1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/dax.h> 22 #include <linux/khugepaged.h> 23 #include <linux/freezer.h> 24 #include <linux/pfn_t.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 #include <linux/sched/sysctl.h> 38 39 #include <asm/tlb.h> 40 #include <asm/pgalloc.h> 41 #include "internal.h" 42 43 /* 44 * By default, transparent hugepage support is disabled in order to avoid 45 * risking an increased memory footprint for applications that are not 46 * guaranteed to benefit from it. When transparent hugepage support is 47 * enabled, it is for all mappings, and khugepaged scans all mappings. 48 * Defrag is invoked by khugepaged hugepage allocations and by page faults 49 * for all hugepage allocations. 50 */ 51 unsigned long transparent_hugepage_flags __read_mostly = 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 53 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 54 #endif 55 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 56 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 57 #endif 58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 59 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 60 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 61 62 static struct shrinker deferred_split_shrinker; 63 64 static atomic_t huge_zero_refcount; 65 struct page *huge_zero_page __read_mostly; 66 unsigned long huge_zero_pfn __read_mostly = ~0UL; 67 68 static inline bool file_thp_enabled(struct vm_area_struct *vma) 69 { 70 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file && 71 !inode_is_open_for_write(vma->vm_file->f_inode) && 72 (vma->vm_flags & VM_EXEC); 73 } 74 75 bool transparent_hugepage_active(struct vm_area_struct *vma) 76 { 77 /* The addr is used to check if the vma size fits */ 78 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 79 80 if (!transhuge_vma_suitable(vma, addr)) 81 return false; 82 if (vma_is_anonymous(vma)) 83 return __transparent_hugepage_enabled(vma); 84 if (vma_is_shmem(vma)) 85 return shmem_huge_enabled(vma); 86 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 87 return file_thp_enabled(vma); 88 89 return false; 90 } 91 92 static bool get_huge_zero_page(void) 93 { 94 struct page *zero_page; 95 retry: 96 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 97 return true; 98 99 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 100 HPAGE_PMD_ORDER); 101 if (!zero_page) { 102 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 103 return false; 104 } 105 count_vm_event(THP_ZERO_PAGE_ALLOC); 106 preempt_disable(); 107 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 108 preempt_enable(); 109 __free_pages(zero_page, compound_order(zero_page)); 110 goto retry; 111 } 112 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 113 114 /* We take additional reference here. It will be put back by shrinker */ 115 atomic_set(&huge_zero_refcount, 2); 116 preempt_enable(); 117 return true; 118 } 119 120 static void put_huge_zero_page(void) 121 { 122 /* 123 * Counter should never go to zero here. Only shrinker can put 124 * last reference. 125 */ 126 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 127 } 128 129 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 130 { 131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 132 return READ_ONCE(huge_zero_page); 133 134 if (!get_huge_zero_page()) 135 return NULL; 136 137 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 138 put_huge_zero_page(); 139 140 return READ_ONCE(huge_zero_page); 141 } 142 143 void mm_put_huge_zero_page(struct mm_struct *mm) 144 { 145 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 146 put_huge_zero_page(); 147 } 148 149 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 150 struct shrink_control *sc) 151 { 152 /* we can free zero page only if last reference remains */ 153 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 154 } 155 156 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 157 struct shrink_control *sc) 158 { 159 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 160 struct page *zero_page = xchg(&huge_zero_page, NULL); 161 BUG_ON(zero_page == NULL); 162 WRITE_ONCE(huge_zero_pfn, ~0UL); 163 __free_pages(zero_page, compound_order(zero_page)); 164 return HPAGE_PMD_NR; 165 } 166 167 return 0; 168 } 169 170 static struct shrinker huge_zero_page_shrinker = { 171 .count_objects = shrink_huge_zero_page_count, 172 .scan_objects = shrink_huge_zero_page_scan, 173 .seeks = DEFAULT_SEEKS, 174 }; 175 176 #ifdef CONFIG_SYSFS 177 static ssize_t enabled_show(struct kobject *kobj, 178 struct kobj_attribute *attr, char *buf) 179 { 180 const char *output; 181 182 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 183 output = "[always] madvise never"; 184 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 185 &transparent_hugepage_flags)) 186 output = "always [madvise] never"; 187 else 188 output = "always madvise [never]"; 189 190 return sysfs_emit(buf, "%s\n", output); 191 } 192 193 static ssize_t enabled_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 ssize_t ret = count; 198 199 if (sysfs_streq(buf, "always")) { 200 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 201 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 202 } else if (sysfs_streq(buf, "madvise")) { 203 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 204 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 205 } else if (sysfs_streq(buf, "never")) { 206 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 207 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 208 } else 209 ret = -EINVAL; 210 211 if (ret > 0) { 212 int err = start_stop_khugepaged(); 213 if (err) 214 ret = err; 215 } 216 return ret; 217 } 218 static struct kobj_attribute enabled_attr = 219 __ATTR(enabled, 0644, enabled_show, enabled_store); 220 221 ssize_t single_hugepage_flag_show(struct kobject *kobj, 222 struct kobj_attribute *attr, char *buf, 223 enum transparent_hugepage_flag flag) 224 { 225 return sysfs_emit(buf, "%d\n", 226 !!test_bit(flag, &transparent_hugepage_flags)); 227 } 228 229 ssize_t single_hugepage_flag_store(struct kobject *kobj, 230 struct kobj_attribute *attr, 231 const char *buf, size_t count, 232 enum transparent_hugepage_flag flag) 233 { 234 unsigned long value; 235 int ret; 236 237 ret = kstrtoul(buf, 10, &value); 238 if (ret < 0) 239 return ret; 240 if (value > 1) 241 return -EINVAL; 242 243 if (value) 244 set_bit(flag, &transparent_hugepage_flags); 245 else 246 clear_bit(flag, &transparent_hugepage_flags); 247 248 return count; 249 } 250 251 static ssize_t defrag_show(struct kobject *kobj, 252 struct kobj_attribute *attr, char *buf) 253 { 254 const char *output; 255 256 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 257 &transparent_hugepage_flags)) 258 output = "[always] defer defer+madvise madvise never"; 259 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 260 &transparent_hugepage_flags)) 261 output = "always [defer] defer+madvise madvise never"; 262 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 263 &transparent_hugepage_flags)) 264 output = "always defer [defer+madvise] madvise never"; 265 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 266 &transparent_hugepage_flags)) 267 output = "always defer defer+madvise [madvise] never"; 268 else 269 output = "always defer defer+madvise madvise [never]"; 270 271 return sysfs_emit(buf, "%s\n", output); 272 } 273 274 static ssize_t defrag_store(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 const char *buf, size_t count) 277 { 278 if (sysfs_streq(buf, "always")) { 279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 282 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 283 } else if (sysfs_streq(buf, "defer+madvise")) { 284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 287 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 288 } else if (sysfs_streq(buf, "defer")) { 289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 292 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 293 } else if (sysfs_streq(buf, "madvise")) { 294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 296 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 297 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 298 } else if (sysfs_streq(buf, "never")) { 299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 302 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 303 } else 304 return -EINVAL; 305 306 return count; 307 } 308 static struct kobj_attribute defrag_attr = 309 __ATTR(defrag, 0644, defrag_show, defrag_store); 310 311 static ssize_t use_zero_page_show(struct kobject *kobj, 312 struct kobj_attribute *attr, char *buf) 313 { 314 return single_hugepage_flag_show(kobj, attr, buf, 315 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 316 } 317 static ssize_t use_zero_page_store(struct kobject *kobj, 318 struct kobj_attribute *attr, const char *buf, size_t count) 319 { 320 return single_hugepage_flag_store(kobj, attr, buf, count, 321 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 322 } 323 static struct kobj_attribute use_zero_page_attr = 324 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 325 326 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 327 struct kobj_attribute *attr, char *buf) 328 { 329 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 330 } 331 static struct kobj_attribute hpage_pmd_size_attr = 332 __ATTR_RO(hpage_pmd_size); 333 334 static struct attribute *hugepage_attr[] = { 335 &enabled_attr.attr, 336 &defrag_attr.attr, 337 &use_zero_page_attr.attr, 338 &hpage_pmd_size_attr.attr, 339 #ifdef CONFIG_SHMEM 340 &shmem_enabled_attr.attr, 341 #endif 342 NULL, 343 }; 344 345 static const struct attribute_group hugepage_attr_group = { 346 .attrs = hugepage_attr, 347 }; 348 349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 350 { 351 int err; 352 353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 354 if (unlikely(!*hugepage_kobj)) { 355 pr_err("failed to create transparent hugepage kobject\n"); 356 return -ENOMEM; 357 } 358 359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 360 if (err) { 361 pr_err("failed to register transparent hugepage group\n"); 362 goto delete_obj; 363 } 364 365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 366 if (err) { 367 pr_err("failed to register transparent hugepage group\n"); 368 goto remove_hp_group; 369 } 370 371 return 0; 372 373 remove_hp_group: 374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 375 delete_obj: 376 kobject_put(*hugepage_kobj); 377 return err; 378 } 379 380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 381 { 382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 384 kobject_put(hugepage_kobj); 385 } 386 #else 387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 388 { 389 return 0; 390 } 391 392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 393 { 394 } 395 #endif /* CONFIG_SYSFS */ 396 397 static int __init hugepage_init(void) 398 { 399 int err; 400 struct kobject *hugepage_kobj; 401 402 if (!has_transparent_hugepage()) { 403 /* 404 * Hardware doesn't support hugepages, hence disable 405 * DAX PMD support. 406 */ 407 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 408 return -EINVAL; 409 } 410 411 /* 412 * hugepages can't be allocated by the buddy allocator 413 */ 414 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 415 /* 416 * we use page->mapping and page->index in second tail page 417 * as list_head: assuming THP order >= 2 418 */ 419 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 420 421 err = hugepage_init_sysfs(&hugepage_kobj); 422 if (err) 423 goto err_sysfs; 424 425 err = khugepaged_init(); 426 if (err) 427 goto err_slab; 428 429 err = register_shrinker(&huge_zero_page_shrinker); 430 if (err) 431 goto err_hzp_shrinker; 432 err = register_shrinker(&deferred_split_shrinker); 433 if (err) 434 goto err_split_shrinker; 435 436 /* 437 * By default disable transparent hugepages on smaller systems, 438 * where the extra memory used could hurt more than TLB overhead 439 * is likely to save. The admin can still enable it through /sys. 440 */ 441 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 442 transparent_hugepage_flags = 0; 443 return 0; 444 } 445 446 err = start_stop_khugepaged(); 447 if (err) 448 goto err_khugepaged; 449 450 return 0; 451 err_khugepaged: 452 unregister_shrinker(&deferred_split_shrinker); 453 err_split_shrinker: 454 unregister_shrinker(&huge_zero_page_shrinker); 455 err_hzp_shrinker: 456 khugepaged_destroy(); 457 err_slab: 458 hugepage_exit_sysfs(hugepage_kobj); 459 err_sysfs: 460 return err; 461 } 462 subsys_initcall(hugepage_init); 463 464 static int __init setup_transparent_hugepage(char *str) 465 { 466 int ret = 0; 467 if (!str) 468 goto out; 469 if (!strcmp(str, "always")) { 470 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 471 &transparent_hugepage_flags); 472 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 473 &transparent_hugepage_flags); 474 ret = 1; 475 } else if (!strcmp(str, "madvise")) { 476 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 477 &transparent_hugepage_flags); 478 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 479 &transparent_hugepage_flags); 480 ret = 1; 481 } else if (!strcmp(str, "never")) { 482 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 483 &transparent_hugepage_flags); 484 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 485 &transparent_hugepage_flags); 486 ret = 1; 487 } 488 out: 489 if (!ret) 490 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 491 return ret; 492 } 493 __setup("transparent_hugepage=", setup_transparent_hugepage); 494 495 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 496 { 497 if (likely(vma->vm_flags & VM_WRITE)) 498 pmd = pmd_mkwrite(pmd); 499 return pmd; 500 } 501 502 #ifdef CONFIG_MEMCG 503 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 504 { 505 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 506 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 507 508 if (memcg) 509 return &memcg->deferred_split_queue; 510 else 511 return &pgdat->deferred_split_queue; 512 } 513 #else 514 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 515 { 516 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 517 518 return &pgdat->deferred_split_queue; 519 } 520 #endif 521 522 void prep_transhuge_page(struct page *page) 523 { 524 /* 525 * we use page->mapping and page->indexlru in second tail page 526 * as list_head: assuming THP order >= 2 527 */ 528 529 INIT_LIST_HEAD(page_deferred_list(page)); 530 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 531 } 532 533 bool is_transparent_hugepage(struct page *page) 534 { 535 if (!PageCompound(page)) 536 return false; 537 538 page = compound_head(page); 539 return is_huge_zero_page(page) || 540 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 541 } 542 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 543 544 static unsigned long __thp_get_unmapped_area(struct file *filp, 545 unsigned long addr, unsigned long len, 546 loff_t off, unsigned long flags, unsigned long size) 547 { 548 loff_t off_end = off + len; 549 loff_t off_align = round_up(off, size); 550 unsigned long len_pad, ret; 551 552 if (off_end <= off_align || (off_end - off_align) < size) 553 return 0; 554 555 len_pad = len + size; 556 if (len_pad < len || (off + len_pad) < off) 557 return 0; 558 559 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 560 off >> PAGE_SHIFT, flags); 561 562 /* 563 * The failure might be due to length padding. The caller will retry 564 * without the padding. 565 */ 566 if (IS_ERR_VALUE(ret)) 567 return 0; 568 569 /* 570 * Do not try to align to THP boundary if allocation at the address 571 * hint succeeds. 572 */ 573 if (ret == addr) 574 return addr; 575 576 ret += (off - ret) & (size - 1); 577 return ret; 578 } 579 580 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 581 unsigned long len, unsigned long pgoff, unsigned long flags) 582 { 583 unsigned long ret; 584 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 585 586 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 587 goto out; 588 589 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 590 if (ret) 591 return ret; 592 out: 593 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 594 } 595 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 596 597 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 598 struct page *page, gfp_t gfp) 599 { 600 struct vm_area_struct *vma = vmf->vma; 601 pgtable_t pgtable; 602 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 603 vm_fault_t ret = 0; 604 605 VM_BUG_ON_PAGE(!PageCompound(page), page); 606 607 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) { 608 put_page(page); 609 count_vm_event(THP_FAULT_FALLBACK); 610 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 611 return VM_FAULT_FALLBACK; 612 } 613 cgroup_throttle_swaprate(page, gfp); 614 615 pgtable = pte_alloc_one(vma->vm_mm); 616 if (unlikely(!pgtable)) { 617 ret = VM_FAULT_OOM; 618 goto release; 619 } 620 621 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 622 /* 623 * The memory barrier inside __SetPageUptodate makes sure that 624 * clear_huge_page writes become visible before the set_pmd_at() 625 * write. 626 */ 627 __SetPageUptodate(page); 628 629 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 630 if (unlikely(!pmd_none(*vmf->pmd))) { 631 goto unlock_release; 632 } else { 633 pmd_t entry; 634 635 ret = check_stable_address_space(vma->vm_mm); 636 if (ret) 637 goto unlock_release; 638 639 /* Deliver the page fault to userland */ 640 if (userfaultfd_missing(vma)) { 641 spin_unlock(vmf->ptl); 642 put_page(page); 643 pte_free(vma->vm_mm, pgtable); 644 ret = handle_userfault(vmf, VM_UFFD_MISSING); 645 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 646 return ret; 647 } 648 649 entry = mk_huge_pmd(page, vma->vm_page_prot); 650 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 651 page_add_new_anon_rmap(page, vma, haddr, true); 652 lru_cache_add_inactive_or_unevictable(page, vma); 653 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 654 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 655 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 656 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 657 mm_inc_nr_ptes(vma->vm_mm); 658 spin_unlock(vmf->ptl); 659 count_vm_event(THP_FAULT_ALLOC); 660 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 661 } 662 663 return 0; 664 unlock_release: 665 spin_unlock(vmf->ptl); 666 release: 667 if (pgtable) 668 pte_free(vma->vm_mm, pgtable); 669 put_page(page); 670 return ret; 671 672 } 673 674 /* 675 * always: directly stall for all thp allocations 676 * defer: wake kswapd and fail if not immediately available 677 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 678 * fail if not immediately available 679 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 680 * available 681 * never: never stall for any thp allocation 682 */ 683 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 684 { 685 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 686 687 /* Always do synchronous compaction */ 688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 689 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 690 691 /* Kick kcompactd and fail quickly */ 692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 693 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 694 695 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 696 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 697 return GFP_TRANSHUGE_LIGHT | 698 (vma_madvised ? __GFP_DIRECT_RECLAIM : 699 __GFP_KSWAPD_RECLAIM); 700 701 /* Only do synchronous compaction if madvised */ 702 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 703 return GFP_TRANSHUGE_LIGHT | 704 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 705 706 return GFP_TRANSHUGE_LIGHT; 707 } 708 709 /* Caller must hold page table lock. */ 710 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 711 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 712 struct page *zero_page) 713 { 714 pmd_t entry; 715 if (!pmd_none(*pmd)) 716 return; 717 entry = mk_pmd(zero_page, vma->vm_page_prot); 718 entry = pmd_mkhuge(entry); 719 if (pgtable) 720 pgtable_trans_huge_deposit(mm, pmd, pgtable); 721 set_pmd_at(mm, haddr, pmd, entry); 722 mm_inc_nr_ptes(mm); 723 } 724 725 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 726 { 727 struct vm_area_struct *vma = vmf->vma; 728 gfp_t gfp; 729 struct page *page; 730 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 731 732 if (!transhuge_vma_suitable(vma, haddr)) 733 return VM_FAULT_FALLBACK; 734 if (unlikely(anon_vma_prepare(vma))) 735 return VM_FAULT_OOM; 736 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 737 return VM_FAULT_OOM; 738 if (!(vmf->flags & FAULT_FLAG_WRITE) && 739 !mm_forbids_zeropage(vma->vm_mm) && 740 transparent_hugepage_use_zero_page()) { 741 pgtable_t pgtable; 742 struct page *zero_page; 743 vm_fault_t ret; 744 pgtable = pte_alloc_one(vma->vm_mm); 745 if (unlikely(!pgtable)) 746 return VM_FAULT_OOM; 747 zero_page = mm_get_huge_zero_page(vma->vm_mm); 748 if (unlikely(!zero_page)) { 749 pte_free(vma->vm_mm, pgtable); 750 count_vm_event(THP_FAULT_FALLBACK); 751 return VM_FAULT_FALLBACK; 752 } 753 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 754 ret = 0; 755 if (pmd_none(*vmf->pmd)) { 756 ret = check_stable_address_space(vma->vm_mm); 757 if (ret) { 758 spin_unlock(vmf->ptl); 759 pte_free(vma->vm_mm, pgtable); 760 } else if (userfaultfd_missing(vma)) { 761 spin_unlock(vmf->ptl); 762 pte_free(vma->vm_mm, pgtable); 763 ret = handle_userfault(vmf, VM_UFFD_MISSING); 764 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 765 } else { 766 set_huge_zero_page(pgtable, vma->vm_mm, vma, 767 haddr, vmf->pmd, zero_page); 768 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 769 spin_unlock(vmf->ptl); 770 } 771 } else { 772 spin_unlock(vmf->ptl); 773 pte_free(vma->vm_mm, pgtable); 774 } 775 return ret; 776 } 777 gfp = vma_thp_gfp_mask(vma); 778 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 779 if (unlikely(!page)) { 780 count_vm_event(THP_FAULT_FALLBACK); 781 return VM_FAULT_FALLBACK; 782 } 783 prep_transhuge_page(page); 784 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 785 } 786 787 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 788 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 789 pgtable_t pgtable) 790 { 791 struct mm_struct *mm = vma->vm_mm; 792 pmd_t entry; 793 spinlock_t *ptl; 794 795 ptl = pmd_lock(mm, pmd); 796 if (!pmd_none(*pmd)) { 797 if (write) { 798 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 799 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 800 goto out_unlock; 801 } 802 entry = pmd_mkyoung(*pmd); 803 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 804 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 805 update_mmu_cache_pmd(vma, addr, pmd); 806 } 807 808 goto out_unlock; 809 } 810 811 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 812 if (pfn_t_devmap(pfn)) 813 entry = pmd_mkdevmap(entry); 814 if (write) { 815 entry = pmd_mkyoung(pmd_mkdirty(entry)); 816 entry = maybe_pmd_mkwrite(entry, vma); 817 } 818 819 if (pgtable) { 820 pgtable_trans_huge_deposit(mm, pmd, pgtable); 821 mm_inc_nr_ptes(mm); 822 pgtable = NULL; 823 } 824 825 set_pmd_at(mm, addr, pmd, entry); 826 update_mmu_cache_pmd(vma, addr, pmd); 827 828 out_unlock: 829 spin_unlock(ptl); 830 if (pgtable) 831 pte_free(mm, pgtable); 832 } 833 834 /** 835 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 836 * @vmf: Structure describing the fault 837 * @pfn: pfn to insert 838 * @pgprot: page protection to use 839 * @write: whether it's a write fault 840 * 841 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 842 * also consult the vmf_insert_mixed_prot() documentation when 843 * @pgprot != @vmf->vma->vm_page_prot. 844 * 845 * Return: vm_fault_t value. 846 */ 847 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 848 pgprot_t pgprot, bool write) 849 { 850 unsigned long addr = vmf->address & PMD_MASK; 851 struct vm_area_struct *vma = vmf->vma; 852 pgtable_t pgtable = NULL; 853 854 /* 855 * If we had pmd_special, we could avoid all these restrictions, 856 * but we need to be consistent with PTEs and architectures that 857 * can't support a 'special' bit. 858 */ 859 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 860 !pfn_t_devmap(pfn)); 861 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 862 (VM_PFNMAP|VM_MIXEDMAP)); 863 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 864 865 if (addr < vma->vm_start || addr >= vma->vm_end) 866 return VM_FAULT_SIGBUS; 867 868 if (arch_needs_pgtable_deposit()) { 869 pgtable = pte_alloc_one(vma->vm_mm); 870 if (!pgtable) 871 return VM_FAULT_OOM; 872 } 873 874 track_pfn_insert(vma, &pgprot, pfn); 875 876 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 877 return VM_FAULT_NOPAGE; 878 } 879 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 880 881 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 882 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 883 { 884 if (likely(vma->vm_flags & VM_WRITE)) 885 pud = pud_mkwrite(pud); 886 return pud; 887 } 888 889 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 890 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 891 { 892 struct mm_struct *mm = vma->vm_mm; 893 pud_t entry; 894 spinlock_t *ptl; 895 896 ptl = pud_lock(mm, pud); 897 if (!pud_none(*pud)) { 898 if (write) { 899 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 900 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 901 goto out_unlock; 902 } 903 entry = pud_mkyoung(*pud); 904 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 905 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 906 update_mmu_cache_pud(vma, addr, pud); 907 } 908 goto out_unlock; 909 } 910 911 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 912 if (pfn_t_devmap(pfn)) 913 entry = pud_mkdevmap(entry); 914 if (write) { 915 entry = pud_mkyoung(pud_mkdirty(entry)); 916 entry = maybe_pud_mkwrite(entry, vma); 917 } 918 set_pud_at(mm, addr, pud, entry); 919 update_mmu_cache_pud(vma, addr, pud); 920 921 out_unlock: 922 spin_unlock(ptl); 923 } 924 925 /** 926 * vmf_insert_pfn_pud_prot - insert a pud size pfn 927 * @vmf: Structure describing the fault 928 * @pfn: pfn to insert 929 * @pgprot: page protection to use 930 * @write: whether it's a write fault 931 * 932 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 933 * also consult the vmf_insert_mixed_prot() documentation when 934 * @pgprot != @vmf->vma->vm_page_prot. 935 * 936 * Return: vm_fault_t value. 937 */ 938 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 939 pgprot_t pgprot, bool write) 940 { 941 unsigned long addr = vmf->address & PUD_MASK; 942 struct vm_area_struct *vma = vmf->vma; 943 944 /* 945 * If we had pud_special, we could avoid all these restrictions, 946 * but we need to be consistent with PTEs and architectures that 947 * can't support a 'special' bit. 948 */ 949 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 950 !pfn_t_devmap(pfn)); 951 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 952 (VM_PFNMAP|VM_MIXEDMAP)); 953 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 954 955 if (addr < vma->vm_start || addr >= vma->vm_end) 956 return VM_FAULT_SIGBUS; 957 958 track_pfn_insert(vma, &pgprot, pfn); 959 960 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 961 return VM_FAULT_NOPAGE; 962 } 963 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 964 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 965 966 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 967 pmd_t *pmd, int flags) 968 { 969 pmd_t _pmd; 970 971 _pmd = pmd_mkyoung(*pmd); 972 if (flags & FOLL_WRITE) 973 _pmd = pmd_mkdirty(_pmd); 974 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 975 pmd, _pmd, flags & FOLL_WRITE)) 976 update_mmu_cache_pmd(vma, addr, pmd); 977 } 978 979 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 980 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 981 { 982 unsigned long pfn = pmd_pfn(*pmd); 983 struct mm_struct *mm = vma->vm_mm; 984 struct page *page; 985 986 assert_spin_locked(pmd_lockptr(mm, pmd)); 987 988 /* 989 * When we COW a devmap PMD entry, we split it into PTEs, so we should 990 * not be in this function with `flags & FOLL_COW` set. 991 */ 992 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 993 994 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 995 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 996 (FOLL_PIN | FOLL_GET))) 997 return NULL; 998 999 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1000 return NULL; 1001 1002 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1003 /* pass */; 1004 else 1005 return NULL; 1006 1007 if (flags & FOLL_TOUCH) 1008 touch_pmd(vma, addr, pmd, flags); 1009 1010 /* 1011 * device mapped pages can only be returned if the 1012 * caller will manage the page reference count. 1013 */ 1014 if (!(flags & (FOLL_GET | FOLL_PIN))) 1015 return ERR_PTR(-EEXIST); 1016 1017 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1018 *pgmap = get_dev_pagemap(pfn, *pgmap); 1019 if (!*pgmap) 1020 return ERR_PTR(-EFAULT); 1021 page = pfn_to_page(pfn); 1022 if (!try_grab_page(page, flags)) 1023 page = ERR_PTR(-ENOMEM); 1024 1025 return page; 1026 } 1027 1028 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1029 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1030 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1031 { 1032 spinlock_t *dst_ptl, *src_ptl; 1033 struct page *src_page; 1034 pmd_t pmd; 1035 pgtable_t pgtable = NULL; 1036 int ret = -ENOMEM; 1037 1038 /* Skip if can be re-fill on fault */ 1039 if (!vma_is_anonymous(dst_vma)) 1040 return 0; 1041 1042 pgtable = pte_alloc_one(dst_mm); 1043 if (unlikely(!pgtable)) 1044 goto out; 1045 1046 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1047 src_ptl = pmd_lockptr(src_mm, src_pmd); 1048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1049 1050 ret = -EAGAIN; 1051 pmd = *src_pmd; 1052 1053 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1054 if (unlikely(is_swap_pmd(pmd))) { 1055 swp_entry_t entry = pmd_to_swp_entry(pmd); 1056 1057 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1058 if (is_writable_migration_entry(entry)) { 1059 entry = make_readable_migration_entry( 1060 swp_offset(entry)); 1061 pmd = swp_entry_to_pmd(entry); 1062 if (pmd_swp_soft_dirty(*src_pmd)) 1063 pmd = pmd_swp_mksoft_dirty(pmd); 1064 if (pmd_swp_uffd_wp(*src_pmd)) 1065 pmd = pmd_swp_mkuffd_wp(pmd); 1066 set_pmd_at(src_mm, addr, src_pmd, pmd); 1067 } 1068 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1069 mm_inc_nr_ptes(dst_mm); 1070 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1071 if (!userfaultfd_wp(dst_vma)) 1072 pmd = pmd_swp_clear_uffd_wp(pmd); 1073 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1074 ret = 0; 1075 goto out_unlock; 1076 } 1077 #endif 1078 1079 if (unlikely(!pmd_trans_huge(pmd))) { 1080 pte_free(dst_mm, pgtable); 1081 goto out_unlock; 1082 } 1083 /* 1084 * When page table lock is held, the huge zero pmd should not be 1085 * under splitting since we don't split the page itself, only pmd to 1086 * a page table. 1087 */ 1088 if (is_huge_zero_pmd(pmd)) { 1089 /* 1090 * get_huge_zero_page() will never allocate a new page here, 1091 * since we already have a zero page to copy. It just takes a 1092 * reference. 1093 */ 1094 mm_get_huge_zero_page(dst_mm); 1095 goto out_zero_page; 1096 } 1097 1098 src_page = pmd_page(pmd); 1099 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1100 1101 /* 1102 * If this page is a potentially pinned page, split and retry the fault 1103 * with smaller page size. Normally this should not happen because the 1104 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1105 * best effort that the pinned pages won't be replaced by another 1106 * random page during the coming copy-on-write. 1107 */ 1108 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) { 1109 pte_free(dst_mm, pgtable); 1110 spin_unlock(src_ptl); 1111 spin_unlock(dst_ptl); 1112 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1113 return -EAGAIN; 1114 } 1115 1116 get_page(src_page); 1117 page_dup_rmap(src_page, true); 1118 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1119 out_zero_page: 1120 mm_inc_nr_ptes(dst_mm); 1121 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1122 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1123 if (!userfaultfd_wp(dst_vma)) 1124 pmd = pmd_clear_uffd_wp(pmd); 1125 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1126 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1127 1128 ret = 0; 1129 out_unlock: 1130 spin_unlock(src_ptl); 1131 spin_unlock(dst_ptl); 1132 out: 1133 return ret; 1134 } 1135 1136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1137 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1138 pud_t *pud, int flags) 1139 { 1140 pud_t _pud; 1141 1142 _pud = pud_mkyoung(*pud); 1143 if (flags & FOLL_WRITE) 1144 _pud = pud_mkdirty(_pud); 1145 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1146 pud, _pud, flags & FOLL_WRITE)) 1147 update_mmu_cache_pud(vma, addr, pud); 1148 } 1149 1150 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1151 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1152 { 1153 unsigned long pfn = pud_pfn(*pud); 1154 struct mm_struct *mm = vma->vm_mm; 1155 struct page *page; 1156 1157 assert_spin_locked(pud_lockptr(mm, pud)); 1158 1159 if (flags & FOLL_WRITE && !pud_write(*pud)) 1160 return NULL; 1161 1162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1163 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1164 (FOLL_PIN | FOLL_GET))) 1165 return NULL; 1166 1167 if (pud_present(*pud) && pud_devmap(*pud)) 1168 /* pass */; 1169 else 1170 return NULL; 1171 1172 if (flags & FOLL_TOUCH) 1173 touch_pud(vma, addr, pud, flags); 1174 1175 /* 1176 * device mapped pages can only be returned if the 1177 * caller will manage the page reference count. 1178 * 1179 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1180 */ 1181 if (!(flags & (FOLL_GET | FOLL_PIN))) 1182 return ERR_PTR(-EEXIST); 1183 1184 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1185 *pgmap = get_dev_pagemap(pfn, *pgmap); 1186 if (!*pgmap) 1187 return ERR_PTR(-EFAULT); 1188 page = pfn_to_page(pfn); 1189 if (!try_grab_page(page, flags)) 1190 page = ERR_PTR(-ENOMEM); 1191 1192 return page; 1193 } 1194 1195 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1196 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1197 struct vm_area_struct *vma) 1198 { 1199 spinlock_t *dst_ptl, *src_ptl; 1200 pud_t pud; 1201 int ret; 1202 1203 dst_ptl = pud_lock(dst_mm, dst_pud); 1204 src_ptl = pud_lockptr(src_mm, src_pud); 1205 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1206 1207 ret = -EAGAIN; 1208 pud = *src_pud; 1209 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1210 goto out_unlock; 1211 1212 /* 1213 * When page table lock is held, the huge zero pud should not be 1214 * under splitting since we don't split the page itself, only pud to 1215 * a page table. 1216 */ 1217 if (is_huge_zero_pud(pud)) { 1218 /* No huge zero pud yet */ 1219 } 1220 1221 /* Please refer to comments in copy_huge_pmd() */ 1222 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) { 1223 spin_unlock(src_ptl); 1224 spin_unlock(dst_ptl); 1225 __split_huge_pud(vma, src_pud, addr); 1226 return -EAGAIN; 1227 } 1228 1229 pudp_set_wrprotect(src_mm, addr, src_pud); 1230 pud = pud_mkold(pud_wrprotect(pud)); 1231 set_pud_at(dst_mm, addr, dst_pud, pud); 1232 1233 ret = 0; 1234 out_unlock: 1235 spin_unlock(src_ptl); 1236 spin_unlock(dst_ptl); 1237 return ret; 1238 } 1239 1240 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1241 { 1242 pud_t entry; 1243 unsigned long haddr; 1244 bool write = vmf->flags & FAULT_FLAG_WRITE; 1245 1246 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1247 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1248 goto unlock; 1249 1250 entry = pud_mkyoung(orig_pud); 1251 if (write) 1252 entry = pud_mkdirty(entry); 1253 haddr = vmf->address & HPAGE_PUD_MASK; 1254 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1255 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1256 1257 unlock: 1258 spin_unlock(vmf->ptl); 1259 } 1260 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1261 1262 void huge_pmd_set_accessed(struct vm_fault *vmf) 1263 { 1264 pmd_t entry; 1265 unsigned long haddr; 1266 bool write = vmf->flags & FAULT_FLAG_WRITE; 1267 pmd_t orig_pmd = vmf->orig_pmd; 1268 1269 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1270 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1271 goto unlock; 1272 1273 entry = pmd_mkyoung(orig_pmd); 1274 if (write) 1275 entry = pmd_mkdirty(entry); 1276 haddr = vmf->address & HPAGE_PMD_MASK; 1277 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1278 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1279 1280 unlock: 1281 spin_unlock(vmf->ptl); 1282 } 1283 1284 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1285 { 1286 struct vm_area_struct *vma = vmf->vma; 1287 struct page *page; 1288 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1289 pmd_t orig_pmd = vmf->orig_pmd; 1290 1291 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1292 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1293 1294 if (is_huge_zero_pmd(orig_pmd)) 1295 goto fallback; 1296 1297 spin_lock(vmf->ptl); 1298 1299 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1300 spin_unlock(vmf->ptl); 1301 return 0; 1302 } 1303 1304 page = pmd_page(orig_pmd); 1305 VM_BUG_ON_PAGE(!PageHead(page), page); 1306 1307 /* Lock page for reuse_swap_page() */ 1308 if (!trylock_page(page)) { 1309 get_page(page); 1310 spin_unlock(vmf->ptl); 1311 lock_page(page); 1312 spin_lock(vmf->ptl); 1313 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1314 spin_unlock(vmf->ptl); 1315 unlock_page(page); 1316 put_page(page); 1317 return 0; 1318 } 1319 put_page(page); 1320 } 1321 1322 /* 1323 * We can only reuse the page if nobody else maps the huge page or it's 1324 * part. 1325 */ 1326 if (reuse_swap_page(page)) { 1327 pmd_t entry; 1328 entry = pmd_mkyoung(orig_pmd); 1329 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1330 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1331 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1332 unlock_page(page); 1333 spin_unlock(vmf->ptl); 1334 return VM_FAULT_WRITE; 1335 } 1336 1337 unlock_page(page); 1338 spin_unlock(vmf->ptl); 1339 fallback: 1340 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1341 return VM_FAULT_FALLBACK; 1342 } 1343 1344 /* 1345 * FOLL_FORCE can write to even unwritable pmd's, but only 1346 * after we've gone through a COW cycle and they are dirty. 1347 */ 1348 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1349 { 1350 return pmd_write(pmd) || 1351 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1352 } 1353 1354 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1355 unsigned long addr, 1356 pmd_t *pmd, 1357 unsigned int flags) 1358 { 1359 struct mm_struct *mm = vma->vm_mm; 1360 struct page *page = NULL; 1361 1362 assert_spin_locked(pmd_lockptr(mm, pmd)); 1363 1364 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1365 goto out; 1366 1367 /* Avoid dumping huge zero page */ 1368 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1369 return ERR_PTR(-EFAULT); 1370 1371 /* Full NUMA hinting faults to serialise migration in fault paths */ 1372 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1373 goto out; 1374 1375 page = pmd_page(*pmd); 1376 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1377 1378 if (!try_grab_page(page, flags)) 1379 return ERR_PTR(-ENOMEM); 1380 1381 if (flags & FOLL_TOUCH) 1382 touch_pmd(vma, addr, pmd, flags); 1383 1384 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1385 /* 1386 * We don't mlock() pte-mapped THPs. This way we can avoid 1387 * leaking mlocked pages into non-VM_LOCKED VMAs. 1388 * 1389 * For anon THP: 1390 * 1391 * In most cases the pmd is the only mapping of the page as we 1392 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1393 * writable private mappings in populate_vma_page_range(). 1394 * 1395 * The only scenario when we have the page shared here is if we 1396 * mlocking read-only mapping shared over fork(). We skip 1397 * mlocking such pages. 1398 * 1399 * For file THP: 1400 * 1401 * We can expect PageDoubleMap() to be stable under page lock: 1402 * for file pages we set it in page_add_file_rmap(), which 1403 * requires page to be locked. 1404 */ 1405 1406 if (PageAnon(page) && compound_mapcount(page) != 1) 1407 goto skip_mlock; 1408 if (PageDoubleMap(page) || !page->mapping) 1409 goto skip_mlock; 1410 if (!trylock_page(page)) 1411 goto skip_mlock; 1412 if (page->mapping && !PageDoubleMap(page)) 1413 mlock_vma_page(page); 1414 unlock_page(page); 1415 } 1416 skip_mlock: 1417 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1418 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1419 1420 out: 1421 return page; 1422 } 1423 1424 /* NUMA hinting page fault entry point for trans huge pmds */ 1425 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1426 { 1427 struct vm_area_struct *vma = vmf->vma; 1428 pmd_t oldpmd = vmf->orig_pmd; 1429 pmd_t pmd; 1430 struct page *page; 1431 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1432 int page_nid = NUMA_NO_NODE; 1433 int target_nid, last_cpupid = -1; 1434 bool migrated = false; 1435 bool was_writable = pmd_savedwrite(oldpmd); 1436 int flags = 0; 1437 1438 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1439 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1440 spin_unlock(vmf->ptl); 1441 goto out; 1442 } 1443 1444 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1445 page = vm_normal_page_pmd(vma, haddr, pmd); 1446 if (!page) 1447 goto out_map; 1448 1449 /* See similar comment in do_numa_page for explanation */ 1450 if (!was_writable) 1451 flags |= TNF_NO_GROUP; 1452 1453 page_nid = page_to_nid(page); 1454 last_cpupid = page_cpupid_last(page); 1455 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1456 &flags); 1457 1458 if (target_nid == NUMA_NO_NODE) { 1459 put_page(page); 1460 goto out_map; 1461 } 1462 1463 spin_unlock(vmf->ptl); 1464 1465 migrated = migrate_misplaced_page(page, vma, target_nid); 1466 if (migrated) { 1467 flags |= TNF_MIGRATED; 1468 page_nid = target_nid; 1469 } else { 1470 flags |= TNF_MIGRATE_FAIL; 1471 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1472 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1473 spin_unlock(vmf->ptl); 1474 goto out; 1475 } 1476 goto out_map; 1477 } 1478 1479 out: 1480 if (page_nid != NUMA_NO_NODE) 1481 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1482 flags); 1483 1484 return 0; 1485 1486 out_map: 1487 /* Restore the PMD */ 1488 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1489 pmd = pmd_mkyoung(pmd); 1490 if (was_writable) 1491 pmd = pmd_mkwrite(pmd); 1492 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1493 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1494 spin_unlock(vmf->ptl); 1495 goto out; 1496 } 1497 1498 /* 1499 * Return true if we do MADV_FREE successfully on entire pmd page. 1500 * Otherwise, return false. 1501 */ 1502 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1503 pmd_t *pmd, unsigned long addr, unsigned long next) 1504 { 1505 spinlock_t *ptl; 1506 pmd_t orig_pmd; 1507 struct page *page; 1508 struct mm_struct *mm = tlb->mm; 1509 bool ret = false; 1510 1511 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1512 1513 ptl = pmd_trans_huge_lock(pmd, vma); 1514 if (!ptl) 1515 goto out_unlocked; 1516 1517 orig_pmd = *pmd; 1518 if (is_huge_zero_pmd(orig_pmd)) 1519 goto out; 1520 1521 if (unlikely(!pmd_present(orig_pmd))) { 1522 VM_BUG_ON(thp_migration_supported() && 1523 !is_pmd_migration_entry(orig_pmd)); 1524 goto out; 1525 } 1526 1527 page = pmd_page(orig_pmd); 1528 /* 1529 * If other processes are mapping this page, we couldn't discard 1530 * the page unless they all do MADV_FREE so let's skip the page. 1531 */ 1532 if (total_mapcount(page) != 1) 1533 goto out; 1534 1535 if (!trylock_page(page)) 1536 goto out; 1537 1538 /* 1539 * If user want to discard part-pages of THP, split it so MADV_FREE 1540 * will deactivate only them. 1541 */ 1542 if (next - addr != HPAGE_PMD_SIZE) { 1543 get_page(page); 1544 spin_unlock(ptl); 1545 split_huge_page(page); 1546 unlock_page(page); 1547 put_page(page); 1548 goto out_unlocked; 1549 } 1550 1551 if (PageDirty(page)) 1552 ClearPageDirty(page); 1553 unlock_page(page); 1554 1555 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1556 pmdp_invalidate(vma, addr, pmd); 1557 orig_pmd = pmd_mkold(orig_pmd); 1558 orig_pmd = pmd_mkclean(orig_pmd); 1559 1560 set_pmd_at(mm, addr, pmd, orig_pmd); 1561 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1562 } 1563 1564 mark_page_lazyfree(page); 1565 ret = true; 1566 out: 1567 spin_unlock(ptl); 1568 out_unlocked: 1569 return ret; 1570 } 1571 1572 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1573 { 1574 pgtable_t pgtable; 1575 1576 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1577 pte_free(mm, pgtable); 1578 mm_dec_nr_ptes(mm); 1579 } 1580 1581 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1582 pmd_t *pmd, unsigned long addr) 1583 { 1584 pmd_t orig_pmd; 1585 spinlock_t *ptl; 1586 1587 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1588 1589 ptl = __pmd_trans_huge_lock(pmd, vma); 1590 if (!ptl) 1591 return 0; 1592 /* 1593 * For architectures like ppc64 we look at deposited pgtable 1594 * when calling pmdp_huge_get_and_clear. So do the 1595 * pgtable_trans_huge_withdraw after finishing pmdp related 1596 * operations. 1597 */ 1598 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1599 tlb->fullmm); 1600 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1601 if (vma_is_special_huge(vma)) { 1602 if (arch_needs_pgtable_deposit()) 1603 zap_deposited_table(tlb->mm, pmd); 1604 spin_unlock(ptl); 1605 } else if (is_huge_zero_pmd(orig_pmd)) { 1606 zap_deposited_table(tlb->mm, pmd); 1607 spin_unlock(ptl); 1608 } else { 1609 struct page *page = NULL; 1610 int flush_needed = 1; 1611 1612 if (pmd_present(orig_pmd)) { 1613 page = pmd_page(orig_pmd); 1614 page_remove_rmap(page, true); 1615 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1616 VM_BUG_ON_PAGE(!PageHead(page), page); 1617 } else if (thp_migration_supported()) { 1618 swp_entry_t entry; 1619 1620 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1621 entry = pmd_to_swp_entry(orig_pmd); 1622 page = pfn_swap_entry_to_page(entry); 1623 flush_needed = 0; 1624 } else 1625 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1626 1627 if (PageAnon(page)) { 1628 zap_deposited_table(tlb->mm, pmd); 1629 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1630 } else { 1631 if (arch_needs_pgtable_deposit()) 1632 zap_deposited_table(tlb->mm, pmd); 1633 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1634 } 1635 1636 spin_unlock(ptl); 1637 if (flush_needed) 1638 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1639 } 1640 return 1; 1641 } 1642 1643 #ifndef pmd_move_must_withdraw 1644 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1645 spinlock_t *old_pmd_ptl, 1646 struct vm_area_struct *vma) 1647 { 1648 /* 1649 * With split pmd lock we also need to move preallocated 1650 * PTE page table if new_pmd is on different PMD page table. 1651 * 1652 * We also don't deposit and withdraw tables for file pages. 1653 */ 1654 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1655 } 1656 #endif 1657 1658 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1659 { 1660 #ifdef CONFIG_MEM_SOFT_DIRTY 1661 if (unlikely(is_pmd_migration_entry(pmd))) 1662 pmd = pmd_swp_mksoft_dirty(pmd); 1663 else if (pmd_present(pmd)) 1664 pmd = pmd_mksoft_dirty(pmd); 1665 #endif 1666 return pmd; 1667 } 1668 1669 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1670 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1671 { 1672 spinlock_t *old_ptl, *new_ptl; 1673 pmd_t pmd; 1674 struct mm_struct *mm = vma->vm_mm; 1675 bool force_flush = false; 1676 1677 /* 1678 * The destination pmd shouldn't be established, free_pgtables() 1679 * should have release it. 1680 */ 1681 if (WARN_ON(!pmd_none(*new_pmd))) { 1682 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1683 return false; 1684 } 1685 1686 /* 1687 * We don't have to worry about the ordering of src and dst 1688 * ptlocks because exclusive mmap_lock prevents deadlock. 1689 */ 1690 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1691 if (old_ptl) { 1692 new_ptl = pmd_lockptr(mm, new_pmd); 1693 if (new_ptl != old_ptl) 1694 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1695 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1696 if (pmd_present(pmd)) 1697 force_flush = true; 1698 VM_BUG_ON(!pmd_none(*new_pmd)); 1699 1700 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1701 pgtable_t pgtable; 1702 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1703 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1704 } 1705 pmd = move_soft_dirty_pmd(pmd); 1706 set_pmd_at(mm, new_addr, new_pmd, pmd); 1707 if (force_flush) 1708 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1709 if (new_ptl != old_ptl) 1710 spin_unlock(new_ptl); 1711 spin_unlock(old_ptl); 1712 return true; 1713 } 1714 return false; 1715 } 1716 1717 /* 1718 * Returns 1719 * - 0 if PMD could not be locked 1720 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1721 * or if prot_numa but THP migration is not supported 1722 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1723 */ 1724 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1725 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1726 { 1727 struct mm_struct *mm = vma->vm_mm; 1728 spinlock_t *ptl; 1729 pmd_t entry; 1730 bool preserve_write; 1731 int ret; 1732 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1733 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1734 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1735 1736 if (prot_numa && !thp_migration_supported()) 1737 return 1; 1738 1739 ptl = __pmd_trans_huge_lock(pmd, vma); 1740 if (!ptl) 1741 return 0; 1742 1743 preserve_write = prot_numa && pmd_write(*pmd); 1744 ret = 1; 1745 1746 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1747 if (is_swap_pmd(*pmd)) { 1748 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1749 1750 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1751 if (is_writable_migration_entry(entry)) { 1752 pmd_t newpmd; 1753 /* 1754 * A protection check is difficult so 1755 * just be safe and disable write 1756 */ 1757 entry = make_readable_migration_entry( 1758 swp_offset(entry)); 1759 newpmd = swp_entry_to_pmd(entry); 1760 if (pmd_swp_soft_dirty(*pmd)) 1761 newpmd = pmd_swp_mksoft_dirty(newpmd); 1762 if (pmd_swp_uffd_wp(*pmd)) 1763 newpmd = pmd_swp_mkuffd_wp(newpmd); 1764 set_pmd_at(mm, addr, pmd, newpmd); 1765 } 1766 goto unlock; 1767 } 1768 #endif 1769 1770 if (prot_numa) { 1771 struct page *page; 1772 /* 1773 * Avoid trapping faults against the zero page. The read-only 1774 * data is likely to be read-cached on the local CPU and 1775 * local/remote hits to the zero page are not interesting. 1776 */ 1777 if (is_huge_zero_pmd(*pmd)) 1778 goto unlock; 1779 1780 if (pmd_protnone(*pmd)) 1781 goto unlock; 1782 1783 page = pmd_page(*pmd); 1784 /* 1785 * Skip scanning top tier node if normal numa 1786 * balancing is disabled 1787 */ 1788 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1789 node_is_toptier(page_to_nid(page))) 1790 goto unlock; 1791 } 1792 /* 1793 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1794 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1795 * which is also under mmap_read_lock(mm): 1796 * 1797 * CPU0: CPU1: 1798 * change_huge_pmd(prot_numa=1) 1799 * pmdp_huge_get_and_clear_notify() 1800 * madvise_dontneed() 1801 * zap_pmd_range() 1802 * pmd_trans_huge(*pmd) == 0 (without ptl) 1803 * // skip the pmd 1804 * set_pmd_at(); 1805 * // pmd is re-established 1806 * 1807 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1808 * which may break userspace. 1809 * 1810 * pmdp_invalidate() is required to make sure we don't miss 1811 * dirty/young flags set by hardware. 1812 */ 1813 entry = pmdp_invalidate(vma, addr, pmd); 1814 1815 entry = pmd_modify(entry, newprot); 1816 if (preserve_write) 1817 entry = pmd_mk_savedwrite(entry); 1818 if (uffd_wp) { 1819 entry = pmd_wrprotect(entry); 1820 entry = pmd_mkuffd_wp(entry); 1821 } else if (uffd_wp_resolve) { 1822 /* 1823 * Leave the write bit to be handled by PF interrupt 1824 * handler, then things like COW could be properly 1825 * handled. 1826 */ 1827 entry = pmd_clear_uffd_wp(entry); 1828 } 1829 ret = HPAGE_PMD_NR; 1830 set_pmd_at(mm, addr, pmd, entry); 1831 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1832 unlock: 1833 spin_unlock(ptl); 1834 return ret; 1835 } 1836 1837 /* 1838 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1839 * 1840 * Note that if it returns page table lock pointer, this routine returns without 1841 * unlocking page table lock. So callers must unlock it. 1842 */ 1843 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1844 { 1845 spinlock_t *ptl; 1846 ptl = pmd_lock(vma->vm_mm, pmd); 1847 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1848 pmd_devmap(*pmd))) 1849 return ptl; 1850 spin_unlock(ptl); 1851 return NULL; 1852 } 1853 1854 /* 1855 * Returns true if a given pud maps a thp, false otherwise. 1856 * 1857 * Note that if it returns true, this routine returns without unlocking page 1858 * table lock. So callers must unlock it. 1859 */ 1860 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1861 { 1862 spinlock_t *ptl; 1863 1864 ptl = pud_lock(vma->vm_mm, pud); 1865 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1866 return ptl; 1867 spin_unlock(ptl); 1868 return NULL; 1869 } 1870 1871 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1872 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1873 pud_t *pud, unsigned long addr) 1874 { 1875 spinlock_t *ptl; 1876 1877 ptl = __pud_trans_huge_lock(pud, vma); 1878 if (!ptl) 1879 return 0; 1880 /* 1881 * For architectures like ppc64 we look at deposited pgtable 1882 * when calling pudp_huge_get_and_clear. So do the 1883 * pgtable_trans_huge_withdraw after finishing pudp related 1884 * operations. 1885 */ 1886 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1887 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1888 if (vma_is_special_huge(vma)) { 1889 spin_unlock(ptl); 1890 /* No zero page support yet */ 1891 } else { 1892 /* No support for anonymous PUD pages yet */ 1893 BUG(); 1894 } 1895 return 1; 1896 } 1897 1898 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1899 unsigned long haddr) 1900 { 1901 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1902 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1903 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1904 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1905 1906 count_vm_event(THP_SPLIT_PUD); 1907 1908 pudp_huge_clear_flush_notify(vma, haddr, pud); 1909 } 1910 1911 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1912 unsigned long address) 1913 { 1914 spinlock_t *ptl; 1915 struct mmu_notifier_range range; 1916 1917 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1918 address & HPAGE_PUD_MASK, 1919 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1920 mmu_notifier_invalidate_range_start(&range); 1921 ptl = pud_lock(vma->vm_mm, pud); 1922 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1923 goto out; 1924 __split_huge_pud_locked(vma, pud, range.start); 1925 1926 out: 1927 spin_unlock(ptl); 1928 /* 1929 * No need to double call mmu_notifier->invalidate_range() callback as 1930 * the above pudp_huge_clear_flush_notify() did already call it. 1931 */ 1932 mmu_notifier_invalidate_range_only_end(&range); 1933 } 1934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1935 1936 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1937 unsigned long haddr, pmd_t *pmd) 1938 { 1939 struct mm_struct *mm = vma->vm_mm; 1940 pgtable_t pgtable; 1941 pmd_t _pmd; 1942 int i; 1943 1944 /* 1945 * Leave pmd empty until pte is filled note that it is fine to delay 1946 * notification until mmu_notifier_invalidate_range_end() as we are 1947 * replacing a zero pmd write protected page with a zero pte write 1948 * protected page. 1949 * 1950 * See Documentation/vm/mmu_notifier.rst 1951 */ 1952 pmdp_huge_clear_flush(vma, haddr, pmd); 1953 1954 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1955 pmd_populate(mm, &_pmd, pgtable); 1956 1957 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1958 pte_t *pte, entry; 1959 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1960 entry = pte_mkspecial(entry); 1961 pte = pte_offset_map(&_pmd, haddr); 1962 VM_BUG_ON(!pte_none(*pte)); 1963 set_pte_at(mm, haddr, pte, entry); 1964 pte_unmap(pte); 1965 } 1966 smp_wmb(); /* make pte visible before pmd */ 1967 pmd_populate(mm, pmd, pgtable); 1968 } 1969 1970 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1971 unsigned long haddr, bool freeze) 1972 { 1973 struct mm_struct *mm = vma->vm_mm; 1974 struct page *page; 1975 pgtable_t pgtable; 1976 pmd_t old_pmd, _pmd; 1977 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 1978 unsigned long addr; 1979 int i; 1980 1981 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1982 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1983 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1984 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 1985 && !pmd_devmap(*pmd)); 1986 1987 count_vm_event(THP_SPLIT_PMD); 1988 1989 if (!vma_is_anonymous(vma)) { 1990 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1991 /* 1992 * We are going to unmap this huge page. So 1993 * just go ahead and zap it 1994 */ 1995 if (arch_needs_pgtable_deposit()) 1996 zap_deposited_table(mm, pmd); 1997 if (vma_is_special_huge(vma)) 1998 return; 1999 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2000 swp_entry_t entry; 2001 2002 entry = pmd_to_swp_entry(old_pmd); 2003 page = pfn_swap_entry_to_page(entry); 2004 } else { 2005 page = pmd_page(old_pmd); 2006 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2007 set_page_dirty(page); 2008 if (!PageReferenced(page) && pmd_young(old_pmd)) 2009 SetPageReferenced(page); 2010 page_remove_rmap(page, true); 2011 put_page(page); 2012 } 2013 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2014 return; 2015 } 2016 2017 if (is_huge_zero_pmd(*pmd)) { 2018 /* 2019 * FIXME: Do we want to invalidate secondary mmu by calling 2020 * mmu_notifier_invalidate_range() see comments below inside 2021 * __split_huge_pmd() ? 2022 * 2023 * We are going from a zero huge page write protected to zero 2024 * small page also write protected so it does not seems useful 2025 * to invalidate secondary mmu at this time. 2026 */ 2027 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2028 } 2029 2030 /* 2031 * Up to this point the pmd is present and huge and userland has the 2032 * whole access to the hugepage during the split (which happens in 2033 * place). If we overwrite the pmd with the not-huge version pointing 2034 * to the pte here (which of course we could if all CPUs were bug 2035 * free), userland could trigger a small page size TLB miss on the 2036 * small sized TLB while the hugepage TLB entry is still established in 2037 * the huge TLB. Some CPU doesn't like that. 2038 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2039 * 383 on page 105. Intel should be safe but is also warns that it's 2040 * only safe if the permission and cache attributes of the two entries 2041 * loaded in the two TLB is identical (which should be the case here). 2042 * But it is generally safer to never allow small and huge TLB entries 2043 * for the same virtual address to be loaded simultaneously. So instead 2044 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2045 * current pmd notpresent (atomically because here the pmd_trans_huge 2046 * must remain set at all times on the pmd until the split is complete 2047 * for this pmd), then we flush the SMP TLB and finally we write the 2048 * non-huge version of the pmd entry with pmd_populate. 2049 */ 2050 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2051 2052 pmd_migration = is_pmd_migration_entry(old_pmd); 2053 if (unlikely(pmd_migration)) { 2054 swp_entry_t entry; 2055 2056 entry = pmd_to_swp_entry(old_pmd); 2057 page = pfn_swap_entry_to_page(entry); 2058 write = is_writable_migration_entry(entry); 2059 young = false; 2060 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2061 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2062 } else { 2063 page = pmd_page(old_pmd); 2064 if (pmd_dirty(old_pmd)) 2065 SetPageDirty(page); 2066 write = pmd_write(old_pmd); 2067 young = pmd_young(old_pmd); 2068 soft_dirty = pmd_soft_dirty(old_pmd); 2069 uffd_wp = pmd_uffd_wp(old_pmd); 2070 VM_BUG_ON_PAGE(!page_count(page), page); 2071 page_ref_add(page, HPAGE_PMD_NR - 1); 2072 } 2073 2074 /* 2075 * Withdraw the table only after we mark the pmd entry invalid. 2076 * This's critical for some architectures (Power). 2077 */ 2078 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2079 pmd_populate(mm, &_pmd, pgtable); 2080 2081 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2082 pte_t entry, *pte; 2083 /* 2084 * Note that NUMA hinting access restrictions are not 2085 * transferred to avoid any possibility of altering 2086 * permissions across VMAs. 2087 */ 2088 if (freeze || pmd_migration) { 2089 swp_entry_t swp_entry; 2090 if (write) 2091 swp_entry = make_writable_migration_entry( 2092 page_to_pfn(page + i)); 2093 else 2094 swp_entry = make_readable_migration_entry( 2095 page_to_pfn(page + i)); 2096 entry = swp_entry_to_pte(swp_entry); 2097 if (soft_dirty) 2098 entry = pte_swp_mksoft_dirty(entry); 2099 if (uffd_wp) 2100 entry = pte_swp_mkuffd_wp(entry); 2101 } else { 2102 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2103 entry = maybe_mkwrite(entry, vma); 2104 if (!write) 2105 entry = pte_wrprotect(entry); 2106 if (!young) 2107 entry = pte_mkold(entry); 2108 if (soft_dirty) 2109 entry = pte_mksoft_dirty(entry); 2110 if (uffd_wp) 2111 entry = pte_mkuffd_wp(entry); 2112 } 2113 pte = pte_offset_map(&_pmd, addr); 2114 BUG_ON(!pte_none(*pte)); 2115 set_pte_at(mm, addr, pte, entry); 2116 if (!pmd_migration) 2117 atomic_inc(&page[i]._mapcount); 2118 pte_unmap(pte); 2119 } 2120 2121 if (!pmd_migration) { 2122 /* 2123 * Set PG_double_map before dropping compound_mapcount to avoid 2124 * false-negative page_mapped(). 2125 */ 2126 if (compound_mapcount(page) > 1 && 2127 !TestSetPageDoubleMap(page)) { 2128 for (i = 0; i < HPAGE_PMD_NR; i++) 2129 atomic_inc(&page[i]._mapcount); 2130 } 2131 2132 lock_page_memcg(page); 2133 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2134 /* Last compound_mapcount is gone. */ 2135 __mod_lruvec_page_state(page, NR_ANON_THPS, 2136 -HPAGE_PMD_NR); 2137 if (TestClearPageDoubleMap(page)) { 2138 /* No need in mapcount reference anymore */ 2139 for (i = 0; i < HPAGE_PMD_NR; i++) 2140 atomic_dec(&page[i]._mapcount); 2141 } 2142 } 2143 unlock_page_memcg(page); 2144 } 2145 2146 smp_wmb(); /* make pte visible before pmd */ 2147 pmd_populate(mm, pmd, pgtable); 2148 2149 if (freeze) { 2150 for (i = 0; i < HPAGE_PMD_NR; i++) { 2151 page_remove_rmap(page + i, false); 2152 put_page(page + i); 2153 } 2154 } 2155 } 2156 2157 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2158 unsigned long address, bool freeze, struct page *page) 2159 { 2160 spinlock_t *ptl; 2161 struct mmu_notifier_range range; 2162 bool do_unlock_page = false; 2163 pmd_t _pmd; 2164 2165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2166 address & HPAGE_PMD_MASK, 2167 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2168 mmu_notifier_invalidate_range_start(&range); 2169 ptl = pmd_lock(vma->vm_mm, pmd); 2170 2171 /* 2172 * If caller asks to setup a migration entries, we need a page to check 2173 * pmd against. Otherwise we can end up replacing wrong page. 2174 */ 2175 VM_BUG_ON(freeze && !page); 2176 if (page) { 2177 VM_WARN_ON_ONCE(!PageLocked(page)); 2178 if (page != pmd_page(*pmd)) 2179 goto out; 2180 } 2181 2182 repeat: 2183 if (pmd_trans_huge(*pmd)) { 2184 if (!page) { 2185 page = pmd_page(*pmd); 2186 /* 2187 * An anonymous page must be locked, to ensure that a 2188 * concurrent reuse_swap_page() sees stable mapcount; 2189 * but reuse_swap_page() is not used on shmem or file, 2190 * and page lock must not be taken when zap_pmd_range() 2191 * calls __split_huge_pmd() while i_mmap_lock is held. 2192 */ 2193 if (PageAnon(page)) { 2194 if (unlikely(!trylock_page(page))) { 2195 get_page(page); 2196 _pmd = *pmd; 2197 spin_unlock(ptl); 2198 lock_page(page); 2199 spin_lock(ptl); 2200 if (unlikely(!pmd_same(*pmd, _pmd))) { 2201 unlock_page(page); 2202 put_page(page); 2203 page = NULL; 2204 goto repeat; 2205 } 2206 put_page(page); 2207 } 2208 do_unlock_page = true; 2209 } 2210 } 2211 if (PageMlocked(page)) 2212 clear_page_mlock(page); 2213 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2214 goto out; 2215 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2216 out: 2217 spin_unlock(ptl); 2218 if (do_unlock_page) 2219 unlock_page(page); 2220 /* 2221 * No need to double call mmu_notifier->invalidate_range() callback. 2222 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2223 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2224 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2225 * fault will trigger a flush_notify before pointing to a new page 2226 * (it is fine if the secondary mmu keeps pointing to the old zero 2227 * page in the meantime) 2228 * 3) Split a huge pmd into pte pointing to the same page. No need 2229 * to invalidate secondary tlb entry they are all still valid. 2230 * any further changes to individual pte will notify. So no need 2231 * to call mmu_notifier->invalidate_range() 2232 */ 2233 mmu_notifier_invalidate_range_only_end(&range); 2234 } 2235 2236 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2237 bool freeze, struct page *page) 2238 { 2239 pgd_t *pgd; 2240 p4d_t *p4d; 2241 pud_t *pud; 2242 pmd_t *pmd; 2243 2244 pgd = pgd_offset(vma->vm_mm, address); 2245 if (!pgd_present(*pgd)) 2246 return; 2247 2248 p4d = p4d_offset(pgd, address); 2249 if (!p4d_present(*p4d)) 2250 return; 2251 2252 pud = pud_offset(p4d, address); 2253 if (!pud_present(*pud)) 2254 return; 2255 2256 pmd = pmd_offset(pud, address); 2257 2258 __split_huge_pmd(vma, pmd, address, freeze, page); 2259 } 2260 2261 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2262 { 2263 /* 2264 * If the new address isn't hpage aligned and it could previously 2265 * contain an hugepage: check if we need to split an huge pmd. 2266 */ 2267 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2268 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2269 ALIGN(address, HPAGE_PMD_SIZE))) 2270 split_huge_pmd_address(vma, address, false, NULL); 2271 } 2272 2273 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2274 unsigned long start, 2275 unsigned long end, 2276 long adjust_next) 2277 { 2278 /* Check if we need to split start first. */ 2279 split_huge_pmd_if_needed(vma, start); 2280 2281 /* Check if we need to split end next. */ 2282 split_huge_pmd_if_needed(vma, end); 2283 2284 /* 2285 * If we're also updating the vma->vm_next->vm_start, 2286 * check if we need to split it. 2287 */ 2288 if (adjust_next > 0) { 2289 struct vm_area_struct *next = vma->vm_next; 2290 unsigned long nstart = next->vm_start; 2291 nstart += adjust_next; 2292 split_huge_pmd_if_needed(next, nstart); 2293 } 2294 } 2295 2296 static void unmap_page(struct page *page) 2297 { 2298 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2299 TTU_SYNC; 2300 2301 VM_BUG_ON_PAGE(!PageHead(page), page); 2302 2303 /* 2304 * Anon pages need migration entries to preserve them, but file 2305 * pages can simply be left unmapped, then faulted back on demand. 2306 * If that is ever changed (perhaps for mlock), update remap_page(). 2307 */ 2308 if (PageAnon(page)) 2309 try_to_migrate(page, ttu_flags); 2310 else 2311 try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK); 2312 2313 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page); 2314 } 2315 2316 static void remap_page(struct page *page, unsigned int nr) 2317 { 2318 int i; 2319 2320 /* If unmap_page() uses try_to_migrate() on file, remove this check */ 2321 if (!PageAnon(page)) 2322 return; 2323 if (PageTransHuge(page)) { 2324 remove_migration_ptes(page, page, true); 2325 } else { 2326 for (i = 0; i < nr; i++) 2327 remove_migration_ptes(page + i, page + i, true); 2328 } 2329 } 2330 2331 static void lru_add_page_tail(struct page *head, struct page *tail, 2332 struct lruvec *lruvec, struct list_head *list) 2333 { 2334 VM_BUG_ON_PAGE(!PageHead(head), head); 2335 VM_BUG_ON_PAGE(PageCompound(tail), head); 2336 VM_BUG_ON_PAGE(PageLRU(tail), head); 2337 lockdep_assert_held(&lruvec->lru_lock); 2338 2339 if (list) { 2340 /* page reclaim is reclaiming a huge page */ 2341 VM_WARN_ON(PageLRU(head)); 2342 get_page(tail); 2343 list_add_tail(&tail->lru, list); 2344 } else { 2345 /* head is still on lru (and we have it frozen) */ 2346 VM_WARN_ON(!PageLRU(head)); 2347 SetPageLRU(tail); 2348 list_add_tail(&tail->lru, &head->lru); 2349 } 2350 } 2351 2352 static void __split_huge_page_tail(struct page *head, int tail, 2353 struct lruvec *lruvec, struct list_head *list) 2354 { 2355 struct page *page_tail = head + tail; 2356 2357 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2358 2359 /* 2360 * Clone page flags before unfreezing refcount. 2361 * 2362 * After successful get_page_unless_zero() might follow flags change, 2363 * for example lock_page() which set PG_waiters. 2364 */ 2365 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2366 page_tail->flags |= (head->flags & 2367 ((1L << PG_referenced) | 2368 (1L << PG_swapbacked) | 2369 (1L << PG_swapcache) | 2370 (1L << PG_mlocked) | 2371 (1L << PG_uptodate) | 2372 (1L << PG_active) | 2373 (1L << PG_workingset) | 2374 (1L << PG_locked) | 2375 (1L << PG_unevictable) | 2376 #ifdef CONFIG_64BIT 2377 (1L << PG_arch_2) | 2378 #endif 2379 (1L << PG_dirty))); 2380 2381 /* ->mapping in first tail page is compound_mapcount */ 2382 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2383 page_tail); 2384 page_tail->mapping = head->mapping; 2385 page_tail->index = head->index + tail; 2386 2387 /* Page flags must be visible before we make the page non-compound. */ 2388 smp_wmb(); 2389 2390 /* 2391 * Clear PageTail before unfreezing page refcount. 2392 * 2393 * After successful get_page_unless_zero() might follow put_page() 2394 * which needs correct compound_head(). 2395 */ 2396 clear_compound_head(page_tail); 2397 2398 /* Finally unfreeze refcount. Additional reference from page cache. */ 2399 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2400 PageSwapCache(head))); 2401 2402 if (page_is_young(head)) 2403 set_page_young(page_tail); 2404 if (page_is_idle(head)) 2405 set_page_idle(page_tail); 2406 2407 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2408 2409 /* 2410 * always add to the tail because some iterators expect new 2411 * pages to show after the currently processed elements - e.g. 2412 * migrate_pages 2413 */ 2414 lru_add_page_tail(head, page_tail, lruvec, list); 2415 } 2416 2417 static void __split_huge_page(struct page *page, struct list_head *list, 2418 pgoff_t end) 2419 { 2420 struct folio *folio = page_folio(page); 2421 struct page *head = &folio->page; 2422 struct lruvec *lruvec; 2423 struct address_space *swap_cache = NULL; 2424 unsigned long offset = 0; 2425 unsigned int nr = thp_nr_pages(head); 2426 int i; 2427 2428 /* complete memcg works before add pages to LRU */ 2429 split_page_memcg(head, nr); 2430 2431 if (PageAnon(head) && PageSwapCache(head)) { 2432 swp_entry_t entry = { .val = page_private(head) }; 2433 2434 offset = swp_offset(entry); 2435 swap_cache = swap_address_space(entry); 2436 xa_lock(&swap_cache->i_pages); 2437 } 2438 2439 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2440 lruvec = folio_lruvec_lock(folio); 2441 2442 ClearPageHasHWPoisoned(head); 2443 2444 for (i = nr - 1; i >= 1; i--) { 2445 __split_huge_page_tail(head, i, lruvec, list); 2446 /* Some pages can be beyond EOF: drop them from page cache */ 2447 if (head[i].index >= end) { 2448 ClearPageDirty(head + i); 2449 __delete_from_page_cache(head + i, NULL); 2450 if (shmem_mapping(head->mapping)) 2451 shmem_uncharge(head->mapping->host, 1); 2452 put_page(head + i); 2453 } else if (!PageAnon(page)) { 2454 __xa_store(&head->mapping->i_pages, head[i].index, 2455 head + i, 0); 2456 } else if (swap_cache) { 2457 __xa_store(&swap_cache->i_pages, offset + i, 2458 head + i, 0); 2459 } 2460 } 2461 2462 ClearPageCompound(head); 2463 unlock_page_lruvec(lruvec); 2464 /* Caller disabled irqs, so they are still disabled here */ 2465 2466 split_page_owner(head, nr); 2467 2468 /* See comment in __split_huge_page_tail() */ 2469 if (PageAnon(head)) { 2470 /* Additional pin to swap cache */ 2471 if (PageSwapCache(head)) { 2472 page_ref_add(head, 2); 2473 xa_unlock(&swap_cache->i_pages); 2474 } else { 2475 page_ref_inc(head); 2476 } 2477 } else { 2478 /* Additional pin to page cache */ 2479 page_ref_add(head, 2); 2480 xa_unlock(&head->mapping->i_pages); 2481 } 2482 local_irq_enable(); 2483 2484 remap_page(head, nr); 2485 2486 if (PageSwapCache(head)) { 2487 swp_entry_t entry = { .val = page_private(head) }; 2488 2489 split_swap_cluster(entry); 2490 } 2491 2492 for (i = 0; i < nr; i++) { 2493 struct page *subpage = head + i; 2494 if (subpage == page) 2495 continue; 2496 unlock_page(subpage); 2497 2498 /* 2499 * Subpages may be freed if there wasn't any mapping 2500 * like if add_to_swap() is running on a lru page that 2501 * had its mapping zapped. And freeing these pages 2502 * requires taking the lru_lock so we do the put_page 2503 * of the tail pages after the split is complete. 2504 */ 2505 put_page(subpage); 2506 } 2507 } 2508 2509 int total_mapcount(struct page *page) 2510 { 2511 int i, compound, nr, ret; 2512 2513 VM_BUG_ON_PAGE(PageTail(page), page); 2514 2515 if (likely(!PageCompound(page))) 2516 return atomic_read(&page->_mapcount) + 1; 2517 2518 compound = compound_mapcount(page); 2519 nr = compound_nr(page); 2520 if (PageHuge(page)) 2521 return compound; 2522 ret = compound; 2523 for (i = 0; i < nr; i++) 2524 ret += atomic_read(&page[i]._mapcount) + 1; 2525 /* File pages has compound_mapcount included in _mapcount */ 2526 if (!PageAnon(page)) 2527 return ret - compound * nr; 2528 if (PageDoubleMap(page)) 2529 ret -= nr; 2530 return ret; 2531 } 2532 2533 /* 2534 * This calculates accurately how many mappings a transparent hugepage 2535 * has (unlike page_mapcount() which isn't fully accurate). This full 2536 * accuracy is primarily needed to know if copy-on-write faults can 2537 * reuse the page and change the mapping to read-write instead of 2538 * copying them. At the same time this returns the total_mapcount too. 2539 * 2540 * The function returns the highest mapcount any one of the subpages 2541 * has. If the return value is one, even if different processes are 2542 * mapping different subpages of the transparent hugepage, they can 2543 * all reuse it, because each process is reusing a different subpage. 2544 * 2545 * The total_mapcount is instead counting all virtual mappings of the 2546 * subpages. If the total_mapcount is equal to "one", it tells the 2547 * caller all mappings belong to the same "mm" and in turn the 2548 * anon_vma of the transparent hugepage can become the vma->anon_vma 2549 * local one as no other process may be mapping any of the subpages. 2550 * 2551 * It would be more accurate to replace page_mapcount() with 2552 * page_trans_huge_mapcount(), however we only use 2553 * page_trans_huge_mapcount() in the copy-on-write faults where we 2554 * need full accuracy to avoid breaking page pinning, because 2555 * page_trans_huge_mapcount() is slower than page_mapcount(). 2556 */ 2557 int page_trans_huge_mapcount(struct page *page) 2558 { 2559 int i, ret; 2560 2561 /* hugetlbfs shouldn't call it */ 2562 VM_BUG_ON_PAGE(PageHuge(page), page); 2563 2564 if (likely(!PageTransCompound(page))) 2565 return atomic_read(&page->_mapcount) + 1; 2566 2567 page = compound_head(page); 2568 2569 ret = 0; 2570 for (i = 0; i < thp_nr_pages(page); i++) { 2571 int mapcount = atomic_read(&page[i]._mapcount) + 1; 2572 ret = max(ret, mapcount); 2573 } 2574 2575 if (PageDoubleMap(page)) 2576 ret -= 1; 2577 2578 return ret + compound_mapcount(page); 2579 } 2580 2581 /* Racy check whether the huge page can be split */ 2582 bool can_split_huge_page(struct page *page, int *pextra_pins) 2583 { 2584 int extra_pins; 2585 2586 /* Additional pins from page cache */ 2587 if (PageAnon(page)) 2588 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2589 else 2590 extra_pins = thp_nr_pages(page); 2591 if (pextra_pins) 2592 *pextra_pins = extra_pins; 2593 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2594 } 2595 2596 /* 2597 * This function splits huge page into normal pages. @page can point to any 2598 * subpage of huge page to split. Split doesn't change the position of @page. 2599 * 2600 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2601 * The huge page must be locked. 2602 * 2603 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2604 * 2605 * Both head page and tail pages will inherit mapping, flags, and so on from 2606 * the hugepage. 2607 * 2608 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2609 * they are not mapped. 2610 * 2611 * Returns 0 if the hugepage is split successfully. 2612 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2613 * us. 2614 */ 2615 int split_huge_page_to_list(struct page *page, struct list_head *list) 2616 { 2617 struct page *head = compound_head(page); 2618 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2619 XA_STATE(xas, &head->mapping->i_pages, head->index); 2620 struct anon_vma *anon_vma = NULL; 2621 struct address_space *mapping = NULL; 2622 int extra_pins, ret; 2623 pgoff_t end; 2624 2625 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2626 VM_BUG_ON_PAGE(!PageLocked(head), head); 2627 VM_BUG_ON_PAGE(!PageCompound(head), head); 2628 2629 if (PageWriteback(head)) 2630 return -EBUSY; 2631 2632 if (PageAnon(head)) { 2633 /* 2634 * The caller does not necessarily hold an mmap_lock that would 2635 * prevent the anon_vma disappearing so we first we take a 2636 * reference to it and then lock the anon_vma for write. This 2637 * is similar to page_lock_anon_vma_read except the write lock 2638 * is taken to serialise against parallel split or collapse 2639 * operations. 2640 */ 2641 anon_vma = page_get_anon_vma(head); 2642 if (!anon_vma) { 2643 ret = -EBUSY; 2644 goto out; 2645 } 2646 end = -1; 2647 mapping = NULL; 2648 anon_vma_lock_write(anon_vma); 2649 } else { 2650 mapping = head->mapping; 2651 2652 /* Truncated ? */ 2653 if (!mapping) { 2654 ret = -EBUSY; 2655 goto out; 2656 } 2657 2658 xas_split_alloc(&xas, head, compound_order(head), 2659 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK); 2660 if (xas_error(&xas)) { 2661 ret = xas_error(&xas); 2662 goto out; 2663 } 2664 2665 anon_vma = NULL; 2666 i_mmap_lock_read(mapping); 2667 2668 /* 2669 *__split_huge_page() may need to trim off pages beyond EOF: 2670 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2671 * which cannot be nested inside the page tree lock. So note 2672 * end now: i_size itself may be changed at any moment, but 2673 * head page lock is good enough to serialize the trimming. 2674 */ 2675 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2676 if (shmem_mapping(mapping)) 2677 end = shmem_fallocend(mapping->host, end); 2678 } 2679 2680 /* 2681 * Racy check if we can split the page, before unmap_page() will 2682 * split PMDs 2683 */ 2684 if (!can_split_huge_page(head, &extra_pins)) { 2685 ret = -EBUSY; 2686 goto out_unlock; 2687 } 2688 2689 unmap_page(head); 2690 2691 /* block interrupt reentry in xa_lock and spinlock */ 2692 local_irq_disable(); 2693 if (mapping) { 2694 /* 2695 * Check if the head page is present in page cache. 2696 * We assume all tail are present too, if head is there. 2697 */ 2698 xas_lock(&xas); 2699 xas_reset(&xas); 2700 if (xas_load(&xas) != head) 2701 goto fail; 2702 } 2703 2704 /* Prevent deferred_split_scan() touching ->_refcount */ 2705 spin_lock(&ds_queue->split_queue_lock); 2706 if (page_ref_freeze(head, 1 + extra_pins)) { 2707 if (!list_empty(page_deferred_list(head))) { 2708 ds_queue->split_queue_len--; 2709 list_del(page_deferred_list(head)); 2710 } 2711 spin_unlock(&ds_queue->split_queue_lock); 2712 if (mapping) { 2713 int nr = thp_nr_pages(head); 2714 2715 xas_split(&xas, head, thp_order(head)); 2716 if (PageSwapBacked(head)) { 2717 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2718 -nr); 2719 } else { 2720 __mod_lruvec_page_state(head, NR_FILE_THPS, 2721 -nr); 2722 filemap_nr_thps_dec(mapping); 2723 } 2724 } 2725 2726 __split_huge_page(page, list, end); 2727 ret = 0; 2728 } else { 2729 spin_unlock(&ds_queue->split_queue_lock); 2730 fail: 2731 if (mapping) 2732 xas_unlock(&xas); 2733 local_irq_enable(); 2734 remap_page(head, thp_nr_pages(head)); 2735 ret = -EBUSY; 2736 } 2737 2738 out_unlock: 2739 if (anon_vma) { 2740 anon_vma_unlock_write(anon_vma); 2741 put_anon_vma(anon_vma); 2742 } 2743 if (mapping) 2744 i_mmap_unlock_read(mapping); 2745 out: 2746 /* Free any memory we didn't use */ 2747 xas_nomem(&xas, 0); 2748 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2749 return ret; 2750 } 2751 2752 void free_transhuge_page(struct page *page) 2753 { 2754 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2755 unsigned long flags; 2756 2757 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2758 if (!list_empty(page_deferred_list(page))) { 2759 ds_queue->split_queue_len--; 2760 list_del(page_deferred_list(page)); 2761 } 2762 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2763 free_compound_page(page); 2764 } 2765 2766 void deferred_split_huge_page(struct page *page) 2767 { 2768 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2769 #ifdef CONFIG_MEMCG 2770 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2771 #endif 2772 unsigned long flags; 2773 2774 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2775 2776 /* 2777 * The try_to_unmap() in page reclaim path might reach here too, 2778 * this may cause a race condition to corrupt deferred split queue. 2779 * And, if page reclaim is already handling the same page, it is 2780 * unnecessary to handle it again in shrinker. 2781 * 2782 * Check PageSwapCache to determine if the page is being 2783 * handled by page reclaim since THP swap would add the page into 2784 * swap cache before calling try_to_unmap(). 2785 */ 2786 if (PageSwapCache(page)) 2787 return; 2788 2789 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2790 if (list_empty(page_deferred_list(page))) { 2791 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2792 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2793 ds_queue->split_queue_len++; 2794 #ifdef CONFIG_MEMCG 2795 if (memcg) 2796 set_shrinker_bit(memcg, page_to_nid(page), 2797 deferred_split_shrinker.id); 2798 #endif 2799 } 2800 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2801 } 2802 2803 static unsigned long deferred_split_count(struct shrinker *shrink, 2804 struct shrink_control *sc) 2805 { 2806 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2807 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2808 2809 #ifdef CONFIG_MEMCG 2810 if (sc->memcg) 2811 ds_queue = &sc->memcg->deferred_split_queue; 2812 #endif 2813 return READ_ONCE(ds_queue->split_queue_len); 2814 } 2815 2816 static unsigned long deferred_split_scan(struct shrinker *shrink, 2817 struct shrink_control *sc) 2818 { 2819 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2820 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2821 unsigned long flags; 2822 LIST_HEAD(list), *pos, *next; 2823 struct page *page; 2824 int split = 0; 2825 2826 #ifdef CONFIG_MEMCG 2827 if (sc->memcg) 2828 ds_queue = &sc->memcg->deferred_split_queue; 2829 #endif 2830 2831 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2832 /* Take pin on all head pages to avoid freeing them under us */ 2833 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2834 page = list_entry((void *)pos, struct page, deferred_list); 2835 page = compound_head(page); 2836 if (get_page_unless_zero(page)) { 2837 list_move(page_deferred_list(page), &list); 2838 } else { 2839 /* We lost race with put_compound_page() */ 2840 list_del_init(page_deferred_list(page)); 2841 ds_queue->split_queue_len--; 2842 } 2843 if (!--sc->nr_to_scan) 2844 break; 2845 } 2846 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2847 2848 list_for_each_safe(pos, next, &list) { 2849 page = list_entry((void *)pos, struct page, deferred_list); 2850 if (!trylock_page(page)) 2851 goto next; 2852 /* split_huge_page() removes page from list on success */ 2853 if (!split_huge_page(page)) 2854 split++; 2855 unlock_page(page); 2856 next: 2857 put_page(page); 2858 } 2859 2860 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2861 list_splice_tail(&list, &ds_queue->split_queue); 2862 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2863 2864 /* 2865 * Stop shrinker if we didn't split any page, but the queue is empty. 2866 * This can happen if pages were freed under us. 2867 */ 2868 if (!split && list_empty(&ds_queue->split_queue)) 2869 return SHRINK_STOP; 2870 return split; 2871 } 2872 2873 static struct shrinker deferred_split_shrinker = { 2874 .count_objects = deferred_split_count, 2875 .scan_objects = deferred_split_scan, 2876 .seeks = DEFAULT_SEEKS, 2877 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2878 SHRINKER_NONSLAB, 2879 }; 2880 2881 #ifdef CONFIG_DEBUG_FS 2882 static void split_huge_pages_all(void) 2883 { 2884 struct zone *zone; 2885 struct page *page; 2886 unsigned long pfn, max_zone_pfn; 2887 unsigned long total = 0, split = 0; 2888 2889 pr_debug("Split all THPs\n"); 2890 for_each_populated_zone(zone) { 2891 max_zone_pfn = zone_end_pfn(zone); 2892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2893 if (!pfn_valid(pfn)) 2894 continue; 2895 2896 page = pfn_to_page(pfn); 2897 if (!get_page_unless_zero(page)) 2898 continue; 2899 2900 if (zone != page_zone(page)) 2901 goto next; 2902 2903 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2904 goto next; 2905 2906 total++; 2907 lock_page(page); 2908 if (!split_huge_page(page)) 2909 split++; 2910 unlock_page(page); 2911 next: 2912 put_page(page); 2913 cond_resched(); 2914 } 2915 } 2916 2917 pr_debug("%lu of %lu THP split\n", split, total); 2918 } 2919 2920 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2921 { 2922 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2923 is_vm_hugetlb_page(vma); 2924 } 2925 2926 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2927 unsigned long vaddr_end) 2928 { 2929 int ret = 0; 2930 struct task_struct *task; 2931 struct mm_struct *mm; 2932 unsigned long total = 0, split = 0; 2933 unsigned long addr; 2934 2935 vaddr_start &= PAGE_MASK; 2936 vaddr_end &= PAGE_MASK; 2937 2938 /* Find the task_struct from pid */ 2939 rcu_read_lock(); 2940 task = find_task_by_vpid(pid); 2941 if (!task) { 2942 rcu_read_unlock(); 2943 ret = -ESRCH; 2944 goto out; 2945 } 2946 get_task_struct(task); 2947 rcu_read_unlock(); 2948 2949 /* Find the mm_struct */ 2950 mm = get_task_mm(task); 2951 put_task_struct(task); 2952 2953 if (!mm) { 2954 ret = -EINVAL; 2955 goto out; 2956 } 2957 2958 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2959 pid, vaddr_start, vaddr_end); 2960 2961 mmap_read_lock(mm); 2962 /* 2963 * always increase addr by PAGE_SIZE, since we could have a PTE page 2964 * table filled with PTE-mapped THPs, each of which is distinct. 2965 */ 2966 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 2967 struct vm_area_struct *vma = find_vma(mm, addr); 2968 struct page *page; 2969 2970 if (!vma || addr < vma->vm_start) 2971 break; 2972 2973 /* skip special VMA and hugetlb VMA */ 2974 if (vma_not_suitable_for_thp_split(vma)) { 2975 addr = vma->vm_end; 2976 continue; 2977 } 2978 2979 /* FOLL_DUMP to ignore special (like zero) pages */ 2980 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2981 2982 if (IS_ERR(page)) 2983 continue; 2984 if (!page) 2985 continue; 2986 2987 if (!is_transparent_hugepage(page)) 2988 goto next; 2989 2990 total++; 2991 if (!can_split_huge_page(compound_head(page), NULL)) 2992 goto next; 2993 2994 if (!trylock_page(page)) 2995 goto next; 2996 2997 if (!split_huge_page(page)) 2998 split++; 2999 3000 unlock_page(page); 3001 next: 3002 put_page(page); 3003 cond_resched(); 3004 } 3005 mmap_read_unlock(mm); 3006 mmput(mm); 3007 3008 pr_debug("%lu of %lu THP split\n", split, total); 3009 3010 out: 3011 return ret; 3012 } 3013 3014 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3015 pgoff_t off_end) 3016 { 3017 struct filename *file; 3018 struct file *candidate; 3019 struct address_space *mapping; 3020 int ret = -EINVAL; 3021 pgoff_t index; 3022 int nr_pages = 1; 3023 unsigned long total = 0, split = 0; 3024 3025 file = getname_kernel(file_path); 3026 if (IS_ERR(file)) 3027 return ret; 3028 3029 candidate = file_open_name(file, O_RDONLY, 0); 3030 if (IS_ERR(candidate)) 3031 goto out; 3032 3033 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3034 file_path, off_start, off_end); 3035 3036 mapping = candidate->f_mapping; 3037 3038 for (index = off_start; index < off_end; index += nr_pages) { 3039 struct page *fpage = pagecache_get_page(mapping, index, 3040 FGP_ENTRY | FGP_HEAD, 0); 3041 3042 nr_pages = 1; 3043 if (xa_is_value(fpage) || !fpage) 3044 continue; 3045 3046 if (!is_transparent_hugepage(fpage)) 3047 goto next; 3048 3049 total++; 3050 nr_pages = thp_nr_pages(fpage); 3051 3052 if (!trylock_page(fpage)) 3053 goto next; 3054 3055 if (!split_huge_page(fpage)) 3056 split++; 3057 3058 unlock_page(fpage); 3059 next: 3060 put_page(fpage); 3061 cond_resched(); 3062 } 3063 3064 filp_close(candidate, NULL); 3065 ret = 0; 3066 3067 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3068 out: 3069 putname(file); 3070 return ret; 3071 } 3072 3073 #define MAX_INPUT_BUF_SZ 255 3074 3075 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3076 size_t count, loff_t *ppops) 3077 { 3078 static DEFINE_MUTEX(split_debug_mutex); 3079 ssize_t ret; 3080 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3081 char input_buf[MAX_INPUT_BUF_SZ]; 3082 int pid; 3083 unsigned long vaddr_start, vaddr_end; 3084 3085 ret = mutex_lock_interruptible(&split_debug_mutex); 3086 if (ret) 3087 return ret; 3088 3089 ret = -EFAULT; 3090 3091 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3092 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3093 goto out; 3094 3095 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3096 3097 if (input_buf[0] == '/') { 3098 char *tok; 3099 char *buf = input_buf; 3100 char file_path[MAX_INPUT_BUF_SZ]; 3101 pgoff_t off_start = 0, off_end = 0; 3102 size_t input_len = strlen(input_buf); 3103 3104 tok = strsep(&buf, ","); 3105 if (tok) { 3106 strcpy(file_path, tok); 3107 } else { 3108 ret = -EINVAL; 3109 goto out; 3110 } 3111 3112 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3113 if (ret != 2) { 3114 ret = -EINVAL; 3115 goto out; 3116 } 3117 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3118 if (!ret) 3119 ret = input_len; 3120 3121 goto out; 3122 } 3123 3124 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3125 if (ret == 1 && pid == 1) { 3126 split_huge_pages_all(); 3127 ret = strlen(input_buf); 3128 goto out; 3129 } else if (ret != 3) { 3130 ret = -EINVAL; 3131 goto out; 3132 } 3133 3134 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3135 if (!ret) 3136 ret = strlen(input_buf); 3137 out: 3138 mutex_unlock(&split_debug_mutex); 3139 return ret; 3140 3141 } 3142 3143 static const struct file_operations split_huge_pages_fops = { 3144 .owner = THIS_MODULE, 3145 .write = split_huge_pages_write, 3146 .llseek = no_llseek, 3147 }; 3148 3149 static int __init split_huge_pages_debugfs(void) 3150 { 3151 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3152 &split_huge_pages_fops); 3153 return 0; 3154 } 3155 late_initcall(split_huge_pages_debugfs); 3156 #endif 3157 3158 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3159 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3160 struct page *page) 3161 { 3162 struct vm_area_struct *vma = pvmw->vma; 3163 struct mm_struct *mm = vma->vm_mm; 3164 unsigned long address = pvmw->address; 3165 pmd_t pmdval; 3166 swp_entry_t entry; 3167 pmd_t pmdswp; 3168 3169 if (!(pvmw->pmd && !pvmw->pte)) 3170 return; 3171 3172 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3173 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3174 if (pmd_dirty(pmdval)) 3175 set_page_dirty(page); 3176 if (pmd_write(pmdval)) 3177 entry = make_writable_migration_entry(page_to_pfn(page)); 3178 else 3179 entry = make_readable_migration_entry(page_to_pfn(page)); 3180 pmdswp = swp_entry_to_pmd(entry); 3181 if (pmd_soft_dirty(pmdval)) 3182 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3183 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3184 page_remove_rmap(page, true); 3185 put_page(page); 3186 } 3187 3188 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3189 { 3190 struct vm_area_struct *vma = pvmw->vma; 3191 struct mm_struct *mm = vma->vm_mm; 3192 unsigned long address = pvmw->address; 3193 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3194 pmd_t pmde; 3195 swp_entry_t entry; 3196 3197 if (!(pvmw->pmd && !pvmw->pte)) 3198 return; 3199 3200 entry = pmd_to_swp_entry(*pvmw->pmd); 3201 get_page(new); 3202 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3203 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3204 pmde = pmd_mksoft_dirty(pmde); 3205 if (is_writable_migration_entry(entry)) 3206 pmde = maybe_pmd_mkwrite(pmde, vma); 3207 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3208 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde)); 3209 3210 if (PageAnon(new)) 3211 page_add_anon_rmap(new, vma, mmun_start, true); 3212 else 3213 page_add_file_rmap(new, true); 3214 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3215 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 3216 mlock_vma_page(new); 3217 3218 /* No need to invalidate - it was non-present before */ 3219 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3220 } 3221 #endif 3222