1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_folio(struct folio * folio,unsigned int order)58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 1 << order);
62 }
63 #else
hugetlb_cma_folio(struct folio * folio,unsigned int order)64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
subpool_is_free(struct hugepage_subpool * spool)102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 if (spool->count)
105 return false;
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
110
111 return true;
112 }
113
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
116 {
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
125 -spool->min_hpages);
126 kfree(spool);
127 }
128 }
129
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 long min_hpages)
132 {
133 struct hugepage_subpool *spool;
134
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 if (!spool)
137 return NULL;
138
139 spin_lock_init(&spool->lock);
140 spool->count = 1;
141 spool->max_hpages = max_hpages;
142 spool->hstate = h;
143 spool->min_hpages = min_hpages;
144
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 kfree(spool);
147 return NULL;
148 }
149 spool->rsv_hpages = min_hpages;
150
151 return spool;
152 }
153
hugepage_put_subpool(struct hugepage_subpool * spool)154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 unsigned long flags;
157
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
160 spool->count--;
161 unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 long delta)
174 {
175 long ret = delta;
176
177 if (!spool)
178 return ret;
179
180 spin_lock_irq(&spool->lock);
181
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
185 else {
186 ret = -ENOMEM;
187 goto unlock_ret;
188 }
189 }
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
194 /*
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
197 */
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
200 } else {
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
203 }
204 }
205
206 unlock_ret:
207 spin_unlock_irq(&spool->lock);
208 return ret;
209 }
210
211 /*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 long delta)
219 {
220 long ret = delta;
221 unsigned long flags;
222
223 if (!spool)
224 return delta;
225
226 spin_lock_irqsave(&spool->lock, flags);
227
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
230
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = 0;
235 else
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
241 }
242
243 /*
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
246 */
247 unlock_or_release_subpool(spool, flags);
248
249 return ret;
250 }
251
subpool_inode(struct inode * inode)252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
subpool_vma(struct vm_area_struct * vma)257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263 * hugetlb vma_lock helper routines
264 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
273
274 down_read(&resv_map->rw_sema);
275 }
276 }
277
hugetlb_vma_unlock_read(struct vm_area_struct * vma)278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
286
287 up_read(&resv_map->rw_sema);
288 }
289 }
290
hugetlb_vma_lock_write(struct vm_area_struct * vma)291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
299
300 down_write(&resv_map->rw_sema);
301 }
302 }
303
hugetlb_vma_unlock_write(struct vm_area_struct * vma)304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
312
313 up_write(&resv_map->rw_sema);
314 }
315 }
316
hugetlb_vma_trylock_write(struct vm_area_struct * vma)317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
326
327 return down_write_trylock(&resv_map->rw_sema);
328 }
329
330 return 1;
331 }
332
hugetlb_vma_assert_locked(struct vm_area_struct * vma)333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
341
342 lockdep_assert_held(&resv_map->rw_sema);
343 }
344 }
345
hugetlb_vma_lock_release(struct kref * kref)346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
350
351 kfree(vma_lock);
352 }
353
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 struct vm_area_struct *vma = vma_lock->vma;
357
358 /*
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
362 */
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
377
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
380 }
381 }
382
hugetlb_vma_lock_free(struct vm_area_struct * vma)383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 /*
386 * Only present in sharable vmas.
387 */
388 if (!vma || !__vma_shareable_lock(vma))
389 return;
390
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
396 }
397 }
398
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 struct hugetlb_vma_lock *vma_lock;
402
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 return;
406
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
409 return;
410
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 if (!vma_lock) {
413 /*
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
422 */
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 return;
425 }
426
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
429 vma_lock->vma = vma;
430 vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 struct file_region *nrg;
440
441 VM_BUG_ON(resv->region_cache_count <= 0);
442
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
446
447 nrg->from = from;
448 nrg->to = to;
449
450 return nrg;
451 }
452
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
458 nrg->css = rg->css;
459 if (rg->css)
460 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 struct hstate *h,
467 struct resv_map *resv,
468 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 if (h_cg) {
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
475 /*
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
483 * untouched.
484 */
485 css_get(&h_cg->css);
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
489 * a resv_map.
490 */
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 } else {
493 nrg->reservation_counter = NULL;
494 nrg->css = NULL;
495 }
496 #endif
497 }
498
put_uncharge_info(struct file_region * rg)499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (rg->css)
503 css_put(rg->css);
504 #endif
505 }
506
has_same_uncharge_info(struct file_region * rg,struct file_region * org)507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
512 rg->css == org->css;
513
514 #else
515 return true;
516 #endif
517 }
518
coalesce_file_region(struct resv_map * resv,struct file_region * rg)519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 struct file_region *nrg, *prg;
522
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
526 prg->to = rg->to;
527
528 list_del(&rg->link);
529 put_uncharge_info(rg);
530 kfree(rg);
531
532 rg = prg;
533 }
534
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
539
540 list_del(&rg->link);
541 put_uncharge_info(rg);
542 kfree(rg);
543 }
544 }
545
546 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
550 {
551 struct file_region *nrg;
552
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
558 } else
559 *regions_needed += 1;
560
561 return to - from;
562 }
563
564 /*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
575 {
576 long add = 0;
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
581
582 if (regions_needed)
583 *regions_needed = 0;
584
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
587 * bounds checking.
588 */
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
594 */
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
597 continue;
598 }
599
600 /* When we find a region that starts beyond our range, we've
601 * finished.
602 */
603 if (iter->from >= t) {
604 rg = iter->link.prev;
605 break;
606 }
607
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
610 */
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
614 iter->from, h, h_cg,
615 regions_needed);
616
617 last_accounted_offset = iter->to;
618 }
619
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
622 */
623 if (!rg)
624 rg = head->prev;
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
628
629 return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)634 static int allocate_file_region_entries(struct resv_map *resv,
635 int regions_needed)
636 __must_hold(&resv->lock)
637 {
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
641
642 VM_BUG_ON(regions_needed < 0);
643
644 /*
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
647 *
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
652 */
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
657
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
661 */
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 if (!trg)
668 goto out_of_memory;
669 list_add(&trg->link, &allocated_regions);
670 }
671
672 spin_lock(&resv->lock);
673
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
676 }
677
678 return 0;
679
680 out_of_memory:
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 list_del(&rg->link);
683 kfree(rg);
684 }
685 return -ENOMEM;
686 }
687
688 /*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
708 {
709 long add = 0, actual_regions_needed = 0;
710
711 spin_lock(&resv->lock);
712 retry:
713
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
717
718 /*
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
725 * operation.
726 */
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
733 */
734 VM_BUG_ON(t - f <= 1);
735
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
738 return -ENOMEM;
739 }
740
741 goto retry;
742 }
743
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746 resv->adds_in_progress -= in_regions_needed;
747
748 spin_unlock(&resv->lock);
749 return add;
750 }
751
752 /*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
774 {
775 long chg = 0;
776
777 spin_lock(&resv->lock);
778
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 out_regions_needed);
782
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
785
786 if (allocate_file_region_entries(resv, *out_regions_needed))
787 return -ENOMEM;
788
789 resv->adds_in_progress += *out_regions_needed;
790
791 spin_unlock(&resv->lock);
792 return chg;
793 }
794
795 /*
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)808 static void region_abort(struct resv_map *resv, long f, long t,
809 long regions_needed)
810 {
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
815 }
816
817 /*
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
region_del(struct resv_map * resv,long f,long t)831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
836 long del = 0;
837
838 retry:
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
841 /*
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
847 */
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 continue;
850
851 if (rg->from >= t)
852 break;
853
854 if (f > rg->from && t < rg->to) { /* Must split region */
855 /*
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
858 */
859 if (!nrg &&
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
862 struct file_region,
863 link);
864 list_del(&nrg->link);
865 resv->region_cache_count--;
866 }
867
868 if (!nrg) {
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 if (!nrg)
872 return -ENOMEM;
873 goto retry;
874 }
875
876 del += t - f;
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
879
880 /* New entry for end of split region */
881 nrg->from = t;
882 nrg->to = rg->to;
883
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886 INIT_LIST_HEAD(&nrg->link);
887
888 /* Original entry is trimmed */
889 rg->to = f;
890
891 list_add(&nrg->link, &rg->link);
892 nrg = NULL;
893 break;
894 }
895
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
900 list_del(&rg->link);
901 kfree(rg);
902 continue;
903 }
904
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
908
909 del += t - rg->from;
910 rg->from = t;
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
913 rg->to - f, false);
914
915 del += rg->to - f;
916 rg->to = f;
917 }
918 }
919
920 spin_unlock(&resv->lock);
921 kfree(nrg);
922 return del;
923 }
924
925 /*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
hugetlb_fix_reserve_counts(struct inode * inode)934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 struct hugepage_subpool *spool = subpool_inode(inode);
937 long rsv_adjust;
938 bool reserved = false;
939
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
943
944 if (!hugetlb_acct_memory(h, 1))
945 reserved = true;
946 } else if (!rsv_adjust) {
947 reserved = true;
948 }
949
950 if (!reserved)
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
region_count(struct resv_map * resv,long f,long t)958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
962 long chg = 0;
963
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
967 long seg_from;
968 long seg_to;
969
970 if (rg->to <= f)
971 continue;
972 if (rg->from >= t)
973 break;
974
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
977
978 chg += seg_to - seg_from;
979 }
980 spin_unlock(&resv->lock);
981
982 return chg;
983 }
984
985 /*
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
988 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
991 {
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
994 }
995
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
998 {
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1006 *
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1009 *
1010 * Return: The default size of the folios allocated when backing a VMA.
1011 */
vma_kernel_pagesize(struct vm_area_struct * vma)1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1016 return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1025 */
vma_mmu_pagesize(struct vm_area_struct * vma)1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1034 * alignment.
1035 */
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1044 *
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1049 *
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1058 */
get_vma_private_data(struct vm_area_struct * vma)1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 return (unsigned long)vma->vm_private_data;
1062 }
1063
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1066 {
1067 vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1073 struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 if (!h_cg || !h) {
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1080 } else {
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1085 }
1086 #endif
1087 }
1088
resv_map_alloc(void)1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094 if (!resv_map || !rg) {
1095 kfree(resv_map);
1096 kfree(rg);
1097 return NULL;
1098 }
1099
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1104
1105 resv_map->adds_in_progress = 0;
1106 /*
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1111 */
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1117
1118 return resv_map;
1119 }
1120
resv_map_release(struct kref * ref)1121 void resv_map_release(struct kref *ref)
1122 {
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1126
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1129
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1133 kfree(rg);
1134 }
1135
1136 VM_BUG_ON(resv_map->adds_in_progress);
1137
1138 kfree(resv_map);
1139 }
1140
inode_resv_map(struct inode * inode)1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 /*
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1150 */
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
vma_resv_map(struct vm_area_struct * vma)1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1160
1161 return inode_resv_map(inode);
1162
1163 } else {
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1165 ~HPAGE_RESV_MASK);
1166 }
1167 }
1168
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174 set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189 return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
__vma_private_lock(struct vm_area_struct * vma)1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194 return !(vma->vm_flags & VM_MAYSHARE) &&
1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198
hugetlb_dup_vma_private(struct vm_area_struct * vma)1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202 /*
1203 * Clear vm_private_data
1204 * - For shared mappings this is a per-vma semaphore that may be
1205 * allocated in a subsequent call to hugetlb_vm_op_open.
1206 * Before clearing, make sure pointer is not associated with vma
1207 * as this will leak the structure. This is the case when called
1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 * been called to allocate a new structure.
1210 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 * not apply to children. Faults generated by the children are
1212 * not guaranteed to succeed, even if read-only.
1213 */
1214 if (vma->vm_flags & VM_MAYSHARE) {
1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216
1217 if (vma_lock && vma_lock->vma != vma)
1218 vma->vm_private_data = NULL;
1219 } else
1220 vma->vm_private_data = NULL;
1221 }
1222
1223 /*
1224 * Reset and decrement one ref on hugepage private reservation.
1225 * Called with mm->mmap_lock writer semaphore held.
1226 * This function should be only used by move_vma() and operate on
1227 * same sized vma. It should never come here with last ref on the
1228 * reservation.
1229 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232 /*
1233 * Clear the old hugetlb private page reservation.
1234 * It has already been transferred to new_vma.
1235 *
1236 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 * which copies vma into new_vma and unmaps vma. After the copy
1238 * operation both new_vma and vma share a reference to the resv_map
1239 * struct, and at that point vma is about to be unmapped. We don't
1240 * want to return the reservation to the pool at unmap of vma because
1241 * the reservation still lives on in new_vma, so simply decrement the
1242 * ref here and remove the resv_map reference from this vma.
1243 */
1244 struct resv_map *reservations = vma_resv_map(vma);
1245
1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 kref_put(&reservations->refs, resv_map_release);
1249 }
1250
1251 hugetlb_dup_vma_private(vma);
1252 }
1253
1254 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257 if (vma->vm_flags & VM_NORESERVE) {
1258 /*
1259 * This address is already reserved by other process(chg == 0),
1260 * so, we should decrement reserved count. Without decrementing,
1261 * reserve count remains after releasing inode, because this
1262 * allocated page will go into page cache and is regarded as
1263 * coming from reserved pool in releasing step. Currently, we
1264 * don't have any other solution to deal with this situation
1265 * properly, so add work-around here.
1266 */
1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268 return true;
1269 else
1270 return false;
1271 }
1272
1273 /* Shared mappings always use reserves */
1274 if (vma->vm_flags & VM_MAYSHARE) {
1275 /*
1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1277 * be a region map for all pages. The only situation where
1278 * there is no region map is if a hole was punched via
1279 * fallocate. In this case, there really are no reserves to
1280 * use. This situation is indicated if chg != 0.
1281 */
1282 if (chg)
1283 return false;
1284 else
1285 return true;
1286 }
1287
1288 /*
1289 * Only the process that called mmap() has reserves for
1290 * private mappings.
1291 */
1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293 /*
1294 * Like the shared case above, a hole punch or truncate
1295 * could have been performed on the private mapping.
1296 * Examine the value of chg to determine if reserves
1297 * actually exist or were previously consumed.
1298 * Very Subtle - The value of chg comes from a previous
1299 * call to vma_needs_reserves(). The reserve map for
1300 * private mappings has different (opposite) semantics
1301 * than that of shared mappings. vma_needs_reserves()
1302 * has already taken this difference in semantics into
1303 * account. Therefore, the meaning of chg is the same
1304 * as in the shared case above. Code could easily be
1305 * combined, but keeping it separate draws attention to
1306 * subtle differences.
1307 */
1308 if (chg)
1309 return false;
1310 else
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319 int nid = folio_nid(folio);
1320
1321 lockdep_assert_held(&hugetlb_lock);
1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323
1324 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 h->free_huge_pages++;
1326 h->free_huge_pages_node[nid]++;
1327 folio_set_hugetlb_freed(folio);
1328 }
1329
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331 int nid)
1332 {
1333 struct folio *folio;
1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335
1336 lockdep_assert_held(&hugetlb_lock);
1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 if (pin && !folio_is_longterm_pinnable(folio))
1339 continue;
1340
1341 if (folio_test_hwpoison(folio))
1342 continue;
1343
1344 list_move(&folio->lru, &h->hugepage_activelist);
1345 folio_ref_unfreeze(folio, 1);
1346 folio_clear_hugetlb_freed(folio);
1347 h->free_huge_pages--;
1348 h->free_huge_pages_node[nid]--;
1349 return folio;
1350 }
1351
1352 return NULL;
1353 }
1354
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nmask)
1357 {
1358 unsigned int cpuset_mems_cookie;
1359 struct zonelist *zonelist;
1360 struct zone *zone;
1361 struct zoneref *z;
1362 int node = NUMA_NO_NODE;
1363
1364 zonelist = node_zonelist(nid, gfp_mask);
1365
1366 retry_cpuset:
1367 cpuset_mems_cookie = read_mems_allowed_begin();
1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 struct folio *folio;
1370
1371 if (!cpuset_zone_allowed(zone, gfp_mask))
1372 continue;
1373 /*
1374 * no need to ask again on the same node. Pool is node rather than
1375 * zone aware
1376 */
1377 if (zone_to_nid(zone) == node)
1378 continue;
1379 node = zone_to_nid(zone);
1380
1381 folio = dequeue_hugetlb_folio_node_exact(h, node);
1382 if (folio)
1383 return folio;
1384 }
1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386 goto retry_cpuset;
1387
1388 return NULL;
1389 }
1390
available_huge_pages(struct hstate * h)1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393 return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 struct vm_area_struct *vma,
1398 unsigned long address, int avoid_reserve,
1399 long chg)
1400 {
1401 struct folio *folio = NULL;
1402 struct mempolicy *mpol;
1403 gfp_t gfp_mask;
1404 nodemask_t *nodemask;
1405 int nid;
1406
1407 /*
1408 * A child process with MAP_PRIVATE mappings created by their parent
1409 * have no page reserves. This check ensures that reservations are
1410 * not "stolen". The child may still get SIGKILLed
1411 */
1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 goto err;
1414
1415 /* If reserves cannot be used, ensure enough pages are in the pool */
1416 if (avoid_reserve && !available_huge_pages(h))
1417 goto err;
1418
1419 gfp_mask = htlb_alloc_mask(h);
1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421
1422 if (mpol_is_preferred_many(mpol)) {
1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 nid, nodemask);
1425
1426 /* Fallback to all nodes if page==NULL */
1427 nodemask = NULL;
1428 }
1429
1430 if (!folio)
1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 nid, nodemask);
1433
1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 folio_set_hugetlb_restore_reserve(folio);
1436 h->resv_huge_pages--;
1437 }
1438
1439 mpol_cond_put(mpol);
1440 return folio;
1441
1442 err:
1443 return NULL;
1444 }
1445
1446 /*
1447 * common helper functions for hstate_next_node_to_{alloc|free}.
1448 * We may have allocated or freed a huge page based on a different
1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450 * be outside of *nodes_allowed. Ensure that we use an allowed
1451 * node for alloc or free.
1452 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455 nid = next_node_in(nid, *nodes_allowed);
1456 VM_BUG_ON(nid >= MAX_NUMNODES);
1457
1458 return nid;
1459 }
1460
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463 if (!node_isset(nid, *nodes_allowed))
1464 nid = next_node_allowed(nid, nodes_allowed);
1465 return nid;
1466 }
1467
1468 /*
1469 * returns the previously saved node ["this node"] from which to
1470 * allocate a persistent huge page for the pool and advance the
1471 * next node from which to allocate, handling wrap at end of node
1472 * mask.
1473 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 nodemask_t *nodes_allowed)
1476 {
1477 int nid;
1478
1479 VM_BUG_ON(!nodes_allowed);
1480
1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483
1484 return nid;
1485 }
1486
1487 /*
1488 * helper for remove_pool_huge_page() - return the previously saved
1489 * node ["this node"] from which to free a huge page. Advance the
1490 * next node id whether or not we find a free huge page to free so
1491 * that the next attempt to free addresses the next node.
1492 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495 int nid;
1496
1497 VM_BUG_ON(!nodes_allowed);
1498
1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501
1502 return nid;
1503 }
1504
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1512 for (nr_nodes = nodes_weight(*mask); \
1513 nr_nodes > 0 && \
1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1515 nr_nodes--)
1516
1517 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 unsigned int order, bool demote)
1520 {
1521 int i;
1522 int nr_pages = 1 << order;
1523 struct page *p;
1524
1525 atomic_set(&folio->_entire_mapcount, 0);
1526 atomic_set(&folio->_nr_pages_mapped, 0);
1527 atomic_set(&folio->_pincount, 0);
1528
1529 for (i = 1; i < nr_pages; i++) {
1530 p = folio_page(folio, i);
1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532 p->mapping = NULL;
1533 clear_compound_head(p);
1534 if (!demote)
1535 set_page_refcounted(p);
1536 }
1537
1538 __folio_clear_head(folio);
1539 }
1540
destroy_compound_hugetlb_folio_for_demote(struct folio * folio,unsigned int order)1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 unsigned int order)
1543 {
1544 __destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 unsigned int order)
1550 {
1551 __destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553
free_gigantic_folio(struct folio * folio,unsigned int order)1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556 /*
1557 * If the page isn't allocated using the cma allocator,
1558 * cma_release() returns false.
1559 */
1560 #ifdef CONFIG_CMA
1561 int nid = folio_nid(folio);
1562
1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564 return;
1565 #endif
1566
1567 free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569
1570 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1573 {
1574 struct page *page;
1575 unsigned long nr_pages = pages_per_huge_page(h);
1576 if (nid == NUMA_NO_NODE)
1577 nid = numa_mem_id();
1578
1579 #ifdef CONFIG_CMA
1580 {
1581 int node;
1582
1583 if (hugetlb_cma[nid]) {
1584 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 huge_page_order(h), true);
1586 if (page)
1587 return page_folio(page);
1588 }
1589
1590 if (!(gfp_mask & __GFP_THISNODE)) {
1591 for_each_node_mask(node, *nodemask) {
1592 if (node == nid || !hugetlb_cma[node])
1593 continue;
1594
1595 page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 huge_page_order(h), true);
1597 if (page)
1598 return page_folio(page);
1599 }
1600 }
1601 }
1602 #endif
1603
1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 return page ? page_folio(page) : NULL;
1606 }
1607
1608 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 int nid, nodemask_t *nodemask)
1611 {
1612 return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 int nid, nodemask_t *nodemask)
1619 {
1620 return NULL;
1621 }
free_gigantic_folio(struct folio * folio,unsigned int order)1622 static inline void free_gigantic_folio(struct folio *folio,
1623 unsigned int order) { }
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 unsigned int order) { }
1626 #endif
1627
__clear_hugetlb_destructor(struct hstate * h,struct folio * folio)1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 struct folio *folio)
1630 {
1631 lockdep_assert_held(&hugetlb_lock);
1632
1633 __folio_clear_hugetlb(folio);
1634 }
1635
1636 /*
1637 * Remove hugetlb folio from lists.
1638 * If vmemmap exists for the folio, update dtor so that the folio appears
1639 * as just a compound page. Otherwise, wait until after allocating vmemmap
1640 * to update dtor.
1641 *
1642 * A reference is held on the folio, except in the case of demote.
1643 *
1644 * Must be called with hugetlb lock held.
1645 */
__remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus,bool demote)1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus,
1648 bool demote)
1649 {
1650 int nid = folio_nid(folio);
1651
1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654
1655 lockdep_assert_held(&hugetlb_lock);
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 return;
1658
1659 list_del(&folio->lru);
1660
1661 if (folio_test_hugetlb_freed(folio)) {
1662 h->free_huge_pages--;
1663 h->free_huge_pages_node[nid]--;
1664 }
1665 if (adjust_surplus) {
1666 h->surplus_huge_pages--;
1667 h->surplus_huge_pages_node[nid]--;
1668 }
1669
1670 /*
1671 * We can only clear the hugetlb destructor after allocating vmemmap
1672 * pages. Otherwise, someone (memory error handling) may try to write
1673 * to tail struct pages.
1674 */
1675 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 __clear_hugetlb_destructor(h, folio);
1677
1678 /*
1679 * In the case of demote we do not ref count the page as it will soon
1680 * be turned into a page of smaller size.
1681 */
1682 if (!demote)
1683 folio_ref_unfreeze(folio, 1);
1684
1685 h->nr_huge_pages--;
1686 h->nr_huge_pages_node[nid]--;
1687 }
1688
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1691 {
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694
remove_hugetlb_folio_for_demote(struct hstate * h,struct folio * folio,bool adjust_surplus)1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1697 {
1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 bool adjust_surplus)
1703 {
1704 int zeroed;
1705 int nid = folio_nid(folio);
1706
1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708
1709 lockdep_assert_held(&hugetlb_lock);
1710
1711 INIT_LIST_HEAD(&folio->lru);
1712 h->nr_huge_pages++;
1713 h->nr_huge_pages_node[nid]++;
1714
1715 if (adjust_surplus) {
1716 h->surplus_huge_pages++;
1717 h->surplus_huge_pages_node[nid]++;
1718 }
1719
1720 __folio_set_hugetlb(folio);
1721 folio_change_private(folio, NULL);
1722 /*
1723 * We have to set hugetlb_vmemmap_optimized again as above
1724 * folio_change_private(folio, NULL) cleared it.
1725 */
1726 folio_set_hugetlb_vmemmap_optimized(folio);
1727
1728 /*
1729 * This folio is about to be managed by the hugetlb allocator and
1730 * should have no users. Drop our reference, and check for others
1731 * just in case.
1732 */
1733 zeroed = folio_put_testzero(folio);
1734 if (unlikely(!zeroed))
1735 /*
1736 * It is VERY unlikely soneone else has taken a ref
1737 * on the folio. In this case, we simply return as
1738 * free_huge_folio() will be called when this other ref
1739 * is dropped.
1740 */
1741 return;
1742
1743 arch_clear_hugepage_flags(&folio->page);
1744 enqueue_hugetlb_folio(h, folio);
1745 }
1746
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 struct folio *folio)
1749 {
1750 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1751 return;
1752
1753 /*
1754 * If we don't know which subpages are hwpoisoned, we can't free
1755 * the hugepage, so it's leaked intentionally.
1756 */
1757 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1758 return;
1759
1760 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1761 spin_lock_irq(&hugetlb_lock);
1762 /*
1763 * If we cannot allocate vmemmap pages, just refuse to free the
1764 * page and put the page back on the hugetlb free list and treat
1765 * as a surplus page.
1766 */
1767 add_hugetlb_folio(h, folio, true);
1768 spin_unlock_irq(&hugetlb_lock);
1769 return;
1770 }
1771
1772 /*
1773 * If vmemmap pages were allocated above, then we need to clear the
1774 * hugetlb destructor under the hugetlb lock.
1775 */
1776 if (folio_test_hugetlb(folio)) {
1777 spin_lock_irq(&hugetlb_lock);
1778 __clear_hugetlb_destructor(h, folio);
1779 spin_unlock_irq(&hugetlb_lock);
1780 }
1781
1782 /*
1783 * Move PageHWPoison flag from head page to the raw error pages,
1784 * which makes any healthy subpages reusable.
1785 */
1786 if (unlikely(folio_test_hwpoison(folio)))
1787 folio_clear_hugetlb_hwpoison(folio);
1788
1789 /*
1790 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791 * need to be given back to CMA in free_gigantic_folio.
1792 */
1793 if (hstate_is_gigantic(h) ||
1794 hugetlb_cma_folio(folio, huge_page_order(h))) {
1795 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796 free_gigantic_folio(folio, huge_page_order(h));
1797 } else {
1798 __free_pages(&folio->page, huge_page_order(h));
1799 }
1800 }
1801
1802 /*
1803 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1804 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1805 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1806 * the vmemmap pages.
1807 *
1808 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1809 * freed and frees them one-by-one. As the page->mapping pointer is going
1810 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1811 * structure of a lockless linked list of huge pages to be freed.
1812 */
1813 static LLIST_HEAD(hpage_freelist);
1814
free_hpage_workfn(struct work_struct * work)1815 static void free_hpage_workfn(struct work_struct *work)
1816 {
1817 struct llist_node *node;
1818
1819 node = llist_del_all(&hpage_freelist);
1820
1821 while (node) {
1822 struct page *page;
1823 struct hstate *h;
1824
1825 page = container_of((struct address_space **)node,
1826 struct page, mapping);
1827 node = node->next;
1828 page->mapping = NULL;
1829 /*
1830 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1831 * folio_hstate() is going to trigger because a previous call to
1832 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1833 * not use folio_hstate() directly.
1834 */
1835 h = size_to_hstate(page_size(page));
1836
1837 __update_and_free_hugetlb_folio(h, page_folio(page));
1838
1839 cond_resched();
1840 }
1841 }
1842 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1843
flush_free_hpage_work(struct hstate * h)1844 static inline void flush_free_hpage_work(struct hstate *h)
1845 {
1846 if (hugetlb_vmemmap_optimizable(h))
1847 flush_work(&free_hpage_work);
1848 }
1849
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1850 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1851 bool atomic)
1852 {
1853 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1854 __update_and_free_hugetlb_folio(h, folio);
1855 return;
1856 }
1857
1858 /*
1859 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1860 *
1861 * Only call schedule_work() if hpage_freelist is previously
1862 * empty. Otherwise, schedule_work() had been called but the workfn
1863 * hasn't retrieved the list yet.
1864 */
1865 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1866 schedule_work(&free_hpage_work);
1867 }
1868
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1869 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1870 {
1871 struct page *page, *t_page;
1872 struct folio *folio;
1873
1874 list_for_each_entry_safe(page, t_page, list, lru) {
1875 folio = page_folio(page);
1876 update_and_free_hugetlb_folio(h, folio, false);
1877 cond_resched();
1878 }
1879 }
1880
size_to_hstate(unsigned long size)1881 struct hstate *size_to_hstate(unsigned long size)
1882 {
1883 struct hstate *h;
1884
1885 for_each_hstate(h) {
1886 if (huge_page_size(h) == size)
1887 return h;
1888 }
1889 return NULL;
1890 }
1891
free_huge_folio(struct folio * folio)1892 void free_huge_folio(struct folio *folio)
1893 {
1894 /*
1895 * Can't pass hstate in here because it is called from the
1896 * compound page destructor.
1897 */
1898 struct hstate *h = folio_hstate(folio);
1899 int nid = folio_nid(folio);
1900 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1901 bool restore_reserve;
1902 unsigned long flags;
1903
1904 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1905 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1906
1907 hugetlb_set_folio_subpool(folio, NULL);
1908 if (folio_test_anon(folio))
1909 __ClearPageAnonExclusive(&folio->page);
1910 folio->mapping = NULL;
1911 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1912 folio_clear_hugetlb_restore_reserve(folio);
1913
1914 /*
1915 * If HPageRestoreReserve was set on page, page allocation consumed a
1916 * reservation. If the page was associated with a subpool, there
1917 * would have been a page reserved in the subpool before allocation
1918 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1919 * reservation, do not call hugepage_subpool_put_pages() as this will
1920 * remove the reserved page from the subpool.
1921 */
1922 if (!restore_reserve) {
1923 /*
1924 * A return code of zero implies that the subpool will be
1925 * under its minimum size if the reservation is not restored
1926 * after page is free. Therefore, force restore_reserve
1927 * operation.
1928 */
1929 if (hugepage_subpool_put_pages(spool, 1) == 0)
1930 restore_reserve = true;
1931 }
1932
1933 spin_lock_irqsave(&hugetlb_lock, flags);
1934 folio_clear_hugetlb_migratable(folio);
1935 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1936 pages_per_huge_page(h), folio);
1937 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1938 pages_per_huge_page(h), folio);
1939 if (restore_reserve)
1940 h->resv_huge_pages++;
1941
1942 if (folio_test_hugetlb_temporary(folio)) {
1943 remove_hugetlb_folio(h, folio, false);
1944 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 update_and_free_hugetlb_folio(h, folio, true);
1946 } else if (h->surplus_huge_pages_node[nid]) {
1947 /* remove the page from active list */
1948 remove_hugetlb_folio(h, folio, true);
1949 spin_unlock_irqrestore(&hugetlb_lock, flags);
1950 update_and_free_hugetlb_folio(h, folio, true);
1951 } else {
1952 arch_clear_hugepage_flags(&folio->page);
1953 enqueue_hugetlb_folio(h, folio);
1954 spin_unlock_irqrestore(&hugetlb_lock, flags);
1955 }
1956 }
1957
1958 /*
1959 * Must be called with the hugetlb lock held
1960 */
__prep_account_new_huge_page(struct hstate * h,int nid)1961 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1962 {
1963 lockdep_assert_held(&hugetlb_lock);
1964 h->nr_huge_pages++;
1965 h->nr_huge_pages_node[nid]++;
1966 }
1967
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1968 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1969 {
1970 hugetlb_vmemmap_optimize(h, &folio->page);
1971 INIT_LIST_HEAD(&folio->lru);
1972 __folio_set_hugetlb(folio);
1973 hugetlb_set_folio_subpool(folio, NULL);
1974 set_hugetlb_cgroup(folio, NULL);
1975 set_hugetlb_cgroup_rsvd(folio, NULL);
1976 }
1977
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1978 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1979 {
1980 __prep_new_hugetlb_folio(h, folio);
1981 spin_lock_irq(&hugetlb_lock);
1982 __prep_account_new_huge_page(h, nid);
1983 spin_unlock_irq(&hugetlb_lock);
1984 }
1985
__prep_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1986 static bool __prep_compound_gigantic_folio(struct folio *folio,
1987 unsigned int order, bool demote)
1988 {
1989 int i, j;
1990 int nr_pages = 1 << order;
1991 struct page *p;
1992
1993 __folio_clear_reserved(folio);
1994 for (i = 0; i < nr_pages; i++) {
1995 p = folio_page(folio, i);
1996
1997 /*
1998 * For gigantic hugepages allocated through bootmem at
1999 * boot, it's safer to be consistent with the not-gigantic
2000 * hugepages and clear the PG_reserved bit from all tail pages
2001 * too. Otherwise drivers using get_user_pages() to access tail
2002 * pages may get the reference counting wrong if they see
2003 * PG_reserved set on a tail page (despite the head page not
2004 * having PG_reserved set). Enforcing this consistency between
2005 * head and tail pages allows drivers to optimize away a check
2006 * on the head page when they need know if put_page() is needed
2007 * after get_user_pages().
2008 */
2009 if (i != 0) /* head page cleared above */
2010 __ClearPageReserved(p);
2011 /*
2012 * Subtle and very unlikely
2013 *
2014 * Gigantic 'page allocators' such as memblock or cma will
2015 * return a set of pages with each page ref counted. We need
2016 * to turn this set of pages into a compound page with tail
2017 * page ref counts set to zero. Code such as speculative page
2018 * cache adding could take a ref on a 'to be' tail page.
2019 * We need to respect any increased ref count, and only set
2020 * the ref count to zero if count is currently 1. If count
2021 * is not 1, we return an error. An error return indicates
2022 * the set of pages can not be converted to a gigantic page.
2023 * The caller who allocated the pages should then discard the
2024 * pages using the appropriate free interface.
2025 *
2026 * In the case of demote, the ref count will be zero.
2027 */
2028 if (!demote) {
2029 if (!page_ref_freeze(p, 1)) {
2030 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2031 goto out_error;
2032 }
2033 } else {
2034 VM_BUG_ON_PAGE(page_count(p), p);
2035 }
2036 if (i != 0)
2037 set_compound_head(p, &folio->page);
2038 }
2039 __folio_set_head(folio);
2040 /* we rely on prep_new_hugetlb_folio to set the destructor */
2041 folio_set_order(folio, order);
2042 atomic_set(&folio->_entire_mapcount, -1);
2043 atomic_set(&folio->_nr_pages_mapped, 0);
2044 atomic_set(&folio->_pincount, 0);
2045 return true;
2046
2047 out_error:
2048 /* undo page modifications made above */
2049 for (j = 0; j < i; j++) {
2050 p = folio_page(folio, j);
2051 if (j != 0)
2052 clear_compound_head(p);
2053 set_page_refcounted(p);
2054 }
2055 /* need to clear PG_reserved on remaining tail pages */
2056 for (; j < nr_pages; j++) {
2057 p = folio_page(folio, j);
2058 __ClearPageReserved(p);
2059 }
2060 return false;
2061 }
2062
prep_compound_gigantic_folio(struct folio * folio,unsigned int order)2063 static bool prep_compound_gigantic_folio(struct folio *folio,
2064 unsigned int order)
2065 {
2066 return __prep_compound_gigantic_folio(folio, order, false);
2067 }
2068
prep_compound_gigantic_folio_for_demote(struct folio * folio,unsigned int order)2069 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2070 unsigned int order)
2071 {
2072 return __prep_compound_gigantic_folio(folio, order, true);
2073 }
2074
2075 /*
2076 * Find and lock address space (mapping) in write mode.
2077 *
2078 * Upon entry, the page is locked which means that page_mapping() is
2079 * stable. Due to locking order, we can only trylock_write. If we can
2080 * not get the lock, simply return NULL to caller.
2081 */
hugetlb_page_mapping_lock_write(struct page * hpage)2082 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2083 {
2084 struct address_space *mapping = page_mapping(hpage);
2085
2086 if (!mapping)
2087 return mapping;
2088
2089 if (i_mmap_trylock_write(mapping))
2090 return mapping;
2091
2092 return NULL;
2093 }
2094
hugetlb_basepage_index(struct page * page)2095 pgoff_t hugetlb_basepage_index(struct page *page)
2096 {
2097 struct page *page_head = compound_head(page);
2098 pgoff_t index = page_index(page_head);
2099 unsigned long compound_idx;
2100
2101 if (compound_order(page_head) > MAX_ORDER)
2102 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2103 else
2104 compound_idx = page - page_head;
2105
2106 return (index << compound_order(page_head)) + compound_idx;
2107 }
2108
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2109 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2110 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2111 nodemask_t *node_alloc_noretry)
2112 {
2113 int order = huge_page_order(h);
2114 struct page *page;
2115 bool alloc_try_hard = true;
2116 bool retry = true;
2117
2118 /*
2119 * By default we always try hard to allocate the page with
2120 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2121 * a loop (to adjust global huge page counts) and previous allocation
2122 * failed, do not continue to try hard on the same node. Use the
2123 * node_alloc_noretry bitmap to manage this state information.
2124 */
2125 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2126 alloc_try_hard = false;
2127 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2128 if (alloc_try_hard)
2129 gfp_mask |= __GFP_RETRY_MAYFAIL;
2130 if (nid == NUMA_NO_NODE)
2131 nid = numa_mem_id();
2132 retry:
2133 page = __alloc_pages(gfp_mask, order, nid, nmask);
2134
2135 /* Freeze head page */
2136 if (page && !page_ref_freeze(page, 1)) {
2137 __free_pages(page, order);
2138 if (retry) { /* retry once */
2139 retry = false;
2140 goto retry;
2141 }
2142 /* WOW! twice in a row. */
2143 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2144 page = NULL;
2145 }
2146
2147 /*
2148 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2149 * indicates an overall state change. Clear bit so that we resume
2150 * normal 'try hard' allocations.
2151 */
2152 if (node_alloc_noretry && page && !alloc_try_hard)
2153 node_clear(nid, *node_alloc_noretry);
2154
2155 /*
2156 * If we tried hard to get a page but failed, set bit so that
2157 * subsequent attempts will not try as hard until there is an
2158 * overall state change.
2159 */
2160 if (node_alloc_noretry && !page && alloc_try_hard)
2161 node_set(nid, *node_alloc_noretry);
2162
2163 if (!page) {
2164 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2165 return NULL;
2166 }
2167
2168 __count_vm_event(HTLB_BUDDY_PGALLOC);
2169 return page_folio(page);
2170 }
2171
2172 /*
2173 * Common helper to allocate a fresh hugetlb page. All specific allocators
2174 * should use this function to get new hugetlb pages
2175 *
2176 * Note that returned page is 'frozen': ref count of head page and all tail
2177 * pages is zero.
2178 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2179 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2180 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2181 nodemask_t *node_alloc_noretry)
2182 {
2183 struct folio *folio;
2184 bool retry = false;
2185
2186 retry:
2187 if (hstate_is_gigantic(h))
2188 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2189 else
2190 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2191 nid, nmask, node_alloc_noretry);
2192 if (!folio)
2193 return NULL;
2194 if (hstate_is_gigantic(h)) {
2195 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2196 /*
2197 * Rare failure to convert pages to compound page.
2198 * Free pages and try again - ONCE!
2199 */
2200 free_gigantic_folio(folio, huge_page_order(h));
2201 if (!retry) {
2202 retry = true;
2203 goto retry;
2204 }
2205 return NULL;
2206 }
2207 }
2208 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2209
2210 return folio;
2211 }
2212
2213 /*
2214 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2215 * manner.
2216 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)2217 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2218 nodemask_t *node_alloc_noretry)
2219 {
2220 struct folio *folio;
2221 int nr_nodes, node;
2222 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2223
2224 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2225 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2226 nodes_allowed, node_alloc_noretry);
2227 if (folio) {
2228 free_huge_folio(folio); /* free it into the hugepage allocator */
2229 return 1;
2230 }
2231 }
2232
2233 return 0;
2234 }
2235
2236 /*
2237 * Remove huge page from pool from next node to free. Attempt to keep
2238 * persistent huge pages more or less balanced over allowed nodes.
2239 * This routine only 'removes' the hugetlb page. The caller must make
2240 * an additional call to free the page to low level allocators.
2241 * Called with hugetlb_lock locked.
2242 */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2243 static struct page *remove_pool_huge_page(struct hstate *h,
2244 nodemask_t *nodes_allowed,
2245 bool acct_surplus)
2246 {
2247 int nr_nodes, node;
2248 struct page *page = NULL;
2249 struct folio *folio;
2250
2251 lockdep_assert_held(&hugetlb_lock);
2252 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2253 /*
2254 * If we're returning unused surplus pages, only examine
2255 * nodes with surplus pages.
2256 */
2257 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2258 !list_empty(&h->hugepage_freelists[node])) {
2259 page = list_entry(h->hugepage_freelists[node].next,
2260 struct page, lru);
2261 folio = page_folio(page);
2262 remove_hugetlb_folio(h, folio, acct_surplus);
2263 break;
2264 }
2265 }
2266
2267 return page;
2268 }
2269
2270 /*
2271 * Dissolve a given free hugepage into free buddy pages. This function does
2272 * nothing for in-use hugepages and non-hugepages.
2273 * This function returns values like below:
2274 *
2275 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2276 * when the system is under memory pressure and the feature of
2277 * freeing unused vmemmap pages associated with each hugetlb page
2278 * is enabled.
2279 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2280 * (allocated or reserved.)
2281 * 0: successfully dissolved free hugepages or the page is not a
2282 * hugepage (considered as already dissolved)
2283 */
dissolve_free_huge_page(struct page * page)2284 int dissolve_free_huge_page(struct page *page)
2285 {
2286 int rc = -EBUSY;
2287 struct folio *folio = page_folio(page);
2288
2289 retry:
2290 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2291 if (!folio_test_hugetlb(folio))
2292 return 0;
2293
2294 spin_lock_irq(&hugetlb_lock);
2295 if (!folio_test_hugetlb(folio)) {
2296 rc = 0;
2297 goto out;
2298 }
2299
2300 if (!folio_ref_count(folio)) {
2301 struct hstate *h = folio_hstate(folio);
2302 if (!available_huge_pages(h))
2303 goto out;
2304
2305 /*
2306 * We should make sure that the page is already on the free list
2307 * when it is dissolved.
2308 */
2309 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2310 spin_unlock_irq(&hugetlb_lock);
2311 cond_resched();
2312
2313 /*
2314 * Theoretically, we should return -EBUSY when we
2315 * encounter this race. In fact, we have a chance
2316 * to successfully dissolve the page if we do a
2317 * retry. Because the race window is quite small.
2318 * If we seize this opportunity, it is an optimization
2319 * for increasing the success rate of dissolving page.
2320 */
2321 goto retry;
2322 }
2323
2324 remove_hugetlb_folio(h, folio, false);
2325 h->max_huge_pages--;
2326 spin_unlock_irq(&hugetlb_lock);
2327
2328 /*
2329 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2330 * before freeing the page. update_and_free_hugtlb_folio will fail to
2331 * free the page if it can not allocate required vmemmap. We
2332 * need to adjust max_huge_pages if the page is not freed.
2333 * Attempt to allocate vmemmmap here so that we can take
2334 * appropriate action on failure.
2335 */
2336 rc = hugetlb_vmemmap_restore(h, &folio->page);
2337 if (!rc) {
2338 update_and_free_hugetlb_folio(h, folio, false);
2339 } else {
2340 spin_lock_irq(&hugetlb_lock);
2341 add_hugetlb_folio(h, folio, false);
2342 h->max_huge_pages++;
2343 spin_unlock_irq(&hugetlb_lock);
2344 }
2345
2346 return rc;
2347 }
2348 out:
2349 spin_unlock_irq(&hugetlb_lock);
2350 return rc;
2351 }
2352
2353 /*
2354 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2355 * make specified memory blocks removable from the system.
2356 * Note that this will dissolve a free gigantic hugepage completely, if any
2357 * part of it lies within the given range.
2358 * Also note that if dissolve_free_huge_page() returns with an error, all
2359 * free hugepages that were dissolved before that error are lost.
2360 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2361 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2362 {
2363 unsigned long pfn;
2364 struct page *page;
2365 int rc = 0;
2366 unsigned int order;
2367 struct hstate *h;
2368
2369 if (!hugepages_supported())
2370 return rc;
2371
2372 order = huge_page_order(&default_hstate);
2373 for_each_hstate(h)
2374 order = min(order, huge_page_order(h));
2375
2376 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2377 page = pfn_to_page(pfn);
2378 rc = dissolve_free_huge_page(page);
2379 if (rc)
2380 break;
2381 }
2382
2383 return rc;
2384 }
2385
2386 /*
2387 * Allocates a fresh surplus page from the page allocator.
2388 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2389 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2390 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2391 {
2392 struct folio *folio = NULL;
2393
2394 if (hstate_is_gigantic(h))
2395 return NULL;
2396
2397 spin_lock_irq(&hugetlb_lock);
2398 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2399 goto out_unlock;
2400 spin_unlock_irq(&hugetlb_lock);
2401
2402 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2403 if (!folio)
2404 return NULL;
2405
2406 spin_lock_irq(&hugetlb_lock);
2407 /*
2408 * We could have raced with the pool size change.
2409 * Double check that and simply deallocate the new page
2410 * if we would end up overcommiting the surpluses. Abuse
2411 * temporary page to workaround the nasty free_huge_folio
2412 * codeflow
2413 */
2414 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2415 folio_set_hugetlb_temporary(folio);
2416 spin_unlock_irq(&hugetlb_lock);
2417 free_huge_folio(folio);
2418 return NULL;
2419 }
2420
2421 h->surplus_huge_pages++;
2422 h->surplus_huge_pages_node[folio_nid(folio)]++;
2423
2424 out_unlock:
2425 spin_unlock_irq(&hugetlb_lock);
2426
2427 return folio;
2428 }
2429
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2430 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2431 int nid, nodemask_t *nmask)
2432 {
2433 struct folio *folio;
2434
2435 if (hstate_is_gigantic(h))
2436 return NULL;
2437
2438 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2439 if (!folio)
2440 return NULL;
2441
2442 /* fresh huge pages are frozen */
2443 folio_ref_unfreeze(folio, 1);
2444 /*
2445 * We do not account these pages as surplus because they are only
2446 * temporary and will be released properly on the last reference
2447 */
2448 folio_set_hugetlb_temporary(folio);
2449
2450 return folio;
2451 }
2452
2453 /*
2454 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2455 */
2456 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2457 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2458 struct vm_area_struct *vma, unsigned long addr)
2459 {
2460 struct folio *folio = NULL;
2461 struct mempolicy *mpol;
2462 gfp_t gfp_mask = htlb_alloc_mask(h);
2463 int nid;
2464 nodemask_t *nodemask;
2465
2466 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2467 if (mpol_is_preferred_many(mpol)) {
2468 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2469
2470 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2471 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2472
2473 /* Fallback to all nodes if page==NULL */
2474 nodemask = NULL;
2475 }
2476
2477 if (!folio)
2478 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2479 mpol_cond_put(mpol);
2480 return folio;
2481 }
2482
2483 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2484 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2485 nodemask_t *nmask, gfp_t gfp_mask)
2486 {
2487 spin_lock_irq(&hugetlb_lock);
2488 if (available_huge_pages(h)) {
2489 struct folio *folio;
2490
2491 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2492 preferred_nid, nmask);
2493 if (folio) {
2494 spin_unlock_irq(&hugetlb_lock);
2495 return folio;
2496 }
2497 }
2498 spin_unlock_irq(&hugetlb_lock);
2499
2500 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2501 }
2502
2503 /* mempolicy aware migration callback */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2504 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2505 unsigned long address)
2506 {
2507 struct mempolicy *mpol;
2508 nodemask_t *nodemask;
2509 struct folio *folio;
2510 gfp_t gfp_mask;
2511 int node;
2512
2513 gfp_mask = htlb_alloc_mask(h);
2514 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2515 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2516 mpol_cond_put(mpol);
2517
2518 return folio;
2519 }
2520
policy_mbind_nodemask(gfp_t gfp)2521 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2522 {
2523 #ifdef CONFIG_NUMA
2524 struct mempolicy *mpol = get_task_policy(current);
2525
2526 /*
2527 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2528 * (from policy_nodemask) specifically for hugetlb case
2529 */
2530 if (mpol->mode == MPOL_BIND &&
2531 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2532 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2533 return &mpol->nodes;
2534 #endif
2535 return NULL;
2536 }
2537
2538 /*
2539 * Increase the hugetlb pool such that it can accommodate a reservation
2540 * of size 'delta'.
2541 */
gather_surplus_pages(struct hstate * h,long delta)2542 static int gather_surplus_pages(struct hstate *h, long delta)
2543 __must_hold(&hugetlb_lock)
2544 {
2545 LIST_HEAD(surplus_list);
2546 struct folio *folio, *tmp;
2547 int ret;
2548 long i;
2549 long needed, allocated;
2550 bool alloc_ok = true;
2551 int node;
2552 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2553
2554 lockdep_assert_held(&hugetlb_lock);
2555 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2556 if (needed <= 0) {
2557 h->resv_huge_pages += delta;
2558 return 0;
2559 }
2560
2561 allocated = 0;
2562
2563 ret = -ENOMEM;
2564 retry:
2565 spin_unlock_irq(&hugetlb_lock);
2566 for (i = 0; i < needed; i++) {
2567 folio = NULL;
2568 for_each_node_mask(node, cpuset_current_mems_allowed) {
2569 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2570 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2571 node, NULL);
2572 if (folio)
2573 break;
2574 }
2575 }
2576 if (!folio) {
2577 alloc_ok = false;
2578 break;
2579 }
2580 list_add(&folio->lru, &surplus_list);
2581 cond_resched();
2582 }
2583 allocated += i;
2584
2585 /*
2586 * After retaking hugetlb_lock, we need to recalculate 'needed'
2587 * because either resv_huge_pages or free_huge_pages may have changed.
2588 */
2589 spin_lock_irq(&hugetlb_lock);
2590 needed = (h->resv_huge_pages + delta) -
2591 (h->free_huge_pages + allocated);
2592 if (needed > 0) {
2593 if (alloc_ok)
2594 goto retry;
2595 /*
2596 * We were not able to allocate enough pages to
2597 * satisfy the entire reservation so we free what
2598 * we've allocated so far.
2599 */
2600 goto free;
2601 }
2602 /*
2603 * The surplus_list now contains _at_least_ the number of extra pages
2604 * needed to accommodate the reservation. Add the appropriate number
2605 * of pages to the hugetlb pool and free the extras back to the buddy
2606 * allocator. Commit the entire reservation here to prevent another
2607 * process from stealing the pages as they are added to the pool but
2608 * before they are reserved.
2609 */
2610 needed += allocated;
2611 h->resv_huge_pages += delta;
2612 ret = 0;
2613
2614 /* Free the needed pages to the hugetlb pool */
2615 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2616 if ((--needed) < 0)
2617 break;
2618 /* Add the page to the hugetlb allocator */
2619 enqueue_hugetlb_folio(h, folio);
2620 }
2621 free:
2622 spin_unlock_irq(&hugetlb_lock);
2623
2624 /*
2625 * Free unnecessary surplus pages to the buddy allocator.
2626 * Pages have no ref count, call free_huge_folio directly.
2627 */
2628 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2629 free_huge_folio(folio);
2630 spin_lock_irq(&hugetlb_lock);
2631
2632 return ret;
2633 }
2634
2635 /*
2636 * This routine has two main purposes:
2637 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2638 * in unused_resv_pages. This corresponds to the prior adjustments made
2639 * to the associated reservation map.
2640 * 2) Free any unused surplus pages that may have been allocated to satisfy
2641 * the reservation. As many as unused_resv_pages may be freed.
2642 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2643 static void return_unused_surplus_pages(struct hstate *h,
2644 unsigned long unused_resv_pages)
2645 {
2646 unsigned long nr_pages;
2647 struct page *page;
2648 LIST_HEAD(page_list);
2649
2650 lockdep_assert_held(&hugetlb_lock);
2651 /* Uncommit the reservation */
2652 h->resv_huge_pages -= unused_resv_pages;
2653
2654 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2655 goto out;
2656
2657 /*
2658 * Part (or even all) of the reservation could have been backed
2659 * by pre-allocated pages. Only free surplus pages.
2660 */
2661 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2662
2663 /*
2664 * We want to release as many surplus pages as possible, spread
2665 * evenly across all nodes with memory. Iterate across these nodes
2666 * until we can no longer free unreserved surplus pages. This occurs
2667 * when the nodes with surplus pages have no free pages.
2668 * remove_pool_huge_page() will balance the freed pages across the
2669 * on-line nodes with memory and will handle the hstate accounting.
2670 */
2671 while (nr_pages--) {
2672 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2673 if (!page)
2674 goto out;
2675
2676 list_add(&page->lru, &page_list);
2677 }
2678
2679 out:
2680 spin_unlock_irq(&hugetlb_lock);
2681 update_and_free_pages_bulk(h, &page_list);
2682 spin_lock_irq(&hugetlb_lock);
2683 }
2684
2685
2686 /*
2687 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2688 * are used by the huge page allocation routines to manage reservations.
2689 *
2690 * vma_needs_reservation is called to determine if the huge page at addr
2691 * within the vma has an associated reservation. If a reservation is
2692 * needed, the value 1 is returned. The caller is then responsible for
2693 * managing the global reservation and subpool usage counts. After
2694 * the huge page has been allocated, vma_commit_reservation is called
2695 * to add the page to the reservation map. If the page allocation fails,
2696 * the reservation must be ended instead of committed. vma_end_reservation
2697 * is called in such cases.
2698 *
2699 * In the normal case, vma_commit_reservation returns the same value
2700 * as the preceding vma_needs_reservation call. The only time this
2701 * is not the case is if a reserve map was changed between calls. It
2702 * is the responsibility of the caller to notice the difference and
2703 * take appropriate action.
2704 *
2705 * vma_add_reservation is used in error paths where a reservation must
2706 * be restored when a newly allocated huge page must be freed. It is
2707 * to be called after calling vma_needs_reservation to determine if a
2708 * reservation exists.
2709 *
2710 * vma_del_reservation is used in error paths where an entry in the reserve
2711 * map was created during huge page allocation and must be removed. It is to
2712 * be called after calling vma_needs_reservation to determine if a reservation
2713 * exists.
2714 */
2715 enum vma_resv_mode {
2716 VMA_NEEDS_RESV,
2717 VMA_COMMIT_RESV,
2718 VMA_END_RESV,
2719 VMA_ADD_RESV,
2720 VMA_DEL_RESV,
2721 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2722 static long __vma_reservation_common(struct hstate *h,
2723 struct vm_area_struct *vma, unsigned long addr,
2724 enum vma_resv_mode mode)
2725 {
2726 struct resv_map *resv;
2727 pgoff_t idx;
2728 long ret;
2729 long dummy_out_regions_needed;
2730
2731 resv = vma_resv_map(vma);
2732 if (!resv)
2733 return 1;
2734
2735 idx = vma_hugecache_offset(h, vma, addr);
2736 switch (mode) {
2737 case VMA_NEEDS_RESV:
2738 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2739 /* We assume that vma_reservation_* routines always operate on
2740 * 1 page, and that adding to resv map a 1 page entry can only
2741 * ever require 1 region.
2742 */
2743 VM_BUG_ON(dummy_out_regions_needed != 1);
2744 break;
2745 case VMA_COMMIT_RESV:
2746 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2747 /* region_add calls of range 1 should never fail. */
2748 VM_BUG_ON(ret < 0);
2749 break;
2750 case VMA_END_RESV:
2751 region_abort(resv, idx, idx + 1, 1);
2752 ret = 0;
2753 break;
2754 case VMA_ADD_RESV:
2755 if (vma->vm_flags & VM_MAYSHARE) {
2756 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2757 /* region_add calls of range 1 should never fail. */
2758 VM_BUG_ON(ret < 0);
2759 } else {
2760 region_abort(resv, idx, idx + 1, 1);
2761 ret = region_del(resv, idx, idx + 1);
2762 }
2763 break;
2764 case VMA_DEL_RESV:
2765 if (vma->vm_flags & VM_MAYSHARE) {
2766 region_abort(resv, idx, idx + 1, 1);
2767 ret = region_del(resv, idx, idx + 1);
2768 } else {
2769 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2770 /* region_add calls of range 1 should never fail. */
2771 VM_BUG_ON(ret < 0);
2772 }
2773 break;
2774 default:
2775 BUG();
2776 }
2777
2778 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2779 return ret;
2780 /*
2781 * We know private mapping must have HPAGE_RESV_OWNER set.
2782 *
2783 * In most cases, reserves always exist for private mappings.
2784 * However, a file associated with mapping could have been
2785 * hole punched or truncated after reserves were consumed.
2786 * As subsequent fault on such a range will not use reserves.
2787 * Subtle - The reserve map for private mappings has the
2788 * opposite meaning than that of shared mappings. If NO
2789 * entry is in the reserve map, it means a reservation exists.
2790 * If an entry exists in the reserve map, it means the
2791 * reservation has already been consumed. As a result, the
2792 * return value of this routine is the opposite of the
2793 * value returned from reserve map manipulation routines above.
2794 */
2795 if (ret > 0)
2796 return 0;
2797 if (ret == 0)
2798 return 1;
2799 return ret;
2800 }
2801
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2802 static long vma_needs_reservation(struct hstate *h,
2803 struct vm_area_struct *vma, unsigned long addr)
2804 {
2805 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2806 }
2807
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2808 static long vma_commit_reservation(struct hstate *h,
2809 struct vm_area_struct *vma, unsigned long addr)
2810 {
2811 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2812 }
2813
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2814 static void vma_end_reservation(struct hstate *h,
2815 struct vm_area_struct *vma, unsigned long addr)
2816 {
2817 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2818 }
2819
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2820 static long vma_add_reservation(struct hstate *h,
2821 struct vm_area_struct *vma, unsigned long addr)
2822 {
2823 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2824 }
2825
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2826 static long vma_del_reservation(struct hstate *h,
2827 struct vm_area_struct *vma, unsigned long addr)
2828 {
2829 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2830 }
2831
2832 /*
2833 * This routine is called to restore reservation information on error paths.
2834 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2835 * and the hugetlb mutex should remain held when calling this routine.
2836 *
2837 * It handles two specific cases:
2838 * 1) A reservation was in place and the folio consumed the reservation.
2839 * hugetlb_restore_reserve is set in the folio.
2840 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2841 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2842 *
2843 * In case 1, free_huge_folio later in the error path will increment the
2844 * global reserve count. But, free_huge_folio does not have enough context
2845 * to adjust the reservation map. This case deals primarily with private
2846 * mappings. Adjust the reserve map here to be consistent with global
2847 * reserve count adjustments to be made by free_huge_folio. Make sure the
2848 * reserve map indicates there is a reservation present.
2849 *
2850 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2851 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2852 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2853 unsigned long address, struct folio *folio)
2854 {
2855 long rc = vma_needs_reservation(h, vma, address);
2856
2857 if (folio_test_hugetlb_restore_reserve(folio)) {
2858 if (unlikely(rc < 0))
2859 /*
2860 * Rare out of memory condition in reserve map
2861 * manipulation. Clear hugetlb_restore_reserve so
2862 * that global reserve count will not be incremented
2863 * by free_huge_folio. This will make it appear
2864 * as though the reservation for this folio was
2865 * consumed. This may prevent the task from
2866 * faulting in the folio at a later time. This
2867 * is better than inconsistent global huge page
2868 * accounting of reserve counts.
2869 */
2870 folio_clear_hugetlb_restore_reserve(folio);
2871 else if (rc)
2872 (void)vma_add_reservation(h, vma, address);
2873 else
2874 vma_end_reservation(h, vma, address);
2875 } else {
2876 if (!rc) {
2877 /*
2878 * This indicates there is an entry in the reserve map
2879 * not added by alloc_hugetlb_folio. We know it was added
2880 * before the alloc_hugetlb_folio call, otherwise
2881 * hugetlb_restore_reserve would be set on the folio.
2882 * Remove the entry so that a subsequent allocation
2883 * does not consume a reservation.
2884 */
2885 rc = vma_del_reservation(h, vma, address);
2886 if (rc < 0)
2887 /*
2888 * VERY rare out of memory condition. Since
2889 * we can not delete the entry, set
2890 * hugetlb_restore_reserve so that the reserve
2891 * count will be incremented when the folio
2892 * is freed. This reserve will be consumed
2893 * on a subsequent allocation.
2894 */
2895 folio_set_hugetlb_restore_reserve(folio);
2896 } else if (rc < 0) {
2897 /*
2898 * Rare out of memory condition from
2899 * vma_needs_reservation call. Memory allocation is
2900 * only attempted if a new entry is needed. Therefore,
2901 * this implies there is not an entry in the
2902 * reserve map.
2903 *
2904 * For shared mappings, no entry in the map indicates
2905 * no reservation. We are done.
2906 */
2907 if (!(vma->vm_flags & VM_MAYSHARE))
2908 /*
2909 * For private mappings, no entry indicates
2910 * a reservation is present. Since we can
2911 * not add an entry, set hugetlb_restore_reserve
2912 * on the folio so reserve count will be
2913 * incremented when freed. This reserve will
2914 * be consumed on a subsequent allocation.
2915 */
2916 folio_set_hugetlb_restore_reserve(folio);
2917 } else
2918 /*
2919 * No reservation present, do nothing
2920 */
2921 vma_end_reservation(h, vma, address);
2922 }
2923 }
2924
2925 /*
2926 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2927 * the old one
2928 * @h: struct hstate old page belongs to
2929 * @old_folio: Old folio to dissolve
2930 * @list: List to isolate the page in case we need to
2931 * Returns 0 on success, otherwise negated error.
2932 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2933 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2934 struct folio *old_folio, struct list_head *list)
2935 {
2936 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2937 int nid = folio_nid(old_folio);
2938 struct folio *new_folio;
2939 int ret = 0;
2940
2941 /*
2942 * Before dissolving the folio, we need to allocate a new one for the
2943 * pool to remain stable. Here, we allocate the folio and 'prep' it
2944 * by doing everything but actually updating counters and adding to
2945 * the pool. This simplifies and let us do most of the processing
2946 * under the lock.
2947 */
2948 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2949 if (!new_folio)
2950 return -ENOMEM;
2951 __prep_new_hugetlb_folio(h, new_folio);
2952
2953 retry:
2954 spin_lock_irq(&hugetlb_lock);
2955 if (!folio_test_hugetlb(old_folio)) {
2956 /*
2957 * Freed from under us. Drop new_folio too.
2958 */
2959 goto free_new;
2960 } else if (folio_ref_count(old_folio)) {
2961 bool isolated;
2962
2963 /*
2964 * Someone has grabbed the folio, try to isolate it here.
2965 * Fail with -EBUSY if not possible.
2966 */
2967 spin_unlock_irq(&hugetlb_lock);
2968 isolated = isolate_hugetlb(old_folio, list);
2969 ret = isolated ? 0 : -EBUSY;
2970 spin_lock_irq(&hugetlb_lock);
2971 goto free_new;
2972 } else if (!folio_test_hugetlb_freed(old_folio)) {
2973 /*
2974 * Folio's refcount is 0 but it has not been enqueued in the
2975 * freelist yet. Race window is small, so we can succeed here if
2976 * we retry.
2977 */
2978 spin_unlock_irq(&hugetlb_lock);
2979 cond_resched();
2980 goto retry;
2981 } else {
2982 /*
2983 * Ok, old_folio is still a genuine free hugepage. Remove it from
2984 * the freelist and decrease the counters. These will be
2985 * incremented again when calling __prep_account_new_huge_page()
2986 * and enqueue_hugetlb_folio() for new_folio. The counters will
2987 * remain stable since this happens under the lock.
2988 */
2989 remove_hugetlb_folio(h, old_folio, false);
2990
2991 /*
2992 * Ref count on new_folio is already zero as it was dropped
2993 * earlier. It can be directly added to the pool free list.
2994 */
2995 __prep_account_new_huge_page(h, nid);
2996 enqueue_hugetlb_folio(h, new_folio);
2997
2998 /*
2999 * Folio has been replaced, we can safely free the old one.
3000 */
3001 spin_unlock_irq(&hugetlb_lock);
3002 update_and_free_hugetlb_folio(h, old_folio, false);
3003 }
3004
3005 return ret;
3006
3007 free_new:
3008 spin_unlock_irq(&hugetlb_lock);
3009 /* Folio has a zero ref count, but needs a ref to be freed */
3010 folio_ref_unfreeze(new_folio, 1);
3011 update_and_free_hugetlb_folio(h, new_folio, false);
3012
3013 return ret;
3014 }
3015
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)3016 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3017 {
3018 struct hstate *h;
3019 struct folio *folio = page_folio(page);
3020 int ret = -EBUSY;
3021
3022 /*
3023 * The page might have been dissolved from under our feet, so make sure
3024 * to carefully check the state under the lock.
3025 * Return success when racing as if we dissolved the page ourselves.
3026 */
3027 spin_lock_irq(&hugetlb_lock);
3028 if (folio_test_hugetlb(folio)) {
3029 h = folio_hstate(folio);
3030 } else {
3031 spin_unlock_irq(&hugetlb_lock);
3032 return 0;
3033 }
3034 spin_unlock_irq(&hugetlb_lock);
3035
3036 /*
3037 * Fence off gigantic pages as there is a cyclic dependency between
3038 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3039 * of bailing out right away without further retrying.
3040 */
3041 if (hstate_is_gigantic(h))
3042 return -ENOMEM;
3043
3044 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3045 ret = 0;
3046 else if (!folio_ref_count(folio))
3047 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3048
3049 return ret;
3050 }
3051
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3052 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3053 unsigned long addr, int avoid_reserve)
3054 {
3055 struct hugepage_subpool *spool = subpool_vma(vma);
3056 struct hstate *h = hstate_vma(vma);
3057 struct folio *folio;
3058 long map_chg, map_commit;
3059 long gbl_chg;
3060 int ret, idx;
3061 struct hugetlb_cgroup *h_cg = NULL;
3062 bool deferred_reserve;
3063
3064 idx = hstate_index(h);
3065 /*
3066 * Examine the region/reserve map to determine if the process
3067 * has a reservation for the page to be allocated. A return
3068 * code of zero indicates a reservation exists (no change).
3069 */
3070 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3071 if (map_chg < 0)
3072 return ERR_PTR(-ENOMEM);
3073
3074 /*
3075 * Processes that did not create the mapping will have no
3076 * reserves as indicated by the region/reserve map. Check
3077 * that the allocation will not exceed the subpool limit.
3078 * Allocations for MAP_NORESERVE mappings also need to be
3079 * checked against any subpool limit.
3080 */
3081 if (map_chg || avoid_reserve) {
3082 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3083 if (gbl_chg < 0) {
3084 vma_end_reservation(h, vma, addr);
3085 return ERR_PTR(-ENOSPC);
3086 }
3087
3088 /*
3089 * Even though there was no reservation in the region/reserve
3090 * map, there could be reservations associated with the
3091 * subpool that can be used. This would be indicated if the
3092 * return value of hugepage_subpool_get_pages() is zero.
3093 * However, if avoid_reserve is specified we still avoid even
3094 * the subpool reservations.
3095 */
3096 if (avoid_reserve)
3097 gbl_chg = 1;
3098 }
3099
3100 /* If this allocation is not consuming a reservation, charge it now.
3101 */
3102 deferred_reserve = map_chg || avoid_reserve;
3103 if (deferred_reserve) {
3104 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3105 idx, pages_per_huge_page(h), &h_cg);
3106 if (ret)
3107 goto out_subpool_put;
3108 }
3109
3110 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3111 if (ret)
3112 goto out_uncharge_cgroup_reservation;
3113
3114 spin_lock_irq(&hugetlb_lock);
3115 /*
3116 * glb_chg is passed to indicate whether or not a page must be taken
3117 * from the global free pool (global change). gbl_chg == 0 indicates
3118 * a reservation exists for the allocation.
3119 */
3120 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3121 if (!folio) {
3122 spin_unlock_irq(&hugetlb_lock);
3123 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3124 if (!folio)
3125 goto out_uncharge_cgroup;
3126 spin_lock_irq(&hugetlb_lock);
3127 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3128 folio_set_hugetlb_restore_reserve(folio);
3129 h->resv_huge_pages--;
3130 }
3131 list_add(&folio->lru, &h->hugepage_activelist);
3132 folio_ref_unfreeze(folio, 1);
3133 /* Fall through */
3134 }
3135
3136 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3137 /* If allocation is not consuming a reservation, also store the
3138 * hugetlb_cgroup pointer on the page.
3139 */
3140 if (deferred_reserve) {
3141 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3142 h_cg, folio);
3143 }
3144
3145 spin_unlock_irq(&hugetlb_lock);
3146
3147 hugetlb_set_folio_subpool(folio, spool);
3148
3149 map_commit = vma_commit_reservation(h, vma, addr);
3150 if (unlikely(map_chg > map_commit)) {
3151 /*
3152 * The page was added to the reservation map between
3153 * vma_needs_reservation and vma_commit_reservation.
3154 * This indicates a race with hugetlb_reserve_pages.
3155 * Adjust for the subpool count incremented above AND
3156 * in hugetlb_reserve_pages for the same page. Also,
3157 * the reservation count added in hugetlb_reserve_pages
3158 * no longer applies.
3159 */
3160 long rsv_adjust;
3161
3162 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3163 hugetlb_acct_memory(h, -rsv_adjust);
3164 if (deferred_reserve) {
3165 spin_lock_irq(&hugetlb_lock);
3166 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3167 pages_per_huge_page(h), folio);
3168 spin_unlock_irq(&hugetlb_lock);
3169 }
3170 }
3171 return folio;
3172
3173 out_uncharge_cgroup:
3174 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3175 out_uncharge_cgroup_reservation:
3176 if (deferred_reserve)
3177 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3178 h_cg);
3179 out_subpool_put:
3180 if (map_chg || avoid_reserve)
3181 hugepage_subpool_put_pages(spool, 1);
3182 vma_end_reservation(h, vma, addr);
3183 return ERR_PTR(-ENOSPC);
3184 }
3185
3186 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3187 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3188 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3189 {
3190 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3191 int nr_nodes, node;
3192
3193 /* do node specific alloc */
3194 if (nid != NUMA_NO_NODE) {
3195 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3196 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3197 if (!m)
3198 return 0;
3199 goto found;
3200 }
3201 /* allocate from next node when distributing huge pages */
3202 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3203 m = memblock_alloc_try_nid_raw(
3204 huge_page_size(h), huge_page_size(h),
3205 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3206 /*
3207 * Use the beginning of the huge page to store the
3208 * huge_bootmem_page struct (until gather_bootmem
3209 * puts them into the mem_map).
3210 */
3211 if (!m)
3212 return 0;
3213 goto found;
3214 }
3215
3216 found:
3217 /* Put them into a private list first because mem_map is not up yet */
3218 INIT_LIST_HEAD(&m->list);
3219 list_add(&m->list, &huge_boot_pages);
3220 m->hstate = h;
3221 return 1;
3222 }
3223
3224 /*
3225 * Put bootmem huge pages into the standard lists after mem_map is up.
3226 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3227 */
gather_bootmem_prealloc(void)3228 static void __init gather_bootmem_prealloc(void)
3229 {
3230 struct huge_bootmem_page *m;
3231
3232 list_for_each_entry(m, &huge_boot_pages, list) {
3233 struct page *page = virt_to_page(m);
3234 struct folio *folio = page_folio(page);
3235 struct hstate *h = m->hstate;
3236
3237 VM_BUG_ON(!hstate_is_gigantic(h));
3238 WARN_ON(folio_ref_count(folio) != 1);
3239 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3240 WARN_ON(folio_test_reserved(folio));
3241 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3242 free_huge_folio(folio); /* add to the hugepage allocator */
3243 } else {
3244 /* VERY unlikely inflated ref count on a tail page */
3245 free_gigantic_folio(folio, huge_page_order(h));
3246 }
3247
3248 /*
3249 * We need to restore the 'stolen' pages to totalram_pages
3250 * in order to fix confusing memory reports from free(1) and
3251 * other side-effects, like CommitLimit going negative.
3252 */
3253 adjust_managed_page_count(page, pages_per_huge_page(h));
3254 cond_resched();
3255 }
3256 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3257 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3258 {
3259 unsigned long i;
3260 char buf[32];
3261
3262 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3263 if (hstate_is_gigantic(h)) {
3264 if (!alloc_bootmem_huge_page(h, nid))
3265 break;
3266 } else {
3267 struct folio *folio;
3268 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3269
3270 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3271 &node_states[N_MEMORY], NULL);
3272 if (!folio)
3273 break;
3274 free_huge_folio(folio); /* free it into the hugepage allocator */
3275 }
3276 cond_resched();
3277 }
3278 if (i == h->max_huge_pages_node[nid])
3279 return;
3280
3281 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3282 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3283 h->max_huge_pages_node[nid], buf, nid, i);
3284 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3285 h->max_huge_pages_node[nid] = i;
3286 }
3287
hugetlb_hstate_alloc_pages(struct hstate * h)3288 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3289 {
3290 unsigned long i;
3291 nodemask_t *node_alloc_noretry;
3292 bool node_specific_alloc = false;
3293
3294 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3295 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3296 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3297 return;
3298 }
3299
3300 /* do node specific alloc */
3301 for_each_online_node(i) {
3302 if (h->max_huge_pages_node[i] > 0) {
3303 hugetlb_hstate_alloc_pages_onenode(h, i);
3304 node_specific_alloc = true;
3305 }
3306 }
3307
3308 if (node_specific_alloc)
3309 return;
3310
3311 /* below will do all node balanced alloc */
3312 if (!hstate_is_gigantic(h)) {
3313 /*
3314 * Bit mask controlling how hard we retry per-node allocations.
3315 * Ignore errors as lower level routines can deal with
3316 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3317 * time, we are likely in bigger trouble.
3318 */
3319 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3320 GFP_KERNEL);
3321 } else {
3322 /* allocations done at boot time */
3323 node_alloc_noretry = NULL;
3324 }
3325
3326 /* bit mask controlling how hard we retry per-node allocations */
3327 if (node_alloc_noretry)
3328 nodes_clear(*node_alloc_noretry);
3329
3330 for (i = 0; i < h->max_huge_pages; ++i) {
3331 if (hstate_is_gigantic(h)) {
3332 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3333 break;
3334 } else if (!alloc_pool_huge_page(h,
3335 &node_states[N_MEMORY],
3336 node_alloc_noretry))
3337 break;
3338 cond_resched();
3339 }
3340 if (i < h->max_huge_pages) {
3341 char buf[32];
3342
3343 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3344 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3345 h->max_huge_pages, buf, i);
3346 h->max_huge_pages = i;
3347 }
3348 kfree(node_alloc_noretry);
3349 }
3350
hugetlb_init_hstates(void)3351 static void __init hugetlb_init_hstates(void)
3352 {
3353 struct hstate *h, *h2;
3354
3355 for_each_hstate(h) {
3356 /* oversize hugepages were init'ed in early boot */
3357 if (!hstate_is_gigantic(h))
3358 hugetlb_hstate_alloc_pages(h);
3359
3360 /*
3361 * Set demote order for each hstate. Note that
3362 * h->demote_order is initially 0.
3363 * - We can not demote gigantic pages if runtime freeing
3364 * is not supported, so skip this.
3365 * - If CMA allocation is possible, we can not demote
3366 * HUGETLB_PAGE_ORDER or smaller size pages.
3367 */
3368 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3369 continue;
3370 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3371 continue;
3372 for_each_hstate(h2) {
3373 if (h2 == h)
3374 continue;
3375 if (h2->order < h->order &&
3376 h2->order > h->demote_order)
3377 h->demote_order = h2->order;
3378 }
3379 }
3380 }
3381
report_hugepages(void)3382 static void __init report_hugepages(void)
3383 {
3384 struct hstate *h;
3385
3386 for_each_hstate(h) {
3387 char buf[32];
3388
3389 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3390 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3391 buf, h->free_huge_pages);
3392 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3393 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3394 }
3395 }
3396
3397 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3398 static void try_to_free_low(struct hstate *h, unsigned long count,
3399 nodemask_t *nodes_allowed)
3400 {
3401 int i;
3402 LIST_HEAD(page_list);
3403
3404 lockdep_assert_held(&hugetlb_lock);
3405 if (hstate_is_gigantic(h))
3406 return;
3407
3408 /*
3409 * Collect pages to be freed on a list, and free after dropping lock
3410 */
3411 for_each_node_mask(i, *nodes_allowed) {
3412 struct page *page, *next;
3413 struct list_head *freel = &h->hugepage_freelists[i];
3414 list_for_each_entry_safe(page, next, freel, lru) {
3415 if (count >= h->nr_huge_pages)
3416 goto out;
3417 if (PageHighMem(page))
3418 continue;
3419 remove_hugetlb_folio(h, page_folio(page), false);
3420 list_add(&page->lru, &page_list);
3421 }
3422 }
3423
3424 out:
3425 spin_unlock_irq(&hugetlb_lock);
3426 update_and_free_pages_bulk(h, &page_list);
3427 spin_lock_irq(&hugetlb_lock);
3428 }
3429 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3430 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3431 nodemask_t *nodes_allowed)
3432 {
3433 }
3434 #endif
3435
3436 /*
3437 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3438 * balanced by operating on them in a round-robin fashion.
3439 * Returns 1 if an adjustment was made.
3440 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3441 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3442 int delta)
3443 {
3444 int nr_nodes, node;
3445
3446 lockdep_assert_held(&hugetlb_lock);
3447 VM_BUG_ON(delta != -1 && delta != 1);
3448
3449 if (delta < 0) {
3450 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3451 if (h->surplus_huge_pages_node[node])
3452 goto found;
3453 }
3454 } else {
3455 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3456 if (h->surplus_huge_pages_node[node] <
3457 h->nr_huge_pages_node[node])
3458 goto found;
3459 }
3460 }
3461 return 0;
3462
3463 found:
3464 h->surplus_huge_pages += delta;
3465 h->surplus_huge_pages_node[node] += delta;
3466 return 1;
3467 }
3468
3469 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3470 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3471 nodemask_t *nodes_allowed)
3472 {
3473 unsigned long min_count, ret;
3474 struct page *page;
3475 LIST_HEAD(page_list);
3476 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3477
3478 /*
3479 * Bit mask controlling how hard we retry per-node allocations.
3480 * If we can not allocate the bit mask, do not attempt to allocate
3481 * the requested huge pages.
3482 */
3483 if (node_alloc_noretry)
3484 nodes_clear(*node_alloc_noretry);
3485 else
3486 return -ENOMEM;
3487
3488 /*
3489 * resize_lock mutex prevents concurrent adjustments to number of
3490 * pages in hstate via the proc/sysfs interfaces.
3491 */
3492 mutex_lock(&h->resize_lock);
3493 flush_free_hpage_work(h);
3494 spin_lock_irq(&hugetlb_lock);
3495
3496 /*
3497 * Check for a node specific request.
3498 * Changing node specific huge page count may require a corresponding
3499 * change to the global count. In any case, the passed node mask
3500 * (nodes_allowed) will restrict alloc/free to the specified node.
3501 */
3502 if (nid != NUMA_NO_NODE) {
3503 unsigned long old_count = count;
3504
3505 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3506 /*
3507 * User may have specified a large count value which caused the
3508 * above calculation to overflow. In this case, they wanted
3509 * to allocate as many huge pages as possible. Set count to
3510 * largest possible value to align with their intention.
3511 */
3512 if (count < old_count)
3513 count = ULONG_MAX;
3514 }
3515
3516 /*
3517 * Gigantic pages runtime allocation depend on the capability for large
3518 * page range allocation.
3519 * If the system does not provide this feature, return an error when
3520 * the user tries to allocate gigantic pages but let the user free the
3521 * boottime allocated gigantic pages.
3522 */
3523 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3524 if (count > persistent_huge_pages(h)) {
3525 spin_unlock_irq(&hugetlb_lock);
3526 mutex_unlock(&h->resize_lock);
3527 NODEMASK_FREE(node_alloc_noretry);
3528 return -EINVAL;
3529 }
3530 /* Fall through to decrease pool */
3531 }
3532
3533 /*
3534 * Increase the pool size
3535 * First take pages out of surplus state. Then make up the
3536 * remaining difference by allocating fresh huge pages.
3537 *
3538 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3539 * to convert a surplus huge page to a normal huge page. That is
3540 * not critical, though, it just means the overall size of the
3541 * pool might be one hugepage larger than it needs to be, but
3542 * within all the constraints specified by the sysctls.
3543 */
3544 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3545 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3546 break;
3547 }
3548
3549 while (count > persistent_huge_pages(h)) {
3550 /*
3551 * If this allocation races such that we no longer need the
3552 * page, free_huge_folio will handle it by freeing the page
3553 * and reducing the surplus.
3554 */
3555 spin_unlock_irq(&hugetlb_lock);
3556
3557 /* yield cpu to avoid soft lockup */
3558 cond_resched();
3559
3560 ret = alloc_pool_huge_page(h, nodes_allowed,
3561 node_alloc_noretry);
3562 spin_lock_irq(&hugetlb_lock);
3563 if (!ret)
3564 goto out;
3565
3566 /* Bail for signals. Probably ctrl-c from user */
3567 if (signal_pending(current))
3568 goto out;
3569 }
3570
3571 /*
3572 * Decrease the pool size
3573 * First return free pages to the buddy allocator (being careful
3574 * to keep enough around to satisfy reservations). Then place
3575 * pages into surplus state as needed so the pool will shrink
3576 * to the desired size as pages become free.
3577 *
3578 * By placing pages into the surplus state independent of the
3579 * overcommit value, we are allowing the surplus pool size to
3580 * exceed overcommit. There are few sane options here. Since
3581 * alloc_surplus_hugetlb_folio() is checking the global counter,
3582 * though, we'll note that we're not allowed to exceed surplus
3583 * and won't grow the pool anywhere else. Not until one of the
3584 * sysctls are changed, or the surplus pages go out of use.
3585 */
3586 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3587 min_count = max(count, min_count);
3588 try_to_free_low(h, min_count, nodes_allowed);
3589
3590 /*
3591 * Collect pages to be removed on list without dropping lock
3592 */
3593 while (min_count < persistent_huge_pages(h)) {
3594 page = remove_pool_huge_page(h, nodes_allowed, 0);
3595 if (!page)
3596 break;
3597
3598 list_add(&page->lru, &page_list);
3599 }
3600 /* free the pages after dropping lock */
3601 spin_unlock_irq(&hugetlb_lock);
3602 update_and_free_pages_bulk(h, &page_list);
3603 flush_free_hpage_work(h);
3604 spin_lock_irq(&hugetlb_lock);
3605
3606 while (count < persistent_huge_pages(h)) {
3607 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3608 break;
3609 }
3610 out:
3611 h->max_huge_pages = persistent_huge_pages(h);
3612 spin_unlock_irq(&hugetlb_lock);
3613 mutex_unlock(&h->resize_lock);
3614
3615 NODEMASK_FREE(node_alloc_noretry);
3616
3617 return 0;
3618 }
3619
demote_free_hugetlb_folio(struct hstate * h,struct folio * folio)3620 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3621 {
3622 int i, nid = folio_nid(folio);
3623 struct hstate *target_hstate;
3624 struct page *subpage;
3625 struct folio *inner_folio;
3626 int rc = 0;
3627
3628 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3629
3630 remove_hugetlb_folio_for_demote(h, folio, false);
3631 spin_unlock_irq(&hugetlb_lock);
3632
3633 rc = hugetlb_vmemmap_restore(h, &folio->page);
3634 if (rc) {
3635 /* Allocation of vmemmmap failed, we can not demote folio */
3636 spin_lock_irq(&hugetlb_lock);
3637 folio_ref_unfreeze(folio, 1);
3638 add_hugetlb_folio(h, folio, false);
3639 return rc;
3640 }
3641
3642 /*
3643 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3644 * sizes as it will not ref count folios.
3645 */
3646 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3647
3648 /*
3649 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3650 * Without the mutex, pages added to target hstate could be marked
3651 * as surplus.
3652 *
3653 * Note that we already hold h->resize_lock. To prevent deadlock,
3654 * use the convention of always taking larger size hstate mutex first.
3655 */
3656 mutex_lock(&target_hstate->resize_lock);
3657 for (i = 0; i < pages_per_huge_page(h);
3658 i += pages_per_huge_page(target_hstate)) {
3659 subpage = folio_page(folio, i);
3660 inner_folio = page_folio(subpage);
3661 if (hstate_is_gigantic(target_hstate))
3662 prep_compound_gigantic_folio_for_demote(inner_folio,
3663 target_hstate->order);
3664 else
3665 prep_compound_page(subpage, target_hstate->order);
3666 folio_change_private(inner_folio, NULL);
3667 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3668 free_huge_folio(inner_folio);
3669 }
3670 mutex_unlock(&target_hstate->resize_lock);
3671
3672 spin_lock_irq(&hugetlb_lock);
3673
3674 /*
3675 * Not absolutely necessary, but for consistency update max_huge_pages
3676 * based on pool changes for the demoted page.
3677 */
3678 h->max_huge_pages--;
3679 target_hstate->max_huge_pages +=
3680 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3681
3682 return rc;
3683 }
3684
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3685 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3686 __must_hold(&hugetlb_lock)
3687 {
3688 int nr_nodes, node;
3689 struct folio *folio;
3690
3691 lockdep_assert_held(&hugetlb_lock);
3692
3693 /* We should never get here if no demote order */
3694 if (!h->demote_order) {
3695 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3696 return -EINVAL; /* internal error */
3697 }
3698
3699 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3700 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3701 if (folio_test_hwpoison(folio))
3702 continue;
3703 return demote_free_hugetlb_folio(h, folio);
3704 }
3705 }
3706
3707 /*
3708 * Only way to get here is if all pages on free lists are poisoned.
3709 * Return -EBUSY so that caller will not retry.
3710 */
3711 return -EBUSY;
3712 }
3713
3714 #define HSTATE_ATTR_RO(_name) \
3715 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3716
3717 #define HSTATE_ATTR_WO(_name) \
3718 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3719
3720 #define HSTATE_ATTR(_name) \
3721 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3722
3723 static struct kobject *hugepages_kobj;
3724 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3725
3726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3727
kobj_to_hstate(struct kobject * kobj,int * nidp)3728 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3729 {
3730 int i;
3731
3732 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3733 if (hstate_kobjs[i] == kobj) {
3734 if (nidp)
3735 *nidp = NUMA_NO_NODE;
3736 return &hstates[i];
3737 }
3738
3739 return kobj_to_node_hstate(kobj, nidp);
3740 }
3741
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3742 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3743 struct kobj_attribute *attr, char *buf)
3744 {
3745 struct hstate *h;
3746 unsigned long nr_huge_pages;
3747 int nid;
3748
3749 h = kobj_to_hstate(kobj, &nid);
3750 if (nid == NUMA_NO_NODE)
3751 nr_huge_pages = h->nr_huge_pages;
3752 else
3753 nr_huge_pages = h->nr_huge_pages_node[nid];
3754
3755 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3756 }
3757
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3758 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3759 struct hstate *h, int nid,
3760 unsigned long count, size_t len)
3761 {
3762 int err;
3763 nodemask_t nodes_allowed, *n_mask;
3764
3765 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3766 return -EINVAL;
3767
3768 if (nid == NUMA_NO_NODE) {
3769 /*
3770 * global hstate attribute
3771 */
3772 if (!(obey_mempolicy &&
3773 init_nodemask_of_mempolicy(&nodes_allowed)))
3774 n_mask = &node_states[N_MEMORY];
3775 else
3776 n_mask = &nodes_allowed;
3777 } else {
3778 /*
3779 * Node specific request. count adjustment happens in
3780 * set_max_huge_pages() after acquiring hugetlb_lock.
3781 */
3782 init_nodemask_of_node(&nodes_allowed, nid);
3783 n_mask = &nodes_allowed;
3784 }
3785
3786 err = set_max_huge_pages(h, count, nid, n_mask);
3787
3788 return err ? err : len;
3789 }
3790
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3791 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3792 struct kobject *kobj, const char *buf,
3793 size_t len)
3794 {
3795 struct hstate *h;
3796 unsigned long count;
3797 int nid;
3798 int err;
3799
3800 err = kstrtoul(buf, 10, &count);
3801 if (err)
3802 return err;
3803
3804 h = kobj_to_hstate(kobj, &nid);
3805 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3806 }
3807
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3808 static ssize_t nr_hugepages_show(struct kobject *kobj,
3809 struct kobj_attribute *attr, char *buf)
3810 {
3811 return nr_hugepages_show_common(kobj, attr, buf);
3812 }
3813
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3814 static ssize_t nr_hugepages_store(struct kobject *kobj,
3815 struct kobj_attribute *attr, const char *buf, size_t len)
3816 {
3817 return nr_hugepages_store_common(false, kobj, buf, len);
3818 }
3819 HSTATE_ATTR(nr_hugepages);
3820
3821 #ifdef CONFIG_NUMA
3822
3823 /*
3824 * hstate attribute for optionally mempolicy-based constraint on persistent
3825 * huge page alloc/free.
3826 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3827 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3828 struct kobj_attribute *attr,
3829 char *buf)
3830 {
3831 return nr_hugepages_show_common(kobj, attr, buf);
3832 }
3833
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3834 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3835 struct kobj_attribute *attr, const char *buf, size_t len)
3836 {
3837 return nr_hugepages_store_common(true, kobj, buf, len);
3838 }
3839 HSTATE_ATTR(nr_hugepages_mempolicy);
3840 #endif
3841
3842
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3843 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3844 struct kobj_attribute *attr, char *buf)
3845 {
3846 struct hstate *h = kobj_to_hstate(kobj, NULL);
3847 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3848 }
3849
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3850 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3851 struct kobj_attribute *attr, const char *buf, size_t count)
3852 {
3853 int err;
3854 unsigned long input;
3855 struct hstate *h = kobj_to_hstate(kobj, NULL);
3856
3857 if (hstate_is_gigantic(h))
3858 return -EINVAL;
3859
3860 err = kstrtoul(buf, 10, &input);
3861 if (err)
3862 return err;
3863
3864 spin_lock_irq(&hugetlb_lock);
3865 h->nr_overcommit_huge_pages = input;
3866 spin_unlock_irq(&hugetlb_lock);
3867
3868 return count;
3869 }
3870 HSTATE_ATTR(nr_overcommit_hugepages);
3871
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3872 static ssize_t free_hugepages_show(struct kobject *kobj,
3873 struct kobj_attribute *attr, char *buf)
3874 {
3875 struct hstate *h;
3876 unsigned long free_huge_pages;
3877 int nid;
3878
3879 h = kobj_to_hstate(kobj, &nid);
3880 if (nid == NUMA_NO_NODE)
3881 free_huge_pages = h->free_huge_pages;
3882 else
3883 free_huge_pages = h->free_huge_pages_node[nid];
3884
3885 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3886 }
3887 HSTATE_ATTR_RO(free_hugepages);
3888
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3889 static ssize_t resv_hugepages_show(struct kobject *kobj,
3890 struct kobj_attribute *attr, char *buf)
3891 {
3892 struct hstate *h = kobj_to_hstate(kobj, NULL);
3893 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3894 }
3895 HSTATE_ATTR_RO(resv_hugepages);
3896
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3897 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3898 struct kobj_attribute *attr, char *buf)
3899 {
3900 struct hstate *h;
3901 unsigned long surplus_huge_pages;
3902 int nid;
3903
3904 h = kobj_to_hstate(kobj, &nid);
3905 if (nid == NUMA_NO_NODE)
3906 surplus_huge_pages = h->surplus_huge_pages;
3907 else
3908 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3909
3910 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3911 }
3912 HSTATE_ATTR_RO(surplus_hugepages);
3913
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3914 static ssize_t demote_store(struct kobject *kobj,
3915 struct kobj_attribute *attr, const char *buf, size_t len)
3916 {
3917 unsigned long nr_demote;
3918 unsigned long nr_available;
3919 nodemask_t nodes_allowed, *n_mask;
3920 struct hstate *h;
3921 int err;
3922 int nid;
3923
3924 err = kstrtoul(buf, 10, &nr_demote);
3925 if (err)
3926 return err;
3927 h = kobj_to_hstate(kobj, &nid);
3928
3929 if (nid != NUMA_NO_NODE) {
3930 init_nodemask_of_node(&nodes_allowed, nid);
3931 n_mask = &nodes_allowed;
3932 } else {
3933 n_mask = &node_states[N_MEMORY];
3934 }
3935
3936 /* Synchronize with other sysfs operations modifying huge pages */
3937 mutex_lock(&h->resize_lock);
3938 spin_lock_irq(&hugetlb_lock);
3939
3940 while (nr_demote) {
3941 /*
3942 * Check for available pages to demote each time thorough the
3943 * loop as demote_pool_huge_page will drop hugetlb_lock.
3944 */
3945 if (nid != NUMA_NO_NODE)
3946 nr_available = h->free_huge_pages_node[nid];
3947 else
3948 nr_available = h->free_huge_pages;
3949 nr_available -= h->resv_huge_pages;
3950 if (!nr_available)
3951 break;
3952
3953 err = demote_pool_huge_page(h, n_mask);
3954 if (err)
3955 break;
3956
3957 nr_demote--;
3958 }
3959
3960 spin_unlock_irq(&hugetlb_lock);
3961 mutex_unlock(&h->resize_lock);
3962
3963 if (err)
3964 return err;
3965 return len;
3966 }
3967 HSTATE_ATTR_WO(demote);
3968
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3969 static ssize_t demote_size_show(struct kobject *kobj,
3970 struct kobj_attribute *attr, char *buf)
3971 {
3972 struct hstate *h = kobj_to_hstate(kobj, NULL);
3973 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3974
3975 return sysfs_emit(buf, "%lukB\n", demote_size);
3976 }
3977
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3978 static ssize_t demote_size_store(struct kobject *kobj,
3979 struct kobj_attribute *attr,
3980 const char *buf, size_t count)
3981 {
3982 struct hstate *h, *demote_hstate;
3983 unsigned long demote_size;
3984 unsigned int demote_order;
3985
3986 demote_size = (unsigned long)memparse(buf, NULL);
3987
3988 demote_hstate = size_to_hstate(demote_size);
3989 if (!demote_hstate)
3990 return -EINVAL;
3991 demote_order = demote_hstate->order;
3992 if (demote_order < HUGETLB_PAGE_ORDER)
3993 return -EINVAL;
3994
3995 /* demote order must be smaller than hstate order */
3996 h = kobj_to_hstate(kobj, NULL);
3997 if (demote_order >= h->order)
3998 return -EINVAL;
3999
4000 /* resize_lock synchronizes access to demote size and writes */
4001 mutex_lock(&h->resize_lock);
4002 h->demote_order = demote_order;
4003 mutex_unlock(&h->resize_lock);
4004
4005 return count;
4006 }
4007 HSTATE_ATTR(demote_size);
4008
4009 static struct attribute *hstate_attrs[] = {
4010 &nr_hugepages_attr.attr,
4011 &nr_overcommit_hugepages_attr.attr,
4012 &free_hugepages_attr.attr,
4013 &resv_hugepages_attr.attr,
4014 &surplus_hugepages_attr.attr,
4015 #ifdef CONFIG_NUMA
4016 &nr_hugepages_mempolicy_attr.attr,
4017 #endif
4018 NULL,
4019 };
4020
4021 static const struct attribute_group hstate_attr_group = {
4022 .attrs = hstate_attrs,
4023 };
4024
4025 static struct attribute *hstate_demote_attrs[] = {
4026 &demote_size_attr.attr,
4027 &demote_attr.attr,
4028 NULL,
4029 };
4030
4031 static const struct attribute_group hstate_demote_attr_group = {
4032 .attrs = hstate_demote_attrs,
4033 };
4034
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4035 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4036 struct kobject **hstate_kobjs,
4037 const struct attribute_group *hstate_attr_group)
4038 {
4039 int retval;
4040 int hi = hstate_index(h);
4041
4042 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4043 if (!hstate_kobjs[hi])
4044 return -ENOMEM;
4045
4046 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4047 if (retval) {
4048 kobject_put(hstate_kobjs[hi]);
4049 hstate_kobjs[hi] = NULL;
4050 return retval;
4051 }
4052
4053 if (h->demote_order) {
4054 retval = sysfs_create_group(hstate_kobjs[hi],
4055 &hstate_demote_attr_group);
4056 if (retval) {
4057 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4058 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4059 kobject_put(hstate_kobjs[hi]);
4060 hstate_kobjs[hi] = NULL;
4061 return retval;
4062 }
4063 }
4064
4065 return 0;
4066 }
4067
4068 #ifdef CONFIG_NUMA
4069 static bool hugetlb_sysfs_initialized __ro_after_init;
4070
4071 /*
4072 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4073 * with node devices in node_devices[] using a parallel array. The array
4074 * index of a node device or _hstate == node id.
4075 * This is here to avoid any static dependency of the node device driver, in
4076 * the base kernel, on the hugetlb module.
4077 */
4078 struct node_hstate {
4079 struct kobject *hugepages_kobj;
4080 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4081 };
4082 static struct node_hstate node_hstates[MAX_NUMNODES];
4083
4084 /*
4085 * A subset of global hstate attributes for node devices
4086 */
4087 static struct attribute *per_node_hstate_attrs[] = {
4088 &nr_hugepages_attr.attr,
4089 &free_hugepages_attr.attr,
4090 &surplus_hugepages_attr.attr,
4091 NULL,
4092 };
4093
4094 static const struct attribute_group per_node_hstate_attr_group = {
4095 .attrs = per_node_hstate_attrs,
4096 };
4097
4098 /*
4099 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4100 * Returns node id via non-NULL nidp.
4101 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4102 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4103 {
4104 int nid;
4105
4106 for (nid = 0; nid < nr_node_ids; nid++) {
4107 struct node_hstate *nhs = &node_hstates[nid];
4108 int i;
4109 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4110 if (nhs->hstate_kobjs[i] == kobj) {
4111 if (nidp)
4112 *nidp = nid;
4113 return &hstates[i];
4114 }
4115 }
4116
4117 BUG();
4118 return NULL;
4119 }
4120
4121 /*
4122 * Unregister hstate attributes from a single node device.
4123 * No-op if no hstate attributes attached.
4124 */
hugetlb_unregister_node(struct node * node)4125 void hugetlb_unregister_node(struct node *node)
4126 {
4127 struct hstate *h;
4128 struct node_hstate *nhs = &node_hstates[node->dev.id];
4129
4130 if (!nhs->hugepages_kobj)
4131 return; /* no hstate attributes */
4132
4133 for_each_hstate(h) {
4134 int idx = hstate_index(h);
4135 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4136
4137 if (!hstate_kobj)
4138 continue;
4139 if (h->demote_order)
4140 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4141 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4142 kobject_put(hstate_kobj);
4143 nhs->hstate_kobjs[idx] = NULL;
4144 }
4145
4146 kobject_put(nhs->hugepages_kobj);
4147 nhs->hugepages_kobj = NULL;
4148 }
4149
4150
4151 /*
4152 * Register hstate attributes for a single node device.
4153 * No-op if attributes already registered.
4154 */
hugetlb_register_node(struct node * node)4155 void hugetlb_register_node(struct node *node)
4156 {
4157 struct hstate *h;
4158 struct node_hstate *nhs = &node_hstates[node->dev.id];
4159 int err;
4160
4161 if (!hugetlb_sysfs_initialized)
4162 return;
4163
4164 if (nhs->hugepages_kobj)
4165 return; /* already allocated */
4166
4167 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4168 &node->dev.kobj);
4169 if (!nhs->hugepages_kobj)
4170 return;
4171
4172 for_each_hstate(h) {
4173 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4174 nhs->hstate_kobjs,
4175 &per_node_hstate_attr_group);
4176 if (err) {
4177 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4178 h->name, node->dev.id);
4179 hugetlb_unregister_node(node);
4180 break;
4181 }
4182 }
4183 }
4184
4185 /*
4186 * hugetlb init time: register hstate attributes for all registered node
4187 * devices of nodes that have memory. All on-line nodes should have
4188 * registered their associated device by this time.
4189 */
hugetlb_register_all_nodes(void)4190 static void __init hugetlb_register_all_nodes(void)
4191 {
4192 int nid;
4193
4194 for_each_online_node(nid)
4195 hugetlb_register_node(node_devices[nid]);
4196 }
4197 #else /* !CONFIG_NUMA */
4198
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4199 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4200 {
4201 BUG();
4202 if (nidp)
4203 *nidp = -1;
4204 return NULL;
4205 }
4206
hugetlb_register_all_nodes(void)4207 static void hugetlb_register_all_nodes(void) { }
4208
4209 #endif
4210
4211 #ifdef CONFIG_CMA
4212 static void __init hugetlb_cma_check(void);
4213 #else
hugetlb_cma_check(void)4214 static inline __init void hugetlb_cma_check(void)
4215 {
4216 }
4217 #endif
4218
hugetlb_sysfs_init(void)4219 static void __init hugetlb_sysfs_init(void)
4220 {
4221 struct hstate *h;
4222 int err;
4223
4224 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4225 if (!hugepages_kobj)
4226 return;
4227
4228 for_each_hstate(h) {
4229 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4230 hstate_kobjs, &hstate_attr_group);
4231 if (err)
4232 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4233 }
4234
4235 #ifdef CONFIG_NUMA
4236 hugetlb_sysfs_initialized = true;
4237 #endif
4238 hugetlb_register_all_nodes();
4239 }
4240
4241 #ifdef CONFIG_SYSCTL
4242 static void hugetlb_sysctl_init(void);
4243 #else
hugetlb_sysctl_init(void)4244 static inline void hugetlb_sysctl_init(void) { }
4245 #endif
4246
hugetlb_init(void)4247 static int __init hugetlb_init(void)
4248 {
4249 int i;
4250
4251 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4252 __NR_HPAGEFLAGS);
4253
4254 if (!hugepages_supported()) {
4255 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4256 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4257 return 0;
4258 }
4259
4260 /*
4261 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4262 * architectures depend on setup being done here.
4263 */
4264 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4265 if (!parsed_default_hugepagesz) {
4266 /*
4267 * If we did not parse a default huge page size, set
4268 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4269 * number of huge pages for this default size was implicitly
4270 * specified, set that here as well.
4271 * Note that the implicit setting will overwrite an explicit
4272 * setting. A warning will be printed in this case.
4273 */
4274 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4275 if (default_hstate_max_huge_pages) {
4276 if (default_hstate.max_huge_pages) {
4277 char buf[32];
4278
4279 string_get_size(huge_page_size(&default_hstate),
4280 1, STRING_UNITS_2, buf, 32);
4281 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4282 default_hstate.max_huge_pages, buf);
4283 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4284 default_hstate_max_huge_pages);
4285 }
4286 default_hstate.max_huge_pages =
4287 default_hstate_max_huge_pages;
4288
4289 for_each_online_node(i)
4290 default_hstate.max_huge_pages_node[i] =
4291 default_hugepages_in_node[i];
4292 }
4293 }
4294
4295 hugetlb_cma_check();
4296 hugetlb_init_hstates();
4297 gather_bootmem_prealloc();
4298 report_hugepages();
4299
4300 hugetlb_sysfs_init();
4301 hugetlb_cgroup_file_init();
4302 hugetlb_sysctl_init();
4303
4304 #ifdef CONFIG_SMP
4305 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4306 #else
4307 num_fault_mutexes = 1;
4308 #endif
4309 hugetlb_fault_mutex_table =
4310 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4311 GFP_KERNEL);
4312 BUG_ON(!hugetlb_fault_mutex_table);
4313
4314 for (i = 0; i < num_fault_mutexes; i++)
4315 mutex_init(&hugetlb_fault_mutex_table[i]);
4316 return 0;
4317 }
4318 subsys_initcall(hugetlb_init);
4319
4320 /* Overwritten by architectures with more huge page sizes */
__init(weak)4321 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4322 {
4323 return size == HPAGE_SIZE;
4324 }
4325
hugetlb_add_hstate(unsigned int order)4326 void __init hugetlb_add_hstate(unsigned int order)
4327 {
4328 struct hstate *h;
4329 unsigned long i;
4330
4331 if (size_to_hstate(PAGE_SIZE << order)) {
4332 return;
4333 }
4334 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4335 BUG_ON(order == 0);
4336 h = &hstates[hugetlb_max_hstate++];
4337 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4338 h->order = order;
4339 h->mask = ~(huge_page_size(h) - 1);
4340 for (i = 0; i < MAX_NUMNODES; ++i)
4341 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4342 INIT_LIST_HEAD(&h->hugepage_activelist);
4343 h->next_nid_to_alloc = first_memory_node;
4344 h->next_nid_to_free = first_memory_node;
4345 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4346 huge_page_size(h)/SZ_1K);
4347
4348 parsed_hstate = h;
4349 }
4350
hugetlb_node_alloc_supported(void)4351 bool __init __weak hugetlb_node_alloc_supported(void)
4352 {
4353 return true;
4354 }
4355
hugepages_clear_pages_in_node(void)4356 static void __init hugepages_clear_pages_in_node(void)
4357 {
4358 if (!hugetlb_max_hstate) {
4359 default_hstate_max_huge_pages = 0;
4360 memset(default_hugepages_in_node, 0,
4361 sizeof(default_hugepages_in_node));
4362 } else {
4363 parsed_hstate->max_huge_pages = 0;
4364 memset(parsed_hstate->max_huge_pages_node, 0,
4365 sizeof(parsed_hstate->max_huge_pages_node));
4366 }
4367 }
4368
4369 /*
4370 * hugepages command line processing
4371 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4372 * specification. If not, ignore the hugepages value. hugepages can also
4373 * be the first huge page command line option in which case it implicitly
4374 * specifies the number of huge pages for the default size.
4375 */
hugepages_setup(char * s)4376 static int __init hugepages_setup(char *s)
4377 {
4378 unsigned long *mhp;
4379 static unsigned long *last_mhp;
4380 int node = NUMA_NO_NODE;
4381 int count;
4382 unsigned long tmp;
4383 char *p = s;
4384
4385 if (!parsed_valid_hugepagesz) {
4386 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4387 parsed_valid_hugepagesz = true;
4388 return 1;
4389 }
4390
4391 /*
4392 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4393 * yet, so this hugepages= parameter goes to the "default hstate".
4394 * Otherwise, it goes with the previously parsed hugepagesz or
4395 * default_hugepagesz.
4396 */
4397 else if (!hugetlb_max_hstate)
4398 mhp = &default_hstate_max_huge_pages;
4399 else
4400 mhp = &parsed_hstate->max_huge_pages;
4401
4402 if (mhp == last_mhp) {
4403 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4404 return 1;
4405 }
4406
4407 while (*p) {
4408 count = 0;
4409 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4410 goto invalid;
4411 /* Parameter is node format */
4412 if (p[count] == ':') {
4413 if (!hugetlb_node_alloc_supported()) {
4414 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4415 return 1;
4416 }
4417 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4418 goto invalid;
4419 node = array_index_nospec(tmp, MAX_NUMNODES);
4420 p += count + 1;
4421 /* Parse hugepages */
4422 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4423 goto invalid;
4424 if (!hugetlb_max_hstate)
4425 default_hugepages_in_node[node] = tmp;
4426 else
4427 parsed_hstate->max_huge_pages_node[node] = tmp;
4428 *mhp += tmp;
4429 /* Go to parse next node*/
4430 if (p[count] == ',')
4431 p += count + 1;
4432 else
4433 break;
4434 } else {
4435 if (p != s)
4436 goto invalid;
4437 *mhp = tmp;
4438 break;
4439 }
4440 }
4441
4442 /*
4443 * Global state is always initialized later in hugetlb_init.
4444 * But we need to allocate gigantic hstates here early to still
4445 * use the bootmem allocator.
4446 */
4447 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4448 hugetlb_hstate_alloc_pages(parsed_hstate);
4449
4450 last_mhp = mhp;
4451
4452 return 1;
4453
4454 invalid:
4455 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4456 hugepages_clear_pages_in_node();
4457 return 1;
4458 }
4459 __setup("hugepages=", hugepages_setup);
4460
4461 /*
4462 * hugepagesz command line processing
4463 * A specific huge page size can only be specified once with hugepagesz.
4464 * hugepagesz is followed by hugepages on the command line. The global
4465 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4466 * hugepagesz argument was valid.
4467 */
hugepagesz_setup(char * s)4468 static int __init hugepagesz_setup(char *s)
4469 {
4470 unsigned long size;
4471 struct hstate *h;
4472
4473 parsed_valid_hugepagesz = false;
4474 size = (unsigned long)memparse(s, NULL);
4475
4476 if (!arch_hugetlb_valid_size(size)) {
4477 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4478 return 1;
4479 }
4480
4481 h = size_to_hstate(size);
4482 if (h) {
4483 /*
4484 * hstate for this size already exists. This is normally
4485 * an error, but is allowed if the existing hstate is the
4486 * default hstate. More specifically, it is only allowed if
4487 * the number of huge pages for the default hstate was not
4488 * previously specified.
4489 */
4490 if (!parsed_default_hugepagesz || h != &default_hstate ||
4491 default_hstate.max_huge_pages) {
4492 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4493 return 1;
4494 }
4495
4496 /*
4497 * No need to call hugetlb_add_hstate() as hstate already
4498 * exists. But, do set parsed_hstate so that a following
4499 * hugepages= parameter will be applied to this hstate.
4500 */
4501 parsed_hstate = h;
4502 parsed_valid_hugepagesz = true;
4503 return 1;
4504 }
4505
4506 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4507 parsed_valid_hugepagesz = true;
4508 return 1;
4509 }
4510 __setup("hugepagesz=", hugepagesz_setup);
4511
4512 /*
4513 * default_hugepagesz command line input
4514 * Only one instance of default_hugepagesz allowed on command line.
4515 */
default_hugepagesz_setup(char * s)4516 static int __init default_hugepagesz_setup(char *s)
4517 {
4518 unsigned long size;
4519 int i;
4520
4521 parsed_valid_hugepagesz = false;
4522 if (parsed_default_hugepagesz) {
4523 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4524 return 1;
4525 }
4526
4527 size = (unsigned long)memparse(s, NULL);
4528
4529 if (!arch_hugetlb_valid_size(size)) {
4530 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4531 return 1;
4532 }
4533
4534 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4535 parsed_valid_hugepagesz = true;
4536 parsed_default_hugepagesz = true;
4537 default_hstate_idx = hstate_index(size_to_hstate(size));
4538
4539 /*
4540 * The number of default huge pages (for this size) could have been
4541 * specified as the first hugetlb parameter: hugepages=X. If so,
4542 * then default_hstate_max_huge_pages is set. If the default huge
4543 * page size is gigantic (> MAX_ORDER), then the pages must be
4544 * allocated here from bootmem allocator.
4545 */
4546 if (default_hstate_max_huge_pages) {
4547 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4548 for_each_online_node(i)
4549 default_hstate.max_huge_pages_node[i] =
4550 default_hugepages_in_node[i];
4551 if (hstate_is_gigantic(&default_hstate))
4552 hugetlb_hstate_alloc_pages(&default_hstate);
4553 default_hstate_max_huge_pages = 0;
4554 }
4555
4556 return 1;
4557 }
4558 __setup("default_hugepagesz=", default_hugepagesz_setup);
4559
allowed_mems_nr(struct hstate * h)4560 static unsigned int allowed_mems_nr(struct hstate *h)
4561 {
4562 int node;
4563 unsigned int nr = 0;
4564 nodemask_t *mbind_nodemask;
4565 unsigned int *array = h->free_huge_pages_node;
4566 gfp_t gfp_mask = htlb_alloc_mask(h);
4567
4568 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4569 for_each_node_mask(node, cpuset_current_mems_allowed) {
4570 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4571 nr += array[node];
4572 }
4573
4574 return nr;
4575 }
4576
4577 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4578 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4579 void *buffer, size_t *length,
4580 loff_t *ppos, unsigned long *out)
4581 {
4582 struct ctl_table dup_table;
4583
4584 /*
4585 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4586 * can duplicate the @table and alter the duplicate of it.
4587 */
4588 dup_table = *table;
4589 dup_table.data = out;
4590
4591 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4592 }
4593
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4594 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4595 struct ctl_table *table, int write,
4596 void *buffer, size_t *length, loff_t *ppos)
4597 {
4598 struct hstate *h = &default_hstate;
4599 unsigned long tmp = h->max_huge_pages;
4600 int ret;
4601
4602 if (!hugepages_supported())
4603 return -EOPNOTSUPP;
4604
4605 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4606 &tmp);
4607 if (ret)
4608 goto out;
4609
4610 if (write)
4611 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4612 NUMA_NO_NODE, tmp, *length);
4613 out:
4614 return ret;
4615 }
4616
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4617 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4618 void *buffer, size_t *length, loff_t *ppos)
4619 {
4620
4621 return hugetlb_sysctl_handler_common(false, table, write,
4622 buffer, length, ppos);
4623 }
4624
4625 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4626 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4627 void *buffer, size_t *length, loff_t *ppos)
4628 {
4629 return hugetlb_sysctl_handler_common(true, table, write,
4630 buffer, length, ppos);
4631 }
4632 #endif /* CONFIG_NUMA */
4633
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4634 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4635 void *buffer, size_t *length, loff_t *ppos)
4636 {
4637 struct hstate *h = &default_hstate;
4638 unsigned long tmp;
4639 int ret;
4640
4641 if (!hugepages_supported())
4642 return -EOPNOTSUPP;
4643
4644 tmp = h->nr_overcommit_huge_pages;
4645
4646 if (write && hstate_is_gigantic(h))
4647 return -EINVAL;
4648
4649 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4650 &tmp);
4651 if (ret)
4652 goto out;
4653
4654 if (write) {
4655 spin_lock_irq(&hugetlb_lock);
4656 h->nr_overcommit_huge_pages = tmp;
4657 spin_unlock_irq(&hugetlb_lock);
4658 }
4659 out:
4660 return ret;
4661 }
4662
4663 static struct ctl_table hugetlb_table[] = {
4664 {
4665 .procname = "nr_hugepages",
4666 .data = NULL,
4667 .maxlen = sizeof(unsigned long),
4668 .mode = 0644,
4669 .proc_handler = hugetlb_sysctl_handler,
4670 },
4671 #ifdef CONFIG_NUMA
4672 {
4673 .procname = "nr_hugepages_mempolicy",
4674 .data = NULL,
4675 .maxlen = sizeof(unsigned long),
4676 .mode = 0644,
4677 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4678 },
4679 #endif
4680 {
4681 .procname = "hugetlb_shm_group",
4682 .data = &sysctl_hugetlb_shm_group,
4683 .maxlen = sizeof(gid_t),
4684 .mode = 0644,
4685 .proc_handler = proc_dointvec,
4686 },
4687 {
4688 .procname = "nr_overcommit_hugepages",
4689 .data = NULL,
4690 .maxlen = sizeof(unsigned long),
4691 .mode = 0644,
4692 .proc_handler = hugetlb_overcommit_handler,
4693 },
4694 { }
4695 };
4696
hugetlb_sysctl_init(void)4697 static void hugetlb_sysctl_init(void)
4698 {
4699 register_sysctl_init("vm", hugetlb_table);
4700 }
4701 #endif /* CONFIG_SYSCTL */
4702
hugetlb_report_meminfo(struct seq_file * m)4703 void hugetlb_report_meminfo(struct seq_file *m)
4704 {
4705 struct hstate *h;
4706 unsigned long total = 0;
4707
4708 if (!hugepages_supported())
4709 return;
4710
4711 for_each_hstate(h) {
4712 unsigned long count = h->nr_huge_pages;
4713
4714 total += huge_page_size(h) * count;
4715
4716 if (h == &default_hstate)
4717 seq_printf(m,
4718 "HugePages_Total: %5lu\n"
4719 "HugePages_Free: %5lu\n"
4720 "HugePages_Rsvd: %5lu\n"
4721 "HugePages_Surp: %5lu\n"
4722 "Hugepagesize: %8lu kB\n",
4723 count,
4724 h->free_huge_pages,
4725 h->resv_huge_pages,
4726 h->surplus_huge_pages,
4727 huge_page_size(h) / SZ_1K);
4728 }
4729
4730 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4731 }
4732
hugetlb_report_node_meminfo(char * buf,int len,int nid)4733 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4734 {
4735 struct hstate *h = &default_hstate;
4736
4737 if (!hugepages_supported())
4738 return 0;
4739
4740 return sysfs_emit_at(buf, len,
4741 "Node %d HugePages_Total: %5u\n"
4742 "Node %d HugePages_Free: %5u\n"
4743 "Node %d HugePages_Surp: %5u\n",
4744 nid, h->nr_huge_pages_node[nid],
4745 nid, h->free_huge_pages_node[nid],
4746 nid, h->surplus_huge_pages_node[nid]);
4747 }
4748
hugetlb_show_meminfo_node(int nid)4749 void hugetlb_show_meminfo_node(int nid)
4750 {
4751 struct hstate *h;
4752
4753 if (!hugepages_supported())
4754 return;
4755
4756 for_each_hstate(h)
4757 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4758 nid,
4759 h->nr_huge_pages_node[nid],
4760 h->free_huge_pages_node[nid],
4761 h->surplus_huge_pages_node[nid],
4762 huge_page_size(h) / SZ_1K);
4763 }
4764
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4765 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4766 {
4767 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4768 K(atomic_long_read(&mm->hugetlb_usage)));
4769 }
4770
4771 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4772 unsigned long hugetlb_total_pages(void)
4773 {
4774 struct hstate *h;
4775 unsigned long nr_total_pages = 0;
4776
4777 for_each_hstate(h)
4778 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4779 return nr_total_pages;
4780 }
4781
hugetlb_acct_memory(struct hstate * h,long delta)4782 static int hugetlb_acct_memory(struct hstate *h, long delta)
4783 {
4784 int ret = -ENOMEM;
4785
4786 if (!delta)
4787 return 0;
4788
4789 spin_lock_irq(&hugetlb_lock);
4790 /*
4791 * When cpuset is configured, it breaks the strict hugetlb page
4792 * reservation as the accounting is done on a global variable. Such
4793 * reservation is completely rubbish in the presence of cpuset because
4794 * the reservation is not checked against page availability for the
4795 * current cpuset. Application can still potentially OOM'ed by kernel
4796 * with lack of free htlb page in cpuset that the task is in.
4797 * Attempt to enforce strict accounting with cpuset is almost
4798 * impossible (or too ugly) because cpuset is too fluid that
4799 * task or memory node can be dynamically moved between cpusets.
4800 *
4801 * The change of semantics for shared hugetlb mapping with cpuset is
4802 * undesirable. However, in order to preserve some of the semantics,
4803 * we fall back to check against current free page availability as
4804 * a best attempt and hopefully to minimize the impact of changing
4805 * semantics that cpuset has.
4806 *
4807 * Apart from cpuset, we also have memory policy mechanism that
4808 * also determines from which node the kernel will allocate memory
4809 * in a NUMA system. So similar to cpuset, we also should consider
4810 * the memory policy of the current task. Similar to the description
4811 * above.
4812 */
4813 if (delta > 0) {
4814 if (gather_surplus_pages(h, delta) < 0)
4815 goto out;
4816
4817 if (delta > allowed_mems_nr(h)) {
4818 return_unused_surplus_pages(h, delta);
4819 goto out;
4820 }
4821 }
4822
4823 ret = 0;
4824 if (delta < 0)
4825 return_unused_surplus_pages(h, (unsigned long) -delta);
4826
4827 out:
4828 spin_unlock_irq(&hugetlb_lock);
4829 return ret;
4830 }
4831
hugetlb_vm_op_open(struct vm_area_struct * vma)4832 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4833 {
4834 struct resv_map *resv = vma_resv_map(vma);
4835
4836 /*
4837 * HPAGE_RESV_OWNER indicates a private mapping.
4838 * This new VMA should share its siblings reservation map if present.
4839 * The VMA will only ever have a valid reservation map pointer where
4840 * it is being copied for another still existing VMA. As that VMA
4841 * has a reference to the reservation map it cannot disappear until
4842 * after this open call completes. It is therefore safe to take a
4843 * new reference here without additional locking.
4844 */
4845 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4846 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4847 kref_get(&resv->refs);
4848 }
4849
4850 /*
4851 * vma_lock structure for sharable mappings is vma specific.
4852 * Clear old pointer (if copied via vm_area_dup) and allocate
4853 * new structure. Before clearing, make sure vma_lock is not
4854 * for this vma.
4855 */
4856 if (vma->vm_flags & VM_MAYSHARE) {
4857 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4858
4859 if (vma_lock) {
4860 if (vma_lock->vma != vma) {
4861 vma->vm_private_data = NULL;
4862 hugetlb_vma_lock_alloc(vma);
4863 } else
4864 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4865 } else
4866 hugetlb_vma_lock_alloc(vma);
4867 }
4868 }
4869
hugetlb_vm_op_close(struct vm_area_struct * vma)4870 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4871 {
4872 struct hstate *h = hstate_vma(vma);
4873 struct resv_map *resv;
4874 struct hugepage_subpool *spool = subpool_vma(vma);
4875 unsigned long reserve, start, end;
4876 long gbl_reserve;
4877
4878 hugetlb_vma_lock_free(vma);
4879
4880 resv = vma_resv_map(vma);
4881 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4882 return;
4883
4884 start = vma_hugecache_offset(h, vma, vma->vm_start);
4885 end = vma_hugecache_offset(h, vma, vma->vm_end);
4886
4887 reserve = (end - start) - region_count(resv, start, end);
4888 hugetlb_cgroup_uncharge_counter(resv, start, end);
4889 if (reserve) {
4890 /*
4891 * Decrement reserve counts. The global reserve count may be
4892 * adjusted if the subpool has a minimum size.
4893 */
4894 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4895 hugetlb_acct_memory(h, -gbl_reserve);
4896 }
4897
4898 kref_put(&resv->refs, resv_map_release);
4899 }
4900
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4901 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4902 {
4903 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4904 return -EINVAL;
4905
4906 /*
4907 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4908 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4909 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4910 */
4911 if (addr & ~PUD_MASK) {
4912 /*
4913 * hugetlb_vm_op_split is called right before we attempt to
4914 * split the VMA. We will need to unshare PMDs in the old and
4915 * new VMAs, so let's unshare before we split.
4916 */
4917 unsigned long floor = addr & PUD_MASK;
4918 unsigned long ceil = floor + PUD_SIZE;
4919
4920 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4921 hugetlb_unshare_pmds(vma, floor, ceil);
4922 }
4923
4924 return 0;
4925 }
4926
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4927 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4928 {
4929 return huge_page_size(hstate_vma(vma));
4930 }
4931
4932 /*
4933 * We cannot handle pagefaults against hugetlb pages at all. They cause
4934 * handle_mm_fault() to try to instantiate regular-sized pages in the
4935 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4936 * this far.
4937 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4938 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4939 {
4940 BUG();
4941 return 0;
4942 }
4943
4944 /*
4945 * When a new function is introduced to vm_operations_struct and added
4946 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4947 * This is because under System V memory model, mappings created via
4948 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4949 * their original vm_ops are overwritten with shm_vm_ops.
4950 */
4951 const struct vm_operations_struct hugetlb_vm_ops = {
4952 .fault = hugetlb_vm_op_fault,
4953 .open = hugetlb_vm_op_open,
4954 .close = hugetlb_vm_op_close,
4955 .may_split = hugetlb_vm_op_split,
4956 .pagesize = hugetlb_vm_op_pagesize,
4957 };
4958
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4959 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4960 int writable)
4961 {
4962 pte_t entry;
4963 unsigned int shift = huge_page_shift(hstate_vma(vma));
4964
4965 if (writable) {
4966 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4967 vma->vm_page_prot)));
4968 } else {
4969 entry = huge_pte_wrprotect(mk_huge_pte(page,
4970 vma->vm_page_prot));
4971 }
4972 entry = pte_mkyoung(entry);
4973 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4974
4975 return entry;
4976 }
4977
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4978 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4979 unsigned long address, pte_t *ptep)
4980 {
4981 pte_t entry;
4982
4983 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4984 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4985 update_mmu_cache(vma, address, ptep);
4986 }
4987
is_hugetlb_entry_migration(pte_t pte)4988 bool is_hugetlb_entry_migration(pte_t pte)
4989 {
4990 swp_entry_t swp;
4991
4992 if (huge_pte_none(pte) || pte_present(pte))
4993 return false;
4994 swp = pte_to_swp_entry(pte);
4995 if (is_migration_entry(swp))
4996 return true;
4997 else
4998 return false;
4999 }
5000
is_hugetlb_entry_hwpoisoned(pte_t pte)5001 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5002 {
5003 swp_entry_t swp;
5004
5005 if (huge_pte_none(pte) || pte_present(pte))
5006 return false;
5007 swp = pte_to_swp_entry(pte);
5008 if (is_hwpoison_entry(swp))
5009 return true;
5010 else
5011 return false;
5012 }
5013
5014 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5015 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5016 struct folio *new_folio, pte_t old, unsigned long sz)
5017 {
5018 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5019
5020 __folio_mark_uptodate(new_folio);
5021 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5022 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5023 newpte = huge_pte_mkuffd_wp(newpte);
5024 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5025 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5026 folio_set_hugetlb_migratable(new_folio);
5027 }
5028
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5029 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5030 struct vm_area_struct *dst_vma,
5031 struct vm_area_struct *src_vma)
5032 {
5033 pte_t *src_pte, *dst_pte, entry;
5034 struct folio *pte_folio;
5035 unsigned long addr;
5036 bool cow = is_cow_mapping(src_vma->vm_flags);
5037 struct hstate *h = hstate_vma(src_vma);
5038 unsigned long sz = huge_page_size(h);
5039 unsigned long npages = pages_per_huge_page(h);
5040 struct mmu_notifier_range range;
5041 unsigned long last_addr_mask;
5042 int ret = 0;
5043
5044 if (cow) {
5045 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5046 src_vma->vm_start,
5047 src_vma->vm_end);
5048 mmu_notifier_invalidate_range_start(&range);
5049 vma_assert_write_locked(src_vma);
5050 raw_write_seqcount_begin(&src->write_protect_seq);
5051 } else {
5052 /*
5053 * For shared mappings the vma lock must be held before
5054 * calling hugetlb_walk() in the src vma. Otherwise, the
5055 * returned ptep could go away if part of a shared pmd and
5056 * another thread calls huge_pmd_unshare.
5057 */
5058 hugetlb_vma_lock_read(src_vma);
5059 }
5060
5061 last_addr_mask = hugetlb_mask_last_page(h);
5062 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5063 spinlock_t *src_ptl, *dst_ptl;
5064 src_pte = hugetlb_walk(src_vma, addr, sz);
5065 if (!src_pte) {
5066 addr |= last_addr_mask;
5067 continue;
5068 }
5069 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5070 if (!dst_pte) {
5071 ret = -ENOMEM;
5072 break;
5073 }
5074
5075 /*
5076 * If the pagetables are shared don't copy or take references.
5077 *
5078 * dst_pte == src_pte is the common case of src/dest sharing.
5079 * However, src could have 'unshared' and dst shares with
5080 * another vma. So page_count of ptep page is checked instead
5081 * to reliably determine whether pte is shared.
5082 */
5083 if (page_count(virt_to_page(dst_pte)) > 1) {
5084 addr |= last_addr_mask;
5085 continue;
5086 }
5087
5088 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5089 src_ptl = huge_pte_lockptr(h, src, src_pte);
5090 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5091 entry = huge_ptep_get(src_pte);
5092 again:
5093 if (huge_pte_none(entry)) {
5094 /*
5095 * Skip if src entry none.
5096 */
5097 ;
5098 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5099 if (!userfaultfd_wp(dst_vma))
5100 entry = huge_pte_clear_uffd_wp(entry);
5101 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5102 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5103 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5104 bool uffd_wp = pte_swp_uffd_wp(entry);
5105
5106 if (!is_readable_migration_entry(swp_entry) && cow) {
5107 /*
5108 * COW mappings require pages in both
5109 * parent and child to be set to read.
5110 */
5111 swp_entry = make_readable_migration_entry(
5112 swp_offset(swp_entry));
5113 entry = swp_entry_to_pte(swp_entry);
5114 if (userfaultfd_wp(src_vma) && uffd_wp)
5115 entry = pte_swp_mkuffd_wp(entry);
5116 set_huge_pte_at(src, addr, src_pte, entry, sz);
5117 }
5118 if (!userfaultfd_wp(dst_vma))
5119 entry = huge_pte_clear_uffd_wp(entry);
5120 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5121 } else if (unlikely(is_pte_marker(entry))) {
5122 pte_marker marker = copy_pte_marker(
5123 pte_to_swp_entry(entry), dst_vma);
5124
5125 if (marker)
5126 set_huge_pte_at(dst, addr, dst_pte,
5127 make_pte_marker(marker), sz);
5128 } else {
5129 entry = huge_ptep_get(src_pte);
5130 pte_folio = page_folio(pte_page(entry));
5131 folio_get(pte_folio);
5132
5133 /*
5134 * Failing to duplicate the anon rmap is a rare case
5135 * where we see pinned hugetlb pages while they're
5136 * prone to COW. We need to do the COW earlier during
5137 * fork.
5138 *
5139 * When pre-allocating the page or copying data, we
5140 * need to be without the pgtable locks since we could
5141 * sleep during the process.
5142 */
5143 if (!folio_test_anon(pte_folio)) {
5144 page_dup_file_rmap(&pte_folio->page, true);
5145 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5146 true, src_vma)) {
5147 pte_t src_pte_old = entry;
5148 struct folio *new_folio;
5149
5150 spin_unlock(src_ptl);
5151 spin_unlock(dst_ptl);
5152 /* Do not use reserve as it's private owned */
5153 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5154 if (IS_ERR(new_folio)) {
5155 folio_put(pte_folio);
5156 ret = PTR_ERR(new_folio);
5157 break;
5158 }
5159 ret = copy_user_large_folio(new_folio,
5160 pte_folio,
5161 addr, dst_vma);
5162 folio_put(pte_folio);
5163 if (ret) {
5164 folio_put(new_folio);
5165 break;
5166 }
5167
5168 /* Install the new hugetlb folio if src pte stable */
5169 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5170 src_ptl = huge_pte_lockptr(h, src, src_pte);
5171 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5172 entry = huge_ptep_get(src_pte);
5173 if (!pte_same(src_pte_old, entry)) {
5174 restore_reserve_on_error(h, dst_vma, addr,
5175 new_folio);
5176 folio_put(new_folio);
5177 /* huge_ptep of dst_pte won't change as in child */
5178 goto again;
5179 }
5180 hugetlb_install_folio(dst_vma, dst_pte, addr,
5181 new_folio, src_pte_old, sz);
5182 spin_unlock(src_ptl);
5183 spin_unlock(dst_ptl);
5184 continue;
5185 }
5186
5187 if (cow) {
5188 /*
5189 * No need to notify as we are downgrading page
5190 * table protection not changing it to point
5191 * to a new page.
5192 *
5193 * See Documentation/mm/mmu_notifier.rst
5194 */
5195 huge_ptep_set_wrprotect(src, addr, src_pte);
5196 entry = huge_pte_wrprotect(entry);
5197 }
5198
5199 if (!userfaultfd_wp(dst_vma))
5200 entry = huge_pte_clear_uffd_wp(entry);
5201
5202 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5203 hugetlb_count_add(npages, dst);
5204 }
5205 spin_unlock(src_ptl);
5206 spin_unlock(dst_ptl);
5207 }
5208
5209 if (cow) {
5210 raw_write_seqcount_end(&src->write_protect_seq);
5211 mmu_notifier_invalidate_range_end(&range);
5212 } else {
5213 hugetlb_vma_unlock_read(src_vma);
5214 }
5215
5216 return ret;
5217 }
5218
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5219 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5220 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5221 unsigned long sz)
5222 {
5223 struct hstate *h = hstate_vma(vma);
5224 struct mm_struct *mm = vma->vm_mm;
5225 spinlock_t *src_ptl, *dst_ptl;
5226 pte_t pte;
5227
5228 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5229 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5230
5231 /*
5232 * We don't have to worry about the ordering of src and dst ptlocks
5233 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5234 */
5235 if (src_ptl != dst_ptl)
5236 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5237
5238 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5239 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5240
5241 if (src_ptl != dst_ptl)
5242 spin_unlock(src_ptl);
5243 spin_unlock(dst_ptl);
5244 }
5245
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5246 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5247 struct vm_area_struct *new_vma,
5248 unsigned long old_addr, unsigned long new_addr,
5249 unsigned long len)
5250 {
5251 struct hstate *h = hstate_vma(vma);
5252 struct address_space *mapping = vma->vm_file->f_mapping;
5253 unsigned long sz = huge_page_size(h);
5254 struct mm_struct *mm = vma->vm_mm;
5255 unsigned long old_end = old_addr + len;
5256 unsigned long last_addr_mask;
5257 pte_t *src_pte, *dst_pte;
5258 struct mmu_notifier_range range;
5259 bool shared_pmd = false;
5260
5261 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5262 old_end);
5263 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5264 /*
5265 * In case of shared PMDs, we should cover the maximum possible
5266 * range.
5267 */
5268 flush_cache_range(vma, range.start, range.end);
5269
5270 mmu_notifier_invalidate_range_start(&range);
5271 last_addr_mask = hugetlb_mask_last_page(h);
5272 /* Prevent race with file truncation */
5273 hugetlb_vma_lock_write(vma);
5274 i_mmap_lock_write(mapping);
5275 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5276 src_pte = hugetlb_walk(vma, old_addr, sz);
5277 if (!src_pte) {
5278 old_addr |= last_addr_mask;
5279 new_addr |= last_addr_mask;
5280 continue;
5281 }
5282 if (huge_pte_none(huge_ptep_get(src_pte)))
5283 continue;
5284
5285 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5286 shared_pmd = true;
5287 old_addr |= last_addr_mask;
5288 new_addr |= last_addr_mask;
5289 continue;
5290 }
5291
5292 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5293 if (!dst_pte)
5294 break;
5295
5296 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5297 }
5298
5299 if (shared_pmd)
5300 flush_hugetlb_tlb_range(vma, range.start, range.end);
5301 else
5302 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5303 mmu_notifier_invalidate_range_end(&range);
5304 i_mmap_unlock_write(mapping);
5305 hugetlb_vma_unlock_write(vma);
5306
5307 return len + old_addr - old_end;
5308 }
5309
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5310 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5311 unsigned long start, unsigned long end,
5312 struct page *ref_page, zap_flags_t zap_flags)
5313 {
5314 struct mm_struct *mm = vma->vm_mm;
5315 unsigned long address;
5316 pte_t *ptep;
5317 pte_t pte;
5318 spinlock_t *ptl;
5319 struct page *page;
5320 struct hstate *h = hstate_vma(vma);
5321 unsigned long sz = huge_page_size(h);
5322 unsigned long last_addr_mask;
5323 bool force_flush = false;
5324
5325 WARN_ON(!is_vm_hugetlb_page(vma));
5326 BUG_ON(start & ~huge_page_mask(h));
5327 BUG_ON(end & ~huge_page_mask(h));
5328
5329 /*
5330 * This is a hugetlb vma, all the pte entries should point
5331 * to huge page.
5332 */
5333 tlb_change_page_size(tlb, sz);
5334 tlb_start_vma(tlb, vma);
5335
5336 last_addr_mask = hugetlb_mask_last_page(h);
5337 address = start;
5338 for (; address < end; address += sz) {
5339 ptep = hugetlb_walk(vma, address, sz);
5340 if (!ptep) {
5341 address |= last_addr_mask;
5342 continue;
5343 }
5344
5345 ptl = huge_pte_lock(h, mm, ptep);
5346 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5347 spin_unlock(ptl);
5348 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5349 force_flush = true;
5350 address |= last_addr_mask;
5351 continue;
5352 }
5353
5354 pte = huge_ptep_get(ptep);
5355 if (huge_pte_none(pte)) {
5356 spin_unlock(ptl);
5357 continue;
5358 }
5359
5360 /*
5361 * Migrating hugepage or HWPoisoned hugepage is already
5362 * unmapped and its refcount is dropped, so just clear pte here.
5363 */
5364 if (unlikely(!pte_present(pte))) {
5365 /*
5366 * If the pte was wr-protected by uffd-wp in any of the
5367 * swap forms, meanwhile the caller does not want to
5368 * drop the uffd-wp bit in this zap, then replace the
5369 * pte with a marker.
5370 */
5371 if (pte_swp_uffd_wp_any(pte) &&
5372 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5373 set_huge_pte_at(mm, address, ptep,
5374 make_pte_marker(PTE_MARKER_UFFD_WP),
5375 sz);
5376 else
5377 huge_pte_clear(mm, address, ptep, sz);
5378 spin_unlock(ptl);
5379 continue;
5380 }
5381
5382 page = pte_page(pte);
5383 /*
5384 * If a reference page is supplied, it is because a specific
5385 * page is being unmapped, not a range. Ensure the page we
5386 * are about to unmap is the actual page of interest.
5387 */
5388 if (ref_page) {
5389 if (page != ref_page) {
5390 spin_unlock(ptl);
5391 continue;
5392 }
5393 /*
5394 * Mark the VMA as having unmapped its page so that
5395 * future faults in this VMA will fail rather than
5396 * looking like data was lost
5397 */
5398 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5399 }
5400
5401 pte = huge_ptep_get_and_clear(mm, address, ptep);
5402 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5403 if (huge_pte_dirty(pte))
5404 set_page_dirty(page);
5405 /* Leave a uffd-wp pte marker if needed */
5406 if (huge_pte_uffd_wp(pte) &&
5407 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5408 set_huge_pte_at(mm, address, ptep,
5409 make_pte_marker(PTE_MARKER_UFFD_WP),
5410 sz);
5411 hugetlb_count_sub(pages_per_huge_page(h), mm);
5412 page_remove_rmap(page, vma, true);
5413
5414 spin_unlock(ptl);
5415 tlb_remove_page_size(tlb, page, huge_page_size(h));
5416 /*
5417 * Bail out after unmapping reference page if supplied
5418 */
5419 if (ref_page)
5420 break;
5421 }
5422 tlb_end_vma(tlb, vma);
5423
5424 /*
5425 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5426 * could defer the flush until now, since by holding i_mmap_rwsem we
5427 * guaranteed that the last refernece would not be dropped. But we must
5428 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5429 * dropped and the last reference to the shared PMDs page might be
5430 * dropped as well.
5431 *
5432 * In theory we could defer the freeing of the PMD pages as well, but
5433 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5434 * detect sharing, so we cannot defer the release of the page either.
5435 * Instead, do flush now.
5436 */
5437 if (force_flush)
5438 tlb_flush_mmu_tlbonly(tlb);
5439 }
5440
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5441 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5442 unsigned long *start, unsigned long *end)
5443 {
5444 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5445 return;
5446
5447 adjust_range_if_pmd_sharing_possible(vma, start, end);
5448 hugetlb_vma_lock_write(vma);
5449 if (vma->vm_file)
5450 i_mmap_lock_write(vma->vm_file->f_mapping);
5451 }
5452
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5453 void __hugetlb_zap_end(struct vm_area_struct *vma,
5454 struct zap_details *details)
5455 {
5456 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5457
5458 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5459 return;
5460
5461 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5462 /*
5463 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5464 * When the vma_lock is freed, this makes the vma ineligible
5465 * for pmd sharing. And, i_mmap_rwsem is required to set up
5466 * pmd sharing. This is important as page tables for this
5467 * unmapped range will be asynchrously deleted. If the page
5468 * tables are shared, there will be issues when accessed by
5469 * someone else.
5470 */
5471 __hugetlb_vma_unlock_write_free(vma);
5472 } else {
5473 hugetlb_vma_unlock_write(vma);
5474 }
5475
5476 if (vma->vm_file)
5477 i_mmap_unlock_write(vma->vm_file->f_mapping);
5478 }
5479
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5480 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5481 unsigned long end, struct page *ref_page,
5482 zap_flags_t zap_flags)
5483 {
5484 struct mmu_notifier_range range;
5485 struct mmu_gather tlb;
5486
5487 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5488 start, end);
5489 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5490 mmu_notifier_invalidate_range_start(&range);
5491 tlb_gather_mmu(&tlb, vma->vm_mm);
5492
5493 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5494
5495 mmu_notifier_invalidate_range_end(&range);
5496 tlb_finish_mmu(&tlb);
5497 }
5498
5499 /*
5500 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5501 * mapping it owns the reserve page for. The intention is to unmap the page
5502 * from other VMAs and let the children be SIGKILLed if they are faulting the
5503 * same region.
5504 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5505 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5506 struct page *page, unsigned long address)
5507 {
5508 struct hstate *h = hstate_vma(vma);
5509 struct vm_area_struct *iter_vma;
5510 struct address_space *mapping;
5511 pgoff_t pgoff;
5512
5513 /*
5514 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5515 * from page cache lookup which is in HPAGE_SIZE units.
5516 */
5517 address = address & huge_page_mask(h);
5518 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5519 vma->vm_pgoff;
5520 mapping = vma->vm_file->f_mapping;
5521
5522 /*
5523 * Take the mapping lock for the duration of the table walk. As
5524 * this mapping should be shared between all the VMAs,
5525 * __unmap_hugepage_range() is called as the lock is already held
5526 */
5527 i_mmap_lock_write(mapping);
5528 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5529 /* Do not unmap the current VMA */
5530 if (iter_vma == vma)
5531 continue;
5532
5533 /*
5534 * Shared VMAs have their own reserves and do not affect
5535 * MAP_PRIVATE accounting but it is possible that a shared
5536 * VMA is using the same page so check and skip such VMAs.
5537 */
5538 if (iter_vma->vm_flags & VM_MAYSHARE)
5539 continue;
5540
5541 /*
5542 * Unmap the page from other VMAs without their own reserves.
5543 * They get marked to be SIGKILLed if they fault in these
5544 * areas. This is because a future no-page fault on this VMA
5545 * could insert a zeroed page instead of the data existing
5546 * from the time of fork. This would look like data corruption
5547 */
5548 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5549 unmap_hugepage_range(iter_vma, address,
5550 address + huge_page_size(h), page, 0);
5551 }
5552 i_mmap_unlock_write(mapping);
5553 }
5554
5555 /*
5556 * hugetlb_wp() should be called with page lock of the original hugepage held.
5557 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5558 * cannot race with other handlers or page migration.
5559 * Keep the pte_same checks anyway to make transition from the mutex easier.
5560 */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct folio * pagecache_folio,spinlock_t * ptl)5561 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5562 unsigned long address, pte_t *ptep, unsigned int flags,
5563 struct folio *pagecache_folio, spinlock_t *ptl)
5564 {
5565 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5566 pte_t pte = huge_ptep_get(ptep);
5567 struct hstate *h = hstate_vma(vma);
5568 struct folio *old_folio;
5569 struct folio *new_folio;
5570 int outside_reserve = 0;
5571 vm_fault_t ret = 0;
5572 unsigned long haddr = address & huge_page_mask(h);
5573 struct mmu_notifier_range range;
5574
5575 /*
5576 * Never handle CoW for uffd-wp protected pages. It should be only
5577 * handled when the uffd-wp protection is removed.
5578 *
5579 * Note that only the CoW optimization path (in hugetlb_no_page())
5580 * can trigger this, because hugetlb_fault() will always resolve
5581 * uffd-wp bit first.
5582 */
5583 if (!unshare && huge_pte_uffd_wp(pte))
5584 return 0;
5585
5586 /*
5587 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5588 * PTE mapped R/O such as maybe_mkwrite() would do.
5589 */
5590 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5591 return VM_FAULT_SIGSEGV;
5592
5593 /* Let's take out MAP_SHARED mappings first. */
5594 if (vma->vm_flags & VM_MAYSHARE) {
5595 set_huge_ptep_writable(vma, haddr, ptep);
5596 return 0;
5597 }
5598
5599 old_folio = page_folio(pte_page(pte));
5600
5601 delayacct_wpcopy_start();
5602
5603 retry_avoidcopy:
5604 /*
5605 * If no-one else is actually using this page, we're the exclusive
5606 * owner and can reuse this page.
5607 */
5608 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5609 if (!PageAnonExclusive(&old_folio->page))
5610 page_move_anon_rmap(&old_folio->page, vma);
5611 if (likely(!unshare))
5612 set_huge_ptep_writable(vma, haddr, ptep);
5613
5614 delayacct_wpcopy_end();
5615 return 0;
5616 }
5617 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5618 PageAnonExclusive(&old_folio->page), &old_folio->page);
5619
5620 /*
5621 * If the process that created a MAP_PRIVATE mapping is about to
5622 * perform a COW due to a shared page count, attempt to satisfy
5623 * the allocation without using the existing reserves. The pagecache
5624 * page is used to determine if the reserve at this address was
5625 * consumed or not. If reserves were used, a partial faulted mapping
5626 * at the time of fork() could consume its reserves on COW instead
5627 * of the full address range.
5628 */
5629 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5630 old_folio != pagecache_folio)
5631 outside_reserve = 1;
5632
5633 folio_get(old_folio);
5634
5635 /*
5636 * Drop page table lock as buddy allocator may be called. It will
5637 * be acquired again before returning to the caller, as expected.
5638 */
5639 spin_unlock(ptl);
5640 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5641
5642 if (IS_ERR(new_folio)) {
5643 /*
5644 * If a process owning a MAP_PRIVATE mapping fails to COW,
5645 * it is due to references held by a child and an insufficient
5646 * huge page pool. To guarantee the original mappers
5647 * reliability, unmap the page from child processes. The child
5648 * may get SIGKILLed if it later faults.
5649 */
5650 if (outside_reserve) {
5651 struct address_space *mapping = vma->vm_file->f_mapping;
5652 pgoff_t idx;
5653 u32 hash;
5654
5655 folio_put(old_folio);
5656 /*
5657 * Drop hugetlb_fault_mutex and vma_lock before
5658 * unmapping. unmapping needs to hold vma_lock
5659 * in write mode. Dropping vma_lock in read mode
5660 * here is OK as COW mappings do not interact with
5661 * PMD sharing.
5662 *
5663 * Reacquire both after unmap operation.
5664 */
5665 idx = vma_hugecache_offset(h, vma, haddr);
5666 hash = hugetlb_fault_mutex_hash(mapping, idx);
5667 hugetlb_vma_unlock_read(vma);
5668 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5669
5670 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5671
5672 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5673 hugetlb_vma_lock_read(vma);
5674 spin_lock(ptl);
5675 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5676 if (likely(ptep &&
5677 pte_same(huge_ptep_get(ptep), pte)))
5678 goto retry_avoidcopy;
5679 /*
5680 * race occurs while re-acquiring page table
5681 * lock, and our job is done.
5682 */
5683 delayacct_wpcopy_end();
5684 return 0;
5685 }
5686
5687 ret = vmf_error(PTR_ERR(new_folio));
5688 goto out_release_old;
5689 }
5690
5691 /*
5692 * When the original hugepage is shared one, it does not have
5693 * anon_vma prepared.
5694 */
5695 if (unlikely(anon_vma_prepare(vma))) {
5696 ret = VM_FAULT_OOM;
5697 goto out_release_all;
5698 }
5699
5700 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5701 ret = VM_FAULT_HWPOISON_LARGE;
5702 goto out_release_all;
5703 }
5704 __folio_mark_uptodate(new_folio);
5705
5706 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5707 haddr + huge_page_size(h));
5708 mmu_notifier_invalidate_range_start(&range);
5709
5710 /*
5711 * Retake the page table lock to check for racing updates
5712 * before the page tables are altered
5713 */
5714 spin_lock(ptl);
5715 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5716 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5717 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5718
5719 /* Break COW or unshare */
5720 huge_ptep_clear_flush(vma, haddr, ptep);
5721 page_remove_rmap(&old_folio->page, vma, true);
5722 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5723 if (huge_pte_uffd_wp(pte))
5724 newpte = huge_pte_mkuffd_wp(newpte);
5725 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5726 folio_set_hugetlb_migratable(new_folio);
5727 /* Make the old page be freed below */
5728 new_folio = old_folio;
5729 }
5730 spin_unlock(ptl);
5731 mmu_notifier_invalidate_range_end(&range);
5732 out_release_all:
5733 /*
5734 * No restore in case of successful pagetable update (Break COW or
5735 * unshare)
5736 */
5737 if (new_folio != old_folio)
5738 restore_reserve_on_error(h, vma, haddr, new_folio);
5739 folio_put(new_folio);
5740 out_release_old:
5741 folio_put(old_folio);
5742
5743 spin_lock(ptl); /* Caller expects lock to be held */
5744
5745 delayacct_wpcopy_end();
5746 return ret;
5747 }
5748
5749 /*
5750 * Return whether there is a pagecache page to back given address within VMA.
5751 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5752 static bool hugetlbfs_pagecache_present(struct hstate *h,
5753 struct vm_area_struct *vma, unsigned long address)
5754 {
5755 struct address_space *mapping = vma->vm_file->f_mapping;
5756 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5757 struct folio *folio;
5758
5759 folio = filemap_get_folio(mapping, idx);
5760 if (IS_ERR(folio))
5761 return false;
5762 folio_put(folio);
5763 return true;
5764 }
5765
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5766 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5767 pgoff_t idx)
5768 {
5769 struct inode *inode = mapping->host;
5770 struct hstate *h = hstate_inode(inode);
5771 int err;
5772
5773 __folio_set_locked(folio);
5774 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5775
5776 if (unlikely(err)) {
5777 __folio_clear_locked(folio);
5778 return err;
5779 }
5780 folio_clear_hugetlb_restore_reserve(folio);
5781
5782 /*
5783 * mark folio dirty so that it will not be removed from cache/file
5784 * by non-hugetlbfs specific code paths.
5785 */
5786 folio_mark_dirty(folio);
5787
5788 spin_lock(&inode->i_lock);
5789 inode->i_blocks += blocks_per_huge_page(h);
5790 spin_unlock(&inode->i_lock);
5791 return 0;
5792 }
5793
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5794 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5795 struct address_space *mapping,
5796 pgoff_t idx,
5797 unsigned int flags,
5798 unsigned long haddr,
5799 unsigned long addr,
5800 unsigned long reason)
5801 {
5802 u32 hash;
5803 struct vm_fault vmf = {
5804 .vma = vma,
5805 .address = haddr,
5806 .real_address = addr,
5807 .flags = flags,
5808
5809 /*
5810 * Hard to debug if it ends up being
5811 * used by a callee that assumes
5812 * something about the other
5813 * uninitialized fields... same as in
5814 * memory.c
5815 */
5816 };
5817
5818 /*
5819 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5820 * userfault. Also mmap_lock could be dropped due to handling
5821 * userfault, any vma operation should be careful from here.
5822 */
5823 hugetlb_vma_unlock_read(vma);
5824 hash = hugetlb_fault_mutex_hash(mapping, idx);
5825 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5826 return handle_userfault(&vmf, reason);
5827 }
5828
5829 /*
5830 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5831 * false if pte changed or is changing.
5832 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)5833 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5834 pte_t *ptep, pte_t old_pte)
5835 {
5836 spinlock_t *ptl;
5837 bool same;
5838
5839 ptl = huge_pte_lock(h, mm, ptep);
5840 same = pte_same(huge_ptep_get(ptep), old_pte);
5841 spin_unlock(ptl);
5842
5843 return same;
5844 }
5845
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5846 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5847 struct vm_area_struct *vma,
5848 struct address_space *mapping, pgoff_t idx,
5849 unsigned long address, pte_t *ptep,
5850 pte_t old_pte, unsigned int flags)
5851 {
5852 struct hstate *h = hstate_vma(vma);
5853 vm_fault_t ret = VM_FAULT_SIGBUS;
5854 int anon_rmap = 0;
5855 unsigned long size;
5856 struct folio *folio;
5857 pte_t new_pte;
5858 spinlock_t *ptl;
5859 unsigned long haddr = address & huge_page_mask(h);
5860 bool new_folio, new_pagecache_folio = false;
5861 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5862
5863 /*
5864 * Currently, we are forced to kill the process in the event the
5865 * original mapper has unmapped pages from the child due to a failed
5866 * COW/unsharing. Warn that such a situation has occurred as it may not
5867 * be obvious.
5868 */
5869 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5870 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5871 current->pid);
5872 goto out;
5873 }
5874
5875 /*
5876 * Use page lock to guard against racing truncation
5877 * before we get page_table_lock.
5878 */
5879 new_folio = false;
5880 folio = filemap_lock_folio(mapping, idx);
5881 if (IS_ERR(folio)) {
5882 size = i_size_read(mapping->host) >> huge_page_shift(h);
5883 if (idx >= size)
5884 goto out;
5885 /* Check for page in userfault range */
5886 if (userfaultfd_missing(vma)) {
5887 /*
5888 * Since hugetlb_no_page() was examining pte
5889 * without pgtable lock, we need to re-test under
5890 * lock because the pte may not be stable and could
5891 * have changed from under us. Try to detect
5892 * either changed or during-changing ptes and retry
5893 * properly when needed.
5894 *
5895 * Note that userfaultfd is actually fine with
5896 * false positives (e.g. caused by pte changed),
5897 * but not wrong logical events (e.g. caused by
5898 * reading a pte during changing). The latter can
5899 * confuse the userspace, so the strictness is very
5900 * much preferred. E.g., MISSING event should
5901 * never happen on the page after UFFDIO_COPY has
5902 * correctly installed the page and returned.
5903 */
5904 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5905 ret = 0;
5906 goto out;
5907 }
5908
5909 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5910 haddr, address,
5911 VM_UFFD_MISSING);
5912 }
5913
5914 folio = alloc_hugetlb_folio(vma, haddr, 0);
5915 if (IS_ERR(folio)) {
5916 /*
5917 * Returning error will result in faulting task being
5918 * sent SIGBUS. The hugetlb fault mutex prevents two
5919 * tasks from racing to fault in the same page which
5920 * could result in false unable to allocate errors.
5921 * Page migration does not take the fault mutex, but
5922 * does a clear then write of pte's under page table
5923 * lock. Page fault code could race with migration,
5924 * notice the clear pte and try to allocate a page
5925 * here. Before returning error, get ptl and make
5926 * sure there really is no pte entry.
5927 */
5928 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5929 ret = vmf_error(PTR_ERR(folio));
5930 else
5931 ret = 0;
5932 goto out;
5933 }
5934 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5935 __folio_mark_uptodate(folio);
5936 new_folio = true;
5937
5938 if (vma->vm_flags & VM_MAYSHARE) {
5939 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5940 if (err) {
5941 /*
5942 * err can't be -EEXIST which implies someone
5943 * else consumed the reservation since hugetlb
5944 * fault mutex is held when add a hugetlb page
5945 * to the page cache. So it's safe to call
5946 * restore_reserve_on_error() here.
5947 */
5948 restore_reserve_on_error(h, vma, haddr, folio);
5949 folio_put(folio);
5950 goto out;
5951 }
5952 new_pagecache_folio = true;
5953 } else {
5954 folio_lock(folio);
5955 if (unlikely(anon_vma_prepare(vma))) {
5956 ret = VM_FAULT_OOM;
5957 goto backout_unlocked;
5958 }
5959 anon_rmap = 1;
5960 }
5961 } else {
5962 /*
5963 * If memory error occurs between mmap() and fault, some process
5964 * don't have hwpoisoned swap entry for errored virtual address.
5965 * So we need to block hugepage fault by PG_hwpoison bit check.
5966 */
5967 if (unlikely(folio_test_hwpoison(folio))) {
5968 ret = VM_FAULT_HWPOISON_LARGE |
5969 VM_FAULT_SET_HINDEX(hstate_index(h));
5970 goto backout_unlocked;
5971 }
5972
5973 /* Check for page in userfault range. */
5974 if (userfaultfd_minor(vma)) {
5975 folio_unlock(folio);
5976 folio_put(folio);
5977 /* See comment in userfaultfd_missing() block above */
5978 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5979 ret = 0;
5980 goto out;
5981 }
5982 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5983 haddr, address,
5984 VM_UFFD_MINOR);
5985 }
5986 }
5987
5988 /*
5989 * If we are going to COW a private mapping later, we examine the
5990 * pending reservations for this page now. This will ensure that
5991 * any allocations necessary to record that reservation occur outside
5992 * the spinlock.
5993 */
5994 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5995 if (vma_needs_reservation(h, vma, haddr) < 0) {
5996 ret = VM_FAULT_OOM;
5997 goto backout_unlocked;
5998 }
5999 /* Just decrements count, does not deallocate */
6000 vma_end_reservation(h, vma, haddr);
6001 }
6002
6003 ptl = huge_pte_lock(h, mm, ptep);
6004 ret = 0;
6005 /* If pte changed from under us, retry */
6006 if (!pte_same(huge_ptep_get(ptep), old_pte))
6007 goto backout;
6008
6009 if (anon_rmap)
6010 hugepage_add_new_anon_rmap(folio, vma, haddr);
6011 else
6012 page_dup_file_rmap(&folio->page, true);
6013 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6014 && (vma->vm_flags & VM_SHARED)));
6015 /*
6016 * If this pte was previously wr-protected, keep it wr-protected even
6017 * if populated.
6018 */
6019 if (unlikely(pte_marker_uffd_wp(old_pte)))
6020 new_pte = huge_pte_mkuffd_wp(new_pte);
6021 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6022
6023 hugetlb_count_add(pages_per_huge_page(h), mm);
6024 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6025 /* Optimization, do the COW without a second fault */
6026 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6027 }
6028
6029 spin_unlock(ptl);
6030
6031 /*
6032 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6033 * found in the pagecache may not have hugetlb_migratable if they have
6034 * been isolated for migration.
6035 */
6036 if (new_folio)
6037 folio_set_hugetlb_migratable(folio);
6038
6039 folio_unlock(folio);
6040 out:
6041 hugetlb_vma_unlock_read(vma);
6042 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6043 return ret;
6044
6045 backout:
6046 spin_unlock(ptl);
6047 backout_unlocked:
6048 if (new_folio && !new_pagecache_folio)
6049 restore_reserve_on_error(h, vma, haddr, folio);
6050
6051 folio_unlock(folio);
6052 folio_put(folio);
6053 goto out;
6054 }
6055
6056 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6057 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6058 {
6059 unsigned long key[2];
6060 u32 hash;
6061
6062 key[0] = (unsigned long) mapping;
6063 key[1] = idx;
6064
6065 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6066
6067 return hash & (num_fault_mutexes - 1);
6068 }
6069 #else
6070 /*
6071 * For uniprocessor systems we always use a single mutex, so just
6072 * return 0 and avoid the hashing overhead.
6073 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6074 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6075 {
6076 return 0;
6077 }
6078 #endif
6079
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6080 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6081 unsigned long address, unsigned int flags)
6082 {
6083 pte_t *ptep, entry;
6084 spinlock_t *ptl;
6085 vm_fault_t ret;
6086 u32 hash;
6087 pgoff_t idx;
6088 struct folio *folio = NULL;
6089 struct folio *pagecache_folio = NULL;
6090 struct hstate *h = hstate_vma(vma);
6091 struct address_space *mapping;
6092 int need_wait_lock = 0;
6093 unsigned long haddr = address & huge_page_mask(h);
6094
6095 /* TODO: Handle faults under the VMA lock */
6096 if (flags & FAULT_FLAG_VMA_LOCK) {
6097 vma_end_read(vma);
6098 return VM_FAULT_RETRY;
6099 }
6100
6101 /*
6102 * Serialize hugepage allocation and instantiation, so that we don't
6103 * get spurious allocation failures if two CPUs race to instantiate
6104 * the same page in the page cache.
6105 */
6106 mapping = vma->vm_file->f_mapping;
6107 idx = vma_hugecache_offset(h, vma, haddr);
6108 hash = hugetlb_fault_mutex_hash(mapping, idx);
6109 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6110
6111 /*
6112 * Acquire vma lock before calling huge_pte_alloc and hold
6113 * until finished with ptep. This prevents huge_pmd_unshare from
6114 * being called elsewhere and making the ptep no longer valid.
6115 */
6116 hugetlb_vma_lock_read(vma);
6117 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6118 if (!ptep) {
6119 hugetlb_vma_unlock_read(vma);
6120 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6121 return VM_FAULT_OOM;
6122 }
6123
6124 entry = huge_ptep_get(ptep);
6125 if (huge_pte_none_mostly(entry)) {
6126 if (is_pte_marker(entry)) {
6127 pte_marker marker =
6128 pte_marker_get(pte_to_swp_entry(entry));
6129
6130 if (marker & PTE_MARKER_POISONED) {
6131 ret = VM_FAULT_HWPOISON_LARGE;
6132 goto out_mutex;
6133 }
6134 }
6135
6136 /*
6137 * Other PTE markers should be handled the same way as none PTE.
6138 *
6139 * hugetlb_no_page will drop vma lock and hugetlb fault
6140 * mutex internally, which make us return immediately.
6141 */
6142 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6143 entry, flags);
6144 }
6145
6146 ret = 0;
6147
6148 /*
6149 * entry could be a migration/hwpoison entry at this point, so this
6150 * check prevents the kernel from going below assuming that we have
6151 * an active hugepage in pagecache. This goto expects the 2nd page
6152 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6153 * properly handle it.
6154 */
6155 if (!pte_present(entry)) {
6156 if (unlikely(is_hugetlb_entry_migration(entry))) {
6157 /*
6158 * Release the hugetlb fault lock now, but retain
6159 * the vma lock, because it is needed to guard the
6160 * huge_pte_lockptr() later in
6161 * migration_entry_wait_huge(). The vma lock will
6162 * be released there.
6163 */
6164 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6165 migration_entry_wait_huge(vma, ptep);
6166 return 0;
6167 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6168 ret = VM_FAULT_HWPOISON_LARGE |
6169 VM_FAULT_SET_HINDEX(hstate_index(h));
6170 goto out_mutex;
6171 }
6172
6173 /*
6174 * If we are going to COW/unshare the mapping later, we examine the
6175 * pending reservations for this page now. This will ensure that any
6176 * allocations necessary to record that reservation occur outside the
6177 * spinlock. Also lookup the pagecache page now as it is used to
6178 * determine if a reservation has been consumed.
6179 */
6180 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6181 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6182 if (vma_needs_reservation(h, vma, haddr) < 0) {
6183 ret = VM_FAULT_OOM;
6184 goto out_mutex;
6185 }
6186 /* Just decrements count, does not deallocate */
6187 vma_end_reservation(h, vma, haddr);
6188
6189 pagecache_folio = filemap_lock_folio(mapping, idx);
6190 if (IS_ERR(pagecache_folio))
6191 pagecache_folio = NULL;
6192 }
6193
6194 ptl = huge_pte_lock(h, mm, ptep);
6195
6196 /* Check for a racing update before calling hugetlb_wp() */
6197 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6198 goto out_ptl;
6199
6200 /* Handle userfault-wp first, before trying to lock more pages */
6201 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6202 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6203 struct vm_fault vmf = {
6204 .vma = vma,
6205 .address = haddr,
6206 .real_address = address,
6207 .flags = flags,
6208 };
6209
6210 spin_unlock(ptl);
6211 if (pagecache_folio) {
6212 folio_unlock(pagecache_folio);
6213 folio_put(pagecache_folio);
6214 }
6215 hugetlb_vma_unlock_read(vma);
6216 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6217 return handle_userfault(&vmf, VM_UFFD_WP);
6218 }
6219
6220 /*
6221 * hugetlb_wp() requires page locks of pte_page(entry) and
6222 * pagecache_folio, so here we need take the former one
6223 * when folio != pagecache_folio or !pagecache_folio.
6224 */
6225 folio = page_folio(pte_page(entry));
6226 if (folio != pagecache_folio)
6227 if (!folio_trylock(folio)) {
6228 need_wait_lock = 1;
6229 goto out_ptl;
6230 }
6231
6232 folio_get(folio);
6233
6234 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6235 if (!huge_pte_write(entry)) {
6236 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6237 pagecache_folio, ptl);
6238 goto out_put_page;
6239 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6240 entry = huge_pte_mkdirty(entry);
6241 }
6242 }
6243 entry = pte_mkyoung(entry);
6244 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6245 flags & FAULT_FLAG_WRITE))
6246 update_mmu_cache(vma, haddr, ptep);
6247 out_put_page:
6248 if (folio != pagecache_folio)
6249 folio_unlock(folio);
6250 folio_put(folio);
6251 out_ptl:
6252 spin_unlock(ptl);
6253
6254 if (pagecache_folio) {
6255 folio_unlock(pagecache_folio);
6256 folio_put(pagecache_folio);
6257 }
6258 out_mutex:
6259 hugetlb_vma_unlock_read(vma);
6260 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6261 /*
6262 * Generally it's safe to hold refcount during waiting page lock. But
6263 * here we just wait to defer the next page fault to avoid busy loop and
6264 * the page is not used after unlocked before returning from the current
6265 * page fault. So we are safe from accessing freed page, even if we wait
6266 * here without taking refcount.
6267 */
6268 if (need_wait_lock)
6269 folio_wait_locked(folio);
6270 return ret;
6271 }
6272
6273 #ifdef CONFIG_USERFAULTFD
6274 /*
6275 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6276 * with modifications for hugetlb pages.
6277 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6278 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6279 struct vm_area_struct *dst_vma,
6280 unsigned long dst_addr,
6281 unsigned long src_addr,
6282 uffd_flags_t flags,
6283 struct folio **foliop)
6284 {
6285 struct mm_struct *dst_mm = dst_vma->vm_mm;
6286 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6287 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6288 struct hstate *h = hstate_vma(dst_vma);
6289 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6290 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6291 unsigned long size;
6292 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6293 pte_t _dst_pte;
6294 spinlock_t *ptl;
6295 int ret = -ENOMEM;
6296 struct folio *folio;
6297 int writable;
6298 bool folio_in_pagecache = false;
6299
6300 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6301 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6302
6303 /* Don't overwrite any existing PTEs (even markers) */
6304 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6305 spin_unlock(ptl);
6306 return -EEXIST;
6307 }
6308
6309 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6310 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6311 huge_page_size(h));
6312
6313 /* No need to invalidate - it was non-present before */
6314 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6315
6316 spin_unlock(ptl);
6317 return 0;
6318 }
6319
6320 if (is_continue) {
6321 ret = -EFAULT;
6322 folio = filemap_lock_folio(mapping, idx);
6323 if (IS_ERR(folio))
6324 goto out;
6325 folio_in_pagecache = true;
6326 } else if (!*foliop) {
6327 /* If a folio already exists, then it's UFFDIO_COPY for
6328 * a non-missing case. Return -EEXIST.
6329 */
6330 if (vm_shared &&
6331 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6332 ret = -EEXIST;
6333 goto out;
6334 }
6335
6336 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6337 if (IS_ERR(folio)) {
6338 ret = -ENOMEM;
6339 goto out;
6340 }
6341
6342 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6343 false);
6344
6345 /* fallback to copy_from_user outside mmap_lock */
6346 if (unlikely(ret)) {
6347 ret = -ENOENT;
6348 /* Free the allocated folio which may have
6349 * consumed a reservation.
6350 */
6351 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6352 folio_put(folio);
6353
6354 /* Allocate a temporary folio to hold the copied
6355 * contents.
6356 */
6357 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6358 if (!folio) {
6359 ret = -ENOMEM;
6360 goto out;
6361 }
6362 *foliop = folio;
6363 /* Set the outparam foliop and return to the caller to
6364 * copy the contents outside the lock. Don't free the
6365 * folio.
6366 */
6367 goto out;
6368 }
6369 } else {
6370 if (vm_shared &&
6371 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6372 folio_put(*foliop);
6373 ret = -EEXIST;
6374 *foliop = NULL;
6375 goto out;
6376 }
6377
6378 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6379 if (IS_ERR(folio)) {
6380 folio_put(*foliop);
6381 ret = -ENOMEM;
6382 *foliop = NULL;
6383 goto out;
6384 }
6385 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6386 folio_put(*foliop);
6387 *foliop = NULL;
6388 if (ret) {
6389 folio_put(folio);
6390 goto out;
6391 }
6392 }
6393
6394 /*
6395 * The memory barrier inside __folio_mark_uptodate makes sure that
6396 * preceding stores to the page contents become visible before
6397 * the set_pte_at() write.
6398 */
6399 __folio_mark_uptodate(folio);
6400
6401 /* Add shared, newly allocated pages to the page cache. */
6402 if (vm_shared && !is_continue) {
6403 size = i_size_read(mapping->host) >> huge_page_shift(h);
6404 ret = -EFAULT;
6405 if (idx >= size)
6406 goto out_release_nounlock;
6407
6408 /*
6409 * Serialization between remove_inode_hugepages() and
6410 * hugetlb_add_to_page_cache() below happens through the
6411 * hugetlb_fault_mutex_table that here must be hold by
6412 * the caller.
6413 */
6414 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6415 if (ret)
6416 goto out_release_nounlock;
6417 folio_in_pagecache = true;
6418 }
6419
6420 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6421
6422 ret = -EIO;
6423 if (folio_test_hwpoison(folio))
6424 goto out_release_unlock;
6425
6426 /*
6427 * We allow to overwrite a pte marker: consider when both MISSING|WP
6428 * registered, we firstly wr-protect a none pte which has no page cache
6429 * page backing it, then access the page.
6430 */
6431 ret = -EEXIST;
6432 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6433 goto out_release_unlock;
6434
6435 if (folio_in_pagecache)
6436 page_dup_file_rmap(&folio->page, true);
6437 else
6438 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6439
6440 /*
6441 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6442 * with wp flag set, don't set pte write bit.
6443 */
6444 if (wp_enabled || (is_continue && !vm_shared))
6445 writable = 0;
6446 else
6447 writable = dst_vma->vm_flags & VM_WRITE;
6448
6449 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6450 /*
6451 * Always mark UFFDIO_COPY page dirty; note that this may not be
6452 * extremely important for hugetlbfs for now since swapping is not
6453 * supported, but we should still be clear in that this page cannot be
6454 * thrown away at will, even if write bit not set.
6455 */
6456 _dst_pte = huge_pte_mkdirty(_dst_pte);
6457 _dst_pte = pte_mkyoung(_dst_pte);
6458
6459 if (wp_enabled)
6460 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6461
6462 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6463
6464 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6465
6466 /* No need to invalidate - it was non-present before */
6467 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6468
6469 spin_unlock(ptl);
6470 if (!is_continue)
6471 folio_set_hugetlb_migratable(folio);
6472 if (vm_shared || is_continue)
6473 folio_unlock(folio);
6474 ret = 0;
6475 out:
6476 return ret;
6477 out_release_unlock:
6478 spin_unlock(ptl);
6479 if (vm_shared || is_continue)
6480 folio_unlock(folio);
6481 out_release_nounlock:
6482 if (!folio_in_pagecache)
6483 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6484 folio_put(folio);
6485 goto out;
6486 }
6487 #endif /* CONFIG_USERFAULTFD */
6488
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)6489 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6490 unsigned long address, unsigned int flags,
6491 unsigned int *page_mask)
6492 {
6493 struct hstate *h = hstate_vma(vma);
6494 struct mm_struct *mm = vma->vm_mm;
6495 unsigned long haddr = address & huge_page_mask(h);
6496 struct page *page = NULL;
6497 spinlock_t *ptl;
6498 pte_t *pte, entry;
6499 int ret;
6500
6501 hugetlb_vma_lock_read(vma);
6502 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6503 if (!pte)
6504 goto out_unlock;
6505
6506 ptl = huge_pte_lock(h, mm, pte);
6507 entry = huge_ptep_get(pte);
6508 if (pte_present(entry)) {
6509 page = pte_page(entry);
6510
6511 if (!huge_pte_write(entry)) {
6512 if (flags & FOLL_WRITE) {
6513 page = NULL;
6514 goto out;
6515 }
6516
6517 if (gup_must_unshare(vma, flags, page)) {
6518 /* Tell the caller to do unsharing */
6519 page = ERR_PTR(-EMLINK);
6520 goto out;
6521 }
6522 }
6523
6524 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6525
6526 /*
6527 * Note that page may be a sub-page, and with vmemmap
6528 * optimizations the page struct may be read only.
6529 * try_grab_page() will increase the ref count on the
6530 * head page, so this will be OK.
6531 *
6532 * try_grab_page() should always be able to get the page here,
6533 * because we hold the ptl lock and have verified pte_present().
6534 */
6535 ret = try_grab_folio(page_folio(page), 1, flags);
6536
6537 if (WARN_ON_ONCE(ret)) {
6538 page = ERR_PTR(ret);
6539 goto out;
6540 }
6541
6542 *page_mask = (1U << huge_page_order(h)) - 1;
6543 }
6544 out:
6545 spin_unlock(ptl);
6546 out_unlock:
6547 hugetlb_vma_unlock_read(vma);
6548
6549 /*
6550 * Fixup retval for dump requests: if pagecache doesn't exist,
6551 * don't try to allocate a new page but just skip it.
6552 */
6553 if (!page && (flags & FOLL_DUMP) &&
6554 !hugetlbfs_pagecache_present(h, vma, address))
6555 page = ERR_PTR(-EFAULT);
6556
6557 return page;
6558 }
6559
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6560 long hugetlb_change_protection(struct vm_area_struct *vma,
6561 unsigned long address, unsigned long end,
6562 pgprot_t newprot, unsigned long cp_flags)
6563 {
6564 struct mm_struct *mm = vma->vm_mm;
6565 unsigned long start = address;
6566 pte_t *ptep;
6567 pte_t pte;
6568 struct hstate *h = hstate_vma(vma);
6569 long pages = 0, psize = huge_page_size(h);
6570 bool shared_pmd = false;
6571 struct mmu_notifier_range range;
6572 unsigned long last_addr_mask;
6573 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6574 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6575
6576 /*
6577 * In the case of shared PMDs, the area to flush could be beyond
6578 * start/end. Set range.start/range.end to cover the maximum possible
6579 * range if PMD sharing is possible.
6580 */
6581 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6582 0, mm, start, end);
6583 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6584
6585 BUG_ON(address >= end);
6586 flush_cache_range(vma, range.start, range.end);
6587
6588 mmu_notifier_invalidate_range_start(&range);
6589 hugetlb_vma_lock_write(vma);
6590 i_mmap_lock_write(vma->vm_file->f_mapping);
6591 last_addr_mask = hugetlb_mask_last_page(h);
6592 for (; address < end; address += psize) {
6593 spinlock_t *ptl;
6594 ptep = hugetlb_walk(vma, address, psize);
6595 if (!ptep) {
6596 if (!uffd_wp) {
6597 address |= last_addr_mask;
6598 continue;
6599 }
6600 /*
6601 * Userfaultfd wr-protect requires pgtable
6602 * pre-allocations to install pte markers.
6603 */
6604 ptep = huge_pte_alloc(mm, vma, address, psize);
6605 if (!ptep) {
6606 pages = -ENOMEM;
6607 break;
6608 }
6609 }
6610 ptl = huge_pte_lock(h, mm, ptep);
6611 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6612 /*
6613 * When uffd-wp is enabled on the vma, unshare
6614 * shouldn't happen at all. Warn about it if it
6615 * happened due to some reason.
6616 */
6617 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6618 pages++;
6619 spin_unlock(ptl);
6620 shared_pmd = true;
6621 address |= last_addr_mask;
6622 continue;
6623 }
6624 pte = huge_ptep_get(ptep);
6625 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6626 /* Nothing to do. */
6627 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6628 swp_entry_t entry = pte_to_swp_entry(pte);
6629 struct page *page = pfn_swap_entry_to_page(entry);
6630 pte_t newpte = pte;
6631
6632 if (is_writable_migration_entry(entry)) {
6633 if (PageAnon(page))
6634 entry = make_readable_exclusive_migration_entry(
6635 swp_offset(entry));
6636 else
6637 entry = make_readable_migration_entry(
6638 swp_offset(entry));
6639 newpte = swp_entry_to_pte(entry);
6640 pages++;
6641 }
6642
6643 if (uffd_wp)
6644 newpte = pte_swp_mkuffd_wp(newpte);
6645 else if (uffd_wp_resolve)
6646 newpte = pte_swp_clear_uffd_wp(newpte);
6647 if (!pte_same(pte, newpte))
6648 set_huge_pte_at(mm, address, ptep, newpte, psize);
6649 } else if (unlikely(is_pte_marker(pte))) {
6650 /*
6651 * Do nothing on a poison marker; page is
6652 * corrupted, permissons do not apply. Here
6653 * pte_marker_uffd_wp()==true implies !poison
6654 * because they're mutual exclusive.
6655 */
6656 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6657 /* Safe to modify directly (non-present->none). */
6658 huge_pte_clear(mm, address, ptep, psize);
6659 } else if (!huge_pte_none(pte)) {
6660 pte_t old_pte;
6661 unsigned int shift = huge_page_shift(hstate_vma(vma));
6662
6663 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6664 pte = huge_pte_modify(old_pte, newprot);
6665 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6666 if (uffd_wp)
6667 pte = huge_pte_mkuffd_wp(pte);
6668 else if (uffd_wp_resolve)
6669 pte = huge_pte_clear_uffd_wp(pte);
6670 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6671 pages++;
6672 } else {
6673 /* None pte */
6674 if (unlikely(uffd_wp))
6675 /* Safe to modify directly (none->non-present). */
6676 set_huge_pte_at(mm, address, ptep,
6677 make_pte_marker(PTE_MARKER_UFFD_WP),
6678 psize);
6679 }
6680 spin_unlock(ptl);
6681 }
6682 /*
6683 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6684 * may have cleared our pud entry and done put_page on the page table:
6685 * once we release i_mmap_rwsem, another task can do the final put_page
6686 * and that page table be reused and filled with junk. If we actually
6687 * did unshare a page of pmds, flush the range corresponding to the pud.
6688 */
6689 if (shared_pmd)
6690 flush_hugetlb_tlb_range(vma, range.start, range.end);
6691 else
6692 flush_hugetlb_tlb_range(vma, start, end);
6693 /*
6694 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6695 * downgrading page table protection not changing it to point to a new
6696 * page.
6697 *
6698 * See Documentation/mm/mmu_notifier.rst
6699 */
6700 i_mmap_unlock_write(vma->vm_file->f_mapping);
6701 hugetlb_vma_unlock_write(vma);
6702 mmu_notifier_invalidate_range_end(&range);
6703
6704 return pages > 0 ? (pages << h->order) : pages;
6705 }
6706
6707 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6708 bool hugetlb_reserve_pages(struct inode *inode,
6709 long from, long to,
6710 struct vm_area_struct *vma,
6711 vm_flags_t vm_flags)
6712 {
6713 long chg = -1, add = -1;
6714 struct hstate *h = hstate_inode(inode);
6715 struct hugepage_subpool *spool = subpool_inode(inode);
6716 struct resv_map *resv_map;
6717 struct hugetlb_cgroup *h_cg = NULL;
6718 long gbl_reserve, regions_needed = 0;
6719
6720 /* This should never happen */
6721 if (from > to) {
6722 VM_WARN(1, "%s called with a negative range\n", __func__);
6723 return false;
6724 }
6725
6726 /*
6727 * vma specific semaphore used for pmd sharing and fault/truncation
6728 * synchronization
6729 */
6730 hugetlb_vma_lock_alloc(vma);
6731
6732 /*
6733 * Only apply hugepage reservation if asked. At fault time, an
6734 * attempt will be made for VM_NORESERVE to allocate a page
6735 * without using reserves
6736 */
6737 if (vm_flags & VM_NORESERVE)
6738 return true;
6739
6740 /*
6741 * Shared mappings base their reservation on the number of pages that
6742 * are already allocated on behalf of the file. Private mappings need
6743 * to reserve the full area even if read-only as mprotect() may be
6744 * called to make the mapping read-write. Assume !vma is a shm mapping
6745 */
6746 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6747 /*
6748 * resv_map can not be NULL as hugetlb_reserve_pages is only
6749 * called for inodes for which resv_maps were created (see
6750 * hugetlbfs_get_inode).
6751 */
6752 resv_map = inode_resv_map(inode);
6753
6754 chg = region_chg(resv_map, from, to, ®ions_needed);
6755 } else {
6756 /* Private mapping. */
6757 resv_map = resv_map_alloc();
6758 if (!resv_map)
6759 goto out_err;
6760
6761 chg = to - from;
6762
6763 set_vma_resv_map(vma, resv_map);
6764 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6765 }
6766
6767 if (chg < 0)
6768 goto out_err;
6769
6770 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6771 chg * pages_per_huge_page(h), &h_cg) < 0)
6772 goto out_err;
6773
6774 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6775 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6776 * of the resv_map.
6777 */
6778 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6779 }
6780
6781 /*
6782 * There must be enough pages in the subpool for the mapping. If
6783 * the subpool has a minimum size, there may be some global
6784 * reservations already in place (gbl_reserve).
6785 */
6786 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6787 if (gbl_reserve < 0)
6788 goto out_uncharge_cgroup;
6789
6790 /*
6791 * Check enough hugepages are available for the reservation.
6792 * Hand the pages back to the subpool if there are not
6793 */
6794 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6795 goto out_put_pages;
6796
6797 /*
6798 * Account for the reservations made. Shared mappings record regions
6799 * that have reservations as they are shared by multiple VMAs.
6800 * When the last VMA disappears, the region map says how much
6801 * the reservation was and the page cache tells how much of
6802 * the reservation was consumed. Private mappings are per-VMA and
6803 * only the consumed reservations are tracked. When the VMA
6804 * disappears, the original reservation is the VMA size and the
6805 * consumed reservations are stored in the map. Hence, nothing
6806 * else has to be done for private mappings here
6807 */
6808 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6809 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6810
6811 if (unlikely(add < 0)) {
6812 hugetlb_acct_memory(h, -gbl_reserve);
6813 goto out_put_pages;
6814 } else if (unlikely(chg > add)) {
6815 /*
6816 * pages in this range were added to the reserve
6817 * map between region_chg and region_add. This
6818 * indicates a race with alloc_hugetlb_folio. Adjust
6819 * the subpool and reserve counts modified above
6820 * based on the difference.
6821 */
6822 long rsv_adjust;
6823
6824 /*
6825 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6826 * reference to h_cg->css. See comment below for detail.
6827 */
6828 hugetlb_cgroup_uncharge_cgroup_rsvd(
6829 hstate_index(h),
6830 (chg - add) * pages_per_huge_page(h), h_cg);
6831
6832 rsv_adjust = hugepage_subpool_put_pages(spool,
6833 chg - add);
6834 hugetlb_acct_memory(h, -rsv_adjust);
6835 } else if (h_cg) {
6836 /*
6837 * The file_regions will hold their own reference to
6838 * h_cg->css. So we should release the reference held
6839 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6840 * done.
6841 */
6842 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6843 }
6844 }
6845 return true;
6846
6847 out_put_pages:
6848 /* put back original number of pages, chg */
6849 (void)hugepage_subpool_put_pages(spool, chg);
6850 out_uncharge_cgroup:
6851 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6852 chg * pages_per_huge_page(h), h_cg);
6853 out_err:
6854 hugetlb_vma_lock_free(vma);
6855 if (!vma || vma->vm_flags & VM_MAYSHARE)
6856 /* Only call region_abort if the region_chg succeeded but the
6857 * region_add failed or didn't run.
6858 */
6859 if (chg >= 0 && add < 0)
6860 region_abort(resv_map, from, to, regions_needed);
6861 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6862 kref_put(&resv_map->refs, resv_map_release);
6863 set_vma_resv_map(vma, NULL);
6864 }
6865 return false;
6866 }
6867
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6868 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6869 long freed)
6870 {
6871 struct hstate *h = hstate_inode(inode);
6872 struct resv_map *resv_map = inode_resv_map(inode);
6873 long chg = 0;
6874 struct hugepage_subpool *spool = subpool_inode(inode);
6875 long gbl_reserve;
6876
6877 /*
6878 * Since this routine can be called in the evict inode path for all
6879 * hugetlbfs inodes, resv_map could be NULL.
6880 */
6881 if (resv_map) {
6882 chg = region_del(resv_map, start, end);
6883 /*
6884 * region_del() can fail in the rare case where a region
6885 * must be split and another region descriptor can not be
6886 * allocated. If end == LONG_MAX, it will not fail.
6887 */
6888 if (chg < 0)
6889 return chg;
6890 }
6891
6892 spin_lock(&inode->i_lock);
6893 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6894 spin_unlock(&inode->i_lock);
6895
6896 /*
6897 * If the subpool has a minimum size, the number of global
6898 * reservations to be released may be adjusted.
6899 *
6900 * Note that !resv_map implies freed == 0. So (chg - freed)
6901 * won't go negative.
6902 */
6903 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6904 hugetlb_acct_memory(h, -gbl_reserve);
6905
6906 return 0;
6907 }
6908
6909 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6910 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6911 struct vm_area_struct *vma,
6912 unsigned long addr, pgoff_t idx)
6913 {
6914 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6915 svma->vm_start;
6916 unsigned long sbase = saddr & PUD_MASK;
6917 unsigned long s_end = sbase + PUD_SIZE;
6918
6919 /* Allow segments to share if only one is marked locked */
6920 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6921 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6922
6923 /*
6924 * match the virtual addresses, permission and the alignment of the
6925 * page table page.
6926 *
6927 * Also, vma_lock (vm_private_data) is required for sharing.
6928 */
6929 if (pmd_index(addr) != pmd_index(saddr) ||
6930 vm_flags != svm_flags ||
6931 !range_in_vma(svma, sbase, s_end) ||
6932 !svma->vm_private_data)
6933 return 0;
6934
6935 return saddr;
6936 }
6937
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6938 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6939 {
6940 unsigned long start = addr & PUD_MASK;
6941 unsigned long end = start + PUD_SIZE;
6942
6943 #ifdef CONFIG_USERFAULTFD
6944 if (uffd_disable_huge_pmd_share(vma))
6945 return false;
6946 #endif
6947 /*
6948 * check on proper vm_flags and page table alignment
6949 */
6950 if (!(vma->vm_flags & VM_MAYSHARE))
6951 return false;
6952 if (!vma->vm_private_data) /* vma lock required for sharing */
6953 return false;
6954 if (!range_in_vma(vma, start, end))
6955 return false;
6956 return true;
6957 }
6958
6959 /*
6960 * Determine if start,end range within vma could be mapped by shared pmd.
6961 * If yes, adjust start and end to cover range associated with possible
6962 * shared pmd mappings.
6963 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6964 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6965 unsigned long *start, unsigned long *end)
6966 {
6967 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6968 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6969
6970 /*
6971 * vma needs to span at least one aligned PUD size, and the range
6972 * must be at least partially within in.
6973 */
6974 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6975 (*end <= v_start) || (*start >= v_end))
6976 return;
6977
6978 /* Extend the range to be PUD aligned for a worst case scenario */
6979 if (*start > v_start)
6980 *start = ALIGN_DOWN(*start, PUD_SIZE);
6981
6982 if (*end < v_end)
6983 *end = ALIGN(*end, PUD_SIZE);
6984 }
6985
6986 /*
6987 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6988 * and returns the corresponding pte. While this is not necessary for the
6989 * !shared pmd case because we can allocate the pmd later as well, it makes the
6990 * code much cleaner. pmd allocation is essential for the shared case because
6991 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6992 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6993 * bad pmd for sharing.
6994 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6995 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6996 unsigned long addr, pud_t *pud)
6997 {
6998 struct address_space *mapping = vma->vm_file->f_mapping;
6999 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7000 vma->vm_pgoff;
7001 struct vm_area_struct *svma;
7002 unsigned long saddr;
7003 pte_t *spte = NULL;
7004 pte_t *pte;
7005
7006 i_mmap_lock_read(mapping);
7007 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7008 if (svma == vma)
7009 continue;
7010
7011 saddr = page_table_shareable(svma, vma, addr, idx);
7012 if (saddr) {
7013 spte = hugetlb_walk(svma, saddr,
7014 vma_mmu_pagesize(svma));
7015 if (spte) {
7016 get_page(virt_to_page(spte));
7017 break;
7018 }
7019 }
7020 }
7021
7022 if (!spte)
7023 goto out;
7024
7025 spin_lock(&mm->page_table_lock);
7026 if (pud_none(*pud)) {
7027 pud_populate(mm, pud,
7028 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7029 mm_inc_nr_pmds(mm);
7030 } else {
7031 put_page(virt_to_page(spte));
7032 }
7033 spin_unlock(&mm->page_table_lock);
7034 out:
7035 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7036 i_mmap_unlock_read(mapping);
7037 return pte;
7038 }
7039
7040 /*
7041 * unmap huge page backed by shared pte.
7042 *
7043 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7044 * indicated by page_count > 1, unmap is achieved by clearing pud and
7045 * decrementing the ref count. If count == 1, the pte page is not shared.
7046 *
7047 * Called with page table lock held.
7048 *
7049 * returns: 1 successfully unmapped a shared pte page
7050 * 0 the underlying pte page is not shared, or it is the last user
7051 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7052 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7053 unsigned long addr, pte_t *ptep)
7054 {
7055 pgd_t *pgd = pgd_offset(mm, addr);
7056 p4d_t *p4d = p4d_offset(pgd, addr);
7057 pud_t *pud = pud_offset(p4d, addr);
7058
7059 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7060 hugetlb_vma_assert_locked(vma);
7061 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7062 if (page_count(virt_to_page(ptep)) == 1)
7063 return 0;
7064
7065 pud_clear(pud);
7066 put_page(virt_to_page(ptep));
7067 mm_dec_nr_pmds(mm);
7068 return 1;
7069 }
7070
7071 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7072
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7073 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7074 unsigned long addr, pud_t *pud)
7075 {
7076 return NULL;
7077 }
7078
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7079 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7080 unsigned long addr, pte_t *ptep)
7081 {
7082 return 0;
7083 }
7084
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7085 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7086 unsigned long *start, unsigned long *end)
7087 {
7088 }
7089
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7090 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7091 {
7092 return false;
7093 }
7094 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7095
7096 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7097 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7098 unsigned long addr, unsigned long sz)
7099 {
7100 pgd_t *pgd;
7101 p4d_t *p4d;
7102 pud_t *pud;
7103 pte_t *pte = NULL;
7104
7105 pgd = pgd_offset(mm, addr);
7106 p4d = p4d_alloc(mm, pgd, addr);
7107 if (!p4d)
7108 return NULL;
7109 pud = pud_alloc(mm, p4d, addr);
7110 if (pud) {
7111 if (sz == PUD_SIZE) {
7112 pte = (pte_t *)pud;
7113 } else {
7114 BUG_ON(sz != PMD_SIZE);
7115 if (want_pmd_share(vma, addr) && pud_none(*pud))
7116 pte = huge_pmd_share(mm, vma, addr, pud);
7117 else
7118 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7119 }
7120 }
7121
7122 if (pte) {
7123 pte_t pteval = ptep_get_lockless(pte);
7124
7125 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7126 }
7127
7128 return pte;
7129 }
7130
7131 /*
7132 * huge_pte_offset() - Walk the page table to resolve the hugepage
7133 * entry at address @addr
7134 *
7135 * Return: Pointer to page table entry (PUD or PMD) for
7136 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7137 * size @sz doesn't match the hugepage size at this level of the page
7138 * table.
7139 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7140 pte_t *huge_pte_offset(struct mm_struct *mm,
7141 unsigned long addr, unsigned long sz)
7142 {
7143 pgd_t *pgd;
7144 p4d_t *p4d;
7145 pud_t *pud;
7146 pmd_t *pmd;
7147
7148 pgd = pgd_offset(mm, addr);
7149 if (!pgd_present(*pgd))
7150 return NULL;
7151 p4d = p4d_offset(pgd, addr);
7152 if (!p4d_present(*p4d))
7153 return NULL;
7154
7155 pud = pud_offset(p4d, addr);
7156 if (sz == PUD_SIZE)
7157 /* must be pud huge, non-present or none */
7158 return (pte_t *)pud;
7159 if (!pud_present(*pud))
7160 return NULL;
7161 /* must have a valid entry and size to go further */
7162
7163 pmd = pmd_offset(pud, addr);
7164 /* must be pmd huge, non-present or none */
7165 return (pte_t *)pmd;
7166 }
7167
7168 /*
7169 * Return a mask that can be used to update an address to the last huge
7170 * page in a page table page mapping size. Used to skip non-present
7171 * page table entries when linearly scanning address ranges. Architectures
7172 * with unique huge page to page table relationships can define their own
7173 * version of this routine.
7174 */
hugetlb_mask_last_page(struct hstate * h)7175 unsigned long hugetlb_mask_last_page(struct hstate *h)
7176 {
7177 unsigned long hp_size = huge_page_size(h);
7178
7179 if (hp_size == PUD_SIZE)
7180 return P4D_SIZE - PUD_SIZE;
7181 else if (hp_size == PMD_SIZE)
7182 return PUD_SIZE - PMD_SIZE;
7183 else
7184 return 0UL;
7185 }
7186
7187 #else
7188
7189 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7190 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7191 {
7192 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7193 if (huge_page_size(h) == PMD_SIZE)
7194 return PUD_SIZE - PMD_SIZE;
7195 #endif
7196 return 0UL;
7197 }
7198
7199 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7200
7201 /*
7202 * These functions are overwritable if your architecture needs its own
7203 * behavior.
7204 */
isolate_hugetlb(struct folio * folio,struct list_head * list)7205 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7206 {
7207 bool ret = true;
7208
7209 spin_lock_irq(&hugetlb_lock);
7210 if (!folio_test_hugetlb(folio) ||
7211 !folio_test_hugetlb_migratable(folio) ||
7212 !folio_try_get(folio)) {
7213 ret = false;
7214 goto unlock;
7215 }
7216 folio_clear_hugetlb_migratable(folio);
7217 list_move_tail(&folio->lru, list);
7218 unlock:
7219 spin_unlock_irq(&hugetlb_lock);
7220 return ret;
7221 }
7222
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7223 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7224 {
7225 int ret = 0;
7226
7227 *hugetlb = false;
7228 spin_lock_irq(&hugetlb_lock);
7229 if (folio_test_hugetlb(folio)) {
7230 *hugetlb = true;
7231 if (folio_test_hugetlb_freed(folio))
7232 ret = 0;
7233 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7234 ret = folio_try_get(folio);
7235 else
7236 ret = -EBUSY;
7237 }
7238 spin_unlock_irq(&hugetlb_lock);
7239 return ret;
7240 }
7241
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7242 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7243 bool *migratable_cleared)
7244 {
7245 int ret;
7246
7247 spin_lock_irq(&hugetlb_lock);
7248 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7249 spin_unlock_irq(&hugetlb_lock);
7250 return ret;
7251 }
7252
folio_putback_active_hugetlb(struct folio * folio)7253 void folio_putback_active_hugetlb(struct folio *folio)
7254 {
7255 spin_lock_irq(&hugetlb_lock);
7256 folio_set_hugetlb_migratable(folio);
7257 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7258 spin_unlock_irq(&hugetlb_lock);
7259 folio_put(folio);
7260 }
7261
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7262 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7263 {
7264 struct hstate *h = folio_hstate(old_folio);
7265
7266 hugetlb_cgroup_migrate(old_folio, new_folio);
7267 set_page_owner_migrate_reason(&new_folio->page, reason);
7268
7269 /*
7270 * transfer temporary state of the new hugetlb folio. This is
7271 * reverse to other transitions because the newpage is going to
7272 * be final while the old one will be freed so it takes over
7273 * the temporary status.
7274 *
7275 * Also note that we have to transfer the per-node surplus state
7276 * here as well otherwise the global surplus count will not match
7277 * the per-node's.
7278 */
7279 if (folio_test_hugetlb_temporary(new_folio)) {
7280 int old_nid = folio_nid(old_folio);
7281 int new_nid = folio_nid(new_folio);
7282
7283 folio_set_hugetlb_temporary(old_folio);
7284 folio_clear_hugetlb_temporary(new_folio);
7285
7286
7287 /*
7288 * There is no need to transfer the per-node surplus state
7289 * when we do not cross the node.
7290 */
7291 if (new_nid == old_nid)
7292 return;
7293 spin_lock_irq(&hugetlb_lock);
7294 if (h->surplus_huge_pages_node[old_nid]) {
7295 h->surplus_huge_pages_node[old_nid]--;
7296 h->surplus_huge_pages_node[new_nid]++;
7297 }
7298 spin_unlock_irq(&hugetlb_lock);
7299 }
7300 }
7301
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7302 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7303 unsigned long start,
7304 unsigned long end)
7305 {
7306 struct hstate *h = hstate_vma(vma);
7307 unsigned long sz = huge_page_size(h);
7308 struct mm_struct *mm = vma->vm_mm;
7309 struct mmu_notifier_range range;
7310 unsigned long address;
7311 spinlock_t *ptl;
7312 pte_t *ptep;
7313
7314 if (!(vma->vm_flags & VM_MAYSHARE))
7315 return;
7316
7317 if (start >= end)
7318 return;
7319
7320 flush_cache_range(vma, start, end);
7321 /*
7322 * No need to call adjust_range_if_pmd_sharing_possible(), because
7323 * we have already done the PUD_SIZE alignment.
7324 */
7325 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7326 start, end);
7327 mmu_notifier_invalidate_range_start(&range);
7328 hugetlb_vma_lock_write(vma);
7329 i_mmap_lock_write(vma->vm_file->f_mapping);
7330 for (address = start; address < end; address += PUD_SIZE) {
7331 ptep = hugetlb_walk(vma, address, sz);
7332 if (!ptep)
7333 continue;
7334 ptl = huge_pte_lock(h, mm, ptep);
7335 huge_pmd_unshare(mm, vma, address, ptep);
7336 spin_unlock(ptl);
7337 }
7338 flush_hugetlb_tlb_range(vma, start, end);
7339 i_mmap_unlock_write(vma->vm_file->f_mapping);
7340 hugetlb_vma_unlock_write(vma);
7341 /*
7342 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7343 * Documentation/mm/mmu_notifier.rst.
7344 */
7345 mmu_notifier_invalidate_range_end(&range);
7346 }
7347
7348 /*
7349 * This function will unconditionally remove all the shared pmd pgtable entries
7350 * within the specific vma for a hugetlbfs memory range.
7351 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7352 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7353 {
7354 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7355 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7356 }
7357
7358 #ifdef CONFIG_CMA
7359 static bool cma_reserve_called __initdata;
7360
cmdline_parse_hugetlb_cma(char * p)7361 static int __init cmdline_parse_hugetlb_cma(char *p)
7362 {
7363 int nid, count = 0;
7364 unsigned long tmp;
7365 char *s = p;
7366
7367 while (*s) {
7368 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7369 break;
7370
7371 if (s[count] == ':') {
7372 if (tmp >= MAX_NUMNODES)
7373 break;
7374 nid = array_index_nospec(tmp, MAX_NUMNODES);
7375
7376 s += count + 1;
7377 tmp = memparse(s, &s);
7378 hugetlb_cma_size_in_node[nid] = tmp;
7379 hugetlb_cma_size += tmp;
7380
7381 /*
7382 * Skip the separator if have one, otherwise
7383 * break the parsing.
7384 */
7385 if (*s == ',')
7386 s++;
7387 else
7388 break;
7389 } else {
7390 hugetlb_cma_size = memparse(p, &p);
7391 break;
7392 }
7393 }
7394
7395 return 0;
7396 }
7397
7398 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7399
hugetlb_cma_reserve(int order)7400 void __init hugetlb_cma_reserve(int order)
7401 {
7402 unsigned long size, reserved, per_node;
7403 bool node_specific_cma_alloc = false;
7404 int nid;
7405
7406 cma_reserve_called = true;
7407
7408 if (!hugetlb_cma_size)
7409 return;
7410
7411 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7412 if (hugetlb_cma_size_in_node[nid] == 0)
7413 continue;
7414
7415 if (!node_online(nid)) {
7416 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7417 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7418 hugetlb_cma_size_in_node[nid] = 0;
7419 continue;
7420 }
7421
7422 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7423 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7424 nid, (PAGE_SIZE << order) / SZ_1M);
7425 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7426 hugetlb_cma_size_in_node[nid] = 0;
7427 } else {
7428 node_specific_cma_alloc = true;
7429 }
7430 }
7431
7432 /* Validate the CMA size again in case some invalid nodes specified. */
7433 if (!hugetlb_cma_size)
7434 return;
7435
7436 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7437 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7438 (PAGE_SIZE << order) / SZ_1M);
7439 hugetlb_cma_size = 0;
7440 return;
7441 }
7442
7443 if (!node_specific_cma_alloc) {
7444 /*
7445 * If 3 GB area is requested on a machine with 4 numa nodes,
7446 * let's allocate 1 GB on first three nodes and ignore the last one.
7447 */
7448 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7449 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7450 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7451 }
7452
7453 reserved = 0;
7454 for_each_online_node(nid) {
7455 int res;
7456 char name[CMA_MAX_NAME];
7457
7458 if (node_specific_cma_alloc) {
7459 if (hugetlb_cma_size_in_node[nid] == 0)
7460 continue;
7461
7462 size = hugetlb_cma_size_in_node[nid];
7463 } else {
7464 size = min(per_node, hugetlb_cma_size - reserved);
7465 }
7466
7467 size = round_up(size, PAGE_SIZE << order);
7468
7469 snprintf(name, sizeof(name), "hugetlb%d", nid);
7470 /*
7471 * Note that 'order per bit' is based on smallest size that
7472 * may be returned to CMA allocator in the case of
7473 * huge page demotion.
7474 */
7475 res = cma_declare_contiguous_nid(0, size, 0,
7476 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7477 HUGETLB_PAGE_ORDER, false, name,
7478 &hugetlb_cma[nid], nid);
7479 if (res) {
7480 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7481 res, nid);
7482 continue;
7483 }
7484
7485 reserved += size;
7486 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7487 size / SZ_1M, nid);
7488
7489 if (reserved >= hugetlb_cma_size)
7490 break;
7491 }
7492
7493 if (!reserved)
7494 /*
7495 * hugetlb_cma_size is used to determine if allocations from
7496 * cma are possible. Set to zero if no cma regions are set up.
7497 */
7498 hugetlb_cma_size = 0;
7499 }
7500
hugetlb_cma_check(void)7501 static void __init hugetlb_cma_check(void)
7502 {
7503 if (!hugetlb_cma_size || cma_reserve_called)
7504 return;
7505
7506 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7507 }
7508
7509 #endif /* CONFIG_CMA */
7510