xref: /openbmc/linux/mm/huge_memory.c (revision f066af882b3755c5cdd2574e860433750c6bce1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	const char *output;
167 
168 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 		output = "[always] madvise never";
170 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 			  &transparent_hugepage_flags))
172 		output = "always [madvise] never";
173 	else
174 		output = "always madvise [never]";
175 
176 	return sysfs_emit(buf, "%s\n", output);
177 }
178 
179 static ssize_t enabled_store(struct kobject *kobj,
180 			     struct kobj_attribute *attr,
181 			     const char *buf, size_t count)
182 {
183 	ssize_t ret = count;
184 
185 	if (sysfs_streq(buf, "always")) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 	} else if (sysfs_streq(buf, "madvise")) {
189 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 	} else if (sysfs_streq(buf, "never")) {
192 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 	} else
195 		ret = -EINVAL;
196 
197 	if (ret > 0) {
198 		int err = start_stop_khugepaged();
199 		if (err)
200 			ret = err;
201 	}
202 	return ret;
203 }
204 static struct kobj_attribute enabled_attr =
205 	__ATTR(enabled, 0644, enabled_show, enabled_store);
206 
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 				  struct kobj_attribute *attr, char *buf,
209 				  enum transparent_hugepage_flag flag)
210 {
211 	return sysfs_emit(buf, "%d\n",
212 			  !!test_bit(flag, &transparent_hugepage_flags));
213 }
214 
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 				 struct kobj_attribute *attr,
217 				 const char *buf, size_t count,
218 				 enum transparent_hugepage_flag flag)
219 {
220 	unsigned long value;
221 	int ret;
222 
223 	ret = kstrtoul(buf, 10, &value);
224 	if (ret < 0)
225 		return ret;
226 	if (value > 1)
227 		return -EINVAL;
228 
229 	if (value)
230 		set_bit(flag, &transparent_hugepage_flags);
231 	else
232 		clear_bit(flag, &transparent_hugepage_flags);
233 
234 	return count;
235 }
236 
237 static ssize_t defrag_show(struct kobject *kobj,
238 			   struct kobj_attribute *attr, char *buf)
239 {
240 	const char *output;
241 
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 		     &transparent_hugepage_flags))
244 		output = "[always] defer defer+madvise madvise never";
245 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 			  &transparent_hugepage_flags))
247 		output = "always [defer] defer+madvise madvise never";
248 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 			  &transparent_hugepage_flags))
250 		output = "always defer [defer+madvise] madvise never";
251 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 			  &transparent_hugepage_flags))
253 		output = "always defer defer+madvise [madvise] never";
254 	else
255 		output = "always defer defer+madvise madvise [never]";
256 
257 	return sysfs_emit(buf, "%s\n", output);
258 }
259 
260 static ssize_t defrag_store(struct kobject *kobj,
261 			    struct kobj_attribute *attr,
262 			    const char *buf, size_t count)
263 {
264 	if (sysfs_streq(buf, "always")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 	} else if (sysfs_streq(buf, "defer+madvise")) {
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 	} else if (sysfs_streq(buf, "defer")) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 	} else if (sysfs_streq(buf, "madvise")) {
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 	} else if (sysfs_streq(buf, "never")) {
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 	} else
290 		return -EINVAL;
291 
292 	return count;
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298 				  struct kobj_attribute *attr, char *buf)
299 {
300 	return single_hugepage_flag_show(kobj, attr, buf,
301 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304 		struct kobj_attribute *attr, const char *buf, size_t count)
305 {
306 	return single_hugepage_flag_store(kobj, attr, buf, count,
307 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308 }
309 static struct kobj_attribute use_zero_page_attr =
310 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 				   struct kobj_attribute *attr, char *buf)
314 {
315 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 }
317 static struct kobj_attribute hpage_pmd_size_attr =
318 	__ATTR_RO(hpage_pmd_size);
319 
320 static struct attribute *hugepage_attr[] = {
321 	&enabled_attr.attr,
322 	&defrag_attr.attr,
323 	&use_zero_page_attr.attr,
324 	&hpage_pmd_size_attr.attr,
325 #ifdef CONFIG_SHMEM
326 	&shmem_enabled_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		/*
390 		 * Hardware doesn't support hugepages, hence disable
391 		 * DAX PMD support.
392 		 */
393 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
394 		return -EINVAL;
395 	}
396 
397 	/*
398 	 * hugepages can't be allocated by the buddy allocator
399 	 */
400 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
401 	/*
402 	 * we use page->mapping and page->index in second tail page
403 	 * as list_head: assuming THP order >= 2
404 	 */
405 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
406 
407 	err = hugepage_init_sysfs(&hugepage_kobj);
408 	if (err)
409 		goto err_sysfs;
410 
411 	err = khugepaged_init();
412 	if (err)
413 		goto err_slab;
414 
415 	err = register_shrinker(&huge_zero_page_shrinker);
416 	if (err)
417 		goto err_hzp_shrinker;
418 	err = register_shrinker(&deferred_split_shrinker);
419 	if (err)
420 		goto err_split_shrinker;
421 
422 	/*
423 	 * By default disable transparent hugepages on smaller systems,
424 	 * where the extra memory used could hurt more than TLB overhead
425 	 * is likely to save.  The admin can still enable it through /sys.
426 	 */
427 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428 		transparent_hugepage_flags = 0;
429 		return 0;
430 	}
431 
432 	err = start_stop_khugepaged();
433 	if (err)
434 		goto err_khugepaged;
435 
436 	return 0;
437 err_khugepaged:
438 	unregister_shrinker(&deferred_split_shrinker);
439 err_split_shrinker:
440 	unregister_shrinker(&huge_zero_page_shrinker);
441 err_hzp_shrinker:
442 	khugepaged_destroy();
443 err_slab:
444 	hugepage_exit_sysfs(hugepage_kobj);
445 err_sysfs:
446 	return err;
447 }
448 subsys_initcall(hugepage_init);
449 
450 static int __init setup_transparent_hugepage(char *str)
451 {
452 	int ret = 0;
453 	if (!str)
454 		goto out;
455 	if (!strcmp(str, "always")) {
456 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 			&transparent_hugepage_flags);
458 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 			  &transparent_hugepage_flags);
460 		ret = 1;
461 	} else if (!strcmp(str, "madvise")) {
462 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 			  &transparent_hugepage_flags);
464 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 			&transparent_hugepage_flags);
466 		ret = 1;
467 	} else if (!strcmp(str, "never")) {
468 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 			  &transparent_hugepage_flags);
470 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 			  &transparent_hugepage_flags);
472 		ret = 1;
473 	}
474 out:
475 	if (!ret)
476 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
477 	return ret;
478 }
479 __setup("transparent_hugepage=", setup_transparent_hugepage);
480 
481 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482 {
483 	if (likely(vma->vm_flags & VM_WRITE))
484 		pmd = pmd_mkwrite(pmd);
485 	return pmd;
486 }
487 
488 #ifdef CONFIG_MEMCG
489 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490 {
491 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
493 
494 	if (memcg)
495 		return &memcg->deferred_split_queue;
496 	else
497 		return &pgdat->deferred_split_queue;
498 }
499 #else
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 {
502 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
503 
504 	return &pgdat->deferred_split_queue;
505 }
506 #endif
507 
508 void prep_transhuge_page(struct page *page)
509 {
510 	/*
511 	 * we use page->mapping and page->indexlru in second tail page
512 	 * as list_head: assuming THP order >= 2
513 	 */
514 
515 	INIT_LIST_HEAD(page_deferred_list(page));
516 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
517 }
518 
519 bool is_transparent_hugepage(struct page *page)
520 {
521 	if (!PageCompound(page))
522 		return false;
523 
524 	page = compound_head(page);
525 	return is_huge_zero_page(page) ||
526 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
527 }
528 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
529 
530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531 		unsigned long addr, unsigned long len,
532 		loff_t off, unsigned long flags, unsigned long size)
533 {
534 	loff_t off_end = off + len;
535 	loff_t off_align = round_up(off, size);
536 	unsigned long len_pad, ret;
537 
538 	if (off_end <= off_align || (off_end - off_align) < size)
539 		return 0;
540 
541 	len_pad = len + size;
542 	if (len_pad < len || (off + len_pad) < off)
543 		return 0;
544 
545 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 					      off >> PAGE_SHIFT, flags);
547 
548 	/*
549 	 * The failure might be due to length padding. The caller will retry
550 	 * without the padding.
551 	 */
552 	if (IS_ERR_VALUE(ret))
553 		return 0;
554 
555 	/*
556 	 * Do not try to align to THP boundary if allocation at the address
557 	 * hint succeeds.
558 	 */
559 	if (ret == addr)
560 		return addr;
561 
562 	ret += (off - ret) & (size - 1);
563 	return ret;
564 }
565 
566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 		unsigned long len, unsigned long pgoff, unsigned long flags)
568 {
569 	unsigned long ret;
570 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571 
572 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573 		goto out;
574 
575 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576 	if (ret)
577 		return ret;
578 out:
579 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580 }
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582 
583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 			struct page *page, gfp_t gfp)
585 {
586 	struct vm_area_struct *vma = vmf->vma;
587 	pgtable_t pgtable;
588 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589 	vm_fault_t ret = 0;
590 
591 	VM_BUG_ON_PAGE(!PageCompound(page), page);
592 
593 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594 		put_page(page);
595 		count_vm_event(THP_FAULT_FALLBACK);
596 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 		return VM_FAULT_FALLBACK;
598 	}
599 	cgroup_throttle_swaprate(page, gfp);
600 
601 	pgtable = pte_alloc_one(vma->vm_mm);
602 	if (unlikely(!pgtable)) {
603 		ret = VM_FAULT_OOM;
604 		goto release;
605 	}
606 
607 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608 	/*
609 	 * The memory barrier inside __SetPageUptodate makes sure that
610 	 * clear_huge_page writes become visible before the set_pmd_at()
611 	 * write.
612 	 */
613 	__SetPageUptodate(page);
614 
615 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 	if (unlikely(!pmd_none(*vmf->pmd))) {
617 		goto unlock_release;
618 	} else {
619 		pmd_t entry;
620 
621 		ret = check_stable_address_space(vma->vm_mm);
622 		if (ret)
623 			goto unlock_release;
624 
625 		/* Deliver the page fault to userland */
626 		if (userfaultfd_missing(vma)) {
627 			vm_fault_t ret2;
628 
629 			spin_unlock(vmf->ptl);
630 			put_page(page);
631 			pte_free(vma->vm_mm, pgtable);
632 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
634 			return ret2;
635 		}
636 
637 		entry = mk_huge_pmd(page, vma->vm_page_prot);
638 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639 		page_add_new_anon_rmap(page, vma, haddr, true);
640 		lru_cache_add_inactive_or_unevictable(page, vma);
641 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
642 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
644 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 		mm_inc_nr_ptes(vma->vm_mm);
646 		spin_unlock(vmf->ptl);
647 		count_vm_event(THP_FAULT_ALLOC);
648 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
649 	}
650 
651 	return 0;
652 unlock_release:
653 	spin_unlock(vmf->ptl);
654 release:
655 	if (pgtable)
656 		pte_free(vma->vm_mm, pgtable);
657 	put_page(page);
658 	return ret;
659 
660 }
661 
662 /*
663  * always: directly stall for all thp allocations
664  * defer: wake kswapd and fail if not immediately available
665  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
666  *		  fail if not immediately available
667  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
668  *	    available
669  * never: never stall for any thp allocation
670  */
671 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
672 {
673 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
674 
675 	/* Always do synchronous compaction */
676 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
677 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 
679 	/* Kick kcompactd and fail quickly */
680 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 
683 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
684 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 		return GFP_TRANSHUGE_LIGHT |
686 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
687 					__GFP_KSWAPD_RECLAIM);
688 
689 	/* Only do synchronous compaction if madvised */
690 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 		return GFP_TRANSHUGE_LIGHT |
692 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693 
694 	return GFP_TRANSHUGE_LIGHT;
695 }
696 
697 /* Caller must hold page table lock. */
698 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700 		struct page *zero_page)
701 {
702 	pmd_t entry;
703 	if (!pmd_none(*pmd))
704 		return;
705 	entry = mk_pmd(zero_page, vma->vm_page_prot);
706 	entry = pmd_mkhuge(entry);
707 	if (pgtable)
708 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
709 	set_pmd_at(mm, haddr, pmd, entry);
710 	mm_inc_nr_ptes(mm);
711 }
712 
713 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714 {
715 	struct vm_area_struct *vma = vmf->vma;
716 	gfp_t gfp;
717 	struct page *page;
718 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719 
720 	if (!transhuge_vma_suitable(vma, haddr))
721 		return VM_FAULT_FALLBACK;
722 	if (unlikely(anon_vma_prepare(vma)))
723 		return VM_FAULT_OOM;
724 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725 		return VM_FAULT_OOM;
726 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
727 			!mm_forbids_zeropage(vma->vm_mm) &&
728 			transparent_hugepage_use_zero_page()) {
729 		pgtable_t pgtable;
730 		struct page *zero_page;
731 		vm_fault_t ret;
732 		pgtable = pte_alloc_one(vma->vm_mm);
733 		if (unlikely(!pgtable))
734 			return VM_FAULT_OOM;
735 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
736 		if (unlikely(!zero_page)) {
737 			pte_free(vma->vm_mm, pgtable);
738 			count_vm_event(THP_FAULT_FALLBACK);
739 			return VM_FAULT_FALLBACK;
740 		}
741 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742 		ret = 0;
743 		if (pmd_none(*vmf->pmd)) {
744 			ret = check_stable_address_space(vma->vm_mm);
745 			if (ret) {
746 				spin_unlock(vmf->ptl);
747 				pte_free(vma->vm_mm, pgtable);
748 			} else if (userfaultfd_missing(vma)) {
749 				spin_unlock(vmf->ptl);
750 				pte_free(vma->vm_mm, pgtable);
751 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
753 			} else {
754 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
755 						   haddr, vmf->pmd, zero_page);
756 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
757 				spin_unlock(vmf->ptl);
758 			}
759 		} else {
760 			spin_unlock(vmf->ptl);
761 			pte_free(vma->vm_mm, pgtable);
762 		}
763 		return ret;
764 	}
765 	gfp = vma_thp_gfp_mask(vma);
766 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 	if (unlikely(!page)) {
768 		count_vm_event(THP_FAULT_FALLBACK);
769 		return VM_FAULT_FALLBACK;
770 	}
771 	prep_transhuge_page(page);
772 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 }
774 
775 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
777 		pgtable_t pgtable)
778 {
779 	struct mm_struct *mm = vma->vm_mm;
780 	pmd_t entry;
781 	spinlock_t *ptl;
782 
783 	ptl = pmd_lock(mm, pmd);
784 	if (!pmd_none(*pmd)) {
785 		if (write) {
786 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
787 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
788 				goto out_unlock;
789 			}
790 			entry = pmd_mkyoung(*pmd);
791 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
792 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
793 				update_mmu_cache_pmd(vma, addr, pmd);
794 		}
795 
796 		goto out_unlock;
797 	}
798 
799 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
800 	if (pfn_t_devmap(pfn))
801 		entry = pmd_mkdevmap(entry);
802 	if (write) {
803 		entry = pmd_mkyoung(pmd_mkdirty(entry));
804 		entry = maybe_pmd_mkwrite(entry, vma);
805 	}
806 
807 	if (pgtable) {
808 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
809 		mm_inc_nr_ptes(mm);
810 		pgtable = NULL;
811 	}
812 
813 	set_pmd_at(mm, addr, pmd, entry);
814 	update_mmu_cache_pmd(vma, addr, pmd);
815 
816 out_unlock:
817 	spin_unlock(ptl);
818 	if (pgtable)
819 		pte_free(mm, pgtable);
820 }
821 
822 /**
823  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
824  * @vmf: Structure describing the fault
825  * @pfn: pfn to insert
826  * @pgprot: page protection to use
827  * @write: whether it's a write fault
828  *
829  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
830  * also consult the vmf_insert_mixed_prot() documentation when
831  * @pgprot != @vmf->vma->vm_page_prot.
832  *
833  * Return: vm_fault_t value.
834  */
835 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
836 				   pgprot_t pgprot, bool write)
837 {
838 	unsigned long addr = vmf->address & PMD_MASK;
839 	struct vm_area_struct *vma = vmf->vma;
840 	pgtable_t pgtable = NULL;
841 
842 	/*
843 	 * If we had pmd_special, we could avoid all these restrictions,
844 	 * but we need to be consistent with PTEs and architectures that
845 	 * can't support a 'special' bit.
846 	 */
847 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 			!pfn_t_devmap(pfn));
849 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 						(VM_PFNMAP|VM_MIXEDMAP));
851 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
852 
853 	if (addr < vma->vm_start || addr >= vma->vm_end)
854 		return VM_FAULT_SIGBUS;
855 
856 	if (arch_needs_pgtable_deposit()) {
857 		pgtable = pte_alloc_one(vma->vm_mm);
858 		if (!pgtable)
859 			return VM_FAULT_OOM;
860 	}
861 
862 	track_pfn_insert(vma, &pgprot, pfn);
863 
864 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865 	return VM_FAULT_NOPAGE;
866 }
867 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
868 
869 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871 {
872 	if (likely(vma->vm_flags & VM_WRITE))
873 		pud = pud_mkwrite(pud);
874 	return pud;
875 }
876 
877 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879 {
880 	struct mm_struct *mm = vma->vm_mm;
881 	pud_t entry;
882 	spinlock_t *ptl;
883 
884 	ptl = pud_lock(mm, pud);
885 	if (!pud_none(*pud)) {
886 		if (write) {
887 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 				goto out_unlock;
890 			}
891 			entry = pud_mkyoung(*pud);
892 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 				update_mmu_cache_pud(vma, addr, pud);
895 		}
896 		goto out_unlock;
897 	}
898 
899 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 	if (pfn_t_devmap(pfn))
901 		entry = pud_mkdevmap(entry);
902 	if (write) {
903 		entry = pud_mkyoung(pud_mkdirty(entry));
904 		entry = maybe_pud_mkwrite(entry, vma);
905 	}
906 	set_pud_at(mm, addr, pud, entry);
907 	update_mmu_cache_pud(vma, addr, pud);
908 
909 out_unlock:
910 	spin_unlock(ptl);
911 }
912 
913 /**
914  * vmf_insert_pfn_pud_prot - insert a pud size pfn
915  * @vmf: Structure describing the fault
916  * @pfn: pfn to insert
917  * @pgprot: page protection to use
918  * @write: whether it's a write fault
919  *
920  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
921  * also consult the vmf_insert_mixed_prot() documentation when
922  * @pgprot != @vmf->vma->vm_page_prot.
923  *
924  * Return: vm_fault_t value.
925  */
926 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
927 				   pgprot_t pgprot, bool write)
928 {
929 	unsigned long addr = vmf->address & PUD_MASK;
930 	struct vm_area_struct *vma = vmf->vma;
931 
932 	/*
933 	 * If we had pud_special, we could avoid all these restrictions,
934 	 * but we need to be consistent with PTEs and architectures that
935 	 * can't support a 'special' bit.
936 	 */
937 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 			!pfn_t_devmap(pfn));
939 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 						(VM_PFNMAP|VM_MIXEDMAP));
941 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942 
943 	if (addr < vma->vm_start || addr >= vma->vm_end)
944 		return VM_FAULT_SIGBUS;
945 
946 	track_pfn_insert(vma, &pgprot, pfn);
947 
948 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 	return VM_FAULT_NOPAGE;
950 }
951 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
953 
954 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955 		pmd_t *pmd, int flags)
956 {
957 	pmd_t _pmd;
958 
959 	_pmd = pmd_mkyoung(*pmd);
960 	if (flags & FOLL_WRITE)
961 		_pmd = pmd_mkdirty(_pmd);
962 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963 				pmd, _pmd, flags & FOLL_WRITE))
964 		update_mmu_cache_pmd(vma, addr, pmd);
965 }
966 
967 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 {
970 	unsigned long pfn = pmd_pfn(*pmd);
971 	struct mm_struct *mm = vma->vm_mm;
972 	struct page *page;
973 
974 	assert_spin_locked(pmd_lockptr(mm, pmd));
975 
976 	/*
977 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
978 	 * not be in this function with `flags & FOLL_COW` set.
979 	 */
980 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
981 
982 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
983 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
984 			 (FOLL_PIN | FOLL_GET)))
985 		return NULL;
986 
987 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 		return NULL;
989 
990 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
991 		/* pass */;
992 	else
993 		return NULL;
994 
995 	if (flags & FOLL_TOUCH)
996 		touch_pmd(vma, addr, pmd, flags);
997 
998 	/*
999 	 * device mapped pages can only be returned if the
1000 	 * caller will manage the page reference count.
1001 	 */
1002 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 		return ERR_PTR(-EEXIST);
1004 
1005 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1007 	if (!*pgmap)
1008 		return ERR_PTR(-EFAULT);
1009 	page = pfn_to_page(pfn);
1010 	if (!try_grab_page(page, flags))
1011 		page = ERR_PTR(-ENOMEM);
1012 
1013 	return page;
1014 }
1015 
1016 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1017 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 		  struct vm_area_struct *vma)
1019 {
1020 	spinlock_t *dst_ptl, *src_ptl;
1021 	struct page *src_page;
1022 	pmd_t pmd;
1023 	pgtable_t pgtable = NULL;
1024 	int ret = -ENOMEM;
1025 
1026 	/* Skip if can be re-fill on fault */
1027 	if (!vma_is_anonymous(vma))
1028 		return 0;
1029 
1030 	pgtable = pte_alloc_one(dst_mm);
1031 	if (unlikely(!pgtable))
1032 		goto out;
1033 
1034 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1035 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1036 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1037 
1038 	ret = -EAGAIN;
1039 	pmd = *src_pmd;
1040 
1041 	/*
1042 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1043 	 * does not have the VM_UFFD_WP, which means that the uffd
1044 	 * fork event is not enabled.
1045 	 */
1046 	if (!(vma->vm_flags & VM_UFFD_WP))
1047 		pmd = pmd_clear_uffd_wp(pmd);
1048 
1049 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1050 	if (unlikely(is_swap_pmd(pmd))) {
1051 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1052 
1053 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1054 		if (is_write_migration_entry(entry)) {
1055 			make_migration_entry_read(&entry);
1056 			pmd = swp_entry_to_pmd(entry);
1057 			if (pmd_swp_soft_dirty(*src_pmd))
1058 				pmd = pmd_swp_mksoft_dirty(pmd);
1059 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 		}
1061 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062 		mm_inc_nr_ptes(dst_mm);
1063 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1065 		ret = 0;
1066 		goto out_unlock;
1067 	}
1068 #endif
1069 
1070 	if (unlikely(!pmd_trans_huge(pmd))) {
1071 		pte_free(dst_mm, pgtable);
1072 		goto out_unlock;
1073 	}
1074 	/*
1075 	 * When page table lock is held, the huge zero pmd should not be
1076 	 * under splitting since we don't split the page itself, only pmd to
1077 	 * a page table.
1078 	 */
1079 	if (is_huge_zero_pmd(pmd)) {
1080 		struct page *zero_page;
1081 		/*
1082 		 * get_huge_zero_page() will never allocate a new page here,
1083 		 * since we already have a zero page to copy. It just takes a
1084 		 * reference.
1085 		 */
1086 		zero_page = mm_get_huge_zero_page(dst_mm);
1087 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1088 				zero_page);
1089 		ret = 0;
1090 		goto out_unlock;
1091 	}
1092 
1093 	src_page = pmd_page(pmd);
1094 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 
1096 	/*
1097 	 * If this page is a potentially pinned page, split and retry the fault
1098 	 * with smaller page size.  Normally this should not happen because the
1099 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1100 	 * best effort that the pinned pages won't be replaced by another
1101 	 * random page during the coming copy-on-write.
1102 	 */
1103 	if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1104 		pte_free(dst_mm, pgtable);
1105 		spin_unlock(src_ptl);
1106 		spin_unlock(dst_ptl);
1107 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1108 		return -EAGAIN;
1109 	}
1110 
1111 	get_page(src_page);
1112 	page_dup_rmap(src_page, true);
1113 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1114 	mm_inc_nr_ptes(dst_mm);
1115 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1116 
1117 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1118 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1119 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1120 
1121 	ret = 0;
1122 out_unlock:
1123 	spin_unlock(src_ptl);
1124 	spin_unlock(dst_ptl);
1125 out:
1126 	return ret;
1127 }
1128 
1129 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1130 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1131 		pud_t *pud, int flags)
1132 {
1133 	pud_t _pud;
1134 
1135 	_pud = pud_mkyoung(*pud);
1136 	if (flags & FOLL_WRITE)
1137 		_pud = pud_mkdirty(_pud);
1138 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1139 				pud, _pud, flags & FOLL_WRITE))
1140 		update_mmu_cache_pud(vma, addr, pud);
1141 }
1142 
1143 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1144 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1145 {
1146 	unsigned long pfn = pud_pfn(*pud);
1147 	struct mm_struct *mm = vma->vm_mm;
1148 	struct page *page;
1149 
1150 	assert_spin_locked(pud_lockptr(mm, pud));
1151 
1152 	if (flags & FOLL_WRITE && !pud_write(*pud))
1153 		return NULL;
1154 
1155 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1156 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1157 			 (FOLL_PIN | FOLL_GET)))
1158 		return NULL;
1159 
1160 	if (pud_present(*pud) && pud_devmap(*pud))
1161 		/* pass */;
1162 	else
1163 		return NULL;
1164 
1165 	if (flags & FOLL_TOUCH)
1166 		touch_pud(vma, addr, pud, flags);
1167 
1168 	/*
1169 	 * device mapped pages can only be returned if the
1170 	 * caller will manage the page reference count.
1171 	 *
1172 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1173 	 */
1174 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1175 		return ERR_PTR(-EEXIST);
1176 
1177 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1178 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1179 	if (!*pgmap)
1180 		return ERR_PTR(-EFAULT);
1181 	page = pfn_to_page(pfn);
1182 	if (!try_grab_page(page, flags))
1183 		page = ERR_PTR(-ENOMEM);
1184 
1185 	return page;
1186 }
1187 
1188 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1189 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1190 		  struct vm_area_struct *vma)
1191 {
1192 	spinlock_t *dst_ptl, *src_ptl;
1193 	pud_t pud;
1194 	int ret;
1195 
1196 	dst_ptl = pud_lock(dst_mm, dst_pud);
1197 	src_ptl = pud_lockptr(src_mm, src_pud);
1198 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1199 
1200 	ret = -EAGAIN;
1201 	pud = *src_pud;
1202 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1203 		goto out_unlock;
1204 
1205 	/*
1206 	 * When page table lock is held, the huge zero pud should not be
1207 	 * under splitting since we don't split the page itself, only pud to
1208 	 * a page table.
1209 	 */
1210 	if (is_huge_zero_pud(pud)) {
1211 		/* No huge zero pud yet */
1212 	}
1213 
1214 	/* Please refer to comments in copy_huge_pmd() */
1215 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1216 		spin_unlock(src_ptl);
1217 		spin_unlock(dst_ptl);
1218 		__split_huge_pud(vma, src_pud, addr);
1219 		return -EAGAIN;
1220 	}
1221 
1222 	pudp_set_wrprotect(src_mm, addr, src_pud);
1223 	pud = pud_mkold(pud_wrprotect(pud));
1224 	set_pud_at(dst_mm, addr, dst_pud, pud);
1225 
1226 	ret = 0;
1227 out_unlock:
1228 	spin_unlock(src_ptl);
1229 	spin_unlock(dst_ptl);
1230 	return ret;
1231 }
1232 
1233 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1234 {
1235 	pud_t entry;
1236 	unsigned long haddr;
1237 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1238 
1239 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1240 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1241 		goto unlock;
1242 
1243 	entry = pud_mkyoung(orig_pud);
1244 	if (write)
1245 		entry = pud_mkdirty(entry);
1246 	haddr = vmf->address & HPAGE_PUD_MASK;
1247 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1248 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1249 
1250 unlock:
1251 	spin_unlock(vmf->ptl);
1252 }
1253 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1254 
1255 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1256 {
1257 	pmd_t entry;
1258 	unsigned long haddr;
1259 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1260 
1261 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1262 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1263 		goto unlock;
1264 
1265 	entry = pmd_mkyoung(orig_pmd);
1266 	if (write)
1267 		entry = pmd_mkdirty(entry);
1268 	haddr = vmf->address & HPAGE_PMD_MASK;
1269 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1270 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1271 
1272 unlock:
1273 	spin_unlock(vmf->ptl);
1274 }
1275 
1276 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1277 {
1278 	struct vm_area_struct *vma = vmf->vma;
1279 	struct page *page;
1280 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1281 
1282 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1283 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1284 
1285 	if (is_huge_zero_pmd(orig_pmd))
1286 		goto fallback;
1287 
1288 	spin_lock(vmf->ptl);
1289 
1290 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291 		spin_unlock(vmf->ptl);
1292 		return 0;
1293 	}
1294 
1295 	page = pmd_page(orig_pmd);
1296 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1297 
1298 	/* Lock page for reuse_swap_page() */
1299 	if (!trylock_page(page)) {
1300 		get_page(page);
1301 		spin_unlock(vmf->ptl);
1302 		lock_page(page);
1303 		spin_lock(vmf->ptl);
1304 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1305 			spin_unlock(vmf->ptl);
1306 			unlock_page(page);
1307 			put_page(page);
1308 			return 0;
1309 		}
1310 		put_page(page);
1311 	}
1312 
1313 	/*
1314 	 * We can only reuse the page if nobody else maps the huge page or it's
1315 	 * part.
1316 	 */
1317 	if (reuse_swap_page(page, NULL)) {
1318 		pmd_t entry;
1319 		entry = pmd_mkyoung(orig_pmd);
1320 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1321 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1322 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1323 		unlock_page(page);
1324 		spin_unlock(vmf->ptl);
1325 		return VM_FAULT_WRITE;
1326 	}
1327 
1328 	unlock_page(page);
1329 	spin_unlock(vmf->ptl);
1330 fallback:
1331 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1332 	return VM_FAULT_FALLBACK;
1333 }
1334 
1335 /*
1336  * FOLL_FORCE can write to even unwritable pmd's, but only
1337  * after we've gone through a COW cycle and they are dirty.
1338  */
1339 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1340 {
1341 	return pmd_write(pmd) ||
1342 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1343 }
1344 
1345 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1346 				   unsigned long addr,
1347 				   pmd_t *pmd,
1348 				   unsigned int flags)
1349 {
1350 	struct mm_struct *mm = vma->vm_mm;
1351 	struct page *page = NULL;
1352 
1353 	assert_spin_locked(pmd_lockptr(mm, pmd));
1354 
1355 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1356 		goto out;
1357 
1358 	/* Avoid dumping huge zero page */
1359 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1360 		return ERR_PTR(-EFAULT);
1361 
1362 	/* Full NUMA hinting faults to serialise migration in fault paths */
1363 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1364 		goto out;
1365 
1366 	page = pmd_page(*pmd);
1367 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1368 
1369 	if (!try_grab_page(page, flags))
1370 		return ERR_PTR(-ENOMEM);
1371 
1372 	if (flags & FOLL_TOUCH)
1373 		touch_pmd(vma, addr, pmd, flags);
1374 
1375 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376 		/*
1377 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1378 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1379 		 *
1380 		 * For anon THP:
1381 		 *
1382 		 * In most cases the pmd is the only mapping of the page as we
1383 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 		 * writable private mappings in populate_vma_page_range().
1385 		 *
1386 		 * The only scenario when we have the page shared here is if we
1387 		 * mlocking read-only mapping shared over fork(). We skip
1388 		 * mlocking such pages.
1389 		 *
1390 		 * For file THP:
1391 		 *
1392 		 * We can expect PageDoubleMap() to be stable under page lock:
1393 		 * for file pages we set it in page_add_file_rmap(), which
1394 		 * requires page to be locked.
1395 		 */
1396 
1397 		if (PageAnon(page) && compound_mapcount(page) != 1)
1398 			goto skip_mlock;
1399 		if (PageDoubleMap(page) || !page->mapping)
1400 			goto skip_mlock;
1401 		if (!trylock_page(page))
1402 			goto skip_mlock;
1403 		if (page->mapping && !PageDoubleMap(page))
1404 			mlock_vma_page(page);
1405 		unlock_page(page);
1406 	}
1407 skip_mlock:
1408 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1409 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1410 
1411 out:
1412 	return page;
1413 }
1414 
1415 /* NUMA hinting page fault entry point for trans huge pmds */
1416 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1417 {
1418 	struct vm_area_struct *vma = vmf->vma;
1419 	struct anon_vma *anon_vma = NULL;
1420 	struct page *page;
1421 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1422 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1423 	int target_nid, last_cpupid = -1;
1424 	bool page_locked;
1425 	bool migrated = false;
1426 	bool was_writable;
1427 	int flags = 0;
1428 
1429 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1430 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1431 		goto out_unlock;
1432 
1433 	/*
1434 	 * If there are potential migrations, wait for completion and retry
1435 	 * without disrupting NUMA hinting information. Do not relock and
1436 	 * check_same as the page may no longer be mapped.
1437 	 */
1438 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1439 		page = pmd_page(*vmf->pmd);
1440 		if (!get_page_unless_zero(page))
1441 			goto out_unlock;
1442 		spin_unlock(vmf->ptl);
1443 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1444 		goto out;
1445 	}
1446 
1447 	page = pmd_page(pmd);
1448 	BUG_ON(is_huge_zero_page(page));
1449 	page_nid = page_to_nid(page);
1450 	last_cpupid = page_cpupid_last(page);
1451 	count_vm_numa_event(NUMA_HINT_FAULTS);
1452 	if (page_nid == this_nid) {
1453 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1454 		flags |= TNF_FAULT_LOCAL;
1455 	}
1456 
1457 	/* See similar comment in do_numa_page for explanation */
1458 	if (!pmd_savedwrite(pmd))
1459 		flags |= TNF_NO_GROUP;
1460 
1461 	/*
1462 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1463 	 * page_table_lock if at all possible
1464 	 */
1465 	page_locked = trylock_page(page);
1466 	target_nid = mpol_misplaced(page, vma, haddr);
1467 	if (target_nid == NUMA_NO_NODE) {
1468 		/* If the page was locked, there are no parallel migrations */
1469 		if (page_locked)
1470 			goto clear_pmdnuma;
1471 	}
1472 
1473 	/* Migration could have started since the pmd_trans_migrating check */
1474 	if (!page_locked) {
1475 		page_nid = NUMA_NO_NODE;
1476 		if (!get_page_unless_zero(page))
1477 			goto out_unlock;
1478 		spin_unlock(vmf->ptl);
1479 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1480 		goto out;
1481 	}
1482 
1483 	/*
1484 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1485 	 * to serialises splits
1486 	 */
1487 	get_page(page);
1488 	spin_unlock(vmf->ptl);
1489 	anon_vma = page_lock_anon_vma_read(page);
1490 
1491 	/* Confirm the PMD did not change while page_table_lock was released */
1492 	spin_lock(vmf->ptl);
1493 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1494 		unlock_page(page);
1495 		put_page(page);
1496 		page_nid = NUMA_NO_NODE;
1497 		goto out_unlock;
1498 	}
1499 
1500 	/* Bail if we fail to protect against THP splits for any reason */
1501 	if (unlikely(!anon_vma)) {
1502 		put_page(page);
1503 		page_nid = NUMA_NO_NODE;
1504 		goto clear_pmdnuma;
1505 	}
1506 
1507 	/*
1508 	 * Since we took the NUMA fault, we must have observed the !accessible
1509 	 * bit. Make sure all other CPUs agree with that, to avoid them
1510 	 * modifying the page we're about to migrate.
1511 	 *
1512 	 * Must be done under PTL such that we'll observe the relevant
1513 	 * inc_tlb_flush_pending().
1514 	 *
1515 	 * We are not sure a pending tlb flush here is for a huge page
1516 	 * mapping or not. Hence use the tlb range variant
1517 	 */
1518 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1519 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1520 		/*
1521 		 * change_huge_pmd() released the pmd lock before
1522 		 * invalidating the secondary MMUs sharing the primary
1523 		 * MMU pagetables (with ->invalidate_range()). The
1524 		 * mmu_notifier_invalidate_range_end() (which
1525 		 * internally calls ->invalidate_range()) in
1526 		 * change_pmd_range() will run after us, so we can't
1527 		 * rely on it here and we need an explicit invalidate.
1528 		 */
1529 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1530 					      haddr + HPAGE_PMD_SIZE);
1531 	}
1532 
1533 	/*
1534 	 * Migrate the THP to the requested node, returns with page unlocked
1535 	 * and access rights restored.
1536 	 */
1537 	spin_unlock(vmf->ptl);
1538 
1539 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1540 				vmf->pmd, pmd, vmf->address, page, target_nid);
1541 	if (migrated) {
1542 		flags |= TNF_MIGRATED;
1543 		page_nid = target_nid;
1544 	} else
1545 		flags |= TNF_MIGRATE_FAIL;
1546 
1547 	goto out;
1548 clear_pmdnuma:
1549 	BUG_ON(!PageLocked(page));
1550 	was_writable = pmd_savedwrite(pmd);
1551 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1552 	pmd = pmd_mkyoung(pmd);
1553 	if (was_writable)
1554 		pmd = pmd_mkwrite(pmd);
1555 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1556 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1557 	unlock_page(page);
1558 out_unlock:
1559 	spin_unlock(vmf->ptl);
1560 
1561 out:
1562 	if (anon_vma)
1563 		page_unlock_anon_vma_read(anon_vma);
1564 
1565 	if (page_nid != NUMA_NO_NODE)
1566 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1567 				flags);
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Return true if we do MADV_FREE successfully on entire pmd page.
1574  * Otherwise, return false.
1575  */
1576 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1577 		pmd_t *pmd, unsigned long addr, unsigned long next)
1578 {
1579 	spinlock_t *ptl;
1580 	pmd_t orig_pmd;
1581 	struct page *page;
1582 	struct mm_struct *mm = tlb->mm;
1583 	bool ret = false;
1584 
1585 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1586 
1587 	ptl = pmd_trans_huge_lock(pmd, vma);
1588 	if (!ptl)
1589 		goto out_unlocked;
1590 
1591 	orig_pmd = *pmd;
1592 	if (is_huge_zero_pmd(orig_pmd))
1593 		goto out;
1594 
1595 	if (unlikely(!pmd_present(orig_pmd))) {
1596 		VM_BUG_ON(thp_migration_supported() &&
1597 				  !is_pmd_migration_entry(orig_pmd));
1598 		goto out;
1599 	}
1600 
1601 	page = pmd_page(orig_pmd);
1602 	/*
1603 	 * If other processes are mapping this page, we couldn't discard
1604 	 * the page unless they all do MADV_FREE so let's skip the page.
1605 	 */
1606 	if (page_mapcount(page) != 1)
1607 		goto out;
1608 
1609 	if (!trylock_page(page))
1610 		goto out;
1611 
1612 	/*
1613 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1614 	 * will deactivate only them.
1615 	 */
1616 	if (next - addr != HPAGE_PMD_SIZE) {
1617 		get_page(page);
1618 		spin_unlock(ptl);
1619 		split_huge_page(page);
1620 		unlock_page(page);
1621 		put_page(page);
1622 		goto out_unlocked;
1623 	}
1624 
1625 	if (PageDirty(page))
1626 		ClearPageDirty(page);
1627 	unlock_page(page);
1628 
1629 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1630 		pmdp_invalidate(vma, addr, pmd);
1631 		orig_pmd = pmd_mkold(orig_pmd);
1632 		orig_pmd = pmd_mkclean(orig_pmd);
1633 
1634 		set_pmd_at(mm, addr, pmd, orig_pmd);
1635 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1636 	}
1637 
1638 	mark_page_lazyfree(page);
1639 	ret = true;
1640 out:
1641 	spin_unlock(ptl);
1642 out_unlocked:
1643 	return ret;
1644 }
1645 
1646 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1647 {
1648 	pgtable_t pgtable;
1649 
1650 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1651 	pte_free(mm, pgtable);
1652 	mm_dec_nr_ptes(mm);
1653 }
1654 
1655 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1656 		 pmd_t *pmd, unsigned long addr)
1657 {
1658 	pmd_t orig_pmd;
1659 	spinlock_t *ptl;
1660 
1661 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1662 
1663 	ptl = __pmd_trans_huge_lock(pmd, vma);
1664 	if (!ptl)
1665 		return 0;
1666 	/*
1667 	 * For architectures like ppc64 we look at deposited pgtable
1668 	 * when calling pmdp_huge_get_and_clear. So do the
1669 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1670 	 * operations.
1671 	 */
1672 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1673 						tlb->fullmm);
1674 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1675 	if (vma_is_special_huge(vma)) {
1676 		if (arch_needs_pgtable_deposit())
1677 			zap_deposited_table(tlb->mm, pmd);
1678 		spin_unlock(ptl);
1679 		if (is_huge_zero_pmd(orig_pmd))
1680 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1681 	} else if (is_huge_zero_pmd(orig_pmd)) {
1682 		zap_deposited_table(tlb->mm, pmd);
1683 		spin_unlock(ptl);
1684 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1685 	} else {
1686 		struct page *page = NULL;
1687 		int flush_needed = 1;
1688 
1689 		if (pmd_present(orig_pmd)) {
1690 			page = pmd_page(orig_pmd);
1691 			page_remove_rmap(page, true);
1692 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1693 			VM_BUG_ON_PAGE(!PageHead(page), page);
1694 		} else if (thp_migration_supported()) {
1695 			swp_entry_t entry;
1696 
1697 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1698 			entry = pmd_to_swp_entry(orig_pmd);
1699 			page = pfn_to_page(swp_offset(entry));
1700 			flush_needed = 0;
1701 		} else
1702 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1703 
1704 		if (PageAnon(page)) {
1705 			zap_deposited_table(tlb->mm, pmd);
1706 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1707 		} else {
1708 			if (arch_needs_pgtable_deposit())
1709 				zap_deposited_table(tlb->mm, pmd);
1710 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1711 		}
1712 
1713 		spin_unlock(ptl);
1714 		if (flush_needed)
1715 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1716 	}
1717 	return 1;
1718 }
1719 
1720 #ifndef pmd_move_must_withdraw
1721 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1722 					 spinlock_t *old_pmd_ptl,
1723 					 struct vm_area_struct *vma)
1724 {
1725 	/*
1726 	 * With split pmd lock we also need to move preallocated
1727 	 * PTE page table if new_pmd is on different PMD page table.
1728 	 *
1729 	 * We also don't deposit and withdraw tables for file pages.
1730 	 */
1731 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1732 }
1733 #endif
1734 
1735 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1736 {
1737 #ifdef CONFIG_MEM_SOFT_DIRTY
1738 	if (unlikely(is_pmd_migration_entry(pmd)))
1739 		pmd = pmd_swp_mksoft_dirty(pmd);
1740 	else if (pmd_present(pmd))
1741 		pmd = pmd_mksoft_dirty(pmd);
1742 #endif
1743 	return pmd;
1744 }
1745 
1746 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1747 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1748 {
1749 	spinlock_t *old_ptl, *new_ptl;
1750 	pmd_t pmd;
1751 	struct mm_struct *mm = vma->vm_mm;
1752 	bool force_flush = false;
1753 
1754 	/*
1755 	 * The destination pmd shouldn't be established, free_pgtables()
1756 	 * should have release it.
1757 	 */
1758 	if (WARN_ON(!pmd_none(*new_pmd))) {
1759 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1760 		return false;
1761 	}
1762 
1763 	/*
1764 	 * We don't have to worry about the ordering of src and dst
1765 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1766 	 */
1767 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1768 	if (old_ptl) {
1769 		new_ptl = pmd_lockptr(mm, new_pmd);
1770 		if (new_ptl != old_ptl)
1771 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1772 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1773 		if (pmd_present(pmd))
1774 			force_flush = true;
1775 		VM_BUG_ON(!pmd_none(*new_pmd));
1776 
1777 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1778 			pgtable_t pgtable;
1779 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1780 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1781 		}
1782 		pmd = move_soft_dirty_pmd(pmd);
1783 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1784 		if (force_flush)
1785 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1786 		if (new_ptl != old_ptl)
1787 			spin_unlock(new_ptl);
1788 		spin_unlock(old_ptl);
1789 		return true;
1790 	}
1791 	return false;
1792 }
1793 
1794 /*
1795  * Returns
1796  *  - 0 if PMD could not be locked
1797  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1798  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1799  */
1800 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1801 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1802 {
1803 	struct mm_struct *mm = vma->vm_mm;
1804 	spinlock_t *ptl;
1805 	pmd_t entry;
1806 	bool preserve_write;
1807 	int ret;
1808 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1809 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1810 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1811 
1812 	ptl = __pmd_trans_huge_lock(pmd, vma);
1813 	if (!ptl)
1814 		return 0;
1815 
1816 	preserve_write = prot_numa && pmd_write(*pmd);
1817 	ret = 1;
1818 
1819 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1820 	if (is_swap_pmd(*pmd)) {
1821 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1822 
1823 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1824 		if (is_write_migration_entry(entry)) {
1825 			pmd_t newpmd;
1826 			/*
1827 			 * A protection check is difficult so
1828 			 * just be safe and disable write
1829 			 */
1830 			make_migration_entry_read(&entry);
1831 			newpmd = swp_entry_to_pmd(entry);
1832 			if (pmd_swp_soft_dirty(*pmd))
1833 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1834 			set_pmd_at(mm, addr, pmd, newpmd);
1835 		}
1836 		goto unlock;
1837 	}
1838 #endif
1839 
1840 	/*
1841 	 * Avoid trapping faults against the zero page. The read-only
1842 	 * data is likely to be read-cached on the local CPU and
1843 	 * local/remote hits to the zero page are not interesting.
1844 	 */
1845 	if (prot_numa && is_huge_zero_pmd(*pmd))
1846 		goto unlock;
1847 
1848 	if (prot_numa && pmd_protnone(*pmd))
1849 		goto unlock;
1850 
1851 	/*
1852 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1853 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1854 	 * which is also under mmap_read_lock(mm):
1855 	 *
1856 	 *	CPU0:				CPU1:
1857 	 *				change_huge_pmd(prot_numa=1)
1858 	 *				 pmdp_huge_get_and_clear_notify()
1859 	 * madvise_dontneed()
1860 	 *  zap_pmd_range()
1861 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1862 	 *   // skip the pmd
1863 	 *				 set_pmd_at();
1864 	 *				 // pmd is re-established
1865 	 *
1866 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1867 	 * which may break userspace.
1868 	 *
1869 	 * pmdp_invalidate() is required to make sure we don't miss
1870 	 * dirty/young flags set by hardware.
1871 	 */
1872 	entry = pmdp_invalidate(vma, addr, pmd);
1873 
1874 	entry = pmd_modify(entry, newprot);
1875 	if (preserve_write)
1876 		entry = pmd_mk_savedwrite(entry);
1877 	if (uffd_wp) {
1878 		entry = pmd_wrprotect(entry);
1879 		entry = pmd_mkuffd_wp(entry);
1880 	} else if (uffd_wp_resolve) {
1881 		/*
1882 		 * Leave the write bit to be handled by PF interrupt
1883 		 * handler, then things like COW could be properly
1884 		 * handled.
1885 		 */
1886 		entry = pmd_clear_uffd_wp(entry);
1887 	}
1888 	ret = HPAGE_PMD_NR;
1889 	set_pmd_at(mm, addr, pmd, entry);
1890 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1891 unlock:
1892 	spin_unlock(ptl);
1893 	return ret;
1894 }
1895 
1896 /*
1897  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898  *
1899  * Note that if it returns page table lock pointer, this routine returns without
1900  * unlocking page table lock. So callers must unlock it.
1901  */
1902 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903 {
1904 	spinlock_t *ptl;
1905 	ptl = pmd_lock(vma->vm_mm, pmd);
1906 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1907 			pmd_devmap(*pmd)))
1908 		return ptl;
1909 	spin_unlock(ptl);
1910 	return NULL;
1911 }
1912 
1913 /*
1914  * Returns true if a given pud maps a thp, false otherwise.
1915  *
1916  * Note that if it returns true, this routine returns without unlocking page
1917  * table lock. So callers must unlock it.
1918  */
1919 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920 {
1921 	spinlock_t *ptl;
1922 
1923 	ptl = pud_lock(vma->vm_mm, pud);
1924 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1925 		return ptl;
1926 	spin_unlock(ptl);
1927 	return NULL;
1928 }
1929 
1930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 		 pud_t *pud, unsigned long addr)
1933 {
1934 	spinlock_t *ptl;
1935 
1936 	ptl = __pud_trans_huge_lock(pud, vma);
1937 	if (!ptl)
1938 		return 0;
1939 	/*
1940 	 * For architectures like ppc64 we look at deposited pgtable
1941 	 * when calling pudp_huge_get_and_clear. So do the
1942 	 * pgtable_trans_huge_withdraw after finishing pudp related
1943 	 * operations.
1944 	 */
1945 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1946 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1947 	if (vma_is_special_huge(vma)) {
1948 		spin_unlock(ptl);
1949 		/* No zero page support yet */
1950 	} else {
1951 		/* No support for anonymous PUD pages yet */
1952 		BUG();
1953 	}
1954 	return 1;
1955 }
1956 
1957 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1958 		unsigned long haddr)
1959 {
1960 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1961 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1962 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1963 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1964 
1965 	count_vm_event(THP_SPLIT_PUD);
1966 
1967 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1968 }
1969 
1970 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1971 		unsigned long address)
1972 {
1973 	spinlock_t *ptl;
1974 	struct mmu_notifier_range range;
1975 
1976 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1977 				address & HPAGE_PUD_MASK,
1978 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1979 	mmu_notifier_invalidate_range_start(&range);
1980 	ptl = pud_lock(vma->vm_mm, pud);
1981 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1982 		goto out;
1983 	__split_huge_pud_locked(vma, pud, range.start);
1984 
1985 out:
1986 	spin_unlock(ptl);
1987 	/*
1988 	 * No need to double call mmu_notifier->invalidate_range() callback as
1989 	 * the above pudp_huge_clear_flush_notify() did already call it.
1990 	 */
1991 	mmu_notifier_invalidate_range_only_end(&range);
1992 }
1993 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1994 
1995 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1996 		unsigned long haddr, pmd_t *pmd)
1997 {
1998 	struct mm_struct *mm = vma->vm_mm;
1999 	pgtable_t pgtable;
2000 	pmd_t _pmd;
2001 	int i;
2002 
2003 	/*
2004 	 * Leave pmd empty until pte is filled note that it is fine to delay
2005 	 * notification until mmu_notifier_invalidate_range_end() as we are
2006 	 * replacing a zero pmd write protected page with a zero pte write
2007 	 * protected page.
2008 	 *
2009 	 * See Documentation/vm/mmu_notifier.rst
2010 	 */
2011 	pmdp_huge_clear_flush(vma, haddr, pmd);
2012 
2013 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2014 	pmd_populate(mm, &_pmd, pgtable);
2015 
2016 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2017 		pte_t *pte, entry;
2018 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2019 		entry = pte_mkspecial(entry);
2020 		pte = pte_offset_map(&_pmd, haddr);
2021 		VM_BUG_ON(!pte_none(*pte));
2022 		set_pte_at(mm, haddr, pte, entry);
2023 		pte_unmap(pte);
2024 	}
2025 	smp_wmb(); /* make pte visible before pmd */
2026 	pmd_populate(mm, pmd, pgtable);
2027 }
2028 
2029 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2030 		unsigned long haddr, bool freeze)
2031 {
2032 	struct mm_struct *mm = vma->vm_mm;
2033 	struct page *page;
2034 	pgtable_t pgtable;
2035 	pmd_t old_pmd, _pmd;
2036 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2037 	unsigned long addr;
2038 	int i;
2039 
2040 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2041 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2042 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2043 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2044 				&& !pmd_devmap(*pmd));
2045 
2046 	count_vm_event(THP_SPLIT_PMD);
2047 
2048 	if (!vma_is_anonymous(vma)) {
2049 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2050 		/*
2051 		 * We are going to unmap this huge page. So
2052 		 * just go ahead and zap it
2053 		 */
2054 		if (arch_needs_pgtable_deposit())
2055 			zap_deposited_table(mm, pmd);
2056 		if (vma_is_special_huge(vma))
2057 			return;
2058 		page = pmd_page(_pmd);
2059 		if (!PageDirty(page) && pmd_dirty(_pmd))
2060 			set_page_dirty(page);
2061 		if (!PageReferenced(page) && pmd_young(_pmd))
2062 			SetPageReferenced(page);
2063 		page_remove_rmap(page, true);
2064 		put_page(page);
2065 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2066 		return;
2067 	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2068 		/*
2069 		 * FIXME: Do we want to invalidate secondary mmu by calling
2070 		 * mmu_notifier_invalidate_range() see comments below inside
2071 		 * __split_huge_pmd() ?
2072 		 *
2073 		 * We are going from a zero huge page write protected to zero
2074 		 * small page also write protected so it does not seems useful
2075 		 * to invalidate secondary mmu at this time.
2076 		 */
2077 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2078 	}
2079 
2080 	/*
2081 	 * Up to this point the pmd is present and huge and userland has the
2082 	 * whole access to the hugepage during the split (which happens in
2083 	 * place). If we overwrite the pmd with the not-huge version pointing
2084 	 * to the pte here (which of course we could if all CPUs were bug
2085 	 * free), userland could trigger a small page size TLB miss on the
2086 	 * small sized TLB while the hugepage TLB entry is still established in
2087 	 * the huge TLB. Some CPU doesn't like that.
2088 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2089 	 * 383 on page 105. Intel should be safe but is also warns that it's
2090 	 * only safe if the permission and cache attributes of the two entries
2091 	 * loaded in the two TLB is identical (which should be the case here).
2092 	 * But it is generally safer to never allow small and huge TLB entries
2093 	 * for the same virtual address to be loaded simultaneously. So instead
2094 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2095 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2096 	 * must remain set at all times on the pmd until the split is complete
2097 	 * for this pmd), then we flush the SMP TLB and finally we write the
2098 	 * non-huge version of the pmd entry with pmd_populate.
2099 	 */
2100 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2101 
2102 	pmd_migration = is_pmd_migration_entry(old_pmd);
2103 	if (unlikely(pmd_migration)) {
2104 		swp_entry_t entry;
2105 
2106 		entry = pmd_to_swp_entry(old_pmd);
2107 		page = pfn_to_page(swp_offset(entry));
2108 		write = is_write_migration_entry(entry);
2109 		young = false;
2110 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2111 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2112 	} else {
2113 		page = pmd_page(old_pmd);
2114 		if (pmd_dirty(old_pmd))
2115 			SetPageDirty(page);
2116 		write = pmd_write(old_pmd);
2117 		young = pmd_young(old_pmd);
2118 		soft_dirty = pmd_soft_dirty(old_pmd);
2119 		uffd_wp = pmd_uffd_wp(old_pmd);
2120 	}
2121 	VM_BUG_ON_PAGE(!page_count(page), page);
2122 	page_ref_add(page, HPAGE_PMD_NR - 1);
2123 
2124 	/*
2125 	 * Withdraw the table only after we mark the pmd entry invalid.
2126 	 * This's critical for some architectures (Power).
2127 	 */
2128 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2129 	pmd_populate(mm, &_pmd, pgtable);
2130 
2131 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2132 		pte_t entry, *pte;
2133 		/*
2134 		 * Note that NUMA hinting access restrictions are not
2135 		 * transferred to avoid any possibility of altering
2136 		 * permissions across VMAs.
2137 		 */
2138 		if (freeze || pmd_migration) {
2139 			swp_entry_t swp_entry;
2140 			swp_entry = make_migration_entry(page + i, write);
2141 			entry = swp_entry_to_pte(swp_entry);
2142 			if (soft_dirty)
2143 				entry = pte_swp_mksoft_dirty(entry);
2144 			if (uffd_wp)
2145 				entry = pte_swp_mkuffd_wp(entry);
2146 		} else {
2147 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2148 			entry = maybe_mkwrite(entry, vma);
2149 			if (!write)
2150 				entry = pte_wrprotect(entry);
2151 			if (!young)
2152 				entry = pte_mkold(entry);
2153 			if (soft_dirty)
2154 				entry = pte_mksoft_dirty(entry);
2155 			if (uffd_wp)
2156 				entry = pte_mkuffd_wp(entry);
2157 		}
2158 		pte = pte_offset_map(&_pmd, addr);
2159 		BUG_ON(!pte_none(*pte));
2160 		set_pte_at(mm, addr, pte, entry);
2161 		if (!pmd_migration)
2162 			atomic_inc(&page[i]._mapcount);
2163 		pte_unmap(pte);
2164 	}
2165 
2166 	if (!pmd_migration) {
2167 		/*
2168 		 * Set PG_double_map before dropping compound_mapcount to avoid
2169 		 * false-negative page_mapped().
2170 		 */
2171 		if (compound_mapcount(page) > 1 &&
2172 		    !TestSetPageDoubleMap(page)) {
2173 			for (i = 0; i < HPAGE_PMD_NR; i++)
2174 				atomic_inc(&page[i]._mapcount);
2175 		}
2176 
2177 		lock_page_memcg(page);
2178 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2179 			/* Last compound_mapcount is gone. */
2180 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2181 						-HPAGE_PMD_NR);
2182 			if (TestClearPageDoubleMap(page)) {
2183 				/* No need in mapcount reference anymore */
2184 				for (i = 0; i < HPAGE_PMD_NR; i++)
2185 					atomic_dec(&page[i]._mapcount);
2186 			}
2187 		}
2188 		unlock_page_memcg(page);
2189 	}
2190 
2191 	smp_wmb(); /* make pte visible before pmd */
2192 	pmd_populate(mm, pmd, pgtable);
2193 
2194 	if (freeze) {
2195 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2196 			page_remove_rmap(page + i, false);
2197 			put_page(page + i);
2198 		}
2199 	}
2200 }
2201 
2202 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2203 		unsigned long address, bool freeze, struct page *page)
2204 {
2205 	spinlock_t *ptl;
2206 	struct mmu_notifier_range range;
2207 	bool do_unlock_page = false;
2208 	pmd_t _pmd;
2209 
2210 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2211 				address & HPAGE_PMD_MASK,
2212 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2213 	mmu_notifier_invalidate_range_start(&range);
2214 	ptl = pmd_lock(vma->vm_mm, pmd);
2215 
2216 	/*
2217 	 * If caller asks to setup a migration entries, we need a page to check
2218 	 * pmd against. Otherwise we can end up replacing wrong page.
2219 	 */
2220 	VM_BUG_ON(freeze && !page);
2221 	if (page) {
2222 		VM_WARN_ON_ONCE(!PageLocked(page));
2223 		if (page != pmd_page(*pmd))
2224 			goto out;
2225 	}
2226 
2227 repeat:
2228 	if (pmd_trans_huge(*pmd)) {
2229 		if (!page) {
2230 			page = pmd_page(*pmd);
2231 			/*
2232 			 * An anonymous page must be locked, to ensure that a
2233 			 * concurrent reuse_swap_page() sees stable mapcount;
2234 			 * but reuse_swap_page() is not used on shmem or file,
2235 			 * and page lock must not be taken when zap_pmd_range()
2236 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2237 			 */
2238 			if (PageAnon(page)) {
2239 				if (unlikely(!trylock_page(page))) {
2240 					get_page(page);
2241 					_pmd = *pmd;
2242 					spin_unlock(ptl);
2243 					lock_page(page);
2244 					spin_lock(ptl);
2245 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2246 						unlock_page(page);
2247 						put_page(page);
2248 						page = NULL;
2249 						goto repeat;
2250 					}
2251 					put_page(page);
2252 				}
2253 				do_unlock_page = true;
2254 			}
2255 		}
2256 		if (PageMlocked(page))
2257 			clear_page_mlock(page);
2258 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2259 		goto out;
2260 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2261 out:
2262 	spin_unlock(ptl);
2263 	if (do_unlock_page)
2264 		unlock_page(page);
2265 	/*
2266 	 * No need to double call mmu_notifier->invalidate_range() callback.
2267 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2268 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2269 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2270 	 *    fault will trigger a flush_notify before pointing to a new page
2271 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2272 	 *    page in the meantime)
2273 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2274 	 *     to invalidate secondary tlb entry they are all still valid.
2275 	 *     any further changes to individual pte will notify. So no need
2276 	 *     to call mmu_notifier->invalidate_range()
2277 	 */
2278 	mmu_notifier_invalidate_range_only_end(&range);
2279 }
2280 
2281 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2282 		bool freeze, struct page *page)
2283 {
2284 	pgd_t *pgd;
2285 	p4d_t *p4d;
2286 	pud_t *pud;
2287 	pmd_t *pmd;
2288 
2289 	pgd = pgd_offset(vma->vm_mm, address);
2290 	if (!pgd_present(*pgd))
2291 		return;
2292 
2293 	p4d = p4d_offset(pgd, address);
2294 	if (!p4d_present(*p4d))
2295 		return;
2296 
2297 	pud = pud_offset(p4d, address);
2298 	if (!pud_present(*pud))
2299 		return;
2300 
2301 	pmd = pmd_offset(pud, address);
2302 
2303 	__split_huge_pmd(vma, pmd, address, freeze, page);
2304 }
2305 
2306 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2307 			     unsigned long start,
2308 			     unsigned long end,
2309 			     long adjust_next)
2310 {
2311 	/*
2312 	 * If the new start address isn't hpage aligned and it could
2313 	 * previously contain an hugepage: check if we need to split
2314 	 * an huge pmd.
2315 	 */
2316 	if (start & ~HPAGE_PMD_MASK &&
2317 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2318 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2319 		split_huge_pmd_address(vma, start, false, NULL);
2320 
2321 	/*
2322 	 * If the new end address isn't hpage aligned and it could
2323 	 * previously contain an hugepage: check if we need to split
2324 	 * an huge pmd.
2325 	 */
2326 	if (end & ~HPAGE_PMD_MASK &&
2327 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2328 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2329 		split_huge_pmd_address(vma, end, false, NULL);
2330 
2331 	/*
2332 	 * If we're also updating the vma->vm_next->vm_start, if the new
2333 	 * vm_next->vm_start isn't hpage aligned and it could previously
2334 	 * contain an hugepage: check if we need to split an huge pmd.
2335 	 */
2336 	if (adjust_next > 0) {
2337 		struct vm_area_struct *next = vma->vm_next;
2338 		unsigned long nstart = next->vm_start;
2339 		nstart += adjust_next;
2340 		if (nstart & ~HPAGE_PMD_MASK &&
2341 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2342 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2343 			split_huge_pmd_address(next, nstart, false, NULL);
2344 	}
2345 }
2346 
2347 static void unmap_page(struct page *page)
2348 {
2349 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2350 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2351 	bool unmap_success;
2352 
2353 	VM_BUG_ON_PAGE(!PageHead(page), page);
2354 
2355 	if (PageAnon(page))
2356 		ttu_flags |= TTU_SPLIT_FREEZE;
2357 
2358 	unmap_success = try_to_unmap(page, ttu_flags);
2359 	VM_BUG_ON_PAGE(!unmap_success, page);
2360 }
2361 
2362 static void remap_page(struct page *page, unsigned int nr)
2363 {
2364 	int i;
2365 	if (PageTransHuge(page)) {
2366 		remove_migration_ptes(page, page, true);
2367 	} else {
2368 		for (i = 0; i < nr; i++)
2369 			remove_migration_ptes(page + i, page + i, true);
2370 	}
2371 }
2372 
2373 static void lru_add_page_tail(struct page *head, struct page *tail,
2374 		struct lruvec *lruvec, struct list_head *list)
2375 {
2376 	VM_BUG_ON_PAGE(!PageHead(head), head);
2377 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2378 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2379 	lockdep_assert_held(&lruvec->lru_lock);
2380 
2381 	if (list) {
2382 		/* page reclaim is reclaiming a huge page */
2383 		VM_WARN_ON(PageLRU(head));
2384 		get_page(tail);
2385 		list_add_tail(&tail->lru, list);
2386 	} else {
2387 		/* head is still on lru (and we have it frozen) */
2388 		VM_WARN_ON(!PageLRU(head));
2389 		SetPageLRU(tail);
2390 		list_add_tail(&tail->lru, &head->lru);
2391 	}
2392 }
2393 
2394 static void __split_huge_page_tail(struct page *head, int tail,
2395 		struct lruvec *lruvec, struct list_head *list)
2396 {
2397 	struct page *page_tail = head + tail;
2398 
2399 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2400 
2401 	/*
2402 	 * Clone page flags before unfreezing refcount.
2403 	 *
2404 	 * After successful get_page_unless_zero() might follow flags change,
2405 	 * for example lock_page() which set PG_waiters.
2406 	 */
2407 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2408 	page_tail->flags |= (head->flags &
2409 			((1L << PG_referenced) |
2410 			 (1L << PG_swapbacked) |
2411 			 (1L << PG_swapcache) |
2412 			 (1L << PG_mlocked) |
2413 			 (1L << PG_uptodate) |
2414 			 (1L << PG_active) |
2415 			 (1L << PG_workingset) |
2416 			 (1L << PG_locked) |
2417 			 (1L << PG_unevictable) |
2418 #ifdef CONFIG_64BIT
2419 			 (1L << PG_arch_2) |
2420 #endif
2421 			 (1L << PG_dirty)));
2422 
2423 	/* ->mapping in first tail page is compound_mapcount */
2424 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2425 			page_tail);
2426 	page_tail->mapping = head->mapping;
2427 	page_tail->index = head->index + tail;
2428 
2429 	/* Page flags must be visible before we make the page non-compound. */
2430 	smp_wmb();
2431 
2432 	/*
2433 	 * Clear PageTail before unfreezing page refcount.
2434 	 *
2435 	 * After successful get_page_unless_zero() might follow put_page()
2436 	 * which needs correct compound_head().
2437 	 */
2438 	clear_compound_head(page_tail);
2439 
2440 	/* Finally unfreeze refcount. Additional reference from page cache. */
2441 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2442 					  PageSwapCache(head)));
2443 
2444 	if (page_is_young(head))
2445 		set_page_young(page_tail);
2446 	if (page_is_idle(head))
2447 		set_page_idle(page_tail);
2448 
2449 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2450 
2451 	/*
2452 	 * always add to the tail because some iterators expect new
2453 	 * pages to show after the currently processed elements - e.g.
2454 	 * migrate_pages
2455 	 */
2456 	lru_add_page_tail(head, page_tail, lruvec, list);
2457 }
2458 
2459 static void __split_huge_page(struct page *page, struct list_head *list,
2460 		pgoff_t end)
2461 {
2462 	struct page *head = compound_head(page);
2463 	struct lruvec *lruvec;
2464 	struct address_space *swap_cache = NULL;
2465 	unsigned long offset = 0;
2466 	unsigned int nr = thp_nr_pages(head);
2467 	int i;
2468 
2469 	/* complete memcg works before add pages to LRU */
2470 	split_page_memcg(head, nr);
2471 
2472 	if (PageAnon(head) && PageSwapCache(head)) {
2473 		swp_entry_t entry = { .val = page_private(head) };
2474 
2475 		offset = swp_offset(entry);
2476 		swap_cache = swap_address_space(entry);
2477 		xa_lock(&swap_cache->i_pages);
2478 	}
2479 
2480 	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2481 	lruvec = lock_page_lruvec(head);
2482 
2483 	for (i = nr - 1; i >= 1; i--) {
2484 		__split_huge_page_tail(head, i, lruvec, list);
2485 		/* Some pages can be beyond i_size: drop them from page cache */
2486 		if (head[i].index >= end) {
2487 			ClearPageDirty(head + i);
2488 			__delete_from_page_cache(head + i, NULL);
2489 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2490 				shmem_uncharge(head->mapping->host, 1);
2491 			put_page(head + i);
2492 		} else if (!PageAnon(page)) {
2493 			__xa_store(&head->mapping->i_pages, head[i].index,
2494 					head + i, 0);
2495 		} else if (swap_cache) {
2496 			__xa_store(&swap_cache->i_pages, offset + i,
2497 					head + i, 0);
2498 		}
2499 	}
2500 
2501 	ClearPageCompound(head);
2502 	unlock_page_lruvec(lruvec);
2503 	/* Caller disabled irqs, so they are still disabled here */
2504 
2505 	split_page_owner(head, nr);
2506 
2507 	/* See comment in __split_huge_page_tail() */
2508 	if (PageAnon(head)) {
2509 		/* Additional pin to swap cache */
2510 		if (PageSwapCache(head)) {
2511 			page_ref_add(head, 2);
2512 			xa_unlock(&swap_cache->i_pages);
2513 		} else {
2514 			page_ref_inc(head);
2515 		}
2516 	} else {
2517 		/* Additional pin to page cache */
2518 		page_ref_add(head, 2);
2519 		xa_unlock(&head->mapping->i_pages);
2520 	}
2521 	local_irq_enable();
2522 
2523 	remap_page(head, nr);
2524 
2525 	if (PageSwapCache(head)) {
2526 		swp_entry_t entry = { .val = page_private(head) };
2527 
2528 		split_swap_cluster(entry);
2529 	}
2530 
2531 	for (i = 0; i < nr; i++) {
2532 		struct page *subpage = head + i;
2533 		if (subpage == page)
2534 			continue;
2535 		unlock_page(subpage);
2536 
2537 		/*
2538 		 * Subpages may be freed if there wasn't any mapping
2539 		 * like if add_to_swap() is running on a lru page that
2540 		 * had its mapping zapped. And freeing these pages
2541 		 * requires taking the lru_lock so we do the put_page
2542 		 * of the tail pages after the split is complete.
2543 		 */
2544 		put_page(subpage);
2545 	}
2546 }
2547 
2548 int total_mapcount(struct page *page)
2549 {
2550 	int i, compound, nr, ret;
2551 
2552 	VM_BUG_ON_PAGE(PageTail(page), page);
2553 
2554 	if (likely(!PageCompound(page)))
2555 		return atomic_read(&page->_mapcount) + 1;
2556 
2557 	compound = compound_mapcount(page);
2558 	nr = compound_nr(page);
2559 	if (PageHuge(page))
2560 		return compound;
2561 	ret = compound;
2562 	for (i = 0; i < nr; i++)
2563 		ret += atomic_read(&page[i]._mapcount) + 1;
2564 	/* File pages has compound_mapcount included in _mapcount */
2565 	if (!PageAnon(page))
2566 		return ret - compound * nr;
2567 	if (PageDoubleMap(page))
2568 		ret -= nr;
2569 	return ret;
2570 }
2571 
2572 /*
2573  * This calculates accurately how many mappings a transparent hugepage
2574  * has (unlike page_mapcount() which isn't fully accurate). This full
2575  * accuracy is primarily needed to know if copy-on-write faults can
2576  * reuse the page and change the mapping to read-write instead of
2577  * copying them. At the same time this returns the total_mapcount too.
2578  *
2579  * The function returns the highest mapcount any one of the subpages
2580  * has. If the return value is one, even if different processes are
2581  * mapping different subpages of the transparent hugepage, they can
2582  * all reuse it, because each process is reusing a different subpage.
2583  *
2584  * The total_mapcount is instead counting all virtual mappings of the
2585  * subpages. If the total_mapcount is equal to "one", it tells the
2586  * caller all mappings belong to the same "mm" and in turn the
2587  * anon_vma of the transparent hugepage can become the vma->anon_vma
2588  * local one as no other process may be mapping any of the subpages.
2589  *
2590  * It would be more accurate to replace page_mapcount() with
2591  * page_trans_huge_mapcount(), however we only use
2592  * page_trans_huge_mapcount() in the copy-on-write faults where we
2593  * need full accuracy to avoid breaking page pinning, because
2594  * page_trans_huge_mapcount() is slower than page_mapcount().
2595  */
2596 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2597 {
2598 	int i, ret, _total_mapcount, mapcount;
2599 
2600 	/* hugetlbfs shouldn't call it */
2601 	VM_BUG_ON_PAGE(PageHuge(page), page);
2602 
2603 	if (likely(!PageTransCompound(page))) {
2604 		mapcount = atomic_read(&page->_mapcount) + 1;
2605 		if (total_mapcount)
2606 			*total_mapcount = mapcount;
2607 		return mapcount;
2608 	}
2609 
2610 	page = compound_head(page);
2611 
2612 	_total_mapcount = ret = 0;
2613 	for (i = 0; i < thp_nr_pages(page); i++) {
2614 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2615 		ret = max(ret, mapcount);
2616 		_total_mapcount += mapcount;
2617 	}
2618 	if (PageDoubleMap(page)) {
2619 		ret -= 1;
2620 		_total_mapcount -= thp_nr_pages(page);
2621 	}
2622 	mapcount = compound_mapcount(page);
2623 	ret += mapcount;
2624 	_total_mapcount += mapcount;
2625 	if (total_mapcount)
2626 		*total_mapcount = _total_mapcount;
2627 	return ret;
2628 }
2629 
2630 /* Racy check whether the huge page can be split */
2631 bool can_split_huge_page(struct page *page, int *pextra_pins)
2632 {
2633 	int extra_pins;
2634 
2635 	/* Additional pins from page cache */
2636 	if (PageAnon(page))
2637 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2638 	else
2639 		extra_pins = thp_nr_pages(page);
2640 	if (pextra_pins)
2641 		*pextra_pins = extra_pins;
2642 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2643 }
2644 
2645 /*
2646  * This function splits huge page into normal pages. @page can point to any
2647  * subpage of huge page to split. Split doesn't change the position of @page.
2648  *
2649  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2650  * The huge page must be locked.
2651  *
2652  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2653  *
2654  * Both head page and tail pages will inherit mapping, flags, and so on from
2655  * the hugepage.
2656  *
2657  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2658  * they are not mapped.
2659  *
2660  * Returns 0 if the hugepage is split successfully.
2661  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2662  * us.
2663  */
2664 int split_huge_page_to_list(struct page *page, struct list_head *list)
2665 {
2666 	struct page *head = compound_head(page);
2667 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2668 	struct anon_vma *anon_vma = NULL;
2669 	struct address_space *mapping = NULL;
2670 	int count, mapcount, extra_pins, ret;
2671 	pgoff_t end;
2672 
2673 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2674 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2675 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2676 
2677 	if (PageWriteback(head))
2678 		return -EBUSY;
2679 
2680 	if (PageAnon(head)) {
2681 		/*
2682 		 * The caller does not necessarily hold an mmap_lock that would
2683 		 * prevent the anon_vma disappearing so we first we take a
2684 		 * reference to it and then lock the anon_vma for write. This
2685 		 * is similar to page_lock_anon_vma_read except the write lock
2686 		 * is taken to serialise against parallel split or collapse
2687 		 * operations.
2688 		 */
2689 		anon_vma = page_get_anon_vma(head);
2690 		if (!anon_vma) {
2691 			ret = -EBUSY;
2692 			goto out;
2693 		}
2694 		end = -1;
2695 		mapping = NULL;
2696 		anon_vma_lock_write(anon_vma);
2697 	} else {
2698 		mapping = head->mapping;
2699 
2700 		/* Truncated ? */
2701 		if (!mapping) {
2702 			ret = -EBUSY;
2703 			goto out;
2704 		}
2705 
2706 		anon_vma = NULL;
2707 		i_mmap_lock_read(mapping);
2708 
2709 		/*
2710 		 *__split_huge_page() may need to trim off pages beyond EOF:
2711 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 		 * which cannot be nested inside the page tree lock. So note
2713 		 * end now: i_size itself may be changed at any moment, but
2714 		 * head page lock is good enough to serialize the trimming.
2715 		 */
2716 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2717 	}
2718 
2719 	/*
2720 	 * Racy check if we can split the page, before unmap_page() will
2721 	 * split PMDs
2722 	 */
2723 	if (!can_split_huge_page(head, &extra_pins)) {
2724 		ret = -EBUSY;
2725 		goto out_unlock;
2726 	}
2727 
2728 	unmap_page(head);
2729 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2730 
2731 	/* block interrupt reentry in xa_lock and spinlock */
2732 	local_irq_disable();
2733 	if (mapping) {
2734 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2735 
2736 		/*
2737 		 * Check if the head page is present in page cache.
2738 		 * We assume all tail are present too, if head is there.
2739 		 */
2740 		xa_lock(&mapping->i_pages);
2741 		if (xas_load(&xas) != head)
2742 			goto fail;
2743 	}
2744 
2745 	/* Prevent deferred_split_scan() touching ->_refcount */
2746 	spin_lock(&ds_queue->split_queue_lock);
2747 	count = page_count(head);
2748 	mapcount = total_mapcount(head);
2749 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2750 		if (!list_empty(page_deferred_list(head))) {
2751 			ds_queue->split_queue_len--;
2752 			list_del(page_deferred_list(head));
2753 		}
2754 		spin_unlock(&ds_queue->split_queue_lock);
2755 		if (mapping) {
2756 			int nr = thp_nr_pages(head);
2757 
2758 			if (PageSwapBacked(head))
2759 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2760 							-nr);
2761 			else
2762 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2763 							-nr);
2764 		}
2765 
2766 		__split_huge_page(page, list, end);
2767 		ret = 0;
2768 	} else {
2769 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2770 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2771 					mapcount, count);
2772 			if (PageTail(page))
2773 				dump_page(head, NULL);
2774 			dump_page(page, "total_mapcount(head) > 0");
2775 			BUG();
2776 		}
2777 		spin_unlock(&ds_queue->split_queue_lock);
2778 fail:		if (mapping)
2779 			xa_unlock(&mapping->i_pages);
2780 		local_irq_enable();
2781 		remap_page(head, thp_nr_pages(head));
2782 		ret = -EBUSY;
2783 	}
2784 
2785 out_unlock:
2786 	if (anon_vma) {
2787 		anon_vma_unlock_write(anon_vma);
2788 		put_anon_vma(anon_vma);
2789 	}
2790 	if (mapping)
2791 		i_mmap_unlock_read(mapping);
2792 out:
2793 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794 	return ret;
2795 }
2796 
2797 void free_transhuge_page(struct page *page)
2798 {
2799 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800 	unsigned long flags;
2801 
2802 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803 	if (!list_empty(page_deferred_list(page))) {
2804 		ds_queue->split_queue_len--;
2805 		list_del(page_deferred_list(page));
2806 	}
2807 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 	free_compound_page(page);
2809 }
2810 
2811 void deferred_split_huge_page(struct page *page)
2812 {
2813 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2814 #ifdef CONFIG_MEMCG
2815 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2816 #endif
2817 	unsigned long flags;
2818 
2819 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2820 
2821 	/*
2822 	 * The try_to_unmap() in page reclaim path might reach here too,
2823 	 * this may cause a race condition to corrupt deferred split queue.
2824 	 * And, if page reclaim is already handling the same page, it is
2825 	 * unnecessary to handle it again in shrinker.
2826 	 *
2827 	 * Check PageSwapCache to determine if the page is being
2828 	 * handled by page reclaim since THP swap would add the page into
2829 	 * swap cache before calling try_to_unmap().
2830 	 */
2831 	if (PageSwapCache(page))
2832 		return;
2833 
2834 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835 	if (list_empty(page_deferred_list(page))) {
2836 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2838 		ds_queue->split_queue_len++;
2839 #ifdef CONFIG_MEMCG
2840 		if (memcg)
2841 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2842 					       deferred_split_shrinker.id);
2843 #endif
2844 	}
2845 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2846 }
2847 
2848 static unsigned long deferred_split_count(struct shrinker *shrink,
2849 		struct shrink_control *sc)
2850 {
2851 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853 
2854 #ifdef CONFIG_MEMCG
2855 	if (sc->memcg)
2856 		ds_queue = &sc->memcg->deferred_split_queue;
2857 #endif
2858 	return READ_ONCE(ds_queue->split_queue_len);
2859 }
2860 
2861 static unsigned long deferred_split_scan(struct shrinker *shrink,
2862 		struct shrink_control *sc)
2863 {
2864 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866 	unsigned long flags;
2867 	LIST_HEAD(list), *pos, *next;
2868 	struct page *page;
2869 	int split = 0;
2870 
2871 #ifdef CONFIG_MEMCG
2872 	if (sc->memcg)
2873 		ds_queue = &sc->memcg->deferred_split_queue;
2874 #endif
2875 
2876 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877 	/* Take pin on all head pages to avoid freeing them under us */
2878 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2879 		page = list_entry((void *)pos, struct page, mapping);
2880 		page = compound_head(page);
2881 		if (get_page_unless_zero(page)) {
2882 			list_move(page_deferred_list(page), &list);
2883 		} else {
2884 			/* We lost race with put_compound_page() */
2885 			list_del_init(page_deferred_list(page));
2886 			ds_queue->split_queue_len--;
2887 		}
2888 		if (!--sc->nr_to_scan)
2889 			break;
2890 	}
2891 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892 
2893 	list_for_each_safe(pos, next, &list) {
2894 		page = list_entry((void *)pos, struct page, mapping);
2895 		if (!trylock_page(page))
2896 			goto next;
2897 		/* split_huge_page() removes page from list on success */
2898 		if (!split_huge_page(page))
2899 			split++;
2900 		unlock_page(page);
2901 next:
2902 		put_page(page);
2903 	}
2904 
2905 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2906 	list_splice_tail(&list, &ds_queue->split_queue);
2907 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2908 
2909 	/*
2910 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2911 	 * This can happen if pages were freed under us.
2912 	 */
2913 	if (!split && list_empty(&ds_queue->split_queue))
2914 		return SHRINK_STOP;
2915 	return split;
2916 }
2917 
2918 static struct shrinker deferred_split_shrinker = {
2919 	.count_objects = deferred_split_count,
2920 	.scan_objects = deferred_split_scan,
2921 	.seeks = DEFAULT_SEEKS,
2922 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2923 		 SHRINKER_NONSLAB,
2924 };
2925 
2926 #ifdef CONFIG_DEBUG_FS
2927 static int split_huge_pages_set(void *data, u64 val)
2928 {
2929 	struct zone *zone;
2930 	struct page *page;
2931 	unsigned long pfn, max_zone_pfn;
2932 	unsigned long total = 0, split = 0;
2933 
2934 	if (val != 1)
2935 		return -EINVAL;
2936 
2937 	for_each_populated_zone(zone) {
2938 		max_zone_pfn = zone_end_pfn(zone);
2939 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2940 			if (!pfn_valid(pfn))
2941 				continue;
2942 
2943 			page = pfn_to_page(pfn);
2944 			if (!get_page_unless_zero(page))
2945 				continue;
2946 
2947 			if (zone != page_zone(page))
2948 				goto next;
2949 
2950 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2951 				goto next;
2952 
2953 			total++;
2954 			lock_page(page);
2955 			if (!split_huge_page(page))
2956 				split++;
2957 			unlock_page(page);
2958 next:
2959 			put_page(page);
2960 		}
2961 	}
2962 
2963 	pr_info("%lu of %lu THP split\n", split, total);
2964 
2965 	return 0;
2966 }
2967 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2968 		"%llu\n");
2969 
2970 static int __init split_huge_pages_debugfs(void)
2971 {
2972 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2973 			    &split_huge_pages_fops);
2974 	return 0;
2975 }
2976 late_initcall(split_huge_pages_debugfs);
2977 #endif
2978 
2979 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2980 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2981 		struct page *page)
2982 {
2983 	struct vm_area_struct *vma = pvmw->vma;
2984 	struct mm_struct *mm = vma->vm_mm;
2985 	unsigned long address = pvmw->address;
2986 	pmd_t pmdval;
2987 	swp_entry_t entry;
2988 	pmd_t pmdswp;
2989 
2990 	if (!(pvmw->pmd && !pvmw->pte))
2991 		return;
2992 
2993 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2994 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2995 	if (pmd_dirty(pmdval))
2996 		set_page_dirty(page);
2997 	entry = make_migration_entry(page, pmd_write(pmdval));
2998 	pmdswp = swp_entry_to_pmd(entry);
2999 	if (pmd_soft_dirty(pmdval))
3000 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3001 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3002 	page_remove_rmap(page, true);
3003 	put_page(page);
3004 }
3005 
3006 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3007 {
3008 	struct vm_area_struct *vma = pvmw->vma;
3009 	struct mm_struct *mm = vma->vm_mm;
3010 	unsigned long address = pvmw->address;
3011 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3012 	pmd_t pmde;
3013 	swp_entry_t entry;
3014 
3015 	if (!(pvmw->pmd && !pvmw->pte))
3016 		return;
3017 
3018 	entry = pmd_to_swp_entry(*pvmw->pmd);
3019 	get_page(new);
3020 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3021 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3022 		pmde = pmd_mksoft_dirty(pmde);
3023 	if (is_write_migration_entry(entry))
3024 		pmde = maybe_pmd_mkwrite(pmde, vma);
3025 
3026 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3027 	if (PageAnon(new))
3028 		page_add_anon_rmap(new, vma, mmun_start, true);
3029 	else
3030 		page_add_file_rmap(new, true);
3031 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3032 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3033 		mlock_vma_page(new);
3034 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3035 }
3036 #endif
3037