1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 42 #include <asm/tlb.h> 43 #include <asm/pgalloc.h> 44 #include "internal.h" 45 #include "swap.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/thp.h> 49 50 /* 51 * By default, transparent hugepage support is disabled in order to avoid 52 * risking an increased memory footprint for applications that are not 53 * guaranteed to benefit from it. When transparent hugepage support is 54 * enabled, it is for all mappings, and khugepaged scans all mappings. 55 * Defrag is invoked by khugepaged hugepage allocations and by page faults 56 * for all hugepage allocations. 57 */ 58 unsigned long transparent_hugepage_flags __read_mostly = 59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 60 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 61 #endif 62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 64 #endif 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 68 69 static struct shrinker deferred_split_shrinker; 70 71 static atomic_t huge_zero_refcount; 72 struct page *huge_zero_page __read_mostly; 73 unsigned long huge_zero_pfn __read_mostly = ~0UL; 74 75 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags, 76 bool smaps, bool in_pf, bool enforce_sysfs) 77 { 78 if (!vma->vm_mm) /* vdso */ 79 return false; 80 81 /* 82 * Explicitly disabled through madvise or prctl, or some 83 * architectures may disable THP for some mappings, for 84 * example, s390 kvm. 85 * */ 86 if ((vm_flags & VM_NOHUGEPAGE) || 87 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 88 return false; 89 /* 90 * If the hardware/firmware marked hugepage support disabled. 91 */ 92 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 93 return false; 94 95 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 96 if (vma_is_dax(vma)) 97 return in_pf; 98 99 /* 100 * Special VMA and hugetlb VMA. 101 * Must be checked after dax since some dax mappings may have 102 * VM_MIXEDMAP set. 103 */ 104 if (vm_flags & VM_NO_KHUGEPAGED) 105 return false; 106 107 /* 108 * Check alignment for file vma and size for both file and anon vma. 109 * 110 * Skip the check for page fault. Huge fault does the check in fault 111 * handlers. And this check is not suitable for huge PUD fault. 112 */ 113 if (!in_pf && 114 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE))) 115 return false; 116 117 /* 118 * Enabled via shmem mount options or sysfs settings. 119 * Must be done before hugepage flags check since shmem has its 120 * own flags. 121 */ 122 if (!in_pf && shmem_file(vma->vm_file)) 123 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 124 !enforce_sysfs, vma->vm_mm, vm_flags); 125 126 /* Enforce sysfs THP requirements as necessary */ 127 if (enforce_sysfs && 128 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) && 129 !hugepage_flags_always()))) 130 return false; 131 132 /* Only regular file is valid */ 133 if (!in_pf && file_thp_enabled(vma)) 134 return true; 135 136 if (!vma_is_anonymous(vma)) 137 return false; 138 139 if (vma_is_temporary_stack(vma)) 140 return false; 141 142 /* 143 * THPeligible bit of smaps should show 1 for proper VMAs even 144 * though anon_vma is not initialized yet. 145 * 146 * Allow page fault since anon_vma may be not initialized until 147 * the first page fault. 148 */ 149 if (!vma->anon_vma) 150 return (smaps || in_pf); 151 152 return true; 153 } 154 155 static bool get_huge_zero_page(void) 156 { 157 struct page *zero_page; 158 retry: 159 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 160 return true; 161 162 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 163 HPAGE_PMD_ORDER); 164 if (!zero_page) { 165 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 166 return false; 167 } 168 preempt_disable(); 169 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 170 preempt_enable(); 171 __free_pages(zero_page, compound_order(zero_page)); 172 goto retry; 173 } 174 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 175 176 /* We take additional reference here. It will be put back by shrinker */ 177 atomic_set(&huge_zero_refcount, 2); 178 preempt_enable(); 179 count_vm_event(THP_ZERO_PAGE_ALLOC); 180 return true; 181 } 182 183 static void put_huge_zero_page(void) 184 { 185 /* 186 * Counter should never go to zero here. Only shrinker can put 187 * last reference. 188 */ 189 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 190 } 191 192 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 193 { 194 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 195 return READ_ONCE(huge_zero_page); 196 197 if (!get_huge_zero_page()) 198 return NULL; 199 200 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 201 put_huge_zero_page(); 202 203 return READ_ONCE(huge_zero_page); 204 } 205 206 void mm_put_huge_zero_page(struct mm_struct *mm) 207 { 208 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 209 put_huge_zero_page(); 210 } 211 212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 213 struct shrink_control *sc) 214 { 215 /* we can free zero page only if last reference remains */ 216 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 217 } 218 219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 220 struct shrink_control *sc) 221 { 222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 223 struct page *zero_page = xchg(&huge_zero_page, NULL); 224 BUG_ON(zero_page == NULL); 225 WRITE_ONCE(huge_zero_pfn, ~0UL); 226 __free_pages(zero_page, compound_order(zero_page)); 227 return HPAGE_PMD_NR; 228 } 229 230 return 0; 231 } 232 233 static struct shrinker huge_zero_page_shrinker = { 234 .count_objects = shrink_huge_zero_page_count, 235 .scan_objects = shrink_huge_zero_page_scan, 236 .seeks = DEFAULT_SEEKS, 237 }; 238 239 #ifdef CONFIG_SYSFS 240 static ssize_t enabled_show(struct kobject *kobj, 241 struct kobj_attribute *attr, char *buf) 242 { 243 const char *output; 244 245 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 246 output = "[always] madvise never"; 247 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 248 &transparent_hugepage_flags)) 249 output = "always [madvise] never"; 250 else 251 output = "always madvise [never]"; 252 253 return sysfs_emit(buf, "%s\n", output); 254 } 255 256 static ssize_t enabled_store(struct kobject *kobj, 257 struct kobj_attribute *attr, 258 const char *buf, size_t count) 259 { 260 ssize_t ret = count; 261 262 if (sysfs_streq(buf, "always")) { 263 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 264 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 265 } else if (sysfs_streq(buf, "madvise")) { 266 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 267 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 268 } else if (sysfs_streq(buf, "never")) { 269 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 270 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 271 } else 272 ret = -EINVAL; 273 274 if (ret > 0) { 275 int err = start_stop_khugepaged(); 276 if (err) 277 ret = err; 278 } 279 return ret; 280 } 281 282 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 283 284 ssize_t single_hugepage_flag_show(struct kobject *kobj, 285 struct kobj_attribute *attr, char *buf, 286 enum transparent_hugepage_flag flag) 287 { 288 return sysfs_emit(buf, "%d\n", 289 !!test_bit(flag, &transparent_hugepage_flags)); 290 } 291 292 ssize_t single_hugepage_flag_store(struct kobject *kobj, 293 struct kobj_attribute *attr, 294 const char *buf, size_t count, 295 enum transparent_hugepage_flag flag) 296 { 297 unsigned long value; 298 int ret; 299 300 ret = kstrtoul(buf, 10, &value); 301 if (ret < 0) 302 return ret; 303 if (value > 1) 304 return -EINVAL; 305 306 if (value) 307 set_bit(flag, &transparent_hugepage_flags); 308 else 309 clear_bit(flag, &transparent_hugepage_flags); 310 311 return count; 312 } 313 314 static ssize_t defrag_show(struct kobject *kobj, 315 struct kobj_attribute *attr, char *buf) 316 { 317 const char *output; 318 319 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 320 &transparent_hugepage_flags)) 321 output = "[always] defer defer+madvise madvise never"; 322 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 323 &transparent_hugepage_flags)) 324 output = "always [defer] defer+madvise madvise never"; 325 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 326 &transparent_hugepage_flags)) 327 output = "always defer [defer+madvise] madvise never"; 328 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 329 &transparent_hugepage_flags)) 330 output = "always defer defer+madvise [madvise] never"; 331 else 332 output = "always defer defer+madvise madvise [never]"; 333 334 return sysfs_emit(buf, "%s\n", output); 335 } 336 337 static ssize_t defrag_store(struct kobject *kobj, 338 struct kobj_attribute *attr, 339 const char *buf, size_t count) 340 { 341 if (sysfs_streq(buf, "always")) { 342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 344 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 345 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 346 } else if (sysfs_streq(buf, "defer+madvise")) { 347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 349 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 350 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 351 } else if (sysfs_streq(buf, "defer")) { 352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 354 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 355 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 356 } else if (sysfs_streq(buf, "madvise")) { 357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 359 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 360 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 361 } else if (sysfs_streq(buf, "never")) { 362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 365 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 366 } else 367 return -EINVAL; 368 369 return count; 370 } 371 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 372 373 static ssize_t use_zero_page_show(struct kobject *kobj, 374 struct kobj_attribute *attr, char *buf) 375 { 376 return single_hugepage_flag_show(kobj, attr, buf, 377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 378 } 379 static ssize_t use_zero_page_store(struct kobject *kobj, 380 struct kobj_attribute *attr, const char *buf, size_t count) 381 { 382 return single_hugepage_flag_store(kobj, attr, buf, count, 383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 384 } 385 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 386 387 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 388 struct kobj_attribute *attr, char *buf) 389 { 390 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 391 } 392 static struct kobj_attribute hpage_pmd_size_attr = 393 __ATTR_RO(hpage_pmd_size); 394 395 static struct attribute *hugepage_attr[] = { 396 &enabled_attr.attr, 397 &defrag_attr.attr, 398 &use_zero_page_attr.attr, 399 &hpage_pmd_size_attr.attr, 400 #ifdef CONFIG_SHMEM 401 &shmem_enabled_attr.attr, 402 #endif 403 NULL, 404 }; 405 406 static const struct attribute_group hugepage_attr_group = { 407 .attrs = hugepage_attr, 408 }; 409 410 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 411 { 412 int err; 413 414 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 415 if (unlikely(!*hugepage_kobj)) { 416 pr_err("failed to create transparent hugepage kobject\n"); 417 return -ENOMEM; 418 } 419 420 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 421 if (err) { 422 pr_err("failed to register transparent hugepage group\n"); 423 goto delete_obj; 424 } 425 426 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 427 if (err) { 428 pr_err("failed to register transparent hugepage group\n"); 429 goto remove_hp_group; 430 } 431 432 return 0; 433 434 remove_hp_group: 435 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 436 delete_obj: 437 kobject_put(*hugepage_kobj); 438 return err; 439 } 440 441 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 442 { 443 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 444 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 445 kobject_put(hugepage_kobj); 446 } 447 #else 448 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 449 { 450 return 0; 451 } 452 453 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 454 { 455 } 456 #endif /* CONFIG_SYSFS */ 457 458 static int __init hugepage_init(void) 459 { 460 int err; 461 struct kobject *hugepage_kobj; 462 463 if (!has_transparent_hugepage()) { 464 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 465 return -EINVAL; 466 } 467 468 /* 469 * hugepages can't be allocated by the buddy allocator 470 */ 471 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER); 472 /* 473 * we use page->mapping and page->index in second tail page 474 * as list_head: assuming THP order >= 2 475 */ 476 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 477 478 err = hugepage_init_sysfs(&hugepage_kobj); 479 if (err) 480 goto err_sysfs; 481 482 err = khugepaged_init(); 483 if (err) 484 goto err_slab; 485 486 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); 487 if (err) 488 goto err_hzp_shrinker; 489 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split"); 490 if (err) 491 goto err_split_shrinker; 492 493 /* 494 * By default disable transparent hugepages on smaller systems, 495 * where the extra memory used could hurt more than TLB overhead 496 * is likely to save. The admin can still enable it through /sys. 497 */ 498 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 499 transparent_hugepage_flags = 0; 500 return 0; 501 } 502 503 err = start_stop_khugepaged(); 504 if (err) 505 goto err_khugepaged; 506 507 return 0; 508 err_khugepaged: 509 unregister_shrinker(&deferred_split_shrinker); 510 err_split_shrinker: 511 unregister_shrinker(&huge_zero_page_shrinker); 512 err_hzp_shrinker: 513 khugepaged_destroy(); 514 err_slab: 515 hugepage_exit_sysfs(hugepage_kobj); 516 err_sysfs: 517 return err; 518 } 519 subsys_initcall(hugepage_init); 520 521 static int __init setup_transparent_hugepage(char *str) 522 { 523 int ret = 0; 524 if (!str) 525 goto out; 526 if (!strcmp(str, "always")) { 527 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 528 &transparent_hugepage_flags); 529 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 530 &transparent_hugepage_flags); 531 ret = 1; 532 } else if (!strcmp(str, "madvise")) { 533 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 534 &transparent_hugepage_flags); 535 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 536 &transparent_hugepage_flags); 537 ret = 1; 538 } else if (!strcmp(str, "never")) { 539 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 540 &transparent_hugepage_flags); 541 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 542 &transparent_hugepage_flags); 543 ret = 1; 544 } 545 out: 546 if (!ret) 547 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 548 return ret; 549 } 550 __setup("transparent_hugepage=", setup_transparent_hugepage); 551 552 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 553 { 554 if (likely(vma->vm_flags & VM_WRITE)) 555 pmd = pmd_mkwrite(pmd, vma); 556 return pmd; 557 } 558 559 #ifdef CONFIG_MEMCG 560 static inline 561 struct deferred_split *get_deferred_split_queue(struct folio *folio) 562 { 563 struct mem_cgroup *memcg = folio_memcg(folio); 564 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 565 566 if (memcg) 567 return &memcg->deferred_split_queue; 568 else 569 return &pgdat->deferred_split_queue; 570 } 571 #else 572 static inline 573 struct deferred_split *get_deferred_split_queue(struct folio *folio) 574 { 575 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 576 577 return &pgdat->deferred_split_queue; 578 } 579 #endif 580 581 void folio_prep_large_rmappable(struct folio *folio) 582 { 583 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 584 INIT_LIST_HEAD(&folio->_deferred_list); 585 folio_set_large_rmappable(folio); 586 } 587 588 static inline bool is_transparent_hugepage(struct folio *folio) 589 { 590 if (!folio_test_large(folio)) 591 return false; 592 593 return is_huge_zero_page(&folio->page) || 594 folio_test_large_rmappable(folio); 595 } 596 597 static unsigned long __thp_get_unmapped_area(struct file *filp, 598 unsigned long addr, unsigned long len, 599 loff_t off, unsigned long flags, unsigned long size) 600 { 601 loff_t off_end = off + len; 602 loff_t off_align = round_up(off, size); 603 unsigned long len_pad, ret; 604 605 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 606 return 0; 607 608 if (off_end <= off_align || (off_end - off_align) < size) 609 return 0; 610 611 len_pad = len + size; 612 if (len_pad < len || (off + len_pad) < off) 613 return 0; 614 615 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 616 off >> PAGE_SHIFT, flags); 617 618 /* 619 * The failure might be due to length padding. The caller will retry 620 * without the padding. 621 */ 622 if (IS_ERR_VALUE(ret)) 623 return 0; 624 625 /* 626 * Do not try to align to THP boundary if allocation at the address 627 * hint succeeds. 628 */ 629 if (ret == addr) 630 return addr; 631 632 ret += (off - ret) & (size - 1); 633 return ret; 634 } 635 636 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 637 unsigned long len, unsigned long pgoff, unsigned long flags) 638 { 639 unsigned long ret; 640 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 641 642 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 643 if (ret) 644 return ret; 645 646 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 647 } 648 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 649 650 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 651 struct page *page, gfp_t gfp) 652 { 653 struct vm_area_struct *vma = vmf->vma; 654 struct folio *folio = page_folio(page); 655 pgtable_t pgtable; 656 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 657 vm_fault_t ret = 0; 658 659 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 660 661 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 662 folio_put(folio); 663 count_vm_event(THP_FAULT_FALLBACK); 664 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 665 return VM_FAULT_FALLBACK; 666 } 667 folio_throttle_swaprate(folio, gfp); 668 669 pgtable = pte_alloc_one(vma->vm_mm); 670 if (unlikely(!pgtable)) { 671 ret = VM_FAULT_OOM; 672 goto release; 673 } 674 675 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 676 /* 677 * The memory barrier inside __folio_mark_uptodate makes sure that 678 * clear_huge_page writes become visible before the set_pmd_at() 679 * write. 680 */ 681 __folio_mark_uptodate(folio); 682 683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 684 if (unlikely(!pmd_none(*vmf->pmd))) { 685 goto unlock_release; 686 } else { 687 pmd_t entry; 688 689 ret = check_stable_address_space(vma->vm_mm); 690 if (ret) 691 goto unlock_release; 692 693 /* Deliver the page fault to userland */ 694 if (userfaultfd_missing(vma)) { 695 spin_unlock(vmf->ptl); 696 folio_put(folio); 697 pte_free(vma->vm_mm, pgtable); 698 ret = handle_userfault(vmf, VM_UFFD_MISSING); 699 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 700 return ret; 701 } 702 703 entry = mk_huge_pmd(page, vma->vm_page_prot); 704 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 705 folio_add_new_anon_rmap(folio, vma, haddr); 706 folio_add_lru_vma(folio, vma); 707 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 708 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 709 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 710 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 711 mm_inc_nr_ptes(vma->vm_mm); 712 spin_unlock(vmf->ptl); 713 count_vm_event(THP_FAULT_ALLOC); 714 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 715 } 716 717 return 0; 718 unlock_release: 719 spin_unlock(vmf->ptl); 720 release: 721 if (pgtable) 722 pte_free(vma->vm_mm, pgtable); 723 folio_put(folio); 724 return ret; 725 726 } 727 728 /* 729 * always: directly stall for all thp allocations 730 * defer: wake kswapd and fail if not immediately available 731 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 732 * fail if not immediately available 733 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 734 * available 735 * never: never stall for any thp allocation 736 */ 737 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 738 { 739 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 740 741 /* Always do synchronous compaction */ 742 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 743 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 744 745 /* Kick kcompactd and fail quickly */ 746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 747 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 748 749 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 750 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 751 return GFP_TRANSHUGE_LIGHT | 752 (vma_madvised ? __GFP_DIRECT_RECLAIM : 753 __GFP_KSWAPD_RECLAIM); 754 755 /* Only do synchronous compaction if madvised */ 756 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 757 return GFP_TRANSHUGE_LIGHT | 758 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 759 760 return GFP_TRANSHUGE_LIGHT; 761 } 762 763 /* Caller must hold page table lock. */ 764 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 766 struct page *zero_page) 767 { 768 pmd_t entry; 769 if (!pmd_none(*pmd)) 770 return; 771 entry = mk_pmd(zero_page, vma->vm_page_prot); 772 entry = pmd_mkhuge(entry); 773 pgtable_trans_huge_deposit(mm, pmd, pgtable); 774 set_pmd_at(mm, haddr, pmd, entry); 775 mm_inc_nr_ptes(mm); 776 } 777 778 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 779 { 780 struct vm_area_struct *vma = vmf->vma; 781 gfp_t gfp; 782 struct folio *folio; 783 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 784 785 if (!transhuge_vma_suitable(vma, haddr)) 786 return VM_FAULT_FALLBACK; 787 if (unlikely(anon_vma_prepare(vma))) 788 return VM_FAULT_OOM; 789 khugepaged_enter_vma(vma, vma->vm_flags); 790 791 if (!(vmf->flags & FAULT_FLAG_WRITE) && 792 !mm_forbids_zeropage(vma->vm_mm) && 793 transparent_hugepage_use_zero_page()) { 794 pgtable_t pgtable; 795 struct page *zero_page; 796 vm_fault_t ret; 797 pgtable = pte_alloc_one(vma->vm_mm); 798 if (unlikely(!pgtable)) 799 return VM_FAULT_OOM; 800 zero_page = mm_get_huge_zero_page(vma->vm_mm); 801 if (unlikely(!zero_page)) { 802 pte_free(vma->vm_mm, pgtable); 803 count_vm_event(THP_FAULT_FALLBACK); 804 return VM_FAULT_FALLBACK; 805 } 806 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 807 ret = 0; 808 if (pmd_none(*vmf->pmd)) { 809 ret = check_stable_address_space(vma->vm_mm); 810 if (ret) { 811 spin_unlock(vmf->ptl); 812 pte_free(vma->vm_mm, pgtable); 813 } else if (userfaultfd_missing(vma)) { 814 spin_unlock(vmf->ptl); 815 pte_free(vma->vm_mm, pgtable); 816 ret = handle_userfault(vmf, VM_UFFD_MISSING); 817 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 818 } else { 819 set_huge_zero_page(pgtable, vma->vm_mm, vma, 820 haddr, vmf->pmd, zero_page); 821 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 822 spin_unlock(vmf->ptl); 823 } 824 } else { 825 spin_unlock(vmf->ptl); 826 pte_free(vma->vm_mm, pgtable); 827 } 828 return ret; 829 } 830 gfp = vma_thp_gfp_mask(vma); 831 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 832 if (unlikely(!folio)) { 833 count_vm_event(THP_FAULT_FALLBACK); 834 return VM_FAULT_FALLBACK; 835 } 836 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 837 } 838 839 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 840 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 841 pgtable_t pgtable) 842 { 843 struct mm_struct *mm = vma->vm_mm; 844 pmd_t entry; 845 spinlock_t *ptl; 846 847 ptl = pmd_lock(mm, pmd); 848 if (!pmd_none(*pmd)) { 849 if (write) { 850 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 851 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 852 goto out_unlock; 853 } 854 entry = pmd_mkyoung(*pmd); 855 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 856 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 857 update_mmu_cache_pmd(vma, addr, pmd); 858 } 859 860 goto out_unlock; 861 } 862 863 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 864 if (pfn_t_devmap(pfn)) 865 entry = pmd_mkdevmap(entry); 866 if (write) { 867 entry = pmd_mkyoung(pmd_mkdirty(entry)); 868 entry = maybe_pmd_mkwrite(entry, vma); 869 } 870 871 if (pgtable) { 872 pgtable_trans_huge_deposit(mm, pmd, pgtable); 873 mm_inc_nr_ptes(mm); 874 pgtable = NULL; 875 } 876 877 set_pmd_at(mm, addr, pmd, entry); 878 update_mmu_cache_pmd(vma, addr, pmd); 879 880 out_unlock: 881 spin_unlock(ptl); 882 if (pgtable) 883 pte_free(mm, pgtable); 884 } 885 886 /** 887 * vmf_insert_pfn_pmd - insert a pmd size pfn 888 * @vmf: Structure describing the fault 889 * @pfn: pfn to insert 890 * @write: whether it's a write fault 891 * 892 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 893 * 894 * Return: vm_fault_t value. 895 */ 896 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 897 { 898 unsigned long addr = vmf->address & PMD_MASK; 899 struct vm_area_struct *vma = vmf->vma; 900 pgprot_t pgprot = vma->vm_page_prot; 901 pgtable_t pgtable = NULL; 902 903 /* 904 * If we had pmd_special, we could avoid all these restrictions, 905 * but we need to be consistent with PTEs and architectures that 906 * can't support a 'special' bit. 907 */ 908 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 909 !pfn_t_devmap(pfn)); 910 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 911 (VM_PFNMAP|VM_MIXEDMAP)); 912 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 913 914 if (addr < vma->vm_start || addr >= vma->vm_end) 915 return VM_FAULT_SIGBUS; 916 917 if (arch_needs_pgtable_deposit()) { 918 pgtable = pte_alloc_one(vma->vm_mm); 919 if (!pgtable) 920 return VM_FAULT_OOM; 921 } 922 923 track_pfn_insert(vma, &pgprot, pfn); 924 925 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 926 return VM_FAULT_NOPAGE; 927 } 928 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 929 930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 931 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 932 { 933 if (likely(vma->vm_flags & VM_WRITE)) 934 pud = pud_mkwrite(pud); 935 return pud; 936 } 937 938 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 939 pud_t *pud, pfn_t pfn, bool write) 940 { 941 struct mm_struct *mm = vma->vm_mm; 942 pgprot_t prot = vma->vm_page_prot; 943 pud_t entry; 944 spinlock_t *ptl; 945 946 ptl = pud_lock(mm, pud); 947 if (!pud_none(*pud)) { 948 if (write) { 949 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 950 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 951 goto out_unlock; 952 } 953 entry = pud_mkyoung(*pud); 954 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 955 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 956 update_mmu_cache_pud(vma, addr, pud); 957 } 958 goto out_unlock; 959 } 960 961 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 962 if (pfn_t_devmap(pfn)) 963 entry = pud_mkdevmap(entry); 964 if (write) { 965 entry = pud_mkyoung(pud_mkdirty(entry)); 966 entry = maybe_pud_mkwrite(entry, vma); 967 } 968 set_pud_at(mm, addr, pud, entry); 969 update_mmu_cache_pud(vma, addr, pud); 970 971 out_unlock: 972 spin_unlock(ptl); 973 } 974 975 /** 976 * vmf_insert_pfn_pud - insert a pud size pfn 977 * @vmf: Structure describing the fault 978 * @pfn: pfn to insert 979 * @write: whether it's a write fault 980 * 981 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 982 * 983 * Return: vm_fault_t value. 984 */ 985 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 986 { 987 unsigned long addr = vmf->address & PUD_MASK; 988 struct vm_area_struct *vma = vmf->vma; 989 pgprot_t pgprot = vma->vm_page_prot; 990 991 /* 992 * If we had pud_special, we could avoid all these restrictions, 993 * but we need to be consistent with PTEs and architectures that 994 * can't support a 'special' bit. 995 */ 996 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 997 !pfn_t_devmap(pfn)); 998 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 999 (VM_PFNMAP|VM_MIXEDMAP)); 1000 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1001 1002 if (addr < vma->vm_start || addr >= vma->vm_end) 1003 return VM_FAULT_SIGBUS; 1004 1005 track_pfn_insert(vma, &pgprot, pfn); 1006 1007 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1008 return VM_FAULT_NOPAGE; 1009 } 1010 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1012 1013 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1014 pmd_t *pmd, bool write) 1015 { 1016 pmd_t _pmd; 1017 1018 _pmd = pmd_mkyoung(*pmd); 1019 if (write) 1020 _pmd = pmd_mkdirty(_pmd); 1021 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1022 pmd, _pmd, write)) 1023 update_mmu_cache_pmd(vma, addr, pmd); 1024 } 1025 1026 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1027 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1028 { 1029 unsigned long pfn = pmd_pfn(*pmd); 1030 struct mm_struct *mm = vma->vm_mm; 1031 struct page *page; 1032 int ret; 1033 1034 assert_spin_locked(pmd_lockptr(mm, pmd)); 1035 1036 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1037 return NULL; 1038 1039 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1040 /* pass */; 1041 else 1042 return NULL; 1043 1044 if (flags & FOLL_TOUCH) 1045 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1046 1047 /* 1048 * device mapped pages can only be returned if the 1049 * caller will manage the page reference count. 1050 */ 1051 if (!(flags & (FOLL_GET | FOLL_PIN))) 1052 return ERR_PTR(-EEXIST); 1053 1054 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1055 *pgmap = get_dev_pagemap(pfn, *pgmap); 1056 if (!*pgmap) 1057 return ERR_PTR(-EFAULT); 1058 page = pfn_to_page(pfn); 1059 ret = try_grab_folio(page_folio(page), 1, flags); 1060 if (ret) 1061 page = ERR_PTR(ret); 1062 1063 return page; 1064 } 1065 1066 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1068 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1069 { 1070 spinlock_t *dst_ptl, *src_ptl; 1071 struct page *src_page; 1072 pmd_t pmd; 1073 pgtable_t pgtable = NULL; 1074 int ret = -ENOMEM; 1075 1076 /* Skip if can be re-fill on fault */ 1077 if (!vma_is_anonymous(dst_vma)) 1078 return 0; 1079 1080 pgtable = pte_alloc_one(dst_mm); 1081 if (unlikely(!pgtable)) 1082 goto out; 1083 1084 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1085 src_ptl = pmd_lockptr(src_mm, src_pmd); 1086 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1087 1088 ret = -EAGAIN; 1089 pmd = *src_pmd; 1090 1091 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1092 if (unlikely(is_swap_pmd(pmd))) { 1093 swp_entry_t entry = pmd_to_swp_entry(pmd); 1094 1095 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1096 if (!is_readable_migration_entry(entry)) { 1097 entry = make_readable_migration_entry( 1098 swp_offset(entry)); 1099 pmd = swp_entry_to_pmd(entry); 1100 if (pmd_swp_soft_dirty(*src_pmd)) 1101 pmd = pmd_swp_mksoft_dirty(pmd); 1102 if (pmd_swp_uffd_wp(*src_pmd)) 1103 pmd = pmd_swp_mkuffd_wp(pmd); 1104 set_pmd_at(src_mm, addr, src_pmd, pmd); 1105 } 1106 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1107 mm_inc_nr_ptes(dst_mm); 1108 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1109 if (!userfaultfd_wp(dst_vma)) 1110 pmd = pmd_swp_clear_uffd_wp(pmd); 1111 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1112 ret = 0; 1113 goto out_unlock; 1114 } 1115 #endif 1116 1117 if (unlikely(!pmd_trans_huge(pmd))) { 1118 pte_free(dst_mm, pgtable); 1119 goto out_unlock; 1120 } 1121 /* 1122 * When page table lock is held, the huge zero pmd should not be 1123 * under splitting since we don't split the page itself, only pmd to 1124 * a page table. 1125 */ 1126 if (is_huge_zero_pmd(pmd)) { 1127 /* 1128 * get_huge_zero_page() will never allocate a new page here, 1129 * since we already have a zero page to copy. It just takes a 1130 * reference. 1131 */ 1132 mm_get_huge_zero_page(dst_mm); 1133 goto out_zero_page; 1134 } 1135 1136 src_page = pmd_page(pmd); 1137 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1138 1139 get_page(src_page); 1140 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1141 /* Page maybe pinned: split and retry the fault on PTEs. */ 1142 put_page(src_page); 1143 pte_free(dst_mm, pgtable); 1144 spin_unlock(src_ptl); 1145 spin_unlock(dst_ptl); 1146 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1147 return -EAGAIN; 1148 } 1149 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1150 out_zero_page: 1151 mm_inc_nr_ptes(dst_mm); 1152 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1153 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1154 if (!userfaultfd_wp(dst_vma)) 1155 pmd = pmd_clear_uffd_wp(pmd); 1156 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1157 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1158 1159 ret = 0; 1160 out_unlock: 1161 spin_unlock(src_ptl); 1162 spin_unlock(dst_ptl); 1163 out: 1164 return ret; 1165 } 1166 1167 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1168 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1169 pud_t *pud, bool write) 1170 { 1171 pud_t _pud; 1172 1173 _pud = pud_mkyoung(*pud); 1174 if (write) 1175 _pud = pud_mkdirty(_pud); 1176 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1177 pud, _pud, write)) 1178 update_mmu_cache_pud(vma, addr, pud); 1179 } 1180 1181 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1182 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1183 { 1184 unsigned long pfn = pud_pfn(*pud); 1185 struct mm_struct *mm = vma->vm_mm; 1186 struct page *page; 1187 int ret; 1188 1189 assert_spin_locked(pud_lockptr(mm, pud)); 1190 1191 if (flags & FOLL_WRITE && !pud_write(*pud)) 1192 return NULL; 1193 1194 if (pud_present(*pud) && pud_devmap(*pud)) 1195 /* pass */; 1196 else 1197 return NULL; 1198 1199 if (flags & FOLL_TOUCH) 1200 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1201 1202 /* 1203 * device mapped pages can only be returned if the 1204 * caller will manage the page reference count. 1205 * 1206 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1207 */ 1208 if (!(flags & (FOLL_GET | FOLL_PIN))) 1209 return ERR_PTR(-EEXIST); 1210 1211 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1212 *pgmap = get_dev_pagemap(pfn, *pgmap); 1213 if (!*pgmap) 1214 return ERR_PTR(-EFAULT); 1215 page = pfn_to_page(pfn); 1216 1217 ret = try_grab_folio(page_folio(page), 1, flags); 1218 if (ret) 1219 page = ERR_PTR(ret); 1220 1221 return page; 1222 } 1223 1224 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1225 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1226 struct vm_area_struct *vma) 1227 { 1228 spinlock_t *dst_ptl, *src_ptl; 1229 pud_t pud; 1230 int ret; 1231 1232 dst_ptl = pud_lock(dst_mm, dst_pud); 1233 src_ptl = pud_lockptr(src_mm, src_pud); 1234 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1235 1236 ret = -EAGAIN; 1237 pud = *src_pud; 1238 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1239 goto out_unlock; 1240 1241 /* 1242 * When page table lock is held, the huge zero pud should not be 1243 * under splitting since we don't split the page itself, only pud to 1244 * a page table. 1245 */ 1246 if (is_huge_zero_pud(pud)) { 1247 /* No huge zero pud yet */ 1248 } 1249 1250 /* 1251 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1252 * and split if duplicating fails. 1253 */ 1254 pudp_set_wrprotect(src_mm, addr, src_pud); 1255 pud = pud_mkold(pud_wrprotect(pud)); 1256 set_pud_at(dst_mm, addr, dst_pud, pud); 1257 1258 ret = 0; 1259 out_unlock: 1260 spin_unlock(src_ptl); 1261 spin_unlock(dst_ptl); 1262 return ret; 1263 } 1264 1265 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1266 { 1267 bool write = vmf->flags & FAULT_FLAG_WRITE; 1268 1269 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1270 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1271 goto unlock; 1272 1273 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1274 unlock: 1275 spin_unlock(vmf->ptl); 1276 } 1277 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1278 1279 void huge_pmd_set_accessed(struct vm_fault *vmf) 1280 { 1281 bool write = vmf->flags & FAULT_FLAG_WRITE; 1282 1283 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1284 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1285 goto unlock; 1286 1287 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1288 1289 unlock: 1290 spin_unlock(vmf->ptl); 1291 } 1292 1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1294 { 1295 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1296 struct vm_area_struct *vma = vmf->vma; 1297 struct folio *folio; 1298 struct page *page; 1299 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1300 pmd_t orig_pmd = vmf->orig_pmd; 1301 1302 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1303 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1304 1305 if (is_huge_zero_pmd(orig_pmd)) 1306 goto fallback; 1307 1308 spin_lock(vmf->ptl); 1309 1310 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1311 spin_unlock(vmf->ptl); 1312 return 0; 1313 } 1314 1315 page = pmd_page(orig_pmd); 1316 folio = page_folio(page); 1317 VM_BUG_ON_PAGE(!PageHead(page), page); 1318 1319 /* Early check when only holding the PT lock. */ 1320 if (PageAnonExclusive(page)) 1321 goto reuse; 1322 1323 if (!folio_trylock(folio)) { 1324 folio_get(folio); 1325 spin_unlock(vmf->ptl); 1326 folio_lock(folio); 1327 spin_lock(vmf->ptl); 1328 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1329 spin_unlock(vmf->ptl); 1330 folio_unlock(folio); 1331 folio_put(folio); 1332 return 0; 1333 } 1334 folio_put(folio); 1335 } 1336 1337 /* Recheck after temporarily dropping the PT lock. */ 1338 if (PageAnonExclusive(page)) { 1339 folio_unlock(folio); 1340 goto reuse; 1341 } 1342 1343 /* 1344 * See do_wp_page(): we can only reuse the folio exclusively if 1345 * there are no additional references. Note that we always drain 1346 * the LRU cache immediately after adding a THP. 1347 */ 1348 if (folio_ref_count(folio) > 1349 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1350 goto unlock_fallback; 1351 if (folio_test_swapcache(folio)) 1352 folio_free_swap(folio); 1353 if (folio_ref_count(folio) == 1) { 1354 pmd_t entry; 1355 1356 page_move_anon_rmap(page, vma); 1357 folio_unlock(folio); 1358 reuse: 1359 if (unlikely(unshare)) { 1360 spin_unlock(vmf->ptl); 1361 return 0; 1362 } 1363 entry = pmd_mkyoung(orig_pmd); 1364 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1365 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1366 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1367 spin_unlock(vmf->ptl); 1368 return 0; 1369 } 1370 1371 unlock_fallback: 1372 folio_unlock(folio); 1373 spin_unlock(vmf->ptl); 1374 fallback: 1375 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1376 return VM_FAULT_FALLBACK; 1377 } 1378 1379 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1380 unsigned long addr, pmd_t pmd) 1381 { 1382 struct page *page; 1383 1384 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1385 return false; 1386 1387 /* Don't touch entries that are not even readable (NUMA hinting). */ 1388 if (pmd_protnone(pmd)) 1389 return false; 1390 1391 /* Do we need write faults for softdirty tracking? */ 1392 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1393 return false; 1394 1395 /* Do we need write faults for uffd-wp tracking? */ 1396 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1397 return false; 1398 1399 if (!(vma->vm_flags & VM_SHARED)) { 1400 /* See can_change_pte_writable(). */ 1401 page = vm_normal_page_pmd(vma, addr, pmd); 1402 return page && PageAnon(page) && PageAnonExclusive(page); 1403 } 1404 1405 /* See can_change_pte_writable(). */ 1406 return pmd_dirty(pmd); 1407 } 1408 1409 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1410 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1411 struct vm_area_struct *vma, 1412 unsigned int flags) 1413 { 1414 /* If the pmd is writable, we can write to the page. */ 1415 if (pmd_write(pmd)) 1416 return true; 1417 1418 /* Maybe FOLL_FORCE is set to override it? */ 1419 if (!(flags & FOLL_FORCE)) 1420 return false; 1421 1422 /* But FOLL_FORCE has no effect on shared mappings */ 1423 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1424 return false; 1425 1426 /* ... or read-only private ones */ 1427 if (!(vma->vm_flags & VM_MAYWRITE)) 1428 return false; 1429 1430 /* ... or already writable ones that just need to take a write fault */ 1431 if (vma->vm_flags & VM_WRITE) 1432 return false; 1433 1434 /* 1435 * See can_change_pte_writable(): we broke COW and could map the page 1436 * writable if we have an exclusive anonymous page ... 1437 */ 1438 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1439 return false; 1440 1441 /* ... and a write-fault isn't required for other reasons. */ 1442 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1443 return false; 1444 return !userfaultfd_huge_pmd_wp(vma, pmd); 1445 } 1446 1447 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1448 unsigned long addr, 1449 pmd_t *pmd, 1450 unsigned int flags) 1451 { 1452 struct mm_struct *mm = vma->vm_mm; 1453 struct page *page; 1454 int ret; 1455 1456 assert_spin_locked(pmd_lockptr(mm, pmd)); 1457 1458 page = pmd_page(*pmd); 1459 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1460 1461 if ((flags & FOLL_WRITE) && 1462 !can_follow_write_pmd(*pmd, page, vma, flags)) 1463 return NULL; 1464 1465 /* Avoid dumping huge zero page */ 1466 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1467 return ERR_PTR(-EFAULT); 1468 1469 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1470 return NULL; 1471 1472 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1473 return ERR_PTR(-EMLINK); 1474 1475 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1476 !PageAnonExclusive(page), page); 1477 1478 ret = try_grab_folio(page_folio(page), 1, flags); 1479 if (ret) 1480 return ERR_PTR(ret); 1481 1482 if (flags & FOLL_TOUCH) 1483 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1484 1485 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1486 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1487 1488 return page; 1489 } 1490 1491 /* NUMA hinting page fault entry point for trans huge pmds */ 1492 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1493 { 1494 struct vm_area_struct *vma = vmf->vma; 1495 pmd_t oldpmd = vmf->orig_pmd; 1496 pmd_t pmd; 1497 struct page *page; 1498 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1499 int page_nid = NUMA_NO_NODE; 1500 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1501 bool migrated = false, writable = false; 1502 int flags = 0; 1503 1504 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1505 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1506 spin_unlock(vmf->ptl); 1507 goto out; 1508 } 1509 1510 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1511 1512 /* 1513 * Detect now whether the PMD could be writable; this information 1514 * is only valid while holding the PT lock. 1515 */ 1516 writable = pmd_write(pmd); 1517 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1518 can_change_pmd_writable(vma, vmf->address, pmd)) 1519 writable = true; 1520 1521 page = vm_normal_page_pmd(vma, haddr, pmd); 1522 if (!page) 1523 goto out_map; 1524 1525 /* See similar comment in do_numa_page for explanation */ 1526 if (!writable) 1527 flags |= TNF_NO_GROUP; 1528 1529 page_nid = page_to_nid(page); 1530 /* 1531 * For memory tiering mode, cpupid of slow memory page is used 1532 * to record page access time. So use default value. 1533 */ 1534 if (node_is_toptier(page_nid)) 1535 last_cpupid = page_cpupid_last(page); 1536 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1537 &flags); 1538 1539 if (target_nid == NUMA_NO_NODE) { 1540 put_page(page); 1541 goto out_map; 1542 } 1543 1544 spin_unlock(vmf->ptl); 1545 writable = false; 1546 1547 migrated = migrate_misplaced_page(page, vma, target_nid); 1548 if (migrated) { 1549 flags |= TNF_MIGRATED; 1550 page_nid = target_nid; 1551 } else { 1552 flags |= TNF_MIGRATE_FAIL; 1553 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1554 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1555 spin_unlock(vmf->ptl); 1556 goto out; 1557 } 1558 goto out_map; 1559 } 1560 1561 out: 1562 if (page_nid != NUMA_NO_NODE) 1563 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1564 flags); 1565 1566 return 0; 1567 1568 out_map: 1569 /* Restore the PMD */ 1570 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1571 pmd = pmd_mkyoung(pmd); 1572 if (writable) 1573 pmd = pmd_mkwrite(pmd, vma); 1574 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1575 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1576 spin_unlock(vmf->ptl); 1577 goto out; 1578 } 1579 1580 /* 1581 * Return true if we do MADV_FREE successfully on entire pmd page. 1582 * Otherwise, return false. 1583 */ 1584 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1585 pmd_t *pmd, unsigned long addr, unsigned long next) 1586 { 1587 spinlock_t *ptl; 1588 pmd_t orig_pmd; 1589 struct folio *folio; 1590 struct mm_struct *mm = tlb->mm; 1591 bool ret = false; 1592 1593 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1594 1595 ptl = pmd_trans_huge_lock(pmd, vma); 1596 if (!ptl) 1597 goto out_unlocked; 1598 1599 orig_pmd = *pmd; 1600 if (is_huge_zero_pmd(orig_pmd)) 1601 goto out; 1602 1603 if (unlikely(!pmd_present(orig_pmd))) { 1604 VM_BUG_ON(thp_migration_supported() && 1605 !is_pmd_migration_entry(orig_pmd)); 1606 goto out; 1607 } 1608 1609 folio = pfn_folio(pmd_pfn(orig_pmd)); 1610 /* 1611 * If other processes are mapping this folio, we couldn't discard 1612 * the folio unless they all do MADV_FREE so let's skip the folio. 1613 */ 1614 if (folio_estimated_sharers(folio) != 1) 1615 goto out; 1616 1617 if (!folio_trylock(folio)) 1618 goto out; 1619 1620 /* 1621 * If user want to discard part-pages of THP, split it so MADV_FREE 1622 * will deactivate only them. 1623 */ 1624 if (next - addr != HPAGE_PMD_SIZE) { 1625 folio_get(folio); 1626 spin_unlock(ptl); 1627 split_folio(folio); 1628 folio_unlock(folio); 1629 folio_put(folio); 1630 goto out_unlocked; 1631 } 1632 1633 if (folio_test_dirty(folio)) 1634 folio_clear_dirty(folio); 1635 folio_unlock(folio); 1636 1637 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1638 pmdp_invalidate(vma, addr, pmd); 1639 orig_pmd = pmd_mkold(orig_pmd); 1640 orig_pmd = pmd_mkclean(orig_pmd); 1641 1642 set_pmd_at(mm, addr, pmd, orig_pmd); 1643 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1644 } 1645 1646 folio_mark_lazyfree(folio); 1647 ret = true; 1648 out: 1649 spin_unlock(ptl); 1650 out_unlocked: 1651 return ret; 1652 } 1653 1654 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1655 { 1656 pgtable_t pgtable; 1657 1658 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1659 pte_free(mm, pgtable); 1660 mm_dec_nr_ptes(mm); 1661 } 1662 1663 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1664 pmd_t *pmd, unsigned long addr) 1665 { 1666 pmd_t orig_pmd; 1667 spinlock_t *ptl; 1668 1669 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1670 1671 ptl = __pmd_trans_huge_lock(pmd, vma); 1672 if (!ptl) 1673 return 0; 1674 /* 1675 * For architectures like ppc64 we look at deposited pgtable 1676 * when calling pmdp_huge_get_and_clear. So do the 1677 * pgtable_trans_huge_withdraw after finishing pmdp related 1678 * operations. 1679 */ 1680 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1681 tlb->fullmm); 1682 arch_check_zapped_pmd(vma, orig_pmd); 1683 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1684 if (vma_is_special_huge(vma)) { 1685 if (arch_needs_pgtable_deposit()) 1686 zap_deposited_table(tlb->mm, pmd); 1687 spin_unlock(ptl); 1688 } else if (is_huge_zero_pmd(orig_pmd)) { 1689 zap_deposited_table(tlb->mm, pmd); 1690 spin_unlock(ptl); 1691 } else { 1692 struct page *page = NULL; 1693 int flush_needed = 1; 1694 1695 if (pmd_present(orig_pmd)) { 1696 page = pmd_page(orig_pmd); 1697 page_remove_rmap(page, vma, true); 1698 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1699 VM_BUG_ON_PAGE(!PageHead(page), page); 1700 } else if (thp_migration_supported()) { 1701 swp_entry_t entry; 1702 1703 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1704 entry = pmd_to_swp_entry(orig_pmd); 1705 page = pfn_swap_entry_to_page(entry); 1706 flush_needed = 0; 1707 } else 1708 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1709 1710 if (PageAnon(page)) { 1711 zap_deposited_table(tlb->mm, pmd); 1712 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1713 } else { 1714 if (arch_needs_pgtable_deposit()) 1715 zap_deposited_table(tlb->mm, pmd); 1716 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1717 } 1718 1719 spin_unlock(ptl); 1720 if (flush_needed) 1721 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1722 } 1723 return 1; 1724 } 1725 1726 #ifndef pmd_move_must_withdraw 1727 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1728 spinlock_t *old_pmd_ptl, 1729 struct vm_area_struct *vma) 1730 { 1731 /* 1732 * With split pmd lock we also need to move preallocated 1733 * PTE page table if new_pmd is on different PMD page table. 1734 * 1735 * We also don't deposit and withdraw tables for file pages. 1736 */ 1737 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1738 } 1739 #endif 1740 1741 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1742 { 1743 #ifdef CONFIG_MEM_SOFT_DIRTY 1744 if (unlikely(is_pmd_migration_entry(pmd))) 1745 pmd = pmd_swp_mksoft_dirty(pmd); 1746 else if (pmd_present(pmd)) 1747 pmd = pmd_mksoft_dirty(pmd); 1748 #endif 1749 return pmd; 1750 } 1751 1752 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1753 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1754 { 1755 spinlock_t *old_ptl, *new_ptl; 1756 pmd_t pmd; 1757 struct mm_struct *mm = vma->vm_mm; 1758 bool force_flush = false; 1759 1760 /* 1761 * The destination pmd shouldn't be established, free_pgtables() 1762 * should have released it; but move_page_tables() might have already 1763 * inserted a page table, if racing against shmem/file collapse. 1764 */ 1765 if (!pmd_none(*new_pmd)) { 1766 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1767 return false; 1768 } 1769 1770 /* 1771 * We don't have to worry about the ordering of src and dst 1772 * ptlocks because exclusive mmap_lock prevents deadlock. 1773 */ 1774 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1775 if (old_ptl) { 1776 new_ptl = pmd_lockptr(mm, new_pmd); 1777 if (new_ptl != old_ptl) 1778 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1779 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1780 if (pmd_present(pmd)) 1781 force_flush = true; 1782 VM_BUG_ON(!pmd_none(*new_pmd)); 1783 1784 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1785 pgtable_t pgtable; 1786 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1787 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1788 } 1789 pmd = move_soft_dirty_pmd(pmd); 1790 set_pmd_at(mm, new_addr, new_pmd, pmd); 1791 if (force_flush) 1792 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1793 if (new_ptl != old_ptl) 1794 spin_unlock(new_ptl); 1795 spin_unlock(old_ptl); 1796 return true; 1797 } 1798 return false; 1799 } 1800 1801 /* 1802 * Returns 1803 * - 0 if PMD could not be locked 1804 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1805 * or if prot_numa but THP migration is not supported 1806 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1807 */ 1808 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1809 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1810 unsigned long cp_flags) 1811 { 1812 struct mm_struct *mm = vma->vm_mm; 1813 spinlock_t *ptl; 1814 pmd_t oldpmd, entry; 1815 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1816 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1817 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1818 int ret = 1; 1819 1820 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1821 1822 if (prot_numa && !thp_migration_supported()) 1823 return 1; 1824 1825 ptl = __pmd_trans_huge_lock(pmd, vma); 1826 if (!ptl) 1827 return 0; 1828 1829 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1830 if (is_swap_pmd(*pmd)) { 1831 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1832 struct page *page = pfn_swap_entry_to_page(entry); 1833 pmd_t newpmd; 1834 1835 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1836 if (is_writable_migration_entry(entry)) { 1837 /* 1838 * A protection check is difficult so 1839 * just be safe and disable write 1840 */ 1841 if (PageAnon(page)) 1842 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1843 else 1844 entry = make_readable_migration_entry(swp_offset(entry)); 1845 newpmd = swp_entry_to_pmd(entry); 1846 if (pmd_swp_soft_dirty(*pmd)) 1847 newpmd = pmd_swp_mksoft_dirty(newpmd); 1848 } else { 1849 newpmd = *pmd; 1850 } 1851 1852 if (uffd_wp) 1853 newpmd = pmd_swp_mkuffd_wp(newpmd); 1854 else if (uffd_wp_resolve) 1855 newpmd = pmd_swp_clear_uffd_wp(newpmd); 1856 if (!pmd_same(*pmd, newpmd)) 1857 set_pmd_at(mm, addr, pmd, newpmd); 1858 goto unlock; 1859 } 1860 #endif 1861 1862 if (prot_numa) { 1863 struct page *page; 1864 bool toptier; 1865 /* 1866 * Avoid trapping faults against the zero page. The read-only 1867 * data is likely to be read-cached on the local CPU and 1868 * local/remote hits to the zero page are not interesting. 1869 */ 1870 if (is_huge_zero_pmd(*pmd)) 1871 goto unlock; 1872 1873 if (pmd_protnone(*pmd)) 1874 goto unlock; 1875 1876 page = pmd_page(*pmd); 1877 toptier = node_is_toptier(page_to_nid(page)); 1878 /* 1879 * Skip scanning top tier node if normal numa 1880 * balancing is disabled 1881 */ 1882 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1883 toptier) 1884 goto unlock; 1885 1886 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1887 !toptier) 1888 xchg_page_access_time(page, jiffies_to_msecs(jiffies)); 1889 } 1890 /* 1891 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1892 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1893 * which is also under mmap_read_lock(mm): 1894 * 1895 * CPU0: CPU1: 1896 * change_huge_pmd(prot_numa=1) 1897 * pmdp_huge_get_and_clear_notify() 1898 * madvise_dontneed() 1899 * zap_pmd_range() 1900 * pmd_trans_huge(*pmd) == 0 (without ptl) 1901 * // skip the pmd 1902 * set_pmd_at(); 1903 * // pmd is re-established 1904 * 1905 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1906 * which may break userspace. 1907 * 1908 * pmdp_invalidate_ad() is required to make sure we don't miss 1909 * dirty/young flags set by hardware. 1910 */ 1911 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1912 1913 entry = pmd_modify(oldpmd, newprot); 1914 if (uffd_wp) 1915 entry = pmd_mkuffd_wp(entry); 1916 else if (uffd_wp_resolve) 1917 /* 1918 * Leave the write bit to be handled by PF interrupt 1919 * handler, then things like COW could be properly 1920 * handled. 1921 */ 1922 entry = pmd_clear_uffd_wp(entry); 1923 1924 /* See change_pte_range(). */ 1925 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 1926 can_change_pmd_writable(vma, addr, entry)) 1927 entry = pmd_mkwrite(entry, vma); 1928 1929 ret = HPAGE_PMD_NR; 1930 set_pmd_at(mm, addr, pmd, entry); 1931 1932 if (huge_pmd_needs_flush(oldpmd, entry)) 1933 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1934 unlock: 1935 spin_unlock(ptl); 1936 return ret; 1937 } 1938 1939 /* 1940 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1941 * 1942 * Note that if it returns page table lock pointer, this routine returns without 1943 * unlocking page table lock. So callers must unlock it. 1944 */ 1945 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1946 { 1947 spinlock_t *ptl; 1948 ptl = pmd_lock(vma->vm_mm, pmd); 1949 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1950 pmd_devmap(*pmd))) 1951 return ptl; 1952 spin_unlock(ptl); 1953 return NULL; 1954 } 1955 1956 /* 1957 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 1958 * 1959 * Note that if it returns page table lock pointer, this routine returns without 1960 * unlocking page table lock. So callers must unlock it. 1961 */ 1962 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1963 { 1964 spinlock_t *ptl; 1965 1966 ptl = pud_lock(vma->vm_mm, pud); 1967 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1968 return ptl; 1969 spin_unlock(ptl); 1970 return NULL; 1971 } 1972 1973 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1974 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1975 pud_t *pud, unsigned long addr) 1976 { 1977 spinlock_t *ptl; 1978 1979 ptl = __pud_trans_huge_lock(pud, vma); 1980 if (!ptl) 1981 return 0; 1982 1983 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 1984 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1985 if (vma_is_special_huge(vma)) { 1986 spin_unlock(ptl); 1987 /* No zero page support yet */ 1988 } else { 1989 /* No support for anonymous PUD pages yet */ 1990 BUG(); 1991 } 1992 return 1; 1993 } 1994 1995 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1996 unsigned long haddr) 1997 { 1998 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2001 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2002 2003 count_vm_event(THP_SPLIT_PUD); 2004 2005 pudp_huge_clear_flush(vma, haddr, pud); 2006 } 2007 2008 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2009 unsigned long address) 2010 { 2011 spinlock_t *ptl; 2012 struct mmu_notifier_range range; 2013 2014 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2015 address & HPAGE_PUD_MASK, 2016 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2017 mmu_notifier_invalidate_range_start(&range); 2018 ptl = pud_lock(vma->vm_mm, pud); 2019 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2020 goto out; 2021 __split_huge_pud_locked(vma, pud, range.start); 2022 2023 out: 2024 spin_unlock(ptl); 2025 mmu_notifier_invalidate_range_end(&range); 2026 } 2027 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2028 2029 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2030 unsigned long haddr, pmd_t *pmd) 2031 { 2032 struct mm_struct *mm = vma->vm_mm; 2033 pgtable_t pgtable; 2034 pmd_t _pmd, old_pmd; 2035 unsigned long addr; 2036 pte_t *pte; 2037 int i; 2038 2039 /* 2040 * Leave pmd empty until pte is filled note that it is fine to delay 2041 * notification until mmu_notifier_invalidate_range_end() as we are 2042 * replacing a zero pmd write protected page with a zero pte write 2043 * protected page. 2044 * 2045 * See Documentation/mm/mmu_notifier.rst 2046 */ 2047 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2048 2049 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2050 pmd_populate(mm, &_pmd, pgtable); 2051 2052 pte = pte_offset_map(&_pmd, haddr); 2053 VM_BUG_ON(!pte); 2054 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2055 pte_t entry; 2056 2057 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2058 entry = pte_mkspecial(entry); 2059 if (pmd_uffd_wp(old_pmd)) 2060 entry = pte_mkuffd_wp(entry); 2061 VM_BUG_ON(!pte_none(ptep_get(pte))); 2062 set_pte_at(mm, addr, pte, entry); 2063 pte++; 2064 } 2065 pte_unmap(pte - 1); 2066 smp_wmb(); /* make pte visible before pmd */ 2067 pmd_populate(mm, pmd, pgtable); 2068 } 2069 2070 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2071 unsigned long haddr, bool freeze) 2072 { 2073 struct mm_struct *mm = vma->vm_mm; 2074 struct page *page; 2075 pgtable_t pgtable; 2076 pmd_t old_pmd, _pmd; 2077 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2078 bool anon_exclusive = false, dirty = false; 2079 unsigned long addr; 2080 pte_t *pte; 2081 int i; 2082 2083 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2084 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2085 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2086 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2087 && !pmd_devmap(*pmd)); 2088 2089 count_vm_event(THP_SPLIT_PMD); 2090 2091 if (!vma_is_anonymous(vma)) { 2092 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2093 /* 2094 * We are going to unmap this huge page. So 2095 * just go ahead and zap it 2096 */ 2097 if (arch_needs_pgtable_deposit()) 2098 zap_deposited_table(mm, pmd); 2099 if (vma_is_special_huge(vma)) 2100 return; 2101 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2102 swp_entry_t entry; 2103 2104 entry = pmd_to_swp_entry(old_pmd); 2105 page = pfn_swap_entry_to_page(entry); 2106 } else { 2107 page = pmd_page(old_pmd); 2108 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2109 set_page_dirty(page); 2110 if (!PageReferenced(page) && pmd_young(old_pmd)) 2111 SetPageReferenced(page); 2112 page_remove_rmap(page, vma, true); 2113 put_page(page); 2114 } 2115 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2116 return; 2117 } 2118 2119 if (is_huge_zero_pmd(*pmd)) { 2120 /* 2121 * FIXME: Do we want to invalidate secondary mmu by calling 2122 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2123 * inside __split_huge_pmd() ? 2124 * 2125 * We are going from a zero huge page write protected to zero 2126 * small page also write protected so it does not seems useful 2127 * to invalidate secondary mmu at this time. 2128 */ 2129 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2130 } 2131 2132 pmd_migration = is_pmd_migration_entry(*pmd); 2133 if (unlikely(pmd_migration)) { 2134 swp_entry_t entry; 2135 2136 old_pmd = *pmd; 2137 entry = pmd_to_swp_entry(old_pmd); 2138 page = pfn_swap_entry_to_page(entry); 2139 write = is_writable_migration_entry(entry); 2140 if (PageAnon(page)) 2141 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2142 young = is_migration_entry_young(entry); 2143 dirty = is_migration_entry_dirty(entry); 2144 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2145 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2146 } else { 2147 /* 2148 * Up to this point the pmd is present and huge and userland has 2149 * the whole access to the hugepage during the split (which 2150 * happens in place). If we overwrite the pmd with the not-huge 2151 * version pointing to the pte here (which of course we could if 2152 * all CPUs were bug free), userland could trigger a small page 2153 * size TLB miss on the small sized TLB while the hugepage TLB 2154 * entry is still established in the huge TLB. Some CPU doesn't 2155 * like that. See 2156 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2157 * 383 on page 105. Intel should be safe but is also warns that 2158 * it's only safe if the permission and cache attributes of the 2159 * two entries loaded in the two TLB is identical (which should 2160 * be the case here). But it is generally safer to never allow 2161 * small and huge TLB entries for the same virtual address to be 2162 * loaded simultaneously. So instead of doing "pmd_populate(); 2163 * flush_pmd_tlb_range();" we first mark the current pmd 2164 * notpresent (atomically because here the pmd_trans_huge must 2165 * remain set at all times on the pmd until the split is 2166 * complete for this pmd), then we flush the SMP TLB and finally 2167 * we write the non-huge version of the pmd entry with 2168 * pmd_populate. 2169 */ 2170 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2171 page = pmd_page(old_pmd); 2172 if (pmd_dirty(old_pmd)) { 2173 dirty = true; 2174 SetPageDirty(page); 2175 } 2176 write = pmd_write(old_pmd); 2177 young = pmd_young(old_pmd); 2178 soft_dirty = pmd_soft_dirty(old_pmd); 2179 uffd_wp = pmd_uffd_wp(old_pmd); 2180 2181 VM_BUG_ON_PAGE(!page_count(page), page); 2182 2183 /* 2184 * Without "freeze", we'll simply split the PMD, propagating the 2185 * PageAnonExclusive() flag for each PTE by setting it for 2186 * each subpage -- no need to (temporarily) clear. 2187 * 2188 * With "freeze" we want to replace mapped pages by 2189 * migration entries right away. This is only possible if we 2190 * managed to clear PageAnonExclusive() -- see 2191 * set_pmd_migration_entry(). 2192 * 2193 * In case we cannot clear PageAnonExclusive(), split the PMD 2194 * only and let try_to_migrate_one() fail later. 2195 * 2196 * See page_try_share_anon_rmap(): invalidate PMD first. 2197 */ 2198 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2199 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2200 freeze = false; 2201 if (!freeze) 2202 page_ref_add(page, HPAGE_PMD_NR - 1); 2203 } 2204 2205 /* 2206 * Withdraw the table only after we mark the pmd entry invalid. 2207 * This's critical for some architectures (Power). 2208 */ 2209 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2210 pmd_populate(mm, &_pmd, pgtable); 2211 2212 pte = pte_offset_map(&_pmd, haddr); 2213 VM_BUG_ON(!pte); 2214 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2215 pte_t entry; 2216 /* 2217 * Note that NUMA hinting access restrictions are not 2218 * transferred to avoid any possibility of altering 2219 * permissions across VMAs. 2220 */ 2221 if (freeze || pmd_migration) { 2222 swp_entry_t swp_entry; 2223 if (write) 2224 swp_entry = make_writable_migration_entry( 2225 page_to_pfn(page + i)); 2226 else if (anon_exclusive) 2227 swp_entry = make_readable_exclusive_migration_entry( 2228 page_to_pfn(page + i)); 2229 else 2230 swp_entry = make_readable_migration_entry( 2231 page_to_pfn(page + i)); 2232 if (young) 2233 swp_entry = make_migration_entry_young(swp_entry); 2234 if (dirty) 2235 swp_entry = make_migration_entry_dirty(swp_entry); 2236 entry = swp_entry_to_pte(swp_entry); 2237 if (soft_dirty) 2238 entry = pte_swp_mksoft_dirty(entry); 2239 if (uffd_wp) 2240 entry = pte_swp_mkuffd_wp(entry); 2241 } else { 2242 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2243 if (write) 2244 entry = pte_mkwrite(entry, vma); 2245 if (anon_exclusive) 2246 SetPageAnonExclusive(page + i); 2247 if (!young) 2248 entry = pte_mkold(entry); 2249 /* NOTE: this may set soft-dirty too on some archs */ 2250 if (dirty) 2251 entry = pte_mkdirty(entry); 2252 if (soft_dirty) 2253 entry = pte_mksoft_dirty(entry); 2254 if (uffd_wp) 2255 entry = pte_mkuffd_wp(entry); 2256 page_add_anon_rmap(page + i, vma, addr, RMAP_NONE); 2257 } 2258 VM_BUG_ON(!pte_none(ptep_get(pte))); 2259 set_pte_at(mm, addr, pte, entry); 2260 pte++; 2261 } 2262 pte_unmap(pte - 1); 2263 2264 if (!pmd_migration) 2265 page_remove_rmap(page, vma, true); 2266 if (freeze) 2267 put_page(page); 2268 2269 smp_wmb(); /* make pte visible before pmd */ 2270 pmd_populate(mm, pmd, pgtable); 2271 } 2272 2273 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2274 unsigned long address, bool freeze, struct folio *folio) 2275 { 2276 spinlock_t *ptl; 2277 struct mmu_notifier_range range; 2278 2279 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2280 address & HPAGE_PMD_MASK, 2281 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2282 mmu_notifier_invalidate_range_start(&range); 2283 ptl = pmd_lock(vma->vm_mm, pmd); 2284 2285 /* 2286 * If caller asks to setup a migration entry, we need a folio to check 2287 * pmd against. Otherwise we can end up replacing wrong folio. 2288 */ 2289 VM_BUG_ON(freeze && !folio); 2290 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2291 2292 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2293 is_pmd_migration_entry(*pmd)) { 2294 /* 2295 * It's safe to call pmd_page when folio is set because it's 2296 * guaranteed that pmd is present. 2297 */ 2298 if (folio && folio != page_folio(pmd_page(*pmd))) 2299 goto out; 2300 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2301 } 2302 2303 out: 2304 spin_unlock(ptl); 2305 mmu_notifier_invalidate_range_end(&range); 2306 } 2307 2308 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2309 bool freeze, struct folio *folio) 2310 { 2311 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2312 2313 if (!pmd) 2314 return; 2315 2316 __split_huge_pmd(vma, pmd, address, freeze, folio); 2317 } 2318 2319 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2320 { 2321 /* 2322 * If the new address isn't hpage aligned and it could previously 2323 * contain an hugepage: check if we need to split an huge pmd. 2324 */ 2325 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2326 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2327 ALIGN(address, HPAGE_PMD_SIZE))) 2328 split_huge_pmd_address(vma, address, false, NULL); 2329 } 2330 2331 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2332 unsigned long start, 2333 unsigned long end, 2334 long adjust_next) 2335 { 2336 /* Check if we need to split start first. */ 2337 split_huge_pmd_if_needed(vma, start); 2338 2339 /* Check if we need to split end next. */ 2340 split_huge_pmd_if_needed(vma, end); 2341 2342 /* 2343 * If we're also updating the next vma vm_start, 2344 * check if we need to split it. 2345 */ 2346 if (adjust_next > 0) { 2347 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2348 unsigned long nstart = next->vm_start; 2349 nstart += adjust_next; 2350 split_huge_pmd_if_needed(next, nstart); 2351 } 2352 } 2353 2354 static void unmap_folio(struct folio *folio) 2355 { 2356 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2357 TTU_SYNC; 2358 2359 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2360 2361 /* 2362 * Anon pages need migration entries to preserve them, but file 2363 * pages can simply be left unmapped, then faulted back on demand. 2364 * If that is ever changed (perhaps for mlock), update remap_page(). 2365 */ 2366 if (folio_test_anon(folio)) 2367 try_to_migrate(folio, ttu_flags); 2368 else 2369 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2370 } 2371 2372 static void remap_page(struct folio *folio, unsigned long nr) 2373 { 2374 int i = 0; 2375 2376 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2377 if (!folio_test_anon(folio)) 2378 return; 2379 for (;;) { 2380 remove_migration_ptes(folio, folio, true); 2381 i += folio_nr_pages(folio); 2382 if (i >= nr) 2383 break; 2384 folio = folio_next(folio); 2385 } 2386 } 2387 2388 static void lru_add_page_tail(struct page *head, struct page *tail, 2389 struct lruvec *lruvec, struct list_head *list) 2390 { 2391 VM_BUG_ON_PAGE(!PageHead(head), head); 2392 VM_BUG_ON_PAGE(PageCompound(tail), head); 2393 VM_BUG_ON_PAGE(PageLRU(tail), head); 2394 lockdep_assert_held(&lruvec->lru_lock); 2395 2396 if (list) { 2397 /* page reclaim is reclaiming a huge page */ 2398 VM_WARN_ON(PageLRU(head)); 2399 get_page(tail); 2400 list_add_tail(&tail->lru, list); 2401 } else { 2402 /* head is still on lru (and we have it frozen) */ 2403 VM_WARN_ON(!PageLRU(head)); 2404 if (PageUnevictable(tail)) 2405 tail->mlock_count = 0; 2406 else 2407 list_add_tail(&tail->lru, &head->lru); 2408 SetPageLRU(tail); 2409 } 2410 } 2411 2412 static void __split_huge_page_tail(struct folio *folio, int tail, 2413 struct lruvec *lruvec, struct list_head *list) 2414 { 2415 struct page *head = &folio->page; 2416 struct page *page_tail = head + tail; 2417 /* 2418 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2419 * Don't pass it around before clear_compound_head(). 2420 */ 2421 struct folio *new_folio = (struct folio *)page_tail; 2422 2423 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2424 2425 /* 2426 * Clone page flags before unfreezing refcount. 2427 * 2428 * After successful get_page_unless_zero() might follow flags change, 2429 * for example lock_page() which set PG_waiters. 2430 * 2431 * Note that for mapped sub-pages of an anonymous THP, 2432 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2433 * the migration entry instead from where remap_page() will restore it. 2434 * We can still have PG_anon_exclusive set on effectively unmapped and 2435 * unreferenced sub-pages of an anonymous THP: we can simply drop 2436 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2437 */ 2438 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2439 page_tail->flags |= (head->flags & 2440 ((1L << PG_referenced) | 2441 (1L << PG_swapbacked) | 2442 (1L << PG_swapcache) | 2443 (1L << PG_mlocked) | 2444 (1L << PG_uptodate) | 2445 (1L << PG_active) | 2446 (1L << PG_workingset) | 2447 (1L << PG_locked) | 2448 (1L << PG_unevictable) | 2449 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2450 (1L << PG_arch_2) | 2451 (1L << PG_arch_3) | 2452 #endif 2453 (1L << PG_dirty) | 2454 LRU_GEN_MASK | LRU_REFS_MASK)); 2455 2456 /* ->mapping in first and second tail page is replaced by other uses */ 2457 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2458 page_tail); 2459 page_tail->mapping = head->mapping; 2460 page_tail->index = head->index + tail; 2461 2462 /* 2463 * page->private should not be set in tail pages. Fix up and warn once 2464 * if private is unexpectedly set. 2465 */ 2466 if (unlikely(page_tail->private)) { 2467 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2468 page_tail->private = 0; 2469 } 2470 if (folio_test_swapcache(folio)) 2471 new_folio->swap.val = folio->swap.val + tail; 2472 2473 /* Page flags must be visible before we make the page non-compound. */ 2474 smp_wmb(); 2475 2476 /* 2477 * Clear PageTail before unfreezing page refcount. 2478 * 2479 * After successful get_page_unless_zero() might follow put_page() 2480 * which needs correct compound_head(). 2481 */ 2482 clear_compound_head(page_tail); 2483 2484 /* Finally unfreeze refcount. Additional reference from page cache. */ 2485 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2486 PageSwapCache(head))); 2487 2488 if (page_is_young(head)) 2489 set_page_young(page_tail); 2490 if (page_is_idle(head)) 2491 set_page_idle(page_tail); 2492 2493 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2494 2495 /* 2496 * always add to the tail because some iterators expect new 2497 * pages to show after the currently processed elements - e.g. 2498 * migrate_pages 2499 */ 2500 lru_add_page_tail(head, page_tail, lruvec, list); 2501 } 2502 2503 static void __split_huge_page(struct page *page, struct list_head *list, 2504 pgoff_t end) 2505 { 2506 struct folio *folio = page_folio(page); 2507 struct page *head = &folio->page; 2508 struct lruvec *lruvec; 2509 struct address_space *swap_cache = NULL; 2510 unsigned long offset = 0; 2511 unsigned int nr = thp_nr_pages(head); 2512 int i, nr_dropped = 0; 2513 2514 /* complete memcg works before add pages to LRU */ 2515 split_page_memcg(head, nr); 2516 2517 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2518 offset = swp_offset(folio->swap); 2519 swap_cache = swap_address_space(folio->swap); 2520 xa_lock(&swap_cache->i_pages); 2521 } 2522 2523 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2524 lruvec = folio_lruvec_lock(folio); 2525 2526 ClearPageHasHWPoisoned(head); 2527 2528 for (i = nr - 1; i >= 1; i--) { 2529 __split_huge_page_tail(folio, i, lruvec, list); 2530 /* Some pages can be beyond EOF: drop them from page cache */ 2531 if (head[i].index >= end) { 2532 struct folio *tail = page_folio(head + i); 2533 2534 if (shmem_mapping(head->mapping)) 2535 nr_dropped++; 2536 else if (folio_test_clear_dirty(tail)) 2537 folio_account_cleaned(tail, 2538 inode_to_wb(folio->mapping->host)); 2539 __filemap_remove_folio(tail, NULL); 2540 folio_put(tail); 2541 } else if (!PageAnon(page)) { 2542 __xa_store(&head->mapping->i_pages, head[i].index, 2543 head + i, 0); 2544 } else if (swap_cache) { 2545 __xa_store(&swap_cache->i_pages, offset + i, 2546 head + i, 0); 2547 } 2548 } 2549 2550 ClearPageCompound(head); 2551 unlock_page_lruvec(lruvec); 2552 /* Caller disabled irqs, so they are still disabled here */ 2553 2554 split_page_owner(head, nr); 2555 2556 /* See comment in __split_huge_page_tail() */ 2557 if (PageAnon(head)) { 2558 /* Additional pin to swap cache */ 2559 if (PageSwapCache(head)) { 2560 page_ref_add(head, 2); 2561 xa_unlock(&swap_cache->i_pages); 2562 } else { 2563 page_ref_inc(head); 2564 } 2565 } else { 2566 /* Additional pin to page cache */ 2567 page_ref_add(head, 2); 2568 xa_unlock(&head->mapping->i_pages); 2569 } 2570 local_irq_enable(); 2571 2572 if (nr_dropped) 2573 shmem_uncharge(head->mapping->host, nr_dropped); 2574 remap_page(folio, nr); 2575 2576 if (folio_test_swapcache(folio)) 2577 split_swap_cluster(folio->swap); 2578 2579 for (i = 0; i < nr; i++) { 2580 struct page *subpage = head + i; 2581 if (subpage == page) 2582 continue; 2583 unlock_page(subpage); 2584 2585 /* 2586 * Subpages may be freed if there wasn't any mapping 2587 * like if add_to_swap() is running on a lru page that 2588 * had its mapping zapped. And freeing these pages 2589 * requires taking the lru_lock so we do the put_page 2590 * of the tail pages after the split is complete. 2591 */ 2592 free_page_and_swap_cache(subpage); 2593 } 2594 } 2595 2596 /* Racy check whether the huge page can be split */ 2597 bool can_split_folio(struct folio *folio, int *pextra_pins) 2598 { 2599 int extra_pins; 2600 2601 /* Additional pins from page cache */ 2602 if (folio_test_anon(folio)) 2603 extra_pins = folio_test_swapcache(folio) ? 2604 folio_nr_pages(folio) : 0; 2605 else 2606 extra_pins = folio_nr_pages(folio); 2607 if (pextra_pins) 2608 *pextra_pins = extra_pins; 2609 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2610 } 2611 2612 /* 2613 * This function splits huge page into normal pages. @page can point to any 2614 * subpage of huge page to split. Split doesn't change the position of @page. 2615 * 2616 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2617 * The huge page must be locked. 2618 * 2619 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2620 * 2621 * Both head page and tail pages will inherit mapping, flags, and so on from 2622 * the hugepage. 2623 * 2624 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2625 * they are not mapped. 2626 * 2627 * Returns 0 if the hugepage is split successfully. 2628 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2629 * us. 2630 */ 2631 int split_huge_page_to_list(struct page *page, struct list_head *list) 2632 { 2633 struct folio *folio = page_folio(page); 2634 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2635 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2636 struct anon_vma *anon_vma = NULL; 2637 struct address_space *mapping = NULL; 2638 int extra_pins, ret; 2639 pgoff_t end; 2640 bool is_hzp; 2641 2642 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2643 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2644 2645 is_hzp = is_huge_zero_page(&folio->page); 2646 if (is_hzp) { 2647 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 2648 return -EBUSY; 2649 } 2650 2651 if (folio_test_writeback(folio)) 2652 return -EBUSY; 2653 2654 if (folio_test_anon(folio)) { 2655 /* 2656 * The caller does not necessarily hold an mmap_lock that would 2657 * prevent the anon_vma disappearing so we first we take a 2658 * reference to it and then lock the anon_vma for write. This 2659 * is similar to folio_lock_anon_vma_read except the write lock 2660 * is taken to serialise against parallel split or collapse 2661 * operations. 2662 */ 2663 anon_vma = folio_get_anon_vma(folio); 2664 if (!anon_vma) { 2665 ret = -EBUSY; 2666 goto out; 2667 } 2668 end = -1; 2669 mapping = NULL; 2670 anon_vma_lock_write(anon_vma); 2671 } else { 2672 gfp_t gfp; 2673 2674 mapping = folio->mapping; 2675 2676 /* Truncated ? */ 2677 if (!mapping) { 2678 ret = -EBUSY; 2679 goto out; 2680 } 2681 2682 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 2683 GFP_RECLAIM_MASK); 2684 2685 if (!filemap_release_folio(folio, gfp)) { 2686 ret = -EBUSY; 2687 goto out; 2688 } 2689 2690 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 2691 if (xas_error(&xas)) { 2692 ret = xas_error(&xas); 2693 goto out; 2694 } 2695 2696 anon_vma = NULL; 2697 i_mmap_lock_read(mapping); 2698 2699 /* 2700 *__split_huge_page() may need to trim off pages beyond EOF: 2701 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2702 * which cannot be nested inside the page tree lock. So note 2703 * end now: i_size itself may be changed at any moment, but 2704 * folio lock is good enough to serialize the trimming. 2705 */ 2706 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2707 if (shmem_mapping(mapping)) 2708 end = shmem_fallocend(mapping->host, end); 2709 } 2710 2711 /* 2712 * Racy check if we can split the page, before unmap_folio() will 2713 * split PMDs 2714 */ 2715 if (!can_split_folio(folio, &extra_pins)) { 2716 ret = -EAGAIN; 2717 goto out_unlock; 2718 } 2719 2720 unmap_folio(folio); 2721 2722 /* block interrupt reentry in xa_lock and spinlock */ 2723 local_irq_disable(); 2724 if (mapping) { 2725 /* 2726 * Check if the folio is present in page cache. 2727 * We assume all tail are present too, if folio is there. 2728 */ 2729 xas_lock(&xas); 2730 xas_reset(&xas); 2731 if (xas_load(&xas) != folio) 2732 goto fail; 2733 } 2734 2735 /* Prevent deferred_split_scan() touching ->_refcount */ 2736 spin_lock(&ds_queue->split_queue_lock); 2737 if (folio_ref_freeze(folio, 1 + extra_pins)) { 2738 if (!list_empty(&folio->_deferred_list)) { 2739 ds_queue->split_queue_len--; 2740 list_del(&folio->_deferred_list); 2741 } 2742 spin_unlock(&ds_queue->split_queue_lock); 2743 if (mapping) { 2744 int nr = folio_nr_pages(folio); 2745 2746 xas_split(&xas, folio, folio_order(folio)); 2747 if (folio_test_pmd_mappable(folio)) { 2748 if (folio_test_swapbacked(folio)) { 2749 __lruvec_stat_mod_folio(folio, 2750 NR_SHMEM_THPS, -nr); 2751 } else { 2752 __lruvec_stat_mod_folio(folio, 2753 NR_FILE_THPS, -nr); 2754 filemap_nr_thps_dec(mapping); 2755 } 2756 } 2757 } 2758 2759 __split_huge_page(page, list, end); 2760 ret = 0; 2761 } else { 2762 spin_unlock(&ds_queue->split_queue_lock); 2763 fail: 2764 if (mapping) 2765 xas_unlock(&xas); 2766 local_irq_enable(); 2767 remap_page(folio, folio_nr_pages(folio)); 2768 ret = -EAGAIN; 2769 } 2770 2771 out_unlock: 2772 if (anon_vma) { 2773 anon_vma_unlock_write(anon_vma); 2774 put_anon_vma(anon_vma); 2775 } 2776 if (mapping) 2777 i_mmap_unlock_read(mapping); 2778 out: 2779 xas_destroy(&xas); 2780 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2781 return ret; 2782 } 2783 2784 void folio_undo_large_rmappable(struct folio *folio) 2785 { 2786 struct deferred_split *ds_queue; 2787 unsigned long flags; 2788 2789 /* 2790 * At this point, there is no one trying to add the folio to 2791 * deferred_list. If folio is not in deferred_list, it's safe 2792 * to check without acquiring the split_queue_lock. 2793 */ 2794 if (data_race(list_empty(&folio->_deferred_list))) 2795 return; 2796 2797 ds_queue = get_deferred_split_queue(folio); 2798 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2799 if (!list_empty(&folio->_deferred_list)) { 2800 ds_queue->split_queue_len--; 2801 list_del(&folio->_deferred_list); 2802 } 2803 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2804 } 2805 2806 void deferred_split_folio(struct folio *folio) 2807 { 2808 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2809 #ifdef CONFIG_MEMCG 2810 struct mem_cgroup *memcg = folio_memcg(folio); 2811 #endif 2812 unsigned long flags; 2813 2814 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 2815 2816 /* 2817 * The try_to_unmap() in page reclaim path might reach here too, 2818 * this may cause a race condition to corrupt deferred split queue. 2819 * And, if page reclaim is already handling the same folio, it is 2820 * unnecessary to handle it again in shrinker. 2821 * 2822 * Check the swapcache flag to determine if the folio is being 2823 * handled by page reclaim since THP swap would add the folio into 2824 * swap cache before calling try_to_unmap(). 2825 */ 2826 if (folio_test_swapcache(folio)) 2827 return; 2828 2829 if (!list_empty(&folio->_deferred_list)) 2830 return; 2831 2832 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2833 if (list_empty(&folio->_deferred_list)) { 2834 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2835 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 2836 ds_queue->split_queue_len++; 2837 #ifdef CONFIG_MEMCG 2838 if (memcg) 2839 set_shrinker_bit(memcg, folio_nid(folio), 2840 deferred_split_shrinker.id); 2841 #endif 2842 } 2843 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2844 } 2845 2846 static unsigned long deferred_split_count(struct shrinker *shrink, 2847 struct shrink_control *sc) 2848 { 2849 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2850 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2851 2852 #ifdef CONFIG_MEMCG 2853 if (sc->memcg) 2854 ds_queue = &sc->memcg->deferred_split_queue; 2855 #endif 2856 return READ_ONCE(ds_queue->split_queue_len); 2857 } 2858 2859 static unsigned long deferred_split_scan(struct shrinker *shrink, 2860 struct shrink_control *sc) 2861 { 2862 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2863 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2864 unsigned long flags; 2865 LIST_HEAD(list); 2866 struct folio *folio, *next; 2867 int split = 0; 2868 2869 #ifdef CONFIG_MEMCG 2870 if (sc->memcg) 2871 ds_queue = &sc->memcg->deferred_split_queue; 2872 #endif 2873 2874 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2875 /* Take pin on all head pages to avoid freeing them under us */ 2876 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 2877 _deferred_list) { 2878 if (folio_try_get(folio)) { 2879 list_move(&folio->_deferred_list, &list); 2880 } else { 2881 /* We lost race with folio_put() */ 2882 list_del_init(&folio->_deferred_list); 2883 ds_queue->split_queue_len--; 2884 } 2885 if (!--sc->nr_to_scan) 2886 break; 2887 } 2888 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2889 2890 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 2891 if (!folio_trylock(folio)) 2892 goto next; 2893 /* split_huge_page() removes page from list on success */ 2894 if (!split_folio(folio)) 2895 split++; 2896 folio_unlock(folio); 2897 next: 2898 folio_put(folio); 2899 } 2900 2901 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2902 list_splice_tail(&list, &ds_queue->split_queue); 2903 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2904 2905 /* 2906 * Stop shrinker if we didn't split any page, but the queue is empty. 2907 * This can happen if pages were freed under us. 2908 */ 2909 if (!split && list_empty(&ds_queue->split_queue)) 2910 return SHRINK_STOP; 2911 return split; 2912 } 2913 2914 static struct shrinker deferred_split_shrinker = { 2915 .count_objects = deferred_split_count, 2916 .scan_objects = deferred_split_scan, 2917 .seeks = DEFAULT_SEEKS, 2918 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2919 SHRINKER_NONSLAB, 2920 }; 2921 2922 #ifdef CONFIG_DEBUG_FS 2923 static void split_huge_pages_all(void) 2924 { 2925 struct zone *zone; 2926 struct page *page; 2927 struct folio *folio; 2928 unsigned long pfn, max_zone_pfn; 2929 unsigned long total = 0, split = 0; 2930 2931 pr_debug("Split all THPs\n"); 2932 for_each_zone(zone) { 2933 if (!managed_zone(zone)) 2934 continue; 2935 max_zone_pfn = zone_end_pfn(zone); 2936 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2937 int nr_pages; 2938 2939 page = pfn_to_online_page(pfn); 2940 if (!page || PageTail(page)) 2941 continue; 2942 folio = page_folio(page); 2943 if (!folio_try_get(folio)) 2944 continue; 2945 2946 if (unlikely(page_folio(page) != folio)) 2947 goto next; 2948 2949 if (zone != folio_zone(folio)) 2950 goto next; 2951 2952 if (!folio_test_large(folio) 2953 || folio_test_hugetlb(folio) 2954 || !folio_test_lru(folio)) 2955 goto next; 2956 2957 total++; 2958 folio_lock(folio); 2959 nr_pages = folio_nr_pages(folio); 2960 if (!split_folio(folio)) 2961 split++; 2962 pfn += nr_pages - 1; 2963 folio_unlock(folio); 2964 next: 2965 folio_put(folio); 2966 cond_resched(); 2967 } 2968 } 2969 2970 pr_debug("%lu of %lu THP split\n", split, total); 2971 } 2972 2973 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2974 { 2975 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2976 is_vm_hugetlb_page(vma); 2977 } 2978 2979 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2980 unsigned long vaddr_end) 2981 { 2982 int ret = 0; 2983 struct task_struct *task; 2984 struct mm_struct *mm; 2985 unsigned long total = 0, split = 0; 2986 unsigned long addr; 2987 2988 vaddr_start &= PAGE_MASK; 2989 vaddr_end &= PAGE_MASK; 2990 2991 /* Find the task_struct from pid */ 2992 rcu_read_lock(); 2993 task = find_task_by_vpid(pid); 2994 if (!task) { 2995 rcu_read_unlock(); 2996 ret = -ESRCH; 2997 goto out; 2998 } 2999 get_task_struct(task); 3000 rcu_read_unlock(); 3001 3002 /* Find the mm_struct */ 3003 mm = get_task_mm(task); 3004 put_task_struct(task); 3005 3006 if (!mm) { 3007 ret = -EINVAL; 3008 goto out; 3009 } 3010 3011 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3012 pid, vaddr_start, vaddr_end); 3013 3014 mmap_read_lock(mm); 3015 /* 3016 * always increase addr by PAGE_SIZE, since we could have a PTE page 3017 * table filled with PTE-mapped THPs, each of which is distinct. 3018 */ 3019 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3020 struct vm_area_struct *vma = vma_lookup(mm, addr); 3021 struct page *page; 3022 struct folio *folio; 3023 3024 if (!vma) 3025 break; 3026 3027 /* skip special VMA and hugetlb VMA */ 3028 if (vma_not_suitable_for_thp_split(vma)) { 3029 addr = vma->vm_end; 3030 continue; 3031 } 3032 3033 /* FOLL_DUMP to ignore special (like zero) pages */ 3034 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3035 3036 if (IS_ERR_OR_NULL(page)) 3037 continue; 3038 3039 folio = page_folio(page); 3040 if (!is_transparent_hugepage(folio)) 3041 goto next; 3042 3043 total++; 3044 if (!can_split_folio(folio, NULL)) 3045 goto next; 3046 3047 if (!folio_trylock(folio)) 3048 goto next; 3049 3050 if (!split_folio(folio)) 3051 split++; 3052 3053 folio_unlock(folio); 3054 next: 3055 folio_put(folio); 3056 cond_resched(); 3057 } 3058 mmap_read_unlock(mm); 3059 mmput(mm); 3060 3061 pr_debug("%lu of %lu THP split\n", split, total); 3062 3063 out: 3064 return ret; 3065 } 3066 3067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3068 pgoff_t off_end) 3069 { 3070 struct filename *file; 3071 struct file *candidate; 3072 struct address_space *mapping; 3073 int ret = -EINVAL; 3074 pgoff_t index; 3075 int nr_pages = 1; 3076 unsigned long total = 0, split = 0; 3077 3078 file = getname_kernel(file_path); 3079 if (IS_ERR(file)) 3080 return ret; 3081 3082 candidate = file_open_name(file, O_RDONLY, 0); 3083 if (IS_ERR(candidate)) 3084 goto out; 3085 3086 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3087 file_path, off_start, off_end); 3088 3089 mapping = candidate->f_mapping; 3090 3091 for (index = off_start; index < off_end; index += nr_pages) { 3092 struct folio *folio = filemap_get_folio(mapping, index); 3093 3094 nr_pages = 1; 3095 if (IS_ERR(folio)) 3096 continue; 3097 3098 if (!folio_test_large(folio)) 3099 goto next; 3100 3101 total++; 3102 nr_pages = folio_nr_pages(folio); 3103 3104 if (!folio_trylock(folio)) 3105 goto next; 3106 3107 if (!split_folio(folio)) 3108 split++; 3109 3110 folio_unlock(folio); 3111 next: 3112 folio_put(folio); 3113 cond_resched(); 3114 } 3115 3116 filp_close(candidate, NULL); 3117 ret = 0; 3118 3119 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3120 out: 3121 putname(file); 3122 return ret; 3123 } 3124 3125 #define MAX_INPUT_BUF_SZ 255 3126 3127 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3128 size_t count, loff_t *ppops) 3129 { 3130 static DEFINE_MUTEX(split_debug_mutex); 3131 ssize_t ret; 3132 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3133 char input_buf[MAX_INPUT_BUF_SZ]; 3134 int pid; 3135 unsigned long vaddr_start, vaddr_end; 3136 3137 ret = mutex_lock_interruptible(&split_debug_mutex); 3138 if (ret) 3139 return ret; 3140 3141 ret = -EFAULT; 3142 3143 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3144 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3145 goto out; 3146 3147 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3148 3149 if (input_buf[0] == '/') { 3150 char *tok; 3151 char *buf = input_buf; 3152 char file_path[MAX_INPUT_BUF_SZ]; 3153 pgoff_t off_start = 0, off_end = 0; 3154 size_t input_len = strlen(input_buf); 3155 3156 tok = strsep(&buf, ","); 3157 if (tok) { 3158 strcpy(file_path, tok); 3159 } else { 3160 ret = -EINVAL; 3161 goto out; 3162 } 3163 3164 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3165 if (ret != 2) { 3166 ret = -EINVAL; 3167 goto out; 3168 } 3169 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3170 if (!ret) 3171 ret = input_len; 3172 3173 goto out; 3174 } 3175 3176 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3177 if (ret == 1 && pid == 1) { 3178 split_huge_pages_all(); 3179 ret = strlen(input_buf); 3180 goto out; 3181 } else if (ret != 3) { 3182 ret = -EINVAL; 3183 goto out; 3184 } 3185 3186 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3187 if (!ret) 3188 ret = strlen(input_buf); 3189 out: 3190 mutex_unlock(&split_debug_mutex); 3191 return ret; 3192 3193 } 3194 3195 static const struct file_operations split_huge_pages_fops = { 3196 .owner = THIS_MODULE, 3197 .write = split_huge_pages_write, 3198 .llseek = no_llseek, 3199 }; 3200 3201 static int __init split_huge_pages_debugfs(void) 3202 { 3203 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3204 &split_huge_pages_fops); 3205 return 0; 3206 } 3207 late_initcall(split_huge_pages_debugfs); 3208 #endif 3209 3210 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3211 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3212 struct page *page) 3213 { 3214 struct vm_area_struct *vma = pvmw->vma; 3215 struct mm_struct *mm = vma->vm_mm; 3216 unsigned long address = pvmw->address; 3217 bool anon_exclusive; 3218 pmd_t pmdval; 3219 swp_entry_t entry; 3220 pmd_t pmdswp; 3221 3222 if (!(pvmw->pmd && !pvmw->pte)) 3223 return 0; 3224 3225 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3226 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3227 3228 /* See page_try_share_anon_rmap(): invalidate PMD first. */ 3229 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3230 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3231 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3232 return -EBUSY; 3233 } 3234 3235 if (pmd_dirty(pmdval)) 3236 set_page_dirty(page); 3237 if (pmd_write(pmdval)) 3238 entry = make_writable_migration_entry(page_to_pfn(page)); 3239 else if (anon_exclusive) 3240 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3241 else 3242 entry = make_readable_migration_entry(page_to_pfn(page)); 3243 if (pmd_young(pmdval)) 3244 entry = make_migration_entry_young(entry); 3245 if (pmd_dirty(pmdval)) 3246 entry = make_migration_entry_dirty(entry); 3247 pmdswp = swp_entry_to_pmd(entry); 3248 if (pmd_soft_dirty(pmdval)) 3249 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3250 if (pmd_uffd_wp(pmdval)) 3251 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3252 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3253 page_remove_rmap(page, vma, true); 3254 put_page(page); 3255 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3256 3257 return 0; 3258 } 3259 3260 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3261 { 3262 struct vm_area_struct *vma = pvmw->vma; 3263 struct mm_struct *mm = vma->vm_mm; 3264 unsigned long address = pvmw->address; 3265 unsigned long haddr = address & HPAGE_PMD_MASK; 3266 pmd_t pmde; 3267 swp_entry_t entry; 3268 3269 if (!(pvmw->pmd && !pvmw->pte)) 3270 return; 3271 3272 entry = pmd_to_swp_entry(*pvmw->pmd); 3273 get_page(new); 3274 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3275 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3276 pmde = pmd_mksoft_dirty(pmde); 3277 if (is_writable_migration_entry(entry)) 3278 pmde = pmd_mkwrite(pmde, vma); 3279 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3280 pmde = pmd_mkuffd_wp(pmde); 3281 if (!is_migration_entry_young(entry)) 3282 pmde = pmd_mkold(pmde); 3283 /* NOTE: this may contain setting soft-dirty on some archs */ 3284 if (PageDirty(new) && is_migration_entry_dirty(entry)) 3285 pmde = pmd_mkdirty(pmde); 3286 3287 if (PageAnon(new)) { 3288 rmap_t rmap_flags = RMAP_COMPOUND; 3289 3290 if (!is_readable_migration_entry(entry)) 3291 rmap_flags |= RMAP_EXCLUSIVE; 3292 3293 page_add_anon_rmap(new, vma, haddr, rmap_flags); 3294 } else { 3295 page_add_file_rmap(new, vma, true); 3296 } 3297 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3298 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3299 3300 /* No need to invalidate - it was non-present before */ 3301 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3302 trace_remove_migration_pmd(address, pmd_val(pmde)); 3303 } 3304 #endif 3305