1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default transparent hugepage support is disabled in order that avoid 43 * to risk increase the memory footprint of applications without a guaranteed 44 * benefit. When transparent hugepage support is enabled, is for all mappings, 45 * and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 static struct page *get_huge_zero_page(void) 66 { 67 struct page *zero_page; 68 retry: 69 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 70 return READ_ONCE(huge_zero_page); 71 72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 73 HPAGE_PMD_ORDER); 74 if (!zero_page) { 75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 76 return NULL; 77 } 78 count_vm_event(THP_ZERO_PAGE_ALLOC); 79 preempt_disable(); 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 81 preempt_enable(); 82 __free_pages(zero_page, compound_order(zero_page)); 83 goto retry; 84 } 85 86 /* We take additional reference here. It will be put back by shrinker */ 87 atomic_set(&huge_zero_refcount, 2); 88 preempt_enable(); 89 return READ_ONCE(huge_zero_page); 90 } 91 92 static void put_huge_zero_page(void) 93 { 94 /* 95 * Counter should never go to zero here. Only shrinker can put 96 * last reference. 97 */ 98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 99 } 100 101 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 102 { 103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 104 return READ_ONCE(huge_zero_page); 105 106 if (!get_huge_zero_page()) 107 return NULL; 108 109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 110 put_huge_zero_page(); 111 112 return READ_ONCE(huge_zero_page); 113 } 114 115 void mm_put_huge_zero_page(struct mm_struct *mm) 116 { 117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 118 put_huge_zero_page(); 119 } 120 121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 122 struct shrink_control *sc) 123 { 124 /* we can free zero page only if last reference remains */ 125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 126 } 127 128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 129 struct shrink_control *sc) 130 { 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 132 struct page *zero_page = xchg(&huge_zero_page, NULL); 133 BUG_ON(zero_page == NULL); 134 __free_pages(zero_page, compound_order(zero_page)); 135 return HPAGE_PMD_NR; 136 } 137 138 return 0; 139 } 140 141 static struct shrinker huge_zero_page_shrinker = { 142 .count_objects = shrink_huge_zero_page_count, 143 .scan_objects = shrink_huge_zero_page_scan, 144 .seeks = DEFAULT_SEEKS, 145 }; 146 147 #ifdef CONFIG_SYSFS 148 static ssize_t enabled_show(struct kobject *kobj, 149 struct kobj_attribute *attr, char *buf) 150 { 151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 152 return sprintf(buf, "[always] madvise never\n"); 153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 154 return sprintf(buf, "always [madvise] never\n"); 155 else 156 return sprintf(buf, "always madvise [never]\n"); 157 } 158 159 static ssize_t enabled_store(struct kobject *kobj, 160 struct kobj_attribute *attr, 161 const char *buf, size_t count) 162 { 163 ssize_t ret = count; 164 165 if (!memcmp("always", buf, 166 min(sizeof("always")-1, count))) { 167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 169 } else if (!memcmp("madvise", buf, 170 min(sizeof("madvise")-1, count))) { 171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 173 } else if (!memcmp("never", buf, 174 min(sizeof("never")-1, count))) { 175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 177 } else 178 ret = -EINVAL; 179 180 if (ret > 0) { 181 int err = start_stop_khugepaged(); 182 if (err) 183 ret = err; 184 } 185 return ret; 186 } 187 static struct kobj_attribute enabled_attr = 188 __ATTR(enabled, 0644, enabled_show, enabled_store); 189 190 ssize_t single_hugepage_flag_show(struct kobject *kobj, 191 struct kobj_attribute *attr, char *buf, 192 enum transparent_hugepage_flag flag) 193 { 194 return sprintf(buf, "%d\n", 195 !!test_bit(flag, &transparent_hugepage_flags)); 196 } 197 198 ssize_t single_hugepage_flag_store(struct kobject *kobj, 199 struct kobj_attribute *attr, 200 const char *buf, size_t count, 201 enum transparent_hugepage_flag flag) 202 { 203 unsigned long value; 204 int ret; 205 206 ret = kstrtoul(buf, 10, &value); 207 if (ret < 0) 208 return ret; 209 if (value > 1) 210 return -EINVAL; 211 212 if (value) 213 set_bit(flag, &transparent_hugepage_flags); 214 else 215 clear_bit(flag, &transparent_hugepage_flags); 216 217 return count; 218 } 219 220 static ssize_t defrag_show(struct kobject *kobj, 221 struct kobj_attribute *attr, char *buf) 222 { 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 226 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 228 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 230 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 231 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 232 } 233 234 static ssize_t defrag_store(struct kobject *kobj, 235 struct kobj_attribute *attr, 236 const char *buf, size_t count) 237 { 238 if (!memcmp("always", buf, 239 min(sizeof("always")-1, count))) { 240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 244 } else if (!memcmp("defer+madvise", buf, 245 min(sizeof("defer+madvise")-1, count))) { 246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 250 } else if (!memcmp("defer", buf, 251 min(sizeof("defer")-1, count))) { 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 256 } else if (!memcmp("madvise", buf, 257 min(sizeof("madvise")-1, count))) { 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 262 } else if (!memcmp("never", buf, 263 min(sizeof("never")-1, count))) { 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 268 } else 269 return -EINVAL; 270 271 return count; 272 } 273 static struct kobj_attribute defrag_attr = 274 __ATTR(defrag, 0644, defrag_show, defrag_store); 275 276 static ssize_t use_zero_page_show(struct kobject *kobj, 277 struct kobj_attribute *attr, char *buf) 278 { 279 return single_hugepage_flag_show(kobj, attr, buf, 280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 281 } 282 static ssize_t use_zero_page_store(struct kobject *kobj, 283 struct kobj_attribute *attr, const char *buf, size_t count) 284 { 285 return single_hugepage_flag_store(kobj, attr, buf, count, 286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 287 } 288 static struct kobj_attribute use_zero_page_attr = 289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 290 291 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 292 struct kobj_attribute *attr, char *buf) 293 { 294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 295 } 296 static struct kobj_attribute hpage_pmd_size_attr = 297 __ATTR_RO(hpage_pmd_size); 298 299 #ifdef CONFIG_DEBUG_VM 300 static ssize_t debug_cow_show(struct kobject *kobj, 301 struct kobj_attribute *attr, char *buf) 302 { 303 return single_hugepage_flag_show(kobj, attr, buf, 304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 305 } 306 static ssize_t debug_cow_store(struct kobject *kobj, 307 struct kobj_attribute *attr, 308 const char *buf, size_t count) 309 { 310 return single_hugepage_flag_store(kobj, attr, buf, count, 311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 312 } 313 static struct kobj_attribute debug_cow_attr = 314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 315 #endif /* CONFIG_DEBUG_VM */ 316 317 static struct attribute *hugepage_attr[] = { 318 &enabled_attr.attr, 319 &defrag_attr.attr, 320 &use_zero_page_attr.attr, 321 &hpage_pmd_size_attr.attr, 322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 323 &shmem_enabled_attr.attr, 324 #endif 325 #ifdef CONFIG_DEBUG_VM 326 &debug_cow_attr.attr, 327 #endif 328 NULL, 329 }; 330 331 static struct attribute_group hugepage_attr_group = { 332 .attrs = hugepage_attr, 333 }; 334 335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 336 { 337 int err; 338 339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 340 if (unlikely(!*hugepage_kobj)) { 341 pr_err("failed to create transparent hugepage kobject\n"); 342 return -ENOMEM; 343 } 344 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 346 if (err) { 347 pr_err("failed to register transparent hugepage group\n"); 348 goto delete_obj; 349 } 350 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 352 if (err) { 353 pr_err("failed to register transparent hugepage group\n"); 354 goto remove_hp_group; 355 } 356 357 return 0; 358 359 remove_hp_group: 360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 361 delete_obj: 362 kobject_put(*hugepage_kobj); 363 return err; 364 } 365 366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 367 { 368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 370 kobject_put(hugepage_kobj); 371 } 372 #else 373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 374 { 375 return 0; 376 } 377 378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 379 { 380 } 381 #endif /* CONFIG_SYSFS */ 382 383 static int __init hugepage_init(void) 384 { 385 int err; 386 struct kobject *hugepage_kobj; 387 388 if (!has_transparent_hugepage()) { 389 transparent_hugepage_flags = 0; 390 return -EINVAL; 391 } 392 393 /* 394 * hugepages can't be allocated by the buddy allocator 395 */ 396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 397 /* 398 * we use page->mapping and page->index in second tail page 399 * as list_head: assuming THP order >= 2 400 */ 401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 402 403 err = hugepage_init_sysfs(&hugepage_kobj); 404 if (err) 405 goto err_sysfs; 406 407 err = khugepaged_init(); 408 if (err) 409 goto err_slab; 410 411 err = register_shrinker(&huge_zero_page_shrinker); 412 if (err) 413 goto err_hzp_shrinker; 414 err = register_shrinker(&deferred_split_shrinker); 415 if (err) 416 goto err_split_shrinker; 417 418 /* 419 * By default disable transparent hugepages on smaller systems, 420 * where the extra memory used could hurt more than TLB overhead 421 * is likely to save. The admin can still enable it through /sys. 422 */ 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 424 transparent_hugepage_flags = 0; 425 return 0; 426 } 427 428 err = start_stop_khugepaged(); 429 if (err) 430 goto err_khugepaged; 431 432 return 0; 433 err_khugepaged: 434 unregister_shrinker(&deferred_split_shrinker); 435 err_split_shrinker: 436 unregister_shrinker(&huge_zero_page_shrinker); 437 err_hzp_shrinker: 438 khugepaged_destroy(); 439 err_slab: 440 hugepage_exit_sysfs(hugepage_kobj); 441 err_sysfs: 442 return err; 443 } 444 subsys_initcall(hugepage_init); 445 446 static int __init setup_transparent_hugepage(char *str) 447 { 448 int ret = 0; 449 if (!str) 450 goto out; 451 if (!strcmp(str, "always")) { 452 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 453 &transparent_hugepage_flags); 454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 455 &transparent_hugepage_flags); 456 ret = 1; 457 } else if (!strcmp(str, "madvise")) { 458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 459 &transparent_hugepage_flags); 460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 461 &transparent_hugepage_flags); 462 ret = 1; 463 } else if (!strcmp(str, "never")) { 464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 465 &transparent_hugepage_flags); 466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 467 &transparent_hugepage_flags); 468 ret = 1; 469 } 470 out: 471 if (!ret) 472 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 473 return ret; 474 } 475 __setup("transparent_hugepage=", setup_transparent_hugepage); 476 477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 478 { 479 if (likely(vma->vm_flags & VM_WRITE)) 480 pmd = pmd_mkwrite(pmd); 481 return pmd; 482 } 483 484 static inline struct list_head *page_deferred_list(struct page *page) 485 { 486 /* 487 * ->lru in the tail pages is occupied by compound_head. 488 * Let's use ->mapping + ->index in the second tail page as list_head. 489 */ 490 return (struct list_head *)&page[2].mapping; 491 } 492 493 void prep_transhuge_page(struct page *page) 494 { 495 /* 496 * we use page->mapping and page->indexlru in second tail page 497 * as list_head: assuming THP order >= 2 498 */ 499 500 INIT_LIST_HEAD(page_deferred_list(page)); 501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 502 } 503 504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 505 loff_t off, unsigned long flags, unsigned long size) 506 { 507 unsigned long addr; 508 loff_t off_end = off + len; 509 loff_t off_align = round_up(off, size); 510 unsigned long len_pad; 511 512 if (off_end <= off_align || (off_end - off_align) < size) 513 return 0; 514 515 len_pad = len + size; 516 if (len_pad < len || (off + len_pad) < off) 517 return 0; 518 519 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 520 off >> PAGE_SHIFT, flags); 521 if (IS_ERR_VALUE(addr)) 522 return 0; 523 524 addr += (off - addr) & (size - 1); 525 return addr; 526 } 527 528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 529 unsigned long len, unsigned long pgoff, unsigned long flags) 530 { 531 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 532 533 if (addr) 534 goto out; 535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 536 goto out; 537 538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 539 if (addr) 540 return addr; 541 542 out: 543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 544 } 545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 546 547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 548 gfp_t gfp) 549 { 550 struct vm_area_struct *vma = vmf->vma; 551 struct mem_cgroup *memcg; 552 pgtable_t pgtable; 553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 554 int ret = 0; 555 556 VM_BUG_ON_PAGE(!PageCompound(page), page); 557 558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 559 put_page(page); 560 count_vm_event(THP_FAULT_FALLBACK); 561 return VM_FAULT_FALLBACK; 562 } 563 564 pgtable = pte_alloc_one(vma->vm_mm, haddr); 565 if (unlikely(!pgtable)) { 566 ret = VM_FAULT_OOM; 567 goto release; 568 } 569 570 clear_huge_page(page, haddr, HPAGE_PMD_NR); 571 /* 572 * The memory barrier inside __SetPageUptodate makes sure that 573 * clear_huge_page writes become visible before the set_pmd_at() 574 * write. 575 */ 576 __SetPageUptodate(page); 577 578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 579 if (unlikely(!pmd_none(*vmf->pmd))) { 580 goto unlock_release; 581 } else { 582 pmd_t entry; 583 584 ret = check_stable_address_space(vma->vm_mm); 585 if (ret) 586 goto unlock_release; 587 588 /* Deliver the page fault to userland */ 589 if (userfaultfd_missing(vma)) { 590 int ret; 591 592 spin_unlock(vmf->ptl); 593 mem_cgroup_cancel_charge(page, memcg, true); 594 put_page(page); 595 pte_free(vma->vm_mm, pgtable); 596 ret = handle_userfault(vmf, VM_UFFD_MISSING); 597 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 598 return ret; 599 } 600 601 entry = mk_huge_pmd(page, vma->vm_page_prot); 602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 603 page_add_new_anon_rmap(page, vma, haddr, true); 604 mem_cgroup_commit_charge(page, memcg, false, true); 605 lru_cache_add_active_or_unevictable(page, vma); 606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 609 atomic_long_inc(&vma->vm_mm->nr_ptes); 610 spin_unlock(vmf->ptl); 611 count_vm_event(THP_FAULT_ALLOC); 612 } 613 614 return 0; 615 unlock_release: 616 spin_unlock(vmf->ptl); 617 release: 618 if (pgtable) 619 pte_free(vma->vm_mm, pgtable); 620 mem_cgroup_cancel_charge(page, memcg, true); 621 put_page(page); 622 return ret; 623 624 } 625 626 /* 627 * always: directly stall for all thp allocations 628 * defer: wake kswapd and fail if not immediately available 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 630 * fail if not immediately available 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 632 * available 633 * never: never stall for any thp allocation 634 */ 635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 636 { 637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 638 639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 645 __GFP_KSWAPD_RECLAIM); 646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 648 0); 649 return GFP_TRANSHUGE_LIGHT; 650 } 651 652 /* Caller must hold page table lock. */ 653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 655 struct page *zero_page) 656 { 657 pmd_t entry; 658 if (!pmd_none(*pmd)) 659 return false; 660 entry = mk_pmd(zero_page, vma->vm_page_prot); 661 entry = pmd_mkhuge(entry); 662 if (pgtable) 663 pgtable_trans_huge_deposit(mm, pmd, pgtable); 664 set_pmd_at(mm, haddr, pmd, entry); 665 atomic_long_inc(&mm->nr_ptes); 666 return true; 667 } 668 669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 670 { 671 struct vm_area_struct *vma = vmf->vma; 672 gfp_t gfp; 673 struct page *page; 674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 675 676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 677 return VM_FAULT_FALLBACK; 678 if (unlikely(anon_vma_prepare(vma))) 679 return VM_FAULT_OOM; 680 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 681 return VM_FAULT_OOM; 682 if (!(vmf->flags & FAULT_FLAG_WRITE) && 683 !mm_forbids_zeropage(vma->vm_mm) && 684 transparent_hugepage_use_zero_page()) { 685 pgtable_t pgtable; 686 struct page *zero_page; 687 bool set; 688 int ret; 689 pgtable = pte_alloc_one(vma->vm_mm, haddr); 690 if (unlikely(!pgtable)) 691 return VM_FAULT_OOM; 692 zero_page = mm_get_huge_zero_page(vma->vm_mm); 693 if (unlikely(!zero_page)) { 694 pte_free(vma->vm_mm, pgtable); 695 count_vm_event(THP_FAULT_FALLBACK); 696 return VM_FAULT_FALLBACK; 697 } 698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 699 ret = 0; 700 set = false; 701 if (pmd_none(*vmf->pmd)) { 702 ret = check_stable_address_space(vma->vm_mm); 703 if (ret) { 704 spin_unlock(vmf->ptl); 705 } else if (userfaultfd_missing(vma)) { 706 spin_unlock(vmf->ptl); 707 ret = handle_userfault(vmf, VM_UFFD_MISSING); 708 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 709 } else { 710 set_huge_zero_page(pgtable, vma->vm_mm, vma, 711 haddr, vmf->pmd, zero_page); 712 spin_unlock(vmf->ptl); 713 set = true; 714 } 715 } else 716 spin_unlock(vmf->ptl); 717 if (!set) 718 pte_free(vma->vm_mm, pgtable); 719 return ret; 720 } 721 gfp = alloc_hugepage_direct_gfpmask(vma); 722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 723 if (unlikely(!page)) { 724 count_vm_event(THP_FAULT_FALLBACK); 725 return VM_FAULT_FALLBACK; 726 } 727 prep_transhuge_page(page); 728 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 729 } 730 731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 733 pgtable_t pgtable) 734 { 735 struct mm_struct *mm = vma->vm_mm; 736 pmd_t entry; 737 spinlock_t *ptl; 738 739 ptl = pmd_lock(mm, pmd); 740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 741 if (pfn_t_devmap(pfn)) 742 entry = pmd_mkdevmap(entry); 743 if (write) { 744 entry = pmd_mkyoung(pmd_mkdirty(entry)); 745 entry = maybe_pmd_mkwrite(entry, vma); 746 } 747 748 if (pgtable) { 749 pgtable_trans_huge_deposit(mm, pmd, pgtable); 750 atomic_long_inc(&mm->nr_ptes); 751 } 752 753 set_pmd_at(mm, addr, pmd, entry); 754 update_mmu_cache_pmd(vma, addr, pmd); 755 spin_unlock(ptl); 756 } 757 758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 759 pmd_t *pmd, pfn_t pfn, bool write) 760 { 761 pgprot_t pgprot = vma->vm_page_prot; 762 pgtable_t pgtable = NULL; 763 /* 764 * If we had pmd_special, we could avoid all these restrictions, 765 * but we need to be consistent with PTEs and architectures that 766 * can't support a 'special' bit. 767 */ 768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 770 (VM_PFNMAP|VM_MIXEDMAP)); 771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 772 BUG_ON(!pfn_t_devmap(pfn)); 773 774 if (addr < vma->vm_start || addr >= vma->vm_end) 775 return VM_FAULT_SIGBUS; 776 777 if (arch_needs_pgtable_deposit()) { 778 pgtable = pte_alloc_one(vma->vm_mm, addr); 779 if (!pgtable) 780 return VM_FAULT_OOM; 781 } 782 783 track_pfn_insert(vma, &pgprot, pfn); 784 785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable); 786 return VM_FAULT_NOPAGE; 787 } 788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 789 790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 792 { 793 if (likely(vma->vm_flags & VM_WRITE)) 794 pud = pud_mkwrite(pud); 795 return pud; 796 } 797 798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 800 { 801 struct mm_struct *mm = vma->vm_mm; 802 pud_t entry; 803 spinlock_t *ptl; 804 805 ptl = pud_lock(mm, pud); 806 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 807 if (pfn_t_devmap(pfn)) 808 entry = pud_mkdevmap(entry); 809 if (write) { 810 entry = pud_mkyoung(pud_mkdirty(entry)); 811 entry = maybe_pud_mkwrite(entry, vma); 812 } 813 set_pud_at(mm, addr, pud, entry); 814 update_mmu_cache_pud(vma, addr, pud); 815 spin_unlock(ptl); 816 } 817 818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 819 pud_t *pud, pfn_t pfn, bool write) 820 { 821 pgprot_t pgprot = vma->vm_page_prot; 822 /* 823 * If we had pud_special, we could avoid all these restrictions, 824 * but we need to be consistent with PTEs and architectures that 825 * can't support a 'special' bit. 826 */ 827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 829 (VM_PFNMAP|VM_MIXEDMAP)); 830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 831 BUG_ON(!pfn_t_devmap(pfn)); 832 833 if (addr < vma->vm_start || addr >= vma->vm_end) 834 return VM_FAULT_SIGBUS; 835 836 track_pfn_insert(vma, &pgprot, pfn); 837 838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 839 return VM_FAULT_NOPAGE; 840 } 841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 843 844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 845 pmd_t *pmd) 846 { 847 pmd_t _pmd; 848 849 /* 850 * We should set the dirty bit only for FOLL_WRITE but for now 851 * the dirty bit in the pmd is meaningless. And if the dirty 852 * bit will become meaningful and we'll only set it with 853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 854 * set the young bit, instead of the current set_pmd_at. 855 */ 856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 858 pmd, _pmd, 1)) 859 update_mmu_cache_pmd(vma, addr, pmd); 860 } 861 862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 863 pmd_t *pmd, int flags) 864 { 865 unsigned long pfn = pmd_pfn(*pmd); 866 struct mm_struct *mm = vma->vm_mm; 867 struct dev_pagemap *pgmap; 868 struct page *page; 869 870 assert_spin_locked(pmd_lockptr(mm, pmd)); 871 872 /* 873 * When we COW a devmap PMD entry, we split it into PTEs, so we should 874 * not be in this function with `flags & FOLL_COW` set. 875 */ 876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 877 878 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 879 return NULL; 880 881 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 882 /* pass */; 883 else 884 return NULL; 885 886 if (flags & FOLL_TOUCH) 887 touch_pmd(vma, addr, pmd); 888 889 /* 890 * device mapped pages can only be returned if the 891 * caller will manage the page reference count. 892 */ 893 if (!(flags & FOLL_GET)) 894 return ERR_PTR(-EEXIST); 895 896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 897 pgmap = get_dev_pagemap(pfn, NULL); 898 if (!pgmap) 899 return ERR_PTR(-EFAULT); 900 page = pfn_to_page(pfn); 901 get_page(page); 902 put_dev_pagemap(pgmap); 903 904 return page; 905 } 906 907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 909 struct vm_area_struct *vma) 910 { 911 spinlock_t *dst_ptl, *src_ptl; 912 struct page *src_page; 913 pmd_t pmd; 914 pgtable_t pgtable = NULL; 915 int ret = -ENOMEM; 916 917 /* Skip if can be re-fill on fault */ 918 if (!vma_is_anonymous(vma)) 919 return 0; 920 921 pgtable = pte_alloc_one(dst_mm, addr); 922 if (unlikely(!pgtable)) 923 goto out; 924 925 dst_ptl = pmd_lock(dst_mm, dst_pmd); 926 src_ptl = pmd_lockptr(src_mm, src_pmd); 927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 928 929 ret = -EAGAIN; 930 pmd = *src_pmd; 931 if (unlikely(!pmd_trans_huge(pmd))) { 932 pte_free(dst_mm, pgtable); 933 goto out_unlock; 934 } 935 /* 936 * When page table lock is held, the huge zero pmd should not be 937 * under splitting since we don't split the page itself, only pmd to 938 * a page table. 939 */ 940 if (is_huge_zero_pmd(pmd)) { 941 struct page *zero_page; 942 /* 943 * get_huge_zero_page() will never allocate a new page here, 944 * since we already have a zero page to copy. It just takes a 945 * reference. 946 */ 947 zero_page = mm_get_huge_zero_page(dst_mm); 948 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 949 zero_page); 950 ret = 0; 951 goto out_unlock; 952 } 953 954 src_page = pmd_page(pmd); 955 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 956 get_page(src_page); 957 page_dup_rmap(src_page, true); 958 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 959 atomic_long_inc(&dst_mm->nr_ptes); 960 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 961 962 pmdp_set_wrprotect(src_mm, addr, src_pmd); 963 pmd = pmd_mkold(pmd_wrprotect(pmd)); 964 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 965 966 ret = 0; 967 out_unlock: 968 spin_unlock(src_ptl); 969 spin_unlock(dst_ptl); 970 out: 971 return ret; 972 } 973 974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 975 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 976 pud_t *pud) 977 { 978 pud_t _pud; 979 980 /* 981 * We should set the dirty bit only for FOLL_WRITE but for now 982 * the dirty bit in the pud is meaningless. And if the dirty 983 * bit will become meaningful and we'll only set it with 984 * FOLL_WRITE, an atomic set_bit will be required on the pud to 985 * set the young bit, instead of the current set_pud_at. 986 */ 987 _pud = pud_mkyoung(pud_mkdirty(*pud)); 988 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 989 pud, _pud, 1)) 990 update_mmu_cache_pud(vma, addr, pud); 991 } 992 993 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 994 pud_t *pud, int flags) 995 { 996 unsigned long pfn = pud_pfn(*pud); 997 struct mm_struct *mm = vma->vm_mm; 998 struct dev_pagemap *pgmap; 999 struct page *page; 1000 1001 assert_spin_locked(pud_lockptr(mm, pud)); 1002 1003 if (flags & FOLL_WRITE && !pud_write(*pud)) 1004 return NULL; 1005 1006 if (pud_present(*pud) && pud_devmap(*pud)) 1007 /* pass */; 1008 else 1009 return NULL; 1010 1011 if (flags & FOLL_TOUCH) 1012 touch_pud(vma, addr, pud); 1013 1014 /* 1015 * device mapped pages can only be returned if the 1016 * caller will manage the page reference count. 1017 */ 1018 if (!(flags & FOLL_GET)) 1019 return ERR_PTR(-EEXIST); 1020 1021 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1022 pgmap = get_dev_pagemap(pfn, NULL); 1023 if (!pgmap) 1024 return ERR_PTR(-EFAULT); 1025 page = pfn_to_page(pfn); 1026 get_page(page); 1027 put_dev_pagemap(pgmap); 1028 1029 return page; 1030 } 1031 1032 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1033 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1034 struct vm_area_struct *vma) 1035 { 1036 spinlock_t *dst_ptl, *src_ptl; 1037 pud_t pud; 1038 int ret; 1039 1040 dst_ptl = pud_lock(dst_mm, dst_pud); 1041 src_ptl = pud_lockptr(src_mm, src_pud); 1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1043 1044 ret = -EAGAIN; 1045 pud = *src_pud; 1046 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1047 goto out_unlock; 1048 1049 /* 1050 * When page table lock is held, the huge zero pud should not be 1051 * under splitting since we don't split the page itself, only pud to 1052 * a page table. 1053 */ 1054 if (is_huge_zero_pud(pud)) { 1055 /* No huge zero pud yet */ 1056 } 1057 1058 pudp_set_wrprotect(src_mm, addr, src_pud); 1059 pud = pud_mkold(pud_wrprotect(pud)); 1060 set_pud_at(dst_mm, addr, dst_pud, pud); 1061 1062 ret = 0; 1063 out_unlock: 1064 spin_unlock(src_ptl); 1065 spin_unlock(dst_ptl); 1066 return ret; 1067 } 1068 1069 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1070 { 1071 pud_t entry; 1072 unsigned long haddr; 1073 bool write = vmf->flags & FAULT_FLAG_WRITE; 1074 1075 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1076 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1077 goto unlock; 1078 1079 entry = pud_mkyoung(orig_pud); 1080 if (write) 1081 entry = pud_mkdirty(entry); 1082 haddr = vmf->address & HPAGE_PUD_MASK; 1083 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1084 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1085 1086 unlock: 1087 spin_unlock(vmf->ptl); 1088 } 1089 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1090 1091 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1092 { 1093 pmd_t entry; 1094 unsigned long haddr; 1095 bool write = vmf->flags & FAULT_FLAG_WRITE; 1096 1097 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1098 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1099 goto unlock; 1100 1101 entry = pmd_mkyoung(orig_pmd); 1102 if (write) 1103 entry = pmd_mkdirty(entry); 1104 haddr = vmf->address & HPAGE_PMD_MASK; 1105 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1106 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1107 1108 unlock: 1109 spin_unlock(vmf->ptl); 1110 } 1111 1112 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 1113 struct page *page) 1114 { 1115 struct vm_area_struct *vma = vmf->vma; 1116 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1117 struct mem_cgroup *memcg; 1118 pgtable_t pgtable; 1119 pmd_t _pmd; 1120 int ret = 0, i; 1121 struct page **pages; 1122 unsigned long mmun_start; /* For mmu_notifiers */ 1123 unsigned long mmun_end; /* For mmu_notifiers */ 1124 1125 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1126 GFP_KERNEL); 1127 if (unlikely(!pages)) { 1128 ret |= VM_FAULT_OOM; 1129 goto out; 1130 } 1131 1132 for (i = 0; i < HPAGE_PMD_NR; i++) { 1133 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1134 vmf->address, page_to_nid(page)); 1135 if (unlikely(!pages[i] || 1136 mem_cgroup_try_charge(pages[i], vma->vm_mm, 1137 GFP_KERNEL, &memcg, false))) { 1138 if (pages[i]) 1139 put_page(pages[i]); 1140 while (--i >= 0) { 1141 memcg = (void *)page_private(pages[i]); 1142 set_page_private(pages[i], 0); 1143 mem_cgroup_cancel_charge(pages[i], memcg, 1144 false); 1145 put_page(pages[i]); 1146 } 1147 kfree(pages); 1148 ret |= VM_FAULT_OOM; 1149 goto out; 1150 } 1151 set_page_private(pages[i], (unsigned long)memcg); 1152 } 1153 1154 for (i = 0; i < HPAGE_PMD_NR; i++) { 1155 copy_user_highpage(pages[i], page + i, 1156 haddr + PAGE_SIZE * i, vma); 1157 __SetPageUptodate(pages[i]); 1158 cond_resched(); 1159 } 1160 1161 mmun_start = haddr; 1162 mmun_end = haddr + HPAGE_PMD_SIZE; 1163 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1164 1165 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1166 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1167 goto out_free_pages; 1168 VM_BUG_ON_PAGE(!PageHead(page), page); 1169 1170 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1171 /* leave pmd empty until pte is filled */ 1172 1173 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1174 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1175 1176 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1177 pte_t entry; 1178 entry = mk_pte(pages[i], vma->vm_page_prot); 1179 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1180 memcg = (void *)page_private(pages[i]); 1181 set_page_private(pages[i], 0); 1182 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1183 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1184 lru_cache_add_active_or_unevictable(pages[i], vma); 1185 vmf->pte = pte_offset_map(&_pmd, haddr); 1186 VM_BUG_ON(!pte_none(*vmf->pte)); 1187 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1188 pte_unmap(vmf->pte); 1189 } 1190 kfree(pages); 1191 1192 smp_wmb(); /* make pte visible before pmd */ 1193 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1194 page_remove_rmap(page, true); 1195 spin_unlock(vmf->ptl); 1196 1197 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1198 1199 ret |= VM_FAULT_WRITE; 1200 put_page(page); 1201 1202 out: 1203 return ret; 1204 1205 out_free_pages: 1206 spin_unlock(vmf->ptl); 1207 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1208 for (i = 0; i < HPAGE_PMD_NR; i++) { 1209 memcg = (void *)page_private(pages[i]); 1210 set_page_private(pages[i], 0); 1211 mem_cgroup_cancel_charge(pages[i], memcg, false); 1212 put_page(pages[i]); 1213 } 1214 kfree(pages); 1215 goto out; 1216 } 1217 1218 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1219 { 1220 struct vm_area_struct *vma = vmf->vma; 1221 struct page *page = NULL, *new_page; 1222 struct mem_cgroup *memcg; 1223 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1224 unsigned long mmun_start; /* For mmu_notifiers */ 1225 unsigned long mmun_end; /* For mmu_notifiers */ 1226 gfp_t huge_gfp; /* for allocation and charge */ 1227 int ret = 0; 1228 1229 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1230 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1231 if (is_huge_zero_pmd(orig_pmd)) 1232 goto alloc; 1233 spin_lock(vmf->ptl); 1234 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1235 goto out_unlock; 1236 1237 page = pmd_page(orig_pmd); 1238 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1239 /* 1240 * We can only reuse the page if nobody else maps the huge page or it's 1241 * part. 1242 */ 1243 if (page_trans_huge_mapcount(page, NULL) == 1) { 1244 pmd_t entry; 1245 entry = pmd_mkyoung(orig_pmd); 1246 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1247 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1248 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1249 ret |= VM_FAULT_WRITE; 1250 goto out_unlock; 1251 } 1252 get_page(page); 1253 spin_unlock(vmf->ptl); 1254 alloc: 1255 if (transparent_hugepage_enabled(vma) && 1256 !transparent_hugepage_debug_cow()) { 1257 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1258 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1259 } else 1260 new_page = NULL; 1261 1262 if (likely(new_page)) { 1263 prep_transhuge_page(new_page); 1264 } else { 1265 if (!page) { 1266 split_huge_pmd(vma, vmf->pmd, vmf->address); 1267 ret |= VM_FAULT_FALLBACK; 1268 } else { 1269 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1270 if (ret & VM_FAULT_OOM) { 1271 split_huge_pmd(vma, vmf->pmd, vmf->address); 1272 ret |= VM_FAULT_FALLBACK; 1273 } 1274 put_page(page); 1275 } 1276 count_vm_event(THP_FAULT_FALLBACK); 1277 goto out; 1278 } 1279 1280 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1281 huge_gfp, &memcg, true))) { 1282 put_page(new_page); 1283 split_huge_pmd(vma, vmf->pmd, vmf->address); 1284 if (page) 1285 put_page(page); 1286 ret |= VM_FAULT_FALLBACK; 1287 count_vm_event(THP_FAULT_FALLBACK); 1288 goto out; 1289 } 1290 1291 count_vm_event(THP_FAULT_ALLOC); 1292 1293 if (!page) 1294 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1295 else 1296 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1297 __SetPageUptodate(new_page); 1298 1299 mmun_start = haddr; 1300 mmun_end = haddr + HPAGE_PMD_SIZE; 1301 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1302 1303 spin_lock(vmf->ptl); 1304 if (page) 1305 put_page(page); 1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1307 spin_unlock(vmf->ptl); 1308 mem_cgroup_cancel_charge(new_page, memcg, true); 1309 put_page(new_page); 1310 goto out_mn; 1311 } else { 1312 pmd_t entry; 1313 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1314 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1315 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1316 page_add_new_anon_rmap(new_page, vma, haddr, true); 1317 mem_cgroup_commit_charge(new_page, memcg, false, true); 1318 lru_cache_add_active_or_unevictable(new_page, vma); 1319 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1320 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1321 if (!page) { 1322 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1323 } else { 1324 VM_BUG_ON_PAGE(!PageHead(page), page); 1325 page_remove_rmap(page, true); 1326 put_page(page); 1327 } 1328 ret |= VM_FAULT_WRITE; 1329 } 1330 spin_unlock(vmf->ptl); 1331 out_mn: 1332 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1333 out: 1334 return ret; 1335 out_unlock: 1336 spin_unlock(vmf->ptl); 1337 return ret; 1338 } 1339 1340 /* 1341 * FOLL_FORCE can write to even unwritable pmd's, but only 1342 * after we've gone through a COW cycle and they are dirty. 1343 */ 1344 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1345 { 1346 return pmd_write(pmd) || 1347 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1348 } 1349 1350 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1351 unsigned long addr, 1352 pmd_t *pmd, 1353 unsigned int flags) 1354 { 1355 struct mm_struct *mm = vma->vm_mm; 1356 struct page *page = NULL; 1357 1358 assert_spin_locked(pmd_lockptr(mm, pmd)); 1359 1360 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1361 goto out; 1362 1363 /* Avoid dumping huge zero page */ 1364 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1365 return ERR_PTR(-EFAULT); 1366 1367 /* Full NUMA hinting faults to serialise migration in fault paths */ 1368 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1369 goto out; 1370 1371 page = pmd_page(*pmd); 1372 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1373 if (flags & FOLL_TOUCH) 1374 touch_pmd(vma, addr, pmd); 1375 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1376 /* 1377 * We don't mlock() pte-mapped THPs. This way we can avoid 1378 * leaking mlocked pages into non-VM_LOCKED VMAs. 1379 * 1380 * For anon THP: 1381 * 1382 * In most cases the pmd is the only mapping of the page as we 1383 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1384 * writable private mappings in populate_vma_page_range(). 1385 * 1386 * The only scenario when we have the page shared here is if we 1387 * mlocking read-only mapping shared over fork(). We skip 1388 * mlocking such pages. 1389 * 1390 * For file THP: 1391 * 1392 * We can expect PageDoubleMap() to be stable under page lock: 1393 * for file pages we set it in page_add_file_rmap(), which 1394 * requires page to be locked. 1395 */ 1396 1397 if (PageAnon(page) && compound_mapcount(page) != 1) 1398 goto skip_mlock; 1399 if (PageDoubleMap(page) || !page->mapping) 1400 goto skip_mlock; 1401 if (!trylock_page(page)) 1402 goto skip_mlock; 1403 lru_add_drain(); 1404 if (page->mapping && !PageDoubleMap(page)) 1405 mlock_vma_page(page); 1406 unlock_page(page); 1407 } 1408 skip_mlock: 1409 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1410 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1411 if (flags & FOLL_GET) 1412 get_page(page); 1413 1414 out: 1415 return page; 1416 } 1417 1418 /* NUMA hinting page fault entry point for trans huge pmds */ 1419 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1420 { 1421 struct vm_area_struct *vma = vmf->vma; 1422 struct anon_vma *anon_vma = NULL; 1423 struct page *page; 1424 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1425 int page_nid = -1, this_nid = numa_node_id(); 1426 int target_nid, last_cpupid = -1; 1427 bool page_locked; 1428 bool migrated = false; 1429 bool was_writable; 1430 int flags = 0; 1431 1432 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1433 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1434 goto out_unlock; 1435 1436 /* 1437 * If there are potential migrations, wait for completion and retry 1438 * without disrupting NUMA hinting information. Do not relock and 1439 * check_same as the page may no longer be mapped. 1440 */ 1441 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1442 page = pmd_page(*vmf->pmd); 1443 if (!get_page_unless_zero(page)) 1444 goto out_unlock; 1445 spin_unlock(vmf->ptl); 1446 wait_on_page_locked(page); 1447 put_page(page); 1448 goto out; 1449 } 1450 1451 page = pmd_page(pmd); 1452 BUG_ON(is_huge_zero_page(page)); 1453 page_nid = page_to_nid(page); 1454 last_cpupid = page_cpupid_last(page); 1455 count_vm_numa_event(NUMA_HINT_FAULTS); 1456 if (page_nid == this_nid) { 1457 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1458 flags |= TNF_FAULT_LOCAL; 1459 } 1460 1461 /* See similar comment in do_numa_page for explanation */ 1462 if (!pmd_savedwrite(pmd)) 1463 flags |= TNF_NO_GROUP; 1464 1465 /* 1466 * Acquire the page lock to serialise THP migrations but avoid dropping 1467 * page_table_lock if at all possible 1468 */ 1469 page_locked = trylock_page(page); 1470 target_nid = mpol_misplaced(page, vma, haddr); 1471 if (target_nid == -1) { 1472 /* If the page was locked, there are no parallel migrations */ 1473 if (page_locked) 1474 goto clear_pmdnuma; 1475 } 1476 1477 /* Migration could have started since the pmd_trans_migrating check */ 1478 if (!page_locked) { 1479 page_nid = -1; 1480 if (!get_page_unless_zero(page)) 1481 goto out_unlock; 1482 spin_unlock(vmf->ptl); 1483 wait_on_page_locked(page); 1484 put_page(page); 1485 goto out; 1486 } 1487 1488 /* 1489 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1490 * to serialises splits 1491 */ 1492 get_page(page); 1493 spin_unlock(vmf->ptl); 1494 anon_vma = page_lock_anon_vma_read(page); 1495 1496 /* Confirm the PMD did not change while page_table_lock was released */ 1497 spin_lock(vmf->ptl); 1498 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1499 unlock_page(page); 1500 put_page(page); 1501 page_nid = -1; 1502 goto out_unlock; 1503 } 1504 1505 /* Bail if we fail to protect against THP splits for any reason */ 1506 if (unlikely(!anon_vma)) { 1507 put_page(page); 1508 page_nid = -1; 1509 goto clear_pmdnuma; 1510 } 1511 1512 /* 1513 * The page_table_lock above provides a memory barrier 1514 * with change_protection_range. 1515 */ 1516 if (mm_tlb_flush_pending(vma->vm_mm)) 1517 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1518 1519 /* 1520 * Migrate the THP to the requested node, returns with page unlocked 1521 * and access rights restored. 1522 */ 1523 spin_unlock(vmf->ptl); 1524 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1525 vmf->pmd, pmd, vmf->address, page, target_nid); 1526 if (migrated) { 1527 flags |= TNF_MIGRATED; 1528 page_nid = target_nid; 1529 } else 1530 flags |= TNF_MIGRATE_FAIL; 1531 1532 goto out; 1533 clear_pmdnuma: 1534 BUG_ON(!PageLocked(page)); 1535 was_writable = pmd_savedwrite(pmd); 1536 pmd = pmd_modify(pmd, vma->vm_page_prot); 1537 pmd = pmd_mkyoung(pmd); 1538 if (was_writable) 1539 pmd = pmd_mkwrite(pmd); 1540 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1541 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1542 unlock_page(page); 1543 out_unlock: 1544 spin_unlock(vmf->ptl); 1545 1546 out: 1547 if (anon_vma) 1548 page_unlock_anon_vma_read(anon_vma); 1549 1550 if (page_nid != -1) 1551 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1552 flags); 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * Return true if we do MADV_FREE successfully on entire pmd page. 1559 * Otherwise, return false. 1560 */ 1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1562 pmd_t *pmd, unsigned long addr, unsigned long next) 1563 { 1564 spinlock_t *ptl; 1565 pmd_t orig_pmd; 1566 struct page *page; 1567 struct mm_struct *mm = tlb->mm; 1568 bool ret = false; 1569 1570 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1571 1572 ptl = pmd_trans_huge_lock(pmd, vma); 1573 if (!ptl) 1574 goto out_unlocked; 1575 1576 orig_pmd = *pmd; 1577 if (is_huge_zero_pmd(orig_pmd)) 1578 goto out; 1579 1580 page = pmd_page(orig_pmd); 1581 /* 1582 * If other processes are mapping this page, we couldn't discard 1583 * the page unless they all do MADV_FREE so let's skip the page. 1584 */ 1585 if (page_mapcount(page) != 1) 1586 goto out; 1587 1588 if (!trylock_page(page)) 1589 goto out; 1590 1591 /* 1592 * If user want to discard part-pages of THP, split it so MADV_FREE 1593 * will deactivate only them. 1594 */ 1595 if (next - addr != HPAGE_PMD_SIZE) { 1596 get_page(page); 1597 spin_unlock(ptl); 1598 split_huge_page(page); 1599 unlock_page(page); 1600 put_page(page); 1601 goto out_unlocked; 1602 } 1603 1604 if (PageDirty(page)) 1605 ClearPageDirty(page); 1606 unlock_page(page); 1607 1608 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1609 pmdp_invalidate(vma, addr, pmd); 1610 orig_pmd = pmd_mkold(orig_pmd); 1611 orig_pmd = pmd_mkclean(orig_pmd); 1612 1613 set_pmd_at(mm, addr, pmd, orig_pmd); 1614 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1615 } 1616 1617 mark_page_lazyfree(page); 1618 ret = true; 1619 out: 1620 spin_unlock(ptl); 1621 out_unlocked: 1622 return ret; 1623 } 1624 1625 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1626 { 1627 pgtable_t pgtable; 1628 1629 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1630 pte_free(mm, pgtable); 1631 atomic_long_dec(&mm->nr_ptes); 1632 } 1633 1634 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1635 pmd_t *pmd, unsigned long addr) 1636 { 1637 pmd_t orig_pmd; 1638 spinlock_t *ptl; 1639 1640 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1641 1642 ptl = __pmd_trans_huge_lock(pmd, vma); 1643 if (!ptl) 1644 return 0; 1645 /* 1646 * For architectures like ppc64 we look at deposited pgtable 1647 * when calling pmdp_huge_get_and_clear. So do the 1648 * pgtable_trans_huge_withdraw after finishing pmdp related 1649 * operations. 1650 */ 1651 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1652 tlb->fullmm); 1653 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1654 if (vma_is_dax(vma)) { 1655 if (arch_needs_pgtable_deposit()) 1656 zap_deposited_table(tlb->mm, pmd); 1657 spin_unlock(ptl); 1658 if (is_huge_zero_pmd(orig_pmd)) 1659 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1660 } else if (is_huge_zero_pmd(orig_pmd)) { 1661 zap_deposited_table(tlb->mm, pmd); 1662 spin_unlock(ptl); 1663 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1664 } else { 1665 struct page *page = pmd_page(orig_pmd); 1666 page_remove_rmap(page, true); 1667 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1668 VM_BUG_ON_PAGE(!PageHead(page), page); 1669 if (PageAnon(page)) { 1670 zap_deposited_table(tlb->mm, pmd); 1671 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1672 } else { 1673 if (arch_needs_pgtable_deposit()) 1674 zap_deposited_table(tlb->mm, pmd); 1675 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1676 } 1677 spin_unlock(ptl); 1678 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1679 } 1680 return 1; 1681 } 1682 1683 #ifndef pmd_move_must_withdraw 1684 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1685 spinlock_t *old_pmd_ptl, 1686 struct vm_area_struct *vma) 1687 { 1688 /* 1689 * With split pmd lock we also need to move preallocated 1690 * PTE page table if new_pmd is on different PMD page table. 1691 * 1692 * We also don't deposit and withdraw tables for file pages. 1693 */ 1694 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1695 } 1696 #endif 1697 1698 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1699 unsigned long new_addr, unsigned long old_end, 1700 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1701 { 1702 spinlock_t *old_ptl, *new_ptl; 1703 pmd_t pmd; 1704 struct mm_struct *mm = vma->vm_mm; 1705 bool force_flush = false; 1706 1707 if ((old_addr & ~HPAGE_PMD_MASK) || 1708 (new_addr & ~HPAGE_PMD_MASK) || 1709 old_end - old_addr < HPAGE_PMD_SIZE) 1710 return false; 1711 1712 /* 1713 * The destination pmd shouldn't be established, free_pgtables() 1714 * should have release it. 1715 */ 1716 if (WARN_ON(!pmd_none(*new_pmd))) { 1717 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1718 return false; 1719 } 1720 1721 /* 1722 * We don't have to worry about the ordering of src and dst 1723 * ptlocks because exclusive mmap_sem prevents deadlock. 1724 */ 1725 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1726 if (old_ptl) { 1727 new_ptl = pmd_lockptr(mm, new_pmd); 1728 if (new_ptl != old_ptl) 1729 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1730 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1731 if (pmd_present(pmd) && pmd_dirty(pmd)) 1732 force_flush = true; 1733 VM_BUG_ON(!pmd_none(*new_pmd)); 1734 1735 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1736 pgtable_t pgtable; 1737 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1738 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1739 } 1740 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1741 if (new_ptl != old_ptl) 1742 spin_unlock(new_ptl); 1743 if (force_flush) 1744 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1745 else 1746 *need_flush = true; 1747 spin_unlock(old_ptl); 1748 return true; 1749 } 1750 return false; 1751 } 1752 1753 /* 1754 * Returns 1755 * - 0 if PMD could not be locked 1756 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1757 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1758 */ 1759 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1760 unsigned long addr, pgprot_t newprot, int prot_numa) 1761 { 1762 struct mm_struct *mm = vma->vm_mm; 1763 spinlock_t *ptl; 1764 pmd_t entry; 1765 bool preserve_write; 1766 int ret; 1767 1768 ptl = __pmd_trans_huge_lock(pmd, vma); 1769 if (!ptl) 1770 return 0; 1771 1772 preserve_write = prot_numa && pmd_write(*pmd); 1773 ret = 1; 1774 1775 /* 1776 * Avoid trapping faults against the zero page. The read-only 1777 * data is likely to be read-cached on the local CPU and 1778 * local/remote hits to the zero page are not interesting. 1779 */ 1780 if (prot_numa && is_huge_zero_pmd(*pmd)) 1781 goto unlock; 1782 1783 if (prot_numa && pmd_protnone(*pmd)) 1784 goto unlock; 1785 1786 /* 1787 * In case prot_numa, we are under down_read(mmap_sem). It's critical 1788 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1789 * which is also under down_read(mmap_sem): 1790 * 1791 * CPU0: CPU1: 1792 * change_huge_pmd(prot_numa=1) 1793 * pmdp_huge_get_and_clear_notify() 1794 * madvise_dontneed() 1795 * zap_pmd_range() 1796 * pmd_trans_huge(*pmd) == 0 (without ptl) 1797 * // skip the pmd 1798 * set_pmd_at(); 1799 * // pmd is re-established 1800 * 1801 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1802 * which may break userspace. 1803 * 1804 * pmdp_invalidate() is required to make sure we don't miss 1805 * dirty/young flags set by hardware. 1806 */ 1807 entry = *pmd; 1808 pmdp_invalidate(vma, addr, pmd); 1809 1810 /* 1811 * Recover dirty/young flags. It relies on pmdp_invalidate to not 1812 * corrupt them. 1813 */ 1814 if (pmd_dirty(*pmd)) 1815 entry = pmd_mkdirty(entry); 1816 if (pmd_young(*pmd)) 1817 entry = pmd_mkyoung(entry); 1818 1819 entry = pmd_modify(entry, newprot); 1820 if (preserve_write) 1821 entry = pmd_mk_savedwrite(entry); 1822 ret = HPAGE_PMD_NR; 1823 set_pmd_at(mm, addr, pmd, entry); 1824 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1825 unlock: 1826 spin_unlock(ptl); 1827 return ret; 1828 } 1829 1830 /* 1831 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1832 * 1833 * Note that if it returns page table lock pointer, this routine returns without 1834 * unlocking page table lock. So callers must unlock it. 1835 */ 1836 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1837 { 1838 spinlock_t *ptl; 1839 ptl = pmd_lock(vma->vm_mm, pmd); 1840 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1841 return ptl; 1842 spin_unlock(ptl); 1843 return NULL; 1844 } 1845 1846 /* 1847 * Returns true if a given pud maps a thp, false otherwise. 1848 * 1849 * Note that if it returns true, this routine returns without unlocking page 1850 * table lock. So callers must unlock it. 1851 */ 1852 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1853 { 1854 spinlock_t *ptl; 1855 1856 ptl = pud_lock(vma->vm_mm, pud); 1857 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1858 return ptl; 1859 spin_unlock(ptl); 1860 return NULL; 1861 } 1862 1863 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1864 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1865 pud_t *pud, unsigned long addr) 1866 { 1867 pud_t orig_pud; 1868 spinlock_t *ptl; 1869 1870 ptl = __pud_trans_huge_lock(pud, vma); 1871 if (!ptl) 1872 return 0; 1873 /* 1874 * For architectures like ppc64 we look at deposited pgtable 1875 * when calling pudp_huge_get_and_clear. So do the 1876 * pgtable_trans_huge_withdraw after finishing pudp related 1877 * operations. 1878 */ 1879 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 1880 tlb->fullmm); 1881 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1882 if (vma_is_dax(vma)) { 1883 spin_unlock(ptl); 1884 /* No zero page support yet */ 1885 } else { 1886 /* No support for anonymous PUD pages yet */ 1887 BUG(); 1888 } 1889 return 1; 1890 } 1891 1892 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1893 unsigned long haddr) 1894 { 1895 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1896 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1897 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1898 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1899 1900 count_vm_event(THP_SPLIT_PUD); 1901 1902 pudp_huge_clear_flush_notify(vma, haddr, pud); 1903 } 1904 1905 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1906 unsigned long address) 1907 { 1908 spinlock_t *ptl; 1909 struct mm_struct *mm = vma->vm_mm; 1910 unsigned long haddr = address & HPAGE_PUD_MASK; 1911 1912 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); 1913 ptl = pud_lock(mm, pud); 1914 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1915 goto out; 1916 __split_huge_pud_locked(vma, pud, haddr); 1917 1918 out: 1919 spin_unlock(ptl); 1920 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); 1921 } 1922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1923 1924 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1925 unsigned long haddr, pmd_t *pmd) 1926 { 1927 struct mm_struct *mm = vma->vm_mm; 1928 pgtable_t pgtable; 1929 pmd_t _pmd; 1930 int i; 1931 1932 /* leave pmd empty until pte is filled */ 1933 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1934 1935 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1936 pmd_populate(mm, &_pmd, pgtable); 1937 1938 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1939 pte_t *pte, entry; 1940 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1941 entry = pte_mkspecial(entry); 1942 pte = pte_offset_map(&_pmd, haddr); 1943 VM_BUG_ON(!pte_none(*pte)); 1944 set_pte_at(mm, haddr, pte, entry); 1945 pte_unmap(pte); 1946 } 1947 smp_wmb(); /* make pte visible before pmd */ 1948 pmd_populate(mm, pmd, pgtable); 1949 } 1950 1951 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1952 unsigned long haddr, bool freeze) 1953 { 1954 struct mm_struct *mm = vma->vm_mm; 1955 struct page *page; 1956 pgtable_t pgtable; 1957 pmd_t _pmd; 1958 bool young, write, dirty, soft_dirty; 1959 unsigned long addr; 1960 int i; 1961 1962 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1963 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1964 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1965 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1966 1967 count_vm_event(THP_SPLIT_PMD); 1968 1969 if (!vma_is_anonymous(vma)) { 1970 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1971 /* 1972 * We are going to unmap this huge page. So 1973 * just go ahead and zap it 1974 */ 1975 if (arch_needs_pgtable_deposit()) 1976 zap_deposited_table(mm, pmd); 1977 if (vma_is_dax(vma)) 1978 return; 1979 page = pmd_page(_pmd); 1980 if (!PageReferenced(page) && pmd_young(_pmd)) 1981 SetPageReferenced(page); 1982 page_remove_rmap(page, true); 1983 put_page(page); 1984 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1985 return; 1986 } else if (is_huge_zero_pmd(*pmd)) { 1987 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1988 } 1989 1990 page = pmd_page(*pmd); 1991 VM_BUG_ON_PAGE(!page_count(page), page); 1992 page_ref_add(page, HPAGE_PMD_NR - 1); 1993 write = pmd_write(*pmd); 1994 young = pmd_young(*pmd); 1995 dirty = pmd_dirty(*pmd); 1996 soft_dirty = pmd_soft_dirty(*pmd); 1997 1998 pmdp_huge_split_prepare(vma, haddr, pmd); 1999 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2000 pmd_populate(mm, &_pmd, pgtable); 2001 2002 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2003 pte_t entry, *pte; 2004 /* 2005 * Note that NUMA hinting access restrictions are not 2006 * transferred to avoid any possibility of altering 2007 * permissions across VMAs. 2008 */ 2009 if (freeze) { 2010 swp_entry_t swp_entry; 2011 swp_entry = make_migration_entry(page + i, write); 2012 entry = swp_entry_to_pte(swp_entry); 2013 if (soft_dirty) 2014 entry = pte_swp_mksoft_dirty(entry); 2015 } else { 2016 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2017 entry = maybe_mkwrite(entry, vma); 2018 if (!write) 2019 entry = pte_wrprotect(entry); 2020 if (!young) 2021 entry = pte_mkold(entry); 2022 if (soft_dirty) 2023 entry = pte_mksoft_dirty(entry); 2024 } 2025 if (dirty) 2026 SetPageDirty(page + i); 2027 pte = pte_offset_map(&_pmd, addr); 2028 BUG_ON(!pte_none(*pte)); 2029 set_pte_at(mm, addr, pte, entry); 2030 atomic_inc(&page[i]._mapcount); 2031 pte_unmap(pte); 2032 } 2033 2034 /* 2035 * Set PG_double_map before dropping compound_mapcount to avoid 2036 * false-negative page_mapped(). 2037 */ 2038 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2039 for (i = 0; i < HPAGE_PMD_NR; i++) 2040 atomic_inc(&page[i]._mapcount); 2041 } 2042 2043 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2044 /* Last compound_mapcount is gone. */ 2045 __dec_node_page_state(page, NR_ANON_THPS); 2046 if (TestClearPageDoubleMap(page)) { 2047 /* No need in mapcount reference anymore */ 2048 for (i = 0; i < HPAGE_PMD_NR; i++) 2049 atomic_dec(&page[i]._mapcount); 2050 } 2051 } 2052 2053 smp_wmb(); /* make pte visible before pmd */ 2054 /* 2055 * Up to this point the pmd is present and huge and userland has the 2056 * whole access to the hugepage during the split (which happens in 2057 * place). If we overwrite the pmd with the not-huge version pointing 2058 * to the pte here (which of course we could if all CPUs were bug 2059 * free), userland could trigger a small page size TLB miss on the 2060 * small sized TLB while the hugepage TLB entry is still established in 2061 * the huge TLB. Some CPU doesn't like that. 2062 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2063 * 383 on page 93. Intel should be safe but is also warns that it's 2064 * only safe if the permission and cache attributes of the two entries 2065 * loaded in the two TLB is identical (which should be the case here). 2066 * But it is generally safer to never allow small and huge TLB entries 2067 * for the same virtual address to be loaded simultaneously. So instead 2068 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2069 * current pmd notpresent (atomically because here the pmd_trans_huge 2070 * and pmd_trans_splitting must remain set at all times on the pmd 2071 * until the split is complete for this pmd), then we flush the SMP TLB 2072 * and finally we write the non-huge version of the pmd entry with 2073 * pmd_populate. 2074 */ 2075 pmdp_invalidate(vma, haddr, pmd); 2076 pmd_populate(mm, pmd, pgtable); 2077 2078 if (freeze) { 2079 for (i = 0; i < HPAGE_PMD_NR; i++) { 2080 page_remove_rmap(page + i, false); 2081 put_page(page + i); 2082 } 2083 } 2084 } 2085 2086 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2087 unsigned long address, bool freeze, struct page *page) 2088 { 2089 spinlock_t *ptl; 2090 struct mm_struct *mm = vma->vm_mm; 2091 unsigned long haddr = address & HPAGE_PMD_MASK; 2092 2093 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 2094 ptl = pmd_lock(mm, pmd); 2095 2096 /* 2097 * If caller asks to setup a migration entries, we need a page to check 2098 * pmd against. Otherwise we can end up replacing wrong page. 2099 */ 2100 VM_BUG_ON(freeze && !page); 2101 if (page && page != pmd_page(*pmd)) 2102 goto out; 2103 2104 if (pmd_trans_huge(*pmd)) { 2105 page = pmd_page(*pmd); 2106 if (PageMlocked(page)) 2107 clear_page_mlock(page); 2108 } else if (!pmd_devmap(*pmd)) 2109 goto out; 2110 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 2111 out: 2112 spin_unlock(ptl); 2113 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 2114 } 2115 2116 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2117 bool freeze, struct page *page) 2118 { 2119 pgd_t *pgd; 2120 p4d_t *p4d; 2121 pud_t *pud; 2122 pmd_t *pmd; 2123 2124 pgd = pgd_offset(vma->vm_mm, address); 2125 if (!pgd_present(*pgd)) 2126 return; 2127 2128 p4d = p4d_offset(pgd, address); 2129 if (!p4d_present(*p4d)) 2130 return; 2131 2132 pud = pud_offset(p4d, address); 2133 if (!pud_present(*pud)) 2134 return; 2135 2136 pmd = pmd_offset(pud, address); 2137 2138 __split_huge_pmd(vma, pmd, address, freeze, page); 2139 } 2140 2141 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2142 unsigned long start, 2143 unsigned long end, 2144 long adjust_next) 2145 { 2146 /* 2147 * If the new start address isn't hpage aligned and it could 2148 * previously contain an hugepage: check if we need to split 2149 * an huge pmd. 2150 */ 2151 if (start & ~HPAGE_PMD_MASK && 2152 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2153 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2154 split_huge_pmd_address(vma, start, false, NULL); 2155 2156 /* 2157 * If the new end address isn't hpage aligned and it could 2158 * previously contain an hugepage: check if we need to split 2159 * an huge pmd. 2160 */ 2161 if (end & ~HPAGE_PMD_MASK && 2162 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2163 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2164 split_huge_pmd_address(vma, end, false, NULL); 2165 2166 /* 2167 * If we're also updating the vma->vm_next->vm_start, if the new 2168 * vm_next->vm_start isn't page aligned and it could previously 2169 * contain an hugepage: check if we need to split an huge pmd. 2170 */ 2171 if (adjust_next > 0) { 2172 struct vm_area_struct *next = vma->vm_next; 2173 unsigned long nstart = next->vm_start; 2174 nstart += adjust_next << PAGE_SHIFT; 2175 if (nstart & ~HPAGE_PMD_MASK && 2176 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2177 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2178 split_huge_pmd_address(next, nstart, false, NULL); 2179 } 2180 } 2181 2182 static void freeze_page(struct page *page) 2183 { 2184 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2185 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2186 bool unmap_success; 2187 2188 VM_BUG_ON_PAGE(!PageHead(page), page); 2189 2190 if (PageAnon(page)) 2191 ttu_flags |= TTU_MIGRATION; 2192 2193 unmap_success = try_to_unmap(page, ttu_flags); 2194 VM_BUG_ON_PAGE(!unmap_success, page); 2195 } 2196 2197 static void unfreeze_page(struct page *page) 2198 { 2199 int i; 2200 if (PageTransHuge(page)) { 2201 remove_migration_ptes(page, page, true); 2202 } else { 2203 for (i = 0; i < HPAGE_PMD_NR; i++) 2204 remove_migration_ptes(page + i, page + i, true); 2205 } 2206 } 2207 2208 static void __split_huge_page_tail(struct page *head, int tail, 2209 struct lruvec *lruvec, struct list_head *list) 2210 { 2211 struct page *page_tail = head + tail; 2212 2213 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2214 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 2215 2216 /* 2217 * tail_page->_refcount is zero and not changing from under us. But 2218 * get_page_unless_zero() may be running from under us on the 2219 * tail_page. If we used atomic_set() below instead of atomic_inc() or 2220 * atomic_add(), we would then run atomic_set() concurrently with 2221 * get_page_unless_zero(), and atomic_set() is implemented in C not 2222 * using locked ops. spin_unlock on x86 sometime uses locked ops 2223 * because of PPro errata 66, 92, so unless somebody can guarantee 2224 * atomic_set() here would be safe on all archs (and not only on x86), 2225 * it's safer to use atomic_inc()/atomic_add(). 2226 */ 2227 if (PageAnon(head) && !PageSwapCache(head)) { 2228 page_ref_inc(page_tail); 2229 } else { 2230 /* Additional pin to radix tree */ 2231 page_ref_add(page_tail, 2); 2232 } 2233 2234 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2235 page_tail->flags |= (head->flags & 2236 ((1L << PG_referenced) | 2237 (1L << PG_swapbacked) | 2238 (1L << PG_swapcache) | 2239 (1L << PG_mlocked) | 2240 (1L << PG_uptodate) | 2241 (1L << PG_active) | 2242 (1L << PG_locked) | 2243 (1L << PG_unevictable) | 2244 (1L << PG_dirty))); 2245 2246 /* 2247 * After clearing PageTail the gup refcount can be released. 2248 * Page flags also must be visible before we make the page non-compound. 2249 */ 2250 smp_wmb(); 2251 2252 clear_compound_head(page_tail); 2253 2254 if (page_is_young(head)) 2255 set_page_young(page_tail); 2256 if (page_is_idle(head)) 2257 set_page_idle(page_tail); 2258 2259 /* ->mapping in first tail page is compound_mapcount */ 2260 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2261 page_tail); 2262 page_tail->mapping = head->mapping; 2263 2264 page_tail->index = head->index + tail; 2265 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2266 lru_add_page_tail(head, page_tail, lruvec, list); 2267 } 2268 2269 static void __split_huge_page(struct page *page, struct list_head *list, 2270 unsigned long flags) 2271 { 2272 struct page *head = compound_head(page); 2273 struct zone *zone = page_zone(head); 2274 struct lruvec *lruvec; 2275 pgoff_t end = -1; 2276 int i; 2277 2278 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2279 2280 /* complete memcg works before add pages to LRU */ 2281 mem_cgroup_split_huge_fixup(head); 2282 2283 if (!PageAnon(page)) 2284 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 2285 2286 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2287 __split_huge_page_tail(head, i, lruvec, list); 2288 /* Some pages can be beyond i_size: drop them from page cache */ 2289 if (head[i].index >= end) { 2290 __ClearPageDirty(head + i); 2291 __delete_from_page_cache(head + i, NULL); 2292 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2293 shmem_uncharge(head->mapping->host, 1); 2294 put_page(head + i); 2295 } 2296 } 2297 2298 ClearPageCompound(head); 2299 /* See comment in __split_huge_page_tail() */ 2300 if (PageAnon(head)) { 2301 /* Additional pin to radix tree of swap cache */ 2302 if (PageSwapCache(head)) 2303 page_ref_add(head, 2); 2304 else 2305 page_ref_inc(head); 2306 } else { 2307 /* Additional pin to radix tree */ 2308 page_ref_add(head, 2); 2309 spin_unlock(&head->mapping->tree_lock); 2310 } 2311 2312 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2313 2314 unfreeze_page(head); 2315 2316 for (i = 0; i < HPAGE_PMD_NR; i++) { 2317 struct page *subpage = head + i; 2318 if (subpage == page) 2319 continue; 2320 unlock_page(subpage); 2321 2322 /* 2323 * Subpages may be freed if there wasn't any mapping 2324 * like if add_to_swap() is running on a lru page that 2325 * had its mapping zapped. And freeing these pages 2326 * requires taking the lru_lock so we do the put_page 2327 * of the tail pages after the split is complete. 2328 */ 2329 put_page(subpage); 2330 } 2331 } 2332 2333 int total_mapcount(struct page *page) 2334 { 2335 int i, compound, ret; 2336 2337 VM_BUG_ON_PAGE(PageTail(page), page); 2338 2339 if (likely(!PageCompound(page))) 2340 return atomic_read(&page->_mapcount) + 1; 2341 2342 compound = compound_mapcount(page); 2343 if (PageHuge(page)) 2344 return compound; 2345 ret = compound; 2346 for (i = 0; i < HPAGE_PMD_NR; i++) 2347 ret += atomic_read(&page[i]._mapcount) + 1; 2348 /* File pages has compound_mapcount included in _mapcount */ 2349 if (!PageAnon(page)) 2350 return ret - compound * HPAGE_PMD_NR; 2351 if (PageDoubleMap(page)) 2352 ret -= HPAGE_PMD_NR; 2353 return ret; 2354 } 2355 2356 /* 2357 * This calculates accurately how many mappings a transparent hugepage 2358 * has (unlike page_mapcount() which isn't fully accurate). This full 2359 * accuracy is primarily needed to know if copy-on-write faults can 2360 * reuse the page and change the mapping to read-write instead of 2361 * copying them. At the same time this returns the total_mapcount too. 2362 * 2363 * The function returns the highest mapcount any one of the subpages 2364 * has. If the return value is one, even if different processes are 2365 * mapping different subpages of the transparent hugepage, they can 2366 * all reuse it, because each process is reusing a different subpage. 2367 * 2368 * The total_mapcount is instead counting all virtual mappings of the 2369 * subpages. If the total_mapcount is equal to "one", it tells the 2370 * caller all mappings belong to the same "mm" and in turn the 2371 * anon_vma of the transparent hugepage can become the vma->anon_vma 2372 * local one as no other process may be mapping any of the subpages. 2373 * 2374 * It would be more accurate to replace page_mapcount() with 2375 * page_trans_huge_mapcount(), however we only use 2376 * page_trans_huge_mapcount() in the copy-on-write faults where we 2377 * need full accuracy to avoid breaking page pinning, because 2378 * page_trans_huge_mapcount() is slower than page_mapcount(). 2379 */ 2380 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2381 { 2382 int i, ret, _total_mapcount, mapcount; 2383 2384 /* hugetlbfs shouldn't call it */ 2385 VM_BUG_ON_PAGE(PageHuge(page), page); 2386 2387 if (likely(!PageTransCompound(page))) { 2388 mapcount = atomic_read(&page->_mapcount) + 1; 2389 if (total_mapcount) 2390 *total_mapcount = mapcount; 2391 return mapcount; 2392 } 2393 2394 page = compound_head(page); 2395 2396 _total_mapcount = ret = 0; 2397 for (i = 0; i < HPAGE_PMD_NR; i++) { 2398 mapcount = atomic_read(&page[i]._mapcount) + 1; 2399 ret = max(ret, mapcount); 2400 _total_mapcount += mapcount; 2401 } 2402 if (PageDoubleMap(page)) { 2403 ret -= 1; 2404 _total_mapcount -= HPAGE_PMD_NR; 2405 } 2406 mapcount = compound_mapcount(page); 2407 ret += mapcount; 2408 _total_mapcount += mapcount; 2409 if (total_mapcount) 2410 *total_mapcount = _total_mapcount; 2411 return ret; 2412 } 2413 2414 /* Racy check whether the huge page can be split */ 2415 bool can_split_huge_page(struct page *page, int *pextra_pins) 2416 { 2417 int extra_pins; 2418 2419 /* Additional pins from radix tree */ 2420 if (PageAnon(page)) 2421 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2422 else 2423 extra_pins = HPAGE_PMD_NR; 2424 if (pextra_pins) 2425 *pextra_pins = extra_pins; 2426 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2427 } 2428 2429 /* 2430 * This function splits huge page into normal pages. @page can point to any 2431 * subpage of huge page to split. Split doesn't change the position of @page. 2432 * 2433 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2434 * The huge page must be locked. 2435 * 2436 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2437 * 2438 * Both head page and tail pages will inherit mapping, flags, and so on from 2439 * the hugepage. 2440 * 2441 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2442 * they are not mapped. 2443 * 2444 * Returns 0 if the hugepage is split successfully. 2445 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2446 * us. 2447 */ 2448 int split_huge_page_to_list(struct page *page, struct list_head *list) 2449 { 2450 struct page *head = compound_head(page); 2451 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2452 struct anon_vma *anon_vma = NULL; 2453 struct address_space *mapping = NULL; 2454 int count, mapcount, extra_pins, ret; 2455 bool mlocked; 2456 unsigned long flags; 2457 2458 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2459 VM_BUG_ON_PAGE(!PageLocked(page), page); 2460 VM_BUG_ON_PAGE(!PageCompound(page), page); 2461 2462 if (PageAnon(head)) { 2463 /* 2464 * The caller does not necessarily hold an mmap_sem that would 2465 * prevent the anon_vma disappearing so we first we take a 2466 * reference to it and then lock the anon_vma for write. This 2467 * is similar to page_lock_anon_vma_read except the write lock 2468 * is taken to serialise against parallel split or collapse 2469 * operations. 2470 */ 2471 anon_vma = page_get_anon_vma(head); 2472 if (!anon_vma) { 2473 ret = -EBUSY; 2474 goto out; 2475 } 2476 mapping = NULL; 2477 anon_vma_lock_write(anon_vma); 2478 } else { 2479 mapping = head->mapping; 2480 2481 /* Truncated ? */ 2482 if (!mapping) { 2483 ret = -EBUSY; 2484 goto out; 2485 } 2486 2487 anon_vma = NULL; 2488 i_mmap_lock_read(mapping); 2489 } 2490 2491 /* 2492 * Racy check if we can split the page, before freeze_page() will 2493 * split PMDs 2494 */ 2495 if (!can_split_huge_page(head, &extra_pins)) { 2496 ret = -EBUSY; 2497 goto out_unlock; 2498 } 2499 2500 mlocked = PageMlocked(page); 2501 freeze_page(head); 2502 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2503 2504 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2505 if (mlocked) 2506 lru_add_drain(); 2507 2508 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2509 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2510 2511 if (mapping) { 2512 void **pslot; 2513 2514 spin_lock(&mapping->tree_lock); 2515 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2516 page_index(head)); 2517 /* 2518 * Check if the head page is present in radix tree. 2519 * We assume all tail are present too, if head is there. 2520 */ 2521 if (radix_tree_deref_slot_protected(pslot, 2522 &mapping->tree_lock) != head) 2523 goto fail; 2524 } 2525 2526 /* Prevent deferred_split_scan() touching ->_refcount */ 2527 spin_lock(&pgdata->split_queue_lock); 2528 count = page_count(head); 2529 mapcount = total_mapcount(head); 2530 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2531 if (!list_empty(page_deferred_list(head))) { 2532 pgdata->split_queue_len--; 2533 list_del(page_deferred_list(head)); 2534 } 2535 if (mapping) 2536 __dec_node_page_state(page, NR_SHMEM_THPS); 2537 spin_unlock(&pgdata->split_queue_lock); 2538 __split_huge_page(page, list, flags); 2539 ret = 0; 2540 } else { 2541 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2542 pr_alert("total_mapcount: %u, page_count(): %u\n", 2543 mapcount, count); 2544 if (PageTail(page)) 2545 dump_page(head, NULL); 2546 dump_page(page, "total_mapcount(head) > 0"); 2547 BUG(); 2548 } 2549 spin_unlock(&pgdata->split_queue_lock); 2550 fail: if (mapping) 2551 spin_unlock(&mapping->tree_lock); 2552 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2553 unfreeze_page(head); 2554 ret = -EBUSY; 2555 } 2556 2557 out_unlock: 2558 if (anon_vma) { 2559 anon_vma_unlock_write(anon_vma); 2560 put_anon_vma(anon_vma); 2561 } 2562 if (mapping) 2563 i_mmap_unlock_read(mapping); 2564 out: 2565 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2566 return ret; 2567 } 2568 2569 void free_transhuge_page(struct page *page) 2570 { 2571 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2572 unsigned long flags; 2573 2574 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2575 if (!list_empty(page_deferred_list(page))) { 2576 pgdata->split_queue_len--; 2577 list_del(page_deferred_list(page)); 2578 } 2579 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2580 free_compound_page(page); 2581 } 2582 2583 void deferred_split_huge_page(struct page *page) 2584 { 2585 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2586 unsigned long flags; 2587 2588 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2589 2590 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2591 if (list_empty(page_deferred_list(page))) { 2592 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2593 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2594 pgdata->split_queue_len++; 2595 } 2596 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2597 } 2598 2599 static unsigned long deferred_split_count(struct shrinker *shrink, 2600 struct shrink_control *sc) 2601 { 2602 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2603 return ACCESS_ONCE(pgdata->split_queue_len); 2604 } 2605 2606 static unsigned long deferred_split_scan(struct shrinker *shrink, 2607 struct shrink_control *sc) 2608 { 2609 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2610 unsigned long flags; 2611 LIST_HEAD(list), *pos, *next; 2612 struct page *page; 2613 int split = 0; 2614 2615 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2616 /* Take pin on all head pages to avoid freeing them under us */ 2617 list_for_each_safe(pos, next, &pgdata->split_queue) { 2618 page = list_entry((void *)pos, struct page, mapping); 2619 page = compound_head(page); 2620 if (get_page_unless_zero(page)) { 2621 list_move(page_deferred_list(page), &list); 2622 } else { 2623 /* We lost race with put_compound_page() */ 2624 list_del_init(page_deferred_list(page)); 2625 pgdata->split_queue_len--; 2626 } 2627 if (!--sc->nr_to_scan) 2628 break; 2629 } 2630 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2631 2632 list_for_each_safe(pos, next, &list) { 2633 page = list_entry((void *)pos, struct page, mapping); 2634 lock_page(page); 2635 /* split_huge_page() removes page from list on success */ 2636 if (!split_huge_page(page)) 2637 split++; 2638 unlock_page(page); 2639 put_page(page); 2640 } 2641 2642 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2643 list_splice_tail(&list, &pgdata->split_queue); 2644 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2645 2646 /* 2647 * Stop shrinker if we didn't split any page, but the queue is empty. 2648 * This can happen if pages were freed under us. 2649 */ 2650 if (!split && list_empty(&pgdata->split_queue)) 2651 return SHRINK_STOP; 2652 return split; 2653 } 2654 2655 static struct shrinker deferred_split_shrinker = { 2656 .count_objects = deferred_split_count, 2657 .scan_objects = deferred_split_scan, 2658 .seeks = DEFAULT_SEEKS, 2659 .flags = SHRINKER_NUMA_AWARE, 2660 }; 2661 2662 #ifdef CONFIG_DEBUG_FS 2663 static int split_huge_pages_set(void *data, u64 val) 2664 { 2665 struct zone *zone; 2666 struct page *page; 2667 unsigned long pfn, max_zone_pfn; 2668 unsigned long total = 0, split = 0; 2669 2670 if (val != 1) 2671 return -EINVAL; 2672 2673 for_each_populated_zone(zone) { 2674 max_zone_pfn = zone_end_pfn(zone); 2675 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2676 if (!pfn_valid(pfn)) 2677 continue; 2678 2679 page = pfn_to_page(pfn); 2680 if (!get_page_unless_zero(page)) 2681 continue; 2682 2683 if (zone != page_zone(page)) 2684 goto next; 2685 2686 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2687 goto next; 2688 2689 total++; 2690 lock_page(page); 2691 if (!split_huge_page(page)) 2692 split++; 2693 unlock_page(page); 2694 next: 2695 put_page(page); 2696 } 2697 } 2698 2699 pr_info("%lu of %lu THP split\n", split, total); 2700 2701 return 0; 2702 } 2703 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2704 "%llu\n"); 2705 2706 static int __init split_huge_pages_debugfs(void) 2707 { 2708 void *ret; 2709 2710 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2711 &split_huge_pages_fops); 2712 if (!ret) 2713 pr_warn("Failed to create split_huge_pages in debugfs"); 2714 return 0; 2715 } 2716 late_initcall(split_huge_pages_debugfs); 2717 #endif 2718