xref: /openbmc/linux/mm/huge_memory.c (revision fa8cb310)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49 
50 /*
51  * By default, transparent hugepage support is disabled in order to avoid
52  * risking an increased memory footprint for applications that are not
53  * guaranteed to benefit from it. When transparent hugepage support is
54  * enabled, it is for all mappings, and khugepaged scans all mappings.
55  * Defrag is invoked by khugepaged hugepage allocations and by page faults
56  * for all hugepage allocations.
57  */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 
69 static struct shrinker deferred_split_shrinker;
70 
71 static atomic_t huge_zero_refcount;
72 struct page *huge_zero_page __read_mostly;
73 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74 
75 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
76 			bool smaps, bool in_pf, bool enforce_sysfs)
77 {
78 	if (!vma->vm_mm)		/* vdso */
79 		return false;
80 
81 	/*
82 	 * Explicitly disabled through madvise or prctl, or some
83 	 * architectures may disable THP for some mappings, for
84 	 * example, s390 kvm.
85 	 * */
86 	if ((vm_flags & VM_NOHUGEPAGE) ||
87 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
88 		return false;
89 	/*
90 	 * If the hardware/firmware marked hugepage support disabled.
91 	 */
92 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
93 		return false;
94 
95 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
96 	if (vma_is_dax(vma))
97 		return in_pf;
98 
99 	/*
100 	 * Special VMA and hugetlb VMA.
101 	 * Must be checked after dax since some dax mappings may have
102 	 * VM_MIXEDMAP set.
103 	 */
104 	if (vm_flags & VM_NO_KHUGEPAGED)
105 		return false;
106 
107 	/*
108 	 * Check alignment for file vma and size for both file and anon vma.
109 	 *
110 	 * Skip the check for page fault. Huge fault does the check in fault
111 	 * handlers. And this check is not suitable for huge PUD fault.
112 	 */
113 	if (!in_pf &&
114 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
115 		return false;
116 
117 	/*
118 	 * Enabled via shmem mount options or sysfs settings.
119 	 * Must be done before hugepage flags check since shmem has its
120 	 * own flags.
121 	 */
122 	if (!in_pf && shmem_file(vma->vm_file))
123 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
124 				     !enforce_sysfs, vma->vm_mm, vm_flags);
125 
126 	/* Enforce sysfs THP requirements as necessary */
127 	if (enforce_sysfs &&
128 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
129 					   !hugepage_flags_always())))
130 		return false;
131 
132 	/* Only regular file is valid */
133 	if (!in_pf && file_thp_enabled(vma))
134 		return true;
135 
136 	if (!vma_is_anonymous(vma))
137 		return false;
138 
139 	if (vma_is_temporary_stack(vma))
140 		return false;
141 
142 	/*
143 	 * THPeligible bit of smaps should show 1 for proper VMAs even
144 	 * though anon_vma is not initialized yet.
145 	 *
146 	 * Allow page fault since anon_vma may be not initialized until
147 	 * the first page fault.
148 	 */
149 	if (!vma->anon_vma)
150 		return (smaps || in_pf);
151 
152 	return true;
153 }
154 
155 static bool get_huge_zero_page(void)
156 {
157 	struct page *zero_page;
158 retry:
159 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
160 		return true;
161 
162 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
163 			HPAGE_PMD_ORDER);
164 	if (!zero_page) {
165 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
166 		return false;
167 	}
168 	preempt_disable();
169 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 		preempt_enable();
171 		__free_pages(zero_page, compound_order(zero_page));
172 		goto retry;
173 	}
174 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175 
176 	/* We take additional reference here. It will be put back by shrinker */
177 	atomic_set(&huge_zero_refcount, 2);
178 	preempt_enable();
179 	count_vm_event(THP_ZERO_PAGE_ALLOC);
180 	return true;
181 }
182 
183 static void put_huge_zero_page(void)
184 {
185 	/*
186 	 * Counter should never go to zero here. Only shrinker can put
187 	 * last reference.
188 	 */
189 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
190 }
191 
192 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 {
194 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
195 		return READ_ONCE(huge_zero_page);
196 
197 	if (!get_huge_zero_page())
198 		return NULL;
199 
200 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
201 		put_huge_zero_page();
202 
203 	return READ_ONCE(huge_zero_page);
204 }
205 
206 void mm_put_huge_zero_page(struct mm_struct *mm)
207 {
208 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
209 		put_huge_zero_page();
210 }
211 
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 					struct shrink_control *sc)
214 {
215 	/* we can free zero page only if last reference remains */
216 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 }
218 
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 				       struct shrink_control *sc)
221 {
222 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 		struct page *zero_page = xchg(&huge_zero_page, NULL);
224 		BUG_ON(zero_page == NULL);
225 		WRITE_ONCE(huge_zero_pfn, ~0UL);
226 		__free_pages(zero_page, compound_order(zero_page));
227 		return HPAGE_PMD_NR;
228 	}
229 
230 	return 0;
231 }
232 
233 static struct shrinker huge_zero_page_shrinker = {
234 	.count_objects = shrink_huge_zero_page_count,
235 	.scan_objects = shrink_huge_zero_page_scan,
236 	.seeks = DEFAULT_SEEKS,
237 };
238 
239 #ifdef CONFIG_SYSFS
240 static ssize_t enabled_show(struct kobject *kobj,
241 			    struct kobj_attribute *attr, char *buf)
242 {
243 	const char *output;
244 
245 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
246 		output = "[always] madvise never";
247 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
248 			  &transparent_hugepage_flags))
249 		output = "always [madvise] never";
250 	else
251 		output = "always madvise [never]";
252 
253 	return sysfs_emit(buf, "%s\n", output);
254 }
255 
256 static ssize_t enabled_store(struct kobject *kobj,
257 			     struct kobj_attribute *attr,
258 			     const char *buf, size_t count)
259 {
260 	ssize_t ret = count;
261 
262 	if (sysfs_streq(buf, "always")) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
267 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else if (sysfs_streq(buf, "never")) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 	} else
272 		ret = -EINVAL;
273 
274 	if (ret > 0) {
275 		int err = start_stop_khugepaged();
276 		if (err)
277 			ret = err;
278 	}
279 	return ret;
280 }
281 
282 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283 
284 ssize_t single_hugepage_flag_show(struct kobject *kobj,
285 				  struct kobj_attribute *attr, char *buf,
286 				  enum transparent_hugepage_flag flag)
287 {
288 	return sysfs_emit(buf, "%d\n",
289 			  !!test_bit(flag, &transparent_hugepage_flags));
290 }
291 
292 ssize_t single_hugepage_flag_store(struct kobject *kobj,
293 				 struct kobj_attribute *attr,
294 				 const char *buf, size_t count,
295 				 enum transparent_hugepage_flag flag)
296 {
297 	unsigned long value;
298 	int ret;
299 
300 	ret = kstrtoul(buf, 10, &value);
301 	if (ret < 0)
302 		return ret;
303 	if (value > 1)
304 		return -EINVAL;
305 
306 	if (value)
307 		set_bit(flag, &transparent_hugepage_flags);
308 	else
309 		clear_bit(flag, &transparent_hugepage_flags);
310 
311 	return count;
312 }
313 
314 static ssize_t defrag_show(struct kobject *kobj,
315 			   struct kobj_attribute *attr, char *buf)
316 {
317 	const char *output;
318 
319 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
320 		     &transparent_hugepage_flags))
321 		output = "[always] defer defer+madvise madvise never";
322 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
323 			  &transparent_hugepage_flags))
324 		output = "always [defer] defer+madvise madvise never";
325 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
326 			  &transparent_hugepage_flags))
327 		output = "always defer [defer+madvise] madvise never";
328 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
329 			  &transparent_hugepage_flags))
330 		output = "always defer defer+madvise [madvise] never";
331 	else
332 		output = "always defer defer+madvise madvise [never]";
333 
334 	return sysfs_emit(buf, "%s\n", output);
335 }
336 
337 static ssize_t defrag_store(struct kobject *kobj,
338 			    struct kobj_attribute *attr,
339 			    const char *buf, size_t count)
340 {
341 	if (sysfs_streq(buf, "always")) {
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
344 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
345 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 	} else if (sysfs_streq(buf, "defer+madvise")) {
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
349 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
350 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
351 	} else if (sysfs_streq(buf, "defer")) {
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
354 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
355 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
356 	} else if (sysfs_streq(buf, "madvise")) {
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
359 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
360 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
361 	} else if (sysfs_streq(buf, "never")) {
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
365 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
366 	} else
367 		return -EINVAL;
368 
369 	return count;
370 }
371 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372 
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 				  struct kobj_attribute *attr, char *buf)
375 {
376 	return single_hugepage_flag_show(kobj, attr, buf,
377 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 		struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 	return single_hugepage_flag_store(kobj, attr, buf, count,
383 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386 
387 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
388 				   struct kobj_attribute *attr, char *buf)
389 {
390 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 }
392 static struct kobj_attribute hpage_pmd_size_attr =
393 	__ATTR_RO(hpage_pmd_size);
394 
395 static struct attribute *hugepage_attr[] = {
396 	&enabled_attr.attr,
397 	&defrag_attr.attr,
398 	&use_zero_page_attr.attr,
399 	&hpage_pmd_size_attr.attr,
400 #ifdef CONFIG_SHMEM
401 	&shmem_enabled_attr.attr,
402 #endif
403 	NULL,
404 };
405 
406 static const struct attribute_group hugepage_attr_group = {
407 	.attrs = hugepage_attr,
408 };
409 
410 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
411 {
412 	int err;
413 
414 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
415 	if (unlikely(!*hugepage_kobj)) {
416 		pr_err("failed to create transparent hugepage kobject\n");
417 		return -ENOMEM;
418 	}
419 
420 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 	if (err) {
422 		pr_err("failed to register transparent hugepage group\n");
423 		goto delete_obj;
424 	}
425 
426 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 	if (err) {
428 		pr_err("failed to register transparent hugepage group\n");
429 		goto remove_hp_group;
430 	}
431 
432 	return 0;
433 
434 remove_hp_group:
435 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 delete_obj:
437 	kobject_put(*hugepage_kobj);
438 	return err;
439 }
440 
441 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 {
443 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
444 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
445 	kobject_put(hugepage_kobj);
446 }
447 #else
448 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
449 {
450 	return 0;
451 }
452 
453 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
454 {
455 }
456 #endif /* CONFIG_SYSFS */
457 
458 static int __init hugepage_init(void)
459 {
460 	int err;
461 	struct kobject *hugepage_kobj;
462 
463 	if (!has_transparent_hugepage()) {
464 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
465 		return -EINVAL;
466 	}
467 
468 	/*
469 	 * hugepages can't be allocated by the buddy allocator
470 	 */
471 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
472 	/*
473 	 * we use page->mapping and page->index in second tail page
474 	 * as list_head: assuming THP order >= 2
475 	 */
476 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
477 
478 	err = hugepage_init_sysfs(&hugepage_kobj);
479 	if (err)
480 		goto err_sysfs;
481 
482 	err = khugepaged_init();
483 	if (err)
484 		goto err_slab;
485 
486 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
487 	if (err)
488 		goto err_hzp_shrinker;
489 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
490 	if (err)
491 		goto err_split_shrinker;
492 
493 	/*
494 	 * By default disable transparent hugepages on smaller systems,
495 	 * where the extra memory used could hurt more than TLB overhead
496 	 * is likely to save.  The admin can still enable it through /sys.
497 	 */
498 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
499 		transparent_hugepage_flags = 0;
500 		return 0;
501 	}
502 
503 	err = start_stop_khugepaged();
504 	if (err)
505 		goto err_khugepaged;
506 
507 	return 0;
508 err_khugepaged:
509 	unregister_shrinker(&deferred_split_shrinker);
510 err_split_shrinker:
511 	unregister_shrinker(&huge_zero_page_shrinker);
512 err_hzp_shrinker:
513 	khugepaged_destroy();
514 err_slab:
515 	hugepage_exit_sysfs(hugepage_kobj);
516 err_sysfs:
517 	return err;
518 }
519 subsys_initcall(hugepage_init);
520 
521 static int __init setup_transparent_hugepage(char *str)
522 {
523 	int ret = 0;
524 	if (!str)
525 		goto out;
526 	if (!strcmp(str, "always")) {
527 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
528 			&transparent_hugepage_flags);
529 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
530 			  &transparent_hugepage_flags);
531 		ret = 1;
532 	} else if (!strcmp(str, "madvise")) {
533 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
534 			  &transparent_hugepage_flags);
535 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
536 			&transparent_hugepage_flags);
537 		ret = 1;
538 	} else if (!strcmp(str, "never")) {
539 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
540 			  &transparent_hugepage_flags);
541 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
542 			  &transparent_hugepage_flags);
543 		ret = 1;
544 	}
545 out:
546 	if (!ret)
547 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
548 	return ret;
549 }
550 __setup("transparent_hugepage=", setup_transparent_hugepage);
551 
552 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
553 {
554 	if (likely(vma->vm_flags & VM_WRITE))
555 		pmd = pmd_mkwrite(pmd, vma);
556 	return pmd;
557 }
558 
559 #ifdef CONFIG_MEMCG
560 static inline
561 struct deferred_split *get_deferred_split_queue(struct folio *folio)
562 {
563 	struct mem_cgroup *memcg = folio_memcg(folio);
564 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
565 
566 	if (memcg)
567 		return &memcg->deferred_split_queue;
568 	else
569 		return &pgdat->deferred_split_queue;
570 }
571 #else
572 static inline
573 struct deferred_split *get_deferred_split_queue(struct folio *folio)
574 {
575 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
576 
577 	return &pgdat->deferred_split_queue;
578 }
579 #endif
580 
581 void folio_prep_large_rmappable(struct folio *folio)
582 {
583 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
584 	INIT_LIST_HEAD(&folio->_deferred_list);
585 	folio_set_large_rmappable(folio);
586 }
587 
588 static inline bool is_transparent_hugepage(struct folio *folio)
589 {
590 	if (!folio_test_large(folio))
591 		return false;
592 
593 	return is_huge_zero_page(&folio->page) ||
594 		folio_test_large_rmappable(folio);
595 }
596 
597 static unsigned long __thp_get_unmapped_area(struct file *filp,
598 		unsigned long addr, unsigned long len,
599 		loff_t off, unsigned long flags, unsigned long size)
600 {
601 	loff_t off_end = off + len;
602 	loff_t off_align = round_up(off, size);
603 	unsigned long len_pad, ret;
604 
605 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
606 		return 0;
607 
608 	if (off_end <= off_align || (off_end - off_align) < size)
609 		return 0;
610 
611 	len_pad = len + size;
612 	if (len_pad < len || (off + len_pad) < off)
613 		return 0;
614 
615 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
616 					      off >> PAGE_SHIFT, flags);
617 
618 	/*
619 	 * The failure might be due to length padding. The caller will retry
620 	 * without the padding.
621 	 */
622 	if (IS_ERR_VALUE(ret))
623 		return 0;
624 
625 	/*
626 	 * Do not try to align to THP boundary if allocation at the address
627 	 * hint succeeds.
628 	 */
629 	if (ret == addr)
630 		return addr;
631 
632 	ret += (off - ret) & (size - 1);
633 	return ret;
634 }
635 
636 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
637 		unsigned long len, unsigned long pgoff, unsigned long flags)
638 {
639 	unsigned long ret;
640 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
641 
642 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
643 	if (ret)
644 		return ret;
645 
646 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
647 }
648 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
649 
650 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
651 			struct page *page, gfp_t gfp)
652 {
653 	struct vm_area_struct *vma = vmf->vma;
654 	struct folio *folio = page_folio(page);
655 	pgtable_t pgtable;
656 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
657 	vm_fault_t ret = 0;
658 
659 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
660 
661 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
662 		folio_put(folio);
663 		count_vm_event(THP_FAULT_FALLBACK);
664 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
665 		return VM_FAULT_FALLBACK;
666 	}
667 	folio_throttle_swaprate(folio, gfp);
668 
669 	pgtable = pte_alloc_one(vma->vm_mm);
670 	if (unlikely(!pgtable)) {
671 		ret = VM_FAULT_OOM;
672 		goto release;
673 	}
674 
675 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
676 	/*
677 	 * The memory barrier inside __folio_mark_uptodate makes sure that
678 	 * clear_huge_page writes become visible before the set_pmd_at()
679 	 * write.
680 	 */
681 	__folio_mark_uptodate(folio);
682 
683 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 	if (unlikely(!pmd_none(*vmf->pmd))) {
685 		goto unlock_release;
686 	} else {
687 		pmd_t entry;
688 
689 		ret = check_stable_address_space(vma->vm_mm);
690 		if (ret)
691 			goto unlock_release;
692 
693 		/* Deliver the page fault to userland */
694 		if (userfaultfd_missing(vma)) {
695 			spin_unlock(vmf->ptl);
696 			folio_put(folio);
697 			pte_free(vma->vm_mm, pgtable);
698 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
699 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
700 			return ret;
701 		}
702 
703 		entry = mk_huge_pmd(page, vma->vm_page_prot);
704 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 		folio_add_new_anon_rmap(folio, vma, haddr);
706 		folio_add_lru_vma(folio, vma);
707 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
708 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
709 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
710 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
711 		mm_inc_nr_ptes(vma->vm_mm);
712 		spin_unlock(vmf->ptl);
713 		count_vm_event(THP_FAULT_ALLOC);
714 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
715 	}
716 
717 	return 0;
718 unlock_release:
719 	spin_unlock(vmf->ptl);
720 release:
721 	if (pgtable)
722 		pte_free(vma->vm_mm, pgtable);
723 	folio_put(folio);
724 	return ret;
725 
726 }
727 
728 /*
729  * always: directly stall for all thp allocations
730  * defer: wake kswapd and fail if not immediately available
731  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
732  *		  fail if not immediately available
733  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
734  *	    available
735  * never: never stall for any thp allocation
736  */
737 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
738 {
739 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
740 
741 	/* Always do synchronous compaction */
742 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
743 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
744 
745 	/* Kick kcompactd and fail quickly */
746 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
747 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
748 
749 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
750 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
751 		return GFP_TRANSHUGE_LIGHT |
752 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
753 					__GFP_KSWAPD_RECLAIM);
754 
755 	/* Only do synchronous compaction if madvised */
756 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
757 		return GFP_TRANSHUGE_LIGHT |
758 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
759 
760 	return GFP_TRANSHUGE_LIGHT;
761 }
762 
763 /* Caller must hold page table lock. */
764 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 		struct page *zero_page)
767 {
768 	pmd_t entry;
769 	if (!pmd_none(*pmd))
770 		return;
771 	entry = mk_pmd(zero_page, vma->vm_page_prot);
772 	entry = pmd_mkhuge(entry);
773 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
774 	set_pmd_at(mm, haddr, pmd, entry);
775 	mm_inc_nr_ptes(mm);
776 }
777 
778 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
779 {
780 	struct vm_area_struct *vma = vmf->vma;
781 	gfp_t gfp;
782 	struct folio *folio;
783 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
784 
785 	if (!transhuge_vma_suitable(vma, haddr))
786 		return VM_FAULT_FALLBACK;
787 	if (unlikely(anon_vma_prepare(vma)))
788 		return VM_FAULT_OOM;
789 	khugepaged_enter_vma(vma, vma->vm_flags);
790 
791 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
792 			!mm_forbids_zeropage(vma->vm_mm) &&
793 			transparent_hugepage_use_zero_page()) {
794 		pgtable_t pgtable;
795 		struct page *zero_page;
796 		vm_fault_t ret;
797 		pgtable = pte_alloc_one(vma->vm_mm);
798 		if (unlikely(!pgtable))
799 			return VM_FAULT_OOM;
800 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
801 		if (unlikely(!zero_page)) {
802 			pte_free(vma->vm_mm, pgtable);
803 			count_vm_event(THP_FAULT_FALLBACK);
804 			return VM_FAULT_FALLBACK;
805 		}
806 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
807 		ret = 0;
808 		if (pmd_none(*vmf->pmd)) {
809 			ret = check_stable_address_space(vma->vm_mm);
810 			if (ret) {
811 				spin_unlock(vmf->ptl);
812 				pte_free(vma->vm_mm, pgtable);
813 			} else if (userfaultfd_missing(vma)) {
814 				spin_unlock(vmf->ptl);
815 				pte_free(vma->vm_mm, pgtable);
816 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
817 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
818 			} else {
819 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
820 						   haddr, vmf->pmd, zero_page);
821 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
822 				spin_unlock(vmf->ptl);
823 			}
824 		} else {
825 			spin_unlock(vmf->ptl);
826 			pte_free(vma->vm_mm, pgtable);
827 		}
828 		return ret;
829 	}
830 	gfp = vma_thp_gfp_mask(vma);
831 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
832 	if (unlikely(!folio)) {
833 		count_vm_event(THP_FAULT_FALLBACK);
834 		return VM_FAULT_FALLBACK;
835 	}
836 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
837 }
838 
839 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
840 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
841 		pgtable_t pgtable)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	pmd_t entry;
845 	spinlock_t *ptl;
846 
847 	ptl = pmd_lock(mm, pmd);
848 	if (!pmd_none(*pmd)) {
849 		if (write) {
850 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
851 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
852 				goto out_unlock;
853 			}
854 			entry = pmd_mkyoung(*pmd);
855 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
856 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
857 				update_mmu_cache_pmd(vma, addr, pmd);
858 		}
859 
860 		goto out_unlock;
861 	}
862 
863 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
864 	if (pfn_t_devmap(pfn))
865 		entry = pmd_mkdevmap(entry);
866 	if (write) {
867 		entry = pmd_mkyoung(pmd_mkdirty(entry));
868 		entry = maybe_pmd_mkwrite(entry, vma);
869 	}
870 
871 	if (pgtable) {
872 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
873 		mm_inc_nr_ptes(mm);
874 		pgtable = NULL;
875 	}
876 
877 	set_pmd_at(mm, addr, pmd, entry);
878 	update_mmu_cache_pmd(vma, addr, pmd);
879 
880 out_unlock:
881 	spin_unlock(ptl);
882 	if (pgtable)
883 		pte_free(mm, pgtable);
884 }
885 
886 /**
887  * vmf_insert_pfn_pmd - insert a pmd size pfn
888  * @vmf: Structure describing the fault
889  * @pfn: pfn to insert
890  * @write: whether it's a write fault
891  *
892  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
893  *
894  * Return: vm_fault_t value.
895  */
896 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
897 {
898 	unsigned long addr = vmf->address & PMD_MASK;
899 	struct vm_area_struct *vma = vmf->vma;
900 	pgprot_t pgprot = vma->vm_page_prot;
901 	pgtable_t pgtable = NULL;
902 
903 	/*
904 	 * If we had pmd_special, we could avoid all these restrictions,
905 	 * but we need to be consistent with PTEs and architectures that
906 	 * can't support a 'special' bit.
907 	 */
908 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
909 			!pfn_t_devmap(pfn));
910 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
911 						(VM_PFNMAP|VM_MIXEDMAP));
912 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
913 
914 	if (addr < vma->vm_start || addr >= vma->vm_end)
915 		return VM_FAULT_SIGBUS;
916 
917 	if (arch_needs_pgtable_deposit()) {
918 		pgtable = pte_alloc_one(vma->vm_mm);
919 		if (!pgtable)
920 			return VM_FAULT_OOM;
921 	}
922 
923 	track_pfn_insert(vma, &pgprot, pfn);
924 
925 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
926 	return VM_FAULT_NOPAGE;
927 }
928 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
929 
930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
931 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
932 {
933 	if (likely(vma->vm_flags & VM_WRITE))
934 		pud = pud_mkwrite(pud);
935 	return pud;
936 }
937 
938 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
939 		pud_t *pud, pfn_t pfn, bool write)
940 {
941 	struct mm_struct *mm = vma->vm_mm;
942 	pgprot_t prot = vma->vm_page_prot;
943 	pud_t entry;
944 	spinlock_t *ptl;
945 
946 	ptl = pud_lock(mm, pud);
947 	if (!pud_none(*pud)) {
948 		if (write) {
949 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
950 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
951 				goto out_unlock;
952 			}
953 			entry = pud_mkyoung(*pud);
954 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
955 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
956 				update_mmu_cache_pud(vma, addr, pud);
957 		}
958 		goto out_unlock;
959 	}
960 
961 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
962 	if (pfn_t_devmap(pfn))
963 		entry = pud_mkdevmap(entry);
964 	if (write) {
965 		entry = pud_mkyoung(pud_mkdirty(entry));
966 		entry = maybe_pud_mkwrite(entry, vma);
967 	}
968 	set_pud_at(mm, addr, pud, entry);
969 	update_mmu_cache_pud(vma, addr, pud);
970 
971 out_unlock:
972 	spin_unlock(ptl);
973 }
974 
975 /**
976  * vmf_insert_pfn_pud - insert a pud size pfn
977  * @vmf: Structure describing the fault
978  * @pfn: pfn to insert
979  * @write: whether it's a write fault
980  *
981  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
982  *
983  * Return: vm_fault_t value.
984  */
985 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
986 {
987 	unsigned long addr = vmf->address & PUD_MASK;
988 	struct vm_area_struct *vma = vmf->vma;
989 	pgprot_t pgprot = vma->vm_page_prot;
990 
991 	/*
992 	 * If we had pud_special, we could avoid all these restrictions,
993 	 * but we need to be consistent with PTEs and architectures that
994 	 * can't support a 'special' bit.
995 	 */
996 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
997 			!pfn_t_devmap(pfn));
998 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
999 						(VM_PFNMAP|VM_MIXEDMAP));
1000 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1001 
1002 	if (addr < vma->vm_start || addr >= vma->vm_end)
1003 		return VM_FAULT_SIGBUS;
1004 
1005 	track_pfn_insert(vma, &pgprot, pfn);
1006 
1007 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1008 	return VM_FAULT_NOPAGE;
1009 }
1010 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1012 
1013 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1014 		      pmd_t *pmd, bool write)
1015 {
1016 	pmd_t _pmd;
1017 
1018 	_pmd = pmd_mkyoung(*pmd);
1019 	if (write)
1020 		_pmd = pmd_mkdirty(_pmd);
1021 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1022 				  pmd, _pmd, write))
1023 		update_mmu_cache_pmd(vma, addr, pmd);
1024 }
1025 
1026 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1027 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1028 {
1029 	unsigned long pfn = pmd_pfn(*pmd);
1030 	struct mm_struct *mm = vma->vm_mm;
1031 	struct page *page;
1032 	int ret;
1033 
1034 	assert_spin_locked(pmd_lockptr(mm, pmd));
1035 
1036 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1037 		return NULL;
1038 
1039 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1040 		/* pass */;
1041 	else
1042 		return NULL;
1043 
1044 	if (flags & FOLL_TOUCH)
1045 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1046 
1047 	/*
1048 	 * device mapped pages can only be returned if the
1049 	 * caller will manage the page reference count.
1050 	 */
1051 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1052 		return ERR_PTR(-EEXIST);
1053 
1054 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1055 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1056 	if (!*pgmap)
1057 		return ERR_PTR(-EFAULT);
1058 	page = pfn_to_page(pfn);
1059 	ret = try_grab_folio(page_folio(page), 1, flags);
1060 	if (ret)
1061 		page = ERR_PTR(ret);
1062 
1063 	return page;
1064 }
1065 
1066 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1069 {
1070 	spinlock_t *dst_ptl, *src_ptl;
1071 	struct page *src_page;
1072 	pmd_t pmd;
1073 	pgtable_t pgtable = NULL;
1074 	int ret = -ENOMEM;
1075 
1076 	/* Skip if can be re-fill on fault */
1077 	if (!vma_is_anonymous(dst_vma))
1078 		return 0;
1079 
1080 	pgtable = pte_alloc_one(dst_mm);
1081 	if (unlikely(!pgtable))
1082 		goto out;
1083 
1084 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1085 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1086 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 
1088 	ret = -EAGAIN;
1089 	pmd = *src_pmd;
1090 
1091 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1092 	if (unlikely(is_swap_pmd(pmd))) {
1093 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1094 
1095 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1096 		if (!is_readable_migration_entry(entry)) {
1097 			entry = make_readable_migration_entry(
1098 							swp_offset(entry));
1099 			pmd = swp_entry_to_pmd(entry);
1100 			if (pmd_swp_soft_dirty(*src_pmd))
1101 				pmd = pmd_swp_mksoft_dirty(pmd);
1102 			if (pmd_swp_uffd_wp(*src_pmd))
1103 				pmd = pmd_swp_mkuffd_wp(pmd);
1104 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1105 		}
1106 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1107 		mm_inc_nr_ptes(dst_mm);
1108 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1109 		if (!userfaultfd_wp(dst_vma))
1110 			pmd = pmd_swp_clear_uffd_wp(pmd);
1111 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1112 		ret = 0;
1113 		goto out_unlock;
1114 	}
1115 #endif
1116 
1117 	if (unlikely(!pmd_trans_huge(pmd))) {
1118 		pte_free(dst_mm, pgtable);
1119 		goto out_unlock;
1120 	}
1121 	/*
1122 	 * When page table lock is held, the huge zero pmd should not be
1123 	 * under splitting since we don't split the page itself, only pmd to
1124 	 * a page table.
1125 	 */
1126 	if (is_huge_zero_pmd(pmd)) {
1127 		/*
1128 		 * get_huge_zero_page() will never allocate a new page here,
1129 		 * since we already have a zero page to copy. It just takes a
1130 		 * reference.
1131 		 */
1132 		mm_get_huge_zero_page(dst_mm);
1133 		goto out_zero_page;
1134 	}
1135 
1136 	src_page = pmd_page(pmd);
1137 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1138 
1139 	get_page(src_page);
1140 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1141 		/* Page maybe pinned: split and retry the fault on PTEs. */
1142 		put_page(src_page);
1143 		pte_free(dst_mm, pgtable);
1144 		spin_unlock(src_ptl);
1145 		spin_unlock(dst_ptl);
1146 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1147 		return -EAGAIN;
1148 	}
1149 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1150 out_zero_page:
1151 	mm_inc_nr_ptes(dst_mm);
1152 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1154 	if (!userfaultfd_wp(dst_vma))
1155 		pmd = pmd_clear_uffd_wp(pmd);
1156 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1157 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1158 
1159 	ret = 0;
1160 out_unlock:
1161 	spin_unlock(src_ptl);
1162 	spin_unlock(dst_ptl);
1163 out:
1164 	return ret;
1165 }
1166 
1167 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1168 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1169 		      pud_t *pud, bool write)
1170 {
1171 	pud_t _pud;
1172 
1173 	_pud = pud_mkyoung(*pud);
1174 	if (write)
1175 		_pud = pud_mkdirty(_pud);
1176 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1177 				  pud, _pud, write))
1178 		update_mmu_cache_pud(vma, addr, pud);
1179 }
1180 
1181 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1182 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1183 {
1184 	unsigned long pfn = pud_pfn(*pud);
1185 	struct mm_struct *mm = vma->vm_mm;
1186 	struct page *page;
1187 	int ret;
1188 
1189 	assert_spin_locked(pud_lockptr(mm, pud));
1190 
1191 	if (flags & FOLL_WRITE && !pud_write(*pud))
1192 		return NULL;
1193 
1194 	if (pud_present(*pud) && pud_devmap(*pud))
1195 		/* pass */;
1196 	else
1197 		return NULL;
1198 
1199 	if (flags & FOLL_TOUCH)
1200 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1201 
1202 	/*
1203 	 * device mapped pages can only be returned if the
1204 	 * caller will manage the page reference count.
1205 	 *
1206 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1207 	 */
1208 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1209 		return ERR_PTR(-EEXIST);
1210 
1211 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1212 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1213 	if (!*pgmap)
1214 		return ERR_PTR(-EFAULT);
1215 	page = pfn_to_page(pfn);
1216 
1217 	ret = try_grab_folio(page_folio(page), 1, flags);
1218 	if (ret)
1219 		page = ERR_PTR(ret);
1220 
1221 	return page;
1222 }
1223 
1224 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1225 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1226 		  struct vm_area_struct *vma)
1227 {
1228 	spinlock_t *dst_ptl, *src_ptl;
1229 	pud_t pud;
1230 	int ret;
1231 
1232 	dst_ptl = pud_lock(dst_mm, dst_pud);
1233 	src_ptl = pud_lockptr(src_mm, src_pud);
1234 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1235 
1236 	ret = -EAGAIN;
1237 	pud = *src_pud;
1238 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1239 		goto out_unlock;
1240 
1241 	/*
1242 	 * When page table lock is held, the huge zero pud should not be
1243 	 * under splitting since we don't split the page itself, only pud to
1244 	 * a page table.
1245 	 */
1246 	if (is_huge_zero_pud(pud)) {
1247 		/* No huge zero pud yet */
1248 	}
1249 
1250 	/*
1251 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1252 	 * and split if duplicating fails.
1253 	 */
1254 	pudp_set_wrprotect(src_mm, addr, src_pud);
1255 	pud = pud_mkold(pud_wrprotect(pud));
1256 	set_pud_at(dst_mm, addr, dst_pud, pud);
1257 
1258 	ret = 0;
1259 out_unlock:
1260 	spin_unlock(src_ptl);
1261 	spin_unlock(dst_ptl);
1262 	return ret;
1263 }
1264 
1265 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1266 {
1267 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1268 
1269 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1270 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1271 		goto unlock;
1272 
1273 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1274 unlock:
1275 	spin_unlock(vmf->ptl);
1276 }
1277 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1278 
1279 void huge_pmd_set_accessed(struct vm_fault *vmf)
1280 {
1281 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1282 
1283 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1284 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1285 		goto unlock;
1286 
1287 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1288 
1289 unlock:
1290 	spin_unlock(vmf->ptl);
1291 }
1292 
1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1294 {
1295 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1296 	struct vm_area_struct *vma = vmf->vma;
1297 	struct folio *folio;
1298 	struct page *page;
1299 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1300 	pmd_t orig_pmd = vmf->orig_pmd;
1301 
1302 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1303 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1304 
1305 	if (is_huge_zero_pmd(orig_pmd))
1306 		goto fallback;
1307 
1308 	spin_lock(vmf->ptl);
1309 
1310 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1311 		spin_unlock(vmf->ptl);
1312 		return 0;
1313 	}
1314 
1315 	page = pmd_page(orig_pmd);
1316 	folio = page_folio(page);
1317 	VM_BUG_ON_PAGE(!PageHead(page), page);
1318 
1319 	/* Early check when only holding the PT lock. */
1320 	if (PageAnonExclusive(page))
1321 		goto reuse;
1322 
1323 	if (!folio_trylock(folio)) {
1324 		folio_get(folio);
1325 		spin_unlock(vmf->ptl);
1326 		folio_lock(folio);
1327 		spin_lock(vmf->ptl);
1328 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1329 			spin_unlock(vmf->ptl);
1330 			folio_unlock(folio);
1331 			folio_put(folio);
1332 			return 0;
1333 		}
1334 		folio_put(folio);
1335 	}
1336 
1337 	/* Recheck after temporarily dropping the PT lock. */
1338 	if (PageAnonExclusive(page)) {
1339 		folio_unlock(folio);
1340 		goto reuse;
1341 	}
1342 
1343 	/*
1344 	 * See do_wp_page(): we can only reuse the folio exclusively if
1345 	 * there are no additional references. Note that we always drain
1346 	 * the LRU cache immediately after adding a THP.
1347 	 */
1348 	if (folio_ref_count(folio) >
1349 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1350 		goto unlock_fallback;
1351 	if (folio_test_swapcache(folio))
1352 		folio_free_swap(folio);
1353 	if (folio_ref_count(folio) == 1) {
1354 		pmd_t entry;
1355 
1356 		page_move_anon_rmap(page, vma);
1357 		folio_unlock(folio);
1358 reuse:
1359 		if (unlikely(unshare)) {
1360 			spin_unlock(vmf->ptl);
1361 			return 0;
1362 		}
1363 		entry = pmd_mkyoung(orig_pmd);
1364 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1365 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1366 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1367 		spin_unlock(vmf->ptl);
1368 		return 0;
1369 	}
1370 
1371 unlock_fallback:
1372 	folio_unlock(folio);
1373 	spin_unlock(vmf->ptl);
1374 fallback:
1375 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1376 	return VM_FAULT_FALLBACK;
1377 }
1378 
1379 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1380 					   unsigned long addr, pmd_t pmd)
1381 {
1382 	struct page *page;
1383 
1384 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1385 		return false;
1386 
1387 	/* Don't touch entries that are not even readable (NUMA hinting). */
1388 	if (pmd_protnone(pmd))
1389 		return false;
1390 
1391 	/* Do we need write faults for softdirty tracking? */
1392 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1393 		return false;
1394 
1395 	/* Do we need write faults for uffd-wp tracking? */
1396 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1397 		return false;
1398 
1399 	if (!(vma->vm_flags & VM_SHARED)) {
1400 		/* See can_change_pte_writable(). */
1401 		page = vm_normal_page_pmd(vma, addr, pmd);
1402 		return page && PageAnon(page) && PageAnonExclusive(page);
1403 	}
1404 
1405 	/* See can_change_pte_writable(). */
1406 	return pmd_dirty(pmd);
1407 }
1408 
1409 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1410 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1411 					struct vm_area_struct *vma,
1412 					unsigned int flags)
1413 {
1414 	/* If the pmd is writable, we can write to the page. */
1415 	if (pmd_write(pmd))
1416 		return true;
1417 
1418 	/* Maybe FOLL_FORCE is set to override it? */
1419 	if (!(flags & FOLL_FORCE))
1420 		return false;
1421 
1422 	/* But FOLL_FORCE has no effect on shared mappings */
1423 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1424 		return false;
1425 
1426 	/* ... or read-only private ones */
1427 	if (!(vma->vm_flags & VM_MAYWRITE))
1428 		return false;
1429 
1430 	/* ... or already writable ones that just need to take a write fault */
1431 	if (vma->vm_flags & VM_WRITE)
1432 		return false;
1433 
1434 	/*
1435 	 * See can_change_pte_writable(): we broke COW and could map the page
1436 	 * writable if we have an exclusive anonymous page ...
1437 	 */
1438 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1439 		return false;
1440 
1441 	/* ... and a write-fault isn't required for other reasons. */
1442 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1443 		return false;
1444 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1445 }
1446 
1447 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1448 				   unsigned long addr,
1449 				   pmd_t *pmd,
1450 				   unsigned int flags)
1451 {
1452 	struct mm_struct *mm = vma->vm_mm;
1453 	struct page *page;
1454 	int ret;
1455 
1456 	assert_spin_locked(pmd_lockptr(mm, pmd));
1457 
1458 	page = pmd_page(*pmd);
1459 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1460 
1461 	if ((flags & FOLL_WRITE) &&
1462 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1463 		return NULL;
1464 
1465 	/* Avoid dumping huge zero page */
1466 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1467 		return ERR_PTR(-EFAULT);
1468 
1469 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1470 		return NULL;
1471 
1472 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1473 		return ERR_PTR(-EMLINK);
1474 
1475 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1476 			!PageAnonExclusive(page), page);
1477 
1478 	ret = try_grab_folio(page_folio(page), 1, flags);
1479 	if (ret)
1480 		return ERR_PTR(ret);
1481 
1482 	if (flags & FOLL_TOUCH)
1483 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1484 
1485 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1486 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1487 
1488 	return page;
1489 }
1490 
1491 /* NUMA hinting page fault entry point for trans huge pmds */
1492 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1493 {
1494 	struct vm_area_struct *vma = vmf->vma;
1495 	pmd_t oldpmd = vmf->orig_pmd;
1496 	pmd_t pmd;
1497 	struct page *page;
1498 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1499 	int page_nid = NUMA_NO_NODE;
1500 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1501 	bool migrated = false, writable = false;
1502 	int flags = 0;
1503 
1504 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1505 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1506 		spin_unlock(vmf->ptl);
1507 		goto out;
1508 	}
1509 
1510 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1511 
1512 	/*
1513 	 * Detect now whether the PMD could be writable; this information
1514 	 * is only valid while holding the PT lock.
1515 	 */
1516 	writable = pmd_write(pmd);
1517 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1518 	    can_change_pmd_writable(vma, vmf->address, pmd))
1519 		writable = true;
1520 
1521 	page = vm_normal_page_pmd(vma, haddr, pmd);
1522 	if (!page)
1523 		goto out_map;
1524 
1525 	/* See similar comment in do_numa_page for explanation */
1526 	if (!writable)
1527 		flags |= TNF_NO_GROUP;
1528 
1529 	page_nid = page_to_nid(page);
1530 	/*
1531 	 * For memory tiering mode, cpupid of slow memory page is used
1532 	 * to record page access time.  So use default value.
1533 	 */
1534 	if (node_is_toptier(page_nid))
1535 		last_cpupid = page_cpupid_last(page);
1536 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1537 				       &flags);
1538 
1539 	if (target_nid == NUMA_NO_NODE) {
1540 		put_page(page);
1541 		goto out_map;
1542 	}
1543 
1544 	spin_unlock(vmf->ptl);
1545 	writable = false;
1546 
1547 	migrated = migrate_misplaced_page(page, vma, target_nid);
1548 	if (migrated) {
1549 		flags |= TNF_MIGRATED;
1550 		page_nid = target_nid;
1551 	} else {
1552 		flags |= TNF_MIGRATE_FAIL;
1553 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1554 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1555 			spin_unlock(vmf->ptl);
1556 			goto out;
1557 		}
1558 		goto out_map;
1559 	}
1560 
1561 out:
1562 	if (page_nid != NUMA_NO_NODE)
1563 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1564 				flags);
1565 
1566 	return 0;
1567 
1568 out_map:
1569 	/* Restore the PMD */
1570 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1571 	pmd = pmd_mkyoung(pmd);
1572 	if (writable)
1573 		pmd = pmd_mkwrite(pmd, vma);
1574 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1575 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1576 	spin_unlock(vmf->ptl);
1577 	goto out;
1578 }
1579 
1580 /*
1581  * Return true if we do MADV_FREE successfully on entire pmd page.
1582  * Otherwise, return false.
1583  */
1584 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1585 		pmd_t *pmd, unsigned long addr, unsigned long next)
1586 {
1587 	spinlock_t *ptl;
1588 	pmd_t orig_pmd;
1589 	struct folio *folio;
1590 	struct mm_struct *mm = tlb->mm;
1591 	bool ret = false;
1592 
1593 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1594 
1595 	ptl = pmd_trans_huge_lock(pmd, vma);
1596 	if (!ptl)
1597 		goto out_unlocked;
1598 
1599 	orig_pmd = *pmd;
1600 	if (is_huge_zero_pmd(orig_pmd))
1601 		goto out;
1602 
1603 	if (unlikely(!pmd_present(orig_pmd))) {
1604 		VM_BUG_ON(thp_migration_supported() &&
1605 				  !is_pmd_migration_entry(orig_pmd));
1606 		goto out;
1607 	}
1608 
1609 	folio = pfn_folio(pmd_pfn(orig_pmd));
1610 	/*
1611 	 * If other processes are mapping this folio, we couldn't discard
1612 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1613 	 */
1614 	if (folio_estimated_sharers(folio) != 1)
1615 		goto out;
1616 
1617 	if (!folio_trylock(folio))
1618 		goto out;
1619 
1620 	/*
1621 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1622 	 * will deactivate only them.
1623 	 */
1624 	if (next - addr != HPAGE_PMD_SIZE) {
1625 		folio_get(folio);
1626 		spin_unlock(ptl);
1627 		split_folio(folio);
1628 		folio_unlock(folio);
1629 		folio_put(folio);
1630 		goto out_unlocked;
1631 	}
1632 
1633 	if (folio_test_dirty(folio))
1634 		folio_clear_dirty(folio);
1635 	folio_unlock(folio);
1636 
1637 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1638 		pmdp_invalidate(vma, addr, pmd);
1639 		orig_pmd = pmd_mkold(orig_pmd);
1640 		orig_pmd = pmd_mkclean(orig_pmd);
1641 
1642 		set_pmd_at(mm, addr, pmd, orig_pmd);
1643 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1644 	}
1645 
1646 	folio_mark_lazyfree(folio);
1647 	ret = true;
1648 out:
1649 	spin_unlock(ptl);
1650 out_unlocked:
1651 	return ret;
1652 }
1653 
1654 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1655 {
1656 	pgtable_t pgtable;
1657 
1658 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1659 	pte_free(mm, pgtable);
1660 	mm_dec_nr_ptes(mm);
1661 }
1662 
1663 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1664 		 pmd_t *pmd, unsigned long addr)
1665 {
1666 	pmd_t orig_pmd;
1667 	spinlock_t *ptl;
1668 
1669 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1670 
1671 	ptl = __pmd_trans_huge_lock(pmd, vma);
1672 	if (!ptl)
1673 		return 0;
1674 	/*
1675 	 * For architectures like ppc64 we look at deposited pgtable
1676 	 * when calling pmdp_huge_get_and_clear. So do the
1677 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1678 	 * operations.
1679 	 */
1680 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1681 						tlb->fullmm);
1682 	arch_check_zapped_pmd(vma, orig_pmd);
1683 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684 	if (vma_is_special_huge(vma)) {
1685 		if (arch_needs_pgtable_deposit())
1686 			zap_deposited_table(tlb->mm, pmd);
1687 		spin_unlock(ptl);
1688 	} else if (is_huge_zero_pmd(orig_pmd)) {
1689 		zap_deposited_table(tlb->mm, pmd);
1690 		spin_unlock(ptl);
1691 	} else {
1692 		struct page *page = NULL;
1693 		int flush_needed = 1;
1694 
1695 		if (pmd_present(orig_pmd)) {
1696 			page = pmd_page(orig_pmd);
1697 			page_remove_rmap(page, vma, true);
1698 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1699 			VM_BUG_ON_PAGE(!PageHead(page), page);
1700 		} else if (thp_migration_supported()) {
1701 			swp_entry_t entry;
1702 
1703 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1704 			entry = pmd_to_swp_entry(orig_pmd);
1705 			page = pfn_swap_entry_to_page(entry);
1706 			flush_needed = 0;
1707 		} else
1708 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1709 
1710 		if (PageAnon(page)) {
1711 			zap_deposited_table(tlb->mm, pmd);
1712 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1713 		} else {
1714 			if (arch_needs_pgtable_deposit())
1715 				zap_deposited_table(tlb->mm, pmd);
1716 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1717 		}
1718 
1719 		spin_unlock(ptl);
1720 		if (flush_needed)
1721 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1722 	}
1723 	return 1;
1724 }
1725 
1726 #ifndef pmd_move_must_withdraw
1727 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1728 					 spinlock_t *old_pmd_ptl,
1729 					 struct vm_area_struct *vma)
1730 {
1731 	/*
1732 	 * With split pmd lock we also need to move preallocated
1733 	 * PTE page table if new_pmd is on different PMD page table.
1734 	 *
1735 	 * We also don't deposit and withdraw tables for file pages.
1736 	 */
1737 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1738 }
1739 #endif
1740 
1741 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1742 {
1743 #ifdef CONFIG_MEM_SOFT_DIRTY
1744 	if (unlikely(is_pmd_migration_entry(pmd)))
1745 		pmd = pmd_swp_mksoft_dirty(pmd);
1746 	else if (pmd_present(pmd))
1747 		pmd = pmd_mksoft_dirty(pmd);
1748 #endif
1749 	return pmd;
1750 }
1751 
1752 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1753 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1754 {
1755 	spinlock_t *old_ptl, *new_ptl;
1756 	pmd_t pmd;
1757 	struct mm_struct *mm = vma->vm_mm;
1758 	bool force_flush = false;
1759 
1760 	/*
1761 	 * The destination pmd shouldn't be established, free_pgtables()
1762 	 * should have released it; but move_page_tables() might have already
1763 	 * inserted a page table, if racing against shmem/file collapse.
1764 	 */
1765 	if (!pmd_none(*new_pmd)) {
1766 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1767 		return false;
1768 	}
1769 
1770 	/*
1771 	 * We don't have to worry about the ordering of src and dst
1772 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1773 	 */
1774 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1775 	if (old_ptl) {
1776 		new_ptl = pmd_lockptr(mm, new_pmd);
1777 		if (new_ptl != old_ptl)
1778 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1779 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1780 		if (pmd_present(pmd))
1781 			force_flush = true;
1782 		VM_BUG_ON(!pmd_none(*new_pmd));
1783 
1784 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1785 			pgtable_t pgtable;
1786 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1787 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1788 		}
1789 		pmd = move_soft_dirty_pmd(pmd);
1790 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1791 		if (force_flush)
1792 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1793 		if (new_ptl != old_ptl)
1794 			spin_unlock(new_ptl);
1795 		spin_unlock(old_ptl);
1796 		return true;
1797 	}
1798 	return false;
1799 }
1800 
1801 /*
1802  * Returns
1803  *  - 0 if PMD could not be locked
1804  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1805  *      or if prot_numa but THP migration is not supported
1806  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1807  */
1808 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1809 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1810 		    unsigned long cp_flags)
1811 {
1812 	struct mm_struct *mm = vma->vm_mm;
1813 	spinlock_t *ptl;
1814 	pmd_t oldpmd, entry;
1815 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1816 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1817 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1818 	int ret = 1;
1819 
1820 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1821 
1822 	if (prot_numa && !thp_migration_supported())
1823 		return 1;
1824 
1825 	ptl = __pmd_trans_huge_lock(pmd, vma);
1826 	if (!ptl)
1827 		return 0;
1828 
1829 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1830 	if (is_swap_pmd(*pmd)) {
1831 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1832 		struct page *page = pfn_swap_entry_to_page(entry);
1833 		pmd_t newpmd;
1834 
1835 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1836 		if (is_writable_migration_entry(entry)) {
1837 			/*
1838 			 * A protection check is difficult so
1839 			 * just be safe and disable write
1840 			 */
1841 			if (PageAnon(page))
1842 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1843 			else
1844 				entry = make_readable_migration_entry(swp_offset(entry));
1845 			newpmd = swp_entry_to_pmd(entry);
1846 			if (pmd_swp_soft_dirty(*pmd))
1847 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1848 		} else {
1849 			newpmd = *pmd;
1850 		}
1851 
1852 		if (uffd_wp)
1853 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1854 		else if (uffd_wp_resolve)
1855 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1856 		if (!pmd_same(*pmd, newpmd))
1857 			set_pmd_at(mm, addr, pmd, newpmd);
1858 		goto unlock;
1859 	}
1860 #endif
1861 
1862 	if (prot_numa) {
1863 		struct page *page;
1864 		bool toptier;
1865 		/*
1866 		 * Avoid trapping faults against the zero page. The read-only
1867 		 * data is likely to be read-cached on the local CPU and
1868 		 * local/remote hits to the zero page are not interesting.
1869 		 */
1870 		if (is_huge_zero_pmd(*pmd))
1871 			goto unlock;
1872 
1873 		if (pmd_protnone(*pmd))
1874 			goto unlock;
1875 
1876 		page = pmd_page(*pmd);
1877 		toptier = node_is_toptier(page_to_nid(page));
1878 		/*
1879 		 * Skip scanning top tier node if normal numa
1880 		 * balancing is disabled
1881 		 */
1882 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1883 		    toptier)
1884 			goto unlock;
1885 
1886 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1887 		    !toptier)
1888 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1889 	}
1890 	/*
1891 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1892 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1893 	 * which is also under mmap_read_lock(mm):
1894 	 *
1895 	 *	CPU0:				CPU1:
1896 	 *				change_huge_pmd(prot_numa=1)
1897 	 *				 pmdp_huge_get_and_clear_notify()
1898 	 * madvise_dontneed()
1899 	 *  zap_pmd_range()
1900 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1901 	 *   // skip the pmd
1902 	 *				 set_pmd_at();
1903 	 *				 // pmd is re-established
1904 	 *
1905 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1906 	 * which may break userspace.
1907 	 *
1908 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1909 	 * dirty/young flags set by hardware.
1910 	 */
1911 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1912 
1913 	entry = pmd_modify(oldpmd, newprot);
1914 	if (uffd_wp)
1915 		entry = pmd_mkuffd_wp(entry);
1916 	else if (uffd_wp_resolve)
1917 		/*
1918 		 * Leave the write bit to be handled by PF interrupt
1919 		 * handler, then things like COW could be properly
1920 		 * handled.
1921 		 */
1922 		entry = pmd_clear_uffd_wp(entry);
1923 
1924 	/* See change_pte_range(). */
1925 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1926 	    can_change_pmd_writable(vma, addr, entry))
1927 		entry = pmd_mkwrite(entry, vma);
1928 
1929 	ret = HPAGE_PMD_NR;
1930 	set_pmd_at(mm, addr, pmd, entry);
1931 
1932 	if (huge_pmd_needs_flush(oldpmd, entry))
1933 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1934 unlock:
1935 	spin_unlock(ptl);
1936 	return ret;
1937 }
1938 
1939 /*
1940  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1941  *
1942  * Note that if it returns page table lock pointer, this routine returns without
1943  * unlocking page table lock. So callers must unlock it.
1944  */
1945 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1946 {
1947 	spinlock_t *ptl;
1948 	ptl = pmd_lock(vma->vm_mm, pmd);
1949 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1950 			pmd_devmap(*pmd)))
1951 		return ptl;
1952 	spin_unlock(ptl);
1953 	return NULL;
1954 }
1955 
1956 /*
1957  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1958  *
1959  * Note that if it returns page table lock pointer, this routine returns without
1960  * unlocking page table lock. So callers must unlock it.
1961  */
1962 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1963 {
1964 	spinlock_t *ptl;
1965 
1966 	ptl = pud_lock(vma->vm_mm, pud);
1967 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1968 		return ptl;
1969 	spin_unlock(ptl);
1970 	return NULL;
1971 }
1972 
1973 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1974 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1975 		 pud_t *pud, unsigned long addr)
1976 {
1977 	spinlock_t *ptl;
1978 
1979 	ptl = __pud_trans_huge_lock(pud, vma);
1980 	if (!ptl)
1981 		return 0;
1982 
1983 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1984 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1985 	if (vma_is_special_huge(vma)) {
1986 		spin_unlock(ptl);
1987 		/* No zero page support yet */
1988 	} else {
1989 		/* No support for anonymous PUD pages yet */
1990 		BUG();
1991 	}
1992 	return 1;
1993 }
1994 
1995 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1996 		unsigned long haddr)
1997 {
1998 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1999 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2001 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2002 
2003 	count_vm_event(THP_SPLIT_PUD);
2004 
2005 	pudp_huge_clear_flush(vma, haddr, pud);
2006 }
2007 
2008 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2009 		unsigned long address)
2010 {
2011 	spinlock_t *ptl;
2012 	struct mmu_notifier_range range;
2013 
2014 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2015 				address & HPAGE_PUD_MASK,
2016 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2017 	mmu_notifier_invalidate_range_start(&range);
2018 	ptl = pud_lock(vma->vm_mm, pud);
2019 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2020 		goto out;
2021 	__split_huge_pud_locked(vma, pud, range.start);
2022 
2023 out:
2024 	spin_unlock(ptl);
2025 	mmu_notifier_invalidate_range_end(&range);
2026 }
2027 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2028 
2029 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2030 		unsigned long haddr, pmd_t *pmd)
2031 {
2032 	struct mm_struct *mm = vma->vm_mm;
2033 	pgtable_t pgtable;
2034 	pmd_t _pmd, old_pmd;
2035 	unsigned long addr;
2036 	pte_t *pte;
2037 	int i;
2038 
2039 	/*
2040 	 * Leave pmd empty until pte is filled note that it is fine to delay
2041 	 * notification until mmu_notifier_invalidate_range_end() as we are
2042 	 * replacing a zero pmd write protected page with a zero pte write
2043 	 * protected page.
2044 	 *
2045 	 * See Documentation/mm/mmu_notifier.rst
2046 	 */
2047 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2048 
2049 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 	pmd_populate(mm, &_pmd, pgtable);
2051 
2052 	pte = pte_offset_map(&_pmd, haddr);
2053 	VM_BUG_ON(!pte);
2054 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2055 		pte_t entry;
2056 
2057 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2058 		entry = pte_mkspecial(entry);
2059 		if (pmd_uffd_wp(old_pmd))
2060 			entry = pte_mkuffd_wp(entry);
2061 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2062 		set_pte_at(mm, addr, pte, entry);
2063 		pte++;
2064 	}
2065 	pte_unmap(pte - 1);
2066 	smp_wmb(); /* make pte visible before pmd */
2067 	pmd_populate(mm, pmd, pgtable);
2068 }
2069 
2070 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2071 		unsigned long haddr, bool freeze)
2072 {
2073 	struct mm_struct *mm = vma->vm_mm;
2074 	struct page *page;
2075 	pgtable_t pgtable;
2076 	pmd_t old_pmd, _pmd;
2077 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2078 	bool anon_exclusive = false, dirty = false;
2079 	unsigned long addr;
2080 	pte_t *pte;
2081 	int i;
2082 
2083 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2084 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2085 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2086 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2087 				&& !pmd_devmap(*pmd));
2088 
2089 	count_vm_event(THP_SPLIT_PMD);
2090 
2091 	if (!vma_is_anonymous(vma)) {
2092 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2093 		/*
2094 		 * We are going to unmap this huge page. So
2095 		 * just go ahead and zap it
2096 		 */
2097 		if (arch_needs_pgtable_deposit())
2098 			zap_deposited_table(mm, pmd);
2099 		if (vma_is_special_huge(vma))
2100 			return;
2101 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2102 			swp_entry_t entry;
2103 
2104 			entry = pmd_to_swp_entry(old_pmd);
2105 			page = pfn_swap_entry_to_page(entry);
2106 		} else {
2107 			page = pmd_page(old_pmd);
2108 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2109 				set_page_dirty(page);
2110 			if (!PageReferenced(page) && pmd_young(old_pmd))
2111 				SetPageReferenced(page);
2112 			page_remove_rmap(page, vma, true);
2113 			put_page(page);
2114 		}
2115 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2116 		return;
2117 	}
2118 
2119 	if (is_huge_zero_pmd(*pmd)) {
2120 		/*
2121 		 * FIXME: Do we want to invalidate secondary mmu by calling
2122 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2123 		 * inside __split_huge_pmd() ?
2124 		 *
2125 		 * We are going from a zero huge page write protected to zero
2126 		 * small page also write protected so it does not seems useful
2127 		 * to invalidate secondary mmu at this time.
2128 		 */
2129 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2130 	}
2131 
2132 	pmd_migration = is_pmd_migration_entry(*pmd);
2133 	if (unlikely(pmd_migration)) {
2134 		swp_entry_t entry;
2135 
2136 		old_pmd = *pmd;
2137 		entry = pmd_to_swp_entry(old_pmd);
2138 		page = pfn_swap_entry_to_page(entry);
2139 		write = is_writable_migration_entry(entry);
2140 		if (PageAnon(page))
2141 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2142 		young = is_migration_entry_young(entry);
2143 		dirty = is_migration_entry_dirty(entry);
2144 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2145 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2146 	} else {
2147 		/*
2148 		 * Up to this point the pmd is present and huge and userland has
2149 		 * the whole access to the hugepage during the split (which
2150 		 * happens in place). If we overwrite the pmd with the not-huge
2151 		 * version pointing to the pte here (which of course we could if
2152 		 * all CPUs were bug free), userland could trigger a small page
2153 		 * size TLB miss on the small sized TLB while the hugepage TLB
2154 		 * entry is still established in the huge TLB. Some CPU doesn't
2155 		 * like that. See
2156 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2157 		 * 383 on page 105. Intel should be safe but is also warns that
2158 		 * it's only safe if the permission and cache attributes of the
2159 		 * two entries loaded in the two TLB is identical (which should
2160 		 * be the case here). But it is generally safer to never allow
2161 		 * small and huge TLB entries for the same virtual address to be
2162 		 * loaded simultaneously. So instead of doing "pmd_populate();
2163 		 * flush_pmd_tlb_range();" we first mark the current pmd
2164 		 * notpresent (atomically because here the pmd_trans_huge must
2165 		 * remain set at all times on the pmd until the split is
2166 		 * complete for this pmd), then we flush the SMP TLB and finally
2167 		 * we write the non-huge version of the pmd entry with
2168 		 * pmd_populate.
2169 		 */
2170 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2171 		page = pmd_page(old_pmd);
2172 		if (pmd_dirty(old_pmd)) {
2173 			dirty = true;
2174 			SetPageDirty(page);
2175 		}
2176 		write = pmd_write(old_pmd);
2177 		young = pmd_young(old_pmd);
2178 		soft_dirty = pmd_soft_dirty(old_pmd);
2179 		uffd_wp = pmd_uffd_wp(old_pmd);
2180 
2181 		VM_BUG_ON_PAGE(!page_count(page), page);
2182 
2183 		/*
2184 		 * Without "freeze", we'll simply split the PMD, propagating the
2185 		 * PageAnonExclusive() flag for each PTE by setting it for
2186 		 * each subpage -- no need to (temporarily) clear.
2187 		 *
2188 		 * With "freeze" we want to replace mapped pages by
2189 		 * migration entries right away. This is only possible if we
2190 		 * managed to clear PageAnonExclusive() -- see
2191 		 * set_pmd_migration_entry().
2192 		 *
2193 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2194 		 * only and let try_to_migrate_one() fail later.
2195 		 *
2196 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2197 		 */
2198 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2199 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2200 			freeze = false;
2201 		if (!freeze)
2202 			page_ref_add(page, HPAGE_PMD_NR - 1);
2203 	}
2204 
2205 	/*
2206 	 * Withdraw the table only after we mark the pmd entry invalid.
2207 	 * This's critical for some architectures (Power).
2208 	 */
2209 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2210 	pmd_populate(mm, &_pmd, pgtable);
2211 
2212 	pte = pte_offset_map(&_pmd, haddr);
2213 	VM_BUG_ON(!pte);
2214 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2215 		pte_t entry;
2216 		/*
2217 		 * Note that NUMA hinting access restrictions are not
2218 		 * transferred to avoid any possibility of altering
2219 		 * permissions across VMAs.
2220 		 */
2221 		if (freeze || pmd_migration) {
2222 			swp_entry_t swp_entry;
2223 			if (write)
2224 				swp_entry = make_writable_migration_entry(
2225 							page_to_pfn(page + i));
2226 			else if (anon_exclusive)
2227 				swp_entry = make_readable_exclusive_migration_entry(
2228 							page_to_pfn(page + i));
2229 			else
2230 				swp_entry = make_readable_migration_entry(
2231 							page_to_pfn(page + i));
2232 			if (young)
2233 				swp_entry = make_migration_entry_young(swp_entry);
2234 			if (dirty)
2235 				swp_entry = make_migration_entry_dirty(swp_entry);
2236 			entry = swp_entry_to_pte(swp_entry);
2237 			if (soft_dirty)
2238 				entry = pte_swp_mksoft_dirty(entry);
2239 			if (uffd_wp)
2240 				entry = pte_swp_mkuffd_wp(entry);
2241 		} else {
2242 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2243 			if (write)
2244 				entry = pte_mkwrite(entry, vma);
2245 			if (anon_exclusive)
2246 				SetPageAnonExclusive(page + i);
2247 			if (!young)
2248 				entry = pte_mkold(entry);
2249 			/* NOTE: this may set soft-dirty too on some archs */
2250 			if (dirty)
2251 				entry = pte_mkdirty(entry);
2252 			if (soft_dirty)
2253 				entry = pte_mksoft_dirty(entry);
2254 			if (uffd_wp)
2255 				entry = pte_mkuffd_wp(entry);
2256 			page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2257 		}
2258 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2259 		set_pte_at(mm, addr, pte, entry);
2260 		pte++;
2261 	}
2262 	pte_unmap(pte - 1);
2263 
2264 	if (!pmd_migration)
2265 		page_remove_rmap(page, vma, true);
2266 	if (freeze)
2267 		put_page(page);
2268 
2269 	smp_wmb(); /* make pte visible before pmd */
2270 	pmd_populate(mm, pmd, pgtable);
2271 }
2272 
2273 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2274 		unsigned long address, bool freeze, struct folio *folio)
2275 {
2276 	spinlock_t *ptl;
2277 	struct mmu_notifier_range range;
2278 
2279 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2280 				address & HPAGE_PMD_MASK,
2281 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2282 	mmu_notifier_invalidate_range_start(&range);
2283 	ptl = pmd_lock(vma->vm_mm, pmd);
2284 
2285 	/*
2286 	 * If caller asks to setup a migration entry, we need a folio to check
2287 	 * pmd against. Otherwise we can end up replacing wrong folio.
2288 	 */
2289 	VM_BUG_ON(freeze && !folio);
2290 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2291 
2292 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2293 	    is_pmd_migration_entry(*pmd)) {
2294 		/*
2295 		 * It's safe to call pmd_page when folio is set because it's
2296 		 * guaranteed that pmd is present.
2297 		 */
2298 		if (folio && folio != page_folio(pmd_page(*pmd)))
2299 			goto out;
2300 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2301 	}
2302 
2303 out:
2304 	spin_unlock(ptl);
2305 	mmu_notifier_invalidate_range_end(&range);
2306 }
2307 
2308 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2309 		bool freeze, struct folio *folio)
2310 {
2311 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2312 
2313 	if (!pmd)
2314 		return;
2315 
2316 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2317 }
2318 
2319 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2320 {
2321 	/*
2322 	 * If the new address isn't hpage aligned and it could previously
2323 	 * contain an hugepage: check if we need to split an huge pmd.
2324 	 */
2325 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2326 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2327 			 ALIGN(address, HPAGE_PMD_SIZE)))
2328 		split_huge_pmd_address(vma, address, false, NULL);
2329 }
2330 
2331 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2332 			     unsigned long start,
2333 			     unsigned long end,
2334 			     long adjust_next)
2335 {
2336 	/* Check if we need to split start first. */
2337 	split_huge_pmd_if_needed(vma, start);
2338 
2339 	/* Check if we need to split end next. */
2340 	split_huge_pmd_if_needed(vma, end);
2341 
2342 	/*
2343 	 * If we're also updating the next vma vm_start,
2344 	 * check if we need to split it.
2345 	 */
2346 	if (adjust_next > 0) {
2347 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2348 		unsigned long nstart = next->vm_start;
2349 		nstart += adjust_next;
2350 		split_huge_pmd_if_needed(next, nstart);
2351 	}
2352 }
2353 
2354 static void unmap_folio(struct folio *folio)
2355 {
2356 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2357 		TTU_SYNC;
2358 
2359 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2360 
2361 	/*
2362 	 * Anon pages need migration entries to preserve them, but file
2363 	 * pages can simply be left unmapped, then faulted back on demand.
2364 	 * If that is ever changed (perhaps for mlock), update remap_page().
2365 	 */
2366 	if (folio_test_anon(folio))
2367 		try_to_migrate(folio, ttu_flags);
2368 	else
2369 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2370 }
2371 
2372 static void remap_page(struct folio *folio, unsigned long nr)
2373 {
2374 	int i = 0;
2375 
2376 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2377 	if (!folio_test_anon(folio))
2378 		return;
2379 	for (;;) {
2380 		remove_migration_ptes(folio, folio, true);
2381 		i += folio_nr_pages(folio);
2382 		if (i >= nr)
2383 			break;
2384 		folio = folio_next(folio);
2385 	}
2386 }
2387 
2388 static void lru_add_page_tail(struct page *head, struct page *tail,
2389 		struct lruvec *lruvec, struct list_head *list)
2390 {
2391 	VM_BUG_ON_PAGE(!PageHead(head), head);
2392 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2393 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2394 	lockdep_assert_held(&lruvec->lru_lock);
2395 
2396 	if (list) {
2397 		/* page reclaim is reclaiming a huge page */
2398 		VM_WARN_ON(PageLRU(head));
2399 		get_page(tail);
2400 		list_add_tail(&tail->lru, list);
2401 	} else {
2402 		/* head is still on lru (and we have it frozen) */
2403 		VM_WARN_ON(!PageLRU(head));
2404 		if (PageUnevictable(tail))
2405 			tail->mlock_count = 0;
2406 		else
2407 			list_add_tail(&tail->lru, &head->lru);
2408 		SetPageLRU(tail);
2409 	}
2410 }
2411 
2412 static void __split_huge_page_tail(struct folio *folio, int tail,
2413 		struct lruvec *lruvec, struct list_head *list)
2414 {
2415 	struct page *head = &folio->page;
2416 	struct page *page_tail = head + tail;
2417 	/*
2418 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2419 	 * Don't pass it around before clear_compound_head().
2420 	 */
2421 	struct folio *new_folio = (struct folio *)page_tail;
2422 
2423 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2424 
2425 	/*
2426 	 * Clone page flags before unfreezing refcount.
2427 	 *
2428 	 * After successful get_page_unless_zero() might follow flags change,
2429 	 * for example lock_page() which set PG_waiters.
2430 	 *
2431 	 * Note that for mapped sub-pages of an anonymous THP,
2432 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2433 	 * the migration entry instead from where remap_page() will restore it.
2434 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2435 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2436 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2437 	 */
2438 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2439 	page_tail->flags |= (head->flags &
2440 			((1L << PG_referenced) |
2441 			 (1L << PG_swapbacked) |
2442 			 (1L << PG_swapcache) |
2443 			 (1L << PG_mlocked) |
2444 			 (1L << PG_uptodate) |
2445 			 (1L << PG_active) |
2446 			 (1L << PG_workingset) |
2447 			 (1L << PG_locked) |
2448 			 (1L << PG_unevictable) |
2449 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2450 			 (1L << PG_arch_2) |
2451 			 (1L << PG_arch_3) |
2452 #endif
2453 			 (1L << PG_dirty) |
2454 			 LRU_GEN_MASK | LRU_REFS_MASK));
2455 
2456 	/* ->mapping in first and second tail page is replaced by other uses */
2457 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2458 			page_tail);
2459 	page_tail->mapping = head->mapping;
2460 	page_tail->index = head->index + tail;
2461 
2462 	/*
2463 	 * page->private should not be set in tail pages. Fix up and warn once
2464 	 * if private is unexpectedly set.
2465 	 */
2466 	if (unlikely(page_tail->private)) {
2467 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2468 		page_tail->private = 0;
2469 	}
2470 	if (folio_test_swapcache(folio))
2471 		new_folio->swap.val = folio->swap.val + tail;
2472 
2473 	/* Page flags must be visible before we make the page non-compound. */
2474 	smp_wmb();
2475 
2476 	/*
2477 	 * Clear PageTail before unfreezing page refcount.
2478 	 *
2479 	 * After successful get_page_unless_zero() might follow put_page()
2480 	 * which needs correct compound_head().
2481 	 */
2482 	clear_compound_head(page_tail);
2483 
2484 	/* Finally unfreeze refcount. Additional reference from page cache. */
2485 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2486 					  PageSwapCache(head)));
2487 
2488 	if (page_is_young(head))
2489 		set_page_young(page_tail);
2490 	if (page_is_idle(head))
2491 		set_page_idle(page_tail);
2492 
2493 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2494 
2495 	/*
2496 	 * always add to the tail because some iterators expect new
2497 	 * pages to show after the currently processed elements - e.g.
2498 	 * migrate_pages
2499 	 */
2500 	lru_add_page_tail(head, page_tail, lruvec, list);
2501 }
2502 
2503 static void __split_huge_page(struct page *page, struct list_head *list,
2504 		pgoff_t end)
2505 {
2506 	struct folio *folio = page_folio(page);
2507 	struct page *head = &folio->page;
2508 	struct lruvec *lruvec;
2509 	struct address_space *swap_cache = NULL;
2510 	unsigned long offset = 0;
2511 	unsigned int nr = thp_nr_pages(head);
2512 	int i, nr_dropped = 0;
2513 
2514 	/* complete memcg works before add pages to LRU */
2515 	split_page_memcg(head, nr);
2516 
2517 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2518 		offset = swp_offset(folio->swap);
2519 		swap_cache = swap_address_space(folio->swap);
2520 		xa_lock(&swap_cache->i_pages);
2521 	}
2522 
2523 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2524 	lruvec = folio_lruvec_lock(folio);
2525 
2526 	ClearPageHasHWPoisoned(head);
2527 
2528 	for (i = nr - 1; i >= 1; i--) {
2529 		__split_huge_page_tail(folio, i, lruvec, list);
2530 		/* Some pages can be beyond EOF: drop them from page cache */
2531 		if (head[i].index >= end) {
2532 			struct folio *tail = page_folio(head + i);
2533 
2534 			if (shmem_mapping(head->mapping))
2535 				nr_dropped++;
2536 			else if (folio_test_clear_dirty(tail))
2537 				folio_account_cleaned(tail,
2538 					inode_to_wb(folio->mapping->host));
2539 			__filemap_remove_folio(tail, NULL);
2540 			folio_put(tail);
2541 		} else if (!PageAnon(page)) {
2542 			__xa_store(&head->mapping->i_pages, head[i].index,
2543 					head + i, 0);
2544 		} else if (swap_cache) {
2545 			__xa_store(&swap_cache->i_pages, offset + i,
2546 					head + i, 0);
2547 		}
2548 	}
2549 
2550 	ClearPageCompound(head);
2551 	unlock_page_lruvec(lruvec);
2552 	/* Caller disabled irqs, so they are still disabled here */
2553 
2554 	split_page_owner(head, nr);
2555 
2556 	/* See comment in __split_huge_page_tail() */
2557 	if (PageAnon(head)) {
2558 		/* Additional pin to swap cache */
2559 		if (PageSwapCache(head)) {
2560 			page_ref_add(head, 2);
2561 			xa_unlock(&swap_cache->i_pages);
2562 		} else {
2563 			page_ref_inc(head);
2564 		}
2565 	} else {
2566 		/* Additional pin to page cache */
2567 		page_ref_add(head, 2);
2568 		xa_unlock(&head->mapping->i_pages);
2569 	}
2570 	local_irq_enable();
2571 
2572 	if (nr_dropped)
2573 		shmem_uncharge(head->mapping->host, nr_dropped);
2574 	remap_page(folio, nr);
2575 
2576 	if (folio_test_swapcache(folio))
2577 		split_swap_cluster(folio->swap);
2578 
2579 	for (i = 0; i < nr; i++) {
2580 		struct page *subpage = head + i;
2581 		if (subpage == page)
2582 			continue;
2583 		unlock_page(subpage);
2584 
2585 		/*
2586 		 * Subpages may be freed if there wasn't any mapping
2587 		 * like if add_to_swap() is running on a lru page that
2588 		 * had its mapping zapped. And freeing these pages
2589 		 * requires taking the lru_lock so we do the put_page
2590 		 * of the tail pages after the split is complete.
2591 		 */
2592 		free_page_and_swap_cache(subpage);
2593 	}
2594 }
2595 
2596 /* Racy check whether the huge page can be split */
2597 bool can_split_folio(struct folio *folio, int *pextra_pins)
2598 {
2599 	int extra_pins;
2600 
2601 	/* Additional pins from page cache */
2602 	if (folio_test_anon(folio))
2603 		extra_pins = folio_test_swapcache(folio) ?
2604 				folio_nr_pages(folio) : 0;
2605 	else
2606 		extra_pins = folio_nr_pages(folio);
2607 	if (pextra_pins)
2608 		*pextra_pins = extra_pins;
2609 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2610 }
2611 
2612 /*
2613  * This function splits huge page into normal pages. @page can point to any
2614  * subpage of huge page to split. Split doesn't change the position of @page.
2615  *
2616  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2617  * The huge page must be locked.
2618  *
2619  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2620  *
2621  * Both head page and tail pages will inherit mapping, flags, and so on from
2622  * the hugepage.
2623  *
2624  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2625  * they are not mapped.
2626  *
2627  * Returns 0 if the hugepage is split successfully.
2628  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2629  * us.
2630  */
2631 int split_huge_page_to_list(struct page *page, struct list_head *list)
2632 {
2633 	struct folio *folio = page_folio(page);
2634 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2635 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2636 	struct anon_vma *anon_vma = NULL;
2637 	struct address_space *mapping = NULL;
2638 	int extra_pins, ret;
2639 	pgoff_t end;
2640 	bool is_hzp;
2641 
2642 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2643 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2644 
2645 	is_hzp = is_huge_zero_page(&folio->page);
2646 	if (is_hzp) {
2647 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2648 		return -EBUSY;
2649 	}
2650 
2651 	if (folio_test_writeback(folio))
2652 		return -EBUSY;
2653 
2654 	if (folio_test_anon(folio)) {
2655 		/*
2656 		 * The caller does not necessarily hold an mmap_lock that would
2657 		 * prevent the anon_vma disappearing so we first we take a
2658 		 * reference to it and then lock the anon_vma for write. This
2659 		 * is similar to folio_lock_anon_vma_read except the write lock
2660 		 * is taken to serialise against parallel split or collapse
2661 		 * operations.
2662 		 */
2663 		anon_vma = folio_get_anon_vma(folio);
2664 		if (!anon_vma) {
2665 			ret = -EBUSY;
2666 			goto out;
2667 		}
2668 		end = -1;
2669 		mapping = NULL;
2670 		anon_vma_lock_write(anon_vma);
2671 	} else {
2672 		gfp_t gfp;
2673 
2674 		mapping = folio->mapping;
2675 
2676 		/* Truncated ? */
2677 		if (!mapping) {
2678 			ret = -EBUSY;
2679 			goto out;
2680 		}
2681 
2682 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2683 							GFP_RECLAIM_MASK);
2684 
2685 		if (!filemap_release_folio(folio, gfp)) {
2686 			ret = -EBUSY;
2687 			goto out;
2688 		}
2689 
2690 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2691 		if (xas_error(&xas)) {
2692 			ret = xas_error(&xas);
2693 			goto out;
2694 		}
2695 
2696 		anon_vma = NULL;
2697 		i_mmap_lock_read(mapping);
2698 
2699 		/*
2700 		 *__split_huge_page() may need to trim off pages beyond EOF:
2701 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2702 		 * which cannot be nested inside the page tree lock. So note
2703 		 * end now: i_size itself may be changed at any moment, but
2704 		 * folio lock is good enough to serialize the trimming.
2705 		 */
2706 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2707 		if (shmem_mapping(mapping))
2708 			end = shmem_fallocend(mapping->host, end);
2709 	}
2710 
2711 	/*
2712 	 * Racy check if we can split the page, before unmap_folio() will
2713 	 * split PMDs
2714 	 */
2715 	if (!can_split_folio(folio, &extra_pins)) {
2716 		ret = -EAGAIN;
2717 		goto out_unlock;
2718 	}
2719 
2720 	unmap_folio(folio);
2721 
2722 	/* block interrupt reentry in xa_lock and spinlock */
2723 	local_irq_disable();
2724 	if (mapping) {
2725 		/*
2726 		 * Check if the folio is present in page cache.
2727 		 * We assume all tail are present too, if folio is there.
2728 		 */
2729 		xas_lock(&xas);
2730 		xas_reset(&xas);
2731 		if (xas_load(&xas) != folio)
2732 			goto fail;
2733 	}
2734 
2735 	/* Prevent deferred_split_scan() touching ->_refcount */
2736 	spin_lock(&ds_queue->split_queue_lock);
2737 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2738 		if (!list_empty(&folio->_deferred_list)) {
2739 			ds_queue->split_queue_len--;
2740 			list_del(&folio->_deferred_list);
2741 		}
2742 		spin_unlock(&ds_queue->split_queue_lock);
2743 		if (mapping) {
2744 			int nr = folio_nr_pages(folio);
2745 
2746 			xas_split(&xas, folio, folio_order(folio));
2747 			if (folio_test_pmd_mappable(folio)) {
2748 				if (folio_test_swapbacked(folio)) {
2749 					__lruvec_stat_mod_folio(folio,
2750 							NR_SHMEM_THPS, -nr);
2751 				} else {
2752 					__lruvec_stat_mod_folio(folio,
2753 							NR_FILE_THPS, -nr);
2754 					filemap_nr_thps_dec(mapping);
2755 				}
2756 			}
2757 		}
2758 
2759 		__split_huge_page(page, list, end);
2760 		ret = 0;
2761 	} else {
2762 		spin_unlock(&ds_queue->split_queue_lock);
2763 fail:
2764 		if (mapping)
2765 			xas_unlock(&xas);
2766 		local_irq_enable();
2767 		remap_page(folio, folio_nr_pages(folio));
2768 		ret = -EAGAIN;
2769 	}
2770 
2771 out_unlock:
2772 	if (anon_vma) {
2773 		anon_vma_unlock_write(anon_vma);
2774 		put_anon_vma(anon_vma);
2775 	}
2776 	if (mapping)
2777 		i_mmap_unlock_read(mapping);
2778 out:
2779 	xas_destroy(&xas);
2780 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2781 	return ret;
2782 }
2783 
2784 void folio_undo_large_rmappable(struct folio *folio)
2785 {
2786 	struct deferred_split *ds_queue;
2787 	unsigned long flags;
2788 
2789 	/*
2790 	 * At this point, there is no one trying to add the folio to
2791 	 * deferred_list. If folio is not in deferred_list, it's safe
2792 	 * to check without acquiring the split_queue_lock.
2793 	 */
2794 	if (data_race(list_empty(&folio->_deferred_list)))
2795 		return;
2796 
2797 	ds_queue = get_deferred_split_queue(folio);
2798 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2799 	if (!list_empty(&folio->_deferred_list)) {
2800 		ds_queue->split_queue_len--;
2801 		list_del(&folio->_deferred_list);
2802 	}
2803 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2804 }
2805 
2806 void deferred_split_folio(struct folio *folio)
2807 {
2808 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2809 #ifdef CONFIG_MEMCG
2810 	struct mem_cgroup *memcg = folio_memcg(folio);
2811 #endif
2812 	unsigned long flags;
2813 
2814 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2815 
2816 	/*
2817 	 * The try_to_unmap() in page reclaim path might reach here too,
2818 	 * this may cause a race condition to corrupt deferred split queue.
2819 	 * And, if page reclaim is already handling the same folio, it is
2820 	 * unnecessary to handle it again in shrinker.
2821 	 *
2822 	 * Check the swapcache flag to determine if the folio is being
2823 	 * handled by page reclaim since THP swap would add the folio into
2824 	 * swap cache before calling try_to_unmap().
2825 	 */
2826 	if (folio_test_swapcache(folio))
2827 		return;
2828 
2829 	if (!list_empty(&folio->_deferred_list))
2830 		return;
2831 
2832 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833 	if (list_empty(&folio->_deferred_list)) {
2834 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2835 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2836 		ds_queue->split_queue_len++;
2837 #ifdef CONFIG_MEMCG
2838 		if (memcg)
2839 			set_shrinker_bit(memcg, folio_nid(folio),
2840 					 deferred_split_shrinker.id);
2841 #endif
2842 	}
2843 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2844 }
2845 
2846 static unsigned long deferred_split_count(struct shrinker *shrink,
2847 		struct shrink_control *sc)
2848 {
2849 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2851 
2852 #ifdef CONFIG_MEMCG
2853 	if (sc->memcg)
2854 		ds_queue = &sc->memcg->deferred_split_queue;
2855 #endif
2856 	return READ_ONCE(ds_queue->split_queue_len);
2857 }
2858 
2859 static unsigned long deferred_split_scan(struct shrinker *shrink,
2860 		struct shrink_control *sc)
2861 {
2862 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2863 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2864 	unsigned long flags;
2865 	LIST_HEAD(list);
2866 	struct folio *folio, *next;
2867 	int split = 0;
2868 
2869 #ifdef CONFIG_MEMCG
2870 	if (sc->memcg)
2871 		ds_queue = &sc->memcg->deferred_split_queue;
2872 #endif
2873 
2874 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2875 	/* Take pin on all head pages to avoid freeing them under us */
2876 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2877 							_deferred_list) {
2878 		if (folio_try_get(folio)) {
2879 			list_move(&folio->_deferred_list, &list);
2880 		} else {
2881 			/* We lost race with folio_put() */
2882 			list_del_init(&folio->_deferred_list);
2883 			ds_queue->split_queue_len--;
2884 		}
2885 		if (!--sc->nr_to_scan)
2886 			break;
2887 	}
2888 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2889 
2890 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2891 		if (!folio_trylock(folio))
2892 			goto next;
2893 		/* split_huge_page() removes page from list on success */
2894 		if (!split_folio(folio))
2895 			split++;
2896 		folio_unlock(folio);
2897 next:
2898 		folio_put(folio);
2899 	}
2900 
2901 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2902 	list_splice_tail(&list, &ds_queue->split_queue);
2903 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2904 
2905 	/*
2906 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2907 	 * This can happen if pages were freed under us.
2908 	 */
2909 	if (!split && list_empty(&ds_queue->split_queue))
2910 		return SHRINK_STOP;
2911 	return split;
2912 }
2913 
2914 static struct shrinker deferred_split_shrinker = {
2915 	.count_objects = deferred_split_count,
2916 	.scan_objects = deferred_split_scan,
2917 	.seeks = DEFAULT_SEEKS,
2918 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2919 		 SHRINKER_NONSLAB,
2920 };
2921 
2922 #ifdef CONFIG_DEBUG_FS
2923 static void split_huge_pages_all(void)
2924 {
2925 	struct zone *zone;
2926 	struct page *page;
2927 	struct folio *folio;
2928 	unsigned long pfn, max_zone_pfn;
2929 	unsigned long total = 0, split = 0;
2930 
2931 	pr_debug("Split all THPs\n");
2932 	for_each_zone(zone) {
2933 		if (!managed_zone(zone))
2934 			continue;
2935 		max_zone_pfn = zone_end_pfn(zone);
2936 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2937 			int nr_pages;
2938 
2939 			page = pfn_to_online_page(pfn);
2940 			if (!page || PageTail(page))
2941 				continue;
2942 			folio = page_folio(page);
2943 			if (!folio_try_get(folio))
2944 				continue;
2945 
2946 			if (unlikely(page_folio(page) != folio))
2947 				goto next;
2948 
2949 			if (zone != folio_zone(folio))
2950 				goto next;
2951 
2952 			if (!folio_test_large(folio)
2953 				|| folio_test_hugetlb(folio)
2954 				|| !folio_test_lru(folio))
2955 				goto next;
2956 
2957 			total++;
2958 			folio_lock(folio);
2959 			nr_pages = folio_nr_pages(folio);
2960 			if (!split_folio(folio))
2961 				split++;
2962 			pfn += nr_pages - 1;
2963 			folio_unlock(folio);
2964 next:
2965 			folio_put(folio);
2966 			cond_resched();
2967 		}
2968 	}
2969 
2970 	pr_debug("%lu of %lu THP split\n", split, total);
2971 }
2972 
2973 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2974 {
2975 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2976 		    is_vm_hugetlb_page(vma);
2977 }
2978 
2979 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2980 				unsigned long vaddr_end)
2981 {
2982 	int ret = 0;
2983 	struct task_struct *task;
2984 	struct mm_struct *mm;
2985 	unsigned long total = 0, split = 0;
2986 	unsigned long addr;
2987 
2988 	vaddr_start &= PAGE_MASK;
2989 	vaddr_end &= PAGE_MASK;
2990 
2991 	/* Find the task_struct from pid */
2992 	rcu_read_lock();
2993 	task = find_task_by_vpid(pid);
2994 	if (!task) {
2995 		rcu_read_unlock();
2996 		ret = -ESRCH;
2997 		goto out;
2998 	}
2999 	get_task_struct(task);
3000 	rcu_read_unlock();
3001 
3002 	/* Find the mm_struct */
3003 	mm = get_task_mm(task);
3004 	put_task_struct(task);
3005 
3006 	if (!mm) {
3007 		ret = -EINVAL;
3008 		goto out;
3009 	}
3010 
3011 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3012 		 pid, vaddr_start, vaddr_end);
3013 
3014 	mmap_read_lock(mm);
3015 	/*
3016 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3017 	 * table filled with PTE-mapped THPs, each of which is distinct.
3018 	 */
3019 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3020 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3021 		struct page *page;
3022 		struct folio *folio;
3023 
3024 		if (!vma)
3025 			break;
3026 
3027 		/* skip special VMA and hugetlb VMA */
3028 		if (vma_not_suitable_for_thp_split(vma)) {
3029 			addr = vma->vm_end;
3030 			continue;
3031 		}
3032 
3033 		/* FOLL_DUMP to ignore special (like zero) pages */
3034 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3035 
3036 		if (IS_ERR_OR_NULL(page))
3037 			continue;
3038 
3039 		folio = page_folio(page);
3040 		if (!is_transparent_hugepage(folio))
3041 			goto next;
3042 
3043 		total++;
3044 		if (!can_split_folio(folio, NULL))
3045 			goto next;
3046 
3047 		if (!folio_trylock(folio))
3048 			goto next;
3049 
3050 		if (!split_folio(folio))
3051 			split++;
3052 
3053 		folio_unlock(folio);
3054 next:
3055 		folio_put(folio);
3056 		cond_resched();
3057 	}
3058 	mmap_read_unlock(mm);
3059 	mmput(mm);
3060 
3061 	pr_debug("%lu of %lu THP split\n", split, total);
3062 
3063 out:
3064 	return ret;
3065 }
3066 
3067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3068 				pgoff_t off_end)
3069 {
3070 	struct filename *file;
3071 	struct file *candidate;
3072 	struct address_space *mapping;
3073 	int ret = -EINVAL;
3074 	pgoff_t index;
3075 	int nr_pages = 1;
3076 	unsigned long total = 0, split = 0;
3077 
3078 	file = getname_kernel(file_path);
3079 	if (IS_ERR(file))
3080 		return ret;
3081 
3082 	candidate = file_open_name(file, O_RDONLY, 0);
3083 	if (IS_ERR(candidate))
3084 		goto out;
3085 
3086 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3087 		 file_path, off_start, off_end);
3088 
3089 	mapping = candidate->f_mapping;
3090 
3091 	for (index = off_start; index < off_end; index += nr_pages) {
3092 		struct folio *folio = filemap_get_folio(mapping, index);
3093 
3094 		nr_pages = 1;
3095 		if (IS_ERR(folio))
3096 			continue;
3097 
3098 		if (!folio_test_large(folio))
3099 			goto next;
3100 
3101 		total++;
3102 		nr_pages = folio_nr_pages(folio);
3103 
3104 		if (!folio_trylock(folio))
3105 			goto next;
3106 
3107 		if (!split_folio(folio))
3108 			split++;
3109 
3110 		folio_unlock(folio);
3111 next:
3112 		folio_put(folio);
3113 		cond_resched();
3114 	}
3115 
3116 	filp_close(candidate, NULL);
3117 	ret = 0;
3118 
3119 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120 out:
3121 	putname(file);
3122 	return ret;
3123 }
3124 
3125 #define MAX_INPUT_BUF_SZ 255
3126 
3127 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128 				size_t count, loff_t *ppops)
3129 {
3130 	static DEFINE_MUTEX(split_debug_mutex);
3131 	ssize_t ret;
3132 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133 	char input_buf[MAX_INPUT_BUF_SZ];
3134 	int pid;
3135 	unsigned long vaddr_start, vaddr_end;
3136 
3137 	ret = mutex_lock_interruptible(&split_debug_mutex);
3138 	if (ret)
3139 		return ret;
3140 
3141 	ret = -EFAULT;
3142 
3143 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145 		goto out;
3146 
3147 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148 
3149 	if (input_buf[0] == '/') {
3150 		char *tok;
3151 		char *buf = input_buf;
3152 		char file_path[MAX_INPUT_BUF_SZ];
3153 		pgoff_t off_start = 0, off_end = 0;
3154 		size_t input_len = strlen(input_buf);
3155 
3156 		tok = strsep(&buf, ",");
3157 		if (tok) {
3158 			strcpy(file_path, tok);
3159 		} else {
3160 			ret = -EINVAL;
3161 			goto out;
3162 		}
3163 
3164 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165 		if (ret != 2) {
3166 			ret = -EINVAL;
3167 			goto out;
3168 		}
3169 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170 		if (!ret)
3171 			ret = input_len;
3172 
3173 		goto out;
3174 	}
3175 
3176 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177 	if (ret == 1 && pid == 1) {
3178 		split_huge_pages_all();
3179 		ret = strlen(input_buf);
3180 		goto out;
3181 	} else if (ret != 3) {
3182 		ret = -EINVAL;
3183 		goto out;
3184 	}
3185 
3186 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187 	if (!ret)
3188 		ret = strlen(input_buf);
3189 out:
3190 	mutex_unlock(&split_debug_mutex);
3191 	return ret;
3192 
3193 }
3194 
3195 static const struct file_operations split_huge_pages_fops = {
3196 	.owner	 = THIS_MODULE,
3197 	.write	 = split_huge_pages_write,
3198 	.llseek  = no_llseek,
3199 };
3200 
3201 static int __init split_huge_pages_debugfs(void)
3202 {
3203 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204 			    &split_huge_pages_fops);
3205 	return 0;
3206 }
3207 late_initcall(split_huge_pages_debugfs);
3208 #endif
3209 
3210 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212 		struct page *page)
3213 {
3214 	struct vm_area_struct *vma = pvmw->vma;
3215 	struct mm_struct *mm = vma->vm_mm;
3216 	unsigned long address = pvmw->address;
3217 	bool anon_exclusive;
3218 	pmd_t pmdval;
3219 	swp_entry_t entry;
3220 	pmd_t pmdswp;
3221 
3222 	if (!(pvmw->pmd && !pvmw->pte))
3223 		return 0;
3224 
3225 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227 
3228 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232 		return -EBUSY;
3233 	}
3234 
3235 	if (pmd_dirty(pmdval))
3236 		set_page_dirty(page);
3237 	if (pmd_write(pmdval))
3238 		entry = make_writable_migration_entry(page_to_pfn(page));
3239 	else if (anon_exclusive)
3240 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241 	else
3242 		entry = make_readable_migration_entry(page_to_pfn(page));
3243 	if (pmd_young(pmdval))
3244 		entry = make_migration_entry_young(entry);
3245 	if (pmd_dirty(pmdval))
3246 		entry = make_migration_entry_dirty(entry);
3247 	pmdswp = swp_entry_to_pmd(entry);
3248 	if (pmd_soft_dirty(pmdval))
3249 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250 	if (pmd_uffd_wp(pmdval))
3251 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3252 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3253 	page_remove_rmap(page, vma, true);
3254 	put_page(page);
3255 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3256 
3257 	return 0;
3258 }
3259 
3260 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3261 {
3262 	struct vm_area_struct *vma = pvmw->vma;
3263 	struct mm_struct *mm = vma->vm_mm;
3264 	unsigned long address = pvmw->address;
3265 	unsigned long haddr = address & HPAGE_PMD_MASK;
3266 	pmd_t pmde;
3267 	swp_entry_t entry;
3268 
3269 	if (!(pvmw->pmd && !pvmw->pte))
3270 		return;
3271 
3272 	entry = pmd_to_swp_entry(*pvmw->pmd);
3273 	get_page(new);
3274 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3275 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3276 		pmde = pmd_mksoft_dirty(pmde);
3277 	if (is_writable_migration_entry(entry))
3278 		pmde = pmd_mkwrite(pmde, vma);
3279 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3280 		pmde = pmd_mkuffd_wp(pmde);
3281 	if (!is_migration_entry_young(entry))
3282 		pmde = pmd_mkold(pmde);
3283 	/* NOTE: this may contain setting soft-dirty on some archs */
3284 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3285 		pmde = pmd_mkdirty(pmde);
3286 
3287 	if (PageAnon(new)) {
3288 		rmap_t rmap_flags = RMAP_COMPOUND;
3289 
3290 		if (!is_readable_migration_entry(entry))
3291 			rmap_flags |= RMAP_EXCLUSIVE;
3292 
3293 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294 	} else {
3295 		page_add_file_rmap(new, vma, true);
3296 	}
3297 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299 
3300 	/* No need to invalidate - it was non-present before */
3301 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302 	trace_remove_migration_pmd(address, pmd_val(pmde));
3303 }
3304 #endif
3305