1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/kthread.h> 20 #include <linux/khugepaged.h> 21 #include <linux/freezer.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/migrate.h> 25 #include <linux/hashtable.h> 26 27 #include <asm/tlb.h> 28 #include <asm/pgalloc.h> 29 #include "internal.h" 30 31 /* 32 * By default transparent hugepage support is disabled in order that avoid 33 * to risk increase the memory footprint of applications without a guaranteed 34 * benefit. When transparent hugepage support is enabled, is for all mappings, 35 * and khugepaged scans all mappings. 36 * Defrag is invoked by khugepaged hugepage allocations and by page faults 37 * for all hugepage allocations. 38 */ 39 unsigned long transparent_hugepage_flags __read_mostly = 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 42 #endif 43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 45 #endif 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 49 50 /* default scan 8*512 pte (or vmas) every 30 second */ 51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 52 static unsigned int khugepaged_pages_collapsed; 53 static unsigned int khugepaged_full_scans; 54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 55 /* during fragmentation poll the hugepage allocator once every minute */ 56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 57 static struct task_struct *khugepaged_thread __read_mostly; 58 static DEFINE_MUTEX(khugepaged_mutex); 59 static DEFINE_SPINLOCK(khugepaged_mm_lock); 60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 61 /* 62 * default collapse hugepages if there is at least one pte mapped like 63 * it would have happened if the vma was large enough during page 64 * fault. 65 */ 66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 67 68 static int khugepaged(void *none); 69 static int khugepaged_slab_init(void); 70 static void khugepaged_slab_exit(void); 71 72 #define MM_SLOTS_HASH_BITS 10 73 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 74 75 static struct kmem_cache *mm_slot_cache __read_mostly; 76 77 /** 78 * struct mm_slot - hash lookup from mm to mm_slot 79 * @hash: hash collision list 80 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 81 * @mm: the mm that this information is valid for 82 */ 83 struct mm_slot { 84 struct hlist_node hash; 85 struct list_head mm_node; 86 struct mm_struct *mm; 87 }; 88 89 /** 90 * struct khugepaged_scan - cursor for scanning 91 * @mm_head: the head of the mm list to scan 92 * @mm_slot: the current mm_slot we are scanning 93 * @address: the next address inside that to be scanned 94 * 95 * There is only the one khugepaged_scan instance of this cursor structure. 96 */ 97 struct khugepaged_scan { 98 struct list_head mm_head; 99 struct mm_slot *mm_slot; 100 unsigned long address; 101 }; 102 static struct khugepaged_scan khugepaged_scan = { 103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 104 }; 105 106 107 static int set_recommended_min_free_kbytes(void) 108 { 109 struct zone *zone; 110 int nr_zones = 0; 111 unsigned long recommended_min; 112 113 for_each_populated_zone(zone) 114 nr_zones++; 115 116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 117 recommended_min = pageblock_nr_pages * nr_zones * 2; 118 119 /* 120 * Make sure that on average at least two pageblocks are almost free 121 * of another type, one for a migratetype to fall back to and a 122 * second to avoid subsequent fallbacks of other types There are 3 123 * MIGRATE_TYPES we care about. 124 */ 125 recommended_min += pageblock_nr_pages * nr_zones * 126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 127 128 /* don't ever allow to reserve more than 5% of the lowmem */ 129 recommended_min = min(recommended_min, 130 (unsigned long) nr_free_buffer_pages() / 20); 131 recommended_min <<= (PAGE_SHIFT-10); 132 133 if (recommended_min > min_free_kbytes) { 134 if (user_min_free_kbytes >= 0) 135 pr_info("raising min_free_kbytes from %d to %lu " 136 "to help transparent hugepage allocations\n", 137 min_free_kbytes, recommended_min); 138 139 min_free_kbytes = recommended_min; 140 } 141 setup_per_zone_wmarks(); 142 return 0; 143 } 144 145 static int start_stop_khugepaged(void) 146 { 147 int err = 0; 148 if (khugepaged_enabled()) { 149 if (!khugepaged_thread) 150 khugepaged_thread = kthread_run(khugepaged, NULL, 151 "khugepaged"); 152 if (unlikely(IS_ERR(khugepaged_thread))) { 153 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 154 err = PTR_ERR(khugepaged_thread); 155 khugepaged_thread = NULL; 156 goto fail; 157 } 158 159 if (!list_empty(&khugepaged_scan.mm_head)) 160 wake_up_interruptible(&khugepaged_wait); 161 162 set_recommended_min_free_kbytes(); 163 } else if (khugepaged_thread) { 164 kthread_stop(khugepaged_thread); 165 khugepaged_thread = NULL; 166 } 167 fail: 168 return err; 169 } 170 171 static atomic_t huge_zero_refcount; 172 struct page *huge_zero_page __read_mostly; 173 174 static inline bool is_huge_zero_pmd(pmd_t pmd) 175 { 176 return is_huge_zero_page(pmd_page(pmd)); 177 } 178 179 static struct page *get_huge_zero_page(void) 180 { 181 struct page *zero_page; 182 retry: 183 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 184 return READ_ONCE(huge_zero_page); 185 186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 187 HPAGE_PMD_ORDER); 188 if (!zero_page) { 189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 190 return NULL; 191 } 192 count_vm_event(THP_ZERO_PAGE_ALLOC); 193 preempt_disable(); 194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 195 preempt_enable(); 196 __free_pages(zero_page, compound_order(zero_page)); 197 goto retry; 198 } 199 200 /* We take additional reference here. It will be put back by shrinker */ 201 atomic_set(&huge_zero_refcount, 2); 202 preempt_enable(); 203 return READ_ONCE(huge_zero_page); 204 } 205 206 static void put_huge_zero_page(void) 207 { 208 /* 209 * Counter should never go to zero here. Only shrinker can put 210 * last reference. 211 */ 212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 213 } 214 215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 216 struct shrink_control *sc) 217 { 218 /* we can free zero page only if last reference remains */ 219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 220 } 221 222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 223 struct shrink_control *sc) 224 { 225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 226 struct page *zero_page = xchg(&huge_zero_page, NULL); 227 BUG_ON(zero_page == NULL); 228 __free_pages(zero_page, compound_order(zero_page)); 229 return HPAGE_PMD_NR; 230 } 231 232 return 0; 233 } 234 235 static struct shrinker huge_zero_page_shrinker = { 236 .count_objects = shrink_huge_zero_page_count, 237 .scan_objects = shrink_huge_zero_page_scan, 238 .seeks = DEFAULT_SEEKS, 239 }; 240 241 #ifdef CONFIG_SYSFS 242 243 static ssize_t double_flag_show(struct kobject *kobj, 244 struct kobj_attribute *attr, char *buf, 245 enum transparent_hugepage_flag enabled, 246 enum transparent_hugepage_flag req_madv) 247 { 248 if (test_bit(enabled, &transparent_hugepage_flags)) { 249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 250 return sprintf(buf, "[always] madvise never\n"); 251 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 252 return sprintf(buf, "always [madvise] never\n"); 253 else 254 return sprintf(buf, "always madvise [never]\n"); 255 } 256 static ssize_t double_flag_store(struct kobject *kobj, 257 struct kobj_attribute *attr, 258 const char *buf, size_t count, 259 enum transparent_hugepage_flag enabled, 260 enum transparent_hugepage_flag req_madv) 261 { 262 if (!memcmp("always", buf, 263 min(sizeof("always")-1, count))) { 264 set_bit(enabled, &transparent_hugepage_flags); 265 clear_bit(req_madv, &transparent_hugepage_flags); 266 } else if (!memcmp("madvise", buf, 267 min(sizeof("madvise")-1, count))) { 268 clear_bit(enabled, &transparent_hugepage_flags); 269 set_bit(req_madv, &transparent_hugepage_flags); 270 } else if (!memcmp("never", buf, 271 min(sizeof("never")-1, count))) { 272 clear_bit(enabled, &transparent_hugepage_flags); 273 clear_bit(req_madv, &transparent_hugepage_flags); 274 } else 275 return -EINVAL; 276 277 return count; 278 } 279 280 static ssize_t enabled_show(struct kobject *kobj, 281 struct kobj_attribute *attr, char *buf) 282 { 283 return double_flag_show(kobj, attr, buf, 284 TRANSPARENT_HUGEPAGE_FLAG, 285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 286 } 287 static ssize_t enabled_store(struct kobject *kobj, 288 struct kobj_attribute *attr, 289 const char *buf, size_t count) 290 { 291 ssize_t ret; 292 293 ret = double_flag_store(kobj, attr, buf, count, 294 TRANSPARENT_HUGEPAGE_FLAG, 295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 296 297 if (ret > 0) { 298 int err; 299 300 mutex_lock(&khugepaged_mutex); 301 err = start_stop_khugepaged(); 302 mutex_unlock(&khugepaged_mutex); 303 304 if (err) 305 ret = err; 306 } 307 308 return ret; 309 } 310 static struct kobj_attribute enabled_attr = 311 __ATTR(enabled, 0644, enabled_show, enabled_store); 312 313 static ssize_t single_flag_show(struct kobject *kobj, 314 struct kobj_attribute *attr, char *buf, 315 enum transparent_hugepage_flag flag) 316 { 317 return sprintf(buf, "%d\n", 318 !!test_bit(flag, &transparent_hugepage_flags)); 319 } 320 321 static ssize_t single_flag_store(struct kobject *kobj, 322 struct kobj_attribute *attr, 323 const char *buf, size_t count, 324 enum transparent_hugepage_flag flag) 325 { 326 unsigned long value; 327 int ret; 328 329 ret = kstrtoul(buf, 10, &value); 330 if (ret < 0) 331 return ret; 332 if (value > 1) 333 return -EINVAL; 334 335 if (value) 336 set_bit(flag, &transparent_hugepage_flags); 337 else 338 clear_bit(flag, &transparent_hugepage_flags); 339 340 return count; 341 } 342 343 /* 344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 346 * memory just to allocate one more hugepage. 347 */ 348 static ssize_t defrag_show(struct kobject *kobj, 349 struct kobj_attribute *attr, char *buf) 350 { 351 return double_flag_show(kobj, attr, buf, 352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 354 } 355 static ssize_t defrag_store(struct kobject *kobj, 356 struct kobj_attribute *attr, 357 const char *buf, size_t count) 358 { 359 return double_flag_store(kobj, attr, buf, count, 360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 362 } 363 static struct kobj_attribute defrag_attr = 364 __ATTR(defrag, 0644, defrag_show, defrag_store); 365 366 static ssize_t use_zero_page_show(struct kobject *kobj, 367 struct kobj_attribute *attr, char *buf) 368 { 369 return single_flag_show(kobj, attr, buf, 370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 371 } 372 static ssize_t use_zero_page_store(struct kobject *kobj, 373 struct kobj_attribute *attr, const char *buf, size_t count) 374 { 375 return single_flag_store(kobj, attr, buf, count, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static struct kobj_attribute use_zero_page_attr = 379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 380 #ifdef CONFIG_DEBUG_VM 381 static ssize_t debug_cow_show(struct kobject *kobj, 382 struct kobj_attribute *attr, char *buf) 383 { 384 return single_flag_show(kobj, attr, buf, 385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 386 } 387 static ssize_t debug_cow_store(struct kobject *kobj, 388 struct kobj_attribute *attr, 389 const char *buf, size_t count) 390 { 391 return single_flag_store(kobj, attr, buf, count, 392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 393 } 394 static struct kobj_attribute debug_cow_attr = 395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 396 #endif /* CONFIG_DEBUG_VM */ 397 398 static struct attribute *hugepage_attr[] = { 399 &enabled_attr.attr, 400 &defrag_attr.attr, 401 &use_zero_page_attr.attr, 402 #ifdef CONFIG_DEBUG_VM 403 &debug_cow_attr.attr, 404 #endif 405 NULL, 406 }; 407 408 static struct attribute_group hugepage_attr_group = { 409 .attrs = hugepage_attr, 410 }; 411 412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 413 struct kobj_attribute *attr, 414 char *buf) 415 { 416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 417 } 418 419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 420 struct kobj_attribute *attr, 421 const char *buf, size_t count) 422 { 423 unsigned long msecs; 424 int err; 425 426 err = kstrtoul(buf, 10, &msecs); 427 if (err || msecs > UINT_MAX) 428 return -EINVAL; 429 430 khugepaged_scan_sleep_millisecs = msecs; 431 wake_up_interruptible(&khugepaged_wait); 432 433 return count; 434 } 435 static struct kobj_attribute scan_sleep_millisecs_attr = 436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 437 scan_sleep_millisecs_store); 438 439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 440 struct kobj_attribute *attr, 441 char *buf) 442 { 443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 444 } 445 446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 447 struct kobj_attribute *attr, 448 const char *buf, size_t count) 449 { 450 unsigned long msecs; 451 int err; 452 453 err = kstrtoul(buf, 10, &msecs); 454 if (err || msecs > UINT_MAX) 455 return -EINVAL; 456 457 khugepaged_alloc_sleep_millisecs = msecs; 458 wake_up_interruptible(&khugepaged_wait); 459 460 return count; 461 } 462 static struct kobj_attribute alloc_sleep_millisecs_attr = 463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 464 alloc_sleep_millisecs_store); 465 466 static ssize_t pages_to_scan_show(struct kobject *kobj, 467 struct kobj_attribute *attr, 468 char *buf) 469 { 470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 471 } 472 static ssize_t pages_to_scan_store(struct kobject *kobj, 473 struct kobj_attribute *attr, 474 const char *buf, size_t count) 475 { 476 int err; 477 unsigned long pages; 478 479 err = kstrtoul(buf, 10, &pages); 480 if (err || !pages || pages > UINT_MAX) 481 return -EINVAL; 482 483 khugepaged_pages_to_scan = pages; 484 485 return count; 486 } 487 static struct kobj_attribute pages_to_scan_attr = 488 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 489 pages_to_scan_store); 490 491 static ssize_t pages_collapsed_show(struct kobject *kobj, 492 struct kobj_attribute *attr, 493 char *buf) 494 { 495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 496 } 497 static struct kobj_attribute pages_collapsed_attr = 498 __ATTR_RO(pages_collapsed); 499 500 static ssize_t full_scans_show(struct kobject *kobj, 501 struct kobj_attribute *attr, 502 char *buf) 503 { 504 return sprintf(buf, "%u\n", khugepaged_full_scans); 505 } 506 static struct kobj_attribute full_scans_attr = 507 __ATTR_RO(full_scans); 508 509 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 510 struct kobj_attribute *attr, char *buf) 511 { 512 return single_flag_show(kobj, attr, buf, 513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 514 } 515 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 516 struct kobj_attribute *attr, 517 const char *buf, size_t count) 518 { 519 return single_flag_store(kobj, attr, buf, count, 520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 521 } 522 static struct kobj_attribute khugepaged_defrag_attr = 523 __ATTR(defrag, 0644, khugepaged_defrag_show, 524 khugepaged_defrag_store); 525 526 /* 527 * max_ptes_none controls if khugepaged should collapse hugepages over 528 * any unmapped ptes in turn potentially increasing the memory 529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 530 * reduce the available free memory in the system as it 531 * runs. Increasing max_ptes_none will instead potentially reduce the 532 * free memory in the system during the khugepaged scan. 533 */ 534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 535 struct kobj_attribute *attr, 536 char *buf) 537 { 538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 539 } 540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 541 struct kobj_attribute *attr, 542 const char *buf, size_t count) 543 { 544 int err; 545 unsigned long max_ptes_none; 546 547 err = kstrtoul(buf, 10, &max_ptes_none); 548 if (err || max_ptes_none > HPAGE_PMD_NR-1) 549 return -EINVAL; 550 551 khugepaged_max_ptes_none = max_ptes_none; 552 553 return count; 554 } 555 static struct kobj_attribute khugepaged_max_ptes_none_attr = 556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 557 khugepaged_max_ptes_none_store); 558 559 static struct attribute *khugepaged_attr[] = { 560 &khugepaged_defrag_attr.attr, 561 &khugepaged_max_ptes_none_attr.attr, 562 &pages_to_scan_attr.attr, 563 &pages_collapsed_attr.attr, 564 &full_scans_attr.attr, 565 &scan_sleep_millisecs_attr.attr, 566 &alloc_sleep_millisecs_attr.attr, 567 NULL, 568 }; 569 570 static struct attribute_group khugepaged_attr_group = { 571 .attrs = khugepaged_attr, 572 .name = "khugepaged", 573 }; 574 575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 576 { 577 int err; 578 579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 580 if (unlikely(!*hugepage_kobj)) { 581 pr_err("failed to create transparent hugepage kobject\n"); 582 return -ENOMEM; 583 } 584 585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 586 if (err) { 587 pr_err("failed to register transparent hugepage group\n"); 588 goto delete_obj; 589 } 590 591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 592 if (err) { 593 pr_err("failed to register transparent hugepage group\n"); 594 goto remove_hp_group; 595 } 596 597 return 0; 598 599 remove_hp_group: 600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 601 delete_obj: 602 kobject_put(*hugepage_kobj); 603 return err; 604 } 605 606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 607 { 608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 610 kobject_put(hugepage_kobj); 611 } 612 #else 613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 614 { 615 return 0; 616 } 617 618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 619 { 620 } 621 #endif /* CONFIG_SYSFS */ 622 623 static int __init hugepage_init(void) 624 { 625 int err; 626 struct kobject *hugepage_kobj; 627 628 if (!has_transparent_hugepage()) { 629 transparent_hugepage_flags = 0; 630 return -EINVAL; 631 } 632 633 err = hugepage_init_sysfs(&hugepage_kobj); 634 if (err) 635 goto err_sysfs; 636 637 err = khugepaged_slab_init(); 638 if (err) 639 goto err_slab; 640 641 err = register_shrinker(&huge_zero_page_shrinker); 642 if (err) 643 goto err_hzp_shrinker; 644 645 /* 646 * By default disable transparent hugepages on smaller systems, 647 * where the extra memory used could hurt more than TLB overhead 648 * is likely to save. The admin can still enable it through /sys. 649 */ 650 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 651 transparent_hugepage_flags = 0; 652 return 0; 653 } 654 655 err = start_stop_khugepaged(); 656 if (err) 657 goto err_khugepaged; 658 659 return 0; 660 err_khugepaged: 661 unregister_shrinker(&huge_zero_page_shrinker); 662 err_hzp_shrinker: 663 khugepaged_slab_exit(); 664 err_slab: 665 hugepage_exit_sysfs(hugepage_kobj); 666 err_sysfs: 667 return err; 668 } 669 subsys_initcall(hugepage_init); 670 671 static int __init setup_transparent_hugepage(char *str) 672 { 673 int ret = 0; 674 if (!str) 675 goto out; 676 if (!strcmp(str, "always")) { 677 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 678 &transparent_hugepage_flags); 679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 680 &transparent_hugepage_flags); 681 ret = 1; 682 } else if (!strcmp(str, "madvise")) { 683 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 684 &transparent_hugepage_flags); 685 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 686 &transparent_hugepage_flags); 687 ret = 1; 688 } else if (!strcmp(str, "never")) { 689 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 690 &transparent_hugepage_flags); 691 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 692 &transparent_hugepage_flags); 693 ret = 1; 694 } 695 out: 696 if (!ret) 697 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 698 return ret; 699 } 700 __setup("transparent_hugepage=", setup_transparent_hugepage); 701 702 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 703 { 704 if (likely(vma->vm_flags & VM_WRITE)) 705 pmd = pmd_mkwrite(pmd); 706 return pmd; 707 } 708 709 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) 710 { 711 pmd_t entry; 712 entry = mk_pmd(page, prot); 713 entry = pmd_mkhuge(entry); 714 return entry; 715 } 716 717 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 718 struct vm_area_struct *vma, 719 unsigned long haddr, pmd_t *pmd, 720 struct page *page, gfp_t gfp) 721 { 722 struct mem_cgroup *memcg; 723 pgtable_t pgtable; 724 spinlock_t *ptl; 725 726 VM_BUG_ON_PAGE(!PageCompound(page), page); 727 728 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) 729 return VM_FAULT_OOM; 730 731 pgtable = pte_alloc_one(mm, haddr); 732 if (unlikely(!pgtable)) { 733 mem_cgroup_cancel_charge(page, memcg); 734 return VM_FAULT_OOM; 735 } 736 737 clear_huge_page(page, haddr, HPAGE_PMD_NR); 738 /* 739 * The memory barrier inside __SetPageUptodate makes sure that 740 * clear_huge_page writes become visible before the set_pmd_at() 741 * write. 742 */ 743 __SetPageUptodate(page); 744 745 ptl = pmd_lock(mm, pmd); 746 if (unlikely(!pmd_none(*pmd))) { 747 spin_unlock(ptl); 748 mem_cgroup_cancel_charge(page, memcg); 749 put_page(page); 750 pte_free(mm, pgtable); 751 } else { 752 pmd_t entry; 753 entry = mk_huge_pmd(page, vma->vm_page_prot); 754 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 755 page_add_new_anon_rmap(page, vma, haddr); 756 mem_cgroup_commit_charge(page, memcg, false); 757 lru_cache_add_active_or_unevictable(page, vma); 758 pgtable_trans_huge_deposit(mm, pmd, pgtable); 759 set_pmd_at(mm, haddr, pmd, entry); 760 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 761 atomic_long_inc(&mm->nr_ptes); 762 spin_unlock(ptl); 763 } 764 765 return 0; 766 } 767 768 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 769 { 770 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 771 } 772 773 /* Caller must hold page table lock. */ 774 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 775 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 776 struct page *zero_page) 777 { 778 pmd_t entry; 779 if (!pmd_none(*pmd)) 780 return false; 781 entry = mk_pmd(zero_page, vma->vm_page_prot); 782 entry = pmd_mkhuge(entry); 783 pgtable_trans_huge_deposit(mm, pmd, pgtable); 784 set_pmd_at(mm, haddr, pmd, entry); 785 atomic_long_inc(&mm->nr_ptes); 786 return true; 787 } 788 789 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 790 unsigned long address, pmd_t *pmd, 791 unsigned int flags) 792 { 793 gfp_t gfp; 794 struct page *page; 795 unsigned long haddr = address & HPAGE_PMD_MASK; 796 797 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 798 return VM_FAULT_FALLBACK; 799 if (unlikely(anon_vma_prepare(vma))) 800 return VM_FAULT_OOM; 801 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 802 return VM_FAULT_OOM; 803 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) && 804 transparent_hugepage_use_zero_page()) { 805 spinlock_t *ptl; 806 pgtable_t pgtable; 807 struct page *zero_page; 808 bool set; 809 pgtable = pte_alloc_one(mm, haddr); 810 if (unlikely(!pgtable)) 811 return VM_FAULT_OOM; 812 zero_page = get_huge_zero_page(); 813 if (unlikely(!zero_page)) { 814 pte_free(mm, pgtable); 815 count_vm_event(THP_FAULT_FALLBACK); 816 return VM_FAULT_FALLBACK; 817 } 818 ptl = pmd_lock(mm, pmd); 819 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, 820 zero_page); 821 spin_unlock(ptl); 822 if (!set) { 823 pte_free(mm, pgtable); 824 put_huge_zero_page(); 825 } 826 return 0; 827 } 828 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 829 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 830 if (unlikely(!page)) { 831 count_vm_event(THP_FAULT_FALLBACK); 832 return VM_FAULT_FALLBACK; 833 } 834 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) { 835 put_page(page); 836 count_vm_event(THP_FAULT_FALLBACK); 837 return VM_FAULT_FALLBACK; 838 } 839 840 count_vm_event(THP_FAULT_ALLOC); 841 return 0; 842 } 843 844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 845 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 846 struct vm_area_struct *vma) 847 { 848 spinlock_t *dst_ptl, *src_ptl; 849 struct page *src_page; 850 pmd_t pmd; 851 pgtable_t pgtable; 852 int ret; 853 854 ret = -ENOMEM; 855 pgtable = pte_alloc_one(dst_mm, addr); 856 if (unlikely(!pgtable)) 857 goto out; 858 859 dst_ptl = pmd_lock(dst_mm, dst_pmd); 860 src_ptl = pmd_lockptr(src_mm, src_pmd); 861 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 862 863 ret = -EAGAIN; 864 pmd = *src_pmd; 865 if (unlikely(!pmd_trans_huge(pmd))) { 866 pte_free(dst_mm, pgtable); 867 goto out_unlock; 868 } 869 /* 870 * When page table lock is held, the huge zero pmd should not be 871 * under splitting since we don't split the page itself, only pmd to 872 * a page table. 873 */ 874 if (is_huge_zero_pmd(pmd)) { 875 struct page *zero_page; 876 bool set; 877 /* 878 * get_huge_zero_page() will never allocate a new page here, 879 * since we already have a zero page to copy. It just takes a 880 * reference. 881 */ 882 zero_page = get_huge_zero_page(); 883 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 884 zero_page); 885 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ 886 ret = 0; 887 goto out_unlock; 888 } 889 890 if (unlikely(pmd_trans_splitting(pmd))) { 891 /* split huge page running from under us */ 892 spin_unlock(src_ptl); 893 spin_unlock(dst_ptl); 894 pte_free(dst_mm, pgtable); 895 896 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 897 goto out; 898 } 899 src_page = pmd_page(pmd); 900 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 901 get_page(src_page); 902 page_dup_rmap(src_page); 903 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 904 905 pmdp_set_wrprotect(src_mm, addr, src_pmd); 906 pmd = pmd_mkold(pmd_wrprotect(pmd)); 907 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 908 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 909 atomic_long_inc(&dst_mm->nr_ptes); 910 911 ret = 0; 912 out_unlock: 913 spin_unlock(src_ptl); 914 spin_unlock(dst_ptl); 915 out: 916 return ret; 917 } 918 919 void huge_pmd_set_accessed(struct mm_struct *mm, 920 struct vm_area_struct *vma, 921 unsigned long address, 922 pmd_t *pmd, pmd_t orig_pmd, 923 int dirty) 924 { 925 spinlock_t *ptl; 926 pmd_t entry; 927 unsigned long haddr; 928 929 ptl = pmd_lock(mm, pmd); 930 if (unlikely(!pmd_same(*pmd, orig_pmd))) 931 goto unlock; 932 933 entry = pmd_mkyoung(orig_pmd); 934 haddr = address & HPAGE_PMD_MASK; 935 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 936 update_mmu_cache_pmd(vma, address, pmd); 937 938 unlock: 939 spin_unlock(ptl); 940 } 941 942 /* 943 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages 944 * during copy_user_huge_page()'s copy_page_rep(): in the case when 945 * the source page gets split and a tail freed before copy completes. 946 * Called under pmd_lock of checked pmd, so safe from splitting itself. 947 */ 948 static void get_user_huge_page(struct page *page) 949 { 950 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 951 struct page *endpage = page + HPAGE_PMD_NR; 952 953 atomic_add(HPAGE_PMD_NR, &page->_count); 954 while (++page < endpage) 955 get_huge_page_tail(page); 956 } else { 957 get_page(page); 958 } 959 } 960 961 static void put_user_huge_page(struct page *page) 962 { 963 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 964 struct page *endpage = page + HPAGE_PMD_NR; 965 966 while (page < endpage) 967 put_page(page++); 968 } else { 969 put_page(page); 970 } 971 } 972 973 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 974 struct vm_area_struct *vma, 975 unsigned long address, 976 pmd_t *pmd, pmd_t orig_pmd, 977 struct page *page, 978 unsigned long haddr) 979 { 980 struct mem_cgroup *memcg; 981 spinlock_t *ptl; 982 pgtable_t pgtable; 983 pmd_t _pmd; 984 int ret = 0, i; 985 struct page **pages; 986 unsigned long mmun_start; /* For mmu_notifiers */ 987 unsigned long mmun_end; /* For mmu_notifiers */ 988 989 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 990 GFP_KERNEL); 991 if (unlikely(!pages)) { 992 ret |= VM_FAULT_OOM; 993 goto out; 994 } 995 996 for (i = 0; i < HPAGE_PMD_NR; i++) { 997 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 998 __GFP_OTHER_NODE, 999 vma, address, page_to_nid(page)); 1000 if (unlikely(!pages[i] || 1001 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL, 1002 &memcg))) { 1003 if (pages[i]) 1004 put_page(pages[i]); 1005 while (--i >= 0) { 1006 memcg = (void *)page_private(pages[i]); 1007 set_page_private(pages[i], 0); 1008 mem_cgroup_cancel_charge(pages[i], memcg); 1009 put_page(pages[i]); 1010 } 1011 kfree(pages); 1012 ret |= VM_FAULT_OOM; 1013 goto out; 1014 } 1015 set_page_private(pages[i], (unsigned long)memcg); 1016 } 1017 1018 for (i = 0; i < HPAGE_PMD_NR; i++) { 1019 copy_user_highpage(pages[i], page + i, 1020 haddr + PAGE_SIZE * i, vma); 1021 __SetPageUptodate(pages[i]); 1022 cond_resched(); 1023 } 1024 1025 mmun_start = haddr; 1026 mmun_end = haddr + HPAGE_PMD_SIZE; 1027 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1028 1029 ptl = pmd_lock(mm, pmd); 1030 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1031 goto out_free_pages; 1032 VM_BUG_ON_PAGE(!PageHead(page), page); 1033 1034 pmdp_clear_flush_notify(vma, haddr, pmd); 1035 /* leave pmd empty until pte is filled */ 1036 1037 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1038 pmd_populate(mm, &_pmd, pgtable); 1039 1040 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1041 pte_t *pte, entry; 1042 entry = mk_pte(pages[i], vma->vm_page_prot); 1043 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1044 memcg = (void *)page_private(pages[i]); 1045 set_page_private(pages[i], 0); 1046 page_add_new_anon_rmap(pages[i], vma, haddr); 1047 mem_cgroup_commit_charge(pages[i], memcg, false); 1048 lru_cache_add_active_or_unevictable(pages[i], vma); 1049 pte = pte_offset_map(&_pmd, haddr); 1050 VM_BUG_ON(!pte_none(*pte)); 1051 set_pte_at(mm, haddr, pte, entry); 1052 pte_unmap(pte); 1053 } 1054 kfree(pages); 1055 1056 smp_wmb(); /* make pte visible before pmd */ 1057 pmd_populate(mm, pmd, pgtable); 1058 page_remove_rmap(page); 1059 spin_unlock(ptl); 1060 1061 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1062 1063 ret |= VM_FAULT_WRITE; 1064 put_page(page); 1065 1066 out: 1067 return ret; 1068 1069 out_free_pages: 1070 spin_unlock(ptl); 1071 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1072 for (i = 0; i < HPAGE_PMD_NR; i++) { 1073 memcg = (void *)page_private(pages[i]); 1074 set_page_private(pages[i], 0); 1075 mem_cgroup_cancel_charge(pages[i], memcg); 1076 put_page(pages[i]); 1077 } 1078 kfree(pages); 1079 goto out; 1080 } 1081 1082 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1083 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1084 { 1085 spinlock_t *ptl; 1086 int ret = 0; 1087 struct page *page = NULL, *new_page; 1088 struct mem_cgroup *memcg; 1089 unsigned long haddr; 1090 unsigned long mmun_start; /* For mmu_notifiers */ 1091 unsigned long mmun_end; /* For mmu_notifiers */ 1092 gfp_t huge_gfp; /* for allocation and charge */ 1093 1094 ptl = pmd_lockptr(mm, pmd); 1095 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1096 haddr = address & HPAGE_PMD_MASK; 1097 if (is_huge_zero_pmd(orig_pmd)) 1098 goto alloc; 1099 spin_lock(ptl); 1100 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1101 goto out_unlock; 1102 1103 page = pmd_page(orig_pmd); 1104 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1105 if (page_mapcount(page) == 1) { 1106 pmd_t entry; 1107 entry = pmd_mkyoung(orig_pmd); 1108 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1109 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1110 update_mmu_cache_pmd(vma, address, pmd); 1111 ret |= VM_FAULT_WRITE; 1112 goto out_unlock; 1113 } 1114 get_user_huge_page(page); 1115 spin_unlock(ptl); 1116 alloc: 1117 if (transparent_hugepage_enabled(vma) && 1118 !transparent_hugepage_debug_cow()) { 1119 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 1120 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1121 } else 1122 new_page = NULL; 1123 1124 if (unlikely(!new_page)) { 1125 if (!page) { 1126 split_huge_page_pmd(vma, address, pmd); 1127 ret |= VM_FAULT_FALLBACK; 1128 } else { 1129 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1130 pmd, orig_pmd, page, haddr); 1131 if (ret & VM_FAULT_OOM) { 1132 split_huge_page(page); 1133 ret |= VM_FAULT_FALLBACK; 1134 } 1135 put_user_huge_page(page); 1136 } 1137 count_vm_event(THP_FAULT_FALLBACK); 1138 goto out; 1139 } 1140 1141 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) { 1142 put_page(new_page); 1143 if (page) { 1144 split_huge_page(page); 1145 put_user_huge_page(page); 1146 } else 1147 split_huge_page_pmd(vma, address, pmd); 1148 ret |= VM_FAULT_FALLBACK; 1149 count_vm_event(THP_FAULT_FALLBACK); 1150 goto out; 1151 } 1152 1153 count_vm_event(THP_FAULT_ALLOC); 1154 1155 if (!page) 1156 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1157 else 1158 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1159 __SetPageUptodate(new_page); 1160 1161 mmun_start = haddr; 1162 mmun_end = haddr + HPAGE_PMD_SIZE; 1163 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1164 1165 spin_lock(ptl); 1166 if (page) 1167 put_user_huge_page(page); 1168 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1169 spin_unlock(ptl); 1170 mem_cgroup_cancel_charge(new_page, memcg); 1171 put_page(new_page); 1172 goto out_mn; 1173 } else { 1174 pmd_t entry; 1175 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1176 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1177 pmdp_clear_flush_notify(vma, haddr, pmd); 1178 page_add_new_anon_rmap(new_page, vma, haddr); 1179 mem_cgroup_commit_charge(new_page, memcg, false); 1180 lru_cache_add_active_or_unevictable(new_page, vma); 1181 set_pmd_at(mm, haddr, pmd, entry); 1182 update_mmu_cache_pmd(vma, address, pmd); 1183 if (!page) { 1184 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1185 put_huge_zero_page(); 1186 } else { 1187 VM_BUG_ON_PAGE(!PageHead(page), page); 1188 page_remove_rmap(page); 1189 put_page(page); 1190 } 1191 ret |= VM_FAULT_WRITE; 1192 } 1193 spin_unlock(ptl); 1194 out_mn: 1195 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1196 out: 1197 return ret; 1198 out_unlock: 1199 spin_unlock(ptl); 1200 return ret; 1201 } 1202 1203 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1204 unsigned long addr, 1205 pmd_t *pmd, 1206 unsigned int flags) 1207 { 1208 struct mm_struct *mm = vma->vm_mm; 1209 struct page *page = NULL; 1210 1211 assert_spin_locked(pmd_lockptr(mm, pmd)); 1212 1213 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1214 goto out; 1215 1216 /* Avoid dumping huge zero page */ 1217 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1218 return ERR_PTR(-EFAULT); 1219 1220 /* Full NUMA hinting faults to serialise migration in fault paths */ 1221 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1222 goto out; 1223 1224 page = pmd_page(*pmd); 1225 VM_BUG_ON_PAGE(!PageHead(page), page); 1226 if (flags & FOLL_TOUCH) { 1227 pmd_t _pmd; 1228 /* 1229 * We should set the dirty bit only for FOLL_WRITE but 1230 * for now the dirty bit in the pmd is meaningless. 1231 * And if the dirty bit will become meaningful and 1232 * we'll only set it with FOLL_WRITE, an atomic 1233 * set_bit will be required on the pmd to set the 1234 * young bit, instead of the current set_pmd_at. 1235 */ 1236 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1237 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1238 pmd, _pmd, 1)) 1239 update_mmu_cache_pmd(vma, addr, pmd); 1240 } 1241 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) { 1242 if (page->mapping && trylock_page(page)) { 1243 lru_add_drain(); 1244 if (page->mapping) 1245 mlock_vma_page(page); 1246 unlock_page(page); 1247 } 1248 } 1249 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1250 VM_BUG_ON_PAGE(!PageCompound(page), page); 1251 if (flags & FOLL_GET) 1252 get_page_foll(page); 1253 1254 out: 1255 return page; 1256 } 1257 1258 /* NUMA hinting page fault entry point for trans huge pmds */ 1259 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1260 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1261 { 1262 spinlock_t *ptl; 1263 struct anon_vma *anon_vma = NULL; 1264 struct page *page; 1265 unsigned long haddr = addr & HPAGE_PMD_MASK; 1266 int page_nid = -1, this_nid = numa_node_id(); 1267 int target_nid, last_cpupid = -1; 1268 bool page_locked; 1269 bool migrated = false; 1270 bool was_writable; 1271 int flags = 0; 1272 1273 /* A PROT_NONE fault should not end up here */ 1274 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 1275 1276 ptl = pmd_lock(mm, pmdp); 1277 if (unlikely(!pmd_same(pmd, *pmdp))) 1278 goto out_unlock; 1279 1280 /* 1281 * If there are potential migrations, wait for completion and retry 1282 * without disrupting NUMA hinting information. Do not relock and 1283 * check_same as the page may no longer be mapped. 1284 */ 1285 if (unlikely(pmd_trans_migrating(*pmdp))) { 1286 page = pmd_page(*pmdp); 1287 spin_unlock(ptl); 1288 wait_on_page_locked(page); 1289 goto out; 1290 } 1291 1292 page = pmd_page(pmd); 1293 BUG_ON(is_huge_zero_page(page)); 1294 page_nid = page_to_nid(page); 1295 last_cpupid = page_cpupid_last(page); 1296 count_vm_numa_event(NUMA_HINT_FAULTS); 1297 if (page_nid == this_nid) { 1298 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1299 flags |= TNF_FAULT_LOCAL; 1300 } 1301 1302 /* See similar comment in do_numa_page for explanation */ 1303 if (!(vma->vm_flags & VM_WRITE)) 1304 flags |= TNF_NO_GROUP; 1305 1306 /* 1307 * Acquire the page lock to serialise THP migrations but avoid dropping 1308 * page_table_lock if at all possible 1309 */ 1310 page_locked = trylock_page(page); 1311 target_nid = mpol_misplaced(page, vma, haddr); 1312 if (target_nid == -1) { 1313 /* If the page was locked, there are no parallel migrations */ 1314 if (page_locked) 1315 goto clear_pmdnuma; 1316 } 1317 1318 /* Migration could have started since the pmd_trans_migrating check */ 1319 if (!page_locked) { 1320 spin_unlock(ptl); 1321 wait_on_page_locked(page); 1322 page_nid = -1; 1323 goto out; 1324 } 1325 1326 /* 1327 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1328 * to serialises splits 1329 */ 1330 get_page(page); 1331 spin_unlock(ptl); 1332 anon_vma = page_lock_anon_vma_read(page); 1333 1334 /* Confirm the PMD did not change while page_table_lock was released */ 1335 spin_lock(ptl); 1336 if (unlikely(!pmd_same(pmd, *pmdp))) { 1337 unlock_page(page); 1338 put_page(page); 1339 page_nid = -1; 1340 goto out_unlock; 1341 } 1342 1343 /* Bail if we fail to protect against THP splits for any reason */ 1344 if (unlikely(!anon_vma)) { 1345 put_page(page); 1346 page_nid = -1; 1347 goto clear_pmdnuma; 1348 } 1349 1350 /* 1351 * Migrate the THP to the requested node, returns with page unlocked 1352 * and access rights restored. 1353 */ 1354 spin_unlock(ptl); 1355 migrated = migrate_misplaced_transhuge_page(mm, vma, 1356 pmdp, pmd, addr, page, target_nid); 1357 if (migrated) { 1358 flags |= TNF_MIGRATED; 1359 page_nid = target_nid; 1360 } else 1361 flags |= TNF_MIGRATE_FAIL; 1362 1363 goto out; 1364 clear_pmdnuma: 1365 BUG_ON(!PageLocked(page)); 1366 was_writable = pmd_write(pmd); 1367 pmd = pmd_modify(pmd, vma->vm_page_prot); 1368 pmd = pmd_mkyoung(pmd); 1369 if (was_writable) 1370 pmd = pmd_mkwrite(pmd); 1371 set_pmd_at(mm, haddr, pmdp, pmd); 1372 update_mmu_cache_pmd(vma, addr, pmdp); 1373 unlock_page(page); 1374 out_unlock: 1375 spin_unlock(ptl); 1376 1377 out: 1378 if (anon_vma) 1379 page_unlock_anon_vma_read(anon_vma); 1380 1381 if (page_nid != -1) 1382 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); 1383 1384 return 0; 1385 } 1386 1387 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1388 pmd_t *pmd, unsigned long addr) 1389 { 1390 spinlock_t *ptl; 1391 int ret = 0; 1392 1393 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1394 struct page *page; 1395 pgtable_t pgtable; 1396 pmd_t orig_pmd; 1397 /* 1398 * For architectures like ppc64 we look at deposited pgtable 1399 * when calling pmdp_get_and_clear. So do the 1400 * pgtable_trans_huge_withdraw after finishing pmdp related 1401 * operations. 1402 */ 1403 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd, 1404 tlb->fullmm); 1405 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1406 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1407 if (is_huge_zero_pmd(orig_pmd)) { 1408 atomic_long_dec(&tlb->mm->nr_ptes); 1409 spin_unlock(ptl); 1410 put_huge_zero_page(); 1411 } else { 1412 page = pmd_page(orig_pmd); 1413 page_remove_rmap(page); 1414 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1415 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1416 VM_BUG_ON_PAGE(!PageHead(page), page); 1417 atomic_long_dec(&tlb->mm->nr_ptes); 1418 spin_unlock(ptl); 1419 tlb_remove_page(tlb, page); 1420 } 1421 pte_free(tlb->mm, pgtable); 1422 ret = 1; 1423 } 1424 return ret; 1425 } 1426 1427 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1428 unsigned long old_addr, 1429 unsigned long new_addr, unsigned long old_end, 1430 pmd_t *old_pmd, pmd_t *new_pmd) 1431 { 1432 spinlock_t *old_ptl, *new_ptl; 1433 int ret = 0; 1434 pmd_t pmd; 1435 1436 struct mm_struct *mm = vma->vm_mm; 1437 1438 if ((old_addr & ~HPAGE_PMD_MASK) || 1439 (new_addr & ~HPAGE_PMD_MASK) || 1440 old_end - old_addr < HPAGE_PMD_SIZE || 1441 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1442 goto out; 1443 1444 /* 1445 * The destination pmd shouldn't be established, free_pgtables() 1446 * should have release it. 1447 */ 1448 if (WARN_ON(!pmd_none(*new_pmd))) { 1449 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1450 goto out; 1451 } 1452 1453 /* 1454 * We don't have to worry about the ordering of src and dst 1455 * ptlocks because exclusive mmap_sem prevents deadlock. 1456 */ 1457 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); 1458 if (ret == 1) { 1459 new_ptl = pmd_lockptr(mm, new_pmd); 1460 if (new_ptl != old_ptl) 1461 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1462 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); 1463 VM_BUG_ON(!pmd_none(*new_pmd)); 1464 1465 if (pmd_move_must_withdraw(new_ptl, old_ptl)) { 1466 pgtable_t pgtable; 1467 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1468 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1469 } 1470 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1471 if (new_ptl != old_ptl) 1472 spin_unlock(new_ptl); 1473 spin_unlock(old_ptl); 1474 } 1475 out: 1476 return ret; 1477 } 1478 1479 /* 1480 * Returns 1481 * - 0 if PMD could not be locked 1482 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1483 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1484 */ 1485 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1486 unsigned long addr, pgprot_t newprot, int prot_numa) 1487 { 1488 struct mm_struct *mm = vma->vm_mm; 1489 spinlock_t *ptl; 1490 int ret = 0; 1491 1492 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1493 pmd_t entry; 1494 bool preserve_write = prot_numa && pmd_write(*pmd); 1495 ret = 1; 1496 1497 /* 1498 * Avoid trapping faults against the zero page. The read-only 1499 * data is likely to be read-cached on the local CPU and 1500 * local/remote hits to the zero page are not interesting. 1501 */ 1502 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1503 spin_unlock(ptl); 1504 return ret; 1505 } 1506 1507 if (!prot_numa || !pmd_protnone(*pmd)) { 1508 entry = pmdp_get_and_clear_notify(mm, addr, pmd); 1509 entry = pmd_modify(entry, newprot); 1510 if (preserve_write) 1511 entry = pmd_mkwrite(entry); 1512 ret = HPAGE_PMD_NR; 1513 set_pmd_at(mm, addr, pmd, entry); 1514 BUG_ON(!preserve_write && pmd_write(entry)); 1515 } 1516 spin_unlock(ptl); 1517 } 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1524 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1525 * 1526 * Note that if it returns 1, this routine returns without unlocking page 1527 * table locks. So callers must unlock them. 1528 */ 1529 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, 1530 spinlock_t **ptl) 1531 { 1532 *ptl = pmd_lock(vma->vm_mm, pmd); 1533 if (likely(pmd_trans_huge(*pmd))) { 1534 if (unlikely(pmd_trans_splitting(*pmd))) { 1535 spin_unlock(*ptl); 1536 wait_split_huge_page(vma->anon_vma, pmd); 1537 return -1; 1538 } else { 1539 /* Thp mapped by 'pmd' is stable, so we can 1540 * handle it as it is. */ 1541 return 1; 1542 } 1543 } 1544 spin_unlock(*ptl); 1545 return 0; 1546 } 1547 1548 /* 1549 * This function returns whether a given @page is mapped onto the @address 1550 * in the virtual space of @mm. 1551 * 1552 * When it's true, this function returns *pmd with holding the page table lock 1553 * and passing it back to the caller via @ptl. 1554 * If it's false, returns NULL without holding the page table lock. 1555 */ 1556 pmd_t *page_check_address_pmd(struct page *page, 1557 struct mm_struct *mm, 1558 unsigned long address, 1559 enum page_check_address_pmd_flag flag, 1560 spinlock_t **ptl) 1561 { 1562 pgd_t *pgd; 1563 pud_t *pud; 1564 pmd_t *pmd; 1565 1566 if (address & ~HPAGE_PMD_MASK) 1567 return NULL; 1568 1569 pgd = pgd_offset(mm, address); 1570 if (!pgd_present(*pgd)) 1571 return NULL; 1572 pud = pud_offset(pgd, address); 1573 if (!pud_present(*pud)) 1574 return NULL; 1575 pmd = pmd_offset(pud, address); 1576 1577 *ptl = pmd_lock(mm, pmd); 1578 if (!pmd_present(*pmd)) 1579 goto unlock; 1580 if (pmd_page(*pmd) != page) 1581 goto unlock; 1582 /* 1583 * split_vma() may create temporary aliased mappings. There is 1584 * no risk as long as all huge pmd are found and have their 1585 * splitting bit set before __split_huge_page_refcount 1586 * runs. Finding the same huge pmd more than once during the 1587 * same rmap walk is not a problem. 1588 */ 1589 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1590 pmd_trans_splitting(*pmd)) 1591 goto unlock; 1592 if (pmd_trans_huge(*pmd)) { 1593 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1594 !pmd_trans_splitting(*pmd)); 1595 return pmd; 1596 } 1597 unlock: 1598 spin_unlock(*ptl); 1599 return NULL; 1600 } 1601 1602 static int __split_huge_page_splitting(struct page *page, 1603 struct vm_area_struct *vma, 1604 unsigned long address) 1605 { 1606 struct mm_struct *mm = vma->vm_mm; 1607 spinlock_t *ptl; 1608 pmd_t *pmd; 1609 int ret = 0; 1610 /* For mmu_notifiers */ 1611 const unsigned long mmun_start = address; 1612 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1613 1614 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1615 pmd = page_check_address_pmd(page, mm, address, 1616 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); 1617 if (pmd) { 1618 /* 1619 * We can't temporarily set the pmd to null in order 1620 * to split it, the pmd must remain marked huge at all 1621 * times or the VM won't take the pmd_trans_huge paths 1622 * and it won't wait on the anon_vma->root->rwsem to 1623 * serialize against split_huge_page*. 1624 */ 1625 pmdp_splitting_flush(vma, address, pmd); 1626 1627 ret = 1; 1628 spin_unlock(ptl); 1629 } 1630 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1631 1632 return ret; 1633 } 1634 1635 static void __split_huge_page_refcount(struct page *page, 1636 struct list_head *list) 1637 { 1638 int i; 1639 struct zone *zone = page_zone(page); 1640 struct lruvec *lruvec; 1641 int tail_count = 0; 1642 1643 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1644 spin_lock_irq(&zone->lru_lock); 1645 lruvec = mem_cgroup_page_lruvec(page, zone); 1646 1647 compound_lock(page); 1648 /* complete memcg works before add pages to LRU */ 1649 mem_cgroup_split_huge_fixup(page); 1650 1651 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1652 struct page *page_tail = page + i; 1653 1654 /* tail_page->_mapcount cannot change */ 1655 BUG_ON(page_mapcount(page_tail) < 0); 1656 tail_count += page_mapcount(page_tail); 1657 /* check for overflow */ 1658 BUG_ON(tail_count < 0); 1659 BUG_ON(atomic_read(&page_tail->_count) != 0); 1660 /* 1661 * tail_page->_count is zero and not changing from 1662 * under us. But get_page_unless_zero() may be running 1663 * from under us on the tail_page. If we used 1664 * atomic_set() below instead of atomic_add(), we 1665 * would then run atomic_set() concurrently with 1666 * get_page_unless_zero(), and atomic_set() is 1667 * implemented in C not using locked ops. spin_unlock 1668 * on x86 sometime uses locked ops because of PPro 1669 * errata 66, 92, so unless somebody can guarantee 1670 * atomic_set() here would be safe on all archs (and 1671 * not only on x86), it's safer to use atomic_add(). 1672 */ 1673 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1674 &page_tail->_count); 1675 1676 /* after clearing PageTail the gup refcount can be released */ 1677 smp_mb__after_atomic(); 1678 1679 /* 1680 * retain hwpoison flag of the poisoned tail page: 1681 * fix for the unsuitable process killed on Guest Machine(KVM) 1682 * by the memory-failure. 1683 */ 1684 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1685 page_tail->flags |= (page->flags & 1686 ((1L << PG_referenced) | 1687 (1L << PG_swapbacked) | 1688 (1L << PG_mlocked) | 1689 (1L << PG_uptodate) | 1690 (1L << PG_active) | 1691 (1L << PG_unevictable))); 1692 page_tail->flags |= (1L << PG_dirty); 1693 1694 /* clear PageTail before overwriting first_page */ 1695 smp_wmb(); 1696 1697 /* 1698 * __split_huge_page_splitting() already set the 1699 * splitting bit in all pmd that could map this 1700 * hugepage, that will ensure no CPU can alter the 1701 * mapcount on the head page. The mapcount is only 1702 * accounted in the head page and it has to be 1703 * transferred to all tail pages in the below code. So 1704 * for this code to be safe, the split the mapcount 1705 * can't change. But that doesn't mean userland can't 1706 * keep changing and reading the page contents while 1707 * we transfer the mapcount, so the pmd splitting 1708 * status is achieved setting a reserved bit in the 1709 * pmd, not by clearing the present bit. 1710 */ 1711 page_tail->_mapcount = page->_mapcount; 1712 1713 BUG_ON(page_tail->mapping); 1714 page_tail->mapping = page->mapping; 1715 1716 page_tail->index = page->index + i; 1717 page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); 1718 1719 BUG_ON(!PageAnon(page_tail)); 1720 BUG_ON(!PageUptodate(page_tail)); 1721 BUG_ON(!PageDirty(page_tail)); 1722 BUG_ON(!PageSwapBacked(page_tail)); 1723 1724 lru_add_page_tail(page, page_tail, lruvec, list); 1725 } 1726 atomic_sub(tail_count, &page->_count); 1727 BUG_ON(atomic_read(&page->_count) <= 0); 1728 1729 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1730 1731 ClearPageCompound(page); 1732 compound_unlock(page); 1733 spin_unlock_irq(&zone->lru_lock); 1734 1735 for (i = 1; i < HPAGE_PMD_NR; i++) { 1736 struct page *page_tail = page + i; 1737 BUG_ON(page_count(page_tail) <= 0); 1738 /* 1739 * Tail pages may be freed if there wasn't any mapping 1740 * like if add_to_swap() is running on a lru page that 1741 * had its mapping zapped. And freeing these pages 1742 * requires taking the lru_lock so we do the put_page 1743 * of the tail pages after the split is complete. 1744 */ 1745 put_page(page_tail); 1746 } 1747 1748 /* 1749 * Only the head page (now become a regular page) is required 1750 * to be pinned by the caller. 1751 */ 1752 BUG_ON(page_count(page) <= 0); 1753 } 1754 1755 static int __split_huge_page_map(struct page *page, 1756 struct vm_area_struct *vma, 1757 unsigned long address) 1758 { 1759 struct mm_struct *mm = vma->vm_mm; 1760 spinlock_t *ptl; 1761 pmd_t *pmd, _pmd; 1762 int ret = 0, i; 1763 pgtable_t pgtable; 1764 unsigned long haddr; 1765 1766 pmd = page_check_address_pmd(page, mm, address, 1767 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); 1768 if (pmd) { 1769 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1770 pmd_populate(mm, &_pmd, pgtable); 1771 if (pmd_write(*pmd)) 1772 BUG_ON(page_mapcount(page) != 1); 1773 1774 haddr = address; 1775 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1776 pte_t *pte, entry; 1777 BUG_ON(PageCompound(page+i)); 1778 /* 1779 * Note that NUMA hinting access restrictions are not 1780 * transferred to avoid any possibility of altering 1781 * permissions across VMAs. 1782 */ 1783 entry = mk_pte(page + i, vma->vm_page_prot); 1784 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1785 if (!pmd_write(*pmd)) 1786 entry = pte_wrprotect(entry); 1787 if (!pmd_young(*pmd)) 1788 entry = pte_mkold(entry); 1789 pte = pte_offset_map(&_pmd, haddr); 1790 BUG_ON(!pte_none(*pte)); 1791 set_pte_at(mm, haddr, pte, entry); 1792 pte_unmap(pte); 1793 } 1794 1795 smp_wmb(); /* make pte visible before pmd */ 1796 /* 1797 * Up to this point the pmd is present and huge and 1798 * userland has the whole access to the hugepage 1799 * during the split (which happens in place). If we 1800 * overwrite the pmd with the not-huge version 1801 * pointing to the pte here (which of course we could 1802 * if all CPUs were bug free), userland could trigger 1803 * a small page size TLB miss on the small sized TLB 1804 * while the hugepage TLB entry is still established 1805 * in the huge TLB. Some CPU doesn't like that. See 1806 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1807 * Erratum 383 on page 93. Intel should be safe but is 1808 * also warns that it's only safe if the permission 1809 * and cache attributes of the two entries loaded in 1810 * the two TLB is identical (which should be the case 1811 * here). But it is generally safer to never allow 1812 * small and huge TLB entries for the same virtual 1813 * address to be loaded simultaneously. So instead of 1814 * doing "pmd_populate(); flush_tlb_range();" we first 1815 * mark the current pmd notpresent (atomically because 1816 * here the pmd_trans_huge and pmd_trans_splitting 1817 * must remain set at all times on the pmd until the 1818 * split is complete for this pmd), then we flush the 1819 * SMP TLB and finally we write the non-huge version 1820 * of the pmd entry with pmd_populate. 1821 */ 1822 pmdp_invalidate(vma, address, pmd); 1823 pmd_populate(mm, pmd, pgtable); 1824 ret = 1; 1825 spin_unlock(ptl); 1826 } 1827 1828 return ret; 1829 } 1830 1831 /* must be called with anon_vma->root->rwsem held */ 1832 static void __split_huge_page(struct page *page, 1833 struct anon_vma *anon_vma, 1834 struct list_head *list) 1835 { 1836 int mapcount, mapcount2; 1837 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1838 struct anon_vma_chain *avc; 1839 1840 BUG_ON(!PageHead(page)); 1841 BUG_ON(PageTail(page)); 1842 1843 mapcount = 0; 1844 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1845 struct vm_area_struct *vma = avc->vma; 1846 unsigned long addr = vma_address(page, vma); 1847 BUG_ON(is_vma_temporary_stack(vma)); 1848 mapcount += __split_huge_page_splitting(page, vma, addr); 1849 } 1850 /* 1851 * It is critical that new vmas are added to the tail of the 1852 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1853 * and establishes a child pmd before 1854 * __split_huge_page_splitting() freezes the parent pmd (so if 1855 * we fail to prevent copy_huge_pmd() from running until the 1856 * whole __split_huge_page() is complete), we will still see 1857 * the newly established pmd of the child later during the 1858 * walk, to be able to set it as pmd_trans_splitting too. 1859 */ 1860 if (mapcount != page_mapcount(page)) { 1861 pr_err("mapcount %d page_mapcount %d\n", 1862 mapcount, page_mapcount(page)); 1863 BUG(); 1864 } 1865 1866 __split_huge_page_refcount(page, list); 1867 1868 mapcount2 = 0; 1869 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1870 struct vm_area_struct *vma = avc->vma; 1871 unsigned long addr = vma_address(page, vma); 1872 BUG_ON(is_vma_temporary_stack(vma)); 1873 mapcount2 += __split_huge_page_map(page, vma, addr); 1874 } 1875 if (mapcount != mapcount2) { 1876 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", 1877 mapcount, mapcount2, page_mapcount(page)); 1878 BUG(); 1879 } 1880 } 1881 1882 /* 1883 * Split a hugepage into normal pages. This doesn't change the position of head 1884 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1885 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1886 * from the hugepage. 1887 * Return 0 if the hugepage is split successfully otherwise return 1. 1888 */ 1889 int split_huge_page_to_list(struct page *page, struct list_head *list) 1890 { 1891 struct anon_vma *anon_vma; 1892 int ret = 1; 1893 1894 BUG_ON(is_huge_zero_page(page)); 1895 BUG_ON(!PageAnon(page)); 1896 1897 /* 1898 * The caller does not necessarily hold an mmap_sem that would prevent 1899 * the anon_vma disappearing so we first we take a reference to it 1900 * and then lock the anon_vma for write. This is similar to 1901 * page_lock_anon_vma_read except the write lock is taken to serialise 1902 * against parallel split or collapse operations. 1903 */ 1904 anon_vma = page_get_anon_vma(page); 1905 if (!anon_vma) 1906 goto out; 1907 anon_vma_lock_write(anon_vma); 1908 1909 ret = 0; 1910 if (!PageCompound(page)) 1911 goto out_unlock; 1912 1913 BUG_ON(!PageSwapBacked(page)); 1914 __split_huge_page(page, anon_vma, list); 1915 count_vm_event(THP_SPLIT); 1916 1917 BUG_ON(PageCompound(page)); 1918 out_unlock: 1919 anon_vma_unlock_write(anon_vma); 1920 put_anon_vma(anon_vma); 1921 out: 1922 return ret; 1923 } 1924 1925 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) 1926 1927 int hugepage_madvise(struct vm_area_struct *vma, 1928 unsigned long *vm_flags, int advice) 1929 { 1930 switch (advice) { 1931 case MADV_HUGEPAGE: 1932 #ifdef CONFIG_S390 1933 /* 1934 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 1935 * can't handle this properly after s390_enable_sie, so we simply 1936 * ignore the madvise to prevent qemu from causing a SIGSEGV. 1937 */ 1938 if (mm_has_pgste(vma->vm_mm)) 1939 return 0; 1940 #endif 1941 /* 1942 * Be somewhat over-protective like KSM for now! 1943 */ 1944 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1945 return -EINVAL; 1946 *vm_flags &= ~VM_NOHUGEPAGE; 1947 *vm_flags |= VM_HUGEPAGE; 1948 /* 1949 * If the vma become good for khugepaged to scan, 1950 * register it here without waiting a page fault that 1951 * may not happen any time soon. 1952 */ 1953 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags))) 1954 return -ENOMEM; 1955 break; 1956 case MADV_NOHUGEPAGE: 1957 /* 1958 * Be somewhat over-protective like KSM for now! 1959 */ 1960 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1961 return -EINVAL; 1962 *vm_flags &= ~VM_HUGEPAGE; 1963 *vm_flags |= VM_NOHUGEPAGE; 1964 /* 1965 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1966 * this vma even if we leave the mm registered in khugepaged if 1967 * it got registered before VM_NOHUGEPAGE was set. 1968 */ 1969 break; 1970 } 1971 1972 return 0; 1973 } 1974 1975 static int __init khugepaged_slab_init(void) 1976 { 1977 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1978 sizeof(struct mm_slot), 1979 __alignof__(struct mm_slot), 0, NULL); 1980 if (!mm_slot_cache) 1981 return -ENOMEM; 1982 1983 return 0; 1984 } 1985 1986 static void __init khugepaged_slab_exit(void) 1987 { 1988 kmem_cache_destroy(mm_slot_cache); 1989 } 1990 1991 static inline struct mm_slot *alloc_mm_slot(void) 1992 { 1993 if (!mm_slot_cache) /* initialization failed */ 1994 return NULL; 1995 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1996 } 1997 1998 static inline void free_mm_slot(struct mm_slot *mm_slot) 1999 { 2000 kmem_cache_free(mm_slot_cache, mm_slot); 2001 } 2002 2003 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 2004 { 2005 struct mm_slot *mm_slot; 2006 2007 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 2008 if (mm == mm_slot->mm) 2009 return mm_slot; 2010 2011 return NULL; 2012 } 2013 2014 static void insert_to_mm_slots_hash(struct mm_struct *mm, 2015 struct mm_slot *mm_slot) 2016 { 2017 mm_slot->mm = mm; 2018 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 2019 } 2020 2021 static inline int khugepaged_test_exit(struct mm_struct *mm) 2022 { 2023 return atomic_read(&mm->mm_users) == 0; 2024 } 2025 2026 int __khugepaged_enter(struct mm_struct *mm) 2027 { 2028 struct mm_slot *mm_slot; 2029 int wakeup; 2030 2031 mm_slot = alloc_mm_slot(); 2032 if (!mm_slot) 2033 return -ENOMEM; 2034 2035 /* __khugepaged_exit() must not run from under us */ 2036 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 2037 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 2038 free_mm_slot(mm_slot); 2039 return 0; 2040 } 2041 2042 spin_lock(&khugepaged_mm_lock); 2043 insert_to_mm_slots_hash(mm, mm_slot); 2044 /* 2045 * Insert just behind the scanning cursor, to let the area settle 2046 * down a little. 2047 */ 2048 wakeup = list_empty(&khugepaged_scan.mm_head); 2049 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 2050 spin_unlock(&khugepaged_mm_lock); 2051 2052 atomic_inc(&mm->mm_count); 2053 if (wakeup) 2054 wake_up_interruptible(&khugepaged_wait); 2055 2056 return 0; 2057 } 2058 2059 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 2060 unsigned long vm_flags) 2061 { 2062 unsigned long hstart, hend; 2063 if (!vma->anon_vma) 2064 /* 2065 * Not yet faulted in so we will register later in the 2066 * page fault if needed. 2067 */ 2068 return 0; 2069 if (vma->vm_ops) 2070 /* khugepaged not yet working on file or special mappings */ 2071 return 0; 2072 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma); 2073 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2074 hend = vma->vm_end & HPAGE_PMD_MASK; 2075 if (hstart < hend) 2076 return khugepaged_enter(vma, vm_flags); 2077 return 0; 2078 } 2079 2080 void __khugepaged_exit(struct mm_struct *mm) 2081 { 2082 struct mm_slot *mm_slot; 2083 int free = 0; 2084 2085 spin_lock(&khugepaged_mm_lock); 2086 mm_slot = get_mm_slot(mm); 2087 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 2088 hash_del(&mm_slot->hash); 2089 list_del(&mm_slot->mm_node); 2090 free = 1; 2091 } 2092 spin_unlock(&khugepaged_mm_lock); 2093 2094 if (free) { 2095 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2096 free_mm_slot(mm_slot); 2097 mmdrop(mm); 2098 } else if (mm_slot) { 2099 /* 2100 * This is required to serialize against 2101 * khugepaged_test_exit() (which is guaranteed to run 2102 * under mmap sem read mode). Stop here (after we 2103 * return all pagetables will be destroyed) until 2104 * khugepaged has finished working on the pagetables 2105 * under the mmap_sem. 2106 */ 2107 down_write(&mm->mmap_sem); 2108 up_write(&mm->mmap_sem); 2109 } 2110 } 2111 2112 static void release_pte_page(struct page *page) 2113 { 2114 /* 0 stands for page_is_file_cache(page) == false */ 2115 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2116 unlock_page(page); 2117 putback_lru_page(page); 2118 } 2119 2120 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2121 { 2122 while (--_pte >= pte) { 2123 pte_t pteval = *_pte; 2124 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) 2125 release_pte_page(pte_page(pteval)); 2126 } 2127 } 2128 2129 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2130 unsigned long address, 2131 pte_t *pte) 2132 { 2133 struct page *page; 2134 pte_t *_pte; 2135 int none_or_zero = 0; 2136 bool referenced = false, writable = false; 2137 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2138 _pte++, address += PAGE_SIZE) { 2139 pte_t pteval = *_pte; 2140 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2141 if (++none_or_zero <= khugepaged_max_ptes_none) 2142 continue; 2143 else 2144 goto out; 2145 } 2146 if (!pte_present(pteval)) 2147 goto out; 2148 page = vm_normal_page(vma, address, pteval); 2149 if (unlikely(!page)) 2150 goto out; 2151 2152 VM_BUG_ON_PAGE(PageCompound(page), page); 2153 VM_BUG_ON_PAGE(!PageAnon(page), page); 2154 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2155 2156 /* 2157 * We can do it before isolate_lru_page because the 2158 * page can't be freed from under us. NOTE: PG_lock 2159 * is needed to serialize against split_huge_page 2160 * when invoked from the VM. 2161 */ 2162 if (!trylock_page(page)) 2163 goto out; 2164 2165 /* 2166 * cannot use mapcount: can't collapse if there's a gup pin. 2167 * The page must only be referenced by the scanned process 2168 * and page swap cache. 2169 */ 2170 if (page_count(page) != 1 + !!PageSwapCache(page)) { 2171 unlock_page(page); 2172 goto out; 2173 } 2174 if (pte_write(pteval)) { 2175 writable = true; 2176 } else { 2177 if (PageSwapCache(page) && !reuse_swap_page(page)) { 2178 unlock_page(page); 2179 goto out; 2180 } 2181 /* 2182 * Page is not in the swap cache. It can be collapsed 2183 * into a THP. 2184 */ 2185 } 2186 2187 /* 2188 * Isolate the page to avoid collapsing an hugepage 2189 * currently in use by the VM. 2190 */ 2191 if (isolate_lru_page(page)) { 2192 unlock_page(page); 2193 goto out; 2194 } 2195 /* 0 stands for page_is_file_cache(page) == false */ 2196 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2197 VM_BUG_ON_PAGE(!PageLocked(page), page); 2198 VM_BUG_ON_PAGE(PageLRU(page), page); 2199 2200 /* If there is no mapped pte young don't collapse the page */ 2201 if (pte_young(pteval) || PageReferenced(page) || 2202 mmu_notifier_test_young(vma->vm_mm, address)) 2203 referenced = true; 2204 } 2205 if (likely(referenced && writable)) 2206 return 1; 2207 out: 2208 release_pte_pages(pte, _pte); 2209 return 0; 2210 } 2211 2212 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2213 struct vm_area_struct *vma, 2214 unsigned long address, 2215 spinlock_t *ptl) 2216 { 2217 pte_t *_pte; 2218 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2219 pte_t pteval = *_pte; 2220 struct page *src_page; 2221 2222 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2223 clear_user_highpage(page, address); 2224 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2225 if (is_zero_pfn(pte_pfn(pteval))) { 2226 /* 2227 * ptl mostly unnecessary. 2228 */ 2229 spin_lock(ptl); 2230 /* 2231 * paravirt calls inside pte_clear here are 2232 * superfluous. 2233 */ 2234 pte_clear(vma->vm_mm, address, _pte); 2235 spin_unlock(ptl); 2236 } 2237 } else { 2238 src_page = pte_page(pteval); 2239 copy_user_highpage(page, src_page, address, vma); 2240 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); 2241 release_pte_page(src_page); 2242 /* 2243 * ptl mostly unnecessary, but preempt has to 2244 * be disabled to update the per-cpu stats 2245 * inside page_remove_rmap(). 2246 */ 2247 spin_lock(ptl); 2248 /* 2249 * paravirt calls inside pte_clear here are 2250 * superfluous. 2251 */ 2252 pte_clear(vma->vm_mm, address, _pte); 2253 page_remove_rmap(src_page); 2254 spin_unlock(ptl); 2255 free_page_and_swap_cache(src_page); 2256 } 2257 2258 address += PAGE_SIZE; 2259 page++; 2260 } 2261 } 2262 2263 static void khugepaged_alloc_sleep(void) 2264 { 2265 wait_event_freezable_timeout(khugepaged_wait, false, 2266 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2267 } 2268 2269 static int khugepaged_node_load[MAX_NUMNODES]; 2270 2271 static bool khugepaged_scan_abort(int nid) 2272 { 2273 int i; 2274 2275 /* 2276 * If zone_reclaim_mode is disabled, then no extra effort is made to 2277 * allocate memory locally. 2278 */ 2279 if (!zone_reclaim_mode) 2280 return false; 2281 2282 /* If there is a count for this node already, it must be acceptable */ 2283 if (khugepaged_node_load[nid]) 2284 return false; 2285 2286 for (i = 0; i < MAX_NUMNODES; i++) { 2287 if (!khugepaged_node_load[i]) 2288 continue; 2289 if (node_distance(nid, i) > RECLAIM_DISTANCE) 2290 return true; 2291 } 2292 return false; 2293 } 2294 2295 #ifdef CONFIG_NUMA 2296 static int khugepaged_find_target_node(void) 2297 { 2298 static int last_khugepaged_target_node = NUMA_NO_NODE; 2299 int nid, target_node = 0, max_value = 0; 2300 2301 /* find first node with max normal pages hit */ 2302 for (nid = 0; nid < MAX_NUMNODES; nid++) 2303 if (khugepaged_node_load[nid] > max_value) { 2304 max_value = khugepaged_node_load[nid]; 2305 target_node = nid; 2306 } 2307 2308 /* do some balance if several nodes have the same hit record */ 2309 if (target_node <= last_khugepaged_target_node) 2310 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 2311 nid++) 2312 if (max_value == khugepaged_node_load[nid]) { 2313 target_node = nid; 2314 break; 2315 } 2316 2317 last_khugepaged_target_node = target_node; 2318 return target_node; 2319 } 2320 2321 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2322 { 2323 if (IS_ERR(*hpage)) { 2324 if (!*wait) 2325 return false; 2326 2327 *wait = false; 2328 *hpage = NULL; 2329 khugepaged_alloc_sleep(); 2330 } else if (*hpage) { 2331 put_page(*hpage); 2332 *hpage = NULL; 2333 } 2334 2335 return true; 2336 } 2337 2338 static struct page * 2339 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, 2340 struct vm_area_struct *vma, unsigned long address, 2341 int node) 2342 { 2343 VM_BUG_ON_PAGE(*hpage, *hpage); 2344 2345 /* 2346 * Before allocating the hugepage, release the mmap_sem read lock. 2347 * The allocation can take potentially a long time if it involves 2348 * sync compaction, and we do not need to hold the mmap_sem during 2349 * that. We will recheck the vma after taking it again in write mode. 2350 */ 2351 up_read(&mm->mmap_sem); 2352 2353 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER); 2354 if (unlikely(!*hpage)) { 2355 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2356 *hpage = ERR_PTR(-ENOMEM); 2357 return NULL; 2358 } 2359 2360 count_vm_event(THP_COLLAPSE_ALLOC); 2361 return *hpage; 2362 } 2363 #else 2364 static int khugepaged_find_target_node(void) 2365 { 2366 return 0; 2367 } 2368 2369 static inline struct page *alloc_hugepage(int defrag) 2370 { 2371 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 2372 HPAGE_PMD_ORDER); 2373 } 2374 2375 static struct page *khugepaged_alloc_hugepage(bool *wait) 2376 { 2377 struct page *hpage; 2378 2379 do { 2380 hpage = alloc_hugepage(khugepaged_defrag()); 2381 if (!hpage) { 2382 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2383 if (!*wait) 2384 return NULL; 2385 2386 *wait = false; 2387 khugepaged_alloc_sleep(); 2388 } else 2389 count_vm_event(THP_COLLAPSE_ALLOC); 2390 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2391 2392 return hpage; 2393 } 2394 2395 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2396 { 2397 if (!*hpage) 2398 *hpage = khugepaged_alloc_hugepage(wait); 2399 2400 if (unlikely(!*hpage)) 2401 return false; 2402 2403 return true; 2404 } 2405 2406 static struct page * 2407 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, 2408 struct vm_area_struct *vma, unsigned long address, 2409 int node) 2410 { 2411 up_read(&mm->mmap_sem); 2412 VM_BUG_ON(!*hpage); 2413 2414 return *hpage; 2415 } 2416 #endif 2417 2418 static bool hugepage_vma_check(struct vm_area_struct *vma) 2419 { 2420 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2421 (vma->vm_flags & VM_NOHUGEPAGE)) 2422 return false; 2423 2424 if (!vma->anon_vma || vma->vm_ops) 2425 return false; 2426 if (is_vma_temporary_stack(vma)) 2427 return false; 2428 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma); 2429 return true; 2430 } 2431 2432 static void collapse_huge_page(struct mm_struct *mm, 2433 unsigned long address, 2434 struct page **hpage, 2435 struct vm_area_struct *vma, 2436 int node) 2437 { 2438 pmd_t *pmd, _pmd; 2439 pte_t *pte; 2440 pgtable_t pgtable; 2441 struct page *new_page; 2442 spinlock_t *pmd_ptl, *pte_ptl; 2443 int isolated; 2444 unsigned long hstart, hend; 2445 struct mem_cgroup *memcg; 2446 unsigned long mmun_start; /* For mmu_notifiers */ 2447 unsigned long mmun_end; /* For mmu_notifiers */ 2448 gfp_t gfp; 2449 2450 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2451 2452 /* Only allocate from the target node */ 2453 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) | 2454 __GFP_THISNODE; 2455 2456 /* release the mmap_sem read lock. */ 2457 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node); 2458 if (!new_page) 2459 return; 2460 2461 if (unlikely(mem_cgroup_try_charge(new_page, mm, 2462 gfp, &memcg))) 2463 return; 2464 2465 /* 2466 * Prevent all access to pagetables with the exception of 2467 * gup_fast later hanlded by the ptep_clear_flush and the VM 2468 * handled by the anon_vma lock + PG_lock. 2469 */ 2470 down_write(&mm->mmap_sem); 2471 if (unlikely(khugepaged_test_exit(mm))) 2472 goto out; 2473 2474 vma = find_vma(mm, address); 2475 if (!vma) 2476 goto out; 2477 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2478 hend = vma->vm_end & HPAGE_PMD_MASK; 2479 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2480 goto out; 2481 if (!hugepage_vma_check(vma)) 2482 goto out; 2483 pmd = mm_find_pmd(mm, address); 2484 if (!pmd) 2485 goto out; 2486 2487 anon_vma_lock_write(vma->anon_vma); 2488 2489 pte = pte_offset_map(pmd, address); 2490 pte_ptl = pte_lockptr(mm, pmd); 2491 2492 mmun_start = address; 2493 mmun_end = address + HPAGE_PMD_SIZE; 2494 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2495 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 2496 /* 2497 * After this gup_fast can't run anymore. This also removes 2498 * any huge TLB entry from the CPU so we won't allow 2499 * huge and small TLB entries for the same virtual address 2500 * to avoid the risk of CPU bugs in that area. 2501 */ 2502 _pmd = pmdp_clear_flush(vma, address, pmd); 2503 spin_unlock(pmd_ptl); 2504 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2505 2506 spin_lock(pte_ptl); 2507 isolated = __collapse_huge_page_isolate(vma, address, pte); 2508 spin_unlock(pte_ptl); 2509 2510 if (unlikely(!isolated)) { 2511 pte_unmap(pte); 2512 spin_lock(pmd_ptl); 2513 BUG_ON(!pmd_none(*pmd)); 2514 /* 2515 * We can only use set_pmd_at when establishing 2516 * hugepmds and never for establishing regular pmds that 2517 * points to regular pagetables. Use pmd_populate for that 2518 */ 2519 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2520 spin_unlock(pmd_ptl); 2521 anon_vma_unlock_write(vma->anon_vma); 2522 goto out; 2523 } 2524 2525 /* 2526 * All pages are isolated and locked so anon_vma rmap 2527 * can't run anymore. 2528 */ 2529 anon_vma_unlock_write(vma->anon_vma); 2530 2531 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); 2532 pte_unmap(pte); 2533 __SetPageUptodate(new_page); 2534 pgtable = pmd_pgtable(_pmd); 2535 2536 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 2537 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 2538 2539 /* 2540 * spin_lock() below is not the equivalent of smp_wmb(), so 2541 * this is needed to avoid the copy_huge_page writes to become 2542 * visible after the set_pmd_at() write. 2543 */ 2544 smp_wmb(); 2545 2546 spin_lock(pmd_ptl); 2547 BUG_ON(!pmd_none(*pmd)); 2548 page_add_new_anon_rmap(new_page, vma, address); 2549 mem_cgroup_commit_charge(new_page, memcg, false); 2550 lru_cache_add_active_or_unevictable(new_page, vma); 2551 pgtable_trans_huge_deposit(mm, pmd, pgtable); 2552 set_pmd_at(mm, address, pmd, _pmd); 2553 update_mmu_cache_pmd(vma, address, pmd); 2554 spin_unlock(pmd_ptl); 2555 2556 *hpage = NULL; 2557 2558 khugepaged_pages_collapsed++; 2559 out_up_write: 2560 up_write(&mm->mmap_sem); 2561 return; 2562 2563 out: 2564 mem_cgroup_cancel_charge(new_page, memcg); 2565 goto out_up_write; 2566 } 2567 2568 static int khugepaged_scan_pmd(struct mm_struct *mm, 2569 struct vm_area_struct *vma, 2570 unsigned long address, 2571 struct page **hpage) 2572 { 2573 pmd_t *pmd; 2574 pte_t *pte, *_pte; 2575 int ret = 0, none_or_zero = 0; 2576 struct page *page; 2577 unsigned long _address; 2578 spinlock_t *ptl; 2579 int node = NUMA_NO_NODE; 2580 bool writable = false, referenced = false; 2581 2582 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2583 2584 pmd = mm_find_pmd(mm, address); 2585 if (!pmd) 2586 goto out; 2587 2588 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2589 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2590 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2591 _pte++, _address += PAGE_SIZE) { 2592 pte_t pteval = *_pte; 2593 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2594 if (++none_or_zero <= khugepaged_max_ptes_none) 2595 continue; 2596 else 2597 goto out_unmap; 2598 } 2599 if (!pte_present(pteval)) 2600 goto out_unmap; 2601 if (pte_write(pteval)) 2602 writable = true; 2603 2604 page = vm_normal_page(vma, _address, pteval); 2605 if (unlikely(!page)) 2606 goto out_unmap; 2607 /* 2608 * Record which node the original page is from and save this 2609 * information to khugepaged_node_load[]. 2610 * Khupaged will allocate hugepage from the node has the max 2611 * hit record. 2612 */ 2613 node = page_to_nid(page); 2614 if (khugepaged_scan_abort(node)) 2615 goto out_unmap; 2616 khugepaged_node_load[node]++; 2617 VM_BUG_ON_PAGE(PageCompound(page), page); 2618 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2619 goto out_unmap; 2620 /* 2621 * cannot use mapcount: can't collapse if there's a gup pin. 2622 * The page must only be referenced by the scanned process 2623 * and page swap cache. 2624 */ 2625 if (page_count(page) != 1 + !!PageSwapCache(page)) 2626 goto out_unmap; 2627 if (pte_young(pteval) || PageReferenced(page) || 2628 mmu_notifier_test_young(vma->vm_mm, address)) 2629 referenced = true; 2630 } 2631 if (referenced && writable) 2632 ret = 1; 2633 out_unmap: 2634 pte_unmap_unlock(pte, ptl); 2635 if (ret) { 2636 node = khugepaged_find_target_node(); 2637 /* collapse_huge_page will return with the mmap_sem released */ 2638 collapse_huge_page(mm, address, hpage, vma, node); 2639 } 2640 out: 2641 return ret; 2642 } 2643 2644 static void collect_mm_slot(struct mm_slot *mm_slot) 2645 { 2646 struct mm_struct *mm = mm_slot->mm; 2647 2648 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2649 2650 if (khugepaged_test_exit(mm)) { 2651 /* free mm_slot */ 2652 hash_del(&mm_slot->hash); 2653 list_del(&mm_slot->mm_node); 2654 2655 /* 2656 * Not strictly needed because the mm exited already. 2657 * 2658 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2659 */ 2660 2661 /* khugepaged_mm_lock actually not necessary for the below */ 2662 free_mm_slot(mm_slot); 2663 mmdrop(mm); 2664 } 2665 } 2666 2667 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2668 struct page **hpage) 2669 __releases(&khugepaged_mm_lock) 2670 __acquires(&khugepaged_mm_lock) 2671 { 2672 struct mm_slot *mm_slot; 2673 struct mm_struct *mm; 2674 struct vm_area_struct *vma; 2675 int progress = 0; 2676 2677 VM_BUG_ON(!pages); 2678 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2679 2680 if (khugepaged_scan.mm_slot) 2681 mm_slot = khugepaged_scan.mm_slot; 2682 else { 2683 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2684 struct mm_slot, mm_node); 2685 khugepaged_scan.address = 0; 2686 khugepaged_scan.mm_slot = mm_slot; 2687 } 2688 spin_unlock(&khugepaged_mm_lock); 2689 2690 mm = mm_slot->mm; 2691 down_read(&mm->mmap_sem); 2692 if (unlikely(khugepaged_test_exit(mm))) 2693 vma = NULL; 2694 else 2695 vma = find_vma(mm, khugepaged_scan.address); 2696 2697 progress++; 2698 for (; vma; vma = vma->vm_next) { 2699 unsigned long hstart, hend; 2700 2701 cond_resched(); 2702 if (unlikely(khugepaged_test_exit(mm))) { 2703 progress++; 2704 break; 2705 } 2706 if (!hugepage_vma_check(vma)) { 2707 skip: 2708 progress++; 2709 continue; 2710 } 2711 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2712 hend = vma->vm_end & HPAGE_PMD_MASK; 2713 if (hstart >= hend) 2714 goto skip; 2715 if (khugepaged_scan.address > hend) 2716 goto skip; 2717 if (khugepaged_scan.address < hstart) 2718 khugepaged_scan.address = hstart; 2719 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2720 2721 while (khugepaged_scan.address < hend) { 2722 int ret; 2723 cond_resched(); 2724 if (unlikely(khugepaged_test_exit(mm))) 2725 goto breakouterloop; 2726 2727 VM_BUG_ON(khugepaged_scan.address < hstart || 2728 khugepaged_scan.address + HPAGE_PMD_SIZE > 2729 hend); 2730 ret = khugepaged_scan_pmd(mm, vma, 2731 khugepaged_scan.address, 2732 hpage); 2733 /* move to next address */ 2734 khugepaged_scan.address += HPAGE_PMD_SIZE; 2735 progress += HPAGE_PMD_NR; 2736 if (ret) 2737 /* we released mmap_sem so break loop */ 2738 goto breakouterloop_mmap_sem; 2739 if (progress >= pages) 2740 goto breakouterloop; 2741 } 2742 } 2743 breakouterloop: 2744 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2745 breakouterloop_mmap_sem: 2746 2747 spin_lock(&khugepaged_mm_lock); 2748 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2749 /* 2750 * Release the current mm_slot if this mm is about to die, or 2751 * if we scanned all vmas of this mm. 2752 */ 2753 if (khugepaged_test_exit(mm) || !vma) { 2754 /* 2755 * Make sure that if mm_users is reaching zero while 2756 * khugepaged runs here, khugepaged_exit will find 2757 * mm_slot not pointing to the exiting mm. 2758 */ 2759 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2760 khugepaged_scan.mm_slot = list_entry( 2761 mm_slot->mm_node.next, 2762 struct mm_slot, mm_node); 2763 khugepaged_scan.address = 0; 2764 } else { 2765 khugepaged_scan.mm_slot = NULL; 2766 khugepaged_full_scans++; 2767 } 2768 2769 collect_mm_slot(mm_slot); 2770 } 2771 2772 return progress; 2773 } 2774 2775 static int khugepaged_has_work(void) 2776 { 2777 return !list_empty(&khugepaged_scan.mm_head) && 2778 khugepaged_enabled(); 2779 } 2780 2781 static int khugepaged_wait_event(void) 2782 { 2783 return !list_empty(&khugepaged_scan.mm_head) || 2784 kthread_should_stop(); 2785 } 2786 2787 static void khugepaged_do_scan(void) 2788 { 2789 struct page *hpage = NULL; 2790 unsigned int progress = 0, pass_through_head = 0; 2791 unsigned int pages = khugepaged_pages_to_scan; 2792 bool wait = true; 2793 2794 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2795 2796 while (progress < pages) { 2797 if (!khugepaged_prealloc_page(&hpage, &wait)) 2798 break; 2799 2800 cond_resched(); 2801 2802 if (unlikely(kthread_should_stop() || freezing(current))) 2803 break; 2804 2805 spin_lock(&khugepaged_mm_lock); 2806 if (!khugepaged_scan.mm_slot) 2807 pass_through_head++; 2808 if (khugepaged_has_work() && 2809 pass_through_head < 2) 2810 progress += khugepaged_scan_mm_slot(pages - progress, 2811 &hpage); 2812 else 2813 progress = pages; 2814 spin_unlock(&khugepaged_mm_lock); 2815 } 2816 2817 if (!IS_ERR_OR_NULL(hpage)) 2818 put_page(hpage); 2819 } 2820 2821 static void khugepaged_wait_work(void) 2822 { 2823 try_to_freeze(); 2824 2825 if (khugepaged_has_work()) { 2826 if (!khugepaged_scan_sleep_millisecs) 2827 return; 2828 2829 wait_event_freezable_timeout(khugepaged_wait, 2830 kthread_should_stop(), 2831 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2832 return; 2833 } 2834 2835 if (khugepaged_enabled()) 2836 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2837 } 2838 2839 static int khugepaged(void *none) 2840 { 2841 struct mm_slot *mm_slot; 2842 2843 set_freezable(); 2844 set_user_nice(current, MAX_NICE); 2845 2846 while (!kthread_should_stop()) { 2847 khugepaged_do_scan(); 2848 khugepaged_wait_work(); 2849 } 2850 2851 spin_lock(&khugepaged_mm_lock); 2852 mm_slot = khugepaged_scan.mm_slot; 2853 khugepaged_scan.mm_slot = NULL; 2854 if (mm_slot) 2855 collect_mm_slot(mm_slot); 2856 spin_unlock(&khugepaged_mm_lock); 2857 return 0; 2858 } 2859 2860 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2861 unsigned long haddr, pmd_t *pmd) 2862 { 2863 struct mm_struct *mm = vma->vm_mm; 2864 pgtable_t pgtable; 2865 pmd_t _pmd; 2866 int i; 2867 2868 pmdp_clear_flush_notify(vma, haddr, pmd); 2869 /* leave pmd empty until pte is filled */ 2870 2871 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2872 pmd_populate(mm, &_pmd, pgtable); 2873 2874 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2875 pte_t *pte, entry; 2876 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2877 entry = pte_mkspecial(entry); 2878 pte = pte_offset_map(&_pmd, haddr); 2879 VM_BUG_ON(!pte_none(*pte)); 2880 set_pte_at(mm, haddr, pte, entry); 2881 pte_unmap(pte); 2882 } 2883 smp_wmb(); /* make pte visible before pmd */ 2884 pmd_populate(mm, pmd, pgtable); 2885 put_huge_zero_page(); 2886 } 2887 2888 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2889 pmd_t *pmd) 2890 { 2891 spinlock_t *ptl; 2892 struct page *page; 2893 struct mm_struct *mm = vma->vm_mm; 2894 unsigned long haddr = address & HPAGE_PMD_MASK; 2895 unsigned long mmun_start; /* For mmu_notifiers */ 2896 unsigned long mmun_end; /* For mmu_notifiers */ 2897 2898 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2899 2900 mmun_start = haddr; 2901 mmun_end = haddr + HPAGE_PMD_SIZE; 2902 again: 2903 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2904 ptl = pmd_lock(mm, pmd); 2905 if (unlikely(!pmd_trans_huge(*pmd))) { 2906 spin_unlock(ptl); 2907 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2908 return; 2909 } 2910 if (is_huge_zero_pmd(*pmd)) { 2911 __split_huge_zero_page_pmd(vma, haddr, pmd); 2912 spin_unlock(ptl); 2913 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2914 return; 2915 } 2916 page = pmd_page(*pmd); 2917 VM_BUG_ON_PAGE(!page_count(page), page); 2918 get_page(page); 2919 spin_unlock(ptl); 2920 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2921 2922 split_huge_page(page); 2923 2924 put_page(page); 2925 2926 /* 2927 * We don't always have down_write of mmap_sem here: a racing 2928 * do_huge_pmd_wp_page() might have copied-on-write to another 2929 * huge page before our split_huge_page() got the anon_vma lock. 2930 */ 2931 if (unlikely(pmd_trans_huge(*pmd))) 2932 goto again; 2933 } 2934 2935 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2936 pmd_t *pmd) 2937 { 2938 struct vm_area_struct *vma; 2939 2940 vma = find_vma(mm, address); 2941 BUG_ON(vma == NULL); 2942 split_huge_page_pmd(vma, address, pmd); 2943 } 2944 2945 static void split_huge_page_address(struct mm_struct *mm, 2946 unsigned long address) 2947 { 2948 pgd_t *pgd; 2949 pud_t *pud; 2950 pmd_t *pmd; 2951 2952 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2953 2954 pgd = pgd_offset(mm, address); 2955 if (!pgd_present(*pgd)) 2956 return; 2957 2958 pud = pud_offset(pgd, address); 2959 if (!pud_present(*pud)) 2960 return; 2961 2962 pmd = pmd_offset(pud, address); 2963 if (!pmd_present(*pmd)) 2964 return; 2965 /* 2966 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2967 * materialize from under us. 2968 */ 2969 split_huge_page_pmd_mm(mm, address, pmd); 2970 } 2971 2972 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2973 unsigned long start, 2974 unsigned long end, 2975 long adjust_next) 2976 { 2977 /* 2978 * If the new start address isn't hpage aligned and it could 2979 * previously contain an hugepage: check if we need to split 2980 * an huge pmd. 2981 */ 2982 if (start & ~HPAGE_PMD_MASK && 2983 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2984 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2985 split_huge_page_address(vma->vm_mm, start); 2986 2987 /* 2988 * If the new end address isn't hpage aligned and it could 2989 * previously contain an hugepage: check if we need to split 2990 * an huge pmd. 2991 */ 2992 if (end & ~HPAGE_PMD_MASK && 2993 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2994 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2995 split_huge_page_address(vma->vm_mm, end); 2996 2997 /* 2998 * If we're also updating the vma->vm_next->vm_start, if the new 2999 * vm_next->vm_start isn't page aligned and it could previously 3000 * contain an hugepage: check if we need to split an huge pmd. 3001 */ 3002 if (adjust_next > 0) { 3003 struct vm_area_struct *next = vma->vm_next; 3004 unsigned long nstart = next->vm_start; 3005 nstart += adjust_next << PAGE_SHIFT; 3006 if (nstart & ~HPAGE_PMD_MASK && 3007 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 3008 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 3009 split_huge_page_address(next->vm_mm, nstart); 3010 } 3011 } 3012