xref: /openbmc/linux/mm/huge_memory.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 } khugepaged_scan = {
93 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94 };
95 
96 
97 static int set_recommended_min_free_kbytes(void)
98 {
99 	struct zone *zone;
100 	int nr_zones = 0;
101 	unsigned long recommended_min;
102 	extern int min_free_kbytes;
103 
104 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 		      &transparent_hugepage_flags) &&
106 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 		      &transparent_hugepage_flags))
108 		return 0;
109 
110 	for_each_populated_zone(zone)
111 		nr_zones++;
112 
113 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 	recommended_min = pageblock_nr_pages * nr_zones * 2;
115 
116 	/*
117 	 * Make sure that on average at least two pageblocks are almost free
118 	 * of another type, one for a migratetype to fall back to and a
119 	 * second to avoid subsequent fallbacks of other types There are 3
120 	 * MIGRATE_TYPES we care about.
121 	 */
122 	recommended_min += pageblock_nr_pages * nr_zones *
123 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124 
125 	/* don't ever allow to reserve more than 5% of the lowmem */
126 	recommended_min = min(recommended_min,
127 			      (unsigned long) nr_free_buffer_pages() / 20);
128 	recommended_min <<= (PAGE_SHIFT-10);
129 
130 	if (recommended_min > min_free_kbytes)
131 		min_free_kbytes = recommended_min;
132 	setup_per_zone_wmarks();
133 	return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136 
137 static int start_khugepaged(void)
138 {
139 	int err = 0;
140 	if (khugepaged_enabled()) {
141 		int wakeup;
142 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 			err = -ENOMEM;
144 			goto out;
145 		}
146 		mutex_lock(&khugepaged_mutex);
147 		if (!khugepaged_thread)
148 			khugepaged_thread = kthread_run(khugepaged, NULL,
149 							"khugepaged");
150 		if (unlikely(IS_ERR(khugepaged_thread))) {
151 			printk(KERN_ERR
152 			       "khugepaged: kthread_run(khugepaged) failed\n");
153 			err = PTR_ERR(khugepaged_thread);
154 			khugepaged_thread = NULL;
155 		}
156 		wakeup = !list_empty(&khugepaged_scan.mm_head);
157 		mutex_unlock(&khugepaged_mutex);
158 		if (wakeup)
159 			wake_up_interruptible(&khugepaged_wait);
160 
161 		set_recommended_min_free_kbytes();
162 	} else
163 		/* wakeup to exit */
164 		wake_up_interruptible(&khugepaged_wait);
165 out:
166 	return err;
167 }
168 
169 #ifdef CONFIG_SYSFS
170 
171 static ssize_t double_flag_show(struct kobject *kobj,
172 				struct kobj_attribute *attr, char *buf,
173 				enum transparent_hugepage_flag enabled,
174 				enum transparent_hugepage_flag req_madv)
175 {
176 	if (test_bit(enabled, &transparent_hugepage_flags)) {
177 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 		return sprintf(buf, "[always] madvise never\n");
179 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
180 		return sprintf(buf, "always [madvise] never\n");
181 	else
182 		return sprintf(buf, "always madvise [never]\n");
183 }
184 static ssize_t double_flag_store(struct kobject *kobj,
185 				 struct kobj_attribute *attr,
186 				 const char *buf, size_t count,
187 				 enum transparent_hugepage_flag enabled,
188 				 enum transparent_hugepage_flag req_madv)
189 {
190 	if (!memcmp("always", buf,
191 		    min(sizeof("always")-1, count))) {
192 		set_bit(enabled, &transparent_hugepage_flags);
193 		clear_bit(req_madv, &transparent_hugepage_flags);
194 	} else if (!memcmp("madvise", buf,
195 			   min(sizeof("madvise")-1, count))) {
196 		clear_bit(enabled, &transparent_hugepage_flags);
197 		set_bit(req_madv, &transparent_hugepage_flags);
198 	} else if (!memcmp("never", buf,
199 			   min(sizeof("never")-1, count))) {
200 		clear_bit(enabled, &transparent_hugepage_flags);
201 		clear_bit(req_madv, &transparent_hugepage_flags);
202 	} else
203 		return -EINVAL;
204 
205 	return count;
206 }
207 
208 static ssize_t enabled_show(struct kobject *kobj,
209 			    struct kobj_attribute *attr, char *buf)
210 {
211 	return double_flag_show(kobj, attr, buf,
212 				TRANSPARENT_HUGEPAGE_FLAG,
213 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214 }
215 static ssize_t enabled_store(struct kobject *kobj,
216 			     struct kobj_attribute *attr,
217 			     const char *buf, size_t count)
218 {
219 	ssize_t ret;
220 
221 	ret = double_flag_store(kobj, attr, buf, count,
222 				TRANSPARENT_HUGEPAGE_FLAG,
223 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224 
225 	if (ret > 0) {
226 		int err = start_khugepaged();
227 		if (err)
228 			ret = err;
229 	}
230 
231 	if (ret > 0 &&
232 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 		      &transparent_hugepage_flags) ||
234 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 		      &transparent_hugepage_flags)))
236 		set_recommended_min_free_kbytes();
237 
238 	return ret;
239 }
240 static struct kobj_attribute enabled_attr =
241 	__ATTR(enabled, 0644, enabled_show, enabled_store);
242 
243 static ssize_t single_flag_show(struct kobject *kobj,
244 				struct kobj_attribute *attr, char *buf,
245 				enum transparent_hugepage_flag flag)
246 {
247 	if (test_bit(flag, &transparent_hugepage_flags))
248 		return sprintf(buf, "[yes] no\n");
249 	else
250 		return sprintf(buf, "yes [no]\n");
251 }
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	if (!memcmp("yes", buf,
258 		    min(sizeof("yes")-1, count))) {
259 		set_bit(flag, &transparent_hugepage_flags);
260 	} else if (!memcmp("no", buf,
261 			   min(sizeof("no")-1, count))) {
262 		clear_bit(flag, &transparent_hugepage_flags);
263 	} else
264 		return -EINVAL;
265 
266 	return count;
267 }
268 
269 /*
270  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
271  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
272  * memory just to allocate one more hugepage.
273  */
274 static ssize_t defrag_show(struct kobject *kobj,
275 			   struct kobj_attribute *attr, char *buf)
276 {
277 	return double_flag_show(kobj, attr, buf,
278 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
279 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
280 }
281 static ssize_t defrag_store(struct kobject *kobj,
282 			    struct kobj_attribute *attr,
283 			    const char *buf, size_t count)
284 {
285 	return double_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
287 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
288 }
289 static struct kobj_attribute defrag_attr =
290 	__ATTR(defrag, 0644, defrag_show, defrag_store);
291 
292 #ifdef CONFIG_DEBUG_VM
293 static ssize_t debug_cow_show(struct kobject *kobj,
294 				struct kobj_attribute *attr, char *buf)
295 {
296 	return single_flag_show(kobj, attr, buf,
297 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
298 }
299 static ssize_t debug_cow_store(struct kobject *kobj,
300 			       struct kobj_attribute *attr,
301 			       const char *buf, size_t count)
302 {
303 	return single_flag_store(kobj, attr, buf, count,
304 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static struct kobj_attribute debug_cow_attr =
307 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
308 #endif /* CONFIG_DEBUG_VM */
309 
310 static struct attribute *hugepage_attr[] = {
311 	&enabled_attr.attr,
312 	&defrag_attr.attr,
313 #ifdef CONFIG_DEBUG_VM
314 	&debug_cow_attr.attr,
315 #endif
316 	NULL,
317 };
318 
319 static struct attribute_group hugepage_attr_group = {
320 	.attrs = hugepage_attr,
321 };
322 
323 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
324 					 struct kobj_attribute *attr,
325 					 char *buf)
326 {
327 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
328 }
329 
330 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
331 					  struct kobj_attribute *attr,
332 					  const char *buf, size_t count)
333 {
334 	unsigned long msecs;
335 	int err;
336 
337 	err = strict_strtoul(buf, 10, &msecs);
338 	if (err || msecs > UINT_MAX)
339 		return -EINVAL;
340 
341 	khugepaged_scan_sleep_millisecs = msecs;
342 	wake_up_interruptible(&khugepaged_wait);
343 
344 	return count;
345 }
346 static struct kobj_attribute scan_sleep_millisecs_attr =
347 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
348 	       scan_sleep_millisecs_store);
349 
350 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
351 					  struct kobj_attribute *attr,
352 					  char *buf)
353 {
354 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
355 }
356 
357 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
358 					   struct kobj_attribute *attr,
359 					   const char *buf, size_t count)
360 {
361 	unsigned long msecs;
362 	int err;
363 
364 	err = strict_strtoul(buf, 10, &msecs);
365 	if (err || msecs > UINT_MAX)
366 		return -EINVAL;
367 
368 	khugepaged_alloc_sleep_millisecs = msecs;
369 	wake_up_interruptible(&khugepaged_wait);
370 
371 	return count;
372 }
373 static struct kobj_attribute alloc_sleep_millisecs_attr =
374 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
375 	       alloc_sleep_millisecs_store);
376 
377 static ssize_t pages_to_scan_show(struct kobject *kobj,
378 				  struct kobj_attribute *attr,
379 				  char *buf)
380 {
381 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
382 }
383 static ssize_t pages_to_scan_store(struct kobject *kobj,
384 				   struct kobj_attribute *attr,
385 				   const char *buf, size_t count)
386 {
387 	int err;
388 	unsigned long pages;
389 
390 	err = strict_strtoul(buf, 10, &pages);
391 	if (err || !pages || pages > UINT_MAX)
392 		return -EINVAL;
393 
394 	khugepaged_pages_to_scan = pages;
395 
396 	return count;
397 }
398 static struct kobj_attribute pages_to_scan_attr =
399 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
400 	       pages_to_scan_store);
401 
402 static ssize_t pages_collapsed_show(struct kobject *kobj,
403 				    struct kobj_attribute *attr,
404 				    char *buf)
405 {
406 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
407 }
408 static struct kobj_attribute pages_collapsed_attr =
409 	__ATTR_RO(pages_collapsed);
410 
411 static ssize_t full_scans_show(struct kobject *kobj,
412 			       struct kobj_attribute *attr,
413 			       char *buf)
414 {
415 	return sprintf(buf, "%u\n", khugepaged_full_scans);
416 }
417 static struct kobj_attribute full_scans_attr =
418 	__ATTR_RO(full_scans);
419 
420 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
421 				      struct kobj_attribute *attr, char *buf)
422 {
423 	return single_flag_show(kobj, attr, buf,
424 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
425 }
426 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
427 				       struct kobj_attribute *attr,
428 				       const char *buf, size_t count)
429 {
430 	return single_flag_store(kobj, attr, buf, count,
431 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
432 }
433 static struct kobj_attribute khugepaged_defrag_attr =
434 	__ATTR(defrag, 0644, khugepaged_defrag_show,
435 	       khugepaged_defrag_store);
436 
437 /*
438  * max_ptes_none controls if khugepaged should collapse hugepages over
439  * any unmapped ptes in turn potentially increasing the memory
440  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
441  * reduce the available free memory in the system as it
442  * runs. Increasing max_ptes_none will instead potentially reduce the
443  * free memory in the system during the khugepaged scan.
444  */
445 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
446 					     struct kobj_attribute *attr,
447 					     char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
450 }
451 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
452 					      struct kobj_attribute *attr,
453 					      const char *buf, size_t count)
454 {
455 	int err;
456 	unsigned long max_ptes_none;
457 
458 	err = strict_strtoul(buf, 10, &max_ptes_none);
459 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
460 		return -EINVAL;
461 
462 	khugepaged_max_ptes_none = max_ptes_none;
463 
464 	return count;
465 }
466 static struct kobj_attribute khugepaged_max_ptes_none_attr =
467 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
468 	       khugepaged_max_ptes_none_store);
469 
470 static struct attribute *khugepaged_attr[] = {
471 	&khugepaged_defrag_attr.attr,
472 	&khugepaged_max_ptes_none_attr.attr,
473 	&pages_to_scan_attr.attr,
474 	&pages_collapsed_attr.attr,
475 	&full_scans_attr.attr,
476 	&scan_sleep_millisecs_attr.attr,
477 	&alloc_sleep_millisecs_attr.attr,
478 	NULL,
479 };
480 
481 static struct attribute_group khugepaged_attr_group = {
482 	.attrs = khugepaged_attr,
483 	.name = "khugepaged",
484 };
485 #endif /* CONFIG_SYSFS */
486 
487 static int __init hugepage_init(void)
488 {
489 	int err;
490 #ifdef CONFIG_SYSFS
491 	static struct kobject *hugepage_kobj;
492 #endif
493 
494 	err = -EINVAL;
495 	if (!has_transparent_hugepage()) {
496 		transparent_hugepage_flags = 0;
497 		goto out;
498 	}
499 
500 #ifdef CONFIG_SYSFS
501 	err = -ENOMEM;
502 	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
503 	if (unlikely(!hugepage_kobj)) {
504 		printk(KERN_ERR "hugepage: failed kobject create\n");
505 		goto out;
506 	}
507 
508 	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
509 	if (err) {
510 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
511 		goto out;
512 	}
513 
514 	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
515 	if (err) {
516 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
517 		goto out;
518 	}
519 #endif
520 
521 	err = khugepaged_slab_init();
522 	if (err)
523 		goto out;
524 
525 	err = mm_slots_hash_init();
526 	if (err) {
527 		khugepaged_slab_free();
528 		goto out;
529 	}
530 
531 	/*
532 	 * By default disable transparent hugepages on smaller systems,
533 	 * where the extra memory used could hurt more than TLB overhead
534 	 * is likely to save.  The admin can still enable it through /sys.
535 	 */
536 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
537 		transparent_hugepage_flags = 0;
538 
539 	start_khugepaged();
540 
541 	set_recommended_min_free_kbytes();
542 
543 out:
544 	return err;
545 }
546 module_init(hugepage_init)
547 
548 static int __init setup_transparent_hugepage(char *str)
549 {
550 	int ret = 0;
551 	if (!str)
552 		goto out;
553 	if (!strcmp(str, "always")) {
554 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
555 			&transparent_hugepage_flags);
556 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
557 			  &transparent_hugepage_flags);
558 		ret = 1;
559 	} else if (!strcmp(str, "madvise")) {
560 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
561 			  &transparent_hugepage_flags);
562 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
563 			&transparent_hugepage_flags);
564 		ret = 1;
565 	} else if (!strcmp(str, "never")) {
566 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
567 			  &transparent_hugepage_flags);
568 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
569 			  &transparent_hugepage_flags);
570 		ret = 1;
571 	}
572 out:
573 	if (!ret)
574 		printk(KERN_WARNING
575 		       "transparent_hugepage= cannot parse, ignored\n");
576 	return ret;
577 }
578 __setup("transparent_hugepage=", setup_transparent_hugepage);
579 
580 static void prepare_pmd_huge_pte(pgtable_t pgtable,
581 				 struct mm_struct *mm)
582 {
583 	assert_spin_locked(&mm->page_table_lock);
584 
585 	/* FIFO */
586 	if (!mm->pmd_huge_pte)
587 		INIT_LIST_HEAD(&pgtable->lru);
588 	else
589 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
590 	mm->pmd_huge_pte = pgtable;
591 }
592 
593 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
594 {
595 	if (likely(vma->vm_flags & VM_WRITE))
596 		pmd = pmd_mkwrite(pmd);
597 	return pmd;
598 }
599 
600 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
601 					struct vm_area_struct *vma,
602 					unsigned long haddr, pmd_t *pmd,
603 					struct page *page)
604 {
605 	int ret = 0;
606 	pgtable_t pgtable;
607 
608 	VM_BUG_ON(!PageCompound(page));
609 	pgtable = pte_alloc_one(mm, haddr);
610 	if (unlikely(!pgtable)) {
611 		mem_cgroup_uncharge_page(page);
612 		put_page(page);
613 		return VM_FAULT_OOM;
614 	}
615 
616 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
617 	__SetPageUptodate(page);
618 
619 	spin_lock(&mm->page_table_lock);
620 	if (unlikely(!pmd_none(*pmd))) {
621 		spin_unlock(&mm->page_table_lock);
622 		mem_cgroup_uncharge_page(page);
623 		put_page(page);
624 		pte_free(mm, pgtable);
625 	} else {
626 		pmd_t entry;
627 		entry = mk_pmd(page, vma->vm_page_prot);
628 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
629 		entry = pmd_mkhuge(entry);
630 		/*
631 		 * The spinlocking to take the lru_lock inside
632 		 * page_add_new_anon_rmap() acts as a full memory
633 		 * barrier to be sure clear_huge_page writes become
634 		 * visible after the set_pmd_at() write.
635 		 */
636 		page_add_new_anon_rmap(page, vma, haddr);
637 		set_pmd_at(mm, haddr, pmd, entry);
638 		prepare_pmd_huge_pte(pgtable, mm);
639 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 		spin_unlock(&mm->page_table_lock);
641 	}
642 
643 	return ret;
644 }
645 
646 static inline gfp_t alloc_hugepage_gfpmask(int defrag)
647 {
648 	return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
649 }
650 
651 static inline struct page *alloc_hugepage_vma(int defrag,
652 					      struct vm_area_struct *vma,
653 					      unsigned long haddr)
654 {
655 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
656 			       HPAGE_PMD_ORDER, vma, haddr);
657 }
658 
659 #ifndef CONFIG_NUMA
660 static inline struct page *alloc_hugepage(int defrag)
661 {
662 	return alloc_pages(alloc_hugepage_gfpmask(defrag),
663 			   HPAGE_PMD_ORDER);
664 }
665 #endif
666 
667 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
668 			       unsigned long address, pmd_t *pmd,
669 			       unsigned int flags)
670 {
671 	struct page *page;
672 	unsigned long haddr = address & HPAGE_PMD_MASK;
673 	pte_t *pte;
674 
675 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
676 		if (unlikely(anon_vma_prepare(vma)))
677 			return VM_FAULT_OOM;
678 		if (unlikely(khugepaged_enter(vma)))
679 			return VM_FAULT_OOM;
680 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
681 					  vma, haddr);
682 		if (unlikely(!page))
683 			goto out;
684 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
685 			put_page(page);
686 			goto out;
687 		}
688 
689 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
690 	}
691 out:
692 	/*
693 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
694 	 * run pte_offset_map on the pmd, if an huge pmd could
695 	 * materialize from under us from a different thread.
696 	 */
697 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
698 		return VM_FAULT_OOM;
699 	/* if an huge pmd materialized from under us just retry later */
700 	if (unlikely(pmd_trans_huge(*pmd)))
701 		return 0;
702 	/*
703 	 * A regular pmd is established and it can't morph into a huge pmd
704 	 * from under us anymore at this point because we hold the mmap_sem
705 	 * read mode and khugepaged takes it in write mode. So now it's
706 	 * safe to run pte_offset_map().
707 	 */
708 	pte = pte_offset_map(pmd, address);
709 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
710 }
711 
712 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
713 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
714 		  struct vm_area_struct *vma)
715 {
716 	struct page *src_page;
717 	pmd_t pmd;
718 	pgtable_t pgtable;
719 	int ret;
720 
721 	ret = -ENOMEM;
722 	pgtable = pte_alloc_one(dst_mm, addr);
723 	if (unlikely(!pgtable))
724 		goto out;
725 
726 	spin_lock(&dst_mm->page_table_lock);
727 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
728 
729 	ret = -EAGAIN;
730 	pmd = *src_pmd;
731 	if (unlikely(!pmd_trans_huge(pmd))) {
732 		pte_free(dst_mm, pgtable);
733 		goto out_unlock;
734 	}
735 	if (unlikely(pmd_trans_splitting(pmd))) {
736 		/* split huge page running from under us */
737 		spin_unlock(&src_mm->page_table_lock);
738 		spin_unlock(&dst_mm->page_table_lock);
739 		pte_free(dst_mm, pgtable);
740 
741 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
742 		goto out;
743 	}
744 	src_page = pmd_page(pmd);
745 	VM_BUG_ON(!PageHead(src_page));
746 	get_page(src_page);
747 	page_dup_rmap(src_page);
748 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
749 
750 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
751 	pmd = pmd_mkold(pmd_wrprotect(pmd));
752 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
753 	prepare_pmd_huge_pte(pgtable, dst_mm);
754 
755 	ret = 0;
756 out_unlock:
757 	spin_unlock(&src_mm->page_table_lock);
758 	spin_unlock(&dst_mm->page_table_lock);
759 out:
760 	return ret;
761 }
762 
763 /* no "address" argument so destroys page coloring of some arch */
764 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
765 {
766 	pgtable_t pgtable;
767 
768 	assert_spin_locked(&mm->page_table_lock);
769 
770 	/* FIFO */
771 	pgtable = mm->pmd_huge_pte;
772 	if (list_empty(&pgtable->lru))
773 		mm->pmd_huge_pte = NULL;
774 	else {
775 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
776 					      struct page, lru);
777 		list_del(&pgtable->lru);
778 	}
779 	return pgtable;
780 }
781 
782 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
783 					struct vm_area_struct *vma,
784 					unsigned long address,
785 					pmd_t *pmd, pmd_t orig_pmd,
786 					struct page *page,
787 					unsigned long haddr)
788 {
789 	pgtable_t pgtable;
790 	pmd_t _pmd;
791 	int ret = 0, i;
792 	struct page **pages;
793 
794 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
795 			GFP_KERNEL);
796 	if (unlikely(!pages)) {
797 		ret |= VM_FAULT_OOM;
798 		goto out;
799 	}
800 
801 	for (i = 0; i < HPAGE_PMD_NR; i++) {
802 		pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
803 					  vma, address);
804 		if (unlikely(!pages[i] ||
805 			     mem_cgroup_newpage_charge(pages[i], mm,
806 						       GFP_KERNEL))) {
807 			if (pages[i])
808 				put_page(pages[i]);
809 			mem_cgroup_uncharge_start();
810 			while (--i >= 0) {
811 				mem_cgroup_uncharge_page(pages[i]);
812 				put_page(pages[i]);
813 			}
814 			mem_cgroup_uncharge_end();
815 			kfree(pages);
816 			ret |= VM_FAULT_OOM;
817 			goto out;
818 		}
819 	}
820 
821 	for (i = 0; i < HPAGE_PMD_NR; i++) {
822 		copy_user_highpage(pages[i], page + i,
823 				   haddr + PAGE_SHIFT*i, vma);
824 		__SetPageUptodate(pages[i]);
825 		cond_resched();
826 	}
827 
828 	spin_lock(&mm->page_table_lock);
829 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
830 		goto out_free_pages;
831 	VM_BUG_ON(!PageHead(page));
832 
833 	pmdp_clear_flush_notify(vma, haddr, pmd);
834 	/* leave pmd empty until pte is filled */
835 
836 	pgtable = get_pmd_huge_pte(mm);
837 	pmd_populate(mm, &_pmd, pgtable);
838 
839 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
840 		pte_t *pte, entry;
841 		entry = mk_pte(pages[i], vma->vm_page_prot);
842 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
843 		page_add_new_anon_rmap(pages[i], vma, haddr);
844 		pte = pte_offset_map(&_pmd, haddr);
845 		VM_BUG_ON(!pte_none(*pte));
846 		set_pte_at(mm, haddr, pte, entry);
847 		pte_unmap(pte);
848 	}
849 	kfree(pages);
850 
851 	mm->nr_ptes++;
852 	smp_wmb(); /* make pte visible before pmd */
853 	pmd_populate(mm, pmd, pgtable);
854 	page_remove_rmap(page);
855 	spin_unlock(&mm->page_table_lock);
856 
857 	ret |= VM_FAULT_WRITE;
858 	put_page(page);
859 
860 out:
861 	return ret;
862 
863 out_free_pages:
864 	spin_unlock(&mm->page_table_lock);
865 	mem_cgroup_uncharge_start();
866 	for (i = 0; i < HPAGE_PMD_NR; i++) {
867 		mem_cgroup_uncharge_page(pages[i]);
868 		put_page(pages[i]);
869 	}
870 	mem_cgroup_uncharge_end();
871 	kfree(pages);
872 	goto out;
873 }
874 
875 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
876 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
877 {
878 	int ret = 0;
879 	struct page *page, *new_page;
880 	unsigned long haddr;
881 
882 	VM_BUG_ON(!vma->anon_vma);
883 	spin_lock(&mm->page_table_lock);
884 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
885 		goto out_unlock;
886 
887 	page = pmd_page(orig_pmd);
888 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
889 	haddr = address & HPAGE_PMD_MASK;
890 	if (page_mapcount(page) == 1) {
891 		pmd_t entry;
892 		entry = pmd_mkyoung(orig_pmd);
893 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
894 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
895 			update_mmu_cache(vma, address, entry);
896 		ret |= VM_FAULT_WRITE;
897 		goto out_unlock;
898 	}
899 	get_page(page);
900 	spin_unlock(&mm->page_table_lock);
901 
902 	if (transparent_hugepage_enabled(vma) &&
903 	    !transparent_hugepage_debug_cow())
904 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
905 					      vma, haddr);
906 	else
907 		new_page = NULL;
908 
909 	if (unlikely(!new_page)) {
910 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
911 						   pmd, orig_pmd, page, haddr);
912 		put_page(page);
913 		goto out;
914 	}
915 
916 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
917 		put_page(new_page);
918 		put_page(page);
919 		ret |= VM_FAULT_OOM;
920 		goto out;
921 	}
922 
923 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
924 	__SetPageUptodate(new_page);
925 
926 	spin_lock(&mm->page_table_lock);
927 	put_page(page);
928 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
929 		mem_cgroup_uncharge_page(new_page);
930 		put_page(new_page);
931 	} else {
932 		pmd_t entry;
933 		VM_BUG_ON(!PageHead(page));
934 		entry = mk_pmd(new_page, vma->vm_page_prot);
935 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936 		entry = pmd_mkhuge(entry);
937 		pmdp_clear_flush_notify(vma, haddr, pmd);
938 		page_add_new_anon_rmap(new_page, vma, haddr);
939 		set_pmd_at(mm, haddr, pmd, entry);
940 		update_mmu_cache(vma, address, entry);
941 		page_remove_rmap(page);
942 		put_page(page);
943 		ret |= VM_FAULT_WRITE;
944 	}
945 out_unlock:
946 	spin_unlock(&mm->page_table_lock);
947 out:
948 	return ret;
949 }
950 
951 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
952 				   unsigned long addr,
953 				   pmd_t *pmd,
954 				   unsigned int flags)
955 {
956 	struct page *page = NULL;
957 
958 	assert_spin_locked(&mm->page_table_lock);
959 
960 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
961 		goto out;
962 
963 	page = pmd_page(*pmd);
964 	VM_BUG_ON(!PageHead(page));
965 	if (flags & FOLL_TOUCH) {
966 		pmd_t _pmd;
967 		/*
968 		 * We should set the dirty bit only for FOLL_WRITE but
969 		 * for now the dirty bit in the pmd is meaningless.
970 		 * And if the dirty bit will become meaningful and
971 		 * we'll only set it with FOLL_WRITE, an atomic
972 		 * set_bit will be required on the pmd to set the
973 		 * young bit, instead of the current set_pmd_at.
974 		 */
975 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
976 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
977 	}
978 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
979 	VM_BUG_ON(!PageCompound(page));
980 	if (flags & FOLL_GET)
981 		get_page(page);
982 
983 out:
984 	return page;
985 }
986 
987 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
988 		 pmd_t *pmd)
989 {
990 	int ret = 0;
991 
992 	spin_lock(&tlb->mm->page_table_lock);
993 	if (likely(pmd_trans_huge(*pmd))) {
994 		if (unlikely(pmd_trans_splitting(*pmd))) {
995 			spin_unlock(&tlb->mm->page_table_lock);
996 			wait_split_huge_page(vma->anon_vma,
997 					     pmd);
998 		} else {
999 			struct page *page;
1000 			pgtable_t pgtable;
1001 			pgtable = get_pmd_huge_pte(tlb->mm);
1002 			page = pmd_page(*pmd);
1003 			pmd_clear(pmd);
1004 			page_remove_rmap(page);
1005 			VM_BUG_ON(page_mapcount(page) < 0);
1006 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1007 			VM_BUG_ON(!PageHead(page));
1008 			spin_unlock(&tlb->mm->page_table_lock);
1009 			tlb_remove_page(tlb, page);
1010 			pte_free(tlb->mm, pgtable);
1011 			ret = 1;
1012 		}
1013 	} else
1014 		spin_unlock(&tlb->mm->page_table_lock);
1015 
1016 	return ret;
1017 }
1018 
1019 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1020 		unsigned long addr, unsigned long end,
1021 		unsigned char *vec)
1022 {
1023 	int ret = 0;
1024 
1025 	spin_lock(&vma->vm_mm->page_table_lock);
1026 	if (likely(pmd_trans_huge(*pmd))) {
1027 		ret = !pmd_trans_splitting(*pmd);
1028 		spin_unlock(&vma->vm_mm->page_table_lock);
1029 		if (unlikely(!ret))
1030 			wait_split_huge_page(vma->anon_vma, pmd);
1031 		else {
1032 			/*
1033 			 * All logical pages in the range are present
1034 			 * if backed by a huge page.
1035 			 */
1036 			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1037 		}
1038 	} else
1039 		spin_unlock(&vma->vm_mm->page_table_lock);
1040 
1041 	return ret;
1042 }
1043 
1044 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1045 		unsigned long addr, pgprot_t newprot)
1046 {
1047 	struct mm_struct *mm = vma->vm_mm;
1048 	int ret = 0;
1049 
1050 	spin_lock(&mm->page_table_lock);
1051 	if (likely(pmd_trans_huge(*pmd))) {
1052 		if (unlikely(pmd_trans_splitting(*pmd))) {
1053 			spin_unlock(&mm->page_table_lock);
1054 			wait_split_huge_page(vma->anon_vma, pmd);
1055 		} else {
1056 			pmd_t entry;
1057 
1058 			entry = pmdp_get_and_clear(mm, addr, pmd);
1059 			entry = pmd_modify(entry, newprot);
1060 			set_pmd_at(mm, addr, pmd, entry);
1061 			spin_unlock(&vma->vm_mm->page_table_lock);
1062 			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1063 			ret = 1;
1064 		}
1065 	} else
1066 		spin_unlock(&vma->vm_mm->page_table_lock);
1067 
1068 	return ret;
1069 }
1070 
1071 pmd_t *page_check_address_pmd(struct page *page,
1072 			      struct mm_struct *mm,
1073 			      unsigned long address,
1074 			      enum page_check_address_pmd_flag flag)
1075 {
1076 	pgd_t *pgd;
1077 	pud_t *pud;
1078 	pmd_t *pmd, *ret = NULL;
1079 
1080 	if (address & ~HPAGE_PMD_MASK)
1081 		goto out;
1082 
1083 	pgd = pgd_offset(mm, address);
1084 	if (!pgd_present(*pgd))
1085 		goto out;
1086 
1087 	pud = pud_offset(pgd, address);
1088 	if (!pud_present(*pud))
1089 		goto out;
1090 
1091 	pmd = pmd_offset(pud, address);
1092 	if (pmd_none(*pmd))
1093 		goto out;
1094 	if (pmd_page(*pmd) != page)
1095 		goto out;
1096 	/*
1097 	 * split_vma() may create temporary aliased mappings. There is
1098 	 * no risk as long as all huge pmd are found and have their
1099 	 * splitting bit set before __split_huge_page_refcount
1100 	 * runs. Finding the same huge pmd more than once during the
1101 	 * same rmap walk is not a problem.
1102 	 */
1103 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1104 	    pmd_trans_splitting(*pmd))
1105 		goto out;
1106 	if (pmd_trans_huge(*pmd)) {
1107 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1108 			  !pmd_trans_splitting(*pmd));
1109 		ret = pmd;
1110 	}
1111 out:
1112 	return ret;
1113 }
1114 
1115 static int __split_huge_page_splitting(struct page *page,
1116 				       struct vm_area_struct *vma,
1117 				       unsigned long address)
1118 {
1119 	struct mm_struct *mm = vma->vm_mm;
1120 	pmd_t *pmd;
1121 	int ret = 0;
1122 
1123 	spin_lock(&mm->page_table_lock);
1124 	pmd = page_check_address_pmd(page, mm, address,
1125 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1126 	if (pmd) {
1127 		/*
1128 		 * We can't temporarily set the pmd to null in order
1129 		 * to split it, the pmd must remain marked huge at all
1130 		 * times or the VM won't take the pmd_trans_huge paths
1131 		 * and it won't wait on the anon_vma->root->lock to
1132 		 * serialize against split_huge_page*.
1133 		 */
1134 		pmdp_splitting_flush_notify(vma, address, pmd);
1135 		ret = 1;
1136 	}
1137 	spin_unlock(&mm->page_table_lock);
1138 
1139 	return ret;
1140 }
1141 
1142 static void __split_huge_page_refcount(struct page *page)
1143 {
1144 	int i;
1145 	unsigned long head_index = page->index;
1146 	struct zone *zone = page_zone(page);
1147 	int zonestat;
1148 
1149 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1150 	spin_lock_irq(&zone->lru_lock);
1151 	compound_lock(page);
1152 
1153 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1154 		struct page *page_tail = page + i;
1155 
1156 		/* tail_page->_count cannot change */
1157 		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1158 		BUG_ON(page_count(page) <= 0);
1159 		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1160 		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1161 
1162 		/* after clearing PageTail the gup refcount can be released */
1163 		smp_mb();
1164 
1165 		/*
1166 		 * retain hwpoison flag of the poisoned tail page:
1167 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1168 		 *   by the memory-failure.
1169 		 */
1170 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1171 		page_tail->flags |= (page->flags &
1172 				     ((1L << PG_referenced) |
1173 				      (1L << PG_swapbacked) |
1174 				      (1L << PG_mlocked) |
1175 				      (1L << PG_uptodate)));
1176 		page_tail->flags |= (1L << PG_dirty);
1177 
1178 		/*
1179 		 * 1) clear PageTail before overwriting first_page
1180 		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1181 		 */
1182 		smp_wmb();
1183 
1184 		/*
1185 		 * __split_huge_page_splitting() already set the
1186 		 * splitting bit in all pmd that could map this
1187 		 * hugepage, that will ensure no CPU can alter the
1188 		 * mapcount on the head page. The mapcount is only
1189 		 * accounted in the head page and it has to be
1190 		 * transferred to all tail pages in the below code. So
1191 		 * for this code to be safe, the split the mapcount
1192 		 * can't change. But that doesn't mean userland can't
1193 		 * keep changing and reading the page contents while
1194 		 * we transfer the mapcount, so the pmd splitting
1195 		 * status is achieved setting a reserved bit in the
1196 		 * pmd, not by clearing the present bit.
1197 		*/
1198 		BUG_ON(page_mapcount(page_tail));
1199 		page_tail->_mapcount = page->_mapcount;
1200 
1201 		BUG_ON(page_tail->mapping);
1202 		page_tail->mapping = page->mapping;
1203 
1204 		page_tail->index = ++head_index;
1205 
1206 		BUG_ON(!PageAnon(page_tail));
1207 		BUG_ON(!PageUptodate(page_tail));
1208 		BUG_ON(!PageDirty(page_tail));
1209 		BUG_ON(!PageSwapBacked(page_tail));
1210 
1211 		mem_cgroup_split_huge_fixup(page, page_tail);
1212 
1213 		lru_add_page_tail(zone, page, page_tail);
1214 	}
1215 
1216 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1217 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1218 
1219 	/*
1220 	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1221 	 * so adjust those appropriately if this page is on the LRU.
1222 	 */
1223 	if (PageLRU(page)) {
1224 		zonestat = NR_LRU_BASE + page_lru(page);
1225 		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1226 	}
1227 
1228 	ClearPageCompound(page);
1229 	compound_unlock(page);
1230 	spin_unlock_irq(&zone->lru_lock);
1231 
1232 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1233 		struct page *page_tail = page + i;
1234 		BUG_ON(page_count(page_tail) <= 0);
1235 		/*
1236 		 * Tail pages may be freed if there wasn't any mapping
1237 		 * like if add_to_swap() is running on a lru page that
1238 		 * had its mapping zapped. And freeing these pages
1239 		 * requires taking the lru_lock so we do the put_page
1240 		 * of the tail pages after the split is complete.
1241 		 */
1242 		put_page(page_tail);
1243 	}
1244 
1245 	/*
1246 	 * Only the head page (now become a regular page) is required
1247 	 * to be pinned by the caller.
1248 	 */
1249 	BUG_ON(page_count(page) <= 0);
1250 }
1251 
1252 static int __split_huge_page_map(struct page *page,
1253 				 struct vm_area_struct *vma,
1254 				 unsigned long address)
1255 {
1256 	struct mm_struct *mm = vma->vm_mm;
1257 	pmd_t *pmd, _pmd;
1258 	int ret = 0, i;
1259 	pgtable_t pgtable;
1260 	unsigned long haddr;
1261 
1262 	spin_lock(&mm->page_table_lock);
1263 	pmd = page_check_address_pmd(page, mm, address,
1264 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1265 	if (pmd) {
1266 		pgtable = get_pmd_huge_pte(mm);
1267 		pmd_populate(mm, &_pmd, pgtable);
1268 
1269 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1270 		     i++, haddr += PAGE_SIZE) {
1271 			pte_t *pte, entry;
1272 			BUG_ON(PageCompound(page+i));
1273 			entry = mk_pte(page + i, vma->vm_page_prot);
1274 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275 			if (!pmd_write(*pmd))
1276 				entry = pte_wrprotect(entry);
1277 			else
1278 				BUG_ON(page_mapcount(page) != 1);
1279 			if (!pmd_young(*pmd))
1280 				entry = pte_mkold(entry);
1281 			pte = pte_offset_map(&_pmd, haddr);
1282 			BUG_ON(!pte_none(*pte));
1283 			set_pte_at(mm, haddr, pte, entry);
1284 			pte_unmap(pte);
1285 		}
1286 
1287 		mm->nr_ptes++;
1288 		smp_wmb(); /* make pte visible before pmd */
1289 		/*
1290 		 * Up to this point the pmd is present and huge and
1291 		 * userland has the whole access to the hugepage
1292 		 * during the split (which happens in place). If we
1293 		 * overwrite the pmd with the not-huge version
1294 		 * pointing to the pte here (which of course we could
1295 		 * if all CPUs were bug free), userland could trigger
1296 		 * a small page size TLB miss on the small sized TLB
1297 		 * while the hugepage TLB entry is still established
1298 		 * in the huge TLB. Some CPU doesn't like that. See
1299 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1300 		 * Erratum 383 on page 93. Intel should be safe but is
1301 		 * also warns that it's only safe if the permission
1302 		 * and cache attributes of the two entries loaded in
1303 		 * the two TLB is identical (which should be the case
1304 		 * here). But it is generally safer to never allow
1305 		 * small and huge TLB entries for the same virtual
1306 		 * address to be loaded simultaneously. So instead of
1307 		 * doing "pmd_populate(); flush_tlb_range();" we first
1308 		 * mark the current pmd notpresent (atomically because
1309 		 * here the pmd_trans_huge and pmd_trans_splitting
1310 		 * must remain set at all times on the pmd until the
1311 		 * split is complete for this pmd), then we flush the
1312 		 * SMP TLB and finally we write the non-huge version
1313 		 * of the pmd entry with pmd_populate.
1314 		 */
1315 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1316 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1317 		pmd_populate(mm, pmd, pgtable);
1318 		ret = 1;
1319 	}
1320 	spin_unlock(&mm->page_table_lock);
1321 
1322 	return ret;
1323 }
1324 
1325 /* must be called with anon_vma->root->lock hold */
1326 static void __split_huge_page(struct page *page,
1327 			      struct anon_vma *anon_vma)
1328 {
1329 	int mapcount, mapcount2;
1330 	struct anon_vma_chain *avc;
1331 
1332 	BUG_ON(!PageHead(page));
1333 	BUG_ON(PageTail(page));
1334 
1335 	mapcount = 0;
1336 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1337 		struct vm_area_struct *vma = avc->vma;
1338 		unsigned long addr = vma_address(page, vma);
1339 		BUG_ON(is_vma_temporary_stack(vma));
1340 		if (addr == -EFAULT)
1341 			continue;
1342 		mapcount += __split_huge_page_splitting(page, vma, addr);
1343 	}
1344 	/*
1345 	 * It is critical that new vmas are added to the tail of the
1346 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1347 	 * and establishes a child pmd before
1348 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1349 	 * we fail to prevent copy_huge_pmd() from running until the
1350 	 * whole __split_huge_page() is complete), we will still see
1351 	 * the newly established pmd of the child later during the
1352 	 * walk, to be able to set it as pmd_trans_splitting too.
1353 	 */
1354 	if (mapcount != page_mapcount(page))
1355 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1356 		       mapcount, page_mapcount(page));
1357 	BUG_ON(mapcount != page_mapcount(page));
1358 
1359 	__split_huge_page_refcount(page);
1360 
1361 	mapcount2 = 0;
1362 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1363 		struct vm_area_struct *vma = avc->vma;
1364 		unsigned long addr = vma_address(page, vma);
1365 		BUG_ON(is_vma_temporary_stack(vma));
1366 		if (addr == -EFAULT)
1367 			continue;
1368 		mapcount2 += __split_huge_page_map(page, vma, addr);
1369 	}
1370 	if (mapcount != mapcount2)
1371 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1372 		       mapcount, mapcount2, page_mapcount(page));
1373 	BUG_ON(mapcount != mapcount2);
1374 }
1375 
1376 int split_huge_page(struct page *page)
1377 {
1378 	struct anon_vma *anon_vma;
1379 	int ret = 1;
1380 
1381 	BUG_ON(!PageAnon(page));
1382 	anon_vma = page_lock_anon_vma(page);
1383 	if (!anon_vma)
1384 		goto out;
1385 	ret = 0;
1386 	if (!PageCompound(page))
1387 		goto out_unlock;
1388 
1389 	BUG_ON(!PageSwapBacked(page));
1390 	__split_huge_page(page, anon_vma);
1391 
1392 	BUG_ON(PageCompound(page));
1393 out_unlock:
1394 	page_unlock_anon_vma(anon_vma);
1395 out:
1396 	return ret;
1397 }
1398 
1399 int hugepage_madvise(struct vm_area_struct *vma,
1400 		     unsigned long *vm_flags, int advice)
1401 {
1402 	switch (advice) {
1403 	case MADV_HUGEPAGE:
1404 		/*
1405 		 * Be somewhat over-protective like KSM for now!
1406 		 */
1407 		if (*vm_flags & (VM_HUGEPAGE |
1408 				 VM_SHARED   | VM_MAYSHARE   |
1409 				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1410 				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1411 				 VM_MIXEDMAP | VM_SAO))
1412 			return -EINVAL;
1413 		*vm_flags &= ~VM_NOHUGEPAGE;
1414 		*vm_flags |= VM_HUGEPAGE;
1415 		/*
1416 		 * If the vma become good for khugepaged to scan,
1417 		 * register it here without waiting a page fault that
1418 		 * may not happen any time soon.
1419 		 */
1420 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1421 			return -ENOMEM;
1422 		break;
1423 	case MADV_NOHUGEPAGE:
1424 		/*
1425 		 * Be somewhat over-protective like KSM for now!
1426 		 */
1427 		if (*vm_flags & (VM_NOHUGEPAGE |
1428 				 VM_SHARED   | VM_MAYSHARE   |
1429 				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1430 				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1431 				 VM_MIXEDMAP | VM_SAO))
1432 			return -EINVAL;
1433 		*vm_flags &= ~VM_HUGEPAGE;
1434 		*vm_flags |= VM_NOHUGEPAGE;
1435 		/*
1436 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1437 		 * this vma even if we leave the mm registered in khugepaged if
1438 		 * it got registered before VM_NOHUGEPAGE was set.
1439 		 */
1440 		break;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int __init khugepaged_slab_init(void)
1447 {
1448 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1449 					  sizeof(struct mm_slot),
1450 					  __alignof__(struct mm_slot), 0, NULL);
1451 	if (!mm_slot_cache)
1452 		return -ENOMEM;
1453 
1454 	return 0;
1455 }
1456 
1457 static void __init khugepaged_slab_free(void)
1458 {
1459 	kmem_cache_destroy(mm_slot_cache);
1460 	mm_slot_cache = NULL;
1461 }
1462 
1463 static inline struct mm_slot *alloc_mm_slot(void)
1464 {
1465 	if (!mm_slot_cache)	/* initialization failed */
1466 		return NULL;
1467 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1468 }
1469 
1470 static inline void free_mm_slot(struct mm_slot *mm_slot)
1471 {
1472 	kmem_cache_free(mm_slot_cache, mm_slot);
1473 }
1474 
1475 static int __init mm_slots_hash_init(void)
1476 {
1477 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1478 				GFP_KERNEL);
1479 	if (!mm_slots_hash)
1480 		return -ENOMEM;
1481 	return 0;
1482 }
1483 
1484 #if 0
1485 static void __init mm_slots_hash_free(void)
1486 {
1487 	kfree(mm_slots_hash);
1488 	mm_slots_hash = NULL;
1489 }
1490 #endif
1491 
1492 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1493 {
1494 	struct mm_slot *mm_slot;
1495 	struct hlist_head *bucket;
1496 	struct hlist_node *node;
1497 
1498 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1499 				% MM_SLOTS_HASH_HEADS];
1500 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1501 		if (mm == mm_slot->mm)
1502 			return mm_slot;
1503 	}
1504 	return NULL;
1505 }
1506 
1507 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1508 				    struct mm_slot *mm_slot)
1509 {
1510 	struct hlist_head *bucket;
1511 
1512 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1513 				% MM_SLOTS_HASH_HEADS];
1514 	mm_slot->mm = mm;
1515 	hlist_add_head(&mm_slot->hash, bucket);
1516 }
1517 
1518 static inline int khugepaged_test_exit(struct mm_struct *mm)
1519 {
1520 	return atomic_read(&mm->mm_users) == 0;
1521 }
1522 
1523 int __khugepaged_enter(struct mm_struct *mm)
1524 {
1525 	struct mm_slot *mm_slot;
1526 	int wakeup;
1527 
1528 	mm_slot = alloc_mm_slot();
1529 	if (!mm_slot)
1530 		return -ENOMEM;
1531 
1532 	/* __khugepaged_exit() must not run from under us */
1533 	VM_BUG_ON(khugepaged_test_exit(mm));
1534 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1535 		free_mm_slot(mm_slot);
1536 		return 0;
1537 	}
1538 
1539 	spin_lock(&khugepaged_mm_lock);
1540 	insert_to_mm_slots_hash(mm, mm_slot);
1541 	/*
1542 	 * Insert just behind the scanning cursor, to let the area settle
1543 	 * down a little.
1544 	 */
1545 	wakeup = list_empty(&khugepaged_scan.mm_head);
1546 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1547 	spin_unlock(&khugepaged_mm_lock);
1548 
1549 	atomic_inc(&mm->mm_count);
1550 	if (wakeup)
1551 		wake_up_interruptible(&khugepaged_wait);
1552 
1553 	return 0;
1554 }
1555 
1556 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1557 {
1558 	unsigned long hstart, hend;
1559 	if (!vma->anon_vma)
1560 		/*
1561 		 * Not yet faulted in so we will register later in the
1562 		 * page fault if needed.
1563 		 */
1564 		return 0;
1565 	if (vma->vm_file || vma->vm_ops)
1566 		/* khugepaged not yet working on file or special mappings */
1567 		return 0;
1568 	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1569 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1570 	hend = vma->vm_end & HPAGE_PMD_MASK;
1571 	if (hstart < hend)
1572 		return khugepaged_enter(vma);
1573 	return 0;
1574 }
1575 
1576 void __khugepaged_exit(struct mm_struct *mm)
1577 {
1578 	struct mm_slot *mm_slot;
1579 	int free = 0;
1580 
1581 	spin_lock(&khugepaged_mm_lock);
1582 	mm_slot = get_mm_slot(mm);
1583 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1584 		hlist_del(&mm_slot->hash);
1585 		list_del(&mm_slot->mm_node);
1586 		free = 1;
1587 	}
1588 
1589 	if (free) {
1590 		spin_unlock(&khugepaged_mm_lock);
1591 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1592 		free_mm_slot(mm_slot);
1593 		mmdrop(mm);
1594 	} else if (mm_slot) {
1595 		spin_unlock(&khugepaged_mm_lock);
1596 		/*
1597 		 * This is required to serialize against
1598 		 * khugepaged_test_exit() (which is guaranteed to run
1599 		 * under mmap sem read mode). Stop here (after we
1600 		 * return all pagetables will be destroyed) until
1601 		 * khugepaged has finished working on the pagetables
1602 		 * under the mmap_sem.
1603 		 */
1604 		down_write(&mm->mmap_sem);
1605 		up_write(&mm->mmap_sem);
1606 	} else
1607 		spin_unlock(&khugepaged_mm_lock);
1608 }
1609 
1610 static void release_pte_page(struct page *page)
1611 {
1612 	/* 0 stands for page_is_file_cache(page) == false */
1613 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1614 	unlock_page(page);
1615 	putback_lru_page(page);
1616 }
1617 
1618 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1619 {
1620 	while (--_pte >= pte) {
1621 		pte_t pteval = *_pte;
1622 		if (!pte_none(pteval))
1623 			release_pte_page(pte_page(pteval));
1624 	}
1625 }
1626 
1627 static void release_all_pte_pages(pte_t *pte)
1628 {
1629 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1630 }
1631 
1632 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1633 					unsigned long address,
1634 					pte_t *pte)
1635 {
1636 	struct page *page;
1637 	pte_t *_pte;
1638 	int referenced = 0, isolated = 0, none = 0;
1639 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1640 	     _pte++, address += PAGE_SIZE) {
1641 		pte_t pteval = *_pte;
1642 		if (pte_none(pteval)) {
1643 			if (++none <= khugepaged_max_ptes_none)
1644 				continue;
1645 			else {
1646 				release_pte_pages(pte, _pte);
1647 				goto out;
1648 			}
1649 		}
1650 		if (!pte_present(pteval) || !pte_write(pteval)) {
1651 			release_pte_pages(pte, _pte);
1652 			goto out;
1653 		}
1654 		page = vm_normal_page(vma, address, pteval);
1655 		if (unlikely(!page)) {
1656 			release_pte_pages(pte, _pte);
1657 			goto out;
1658 		}
1659 		VM_BUG_ON(PageCompound(page));
1660 		BUG_ON(!PageAnon(page));
1661 		VM_BUG_ON(!PageSwapBacked(page));
1662 
1663 		/* cannot use mapcount: can't collapse if there's a gup pin */
1664 		if (page_count(page) != 1) {
1665 			release_pte_pages(pte, _pte);
1666 			goto out;
1667 		}
1668 		/*
1669 		 * We can do it before isolate_lru_page because the
1670 		 * page can't be freed from under us. NOTE: PG_lock
1671 		 * is needed to serialize against split_huge_page
1672 		 * when invoked from the VM.
1673 		 */
1674 		if (!trylock_page(page)) {
1675 			release_pte_pages(pte, _pte);
1676 			goto out;
1677 		}
1678 		/*
1679 		 * Isolate the page to avoid collapsing an hugepage
1680 		 * currently in use by the VM.
1681 		 */
1682 		if (isolate_lru_page(page)) {
1683 			unlock_page(page);
1684 			release_pte_pages(pte, _pte);
1685 			goto out;
1686 		}
1687 		/* 0 stands for page_is_file_cache(page) == false */
1688 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1689 		VM_BUG_ON(!PageLocked(page));
1690 		VM_BUG_ON(PageLRU(page));
1691 
1692 		/* If there is no mapped pte young don't collapse the page */
1693 		if (pte_young(pteval) || PageReferenced(page) ||
1694 		    mmu_notifier_test_young(vma->vm_mm, address))
1695 			referenced = 1;
1696 	}
1697 	if (unlikely(!referenced))
1698 		release_all_pte_pages(pte);
1699 	else
1700 		isolated = 1;
1701 out:
1702 	return isolated;
1703 }
1704 
1705 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1706 				      struct vm_area_struct *vma,
1707 				      unsigned long address,
1708 				      spinlock_t *ptl)
1709 {
1710 	pte_t *_pte;
1711 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1712 		pte_t pteval = *_pte;
1713 		struct page *src_page;
1714 
1715 		if (pte_none(pteval)) {
1716 			clear_user_highpage(page, address);
1717 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1718 		} else {
1719 			src_page = pte_page(pteval);
1720 			copy_user_highpage(page, src_page, address, vma);
1721 			VM_BUG_ON(page_mapcount(src_page) != 1);
1722 			VM_BUG_ON(page_count(src_page) != 2);
1723 			release_pte_page(src_page);
1724 			/*
1725 			 * ptl mostly unnecessary, but preempt has to
1726 			 * be disabled to update the per-cpu stats
1727 			 * inside page_remove_rmap().
1728 			 */
1729 			spin_lock(ptl);
1730 			/*
1731 			 * paravirt calls inside pte_clear here are
1732 			 * superfluous.
1733 			 */
1734 			pte_clear(vma->vm_mm, address, _pte);
1735 			page_remove_rmap(src_page);
1736 			spin_unlock(ptl);
1737 			free_page_and_swap_cache(src_page);
1738 		}
1739 
1740 		address += PAGE_SIZE;
1741 		page++;
1742 	}
1743 }
1744 
1745 static void collapse_huge_page(struct mm_struct *mm,
1746 			       unsigned long address,
1747 			       struct page **hpage,
1748 			       struct vm_area_struct *vma)
1749 {
1750 	pgd_t *pgd;
1751 	pud_t *pud;
1752 	pmd_t *pmd, _pmd;
1753 	pte_t *pte;
1754 	pgtable_t pgtable;
1755 	struct page *new_page;
1756 	spinlock_t *ptl;
1757 	int isolated;
1758 	unsigned long hstart, hend;
1759 
1760 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1761 #ifndef CONFIG_NUMA
1762 	VM_BUG_ON(!*hpage);
1763 	new_page = *hpage;
1764 #else
1765 	VM_BUG_ON(*hpage);
1766 	/*
1767 	 * Allocate the page while the vma is still valid and under
1768 	 * the mmap_sem read mode so there is no memory allocation
1769 	 * later when we take the mmap_sem in write mode. This is more
1770 	 * friendly behavior (OTOH it may actually hide bugs) to
1771 	 * filesystems in userland with daemons allocating memory in
1772 	 * the userland I/O paths.  Allocating memory with the
1773 	 * mmap_sem in read mode is good idea also to allow greater
1774 	 * scalability.
1775 	 */
1776 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
1777 	if (unlikely(!new_page)) {
1778 		up_read(&mm->mmap_sem);
1779 		*hpage = ERR_PTR(-ENOMEM);
1780 		return;
1781 	}
1782 #endif
1783 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1784 		up_read(&mm->mmap_sem);
1785 		put_page(new_page);
1786 		return;
1787 	}
1788 
1789 	/* after allocating the hugepage upgrade to mmap_sem write mode */
1790 	up_read(&mm->mmap_sem);
1791 
1792 	/*
1793 	 * Prevent all access to pagetables with the exception of
1794 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1795 	 * handled by the anon_vma lock + PG_lock.
1796 	 */
1797 	down_write(&mm->mmap_sem);
1798 	if (unlikely(khugepaged_test_exit(mm)))
1799 		goto out;
1800 
1801 	vma = find_vma(mm, address);
1802 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1803 	hend = vma->vm_end & HPAGE_PMD_MASK;
1804 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1805 		goto out;
1806 
1807 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1808 	    (vma->vm_flags & VM_NOHUGEPAGE))
1809 		goto out;
1810 
1811 	/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1812 	if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1813 		goto out;
1814 	if (is_vma_temporary_stack(vma))
1815 		goto out;
1816 	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1817 
1818 	pgd = pgd_offset(mm, address);
1819 	if (!pgd_present(*pgd))
1820 		goto out;
1821 
1822 	pud = pud_offset(pgd, address);
1823 	if (!pud_present(*pud))
1824 		goto out;
1825 
1826 	pmd = pmd_offset(pud, address);
1827 	/* pmd can't go away or become huge under us */
1828 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1829 		goto out;
1830 
1831 	anon_vma_lock(vma->anon_vma);
1832 
1833 	pte = pte_offset_map(pmd, address);
1834 	ptl = pte_lockptr(mm, pmd);
1835 
1836 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1837 	/*
1838 	 * After this gup_fast can't run anymore. This also removes
1839 	 * any huge TLB entry from the CPU so we won't allow
1840 	 * huge and small TLB entries for the same virtual address
1841 	 * to avoid the risk of CPU bugs in that area.
1842 	 */
1843 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1844 	spin_unlock(&mm->page_table_lock);
1845 
1846 	spin_lock(ptl);
1847 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1848 	spin_unlock(ptl);
1849 
1850 	if (unlikely(!isolated)) {
1851 		pte_unmap(pte);
1852 		spin_lock(&mm->page_table_lock);
1853 		BUG_ON(!pmd_none(*pmd));
1854 		set_pmd_at(mm, address, pmd, _pmd);
1855 		spin_unlock(&mm->page_table_lock);
1856 		anon_vma_unlock(vma->anon_vma);
1857 		goto out;
1858 	}
1859 
1860 	/*
1861 	 * All pages are isolated and locked so anon_vma rmap
1862 	 * can't run anymore.
1863 	 */
1864 	anon_vma_unlock(vma->anon_vma);
1865 
1866 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1867 	pte_unmap(pte);
1868 	__SetPageUptodate(new_page);
1869 	pgtable = pmd_pgtable(_pmd);
1870 	VM_BUG_ON(page_count(pgtable) != 1);
1871 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1872 
1873 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1874 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1875 	_pmd = pmd_mkhuge(_pmd);
1876 
1877 	/*
1878 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1879 	 * this is needed to avoid the copy_huge_page writes to become
1880 	 * visible after the set_pmd_at() write.
1881 	 */
1882 	smp_wmb();
1883 
1884 	spin_lock(&mm->page_table_lock);
1885 	BUG_ON(!pmd_none(*pmd));
1886 	page_add_new_anon_rmap(new_page, vma, address);
1887 	set_pmd_at(mm, address, pmd, _pmd);
1888 	update_mmu_cache(vma, address, entry);
1889 	prepare_pmd_huge_pte(pgtable, mm);
1890 	mm->nr_ptes--;
1891 	spin_unlock(&mm->page_table_lock);
1892 
1893 #ifndef CONFIG_NUMA
1894 	*hpage = NULL;
1895 #endif
1896 	khugepaged_pages_collapsed++;
1897 out_up_write:
1898 	up_write(&mm->mmap_sem);
1899 	return;
1900 
1901 out:
1902 	mem_cgroup_uncharge_page(new_page);
1903 #ifdef CONFIG_NUMA
1904 	put_page(new_page);
1905 #endif
1906 	goto out_up_write;
1907 }
1908 
1909 static int khugepaged_scan_pmd(struct mm_struct *mm,
1910 			       struct vm_area_struct *vma,
1911 			       unsigned long address,
1912 			       struct page **hpage)
1913 {
1914 	pgd_t *pgd;
1915 	pud_t *pud;
1916 	pmd_t *pmd;
1917 	pte_t *pte, *_pte;
1918 	int ret = 0, referenced = 0, none = 0;
1919 	struct page *page;
1920 	unsigned long _address;
1921 	spinlock_t *ptl;
1922 
1923 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1924 
1925 	pgd = pgd_offset(mm, address);
1926 	if (!pgd_present(*pgd))
1927 		goto out;
1928 
1929 	pud = pud_offset(pgd, address);
1930 	if (!pud_present(*pud))
1931 		goto out;
1932 
1933 	pmd = pmd_offset(pud, address);
1934 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1935 		goto out;
1936 
1937 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1938 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1939 	     _pte++, _address += PAGE_SIZE) {
1940 		pte_t pteval = *_pte;
1941 		if (pte_none(pteval)) {
1942 			if (++none <= khugepaged_max_ptes_none)
1943 				continue;
1944 			else
1945 				goto out_unmap;
1946 		}
1947 		if (!pte_present(pteval) || !pte_write(pteval))
1948 			goto out_unmap;
1949 		page = vm_normal_page(vma, _address, pteval);
1950 		if (unlikely(!page))
1951 			goto out_unmap;
1952 		VM_BUG_ON(PageCompound(page));
1953 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1954 			goto out_unmap;
1955 		/* cannot use mapcount: can't collapse if there's a gup pin */
1956 		if (page_count(page) != 1)
1957 			goto out_unmap;
1958 		if (pte_young(pteval) || PageReferenced(page) ||
1959 		    mmu_notifier_test_young(vma->vm_mm, address))
1960 			referenced = 1;
1961 	}
1962 	if (referenced)
1963 		ret = 1;
1964 out_unmap:
1965 	pte_unmap_unlock(pte, ptl);
1966 	if (ret)
1967 		/* collapse_huge_page will return with the mmap_sem released */
1968 		collapse_huge_page(mm, address, hpage, vma);
1969 out:
1970 	return ret;
1971 }
1972 
1973 static void collect_mm_slot(struct mm_slot *mm_slot)
1974 {
1975 	struct mm_struct *mm = mm_slot->mm;
1976 
1977 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1978 
1979 	if (khugepaged_test_exit(mm)) {
1980 		/* free mm_slot */
1981 		hlist_del(&mm_slot->hash);
1982 		list_del(&mm_slot->mm_node);
1983 
1984 		/*
1985 		 * Not strictly needed because the mm exited already.
1986 		 *
1987 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1988 		 */
1989 
1990 		/* khugepaged_mm_lock actually not necessary for the below */
1991 		free_mm_slot(mm_slot);
1992 		mmdrop(mm);
1993 	}
1994 }
1995 
1996 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1997 					    struct page **hpage)
1998 {
1999 	struct mm_slot *mm_slot;
2000 	struct mm_struct *mm;
2001 	struct vm_area_struct *vma;
2002 	int progress = 0;
2003 
2004 	VM_BUG_ON(!pages);
2005 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2006 
2007 	if (khugepaged_scan.mm_slot)
2008 		mm_slot = khugepaged_scan.mm_slot;
2009 	else {
2010 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2011 				     struct mm_slot, mm_node);
2012 		khugepaged_scan.address = 0;
2013 		khugepaged_scan.mm_slot = mm_slot;
2014 	}
2015 	spin_unlock(&khugepaged_mm_lock);
2016 
2017 	mm = mm_slot->mm;
2018 	down_read(&mm->mmap_sem);
2019 	if (unlikely(khugepaged_test_exit(mm)))
2020 		vma = NULL;
2021 	else
2022 		vma = find_vma(mm, khugepaged_scan.address);
2023 
2024 	progress++;
2025 	for (; vma; vma = vma->vm_next) {
2026 		unsigned long hstart, hend;
2027 
2028 		cond_resched();
2029 		if (unlikely(khugepaged_test_exit(mm))) {
2030 			progress++;
2031 			break;
2032 		}
2033 
2034 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2035 		     !khugepaged_always()) ||
2036 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2037 		skip:
2038 			progress++;
2039 			continue;
2040 		}
2041 		/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2042 		if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
2043 			goto skip;
2044 		if (is_vma_temporary_stack(vma))
2045 			goto skip;
2046 
2047 		VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2048 
2049 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2050 		hend = vma->vm_end & HPAGE_PMD_MASK;
2051 		if (hstart >= hend)
2052 			goto skip;
2053 		if (khugepaged_scan.address > hend)
2054 			goto skip;
2055 		if (khugepaged_scan.address < hstart)
2056 			khugepaged_scan.address = hstart;
2057 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2058 
2059 		while (khugepaged_scan.address < hend) {
2060 			int ret;
2061 			cond_resched();
2062 			if (unlikely(khugepaged_test_exit(mm)))
2063 				goto breakouterloop;
2064 
2065 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2066 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2067 				  hend);
2068 			ret = khugepaged_scan_pmd(mm, vma,
2069 						  khugepaged_scan.address,
2070 						  hpage);
2071 			/* move to next address */
2072 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2073 			progress += HPAGE_PMD_NR;
2074 			if (ret)
2075 				/* we released mmap_sem so break loop */
2076 				goto breakouterloop_mmap_sem;
2077 			if (progress >= pages)
2078 				goto breakouterloop;
2079 		}
2080 	}
2081 breakouterloop:
2082 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2083 breakouterloop_mmap_sem:
2084 
2085 	spin_lock(&khugepaged_mm_lock);
2086 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2087 	/*
2088 	 * Release the current mm_slot if this mm is about to die, or
2089 	 * if we scanned all vmas of this mm.
2090 	 */
2091 	if (khugepaged_test_exit(mm) || !vma) {
2092 		/*
2093 		 * Make sure that if mm_users is reaching zero while
2094 		 * khugepaged runs here, khugepaged_exit will find
2095 		 * mm_slot not pointing to the exiting mm.
2096 		 */
2097 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2098 			khugepaged_scan.mm_slot = list_entry(
2099 				mm_slot->mm_node.next,
2100 				struct mm_slot, mm_node);
2101 			khugepaged_scan.address = 0;
2102 		} else {
2103 			khugepaged_scan.mm_slot = NULL;
2104 			khugepaged_full_scans++;
2105 		}
2106 
2107 		collect_mm_slot(mm_slot);
2108 	}
2109 
2110 	return progress;
2111 }
2112 
2113 static int khugepaged_has_work(void)
2114 {
2115 	return !list_empty(&khugepaged_scan.mm_head) &&
2116 		khugepaged_enabled();
2117 }
2118 
2119 static int khugepaged_wait_event(void)
2120 {
2121 	return !list_empty(&khugepaged_scan.mm_head) ||
2122 		!khugepaged_enabled();
2123 }
2124 
2125 static void khugepaged_do_scan(struct page **hpage)
2126 {
2127 	unsigned int progress = 0, pass_through_head = 0;
2128 	unsigned int pages = khugepaged_pages_to_scan;
2129 
2130 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2131 
2132 	while (progress < pages) {
2133 		cond_resched();
2134 
2135 #ifndef CONFIG_NUMA
2136 		if (!*hpage) {
2137 			*hpage = alloc_hugepage(khugepaged_defrag());
2138 			if (unlikely(!*hpage))
2139 				break;
2140 		}
2141 #else
2142 		if (IS_ERR(*hpage))
2143 			break;
2144 #endif
2145 
2146 		if (unlikely(kthread_should_stop() || freezing(current)))
2147 			break;
2148 
2149 		spin_lock(&khugepaged_mm_lock);
2150 		if (!khugepaged_scan.mm_slot)
2151 			pass_through_head++;
2152 		if (khugepaged_has_work() &&
2153 		    pass_through_head < 2)
2154 			progress += khugepaged_scan_mm_slot(pages - progress,
2155 							    hpage);
2156 		else
2157 			progress = pages;
2158 		spin_unlock(&khugepaged_mm_lock);
2159 	}
2160 }
2161 
2162 static void khugepaged_alloc_sleep(void)
2163 {
2164 	DEFINE_WAIT(wait);
2165 	add_wait_queue(&khugepaged_wait, &wait);
2166 	schedule_timeout_interruptible(
2167 		msecs_to_jiffies(
2168 			khugepaged_alloc_sleep_millisecs));
2169 	remove_wait_queue(&khugepaged_wait, &wait);
2170 }
2171 
2172 #ifndef CONFIG_NUMA
2173 static struct page *khugepaged_alloc_hugepage(void)
2174 {
2175 	struct page *hpage;
2176 
2177 	do {
2178 		hpage = alloc_hugepage(khugepaged_defrag());
2179 		if (!hpage)
2180 			khugepaged_alloc_sleep();
2181 	} while (unlikely(!hpage) &&
2182 		 likely(khugepaged_enabled()));
2183 	return hpage;
2184 }
2185 #endif
2186 
2187 static void khugepaged_loop(void)
2188 {
2189 	struct page *hpage;
2190 
2191 #ifdef CONFIG_NUMA
2192 	hpage = NULL;
2193 #endif
2194 	while (likely(khugepaged_enabled())) {
2195 #ifndef CONFIG_NUMA
2196 		hpage = khugepaged_alloc_hugepage();
2197 		if (unlikely(!hpage))
2198 			break;
2199 #else
2200 		if (IS_ERR(hpage)) {
2201 			khugepaged_alloc_sleep();
2202 			hpage = NULL;
2203 		}
2204 #endif
2205 
2206 		khugepaged_do_scan(&hpage);
2207 #ifndef CONFIG_NUMA
2208 		if (hpage)
2209 			put_page(hpage);
2210 #endif
2211 		try_to_freeze();
2212 		if (unlikely(kthread_should_stop()))
2213 			break;
2214 		if (khugepaged_has_work()) {
2215 			DEFINE_WAIT(wait);
2216 			if (!khugepaged_scan_sleep_millisecs)
2217 				continue;
2218 			add_wait_queue(&khugepaged_wait, &wait);
2219 			schedule_timeout_interruptible(
2220 				msecs_to_jiffies(
2221 					khugepaged_scan_sleep_millisecs));
2222 			remove_wait_queue(&khugepaged_wait, &wait);
2223 		} else if (khugepaged_enabled())
2224 			wait_event_freezable(khugepaged_wait,
2225 					     khugepaged_wait_event());
2226 	}
2227 }
2228 
2229 static int khugepaged(void *none)
2230 {
2231 	struct mm_slot *mm_slot;
2232 
2233 	set_freezable();
2234 	set_user_nice(current, 19);
2235 
2236 	/* serialize with start_khugepaged() */
2237 	mutex_lock(&khugepaged_mutex);
2238 
2239 	for (;;) {
2240 		mutex_unlock(&khugepaged_mutex);
2241 		VM_BUG_ON(khugepaged_thread != current);
2242 		khugepaged_loop();
2243 		VM_BUG_ON(khugepaged_thread != current);
2244 
2245 		mutex_lock(&khugepaged_mutex);
2246 		if (!khugepaged_enabled())
2247 			break;
2248 		if (unlikely(kthread_should_stop()))
2249 			break;
2250 	}
2251 
2252 	spin_lock(&khugepaged_mm_lock);
2253 	mm_slot = khugepaged_scan.mm_slot;
2254 	khugepaged_scan.mm_slot = NULL;
2255 	if (mm_slot)
2256 		collect_mm_slot(mm_slot);
2257 	spin_unlock(&khugepaged_mm_lock);
2258 
2259 	khugepaged_thread = NULL;
2260 	mutex_unlock(&khugepaged_mutex);
2261 
2262 	return 0;
2263 }
2264 
2265 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2266 {
2267 	struct page *page;
2268 
2269 	spin_lock(&mm->page_table_lock);
2270 	if (unlikely(!pmd_trans_huge(*pmd))) {
2271 		spin_unlock(&mm->page_table_lock);
2272 		return;
2273 	}
2274 	page = pmd_page(*pmd);
2275 	VM_BUG_ON(!page_count(page));
2276 	get_page(page);
2277 	spin_unlock(&mm->page_table_lock);
2278 
2279 	split_huge_page(page);
2280 
2281 	put_page(page);
2282 	BUG_ON(pmd_trans_huge(*pmd));
2283 }
2284 
2285 static void split_huge_page_address(struct mm_struct *mm,
2286 				    unsigned long address)
2287 {
2288 	pgd_t *pgd;
2289 	pud_t *pud;
2290 	pmd_t *pmd;
2291 
2292 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2293 
2294 	pgd = pgd_offset(mm, address);
2295 	if (!pgd_present(*pgd))
2296 		return;
2297 
2298 	pud = pud_offset(pgd, address);
2299 	if (!pud_present(*pud))
2300 		return;
2301 
2302 	pmd = pmd_offset(pud, address);
2303 	if (!pmd_present(*pmd))
2304 		return;
2305 	/*
2306 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2307 	 * materialize from under us.
2308 	 */
2309 	split_huge_page_pmd(mm, pmd);
2310 }
2311 
2312 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2313 			     unsigned long start,
2314 			     unsigned long end,
2315 			     long adjust_next)
2316 {
2317 	/*
2318 	 * If the new start address isn't hpage aligned and it could
2319 	 * previously contain an hugepage: check if we need to split
2320 	 * an huge pmd.
2321 	 */
2322 	if (start & ~HPAGE_PMD_MASK &&
2323 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2324 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2325 		split_huge_page_address(vma->vm_mm, start);
2326 
2327 	/*
2328 	 * If the new end address isn't hpage aligned and it could
2329 	 * previously contain an hugepage: check if we need to split
2330 	 * an huge pmd.
2331 	 */
2332 	if (end & ~HPAGE_PMD_MASK &&
2333 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2334 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2335 		split_huge_page_address(vma->vm_mm, end);
2336 
2337 	/*
2338 	 * If we're also updating the vma->vm_next->vm_start, if the new
2339 	 * vm_next->vm_start isn't page aligned and it could previously
2340 	 * contain an hugepage: check if we need to split an huge pmd.
2341 	 */
2342 	if (adjust_next > 0) {
2343 		struct vm_area_struct *next = vma->vm_next;
2344 		unsigned long nstart = next->vm_start;
2345 		nstart += adjust_next << PAGE_SHIFT;
2346 		if (nstart & ~HPAGE_PMD_MASK &&
2347 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2348 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2349 			split_huge_page_address(next->vm_mm, nstart);
2350 	}
2351 }
2352