xref: /openbmc/linux/mm/huge_memory.c (revision dea54fba)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default transparent hugepage support is disabled in order that avoid
43  * to risk increase the memory footprint of applications without a guaranteed
44  * benefit. When transparent hugepage support is enabled, is for all mappings,
45  * and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/*
487 	 * ->lru in the tail pages is occupied by compound_head.
488 	 * Let's use ->mapping + ->index in the second tail page as list_head.
489 	 */
490 	return (struct list_head *)&page[2].mapping;
491 }
492 
493 void prep_transhuge_page(struct page *page)
494 {
495 	/*
496 	 * we use page->mapping and page->indexlru in second tail page
497 	 * as list_head: assuming THP order >= 2
498 	 */
499 
500 	INIT_LIST_HEAD(page_deferred_list(page));
501 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503 
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 		loff_t off, unsigned long flags, unsigned long size)
506 {
507 	unsigned long addr;
508 	loff_t off_end = off + len;
509 	loff_t off_align = round_up(off, size);
510 	unsigned long len_pad;
511 
512 	if (off_end <= off_align || (off_end - off_align) < size)
513 		return 0;
514 
515 	len_pad = len + size;
516 	if (len_pad < len || (off + len_pad) < off)
517 		return 0;
518 
519 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 					      off >> PAGE_SHIFT, flags);
521 	if (IS_ERR_VALUE(addr))
522 		return 0;
523 
524 	addr += (off - addr) & (size - 1);
525 	return addr;
526 }
527 
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 		unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532 
533 	if (addr)
534 		goto out;
535 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 		goto out;
537 
538 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 	if (addr)
540 		return addr;
541 
542  out:
543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546 
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 		gfp_t gfp)
549 {
550 	struct vm_area_struct *vma = vmf->vma;
551 	struct mem_cgroup *memcg;
552 	pgtable_t pgtable;
553 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 	int ret = 0;
555 
556 	VM_BUG_ON_PAGE(!PageCompound(page), page);
557 
558 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 		put_page(page);
560 		count_vm_event(THP_FAULT_FALLBACK);
561 		return VM_FAULT_FALLBACK;
562 	}
563 
564 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 	if (unlikely(!pgtable)) {
566 		ret = VM_FAULT_OOM;
567 		goto release;
568 	}
569 
570 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
571 	/*
572 	 * The memory barrier inside __SetPageUptodate makes sure that
573 	 * clear_huge_page writes become visible before the set_pmd_at()
574 	 * write.
575 	 */
576 	__SetPageUptodate(page);
577 
578 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 	if (unlikely(!pmd_none(*vmf->pmd))) {
580 		goto unlock_release;
581 	} else {
582 		pmd_t entry;
583 
584 		ret = check_stable_address_space(vma->vm_mm);
585 		if (ret)
586 			goto unlock_release;
587 
588 		/* Deliver the page fault to userland */
589 		if (userfaultfd_missing(vma)) {
590 			int ret;
591 
592 			spin_unlock(vmf->ptl);
593 			mem_cgroup_cancel_charge(page, memcg, true);
594 			put_page(page);
595 			pte_free(vma->vm_mm, pgtable);
596 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 			return ret;
599 		}
600 
601 		entry = mk_huge_pmd(page, vma->vm_page_prot);
602 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 		page_add_new_anon_rmap(page, vma, haddr, true);
604 		mem_cgroup_commit_charge(page, memcg, false, true);
605 		lru_cache_add_active_or_unevictable(page, vma);
606 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 		atomic_long_inc(&vma->vm_mm->nr_ptes);
610 		spin_unlock(vmf->ptl);
611 		count_vm_event(THP_FAULT_ALLOC);
612 	}
613 
614 	return 0;
615 unlock_release:
616 	spin_unlock(vmf->ptl);
617 release:
618 	if (pgtable)
619 		pte_free(vma->vm_mm, pgtable);
620 	mem_cgroup_cancel_charge(page, memcg, true);
621 	put_page(page);
622 	return ret;
623 
624 }
625 
626 /*
627  * always: directly stall for all thp allocations
628  * defer: wake kswapd and fail if not immediately available
629  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630  *		  fail if not immediately available
631  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632  *	    available
633  * never: never stall for any thp allocation
634  */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638 
639 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     __GFP_KSWAPD_RECLAIM);
646 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 							     0);
649 	return GFP_TRANSHUGE_LIGHT;
650 }
651 
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 		struct page *zero_page)
656 {
657 	pmd_t entry;
658 	if (!pmd_none(*pmd))
659 		return false;
660 	entry = mk_pmd(zero_page, vma->vm_page_prot);
661 	entry = pmd_mkhuge(entry);
662 	if (pgtable)
663 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 	set_pmd_at(mm, haddr, pmd, entry);
665 	atomic_long_inc(&mm->nr_ptes);
666 	return true;
667 }
668 
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671 	struct vm_area_struct *vma = vmf->vma;
672 	gfp_t gfp;
673 	struct page *page;
674 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675 
676 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 		return VM_FAULT_FALLBACK;
678 	if (unlikely(anon_vma_prepare(vma)))
679 		return VM_FAULT_OOM;
680 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 		return VM_FAULT_OOM;
682 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 			!mm_forbids_zeropage(vma->vm_mm) &&
684 			transparent_hugepage_use_zero_page()) {
685 		pgtable_t pgtable;
686 		struct page *zero_page;
687 		bool set;
688 		int ret;
689 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 		if (unlikely(!pgtable))
691 			return VM_FAULT_OOM;
692 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 		if (unlikely(!zero_page)) {
694 			pte_free(vma->vm_mm, pgtable);
695 			count_vm_event(THP_FAULT_FALLBACK);
696 			return VM_FAULT_FALLBACK;
697 		}
698 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 		ret = 0;
700 		set = false;
701 		if (pmd_none(*vmf->pmd)) {
702 			ret = check_stable_address_space(vma->vm_mm);
703 			if (ret) {
704 				spin_unlock(vmf->ptl);
705 			} else if (userfaultfd_missing(vma)) {
706 				spin_unlock(vmf->ptl);
707 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 			} else {
710 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 						   haddr, vmf->pmd, zero_page);
712 				spin_unlock(vmf->ptl);
713 				set = true;
714 			}
715 		} else
716 			spin_unlock(vmf->ptl);
717 		if (!set)
718 			pte_free(vma->vm_mm, pgtable);
719 		return ret;
720 	}
721 	gfp = alloc_hugepage_direct_gfpmask(vma);
722 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 	if (unlikely(!page)) {
724 		count_vm_event(THP_FAULT_FALLBACK);
725 		return VM_FAULT_FALLBACK;
726 	}
727 	prep_transhuge_page(page);
728 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730 
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 		pgtable_t pgtable)
734 {
735 	struct mm_struct *mm = vma->vm_mm;
736 	pmd_t entry;
737 	spinlock_t *ptl;
738 
739 	ptl = pmd_lock(mm, pmd);
740 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 	if (pfn_t_devmap(pfn))
742 		entry = pmd_mkdevmap(entry);
743 	if (write) {
744 		entry = pmd_mkyoung(pmd_mkdirty(entry));
745 		entry = maybe_pmd_mkwrite(entry, vma);
746 	}
747 
748 	if (pgtable) {
749 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 		atomic_long_inc(&mm->nr_ptes);
751 	}
752 
753 	set_pmd_at(mm, addr, pmd, entry);
754 	update_mmu_cache_pmd(vma, addr, pmd);
755 	spin_unlock(ptl);
756 }
757 
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 			pmd_t *pmd, pfn_t pfn, bool write)
760 {
761 	pgprot_t pgprot = vma->vm_page_prot;
762 	pgtable_t pgtable = NULL;
763 	/*
764 	 * If we had pmd_special, we could avoid all these restrictions,
765 	 * but we need to be consistent with PTEs and architectures that
766 	 * can't support a 'special' bit.
767 	 */
768 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 						(VM_PFNMAP|VM_MIXEDMAP));
771 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 	BUG_ON(!pfn_t_devmap(pfn));
773 
774 	if (addr < vma->vm_start || addr >= vma->vm_end)
775 		return VM_FAULT_SIGBUS;
776 
777 	if (arch_needs_pgtable_deposit()) {
778 		pgtable = pte_alloc_one(vma->vm_mm, addr);
779 		if (!pgtable)
780 			return VM_FAULT_OOM;
781 	}
782 
783 	track_pfn_insert(vma, &pgprot, pfn);
784 
785 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 	return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789 
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793 	if (likely(vma->vm_flags & VM_WRITE))
794 		pud = pud_mkwrite(pud);
795 	return pud;
796 }
797 
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801 	struct mm_struct *mm = vma->vm_mm;
802 	pud_t entry;
803 	spinlock_t *ptl;
804 
805 	ptl = pud_lock(mm, pud);
806 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 	if (pfn_t_devmap(pfn))
808 		entry = pud_mkdevmap(entry);
809 	if (write) {
810 		entry = pud_mkyoung(pud_mkdirty(entry));
811 		entry = maybe_pud_mkwrite(entry, vma);
812 	}
813 	set_pud_at(mm, addr, pud, entry);
814 	update_mmu_cache_pud(vma, addr, pud);
815 	spin_unlock(ptl);
816 }
817 
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 			pud_t *pud, pfn_t pfn, bool write)
820 {
821 	pgprot_t pgprot = vma->vm_page_prot;
822 	/*
823 	 * If we had pud_special, we could avoid all these restrictions,
824 	 * but we need to be consistent with PTEs and architectures that
825 	 * can't support a 'special' bit.
826 	 */
827 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 						(VM_PFNMAP|VM_MIXEDMAP));
830 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 	BUG_ON(!pfn_t_devmap(pfn));
832 
833 	if (addr < vma->vm_start || addr >= vma->vm_end)
834 		return VM_FAULT_SIGBUS;
835 
836 	track_pfn_insert(vma, &pgprot, pfn);
837 
838 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 	return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843 
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 		pmd_t *pmd)
846 {
847 	pmd_t _pmd;
848 
849 	/*
850 	 * We should set the dirty bit only for FOLL_WRITE but for now
851 	 * the dirty bit in the pmd is meaningless.  And if the dirty
852 	 * bit will become meaningful and we'll only set it with
853 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 	 * set the young bit, instead of the current set_pmd_at.
855 	 */
856 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 				pmd, _pmd,  1))
859 		update_mmu_cache_pmd(vma, addr, pmd);
860 }
861 
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 		pmd_t *pmd, int flags)
864 {
865 	unsigned long pfn = pmd_pfn(*pmd);
866 	struct mm_struct *mm = vma->vm_mm;
867 	struct dev_pagemap *pgmap;
868 	struct page *page;
869 
870 	assert_spin_locked(pmd_lockptr(mm, pmd));
871 
872 	/*
873 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 	 * not be in this function with `flags & FOLL_COW` set.
875 	 */
876 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877 
878 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 		return NULL;
880 
881 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 		/* pass */;
883 	else
884 		return NULL;
885 
886 	if (flags & FOLL_TOUCH)
887 		touch_pmd(vma, addr, pmd);
888 
889 	/*
890 	 * device mapped pages can only be returned if the
891 	 * caller will manage the page reference count.
892 	 */
893 	if (!(flags & FOLL_GET))
894 		return ERR_PTR(-EEXIST);
895 
896 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 	pgmap = get_dev_pagemap(pfn, NULL);
898 	if (!pgmap)
899 		return ERR_PTR(-EFAULT);
900 	page = pfn_to_page(pfn);
901 	get_page(page);
902 	put_dev_pagemap(pgmap);
903 
904 	return page;
905 }
906 
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 		  struct vm_area_struct *vma)
910 {
911 	spinlock_t *dst_ptl, *src_ptl;
912 	struct page *src_page;
913 	pmd_t pmd;
914 	pgtable_t pgtable = NULL;
915 	int ret = -ENOMEM;
916 
917 	/* Skip if can be re-fill on fault */
918 	if (!vma_is_anonymous(vma))
919 		return 0;
920 
921 	pgtable = pte_alloc_one(dst_mm, addr);
922 	if (unlikely(!pgtable))
923 		goto out;
924 
925 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 	src_ptl = pmd_lockptr(src_mm, src_pmd);
927 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
928 
929 	ret = -EAGAIN;
930 	pmd = *src_pmd;
931 	if (unlikely(!pmd_trans_huge(pmd))) {
932 		pte_free(dst_mm, pgtable);
933 		goto out_unlock;
934 	}
935 	/*
936 	 * When page table lock is held, the huge zero pmd should not be
937 	 * under splitting since we don't split the page itself, only pmd to
938 	 * a page table.
939 	 */
940 	if (is_huge_zero_pmd(pmd)) {
941 		struct page *zero_page;
942 		/*
943 		 * get_huge_zero_page() will never allocate a new page here,
944 		 * since we already have a zero page to copy. It just takes a
945 		 * reference.
946 		 */
947 		zero_page = mm_get_huge_zero_page(dst_mm);
948 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
949 				zero_page);
950 		ret = 0;
951 		goto out_unlock;
952 	}
953 
954 	src_page = pmd_page(pmd);
955 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
956 	get_page(src_page);
957 	page_dup_rmap(src_page, true);
958 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
959 	atomic_long_inc(&dst_mm->nr_ptes);
960 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
961 
962 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
963 	pmd = pmd_mkold(pmd_wrprotect(pmd));
964 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
965 
966 	ret = 0;
967 out_unlock:
968 	spin_unlock(src_ptl);
969 	spin_unlock(dst_ptl);
970 out:
971 	return ret;
972 }
973 
974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
975 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
976 		pud_t *pud)
977 {
978 	pud_t _pud;
979 
980 	/*
981 	 * We should set the dirty bit only for FOLL_WRITE but for now
982 	 * the dirty bit in the pud is meaningless.  And if the dirty
983 	 * bit will become meaningful and we'll only set it with
984 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
985 	 * set the young bit, instead of the current set_pud_at.
986 	 */
987 	_pud = pud_mkyoung(pud_mkdirty(*pud));
988 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
989 				pud, _pud,  1))
990 		update_mmu_cache_pud(vma, addr, pud);
991 }
992 
993 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
994 		pud_t *pud, int flags)
995 {
996 	unsigned long pfn = pud_pfn(*pud);
997 	struct mm_struct *mm = vma->vm_mm;
998 	struct dev_pagemap *pgmap;
999 	struct page *page;
1000 
1001 	assert_spin_locked(pud_lockptr(mm, pud));
1002 
1003 	if (flags & FOLL_WRITE && !pud_write(*pud))
1004 		return NULL;
1005 
1006 	if (pud_present(*pud) && pud_devmap(*pud))
1007 		/* pass */;
1008 	else
1009 		return NULL;
1010 
1011 	if (flags & FOLL_TOUCH)
1012 		touch_pud(vma, addr, pud);
1013 
1014 	/*
1015 	 * device mapped pages can only be returned if the
1016 	 * caller will manage the page reference count.
1017 	 */
1018 	if (!(flags & FOLL_GET))
1019 		return ERR_PTR(-EEXIST);
1020 
1021 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1022 	pgmap = get_dev_pagemap(pfn, NULL);
1023 	if (!pgmap)
1024 		return ERR_PTR(-EFAULT);
1025 	page = pfn_to_page(pfn);
1026 	get_page(page);
1027 	put_dev_pagemap(pgmap);
1028 
1029 	return page;
1030 }
1031 
1032 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1034 		  struct vm_area_struct *vma)
1035 {
1036 	spinlock_t *dst_ptl, *src_ptl;
1037 	pud_t pud;
1038 	int ret;
1039 
1040 	dst_ptl = pud_lock(dst_mm, dst_pud);
1041 	src_ptl = pud_lockptr(src_mm, src_pud);
1042 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 
1044 	ret = -EAGAIN;
1045 	pud = *src_pud;
1046 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1047 		goto out_unlock;
1048 
1049 	/*
1050 	 * When page table lock is held, the huge zero pud should not be
1051 	 * under splitting since we don't split the page itself, only pud to
1052 	 * a page table.
1053 	 */
1054 	if (is_huge_zero_pud(pud)) {
1055 		/* No huge zero pud yet */
1056 	}
1057 
1058 	pudp_set_wrprotect(src_mm, addr, src_pud);
1059 	pud = pud_mkold(pud_wrprotect(pud));
1060 	set_pud_at(dst_mm, addr, dst_pud, pud);
1061 
1062 	ret = 0;
1063 out_unlock:
1064 	spin_unlock(src_ptl);
1065 	spin_unlock(dst_ptl);
1066 	return ret;
1067 }
1068 
1069 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1070 {
1071 	pud_t entry;
1072 	unsigned long haddr;
1073 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1074 
1075 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1076 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1077 		goto unlock;
1078 
1079 	entry = pud_mkyoung(orig_pud);
1080 	if (write)
1081 		entry = pud_mkdirty(entry);
1082 	haddr = vmf->address & HPAGE_PUD_MASK;
1083 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1084 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1085 
1086 unlock:
1087 	spin_unlock(vmf->ptl);
1088 }
1089 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1090 
1091 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1092 {
1093 	pmd_t entry;
1094 	unsigned long haddr;
1095 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1096 
1097 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1098 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1099 		goto unlock;
1100 
1101 	entry = pmd_mkyoung(orig_pmd);
1102 	if (write)
1103 		entry = pmd_mkdirty(entry);
1104 	haddr = vmf->address & HPAGE_PMD_MASK;
1105 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1106 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1107 
1108 unlock:
1109 	spin_unlock(vmf->ptl);
1110 }
1111 
1112 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1113 		struct page *page)
1114 {
1115 	struct vm_area_struct *vma = vmf->vma;
1116 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1117 	struct mem_cgroup *memcg;
1118 	pgtable_t pgtable;
1119 	pmd_t _pmd;
1120 	int ret = 0, i;
1121 	struct page **pages;
1122 	unsigned long mmun_start;	/* For mmu_notifiers */
1123 	unsigned long mmun_end;		/* For mmu_notifiers */
1124 
1125 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1126 			GFP_KERNEL);
1127 	if (unlikely(!pages)) {
1128 		ret |= VM_FAULT_OOM;
1129 		goto out;
1130 	}
1131 
1132 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1133 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1134 					       vmf->address, page_to_nid(page));
1135 		if (unlikely(!pages[i] ||
1136 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1137 				     GFP_KERNEL, &memcg, false))) {
1138 			if (pages[i])
1139 				put_page(pages[i]);
1140 			while (--i >= 0) {
1141 				memcg = (void *)page_private(pages[i]);
1142 				set_page_private(pages[i], 0);
1143 				mem_cgroup_cancel_charge(pages[i], memcg,
1144 						false);
1145 				put_page(pages[i]);
1146 			}
1147 			kfree(pages);
1148 			ret |= VM_FAULT_OOM;
1149 			goto out;
1150 		}
1151 		set_page_private(pages[i], (unsigned long)memcg);
1152 	}
1153 
1154 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1155 		copy_user_highpage(pages[i], page + i,
1156 				   haddr + PAGE_SIZE * i, vma);
1157 		__SetPageUptodate(pages[i]);
1158 		cond_resched();
1159 	}
1160 
1161 	mmun_start = haddr;
1162 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1163 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1164 
1165 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1166 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1167 		goto out_free_pages;
1168 	VM_BUG_ON_PAGE(!PageHead(page), page);
1169 
1170 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1171 	/* leave pmd empty until pte is filled */
1172 
1173 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1174 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1175 
1176 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1177 		pte_t entry;
1178 		entry = mk_pte(pages[i], vma->vm_page_prot);
1179 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1180 		memcg = (void *)page_private(pages[i]);
1181 		set_page_private(pages[i], 0);
1182 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1183 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1184 		lru_cache_add_active_or_unevictable(pages[i], vma);
1185 		vmf->pte = pte_offset_map(&_pmd, haddr);
1186 		VM_BUG_ON(!pte_none(*vmf->pte));
1187 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1188 		pte_unmap(vmf->pte);
1189 	}
1190 	kfree(pages);
1191 
1192 	smp_wmb(); /* make pte visible before pmd */
1193 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1194 	page_remove_rmap(page, true);
1195 	spin_unlock(vmf->ptl);
1196 
1197 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1198 
1199 	ret |= VM_FAULT_WRITE;
1200 	put_page(page);
1201 
1202 out:
1203 	return ret;
1204 
1205 out_free_pages:
1206 	spin_unlock(vmf->ptl);
1207 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1208 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1209 		memcg = (void *)page_private(pages[i]);
1210 		set_page_private(pages[i], 0);
1211 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1212 		put_page(pages[i]);
1213 	}
1214 	kfree(pages);
1215 	goto out;
1216 }
1217 
1218 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1219 {
1220 	struct vm_area_struct *vma = vmf->vma;
1221 	struct page *page = NULL, *new_page;
1222 	struct mem_cgroup *memcg;
1223 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1224 	unsigned long mmun_start;	/* For mmu_notifiers */
1225 	unsigned long mmun_end;		/* For mmu_notifiers */
1226 	gfp_t huge_gfp;			/* for allocation and charge */
1227 	int ret = 0;
1228 
1229 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1230 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1231 	if (is_huge_zero_pmd(orig_pmd))
1232 		goto alloc;
1233 	spin_lock(vmf->ptl);
1234 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1235 		goto out_unlock;
1236 
1237 	page = pmd_page(orig_pmd);
1238 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1239 	/*
1240 	 * We can only reuse the page if nobody else maps the huge page or it's
1241 	 * part.
1242 	 */
1243 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1244 		pmd_t entry;
1245 		entry = pmd_mkyoung(orig_pmd);
1246 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1247 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1248 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1249 		ret |= VM_FAULT_WRITE;
1250 		goto out_unlock;
1251 	}
1252 	get_page(page);
1253 	spin_unlock(vmf->ptl);
1254 alloc:
1255 	if (transparent_hugepage_enabled(vma) &&
1256 	    !transparent_hugepage_debug_cow()) {
1257 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1258 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1259 	} else
1260 		new_page = NULL;
1261 
1262 	if (likely(new_page)) {
1263 		prep_transhuge_page(new_page);
1264 	} else {
1265 		if (!page) {
1266 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1267 			ret |= VM_FAULT_FALLBACK;
1268 		} else {
1269 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1270 			if (ret & VM_FAULT_OOM) {
1271 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1272 				ret |= VM_FAULT_FALLBACK;
1273 			}
1274 			put_page(page);
1275 		}
1276 		count_vm_event(THP_FAULT_FALLBACK);
1277 		goto out;
1278 	}
1279 
1280 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1281 					huge_gfp, &memcg, true))) {
1282 		put_page(new_page);
1283 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1284 		if (page)
1285 			put_page(page);
1286 		ret |= VM_FAULT_FALLBACK;
1287 		count_vm_event(THP_FAULT_FALLBACK);
1288 		goto out;
1289 	}
1290 
1291 	count_vm_event(THP_FAULT_ALLOC);
1292 
1293 	if (!page)
1294 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1295 	else
1296 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1297 	__SetPageUptodate(new_page);
1298 
1299 	mmun_start = haddr;
1300 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1301 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1302 
1303 	spin_lock(vmf->ptl);
1304 	if (page)
1305 		put_page(page);
1306 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 		spin_unlock(vmf->ptl);
1308 		mem_cgroup_cancel_charge(new_page, memcg, true);
1309 		put_page(new_page);
1310 		goto out_mn;
1311 	} else {
1312 		pmd_t entry;
1313 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1314 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1315 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1316 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1317 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1318 		lru_cache_add_active_or_unevictable(new_page, vma);
1319 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1320 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1321 		if (!page) {
1322 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1323 		} else {
1324 			VM_BUG_ON_PAGE(!PageHead(page), page);
1325 			page_remove_rmap(page, true);
1326 			put_page(page);
1327 		}
1328 		ret |= VM_FAULT_WRITE;
1329 	}
1330 	spin_unlock(vmf->ptl);
1331 out_mn:
1332 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1333 out:
1334 	return ret;
1335 out_unlock:
1336 	spin_unlock(vmf->ptl);
1337 	return ret;
1338 }
1339 
1340 /*
1341  * FOLL_FORCE can write to even unwritable pmd's, but only
1342  * after we've gone through a COW cycle and they are dirty.
1343  */
1344 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1345 {
1346 	return pmd_write(pmd) ||
1347 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1348 }
1349 
1350 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1351 				   unsigned long addr,
1352 				   pmd_t *pmd,
1353 				   unsigned int flags)
1354 {
1355 	struct mm_struct *mm = vma->vm_mm;
1356 	struct page *page = NULL;
1357 
1358 	assert_spin_locked(pmd_lockptr(mm, pmd));
1359 
1360 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1361 		goto out;
1362 
1363 	/* Avoid dumping huge zero page */
1364 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1365 		return ERR_PTR(-EFAULT);
1366 
1367 	/* Full NUMA hinting faults to serialise migration in fault paths */
1368 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1369 		goto out;
1370 
1371 	page = pmd_page(*pmd);
1372 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1373 	if (flags & FOLL_TOUCH)
1374 		touch_pmd(vma, addr, pmd);
1375 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376 		/*
1377 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1378 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1379 		 *
1380 		 * For anon THP:
1381 		 *
1382 		 * In most cases the pmd is the only mapping of the page as we
1383 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 		 * writable private mappings in populate_vma_page_range().
1385 		 *
1386 		 * The only scenario when we have the page shared here is if we
1387 		 * mlocking read-only mapping shared over fork(). We skip
1388 		 * mlocking such pages.
1389 		 *
1390 		 * For file THP:
1391 		 *
1392 		 * We can expect PageDoubleMap() to be stable under page lock:
1393 		 * for file pages we set it in page_add_file_rmap(), which
1394 		 * requires page to be locked.
1395 		 */
1396 
1397 		if (PageAnon(page) && compound_mapcount(page) != 1)
1398 			goto skip_mlock;
1399 		if (PageDoubleMap(page) || !page->mapping)
1400 			goto skip_mlock;
1401 		if (!trylock_page(page))
1402 			goto skip_mlock;
1403 		lru_add_drain();
1404 		if (page->mapping && !PageDoubleMap(page))
1405 			mlock_vma_page(page);
1406 		unlock_page(page);
1407 	}
1408 skip_mlock:
1409 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1410 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1411 	if (flags & FOLL_GET)
1412 		get_page(page);
1413 
1414 out:
1415 	return page;
1416 }
1417 
1418 /* NUMA hinting page fault entry point for trans huge pmds */
1419 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1420 {
1421 	struct vm_area_struct *vma = vmf->vma;
1422 	struct anon_vma *anon_vma = NULL;
1423 	struct page *page;
1424 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1425 	int page_nid = -1, this_nid = numa_node_id();
1426 	int target_nid, last_cpupid = -1;
1427 	bool page_locked;
1428 	bool migrated = false;
1429 	bool was_writable;
1430 	int flags = 0;
1431 
1432 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1433 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1434 		goto out_unlock;
1435 
1436 	/*
1437 	 * If there are potential migrations, wait for completion and retry
1438 	 * without disrupting NUMA hinting information. Do not relock and
1439 	 * check_same as the page may no longer be mapped.
1440 	 */
1441 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1442 		page = pmd_page(*vmf->pmd);
1443 		if (!get_page_unless_zero(page))
1444 			goto out_unlock;
1445 		spin_unlock(vmf->ptl);
1446 		wait_on_page_locked(page);
1447 		put_page(page);
1448 		goto out;
1449 	}
1450 
1451 	page = pmd_page(pmd);
1452 	BUG_ON(is_huge_zero_page(page));
1453 	page_nid = page_to_nid(page);
1454 	last_cpupid = page_cpupid_last(page);
1455 	count_vm_numa_event(NUMA_HINT_FAULTS);
1456 	if (page_nid == this_nid) {
1457 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1458 		flags |= TNF_FAULT_LOCAL;
1459 	}
1460 
1461 	/* See similar comment in do_numa_page for explanation */
1462 	if (!pmd_savedwrite(pmd))
1463 		flags |= TNF_NO_GROUP;
1464 
1465 	/*
1466 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1467 	 * page_table_lock if at all possible
1468 	 */
1469 	page_locked = trylock_page(page);
1470 	target_nid = mpol_misplaced(page, vma, haddr);
1471 	if (target_nid == -1) {
1472 		/* If the page was locked, there are no parallel migrations */
1473 		if (page_locked)
1474 			goto clear_pmdnuma;
1475 	}
1476 
1477 	/* Migration could have started since the pmd_trans_migrating check */
1478 	if (!page_locked) {
1479 		page_nid = -1;
1480 		if (!get_page_unless_zero(page))
1481 			goto out_unlock;
1482 		spin_unlock(vmf->ptl);
1483 		wait_on_page_locked(page);
1484 		put_page(page);
1485 		goto out;
1486 	}
1487 
1488 	/*
1489 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1490 	 * to serialises splits
1491 	 */
1492 	get_page(page);
1493 	spin_unlock(vmf->ptl);
1494 	anon_vma = page_lock_anon_vma_read(page);
1495 
1496 	/* Confirm the PMD did not change while page_table_lock was released */
1497 	spin_lock(vmf->ptl);
1498 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1499 		unlock_page(page);
1500 		put_page(page);
1501 		page_nid = -1;
1502 		goto out_unlock;
1503 	}
1504 
1505 	/* Bail if we fail to protect against THP splits for any reason */
1506 	if (unlikely(!anon_vma)) {
1507 		put_page(page);
1508 		page_nid = -1;
1509 		goto clear_pmdnuma;
1510 	}
1511 
1512 	/*
1513 	 * The page_table_lock above provides a memory barrier
1514 	 * with change_protection_range.
1515 	 */
1516 	if (mm_tlb_flush_pending(vma->vm_mm))
1517 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1518 
1519 	/*
1520 	 * Migrate the THP to the requested node, returns with page unlocked
1521 	 * and access rights restored.
1522 	 */
1523 	spin_unlock(vmf->ptl);
1524 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1525 				vmf->pmd, pmd, vmf->address, page, target_nid);
1526 	if (migrated) {
1527 		flags |= TNF_MIGRATED;
1528 		page_nid = target_nid;
1529 	} else
1530 		flags |= TNF_MIGRATE_FAIL;
1531 
1532 	goto out;
1533 clear_pmdnuma:
1534 	BUG_ON(!PageLocked(page));
1535 	was_writable = pmd_savedwrite(pmd);
1536 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1537 	pmd = pmd_mkyoung(pmd);
1538 	if (was_writable)
1539 		pmd = pmd_mkwrite(pmd);
1540 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1542 	unlock_page(page);
1543 out_unlock:
1544 	spin_unlock(vmf->ptl);
1545 
1546 out:
1547 	if (anon_vma)
1548 		page_unlock_anon_vma_read(anon_vma);
1549 
1550 	if (page_nid != -1)
1551 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1552 				flags);
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * Return true if we do MADV_FREE successfully on entire pmd page.
1559  * Otherwise, return false.
1560  */
1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562 		pmd_t *pmd, unsigned long addr, unsigned long next)
1563 {
1564 	spinlock_t *ptl;
1565 	pmd_t orig_pmd;
1566 	struct page *page;
1567 	struct mm_struct *mm = tlb->mm;
1568 	bool ret = false;
1569 
1570 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1571 
1572 	ptl = pmd_trans_huge_lock(pmd, vma);
1573 	if (!ptl)
1574 		goto out_unlocked;
1575 
1576 	orig_pmd = *pmd;
1577 	if (is_huge_zero_pmd(orig_pmd))
1578 		goto out;
1579 
1580 	page = pmd_page(orig_pmd);
1581 	/*
1582 	 * If other processes are mapping this page, we couldn't discard
1583 	 * the page unless they all do MADV_FREE so let's skip the page.
1584 	 */
1585 	if (page_mapcount(page) != 1)
1586 		goto out;
1587 
1588 	if (!trylock_page(page))
1589 		goto out;
1590 
1591 	/*
1592 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1593 	 * will deactivate only them.
1594 	 */
1595 	if (next - addr != HPAGE_PMD_SIZE) {
1596 		get_page(page);
1597 		spin_unlock(ptl);
1598 		split_huge_page(page);
1599 		unlock_page(page);
1600 		put_page(page);
1601 		goto out_unlocked;
1602 	}
1603 
1604 	if (PageDirty(page))
1605 		ClearPageDirty(page);
1606 	unlock_page(page);
1607 
1608 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1609 		pmdp_invalidate(vma, addr, pmd);
1610 		orig_pmd = pmd_mkold(orig_pmd);
1611 		orig_pmd = pmd_mkclean(orig_pmd);
1612 
1613 		set_pmd_at(mm, addr, pmd, orig_pmd);
1614 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1615 	}
1616 
1617 	mark_page_lazyfree(page);
1618 	ret = true;
1619 out:
1620 	spin_unlock(ptl);
1621 out_unlocked:
1622 	return ret;
1623 }
1624 
1625 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1626 {
1627 	pgtable_t pgtable;
1628 
1629 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1630 	pte_free(mm, pgtable);
1631 	atomic_long_dec(&mm->nr_ptes);
1632 }
1633 
1634 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1635 		 pmd_t *pmd, unsigned long addr)
1636 {
1637 	pmd_t orig_pmd;
1638 	spinlock_t *ptl;
1639 
1640 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1641 
1642 	ptl = __pmd_trans_huge_lock(pmd, vma);
1643 	if (!ptl)
1644 		return 0;
1645 	/*
1646 	 * For architectures like ppc64 we look at deposited pgtable
1647 	 * when calling pmdp_huge_get_and_clear. So do the
1648 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1649 	 * operations.
1650 	 */
1651 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652 			tlb->fullmm);
1653 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654 	if (vma_is_dax(vma)) {
1655 		if (arch_needs_pgtable_deposit())
1656 			zap_deposited_table(tlb->mm, pmd);
1657 		spin_unlock(ptl);
1658 		if (is_huge_zero_pmd(orig_pmd))
1659 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1660 	} else if (is_huge_zero_pmd(orig_pmd)) {
1661 		zap_deposited_table(tlb->mm, pmd);
1662 		spin_unlock(ptl);
1663 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1664 	} else {
1665 		struct page *page = pmd_page(orig_pmd);
1666 		page_remove_rmap(page, true);
1667 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1668 		VM_BUG_ON_PAGE(!PageHead(page), page);
1669 		if (PageAnon(page)) {
1670 			zap_deposited_table(tlb->mm, pmd);
1671 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1672 		} else {
1673 			if (arch_needs_pgtable_deposit())
1674 				zap_deposited_table(tlb->mm, pmd);
1675 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1676 		}
1677 		spin_unlock(ptl);
1678 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1679 	}
1680 	return 1;
1681 }
1682 
1683 #ifndef pmd_move_must_withdraw
1684 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1685 					 spinlock_t *old_pmd_ptl,
1686 					 struct vm_area_struct *vma)
1687 {
1688 	/*
1689 	 * With split pmd lock we also need to move preallocated
1690 	 * PTE page table if new_pmd is on different PMD page table.
1691 	 *
1692 	 * We also don't deposit and withdraw tables for file pages.
1693 	 */
1694 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1695 }
1696 #endif
1697 
1698 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1699 		  unsigned long new_addr, unsigned long old_end,
1700 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1701 {
1702 	spinlock_t *old_ptl, *new_ptl;
1703 	pmd_t pmd;
1704 	struct mm_struct *mm = vma->vm_mm;
1705 	bool force_flush = false;
1706 
1707 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1708 	    (new_addr & ~HPAGE_PMD_MASK) ||
1709 	    old_end - old_addr < HPAGE_PMD_SIZE)
1710 		return false;
1711 
1712 	/*
1713 	 * The destination pmd shouldn't be established, free_pgtables()
1714 	 * should have release it.
1715 	 */
1716 	if (WARN_ON(!pmd_none(*new_pmd))) {
1717 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1718 		return false;
1719 	}
1720 
1721 	/*
1722 	 * We don't have to worry about the ordering of src and dst
1723 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1724 	 */
1725 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726 	if (old_ptl) {
1727 		new_ptl = pmd_lockptr(mm, new_pmd);
1728 		if (new_ptl != old_ptl)
1729 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1730 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1731 		if (pmd_present(pmd) && pmd_dirty(pmd))
1732 			force_flush = true;
1733 		VM_BUG_ON(!pmd_none(*new_pmd));
1734 
1735 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1736 			pgtable_t pgtable;
1737 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1739 		}
1740 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1741 		if (new_ptl != old_ptl)
1742 			spin_unlock(new_ptl);
1743 		if (force_flush)
1744 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1745 		else
1746 			*need_flush = true;
1747 		spin_unlock(old_ptl);
1748 		return true;
1749 	}
1750 	return false;
1751 }
1752 
1753 /*
1754  * Returns
1755  *  - 0 if PMD could not be locked
1756  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758  */
1759 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760 		unsigned long addr, pgprot_t newprot, int prot_numa)
1761 {
1762 	struct mm_struct *mm = vma->vm_mm;
1763 	spinlock_t *ptl;
1764 	pmd_t entry;
1765 	bool preserve_write;
1766 	int ret;
1767 
1768 	ptl = __pmd_trans_huge_lock(pmd, vma);
1769 	if (!ptl)
1770 		return 0;
1771 
1772 	preserve_write = prot_numa && pmd_write(*pmd);
1773 	ret = 1;
1774 
1775 	/*
1776 	 * Avoid trapping faults against the zero page. The read-only
1777 	 * data is likely to be read-cached on the local CPU and
1778 	 * local/remote hits to the zero page are not interesting.
1779 	 */
1780 	if (prot_numa && is_huge_zero_pmd(*pmd))
1781 		goto unlock;
1782 
1783 	if (prot_numa && pmd_protnone(*pmd))
1784 		goto unlock;
1785 
1786 	/*
1787 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1788 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1789 	 * which is also under down_read(mmap_sem):
1790 	 *
1791 	 *	CPU0:				CPU1:
1792 	 *				change_huge_pmd(prot_numa=1)
1793 	 *				 pmdp_huge_get_and_clear_notify()
1794 	 * madvise_dontneed()
1795 	 *  zap_pmd_range()
1796 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1797 	 *   // skip the pmd
1798 	 *				 set_pmd_at();
1799 	 *				 // pmd is re-established
1800 	 *
1801 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1802 	 * which may break userspace.
1803 	 *
1804 	 * pmdp_invalidate() is required to make sure we don't miss
1805 	 * dirty/young flags set by hardware.
1806 	 */
1807 	entry = *pmd;
1808 	pmdp_invalidate(vma, addr, pmd);
1809 
1810 	/*
1811 	 * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1812 	 * corrupt them.
1813 	 */
1814 	if (pmd_dirty(*pmd))
1815 		entry = pmd_mkdirty(entry);
1816 	if (pmd_young(*pmd))
1817 		entry = pmd_mkyoung(entry);
1818 
1819 	entry = pmd_modify(entry, newprot);
1820 	if (preserve_write)
1821 		entry = pmd_mk_savedwrite(entry);
1822 	ret = HPAGE_PMD_NR;
1823 	set_pmd_at(mm, addr, pmd, entry);
1824 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1825 unlock:
1826 	spin_unlock(ptl);
1827 	return ret;
1828 }
1829 
1830 /*
1831  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1832  *
1833  * Note that if it returns page table lock pointer, this routine returns without
1834  * unlocking page table lock. So callers must unlock it.
1835  */
1836 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1837 {
1838 	spinlock_t *ptl;
1839 	ptl = pmd_lock(vma->vm_mm, pmd);
1840 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1841 		return ptl;
1842 	spin_unlock(ptl);
1843 	return NULL;
1844 }
1845 
1846 /*
1847  * Returns true if a given pud maps a thp, false otherwise.
1848  *
1849  * Note that if it returns true, this routine returns without unlocking page
1850  * table lock. So callers must unlock it.
1851  */
1852 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1853 {
1854 	spinlock_t *ptl;
1855 
1856 	ptl = pud_lock(vma->vm_mm, pud);
1857 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1858 		return ptl;
1859 	spin_unlock(ptl);
1860 	return NULL;
1861 }
1862 
1863 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1864 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1865 		 pud_t *pud, unsigned long addr)
1866 {
1867 	pud_t orig_pud;
1868 	spinlock_t *ptl;
1869 
1870 	ptl = __pud_trans_huge_lock(pud, vma);
1871 	if (!ptl)
1872 		return 0;
1873 	/*
1874 	 * For architectures like ppc64 we look at deposited pgtable
1875 	 * when calling pudp_huge_get_and_clear. So do the
1876 	 * pgtable_trans_huge_withdraw after finishing pudp related
1877 	 * operations.
1878 	 */
1879 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1880 			tlb->fullmm);
1881 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1882 	if (vma_is_dax(vma)) {
1883 		spin_unlock(ptl);
1884 		/* No zero page support yet */
1885 	} else {
1886 		/* No support for anonymous PUD pages yet */
1887 		BUG();
1888 	}
1889 	return 1;
1890 }
1891 
1892 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1893 		unsigned long haddr)
1894 {
1895 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1896 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1897 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1898 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1899 
1900 	count_vm_event(THP_SPLIT_PUD);
1901 
1902 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1903 }
1904 
1905 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1906 		unsigned long address)
1907 {
1908 	spinlock_t *ptl;
1909 	struct mm_struct *mm = vma->vm_mm;
1910 	unsigned long haddr = address & HPAGE_PUD_MASK;
1911 
1912 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1913 	ptl = pud_lock(mm, pud);
1914 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1915 		goto out;
1916 	__split_huge_pud_locked(vma, pud, haddr);
1917 
1918 out:
1919 	spin_unlock(ptl);
1920 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1921 }
1922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1923 
1924 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1925 		unsigned long haddr, pmd_t *pmd)
1926 {
1927 	struct mm_struct *mm = vma->vm_mm;
1928 	pgtable_t pgtable;
1929 	pmd_t _pmd;
1930 	int i;
1931 
1932 	/* leave pmd empty until pte is filled */
1933 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1934 
1935 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1936 	pmd_populate(mm, &_pmd, pgtable);
1937 
1938 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1939 		pte_t *pte, entry;
1940 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1941 		entry = pte_mkspecial(entry);
1942 		pte = pte_offset_map(&_pmd, haddr);
1943 		VM_BUG_ON(!pte_none(*pte));
1944 		set_pte_at(mm, haddr, pte, entry);
1945 		pte_unmap(pte);
1946 	}
1947 	smp_wmb(); /* make pte visible before pmd */
1948 	pmd_populate(mm, pmd, pgtable);
1949 }
1950 
1951 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1952 		unsigned long haddr, bool freeze)
1953 {
1954 	struct mm_struct *mm = vma->vm_mm;
1955 	struct page *page;
1956 	pgtable_t pgtable;
1957 	pmd_t _pmd;
1958 	bool young, write, dirty, soft_dirty;
1959 	unsigned long addr;
1960 	int i;
1961 
1962 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1963 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1964 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1965 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1966 
1967 	count_vm_event(THP_SPLIT_PMD);
1968 
1969 	if (!vma_is_anonymous(vma)) {
1970 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1971 		/*
1972 		 * We are going to unmap this huge page. So
1973 		 * just go ahead and zap it
1974 		 */
1975 		if (arch_needs_pgtable_deposit())
1976 			zap_deposited_table(mm, pmd);
1977 		if (vma_is_dax(vma))
1978 			return;
1979 		page = pmd_page(_pmd);
1980 		if (!PageReferenced(page) && pmd_young(_pmd))
1981 			SetPageReferenced(page);
1982 		page_remove_rmap(page, true);
1983 		put_page(page);
1984 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1985 		return;
1986 	} else if (is_huge_zero_pmd(*pmd)) {
1987 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1988 	}
1989 
1990 	page = pmd_page(*pmd);
1991 	VM_BUG_ON_PAGE(!page_count(page), page);
1992 	page_ref_add(page, HPAGE_PMD_NR - 1);
1993 	write = pmd_write(*pmd);
1994 	young = pmd_young(*pmd);
1995 	dirty = pmd_dirty(*pmd);
1996 	soft_dirty = pmd_soft_dirty(*pmd);
1997 
1998 	pmdp_huge_split_prepare(vma, haddr, pmd);
1999 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2000 	pmd_populate(mm, &_pmd, pgtable);
2001 
2002 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2003 		pte_t entry, *pte;
2004 		/*
2005 		 * Note that NUMA hinting access restrictions are not
2006 		 * transferred to avoid any possibility of altering
2007 		 * permissions across VMAs.
2008 		 */
2009 		if (freeze) {
2010 			swp_entry_t swp_entry;
2011 			swp_entry = make_migration_entry(page + i, write);
2012 			entry = swp_entry_to_pte(swp_entry);
2013 			if (soft_dirty)
2014 				entry = pte_swp_mksoft_dirty(entry);
2015 		} else {
2016 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2017 			entry = maybe_mkwrite(entry, vma);
2018 			if (!write)
2019 				entry = pte_wrprotect(entry);
2020 			if (!young)
2021 				entry = pte_mkold(entry);
2022 			if (soft_dirty)
2023 				entry = pte_mksoft_dirty(entry);
2024 		}
2025 		if (dirty)
2026 			SetPageDirty(page + i);
2027 		pte = pte_offset_map(&_pmd, addr);
2028 		BUG_ON(!pte_none(*pte));
2029 		set_pte_at(mm, addr, pte, entry);
2030 		atomic_inc(&page[i]._mapcount);
2031 		pte_unmap(pte);
2032 	}
2033 
2034 	/*
2035 	 * Set PG_double_map before dropping compound_mapcount to avoid
2036 	 * false-negative page_mapped().
2037 	 */
2038 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2039 		for (i = 0; i < HPAGE_PMD_NR; i++)
2040 			atomic_inc(&page[i]._mapcount);
2041 	}
2042 
2043 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2044 		/* Last compound_mapcount is gone. */
2045 		__dec_node_page_state(page, NR_ANON_THPS);
2046 		if (TestClearPageDoubleMap(page)) {
2047 			/* No need in mapcount reference anymore */
2048 			for (i = 0; i < HPAGE_PMD_NR; i++)
2049 				atomic_dec(&page[i]._mapcount);
2050 		}
2051 	}
2052 
2053 	smp_wmb(); /* make pte visible before pmd */
2054 	/*
2055 	 * Up to this point the pmd is present and huge and userland has the
2056 	 * whole access to the hugepage during the split (which happens in
2057 	 * place). If we overwrite the pmd with the not-huge version pointing
2058 	 * to the pte here (which of course we could if all CPUs were bug
2059 	 * free), userland could trigger a small page size TLB miss on the
2060 	 * small sized TLB while the hugepage TLB entry is still established in
2061 	 * the huge TLB. Some CPU doesn't like that.
2062 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2063 	 * 383 on page 93. Intel should be safe but is also warns that it's
2064 	 * only safe if the permission and cache attributes of the two entries
2065 	 * loaded in the two TLB is identical (which should be the case here).
2066 	 * But it is generally safer to never allow small and huge TLB entries
2067 	 * for the same virtual address to be loaded simultaneously. So instead
2068 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2069 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2070 	 * and pmd_trans_splitting must remain set at all times on the pmd
2071 	 * until the split is complete for this pmd), then we flush the SMP TLB
2072 	 * and finally we write the non-huge version of the pmd entry with
2073 	 * pmd_populate.
2074 	 */
2075 	pmdp_invalidate(vma, haddr, pmd);
2076 	pmd_populate(mm, pmd, pgtable);
2077 
2078 	if (freeze) {
2079 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2080 			page_remove_rmap(page + i, false);
2081 			put_page(page + i);
2082 		}
2083 	}
2084 }
2085 
2086 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2087 		unsigned long address, bool freeze, struct page *page)
2088 {
2089 	spinlock_t *ptl;
2090 	struct mm_struct *mm = vma->vm_mm;
2091 	unsigned long haddr = address & HPAGE_PMD_MASK;
2092 
2093 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2094 	ptl = pmd_lock(mm, pmd);
2095 
2096 	/*
2097 	 * If caller asks to setup a migration entries, we need a page to check
2098 	 * pmd against. Otherwise we can end up replacing wrong page.
2099 	 */
2100 	VM_BUG_ON(freeze && !page);
2101 	if (page && page != pmd_page(*pmd))
2102 	        goto out;
2103 
2104 	if (pmd_trans_huge(*pmd)) {
2105 		page = pmd_page(*pmd);
2106 		if (PageMlocked(page))
2107 			clear_page_mlock(page);
2108 	} else if (!pmd_devmap(*pmd))
2109 		goto out;
2110 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2111 out:
2112 	spin_unlock(ptl);
2113 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2114 }
2115 
2116 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2117 		bool freeze, struct page *page)
2118 {
2119 	pgd_t *pgd;
2120 	p4d_t *p4d;
2121 	pud_t *pud;
2122 	pmd_t *pmd;
2123 
2124 	pgd = pgd_offset(vma->vm_mm, address);
2125 	if (!pgd_present(*pgd))
2126 		return;
2127 
2128 	p4d = p4d_offset(pgd, address);
2129 	if (!p4d_present(*p4d))
2130 		return;
2131 
2132 	pud = pud_offset(p4d, address);
2133 	if (!pud_present(*pud))
2134 		return;
2135 
2136 	pmd = pmd_offset(pud, address);
2137 
2138 	__split_huge_pmd(vma, pmd, address, freeze, page);
2139 }
2140 
2141 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2142 			     unsigned long start,
2143 			     unsigned long end,
2144 			     long adjust_next)
2145 {
2146 	/*
2147 	 * If the new start address isn't hpage aligned and it could
2148 	 * previously contain an hugepage: check if we need to split
2149 	 * an huge pmd.
2150 	 */
2151 	if (start & ~HPAGE_PMD_MASK &&
2152 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2153 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2154 		split_huge_pmd_address(vma, start, false, NULL);
2155 
2156 	/*
2157 	 * If the new end address isn't hpage aligned and it could
2158 	 * previously contain an hugepage: check if we need to split
2159 	 * an huge pmd.
2160 	 */
2161 	if (end & ~HPAGE_PMD_MASK &&
2162 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2163 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2164 		split_huge_pmd_address(vma, end, false, NULL);
2165 
2166 	/*
2167 	 * If we're also updating the vma->vm_next->vm_start, if the new
2168 	 * vm_next->vm_start isn't page aligned and it could previously
2169 	 * contain an hugepage: check if we need to split an huge pmd.
2170 	 */
2171 	if (adjust_next > 0) {
2172 		struct vm_area_struct *next = vma->vm_next;
2173 		unsigned long nstart = next->vm_start;
2174 		nstart += adjust_next << PAGE_SHIFT;
2175 		if (nstart & ~HPAGE_PMD_MASK &&
2176 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2177 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2178 			split_huge_pmd_address(next, nstart, false, NULL);
2179 	}
2180 }
2181 
2182 static void freeze_page(struct page *page)
2183 {
2184 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2185 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2186 	bool unmap_success;
2187 
2188 	VM_BUG_ON_PAGE(!PageHead(page), page);
2189 
2190 	if (PageAnon(page))
2191 		ttu_flags |= TTU_MIGRATION;
2192 
2193 	unmap_success = try_to_unmap(page, ttu_flags);
2194 	VM_BUG_ON_PAGE(!unmap_success, page);
2195 }
2196 
2197 static void unfreeze_page(struct page *page)
2198 {
2199 	int i;
2200 	if (PageTransHuge(page)) {
2201 		remove_migration_ptes(page, page, true);
2202 	} else {
2203 		for (i = 0; i < HPAGE_PMD_NR; i++)
2204 			remove_migration_ptes(page + i, page + i, true);
2205 	}
2206 }
2207 
2208 static void __split_huge_page_tail(struct page *head, int tail,
2209 		struct lruvec *lruvec, struct list_head *list)
2210 {
2211 	struct page *page_tail = head + tail;
2212 
2213 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2214 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2215 
2216 	/*
2217 	 * tail_page->_refcount is zero and not changing from under us. But
2218 	 * get_page_unless_zero() may be running from under us on the
2219 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2220 	 * atomic_add(), we would then run atomic_set() concurrently with
2221 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2222 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2223 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2224 	 * atomic_set() here would be safe on all archs (and not only on x86),
2225 	 * it's safer to use atomic_inc()/atomic_add().
2226 	 */
2227 	if (PageAnon(head) && !PageSwapCache(head)) {
2228 		page_ref_inc(page_tail);
2229 	} else {
2230 		/* Additional pin to radix tree */
2231 		page_ref_add(page_tail, 2);
2232 	}
2233 
2234 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2235 	page_tail->flags |= (head->flags &
2236 			((1L << PG_referenced) |
2237 			 (1L << PG_swapbacked) |
2238 			 (1L << PG_swapcache) |
2239 			 (1L << PG_mlocked) |
2240 			 (1L << PG_uptodate) |
2241 			 (1L << PG_active) |
2242 			 (1L << PG_locked) |
2243 			 (1L << PG_unevictable) |
2244 			 (1L << PG_dirty)));
2245 
2246 	/*
2247 	 * After clearing PageTail the gup refcount can be released.
2248 	 * Page flags also must be visible before we make the page non-compound.
2249 	 */
2250 	smp_wmb();
2251 
2252 	clear_compound_head(page_tail);
2253 
2254 	if (page_is_young(head))
2255 		set_page_young(page_tail);
2256 	if (page_is_idle(head))
2257 		set_page_idle(page_tail);
2258 
2259 	/* ->mapping in first tail page is compound_mapcount */
2260 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2261 			page_tail);
2262 	page_tail->mapping = head->mapping;
2263 
2264 	page_tail->index = head->index + tail;
2265 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2266 	lru_add_page_tail(head, page_tail, lruvec, list);
2267 }
2268 
2269 static void __split_huge_page(struct page *page, struct list_head *list,
2270 		unsigned long flags)
2271 {
2272 	struct page *head = compound_head(page);
2273 	struct zone *zone = page_zone(head);
2274 	struct lruvec *lruvec;
2275 	pgoff_t end = -1;
2276 	int i;
2277 
2278 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2279 
2280 	/* complete memcg works before add pages to LRU */
2281 	mem_cgroup_split_huge_fixup(head);
2282 
2283 	if (!PageAnon(page))
2284 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2285 
2286 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2287 		__split_huge_page_tail(head, i, lruvec, list);
2288 		/* Some pages can be beyond i_size: drop them from page cache */
2289 		if (head[i].index >= end) {
2290 			__ClearPageDirty(head + i);
2291 			__delete_from_page_cache(head + i, NULL);
2292 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2293 				shmem_uncharge(head->mapping->host, 1);
2294 			put_page(head + i);
2295 		}
2296 	}
2297 
2298 	ClearPageCompound(head);
2299 	/* See comment in __split_huge_page_tail() */
2300 	if (PageAnon(head)) {
2301 		/* Additional pin to radix tree of swap cache */
2302 		if (PageSwapCache(head))
2303 			page_ref_add(head, 2);
2304 		else
2305 			page_ref_inc(head);
2306 	} else {
2307 		/* Additional pin to radix tree */
2308 		page_ref_add(head, 2);
2309 		spin_unlock(&head->mapping->tree_lock);
2310 	}
2311 
2312 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2313 
2314 	unfreeze_page(head);
2315 
2316 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2317 		struct page *subpage = head + i;
2318 		if (subpage == page)
2319 			continue;
2320 		unlock_page(subpage);
2321 
2322 		/*
2323 		 * Subpages may be freed if there wasn't any mapping
2324 		 * like if add_to_swap() is running on a lru page that
2325 		 * had its mapping zapped. And freeing these pages
2326 		 * requires taking the lru_lock so we do the put_page
2327 		 * of the tail pages after the split is complete.
2328 		 */
2329 		put_page(subpage);
2330 	}
2331 }
2332 
2333 int total_mapcount(struct page *page)
2334 {
2335 	int i, compound, ret;
2336 
2337 	VM_BUG_ON_PAGE(PageTail(page), page);
2338 
2339 	if (likely(!PageCompound(page)))
2340 		return atomic_read(&page->_mapcount) + 1;
2341 
2342 	compound = compound_mapcount(page);
2343 	if (PageHuge(page))
2344 		return compound;
2345 	ret = compound;
2346 	for (i = 0; i < HPAGE_PMD_NR; i++)
2347 		ret += atomic_read(&page[i]._mapcount) + 1;
2348 	/* File pages has compound_mapcount included in _mapcount */
2349 	if (!PageAnon(page))
2350 		return ret - compound * HPAGE_PMD_NR;
2351 	if (PageDoubleMap(page))
2352 		ret -= HPAGE_PMD_NR;
2353 	return ret;
2354 }
2355 
2356 /*
2357  * This calculates accurately how many mappings a transparent hugepage
2358  * has (unlike page_mapcount() which isn't fully accurate). This full
2359  * accuracy is primarily needed to know if copy-on-write faults can
2360  * reuse the page and change the mapping to read-write instead of
2361  * copying them. At the same time this returns the total_mapcount too.
2362  *
2363  * The function returns the highest mapcount any one of the subpages
2364  * has. If the return value is one, even if different processes are
2365  * mapping different subpages of the transparent hugepage, they can
2366  * all reuse it, because each process is reusing a different subpage.
2367  *
2368  * The total_mapcount is instead counting all virtual mappings of the
2369  * subpages. If the total_mapcount is equal to "one", it tells the
2370  * caller all mappings belong to the same "mm" and in turn the
2371  * anon_vma of the transparent hugepage can become the vma->anon_vma
2372  * local one as no other process may be mapping any of the subpages.
2373  *
2374  * It would be more accurate to replace page_mapcount() with
2375  * page_trans_huge_mapcount(), however we only use
2376  * page_trans_huge_mapcount() in the copy-on-write faults where we
2377  * need full accuracy to avoid breaking page pinning, because
2378  * page_trans_huge_mapcount() is slower than page_mapcount().
2379  */
2380 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2381 {
2382 	int i, ret, _total_mapcount, mapcount;
2383 
2384 	/* hugetlbfs shouldn't call it */
2385 	VM_BUG_ON_PAGE(PageHuge(page), page);
2386 
2387 	if (likely(!PageTransCompound(page))) {
2388 		mapcount = atomic_read(&page->_mapcount) + 1;
2389 		if (total_mapcount)
2390 			*total_mapcount = mapcount;
2391 		return mapcount;
2392 	}
2393 
2394 	page = compound_head(page);
2395 
2396 	_total_mapcount = ret = 0;
2397 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2398 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2399 		ret = max(ret, mapcount);
2400 		_total_mapcount += mapcount;
2401 	}
2402 	if (PageDoubleMap(page)) {
2403 		ret -= 1;
2404 		_total_mapcount -= HPAGE_PMD_NR;
2405 	}
2406 	mapcount = compound_mapcount(page);
2407 	ret += mapcount;
2408 	_total_mapcount += mapcount;
2409 	if (total_mapcount)
2410 		*total_mapcount = _total_mapcount;
2411 	return ret;
2412 }
2413 
2414 /* Racy check whether the huge page can be split */
2415 bool can_split_huge_page(struct page *page, int *pextra_pins)
2416 {
2417 	int extra_pins;
2418 
2419 	/* Additional pins from radix tree */
2420 	if (PageAnon(page))
2421 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2422 	else
2423 		extra_pins = HPAGE_PMD_NR;
2424 	if (pextra_pins)
2425 		*pextra_pins = extra_pins;
2426 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2427 }
2428 
2429 /*
2430  * This function splits huge page into normal pages. @page can point to any
2431  * subpage of huge page to split. Split doesn't change the position of @page.
2432  *
2433  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2434  * The huge page must be locked.
2435  *
2436  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2437  *
2438  * Both head page and tail pages will inherit mapping, flags, and so on from
2439  * the hugepage.
2440  *
2441  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2442  * they are not mapped.
2443  *
2444  * Returns 0 if the hugepage is split successfully.
2445  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2446  * us.
2447  */
2448 int split_huge_page_to_list(struct page *page, struct list_head *list)
2449 {
2450 	struct page *head = compound_head(page);
2451 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2452 	struct anon_vma *anon_vma = NULL;
2453 	struct address_space *mapping = NULL;
2454 	int count, mapcount, extra_pins, ret;
2455 	bool mlocked;
2456 	unsigned long flags;
2457 
2458 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2459 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2460 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2461 
2462 	if (PageAnon(head)) {
2463 		/*
2464 		 * The caller does not necessarily hold an mmap_sem that would
2465 		 * prevent the anon_vma disappearing so we first we take a
2466 		 * reference to it and then lock the anon_vma for write. This
2467 		 * is similar to page_lock_anon_vma_read except the write lock
2468 		 * is taken to serialise against parallel split or collapse
2469 		 * operations.
2470 		 */
2471 		anon_vma = page_get_anon_vma(head);
2472 		if (!anon_vma) {
2473 			ret = -EBUSY;
2474 			goto out;
2475 		}
2476 		mapping = NULL;
2477 		anon_vma_lock_write(anon_vma);
2478 	} else {
2479 		mapping = head->mapping;
2480 
2481 		/* Truncated ? */
2482 		if (!mapping) {
2483 			ret = -EBUSY;
2484 			goto out;
2485 		}
2486 
2487 		anon_vma = NULL;
2488 		i_mmap_lock_read(mapping);
2489 	}
2490 
2491 	/*
2492 	 * Racy check if we can split the page, before freeze_page() will
2493 	 * split PMDs
2494 	 */
2495 	if (!can_split_huge_page(head, &extra_pins)) {
2496 		ret = -EBUSY;
2497 		goto out_unlock;
2498 	}
2499 
2500 	mlocked = PageMlocked(page);
2501 	freeze_page(head);
2502 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2503 
2504 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2505 	if (mlocked)
2506 		lru_add_drain();
2507 
2508 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2509 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2510 
2511 	if (mapping) {
2512 		void **pslot;
2513 
2514 		spin_lock(&mapping->tree_lock);
2515 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2516 				page_index(head));
2517 		/*
2518 		 * Check if the head page is present in radix tree.
2519 		 * We assume all tail are present too, if head is there.
2520 		 */
2521 		if (radix_tree_deref_slot_protected(pslot,
2522 					&mapping->tree_lock) != head)
2523 			goto fail;
2524 	}
2525 
2526 	/* Prevent deferred_split_scan() touching ->_refcount */
2527 	spin_lock(&pgdata->split_queue_lock);
2528 	count = page_count(head);
2529 	mapcount = total_mapcount(head);
2530 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2531 		if (!list_empty(page_deferred_list(head))) {
2532 			pgdata->split_queue_len--;
2533 			list_del(page_deferred_list(head));
2534 		}
2535 		if (mapping)
2536 			__dec_node_page_state(page, NR_SHMEM_THPS);
2537 		spin_unlock(&pgdata->split_queue_lock);
2538 		__split_huge_page(page, list, flags);
2539 		ret = 0;
2540 	} else {
2541 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2542 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2543 					mapcount, count);
2544 			if (PageTail(page))
2545 				dump_page(head, NULL);
2546 			dump_page(page, "total_mapcount(head) > 0");
2547 			BUG();
2548 		}
2549 		spin_unlock(&pgdata->split_queue_lock);
2550 fail:		if (mapping)
2551 			spin_unlock(&mapping->tree_lock);
2552 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2553 		unfreeze_page(head);
2554 		ret = -EBUSY;
2555 	}
2556 
2557 out_unlock:
2558 	if (anon_vma) {
2559 		anon_vma_unlock_write(anon_vma);
2560 		put_anon_vma(anon_vma);
2561 	}
2562 	if (mapping)
2563 		i_mmap_unlock_read(mapping);
2564 out:
2565 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2566 	return ret;
2567 }
2568 
2569 void free_transhuge_page(struct page *page)
2570 {
2571 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2572 	unsigned long flags;
2573 
2574 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2575 	if (!list_empty(page_deferred_list(page))) {
2576 		pgdata->split_queue_len--;
2577 		list_del(page_deferred_list(page));
2578 	}
2579 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2580 	free_compound_page(page);
2581 }
2582 
2583 void deferred_split_huge_page(struct page *page)
2584 {
2585 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2586 	unsigned long flags;
2587 
2588 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2589 
2590 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2591 	if (list_empty(page_deferred_list(page))) {
2592 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2593 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2594 		pgdata->split_queue_len++;
2595 	}
2596 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2597 }
2598 
2599 static unsigned long deferred_split_count(struct shrinker *shrink,
2600 		struct shrink_control *sc)
2601 {
2602 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2603 	return ACCESS_ONCE(pgdata->split_queue_len);
2604 }
2605 
2606 static unsigned long deferred_split_scan(struct shrinker *shrink,
2607 		struct shrink_control *sc)
2608 {
2609 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2610 	unsigned long flags;
2611 	LIST_HEAD(list), *pos, *next;
2612 	struct page *page;
2613 	int split = 0;
2614 
2615 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2616 	/* Take pin on all head pages to avoid freeing them under us */
2617 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2618 		page = list_entry((void *)pos, struct page, mapping);
2619 		page = compound_head(page);
2620 		if (get_page_unless_zero(page)) {
2621 			list_move(page_deferred_list(page), &list);
2622 		} else {
2623 			/* We lost race with put_compound_page() */
2624 			list_del_init(page_deferred_list(page));
2625 			pgdata->split_queue_len--;
2626 		}
2627 		if (!--sc->nr_to_scan)
2628 			break;
2629 	}
2630 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2631 
2632 	list_for_each_safe(pos, next, &list) {
2633 		page = list_entry((void *)pos, struct page, mapping);
2634 		lock_page(page);
2635 		/* split_huge_page() removes page from list on success */
2636 		if (!split_huge_page(page))
2637 			split++;
2638 		unlock_page(page);
2639 		put_page(page);
2640 	}
2641 
2642 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2643 	list_splice_tail(&list, &pgdata->split_queue);
2644 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2645 
2646 	/*
2647 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2648 	 * This can happen if pages were freed under us.
2649 	 */
2650 	if (!split && list_empty(&pgdata->split_queue))
2651 		return SHRINK_STOP;
2652 	return split;
2653 }
2654 
2655 static struct shrinker deferred_split_shrinker = {
2656 	.count_objects = deferred_split_count,
2657 	.scan_objects = deferred_split_scan,
2658 	.seeks = DEFAULT_SEEKS,
2659 	.flags = SHRINKER_NUMA_AWARE,
2660 };
2661 
2662 #ifdef CONFIG_DEBUG_FS
2663 static int split_huge_pages_set(void *data, u64 val)
2664 {
2665 	struct zone *zone;
2666 	struct page *page;
2667 	unsigned long pfn, max_zone_pfn;
2668 	unsigned long total = 0, split = 0;
2669 
2670 	if (val != 1)
2671 		return -EINVAL;
2672 
2673 	for_each_populated_zone(zone) {
2674 		max_zone_pfn = zone_end_pfn(zone);
2675 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2676 			if (!pfn_valid(pfn))
2677 				continue;
2678 
2679 			page = pfn_to_page(pfn);
2680 			if (!get_page_unless_zero(page))
2681 				continue;
2682 
2683 			if (zone != page_zone(page))
2684 				goto next;
2685 
2686 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2687 				goto next;
2688 
2689 			total++;
2690 			lock_page(page);
2691 			if (!split_huge_page(page))
2692 				split++;
2693 			unlock_page(page);
2694 next:
2695 			put_page(page);
2696 		}
2697 	}
2698 
2699 	pr_info("%lu of %lu THP split\n", split, total);
2700 
2701 	return 0;
2702 }
2703 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2704 		"%llu\n");
2705 
2706 static int __init split_huge_pages_debugfs(void)
2707 {
2708 	void *ret;
2709 
2710 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2711 			&split_huge_pages_fops);
2712 	if (!ret)
2713 		pr_warn("Failed to create split_huge_pages in debugfs");
2714 	return 0;
2715 }
2716 late_initcall(split_huge_pages_debugfs);
2717 #endif
2718