1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 38 #include <asm/tlb.h> 39 #include <asm/pgalloc.h> 40 #include "internal.h" 41 42 /* 43 * By default, transparent hugepage support is disabled in order to avoid 44 * risking an increased memory footprint for applications that are not 45 * guaranteed to benefit from it. When transparent hugepage support is 46 * enabled, it is for all mappings, and khugepaged scans all mappings. 47 * Defrag is invoked by khugepaged hugepage allocations and by page faults 48 * for all hugepage allocations. 49 */ 50 unsigned long transparent_hugepage_flags __read_mostly = 51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 53 #endif 54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 56 #endif 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 60 61 static struct shrinker deferred_split_shrinker; 62 63 static atomic_t huge_zero_refcount; 64 struct page *huge_zero_page __read_mostly; 65 66 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 67 { 68 if (vma_is_anonymous(vma)) 69 return __transparent_hugepage_enabled(vma); 70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma)) 71 return __transparent_hugepage_enabled(vma); 72 73 return false; 74 } 75 76 static struct page *get_huge_zero_page(void) 77 { 78 struct page *zero_page; 79 retry: 80 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 81 return READ_ONCE(huge_zero_page); 82 83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 84 HPAGE_PMD_ORDER); 85 if (!zero_page) { 86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 87 return NULL; 88 } 89 count_vm_event(THP_ZERO_PAGE_ALLOC); 90 preempt_disable(); 91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 92 preempt_enable(); 93 __free_pages(zero_page, compound_order(zero_page)); 94 goto retry; 95 } 96 97 /* We take additional reference here. It will be put back by shrinker */ 98 atomic_set(&huge_zero_refcount, 2); 99 preempt_enable(); 100 return READ_ONCE(huge_zero_page); 101 } 102 103 static void put_huge_zero_page(void) 104 { 105 /* 106 * Counter should never go to zero here. Only shrinker can put 107 * last reference. 108 */ 109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 110 } 111 112 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 113 { 114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 115 return READ_ONCE(huge_zero_page); 116 117 if (!get_huge_zero_page()) 118 return NULL; 119 120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 121 put_huge_zero_page(); 122 123 return READ_ONCE(huge_zero_page); 124 } 125 126 void mm_put_huge_zero_page(struct mm_struct *mm) 127 { 128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 129 put_huge_zero_page(); 130 } 131 132 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 133 struct shrink_control *sc) 134 { 135 /* we can free zero page only if last reference remains */ 136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 137 } 138 139 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 140 struct shrink_control *sc) 141 { 142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 143 struct page *zero_page = xchg(&huge_zero_page, NULL); 144 BUG_ON(zero_page == NULL); 145 __free_pages(zero_page, compound_order(zero_page)); 146 return HPAGE_PMD_NR; 147 } 148 149 return 0; 150 } 151 152 static struct shrinker huge_zero_page_shrinker = { 153 .count_objects = shrink_huge_zero_page_count, 154 .scan_objects = shrink_huge_zero_page_scan, 155 .seeks = DEFAULT_SEEKS, 156 }; 157 158 #ifdef CONFIG_SYSFS 159 static ssize_t enabled_show(struct kobject *kobj, 160 struct kobj_attribute *attr, char *buf) 161 { 162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 163 return sprintf(buf, "[always] madvise never\n"); 164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 165 return sprintf(buf, "always [madvise] never\n"); 166 else 167 return sprintf(buf, "always madvise [never]\n"); 168 } 169 170 static ssize_t enabled_store(struct kobject *kobj, 171 struct kobj_attribute *attr, 172 const char *buf, size_t count) 173 { 174 ssize_t ret = count; 175 176 if (!memcmp("always", buf, 177 min(sizeof("always")-1, count))) { 178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 180 } else if (!memcmp("madvise", buf, 181 min(sizeof("madvise")-1, count))) { 182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 184 } else if (!memcmp("never", buf, 185 min(sizeof("never")-1, count))) { 186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 188 } else 189 ret = -EINVAL; 190 191 if (ret > 0) { 192 int err = start_stop_khugepaged(); 193 if (err) 194 ret = err; 195 } 196 return ret; 197 } 198 static struct kobj_attribute enabled_attr = 199 __ATTR(enabled, 0644, enabled_show, enabled_store); 200 201 ssize_t single_hugepage_flag_show(struct kobject *kobj, 202 struct kobj_attribute *attr, char *buf, 203 enum transparent_hugepage_flag flag) 204 { 205 return sprintf(buf, "%d\n", 206 !!test_bit(flag, &transparent_hugepage_flags)); 207 } 208 209 ssize_t single_hugepage_flag_store(struct kobject *kobj, 210 struct kobj_attribute *attr, 211 const char *buf, size_t count, 212 enum transparent_hugepage_flag flag) 213 { 214 unsigned long value; 215 int ret; 216 217 ret = kstrtoul(buf, 10, &value); 218 if (ret < 0) 219 return ret; 220 if (value > 1) 221 return -EINVAL; 222 223 if (value) 224 set_bit(flag, &transparent_hugepage_flags); 225 else 226 clear_bit(flag, &transparent_hugepage_flags); 227 228 return count; 229 } 230 231 static ssize_t defrag_show(struct kobject *kobj, 232 struct kobj_attribute *attr, char *buf) 233 { 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 235 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 237 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 239 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 241 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 242 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 243 } 244 245 static ssize_t defrag_store(struct kobject *kobj, 246 struct kobj_attribute *attr, 247 const char *buf, size_t count) 248 { 249 if (!memcmp("always", buf, 250 min(sizeof("always")-1, count))) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 255 } else if (!memcmp("defer+madvise", buf, 256 min(sizeof("defer+madvise")-1, count))) { 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 261 } else if (!memcmp("defer", buf, 262 min(sizeof("defer")-1, count))) { 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 267 } else if (!memcmp("madvise", buf, 268 min(sizeof("madvise")-1, count))) { 269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 273 } else if (!memcmp("never", buf, 274 min(sizeof("never")-1, count))) { 275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 279 } else 280 return -EINVAL; 281 282 return count; 283 } 284 static struct kobj_attribute defrag_attr = 285 __ATTR(defrag, 0644, defrag_show, defrag_store); 286 287 static ssize_t use_zero_page_show(struct kobject *kobj, 288 struct kobj_attribute *attr, char *buf) 289 { 290 return single_hugepage_flag_show(kobj, attr, buf, 291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 292 } 293 static ssize_t use_zero_page_store(struct kobject *kobj, 294 struct kobj_attribute *attr, const char *buf, size_t count) 295 { 296 return single_hugepage_flag_store(kobj, attr, buf, count, 297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 298 } 299 static struct kobj_attribute use_zero_page_attr = 300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 301 302 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 303 struct kobj_attribute *attr, char *buf) 304 { 305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 306 } 307 static struct kobj_attribute hpage_pmd_size_attr = 308 __ATTR_RO(hpage_pmd_size); 309 310 #ifdef CONFIG_DEBUG_VM 311 static ssize_t debug_cow_show(struct kobject *kobj, 312 struct kobj_attribute *attr, char *buf) 313 { 314 return single_hugepage_flag_show(kobj, attr, buf, 315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 316 } 317 static ssize_t debug_cow_store(struct kobject *kobj, 318 struct kobj_attribute *attr, 319 const char *buf, size_t count) 320 { 321 return single_hugepage_flag_store(kobj, attr, buf, count, 322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 323 } 324 static struct kobj_attribute debug_cow_attr = 325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 326 #endif /* CONFIG_DEBUG_VM */ 327 328 static struct attribute *hugepage_attr[] = { 329 &enabled_attr.attr, 330 &defrag_attr.attr, 331 &use_zero_page_attr.attr, 332 &hpage_pmd_size_attr.attr, 333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 334 &shmem_enabled_attr.attr, 335 #endif 336 #ifdef CONFIG_DEBUG_VM 337 &debug_cow_attr.attr, 338 #endif 339 NULL, 340 }; 341 342 static const struct attribute_group hugepage_attr_group = { 343 .attrs = hugepage_attr, 344 }; 345 346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 347 { 348 int err; 349 350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 351 if (unlikely(!*hugepage_kobj)) { 352 pr_err("failed to create transparent hugepage kobject\n"); 353 return -ENOMEM; 354 } 355 356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 357 if (err) { 358 pr_err("failed to register transparent hugepage group\n"); 359 goto delete_obj; 360 } 361 362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 363 if (err) { 364 pr_err("failed to register transparent hugepage group\n"); 365 goto remove_hp_group; 366 } 367 368 return 0; 369 370 remove_hp_group: 371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 372 delete_obj: 373 kobject_put(*hugepage_kobj); 374 return err; 375 } 376 377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 378 { 379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 381 kobject_put(hugepage_kobj); 382 } 383 #else 384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 385 { 386 return 0; 387 } 388 389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 390 { 391 } 392 #endif /* CONFIG_SYSFS */ 393 394 static int __init hugepage_init(void) 395 { 396 int err; 397 struct kobject *hugepage_kobj; 398 399 if (!has_transparent_hugepage()) { 400 transparent_hugepage_flags = 0; 401 return -EINVAL; 402 } 403 404 /* 405 * hugepages can't be allocated by the buddy allocator 406 */ 407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 408 /* 409 * we use page->mapping and page->index in second tail page 410 * as list_head: assuming THP order >= 2 411 */ 412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 413 414 err = hugepage_init_sysfs(&hugepage_kobj); 415 if (err) 416 goto err_sysfs; 417 418 err = khugepaged_init(); 419 if (err) 420 goto err_slab; 421 422 err = register_shrinker(&huge_zero_page_shrinker); 423 if (err) 424 goto err_hzp_shrinker; 425 err = register_shrinker(&deferred_split_shrinker); 426 if (err) 427 goto err_split_shrinker; 428 429 /* 430 * By default disable transparent hugepages on smaller systems, 431 * where the extra memory used could hurt more than TLB overhead 432 * is likely to save. The admin can still enable it through /sys. 433 */ 434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 435 transparent_hugepage_flags = 0; 436 return 0; 437 } 438 439 err = start_stop_khugepaged(); 440 if (err) 441 goto err_khugepaged; 442 443 return 0; 444 err_khugepaged: 445 unregister_shrinker(&deferred_split_shrinker); 446 err_split_shrinker: 447 unregister_shrinker(&huge_zero_page_shrinker); 448 err_hzp_shrinker: 449 khugepaged_destroy(); 450 err_slab: 451 hugepage_exit_sysfs(hugepage_kobj); 452 err_sysfs: 453 return err; 454 } 455 subsys_initcall(hugepage_init); 456 457 static int __init setup_transparent_hugepage(char *str) 458 { 459 int ret = 0; 460 if (!str) 461 goto out; 462 if (!strcmp(str, "always")) { 463 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 464 &transparent_hugepage_flags); 465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 466 &transparent_hugepage_flags); 467 ret = 1; 468 } else if (!strcmp(str, "madvise")) { 469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 470 &transparent_hugepage_flags); 471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 472 &transparent_hugepage_flags); 473 ret = 1; 474 } else if (!strcmp(str, "never")) { 475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 476 &transparent_hugepage_flags); 477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 478 &transparent_hugepage_flags); 479 ret = 1; 480 } 481 out: 482 if (!ret) 483 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 484 return ret; 485 } 486 __setup("transparent_hugepage=", setup_transparent_hugepage); 487 488 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 489 { 490 if (likely(vma->vm_flags & VM_WRITE)) 491 pmd = pmd_mkwrite(pmd); 492 return pmd; 493 } 494 495 static inline struct list_head *page_deferred_list(struct page *page) 496 { 497 /* ->lru in the tail pages is occupied by compound_head. */ 498 return &page[2].deferred_list; 499 } 500 501 void prep_transhuge_page(struct page *page) 502 { 503 /* 504 * we use page->mapping and page->indexlru in second tail page 505 * as list_head: assuming THP order >= 2 506 */ 507 508 INIT_LIST_HEAD(page_deferred_list(page)); 509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 510 } 511 512 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 513 loff_t off, unsigned long flags, unsigned long size) 514 { 515 unsigned long addr; 516 loff_t off_end = off + len; 517 loff_t off_align = round_up(off, size); 518 unsigned long len_pad; 519 520 if (off_end <= off_align || (off_end - off_align) < size) 521 return 0; 522 523 len_pad = len + size; 524 if (len_pad < len || (off + len_pad) < off) 525 return 0; 526 527 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 528 off >> PAGE_SHIFT, flags); 529 if (IS_ERR_VALUE(addr)) 530 return 0; 531 532 addr += (off - addr) & (size - 1); 533 return addr; 534 } 535 536 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 537 unsigned long len, unsigned long pgoff, unsigned long flags) 538 { 539 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 540 541 if (addr) 542 goto out; 543 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 544 goto out; 545 546 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 547 if (addr) 548 return addr; 549 550 out: 551 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 552 } 553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 554 555 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 556 struct page *page, gfp_t gfp) 557 { 558 struct vm_area_struct *vma = vmf->vma; 559 struct mem_cgroup *memcg; 560 pgtable_t pgtable; 561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 562 vm_fault_t ret = 0; 563 564 VM_BUG_ON_PAGE(!PageCompound(page), page); 565 566 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) { 567 put_page(page); 568 count_vm_event(THP_FAULT_FALLBACK); 569 return VM_FAULT_FALLBACK; 570 } 571 572 pgtable = pte_alloc_one(vma->vm_mm); 573 if (unlikely(!pgtable)) { 574 ret = VM_FAULT_OOM; 575 goto release; 576 } 577 578 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 579 /* 580 * The memory barrier inside __SetPageUptodate makes sure that 581 * clear_huge_page writes become visible before the set_pmd_at() 582 * write. 583 */ 584 __SetPageUptodate(page); 585 586 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 587 if (unlikely(!pmd_none(*vmf->pmd))) { 588 goto unlock_release; 589 } else { 590 pmd_t entry; 591 592 ret = check_stable_address_space(vma->vm_mm); 593 if (ret) 594 goto unlock_release; 595 596 /* Deliver the page fault to userland */ 597 if (userfaultfd_missing(vma)) { 598 vm_fault_t ret2; 599 600 spin_unlock(vmf->ptl); 601 mem_cgroup_cancel_charge(page, memcg, true); 602 put_page(page); 603 pte_free(vma->vm_mm, pgtable); 604 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 605 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 606 return ret2; 607 } 608 609 entry = mk_huge_pmd(page, vma->vm_page_prot); 610 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 611 page_add_new_anon_rmap(page, vma, haddr, true); 612 mem_cgroup_commit_charge(page, memcg, false, true); 613 lru_cache_add_active_or_unevictable(page, vma); 614 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 615 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 617 mm_inc_nr_ptes(vma->vm_mm); 618 spin_unlock(vmf->ptl); 619 count_vm_event(THP_FAULT_ALLOC); 620 count_memcg_events(memcg, THP_FAULT_ALLOC, 1); 621 } 622 623 return 0; 624 unlock_release: 625 spin_unlock(vmf->ptl); 626 release: 627 if (pgtable) 628 pte_free(vma->vm_mm, pgtable); 629 mem_cgroup_cancel_charge(page, memcg, true); 630 put_page(page); 631 return ret; 632 633 } 634 635 /* 636 * always: directly stall for all thp allocations 637 * defer: wake kswapd and fail if not immediately available 638 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 639 * fail if not immediately available 640 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 641 * available 642 * never: never stall for any thp allocation 643 */ 644 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 645 { 646 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 647 648 /* Always do synchronous compaction */ 649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 650 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 651 652 /* Kick kcompactd and fail quickly */ 653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 655 656 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 658 return GFP_TRANSHUGE_LIGHT | 659 (vma_madvised ? __GFP_DIRECT_RECLAIM : 660 __GFP_KSWAPD_RECLAIM); 661 662 /* Only do synchronous compaction if madvised */ 663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 664 return GFP_TRANSHUGE_LIGHT | 665 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 666 667 return GFP_TRANSHUGE_LIGHT; 668 } 669 670 /* Caller must hold page table lock. */ 671 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 672 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 673 struct page *zero_page) 674 { 675 pmd_t entry; 676 if (!pmd_none(*pmd)) 677 return false; 678 entry = mk_pmd(zero_page, vma->vm_page_prot); 679 entry = pmd_mkhuge(entry); 680 if (pgtable) 681 pgtable_trans_huge_deposit(mm, pmd, pgtable); 682 set_pmd_at(mm, haddr, pmd, entry); 683 mm_inc_nr_ptes(mm); 684 return true; 685 } 686 687 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 688 { 689 struct vm_area_struct *vma = vmf->vma; 690 gfp_t gfp; 691 struct page *page; 692 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 693 694 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 695 return VM_FAULT_FALLBACK; 696 if (unlikely(anon_vma_prepare(vma))) 697 return VM_FAULT_OOM; 698 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 699 return VM_FAULT_OOM; 700 if (!(vmf->flags & FAULT_FLAG_WRITE) && 701 !mm_forbids_zeropage(vma->vm_mm) && 702 transparent_hugepage_use_zero_page()) { 703 pgtable_t pgtable; 704 struct page *zero_page; 705 bool set; 706 vm_fault_t ret; 707 pgtable = pte_alloc_one(vma->vm_mm); 708 if (unlikely(!pgtable)) 709 return VM_FAULT_OOM; 710 zero_page = mm_get_huge_zero_page(vma->vm_mm); 711 if (unlikely(!zero_page)) { 712 pte_free(vma->vm_mm, pgtable); 713 count_vm_event(THP_FAULT_FALLBACK); 714 return VM_FAULT_FALLBACK; 715 } 716 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 717 ret = 0; 718 set = false; 719 if (pmd_none(*vmf->pmd)) { 720 ret = check_stable_address_space(vma->vm_mm); 721 if (ret) { 722 spin_unlock(vmf->ptl); 723 } else if (userfaultfd_missing(vma)) { 724 spin_unlock(vmf->ptl); 725 ret = handle_userfault(vmf, VM_UFFD_MISSING); 726 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 727 } else { 728 set_huge_zero_page(pgtable, vma->vm_mm, vma, 729 haddr, vmf->pmd, zero_page); 730 spin_unlock(vmf->ptl); 731 set = true; 732 } 733 } else 734 spin_unlock(vmf->ptl); 735 if (!set) 736 pte_free(vma->vm_mm, pgtable); 737 return ret; 738 } 739 gfp = alloc_hugepage_direct_gfpmask(vma); 740 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 741 if (unlikely(!page)) { 742 count_vm_event(THP_FAULT_FALLBACK); 743 return VM_FAULT_FALLBACK; 744 } 745 prep_transhuge_page(page); 746 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 747 } 748 749 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 750 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 751 pgtable_t pgtable) 752 { 753 struct mm_struct *mm = vma->vm_mm; 754 pmd_t entry; 755 spinlock_t *ptl; 756 757 ptl = pmd_lock(mm, pmd); 758 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 759 if (pfn_t_devmap(pfn)) 760 entry = pmd_mkdevmap(entry); 761 if (write) { 762 entry = pmd_mkyoung(pmd_mkdirty(entry)); 763 entry = maybe_pmd_mkwrite(entry, vma); 764 } 765 766 if (pgtable) { 767 pgtable_trans_huge_deposit(mm, pmd, pgtable); 768 mm_inc_nr_ptes(mm); 769 } 770 771 set_pmd_at(mm, addr, pmd, entry); 772 update_mmu_cache_pmd(vma, addr, pmd); 773 spin_unlock(ptl); 774 } 775 776 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 777 pmd_t *pmd, pfn_t pfn, bool write) 778 { 779 pgprot_t pgprot = vma->vm_page_prot; 780 pgtable_t pgtable = NULL; 781 /* 782 * If we had pmd_special, we could avoid all these restrictions, 783 * but we need to be consistent with PTEs and architectures that 784 * can't support a 'special' bit. 785 */ 786 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 787 !pfn_t_devmap(pfn)); 788 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 789 (VM_PFNMAP|VM_MIXEDMAP)); 790 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 791 792 if (addr < vma->vm_start || addr >= vma->vm_end) 793 return VM_FAULT_SIGBUS; 794 795 if (arch_needs_pgtable_deposit()) { 796 pgtable = pte_alloc_one(vma->vm_mm); 797 if (!pgtable) 798 return VM_FAULT_OOM; 799 } 800 801 track_pfn_insert(vma, &pgprot, pfn); 802 803 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable); 804 return VM_FAULT_NOPAGE; 805 } 806 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 807 808 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 809 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 810 { 811 if (likely(vma->vm_flags & VM_WRITE)) 812 pud = pud_mkwrite(pud); 813 return pud; 814 } 815 816 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 817 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 818 { 819 struct mm_struct *mm = vma->vm_mm; 820 pud_t entry; 821 spinlock_t *ptl; 822 823 ptl = pud_lock(mm, pud); 824 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 825 if (pfn_t_devmap(pfn)) 826 entry = pud_mkdevmap(entry); 827 if (write) { 828 entry = pud_mkyoung(pud_mkdirty(entry)); 829 entry = maybe_pud_mkwrite(entry, vma); 830 } 831 set_pud_at(mm, addr, pud, entry); 832 update_mmu_cache_pud(vma, addr, pud); 833 spin_unlock(ptl); 834 } 835 836 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 837 pud_t *pud, pfn_t pfn, bool write) 838 { 839 pgprot_t pgprot = vma->vm_page_prot; 840 /* 841 * If we had pud_special, we could avoid all these restrictions, 842 * but we need to be consistent with PTEs and architectures that 843 * can't support a 'special' bit. 844 */ 845 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 846 !pfn_t_devmap(pfn)); 847 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 848 (VM_PFNMAP|VM_MIXEDMAP)); 849 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 850 851 if (addr < vma->vm_start || addr >= vma->vm_end) 852 return VM_FAULT_SIGBUS; 853 854 track_pfn_insert(vma, &pgprot, pfn); 855 856 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 857 return VM_FAULT_NOPAGE; 858 } 859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 860 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 861 862 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 863 pmd_t *pmd, int flags) 864 { 865 pmd_t _pmd; 866 867 _pmd = pmd_mkyoung(*pmd); 868 if (flags & FOLL_WRITE) 869 _pmd = pmd_mkdirty(_pmd); 870 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 871 pmd, _pmd, flags & FOLL_WRITE)) 872 update_mmu_cache_pmd(vma, addr, pmd); 873 } 874 875 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 876 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 877 { 878 unsigned long pfn = pmd_pfn(*pmd); 879 struct mm_struct *mm = vma->vm_mm; 880 struct page *page; 881 882 assert_spin_locked(pmd_lockptr(mm, pmd)); 883 884 /* 885 * When we COW a devmap PMD entry, we split it into PTEs, so we should 886 * not be in this function with `flags & FOLL_COW` set. 887 */ 888 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 889 890 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 891 return NULL; 892 893 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 894 /* pass */; 895 else 896 return NULL; 897 898 if (flags & FOLL_TOUCH) 899 touch_pmd(vma, addr, pmd, flags); 900 901 /* 902 * device mapped pages can only be returned if the 903 * caller will manage the page reference count. 904 */ 905 if (!(flags & FOLL_GET)) 906 return ERR_PTR(-EEXIST); 907 908 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 909 *pgmap = get_dev_pagemap(pfn, *pgmap); 910 if (!*pgmap) 911 return ERR_PTR(-EFAULT); 912 page = pfn_to_page(pfn); 913 get_page(page); 914 915 return page; 916 } 917 918 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 919 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 920 struct vm_area_struct *vma) 921 { 922 spinlock_t *dst_ptl, *src_ptl; 923 struct page *src_page; 924 pmd_t pmd; 925 pgtable_t pgtable = NULL; 926 int ret = -ENOMEM; 927 928 /* Skip if can be re-fill on fault */ 929 if (!vma_is_anonymous(vma)) 930 return 0; 931 932 pgtable = pte_alloc_one(dst_mm); 933 if (unlikely(!pgtable)) 934 goto out; 935 936 dst_ptl = pmd_lock(dst_mm, dst_pmd); 937 src_ptl = pmd_lockptr(src_mm, src_pmd); 938 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 939 940 ret = -EAGAIN; 941 pmd = *src_pmd; 942 943 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 944 if (unlikely(is_swap_pmd(pmd))) { 945 swp_entry_t entry = pmd_to_swp_entry(pmd); 946 947 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 948 if (is_write_migration_entry(entry)) { 949 make_migration_entry_read(&entry); 950 pmd = swp_entry_to_pmd(entry); 951 if (pmd_swp_soft_dirty(*src_pmd)) 952 pmd = pmd_swp_mksoft_dirty(pmd); 953 set_pmd_at(src_mm, addr, src_pmd, pmd); 954 } 955 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 956 mm_inc_nr_ptes(dst_mm); 957 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 958 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 959 ret = 0; 960 goto out_unlock; 961 } 962 #endif 963 964 if (unlikely(!pmd_trans_huge(pmd))) { 965 pte_free(dst_mm, pgtable); 966 goto out_unlock; 967 } 968 /* 969 * When page table lock is held, the huge zero pmd should not be 970 * under splitting since we don't split the page itself, only pmd to 971 * a page table. 972 */ 973 if (is_huge_zero_pmd(pmd)) { 974 struct page *zero_page; 975 /* 976 * get_huge_zero_page() will never allocate a new page here, 977 * since we already have a zero page to copy. It just takes a 978 * reference. 979 */ 980 zero_page = mm_get_huge_zero_page(dst_mm); 981 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 982 zero_page); 983 ret = 0; 984 goto out_unlock; 985 } 986 987 src_page = pmd_page(pmd); 988 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 989 get_page(src_page); 990 page_dup_rmap(src_page, true); 991 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 992 mm_inc_nr_ptes(dst_mm); 993 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 994 995 pmdp_set_wrprotect(src_mm, addr, src_pmd); 996 pmd = pmd_mkold(pmd_wrprotect(pmd)); 997 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 998 999 ret = 0; 1000 out_unlock: 1001 spin_unlock(src_ptl); 1002 spin_unlock(dst_ptl); 1003 out: 1004 return ret; 1005 } 1006 1007 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1008 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1009 pud_t *pud, int flags) 1010 { 1011 pud_t _pud; 1012 1013 _pud = pud_mkyoung(*pud); 1014 if (flags & FOLL_WRITE) 1015 _pud = pud_mkdirty(_pud); 1016 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1017 pud, _pud, flags & FOLL_WRITE)) 1018 update_mmu_cache_pud(vma, addr, pud); 1019 } 1020 1021 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1022 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1023 { 1024 unsigned long pfn = pud_pfn(*pud); 1025 struct mm_struct *mm = vma->vm_mm; 1026 struct page *page; 1027 1028 assert_spin_locked(pud_lockptr(mm, pud)); 1029 1030 if (flags & FOLL_WRITE && !pud_write(*pud)) 1031 return NULL; 1032 1033 if (pud_present(*pud) && pud_devmap(*pud)) 1034 /* pass */; 1035 else 1036 return NULL; 1037 1038 if (flags & FOLL_TOUCH) 1039 touch_pud(vma, addr, pud, flags); 1040 1041 /* 1042 * device mapped pages can only be returned if the 1043 * caller will manage the page reference count. 1044 */ 1045 if (!(flags & FOLL_GET)) 1046 return ERR_PTR(-EEXIST); 1047 1048 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1049 *pgmap = get_dev_pagemap(pfn, *pgmap); 1050 if (!*pgmap) 1051 return ERR_PTR(-EFAULT); 1052 page = pfn_to_page(pfn); 1053 get_page(page); 1054 1055 return page; 1056 } 1057 1058 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1059 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1060 struct vm_area_struct *vma) 1061 { 1062 spinlock_t *dst_ptl, *src_ptl; 1063 pud_t pud; 1064 int ret; 1065 1066 dst_ptl = pud_lock(dst_mm, dst_pud); 1067 src_ptl = pud_lockptr(src_mm, src_pud); 1068 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1069 1070 ret = -EAGAIN; 1071 pud = *src_pud; 1072 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1073 goto out_unlock; 1074 1075 /* 1076 * When page table lock is held, the huge zero pud should not be 1077 * under splitting since we don't split the page itself, only pud to 1078 * a page table. 1079 */ 1080 if (is_huge_zero_pud(pud)) { 1081 /* No huge zero pud yet */ 1082 } 1083 1084 pudp_set_wrprotect(src_mm, addr, src_pud); 1085 pud = pud_mkold(pud_wrprotect(pud)); 1086 set_pud_at(dst_mm, addr, dst_pud, pud); 1087 1088 ret = 0; 1089 out_unlock: 1090 spin_unlock(src_ptl); 1091 spin_unlock(dst_ptl); 1092 return ret; 1093 } 1094 1095 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1096 { 1097 pud_t entry; 1098 unsigned long haddr; 1099 bool write = vmf->flags & FAULT_FLAG_WRITE; 1100 1101 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1102 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1103 goto unlock; 1104 1105 entry = pud_mkyoung(orig_pud); 1106 if (write) 1107 entry = pud_mkdirty(entry); 1108 haddr = vmf->address & HPAGE_PUD_MASK; 1109 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1110 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1111 1112 unlock: 1113 spin_unlock(vmf->ptl); 1114 } 1115 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1116 1117 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1118 { 1119 pmd_t entry; 1120 unsigned long haddr; 1121 bool write = vmf->flags & FAULT_FLAG_WRITE; 1122 1123 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1124 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1125 goto unlock; 1126 1127 entry = pmd_mkyoung(orig_pmd); 1128 if (write) 1129 entry = pmd_mkdirty(entry); 1130 haddr = vmf->address & HPAGE_PMD_MASK; 1131 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1132 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1133 1134 unlock: 1135 spin_unlock(vmf->ptl); 1136 } 1137 1138 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, 1139 pmd_t orig_pmd, struct page *page) 1140 { 1141 struct vm_area_struct *vma = vmf->vma; 1142 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1143 struct mem_cgroup *memcg; 1144 pgtable_t pgtable; 1145 pmd_t _pmd; 1146 int i; 1147 vm_fault_t ret = 0; 1148 struct page **pages; 1149 struct mmu_notifier_range range; 1150 1151 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *), 1152 GFP_KERNEL); 1153 if (unlikely(!pages)) { 1154 ret |= VM_FAULT_OOM; 1155 goto out; 1156 } 1157 1158 for (i = 0; i < HPAGE_PMD_NR; i++) { 1159 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1160 vmf->address, page_to_nid(page)); 1161 if (unlikely(!pages[i] || 1162 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm, 1163 GFP_KERNEL, &memcg, false))) { 1164 if (pages[i]) 1165 put_page(pages[i]); 1166 while (--i >= 0) { 1167 memcg = (void *)page_private(pages[i]); 1168 set_page_private(pages[i], 0); 1169 mem_cgroup_cancel_charge(pages[i], memcg, 1170 false); 1171 put_page(pages[i]); 1172 } 1173 kfree(pages); 1174 ret |= VM_FAULT_OOM; 1175 goto out; 1176 } 1177 set_page_private(pages[i], (unsigned long)memcg); 1178 } 1179 1180 for (i = 0; i < HPAGE_PMD_NR; i++) { 1181 copy_user_highpage(pages[i], page + i, 1182 haddr + PAGE_SIZE * i, vma); 1183 __SetPageUptodate(pages[i]); 1184 cond_resched(); 1185 } 1186 1187 mmu_notifier_range_init(&range, vma->vm_mm, haddr, 1188 haddr + HPAGE_PMD_SIZE); 1189 mmu_notifier_invalidate_range_start(&range); 1190 1191 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1192 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1193 goto out_free_pages; 1194 VM_BUG_ON_PAGE(!PageHead(page), page); 1195 1196 /* 1197 * Leave pmd empty until pte is filled note we must notify here as 1198 * concurrent CPU thread might write to new page before the call to 1199 * mmu_notifier_invalidate_range_end() happens which can lead to a 1200 * device seeing memory write in different order than CPU. 1201 * 1202 * See Documentation/vm/mmu_notifier.rst 1203 */ 1204 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1205 1206 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1207 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1208 1209 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1210 pte_t entry; 1211 entry = mk_pte(pages[i], vma->vm_page_prot); 1212 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1213 memcg = (void *)page_private(pages[i]); 1214 set_page_private(pages[i], 0); 1215 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1216 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1217 lru_cache_add_active_or_unevictable(pages[i], vma); 1218 vmf->pte = pte_offset_map(&_pmd, haddr); 1219 VM_BUG_ON(!pte_none(*vmf->pte)); 1220 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1221 pte_unmap(vmf->pte); 1222 } 1223 kfree(pages); 1224 1225 smp_wmb(); /* make pte visible before pmd */ 1226 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1227 page_remove_rmap(page, true); 1228 spin_unlock(vmf->ptl); 1229 1230 /* 1231 * No need to double call mmu_notifier->invalidate_range() callback as 1232 * the above pmdp_huge_clear_flush_notify() did already call it. 1233 */ 1234 mmu_notifier_invalidate_range_only_end(&range); 1235 1236 ret |= VM_FAULT_WRITE; 1237 put_page(page); 1238 1239 out: 1240 return ret; 1241 1242 out_free_pages: 1243 spin_unlock(vmf->ptl); 1244 mmu_notifier_invalidate_range_end(&range); 1245 for (i = 0; i < HPAGE_PMD_NR; i++) { 1246 memcg = (void *)page_private(pages[i]); 1247 set_page_private(pages[i], 0); 1248 mem_cgroup_cancel_charge(pages[i], memcg, false); 1249 put_page(pages[i]); 1250 } 1251 kfree(pages); 1252 goto out; 1253 } 1254 1255 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1256 { 1257 struct vm_area_struct *vma = vmf->vma; 1258 struct page *page = NULL, *new_page; 1259 struct mem_cgroup *memcg; 1260 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1261 struct mmu_notifier_range range; 1262 gfp_t huge_gfp; /* for allocation and charge */ 1263 vm_fault_t ret = 0; 1264 1265 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1266 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1267 if (is_huge_zero_pmd(orig_pmd)) 1268 goto alloc; 1269 spin_lock(vmf->ptl); 1270 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1271 goto out_unlock; 1272 1273 page = pmd_page(orig_pmd); 1274 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1275 /* 1276 * We can only reuse the page if nobody else maps the huge page or it's 1277 * part. 1278 */ 1279 if (!trylock_page(page)) { 1280 get_page(page); 1281 spin_unlock(vmf->ptl); 1282 lock_page(page); 1283 spin_lock(vmf->ptl); 1284 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1285 unlock_page(page); 1286 put_page(page); 1287 goto out_unlock; 1288 } 1289 put_page(page); 1290 } 1291 if (reuse_swap_page(page, NULL)) { 1292 pmd_t entry; 1293 entry = pmd_mkyoung(orig_pmd); 1294 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1295 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1296 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1297 ret |= VM_FAULT_WRITE; 1298 unlock_page(page); 1299 goto out_unlock; 1300 } 1301 unlock_page(page); 1302 get_page(page); 1303 spin_unlock(vmf->ptl); 1304 alloc: 1305 if (__transparent_hugepage_enabled(vma) && 1306 !transparent_hugepage_debug_cow()) { 1307 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1308 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1309 } else 1310 new_page = NULL; 1311 1312 if (likely(new_page)) { 1313 prep_transhuge_page(new_page); 1314 } else { 1315 if (!page) { 1316 split_huge_pmd(vma, vmf->pmd, vmf->address); 1317 ret |= VM_FAULT_FALLBACK; 1318 } else { 1319 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1320 if (ret & VM_FAULT_OOM) { 1321 split_huge_pmd(vma, vmf->pmd, vmf->address); 1322 ret |= VM_FAULT_FALLBACK; 1323 } 1324 put_page(page); 1325 } 1326 count_vm_event(THP_FAULT_FALLBACK); 1327 goto out; 1328 } 1329 1330 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm, 1331 huge_gfp, &memcg, true))) { 1332 put_page(new_page); 1333 split_huge_pmd(vma, vmf->pmd, vmf->address); 1334 if (page) 1335 put_page(page); 1336 ret |= VM_FAULT_FALLBACK; 1337 count_vm_event(THP_FAULT_FALLBACK); 1338 goto out; 1339 } 1340 1341 count_vm_event(THP_FAULT_ALLOC); 1342 count_memcg_events(memcg, THP_FAULT_ALLOC, 1); 1343 1344 if (!page) 1345 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR); 1346 else 1347 copy_user_huge_page(new_page, page, vmf->address, 1348 vma, HPAGE_PMD_NR); 1349 __SetPageUptodate(new_page); 1350 1351 mmu_notifier_range_init(&range, vma->vm_mm, haddr, 1352 haddr + HPAGE_PMD_SIZE); 1353 mmu_notifier_invalidate_range_start(&range); 1354 1355 spin_lock(vmf->ptl); 1356 if (page) 1357 put_page(page); 1358 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1359 spin_unlock(vmf->ptl); 1360 mem_cgroup_cancel_charge(new_page, memcg, true); 1361 put_page(new_page); 1362 goto out_mn; 1363 } else { 1364 pmd_t entry; 1365 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1366 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1367 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1368 page_add_new_anon_rmap(new_page, vma, haddr, true); 1369 mem_cgroup_commit_charge(new_page, memcg, false, true); 1370 lru_cache_add_active_or_unevictable(new_page, vma); 1371 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1372 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1373 if (!page) { 1374 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1375 } else { 1376 VM_BUG_ON_PAGE(!PageHead(page), page); 1377 page_remove_rmap(page, true); 1378 put_page(page); 1379 } 1380 ret |= VM_FAULT_WRITE; 1381 } 1382 spin_unlock(vmf->ptl); 1383 out_mn: 1384 /* 1385 * No need to double call mmu_notifier->invalidate_range() callback as 1386 * the above pmdp_huge_clear_flush_notify() did already call it. 1387 */ 1388 mmu_notifier_invalidate_range_only_end(&range); 1389 out: 1390 return ret; 1391 out_unlock: 1392 spin_unlock(vmf->ptl); 1393 return ret; 1394 } 1395 1396 /* 1397 * FOLL_FORCE can write to even unwritable pmd's, but only 1398 * after we've gone through a COW cycle and they are dirty. 1399 */ 1400 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1401 { 1402 return pmd_write(pmd) || 1403 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1404 } 1405 1406 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1407 unsigned long addr, 1408 pmd_t *pmd, 1409 unsigned int flags) 1410 { 1411 struct mm_struct *mm = vma->vm_mm; 1412 struct page *page = NULL; 1413 1414 assert_spin_locked(pmd_lockptr(mm, pmd)); 1415 1416 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1417 goto out; 1418 1419 /* Avoid dumping huge zero page */ 1420 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1421 return ERR_PTR(-EFAULT); 1422 1423 /* Full NUMA hinting faults to serialise migration in fault paths */ 1424 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1425 goto out; 1426 1427 page = pmd_page(*pmd); 1428 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1429 if (flags & FOLL_TOUCH) 1430 touch_pmd(vma, addr, pmd, flags); 1431 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1432 /* 1433 * We don't mlock() pte-mapped THPs. This way we can avoid 1434 * leaking mlocked pages into non-VM_LOCKED VMAs. 1435 * 1436 * For anon THP: 1437 * 1438 * In most cases the pmd is the only mapping of the page as we 1439 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1440 * writable private mappings in populate_vma_page_range(). 1441 * 1442 * The only scenario when we have the page shared here is if we 1443 * mlocking read-only mapping shared over fork(). We skip 1444 * mlocking such pages. 1445 * 1446 * For file THP: 1447 * 1448 * We can expect PageDoubleMap() to be stable under page lock: 1449 * for file pages we set it in page_add_file_rmap(), which 1450 * requires page to be locked. 1451 */ 1452 1453 if (PageAnon(page) && compound_mapcount(page) != 1) 1454 goto skip_mlock; 1455 if (PageDoubleMap(page) || !page->mapping) 1456 goto skip_mlock; 1457 if (!trylock_page(page)) 1458 goto skip_mlock; 1459 lru_add_drain(); 1460 if (page->mapping && !PageDoubleMap(page)) 1461 mlock_vma_page(page); 1462 unlock_page(page); 1463 } 1464 skip_mlock: 1465 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1466 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1467 if (flags & FOLL_GET) 1468 get_page(page); 1469 1470 out: 1471 return page; 1472 } 1473 1474 /* NUMA hinting page fault entry point for trans huge pmds */ 1475 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1476 { 1477 struct vm_area_struct *vma = vmf->vma; 1478 struct anon_vma *anon_vma = NULL; 1479 struct page *page; 1480 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1481 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1482 int target_nid, last_cpupid = -1; 1483 bool page_locked; 1484 bool migrated = false; 1485 bool was_writable; 1486 int flags = 0; 1487 1488 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1489 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1490 goto out_unlock; 1491 1492 /* 1493 * If there are potential migrations, wait for completion and retry 1494 * without disrupting NUMA hinting information. Do not relock and 1495 * check_same as the page may no longer be mapped. 1496 */ 1497 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1498 page = pmd_page(*vmf->pmd); 1499 if (!get_page_unless_zero(page)) 1500 goto out_unlock; 1501 spin_unlock(vmf->ptl); 1502 put_and_wait_on_page_locked(page); 1503 goto out; 1504 } 1505 1506 page = pmd_page(pmd); 1507 BUG_ON(is_huge_zero_page(page)); 1508 page_nid = page_to_nid(page); 1509 last_cpupid = page_cpupid_last(page); 1510 count_vm_numa_event(NUMA_HINT_FAULTS); 1511 if (page_nid == this_nid) { 1512 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1513 flags |= TNF_FAULT_LOCAL; 1514 } 1515 1516 /* See similar comment in do_numa_page for explanation */ 1517 if (!pmd_savedwrite(pmd)) 1518 flags |= TNF_NO_GROUP; 1519 1520 /* 1521 * Acquire the page lock to serialise THP migrations but avoid dropping 1522 * page_table_lock if at all possible 1523 */ 1524 page_locked = trylock_page(page); 1525 target_nid = mpol_misplaced(page, vma, haddr); 1526 if (target_nid == NUMA_NO_NODE) { 1527 /* If the page was locked, there are no parallel migrations */ 1528 if (page_locked) 1529 goto clear_pmdnuma; 1530 } 1531 1532 /* Migration could have started since the pmd_trans_migrating check */ 1533 if (!page_locked) { 1534 page_nid = NUMA_NO_NODE; 1535 if (!get_page_unless_zero(page)) 1536 goto out_unlock; 1537 spin_unlock(vmf->ptl); 1538 put_and_wait_on_page_locked(page); 1539 goto out; 1540 } 1541 1542 /* 1543 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1544 * to serialises splits 1545 */ 1546 get_page(page); 1547 spin_unlock(vmf->ptl); 1548 anon_vma = page_lock_anon_vma_read(page); 1549 1550 /* Confirm the PMD did not change while page_table_lock was released */ 1551 spin_lock(vmf->ptl); 1552 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1553 unlock_page(page); 1554 put_page(page); 1555 page_nid = NUMA_NO_NODE; 1556 goto out_unlock; 1557 } 1558 1559 /* Bail if we fail to protect against THP splits for any reason */ 1560 if (unlikely(!anon_vma)) { 1561 put_page(page); 1562 page_nid = NUMA_NO_NODE; 1563 goto clear_pmdnuma; 1564 } 1565 1566 /* 1567 * Since we took the NUMA fault, we must have observed the !accessible 1568 * bit. Make sure all other CPUs agree with that, to avoid them 1569 * modifying the page we're about to migrate. 1570 * 1571 * Must be done under PTL such that we'll observe the relevant 1572 * inc_tlb_flush_pending(). 1573 * 1574 * We are not sure a pending tlb flush here is for a huge page 1575 * mapping or not. Hence use the tlb range variant 1576 */ 1577 if (mm_tlb_flush_pending(vma->vm_mm)) { 1578 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1579 /* 1580 * change_huge_pmd() released the pmd lock before 1581 * invalidating the secondary MMUs sharing the primary 1582 * MMU pagetables (with ->invalidate_range()). The 1583 * mmu_notifier_invalidate_range_end() (which 1584 * internally calls ->invalidate_range()) in 1585 * change_pmd_range() will run after us, so we can't 1586 * rely on it here and we need an explicit invalidate. 1587 */ 1588 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1589 haddr + HPAGE_PMD_SIZE); 1590 } 1591 1592 /* 1593 * Migrate the THP to the requested node, returns with page unlocked 1594 * and access rights restored. 1595 */ 1596 spin_unlock(vmf->ptl); 1597 1598 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1599 vmf->pmd, pmd, vmf->address, page, target_nid); 1600 if (migrated) { 1601 flags |= TNF_MIGRATED; 1602 page_nid = target_nid; 1603 } else 1604 flags |= TNF_MIGRATE_FAIL; 1605 1606 goto out; 1607 clear_pmdnuma: 1608 BUG_ON(!PageLocked(page)); 1609 was_writable = pmd_savedwrite(pmd); 1610 pmd = pmd_modify(pmd, vma->vm_page_prot); 1611 pmd = pmd_mkyoung(pmd); 1612 if (was_writable) 1613 pmd = pmd_mkwrite(pmd); 1614 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1615 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1616 unlock_page(page); 1617 out_unlock: 1618 spin_unlock(vmf->ptl); 1619 1620 out: 1621 if (anon_vma) 1622 page_unlock_anon_vma_read(anon_vma); 1623 1624 if (page_nid != NUMA_NO_NODE) 1625 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1626 flags); 1627 1628 return 0; 1629 } 1630 1631 /* 1632 * Return true if we do MADV_FREE successfully on entire pmd page. 1633 * Otherwise, return false. 1634 */ 1635 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1636 pmd_t *pmd, unsigned long addr, unsigned long next) 1637 { 1638 spinlock_t *ptl; 1639 pmd_t orig_pmd; 1640 struct page *page; 1641 struct mm_struct *mm = tlb->mm; 1642 bool ret = false; 1643 1644 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1645 1646 ptl = pmd_trans_huge_lock(pmd, vma); 1647 if (!ptl) 1648 goto out_unlocked; 1649 1650 orig_pmd = *pmd; 1651 if (is_huge_zero_pmd(orig_pmd)) 1652 goto out; 1653 1654 if (unlikely(!pmd_present(orig_pmd))) { 1655 VM_BUG_ON(thp_migration_supported() && 1656 !is_pmd_migration_entry(orig_pmd)); 1657 goto out; 1658 } 1659 1660 page = pmd_page(orig_pmd); 1661 /* 1662 * If other processes are mapping this page, we couldn't discard 1663 * the page unless they all do MADV_FREE so let's skip the page. 1664 */ 1665 if (page_mapcount(page) != 1) 1666 goto out; 1667 1668 if (!trylock_page(page)) 1669 goto out; 1670 1671 /* 1672 * If user want to discard part-pages of THP, split it so MADV_FREE 1673 * will deactivate only them. 1674 */ 1675 if (next - addr != HPAGE_PMD_SIZE) { 1676 get_page(page); 1677 spin_unlock(ptl); 1678 split_huge_page(page); 1679 unlock_page(page); 1680 put_page(page); 1681 goto out_unlocked; 1682 } 1683 1684 if (PageDirty(page)) 1685 ClearPageDirty(page); 1686 unlock_page(page); 1687 1688 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1689 pmdp_invalidate(vma, addr, pmd); 1690 orig_pmd = pmd_mkold(orig_pmd); 1691 orig_pmd = pmd_mkclean(orig_pmd); 1692 1693 set_pmd_at(mm, addr, pmd, orig_pmd); 1694 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1695 } 1696 1697 mark_page_lazyfree(page); 1698 ret = true; 1699 out: 1700 spin_unlock(ptl); 1701 out_unlocked: 1702 return ret; 1703 } 1704 1705 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1706 { 1707 pgtable_t pgtable; 1708 1709 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1710 pte_free(mm, pgtable); 1711 mm_dec_nr_ptes(mm); 1712 } 1713 1714 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1715 pmd_t *pmd, unsigned long addr) 1716 { 1717 pmd_t orig_pmd; 1718 spinlock_t *ptl; 1719 1720 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1721 1722 ptl = __pmd_trans_huge_lock(pmd, vma); 1723 if (!ptl) 1724 return 0; 1725 /* 1726 * For architectures like ppc64 we look at deposited pgtable 1727 * when calling pmdp_huge_get_and_clear. So do the 1728 * pgtable_trans_huge_withdraw after finishing pmdp related 1729 * operations. 1730 */ 1731 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1732 tlb->fullmm); 1733 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1734 if (vma_is_dax(vma)) { 1735 if (arch_needs_pgtable_deposit()) 1736 zap_deposited_table(tlb->mm, pmd); 1737 spin_unlock(ptl); 1738 if (is_huge_zero_pmd(orig_pmd)) 1739 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1740 } else if (is_huge_zero_pmd(orig_pmd)) { 1741 zap_deposited_table(tlb->mm, pmd); 1742 spin_unlock(ptl); 1743 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1744 } else { 1745 struct page *page = NULL; 1746 int flush_needed = 1; 1747 1748 if (pmd_present(orig_pmd)) { 1749 page = pmd_page(orig_pmd); 1750 page_remove_rmap(page, true); 1751 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1752 VM_BUG_ON_PAGE(!PageHead(page), page); 1753 } else if (thp_migration_supported()) { 1754 swp_entry_t entry; 1755 1756 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1757 entry = pmd_to_swp_entry(orig_pmd); 1758 page = pfn_to_page(swp_offset(entry)); 1759 flush_needed = 0; 1760 } else 1761 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1762 1763 if (PageAnon(page)) { 1764 zap_deposited_table(tlb->mm, pmd); 1765 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1766 } else { 1767 if (arch_needs_pgtable_deposit()) 1768 zap_deposited_table(tlb->mm, pmd); 1769 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1770 } 1771 1772 spin_unlock(ptl); 1773 if (flush_needed) 1774 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1775 } 1776 return 1; 1777 } 1778 1779 #ifndef pmd_move_must_withdraw 1780 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1781 spinlock_t *old_pmd_ptl, 1782 struct vm_area_struct *vma) 1783 { 1784 /* 1785 * With split pmd lock we also need to move preallocated 1786 * PTE page table if new_pmd is on different PMD page table. 1787 * 1788 * We also don't deposit and withdraw tables for file pages. 1789 */ 1790 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1791 } 1792 #endif 1793 1794 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1795 { 1796 #ifdef CONFIG_MEM_SOFT_DIRTY 1797 if (unlikely(is_pmd_migration_entry(pmd))) 1798 pmd = pmd_swp_mksoft_dirty(pmd); 1799 else if (pmd_present(pmd)) 1800 pmd = pmd_mksoft_dirty(pmd); 1801 #endif 1802 return pmd; 1803 } 1804 1805 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1806 unsigned long new_addr, unsigned long old_end, 1807 pmd_t *old_pmd, pmd_t *new_pmd) 1808 { 1809 spinlock_t *old_ptl, *new_ptl; 1810 pmd_t pmd; 1811 struct mm_struct *mm = vma->vm_mm; 1812 bool force_flush = false; 1813 1814 if ((old_addr & ~HPAGE_PMD_MASK) || 1815 (new_addr & ~HPAGE_PMD_MASK) || 1816 old_end - old_addr < HPAGE_PMD_SIZE) 1817 return false; 1818 1819 /* 1820 * The destination pmd shouldn't be established, free_pgtables() 1821 * should have release it. 1822 */ 1823 if (WARN_ON(!pmd_none(*new_pmd))) { 1824 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1825 return false; 1826 } 1827 1828 /* 1829 * We don't have to worry about the ordering of src and dst 1830 * ptlocks because exclusive mmap_sem prevents deadlock. 1831 */ 1832 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1833 if (old_ptl) { 1834 new_ptl = pmd_lockptr(mm, new_pmd); 1835 if (new_ptl != old_ptl) 1836 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1837 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1838 if (pmd_present(pmd)) 1839 force_flush = true; 1840 VM_BUG_ON(!pmd_none(*new_pmd)); 1841 1842 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1843 pgtable_t pgtable; 1844 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1845 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1846 } 1847 pmd = move_soft_dirty_pmd(pmd); 1848 set_pmd_at(mm, new_addr, new_pmd, pmd); 1849 if (force_flush) 1850 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1851 if (new_ptl != old_ptl) 1852 spin_unlock(new_ptl); 1853 spin_unlock(old_ptl); 1854 return true; 1855 } 1856 return false; 1857 } 1858 1859 /* 1860 * Returns 1861 * - 0 if PMD could not be locked 1862 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1863 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1864 */ 1865 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1866 unsigned long addr, pgprot_t newprot, int prot_numa) 1867 { 1868 struct mm_struct *mm = vma->vm_mm; 1869 spinlock_t *ptl; 1870 pmd_t entry; 1871 bool preserve_write; 1872 int ret; 1873 1874 ptl = __pmd_trans_huge_lock(pmd, vma); 1875 if (!ptl) 1876 return 0; 1877 1878 preserve_write = prot_numa && pmd_write(*pmd); 1879 ret = 1; 1880 1881 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1882 if (is_swap_pmd(*pmd)) { 1883 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1884 1885 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1886 if (is_write_migration_entry(entry)) { 1887 pmd_t newpmd; 1888 /* 1889 * A protection check is difficult so 1890 * just be safe and disable write 1891 */ 1892 make_migration_entry_read(&entry); 1893 newpmd = swp_entry_to_pmd(entry); 1894 if (pmd_swp_soft_dirty(*pmd)) 1895 newpmd = pmd_swp_mksoft_dirty(newpmd); 1896 set_pmd_at(mm, addr, pmd, newpmd); 1897 } 1898 goto unlock; 1899 } 1900 #endif 1901 1902 /* 1903 * Avoid trapping faults against the zero page. The read-only 1904 * data is likely to be read-cached on the local CPU and 1905 * local/remote hits to the zero page are not interesting. 1906 */ 1907 if (prot_numa && is_huge_zero_pmd(*pmd)) 1908 goto unlock; 1909 1910 if (prot_numa && pmd_protnone(*pmd)) 1911 goto unlock; 1912 1913 /* 1914 * In case prot_numa, we are under down_read(mmap_sem). It's critical 1915 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1916 * which is also under down_read(mmap_sem): 1917 * 1918 * CPU0: CPU1: 1919 * change_huge_pmd(prot_numa=1) 1920 * pmdp_huge_get_and_clear_notify() 1921 * madvise_dontneed() 1922 * zap_pmd_range() 1923 * pmd_trans_huge(*pmd) == 0 (without ptl) 1924 * // skip the pmd 1925 * set_pmd_at(); 1926 * // pmd is re-established 1927 * 1928 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1929 * which may break userspace. 1930 * 1931 * pmdp_invalidate() is required to make sure we don't miss 1932 * dirty/young flags set by hardware. 1933 */ 1934 entry = pmdp_invalidate(vma, addr, pmd); 1935 1936 entry = pmd_modify(entry, newprot); 1937 if (preserve_write) 1938 entry = pmd_mk_savedwrite(entry); 1939 ret = HPAGE_PMD_NR; 1940 set_pmd_at(mm, addr, pmd, entry); 1941 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1942 unlock: 1943 spin_unlock(ptl); 1944 return ret; 1945 } 1946 1947 /* 1948 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1949 * 1950 * Note that if it returns page table lock pointer, this routine returns without 1951 * unlocking page table lock. So callers must unlock it. 1952 */ 1953 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1954 { 1955 spinlock_t *ptl; 1956 ptl = pmd_lock(vma->vm_mm, pmd); 1957 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1958 pmd_devmap(*pmd))) 1959 return ptl; 1960 spin_unlock(ptl); 1961 return NULL; 1962 } 1963 1964 /* 1965 * Returns true if a given pud maps a thp, false otherwise. 1966 * 1967 * Note that if it returns true, this routine returns without unlocking page 1968 * table lock. So callers must unlock it. 1969 */ 1970 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1971 { 1972 spinlock_t *ptl; 1973 1974 ptl = pud_lock(vma->vm_mm, pud); 1975 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1976 return ptl; 1977 spin_unlock(ptl); 1978 return NULL; 1979 } 1980 1981 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1982 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1983 pud_t *pud, unsigned long addr) 1984 { 1985 spinlock_t *ptl; 1986 1987 ptl = __pud_trans_huge_lock(pud, vma); 1988 if (!ptl) 1989 return 0; 1990 /* 1991 * For architectures like ppc64 we look at deposited pgtable 1992 * when calling pudp_huge_get_and_clear. So do the 1993 * pgtable_trans_huge_withdraw after finishing pudp related 1994 * operations. 1995 */ 1996 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1997 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1998 if (vma_is_dax(vma)) { 1999 spin_unlock(ptl); 2000 /* No zero page support yet */ 2001 } else { 2002 /* No support for anonymous PUD pages yet */ 2003 BUG(); 2004 } 2005 return 1; 2006 } 2007 2008 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2009 unsigned long haddr) 2010 { 2011 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2012 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2013 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2014 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2015 2016 count_vm_event(THP_SPLIT_PUD); 2017 2018 pudp_huge_clear_flush_notify(vma, haddr, pud); 2019 } 2020 2021 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2022 unsigned long address) 2023 { 2024 spinlock_t *ptl; 2025 struct mmu_notifier_range range; 2026 2027 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK, 2028 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2029 mmu_notifier_invalidate_range_start(&range); 2030 ptl = pud_lock(vma->vm_mm, pud); 2031 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2032 goto out; 2033 __split_huge_pud_locked(vma, pud, range.start); 2034 2035 out: 2036 spin_unlock(ptl); 2037 /* 2038 * No need to double call mmu_notifier->invalidate_range() callback as 2039 * the above pudp_huge_clear_flush_notify() did already call it. 2040 */ 2041 mmu_notifier_invalidate_range_only_end(&range); 2042 } 2043 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2044 2045 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2046 unsigned long haddr, pmd_t *pmd) 2047 { 2048 struct mm_struct *mm = vma->vm_mm; 2049 pgtable_t pgtable; 2050 pmd_t _pmd; 2051 int i; 2052 2053 /* 2054 * Leave pmd empty until pte is filled note that it is fine to delay 2055 * notification until mmu_notifier_invalidate_range_end() as we are 2056 * replacing a zero pmd write protected page with a zero pte write 2057 * protected page. 2058 * 2059 * See Documentation/vm/mmu_notifier.rst 2060 */ 2061 pmdp_huge_clear_flush(vma, haddr, pmd); 2062 2063 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2064 pmd_populate(mm, &_pmd, pgtable); 2065 2066 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2067 pte_t *pte, entry; 2068 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2069 entry = pte_mkspecial(entry); 2070 pte = pte_offset_map(&_pmd, haddr); 2071 VM_BUG_ON(!pte_none(*pte)); 2072 set_pte_at(mm, haddr, pte, entry); 2073 pte_unmap(pte); 2074 } 2075 smp_wmb(); /* make pte visible before pmd */ 2076 pmd_populate(mm, pmd, pgtable); 2077 } 2078 2079 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2080 unsigned long haddr, bool freeze) 2081 { 2082 struct mm_struct *mm = vma->vm_mm; 2083 struct page *page; 2084 pgtable_t pgtable; 2085 pmd_t old_pmd, _pmd; 2086 bool young, write, soft_dirty, pmd_migration = false; 2087 unsigned long addr; 2088 int i; 2089 2090 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2091 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2092 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2093 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2094 && !pmd_devmap(*pmd)); 2095 2096 count_vm_event(THP_SPLIT_PMD); 2097 2098 if (!vma_is_anonymous(vma)) { 2099 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2100 /* 2101 * We are going to unmap this huge page. So 2102 * just go ahead and zap it 2103 */ 2104 if (arch_needs_pgtable_deposit()) 2105 zap_deposited_table(mm, pmd); 2106 if (vma_is_dax(vma)) 2107 return; 2108 page = pmd_page(_pmd); 2109 if (!PageDirty(page) && pmd_dirty(_pmd)) 2110 set_page_dirty(page); 2111 if (!PageReferenced(page) && pmd_young(_pmd)) 2112 SetPageReferenced(page); 2113 page_remove_rmap(page, true); 2114 put_page(page); 2115 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2116 return; 2117 } else if (is_huge_zero_pmd(*pmd)) { 2118 /* 2119 * FIXME: Do we want to invalidate secondary mmu by calling 2120 * mmu_notifier_invalidate_range() see comments below inside 2121 * __split_huge_pmd() ? 2122 * 2123 * We are going from a zero huge page write protected to zero 2124 * small page also write protected so it does not seems useful 2125 * to invalidate secondary mmu at this time. 2126 */ 2127 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2128 } 2129 2130 /* 2131 * Up to this point the pmd is present and huge and userland has the 2132 * whole access to the hugepage during the split (which happens in 2133 * place). If we overwrite the pmd with the not-huge version pointing 2134 * to the pte here (which of course we could if all CPUs were bug 2135 * free), userland could trigger a small page size TLB miss on the 2136 * small sized TLB while the hugepage TLB entry is still established in 2137 * the huge TLB. Some CPU doesn't like that. 2138 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2139 * 383 on page 93. Intel should be safe but is also warns that it's 2140 * only safe if the permission and cache attributes of the two entries 2141 * loaded in the two TLB is identical (which should be the case here). 2142 * But it is generally safer to never allow small and huge TLB entries 2143 * for the same virtual address to be loaded simultaneously. So instead 2144 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2145 * current pmd notpresent (atomically because here the pmd_trans_huge 2146 * must remain set at all times on the pmd until the split is complete 2147 * for this pmd), then we flush the SMP TLB and finally we write the 2148 * non-huge version of the pmd entry with pmd_populate. 2149 */ 2150 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2151 2152 pmd_migration = is_pmd_migration_entry(old_pmd); 2153 if (unlikely(pmd_migration)) { 2154 swp_entry_t entry; 2155 2156 entry = pmd_to_swp_entry(old_pmd); 2157 page = pfn_to_page(swp_offset(entry)); 2158 write = is_write_migration_entry(entry); 2159 young = false; 2160 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2161 } else { 2162 page = pmd_page(old_pmd); 2163 if (pmd_dirty(old_pmd)) 2164 SetPageDirty(page); 2165 write = pmd_write(old_pmd); 2166 young = pmd_young(old_pmd); 2167 soft_dirty = pmd_soft_dirty(old_pmd); 2168 } 2169 VM_BUG_ON_PAGE(!page_count(page), page); 2170 page_ref_add(page, HPAGE_PMD_NR - 1); 2171 2172 /* 2173 * Withdraw the table only after we mark the pmd entry invalid. 2174 * This's critical for some architectures (Power). 2175 */ 2176 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2177 pmd_populate(mm, &_pmd, pgtable); 2178 2179 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2180 pte_t entry, *pte; 2181 /* 2182 * Note that NUMA hinting access restrictions are not 2183 * transferred to avoid any possibility of altering 2184 * permissions across VMAs. 2185 */ 2186 if (freeze || pmd_migration) { 2187 swp_entry_t swp_entry; 2188 swp_entry = make_migration_entry(page + i, write); 2189 entry = swp_entry_to_pte(swp_entry); 2190 if (soft_dirty) 2191 entry = pte_swp_mksoft_dirty(entry); 2192 } else { 2193 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2194 entry = maybe_mkwrite(entry, vma); 2195 if (!write) 2196 entry = pte_wrprotect(entry); 2197 if (!young) 2198 entry = pte_mkold(entry); 2199 if (soft_dirty) 2200 entry = pte_mksoft_dirty(entry); 2201 } 2202 pte = pte_offset_map(&_pmd, addr); 2203 BUG_ON(!pte_none(*pte)); 2204 set_pte_at(mm, addr, pte, entry); 2205 atomic_inc(&page[i]._mapcount); 2206 pte_unmap(pte); 2207 } 2208 2209 /* 2210 * Set PG_double_map before dropping compound_mapcount to avoid 2211 * false-negative page_mapped(). 2212 */ 2213 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2214 for (i = 0; i < HPAGE_PMD_NR; i++) 2215 atomic_inc(&page[i]._mapcount); 2216 } 2217 2218 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2219 /* Last compound_mapcount is gone. */ 2220 __dec_node_page_state(page, NR_ANON_THPS); 2221 if (TestClearPageDoubleMap(page)) { 2222 /* No need in mapcount reference anymore */ 2223 for (i = 0; i < HPAGE_PMD_NR; i++) 2224 atomic_dec(&page[i]._mapcount); 2225 } 2226 } 2227 2228 smp_wmb(); /* make pte visible before pmd */ 2229 pmd_populate(mm, pmd, pgtable); 2230 2231 if (freeze) { 2232 for (i = 0; i < HPAGE_PMD_NR; i++) { 2233 page_remove_rmap(page + i, false); 2234 put_page(page + i); 2235 } 2236 } 2237 } 2238 2239 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2240 unsigned long address, bool freeze, struct page *page) 2241 { 2242 spinlock_t *ptl; 2243 struct mmu_notifier_range range; 2244 2245 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK, 2246 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2247 mmu_notifier_invalidate_range_start(&range); 2248 ptl = pmd_lock(vma->vm_mm, pmd); 2249 2250 /* 2251 * If caller asks to setup a migration entries, we need a page to check 2252 * pmd against. Otherwise we can end up replacing wrong page. 2253 */ 2254 VM_BUG_ON(freeze && !page); 2255 if (page && page != pmd_page(*pmd)) 2256 goto out; 2257 2258 if (pmd_trans_huge(*pmd)) { 2259 page = pmd_page(*pmd); 2260 if (PageMlocked(page)) 2261 clear_page_mlock(page); 2262 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2263 goto out; 2264 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2265 out: 2266 spin_unlock(ptl); 2267 /* 2268 * No need to double call mmu_notifier->invalidate_range() callback. 2269 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2270 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2271 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2272 * fault will trigger a flush_notify before pointing to a new page 2273 * (it is fine if the secondary mmu keeps pointing to the old zero 2274 * page in the meantime) 2275 * 3) Split a huge pmd into pte pointing to the same page. No need 2276 * to invalidate secondary tlb entry they are all still valid. 2277 * any further changes to individual pte will notify. So no need 2278 * to call mmu_notifier->invalidate_range() 2279 */ 2280 mmu_notifier_invalidate_range_only_end(&range); 2281 } 2282 2283 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2284 bool freeze, struct page *page) 2285 { 2286 pgd_t *pgd; 2287 p4d_t *p4d; 2288 pud_t *pud; 2289 pmd_t *pmd; 2290 2291 pgd = pgd_offset(vma->vm_mm, address); 2292 if (!pgd_present(*pgd)) 2293 return; 2294 2295 p4d = p4d_offset(pgd, address); 2296 if (!p4d_present(*p4d)) 2297 return; 2298 2299 pud = pud_offset(p4d, address); 2300 if (!pud_present(*pud)) 2301 return; 2302 2303 pmd = pmd_offset(pud, address); 2304 2305 __split_huge_pmd(vma, pmd, address, freeze, page); 2306 } 2307 2308 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2309 unsigned long start, 2310 unsigned long end, 2311 long adjust_next) 2312 { 2313 /* 2314 * If the new start address isn't hpage aligned and it could 2315 * previously contain an hugepage: check if we need to split 2316 * an huge pmd. 2317 */ 2318 if (start & ~HPAGE_PMD_MASK && 2319 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2320 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2321 split_huge_pmd_address(vma, start, false, NULL); 2322 2323 /* 2324 * If the new end address isn't hpage aligned and it could 2325 * previously contain an hugepage: check if we need to split 2326 * an huge pmd. 2327 */ 2328 if (end & ~HPAGE_PMD_MASK && 2329 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2330 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2331 split_huge_pmd_address(vma, end, false, NULL); 2332 2333 /* 2334 * If we're also updating the vma->vm_next->vm_start, if the new 2335 * vm_next->vm_start isn't page aligned and it could previously 2336 * contain an hugepage: check if we need to split an huge pmd. 2337 */ 2338 if (adjust_next > 0) { 2339 struct vm_area_struct *next = vma->vm_next; 2340 unsigned long nstart = next->vm_start; 2341 nstart += adjust_next << PAGE_SHIFT; 2342 if (nstart & ~HPAGE_PMD_MASK && 2343 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2344 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2345 split_huge_pmd_address(next, nstart, false, NULL); 2346 } 2347 } 2348 2349 static void unmap_page(struct page *page) 2350 { 2351 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2352 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2353 bool unmap_success; 2354 2355 VM_BUG_ON_PAGE(!PageHead(page), page); 2356 2357 if (PageAnon(page)) 2358 ttu_flags |= TTU_SPLIT_FREEZE; 2359 2360 unmap_success = try_to_unmap(page, ttu_flags); 2361 VM_BUG_ON_PAGE(!unmap_success, page); 2362 } 2363 2364 static void remap_page(struct page *page) 2365 { 2366 int i; 2367 if (PageTransHuge(page)) { 2368 remove_migration_ptes(page, page, true); 2369 } else { 2370 for (i = 0; i < HPAGE_PMD_NR; i++) 2371 remove_migration_ptes(page + i, page + i, true); 2372 } 2373 } 2374 2375 static void __split_huge_page_tail(struct page *head, int tail, 2376 struct lruvec *lruvec, struct list_head *list) 2377 { 2378 struct page *page_tail = head + tail; 2379 2380 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2381 2382 /* 2383 * Clone page flags before unfreezing refcount. 2384 * 2385 * After successful get_page_unless_zero() might follow flags change, 2386 * for exmaple lock_page() which set PG_waiters. 2387 */ 2388 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2389 page_tail->flags |= (head->flags & 2390 ((1L << PG_referenced) | 2391 (1L << PG_swapbacked) | 2392 (1L << PG_swapcache) | 2393 (1L << PG_mlocked) | 2394 (1L << PG_uptodate) | 2395 (1L << PG_active) | 2396 (1L << PG_workingset) | 2397 (1L << PG_locked) | 2398 (1L << PG_unevictable) | 2399 (1L << PG_dirty))); 2400 2401 /* ->mapping in first tail page is compound_mapcount */ 2402 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2403 page_tail); 2404 page_tail->mapping = head->mapping; 2405 page_tail->index = head->index + tail; 2406 2407 /* Page flags must be visible before we make the page non-compound. */ 2408 smp_wmb(); 2409 2410 /* 2411 * Clear PageTail before unfreezing page refcount. 2412 * 2413 * After successful get_page_unless_zero() might follow put_page() 2414 * which needs correct compound_head(). 2415 */ 2416 clear_compound_head(page_tail); 2417 2418 /* Finally unfreeze refcount. Additional reference from page cache. */ 2419 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2420 PageSwapCache(head))); 2421 2422 if (page_is_young(head)) 2423 set_page_young(page_tail); 2424 if (page_is_idle(head)) 2425 set_page_idle(page_tail); 2426 2427 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2428 2429 /* 2430 * always add to the tail because some iterators expect new 2431 * pages to show after the currently processed elements - e.g. 2432 * migrate_pages 2433 */ 2434 lru_add_page_tail(head, page_tail, lruvec, list); 2435 } 2436 2437 static void __split_huge_page(struct page *page, struct list_head *list, 2438 pgoff_t end, unsigned long flags) 2439 { 2440 struct page *head = compound_head(page); 2441 pg_data_t *pgdat = page_pgdat(head); 2442 struct lruvec *lruvec; 2443 int i; 2444 2445 lruvec = mem_cgroup_page_lruvec(head, pgdat); 2446 2447 /* complete memcg works before add pages to LRU */ 2448 mem_cgroup_split_huge_fixup(head); 2449 2450 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2451 __split_huge_page_tail(head, i, lruvec, list); 2452 /* Some pages can be beyond i_size: drop them from page cache */ 2453 if (head[i].index >= end) { 2454 ClearPageDirty(head + i); 2455 __delete_from_page_cache(head + i, NULL); 2456 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2457 shmem_uncharge(head->mapping->host, 1); 2458 put_page(head + i); 2459 } 2460 } 2461 2462 ClearPageCompound(head); 2463 /* See comment in __split_huge_page_tail() */ 2464 if (PageAnon(head)) { 2465 /* Additional pin to swap cache */ 2466 if (PageSwapCache(head)) 2467 page_ref_add(head, 2); 2468 else 2469 page_ref_inc(head); 2470 } else { 2471 /* Additional pin to page cache */ 2472 page_ref_add(head, 2); 2473 xa_unlock(&head->mapping->i_pages); 2474 } 2475 2476 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 2477 2478 remap_page(head); 2479 2480 for (i = 0; i < HPAGE_PMD_NR; i++) { 2481 struct page *subpage = head + i; 2482 if (subpage == page) 2483 continue; 2484 unlock_page(subpage); 2485 2486 /* 2487 * Subpages may be freed if there wasn't any mapping 2488 * like if add_to_swap() is running on a lru page that 2489 * had its mapping zapped. And freeing these pages 2490 * requires taking the lru_lock so we do the put_page 2491 * of the tail pages after the split is complete. 2492 */ 2493 put_page(subpage); 2494 } 2495 } 2496 2497 int total_mapcount(struct page *page) 2498 { 2499 int i, compound, ret; 2500 2501 VM_BUG_ON_PAGE(PageTail(page), page); 2502 2503 if (likely(!PageCompound(page))) 2504 return atomic_read(&page->_mapcount) + 1; 2505 2506 compound = compound_mapcount(page); 2507 if (PageHuge(page)) 2508 return compound; 2509 ret = compound; 2510 for (i = 0; i < HPAGE_PMD_NR; i++) 2511 ret += atomic_read(&page[i]._mapcount) + 1; 2512 /* File pages has compound_mapcount included in _mapcount */ 2513 if (!PageAnon(page)) 2514 return ret - compound * HPAGE_PMD_NR; 2515 if (PageDoubleMap(page)) 2516 ret -= HPAGE_PMD_NR; 2517 return ret; 2518 } 2519 2520 /* 2521 * This calculates accurately how many mappings a transparent hugepage 2522 * has (unlike page_mapcount() which isn't fully accurate). This full 2523 * accuracy is primarily needed to know if copy-on-write faults can 2524 * reuse the page and change the mapping to read-write instead of 2525 * copying them. At the same time this returns the total_mapcount too. 2526 * 2527 * The function returns the highest mapcount any one of the subpages 2528 * has. If the return value is one, even if different processes are 2529 * mapping different subpages of the transparent hugepage, they can 2530 * all reuse it, because each process is reusing a different subpage. 2531 * 2532 * The total_mapcount is instead counting all virtual mappings of the 2533 * subpages. If the total_mapcount is equal to "one", it tells the 2534 * caller all mappings belong to the same "mm" and in turn the 2535 * anon_vma of the transparent hugepage can become the vma->anon_vma 2536 * local one as no other process may be mapping any of the subpages. 2537 * 2538 * It would be more accurate to replace page_mapcount() with 2539 * page_trans_huge_mapcount(), however we only use 2540 * page_trans_huge_mapcount() in the copy-on-write faults where we 2541 * need full accuracy to avoid breaking page pinning, because 2542 * page_trans_huge_mapcount() is slower than page_mapcount(). 2543 */ 2544 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2545 { 2546 int i, ret, _total_mapcount, mapcount; 2547 2548 /* hugetlbfs shouldn't call it */ 2549 VM_BUG_ON_PAGE(PageHuge(page), page); 2550 2551 if (likely(!PageTransCompound(page))) { 2552 mapcount = atomic_read(&page->_mapcount) + 1; 2553 if (total_mapcount) 2554 *total_mapcount = mapcount; 2555 return mapcount; 2556 } 2557 2558 page = compound_head(page); 2559 2560 _total_mapcount = ret = 0; 2561 for (i = 0; i < HPAGE_PMD_NR; i++) { 2562 mapcount = atomic_read(&page[i]._mapcount) + 1; 2563 ret = max(ret, mapcount); 2564 _total_mapcount += mapcount; 2565 } 2566 if (PageDoubleMap(page)) { 2567 ret -= 1; 2568 _total_mapcount -= HPAGE_PMD_NR; 2569 } 2570 mapcount = compound_mapcount(page); 2571 ret += mapcount; 2572 _total_mapcount += mapcount; 2573 if (total_mapcount) 2574 *total_mapcount = _total_mapcount; 2575 return ret; 2576 } 2577 2578 /* Racy check whether the huge page can be split */ 2579 bool can_split_huge_page(struct page *page, int *pextra_pins) 2580 { 2581 int extra_pins; 2582 2583 /* Additional pins from page cache */ 2584 if (PageAnon(page)) 2585 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2586 else 2587 extra_pins = HPAGE_PMD_NR; 2588 if (pextra_pins) 2589 *pextra_pins = extra_pins; 2590 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2591 } 2592 2593 /* 2594 * This function splits huge page into normal pages. @page can point to any 2595 * subpage of huge page to split. Split doesn't change the position of @page. 2596 * 2597 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2598 * The huge page must be locked. 2599 * 2600 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2601 * 2602 * Both head page and tail pages will inherit mapping, flags, and so on from 2603 * the hugepage. 2604 * 2605 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2606 * they are not mapped. 2607 * 2608 * Returns 0 if the hugepage is split successfully. 2609 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2610 * us. 2611 */ 2612 int split_huge_page_to_list(struct page *page, struct list_head *list) 2613 { 2614 struct page *head = compound_head(page); 2615 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2616 struct anon_vma *anon_vma = NULL; 2617 struct address_space *mapping = NULL; 2618 int count, mapcount, extra_pins, ret; 2619 bool mlocked; 2620 unsigned long flags; 2621 pgoff_t end; 2622 2623 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2624 VM_BUG_ON_PAGE(!PageLocked(page), page); 2625 VM_BUG_ON_PAGE(!PageCompound(page), page); 2626 2627 if (PageWriteback(page)) 2628 return -EBUSY; 2629 2630 if (PageAnon(head)) { 2631 /* 2632 * The caller does not necessarily hold an mmap_sem that would 2633 * prevent the anon_vma disappearing so we first we take a 2634 * reference to it and then lock the anon_vma for write. This 2635 * is similar to page_lock_anon_vma_read except the write lock 2636 * is taken to serialise against parallel split or collapse 2637 * operations. 2638 */ 2639 anon_vma = page_get_anon_vma(head); 2640 if (!anon_vma) { 2641 ret = -EBUSY; 2642 goto out; 2643 } 2644 end = -1; 2645 mapping = NULL; 2646 anon_vma_lock_write(anon_vma); 2647 } else { 2648 mapping = head->mapping; 2649 2650 /* Truncated ? */ 2651 if (!mapping) { 2652 ret = -EBUSY; 2653 goto out; 2654 } 2655 2656 anon_vma = NULL; 2657 i_mmap_lock_read(mapping); 2658 2659 /* 2660 *__split_huge_page() may need to trim off pages beyond EOF: 2661 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2662 * which cannot be nested inside the page tree lock. So note 2663 * end now: i_size itself may be changed at any moment, but 2664 * head page lock is good enough to serialize the trimming. 2665 */ 2666 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2667 } 2668 2669 /* 2670 * Racy check if we can split the page, before unmap_page() will 2671 * split PMDs 2672 */ 2673 if (!can_split_huge_page(head, &extra_pins)) { 2674 ret = -EBUSY; 2675 goto out_unlock; 2676 } 2677 2678 mlocked = PageMlocked(page); 2679 unmap_page(head); 2680 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2681 2682 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2683 if (mlocked) 2684 lru_add_drain(); 2685 2686 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2687 spin_lock_irqsave(&pgdata->lru_lock, flags); 2688 2689 if (mapping) { 2690 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2691 2692 /* 2693 * Check if the head page is present in page cache. 2694 * We assume all tail are present too, if head is there. 2695 */ 2696 xa_lock(&mapping->i_pages); 2697 if (xas_load(&xas) != head) 2698 goto fail; 2699 } 2700 2701 /* Prevent deferred_split_scan() touching ->_refcount */ 2702 spin_lock(&pgdata->split_queue_lock); 2703 count = page_count(head); 2704 mapcount = total_mapcount(head); 2705 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2706 if (!list_empty(page_deferred_list(head))) { 2707 pgdata->split_queue_len--; 2708 list_del(page_deferred_list(head)); 2709 } 2710 if (mapping) 2711 __dec_node_page_state(page, NR_SHMEM_THPS); 2712 spin_unlock(&pgdata->split_queue_lock); 2713 __split_huge_page(page, list, end, flags); 2714 if (PageSwapCache(head)) { 2715 swp_entry_t entry = { .val = page_private(head) }; 2716 2717 ret = split_swap_cluster(entry); 2718 } else 2719 ret = 0; 2720 } else { 2721 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2722 pr_alert("total_mapcount: %u, page_count(): %u\n", 2723 mapcount, count); 2724 if (PageTail(page)) 2725 dump_page(head, NULL); 2726 dump_page(page, "total_mapcount(head) > 0"); 2727 BUG(); 2728 } 2729 spin_unlock(&pgdata->split_queue_lock); 2730 fail: if (mapping) 2731 xa_unlock(&mapping->i_pages); 2732 spin_unlock_irqrestore(&pgdata->lru_lock, flags); 2733 remap_page(head); 2734 ret = -EBUSY; 2735 } 2736 2737 out_unlock: 2738 if (anon_vma) { 2739 anon_vma_unlock_write(anon_vma); 2740 put_anon_vma(anon_vma); 2741 } 2742 if (mapping) 2743 i_mmap_unlock_read(mapping); 2744 out: 2745 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2746 return ret; 2747 } 2748 2749 void free_transhuge_page(struct page *page) 2750 { 2751 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2752 unsigned long flags; 2753 2754 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2755 if (!list_empty(page_deferred_list(page))) { 2756 pgdata->split_queue_len--; 2757 list_del(page_deferred_list(page)); 2758 } 2759 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2760 free_compound_page(page); 2761 } 2762 2763 void deferred_split_huge_page(struct page *page) 2764 { 2765 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2766 unsigned long flags; 2767 2768 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2769 2770 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2771 if (list_empty(page_deferred_list(page))) { 2772 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2773 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2774 pgdata->split_queue_len++; 2775 } 2776 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2777 } 2778 2779 static unsigned long deferred_split_count(struct shrinker *shrink, 2780 struct shrink_control *sc) 2781 { 2782 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2783 return READ_ONCE(pgdata->split_queue_len); 2784 } 2785 2786 static unsigned long deferred_split_scan(struct shrinker *shrink, 2787 struct shrink_control *sc) 2788 { 2789 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2790 unsigned long flags; 2791 LIST_HEAD(list), *pos, *next; 2792 struct page *page; 2793 int split = 0; 2794 2795 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2796 /* Take pin on all head pages to avoid freeing them under us */ 2797 list_for_each_safe(pos, next, &pgdata->split_queue) { 2798 page = list_entry((void *)pos, struct page, mapping); 2799 page = compound_head(page); 2800 if (get_page_unless_zero(page)) { 2801 list_move(page_deferred_list(page), &list); 2802 } else { 2803 /* We lost race with put_compound_page() */ 2804 list_del_init(page_deferred_list(page)); 2805 pgdata->split_queue_len--; 2806 } 2807 if (!--sc->nr_to_scan) 2808 break; 2809 } 2810 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2811 2812 list_for_each_safe(pos, next, &list) { 2813 page = list_entry((void *)pos, struct page, mapping); 2814 if (!trylock_page(page)) 2815 goto next; 2816 /* split_huge_page() removes page from list on success */ 2817 if (!split_huge_page(page)) 2818 split++; 2819 unlock_page(page); 2820 next: 2821 put_page(page); 2822 } 2823 2824 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2825 list_splice_tail(&list, &pgdata->split_queue); 2826 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2827 2828 /* 2829 * Stop shrinker if we didn't split any page, but the queue is empty. 2830 * This can happen if pages were freed under us. 2831 */ 2832 if (!split && list_empty(&pgdata->split_queue)) 2833 return SHRINK_STOP; 2834 return split; 2835 } 2836 2837 static struct shrinker deferred_split_shrinker = { 2838 .count_objects = deferred_split_count, 2839 .scan_objects = deferred_split_scan, 2840 .seeks = DEFAULT_SEEKS, 2841 .flags = SHRINKER_NUMA_AWARE, 2842 }; 2843 2844 #ifdef CONFIG_DEBUG_FS 2845 static int split_huge_pages_set(void *data, u64 val) 2846 { 2847 struct zone *zone; 2848 struct page *page; 2849 unsigned long pfn, max_zone_pfn; 2850 unsigned long total = 0, split = 0; 2851 2852 if (val != 1) 2853 return -EINVAL; 2854 2855 for_each_populated_zone(zone) { 2856 max_zone_pfn = zone_end_pfn(zone); 2857 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2858 if (!pfn_valid(pfn)) 2859 continue; 2860 2861 page = pfn_to_page(pfn); 2862 if (!get_page_unless_zero(page)) 2863 continue; 2864 2865 if (zone != page_zone(page)) 2866 goto next; 2867 2868 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2869 goto next; 2870 2871 total++; 2872 lock_page(page); 2873 if (!split_huge_page(page)) 2874 split++; 2875 unlock_page(page); 2876 next: 2877 put_page(page); 2878 } 2879 } 2880 2881 pr_info("%lu of %lu THP split\n", split, total); 2882 2883 return 0; 2884 } 2885 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2886 "%llu\n"); 2887 2888 static int __init split_huge_pages_debugfs(void) 2889 { 2890 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2891 &split_huge_pages_fops); 2892 return 0; 2893 } 2894 late_initcall(split_huge_pages_debugfs); 2895 #endif 2896 2897 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2898 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2899 struct page *page) 2900 { 2901 struct vm_area_struct *vma = pvmw->vma; 2902 struct mm_struct *mm = vma->vm_mm; 2903 unsigned long address = pvmw->address; 2904 pmd_t pmdval; 2905 swp_entry_t entry; 2906 pmd_t pmdswp; 2907 2908 if (!(pvmw->pmd && !pvmw->pte)) 2909 return; 2910 2911 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2912 pmdval = *pvmw->pmd; 2913 pmdp_invalidate(vma, address, pvmw->pmd); 2914 if (pmd_dirty(pmdval)) 2915 set_page_dirty(page); 2916 entry = make_migration_entry(page, pmd_write(pmdval)); 2917 pmdswp = swp_entry_to_pmd(entry); 2918 if (pmd_soft_dirty(pmdval)) 2919 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2920 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2921 page_remove_rmap(page, true); 2922 put_page(page); 2923 } 2924 2925 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2926 { 2927 struct vm_area_struct *vma = pvmw->vma; 2928 struct mm_struct *mm = vma->vm_mm; 2929 unsigned long address = pvmw->address; 2930 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2931 pmd_t pmde; 2932 swp_entry_t entry; 2933 2934 if (!(pvmw->pmd && !pvmw->pte)) 2935 return; 2936 2937 entry = pmd_to_swp_entry(*pvmw->pmd); 2938 get_page(new); 2939 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 2940 if (pmd_swp_soft_dirty(*pvmw->pmd)) 2941 pmde = pmd_mksoft_dirty(pmde); 2942 if (is_write_migration_entry(entry)) 2943 pmde = maybe_pmd_mkwrite(pmde, vma); 2944 2945 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 2946 if (PageAnon(new)) 2947 page_add_anon_rmap(new, vma, mmun_start, true); 2948 else 2949 page_add_file_rmap(new, true); 2950 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 2951 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 2952 mlock_vma_page(new); 2953 update_mmu_cache_pmd(vma, address, pvmw->pmd); 2954 } 2955 #endif 2956