xref: /openbmc/linux/mm/huge_memory.c (revision efe4a1ac)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 
36 #include <asm/tlb.h>
37 #include <asm/pgalloc.h>
38 #include "internal.h"
39 
40 /*
41  * By default transparent hugepage support is disabled in order that avoid
42  * to risk increase the memory footprint of applications without a guaranteed
43  * benefit. When transparent hugepage support is enabled, is for all mappings,
44  * and khugepaged scans all mappings.
45  * Defrag is invoked by khugepaged hugepage allocations and by page faults
46  * for all hugepage allocations.
47  */
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
51 #endif
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54 #endif
55 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
58 
59 static struct shrinker deferred_split_shrinker;
60 
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
63 
64 static struct page *get_huge_zero_page(void)
65 {
66 	struct page *zero_page;
67 retry:
68 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
69 		return READ_ONCE(huge_zero_page);
70 
71 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
72 			HPAGE_PMD_ORDER);
73 	if (!zero_page) {
74 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
75 		return NULL;
76 	}
77 	count_vm_event(THP_ZERO_PAGE_ALLOC);
78 	preempt_disable();
79 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
80 		preempt_enable();
81 		__free_pages(zero_page, compound_order(zero_page));
82 		goto retry;
83 	}
84 
85 	/* We take additional reference here. It will be put back by shrinker */
86 	atomic_set(&huge_zero_refcount, 2);
87 	preempt_enable();
88 	return READ_ONCE(huge_zero_page);
89 }
90 
91 static void put_huge_zero_page(void)
92 {
93 	/*
94 	 * Counter should never go to zero here. Only shrinker can put
95 	 * last reference.
96 	 */
97 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 }
99 
100 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
101 {
102 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
103 		return READ_ONCE(huge_zero_page);
104 
105 	if (!get_huge_zero_page())
106 		return NULL;
107 
108 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
109 		put_huge_zero_page();
110 
111 	return READ_ONCE(huge_zero_page);
112 }
113 
114 void mm_put_huge_zero_page(struct mm_struct *mm)
115 {
116 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
117 		put_huge_zero_page();
118 }
119 
120 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
121 					struct shrink_control *sc)
122 {
123 	/* we can free zero page only if last reference remains */
124 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
125 }
126 
127 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
128 				       struct shrink_control *sc)
129 {
130 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
131 		struct page *zero_page = xchg(&huge_zero_page, NULL);
132 		BUG_ON(zero_page == NULL);
133 		__free_pages(zero_page, compound_order(zero_page));
134 		return HPAGE_PMD_NR;
135 	}
136 
137 	return 0;
138 }
139 
140 static struct shrinker huge_zero_page_shrinker = {
141 	.count_objects = shrink_huge_zero_page_count,
142 	.scan_objects = shrink_huge_zero_page_scan,
143 	.seeks = DEFAULT_SEEKS,
144 };
145 
146 #ifdef CONFIG_SYSFS
147 static ssize_t enabled_show(struct kobject *kobj,
148 			    struct kobj_attribute *attr, char *buf)
149 {
150 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
151 		return sprintf(buf, "[always] madvise never\n");
152 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
153 		return sprintf(buf, "always [madvise] never\n");
154 	else
155 		return sprintf(buf, "always madvise [never]\n");
156 }
157 
158 static ssize_t enabled_store(struct kobject *kobj,
159 			     struct kobj_attribute *attr,
160 			     const char *buf, size_t count)
161 {
162 	ssize_t ret = count;
163 
164 	if (!memcmp("always", buf,
165 		    min(sizeof("always")-1, count))) {
166 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
167 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
168 	} else if (!memcmp("madvise", buf,
169 			   min(sizeof("madvise")-1, count))) {
170 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
171 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
172 	} else if (!memcmp("never", buf,
173 			   min(sizeof("never")-1, count))) {
174 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
175 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
176 	} else
177 		ret = -EINVAL;
178 
179 	if (ret > 0) {
180 		int err = start_stop_khugepaged();
181 		if (err)
182 			ret = err;
183 	}
184 	return ret;
185 }
186 static struct kobj_attribute enabled_attr =
187 	__ATTR(enabled, 0644, enabled_show, enabled_store);
188 
189 ssize_t single_hugepage_flag_show(struct kobject *kobj,
190 				struct kobj_attribute *attr, char *buf,
191 				enum transparent_hugepage_flag flag)
192 {
193 	return sprintf(buf, "%d\n",
194 		       !!test_bit(flag, &transparent_hugepage_flags));
195 }
196 
197 ssize_t single_hugepage_flag_store(struct kobject *kobj,
198 				 struct kobj_attribute *attr,
199 				 const char *buf, size_t count,
200 				 enum transparent_hugepage_flag flag)
201 {
202 	unsigned long value;
203 	int ret;
204 
205 	ret = kstrtoul(buf, 10, &value);
206 	if (ret < 0)
207 		return ret;
208 	if (value > 1)
209 		return -EINVAL;
210 
211 	if (value)
212 		set_bit(flag, &transparent_hugepage_flags);
213 	else
214 		clear_bit(flag, &transparent_hugepage_flags);
215 
216 	return count;
217 }
218 
219 static ssize_t defrag_show(struct kobject *kobj,
220 			   struct kobj_attribute *attr, char *buf)
221 {
222 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
223 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
224 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
225 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
226 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
227 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
228 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
229 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
230 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
231 }
232 
233 static ssize_t defrag_store(struct kobject *kobj,
234 			    struct kobj_attribute *attr,
235 			    const char *buf, size_t count)
236 {
237 	if (!memcmp("always", buf,
238 		    min(sizeof("always")-1, count))) {
239 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
242 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
243 	} else if (!memcmp("defer+madvise", buf,
244 		    min(sizeof("defer+madvise")-1, count))) {
245 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
248 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
249 	} else if (!memcmp("defer", buf,
250 		    min(sizeof("defer")-1, count))) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 	} else if (!memcmp("madvise", buf,
256 			   min(sizeof("madvise")-1, count))) {
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
261 	} else if (!memcmp("never", buf,
262 			   min(sizeof("never")-1, count))) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else
268 		return -EINVAL;
269 
270 	return count;
271 }
272 static struct kobj_attribute defrag_attr =
273 	__ATTR(defrag, 0644, defrag_show, defrag_store);
274 
275 static ssize_t use_zero_page_show(struct kobject *kobj,
276 		struct kobj_attribute *attr, char *buf)
277 {
278 	return single_hugepage_flag_show(kobj, attr, buf,
279 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
280 }
281 static ssize_t use_zero_page_store(struct kobject *kobj,
282 		struct kobj_attribute *attr, const char *buf, size_t count)
283 {
284 	return single_hugepage_flag_store(kobj, attr, buf, count,
285 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
286 }
287 static struct kobj_attribute use_zero_page_attr =
288 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
289 
290 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
291 		struct kobj_attribute *attr, char *buf)
292 {
293 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
294 }
295 static struct kobj_attribute hpage_pmd_size_attr =
296 	__ATTR_RO(hpage_pmd_size);
297 
298 #ifdef CONFIG_DEBUG_VM
299 static ssize_t debug_cow_show(struct kobject *kobj,
300 				struct kobj_attribute *attr, char *buf)
301 {
302 	return single_hugepage_flag_show(kobj, attr, buf,
303 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 }
305 static ssize_t debug_cow_store(struct kobject *kobj,
306 			       struct kobj_attribute *attr,
307 			       const char *buf, size_t count)
308 {
309 	return single_hugepage_flag_store(kobj, attr, buf, count,
310 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 }
312 static struct kobj_attribute debug_cow_attr =
313 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
314 #endif /* CONFIG_DEBUG_VM */
315 
316 static struct attribute *hugepage_attr[] = {
317 	&enabled_attr.attr,
318 	&defrag_attr.attr,
319 	&use_zero_page_attr.attr,
320 	&hpage_pmd_size_attr.attr,
321 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
322 	&shmem_enabled_attr.attr,
323 #endif
324 #ifdef CONFIG_DEBUG_VM
325 	&debug_cow_attr.attr,
326 #endif
327 	NULL,
328 };
329 
330 static struct attribute_group hugepage_attr_group = {
331 	.attrs = hugepage_attr,
332 };
333 
334 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
335 {
336 	int err;
337 
338 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
339 	if (unlikely(!*hugepage_kobj)) {
340 		pr_err("failed to create transparent hugepage kobject\n");
341 		return -ENOMEM;
342 	}
343 
344 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
345 	if (err) {
346 		pr_err("failed to register transparent hugepage group\n");
347 		goto delete_obj;
348 	}
349 
350 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
351 	if (err) {
352 		pr_err("failed to register transparent hugepage group\n");
353 		goto remove_hp_group;
354 	}
355 
356 	return 0;
357 
358 remove_hp_group:
359 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
360 delete_obj:
361 	kobject_put(*hugepage_kobj);
362 	return err;
363 }
364 
365 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
366 {
367 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
368 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
369 	kobject_put(hugepage_kobj);
370 }
371 #else
372 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
373 {
374 	return 0;
375 }
376 
377 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 }
380 #endif /* CONFIG_SYSFS */
381 
382 static int __init hugepage_init(void)
383 {
384 	int err;
385 	struct kobject *hugepage_kobj;
386 
387 	if (!has_transparent_hugepage()) {
388 		transparent_hugepage_flags = 0;
389 		return -EINVAL;
390 	}
391 
392 	/*
393 	 * hugepages can't be allocated by the buddy allocator
394 	 */
395 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
396 	/*
397 	 * we use page->mapping and page->index in second tail page
398 	 * as list_head: assuming THP order >= 2
399 	 */
400 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
401 
402 	err = hugepage_init_sysfs(&hugepage_kobj);
403 	if (err)
404 		goto err_sysfs;
405 
406 	err = khugepaged_init();
407 	if (err)
408 		goto err_slab;
409 
410 	err = register_shrinker(&huge_zero_page_shrinker);
411 	if (err)
412 		goto err_hzp_shrinker;
413 	err = register_shrinker(&deferred_split_shrinker);
414 	if (err)
415 		goto err_split_shrinker;
416 
417 	/*
418 	 * By default disable transparent hugepages on smaller systems,
419 	 * where the extra memory used could hurt more than TLB overhead
420 	 * is likely to save.  The admin can still enable it through /sys.
421 	 */
422 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
423 		transparent_hugepage_flags = 0;
424 		return 0;
425 	}
426 
427 	err = start_stop_khugepaged();
428 	if (err)
429 		goto err_khugepaged;
430 
431 	return 0;
432 err_khugepaged:
433 	unregister_shrinker(&deferred_split_shrinker);
434 err_split_shrinker:
435 	unregister_shrinker(&huge_zero_page_shrinker);
436 err_hzp_shrinker:
437 	khugepaged_destroy();
438 err_slab:
439 	hugepage_exit_sysfs(hugepage_kobj);
440 err_sysfs:
441 	return err;
442 }
443 subsys_initcall(hugepage_init);
444 
445 static int __init setup_transparent_hugepage(char *str)
446 {
447 	int ret = 0;
448 	if (!str)
449 		goto out;
450 	if (!strcmp(str, "always")) {
451 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
452 			&transparent_hugepage_flags);
453 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
454 			  &transparent_hugepage_flags);
455 		ret = 1;
456 	} else if (!strcmp(str, "madvise")) {
457 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 			  &transparent_hugepage_flags);
459 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 			&transparent_hugepage_flags);
461 		ret = 1;
462 	} else if (!strcmp(str, "never")) {
463 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			  &transparent_hugepage_flags);
465 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			  &transparent_hugepage_flags);
467 		ret = 1;
468 	}
469 out:
470 	if (!ret)
471 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
472 	return ret;
473 }
474 __setup("transparent_hugepage=", setup_transparent_hugepage);
475 
476 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
477 {
478 	if (likely(vma->vm_flags & VM_WRITE))
479 		pmd = pmd_mkwrite(pmd);
480 	return pmd;
481 }
482 
483 static inline struct list_head *page_deferred_list(struct page *page)
484 {
485 	/*
486 	 * ->lru in the tail pages is occupied by compound_head.
487 	 * Let's use ->mapping + ->index in the second tail page as list_head.
488 	 */
489 	return (struct list_head *)&page[2].mapping;
490 }
491 
492 void prep_transhuge_page(struct page *page)
493 {
494 	/*
495 	 * we use page->mapping and page->indexlru in second tail page
496 	 * as list_head: assuming THP order >= 2
497 	 */
498 
499 	INIT_LIST_HEAD(page_deferred_list(page));
500 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
501 }
502 
503 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
504 		loff_t off, unsigned long flags, unsigned long size)
505 {
506 	unsigned long addr;
507 	loff_t off_end = off + len;
508 	loff_t off_align = round_up(off, size);
509 	unsigned long len_pad;
510 
511 	if (off_end <= off_align || (off_end - off_align) < size)
512 		return 0;
513 
514 	len_pad = len + size;
515 	if (len_pad < len || (off + len_pad) < off)
516 		return 0;
517 
518 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
519 					      off >> PAGE_SHIFT, flags);
520 	if (IS_ERR_VALUE(addr))
521 		return 0;
522 
523 	addr += (off - addr) & (size - 1);
524 	return addr;
525 }
526 
527 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
528 		unsigned long len, unsigned long pgoff, unsigned long flags)
529 {
530 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
531 
532 	if (addr)
533 		goto out;
534 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
535 		goto out;
536 
537 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
538 	if (addr)
539 		return addr;
540 
541  out:
542 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
543 }
544 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
545 
546 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
547 		gfp_t gfp)
548 {
549 	struct vm_area_struct *vma = vmf->vma;
550 	struct mem_cgroup *memcg;
551 	pgtable_t pgtable;
552 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
553 
554 	VM_BUG_ON_PAGE(!PageCompound(page), page);
555 
556 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
557 		put_page(page);
558 		count_vm_event(THP_FAULT_FALLBACK);
559 		return VM_FAULT_FALLBACK;
560 	}
561 
562 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
563 	if (unlikely(!pgtable)) {
564 		mem_cgroup_cancel_charge(page, memcg, true);
565 		put_page(page);
566 		return VM_FAULT_OOM;
567 	}
568 
569 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
570 	/*
571 	 * The memory barrier inside __SetPageUptodate makes sure that
572 	 * clear_huge_page writes become visible before the set_pmd_at()
573 	 * write.
574 	 */
575 	__SetPageUptodate(page);
576 
577 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
578 	if (unlikely(!pmd_none(*vmf->pmd))) {
579 		spin_unlock(vmf->ptl);
580 		mem_cgroup_cancel_charge(page, memcg, true);
581 		put_page(page);
582 		pte_free(vma->vm_mm, pgtable);
583 	} else {
584 		pmd_t entry;
585 
586 		/* Deliver the page fault to userland */
587 		if (userfaultfd_missing(vma)) {
588 			int ret;
589 
590 			spin_unlock(vmf->ptl);
591 			mem_cgroup_cancel_charge(page, memcg, true);
592 			put_page(page);
593 			pte_free(vma->vm_mm, pgtable);
594 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
595 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
596 			return ret;
597 		}
598 
599 		entry = mk_huge_pmd(page, vma->vm_page_prot);
600 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
601 		page_add_new_anon_rmap(page, vma, haddr, true);
602 		mem_cgroup_commit_charge(page, memcg, false, true);
603 		lru_cache_add_active_or_unevictable(page, vma);
604 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
605 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
606 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
607 		atomic_long_inc(&vma->vm_mm->nr_ptes);
608 		spin_unlock(vmf->ptl);
609 		count_vm_event(THP_FAULT_ALLOC);
610 	}
611 
612 	return 0;
613 }
614 
615 /*
616  * always: directly stall for all thp allocations
617  * defer: wake kswapd and fail if not immediately available
618  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
619  *		  fail if not immediately available
620  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
621  *	    available
622  * never: never stall for any thp allocation
623  */
624 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
625 {
626 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
627 
628 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
629 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
630 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
631 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
632 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
633 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
634 							     __GFP_KSWAPD_RECLAIM);
635 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
636 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
637 							     0);
638 	return GFP_TRANSHUGE_LIGHT;
639 }
640 
641 /* Caller must hold page table lock. */
642 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
643 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
644 		struct page *zero_page)
645 {
646 	pmd_t entry;
647 	if (!pmd_none(*pmd))
648 		return false;
649 	entry = mk_pmd(zero_page, vma->vm_page_prot);
650 	entry = pmd_mkhuge(entry);
651 	if (pgtable)
652 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
653 	set_pmd_at(mm, haddr, pmd, entry);
654 	atomic_long_inc(&mm->nr_ptes);
655 	return true;
656 }
657 
658 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
659 {
660 	struct vm_area_struct *vma = vmf->vma;
661 	gfp_t gfp;
662 	struct page *page;
663 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
664 
665 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
666 		return VM_FAULT_FALLBACK;
667 	if (unlikely(anon_vma_prepare(vma)))
668 		return VM_FAULT_OOM;
669 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
670 		return VM_FAULT_OOM;
671 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
672 			!mm_forbids_zeropage(vma->vm_mm) &&
673 			transparent_hugepage_use_zero_page()) {
674 		pgtable_t pgtable;
675 		struct page *zero_page;
676 		bool set;
677 		int ret;
678 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
679 		if (unlikely(!pgtable))
680 			return VM_FAULT_OOM;
681 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
682 		if (unlikely(!zero_page)) {
683 			pte_free(vma->vm_mm, pgtable);
684 			count_vm_event(THP_FAULT_FALLBACK);
685 			return VM_FAULT_FALLBACK;
686 		}
687 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
688 		ret = 0;
689 		set = false;
690 		if (pmd_none(*vmf->pmd)) {
691 			if (userfaultfd_missing(vma)) {
692 				spin_unlock(vmf->ptl);
693 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
694 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
695 			} else {
696 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
697 						   haddr, vmf->pmd, zero_page);
698 				spin_unlock(vmf->ptl);
699 				set = true;
700 			}
701 		} else
702 			spin_unlock(vmf->ptl);
703 		if (!set)
704 			pte_free(vma->vm_mm, pgtable);
705 		return ret;
706 	}
707 	gfp = alloc_hugepage_direct_gfpmask(vma);
708 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
709 	if (unlikely(!page)) {
710 		count_vm_event(THP_FAULT_FALLBACK);
711 		return VM_FAULT_FALLBACK;
712 	}
713 	prep_transhuge_page(page);
714 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
715 }
716 
717 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
718 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
719 		pgtable_t pgtable)
720 {
721 	struct mm_struct *mm = vma->vm_mm;
722 	pmd_t entry;
723 	spinlock_t *ptl;
724 
725 	ptl = pmd_lock(mm, pmd);
726 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
727 	if (pfn_t_devmap(pfn))
728 		entry = pmd_mkdevmap(entry);
729 	if (write) {
730 		entry = pmd_mkyoung(pmd_mkdirty(entry));
731 		entry = maybe_pmd_mkwrite(entry, vma);
732 	}
733 
734 	if (pgtable) {
735 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
736 		atomic_long_inc(&mm->nr_ptes);
737 	}
738 
739 	set_pmd_at(mm, addr, pmd, entry);
740 	update_mmu_cache_pmd(vma, addr, pmd);
741 	spin_unlock(ptl);
742 }
743 
744 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
745 			pmd_t *pmd, pfn_t pfn, bool write)
746 {
747 	pgprot_t pgprot = vma->vm_page_prot;
748 	pgtable_t pgtable = NULL;
749 	/*
750 	 * If we had pmd_special, we could avoid all these restrictions,
751 	 * but we need to be consistent with PTEs and architectures that
752 	 * can't support a 'special' bit.
753 	 */
754 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
755 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
756 						(VM_PFNMAP|VM_MIXEDMAP));
757 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
758 	BUG_ON(!pfn_t_devmap(pfn));
759 
760 	if (addr < vma->vm_start || addr >= vma->vm_end)
761 		return VM_FAULT_SIGBUS;
762 
763 	if (arch_needs_pgtable_deposit()) {
764 		pgtable = pte_alloc_one(vma->vm_mm, addr);
765 		if (!pgtable)
766 			return VM_FAULT_OOM;
767 	}
768 
769 	track_pfn_insert(vma, &pgprot, pfn);
770 
771 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
772 	return VM_FAULT_NOPAGE;
773 }
774 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
775 
776 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
777 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
778 {
779 	if (likely(vma->vm_flags & VM_WRITE))
780 		pud = pud_mkwrite(pud);
781 	return pud;
782 }
783 
784 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
785 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
786 {
787 	struct mm_struct *mm = vma->vm_mm;
788 	pud_t entry;
789 	spinlock_t *ptl;
790 
791 	ptl = pud_lock(mm, pud);
792 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
793 	if (pfn_t_devmap(pfn))
794 		entry = pud_mkdevmap(entry);
795 	if (write) {
796 		entry = pud_mkyoung(pud_mkdirty(entry));
797 		entry = maybe_pud_mkwrite(entry, vma);
798 	}
799 	set_pud_at(mm, addr, pud, entry);
800 	update_mmu_cache_pud(vma, addr, pud);
801 	spin_unlock(ptl);
802 }
803 
804 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
805 			pud_t *pud, pfn_t pfn, bool write)
806 {
807 	pgprot_t pgprot = vma->vm_page_prot;
808 	/*
809 	 * If we had pud_special, we could avoid all these restrictions,
810 	 * but we need to be consistent with PTEs and architectures that
811 	 * can't support a 'special' bit.
812 	 */
813 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
814 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
815 						(VM_PFNMAP|VM_MIXEDMAP));
816 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
817 	BUG_ON(!pfn_t_devmap(pfn));
818 
819 	if (addr < vma->vm_start || addr >= vma->vm_end)
820 		return VM_FAULT_SIGBUS;
821 
822 	track_pfn_insert(vma, &pgprot, pfn);
823 
824 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
825 	return VM_FAULT_NOPAGE;
826 }
827 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
828 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
829 
830 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
831 		pmd_t *pmd)
832 {
833 	pmd_t _pmd;
834 
835 	/*
836 	 * We should set the dirty bit only for FOLL_WRITE but for now
837 	 * the dirty bit in the pmd is meaningless.  And if the dirty
838 	 * bit will become meaningful and we'll only set it with
839 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
840 	 * set the young bit, instead of the current set_pmd_at.
841 	 */
842 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
843 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
844 				pmd, _pmd,  1))
845 		update_mmu_cache_pmd(vma, addr, pmd);
846 }
847 
848 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
849 		pmd_t *pmd, int flags)
850 {
851 	unsigned long pfn = pmd_pfn(*pmd);
852 	struct mm_struct *mm = vma->vm_mm;
853 	struct dev_pagemap *pgmap;
854 	struct page *page;
855 
856 	assert_spin_locked(pmd_lockptr(mm, pmd));
857 
858 	/*
859 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
860 	 * not be in this function with `flags & FOLL_COW` set.
861 	 */
862 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
863 
864 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
865 		return NULL;
866 
867 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
868 		/* pass */;
869 	else
870 		return NULL;
871 
872 	if (flags & FOLL_TOUCH)
873 		touch_pmd(vma, addr, pmd);
874 
875 	/*
876 	 * device mapped pages can only be returned if the
877 	 * caller will manage the page reference count.
878 	 */
879 	if (!(flags & FOLL_GET))
880 		return ERR_PTR(-EEXIST);
881 
882 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
883 	pgmap = get_dev_pagemap(pfn, NULL);
884 	if (!pgmap)
885 		return ERR_PTR(-EFAULT);
886 	page = pfn_to_page(pfn);
887 	get_page(page);
888 	put_dev_pagemap(pgmap);
889 
890 	return page;
891 }
892 
893 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
895 		  struct vm_area_struct *vma)
896 {
897 	spinlock_t *dst_ptl, *src_ptl;
898 	struct page *src_page;
899 	pmd_t pmd;
900 	pgtable_t pgtable = NULL;
901 	int ret = -ENOMEM;
902 
903 	/* Skip if can be re-fill on fault */
904 	if (!vma_is_anonymous(vma))
905 		return 0;
906 
907 	pgtable = pte_alloc_one(dst_mm, addr);
908 	if (unlikely(!pgtable))
909 		goto out;
910 
911 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
912 	src_ptl = pmd_lockptr(src_mm, src_pmd);
913 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
914 
915 	ret = -EAGAIN;
916 	pmd = *src_pmd;
917 	if (unlikely(!pmd_trans_huge(pmd))) {
918 		pte_free(dst_mm, pgtable);
919 		goto out_unlock;
920 	}
921 	/*
922 	 * When page table lock is held, the huge zero pmd should not be
923 	 * under splitting since we don't split the page itself, only pmd to
924 	 * a page table.
925 	 */
926 	if (is_huge_zero_pmd(pmd)) {
927 		struct page *zero_page;
928 		/*
929 		 * get_huge_zero_page() will never allocate a new page here,
930 		 * since we already have a zero page to copy. It just takes a
931 		 * reference.
932 		 */
933 		zero_page = mm_get_huge_zero_page(dst_mm);
934 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
935 				zero_page);
936 		ret = 0;
937 		goto out_unlock;
938 	}
939 
940 	src_page = pmd_page(pmd);
941 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
942 	get_page(src_page);
943 	page_dup_rmap(src_page, true);
944 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
945 	atomic_long_inc(&dst_mm->nr_ptes);
946 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
947 
948 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
949 	pmd = pmd_mkold(pmd_wrprotect(pmd));
950 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
951 
952 	ret = 0;
953 out_unlock:
954 	spin_unlock(src_ptl);
955 	spin_unlock(dst_ptl);
956 out:
957 	return ret;
958 }
959 
960 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
961 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
962 		pud_t *pud)
963 {
964 	pud_t _pud;
965 
966 	/*
967 	 * We should set the dirty bit only for FOLL_WRITE but for now
968 	 * the dirty bit in the pud is meaningless.  And if the dirty
969 	 * bit will become meaningful and we'll only set it with
970 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
971 	 * set the young bit, instead of the current set_pud_at.
972 	 */
973 	_pud = pud_mkyoung(pud_mkdirty(*pud));
974 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
975 				pud, _pud,  1))
976 		update_mmu_cache_pud(vma, addr, pud);
977 }
978 
979 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
980 		pud_t *pud, int flags)
981 {
982 	unsigned long pfn = pud_pfn(*pud);
983 	struct mm_struct *mm = vma->vm_mm;
984 	struct dev_pagemap *pgmap;
985 	struct page *page;
986 
987 	assert_spin_locked(pud_lockptr(mm, pud));
988 
989 	if (flags & FOLL_WRITE && !pud_write(*pud))
990 		return NULL;
991 
992 	if (pud_present(*pud) && pud_devmap(*pud))
993 		/* pass */;
994 	else
995 		return NULL;
996 
997 	if (flags & FOLL_TOUCH)
998 		touch_pud(vma, addr, pud);
999 
1000 	/*
1001 	 * device mapped pages can only be returned if the
1002 	 * caller will manage the page reference count.
1003 	 */
1004 	if (!(flags & FOLL_GET))
1005 		return ERR_PTR(-EEXIST);
1006 
1007 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1008 	pgmap = get_dev_pagemap(pfn, NULL);
1009 	if (!pgmap)
1010 		return ERR_PTR(-EFAULT);
1011 	page = pfn_to_page(pfn);
1012 	get_page(page);
1013 	put_dev_pagemap(pgmap);
1014 
1015 	return page;
1016 }
1017 
1018 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1019 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1020 		  struct vm_area_struct *vma)
1021 {
1022 	spinlock_t *dst_ptl, *src_ptl;
1023 	pud_t pud;
1024 	int ret;
1025 
1026 	dst_ptl = pud_lock(dst_mm, dst_pud);
1027 	src_ptl = pud_lockptr(src_mm, src_pud);
1028 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029 
1030 	ret = -EAGAIN;
1031 	pud = *src_pud;
1032 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1033 		goto out_unlock;
1034 
1035 	/*
1036 	 * When page table lock is held, the huge zero pud should not be
1037 	 * under splitting since we don't split the page itself, only pud to
1038 	 * a page table.
1039 	 */
1040 	if (is_huge_zero_pud(pud)) {
1041 		/* No huge zero pud yet */
1042 	}
1043 
1044 	pudp_set_wrprotect(src_mm, addr, src_pud);
1045 	pud = pud_mkold(pud_wrprotect(pud));
1046 	set_pud_at(dst_mm, addr, dst_pud, pud);
1047 
1048 	ret = 0;
1049 out_unlock:
1050 	spin_unlock(src_ptl);
1051 	spin_unlock(dst_ptl);
1052 	return ret;
1053 }
1054 
1055 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1056 {
1057 	pud_t entry;
1058 	unsigned long haddr;
1059 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1060 
1061 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1062 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1063 		goto unlock;
1064 
1065 	entry = pud_mkyoung(orig_pud);
1066 	if (write)
1067 		entry = pud_mkdirty(entry);
1068 	haddr = vmf->address & HPAGE_PUD_MASK;
1069 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1070 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1071 
1072 unlock:
1073 	spin_unlock(vmf->ptl);
1074 }
1075 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1076 
1077 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1078 {
1079 	pmd_t entry;
1080 	unsigned long haddr;
1081 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1082 
1083 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1084 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1085 		goto unlock;
1086 
1087 	entry = pmd_mkyoung(orig_pmd);
1088 	if (write)
1089 		entry = pmd_mkdirty(entry);
1090 	haddr = vmf->address & HPAGE_PMD_MASK;
1091 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1092 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1093 
1094 unlock:
1095 	spin_unlock(vmf->ptl);
1096 }
1097 
1098 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1099 		struct page *page)
1100 {
1101 	struct vm_area_struct *vma = vmf->vma;
1102 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1103 	struct mem_cgroup *memcg;
1104 	pgtable_t pgtable;
1105 	pmd_t _pmd;
1106 	int ret = 0, i;
1107 	struct page **pages;
1108 	unsigned long mmun_start;	/* For mmu_notifiers */
1109 	unsigned long mmun_end;		/* For mmu_notifiers */
1110 
1111 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1112 			GFP_KERNEL);
1113 	if (unlikely(!pages)) {
1114 		ret |= VM_FAULT_OOM;
1115 		goto out;
1116 	}
1117 
1118 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1119 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1120 					       vmf->address, page_to_nid(page));
1121 		if (unlikely(!pages[i] ||
1122 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1123 				     GFP_KERNEL, &memcg, false))) {
1124 			if (pages[i])
1125 				put_page(pages[i]);
1126 			while (--i >= 0) {
1127 				memcg = (void *)page_private(pages[i]);
1128 				set_page_private(pages[i], 0);
1129 				mem_cgroup_cancel_charge(pages[i], memcg,
1130 						false);
1131 				put_page(pages[i]);
1132 			}
1133 			kfree(pages);
1134 			ret |= VM_FAULT_OOM;
1135 			goto out;
1136 		}
1137 		set_page_private(pages[i], (unsigned long)memcg);
1138 	}
1139 
1140 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1141 		copy_user_highpage(pages[i], page + i,
1142 				   haddr + PAGE_SIZE * i, vma);
1143 		__SetPageUptodate(pages[i]);
1144 		cond_resched();
1145 	}
1146 
1147 	mmun_start = haddr;
1148 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1149 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1150 
1151 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1152 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1153 		goto out_free_pages;
1154 	VM_BUG_ON_PAGE(!PageHead(page), page);
1155 
1156 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1157 	/* leave pmd empty until pte is filled */
1158 
1159 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1160 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1161 
1162 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1163 		pte_t entry;
1164 		entry = mk_pte(pages[i], vma->vm_page_prot);
1165 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1166 		memcg = (void *)page_private(pages[i]);
1167 		set_page_private(pages[i], 0);
1168 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1169 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1170 		lru_cache_add_active_or_unevictable(pages[i], vma);
1171 		vmf->pte = pte_offset_map(&_pmd, haddr);
1172 		VM_BUG_ON(!pte_none(*vmf->pte));
1173 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1174 		pte_unmap(vmf->pte);
1175 	}
1176 	kfree(pages);
1177 
1178 	smp_wmb(); /* make pte visible before pmd */
1179 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1180 	page_remove_rmap(page, true);
1181 	spin_unlock(vmf->ptl);
1182 
1183 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1184 
1185 	ret |= VM_FAULT_WRITE;
1186 	put_page(page);
1187 
1188 out:
1189 	return ret;
1190 
1191 out_free_pages:
1192 	spin_unlock(vmf->ptl);
1193 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1194 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1195 		memcg = (void *)page_private(pages[i]);
1196 		set_page_private(pages[i], 0);
1197 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1198 		put_page(pages[i]);
1199 	}
1200 	kfree(pages);
1201 	goto out;
1202 }
1203 
1204 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1205 {
1206 	struct vm_area_struct *vma = vmf->vma;
1207 	struct page *page = NULL, *new_page;
1208 	struct mem_cgroup *memcg;
1209 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1210 	unsigned long mmun_start;	/* For mmu_notifiers */
1211 	unsigned long mmun_end;		/* For mmu_notifiers */
1212 	gfp_t huge_gfp;			/* for allocation and charge */
1213 	int ret = 0;
1214 
1215 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1216 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1217 	if (is_huge_zero_pmd(orig_pmd))
1218 		goto alloc;
1219 	spin_lock(vmf->ptl);
1220 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 		goto out_unlock;
1222 
1223 	page = pmd_page(orig_pmd);
1224 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1225 	/*
1226 	 * We can only reuse the page if nobody else maps the huge page or it's
1227 	 * part.
1228 	 */
1229 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1230 		pmd_t entry;
1231 		entry = pmd_mkyoung(orig_pmd);
1232 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1233 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1234 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1235 		ret |= VM_FAULT_WRITE;
1236 		goto out_unlock;
1237 	}
1238 	get_page(page);
1239 	spin_unlock(vmf->ptl);
1240 alloc:
1241 	if (transparent_hugepage_enabled(vma) &&
1242 	    !transparent_hugepage_debug_cow()) {
1243 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1244 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1245 	} else
1246 		new_page = NULL;
1247 
1248 	if (likely(new_page)) {
1249 		prep_transhuge_page(new_page);
1250 	} else {
1251 		if (!page) {
1252 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1253 			ret |= VM_FAULT_FALLBACK;
1254 		} else {
1255 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1256 			if (ret & VM_FAULT_OOM) {
1257 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1258 				ret |= VM_FAULT_FALLBACK;
1259 			}
1260 			put_page(page);
1261 		}
1262 		count_vm_event(THP_FAULT_FALLBACK);
1263 		goto out;
1264 	}
1265 
1266 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1267 					huge_gfp, &memcg, true))) {
1268 		put_page(new_page);
1269 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1270 		if (page)
1271 			put_page(page);
1272 		ret |= VM_FAULT_FALLBACK;
1273 		count_vm_event(THP_FAULT_FALLBACK);
1274 		goto out;
1275 	}
1276 
1277 	count_vm_event(THP_FAULT_ALLOC);
1278 
1279 	if (!page)
1280 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1281 	else
1282 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1283 	__SetPageUptodate(new_page);
1284 
1285 	mmun_start = haddr;
1286 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1287 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1288 
1289 	spin_lock(vmf->ptl);
1290 	if (page)
1291 		put_page(page);
1292 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1293 		spin_unlock(vmf->ptl);
1294 		mem_cgroup_cancel_charge(new_page, memcg, true);
1295 		put_page(new_page);
1296 		goto out_mn;
1297 	} else {
1298 		pmd_t entry;
1299 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1300 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1301 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1302 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1303 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1304 		lru_cache_add_active_or_unevictable(new_page, vma);
1305 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1306 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1307 		if (!page) {
1308 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1309 		} else {
1310 			VM_BUG_ON_PAGE(!PageHead(page), page);
1311 			page_remove_rmap(page, true);
1312 			put_page(page);
1313 		}
1314 		ret |= VM_FAULT_WRITE;
1315 	}
1316 	spin_unlock(vmf->ptl);
1317 out_mn:
1318 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1319 out:
1320 	return ret;
1321 out_unlock:
1322 	spin_unlock(vmf->ptl);
1323 	return ret;
1324 }
1325 
1326 /*
1327  * FOLL_FORCE can write to even unwritable pmd's, but only
1328  * after we've gone through a COW cycle and they are dirty.
1329  */
1330 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1331 {
1332 	return pmd_write(pmd) ||
1333 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1334 }
1335 
1336 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1337 				   unsigned long addr,
1338 				   pmd_t *pmd,
1339 				   unsigned int flags)
1340 {
1341 	struct mm_struct *mm = vma->vm_mm;
1342 	struct page *page = NULL;
1343 
1344 	assert_spin_locked(pmd_lockptr(mm, pmd));
1345 
1346 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1347 		goto out;
1348 
1349 	/* Avoid dumping huge zero page */
1350 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1351 		return ERR_PTR(-EFAULT);
1352 
1353 	/* Full NUMA hinting faults to serialise migration in fault paths */
1354 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1355 		goto out;
1356 
1357 	page = pmd_page(*pmd);
1358 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1359 	if (flags & FOLL_TOUCH)
1360 		touch_pmd(vma, addr, pmd);
1361 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1362 		/*
1363 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1364 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1365 		 *
1366 		 * For anon THP:
1367 		 *
1368 		 * In most cases the pmd is the only mapping of the page as we
1369 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1370 		 * writable private mappings in populate_vma_page_range().
1371 		 *
1372 		 * The only scenario when we have the page shared here is if we
1373 		 * mlocking read-only mapping shared over fork(). We skip
1374 		 * mlocking such pages.
1375 		 *
1376 		 * For file THP:
1377 		 *
1378 		 * We can expect PageDoubleMap() to be stable under page lock:
1379 		 * for file pages we set it in page_add_file_rmap(), which
1380 		 * requires page to be locked.
1381 		 */
1382 
1383 		if (PageAnon(page) && compound_mapcount(page) != 1)
1384 			goto skip_mlock;
1385 		if (PageDoubleMap(page) || !page->mapping)
1386 			goto skip_mlock;
1387 		if (!trylock_page(page))
1388 			goto skip_mlock;
1389 		lru_add_drain();
1390 		if (page->mapping && !PageDoubleMap(page))
1391 			mlock_vma_page(page);
1392 		unlock_page(page);
1393 	}
1394 skip_mlock:
1395 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1396 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1397 	if (flags & FOLL_GET)
1398 		get_page(page);
1399 
1400 out:
1401 	return page;
1402 }
1403 
1404 /* NUMA hinting page fault entry point for trans huge pmds */
1405 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1406 {
1407 	struct vm_area_struct *vma = vmf->vma;
1408 	struct anon_vma *anon_vma = NULL;
1409 	struct page *page;
1410 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1411 	int page_nid = -1, this_nid = numa_node_id();
1412 	int target_nid, last_cpupid = -1;
1413 	bool page_locked;
1414 	bool migrated = false;
1415 	bool was_writable;
1416 	int flags = 0;
1417 
1418 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1419 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1420 		goto out_unlock;
1421 
1422 	/*
1423 	 * If there are potential migrations, wait for completion and retry
1424 	 * without disrupting NUMA hinting information. Do not relock and
1425 	 * check_same as the page may no longer be mapped.
1426 	 */
1427 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1428 		page = pmd_page(*vmf->pmd);
1429 		if (!get_page_unless_zero(page))
1430 			goto out_unlock;
1431 		spin_unlock(vmf->ptl);
1432 		wait_on_page_locked(page);
1433 		put_page(page);
1434 		goto out;
1435 	}
1436 
1437 	page = pmd_page(pmd);
1438 	BUG_ON(is_huge_zero_page(page));
1439 	page_nid = page_to_nid(page);
1440 	last_cpupid = page_cpupid_last(page);
1441 	count_vm_numa_event(NUMA_HINT_FAULTS);
1442 	if (page_nid == this_nid) {
1443 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1444 		flags |= TNF_FAULT_LOCAL;
1445 	}
1446 
1447 	/* See similar comment in do_numa_page for explanation */
1448 	if (!pmd_savedwrite(pmd))
1449 		flags |= TNF_NO_GROUP;
1450 
1451 	/*
1452 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1453 	 * page_table_lock if at all possible
1454 	 */
1455 	page_locked = trylock_page(page);
1456 	target_nid = mpol_misplaced(page, vma, haddr);
1457 	if (target_nid == -1) {
1458 		/* If the page was locked, there are no parallel migrations */
1459 		if (page_locked)
1460 			goto clear_pmdnuma;
1461 	}
1462 
1463 	/* Migration could have started since the pmd_trans_migrating check */
1464 	if (!page_locked) {
1465 		page_nid = -1;
1466 		if (!get_page_unless_zero(page))
1467 			goto out_unlock;
1468 		spin_unlock(vmf->ptl);
1469 		wait_on_page_locked(page);
1470 		put_page(page);
1471 		goto out;
1472 	}
1473 
1474 	/*
1475 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1476 	 * to serialises splits
1477 	 */
1478 	get_page(page);
1479 	spin_unlock(vmf->ptl);
1480 	anon_vma = page_lock_anon_vma_read(page);
1481 
1482 	/* Confirm the PMD did not change while page_table_lock was released */
1483 	spin_lock(vmf->ptl);
1484 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1485 		unlock_page(page);
1486 		put_page(page);
1487 		page_nid = -1;
1488 		goto out_unlock;
1489 	}
1490 
1491 	/* Bail if we fail to protect against THP splits for any reason */
1492 	if (unlikely(!anon_vma)) {
1493 		put_page(page);
1494 		page_nid = -1;
1495 		goto clear_pmdnuma;
1496 	}
1497 
1498 	/*
1499 	 * Migrate the THP to the requested node, returns with page unlocked
1500 	 * and access rights restored.
1501 	 */
1502 	spin_unlock(vmf->ptl);
1503 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1504 				vmf->pmd, pmd, vmf->address, page, target_nid);
1505 	if (migrated) {
1506 		flags |= TNF_MIGRATED;
1507 		page_nid = target_nid;
1508 	} else
1509 		flags |= TNF_MIGRATE_FAIL;
1510 
1511 	goto out;
1512 clear_pmdnuma:
1513 	BUG_ON(!PageLocked(page));
1514 	was_writable = pmd_savedwrite(pmd);
1515 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1516 	pmd = pmd_mkyoung(pmd);
1517 	if (was_writable)
1518 		pmd = pmd_mkwrite(pmd);
1519 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1520 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1521 	unlock_page(page);
1522 out_unlock:
1523 	spin_unlock(vmf->ptl);
1524 
1525 out:
1526 	if (anon_vma)
1527 		page_unlock_anon_vma_read(anon_vma);
1528 
1529 	if (page_nid != -1)
1530 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1531 				flags);
1532 
1533 	return 0;
1534 }
1535 
1536 /*
1537  * Return true if we do MADV_FREE successfully on entire pmd page.
1538  * Otherwise, return false.
1539  */
1540 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1541 		pmd_t *pmd, unsigned long addr, unsigned long next)
1542 {
1543 	spinlock_t *ptl;
1544 	pmd_t orig_pmd;
1545 	struct page *page;
1546 	struct mm_struct *mm = tlb->mm;
1547 	bool ret = false;
1548 
1549 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1550 
1551 	ptl = pmd_trans_huge_lock(pmd, vma);
1552 	if (!ptl)
1553 		goto out_unlocked;
1554 
1555 	orig_pmd = *pmd;
1556 	if (is_huge_zero_pmd(orig_pmd))
1557 		goto out;
1558 
1559 	page = pmd_page(orig_pmd);
1560 	/*
1561 	 * If other processes are mapping this page, we couldn't discard
1562 	 * the page unless they all do MADV_FREE so let's skip the page.
1563 	 */
1564 	if (page_mapcount(page) != 1)
1565 		goto out;
1566 
1567 	if (!trylock_page(page))
1568 		goto out;
1569 
1570 	/*
1571 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1572 	 * will deactivate only them.
1573 	 */
1574 	if (next - addr != HPAGE_PMD_SIZE) {
1575 		get_page(page);
1576 		spin_unlock(ptl);
1577 		split_huge_page(page);
1578 		put_page(page);
1579 		unlock_page(page);
1580 		goto out_unlocked;
1581 	}
1582 
1583 	if (PageDirty(page))
1584 		ClearPageDirty(page);
1585 	unlock_page(page);
1586 
1587 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1588 		pmdp_invalidate(vma, addr, pmd);
1589 		orig_pmd = pmd_mkold(orig_pmd);
1590 		orig_pmd = pmd_mkclean(orig_pmd);
1591 
1592 		set_pmd_at(mm, addr, pmd, orig_pmd);
1593 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1594 	}
1595 
1596 	mark_page_lazyfree(page);
1597 	ret = true;
1598 out:
1599 	spin_unlock(ptl);
1600 out_unlocked:
1601 	return ret;
1602 }
1603 
1604 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1605 {
1606 	pgtable_t pgtable;
1607 
1608 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1609 	pte_free(mm, pgtable);
1610 	atomic_long_dec(&mm->nr_ptes);
1611 }
1612 
1613 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614 		 pmd_t *pmd, unsigned long addr)
1615 {
1616 	pmd_t orig_pmd;
1617 	spinlock_t *ptl;
1618 
1619 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1620 
1621 	ptl = __pmd_trans_huge_lock(pmd, vma);
1622 	if (!ptl)
1623 		return 0;
1624 	/*
1625 	 * For architectures like ppc64 we look at deposited pgtable
1626 	 * when calling pmdp_huge_get_and_clear. So do the
1627 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1628 	 * operations.
1629 	 */
1630 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1631 			tlb->fullmm);
1632 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1633 	if (vma_is_dax(vma)) {
1634 		if (arch_needs_pgtable_deposit())
1635 			zap_deposited_table(tlb->mm, pmd);
1636 		spin_unlock(ptl);
1637 		if (is_huge_zero_pmd(orig_pmd))
1638 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1639 	} else if (is_huge_zero_pmd(orig_pmd)) {
1640 		zap_deposited_table(tlb->mm, pmd);
1641 		spin_unlock(ptl);
1642 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1643 	} else {
1644 		struct page *page = pmd_page(orig_pmd);
1645 		page_remove_rmap(page, true);
1646 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1647 		VM_BUG_ON_PAGE(!PageHead(page), page);
1648 		if (PageAnon(page)) {
1649 			zap_deposited_table(tlb->mm, pmd);
1650 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1651 		} else {
1652 			if (arch_needs_pgtable_deposit())
1653 				zap_deposited_table(tlb->mm, pmd);
1654 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1655 		}
1656 		spin_unlock(ptl);
1657 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1658 	}
1659 	return 1;
1660 }
1661 
1662 #ifndef pmd_move_must_withdraw
1663 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1664 					 spinlock_t *old_pmd_ptl,
1665 					 struct vm_area_struct *vma)
1666 {
1667 	/*
1668 	 * With split pmd lock we also need to move preallocated
1669 	 * PTE page table if new_pmd is on different PMD page table.
1670 	 *
1671 	 * We also don't deposit and withdraw tables for file pages.
1672 	 */
1673 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1674 }
1675 #endif
1676 
1677 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1678 		  unsigned long new_addr, unsigned long old_end,
1679 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1680 {
1681 	spinlock_t *old_ptl, *new_ptl;
1682 	pmd_t pmd;
1683 	struct mm_struct *mm = vma->vm_mm;
1684 	bool force_flush = false;
1685 
1686 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1687 	    (new_addr & ~HPAGE_PMD_MASK) ||
1688 	    old_end - old_addr < HPAGE_PMD_SIZE)
1689 		return false;
1690 
1691 	/*
1692 	 * The destination pmd shouldn't be established, free_pgtables()
1693 	 * should have release it.
1694 	 */
1695 	if (WARN_ON(!pmd_none(*new_pmd))) {
1696 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1697 		return false;
1698 	}
1699 
1700 	/*
1701 	 * We don't have to worry about the ordering of src and dst
1702 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1703 	 */
1704 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1705 	if (old_ptl) {
1706 		new_ptl = pmd_lockptr(mm, new_pmd);
1707 		if (new_ptl != old_ptl)
1708 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1709 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1710 		if (pmd_present(pmd) && pmd_dirty(pmd))
1711 			force_flush = true;
1712 		VM_BUG_ON(!pmd_none(*new_pmd));
1713 
1714 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1715 			pgtable_t pgtable;
1716 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1717 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1718 		}
1719 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1720 		if (new_ptl != old_ptl)
1721 			spin_unlock(new_ptl);
1722 		if (force_flush)
1723 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1724 		else
1725 			*need_flush = true;
1726 		spin_unlock(old_ptl);
1727 		return true;
1728 	}
1729 	return false;
1730 }
1731 
1732 /*
1733  * Returns
1734  *  - 0 if PMD could not be locked
1735  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1736  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1737  */
1738 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1739 		unsigned long addr, pgprot_t newprot, int prot_numa)
1740 {
1741 	struct mm_struct *mm = vma->vm_mm;
1742 	spinlock_t *ptl;
1743 	pmd_t entry;
1744 	bool preserve_write;
1745 	int ret;
1746 
1747 	ptl = __pmd_trans_huge_lock(pmd, vma);
1748 	if (!ptl)
1749 		return 0;
1750 
1751 	preserve_write = prot_numa && pmd_write(*pmd);
1752 	ret = 1;
1753 
1754 	/*
1755 	 * Avoid trapping faults against the zero page. The read-only
1756 	 * data is likely to be read-cached on the local CPU and
1757 	 * local/remote hits to the zero page are not interesting.
1758 	 */
1759 	if (prot_numa && is_huge_zero_pmd(*pmd))
1760 		goto unlock;
1761 
1762 	if (prot_numa && pmd_protnone(*pmd))
1763 		goto unlock;
1764 
1765 	/*
1766 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1767 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1768 	 * which is also under down_read(mmap_sem):
1769 	 *
1770 	 *	CPU0:				CPU1:
1771 	 *				change_huge_pmd(prot_numa=1)
1772 	 *				 pmdp_huge_get_and_clear_notify()
1773 	 * madvise_dontneed()
1774 	 *  zap_pmd_range()
1775 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1776 	 *   // skip the pmd
1777 	 *				 set_pmd_at();
1778 	 *				 // pmd is re-established
1779 	 *
1780 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1781 	 * which may break userspace.
1782 	 *
1783 	 * pmdp_invalidate() is required to make sure we don't miss
1784 	 * dirty/young flags set by hardware.
1785 	 */
1786 	entry = *pmd;
1787 	pmdp_invalidate(vma, addr, pmd);
1788 
1789 	/*
1790 	 * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1791 	 * corrupt them.
1792 	 */
1793 	if (pmd_dirty(*pmd))
1794 		entry = pmd_mkdirty(entry);
1795 	if (pmd_young(*pmd))
1796 		entry = pmd_mkyoung(entry);
1797 
1798 	entry = pmd_modify(entry, newprot);
1799 	if (preserve_write)
1800 		entry = pmd_mk_savedwrite(entry);
1801 	ret = HPAGE_PMD_NR;
1802 	set_pmd_at(mm, addr, pmd, entry);
1803 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1804 unlock:
1805 	spin_unlock(ptl);
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1811  *
1812  * Note that if it returns page table lock pointer, this routine returns without
1813  * unlocking page table lock. So callers must unlock it.
1814  */
1815 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1816 {
1817 	spinlock_t *ptl;
1818 	ptl = pmd_lock(vma->vm_mm, pmd);
1819 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1820 		return ptl;
1821 	spin_unlock(ptl);
1822 	return NULL;
1823 }
1824 
1825 /*
1826  * Returns true if a given pud maps a thp, false otherwise.
1827  *
1828  * Note that if it returns true, this routine returns without unlocking page
1829  * table lock. So callers must unlock it.
1830  */
1831 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1832 {
1833 	spinlock_t *ptl;
1834 
1835 	ptl = pud_lock(vma->vm_mm, pud);
1836 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1837 		return ptl;
1838 	spin_unlock(ptl);
1839 	return NULL;
1840 }
1841 
1842 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1843 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1844 		 pud_t *pud, unsigned long addr)
1845 {
1846 	pud_t orig_pud;
1847 	spinlock_t *ptl;
1848 
1849 	ptl = __pud_trans_huge_lock(pud, vma);
1850 	if (!ptl)
1851 		return 0;
1852 	/*
1853 	 * For architectures like ppc64 we look at deposited pgtable
1854 	 * when calling pudp_huge_get_and_clear. So do the
1855 	 * pgtable_trans_huge_withdraw after finishing pudp related
1856 	 * operations.
1857 	 */
1858 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1859 			tlb->fullmm);
1860 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1861 	if (vma_is_dax(vma)) {
1862 		spin_unlock(ptl);
1863 		/* No zero page support yet */
1864 	} else {
1865 		/* No support for anonymous PUD pages yet */
1866 		BUG();
1867 	}
1868 	return 1;
1869 }
1870 
1871 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1872 		unsigned long haddr)
1873 {
1874 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1875 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1876 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1877 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1878 
1879 	count_vm_event(THP_SPLIT_PUD);
1880 
1881 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1882 }
1883 
1884 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1885 		unsigned long address)
1886 {
1887 	spinlock_t *ptl;
1888 	struct mm_struct *mm = vma->vm_mm;
1889 	unsigned long haddr = address & HPAGE_PUD_MASK;
1890 
1891 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1892 	ptl = pud_lock(mm, pud);
1893 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1894 		goto out;
1895 	__split_huge_pud_locked(vma, pud, haddr);
1896 
1897 out:
1898 	spin_unlock(ptl);
1899 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1900 }
1901 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1902 
1903 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1904 		unsigned long haddr, pmd_t *pmd)
1905 {
1906 	struct mm_struct *mm = vma->vm_mm;
1907 	pgtable_t pgtable;
1908 	pmd_t _pmd;
1909 	int i;
1910 
1911 	/* leave pmd empty until pte is filled */
1912 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1913 
1914 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1915 	pmd_populate(mm, &_pmd, pgtable);
1916 
1917 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1918 		pte_t *pte, entry;
1919 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1920 		entry = pte_mkspecial(entry);
1921 		pte = pte_offset_map(&_pmd, haddr);
1922 		VM_BUG_ON(!pte_none(*pte));
1923 		set_pte_at(mm, haddr, pte, entry);
1924 		pte_unmap(pte);
1925 	}
1926 	smp_wmb(); /* make pte visible before pmd */
1927 	pmd_populate(mm, pmd, pgtable);
1928 }
1929 
1930 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1931 		unsigned long haddr, bool freeze)
1932 {
1933 	struct mm_struct *mm = vma->vm_mm;
1934 	struct page *page;
1935 	pgtable_t pgtable;
1936 	pmd_t _pmd;
1937 	bool young, write, dirty, soft_dirty;
1938 	unsigned long addr;
1939 	int i;
1940 
1941 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1942 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1943 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1944 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1945 
1946 	count_vm_event(THP_SPLIT_PMD);
1947 
1948 	if (!vma_is_anonymous(vma)) {
1949 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1950 		/*
1951 		 * We are going to unmap this huge page. So
1952 		 * just go ahead and zap it
1953 		 */
1954 		if (arch_needs_pgtable_deposit())
1955 			zap_deposited_table(mm, pmd);
1956 		if (vma_is_dax(vma))
1957 			return;
1958 		page = pmd_page(_pmd);
1959 		if (!PageReferenced(page) && pmd_young(_pmd))
1960 			SetPageReferenced(page);
1961 		page_remove_rmap(page, true);
1962 		put_page(page);
1963 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1964 		return;
1965 	} else if (is_huge_zero_pmd(*pmd)) {
1966 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1967 	}
1968 
1969 	page = pmd_page(*pmd);
1970 	VM_BUG_ON_PAGE(!page_count(page), page);
1971 	page_ref_add(page, HPAGE_PMD_NR - 1);
1972 	write = pmd_write(*pmd);
1973 	young = pmd_young(*pmd);
1974 	dirty = pmd_dirty(*pmd);
1975 	soft_dirty = pmd_soft_dirty(*pmd);
1976 
1977 	pmdp_huge_split_prepare(vma, haddr, pmd);
1978 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1979 	pmd_populate(mm, &_pmd, pgtable);
1980 
1981 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1982 		pte_t entry, *pte;
1983 		/*
1984 		 * Note that NUMA hinting access restrictions are not
1985 		 * transferred to avoid any possibility of altering
1986 		 * permissions across VMAs.
1987 		 */
1988 		if (freeze) {
1989 			swp_entry_t swp_entry;
1990 			swp_entry = make_migration_entry(page + i, write);
1991 			entry = swp_entry_to_pte(swp_entry);
1992 			if (soft_dirty)
1993 				entry = pte_swp_mksoft_dirty(entry);
1994 		} else {
1995 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1996 			entry = maybe_mkwrite(entry, vma);
1997 			if (!write)
1998 				entry = pte_wrprotect(entry);
1999 			if (!young)
2000 				entry = pte_mkold(entry);
2001 			if (soft_dirty)
2002 				entry = pte_mksoft_dirty(entry);
2003 		}
2004 		if (dirty)
2005 			SetPageDirty(page + i);
2006 		pte = pte_offset_map(&_pmd, addr);
2007 		BUG_ON(!pte_none(*pte));
2008 		set_pte_at(mm, addr, pte, entry);
2009 		atomic_inc(&page[i]._mapcount);
2010 		pte_unmap(pte);
2011 	}
2012 
2013 	/*
2014 	 * Set PG_double_map before dropping compound_mapcount to avoid
2015 	 * false-negative page_mapped().
2016 	 */
2017 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2018 		for (i = 0; i < HPAGE_PMD_NR; i++)
2019 			atomic_inc(&page[i]._mapcount);
2020 	}
2021 
2022 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2023 		/* Last compound_mapcount is gone. */
2024 		__dec_node_page_state(page, NR_ANON_THPS);
2025 		if (TestClearPageDoubleMap(page)) {
2026 			/* No need in mapcount reference anymore */
2027 			for (i = 0; i < HPAGE_PMD_NR; i++)
2028 				atomic_dec(&page[i]._mapcount);
2029 		}
2030 	}
2031 
2032 	smp_wmb(); /* make pte visible before pmd */
2033 	/*
2034 	 * Up to this point the pmd is present and huge and userland has the
2035 	 * whole access to the hugepage during the split (which happens in
2036 	 * place). If we overwrite the pmd with the not-huge version pointing
2037 	 * to the pte here (which of course we could if all CPUs were bug
2038 	 * free), userland could trigger a small page size TLB miss on the
2039 	 * small sized TLB while the hugepage TLB entry is still established in
2040 	 * the huge TLB. Some CPU doesn't like that.
2041 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2042 	 * 383 on page 93. Intel should be safe but is also warns that it's
2043 	 * only safe if the permission and cache attributes of the two entries
2044 	 * loaded in the two TLB is identical (which should be the case here).
2045 	 * But it is generally safer to never allow small and huge TLB entries
2046 	 * for the same virtual address to be loaded simultaneously. So instead
2047 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2048 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2049 	 * and pmd_trans_splitting must remain set at all times on the pmd
2050 	 * until the split is complete for this pmd), then we flush the SMP TLB
2051 	 * and finally we write the non-huge version of the pmd entry with
2052 	 * pmd_populate.
2053 	 */
2054 	pmdp_invalidate(vma, haddr, pmd);
2055 	pmd_populate(mm, pmd, pgtable);
2056 
2057 	if (freeze) {
2058 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2059 			page_remove_rmap(page + i, false);
2060 			put_page(page + i);
2061 		}
2062 	}
2063 }
2064 
2065 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2066 		unsigned long address, bool freeze, struct page *page)
2067 {
2068 	spinlock_t *ptl;
2069 	struct mm_struct *mm = vma->vm_mm;
2070 	unsigned long haddr = address & HPAGE_PMD_MASK;
2071 
2072 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2073 	ptl = pmd_lock(mm, pmd);
2074 
2075 	/*
2076 	 * If caller asks to setup a migration entries, we need a page to check
2077 	 * pmd against. Otherwise we can end up replacing wrong page.
2078 	 */
2079 	VM_BUG_ON(freeze && !page);
2080 	if (page && page != pmd_page(*pmd))
2081 	        goto out;
2082 
2083 	if (pmd_trans_huge(*pmd)) {
2084 		page = pmd_page(*pmd);
2085 		if (PageMlocked(page))
2086 			clear_page_mlock(page);
2087 	} else if (!pmd_devmap(*pmd))
2088 		goto out;
2089 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2090 out:
2091 	spin_unlock(ptl);
2092 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2093 }
2094 
2095 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2096 		bool freeze, struct page *page)
2097 {
2098 	pgd_t *pgd;
2099 	p4d_t *p4d;
2100 	pud_t *pud;
2101 	pmd_t *pmd;
2102 
2103 	pgd = pgd_offset(vma->vm_mm, address);
2104 	if (!pgd_present(*pgd))
2105 		return;
2106 
2107 	p4d = p4d_offset(pgd, address);
2108 	if (!p4d_present(*p4d))
2109 		return;
2110 
2111 	pud = pud_offset(p4d, address);
2112 	if (!pud_present(*pud))
2113 		return;
2114 
2115 	pmd = pmd_offset(pud, address);
2116 
2117 	__split_huge_pmd(vma, pmd, address, freeze, page);
2118 }
2119 
2120 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2121 			     unsigned long start,
2122 			     unsigned long end,
2123 			     long adjust_next)
2124 {
2125 	/*
2126 	 * If the new start address isn't hpage aligned and it could
2127 	 * previously contain an hugepage: check if we need to split
2128 	 * an huge pmd.
2129 	 */
2130 	if (start & ~HPAGE_PMD_MASK &&
2131 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2132 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2133 		split_huge_pmd_address(vma, start, false, NULL);
2134 
2135 	/*
2136 	 * If the new end address isn't hpage aligned and it could
2137 	 * previously contain an hugepage: check if we need to split
2138 	 * an huge pmd.
2139 	 */
2140 	if (end & ~HPAGE_PMD_MASK &&
2141 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2142 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2143 		split_huge_pmd_address(vma, end, false, NULL);
2144 
2145 	/*
2146 	 * If we're also updating the vma->vm_next->vm_start, if the new
2147 	 * vm_next->vm_start isn't page aligned and it could previously
2148 	 * contain an hugepage: check if we need to split an huge pmd.
2149 	 */
2150 	if (adjust_next > 0) {
2151 		struct vm_area_struct *next = vma->vm_next;
2152 		unsigned long nstart = next->vm_start;
2153 		nstart += adjust_next << PAGE_SHIFT;
2154 		if (nstart & ~HPAGE_PMD_MASK &&
2155 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2156 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2157 			split_huge_pmd_address(next, nstart, false, NULL);
2158 	}
2159 }
2160 
2161 static void freeze_page(struct page *page)
2162 {
2163 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2164 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2165 	bool unmap_success;
2166 
2167 	VM_BUG_ON_PAGE(!PageHead(page), page);
2168 
2169 	if (PageAnon(page))
2170 		ttu_flags |= TTU_MIGRATION;
2171 
2172 	unmap_success = try_to_unmap(page, ttu_flags);
2173 	VM_BUG_ON_PAGE(!unmap_success, page);
2174 }
2175 
2176 static void unfreeze_page(struct page *page)
2177 {
2178 	int i;
2179 	if (PageTransHuge(page)) {
2180 		remove_migration_ptes(page, page, true);
2181 	} else {
2182 		for (i = 0; i < HPAGE_PMD_NR; i++)
2183 			remove_migration_ptes(page + i, page + i, true);
2184 	}
2185 }
2186 
2187 static void __split_huge_page_tail(struct page *head, int tail,
2188 		struct lruvec *lruvec, struct list_head *list)
2189 {
2190 	struct page *page_tail = head + tail;
2191 
2192 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2193 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2194 
2195 	/*
2196 	 * tail_page->_refcount is zero and not changing from under us. But
2197 	 * get_page_unless_zero() may be running from under us on the
2198 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2199 	 * atomic_add(), we would then run atomic_set() concurrently with
2200 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2201 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2202 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2203 	 * atomic_set() here would be safe on all archs (and not only on x86),
2204 	 * it's safer to use atomic_inc()/atomic_add().
2205 	 */
2206 	if (PageAnon(head)) {
2207 		page_ref_inc(page_tail);
2208 	} else {
2209 		/* Additional pin to radix tree */
2210 		page_ref_add(page_tail, 2);
2211 	}
2212 
2213 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2214 	page_tail->flags |= (head->flags &
2215 			((1L << PG_referenced) |
2216 			 (1L << PG_swapbacked) |
2217 			 (1L << PG_mlocked) |
2218 			 (1L << PG_uptodate) |
2219 			 (1L << PG_active) |
2220 			 (1L << PG_locked) |
2221 			 (1L << PG_unevictable) |
2222 			 (1L << PG_dirty)));
2223 
2224 	/*
2225 	 * After clearing PageTail the gup refcount can be released.
2226 	 * Page flags also must be visible before we make the page non-compound.
2227 	 */
2228 	smp_wmb();
2229 
2230 	clear_compound_head(page_tail);
2231 
2232 	if (page_is_young(head))
2233 		set_page_young(page_tail);
2234 	if (page_is_idle(head))
2235 		set_page_idle(page_tail);
2236 
2237 	/* ->mapping in first tail page is compound_mapcount */
2238 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2239 			page_tail);
2240 	page_tail->mapping = head->mapping;
2241 
2242 	page_tail->index = head->index + tail;
2243 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2244 	lru_add_page_tail(head, page_tail, lruvec, list);
2245 }
2246 
2247 static void __split_huge_page(struct page *page, struct list_head *list,
2248 		unsigned long flags)
2249 {
2250 	struct page *head = compound_head(page);
2251 	struct zone *zone = page_zone(head);
2252 	struct lruvec *lruvec;
2253 	pgoff_t end = -1;
2254 	int i;
2255 
2256 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2257 
2258 	/* complete memcg works before add pages to LRU */
2259 	mem_cgroup_split_huge_fixup(head);
2260 
2261 	if (!PageAnon(page))
2262 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2263 
2264 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2265 		__split_huge_page_tail(head, i, lruvec, list);
2266 		/* Some pages can be beyond i_size: drop them from page cache */
2267 		if (head[i].index >= end) {
2268 			__ClearPageDirty(head + i);
2269 			__delete_from_page_cache(head + i, NULL);
2270 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2271 				shmem_uncharge(head->mapping->host, 1);
2272 			put_page(head + i);
2273 		}
2274 	}
2275 
2276 	ClearPageCompound(head);
2277 	/* See comment in __split_huge_page_tail() */
2278 	if (PageAnon(head)) {
2279 		page_ref_inc(head);
2280 	} else {
2281 		/* Additional pin to radix tree */
2282 		page_ref_add(head, 2);
2283 		spin_unlock(&head->mapping->tree_lock);
2284 	}
2285 
2286 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2287 
2288 	unfreeze_page(head);
2289 
2290 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2291 		struct page *subpage = head + i;
2292 		if (subpage == page)
2293 			continue;
2294 		unlock_page(subpage);
2295 
2296 		/*
2297 		 * Subpages may be freed if there wasn't any mapping
2298 		 * like if add_to_swap() is running on a lru page that
2299 		 * had its mapping zapped. And freeing these pages
2300 		 * requires taking the lru_lock so we do the put_page
2301 		 * of the tail pages after the split is complete.
2302 		 */
2303 		put_page(subpage);
2304 	}
2305 }
2306 
2307 int total_mapcount(struct page *page)
2308 {
2309 	int i, compound, ret;
2310 
2311 	VM_BUG_ON_PAGE(PageTail(page), page);
2312 
2313 	if (likely(!PageCompound(page)))
2314 		return atomic_read(&page->_mapcount) + 1;
2315 
2316 	compound = compound_mapcount(page);
2317 	if (PageHuge(page))
2318 		return compound;
2319 	ret = compound;
2320 	for (i = 0; i < HPAGE_PMD_NR; i++)
2321 		ret += atomic_read(&page[i]._mapcount) + 1;
2322 	/* File pages has compound_mapcount included in _mapcount */
2323 	if (!PageAnon(page))
2324 		return ret - compound * HPAGE_PMD_NR;
2325 	if (PageDoubleMap(page))
2326 		ret -= HPAGE_PMD_NR;
2327 	return ret;
2328 }
2329 
2330 /*
2331  * This calculates accurately how many mappings a transparent hugepage
2332  * has (unlike page_mapcount() which isn't fully accurate). This full
2333  * accuracy is primarily needed to know if copy-on-write faults can
2334  * reuse the page and change the mapping to read-write instead of
2335  * copying them. At the same time this returns the total_mapcount too.
2336  *
2337  * The function returns the highest mapcount any one of the subpages
2338  * has. If the return value is one, even if different processes are
2339  * mapping different subpages of the transparent hugepage, they can
2340  * all reuse it, because each process is reusing a different subpage.
2341  *
2342  * The total_mapcount is instead counting all virtual mappings of the
2343  * subpages. If the total_mapcount is equal to "one", it tells the
2344  * caller all mappings belong to the same "mm" and in turn the
2345  * anon_vma of the transparent hugepage can become the vma->anon_vma
2346  * local one as no other process may be mapping any of the subpages.
2347  *
2348  * It would be more accurate to replace page_mapcount() with
2349  * page_trans_huge_mapcount(), however we only use
2350  * page_trans_huge_mapcount() in the copy-on-write faults where we
2351  * need full accuracy to avoid breaking page pinning, because
2352  * page_trans_huge_mapcount() is slower than page_mapcount().
2353  */
2354 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2355 {
2356 	int i, ret, _total_mapcount, mapcount;
2357 
2358 	/* hugetlbfs shouldn't call it */
2359 	VM_BUG_ON_PAGE(PageHuge(page), page);
2360 
2361 	if (likely(!PageTransCompound(page))) {
2362 		mapcount = atomic_read(&page->_mapcount) + 1;
2363 		if (total_mapcount)
2364 			*total_mapcount = mapcount;
2365 		return mapcount;
2366 	}
2367 
2368 	page = compound_head(page);
2369 
2370 	_total_mapcount = ret = 0;
2371 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2372 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2373 		ret = max(ret, mapcount);
2374 		_total_mapcount += mapcount;
2375 	}
2376 	if (PageDoubleMap(page)) {
2377 		ret -= 1;
2378 		_total_mapcount -= HPAGE_PMD_NR;
2379 	}
2380 	mapcount = compound_mapcount(page);
2381 	ret += mapcount;
2382 	_total_mapcount += mapcount;
2383 	if (total_mapcount)
2384 		*total_mapcount = _total_mapcount;
2385 	return ret;
2386 }
2387 
2388 /*
2389  * This function splits huge page into normal pages. @page can point to any
2390  * subpage of huge page to split. Split doesn't change the position of @page.
2391  *
2392  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2393  * The huge page must be locked.
2394  *
2395  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2396  *
2397  * Both head page and tail pages will inherit mapping, flags, and so on from
2398  * the hugepage.
2399  *
2400  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2401  * they are not mapped.
2402  *
2403  * Returns 0 if the hugepage is split successfully.
2404  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2405  * us.
2406  */
2407 int split_huge_page_to_list(struct page *page, struct list_head *list)
2408 {
2409 	struct page *head = compound_head(page);
2410 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2411 	struct anon_vma *anon_vma = NULL;
2412 	struct address_space *mapping = NULL;
2413 	int count, mapcount, extra_pins, ret;
2414 	bool mlocked;
2415 	unsigned long flags;
2416 
2417 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2418 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2419 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2420 
2421 	if (PageAnon(head)) {
2422 		/*
2423 		 * The caller does not necessarily hold an mmap_sem that would
2424 		 * prevent the anon_vma disappearing so we first we take a
2425 		 * reference to it and then lock the anon_vma for write. This
2426 		 * is similar to page_lock_anon_vma_read except the write lock
2427 		 * is taken to serialise against parallel split or collapse
2428 		 * operations.
2429 		 */
2430 		anon_vma = page_get_anon_vma(head);
2431 		if (!anon_vma) {
2432 			ret = -EBUSY;
2433 			goto out;
2434 		}
2435 		extra_pins = 0;
2436 		mapping = NULL;
2437 		anon_vma_lock_write(anon_vma);
2438 	} else {
2439 		mapping = head->mapping;
2440 
2441 		/* Truncated ? */
2442 		if (!mapping) {
2443 			ret = -EBUSY;
2444 			goto out;
2445 		}
2446 
2447 		/* Addidional pins from radix tree */
2448 		extra_pins = HPAGE_PMD_NR;
2449 		anon_vma = NULL;
2450 		i_mmap_lock_read(mapping);
2451 	}
2452 
2453 	/*
2454 	 * Racy check if we can split the page, before freeze_page() will
2455 	 * split PMDs
2456 	 */
2457 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2458 		ret = -EBUSY;
2459 		goto out_unlock;
2460 	}
2461 
2462 	mlocked = PageMlocked(page);
2463 	freeze_page(head);
2464 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2465 
2466 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2467 	if (mlocked)
2468 		lru_add_drain();
2469 
2470 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2471 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2472 
2473 	if (mapping) {
2474 		void **pslot;
2475 
2476 		spin_lock(&mapping->tree_lock);
2477 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2478 				page_index(head));
2479 		/*
2480 		 * Check if the head page is present in radix tree.
2481 		 * We assume all tail are present too, if head is there.
2482 		 */
2483 		if (radix_tree_deref_slot_protected(pslot,
2484 					&mapping->tree_lock) != head)
2485 			goto fail;
2486 	}
2487 
2488 	/* Prevent deferred_split_scan() touching ->_refcount */
2489 	spin_lock(&pgdata->split_queue_lock);
2490 	count = page_count(head);
2491 	mapcount = total_mapcount(head);
2492 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2493 		if (!list_empty(page_deferred_list(head))) {
2494 			pgdata->split_queue_len--;
2495 			list_del(page_deferred_list(head));
2496 		}
2497 		if (mapping)
2498 			__dec_node_page_state(page, NR_SHMEM_THPS);
2499 		spin_unlock(&pgdata->split_queue_lock);
2500 		__split_huge_page(page, list, flags);
2501 		ret = 0;
2502 	} else {
2503 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2504 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2505 					mapcount, count);
2506 			if (PageTail(page))
2507 				dump_page(head, NULL);
2508 			dump_page(page, "total_mapcount(head) > 0");
2509 			BUG();
2510 		}
2511 		spin_unlock(&pgdata->split_queue_lock);
2512 fail:		if (mapping)
2513 			spin_unlock(&mapping->tree_lock);
2514 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2515 		unfreeze_page(head);
2516 		ret = -EBUSY;
2517 	}
2518 
2519 out_unlock:
2520 	if (anon_vma) {
2521 		anon_vma_unlock_write(anon_vma);
2522 		put_anon_vma(anon_vma);
2523 	}
2524 	if (mapping)
2525 		i_mmap_unlock_read(mapping);
2526 out:
2527 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2528 	return ret;
2529 }
2530 
2531 void free_transhuge_page(struct page *page)
2532 {
2533 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2534 	unsigned long flags;
2535 
2536 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2537 	if (!list_empty(page_deferred_list(page))) {
2538 		pgdata->split_queue_len--;
2539 		list_del(page_deferred_list(page));
2540 	}
2541 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2542 	free_compound_page(page);
2543 }
2544 
2545 void deferred_split_huge_page(struct page *page)
2546 {
2547 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2548 	unsigned long flags;
2549 
2550 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2551 
2552 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2553 	if (list_empty(page_deferred_list(page))) {
2554 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2555 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2556 		pgdata->split_queue_len++;
2557 	}
2558 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2559 }
2560 
2561 static unsigned long deferred_split_count(struct shrinker *shrink,
2562 		struct shrink_control *sc)
2563 {
2564 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2565 	return ACCESS_ONCE(pgdata->split_queue_len);
2566 }
2567 
2568 static unsigned long deferred_split_scan(struct shrinker *shrink,
2569 		struct shrink_control *sc)
2570 {
2571 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2572 	unsigned long flags;
2573 	LIST_HEAD(list), *pos, *next;
2574 	struct page *page;
2575 	int split = 0;
2576 
2577 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2578 	/* Take pin on all head pages to avoid freeing them under us */
2579 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2580 		page = list_entry((void *)pos, struct page, mapping);
2581 		page = compound_head(page);
2582 		if (get_page_unless_zero(page)) {
2583 			list_move(page_deferred_list(page), &list);
2584 		} else {
2585 			/* We lost race with put_compound_page() */
2586 			list_del_init(page_deferred_list(page));
2587 			pgdata->split_queue_len--;
2588 		}
2589 		if (!--sc->nr_to_scan)
2590 			break;
2591 	}
2592 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2593 
2594 	list_for_each_safe(pos, next, &list) {
2595 		page = list_entry((void *)pos, struct page, mapping);
2596 		lock_page(page);
2597 		/* split_huge_page() removes page from list on success */
2598 		if (!split_huge_page(page))
2599 			split++;
2600 		unlock_page(page);
2601 		put_page(page);
2602 	}
2603 
2604 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2605 	list_splice_tail(&list, &pgdata->split_queue);
2606 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2607 
2608 	/*
2609 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2610 	 * This can happen if pages were freed under us.
2611 	 */
2612 	if (!split && list_empty(&pgdata->split_queue))
2613 		return SHRINK_STOP;
2614 	return split;
2615 }
2616 
2617 static struct shrinker deferred_split_shrinker = {
2618 	.count_objects = deferred_split_count,
2619 	.scan_objects = deferred_split_scan,
2620 	.seeks = DEFAULT_SEEKS,
2621 	.flags = SHRINKER_NUMA_AWARE,
2622 };
2623 
2624 #ifdef CONFIG_DEBUG_FS
2625 static int split_huge_pages_set(void *data, u64 val)
2626 {
2627 	struct zone *zone;
2628 	struct page *page;
2629 	unsigned long pfn, max_zone_pfn;
2630 	unsigned long total = 0, split = 0;
2631 
2632 	if (val != 1)
2633 		return -EINVAL;
2634 
2635 	for_each_populated_zone(zone) {
2636 		max_zone_pfn = zone_end_pfn(zone);
2637 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2638 			if (!pfn_valid(pfn))
2639 				continue;
2640 
2641 			page = pfn_to_page(pfn);
2642 			if (!get_page_unless_zero(page))
2643 				continue;
2644 
2645 			if (zone != page_zone(page))
2646 				goto next;
2647 
2648 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2649 				goto next;
2650 
2651 			total++;
2652 			lock_page(page);
2653 			if (!split_huge_page(page))
2654 				split++;
2655 			unlock_page(page);
2656 next:
2657 			put_page(page);
2658 		}
2659 	}
2660 
2661 	pr_info("%lu of %lu THP split\n", split, total);
2662 
2663 	return 0;
2664 }
2665 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2666 		"%llu\n");
2667 
2668 static int __init split_huge_pages_debugfs(void)
2669 {
2670 	void *ret;
2671 
2672 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2673 			&split_huge_pages_fops);
2674 	if (!ret)
2675 		pr_warn("Failed to create split_huge_pages in debugfs");
2676 	return 0;
2677 }
2678 late_initcall(split_huge_pages_debugfs);
2679 #endif
2680