entry = huge_ptep_get(src_pte); 5174 if (!pte_same(src_pte_old, entry)) { 5175 restore_reserve_on_error(h, dst_vma, addr, 5176 new_folio); 5177 folio_put(new_folio); 5178 /* huge_ptep of dst_pte won't change as in child */ 5179 goto again; 5180 } 5181 hugetlb_install_folio(dst_vma, dst_pte, addr, 5182 new_folio, src_pte_old, sz); 5183 spin_unlock(src_ptl); 5184 spin_unlock(dst_ptl); 5185 continue; 5186 } 5187 5188 if (cow) { 5189 /* 5190 * No need to notify as we are downgrading page 5191 * table protection not changing it to point 5192 * to a new page. 5193 * 5194 * See Documentation/mm/mmu_notifier.rst 5195 */ 5196 huge_ptep_set_wrprotect(src, addr, src_pte); 5197 entry = huge_pte_wrprotect(entry); 5198 } 5199 5200 if (!userfaultfd_wp(dst_vma)) 5201 entry = huge_pte_clear_uffd_wp(entry); 5202 5203 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5204 hugetlb_count_add(npages, dst); 5205 } 5206 spin_unlock(src_ptl); 5207 spin_unlock(dst_ptl); 5208 } 5209 5210 if (cow) { 5211 raw_write_seqcount_end(&src->write_protect_seq); 5212 mmu_notifier_invalidate_range_end(&range); 5213 } else { 5214 hugetlb_vma_unlock_read(src_vma); 5215 } 5216 5217 return ret; 5218 } 5219 5220 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5221 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5222 unsigned long sz) 5223 { 5224 struct hstate *h = hstate_vma(vma); 5225 struct mm_struct *mm = vma->vm_mm; 5226 spinlock_t *src_ptl, *dst_ptl; 5227 pte_t pte; 5228 5229 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5230 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5231 5232 /* 5233 * We don't have to worry about the ordering of src and dst ptlocks 5234 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5235 */ 5236 if (src_ptl != dst_ptl) 5237 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5238 5239 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5240 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5241 5242 if (src_ptl != dst_ptl) 5243 spin_unlock(src_ptl); 5244 spin_unlock(dst_ptl); 5245 } 5246 5247 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5248 struct vm_area_struct *new_vma, 5249 unsigned long old_addr, unsigned long new_addr, 5250 unsigned long len) 5251 { 5252 struct hstate *h = hstate_vma(vma); 5253 struct address_space *mapping = vma->vm_file->f_mapping; 5254 unsigned long sz = huge_page_size(h); 5255 struct mm_struct *mm = vma->vm_mm; 5256 unsigned long old_end = old_addr + len; 5257 unsigned long last_addr_mask; 5258 pte_t *src_pte, *dst_pte; 5259 struct mmu_notifier_range range; 5260 bool shared_pmd = false; 5261 5262 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5263 old_end); 5264 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5265 /* 5266 * In case of shared PMDs, we should cover the maximum possible 5267 * range. 5268 */ 5269 flush_cache_range(vma, range.start, range.end); 5270 5271 mmu_notifier_invalidate_range_start(&range); 5272 last_addr_mask = hugetlb_mask_last_page(h); 5273 /* Prevent race with file truncation */ 5274 hugetlb_vma_lock_write(vma); 5275 i_mmap_lock_write(mapping); 5276 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5277 src_pte = hugetlb_walk(vma, old_addr, sz); 5278 if (!src_pte) { 5279 old_addr |= last_addr_mask; 5280 new_addr |= last_addr_mask; 5281 continue; 5282 } 5283 if (huge_pte_none(huge_ptep_get(src_pte))) 5284 continue; 5285 5286 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5287 shared_pmd = true; 5288 old_addr |= last_addr_mask; 5289 new_addr |= last_addr_mask; 5290 continue; 5291 } 5292 5293 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5294 if (!dst_pte) 5295 break; 5296 5297 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5298 } 5299 5300 if (shared_pmd) 5301 flush_hugetlb_tlb_range(vma, range.start, range.end); 5302 else 5303 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5304 mmu_notifier_invalidate_range_end(&range); 5305 i_mmap_unlock_write(mapping); 5306 hugetlb_vma_unlock_write(vma); 5307 5308 return len + old_addr - old_end; 5309 } 5310 5311 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5312 unsigned long start, unsigned long end, 5313 struct page *ref_page, zap_flags_t zap_flags) 5314 { 5315 struct mm_struct *mm = vma->vm_mm; 5316 unsigned long address; 5317 pte_t *ptep; 5318 pte_t pte; 5319 spinlock_t *ptl; 5320 struct page *page; 5321 struct hstate *h = hstate_vma(vma); 5322 unsigned long sz = huge_page_size(h); 5323 unsigned long last_addr_mask; 5324 bool force_flush = false; 5325 5326 WARN_ON(!is_vm_hugetlb_page(vma)); 5327 BUG_ON(start & ~huge_page_mask(h)); 5328 BUG_ON(end & ~huge_page_mask(h)); 5329 5330 /* 5331 * This is a hugetlb vma, all the pte entries should point 5332 * to huge page. 5333 */ 5334 tlb_change_page_size(tlb, sz); 5335 tlb_start_vma(tlb, vma); 5336 5337 last_addr_mask = hugetlb_mask_last_page(h); 5338 address = start; 5339 for (; address < end; address += sz) { 5340 ptep = hugetlb_walk(vma, address, sz); 5341 if (!ptep) { 5342 address |= last_addr_mask; 5343 continue; 5344 } 5345 5346 ptl = huge_pte_lock(h, mm, ptep); 5347 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5348 spin_unlock(ptl); 5349 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5350 force_flush = true; 5351 address |= last_addr_mask; 5352 continue; 5353 } 5354 5355 pte = huge_ptep_get(ptep); 5356 if (huge_pte_none(pte)) { 5357 spin_unlock(ptl); 5358 continue; 5359 } 5360 5361 /* 5362 * Migrating hugepage or HWPoisoned hugepage is already 5363 * unmapped and its refcount is dropped, so just clear pte here. 5364 */ 5365 if (unlikely(!pte_present(pte))) { 5366 /* 5367 * If the pte was wr-protected by uffd-wp in any of the 5368 * swap forms, meanwhile the caller does not want to 5369 * drop the uffd-wp bit in this zap, then replace the 5370 * pte with a marker. 5371 */ 5372 if (pte_swp_uffd_wp_any(pte) && 5373 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5374 set_huge_pte_at(mm, address, ptep, 5375 make_pte_marker(PTE_MARKER_UFFD_WP), 5376 sz); 5377 else 5378 huge_pte_clear(mm, address, ptep, sz); 5379 spin_unlock(ptl); 5380 continue; 5381 } 5382 5383 page = pte_page(pte); 5384 /* 5385 * If a reference page is supplied, it is because a specific 5386 * page is being unmapped, not a range. Ensure the page we 5387 * are about to unmap is the actual page of interest. 5388 */ 5389 if (ref_page) { 5390 if (page != ref_page) { 5391 spin_unlock(ptl); 5392 continue; 5393 } 5394 /* 5395 * Mark the VMA as having unmapped its page so that 5396 * future faults in this VMA will fail rather than 5397 * looking like data was lost 5398 */ 5399 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5400 } 5401 5402 pte = huge_ptep_get_and_clear(mm, address, ptep); 5403 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5404 if (huge_pte_dirty(pte)) 5405 set_page_dirty(page); 5406 /* Leave a uffd-wp pte marker if needed */ 5407 if (huge_pte_uffd_wp(pte) && 5408 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5409 set_huge_pte_at(mm, address, ptep, 5410 make_pte_marker(PTE_MARKER_UFFD_WP), 5411 sz); 5412 hugetlb_count_sub(pages_per_huge_page(h), mm); 5413 page_remove_rmap(page, vma, true); 5414 5415 spin_unlock(ptl); 5416 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5417 /* 5418 * Bail out after unmapping reference page if supplied 5419 */ 5420 if (ref_page) 5421 break; 5422 } 5423 tlb_end_vma(tlb, vma); 5424 5425 /* 5426 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5427 * could defer the flush until now, since by holding i_mmap_rwsem we 5428 * guaranteed that the last refernece would not be dropped. But we must 5429 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5430 * dropped and the last reference to the shared PMDs page might be 5431 * dropped as well. 5432 * 5433 * In theory we could defer the freeing of the PMD pages as well, but 5434 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5435 * detect sharing, so we cannot defer the release of the page either. 5436 * Instead, do flush now. 5437 */ 5438 if (force_flush) 5439 tlb_flush_mmu_tlbonly(tlb); 5440 } 5441 5442 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5443 unsigned long *start, unsigned long *end) 5444 { 5445 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5446 return; 5447 5448 adjust_range_if_pmd_sharing_possible(vma, start, end); 5449 hugetlb_vma_lock_write(vma); 5450 if (vma->vm_file) 5451 i_mmap_lock_write(vma->vm_file->f_mapping); 5452 } 5453 5454 void __hugetlb_zap_end(struct vm_area_struct *vma, 5455 struct zap_details *details) 5456 { 5457 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5458 5459 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5460 return; 5461 5462 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5463 /* 5464 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5465 * When the vma_lock is freed, this makes the vma ineligible 5466 * for pmd sharing. And, i_mmap_rwsem is required to set up 5467 * pmd sharing. This is important as page tables for this 5468 * unmapped range will be asynchrously deleted. If the page 5469 * tables are shared, there will be issues when accessed by 5470 * someone else. 5471 */ 5472 __hugetlb_vma_unlock_write_free(vma); 5473 } else { 5474 hugetlb_vma_unlock_write(vma); 5475 } 5476 5477 if (vma->vm_file) 5478 i_mmap_unlock_write(vma->vm_file->f_mapping); 5479 } 5480 5481 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5482 unsigned long end, struct page *ref_page, 5483 zap_flags_t zap_flags) 5484 { 5485 struct mmu_notifier_range range; 5486 struct mmu_gather tlb; 5487 5488 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5489 start, end); 5490 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5491 mmu_notifier_invalidate_range_start(&range); 5492 tlb_gather_mmu(&tlb, vma->vm_mm); 5493 5494 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5495 5496 mmu_notifier_invalidate_range_end(&range); 5497 tlb_finish_mmu(&tlb); 5498 } 5499 5500 /* 5501 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5502 * mapping it owns the reserve page for. The intention is to unmap the page 5503 * from other VMAs and let the children be SIGKILLed if they are faulting the 5504 * same region. 5505 */ 5506 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5507 struct page *page, unsigned long address) 5508 { 5509 struct hstate *h = hstate_vma(vma); 5510 struct vm_area_struct *iter_vma; 5511 struct address_space *mapping; 5512 pgoff_t pgoff; 5513 5514 /* 5515 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5516 * from page cache lookup which is in HPAGE_SIZE units. 5517 */ 5518 address = address & huge_page_mask(h); 5519 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5520 vma->vm_pgoff; 5521 mapping = vma->vm_file->f_mapping; 5522 5523 /* 5524 * Take the mapping lock for the duration of the table walk. As 5525 * this mapping should be shared between all the VMAs, 5526 * __unmap_hugepage_range() is called as the lock is already held 5527 */ 5528 i_mmap_lock_write(mapping); 5529 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5530 /* Do not unmap the current VMA */ 5531 if (iter_vma == vma) 5532 continue; 5533 5534 /* 5535 * Shared VMAs have their own reserves and do not affect 5536 * MAP_PRIVATE accounting but it is possible that a shared 5537 * VMA is using the same page so check and skip such VMAs. 5538 */ 5539 if (iter_vma->vm_flags & VM_MAYSHARE) 5540 continue; 5541 5542 /* 5543 * Unmap the page from other VMAs without their own reserves. 5544 * They get marked to be SIGKILLed if they fault in these 5545 * areas. This is because a future no-page fault on this VMA 5546 * could insert a zeroed page instead of the data existing 5547 * from the time of fork. This would look like data corruption 5548 */ 5549 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5550 unmap_hugepage_range(iter_vma, address, 5551 address + huge_page_size(h), page, 0); 5552 } 5553 i_mmap_unlock_write(mapping); 5554 } 5555 5556 /* 5557 * hugetlb_wp() should be called with page lock of the original hugepage held. 5558 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5559 * cannot race with other handlers or page migration. 5560 * Keep the pte_same checks anyway to make transition from the mutex easier. 5561 */ 5562 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5563 unsigned long address, pte_t *ptep, unsigned int flags, 5564 struct folio *pagecache_folio, spinlock_t *ptl) 5565 { 5566 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5567 pte_t pte = huge_ptep_get(ptep); 5568 struct hstate *h = hstate_vma(vma); 5569 struct folio *old_folio; 5570 struct folio *new_folio; 5571 int outside_reserve = 0; 5572 vm_fault_t ret = 0; 5573 unsigned long haddr = address & huge_page_mask(h); 5574 struct mmu_notifier_range range; 5575 5576 /* 5577 * Never handle CoW for uffd-wp protected pages. It should be only 5578 * handled when the uffd-wp protection is removed. 5579 * 5580 * Note that only the CoW optimization path (in hugetlb_no_page()) 5581 * can trigger this, because hugetlb_fault() will always resolve 5582 * uffd-wp bit first. 5583 */ 5584 if (!unshare && huge_pte_uffd_wp(pte)) 5585 return 0; 5586 5587 /* 5588 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5589 * PTE mapped R/O such as maybe_mkwrite() would do. 5590 */ 5591 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5592 return VM_FAULT_SIGSEGV; 5593 5594 /* Let's take out MAP_SHARED mappings first. */ 5595 if (vma->vm_flags & VM_MAYSHARE) { 5596 set_huge_ptep_writable(vma, haddr, ptep); 5597 return 0; 5598 } 5599 5600 old_folio = page_folio(pte_page(pte)); 5601 5602 delayacct_wpcopy_start(); 5603 5604 retry_avoidcopy: 5605 /* 5606 * If no-one else is actually using this page, we're the exclusive 5607 * owner and can reuse this page. 5608 */ 5609 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5610 if (!PageAnonExclusive(&old_folio->page)) 5611 page_move_anon_rmap(&old_folio->page, vma); 5612 if (likely(!unshare)) 5613 set_huge_ptep_writable(vma, haddr, ptep); 5614 5615 delayacct_wpcopy_end(); 5616 return 0; 5617 } 5618 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5619 PageAnonExclusive(&old_folio->page), &old_folio->page); 5620 5621 /* 5622 * If the process that created a MAP_PRIVATE mapping is about to 5623 * perform a COW due to a shared page count, attempt to satisfy 5624 * the allocation without using the existing reserves. The pagecache 5625 * page is used to determine if the reserve at this address was 5626 * consumed or not. If reserves were used, a partial faulted mapping 5627 * at the time of fork() could consume its reserves on COW instead 5628 * of the full address range. 5629 */ 5630 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5631 old_folio != pagecache_folio) 5632 outside_reserve = 1; 5633 5634 folio_get(old_folio); 5635 5636 /* 5637 * Drop page table lock as buddy allocator may be called. It will 5638 * be acquired again before returning to the caller, as expected. 5639 */ 5640 spin_unlock(ptl); 5641 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5642 5643 if (IS_ERR(new_folio)) { 5644 /* 5645 * If a process owning a MAP_PRIVATE mapping fails to COW, 5646 * it is due to references held by a child and an insufficient 5647 * huge page pool. To guarantee the original mappers 5648 * reliability, unmap the page from child processes. The child 5649 * may get SIGKILLed if it later faults. 5650 */ 5651 if (outside_reserve) { 5652 struct address_space *mapping = vma->vm_file->f_mapping; 5653 pgoff_t idx; 5654 u32 hash; 5655 5656 folio_put(old_folio); 5657 /* 5658 * Drop hugetlb_fault_mutex and vma_lock before 5659 * unmapping. unmapping needs to hold vma_lock 5660 * in write mode. Dropping vma_lock in read mode 5661 * here is OK as COW mappings do not interact with 5662 * PMD sharing. 5663 * 5664 * Reacquire both after unmap operation. 5665 */ 5666 idx = vma_hugecache_offset(h, vma, haddr); 5667 hash = hugetlb_fault_mutex_hash(mapping, idx); 5668 hugetlb_vma_unlock_read(vma); 5669 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5670 5671 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5672 5673 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5674 hugetlb_vma_lock_read(vma); 5675 spin_lock(ptl); 5676 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5677 if (likely(ptep && 5678 pte_same(huge_ptep_get(ptep), pte))) 5679 goto retry_avoidcopy; 5680 /* 5681 * race occurs while re-acquiring page table 5682 * lock, and our job is done. 5683 */ 5684 delayacct_wpcopy_end(); 5685 return 0; 5686 } 5687 5688 ret = vmf_error(PTR_ERR(new_folio)); 5689 goto out_release_old; 5690 } 5691 5692 /* 5693 * When the original hugepage is shared one, it does not have 5694 * anon_vma prepared. 5695 */ 5696 if (unlikely(anon_vma_prepare(vma))) { 5697 ret = VM_FAULT_OOM; 5698 goto out_release_all; 5699 } 5700 5701 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5702 ret = VM_FAULT_HWPOISON_LARGE; 5703 goto out_release_all; 5704 } 5705 __folio_mark_uptodate(new_folio); 5706 5707 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5708 haddr + huge_page_size(h)); 5709 mmu_notifier_invalidate_range_start(&range); 5710 5711 /* 5712 * Retake the page table lock to check for racing updates 5713 * before the page tables are altered 5714 */ 5715 spin_lock(ptl); 5716 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5717 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5718 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5719 5720 /* Break COW or unshare */ 5721 huge_ptep_clear_flush(vma, haddr, ptep); 5722 page_remove_rmap(&old_folio->page, vma, true); 5723 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5724 if (huge_pte_uffd_wp(pte)) 5725 newpte = huge_pte_mkuffd_wp(newpte); 5726 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5727 folio_set_hugetlb_migratable(new_folio); 5728 /* Make the old page be freed below */ 5729 new_folio = old_folio; 5730 } 5731 spin_unlock(ptl); 5732 mmu_notifier_invalidate_range_end(&range); 5733 out_release_all: 5734 /* 5735 * No restore in case of successful pagetable update (Break COW or 5736 * unshare) 5737 */ 5738 if (new_folio != old_folio) 5739 restore_reserve_on_error(h, vma, haddr, new_folio); 5740 folio_put(new_folio); 5741 out_release_old: 5742 folio_put(old_folio); 5743 5744 spin_lock(ptl); /* Caller expects lock to be held */ 5745 5746 delayacct_wpcopy_end(); 5747 return ret; 5748 } 5749 5750 /* 5751 * Return whether there is a pagecache page to back given address within VMA. 5752 */ 5753 static bool hugetlbfs_pagecache_present(struct hstate *h, 5754 struct vm_area_struct *vma, unsigned long address) 5755 { 5756 struct address_space *mapping = vma->vm_file->f_mapping; 5757 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5758 struct folio *folio; 5759 5760 folio = filemap_get_folio(mapping, idx); 5761 if (IS_ERR(folio)) 5762 return false; 5763 folio_put(folio); 5764 return true; 5765 } 5766 5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5768 pgoff_t idx) 5769 { 5770 struct inode *inode = mapping->host; 5771 struct hstate *h = hstate_inode(inode); 5772 int err; 5773 5774 __folio_set_locked(folio); 5775 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5776 5777 if (unlikely(err)) { 5778 __folio_clear_locked(folio); 5779 return err; 5780 } 5781 folio_clear_hugetlb_restore_reserve(folio); 5782 5783 /* 5784 * mark folio dirty so that it will not be removed from cache/file 5785 * by non-hugetlbfs specific code paths. 5786 */ 5787 folio_mark_dirty(folio); 5788 5789 spin_lock(&inode->i_lock); 5790 inode->i_blocks += blocks_per_huge_page(h); 5791 spin_unlock(&inode->i_lock); 5792 return 0; 5793 } 5794 5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5796 struct address_space *mapping, 5797 pgoff_t idx, 5798 unsigned int flags, 5799 unsigned long haddr, 5800 unsigned long addr, 5801 unsigned long reason) 5802 { 5803 u32 hash; 5804 struct vm_fault vmf = { 5805 .vma = vma, 5806 .address = haddr, 5807 .real_address = addr, 5808 .flags = flags, 5809 5810 /* 5811 * Hard to debug if it ends up being 5812 * used by a callee that assumes 5813 * something about the other 5814 * uninitialized fields... same as in 5815 * memory.c 5816 */ 5817 }; 5818 5819 /* 5820 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5821 * userfault. Also mmap_lock could be dropped due to handling 5822 * userfault, any vma operation should be careful from here. 5823 */ 5824 hugetlb_vma_unlock_read(vma); 5825 hash = hugetlb_fault_mutex_hash(mapping, idx); 5826 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5827 return handle_userfault(&vmf, reason); 5828 } 5829 5830 /* 5831 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5832 * false if pte changed or is changing. 5833 */ 5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5835 pte_t *ptep, pte_t old_pte) 5836 { 5837 spinlock_t *ptl; 5838 bool same; 5839 5840 ptl = huge_pte_lock(h, mm, ptep); 5841 same = pte_same(huge_ptep_get(ptep), old_pte); 5842 spin_unlock(ptl); 5843 5844 return same; 5845 } 5846 5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5848 struct vm_area_struct *vma, 5849 struct address_space *mapping, pgoff_t idx, 5850 unsigned long address, pte_t *ptep, 5851 pte_t old_pte, unsigned int flags) 5852 { 5853 struct hstate *h = hstate_vma(vma); 5854 vm_fault_t ret = VM_FAULT_SIGBUS; 5855 int anon_rmap = 0; 5856 unsigned long size; 5857 struct folio *folio; 5858 pte_t new_pte; 5859 spinlock_t *ptl; 5860 unsigned long haddr = address & huge_page_mask(h); 5861 bool new_folio, new_pagecache_folio = false; 5862 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5863 5864 /* 5865 * Currently, we are forced to kill the process in the event the 5866 * original mapper has unmapped pages from the child due to a failed 5867 * COW/unsharing. Warn that such a situation has occurred as it may not 5868 * be obvious. 5869 */ 5870 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5871 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5872 current->pid); 5873 goto out; 5874 } 5875 5876 /* 5877 * Use page lock to guard against racing truncation 5878 * before we get page_table_lock. 5879 */ 5880 new_folio = false; 5881 folio = filemap_lock_folio(mapping, idx); 5882 if (IS_ERR(folio)) { 5883 size = i_size_read(mapping->host) >> huge_page_shift(h); 5884 if (idx >= size) 5885 goto out; 5886 /* Check for page in userfault range */ 5887 if (userfaultfd_missing(vma)) { 5888 /* 5889 * Since hugetlb_no_page() was examining pte 5890 * without pgtable lock, we need to re-test under 5891 * lock because the pte may not be stable and could 5892 * have changed from under us. Try to detect 5893 * either changed or during-changing ptes and retry 5894 * properly when needed. 5895 * 5896 * Note that userfaultfd is actually fine with 5897 * false positives (e.g. caused by pte changed), 5898 * but not wrong logical events (e.g. caused by 5899 * reading a pte during changing). The latter can 5900 * confuse the userspace, so the strictness is very 5901 * much preferred. E.g., MISSING event should 5902 * never happen on the page after UFFDIO_COPY has 5903 * correctly installed the page and returned. 5904 */ 5905 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5906 ret = 0; 5907 goto out; 5908 } 5909 5910 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5911 haddr, address, 5912 VM_UFFD_MISSING); 5913 } 5914 5915 folio = alloc_hugetlb_folio(vma, haddr, 0); 5916 if (IS_ERR(folio)) { 5917 /* 5918 * Returning error will result in faulting task being 5919 * sent SIGBUS. The hugetlb fault mutex prevents two 5920 * tasks from racing to fault in the same page which 5921 * could result in false unable to allocate errors. 5922 * Page migration does not take the fault mutex, but 5923 * does a clear then write of pte's under page table 5924 * lock. Page fault code could race with migration, 5925 * notice the clear pte and try to allocate a page 5926 * here. Before returning error, get ptl and make 5927 * sure there really is no pte entry. 5928 */ 5929 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5930 ret = vmf_error(PTR_ERR(folio)); 5931 else 5932 ret = 0; 5933 goto out; 5934 } 5935 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5936 __folio_mark_uptodate(folio); 5937 new_folio = true; 5938 5939 if (vma->vm_flags & VM_MAYSHARE) { 5940 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5941 if (err) { 5942 /* 5943 * err can't be -EEXIST which implies someone 5944 * else consumed the reservation since hugetlb 5945 * fault mutex is held when add a hugetlb page 5946 * to the page cache. So it's safe to call 5947 * restore_reserve_on_error() here. 5948 */ 5949 restore_reserve_on_error(h, vma, haddr, folio); 5950 folio_put(folio); 5951 goto out; 5952 } 5953 new_pagecache_folio = true; 5954 } else { 5955 folio_lock(folio); 5956 if (unlikely(anon_vma_prepare(vma))) { 5957 ret = VM_FAULT_OOM; 5958 goto backout_unlocked; 5959 } 5960 anon_rmap = 1; 5961 } 5962 } else { 5963 /* 5964 * If memory error occurs between mmap() and fault, some process 5965 * don't have hwpoisoned swap entry for errored virtual address. 5966 * So we need to block hugepage fault by PG_hwpoison bit check. 5967 */ 5968 if (unlikely(folio_test_hwpoison(folio))) { 5969 ret = VM_FAULT_HWPOISON_LARGE | 5970 VM_FAULT_SET_HINDEX(hstate_index(h)); 5971 goto backout_unlocked; 5972 } 5973 5974 /* Check for page in userfault range. */ 5975 if (userfaultfd_minor(vma)) { 5976 folio_unlock(folio); 5977 folio_put(folio); 5978 /* See comment in userfaultfd_missing() block above */ 5979 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5980 ret = 0; 5981 goto out; 5982 } 5983 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5984 haddr, address, 5985 VM_UFFD_MINOR); 5986 } 5987 } 5988 5989 /* 5990 * If we are going to COW a private mapping later, we examine the 5991 * pending reservations for this page now. This will ensure that 5992 * any allocations necessary to record that reservation occur outside 5993 * the spinlock. 5994 */ 5995 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5996 if (vma_needs_reservation(h, vma, haddr) < 0) { 5997 ret = VM_FAULT_OOM; 5998 goto backout_unlocked; 5999 } 6000 /* Just decrements count, does not deallocate */ 6001 vma_end_reservation(h, vma, haddr); 6002 } 6003 6004 ptl = huge_pte_lock(h, mm, ptep); 6005 ret = 0; 6006 /* If pte changed from under us, retry */ 6007 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6008 goto backout; 6009 6010 if (anon_rmap) 6011 hugepage_add_new_anon_rmap(folio, vma, haddr); 6012 else 6013 page_dup_file_rmap(&folio->page, true); 6014 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6015 && (vma->vm_flags & VM_SHARED))); 6016 /* 6017 * If this pte was previously wr-protected, keep it wr-protected even 6018 * if populated. 6019 */ 6020 if (unlikely(pte_marker_uffd_wp(old_pte))) 6021 new_pte = huge_pte_mkuffd_wp(new_pte); 6022 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6023 6024 hugetlb_count_add(pages_per_huge_page(h), mm); 6025 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6026 /* Optimization, do the COW without a second fault */ 6027 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6028 } 6029 6030 spin_unlock(ptl); 6031 6032 /* 6033 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6034 * found in the pagecache may not have hugetlb_migratable if they have 6035 * been isolated for migration. 6036 */ 6037 if (new_folio) 6038 folio_set_hugetlb_migratable(folio); 6039 6040 folio_unlock(folio); 6041 out: 6042 hugetlb_vma_unlock_read(vma); 6043 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6044 return ret; 6045 6046 backout: 6047 spin_unlock(ptl); 6048 backout_unlocked: 6049 if (new_folio && !new_pagecache_folio) 6050 restore_reserve_on_error(h, vma, haddr, folio); 6051 6052 folio_unlock(folio); 6053 folio_put(folio); 6054 goto out; 6055 } 6056 6057 #ifdef CONFIG_SMP 6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6059 { 6060 unsigned long key[2]; 6061 u32 hash; 6062 6063 key[0] = (unsigned long) mapping; 6064 key[1] = idx; 6065 6066 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6067 6068 return hash & (num_fault_mutexes - 1); 6069 } 6070 #else 6071 /* 6072 * For uniprocessor systems we always use a single mutex, so just 6073 * return 0 and avoid the hashing overhead. 6074 */ 6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6076 { 6077 return 0; 6078 } 6079 #endif 6080 6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6082 unsigned long address, unsigned int flags) 6083 { 6084 pte_t *ptep, entry; 6085 spinlock_t *ptl; 6086 vm_fault_t ret; 6087 u32 hash; 6088 pgoff_t idx; 6089 struct folio *folio = NULL; 6090 struct folio *pagecache_folio = NULL; 6091 struct hstate *h = hstate_vma(vma); 6092 struct address_space *mapping; 6093 int need_wait_lock = 0; 6094 unsigned long haddr = address & huge_page_mask(h); 6095 6096 /* TODO: Handle faults under the VMA lock */ 6097 if (flags & FAULT_FLAG_VMA_LOCK) { 6098 vma_end_read(vma); 6099 return VM_FAULT_RETRY; 6100 } 6101 6102 /* 6103 * Serialize hugepage allocation and instantiation, so that we don't 6104 * get spurious allocation failures if two CPUs race to instantiate 6105 * the same page in the page cache. 6106 */ 6107 mapping = vma->vm_file->f_mapping; 6108 idx = vma_hugecache_offset(h, vma, haddr); 6109 hash = hugetlb_fault_mutex_hash(mapping, idx); 6110 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6111 6112 /* 6113 * Acquire vma lock before calling huge_pte_alloc and hold 6114 * until finished with ptep. This prevents huge_pmd_unshare from 6115 * being called elsewhere and making the ptep no longer valid. 6116 */ 6117 hugetlb_vma_lock_read(vma); 6118 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6119 if (!ptep) { 6120 hugetlb_vma_unlock_read(vma); 6121 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6122 return VM_FAULT_OOM; 6123 } 6124 6125 entry = huge_ptep_get(ptep); 6126 if (huge_pte_none_mostly(entry)) { 6127 if (is_pte_marker(entry)) { 6128 pte_marker marker = 6129 pte_marker_get(pte_to_swp_entry(entry)); 6130 6131 if (marker & PTE_MARKER_POISONED) { 6132 ret = VM_FAULT_HWPOISON_LARGE; 6133 goto out_mutex; 6134 } 6135 } 6136 6137 /* 6138 * Other PTE markers should be handled the same way as none PTE. 6139 * 6140 * hugetlb_no_page will drop vma lock and hugetlb fault 6141 * mutex internally, which make us return immediately. 6142 */ 6143 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6144 entry, flags); 6145 } 6146 6147 ret = 0; 6148 6149 /* 6150 * entry could be a migration/hwpoison entry at this point, so this 6151 * check prevents the kernel from going below assuming that we have 6152 * an active hugepage in pagecache. This goto expects the 2nd page 6153 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6154 * properly handle it. 6155 */ 6156 if (!pte_present(entry)) { 6157 if (unlikely(is_hugetlb_entry_migration(entry))) { 6158 /* 6159 * Release the hugetlb fault lock now, but retain 6160 * the vma lock, because it is needed to guard the 6161 * huge_pte_lockptr() later in 6162 * migration_entry_wait_huge(). The vma lock will 6163 * be released there. 6164 */ 6165 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6166 migration_entry_wait_huge(vma, ptep); 6167 return 0; 6168 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6169 ret = VM_FAULT_HWPOISON_LARGE | 6170 VM_FAULT_SET_HINDEX(hstate_index(h)); 6171 goto out_mutex; 6172 } 6173 6174 /* 6175 * If we are going to COW/unshare the mapping later, we examine the 6176 * pending reservations for this page now. This will ensure that any 6177 * allocations necessary to record that reservation occur outside the 6178 * spinlock. Also lookup the pagecache page now as it is used to 6179 * determine if a reservation has been consumed. 6180 */ 6181 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6182 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6183 if (vma_needs_reservation(h, vma, haddr) < 0) { 6184 ret = VM_FAULT_OOM; 6185 goto out_mutex; 6186 } 6187 /* Just decrements count, does not deallocate */ 6188 vma_end_reservation(h, vma, haddr); 6189 6190 pagecache_folio = filemap_lock_folio(mapping, idx); 6191 if (IS_ERR(pagecache_folio)) 6192 pagecache_folio = NULL; 6193 } 6194 6195 ptl = huge_pte_lock(h, mm, ptep); 6196 6197 /* Check for a racing update before calling hugetlb_wp() */ 6198 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6199 goto out_ptl; 6200 6201 /* Handle userfault-wp first, before trying to lock more pages */ 6202 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6203 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6204 struct vm_fault vmf = { 6205 .vma = vma, 6206 .address = haddr, 6207 .real_address = address, 6208 .flags = flags, 6209 }; 6210 6211 spin_unlock(ptl); 6212 if (pagecache_folio) { 6213 folio_unlock(pagecache_folio); 6214 folio_put(pagecache_folio); 6215 } 6216 hugetlb_vma_unlock_read(vma); 6217 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6218 return handle_userfault(&vmf, VM_UFFD_WP); 6219 } 6220 6221 /* 6222 * hugetlb_wp() requires page locks of pte_page(entry) and 6223 * pagecache_folio, so here we need take the former one 6224 * when folio != pagecache_folio or !pagecache_folio. 6225 */ 6226 folio = page_folio(pte_page(entry)); 6227 if (folio != pagecache_folio) 6228 if (!folio_trylock(folio)) { 6229 need_wait_lock = 1; 6230 goto out_ptl; 6231 } 6232 6233 folio_get(folio); 6234 6235 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6236 if (!huge_pte_write(entry)) { 6237 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6238 pagecache_folio, ptl); 6239 goto out_put_page; 6240 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6241 entry = huge_pte_mkdirty(entry); 6242 } 6243 } 6244 entry = pte_mkyoung(entry); 6245 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6246 flags & FAULT_FLAG_WRITE)) 6247 update_mmu_cache(vma, haddr, ptep); 6248 out_put_page: 6249 if (folio != pagecache_folio) 6250 folio_unlock(folio); 6251 folio_put(folio); 6252 out_ptl: 6253 spin_unlock(ptl); 6254 6255 if (pagecache_folio) { 6256 folio_unlock(pagecache_folio); 6257 folio_put(pagecache_folio); 6258 } 6259 out_mutex: 6260 hugetlb_vma_unlock_read(vma); 6261 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6262 /* 6263 * Generally it's safe to hold refcount during waiting page lock. But 6264 * here we just wait to defer the next page fault to avoid busy loop and 6265 * the page is not used after unlocked before returning from the current 6266 * page fault. So we are safe from accessing freed page, even if we wait 6267 * here without taking refcount. 6268 */ 6269 if (need_wait_lock) 6270 folio_wait_locked(folio); 6271 return ret; 6272 } 6273 6274 #ifdef CONFIG_USERFAULTFD 6275 /* 6276 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6277 * with modifications for hugetlb pages. 6278 */ 6279 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6280 struct vm_area_struct *dst_vma, 6281 unsigned long dst_addr, 6282 unsigned long src_addr, 6283 uffd_flags_t flags, 6284 struct folio **foliop) 6285 { 6286 struct mm_struct *dst_mm = dst_vma->vm_mm; 6287 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6288 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6289 struct hstate *h = hstate_vma(dst_vma); 6290 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6291 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6292 unsigned long size; 6293 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6294 pte_t _dst_pte; 6295 spinlock_t *ptl; 6296 int ret = -ENOMEM; 6297 struct folio *folio; 6298 int writable; 6299 bool folio_in_pagecache = false; 6300 6301 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6302 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6303 6304 /* Don't overwrite any existing PTEs (even markers) */ 6305 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6306 spin_unlock(ptl); 6307 return -EEXIST; 6308 } 6309 6310 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6311 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6312 huge_page_size(h)); 6313 6314 /* No need to invalidate - it was non-present before */ 6315 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6316 6317 spin_unlock(ptl); 6318 return 0; 6319 } 6320 6321 if (is_continue) { 6322 ret = -EFAULT; 6323 folio = filemap_lock_folio(mapping, idx); 6324 if (IS_ERR(folio)) 6325 goto out; 6326 folio_in_pagecache = true; 6327 } else if (!*foliop) { 6328 /* If a folio already exists, then it's UFFDIO_COPY for 6329 * a non-missing case. Return -EEXIST. 6330 */ 6331 if (vm_shared && 6332 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6333 ret = -EEXIST; 6334 goto out; 6335 } 6336 6337 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6338 if (IS_ERR(folio)) { 6339 ret = -ENOMEM; 6340 goto out; 6341 } 6342 6343 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6344 false); 6345 6346 /* fallback to copy_from_user outside mmap_lock */ 6347 if (unlikely(ret)) { 6348 ret = -ENOENT; 6349 /* Free the allocated folio which may have 6350 * consumed a reservation. 6351 */ 6352 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6353 folio_put(folio); 6354 6355 /* Allocate a temporary folio to hold the copied 6356 * contents. 6357 */ 6358 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6359 if (!folio) { 6360 ret = -ENOMEM; 6361 goto out; 6362 } 6363 *foliop = folio; 6364 /* Set the outparam foliop and return to the caller to 6365 * copy the contents outside the lock. Don't free the 6366 * folio. 6367 */ 6368 goto out; 6369 } 6370 } else { 6371 if (vm_shared && 6372 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6373 folio_put(*foliop); 6374 ret = -EEXIST; 6375 *foliop = NULL; 6376 goto out; 6377 } 6378 6379 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6380 if (IS_ERR(folio)) { 6381 folio_put(*foliop); 6382 ret = -ENOMEM; 6383 *foliop = NULL; 6384 goto out; 6385 } 6386 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6387 folio_put(*foliop); 6388 *foliop = NULL; 6389 if (ret) { 6390 folio_put(folio); 6391 goto out; 6392 } 6393 } 6394 6395 /* 6396 * The memory barrier inside __folio_mark_uptodate makes sure that 6397 * preceding stores to the page contents become visible before 6398 * the set_pte_at() write. 6399 */ 6400 __folio_mark_uptodate(folio); 6401 6402 /* Add shared, newly allocated pages to the page cache. */ 6403 if (vm_shared && !is_continue) { 6404 size = i_size_read(mapping->host) >> huge_page_shift(h); 6405 ret = -EFAULT; 6406 if (idx >= size) 6407 goto out_release_nounlock; 6408 6409 /* 6410 * Serialization between remove_inode_hugepages() and 6411 * hugetlb_add_to_page_cache() below happens through the 6412 * hugetlb_fault_mutex_table that here must be hold by 6413 * the caller. 6414 */ 6415 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6416 if (ret) 6417 goto out_release_nounlock; 6418 folio_in_pagecache = true; 6419 } 6420 6421 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6422 6423 ret = -EIO; 6424 if (folio_test_hwpoison(folio)) 6425 goto out_release_unlock; 6426 6427 /* 6428 * We allow to overwrite a pte marker: consider when both MISSING|WP 6429 * registered, we firstly wr-protect a none pte which has no page cache 6430 * page backing it, then access the page. 6431 */ 6432 ret = -EEXIST; 6433 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6434 goto out_release_unlock; 6435 6436 if (folio_in_pagecache) 6437 page_dup_file_rmap(&folio->page, true); 6438 else 6439 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6440 6441 /* 6442 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6443 * with wp flag set, don't set pte write bit. 6444 */ 6445 if (wp_enabled || (is_continue && !vm_shared)) 6446 writable = 0; 6447 else 6448 writable = dst_vma->vm_flags & VM_WRITE; 6449 6450 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6451 /* 6452 * Always mark UFFDIO_COPY page dirty; note that this may not be 6453 * extremely important for hugetlbfs for now since swapping is not 6454 * supported, but we should still be clear in that this page cannot be 6455 * thrown away at will, even if write bit not set. 6456 */ 6457 _dst_pte = huge_pte_mkdirty(_dst_pte); 6458 _dst_pte = pte_mkyoung(_dst_pte); 6459 6460 if (wp_enabled) 6461 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6462 6463 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6464 6465 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6466 6467 /* No need to invalidate - it was non-present before */ 6468 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6469 6470 spin_unlock(ptl); 6471 if (!is_continue) 6472 folio_set_hugetlb_migratable(folio); 6473 if (vm_shared || is_continue) 6474 folio_unlock(folio); 6475 ret = 0; 6476 out: 6477 return ret; 6478 out_release_unlock: 6479 spin_unlock(ptl); 6480 if (vm_shared || is_continue) 6481 folio_unlock(folio); 6482 out_release_nounlock: 6483 if (!folio_in_pagecache) 6484 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6485 folio_put(folio); 6486 goto out; 6487 } 6488 #endif /* CONFIG_USERFAULTFD */ 6489 6490 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6491 unsigned long address, unsigned int flags, 6492 unsigned int *page_mask) 6493 { 6494 struct hstate *h = hstate_vma(vma); 6495 struct mm_struct *mm = vma->vm_mm; 6496 unsigned long haddr = address & huge_page_mask(h); 6497 struct page *page = NULL; 6498 spinlock_t *ptl; 6499 pte_t *pte, entry; 6500 int ret; 6501 6502 hugetlb_vma_lock_read(vma); 6503 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6504 if (!pte) 6505 goto out_unlock; 6506 6507 ptl = huge_pte_lock(h, mm, pte); 6508 entry = huge_ptep_get(pte); 6509 if (pte_present(entry)) { 6510 page = pte_page(entry); 6511 6512 if (!huge_pte_write(entry)) { 6513 if (flags & FOLL_WRITE) { 6514 page = NULL; 6515 goto out; 6516 } 6517 6518 if (gup_must_unshare(vma, flags, page)) { 6519 /* Tell the caller to do unsharing */ 6520 page = ERR_PTR(-EMLINK); 6521 goto out; 6522 } 6523 } 6524 6525 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6526 6527 /* 6528 * Note that page may be a sub-page, and with vmemmap 6529 * optimizations the page struct may be read only. 6530 * try_grab_page() will increase the ref count on the 6531 * head page, so this will be OK. 6532 * 6533 * try_grab_page() should always be able to get the page here, 6534 * because we hold the ptl lock and have verified pte_present(). 6535 */ 6536 ret = try_grab_folio(page_folio(page), 1, flags); 6537 6538 if (WARN_ON_ONCE(ret)) { 6539 page = ERR_PTR(ret); 6540 goto out; 6541 } 6542 6543 *page_mask = (1U << huge_page_order(h)) - 1; 6544 } 6545 out: 6546 spin_unlock(ptl); 6547 out_unlock: 6548 hugetlb_vma_unlock_read(vma); 6549 6550 /* 6551 * Fixup retval for dump requests: if pagecache doesn't exist, 6552 * don't try to allocate a new page but just skip it. 6553 */ 6554 if (!page && (flags & FOLL_DUMP) && 6555 !hugetlbfs_pagecache_present(h, vma, address)) 6556 page = ERR_PTR(-EFAULT); 6557 6558 return page; 6559 } 6560 6561 long hugetlb_change_protection(struct vm_area_struct *vma, 6562 unsigned long address, unsigned long end, 6563 pgprot_t newprot, unsigned long cp_flags) 6564 { 6565 struct mm_struct *mm = vma->vm_mm; 6566 unsigned long start = address; 6567 pte_t *ptep; 6568 pte_t pte; 6569 struct hstate *h = hstate_vma(vma); 6570 long pages = 0, psize = huge_page_size(h); 6571 bool shared_pmd = false; 6572 struct mmu_notifier_range range; 6573 unsigned long last_addr_mask; 6574 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6575 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6576 6577 /* 6578 * In the case of shared PMDs, the area to flush could be beyond 6579 * start/end. Set range.start/range.end to cover the maximum possible 6580 * range if PMD sharing is possible. 6581 */ 6582 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6583 0, mm, start, end); 6584 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6585 6586 BUG_ON(address >= end); 6587 flush_cache_range(vma, range.start, range.end); 6588 6589 mmu_notifier_invalidate_range_start(&range); 6590 hugetlb_vma_lock_write(vma); 6591 i_mmap_lock_write(vma->vm_file->f_mapping); 6592 last_addr_mask = hugetlb_mask_last_page(h); 6593 for (; address < end; address += psize) { 6594 spinlock_t *ptl; 6595 ptep = hugetlb_walk(vma, address, psize); 6596 if (!ptep) { 6597 if (!uffd_wp) { 6598 address |= last_addr_mask; 6599 continue; 6600 } 6601 /* 6602 * Userfaultfd wr-protect requires pgtable 6603 * pre-allocations to install pte markers. 6604 */ 6605 ptep = huge_pte_alloc(mm, vma, address, psize); 6606 if (!ptep) { 6607 pages = -ENOMEM; 6608 break; 6609 } 6610 } 6611 ptl = huge_pte_lock(h, mm, ptep); 6612 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6613 /* 6614 * When uffd-wp is enabled on the vma, unshare 6615 * shouldn't happen at all. Warn about it if it 6616 * happened due to some reason. 6617 */ 6618 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6619 pages++; 6620 spin_unlock(ptl); 6621 shared_pmd = true; 6622 address |= last_addr_mask; 6623 continue; 6624 } 6625 pte = huge_ptep_get(ptep); 6626 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6627 /* Nothing to do. */ 6628 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6629 swp_entry_t entry = pte_to_swp_entry(pte); 6630 struct page *page = pfn_swap_entry_to_page(entry); 6631 pte_t newpte = pte; 6632 6633 if (is_writable_migration_entry(entry)) { 6634 if (PageAnon(page)) 6635 entry = make_readable_exclusive_migration_entry( 6636 swp_offset(entry)); 6637 else 6638 entry = make_readable_migration_entry( 6639 swp_offset(entry)); 6640 newpte = swp_entry_to_pte(entry); 6641 pages++; 6642 } 6643 6644 if (uffd_wp) 6645 newpte = pte_swp_mkuffd_wp(newpte); 6646 else if (uffd_wp_resolve) 6647 newpte = pte_swp_clear_uffd_wp(newpte); 6648 if (!pte_same(pte, newpte)) 6649 set_huge_pte_at(mm, address, ptep, newpte, psize); 6650 } else if (unlikely(is_pte_marker(pte))) { 6651 /* 6652 * Do nothing on a poison marker; page is 6653 * corrupted, permissons do not apply. Here 6654 * pte_marker_uffd_wp()==true implies !poison 6655 * because they're mutual exclusive. 6656 */ 6657 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6658 /* Safe to modify directly (non-present->none). */ 6659 huge_pte_clear(mm, address, ptep, psize); 6660 } else if (!huge_pte_none(pte)) { 6661 pte_t old_pte; 6662 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6663 6664 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6665 pte = huge_pte_modify(old_pte, newprot); 6666 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6667 if (uffd_wp) 6668 pte = huge_pte_mkuffd_wp(pte); 6669 else if (uffd_wp_resolve) 6670 pte = huge_pte_clear_uffd_wp(pte); 6671 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6672 pages++; 6673 } else { 6674 /* None pte */ 6675 if (unlikely(uffd_wp)) 6676 /* Safe to modify directly (none->non-present). */ 6677 set_huge_pte_at(mm, address, ptep, 6678 make_pte_marker(PTE_MARKER_UFFD_WP), 6679 psize); 6680 } 6681 spin_unlock(ptl); 6682 } 6683 /* 6684 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6685 * may have cleared our pud entry and done put_page on the page table: 6686 * once we release i_mmap_rwsem, another task can do the final put_page 6687 * and that page table be reused and filled with junk. If we actually 6688 * did unshare a page of pmds, flush the range corresponding to the pud. 6689 */ 6690 if (shared_pmd) 6691 flush_hugetlb_tlb_range(vma, range.start, range.end); 6692 else 6693 flush_hugetlb_tlb_range(vma, start, end); 6694 /* 6695 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6696 * downgrading page table protection not changing it to point to a new 6697 * page. 6698 * 6699 * See Documentation/mm/mmu_notifier.rst 6700 */ 6701 i_mmap_unlock_write(vma->vm_file->f_mapping); 6702 hugetlb_vma_unlock_write(vma); 6703 mmu_notifier_invalidate_range_end(&range); 6704 6705 return pages > 0 ? (pages << h->order) : pages; 6706 } 6707 6708 /* Return true if reservation was successful, false otherwise. */ 6709 bool hugetlb_reserve_pages(struct inode *inode, 6710 long from, long to, 6711 struct vm_area_struct *vma, 6712 vm_flags_t vm_flags) 6713 { 6714 long chg = -1, add = -1; 6715 struct hstate *h = hstate_inode(inode); 6716 struct hugepage_subpool *spool = subpool_inode(inode); 6717 struct resv_map *resv_map; 6718 struct hugetlb_cgroup *h_cg = NULL; 6719 long gbl_reserve, regions_needed = 0; 6720 6721 /* This should never happen */ 6722 if (from > to) { 6723 VM_WARN(1, "%s called with a negative range\n", __func__); 6724 return false; 6725 } 6726 6727 /* 6728 * vma specific semaphore used for pmd sharing and fault/truncation 6729 * synchronization 6730 */ 6731 hugetlb_vma_lock_alloc(vma); 6732 6733 /* 6734 * Only apply hugepage reservation if asked. At fault time, an 6735 * attempt will be made for VM_NORESERVE to allocate a page 6736 * without using reserves 6737 */ 6738 if (vm_flags & VM_NORESERVE) 6739 return true; 6740 6741 /* 6742 * Shared mappings base their reservation on the number of pages that 6743 * are already allocated on behalf of the file. Private mappings need 6744 * to reserve the full area even if read-only as mprotect() may be 6745 * called to make the mapping read-write. Assume !vma is a shm mapping 6746 */ 6747 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6748 /* 6749 * resv_map can not be NULL as hugetlb_reserve_pages is only 6750 * called for inodes for which resv_maps were created (see 6751 * hugetlbfs_get_inode). 6752 */ 6753 resv_map = inode_resv_map(inode); 6754 6755 chg = region_chg(resv_map, from, to, ®ions_needed); 6756 } else { 6757 /* Private mapping. */ 6758 resv_map = resv_map_alloc(); 6759 if (!resv_map) 6760 goto out_err; 6761 6762 chg = to - from; 6763 6764 set_vma_resv_map(vma, resv_map); 6765 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6766 } 6767 6768 if (chg < 0) 6769 goto out_err; 6770 6771 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6772 chg * pages_per_huge_page(h), &h_cg) < 0) 6773 goto out_err; 6774 6775 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6776 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6777 * of the resv_map. 6778 */ 6779 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6780 } 6781 6782 /* 6783 * There must be enough pages in the subpool for the mapping. If 6784 * the subpool has a minimum size, there may be some global 6785 * reservations already in place (gbl_reserve). 6786 */ 6787 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6788 if (gbl_reserve < 0) 6789 goto out_uncharge_cgroup; 6790 6791 /* 6792 * Check enough hugepages are available for the reservation. 6793 * Hand the pages back to the subpool if there are not 6794 */ 6795 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6796 goto out_put_pages; 6797 6798 /* 6799 * Account for the reservations made. Shared mappings record regions 6800 * that have reservations as they are shared by multiple VMAs. 6801 * When the last VMA disappears, the region map says how much 6802 * the reservation was and the page cache tells how much of 6803 * the reservation was consumed. Private mappings are per-VMA and 6804 * only the consumed reservations are tracked. When the VMA 6805 * disappears, the original reservation is the VMA size and the 6806 * consumed reservations are stored in the map. Hence, nothing 6807 * else has to be done for private mappings here 6808 */ 6809 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6810 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6811 6812 if (unlikely(add < 0)) { 6813 hugetlb_acct_memory(h, -gbl_reserve); 6814 goto out_put_pages; 6815 } else if (unlikely(chg > add)) { 6816 /* 6817 * pages in this range were added to the reserve 6818 * map between region_chg and region_add. This 6819 * indicates a race with alloc_hugetlb_folio. Adjust 6820 * the subpool and reserve counts modified above 6821 * based on the difference. 6822 */ 6823 long rsv_adjust; 6824 6825 /* 6826 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6827 * reference to h_cg->css. See comment below for detail. 6828 */ 6829 hugetlb_cgroup_uncharge_cgroup_rsvd( 6830 hstate_index(h), 6831 (chg - add) * pages_per_huge_page(h), h_cg); 6832 6833 rsv_adjust = hugepage_subpool_put_pages(spool, 6834 chg - add); 6835 hugetlb_acct_memory(h, -rsv_adjust); 6836 } else if (h_cg) { 6837 /* 6838 * The file_regions will hold their own reference to 6839 * h_cg->css. So we should release the reference held 6840 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6841 * done. 6842 */ 6843 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6844 } 6845 } 6846 return true; 6847 6848 out_put_pages: 6849 /* put back original number of pages, chg */ 6850 (void)hugepage_subpool_put_pages(spool, chg); 6851 out_uncharge_cgroup: 6852 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6853 chg * pages_per_huge_page(h), h_cg); 6854 out_err: 6855 hugetlb_vma_lock_free(vma); 6856 if (!vma || vma->vm_flags & VM_MAYSHARE) 6857 /* Only call region_abort if the region_chg succeeded but the 6858 * region_add failed or didn't run. 6859 */ 6860 if (chg >= 0 && add < 0) 6861 region_abort(resv_map, from, to, regions_needed); 6862 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 6863 kref_put(&resv_map->refs, resv_map_release); 6864 set_vma_resv_map(vma, NULL); 6865 } 6866 return false; 6867 } 6868 6869 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6870 long freed) 6871 { 6872 struct hstate *h = hstate_inode(inode); 6873 struct resv_map *resv_map = inode_resv_map(inode); 6874 long chg = 0; 6875 struct hugepage_subpool *spool = subpool_inode(inode); 6876 long gbl_reserve; 6877 6878 /* 6879 * Since this routine can be called in the evict inode path for all 6880 * hugetlbfs inodes, resv_map could be NULL. 6881 */ 6882 if (resv_map) { 6883 chg = region_del(resv_map, start, end); 6884 /* 6885 * region_del() can fail in the rare case where a region 6886 * must be split and another region descriptor can not be 6887 * allocated. If end == LONG_MAX, it will not fail. 6888 */ 6889 if (chg < 0) 6890 return chg; 6891 } 6892 6893 spin_lock(&inode->i_lock); 6894 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6895 spin_unlock(&inode->i_lock); 6896 6897 /* 6898 * If the subpool has a minimum size, the number of global 6899 * reservations to be released may be adjusted. 6900 * 6901 * Note that !resv_map implies freed == 0. So (chg - freed) 6902 * won't go negative. 6903 */ 6904 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6905 hugetlb_acct_memory(h, -gbl_reserve); 6906 6907 return 0; 6908 } 6909 6910 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6911 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6912 struct vm_area_struct *vma, 6913 unsigned long addr, pgoff_t idx) 6914 { 6915 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6916 svma->vm_start; 6917 unsigned long sbase = saddr & PUD_MASK; 6918 unsigned long s_end = sbase + PUD_SIZE; 6919 6920 /* Allow segments to share if only one is marked locked */ 6921 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6922 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6923 6924 /* 6925 * match the virtual addresses, permission and the alignment of the 6926 * page table page. 6927 * 6928 * Also, vma_lock (vm_private_data) is required for sharing. 6929 */ 6930 if (pmd_index(addr) != pmd_index(saddr) || 6931 vm_flags != svm_flags || 6932 !range_in_vma(svma, sbase, s_end) || 6933 !svma->vm_private_data) 6934 return 0; 6935 6936 return saddr; 6937 } 6938 6939 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6940 { 6941 unsigned long start = addr & PUD_MASK; 6942 unsigned long end = start + PUD_SIZE; 6943 6944 #ifdef CONFIG_USERFAULTFD 6945 if (uffd_disable_huge_pmd_share(vma)) 6946 return false; 6947 #endif 6948 /* 6949 * check on proper vm_flags and page table alignment 6950 */ 6951 if (!(vma->vm_flags & VM_MAYSHARE)) 6952 return false; 6953 if (!vma->vm_private_data) /* vma lock required for sharing */ 6954 return false; 6955 if (!range_in_vma(vma, start, end)) 6956 return false; 6957 return true; 6958 } 6959 6960 /* 6961 * Determine if start,end range within vma could be mapped by shared pmd. 6962 * If yes, adjust start and end to cover range associated with possible 6963 * shared pmd mappings. 6964 */ 6965 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6966 unsigned long *start, unsigned long *end) 6967 { 6968 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6969 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6970 6971 /* 6972 * vma needs to span at least one aligned PUD size, and the range 6973 * must be at least partially within in. 6974 */ 6975 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6976 (*end <= v_start) || (*start >= v_end)) 6977 return; 6978 6979 /* Extend the range to be PUD aligned for a worst case scenario */ 6980 if (*start > v_start) 6981 *start = ALIGN_DOWN(*start, PUD_SIZE); 6982 6983 if (*end < v_end) 6984 *end = ALIGN(*end, PUD_SIZE); 6985 } 6986 6987 /* 6988 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6989 * and returns the corresponding pte. While this is not necessary for the 6990 * !shared pmd case because we can allocate the pmd later as well, it makes the 6991 * code much cleaner. pmd allocation is essential for the shared case because 6992 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6993 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6994 * bad pmd for sharing. 6995 */ 6996 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6997 unsigned long addr, pud_t *pud) 6998 { 6999 struct address_space *mapping = vma->vm_file->f_mapping; 7000 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7001 vma->vm_pgoff; 7002 struct vm_area_struct *svma; 7003 unsigned long saddr; 7004 pte_t *spte = NULL; 7005 pte_t *pte; 7006 7007 i_mmap_lock_read(mapping); 7008 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7009 if (svma == vma) 7010 continue; 7011 7012 saddr = page_table_shareable(svma, vma, addr, idx); 7013 if (saddr) { 7014 spte = hugetlb_walk(svma, saddr, 7015 vma_mmu_pagesize(svma)); 7016 if (spte) { 7017 get_page(virt_to_page(spte)); 7018 break; 7019 } 7020 } 7021 } 7022 7023 if (!spte) 7024 goto out; 7025 7026 spin_lock(&mm->page_table_lock); 7027 if (pud_none(*pud)) { 7028 pud_populate(mm, pud, 7029 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7030 mm_inc_nr_pmds(mm); 7031 } else { 7032 put_page(virt_to_page(spte)); 7033 } 7034 spin_unlock(&mm->page_table_lock); 7035 out: 7036 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7037 i_mmap_unlock_read(mapping); 7038 return pte; 7039 } 7040 7041 /* 7042 * unmap huge page backed by shared pte. 7043 * 7044 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7045 * indicated by page_count > 1, unmap is achieved by clearing pud and 7046 * decrementing the ref count. If count == 1, the pte page is not shared. 7047 * 7048 * Called with page table lock held. 7049 * 7050 * returns: 1 successfully unmapped a shared pte page 7051 * 0 the underlying pte page is not shared, or it is the last user 7052 */ 7053 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7054 unsigned long addr, pte_t *ptep) 7055 { 7056 pgd_t *pgd = pgd_offset(mm, addr); 7057 p4d_t *p4d = p4d_offset(pgd, addr); 7058 pud_t *pud = pud_offset(p4d, addr); 7059 7060 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7061 hugetlb_vma_assert_locked(vma); 7062 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7063 if (page_count(virt_to_page(ptep)) == 1) 7064 return 0; 7065 7066 pud_clear(pud); 7067 put_page(virt_to_page(ptep)); 7068 mm_dec_nr_pmds(mm); 7069 return 1; 7070 } 7071 7072 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7073 7074 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7075 unsigned long addr, pud_t *pud) 7076 { 7077 return NULL; 7078 } 7079 7080 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7081 unsigned long addr, pte_t *ptep) 7082 { 7083 return 0; 7084 } 7085 7086 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7087 unsigned long *start, unsigned long *end) 7088 { 7089 } 7090 7091 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7092 { 7093 return false; 7094 } 7095 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7096 7097 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7098 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7099 unsigned long addr, unsigned long sz) 7100 { 7101 pgd_t *pgd; 7102 p4d_t *p4d; 7103 pud_t *pud; 7104 pte_t *pte = NULL; 7105 7106 pgd = pgd_offset(mm, addr); 7107 p4d = p4d_alloc(mm, pgd, addr); 7108 if (!p4d) 7109 return NULL; 7110 pud = pud_alloc(mm, p4d, addr); 7111 if (pud) { 7112 if (sz == PUD_SIZE) { 7113 pte = (pte_t *)pud; 7114 } else { 7115 BUG_ON(sz != PMD_SIZE); 7116 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7117 pte = huge_pmd_share(mm, vma, addr, pud); 7118 else 7119 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7120 } 7121 } 7122 7123 if (pte) { 7124 pte_t pteval = ptep_get_lockless(pte); 7125 7126 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7127 } 7128 7129 return pte; 7130 } 7131 7132 /* 7133 * huge_pte_offset() - Walk the page table to resolve the hugepage 7134 * entry at address @addr 7135 * 7136 * Return: Pointer to page table entry (PUD or PMD) for 7137 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7138 * size @sz doesn't match the hugepage size at this level of the page 7139 * table. 7140 */ 7141 pte_t *huge_pte_offset(struct mm_struct *mm, 7142 unsigned long addr, unsigned long sz) 7143 { 7144 pgd_t *pgd; 7145 p4d_t *p4d; 7146 pud_t *pud; 7147 pmd_t *pmd; 7148 7149 pgd = pgd_offset(mm, addr); 7150 if (!pgd_present(*pgd)) 7151 return NULL; 7152 p4d = p4d_offset(pgd, addr); 7153 if (!p4d_present(*p4d)) 7154 return NULL; 7155 7156 pud = pud_offset(p4d, addr); 7157 if (sz == PUD_SIZE) 7158 /* must be pud huge, non-present or none */ 7159 return (pte_t *)pud; 7160 if (!pud_present(*pud)) 7161 return NULL; 7162 /* must have a valid entry and size to go further */ 7163 7164 pmd = pmd_offset(pud, addr); 7165 /* must be pmd huge, non-present or none */ 7166 return (pte_t *)pmd; 7167 } 7168 7169 /* 7170 * Return a mask that can be used to update an address to the last huge 7171 * page in a page table page mapping size. Used to skip non-present 7172 * page table entries when linearly scanning address ranges. Architectures 7173 * with unique huge page to page table relationships can define their own 7174 * version of this routine. 7175 */ 7176 unsigned long hugetlb_mask_last_page(struct hstate *h) 7177 { 7178 unsigned long hp_size = huge_page_size(h); 7179 7180 if (hp_size == PUD_SIZE) 7181 return P4D_SIZE - PUD_SIZE; 7182 else if (hp_size == PMD_SIZE) 7183 return PUD_SIZE - PMD_SIZE; 7184 else 7185 return 0UL; 7186 } 7187 7188 #else 7189 7190 /* See description above. Architectures can provide their own version. */ 7191 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7192 { 7193 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7194 if (huge_page_size(h) == PMD_SIZE) 7195 return PUD_SIZE - PMD_SIZE; 7196 #endif 7197 return 0UL; 7198 } 7199 7200 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7201 7202 /* 7203 * These functions are overwritable if your architecture needs its own 7204 * behavior. 7205 */ 7206 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7207 { 7208 bool ret = true; 7209 7210 spin_lock_irq(&hugetlb_lock); 7211 if (!folio_test_hugetlb(folio) || 7212 !folio_test_hugetlb_migratable(folio) || 7213 !folio_try_get(folio)) { 7214 ret = false; 7215 goto unlock; 7216 } 7217 folio_clear_hugetlb_migratable(folio); 7218 list_move_tail(&folio->lru, list); 7219 unlock: 7220 spin_unlock_irq(&hugetlb_lock); 7221 return ret; 7222 } 7223 7224 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7225 { 7226 int ret = 0; 7227 7228 *hugetlb = false; 7229 spin_lock_irq(&hugetlb_lock); 7230 if (folio_test_hugetlb(folio)) { 7231 *hugetlb = true; 7232 if (folio_test_hugetlb_freed(folio)) 7233 ret = 0; 7234 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7235 ret = folio_try_get(folio); 7236 else 7237 ret = -EBUSY; 7238 } 7239 spin_unlock_irq(&hugetlb_lock); 7240 return ret; 7241 } 7242 7243 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7244 bool *migratable_cleared) 7245 { 7246 int ret; 7247 7248 spin_lock_irq(&hugetlb_lock); 7249 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7250 spin_unlock_irq(&hugetlb_lock); 7251 return ret; 7252 } 7253 7254 void folio_putback_active_hugetlb(struct folio *folio) 7255 { 7256 spin_lock_irq(&hugetlb_lock); 7257 folio_set_hugetlb_migratable(folio); 7258 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7259 spin_unlock_irq(&hugetlb_lock); 7260 folio_put(folio); 7261 } 7262 7263 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7264 { 7265 struct hstate *h = folio_hstate(old_folio); 7266 7267 hugetlb_cgroup_migrate(old_folio, new_folio); 7268 set_page_owner_migrate_reason(&new_folio->page, reason); 7269 7270 /* 7271 * transfer temporary state of the new hugetlb folio. This is 7272 * reverse to other transitions because the newpage is going to 7273 * be final while the old one will be freed so it takes over 7274 * the temporary status. 7275 * 7276 * Also note that we have to transfer the per-node surplus state 7277 * here as well otherwise the global surplus count will not match 7278 * the per-node's. 7279 */ 7280 if (folio_test_hugetlb_temporary(new_folio)) { 7281 int old_nid = folio_nid(old_folio); 7282 int new_nid = folio_nid(new_folio); 7283 7284 folio_set_hugetlb_temporary(old_folio); 7285 folio_clear_hugetlb_temporary(new_folio); 7286 7287 7288 /* 7289 * There is no need to transfer the per-node surplus state 7290 * when we do not cross the node. 7291 */ 7292 if (new_nid == old_nid) 7293 return; 7294 spin_lock_irq(&hugetlb_lock); 7295 if (h->surplus_huge_pages_node[old_nid]) { 7296 h->surplus_huge_pages_node[old_nid]--; 7297 h->surplus_huge_pages_node[new_nid]++; 7298 } 7299 spin_unlock_irq(&hugetlb_lock); 7300 } 7301 } 7302 7303 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7304 unsigned long start, 7305 unsigned long end) 7306 { 7307 struct hstate *h = hstate_vma(vma); 7308 unsigned long sz = huge_page_size(h); 7309 struct mm_struct *mm = vma->vm_mm; 7310 struct mmu_notifier_range range; 7311 unsigned long address; 7312 spinlock_t *ptl; 7313 pte_t *ptep; 7314 7315 if (!(vma->vm_flags & VM_MAYSHARE)) 7316 return; 7317 7318 if (start >= end) 7319 return; 7320 7321 flush_cache_range(vma, start, end); 7322 /* 7323 * No need to call adjust_range_if_pmd_sharing_possible(), because 7324 * we have already done the PUD_SIZE alignment. 7325 */ 7326 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7327 start, end); 7328 mmu_notifier_invalidate_range_start(&range); 7329 hugetlb_vma_lock_write(vma); 7330 i_mmap_lock_write(vma->vm_file->f_mapping); 7331 for (address = start; address < end; address += PUD_SIZE) { 7332 ptep = hugetlb_walk(vma, address, sz); 7333 if (!ptep) 7334 continue; 7335 ptl = huge_pte_lock(h, mm, ptep); 7336 huge_pmd_unshare(mm, vma, address, ptep); 7337 spin_unlock(ptl); 7338 } 7339 flush_hugetlb_tlb_range(vma, start, end); 7340 i_mmap_unlock_write(vma->vm_file->f_mapping); 7341 hugetlb_vma_unlock_write(vma); 7342 /* 7343 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7344 * Documentation/mm/mmu_notifier.rst. 7345 */ 7346 mmu_notifier_invalidate_range_end(&range); 7347 } 7348 7349 /* 7350 * This function will unconditionally remove all the shared pmd pgtable entries 7351 * within the specific vma for a hugetlbfs memory range. 7352 */ 7353 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7354 { 7355 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7356 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7357 } 7358 7359 #ifdef CONFIG_CMA 7360 static bool cma_reserve_called __initdata; 7361 7362 static int __init cmdline_parse_hugetlb_cma(char *p) 7363 { 7364 int nid, count = 0; 7365 unsigned long tmp; 7366 char *s = p; 7367 7368 while (*s) { 7369 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7370 break; 7371 7372 if (s[count] == ':') { 7373 if (tmp >= MAX_NUMNODES) 7374 break; 7375 nid = array_index_nospec(tmp, MAX_NUMNODES); 7376 7377 s += count + 1; 7378 tmp = memparse(s, &s); 7379 hugetlb_cma_size_in_node[nid] = tmp; 7380 hugetlb_cma_size += tmp; 7381 7382 /* 7383 * Skip the separator if have one, otherwise 7384 * break the parsing. 7385 */ 7386 if (*s == ',') 7387 s++; 7388 else 7389 break; 7390 } else { 7391 hugetlb_cma_size = memparse(p, &p); 7392 break; 7393 } 7394 } 7395 7396 return 0; 7397 } 7398 7399 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7400 7401 void __init hugetlb_cma_reserve(int order) 7402 { 7403 unsigned long size, reserved, per_node; 7404 bool node_specific_cma_alloc = false; 7405 int nid; 7406 7407 cma_reserve_called = true; 7408 7409 if (!hugetlb_cma_size) 7410 return; 7411 7412 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7413 if (hugetlb_cma_size_in_node[nid] == 0) 7414 continue; 7415 7416 if (!node_online(nid)) { 7417 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7418 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7419 hugetlb_cma_size_in_node[nid] = 0; 7420 continue; 7421 } 7422 7423 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7424 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7425 nid, (PAGE_SIZE << order) / SZ_1M); 7426 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7427 hugetlb_cma_size_in_node[nid] = 0; 7428 } else { 7429 node_specific_cma_alloc = true; 7430 } 7431 } 7432 7433 /* Validate the CMA size again in case some invalid nodes specified. */ 7434 if (!hugetlb_cma_size) 7435 return; 7436 7437 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7438 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7439 (PAGE_SIZE << order) / SZ_1M); 7440 hugetlb_cma_size = 0; 7441 return; 7442 } 7443 7444 if (!node_specific_cma_alloc) { 7445 /* 7446 * If 3 GB area is requested on a machine with 4 numa nodes, 7447 * let's allocate 1 GB on first three nodes and ignore the last one. 7448 */ 7449 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7450 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7451 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7452 } 7453 7454 reserved = 0; 7455 for_each_online_node(nid) { 7456 int res; 7457 char name[CMA_MAX_NAME]; 7458 7459 if (node_specific_cma_alloc) { 7460 if (hugetlb_cma_size_in_node[nid] == 0) 7461 continue; 7462 7463 size = hugetlb_cma_size_in_node[nid]; 7464 } else { 7465 size = min(per_node, hugetlb_cma_size - reserved); 7466 } 7467 7468 size = round_up(size, PAGE_SIZE << order); 7469 7470 snprintf(name, sizeof(name), "hugetlb%d", nid); 7471 /* 7472 * Note that 'order per bit' is based on smallest size that 7473 * may be returned to CMA allocator in the case of 7474 * huge page demotion. 7475 */ 7476 res = cma_declare_contiguous_nid(0, size, 0, 7477 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7478 HUGETLB_PAGE_ORDER, false, name, 7479 &hugetlb_cma[nid], nid); 7480 if (res) { 7481 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7482 res, nid); 7483 continue; 7484 } 7485 7486 reserved += size; 7487 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7488 size / SZ_1M, nid); 7489 7490 if (reserved >= hugetlb_cma_size) 7491 break; 7492 } 7493 7494 if (!reserved) 7495 /* 7496 * hugetlb_cma_size is used to determine if allocations from 7497 * cma are possible. Set to zero if no cma regions are set up. 7498 */ 7499 hugetlb_cma_size = 0; 7500 } 7501 7502 static void __init hugetlb_cma_check(void) 7503 { 7504 if (!hugetlb_cma_size || cma_reserve_called) 7505 return; 7506 7507 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7508 } 7509 7510 #endif /* CONFIG_CMA */ 7511