xref: /openbmc/linux/mm/huge_memory.c (revision e657c18a)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 	if (vma_is_anonymous(vma))
69 		return __transparent_hugepage_enabled(vma);
70 	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 		return __transparent_hugepage_enabled(vma);
72 
73 	return false;
74 }
75 
76 static struct page *get_huge_zero_page(void)
77 {
78 	struct page *zero_page;
79 retry:
80 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81 		return READ_ONCE(huge_zero_page);
82 
83 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84 			HPAGE_PMD_ORDER);
85 	if (!zero_page) {
86 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87 		return NULL;
88 	}
89 	count_vm_event(THP_ZERO_PAGE_ALLOC);
90 	preempt_disable();
91 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92 		preempt_enable();
93 		__free_pages(zero_page, compound_order(zero_page));
94 		goto retry;
95 	}
96 
97 	/* We take additional reference here. It will be put back by shrinker */
98 	atomic_set(&huge_zero_refcount, 2);
99 	preempt_enable();
100 	return READ_ONCE(huge_zero_page);
101 }
102 
103 static void put_huge_zero_page(void)
104 {
105 	/*
106 	 * Counter should never go to zero here. Only shrinker can put
107 	 * last reference.
108 	 */
109 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110 }
111 
112 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		return READ_ONCE(huge_zero_page);
116 
117 	if (!get_huge_zero_page())
118 		return NULL;
119 
120 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 		put_huge_zero_page();
122 
123 	return READ_ONCE(huge_zero_page);
124 }
125 
126 void mm_put_huge_zero_page(struct mm_struct *mm)
127 {
128 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 		put_huge_zero_page();
130 }
131 
132 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 					struct shrink_control *sc)
134 {
135 	/* we can free zero page only if last reference remains */
136 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137 }
138 
139 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 				       struct shrink_control *sc)
141 {
142 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 		struct page *zero_page = xchg(&huge_zero_page, NULL);
144 		BUG_ON(zero_page == NULL);
145 		__free_pages(zero_page, compound_order(zero_page));
146 		return HPAGE_PMD_NR;
147 	}
148 
149 	return 0;
150 }
151 
152 static struct shrinker huge_zero_page_shrinker = {
153 	.count_objects = shrink_huge_zero_page_count,
154 	.scan_objects = shrink_huge_zero_page_scan,
155 	.seeks = DEFAULT_SEEKS,
156 };
157 
158 #ifdef CONFIG_SYSFS
159 static ssize_t enabled_show(struct kobject *kobj,
160 			    struct kobj_attribute *attr, char *buf)
161 {
162 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 		return sprintf(buf, "[always] madvise never\n");
164 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 		return sprintf(buf, "always [madvise] never\n");
166 	else
167 		return sprintf(buf, "always madvise [never]\n");
168 }
169 
170 static ssize_t enabled_store(struct kobject *kobj,
171 			     struct kobj_attribute *attr,
172 			     const char *buf, size_t count)
173 {
174 	ssize_t ret = count;
175 
176 	if (!memcmp("always", buf,
177 		    min(sizeof("always")-1, count))) {
178 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 	} else if (!memcmp("madvise", buf,
181 			   min(sizeof("madvise")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("never", buf,
185 			   min(sizeof("never")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else
189 		ret = -EINVAL;
190 
191 	if (ret > 0) {
192 		int err = start_stop_khugepaged();
193 		if (err)
194 			ret = err;
195 	}
196 	return ret;
197 }
198 static struct kobj_attribute enabled_attr =
199 	__ATTR(enabled, 0644, enabled_show, enabled_store);
200 
201 ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 				struct kobj_attribute *attr, char *buf,
203 				enum transparent_hugepage_flag flag)
204 {
205 	return sprintf(buf, "%d\n",
206 		       !!test_bit(flag, &transparent_hugepage_flags));
207 }
208 
209 ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 				 struct kobj_attribute *attr,
211 				 const char *buf, size_t count,
212 				 enum transparent_hugepage_flag flag)
213 {
214 	unsigned long value;
215 	int ret;
216 
217 	ret = kstrtoul(buf, 10, &value);
218 	if (ret < 0)
219 		return ret;
220 	if (value > 1)
221 		return -EINVAL;
222 
223 	if (value)
224 		set_bit(flag, &transparent_hugepage_flags);
225 	else
226 		clear_bit(flag, &transparent_hugepage_flags);
227 
228 	return count;
229 }
230 
231 static ssize_t defrag_show(struct kobject *kobj,
232 			   struct kobj_attribute *attr, char *buf)
233 {
234 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243 }
244 
245 static ssize_t defrag_store(struct kobject *kobj,
246 			    struct kobj_attribute *attr,
247 			    const char *buf, size_t count)
248 {
249 	if (!memcmp("always", buf,
250 		    min(sizeof("always")-1, count))) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (!memcmp("defer+madvise", buf,
256 		    min(sizeof("defer+madvise")-1, count))) {
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 	} else if (!memcmp("defer", buf,
262 		    min(sizeof("defer")-1, count))) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 	} else if (!memcmp("madvise", buf,
268 			   min(sizeof("madvise")-1, count))) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 	} else if (!memcmp("never", buf,
274 			   min(sizeof("never")-1, count))) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 	} else
280 		return -EINVAL;
281 
282 	return count;
283 }
284 static struct kobj_attribute defrag_attr =
285 	__ATTR(defrag, 0644, defrag_show, defrag_store);
286 
287 static ssize_t use_zero_page_show(struct kobject *kobj,
288 		struct kobj_attribute *attr, char *buf)
289 {
290 	return single_hugepage_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 }
293 static ssize_t use_zero_page_store(struct kobject *kobj,
294 		struct kobj_attribute *attr, const char *buf, size_t count)
295 {
296 	return single_hugepage_flag_store(kobj, attr, buf, count,
297 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298 }
299 static struct kobj_attribute use_zero_page_attr =
300 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 
302 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 		struct kobj_attribute *attr, char *buf)
304 {
305 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306 }
307 static struct kobj_attribute hpage_pmd_size_attr =
308 	__ATTR_RO(hpage_pmd_size);
309 
310 #ifdef CONFIG_DEBUG_VM
311 static ssize_t debug_cow_show(struct kobject *kobj,
312 				struct kobj_attribute *attr, char *buf)
313 {
314 	return single_hugepage_flag_show(kobj, attr, buf,
315 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316 }
317 static ssize_t debug_cow_store(struct kobject *kobj,
318 			       struct kobj_attribute *attr,
319 			       const char *buf, size_t count)
320 {
321 	return single_hugepage_flag_store(kobj, attr, buf, count,
322 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323 }
324 static struct kobj_attribute debug_cow_attr =
325 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326 #endif /* CONFIG_DEBUG_VM */
327 
328 static struct attribute *hugepage_attr[] = {
329 	&enabled_attr.attr,
330 	&defrag_attr.attr,
331 	&use_zero_page_attr.attr,
332 	&hpage_pmd_size_attr.attr,
333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 	&shmem_enabled_attr.attr,
335 #endif
336 #ifdef CONFIG_DEBUG_VM
337 	&debug_cow_attr.attr,
338 #endif
339 	NULL,
340 };
341 
342 static const struct attribute_group hugepage_attr_group = {
343 	.attrs = hugepage_attr,
344 };
345 
346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 {
348 	int err;
349 
350 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 	if (unlikely(!*hugepage_kobj)) {
352 		pr_err("failed to create transparent hugepage kobject\n");
353 		return -ENOMEM;
354 	}
355 
356 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 	if (err) {
358 		pr_err("failed to register transparent hugepage group\n");
359 		goto delete_obj;
360 	}
361 
362 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 	if (err) {
364 		pr_err("failed to register transparent hugepage group\n");
365 		goto remove_hp_group;
366 	}
367 
368 	return 0;
369 
370 remove_hp_group:
371 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372 delete_obj:
373 	kobject_put(*hugepage_kobj);
374 	return err;
375 }
376 
377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 	kobject_put(hugepage_kobj);
382 }
383 #else
384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 {
386 	return 0;
387 }
388 
389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390 {
391 }
392 #endif /* CONFIG_SYSFS */
393 
394 static int __init hugepage_init(void)
395 {
396 	int err;
397 	struct kobject *hugepage_kobj;
398 
399 	if (!has_transparent_hugepage()) {
400 		transparent_hugepage_flags = 0;
401 		return -EINVAL;
402 	}
403 
404 	/*
405 	 * hugepages can't be allocated by the buddy allocator
406 	 */
407 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 	/*
409 	 * we use page->mapping and page->index in second tail page
410 	 * as list_head: assuming THP order >= 2
411 	 */
412 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413 
414 	err = hugepage_init_sysfs(&hugepage_kobj);
415 	if (err)
416 		goto err_sysfs;
417 
418 	err = khugepaged_init();
419 	if (err)
420 		goto err_slab;
421 
422 	err = register_shrinker(&huge_zero_page_shrinker);
423 	if (err)
424 		goto err_hzp_shrinker;
425 	err = register_shrinker(&deferred_split_shrinker);
426 	if (err)
427 		goto err_split_shrinker;
428 
429 	/*
430 	 * By default disable transparent hugepages on smaller systems,
431 	 * where the extra memory used could hurt more than TLB overhead
432 	 * is likely to save.  The admin can still enable it through /sys.
433 	 */
434 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
435 		transparent_hugepage_flags = 0;
436 		return 0;
437 	}
438 
439 	err = start_stop_khugepaged();
440 	if (err)
441 		goto err_khugepaged;
442 
443 	return 0;
444 err_khugepaged:
445 	unregister_shrinker(&deferred_split_shrinker);
446 err_split_shrinker:
447 	unregister_shrinker(&huge_zero_page_shrinker);
448 err_hzp_shrinker:
449 	khugepaged_destroy();
450 err_slab:
451 	hugepage_exit_sysfs(hugepage_kobj);
452 err_sysfs:
453 	return err;
454 }
455 subsys_initcall(hugepage_init);
456 
457 static int __init setup_transparent_hugepage(char *str)
458 {
459 	int ret = 0;
460 	if (!str)
461 		goto out;
462 	if (!strcmp(str, "always")) {
463 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			&transparent_hugepage_flags);
465 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			  &transparent_hugepage_flags);
467 		ret = 1;
468 	} else if (!strcmp(str, "madvise")) {
469 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			  &transparent_hugepage_flags);
471 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			&transparent_hugepage_flags);
473 		ret = 1;
474 	} else if (!strcmp(str, "never")) {
475 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 			  &transparent_hugepage_flags);
477 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 			  &transparent_hugepage_flags);
479 		ret = 1;
480 	}
481 out:
482 	if (!ret)
483 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 	return ret;
485 }
486 __setup("transparent_hugepage=", setup_transparent_hugepage);
487 
488 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489 {
490 	if (likely(vma->vm_flags & VM_WRITE))
491 		pmd = pmd_mkwrite(pmd);
492 	return pmd;
493 }
494 
495 static inline struct list_head *page_deferred_list(struct page *page)
496 {
497 	/* ->lru in the tail pages is occupied by compound_head. */
498 	return &page[2].deferred_list;
499 }
500 
501 void prep_transhuge_page(struct page *page)
502 {
503 	/*
504 	 * we use page->mapping and page->indexlru in second tail page
505 	 * as list_head: assuming THP order >= 2
506 	 */
507 
508 	INIT_LIST_HEAD(page_deferred_list(page));
509 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510 }
511 
512 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 		loff_t off, unsigned long flags, unsigned long size)
514 {
515 	unsigned long addr;
516 	loff_t off_end = off + len;
517 	loff_t off_align = round_up(off, size);
518 	unsigned long len_pad;
519 
520 	if (off_end <= off_align || (off_end - off_align) < size)
521 		return 0;
522 
523 	len_pad = len + size;
524 	if (len_pad < len || (off + len_pad) < off)
525 		return 0;
526 
527 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 					      off >> PAGE_SHIFT, flags);
529 	if (IS_ERR_VALUE(addr))
530 		return 0;
531 
532 	addr += (off - addr) & (size - 1);
533 	return addr;
534 }
535 
536 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 		unsigned long len, unsigned long pgoff, unsigned long flags)
538 {
539 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540 
541 	if (addr)
542 		goto out;
543 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 		goto out;
545 
546 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 	if (addr)
548 		return addr;
549 
550  out:
551 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552 }
553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554 
555 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 			struct page *page, gfp_t gfp)
557 {
558 	struct vm_area_struct *vma = vmf->vma;
559 	struct mem_cgroup *memcg;
560 	pgtable_t pgtable;
561 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
562 	vm_fault_t ret = 0;
563 
564 	VM_BUG_ON_PAGE(!PageCompound(page), page);
565 
566 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
567 		put_page(page);
568 		count_vm_event(THP_FAULT_FALLBACK);
569 		return VM_FAULT_FALLBACK;
570 	}
571 
572 	pgtable = pte_alloc_one(vma->vm_mm);
573 	if (unlikely(!pgtable)) {
574 		ret = VM_FAULT_OOM;
575 		goto release;
576 	}
577 
578 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 	/*
580 	 * The memory barrier inside __SetPageUptodate makes sure that
581 	 * clear_huge_page writes become visible before the set_pmd_at()
582 	 * write.
583 	 */
584 	__SetPageUptodate(page);
585 
586 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 	if (unlikely(!pmd_none(*vmf->pmd))) {
588 		goto unlock_release;
589 	} else {
590 		pmd_t entry;
591 
592 		ret = check_stable_address_space(vma->vm_mm);
593 		if (ret)
594 			goto unlock_release;
595 
596 		/* Deliver the page fault to userland */
597 		if (userfaultfd_missing(vma)) {
598 			vm_fault_t ret2;
599 
600 			spin_unlock(vmf->ptl);
601 			mem_cgroup_cancel_charge(page, memcg, true);
602 			put_page(page);
603 			pte_free(vma->vm_mm, pgtable);
604 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 			return ret2;
607 		}
608 
609 		entry = mk_huge_pmd(page, vma->vm_page_prot);
610 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
611 		page_add_new_anon_rmap(page, vma, haddr, true);
612 		mem_cgroup_commit_charge(page, memcg, false, true);
613 		lru_cache_add_active_or_unevictable(page, vma);
614 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
616 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
617 		mm_inc_nr_ptes(vma->vm_mm);
618 		spin_unlock(vmf->ptl);
619 		count_vm_event(THP_FAULT_ALLOC);
620 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
621 	}
622 
623 	return 0;
624 unlock_release:
625 	spin_unlock(vmf->ptl);
626 release:
627 	if (pgtable)
628 		pte_free(vma->vm_mm, pgtable);
629 	mem_cgroup_cancel_charge(page, memcg, true);
630 	put_page(page);
631 	return ret;
632 
633 }
634 
635 /*
636  * always: directly stall for all thp allocations
637  * defer: wake kswapd and fail if not immediately available
638  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639  *		  fail if not immediately available
640  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
641  *	    available
642  * never: never stall for any thp allocation
643  */
644 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
645 {
646 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
647 
648 	/* Always do synchronous compaction */
649 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
650 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
651 
652 	/* Kick kcompactd and fail quickly */
653 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
654 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
655 
656 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
657 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
658 		return GFP_TRANSHUGE_LIGHT |
659 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
660 					__GFP_KSWAPD_RECLAIM);
661 
662 	/* Only do synchronous compaction if madvised */
663 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
664 		return GFP_TRANSHUGE_LIGHT |
665 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
666 
667 	return GFP_TRANSHUGE_LIGHT;
668 }
669 
670 /* Caller must hold page table lock. */
671 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
672 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
673 		struct page *zero_page)
674 {
675 	pmd_t entry;
676 	if (!pmd_none(*pmd))
677 		return false;
678 	entry = mk_pmd(zero_page, vma->vm_page_prot);
679 	entry = pmd_mkhuge(entry);
680 	if (pgtable)
681 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
682 	set_pmd_at(mm, haddr, pmd, entry);
683 	mm_inc_nr_ptes(mm);
684 	return true;
685 }
686 
687 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
688 {
689 	struct vm_area_struct *vma = vmf->vma;
690 	gfp_t gfp;
691 	struct page *page;
692 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
693 
694 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
695 		return VM_FAULT_FALLBACK;
696 	if (unlikely(anon_vma_prepare(vma)))
697 		return VM_FAULT_OOM;
698 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
699 		return VM_FAULT_OOM;
700 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
701 			!mm_forbids_zeropage(vma->vm_mm) &&
702 			transparent_hugepage_use_zero_page()) {
703 		pgtable_t pgtable;
704 		struct page *zero_page;
705 		bool set;
706 		vm_fault_t ret;
707 		pgtable = pte_alloc_one(vma->vm_mm);
708 		if (unlikely(!pgtable))
709 			return VM_FAULT_OOM;
710 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
711 		if (unlikely(!zero_page)) {
712 			pte_free(vma->vm_mm, pgtable);
713 			count_vm_event(THP_FAULT_FALLBACK);
714 			return VM_FAULT_FALLBACK;
715 		}
716 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
717 		ret = 0;
718 		set = false;
719 		if (pmd_none(*vmf->pmd)) {
720 			ret = check_stable_address_space(vma->vm_mm);
721 			if (ret) {
722 				spin_unlock(vmf->ptl);
723 			} else if (userfaultfd_missing(vma)) {
724 				spin_unlock(vmf->ptl);
725 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
726 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 			} else {
728 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
729 						   haddr, vmf->pmd, zero_page);
730 				spin_unlock(vmf->ptl);
731 				set = true;
732 			}
733 		} else
734 			spin_unlock(vmf->ptl);
735 		if (!set)
736 			pte_free(vma->vm_mm, pgtable);
737 		return ret;
738 	}
739 	gfp = alloc_hugepage_direct_gfpmask(vma);
740 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
741 	if (unlikely(!page)) {
742 		count_vm_event(THP_FAULT_FALLBACK);
743 		return VM_FAULT_FALLBACK;
744 	}
745 	prep_transhuge_page(page);
746 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
747 }
748 
749 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
750 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 		pgtable_t pgtable)
752 {
753 	struct mm_struct *mm = vma->vm_mm;
754 	pmd_t entry;
755 	spinlock_t *ptl;
756 
757 	ptl = pmd_lock(mm, pmd);
758 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
759 	if (pfn_t_devmap(pfn))
760 		entry = pmd_mkdevmap(entry);
761 	if (write) {
762 		entry = pmd_mkyoung(pmd_mkdirty(entry));
763 		entry = maybe_pmd_mkwrite(entry, vma);
764 	}
765 
766 	if (pgtable) {
767 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
768 		mm_inc_nr_ptes(mm);
769 	}
770 
771 	set_pmd_at(mm, addr, pmd, entry);
772 	update_mmu_cache_pmd(vma, addr, pmd);
773 	spin_unlock(ptl);
774 }
775 
776 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
777 			pmd_t *pmd, pfn_t pfn, bool write)
778 {
779 	pgprot_t pgprot = vma->vm_page_prot;
780 	pgtable_t pgtable = NULL;
781 	/*
782 	 * If we had pmd_special, we could avoid all these restrictions,
783 	 * but we need to be consistent with PTEs and architectures that
784 	 * can't support a 'special' bit.
785 	 */
786 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
787 			!pfn_t_devmap(pfn));
788 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
789 						(VM_PFNMAP|VM_MIXEDMAP));
790 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
791 
792 	if (addr < vma->vm_start || addr >= vma->vm_end)
793 		return VM_FAULT_SIGBUS;
794 
795 	if (arch_needs_pgtable_deposit()) {
796 		pgtable = pte_alloc_one(vma->vm_mm);
797 		if (!pgtable)
798 			return VM_FAULT_OOM;
799 	}
800 
801 	track_pfn_insert(vma, &pgprot, pfn);
802 
803 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
804 	return VM_FAULT_NOPAGE;
805 }
806 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
807 
808 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
809 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
810 {
811 	if (likely(vma->vm_flags & VM_WRITE))
812 		pud = pud_mkwrite(pud);
813 	return pud;
814 }
815 
816 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
817 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
818 {
819 	struct mm_struct *mm = vma->vm_mm;
820 	pud_t entry;
821 	spinlock_t *ptl;
822 
823 	ptl = pud_lock(mm, pud);
824 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
825 	if (pfn_t_devmap(pfn))
826 		entry = pud_mkdevmap(entry);
827 	if (write) {
828 		entry = pud_mkyoung(pud_mkdirty(entry));
829 		entry = maybe_pud_mkwrite(entry, vma);
830 	}
831 	set_pud_at(mm, addr, pud, entry);
832 	update_mmu_cache_pud(vma, addr, pud);
833 	spin_unlock(ptl);
834 }
835 
836 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
837 			pud_t *pud, pfn_t pfn, bool write)
838 {
839 	pgprot_t pgprot = vma->vm_page_prot;
840 	/*
841 	 * If we had pud_special, we could avoid all these restrictions,
842 	 * but we need to be consistent with PTEs and architectures that
843 	 * can't support a 'special' bit.
844 	 */
845 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
846 			!pfn_t_devmap(pfn));
847 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
848 						(VM_PFNMAP|VM_MIXEDMAP));
849 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
850 
851 	if (addr < vma->vm_start || addr >= vma->vm_end)
852 		return VM_FAULT_SIGBUS;
853 
854 	track_pfn_insert(vma, &pgprot, pfn);
855 
856 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
857 	return VM_FAULT_NOPAGE;
858 }
859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
860 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
861 
862 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
863 		pmd_t *pmd, int flags)
864 {
865 	pmd_t _pmd;
866 
867 	_pmd = pmd_mkyoung(*pmd);
868 	if (flags & FOLL_WRITE)
869 		_pmd = pmd_mkdirty(_pmd);
870 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
871 				pmd, _pmd, flags & FOLL_WRITE))
872 		update_mmu_cache_pmd(vma, addr, pmd);
873 }
874 
875 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
876 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
877 {
878 	unsigned long pfn = pmd_pfn(*pmd);
879 	struct mm_struct *mm = vma->vm_mm;
880 	struct page *page;
881 
882 	assert_spin_locked(pmd_lockptr(mm, pmd));
883 
884 	/*
885 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
886 	 * not be in this function with `flags & FOLL_COW` set.
887 	 */
888 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
889 
890 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
891 		return NULL;
892 
893 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
894 		/* pass */;
895 	else
896 		return NULL;
897 
898 	if (flags & FOLL_TOUCH)
899 		touch_pmd(vma, addr, pmd, flags);
900 
901 	/*
902 	 * device mapped pages can only be returned if the
903 	 * caller will manage the page reference count.
904 	 */
905 	if (!(flags & FOLL_GET))
906 		return ERR_PTR(-EEXIST);
907 
908 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
909 	*pgmap = get_dev_pagemap(pfn, *pgmap);
910 	if (!*pgmap)
911 		return ERR_PTR(-EFAULT);
912 	page = pfn_to_page(pfn);
913 	get_page(page);
914 
915 	return page;
916 }
917 
918 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
920 		  struct vm_area_struct *vma)
921 {
922 	spinlock_t *dst_ptl, *src_ptl;
923 	struct page *src_page;
924 	pmd_t pmd;
925 	pgtable_t pgtable = NULL;
926 	int ret = -ENOMEM;
927 
928 	/* Skip if can be re-fill on fault */
929 	if (!vma_is_anonymous(vma))
930 		return 0;
931 
932 	pgtable = pte_alloc_one(dst_mm);
933 	if (unlikely(!pgtable))
934 		goto out;
935 
936 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
937 	src_ptl = pmd_lockptr(src_mm, src_pmd);
938 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
939 
940 	ret = -EAGAIN;
941 	pmd = *src_pmd;
942 
943 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
944 	if (unlikely(is_swap_pmd(pmd))) {
945 		swp_entry_t entry = pmd_to_swp_entry(pmd);
946 
947 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
948 		if (is_write_migration_entry(entry)) {
949 			make_migration_entry_read(&entry);
950 			pmd = swp_entry_to_pmd(entry);
951 			if (pmd_swp_soft_dirty(*src_pmd))
952 				pmd = pmd_swp_mksoft_dirty(pmd);
953 			set_pmd_at(src_mm, addr, src_pmd, pmd);
954 		}
955 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
956 		mm_inc_nr_ptes(dst_mm);
957 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
958 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
959 		ret = 0;
960 		goto out_unlock;
961 	}
962 #endif
963 
964 	if (unlikely(!pmd_trans_huge(pmd))) {
965 		pte_free(dst_mm, pgtable);
966 		goto out_unlock;
967 	}
968 	/*
969 	 * When page table lock is held, the huge zero pmd should not be
970 	 * under splitting since we don't split the page itself, only pmd to
971 	 * a page table.
972 	 */
973 	if (is_huge_zero_pmd(pmd)) {
974 		struct page *zero_page;
975 		/*
976 		 * get_huge_zero_page() will never allocate a new page here,
977 		 * since we already have a zero page to copy. It just takes a
978 		 * reference.
979 		 */
980 		zero_page = mm_get_huge_zero_page(dst_mm);
981 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
982 				zero_page);
983 		ret = 0;
984 		goto out_unlock;
985 	}
986 
987 	src_page = pmd_page(pmd);
988 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
989 	get_page(src_page);
990 	page_dup_rmap(src_page, true);
991 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
992 	mm_inc_nr_ptes(dst_mm);
993 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
994 
995 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
996 	pmd = pmd_mkold(pmd_wrprotect(pmd));
997 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
998 
999 	ret = 0;
1000 out_unlock:
1001 	spin_unlock(src_ptl);
1002 	spin_unlock(dst_ptl);
1003 out:
1004 	return ret;
1005 }
1006 
1007 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1008 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1009 		pud_t *pud, int flags)
1010 {
1011 	pud_t _pud;
1012 
1013 	_pud = pud_mkyoung(*pud);
1014 	if (flags & FOLL_WRITE)
1015 		_pud = pud_mkdirty(_pud);
1016 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1017 				pud, _pud, flags & FOLL_WRITE))
1018 		update_mmu_cache_pud(vma, addr, pud);
1019 }
1020 
1021 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1022 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1023 {
1024 	unsigned long pfn = pud_pfn(*pud);
1025 	struct mm_struct *mm = vma->vm_mm;
1026 	struct page *page;
1027 
1028 	assert_spin_locked(pud_lockptr(mm, pud));
1029 
1030 	if (flags & FOLL_WRITE && !pud_write(*pud))
1031 		return NULL;
1032 
1033 	if (pud_present(*pud) && pud_devmap(*pud))
1034 		/* pass */;
1035 	else
1036 		return NULL;
1037 
1038 	if (flags & FOLL_TOUCH)
1039 		touch_pud(vma, addr, pud, flags);
1040 
1041 	/*
1042 	 * device mapped pages can only be returned if the
1043 	 * caller will manage the page reference count.
1044 	 */
1045 	if (!(flags & FOLL_GET))
1046 		return ERR_PTR(-EEXIST);
1047 
1048 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1049 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1050 	if (!*pgmap)
1051 		return ERR_PTR(-EFAULT);
1052 	page = pfn_to_page(pfn);
1053 	get_page(page);
1054 
1055 	return page;
1056 }
1057 
1058 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1060 		  struct vm_area_struct *vma)
1061 {
1062 	spinlock_t *dst_ptl, *src_ptl;
1063 	pud_t pud;
1064 	int ret;
1065 
1066 	dst_ptl = pud_lock(dst_mm, dst_pud);
1067 	src_ptl = pud_lockptr(src_mm, src_pud);
1068 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1069 
1070 	ret = -EAGAIN;
1071 	pud = *src_pud;
1072 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1073 		goto out_unlock;
1074 
1075 	/*
1076 	 * When page table lock is held, the huge zero pud should not be
1077 	 * under splitting since we don't split the page itself, only pud to
1078 	 * a page table.
1079 	 */
1080 	if (is_huge_zero_pud(pud)) {
1081 		/* No huge zero pud yet */
1082 	}
1083 
1084 	pudp_set_wrprotect(src_mm, addr, src_pud);
1085 	pud = pud_mkold(pud_wrprotect(pud));
1086 	set_pud_at(dst_mm, addr, dst_pud, pud);
1087 
1088 	ret = 0;
1089 out_unlock:
1090 	spin_unlock(src_ptl);
1091 	spin_unlock(dst_ptl);
1092 	return ret;
1093 }
1094 
1095 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1096 {
1097 	pud_t entry;
1098 	unsigned long haddr;
1099 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1100 
1101 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1102 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1103 		goto unlock;
1104 
1105 	entry = pud_mkyoung(orig_pud);
1106 	if (write)
1107 		entry = pud_mkdirty(entry);
1108 	haddr = vmf->address & HPAGE_PUD_MASK;
1109 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1110 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1111 
1112 unlock:
1113 	spin_unlock(vmf->ptl);
1114 }
1115 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1116 
1117 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1118 {
1119 	pmd_t entry;
1120 	unsigned long haddr;
1121 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1122 
1123 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1124 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1125 		goto unlock;
1126 
1127 	entry = pmd_mkyoung(orig_pmd);
1128 	if (write)
1129 		entry = pmd_mkdirty(entry);
1130 	haddr = vmf->address & HPAGE_PMD_MASK;
1131 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1132 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1133 
1134 unlock:
1135 	spin_unlock(vmf->ptl);
1136 }
1137 
1138 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1139 			pmd_t orig_pmd, struct page *page)
1140 {
1141 	struct vm_area_struct *vma = vmf->vma;
1142 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1143 	struct mem_cgroup *memcg;
1144 	pgtable_t pgtable;
1145 	pmd_t _pmd;
1146 	int i;
1147 	vm_fault_t ret = 0;
1148 	struct page **pages;
1149 	struct mmu_notifier_range range;
1150 
1151 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1152 			      GFP_KERNEL);
1153 	if (unlikely(!pages)) {
1154 		ret |= VM_FAULT_OOM;
1155 		goto out;
1156 	}
1157 
1158 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1159 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1160 					       vmf->address, page_to_nid(page));
1161 		if (unlikely(!pages[i] ||
1162 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1163 				     GFP_KERNEL, &memcg, false))) {
1164 			if (pages[i])
1165 				put_page(pages[i]);
1166 			while (--i >= 0) {
1167 				memcg = (void *)page_private(pages[i]);
1168 				set_page_private(pages[i], 0);
1169 				mem_cgroup_cancel_charge(pages[i], memcg,
1170 						false);
1171 				put_page(pages[i]);
1172 			}
1173 			kfree(pages);
1174 			ret |= VM_FAULT_OOM;
1175 			goto out;
1176 		}
1177 		set_page_private(pages[i], (unsigned long)memcg);
1178 	}
1179 
1180 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1181 		copy_user_highpage(pages[i], page + i,
1182 				   haddr + PAGE_SIZE * i, vma);
1183 		__SetPageUptodate(pages[i]);
1184 		cond_resched();
1185 	}
1186 
1187 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1188 				haddr + HPAGE_PMD_SIZE);
1189 	mmu_notifier_invalidate_range_start(&range);
1190 
1191 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1192 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1193 		goto out_free_pages;
1194 	VM_BUG_ON_PAGE(!PageHead(page), page);
1195 
1196 	/*
1197 	 * Leave pmd empty until pte is filled note we must notify here as
1198 	 * concurrent CPU thread might write to new page before the call to
1199 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1200 	 * device seeing memory write in different order than CPU.
1201 	 *
1202 	 * See Documentation/vm/mmu_notifier.rst
1203 	 */
1204 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1205 
1206 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1207 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1208 
1209 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1210 		pte_t entry;
1211 		entry = mk_pte(pages[i], vma->vm_page_prot);
1212 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1213 		memcg = (void *)page_private(pages[i]);
1214 		set_page_private(pages[i], 0);
1215 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1216 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1217 		lru_cache_add_active_or_unevictable(pages[i], vma);
1218 		vmf->pte = pte_offset_map(&_pmd, haddr);
1219 		VM_BUG_ON(!pte_none(*vmf->pte));
1220 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1221 		pte_unmap(vmf->pte);
1222 	}
1223 	kfree(pages);
1224 
1225 	smp_wmb(); /* make pte visible before pmd */
1226 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1227 	page_remove_rmap(page, true);
1228 	spin_unlock(vmf->ptl);
1229 
1230 	/*
1231 	 * No need to double call mmu_notifier->invalidate_range() callback as
1232 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1233 	 */
1234 	mmu_notifier_invalidate_range_only_end(&range);
1235 
1236 	ret |= VM_FAULT_WRITE;
1237 	put_page(page);
1238 
1239 out:
1240 	return ret;
1241 
1242 out_free_pages:
1243 	spin_unlock(vmf->ptl);
1244 	mmu_notifier_invalidate_range_end(&range);
1245 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1246 		memcg = (void *)page_private(pages[i]);
1247 		set_page_private(pages[i], 0);
1248 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1249 		put_page(pages[i]);
1250 	}
1251 	kfree(pages);
1252 	goto out;
1253 }
1254 
1255 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1256 {
1257 	struct vm_area_struct *vma = vmf->vma;
1258 	struct page *page = NULL, *new_page;
1259 	struct mem_cgroup *memcg;
1260 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1261 	struct mmu_notifier_range range;
1262 	gfp_t huge_gfp;			/* for allocation and charge */
1263 	vm_fault_t ret = 0;
1264 
1265 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1266 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1267 	if (is_huge_zero_pmd(orig_pmd))
1268 		goto alloc;
1269 	spin_lock(vmf->ptl);
1270 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1271 		goto out_unlock;
1272 
1273 	page = pmd_page(orig_pmd);
1274 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1275 	/*
1276 	 * We can only reuse the page if nobody else maps the huge page or it's
1277 	 * part.
1278 	 */
1279 	if (!trylock_page(page)) {
1280 		get_page(page);
1281 		spin_unlock(vmf->ptl);
1282 		lock_page(page);
1283 		spin_lock(vmf->ptl);
1284 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1285 			unlock_page(page);
1286 			put_page(page);
1287 			goto out_unlock;
1288 		}
1289 		put_page(page);
1290 	}
1291 	if (reuse_swap_page(page, NULL)) {
1292 		pmd_t entry;
1293 		entry = pmd_mkyoung(orig_pmd);
1294 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1295 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1296 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1297 		ret |= VM_FAULT_WRITE;
1298 		unlock_page(page);
1299 		goto out_unlock;
1300 	}
1301 	unlock_page(page);
1302 	get_page(page);
1303 	spin_unlock(vmf->ptl);
1304 alloc:
1305 	if (__transparent_hugepage_enabled(vma) &&
1306 	    !transparent_hugepage_debug_cow()) {
1307 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1308 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1309 	} else
1310 		new_page = NULL;
1311 
1312 	if (likely(new_page)) {
1313 		prep_transhuge_page(new_page);
1314 	} else {
1315 		if (!page) {
1316 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1317 			ret |= VM_FAULT_FALLBACK;
1318 		} else {
1319 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1320 			if (ret & VM_FAULT_OOM) {
1321 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1322 				ret |= VM_FAULT_FALLBACK;
1323 			}
1324 			put_page(page);
1325 		}
1326 		count_vm_event(THP_FAULT_FALLBACK);
1327 		goto out;
1328 	}
1329 
1330 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1331 					huge_gfp, &memcg, true))) {
1332 		put_page(new_page);
1333 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1334 		if (page)
1335 			put_page(page);
1336 		ret |= VM_FAULT_FALLBACK;
1337 		count_vm_event(THP_FAULT_FALLBACK);
1338 		goto out;
1339 	}
1340 
1341 	count_vm_event(THP_FAULT_ALLOC);
1342 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1343 
1344 	if (!page)
1345 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1346 	else
1347 		copy_user_huge_page(new_page, page, vmf->address,
1348 				    vma, HPAGE_PMD_NR);
1349 	__SetPageUptodate(new_page);
1350 
1351 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1352 				haddr + HPAGE_PMD_SIZE);
1353 	mmu_notifier_invalidate_range_start(&range);
1354 
1355 	spin_lock(vmf->ptl);
1356 	if (page)
1357 		put_page(page);
1358 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1359 		spin_unlock(vmf->ptl);
1360 		mem_cgroup_cancel_charge(new_page, memcg, true);
1361 		put_page(new_page);
1362 		goto out_mn;
1363 	} else {
1364 		pmd_t entry;
1365 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1366 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1367 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1368 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1369 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1370 		lru_cache_add_active_or_unevictable(new_page, vma);
1371 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1372 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1373 		if (!page) {
1374 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1375 		} else {
1376 			VM_BUG_ON_PAGE(!PageHead(page), page);
1377 			page_remove_rmap(page, true);
1378 			put_page(page);
1379 		}
1380 		ret |= VM_FAULT_WRITE;
1381 	}
1382 	spin_unlock(vmf->ptl);
1383 out_mn:
1384 	/*
1385 	 * No need to double call mmu_notifier->invalidate_range() callback as
1386 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1387 	 */
1388 	mmu_notifier_invalidate_range_only_end(&range);
1389 out:
1390 	return ret;
1391 out_unlock:
1392 	spin_unlock(vmf->ptl);
1393 	return ret;
1394 }
1395 
1396 /*
1397  * FOLL_FORCE can write to even unwritable pmd's, but only
1398  * after we've gone through a COW cycle and they are dirty.
1399  */
1400 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1401 {
1402 	return pmd_write(pmd) ||
1403 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1404 }
1405 
1406 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1407 				   unsigned long addr,
1408 				   pmd_t *pmd,
1409 				   unsigned int flags)
1410 {
1411 	struct mm_struct *mm = vma->vm_mm;
1412 	struct page *page = NULL;
1413 
1414 	assert_spin_locked(pmd_lockptr(mm, pmd));
1415 
1416 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1417 		goto out;
1418 
1419 	/* Avoid dumping huge zero page */
1420 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1421 		return ERR_PTR(-EFAULT);
1422 
1423 	/* Full NUMA hinting faults to serialise migration in fault paths */
1424 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1425 		goto out;
1426 
1427 	page = pmd_page(*pmd);
1428 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1429 	if (flags & FOLL_TOUCH)
1430 		touch_pmd(vma, addr, pmd, flags);
1431 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1432 		/*
1433 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1434 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1435 		 *
1436 		 * For anon THP:
1437 		 *
1438 		 * In most cases the pmd is the only mapping of the page as we
1439 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1440 		 * writable private mappings in populate_vma_page_range().
1441 		 *
1442 		 * The only scenario when we have the page shared here is if we
1443 		 * mlocking read-only mapping shared over fork(). We skip
1444 		 * mlocking such pages.
1445 		 *
1446 		 * For file THP:
1447 		 *
1448 		 * We can expect PageDoubleMap() to be stable under page lock:
1449 		 * for file pages we set it in page_add_file_rmap(), which
1450 		 * requires page to be locked.
1451 		 */
1452 
1453 		if (PageAnon(page) && compound_mapcount(page) != 1)
1454 			goto skip_mlock;
1455 		if (PageDoubleMap(page) || !page->mapping)
1456 			goto skip_mlock;
1457 		if (!trylock_page(page))
1458 			goto skip_mlock;
1459 		lru_add_drain();
1460 		if (page->mapping && !PageDoubleMap(page))
1461 			mlock_vma_page(page);
1462 		unlock_page(page);
1463 	}
1464 skip_mlock:
1465 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1466 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1467 	if (flags & FOLL_GET)
1468 		get_page(page);
1469 
1470 out:
1471 	return page;
1472 }
1473 
1474 /* NUMA hinting page fault entry point for trans huge pmds */
1475 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1476 {
1477 	struct vm_area_struct *vma = vmf->vma;
1478 	struct anon_vma *anon_vma = NULL;
1479 	struct page *page;
1480 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1481 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1482 	int target_nid, last_cpupid = -1;
1483 	bool page_locked;
1484 	bool migrated = false;
1485 	bool was_writable;
1486 	int flags = 0;
1487 
1488 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1489 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1490 		goto out_unlock;
1491 
1492 	/*
1493 	 * If there are potential migrations, wait for completion and retry
1494 	 * without disrupting NUMA hinting information. Do not relock and
1495 	 * check_same as the page may no longer be mapped.
1496 	 */
1497 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1498 		page = pmd_page(*vmf->pmd);
1499 		if (!get_page_unless_zero(page))
1500 			goto out_unlock;
1501 		spin_unlock(vmf->ptl);
1502 		put_and_wait_on_page_locked(page);
1503 		goto out;
1504 	}
1505 
1506 	page = pmd_page(pmd);
1507 	BUG_ON(is_huge_zero_page(page));
1508 	page_nid = page_to_nid(page);
1509 	last_cpupid = page_cpupid_last(page);
1510 	count_vm_numa_event(NUMA_HINT_FAULTS);
1511 	if (page_nid == this_nid) {
1512 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1513 		flags |= TNF_FAULT_LOCAL;
1514 	}
1515 
1516 	/* See similar comment in do_numa_page for explanation */
1517 	if (!pmd_savedwrite(pmd))
1518 		flags |= TNF_NO_GROUP;
1519 
1520 	/*
1521 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1522 	 * page_table_lock if at all possible
1523 	 */
1524 	page_locked = trylock_page(page);
1525 	target_nid = mpol_misplaced(page, vma, haddr);
1526 	if (target_nid == NUMA_NO_NODE) {
1527 		/* If the page was locked, there are no parallel migrations */
1528 		if (page_locked)
1529 			goto clear_pmdnuma;
1530 	}
1531 
1532 	/* Migration could have started since the pmd_trans_migrating check */
1533 	if (!page_locked) {
1534 		page_nid = NUMA_NO_NODE;
1535 		if (!get_page_unless_zero(page))
1536 			goto out_unlock;
1537 		spin_unlock(vmf->ptl);
1538 		put_and_wait_on_page_locked(page);
1539 		goto out;
1540 	}
1541 
1542 	/*
1543 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1544 	 * to serialises splits
1545 	 */
1546 	get_page(page);
1547 	spin_unlock(vmf->ptl);
1548 	anon_vma = page_lock_anon_vma_read(page);
1549 
1550 	/* Confirm the PMD did not change while page_table_lock was released */
1551 	spin_lock(vmf->ptl);
1552 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1553 		unlock_page(page);
1554 		put_page(page);
1555 		page_nid = NUMA_NO_NODE;
1556 		goto out_unlock;
1557 	}
1558 
1559 	/* Bail if we fail to protect against THP splits for any reason */
1560 	if (unlikely(!anon_vma)) {
1561 		put_page(page);
1562 		page_nid = NUMA_NO_NODE;
1563 		goto clear_pmdnuma;
1564 	}
1565 
1566 	/*
1567 	 * Since we took the NUMA fault, we must have observed the !accessible
1568 	 * bit. Make sure all other CPUs agree with that, to avoid them
1569 	 * modifying the page we're about to migrate.
1570 	 *
1571 	 * Must be done under PTL such that we'll observe the relevant
1572 	 * inc_tlb_flush_pending().
1573 	 *
1574 	 * We are not sure a pending tlb flush here is for a huge page
1575 	 * mapping or not. Hence use the tlb range variant
1576 	 */
1577 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1578 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1579 		/*
1580 		 * change_huge_pmd() released the pmd lock before
1581 		 * invalidating the secondary MMUs sharing the primary
1582 		 * MMU pagetables (with ->invalidate_range()). The
1583 		 * mmu_notifier_invalidate_range_end() (which
1584 		 * internally calls ->invalidate_range()) in
1585 		 * change_pmd_range() will run after us, so we can't
1586 		 * rely on it here and we need an explicit invalidate.
1587 		 */
1588 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1589 					      haddr + HPAGE_PMD_SIZE);
1590 	}
1591 
1592 	/*
1593 	 * Migrate the THP to the requested node, returns with page unlocked
1594 	 * and access rights restored.
1595 	 */
1596 	spin_unlock(vmf->ptl);
1597 
1598 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1599 				vmf->pmd, pmd, vmf->address, page, target_nid);
1600 	if (migrated) {
1601 		flags |= TNF_MIGRATED;
1602 		page_nid = target_nid;
1603 	} else
1604 		flags |= TNF_MIGRATE_FAIL;
1605 
1606 	goto out;
1607 clear_pmdnuma:
1608 	BUG_ON(!PageLocked(page));
1609 	was_writable = pmd_savedwrite(pmd);
1610 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1611 	pmd = pmd_mkyoung(pmd);
1612 	if (was_writable)
1613 		pmd = pmd_mkwrite(pmd);
1614 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1615 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1616 	unlock_page(page);
1617 out_unlock:
1618 	spin_unlock(vmf->ptl);
1619 
1620 out:
1621 	if (anon_vma)
1622 		page_unlock_anon_vma_read(anon_vma);
1623 
1624 	if (page_nid != NUMA_NO_NODE)
1625 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1626 				flags);
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Return true if we do MADV_FREE successfully on entire pmd page.
1633  * Otherwise, return false.
1634  */
1635 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1636 		pmd_t *pmd, unsigned long addr, unsigned long next)
1637 {
1638 	spinlock_t *ptl;
1639 	pmd_t orig_pmd;
1640 	struct page *page;
1641 	struct mm_struct *mm = tlb->mm;
1642 	bool ret = false;
1643 
1644 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1645 
1646 	ptl = pmd_trans_huge_lock(pmd, vma);
1647 	if (!ptl)
1648 		goto out_unlocked;
1649 
1650 	orig_pmd = *pmd;
1651 	if (is_huge_zero_pmd(orig_pmd))
1652 		goto out;
1653 
1654 	if (unlikely(!pmd_present(orig_pmd))) {
1655 		VM_BUG_ON(thp_migration_supported() &&
1656 				  !is_pmd_migration_entry(orig_pmd));
1657 		goto out;
1658 	}
1659 
1660 	page = pmd_page(orig_pmd);
1661 	/*
1662 	 * If other processes are mapping this page, we couldn't discard
1663 	 * the page unless they all do MADV_FREE so let's skip the page.
1664 	 */
1665 	if (page_mapcount(page) != 1)
1666 		goto out;
1667 
1668 	if (!trylock_page(page))
1669 		goto out;
1670 
1671 	/*
1672 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1673 	 * will deactivate only them.
1674 	 */
1675 	if (next - addr != HPAGE_PMD_SIZE) {
1676 		get_page(page);
1677 		spin_unlock(ptl);
1678 		split_huge_page(page);
1679 		unlock_page(page);
1680 		put_page(page);
1681 		goto out_unlocked;
1682 	}
1683 
1684 	if (PageDirty(page))
1685 		ClearPageDirty(page);
1686 	unlock_page(page);
1687 
1688 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1689 		pmdp_invalidate(vma, addr, pmd);
1690 		orig_pmd = pmd_mkold(orig_pmd);
1691 		orig_pmd = pmd_mkclean(orig_pmd);
1692 
1693 		set_pmd_at(mm, addr, pmd, orig_pmd);
1694 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1695 	}
1696 
1697 	mark_page_lazyfree(page);
1698 	ret = true;
1699 out:
1700 	spin_unlock(ptl);
1701 out_unlocked:
1702 	return ret;
1703 }
1704 
1705 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1706 {
1707 	pgtable_t pgtable;
1708 
1709 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1710 	pte_free(mm, pgtable);
1711 	mm_dec_nr_ptes(mm);
1712 }
1713 
1714 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1715 		 pmd_t *pmd, unsigned long addr)
1716 {
1717 	pmd_t orig_pmd;
1718 	spinlock_t *ptl;
1719 
1720 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1721 
1722 	ptl = __pmd_trans_huge_lock(pmd, vma);
1723 	if (!ptl)
1724 		return 0;
1725 	/*
1726 	 * For architectures like ppc64 we look at deposited pgtable
1727 	 * when calling pmdp_huge_get_and_clear. So do the
1728 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1729 	 * operations.
1730 	 */
1731 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1732 			tlb->fullmm);
1733 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1734 	if (vma_is_dax(vma)) {
1735 		if (arch_needs_pgtable_deposit())
1736 			zap_deposited_table(tlb->mm, pmd);
1737 		spin_unlock(ptl);
1738 		if (is_huge_zero_pmd(orig_pmd))
1739 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1740 	} else if (is_huge_zero_pmd(orig_pmd)) {
1741 		zap_deposited_table(tlb->mm, pmd);
1742 		spin_unlock(ptl);
1743 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1744 	} else {
1745 		struct page *page = NULL;
1746 		int flush_needed = 1;
1747 
1748 		if (pmd_present(orig_pmd)) {
1749 			page = pmd_page(orig_pmd);
1750 			page_remove_rmap(page, true);
1751 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1752 			VM_BUG_ON_PAGE(!PageHead(page), page);
1753 		} else if (thp_migration_supported()) {
1754 			swp_entry_t entry;
1755 
1756 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1757 			entry = pmd_to_swp_entry(orig_pmd);
1758 			page = pfn_to_page(swp_offset(entry));
1759 			flush_needed = 0;
1760 		} else
1761 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1762 
1763 		if (PageAnon(page)) {
1764 			zap_deposited_table(tlb->mm, pmd);
1765 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1766 		} else {
1767 			if (arch_needs_pgtable_deposit())
1768 				zap_deposited_table(tlb->mm, pmd);
1769 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1770 		}
1771 
1772 		spin_unlock(ptl);
1773 		if (flush_needed)
1774 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1775 	}
1776 	return 1;
1777 }
1778 
1779 #ifndef pmd_move_must_withdraw
1780 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1781 					 spinlock_t *old_pmd_ptl,
1782 					 struct vm_area_struct *vma)
1783 {
1784 	/*
1785 	 * With split pmd lock we also need to move preallocated
1786 	 * PTE page table if new_pmd is on different PMD page table.
1787 	 *
1788 	 * We also don't deposit and withdraw tables for file pages.
1789 	 */
1790 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1791 }
1792 #endif
1793 
1794 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1795 {
1796 #ifdef CONFIG_MEM_SOFT_DIRTY
1797 	if (unlikely(is_pmd_migration_entry(pmd)))
1798 		pmd = pmd_swp_mksoft_dirty(pmd);
1799 	else if (pmd_present(pmd))
1800 		pmd = pmd_mksoft_dirty(pmd);
1801 #endif
1802 	return pmd;
1803 }
1804 
1805 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1806 		  unsigned long new_addr, unsigned long old_end,
1807 		  pmd_t *old_pmd, pmd_t *new_pmd)
1808 {
1809 	spinlock_t *old_ptl, *new_ptl;
1810 	pmd_t pmd;
1811 	struct mm_struct *mm = vma->vm_mm;
1812 	bool force_flush = false;
1813 
1814 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1815 	    (new_addr & ~HPAGE_PMD_MASK) ||
1816 	    old_end - old_addr < HPAGE_PMD_SIZE)
1817 		return false;
1818 
1819 	/*
1820 	 * The destination pmd shouldn't be established, free_pgtables()
1821 	 * should have release it.
1822 	 */
1823 	if (WARN_ON(!pmd_none(*new_pmd))) {
1824 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1825 		return false;
1826 	}
1827 
1828 	/*
1829 	 * We don't have to worry about the ordering of src and dst
1830 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1831 	 */
1832 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1833 	if (old_ptl) {
1834 		new_ptl = pmd_lockptr(mm, new_pmd);
1835 		if (new_ptl != old_ptl)
1836 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1837 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1838 		if (pmd_present(pmd))
1839 			force_flush = true;
1840 		VM_BUG_ON(!pmd_none(*new_pmd));
1841 
1842 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1843 			pgtable_t pgtable;
1844 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1845 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1846 		}
1847 		pmd = move_soft_dirty_pmd(pmd);
1848 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1849 		if (force_flush)
1850 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1851 		if (new_ptl != old_ptl)
1852 			spin_unlock(new_ptl);
1853 		spin_unlock(old_ptl);
1854 		return true;
1855 	}
1856 	return false;
1857 }
1858 
1859 /*
1860  * Returns
1861  *  - 0 if PMD could not be locked
1862  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1863  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1864  */
1865 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1866 		unsigned long addr, pgprot_t newprot, int prot_numa)
1867 {
1868 	struct mm_struct *mm = vma->vm_mm;
1869 	spinlock_t *ptl;
1870 	pmd_t entry;
1871 	bool preserve_write;
1872 	int ret;
1873 
1874 	ptl = __pmd_trans_huge_lock(pmd, vma);
1875 	if (!ptl)
1876 		return 0;
1877 
1878 	preserve_write = prot_numa && pmd_write(*pmd);
1879 	ret = 1;
1880 
1881 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1882 	if (is_swap_pmd(*pmd)) {
1883 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1884 
1885 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1886 		if (is_write_migration_entry(entry)) {
1887 			pmd_t newpmd;
1888 			/*
1889 			 * A protection check is difficult so
1890 			 * just be safe and disable write
1891 			 */
1892 			make_migration_entry_read(&entry);
1893 			newpmd = swp_entry_to_pmd(entry);
1894 			if (pmd_swp_soft_dirty(*pmd))
1895 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1896 			set_pmd_at(mm, addr, pmd, newpmd);
1897 		}
1898 		goto unlock;
1899 	}
1900 #endif
1901 
1902 	/*
1903 	 * Avoid trapping faults against the zero page. The read-only
1904 	 * data is likely to be read-cached on the local CPU and
1905 	 * local/remote hits to the zero page are not interesting.
1906 	 */
1907 	if (prot_numa && is_huge_zero_pmd(*pmd))
1908 		goto unlock;
1909 
1910 	if (prot_numa && pmd_protnone(*pmd))
1911 		goto unlock;
1912 
1913 	/*
1914 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1915 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1916 	 * which is also under down_read(mmap_sem):
1917 	 *
1918 	 *	CPU0:				CPU1:
1919 	 *				change_huge_pmd(prot_numa=1)
1920 	 *				 pmdp_huge_get_and_clear_notify()
1921 	 * madvise_dontneed()
1922 	 *  zap_pmd_range()
1923 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1924 	 *   // skip the pmd
1925 	 *				 set_pmd_at();
1926 	 *				 // pmd is re-established
1927 	 *
1928 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1929 	 * which may break userspace.
1930 	 *
1931 	 * pmdp_invalidate() is required to make sure we don't miss
1932 	 * dirty/young flags set by hardware.
1933 	 */
1934 	entry = pmdp_invalidate(vma, addr, pmd);
1935 
1936 	entry = pmd_modify(entry, newprot);
1937 	if (preserve_write)
1938 		entry = pmd_mk_savedwrite(entry);
1939 	ret = HPAGE_PMD_NR;
1940 	set_pmd_at(mm, addr, pmd, entry);
1941 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1942 unlock:
1943 	spin_unlock(ptl);
1944 	return ret;
1945 }
1946 
1947 /*
1948  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1949  *
1950  * Note that if it returns page table lock pointer, this routine returns without
1951  * unlocking page table lock. So callers must unlock it.
1952  */
1953 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1954 {
1955 	spinlock_t *ptl;
1956 	ptl = pmd_lock(vma->vm_mm, pmd);
1957 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1958 			pmd_devmap(*pmd)))
1959 		return ptl;
1960 	spin_unlock(ptl);
1961 	return NULL;
1962 }
1963 
1964 /*
1965  * Returns true if a given pud maps a thp, false otherwise.
1966  *
1967  * Note that if it returns true, this routine returns without unlocking page
1968  * table lock. So callers must unlock it.
1969  */
1970 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1971 {
1972 	spinlock_t *ptl;
1973 
1974 	ptl = pud_lock(vma->vm_mm, pud);
1975 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1976 		return ptl;
1977 	spin_unlock(ptl);
1978 	return NULL;
1979 }
1980 
1981 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1982 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1983 		 pud_t *pud, unsigned long addr)
1984 {
1985 	spinlock_t *ptl;
1986 
1987 	ptl = __pud_trans_huge_lock(pud, vma);
1988 	if (!ptl)
1989 		return 0;
1990 	/*
1991 	 * For architectures like ppc64 we look at deposited pgtable
1992 	 * when calling pudp_huge_get_and_clear. So do the
1993 	 * pgtable_trans_huge_withdraw after finishing pudp related
1994 	 * operations.
1995 	 */
1996 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1997 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1998 	if (vma_is_dax(vma)) {
1999 		spin_unlock(ptl);
2000 		/* No zero page support yet */
2001 	} else {
2002 		/* No support for anonymous PUD pages yet */
2003 		BUG();
2004 	}
2005 	return 1;
2006 }
2007 
2008 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2009 		unsigned long haddr)
2010 {
2011 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2012 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2013 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2014 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2015 
2016 	count_vm_event(THP_SPLIT_PUD);
2017 
2018 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2019 }
2020 
2021 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2022 		unsigned long address)
2023 {
2024 	spinlock_t *ptl;
2025 	struct mmu_notifier_range range;
2026 
2027 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2028 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2029 	mmu_notifier_invalidate_range_start(&range);
2030 	ptl = pud_lock(vma->vm_mm, pud);
2031 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2032 		goto out;
2033 	__split_huge_pud_locked(vma, pud, range.start);
2034 
2035 out:
2036 	spin_unlock(ptl);
2037 	/*
2038 	 * No need to double call mmu_notifier->invalidate_range() callback as
2039 	 * the above pudp_huge_clear_flush_notify() did already call it.
2040 	 */
2041 	mmu_notifier_invalidate_range_only_end(&range);
2042 }
2043 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2044 
2045 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2046 		unsigned long haddr, pmd_t *pmd)
2047 {
2048 	struct mm_struct *mm = vma->vm_mm;
2049 	pgtable_t pgtable;
2050 	pmd_t _pmd;
2051 	int i;
2052 
2053 	/*
2054 	 * Leave pmd empty until pte is filled note that it is fine to delay
2055 	 * notification until mmu_notifier_invalidate_range_end() as we are
2056 	 * replacing a zero pmd write protected page with a zero pte write
2057 	 * protected page.
2058 	 *
2059 	 * See Documentation/vm/mmu_notifier.rst
2060 	 */
2061 	pmdp_huge_clear_flush(vma, haddr, pmd);
2062 
2063 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2064 	pmd_populate(mm, &_pmd, pgtable);
2065 
2066 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2067 		pte_t *pte, entry;
2068 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2069 		entry = pte_mkspecial(entry);
2070 		pte = pte_offset_map(&_pmd, haddr);
2071 		VM_BUG_ON(!pte_none(*pte));
2072 		set_pte_at(mm, haddr, pte, entry);
2073 		pte_unmap(pte);
2074 	}
2075 	smp_wmb(); /* make pte visible before pmd */
2076 	pmd_populate(mm, pmd, pgtable);
2077 }
2078 
2079 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2080 		unsigned long haddr, bool freeze)
2081 {
2082 	struct mm_struct *mm = vma->vm_mm;
2083 	struct page *page;
2084 	pgtable_t pgtable;
2085 	pmd_t old_pmd, _pmd;
2086 	bool young, write, soft_dirty, pmd_migration = false;
2087 	unsigned long addr;
2088 	int i;
2089 
2090 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094 				&& !pmd_devmap(*pmd));
2095 
2096 	count_vm_event(THP_SPLIT_PMD);
2097 
2098 	if (!vma_is_anonymous(vma)) {
2099 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100 		/*
2101 		 * We are going to unmap this huge page. So
2102 		 * just go ahead and zap it
2103 		 */
2104 		if (arch_needs_pgtable_deposit())
2105 			zap_deposited_table(mm, pmd);
2106 		if (vma_is_dax(vma))
2107 			return;
2108 		page = pmd_page(_pmd);
2109 		if (!PageDirty(page) && pmd_dirty(_pmd))
2110 			set_page_dirty(page);
2111 		if (!PageReferenced(page) && pmd_young(_pmd))
2112 			SetPageReferenced(page);
2113 		page_remove_rmap(page, true);
2114 		put_page(page);
2115 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2116 		return;
2117 	} else if (is_huge_zero_pmd(*pmd)) {
2118 		/*
2119 		 * FIXME: Do we want to invalidate secondary mmu by calling
2120 		 * mmu_notifier_invalidate_range() see comments below inside
2121 		 * __split_huge_pmd() ?
2122 		 *
2123 		 * We are going from a zero huge page write protected to zero
2124 		 * small page also write protected so it does not seems useful
2125 		 * to invalidate secondary mmu at this time.
2126 		 */
2127 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2128 	}
2129 
2130 	/*
2131 	 * Up to this point the pmd is present and huge and userland has the
2132 	 * whole access to the hugepage during the split (which happens in
2133 	 * place). If we overwrite the pmd with the not-huge version pointing
2134 	 * to the pte here (which of course we could if all CPUs were bug
2135 	 * free), userland could trigger a small page size TLB miss on the
2136 	 * small sized TLB while the hugepage TLB entry is still established in
2137 	 * the huge TLB. Some CPU doesn't like that.
2138 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2139 	 * 383 on page 93. Intel should be safe but is also warns that it's
2140 	 * only safe if the permission and cache attributes of the two entries
2141 	 * loaded in the two TLB is identical (which should be the case here).
2142 	 * But it is generally safer to never allow small and huge TLB entries
2143 	 * for the same virtual address to be loaded simultaneously. So instead
2144 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 	 * must remain set at all times on the pmd until the split is complete
2147 	 * for this pmd), then we flush the SMP TLB and finally we write the
2148 	 * non-huge version of the pmd entry with pmd_populate.
2149 	 */
2150 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151 
2152 	pmd_migration = is_pmd_migration_entry(old_pmd);
2153 	if (unlikely(pmd_migration)) {
2154 		swp_entry_t entry;
2155 
2156 		entry = pmd_to_swp_entry(old_pmd);
2157 		page = pfn_to_page(swp_offset(entry));
2158 		write = is_write_migration_entry(entry);
2159 		young = false;
2160 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2161 	} else {
2162 		page = pmd_page(old_pmd);
2163 		if (pmd_dirty(old_pmd))
2164 			SetPageDirty(page);
2165 		write = pmd_write(old_pmd);
2166 		young = pmd_young(old_pmd);
2167 		soft_dirty = pmd_soft_dirty(old_pmd);
2168 	}
2169 	VM_BUG_ON_PAGE(!page_count(page), page);
2170 	page_ref_add(page, HPAGE_PMD_NR - 1);
2171 
2172 	/*
2173 	 * Withdraw the table only after we mark the pmd entry invalid.
2174 	 * This's critical for some architectures (Power).
2175 	 */
2176 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2177 	pmd_populate(mm, &_pmd, pgtable);
2178 
2179 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2180 		pte_t entry, *pte;
2181 		/*
2182 		 * Note that NUMA hinting access restrictions are not
2183 		 * transferred to avoid any possibility of altering
2184 		 * permissions across VMAs.
2185 		 */
2186 		if (freeze || pmd_migration) {
2187 			swp_entry_t swp_entry;
2188 			swp_entry = make_migration_entry(page + i, write);
2189 			entry = swp_entry_to_pte(swp_entry);
2190 			if (soft_dirty)
2191 				entry = pte_swp_mksoft_dirty(entry);
2192 		} else {
2193 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2194 			entry = maybe_mkwrite(entry, vma);
2195 			if (!write)
2196 				entry = pte_wrprotect(entry);
2197 			if (!young)
2198 				entry = pte_mkold(entry);
2199 			if (soft_dirty)
2200 				entry = pte_mksoft_dirty(entry);
2201 		}
2202 		pte = pte_offset_map(&_pmd, addr);
2203 		BUG_ON(!pte_none(*pte));
2204 		set_pte_at(mm, addr, pte, entry);
2205 		atomic_inc(&page[i]._mapcount);
2206 		pte_unmap(pte);
2207 	}
2208 
2209 	/*
2210 	 * Set PG_double_map before dropping compound_mapcount to avoid
2211 	 * false-negative page_mapped().
2212 	 */
2213 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2214 		for (i = 0; i < HPAGE_PMD_NR; i++)
2215 			atomic_inc(&page[i]._mapcount);
2216 	}
2217 
2218 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2219 		/* Last compound_mapcount is gone. */
2220 		__dec_node_page_state(page, NR_ANON_THPS);
2221 		if (TestClearPageDoubleMap(page)) {
2222 			/* No need in mapcount reference anymore */
2223 			for (i = 0; i < HPAGE_PMD_NR; i++)
2224 				atomic_dec(&page[i]._mapcount);
2225 		}
2226 	}
2227 
2228 	smp_wmb(); /* make pte visible before pmd */
2229 	pmd_populate(mm, pmd, pgtable);
2230 
2231 	if (freeze) {
2232 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2233 			page_remove_rmap(page + i, false);
2234 			put_page(page + i);
2235 		}
2236 	}
2237 }
2238 
2239 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2240 		unsigned long address, bool freeze, struct page *page)
2241 {
2242 	spinlock_t *ptl;
2243 	struct mmu_notifier_range range;
2244 
2245 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2246 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2247 	mmu_notifier_invalidate_range_start(&range);
2248 	ptl = pmd_lock(vma->vm_mm, pmd);
2249 
2250 	/*
2251 	 * If caller asks to setup a migration entries, we need a page to check
2252 	 * pmd against. Otherwise we can end up replacing wrong page.
2253 	 */
2254 	VM_BUG_ON(freeze && !page);
2255 	if (page && page != pmd_page(*pmd))
2256 	        goto out;
2257 
2258 	if (pmd_trans_huge(*pmd)) {
2259 		page = pmd_page(*pmd);
2260 		if (PageMlocked(page))
2261 			clear_page_mlock(page);
2262 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2263 		goto out;
2264 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2265 out:
2266 	spin_unlock(ptl);
2267 	/*
2268 	 * No need to double call mmu_notifier->invalidate_range() callback.
2269 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2270 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2271 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2272 	 *    fault will trigger a flush_notify before pointing to a new page
2273 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2274 	 *    page in the meantime)
2275 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2276 	 *     to invalidate secondary tlb entry they are all still valid.
2277 	 *     any further changes to individual pte will notify. So no need
2278 	 *     to call mmu_notifier->invalidate_range()
2279 	 */
2280 	mmu_notifier_invalidate_range_only_end(&range);
2281 }
2282 
2283 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2284 		bool freeze, struct page *page)
2285 {
2286 	pgd_t *pgd;
2287 	p4d_t *p4d;
2288 	pud_t *pud;
2289 	pmd_t *pmd;
2290 
2291 	pgd = pgd_offset(vma->vm_mm, address);
2292 	if (!pgd_present(*pgd))
2293 		return;
2294 
2295 	p4d = p4d_offset(pgd, address);
2296 	if (!p4d_present(*p4d))
2297 		return;
2298 
2299 	pud = pud_offset(p4d, address);
2300 	if (!pud_present(*pud))
2301 		return;
2302 
2303 	pmd = pmd_offset(pud, address);
2304 
2305 	__split_huge_pmd(vma, pmd, address, freeze, page);
2306 }
2307 
2308 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2309 			     unsigned long start,
2310 			     unsigned long end,
2311 			     long adjust_next)
2312 {
2313 	/*
2314 	 * If the new start address isn't hpage aligned and it could
2315 	 * previously contain an hugepage: check if we need to split
2316 	 * an huge pmd.
2317 	 */
2318 	if (start & ~HPAGE_PMD_MASK &&
2319 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2320 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2321 		split_huge_pmd_address(vma, start, false, NULL);
2322 
2323 	/*
2324 	 * If the new end address isn't hpage aligned and it could
2325 	 * previously contain an hugepage: check if we need to split
2326 	 * an huge pmd.
2327 	 */
2328 	if (end & ~HPAGE_PMD_MASK &&
2329 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2330 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2331 		split_huge_pmd_address(vma, end, false, NULL);
2332 
2333 	/*
2334 	 * If we're also updating the vma->vm_next->vm_start, if the new
2335 	 * vm_next->vm_start isn't page aligned and it could previously
2336 	 * contain an hugepage: check if we need to split an huge pmd.
2337 	 */
2338 	if (adjust_next > 0) {
2339 		struct vm_area_struct *next = vma->vm_next;
2340 		unsigned long nstart = next->vm_start;
2341 		nstart += adjust_next << PAGE_SHIFT;
2342 		if (nstart & ~HPAGE_PMD_MASK &&
2343 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2344 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2345 			split_huge_pmd_address(next, nstart, false, NULL);
2346 	}
2347 }
2348 
2349 static void unmap_page(struct page *page)
2350 {
2351 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2352 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2353 	bool unmap_success;
2354 
2355 	VM_BUG_ON_PAGE(!PageHead(page), page);
2356 
2357 	if (PageAnon(page))
2358 		ttu_flags |= TTU_SPLIT_FREEZE;
2359 
2360 	unmap_success = try_to_unmap(page, ttu_flags);
2361 	VM_BUG_ON_PAGE(!unmap_success, page);
2362 }
2363 
2364 static void remap_page(struct page *page)
2365 {
2366 	int i;
2367 	if (PageTransHuge(page)) {
2368 		remove_migration_ptes(page, page, true);
2369 	} else {
2370 		for (i = 0; i < HPAGE_PMD_NR; i++)
2371 			remove_migration_ptes(page + i, page + i, true);
2372 	}
2373 }
2374 
2375 static void __split_huge_page_tail(struct page *head, int tail,
2376 		struct lruvec *lruvec, struct list_head *list)
2377 {
2378 	struct page *page_tail = head + tail;
2379 
2380 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2381 
2382 	/*
2383 	 * Clone page flags before unfreezing refcount.
2384 	 *
2385 	 * After successful get_page_unless_zero() might follow flags change,
2386 	 * for exmaple lock_page() which set PG_waiters.
2387 	 */
2388 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2389 	page_tail->flags |= (head->flags &
2390 			((1L << PG_referenced) |
2391 			 (1L << PG_swapbacked) |
2392 			 (1L << PG_swapcache) |
2393 			 (1L << PG_mlocked) |
2394 			 (1L << PG_uptodate) |
2395 			 (1L << PG_active) |
2396 			 (1L << PG_workingset) |
2397 			 (1L << PG_locked) |
2398 			 (1L << PG_unevictable) |
2399 			 (1L << PG_dirty)));
2400 
2401 	/* ->mapping in first tail page is compound_mapcount */
2402 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2403 			page_tail);
2404 	page_tail->mapping = head->mapping;
2405 	page_tail->index = head->index + tail;
2406 
2407 	/* Page flags must be visible before we make the page non-compound. */
2408 	smp_wmb();
2409 
2410 	/*
2411 	 * Clear PageTail before unfreezing page refcount.
2412 	 *
2413 	 * After successful get_page_unless_zero() might follow put_page()
2414 	 * which needs correct compound_head().
2415 	 */
2416 	clear_compound_head(page_tail);
2417 
2418 	/* Finally unfreeze refcount. Additional reference from page cache. */
2419 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2420 					  PageSwapCache(head)));
2421 
2422 	if (page_is_young(head))
2423 		set_page_young(page_tail);
2424 	if (page_is_idle(head))
2425 		set_page_idle(page_tail);
2426 
2427 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2428 
2429 	/*
2430 	 * always add to the tail because some iterators expect new
2431 	 * pages to show after the currently processed elements - e.g.
2432 	 * migrate_pages
2433 	 */
2434 	lru_add_page_tail(head, page_tail, lruvec, list);
2435 }
2436 
2437 static void __split_huge_page(struct page *page, struct list_head *list,
2438 		pgoff_t end, unsigned long flags)
2439 {
2440 	struct page *head = compound_head(page);
2441 	pg_data_t *pgdat = page_pgdat(head);
2442 	struct lruvec *lruvec;
2443 	int i;
2444 
2445 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2446 
2447 	/* complete memcg works before add pages to LRU */
2448 	mem_cgroup_split_huge_fixup(head);
2449 
2450 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2451 		__split_huge_page_tail(head, i, lruvec, list);
2452 		/* Some pages can be beyond i_size: drop them from page cache */
2453 		if (head[i].index >= end) {
2454 			ClearPageDirty(head + i);
2455 			__delete_from_page_cache(head + i, NULL);
2456 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2457 				shmem_uncharge(head->mapping->host, 1);
2458 			put_page(head + i);
2459 		}
2460 	}
2461 
2462 	ClearPageCompound(head);
2463 	/* See comment in __split_huge_page_tail() */
2464 	if (PageAnon(head)) {
2465 		/* Additional pin to swap cache */
2466 		if (PageSwapCache(head))
2467 			page_ref_add(head, 2);
2468 		else
2469 			page_ref_inc(head);
2470 	} else {
2471 		/* Additional pin to page cache */
2472 		page_ref_add(head, 2);
2473 		xa_unlock(&head->mapping->i_pages);
2474 	}
2475 
2476 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2477 
2478 	remap_page(head);
2479 
2480 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2481 		struct page *subpage = head + i;
2482 		if (subpage == page)
2483 			continue;
2484 		unlock_page(subpage);
2485 
2486 		/*
2487 		 * Subpages may be freed if there wasn't any mapping
2488 		 * like if add_to_swap() is running on a lru page that
2489 		 * had its mapping zapped. And freeing these pages
2490 		 * requires taking the lru_lock so we do the put_page
2491 		 * of the tail pages after the split is complete.
2492 		 */
2493 		put_page(subpage);
2494 	}
2495 }
2496 
2497 int total_mapcount(struct page *page)
2498 {
2499 	int i, compound, ret;
2500 
2501 	VM_BUG_ON_PAGE(PageTail(page), page);
2502 
2503 	if (likely(!PageCompound(page)))
2504 		return atomic_read(&page->_mapcount) + 1;
2505 
2506 	compound = compound_mapcount(page);
2507 	if (PageHuge(page))
2508 		return compound;
2509 	ret = compound;
2510 	for (i = 0; i < HPAGE_PMD_NR; i++)
2511 		ret += atomic_read(&page[i]._mapcount) + 1;
2512 	/* File pages has compound_mapcount included in _mapcount */
2513 	if (!PageAnon(page))
2514 		return ret - compound * HPAGE_PMD_NR;
2515 	if (PageDoubleMap(page))
2516 		ret -= HPAGE_PMD_NR;
2517 	return ret;
2518 }
2519 
2520 /*
2521  * This calculates accurately how many mappings a transparent hugepage
2522  * has (unlike page_mapcount() which isn't fully accurate). This full
2523  * accuracy is primarily needed to know if copy-on-write faults can
2524  * reuse the page and change the mapping to read-write instead of
2525  * copying them. At the same time this returns the total_mapcount too.
2526  *
2527  * The function returns the highest mapcount any one of the subpages
2528  * has. If the return value is one, even if different processes are
2529  * mapping different subpages of the transparent hugepage, they can
2530  * all reuse it, because each process is reusing a different subpage.
2531  *
2532  * The total_mapcount is instead counting all virtual mappings of the
2533  * subpages. If the total_mapcount is equal to "one", it tells the
2534  * caller all mappings belong to the same "mm" and in turn the
2535  * anon_vma of the transparent hugepage can become the vma->anon_vma
2536  * local one as no other process may be mapping any of the subpages.
2537  *
2538  * It would be more accurate to replace page_mapcount() with
2539  * page_trans_huge_mapcount(), however we only use
2540  * page_trans_huge_mapcount() in the copy-on-write faults where we
2541  * need full accuracy to avoid breaking page pinning, because
2542  * page_trans_huge_mapcount() is slower than page_mapcount().
2543  */
2544 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2545 {
2546 	int i, ret, _total_mapcount, mapcount;
2547 
2548 	/* hugetlbfs shouldn't call it */
2549 	VM_BUG_ON_PAGE(PageHuge(page), page);
2550 
2551 	if (likely(!PageTransCompound(page))) {
2552 		mapcount = atomic_read(&page->_mapcount) + 1;
2553 		if (total_mapcount)
2554 			*total_mapcount = mapcount;
2555 		return mapcount;
2556 	}
2557 
2558 	page = compound_head(page);
2559 
2560 	_total_mapcount = ret = 0;
2561 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2562 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2563 		ret = max(ret, mapcount);
2564 		_total_mapcount += mapcount;
2565 	}
2566 	if (PageDoubleMap(page)) {
2567 		ret -= 1;
2568 		_total_mapcount -= HPAGE_PMD_NR;
2569 	}
2570 	mapcount = compound_mapcount(page);
2571 	ret += mapcount;
2572 	_total_mapcount += mapcount;
2573 	if (total_mapcount)
2574 		*total_mapcount = _total_mapcount;
2575 	return ret;
2576 }
2577 
2578 /* Racy check whether the huge page can be split */
2579 bool can_split_huge_page(struct page *page, int *pextra_pins)
2580 {
2581 	int extra_pins;
2582 
2583 	/* Additional pins from page cache */
2584 	if (PageAnon(page))
2585 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2586 	else
2587 		extra_pins = HPAGE_PMD_NR;
2588 	if (pextra_pins)
2589 		*pextra_pins = extra_pins;
2590 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2591 }
2592 
2593 /*
2594  * This function splits huge page into normal pages. @page can point to any
2595  * subpage of huge page to split. Split doesn't change the position of @page.
2596  *
2597  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2598  * The huge page must be locked.
2599  *
2600  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601  *
2602  * Both head page and tail pages will inherit mapping, flags, and so on from
2603  * the hugepage.
2604  *
2605  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2606  * they are not mapped.
2607  *
2608  * Returns 0 if the hugepage is split successfully.
2609  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2610  * us.
2611  */
2612 int split_huge_page_to_list(struct page *page, struct list_head *list)
2613 {
2614 	struct page *head = compound_head(page);
2615 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2616 	struct anon_vma *anon_vma = NULL;
2617 	struct address_space *mapping = NULL;
2618 	int count, mapcount, extra_pins, ret;
2619 	bool mlocked;
2620 	unsigned long flags;
2621 	pgoff_t end;
2622 
2623 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2624 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2625 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2626 
2627 	if (PageWriteback(page))
2628 		return -EBUSY;
2629 
2630 	if (PageAnon(head)) {
2631 		/*
2632 		 * The caller does not necessarily hold an mmap_sem that would
2633 		 * prevent the anon_vma disappearing so we first we take a
2634 		 * reference to it and then lock the anon_vma for write. This
2635 		 * is similar to page_lock_anon_vma_read except the write lock
2636 		 * is taken to serialise against parallel split or collapse
2637 		 * operations.
2638 		 */
2639 		anon_vma = page_get_anon_vma(head);
2640 		if (!anon_vma) {
2641 			ret = -EBUSY;
2642 			goto out;
2643 		}
2644 		end = -1;
2645 		mapping = NULL;
2646 		anon_vma_lock_write(anon_vma);
2647 	} else {
2648 		mapping = head->mapping;
2649 
2650 		/* Truncated ? */
2651 		if (!mapping) {
2652 			ret = -EBUSY;
2653 			goto out;
2654 		}
2655 
2656 		anon_vma = NULL;
2657 		i_mmap_lock_read(mapping);
2658 
2659 		/*
2660 		 *__split_huge_page() may need to trim off pages beyond EOF:
2661 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2662 		 * which cannot be nested inside the page tree lock. So note
2663 		 * end now: i_size itself may be changed at any moment, but
2664 		 * head page lock is good enough to serialize the trimming.
2665 		 */
2666 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667 	}
2668 
2669 	/*
2670 	 * Racy check if we can split the page, before unmap_page() will
2671 	 * split PMDs
2672 	 */
2673 	if (!can_split_huge_page(head, &extra_pins)) {
2674 		ret = -EBUSY;
2675 		goto out_unlock;
2676 	}
2677 
2678 	mlocked = PageMlocked(page);
2679 	unmap_page(head);
2680 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2681 
2682 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2683 	if (mlocked)
2684 		lru_add_drain();
2685 
2686 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2687 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2688 
2689 	if (mapping) {
2690 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2691 
2692 		/*
2693 		 * Check if the head page is present in page cache.
2694 		 * We assume all tail are present too, if head is there.
2695 		 */
2696 		xa_lock(&mapping->i_pages);
2697 		if (xas_load(&xas) != head)
2698 			goto fail;
2699 	}
2700 
2701 	/* Prevent deferred_split_scan() touching ->_refcount */
2702 	spin_lock(&pgdata->split_queue_lock);
2703 	count = page_count(head);
2704 	mapcount = total_mapcount(head);
2705 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2706 		if (!list_empty(page_deferred_list(head))) {
2707 			pgdata->split_queue_len--;
2708 			list_del(page_deferred_list(head));
2709 		}
2710 		if (mapping)
2711 			__dec_node_page_state(page, NR_SHMEM_THPS);
2712 		spin_unlock(&pgdata->split_queue_lock);
2713 		__split_huge_page(page, list, end, flags);
2714 		if (PageSwapCache(head)) {
2715 			swp_entry_t entry = { .val = page_private(head) };
2716 
2717 			ret = split_swap_cluster(entry);
2718 		} else
2719 			ret = 0;
2720 	} else {
2721 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 					mapcount, count);
2724 			if (PageTail(page))
2725 				dump_page(head, NULL);
2726 			dump_page(page, "total_mapcount(head) > 0");
2727 			BUG();
2728 		}
2729 		spin_unlock(&pgdata->split_queue_lock);
2730 fail:		if (mapping)
2731 			xa_unlock(&mapping->i_pages);
2732 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2733 		remap_page(head);
2734 		ret = -EBUSY;
2735 	}
2736 
2737 out_unlock:
2738 	if (anon_vma) {
2739 		anon_vma_unlock_write(anon_vma);
2740 		put_anon_vma(anon_vma);
2741 	}
2742 	if (mapping)
2743 		i_mmap_unlock_read(mapping);
2744 out:
2745 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 	return ret;
2747 }
2748 
2749 void free_transhuge_page(struct page *page)
2750 {
2751 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2752 	unsigned long flags;
2753 
2754 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2755 	if (!list_empty(page_deferred_list(page))) {
2756 		pgdata->split_queue_len--;
2757 		list_del(page_deferred_list(page));
2758 	}
2759 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2760 	free_compound_page(page);
2761 }
2762 
2763 void deferred_split_huge_page(struct page *page)
2764 {
2765 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2766 	unsigned long flags;
2767 
2768 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2769 
2770 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2771 	if (list_empty(page_deferred_list(page))) {
2772 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2773 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2774 		pgdata->split_queue_len++;
2775 	}
2776 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2777 }
2778 
2779 static unsigned long deferred_split_count(struct shrinker *shrink,
2780 		struct shrink_control *sc)
2781 {
2782 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2783 	return READ_ONCE(pgdata->split_queue_len);
2784 }
2785 
2786 static unsigned long deferred_split_scan(struct shrinker *shrink,
2787 		struct shrink_control *sc)
2788 {
2789 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2790 	unsigned long flags;
2791 	LIST_HEAD(list), *pos, *next;
2792 	struct page *page;
2793 	int split = 0;
2794 
2795 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2796 	/* Take pin on all head pages to avoid freeing them under us */
2797 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2798 		page = list_entry((void *)pos, struct page, mapping);
2799 		page = compound_head(page);
2800 		if (get_page_unless_zero(page)) {
2801 			list_move(page_deferred_list(page), &list);
2802 		} else {
2803 			/* We lost race with put_compound_page() */
2804 			list_del_init(page_deferred_list(page));
2805 			pgdata->split_queue_len--;
2806 		}
2807 		if (!--sc->nr_to_scan)
2808 			break;
2809 	}
2810 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2811 
2812 	list_for_each_safe(pos, next, &list) {
2813 		page = list_entry((void *)pos, struct page, mapping);
2814 		if (!trylock_page(page))
2815 			goto next;
2816 		/* split_huge_page() removes page from list on success */
2817 		if (!split_huge_page(page))
2818 			split++;
2819 		unlock_page(page);
2820 next:
2821 		put_page(page);
2822 	}
2823 
2824 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2825 	list_splice_tail(&list, &pgdata->split_queue);
2826 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2827 
2828 	/*
2829 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2830 	 * This can happen if pages were freed under us.
2831 	 */
2832 	if (!split && list_empty(&pgdata->split_queue))
2833 		return SHRINK_STOP;
2834 	return split;
2835 }
2836 
2837 static struct shrinker deferred_split_shrinker = {
2838 	.count_objects = deferred_split_count,
2839 	.scan_objects = deferred_split_scan,
2840 	.seeks = DEFAULT_SEEKS,
2841 	.flags = SHRINKER_NUMA_AWARE,
2842 };
2843 
2844 #ifdef CONFIG_DEBUG_FS
2845 static int split_huge_pages_set(void *data, u64 val)
2846 {
2847 	struct zone *zone;
2848 	struct page *page;
2849 	unsigned long pfn, max_zone_pfn;
2850 	unsigned long total = 0, split = 0;
2851 
2852 	if (val != 1)
2853 		return -EINVAL;
2854 
2855 	for_each_populated_zone(zone) {
2856 		max_zone_pfn = zone_end_pfn(zone);
2857 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2858 			if (!pfn_valid(pfn))
2859 				continue;
2860 
2861 			page = pfn_to_page(pfn);
2862 			if (!get_page_unless_zero(page))
2863 				continue;
2864 
2865 			if (zone != page_zone(page))
2866 				goto next;
2867 
2868 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2869 				goto next;
2870 
2871 			total++;
2872 			lock_page(page);
2873 			if (!split_huge_page(page))
2874 				split++;
2875 			unlock_page(page);
2876 next:
2877 			put_page(page);
2878 		}
2879 	}
2880 
2881 	pr_info("%lu of %lu THP split\n", split, total);
2882 
2883 	return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2886 		"%llu\n");
2887 
2888 static int __init split_huge_pages_debugfs(void)
2889 {
2890 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2891 			    &split_huge_pages_fops);
2892 	return 0;
2893 }
2894 late_initcall(split_huge_pages_debugfs);
2895 #endif
2896 
2897 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2898 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2899 		struct page *page)
2900 {
2901 	struct vm_area_struct *vma = pvmw->vma;
2902 	struct mm_struct *mm = vma->vm_mm;
2903 	unsigned long address = pvmw->address;
2904 	pmd_t pmdval;
2905 	swp_entry_t entry;
2906 	pmd_t pmdswp;
2907 
2908 	if (!(pvmw->pmd && !pvmw->pte))
2909 		return;
2910 
2911 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2912 	pmdval = *pvmw->pmd;
2913 	pmdp_invalidate(vma, address, pvmw->pmd);
2914 	if (pmd_dirty(pmdval))
2915 		set_page_dirty(page);
2916 	entry = make_migration_entry(page, pmd_write(pmdval));
2917 	pmdswp = swp_entry_to_pmd(entry);
2918 	if (pmd_soft_dirty(pmdval))
2919 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2920 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2921 	page_remove_rmap(page, true);
2922 	put_page(page);
2923 }
2924 
2925 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2926 {
2927 	struct vm_area_struct *vma = pvmw->vma;
2928 	struct mm_struct *mm = vma->vm_mm;
2929 	unsigned long address = pvmw->address;
2930 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2931 	pmd_t pmde;
2932 	swp_entry_t entry;
2933 
2934 	if (!(pvmw->pmd && !pvmw->pte))
2935 		return;
2936 
2937 	entry = pmd_to_swp_entry(*pvmw->pmd);
2938 	get_page(new);
2939 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2940 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2941 		pmde = pmd_mksoft_dirty(pmde);
2942 	if (is_write_migration_entry(entry))
2943 		pmde = maybe_pmd_mkwrite(pmde, vma);
2944 
2945 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2946 	if (PageAnon(new))
2947 		page_add_anon_rmap(new, vma, mmun_start, true);
2948 	else
2949 		page_add_file_rmap(new, true);
2950 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2951 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2952 		mlock_vma_page(new);
2953 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2954 }
2955 #endif
2956