xref: /openbmc/linux/mm/huge_memory.c (revision cd5d5810)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is enabled for all mappings
31  * and khugepaged scans all mappings. Defrag is only invoked by
32  * khugepaged hugepage allocations and by page faults inside
33  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34  * allocations.
35  */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46 
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59  * default collapse hugepages if there is at least one pte mapped like
60  * it would have happened if the vma was large enough during page
61  * fault.
62  */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64 
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67 
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70 
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72 
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80 	struct hlist_node hash;
81 	struct list_head mm_node;
82 	struct mm_struct *mm;
83 };
84 
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94 	struct list_head mm_head;
95 	struct mm_slot *mm_slot;
96 	unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101 
102 
103 static int set_recommended_min_free_kbytes(void)
104 {
105 	struct zone *zone;
106 	int nr_zones = 0;
107 	unsigned long recommended_min;
108 
109 	if (!khugepaged_enabled())
110 		return 0;
111 
112 	for_each_populated_zone(zone)
113 		nr_zones++;
114 
115 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 	recommended_min = pageblock_nr_pages * nr_zones * 2;
117 
118 	/*
119 	 * Make sure that on average at least two pageblocks are almost free
120 	 * of another type, one for a migratetype to fall back to and a
121 	 * second to avoid subsequent fallbacks of other types There are 3
122 	 * MIGRATE_TYPES we care about.
123 	 */
124 	recommended_min += pageblock_nr_pages * nr_zones *
125 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126 
127 	/* don't ever allow to reserve more than 5% of the lowmem */
128 	recommended_min = min(recommended_min,
129 			      (unsigned long) nr_free_buffer_pages() / 20);
130 	recommended_min <<= (PAGE_SHIFT-10);
131 
132 	if (recommended_min > min_free_kbytes)
133 		min_free_kbytes = recommended_min;
134 	setup_per_zone_wmarks();
135 	return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138 
139 static int start_khugepaged(void)
140 {
141 	int err = 0;
142 	if (khugepaged_enabled()) {
143 		if (!khugepaged_thread)
144 			khugepaged_thread = kthread_run(khugepaged, NULL,
145 							"khugepaged");
146 		if (unlikely(IS_ERR(khugepaged_thread))) {
147 			printk(KERN_ERR
148 			       "khugepaged: kthread_run(khugepaged) failed\n");
149 			err = PTR_ERR(khugepaged_thread);
150 			khugepaged_thread = NULL;
151 		}
152 
153 		if (!list_empty(&khugepaged_scan.mm_head))
154 			wake_up_interruptible(&khugepaged_wait);
155 
156 		set_recommended_min_free_kbytes();
157 	} else if (khugepaged_thread) {
158 		kthread_stop(khugepaged_thread);
159 		khugepaged_thread = NULL;
160 	}
161 
162 	return err;
163 }
164 
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167 
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170 	return ACCESS_ONCE(huge_zero_page) == page;
171 }
172 
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175 	return is_huge_zero_page(pmd_page(pmd));
176 }
177 
178 static struct page *get_huge_zero_page(void)
179 {
180 	struct page *zero_page;
181 retry:
182 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 		return ACCESS_ONCE(huge_zero_page);
184 
185 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 			HPAGE_PMD_ORDER);
187 	if (!zero_page) {
188 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 		return NULL;
190 	}
191 	count_vm_event(THP_ZERO_PAGE_ALLOC);
192 	preempt_disable();
193 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 		preempt_enable();
195 		__free_page(zero_page);
196 		goto retry;
197 	}
198 
199 	/* We take additional reference here. It will be put back by shrinker */
200 	atomic_set(&huge_zero_refcount, 2);
201 	preempt_enable();
202 	return ACCESS_ONCE(huge_zero_page);
203 }
204 
205 static void put_huge_zero_page(void)
206 {
207 	/*
208 	 * Counter should never go to zero here. Only shrinker can put
209 	 * last reference.
210 	 */
211 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213 
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215 					struct shrink_control *sc)
216 {
217 	/* we can free zero page only if last reference remains */
218 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 }
220 
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222 				       struct shrink_control *sc)
223 {
224 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225 		struct page *zero_page = xchg(&huge_zero_page, NULL);
226 		BUG_ON(zero_page == NULL);
227 		__free_page(zero_page);
228 		return HPAGE_PMD_NR;
229 	}
230 
231 	return 0;
232 }
233 
234 static struct shrinker huge_zero_page_shrinker = {
235 	.count_objects = shrink_huge_zero_page_count,
236 	.scan_objects = shrink_huge_zero_page_scan,
237 	.seeks = DEFAULT_SEEKS,
238 };
239 
240 #ifdef CONFIG_SYSFS
241 
242 static ssize_t double_flag_show(struct kobject *kobj,
243 				struct kobj_attribute *attr, char *buf,
244 				enum transparent_hugepage_flag enabled,
245 				enum transparent_hugepage_flag req_madv)
246 {
247 	if (test_bit(enabled, &transparent_hugepage_flags)) {
248 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249 		return sprintf(buf, "[always] madvise never\n");
250 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
251 		return sprintf(buf, "always [madvise] never\n");
252 	else
253 		return sprintf(buf, "always madvise [never]\n");
254 }
255 static ssize_t double_flag_store(struct kobject *kobj,
256 				 struct kobj_attribute *attr,
257 				 const char *buf, size_t count,
258 				 enum transparent_hugepage_flag enabled,
259 				 enum transparent_hugepage_flag req_madv)
260 {
261 	if (!memcmp("always", buf,
262 		    min(sizeof("always")-1, count))) {
263 		set_bit(enabled, &transparent_hugepage_flags);
264 		clear_bit(req_madv, &transparent_hugepage_flags);
265 	} else if (!memcmp("madvise", buf,
266 			   min(sizeof("madvise")-1, count))) {
267 		clear_bit(enabled, &transparent_hugepage_flags);
268 		set_bit(req_madv, &transparent_hugepage_flags);
269 	} else if (!memcmp("never", buf,
270 			   min(sizeof("never")-1, count))) {
271 		clear_bit(enabled, &transparent_hugepage_flags);
272 		clear_bit(req_madv, &transparent_hugepage_flags);
273 	} else
274 		return -EINVAL;
275 
276 	return count;
277 }
278 
279 static ssize_t enabled_show(struct kobject *kobj,
280 			    struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_FLAG,
284 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285 }
286 static ssize_t enabled_store(struct kobject *kobj,
287 			     struct kobj_attribute *attr,
288 			     const char *buf, size_t count)
289 {
290 	ssize_t ret;
291 
292 	ret = double_flag_store(kobj, attr, buf, count,
293 				TRANSPARENT_HUGEPAGE_FLAG,
294 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295 
296 	if (ret > 0) {
297 		int err;
298 
299 		mutex_lock(&khugepaged_mutex);
300 		err = start_khugepaged();
301 		mutex_unlock(&khugepaged_mutex);
302 
303 		if (err)
304 			ret = err;
305 	}
306 
307 	return ret;
308 }
309 static struct kobj_attribute enabled_attr =
310 	__ATTR(enabled, 0644, enabled_show, enabled_store);
311 
312 static ssize_t single_flag_show(struct kobject *kobj,
313 				struct kobj_attribute *attr, char *buf,
314 				enum transparent_hugepage_flag flag)
315 {
316 	return sprintf(buf, "%d\n",
317 		       !!test_bit(flag, &transparent_hugepage_flags));
318 }
319 
320 static ssize_t single_flag_store(struct kobject *kobj,
321 				 struct kobj_attribute *attr,
322 				 const char *buf, size_t count,
323 				 enum transparent_hugepage_flag flag)
324 {
325 	unsigned long value;
326 	int ret;
327 
328 	ret = kstrtoul(buf, 10, &value);
329 	if (ret < 0)
330 		return ret;
331 	if (value > 1)
332 		return -EINVAL;
333 
334 	if (value)
335 		set_bit(flag, &transparent_hugepage_flags);
336 	else
337 		clear_bit(flag, &transparent_hugepage_flags);
338 
339 	return count;
340 }
341 
342 /*
343  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345  * memory just to allocate one more hugepage.
346  */
347 static ssize_t defrag_show(struct kobject *kobj,
348 			   struct kobj_attribute *attr, char *buf)
349 {
350 	return double_flag_show(kobj, attr, buf,
351 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353 }
354 static ssize_t defrag_store(struct kobject *kobj,
355 			    struct kobj_attribute *attr,
356 			    const char *buf, size_t count)
357 {
358 	return double_flag_store(kobj, attr, buf, count,
359 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static struct kobj_attribute defrag_attr =
363 	__ATTR(defrag, 0644, defrag_show, defrag_store);
364 
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366 		struct kobj_attribute *attr, char *buf)
367 {
368 	return single_flag_show(kobj, attr, buf,
369 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370 }
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372 		struct kobj_attribute *attr, const char *buf, size_t count)
373 {
374 	return single_flag_store(kobj, attr, buf, count,
375 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static struct kobj_attribute use_zero_page_attr =
378 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381 				struct kobj_attribute *attr, char *buf)
382 {
383 	return single_flag_show(kobj, attr, buf,
384 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385 }
386 static ssize_t debug_cow_store(struct kobject *kobj,
387 			       struct kobj_attribute *attr,
388 			       const char *buf, size_t count)
389 {
390 	return single_flag_store(kobj, attr, buf, count,
391 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static struct kobj_attribute debug_cow_attr =
394 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
396 
397 static struct attribute *hugepage_attr[] = {
398 	&enabled_attr.attr,
399 	&defrag_attr.attr,
400 	&use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402 	&debug_cow_attr.attr,
403 #endif
404 	NULL,
405 };
406 
407 static struct attribute_group hugepage_attr_group = {
408 	.attrs = hugepage_attr,
409 };
410 
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412 					 struct kobj_attribute *attr,
413 					 char *buf)
414 {
415 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 }
417 
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419 					  struct kobj_attribute *attr,
420 					  const char *buf, size_t count)
421 {
422 	unsigned long msecs;
423 	int err;
424 
425 	err = kstrtoul(buf, 10, &msecs);
426 	if (err || msecs > UINT_MAX)
427 		return -EINVAL;
428 
429 	khugepaged_scan_sleep_millisecs = msecs;
430 	wake_up_interruptible(&khugepaged_wait);
431 
432 	return count;
433 }
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436 	       scan_sleep_millisecs_store);
437 
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439 					  struct kobj_attribute *attr,
440 					  char *buf)
441 {
442 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 }
444 
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446 					   struct kobj_attribute *attr,
447 					   const char *buf, size_t count)
448 {
449 	unsigned long msecs;
450 	int err;
451 
452 	err = kstrtoul(buf, 10, &msecs);
453 	if (err || msecs > UINT_MAX)
454 		return -EINVAL;
455 
456 	khugepaged_alloc_sleep_millisecs = msecs;
457 	wake_up_interruptible(&khugepaged_wait);
458 
459 	return count;
460 }
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463 	       alloc_sleep_millisecs_store);
464 
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466 				  struct kobj_attribute *attr,
467 				  char *buf)
468 {
469 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470 }
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472 				   struct kobj_attribute *attr,
473 				   const char *buf, size_t count)
474 {
475 	int err;
476 	unsigned long pages;
477 
478 	err = kstrtoul(buf, 10, &pages);
479 	if (err || !pages || pages > UINT_MAX)
480 		return -EINVAL;
481 
482 	khugepaged_pages_to_scan = pages;
483 
484 	return count;
485 }
486 static struct kobj_attribute pages_to_scan_attr =
487 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
488 	       pages_to_scan_store);
489 
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491 				    struct kobj_attribute *attr,
492 				    char *buf)
493 {
494 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495 }
496 static struct kobj_attribute pages_collapsed_attr =
497 	__ATTR_RO(pages_collapsed);
498 
499 static ssize_t full_scans_show(struct kobject *kobj,
500 			       struct kobj_attribute *attr,
501 			       char *buf)
502 {
503 	return sprintf(buf, "%u\n", khugepaged_full_scans);
504 }
505 static struct kobj_attribute full_scans_attr =
506 	__ATTR_RO(full_scans);
507 
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509 				      struct kobj_attribute *attr, char *buf)
510 {
511 	return single_flag_show(kobj, attr, buf,
512 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513 }
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515 				       struct kobj_attribute *attr,
516 				       const char *buf, size_t count)
517 {
518 	return single_flag_store(kobj, attr, buf, count,
519 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static struct kobj_attribute khugepaged_defrag_attr =
522 	__ATTR(defrag, 0644, khugepaged_defrag_show,
523 	       khugepaged_defrag_store);
524 
525 /*
526  * max_ptes_none controls if khugepaged should collapse hugepages over
527  * any unmapped ptes in turn potentially increasing the memory
528  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529  * reduce the available free memory in the system as it
530  * runs. Increasing max_ptes_none will instead potentially reduce the
531  * free memory in the system during the khugepaged scan.
532  */
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534 					     struct kobj_attribute *attr,
535 					     char *buf)
536 {
537 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538 }
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540 					      struct kobj_attribute *attr,
541 					      const char *buf, size_t count)
542 {
543 	int err;
544 	unsigned long max_ptes_none;
545 
546 	err = kstrtoul(buf, 10, &max_ptes_none);
547 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
548 		return -EINVAL;
549 
550 	khugepaged_max_ptes_none = max_ptes_none;
551 
552 	return count;
553 }
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556 	       khugepaged_max_ptes_none_store);
557 
558 static struct attribute *khugepaged_attr[] = {
559 	&khugepaged_defrag_attr.attr,
560 	&khugepaged_max_ptes_none_attr.attr,
561 	&pages_to_scan_attr.attr,
562 	&pages_collapsed_attr.attr,
563 	&full_scans_attr.attr,
564 	&scan_sleep_millisecs_attr.attr,
565 	&alloc_sleep_millisecs_attr.attr,
566 	NULL,
567 };
568 
569 static struct attribute_group khugepaged_attr_group = {
570 	.attrs = khugepaged_attr,
571 	.name = "khugepaged",
572 };
573 
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575 {
576 	int err;
577 
578 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579 	if (unlikely(!*hugepage_kobj)) {
580 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581 		return -ENOMEM;
582 	}
583 
584 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585 	if (err) {
586 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587 		goto delete_obj;
588 	}
589 
590 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591 	if (err) {
592 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593 		goto remove_hp_group;
594 	}
595 
596 	return 0;
597 
598 remove_hp_group:
599 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601 	kobject_put(*hugepage_kobj);
602 	return err;
603 }
604 
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606 {
607 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609 	kobject_put(hugepage_kobj);
610 }
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613 {
614 	return 0;
615 }
616 
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 }
620 #endif /* CONFIG_SYSFS */
621 
622 static int __init hugepage_init(void)
623 {
624 	int err;
625 	struct kobject *hugepage_kobj;
626 
627 	if (!has_transparent_hugepage()) {
628 		transparent_hugepage_flags = 0;
629 		return -EINVAL;
630 	}
631 
632 	err = hugepage_init_sysfs(&hugepage_kobj);
633 	if (err)
634 		return err;
635 
636 	err = khugepaged_slab_init();
637 	if (err)
638 		goto out;
639 
640 	register_shrinker(&huge_zero_page_shrinker);
641 
642 	/*
643 	 * By default disable transparent hugepages on smaller systems,
644 	 * where the extra memory used could hurt more than TLB overhead
645 	 * is likely to save.  The admin can still enable it through /sys.
646 	 */
647 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648 		transparent_hugepage_flags = 0;
649 
650 	start_khugepaged();
651 
652 	return 0;
653 out:
654 	hugepage_exit_sysfs(hugepage_kobj);
655 	return err;
656 }
657 module_init(hugepage_init)
658 
659 static int __init setup_transparent_hugepage(char *str)
660 {
661 	int ret = 0;
662 	if (!str)
663 		goto out;
664 	if (!strcmp(str, "always")) {
665 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666 			&transparent_hugepage_flags);
667 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668 			  &transparent_hugepage_flags);
669 		ret = 1;
670 	} else if (!strcmp(str, "madvise")) {
671 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672 			  &transparent_hugepage_flags);
673 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674 			&transparent_hugepage_flags);
675 		ret = 1;
676 	} else if (!strcmp(str, "never")) {
677 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678 			  &transparent_hugepage_flags);
679 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680 			  &transparent_hugepage_flags);
681 		ret = 1;
682 	}
683 out:
684 	if (!ret)
685 		printk(KERN_WARNING
686 		       "transparent_hugepage= cannot parse, ignored\n");
687 	return ret;
688 }
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
690 
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692 {
693 	if (likely(vma->vm_flags & VM_WRITE))
694 		pmd = pmd_mkwrite(pmd);
695 	return pmd;
696 }
697 
698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
699 {
700 	pmd_t entry;
701 	entry = mk_pmd(page, prot);
702 	entry = pmd_mkhuge(entry);
703 	return entry;
704 }
705 
706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707 					struct vm_area_struct *vma,
708 					unsigned long haddr, pmd_t *pmd,
709 					struct page *page)
710 {
711 	pgtable_t pgtable;
712 
713 	VM_BUG_ON(!PageCompound(page));
714 	pgtable = pte_alloc_one(mm, haddr);
715 	if (unlikely(!pgtable))
716 		return VM_FAULT_OOM;
717 
718 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
719 	/*
720 	 * The memory barrier inside __SetPageUptodate makes sure that
721 	 * clear_huge_page writes become visible before the set_pmd_at()
722 	 * write.
723 	 */
724 	__SetPageUptodate(page);
725 
726 	spin_lock(&mm->page_table_lock);
727 	if (unlikely(!pmd_none(*pmd))) {
728 		spin_unlock(&mm->page_table_lock);
729 		mem_cgroup_uncharge_page(page);
730 		put_page(page);
731 		pte_free(mm, pgtable);
732 	} else {
733 		pmd_t entry;
734 		entry = mk_huge_pmd(page, vma->vm_page_prot);
735 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736 		page_add_new_anon_rmap(page, vma, haddr);
737 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
738 		set_pmd_at(mm, haddr, pmd, entry);
739 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 		mm->nr_ptes++;
741 		spin_unlock(&mm->page_table_lock);
742 	}
743 
744 	return 0;
745 }
746 
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748 {
749 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750 }
751 
752 static inline struct page *alloc_hugepage_vma(int defrag,
753 					      struct vm_area_struct *vma,
754 					      unsigned long haddr, int nd,
755 					      gfp_t extra_gfp)
756 {
757 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758 			       HPAGE_PMD_ORDER, vma, haddr, nd);
759 }
760 
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
763 {
764 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765 			   HPAGE_PMD_ORDER);
766 }
767 #endif
768 
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771 		struct page *zero_page)
772 {
773 	pmd_t entry;
774 	if (!pmd_none(*pmd))
775 		return false;
776 	entry = mk_pmd(zero_page, vma->vm_page_prot);
777 	entry = pmd_wrprotect(entry);
778 	entry = pmd_mkhuge(entry);
779 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
780 	set_pmd_at(mm, haddr, pmd, entry);
781 	mm->nr_ptes++;
782 	return true;
783 }
784 
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 			       unsigned long address, pmd_t *pmd,
787 			       unsigned int flags)
788 {
789 	struct page *page;
790 	unsigned long haddr = address & HPAGE_PMD_MASK;
791 
792 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793 		return VM_FAULT_FALLBACK;
794 	if (unlikely(anon_vma_prepare(vma)))
795 		return VM_FAULT_OOM;
796 	if (unlikely(khugepaged_enter(vma)))
797 		return VM_FAULT_OOM;
798 	if (!(flags & FAULT_FLAG_WRITE) &&
799 			transparent_hugepage_use_zero_page()) {
800 		pgtable_t pgtable;
801 		struct page *zero_page;
802 		bool set;
803 		pgtable = pte_alloc_one(mm, haddr);
804 		if (unlikely(!pgtable))
805 			return VM_FAULT_OOM;
806 		zero_page = get_huge_zero_page();
807 		if (unlikely(!zero_page)) {
808 			pte_free(mm, pgtable);
809 			count_vm_event(THP_FAULT_FALLBACK);
810 			return VM_FAULT_FALLBACK;
811 		}
812 		spin_lock(&mm->page_table_lock);
813 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 				zero_page);
815 		spin_unlock(&mm->page_table_lock);
816 		if (!set) {
817 			pte_free(mm, pgtable);
818 			put_huge_zero_page();
819 		}
820 		return 0;
821 	}
822 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823 			vma, haddr, numa_node_id(), 0);
824 	if (unlikely(!page)) {
825 		count_vm_event(THP_FAULT_FALLBACK);
826 		return VM_FAULT_FALLBACK;
827 	}
828 	if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829 		put_page(page);
830 		count_vm_event(THP_FAULT_FALLBACK);
831 		return VM_FAULT_FALLBACK;
832 	}
833 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834 		mem_cgroup_uncharge_page(page);
835 		put_page(page);
836 		count_vm_event(THP_FAULT_FALLBACK);
837 		return VM_FAULT_FALLBACK;
838 	}
839 
840 	count_vm_event(THP_FAULT_ALLOC);
841 	return 0;
842 }
843 
844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846 		  struct vm_area_struct *vma)
847 {
848 	struct page *src_page;
849 	pmd_t pmd;
850 	pgtable_t pgtable;
851 	int ret;
852 
853 	ret = -ENOMEM;
854 	pgtable = pte_alloc_one(dst_mm, addr);
855 	if (unlikely(!pgtable))
856 		goto out;
857 
858 	spin_lock(&dst_mm->page_table_lock);
859 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
860 
861 	ret = -EAGAIN;
862 	pmd = *src_pmd;
863 	if (unlikely(!pmd_trans_huge(pmd))) {
864 		pte_free(dst_mm, pgtable);
865 		goto out_unlock;
866 	}
867 	/*
868 	 * mm->page_table_lock is enough to be sure that huge zero pmd is not
869 	 * under splitting since we don't split the page itself, only pmd to
870 	 * a page table.
871 	 */
872 	if (is_huge_zero_pmd(pmd)) {
873 		struct page *zero_page;
874 		bool set;
875 		/*
876 		 * get_huge_zero_page() will never allocate a new page here,
877 		 * since we already have a zero page to copy. It just takes a
878 		 * reference.
879 		 */
880 		zero_page = get_huge_zero_page();
881 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882 				zero_page);
883 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884 		ret = 0;
885 		goto out_unlock;
886 	}
887 	if (unlikely(pmd_trans_splitting(pmd))) {
888 		/* split huge page running from under us */
889 		spin_unlock(&src_mm->page_table_lock);
890 		spin_unlock(&dst_mm->page_table_lock);
891 		pte_free(dst_mm, pgtable);
892 
893 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894 		goto out;
895 	}
896 	src_page = pmd_page(pmd);
897 	VM_BUG_ON(!PageHead(src_page));
898 	get_page(src_page);
899 	page_dup_rmap(src_page);
900 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901 
902 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
903 	pmd = pmd_mkold(pmd_wrprotect(pmd));
904 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906 	dst_mm->nr_ptes++;
907 
908 	ret = 0;
909 out_unlock:
910 	spin_unlock(&src_mm->page_table_lock);
911 	spin_unlock(&dst_mm->page_table_lock);
912 out:
913 	return ret;
914 }
915 
916 void huge_pmd_set_accessed(struct mm_struct *mm,
917 			   struct vm_area_struct *vma,
918 			   unsigned long address,
919 			   pmd_t *pmd, pmd_t orig_pmd,
920 			   int dirty)
921 {
922 	pmd_t entry;
923 	unsigned long haddr;
924 
925 	spin_lock(&mm->page_table_lock);
926 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 		goto unlock;
928 
929 	entry = pmd_mkyoung(orig_pmd);
930 	haddr = address & HPAGE_PMD_MASK;
931 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 		update_mmu_cache_pmd(vma, address, pmd);
933 
934 unlock:
935 	spin_unlock(&mm->page_table_lock);
936 }
937 
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 		struct vm_area_struct *vma, unsigned long address,
940 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941 {
942 	pgtable_t pgtable;
943 	pmd_t _pmd;
944 	struct page *page;
945 	int i, ret = 0;
946 	unsigned long mmun_start;	/* For mmu_notifiers */
947 	unsigned long mmun_end;		/* For mmu_notifiers */
948 
949 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 	if (!page) {
951 		ret |= VM_FAULT_OOM;
952 		goto out;
953 	}
954 
955 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 		put_page(page);
957 		ret |= VM_FAULT_OOM;
958 		goto out;
959 	}
960 
961 	clear_user_highpage(page, address);
962 	__SetPageUptodate(page);
963 
964 	mmun_start = haddr;
965 	mmun_end   = haddr + HPAGE_PMD_SIZE;
966 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967 
968 	spin_lock(&mm->page_table_lock);
969 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 		goto out_free_page;
971 
972 	pmdp_clear_flush(vma, haddr, pmd);
973 	/* leave pmd empty until pte is filled */
974 
975 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 	pmd_populate(mm, &_pmd, pgtable);
977 
978 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 		pte_t *pte, entry;
980 		if (haddr == (address & PAGE_MASK)) {
981 			entry = mk_pte(page, vma->vm_page_prot);
982 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 			page_add_new_anon_rmap(page, vma, haddr);
984 		} else {
985 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 			entry = pte_mkspecial(entry);
987 		}
988 		pte = pte_offset_map(&_pmd, haddr);
989 		VM_BUG_ON(!pte_none(*pte));
990 		set_pte_at(mm, haddr, pte, entry);
991 		pte_unmap(pte);
992 	}
993 	smp_wmb(); /* make pte visible before pmd */
994 	pmd_populate(mm, pmd, pgtable);
995 	spin_unlock(&mm->page_table_lock);
996 	put_huge_zero_page();
997 	inc_mm_counter(mm, MM_ANONPAGES);
998 
999 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000 
1001 	ret |= VM_FAULT_WRITE;
1002 out:
1003 	return ret;
1004 out_free_page:
1005 	spin_unlock(&mm->page_table_lock);
1006 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 	mem_cgroup_uncharge_page(page);
1008 	put_page(page);
1009 	goto out;
1010 }
1011 
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 					struct vm_area_struct *vma,
1014 					unsigned long address,
1015 					pmd_t *pmd, pmd_t orig_pmd,
1016 					struct page *page,
1017 					unsigned long haddr)
1018 {
1019 	pgtable_t pgtable;
1020 	pmd_t _pmd;
1021 	int ret = 0, i;
1022 	struct page **pages;
1023 	unsigned long mmun_start;	/* For mmu_notifiers */
1024 	unsigned long mmun_end;		/* For mmu_notifiers */
1025 
1026 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027 			GFP_KERNEL);
1028 	if (unlikely(!pages)) {
1029 		ret |= VM_FAULT_OOM;
1030 		goto out;
1031 	}
1032 
1033 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1034 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035 					       __GFP_OTHER_NODE,
1036 					       vma, address, page_to_nid(page));
1037 		if (unlikely(!pages[i] ||
1038 			     mem_cgroup_newpage_charge(pages[i], mm,
1039 						       GFP_KERNEL))) {
1040 			if (pages[i])
1041 				put_page(pages[i]);
1042 			mem_cgroup_uncharge_start();
1043 			while (--i >= 0) {
1044 				mem_cgroup_uncharge_page(pages[i]);
1045 				put_page(pages[i]);
1046 			}
1047 			mem_cgroup_uncharge_end();
1048 			kfree(pages);
1049 			ret |= VM_FAULT_OOM;
1050 			goto out;
1051 		}
1052 	}
1053 
1054 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1055 		copy_user_highpage(pages[i], page + i,
1056 				   haddr + PAGE_SIZE * i, vma);
1057 		__SetPageUptodate(pages[i]);
1058 		cond_resched();
1059 	}
1060 
1061 	mmun_start = haddr;
1062 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1063 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1064 
1065 	spin_lock(&mm->page_table_lock);
1066 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067 		goto out_free_pages;
1068 	VM_BUG_ON(!PageHead(page));
1069 
1070 	pmdp_clear_flush(vma, haddr, pmd);
1071 	/* leave pmd empty until pte is filled */
1072 
1073 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074 	pmd_populate(mm, &_pmd, pgtable);
1075 
1076 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077 		pte_t *pte, entry;
1078 		entry = mk_pte(pages[i], vma->vm_page_prot);
1079 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080 		page_add_new_anon_rmap(pages[i], vma, haddr);
1081 		pte = pte_offset_map(&_pmd, haddr);
1082 		VM_BUG_ON(!pte_none(*pte));
1083 		set_pte_at(mm, haddr, pte, entry);
1084 		pte_unmap(pte);
1085 	}
1086 	kfree(pages);
1087 
1088 	smp_wmb(); /* make pte visible before pmd */
1089 	pmd_populate(mm, pmd, pgtable);
1090 	page_remove_rmap(page);
1091 	spin_unlock(&mm->page_table_lock);
1092 
1093 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1094 
1095 	ret |= VM_FAULT_WRITE;
1096 	put_page(page);
1097 
1098 out:
1099 	return ret;
1100 
1101 out_free_pages:
1102 	spin_unlock(&mm->page_table_lock);
1103 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104 	mem_cgroup_uncharge_start();
1105 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1106 		mem_cgroup_uncharge_page(pages[i]);
1107 		put_page(pages[i]);
1108 	}
1109 	mem_cgroup_uncharge_end();
1110 	kfree(pages);
1111 	goto out;
1112 }
1113 
1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1116 {
1117 	int ret = 0;
1118 	struct page *page = NULL, *new_page;
1119 	unsigned long haddr;
1120 	unsigned long mmun_start;	/* For mmu_notifiers */
1121 	unsigned long mmun_end;		/* For mmu_notifiers */
1122 
1123 	VM_BUG_ON(!vma->anon_vma);
1124 	haddr = address & HPAGE_PMD_MASK;
1125 	if (is_huge_zero_pmd(orig_pmd))
1126 		goto alloc;
1127 	spin_lock(&mm->page_table_lock);
1128 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129 		goto out_unlock;
1130 
1131 	page = pmd_page(orig_pmd);
1132 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133 	if (page_mapcount(page) == 1) {
1134 		pmd_t entry;
1135 		entry = pmd_mkyoung(orig_pmd);
1136 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1138 			update_mmu_cache_pmd(vma, address, pmd);
1139 		ret |= VM_FAULT_WRITE;
1140 		goto out_unlock;
1141 	}
1142 	get_page(page);
1143 	spin_unlock(&mm->page_table_lock);
1144 alloc:
1145 	if (transparent_hugepage_enabled(vma) &&
1146 	    !transparent_hugepage_debug_cow())
1147 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148 					      vma, haddr, numa_node_id(), 0);
1149 	else
1150 		new_page = NULL;
1151 
1152 	if (unlikely(!new_page)) {
1153 		if (is_huge_zero_pmd(orig_pmd)) {
1154 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155 					address, pmd, orig_pmd, haddr);
1156 		} else {
1157 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158 					pmd, orig_pmd, page, haddr);
1159 			if (ret & VM_FAULT_OOM)
1160 				split_huge_page(page);
1161 			put_page(page);
1162 		}
1163 		count_vm_event(THP_FAULT_FALLBACK);
1164 		goto out;
1165 	}
1166 
1167 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168 		put_page(new_page);
1169 		if (page) {
1170 			split_huge_page(page);
1171 			put_page(page);
1172 		}
1173 		count_vm_event(THP_FAULT_FALLBACK);
1174 		ret |= VM_FAULT_OOM;
1175 		goto out;
1176 	}
1177 
1178 	count_vm_event(THP_FAULT_ALLOC);
1179 
1180 	if (is_huge_zero_pmd(orig_pmd))
1181 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182 	else
1183 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184 	__SetPageUptodate(new_page);
1185 
1186 	mmun_start = haddr;
1187 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1188 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189 
1190 	spin_lock(&mm->page_table_lock);
1191 	if (page)
1192 		put_page(page);
1193 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194 		spin_unlock(&mm->page_table_lock);
1195 		mem_cgroup_uncharge_page(new_page);
1196 		put_page(new_page);
1197 		goto out_mn;
1198 	} else {
1199 		pmd_t entry;
1200 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 		pmdp_clear_flush(vma, haddr, pmd);
1203 		page_add_new_anon_rmap(new_page, vma, haddr);
1204 		set_pmd_at(mm, haddr, pmd, entry);
1205 		update_mmu_cache_pmd(vma, address, pmd);
1206 		if (is_huge_zero_pmd(orig_pmd)) {
1207 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208 			put_huge_zero_page();
1209 		} else {
1210 			VM_BUG_ON(!PageHead(page));
1211 			page_remove_rmap(page);
1212 			put_page(page);
1213 		}
1214 		ret |= VM_FAULT_WRITE;
1215 	}
1216 	spin_unlock(&mm->page_table_lock);
1217 out_mn:
1218 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219 out:
1220 	return ret;
1221 out_unlock:
1222 	spin_unlock(&mm->page_table_lock);
1223 	return ret;
1224 }
1225 
1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227 				   unsigned long addr,
1228 				   pmd_t *pmd,
1229 				   unsigned int flags)
1230 {
1231 	struct mm_struct *mm = vma->vm_mm;
1232 	struct page *page = NULL;
1233 
1234 	assert_spin_locked(&mm->page_table_lock);
1235 
1236 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237 		goto out;
1238 
1239 	/* Avoid dumping huge zero page */
1240 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241 		return ERR_PTR(-EFAULT);
1242 
1243 	page = pmd_page(*pmd);
1244 	VM_BUG_ON(!PageHead(page));
1245 	if (flags & FOLL_TOUCH) {
1246 		pmd_t _pmd;
1247 		/*
1248 		 * We should set the dirty bit only for FOLL_WRITE but
1249 		 * for now the dirty bit in the pmd is meaningless.
1250 		 * And if the dirty bit will become meaningful and
1251 		 * we'll only set it with FOLL_WRITE, an atomic
1252 		 * set_bit will be required on the pmd to set the
1253 		 * young bit, instead of the current set_pmd_at.
1254 		 */
1255 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257 					  pmd, _pmd,  1))
1258 			update_mmu_cache_pmd(vma, addr, pmd);
1259 	}
1260 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261 		if (page->mapping && trylock_page(page)) {
1262 			lru_add_drain();
1263 			if (page->mapping)
1264 				mlock_vma_page(page);
1265 			unlock_page(page);
1266 		}
1267 	}
1268 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269 	VM_BUG_ON(!PageCompound(page));
1270 	if (flags & FOLL_GET)
1271 		get_page_foll(page);
1272 
1273 out:
1274 	return page;
1275 }
1276 
1277 /* NUMA hinting page fault entry point for trans huge pmds */
1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1280 {
1281 	struct page *page;
1282 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1283 	int target_nid;
1284 	int current_nid = -1;
1285 	bool migrated;
1286 
1287 	spin_lock(&mm->page_table_lock);
1288 	if (unlikely(!pmd_same(pmd, *pmdp)))
1289 		goto out_unlock;
1290 
1291 	page = pmd_page(pmd);
1292 	get_page(page);
1293 	current_nid = page_to_nid(page);
1294 	count_vm_numa_event(NUMA_HINT_FAULTS);
1295 	if (current_nid == numa_node_id())
1296 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1297 
1298 	target_nid = mpol_misplaced(page, vma, haddr);
1299 	if (target_nid == -1) {
1300 		put_page(page);
1301 		goto clear_pmdnuma;
1302 	}
1303 
1304 	/* Acquire the page lock to serialise THP migrations */
1305 	spin_unlock(&mm->page_table_lock);
1306 	lock_page(page);
1307 
1308 	/* Confirm the PTE did not while locked */
1309 	spin_lock(&mm->page_table_lock);
1310 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1311 		unlock_page(page);
1312 		put_page(page);
1313 		goto out_unlock;
1314 	}
1315 	spin_unlock(&mm->page_table_lock);
1316 
1317 	/* Migrate the THP to the requested node */
1318 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1319 				pmdp, pmd, addr, page, target_nid);
1320 	if (!migrated)
1321 		goto check_same;
1322 
1323 	task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1324 	return 0;
1325 
1326 check_same:
1327 	spin_lock(&mm->page_table_lock);
1328 	if (unlikely(!pmd_same(pmd, *pmdp)))
1329 		goto out_unlock;
1330 clear_pmdnuma:
1331 	pmd = pmd_mknonnuma(pmd);
1332 	set_pmd_at(mm, haddr, pmdp, pmd);
1333 	VM_BUG_ON(pmd_numa(*pmdp));
1334 	update_mmu_cache_pmd(vma, addr, pmdp);
1335 out_unlock:
1336 	spin_unlock(&mm->page_table_lock);
1337 	if (current_nid != -1)
1338 		task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1339 	return 0;
1340 }
1341 
1342 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1343 		 pmd_t *pmd, unsigned long addr)
1344 {
1345 	int ret = 0;
1346 
1347 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1348 		struct page *page;
1349 		pgtable_t pgtable;
1350 		pmd_t orig_pmd;
1351 		/*
1352 		 * For architectures like ppc64 we look at deposited pgtable
1353 		 * when calling pmdp_get_and_clear. So do the
1354 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1355 		 * operations.
1356 		 */
1357 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1358 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1359 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1360 		if (is_huge_zero_pmd(orig_pmd)) {
1361 			tlb->mm->nr_ptes--;
1362 			spin_unlock(&tlb->mm->page_table_lock);
1363 			put_huge_zero_page();
1364 		} else {
1365 			page = pmd_page(orig_pmd);
1366 			page_remove_rmap(page);
1367 			VM_BUG_ON(page_mapcount(page) < 0);
1368 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1369 			VM_BUG_ON(!PageHead(page));
1370 			tlb->mm->nr_ptes--;
1371 			spin_unlock(&tlb->mm->page_table_lock);
1372 			tlb_remove_page(tlb, page);
1373 		}
1374 		pte_free(tlb->mm, pgtable);
1375 		ret = 1;
1376 	}
1377 	return ret;
1378 }
1379 
1380 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1381 		unsigned long addr, unsigned long end,
1382 		unsigned char *vec)
1383 {
1384 	int ret = 0;
1385 
1386 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1387 		/*
1388 		 * All logical pages in the range are present
1389 		 * if backed by a huge page.
1390 		 */
1391 		spin_unlock(&vma->vm_mm->page_table_lock);
1392 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1393 		ret = 1;
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1400 		  unsigned long old_addr,
1401 		  unsigned long new_addr, unsigned long old_end,
1402 		  pmd_t *old_pmd, pmd_t *new_pmd)
1403 {
1404 	int ret = 0;
1405 	pmd_t pmd;
1406 
1407 	struct mm_struct *mm = vma->vm_mm;
1408 
1409 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1410 	    (new_addr & ~HPAGE_PMD_MASK) ||
1411 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1412 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1413 		goto out;
1414 
1415 	/*
1416 	 * The destination pmd shouldn't be established, free_pgtables()
1417 	 * should have release it.
1418 	 */
1419 	if (WARN_ON(!pmd_none(*new_pmd))) {
1420 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1421 		goto out;
1422 	}
1423 
1424 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1425 	if (ret == 1) {
1426 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1427 		VM_BUG_ON(!pmd_none(*new_pmd));
1428 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1429 		spin_unlock(&mm->page_table_lock);
1430 	}
1431 out:
1432 	return ret;
1433 }
1434 
1435 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1436 		unsigned long addr, pgprot_t newprot, int prot_numa)
1437 {
1438 	struct mm_struct *mm = vma->vm_mm;
1439 	int ret = 0;
1440 
1441 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1442 		pmd_t entry;
1443 		entry = pmdp_get_and_clear(mm, addr, pmd);
1444 		if (!prot_numa) {
1445 			entry = pmd_modify(entry, newprot);
1446 			BUG_ON(pmd_write(entry));
1447 		} else {
1448 			struct page *page = pmd_page(*pmd);
1449 
1450 			/* only check non-shared pages */
1451 			if (page_mapcount(page) == 1 &&
1452 			    !pmd_numa(*pmd)) {
1453 				entry = pmd_mknuma(entry);
1454 			}
1455 		}
1456 		set_pmd_at(mm, addr, pmd, entry);
1457 		spin_unlock(&vma->vm_mm->page_table_lock);
1458 		ret = 1;
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 /*
1465  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1466  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1467  *
1468  * Note that if it returns 1, this routine returns without unlocking page
1469  * table locks. So callers must unlock them.
1470  */
1471 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1472 {
1473 	spin_lock(&vma->vm_mm->page_table_lock);
1474 	if (likely(pmd_trans_huge(*pmd))) {
1475 		if (unlikely(pmd_trans_splitting(*pmd))) {
1476 			spin_unlock(&vma->vm_mm->page_table_lock);
1477 			wait_split_huge_page(vma->anon_vma, pmd);
1478 			return -1;
1479 		} else {
1480 			/* Thp mapped by 'pmd' is stable, so we can
1481 			 * handle it as it is. */
1482 			return 1;
1483 		}
1484 	}
1485 	spin_unlock(&vma->vm_mm->page_table_lock);
1486 	return 0;
1487 }
1488 
1489 pmd_t *page_check_address_pmd(struct page *page,
1490 			      struct mm_struct *mm,
1491 			      unsigned long address,
1492 			      enum page_check_address_pmd_flag flag)
1493 {
1494 	pmd_t *pmd, *ret = NULL;
1495 
1496 	if (address & ~HPAGE_PMD_MASK)
1497 		goto out;
1498 
1499 	pmd = mm_find_pmd(mm, address);
1500 	if (!pmd)
1501 		goto out;
1502 	if (pmd_none(*pmd))
1503 		goto out;
1504 	if (pmd_page(*pmd) != page)
1505 		goto out;
1506 	/*
1507 	 * split_vma() may create temporary aliased mappings. There is
1508 	 * no risk as long as all huge pmd are found and have their
1509 	 * splitting bit set before __split_huge_page_refcount
1510 	 * runs. Finding the same huge pmd more than once during the
1511 	 * same rmap walk is not a problem.
1512 	 */
1513 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1514 	    pmd_trans_splitting(*pmd))
1515 		goto out;
1516 	if (pmd_trans_huge(*pmd)) {
1517 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1518 			  !pmd_trans_splitting(*pmd));
1519 		ret = pmd;
1520 	}
1521 out:
1522 	return ret;
1523 }
1524 
1525 static int __split_huge_page_splitting(struct page *page,
1526 				       struct vm_area_struct *vma,
1527 				       unsigned long address)
1528 {
1529 	struct mm_struct *mm = vma->vm_mm;
1530 	pmd_t *pmd;
1531 	int ret = 0;
1532 	/* For mmu_notifiers */
1533 	const unsigned long mmun_start = address;
1534 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1535 
1536 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1537 	spin_lock(&mm->page_table_lock);
1538 	pmd = page_check_address_pmd(page, mm, address,
1539 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1540 	if (pmd) {
1541 		/*
1542 		 * We can't temporarily set the pmd to null in order
1543 		 * to split it, the pmd must remain marked huge at all
1544 		 * times or the VM won't take the pmd_trans_huge paths
1545 		 * and it won't wait on the anon_vma->root->rwsem to
1546 		 * serialize against split_huge_page*.
1547 		 */
1548 		pmdp_splitting_flush(vma, address, pmd);
1549 		ret = 1;
1550 	}
1551 	spin_unlock(&mm->page_table_lock);
1552 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1553 
1554 	return ret;
1555 }
1556 
1557 static void __split_huge_page_refcount(struct page *page,
1558 				       struct list_head *list)
1559 {
1560 	int i;
1561 	struct zone *zone = page_zone(page);
1562 	struct lruvec *lruvec;
1563 	int tail_count = 0;
1564 
1565 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1566 	spin_lock_irq(&zone->lru_lock);
1567 	lruvec = mem_cgroup_page_lruvec(page, zone);
1568 
1569 	compound_lock(page);
1570 	/* complete memcg works before add pages to LRU */
1571 	mem_cgroup_split_huge_fixup(page);
1572 
1573 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1574 		struct page *page_tail = page + i;
1575 
1576 		/* tail_page->_mapcount cannot change */
1577 		BUG_ON(page_mapcount(page_tail) < 0);
1578 		tail_count += page_mapcount(page_tail);
1579 		/* check for overflow */
1580 		BUG_ON(tail_count < 0);
1581 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1582 		/*
1583 		 * tail_page->_count is zero and not changing from
1584 		 * under us. But get_page_unless_zero() may be running
1585 		 * from under us on the tail_page. If we used
1586 		 * atomic_set() below instead of atomic_add(), we
1587 		 * would then run atomic_set() concurrently with
1588 		 * get_page_unless_zero(), and atomic_set() is
1589 		 * implemented in C not using locked ops. spin_unlock
1590 		 * on x86 sometime uses locked ops because of PPro
1591 		 * errata 66, 92, so unless somebody can guarantee
1592 		 * atomic_set() here would be safe on all archs (and
1593 		 * not only on x86), it's safer to use atomic_add().
1594 		 */
1595 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1596 			   &page_tail->_count);
1597 
1598 		/* after clearing PageTail the gup refcount can be released */
1599 		smp_mb();
1600 
1601 		/*
1602 		 * retain hwpoison flag of the poisoned tail page:
1603 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1604 		 *   by the memory-failure.
1605 		 */
1606 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1607 		page_tail->flags |= (page->flags &
1608 				     ((1L << PG_referenced) |
1609 				      (1L << PG_swapbacked) |
1610 				      (1L << PG_mlocked) |
1611 				      (1L << PG_uptodate) |
1612 				      (1L << PG_active) |
1613 				      (1L << PG_unevictable)));
1614 		page_tail->flags |= (1L << PG_dirty);
1615 
1616 		/* clear PageTail before overwriting first_page */
1617 		smp_wmb();
1618 
1619 		/*
1620 		 * __split_huge_page_splitting() already set the
1621 		 * splitting bit in all pmd that could map this
1622 		 * hugepage, that will ensure no CPU can alter the
1623 		 * mapcount on the head page. The mapcount is only
1624 		 * accounted in the head page and it has to be
1625 		 * transferred to all tail pages in the below code. So
1626 		 * for this code to be safe, the split the mapcount
1627 		 * can't change. But that doesn't mean userland can't
1628 		 * keep changing and reading the page contents while
1629 		 * we transfer the mapcount, so the pmd splitting
1630 		 * status is achieved setting a reserved bit in the
1631 		 * pmd, not by clearing the present bit.
1632 		*/
1633 		page_tail->_mapcount = page->_mapcount;
1634 
1635 		BUG_ON(page_tail->mapping);
1636 		page_tail->mapping = page->mapping;
1637 
1638 		page_tail->index = page->index + i;
1639 		page_nid_xchg_last(page_tail, page_nid_last(page));
1640 
1641 		BUG_ON(!PageAnon(page_tail));
1642 		BUG_ON(!PageUptodate(page_tail));
1643 		BUG_ON(!PageDirty(page_tail));
1644 		BUG_ON(!PageSwapBacked(page_tail));
1645 
1646 		lru_add_page_tail(page, page_tail, lruvec, list);
1647 	}
1648 	atomic_sub(tail_count, &page->_count);
1649 	BUG_ON(atomic_read(&page->_count) <= 0);
1650 
1651 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1652 
1653 	ClearPageCompound(page);
1654 	compound_unlock(page);
1655 	spin_unlock_irq(&zone->lru_lock);
1656 
1657 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1658 		struct page *page_tail = page + i;
1659 		BUG_ON(page_count(page_tail) <= 0);
1660 		/*
1661 		 * Tail pages may be freed if there wasn't any mapping
1662 		 * like if add_to_swap() is running on a lru page that
1663 		 * had its mapping zapped. And freeing these pages
1664 		 * requires taking the lru_lock so we do the put_page
1665 		 * of the tail pages after the split is complete.
1666 		 */
1667 		put_page(page_tail);
1668 	}
1669 
1670 	/*
1671 	 * Only the head page (now become a regular page) is required
1672 	 * to be pinned by the caller.
1673 	 */
1674 	BUG_ON(page_count(page) <= 0);
1675 }
1676 
1677 static int __split_huge_page_map(struct page *page,
1678 				 struct vm_area_struct *vma,
1679 				 unsigned long address)
1680 {
1681 	struct mm_struct *mm = vma->vm_mm;
1682 	pmd_t *pmd, _pmd;
1683 	int ret = 0, i;
1684 	pgtable_t pgtable;
1685 	unsigned long haddr;
1686 
1687 	spin_lock(&mm->page_table_lock);
1688 	pmd = page_check_address_pmd(page, mm, address,
1689 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1690 	if (pmd) {
1691 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1692 		pmd_populate(mm, &_pmd, pgtable);
1693 
1694 		haddr = address;
1695 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1696 			pte_t *pte, entry;
1697 			BUG_ON(PageCompound(page+i));
1698 			entry = mk_pte(page + i, vma->vm_page_prot);
1699 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700 			if (!pmd_write(*pmd))
1701 				entry = pte_wrprotect(entry);
1702 			else
1703 				BUG_ON(page_mapcount(page) != 1);
1704 			if (!pmd_young(*pmd))
1705 				entry = pte_mkold(entry);
1706 			if (pmd_numa(*pmd))
1707 				entry = pte_mknuma(entry);
1708 			pte = pte_offset_map(&_pmd, haddr);
1709 			BUG_ON(!pte_none(*pte));
1710 			set_pte_at(mm, haddr, pte, entry);
1711 			pte_unmap(pte);
1712 		}
1713 
1714 		smp_wmb(); /* make pte visible before pmd */
1715 		/*
1716 		 * Up to this point the pmd is present and huge and
1717 		 * userland has the whole access to the hugepage
1718 		 * during the split (which happens in place). If we
1719 		 * overwrite the pmd with the not-huge version
1720 		 * pointing to the pte here (which of course we could
1721 		 * if all CPUs were bug free), userland could trigger
1722 		 * a small page size TLB miss on the small sized TLB
1723 		 * while the hugepage TLB entry is still established
1724 		 * in the huge TLB. Some CPU doesn't like that. See
1725 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1726 		 * Erratum 383 on page 93. Intel should be safe but is
1727 		 * also warns that it's only safe if the permission
1728 		 * and cache attributes of the two entries loaded in
1729 		 * the two TLB is identical (which should be the case
1730 		 * here). But it is generally safer to never allow
1731 		 * small and huge TLB entries for the same virtual
1732 		 * address to be loaded simultaneously. So instead of
1733 		 * doing "pmd_populate(); flush_tlb_range();" we first
1734 		 * mark the current pmd notpresent (atomically because
1735 		 * here the pmd_trans_huge and pmd_trans_splitting
1736 		 * must remain set at all times on the pmd until the
1737 		 * split is complete for this pmd), then we flush the
1738 		 * SMP TLB and finally we write the non-huge version
1739 		 * of the pmd entry with pmd_populate.
1740 		 */
1741 		pmdp_invalidate(vma, address, pmd);
1742 		pmd_populate(mm, pmd, pgtable);
1743 		ret = 1;
1744 	}
1745 	spin_unlock(&mm->page_table_lock);
1746 
1747 	return ret;
1748 }
1749 
1750 /* must be called with anon_vma->root->rwsem held */
1751 static void __split_huge_page(struct page *page,
1752 			      struct anon_vma *anon_vma,
1753 			      struct list_head *list)
1754 {
1755 	int mapcount, mapcount2;
1756 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1757 	struct anon_vma_chain *avc;
1758 
1759 	BUG_ON(!PageHead(page));
1760 	BUG_ON(PageTail(page));
1761 
1762 	mapcount = 0;
1763 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1764 		struct vm_area_struct *vma = avc->vma;
1765 		unsigned long addr = vma_address(page, vma);
1766 		BUG_ON(is_vma_temporary_stack(vma));
1767 		mapcount += __split_huge_page_splitting(page, vma, addr);
1768 	}
1769 	/*
1770 	 * It is critical that new vmas are added to the tail of the
1771 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1772 	 * and establishes a child pmd before
1773 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1774 	 * we fail to prevent copy_huge_pmd() from running until the
1775 	 * whole __split_huge_page() is complete), we will still see
1776 	 * the newly established pmd of the child later during the
1777 	 * walk, to be able to set it as pmd_trans_splitting too.
1778 	 */
1779 	if (mapcount != page_mapcount(page))
1780 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1781 		       mapcount, page_mapcount(page));
1782 	BUG_ON(mapcount != page_mapcount(page));
1783 
1784 	__split_huge_page_refcount(page, list);
1785 
1786 	mapcount2 = 0;
1787 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1788 		struct vm_area_struct *vma = avc->vma;
1789 		unsigned long addr = vma_address(page, vma);
1790 		BUG_ON(is_vma_temporary_stack(vma));
1791 		mapcount2 += __split_huge_page_map(page, vma, addr);
1792 	}
1793 	if (mapcount != mapcount2)
1794 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1795 		       mapcount, mapcount2, page_mapcount(page));
1796 	BUG_ON(mapcount != mapcount2);
1797 }
1798 
1799 /*
1800  * Split a hugepage into normal pages. This doesn't change the position of head
1801  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1802  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1803  * from the hugepage.
1804  * Return 0 if the hugepage is split successfully otherwise return 1.
1805  */
1806 int split_huge_page_to_list(struct page *page, struct list_head *list)
1807 {
1808 	struct anon_vma *anon_vma;
1809 	int ret = 1;
1810 
1811 	BUG_ON(is_huge_zero_page(page));
1812 	BUG_ON(!PageAnon(page));
1813 
1814 	/*
1815 	 * The caller does not necessarily hold an mmap_sem that would prevent
1816 	 * the anon_vma disappearing so we first we take a reference to it
1817 	 * and then lock the anon_vma for write. This is similar to
1818 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1819 	 * against parallel split or collapse operations.
1820 	 */
1821 	anon_vma = page_get_anon_vma(page);
1822 	if (!anon_vma)
1823 		goto out;
1824 	anon_vma_lock_write(anon_vma);
1825 
1826 	ret = 0;
1827 	if (!PageCompound(page))
1828 		goto out_unlock;
1829 
1830 	BUG_ON(!PageSwapBacked(page));
1831 	__split_huge_page(page, anon_vma, list);
1832 	count_vm_event(THP_SPLIT);
1833 
1834 	BUG_ON(PageCompound(page));
1835 out_unlock:
1836 	anon_vma_unlock_write(anon_vma);
1837 	put_anon_vma(anon_vma);
1838 out:
1839 	return ret;
1840 }
1841 
1842 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1843 
1844 int hugepage_madvise(struct vm_area_struct *vma,
1845 		     unsigned long *vm_flags, int advice)
1846 {
1847 	struct mm_struct *mm = vma->vm_mm;
1848 
1849 	switch (advice) {
1850 	case MADV_HUGEPAGE:
1851 		/*
1852 		 * Be somewhat over-protective like KSM for now!
1853 		 */
1854 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1855 			return -EINVAL;
1856 		if (mm->def_flags & VM_NOHUGEPAGE)
1857 			return -EINVAL;
1858 		*vm_flags &= ~VM_NOHUGEPAGE;
1859 		*vm_flags |= VM_HUGEPAGE;
1860 		/*
1861 		 * If the vma become good for khugepaged to scan,
1862 		 * register it here without waiting a page fault that
1863 		 * may not happen any time soon.
1864 		 */
1865 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1866 			return -ENOMEM;
1867 		break;
1868 	case MADV_NOHUGEPAGE:
1869 		/*
1870 		 * Be somewhat over-protective like KSM for now!
1871 		 */
1872 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1873 			return -EINVAL;
1874 		*vm_flags &= ~VM_HUGEPAGE;
1875 		*vm_flags |= VM_NOHUGEPAGE;
1876 		/*
1877 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1878 		 * this vma even if we leave the mm registered in khugepaged if
1879 		 * it got registered before VM_NOHUGEPAGE was set.
1880 		 */
1881 		break;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int __init khugepaged_slab_init(void)
1888 {
1889 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1890 					  sizeof(struct mm_slot),
1891 					  __alignof__(struct mm_slot), 0, NULL);
1892 	if (!mm_slot_cache)
1893 		return -ENOMEM;
1894 
1895 	return 0;
1896 }
1897 
1898 static inline struct mm_slot *alloc_mm_slot(void)
1899 {
1900 	if (!mm_slot_cache)	/* initialization failed */
1901 		return NULL;
1902 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1903 }
1904 
1905 static inline void free_mm_slot(struct mm_slot *mm_slot)
1906 {
1907 	kmem_cache_free(mm_slot_cache, mm_slot);
1908 }
1909 
1910 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1911 {
1912 	struct mm_slot *mm_slot;
1913 
1914 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1915 		if (mm == mm_slot->mm)
1916 			return mm_slot;
1917 
1918 	return NULL;
1919 }
1920 
1921 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1922 				    struct mm_slot *mm_slot)
1923 {
1924 	mm_slot->mm = mm;
1925 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1926 }
1927 
1928 static inline int khugepaged_test_exit(struct mm_struct *mm)
1929 {
1930 	return atomic_read(&mm->mm_users) == 0;
1931 }
1932 
1933 int __khugepaged_enter(struct mm_struct *mm)
1934 {
1935 	struct mm_slot *mm_slot;
1936 	int wakeup;
1937 
1938 	mm_slot = alloc_mm_slot();
1939 	if (!mm_slot)
1940 		return -ENOMEM;
1941 
1942 	/* __khugepaged_exit() must not run from under us */
1943 	VM_BUG_ON(khugepaged_test_exit(mm));
1944 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1945 		free_mm_slot(mm_slot);
1946 		return 0;
1947 	}
1948 
1949 	spin_lock(&khugepaged_mm_lock);
1950 	insert_to_mm_slots_hash(mm, mm_slot);
1951 	/*
1952 	 * Insert just behind the scanning cursor, to let the area settle
1953 	 * down a little.
1954 	 */
1955 	wakeup = list_empty(&khugepaged_scan.mm_head);
1956 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1957 	spin_unlock(&khugepaged_mm_lock);
1958 
1959 	atomic_inc(&mm->mm_count);
1960 	if (wakeup)
1961 		wake_up_interruptible(&khugepaged_wait);
1962 
1963 	return 0;
1964 }
1965 
1966 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1967 {
1968 	unsigned long hstart, hend;
1969 	if (!vma->anon_vma)
1970 		/*
1971 		 * Not yet faulted in so we will register later in the
1972 		 * page fault if needed.
1973 		 */
1974 		return 0;
1975 	if (vma->vm_ops)
1976 		/* khugepaged not yet working on file or special mappings */
1977 		return 0;
1978 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1979 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1980 	hend = vma->vm_end & HPAGE_PMD_MASK;
1981 	if (hstart < hend)
1982 		return khugepaged_enter(vma);
1983 	return 0;
1984 }
1985 
1986 void __khugepaged_exit(struct mm_struct *mm)
1987 {
1988 	struct mm_slot *mm_slot;
1989 	int free = 0;
1990 
1991 	spin_lock(&khugepaged_mm_lock);
1992 	mm_slot = get_mm_slot(mm);
1993 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1994 		hash_del(&mm_slot->hash);
1995 		list_del(&mm_slot->mm_node);
1996 		free = 1;
1997 	}
1998 	spin_unlock(&khugepaged_mm_lock);
1999 
2000 	if (free) {
2001 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2002 		free_mm_slot(mm_slot);
2003 		mmdrop(mm);
2004 	} else if (mm_slot) {
2005 		/*
2006 		 * This is required to serialize against
2007 		 * khugepaged_test_exit() (which is guaranteed to run
2008 		 * under mmap sem read mode). Stop here (after we
2009 		 * return all pagetables will be destroyed) until
2010 		 * khugepaged has finished working on the pagetables
2011 		 * under the mmap_sem.
2012 		 */
2013 		down_write(&mm->mmap_sem);
2014 		up_write(&mm->mmap_sem);
2015 	}
2016 }
2017 
2018 static void release_pte_page(struct page *page)
2019 {
2020 	/* 0 stands for page_is_file_cache(page) == false */
2021 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2022 	unlock_page(page);
2023 	putback_lru_page(page);
2024 }
2025 
2026 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2027 {
2028 	while (--_pte >= pte) {
2029 		pte_t pteval = *_pte;
2030 		if (!pte_none(pteval))
2031 			release_pte_page(pte_page(pteval));
2032 	}
2033 }
2034 
2035 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2036 					unsigned long address,
2037 					pte_t *pte)
2038 {
2039 	struct page *page;
2040 	pte_t *_pte;
2041 	int referenced = 0, none = 0;
2042 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2043 	     _pte++, address += PAGE_SIZE) {
2044 		pte_t pteval = *_pte;
2045 		if (pte_none(pteval)) {
2046 			if (++none <= khugepaged_max_ptes_none)
2047 				continue;
2048 			else
2049 				goto out;
2050 		}
2051 		if (!pte_present(pteval) || !pte_write(pteval))
2052 			goto out;
2053 		page = vm_normal_page(vma, address, pteval);
2054 		if (unlikely(!page))
2055 			goto out;
2056 
2057 		VM_BUG_ON(PageCompound(page));
2058 		BUG_ON(!PageAnon(page));
2059 		VM_BUG_ON(!PageSwapBacked(page));
2060 
2061 		/* cannot use mapcount: can't collapse if there's a gup pin */
2062 		if (page_count(page) != 1)
2063 			goto out;
2064 		/*
2065 		 * We can do it before isolate_lru_page because the
2066 		 * page can't be freed from under us. NOTE: PG_lock
2067 		 * is needed to serialize against split_huge_page
2068 		 * when invoked from the VM.
2069 		 */
2070 		if (!trylock_page(page))
2071 			goto out;
2072 		/*
2073 		 * Isolate the page to avoid collapsing an hugepage
2074 		 * currently in use by the VM.
2075 		 */
2076 		if (isolate_lru_page(page)) {
2077 			unlock_page(page);
2078 			goto out;
2079 		}
2080 		/* 0 stands for page_is_file_cache(page) == false */
2081 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2082 		VM_BUG_ON(!PageLocked(page));
2083 		VM_BUG_ON(PageLRU(page));
2084 
2085 		/* If there is no mapped pte young don't collapse the page */
2086 		if (pte_young(pteval) || PageReferenced(page) ||
2087 		    mmu_notifier_test_young(vma->vm_mm, address))
2088 			referenced = 1;
2089 	}
2090 	if (likely(referenced))
2091 		return 1;
2092 out:
2093 	release_pte_pages(pte, _pte);
2094 	return 0;
2095 }
2096 
2097 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2098 				      struct vm_area_struct *vma,
2099 				      unsigned long address,
2100 				      spinlock_t *ptl)
2101 {
2102 	pte_t *_pte;
2103 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2104 		pte_t pteval = *_pte;
2105 		struct page *src_page;
2106 
2107 		if (pte_none(pteval)) {
2108 			clear_user_highpage(page, address);
2109 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2110 		} else {
2111 			src_page = pte_page(pteval);
2112 			copy_user_highpage(page, src_page, address, vma);
2113 			VM_BUG_ON(page_mapcount(src_page) != 1);
2114 			release_pte_page(src_page);
2115 			/*
2116 			 * ptl mostly unnecessary, but preempt has to
2117 			 * be disabled to update the per-cpu stats
2118 			 * inside page_remove_rmap().
2119 			 */
2120 			spin_lock(ptl);
2121 			/*
2122 			 * paravirt calls inside pte_clear here are
2123 			 * superfluous.
2124 			 */
2125 			pte_clear(vma->vm_mm, address, _pte);
2126 			page_remove_rmap(src_page);
2127 			spin_unlock(ptl);
2128 			free_page_and_swap_cache(src_page);
2129 		}
2130 
2131 		address += PAGE_SIZE;
2132 		page++;
2133 	}
2134 }
2135 
2136 static void khugepaged_alloc_sleep(void)
2137 {
2138 	wait_event_freezable_timeout(khugepaged_wait, false,
2139 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2140 }
2141 
2142 #ifdef CONFIG_NUMA
2143 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2144 {
2145 	if (IS_ERR(*hpage)) {
2146 		if (!*wait)
2147 			return false;
2148 
2149 		*wait = false;
2150 		*hpage = NULL;
2151 		khugepaged_alloc_sleep();
2152 	} else if (*hpage) {
2153 		put_page(*hpage);
2154 		*hpage = NULL;
2155 	}
2156 
2157 	return true;
2158 }
2159 
2160 static struct page
2161 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2162 		       struct vm_area_struct *vma, unsigned long address,
2163 		       int node)
2164 {
2165 	VM_BUG_ON(*hpage);
2166 	/*
2167 	 * Allocate the page while the vma is still valid and under
2168 	 * the mmap_sem read mode so there is no memory allocation
2169 	 * later when we take the mmap_sem in write mode. This is more
2170 	 * friendly behavior (OTOH it may actually hide bugs) to
2171 	 * filesystems in userland with daemons allocating memory in
2172 	 * the userland I/O paths.  Allocating memory with the
2173 	 * mmap_sem in read mode is good idea also to allow greater
2174 	 * scalability.
2175 	 */
2176 	*hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2177 				      node, __GFP_OTHER_NODE);
2178 
2179 	/*
2180 	 * After allocating the hugepage, release the mmap_sem read lock in
2181 	 * preparation for taking it in write mode.
2182 	 */
2183 	up_read(&mm->mmap_sem);
2184 	if (unlikely(!*hpage)) {
2185 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2186 		*hpage = ERR_PTR(-ENOMEM);
2187 		return NULL;
2188 	}
2189 
2190 	count_vm_event(THP_COLLAPSE_ALLOC);
2191 	return *hpage;
2192 }
2193 #else
2194 static struct page *khugepaged_alloc_hugepage(bool *wait)
2195 {
2196 	struct page *hpage;
2197 
2198 	do {
2199 		hpage = alloc_hugepage(khugepaged_defrag());
2200 		if (!hpage) {
2201 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2202 			if (!*wait)
2203 				return NULL;
2204 
2205 			*wait = false;
2206 			khugepaged_alloc_sleep();
2207 		} else
2208 			count_vm_event(THP_COLLAPSE_ALLOC);
2209 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2210 
2211 	return hpage;
2212 }
2213 
2214 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2215 {
2216 	if (!*hpage)
2217 		*hpage = khugepaged_alloc_hugepage(wait);
2218 
2219 	if (unlikely(!*hpage))
2220 		return false;
2221 
2222 	return true;
2223 }
2224 
2225 static struct page
2226 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2227 		       struct vm_area_struct *vma, unsigned long address,
2228 		       int node)
2229 {
2230 	up_read(&mm->mmap_sem);
2231 	VM_BUG_ON(!*hpage);
2232 	return  *hpage;
2233 }
2234 #endif
2235 
2236 static bool hugepage_vma_check(struct vm_area_struct *vma)
2237 {
2238 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2239 	    (vma->vm_flags & VM_NOHUGEPAGE))
2240 		return false;
2241 
2242 	if (!vma->anon_vma || vma->vm_ops)
2243 		return false;
2244 	if (is_vma_temporary_stack(vma))
2245 		return false;
2246 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2247 	return true;
2248 }
2249 
2250 static void collapse_huge_page(struct mm_struct *mm,
2251 				   unsigned long address,
2252 				   struct page **hpage,
2253 				   struct vm_area_struct *vma,
2254 				   int node)
2255 {
2256 	pmd_t *pmd, _pmd;
2257 	pte_t *pte;
2258 	pgtable_t pgtable;
2259 	struct page *new_page;
2260 	spinlock_t *ptl;
2261 	int isolated;
2262 	unsigned long hstart, hend;
2263 	unsigned long mmun_start;	/* For mmu_notifiers */
2264 	unsigned long mmun_end;		/* For mmu_notifiers */
2265 
2266 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2267 
2268 	/* release the mmap_sem read lock. */
2269 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2270 	if (!new_page)
2271 		return;
2272 
2273 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2274 		return;
2275 
2276 	/*
2277 	 * Prevent all access to pagetables with the exception of
2278 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2279 	 * handled by the anon_vma lock + PG_lock.
2280 	 */
2281 	down_write(&mm->mmap_sem);
2282 	if (unlikely(khugepaged_test_exit(mm)))
2283 		goto out;
2284 
2285 	vma = find_vma(mm, address);
2286 	if (!vma)
2287 		goto out;
2288 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2289 	hend = vma->vm_end & HPAGE_PMD_MASK;
2290 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2291 		goto out;
2292 	if (!hugepage_vma_check(vma))
2293 		goto out;
2294 	pmd = mm_find_pmd(mm, address);
2295 	if (!pmd)
2296 		goto out;
2297 	if (pmd_trans_huge(*pmd))
2298 		goto out;
2299 
2300 	anon_vma_lock_write(vma->anon_vma);
2301 
2302 	pte = pte_offset_map(pmd, address);
2303 	ptl = pte_lockptr(mm, pmd);
2304 
2305 	mmun_start = address;
2306 	mmun_end   = address + HPAGE_PMD_SIZE;
2307 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2308 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
2309 	/*
2310 	 * After this gup_fast can't run anymore. This also removes
2311 	 * any huge TLB entry from the CPU so we won't allow
2312 	 * huge and small TLB entries for the same virtual address
2313 	 * to avoid the risk of CPU bugs in that area.
2314 	 */
2315 	_pmd = pmdp_clear_flush(vma, address, pmd);
2316 	spin_unlock(&mm->page_table_lock);
2317 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2318 
2319 	spin_lock(ptl);
2320 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2321 	spin_unlock(ptl);
2322 
2323 	if (unlikely(!isolated)) {
2324 		pte_unmap(pte);
2325 		spin_lock(&mm->page_table_lock);
2326 		BUG_ON(!pmd_none(*pmd));
2327 		/*
2328 		 * We can only use set_pmd_at when establishing
2329 		 * hugepmds and never for establishing regular pmds that
2330 		 * points to regular pagetables. Use pmd_populate for that
2331 		 */
2332 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2333 		spin_unlock(&mm->page_table_lock);
2334 		anon_vma_unlock_write(vma->anon_vma);
2335 		goto out;
2336 	}
2337 
2338 	/*
2339 	 * All pages are isolated and locked so anon_vma rmap
2340 	 * can't run anymore.
2341 	 */
2342 	anon_vma_unlock_write(vma->anon_vma);
2343 
2344 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2345 	pte_unmap(pte);
2346 	__SetPageUptodate(new_page);
2347 	pgtable = pmd_pgtable(_pmd);
2348 
2349 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2350 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2351 
2352 	/*
2353 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2354 	 * this is needed to avoid the copy_huge_page writes to become
2355 	 * visible after the set_pmd_at() write.
2356 	 */
2357 	smp_wmb();
2358 
2359 	spin_lock(&mm->page_table_lock);
2360 	BUG_ON(!pmd_none(*pmd));
2361 	page_add_new_anon_rmap(new_page, vma, address);
2362 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2363 	set_pmd_at(mm, address, pmd, _pmd);
2364 	update_mmu_cache_pmd(vma, address, pmd);
2365 	spin_unlock(&mm->page_table_lock);
2366 
2367 	*hpage = NULL;
2368 
2369 	khugepaged_pages_collapsed++;
2370 out_up_write:
2371 	up_write(&mm->mmap_sem);
2372 	return;
2373 
2374 out:
2375 	mem_cgroup_uncharge_page(new_page);
2376 	goto out_up_write;
2377 }
2378 
2379 static int khugepaged_scan_pmd(struct mm_struct *mm,
2380 			       struct vm_area_struct *vma,
2381 			       unsigned long address,
2382 			       struct page **hpage)
2383 {
2384 	pmd_t *pmd;
2385 	pte_t *pte, *_pte;
2386 	int ret = 0, referenced = 0, none = 0;
2387 	struct page *page;
2388 	unsigned long _address;
2389 	spinlock_t *ptl;
2390 	int node = NUMA_NO_NODE;
2391 
2392 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2393 
2394 	pmd = mm_find_pmd(mm, address);
2395 	if (!pmd)
2396 		goto out;
2397 	if (pmd_trans_huge(*pmd))
2398 		goto out;
2399 
2400 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2401 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2402 	     _pte++, _address += PAGE_SIZE) {
2403 		pte_t pteval = *_pte;
2404 		if (pte_none(pteval)) {
2405 			if (++none <= khugepaged_max_ptes_none)
2406 				continue;
2407 			else
2408 				goto out_unmap;
2409 		}
2410 		if (!pte_present(pteval) || !pte_write(pteval))
2411 			goto out_unmap;
2412 		page = vm_normal_page(vma, _address, pteval);
2413 		if (unlikely(!page))
2414 			goto out_unmap;
2415 		/*
2416 		 * Chose the node of the first page. This could
2417 		 * be more sophisticated and look at more pages,
2418 		 * but isn't for now.
2419 		 */
2420 		if (node == NUMA_NO_NODE)
2421 			node = page_to_nid(page);
2422 		VM_BUG_ON(PageCompound(page));
2423 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2424 			goto out_unmap;
2425 		/* cannot use mapcount: can't collapse if there's a gup pin */
2426 		if (page_count(page) != 1)
2427 			goto out_unmap;
2428 		if (pte_young(pteval) || PageReferenced(page) ||
2429 		    mmu_notifier_test_young(vma->vm_mm, address))
2430 			referenced = 1;
2431 	}
2432 	if (referenced)
2433 		ret = 1;
2434 out_unmap:
2435 	pte_unmap_unlock(pte, ptl);
2436 	if (ret)
2437 		/* collapse_huge_page will return with the mmap_sem released */
2438 		collapse_huge_page(mm, address, hpage, vma, node);
2439 out:
2440 	return ret;
2441 }
2442 
2443 static void collect_mm_slot(struct mm_slot *mm_slot)
2444 {
2445 	struct mm_struct *mm = mm_slot->mm;
2446 
2447 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2448 
2449 	if (khugepaged_test_exit(mm)) {
2450 		/* free mm_slot */
2451 		hash_del(&mm_slot->hash);
2452 		list_del(&mm_slot->mm_node);
2453 
2454 		/*
2455 		 * Not strictly needed because the mm exited already.
2456 		 *
2457 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2458 		 */
2459 
2460 		/* khugepaged_mm_lock actually not necessary for the below */
2461 		free_mm_slot(mm_slot);
2462 		mmdrop(mm);
2463 	}
2464 }
2465 
2466 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2467 					    struct page **hpage)
2468 	__releases(&khugepaged_mm_lock)
2469 	__acquires(&khugepaged_mm_lock)
2470 {
2471 	struct mm_slot *mm_slot;
2472 	struct mm_struct *mm;
2473 	struct vm_area_struct *vma;
2474 	int progress = 0;
2475 
2476 	VM_BUG_ON(!pages);
2477 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2478 
2479 	if (khugepaged_scan.mm_slot)
2480 		mm_slot = khugepaged_scan.mm_slot;
2481 	else {
2482 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2483 				     struct mm_slot, mm_node);
2484 		khugepaged_scan.address = 0;
2485 		khugepaged_scan.mm_slot = mm_slot;
2486 	}
2487 	spin_unlock(&khugepaged_mm_lock);
2488 
2489 	mm = mm_slot->mm;
2490 	down_read(&mm->mmap_sem);
2491 	if (unlikely(khugepaged_test_exit(mm)))
2492 		vma = NULL;
2493 	else
2494 		vma = find_vma(mm, khugepaged_scan.address);
2495 
2496 	progress++;
2497 	for (; vma; vma = vma->vm_next) {
2498 		unsigned long hstart, hend;
2499 
2500 		cond_resched();
2501 		if (unlikely(khugepaged_test_exit(mm))) {
2502 			progress++;
2503 			break;
2504 		}
2505 		if (!hugepage_vma_check(vma)) {
2506 skip:
2507 			progress++;
2508 			continue;
2509 		}
2510 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2511 		hend = vma->vm_end & HPAGE_PMD_MASK;
2512 		if (hstart >= hend)
2513 			goto skip;
2514 		if (khugepaged_scan.address > hend)
2515 			goto skip;
2516 		if (khugepaged_scan.address < hstart)
2517 			khugepaged_scan.address = hstart;
2518 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2519 
2520 		while (khugepaged_scan.address < hend) {
2521 			int ret;
2522 			cond_resched();
2523 			if (unlikely(khugepaged_test_exit(mm)))
2524 				goto breakouterloop;
2525 
2526 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2527 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2528 				  hend);
2529 			ret = khugepaged_scan_pmd(mm, vma,
2530 						  khugepaged_scan.address,
2531 						  hpage);
2532 			/* move to next address */
2533 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2534 			progress += HPAGE_PMD_NR;
2535 			if (ret)
2536 				/* we released mmap_sem so break loop */
2537 				goto breakouterloop_mmap_sem;
2538 			if (progress >= pages)
2539 				goto breakouterloop;
2540 		}
2541 	}
2542 breakouterloop:
2543 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2544 breakouterloop_mmap_sem:
2545 
2546 	spin_lock(&khugepaged_mm_lock);
2547 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2548 	/*
2549 	 * Release the current mm_slot if this mm is about to die, or
2550 	 * if we scanned all vmas of this mm.
2551 	 */
2552 	if (khugepaged_test_exit(mm) || !vma) {
2553 		/*
2554 		 * Make sure that if mm_users is reaching zero while
2555 		 * khugepaged runs here, khugepaged_exit will find
2556 		 * mm_slot not pointing to the exiting mm.
2557 		 */
2558 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2559 			khugepaged_scan.mm_slot = list_entry(
2560 				mm_slot->mm_node.next,
2561 				struct mm_slot, mm_node);
2562 			khugepaged_scan.address = 0;
2563 		} else {
2564 			khugepaged_scan.mm_slot = NULL;
2565 			khugepaged_full_scans++;
2566 		}
2567 
2568 		collect_mm_slot(mm_slot);
2569 	}
2570 
2571 	return progress;
2572 }
2573 
2574 static int khugepaged_has_work(void)
2575 {
2576 	return !list_empty(&khugepaged_scan.mm_head) &&
2577 		khugepaged_enabled();
2578 }
2579 
2580 static int khugepaged_wait_event(void)
2581 {
2582 	return !list_empty(&khugepaged_scan.mm_head) ||
2583 		kthread_should_stop();
2584 }
2585 
2586 static void khugepaged_do_scan(void)
2587 {
2588 	struct page *hpage = NULL;
2589 	unsigned int progress = 0, pass_through_head = 0;
2590 	unsigned int pages = khugepaged_pages_to_scan;
2591 	bool wait = true;
2592 
2593 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2594 
2595 	while (progress < pages) {
2596 		if (!khugepaged_prealloc_page(&hpage, &wait))
2597 			break;
2598 
2599 		cond_resched();
2600 
2601 		if (unlikely(kthread_should_stop() || freezing(current)))
2602 			break;
2603 
2604 		spin_lock(&khugepaged_mm_lock);
2605 		if (!khugepaged_scan.mm_slot)
2606 			pass_through_head++;
2607 		if (khugepaged_has_work() &&
2608 		    pass_through_head < 2)
2609 			progress += khugepaged_scan_mm_slot(pages - progress,
2610 							    &hpage);
2611 		else
2612 			progress = pages;
2613 		spin_unlock(&khugepaged_mm_lock);
2614 	}
2615 
2616 	if (!IS_ERR_OR_NULL(hpage))
2617 		put_page(hpage);
2618 }
2619 
2620 static void khugepaged_wait_work(void)
2621 {
2622 	try_to_freeze();
2623 
2624 	if (khugepaged_has_work()) {
2625 		if (!khugepaged_scan_sleep_millisecs)
2626 			return;
2627 
2628 		wait_event_freezable_timeout(khugepaged_wait,
2629 					     kthread_should_stop(),
2630 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2631 		return;
2632 	}
2633 
2634 	if (khugepaged_enabled())
2635 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2636 }
2637 
2638 static int khugepaged(void *none)
2639 {
2640 	struct mm_slot *mm_slot;
2641 
2642 	set_freezable();
2643 	set_user_nice(current, 19);
2644 
2645 	while (!kthread_should_stop()) {
2646 		khugepaged_do_scan();
2647 		khugepaged_wait_work();
2648 	}
2649 
2650 	spin_lock(&khugepaged_mm_lock);
2651 	mm_slot = khugepaged_scan.mm_slot;
2652 	khugepaged_scan.mm_slot = NULL;
2653 	if (mm_slot)
2654 		collect_mm_slot(mm_slot);
2655 	spin_unlock(&khugepaged_mm_lock);
2656 	return 0;
2657 }
2658 
2659 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2660 		unsigned long haddr, pmd_t *pmd)
2661 {
2662 	struct mm_struct *mm = vma->vm_mm;
2663 	pgtable_t pgtable;
2664 	pmd_t _pmd;
2665 	int i;
2666 
2667 	pmdp_clear_flush(vma, haddr, pmd);
2668 	/* leave pmd empty until pte is filled */
2669 
2670 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2671 	pmd_populate(mm, &_pmd, pgtable);
2672 
2673 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2674 		pte_t *pte, entry;
2675 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2676 		entry = pte_mkspecial(entry);
2677 		pte = pte_offset_map(&_pmd, haddr);
2678 		VM_BUG_ON(!pte_none(*pte));
2679 		set_pte_at(mm, haddr, pte, entry);
2680 		pte_unmap(pte);
2681 	}
2682 	smp_wmb(); /* make pte visible before pmd */
2683 	pmd_populate(mm, pmd, pgtable);
2684 	put_huge_zero_page();
2685 }
2686 
2687 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2688 		pmd_t *pmd)
2689 {
2690 	struct page *page;
2691 	struct mm_struct *mm = vma->vm_mm;
2692 	unsigned long haddr = address & HPAGE_PMD_MASK;
2693 	unsigned long mmun_start;	/* For mmu_notifiers */
2694 	unsigned long mmun_end;		/* For mmu_notifiers */
2695 
2696 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2697 
2698 	mmun_start = haddr;
2699 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2700 again:
2701 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2702 	spin_lock(&mm->page_table_lock);
2703 	if (unlikely(!pmd_trans_huge(*pmd))) {
2704 		spin_unlock(&mm->page_table_lock);
2705 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2706 		return;
2707 	}
2708 	if (is_huge_zero_pmd(*pmd)) {
2709 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2710 		spin_unlock(&mm->page_table_lock);
2711 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2712 		return;
2713 	}
2714 	page = pmd_page(*pmd);
2715 	VM_BUG_ON(!page_count(page));
2716 	get_page(page);
2717 	spin_unlock(&mm->page_table_lock);
2718 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2719 
2720 	split_huge_page(page);
2721 
2722 	put_page(page);
2723 
2724 	/*
2725 	 * We don't always have down_write of mmap_sem here: a racing
2726 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2727 	 * huge page before our split_huge_page() got the anon_vma lock.
2728 	 */
2729 	if (unlikely(pmd_trans_huge(*pmd)))
2730 		goto again;
2731 }
2732 
2733 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2734 		pmd_t *pmd)
2735 {
2736 	struct vm_area_struct *vma;
2737 
2738 	vma = find_vma(mm, address);
2739 	BUG_ON(vma == NULL);
2740 	split_huge_page_pmd(vma, address, pmd);
2741 }
2742 
2743 static void split_huge_page_address(struct mm_struct *mm,
2744 				    unsigned long address)
2745 {
2746 	pmd_t *pmd;
2747 
2748 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2749 
2750 	pmd = mm_find_pmd(mm, address);
2751 	if (!pmd)
2752 		return;
2753 	/*
2754 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2755 	 * materialize from under us.
2756 	 */
2757 	split_huge_page_pmd_mm(mm, address, pmd);
2758 }
2759 
2760 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2761 			     unsigned long start,
2762 			     unsigned long end,
2763 			     long adjust_next)
2764 {
2765 	/*
2766 	 * If the new start address isn't hpage aligned and it could
2767 	 * previously contain an hugepage: check if we need to split
2768 	 * an huge pmd.
2769 	 */
2770 	if (start & ~HPAGE_PMD_MASK &&
2771 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2772 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2773 		split_huge_page_address(vma->vm_mm, start);
2774 
2775 	/*
2776 	 * If the new end address isn't hpage aligned and it could
2777 	 * previously contain an hugepage: check if we need to split
2778 	 * an huge pmd.
2779 	 */
2780 	if (end & ~HPAGE_PMD_MASK &&
2781 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2782 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2783 		split_huge_page_address(vma->vm_mm, end);
2784 
2785 	/*
2786 	 * If we're also updating the vma->vm_next->vm_start, if the new
2787 	 * vm_next->vm_start isn't page aligned and it could previously
2788 	 * contain an hugepage: check if we need to split an huge pmd.
2789 	 */
2790 	if (adjust_next > 0) {
2791 		struct vm_area_struct *next = vma->vm_next;
2792 		unsigned long nstart = next->vm_start;
2793 		nstart += adjust_next << PAGE_SHIFT;
2794 		if (nstart & ~HPAGE_PMD_MASK &&
2795 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2796 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2797 			split_huge_page_address(next->vm_mm, nstart);
2798 	}
2799 }
2800