xref: /openbmc/linux/mm/huge_memory.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 
39 #include <asm/tlb.h>
40 #include <asm/pgalloc.h>
41 #include "internal.h"
42 
43 /*
44  * By default, transparent hugepage support is disabled in order to avoid
45  * risking an increased memory footprint for applications that are not
46  * guaranteed to benefit from it. When transparent hugepage support is
47  * enabled, it is for all mappings, and khugepaged scans all mappings.
48  * Defrag is invoked by khugepaged hugepage allocations and by page faults
49  * for all hugepage allocations.
50  */
51 unsigned long transparent_hugepage_flags __read_mostly =
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
53 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 #endif
55 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
56 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
57 #endif
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
60 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
61 
62 static struct shrinker deferred_split_shrinker;
63 
64 static atomic_t huge_zero_refcount;
65 struct page *huge_zero_page __read_mostly;
66 unsigned long huge_zero_pfn __read_mostly = ~0UL;
67 
68 static inline bool file_thp_enabled(struct vm_area_struct *vma)
69 {
70 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
71 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
72 	       (vma->vm_flags & VM_EXEC);
73 }
74 
75 bool transparent_hugepage_active(struct vm_area_struct *vma)
76 {
77 	/* The addr is used to check if the vma size fits */
78 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
79 
80 	if (!transhuge_vma_suitable(vma, addr))
81 		return false;
82 	if (vma_is_anonymous(vma))
83 		return __transparent_hugepage_enabled(vma);
84 	if (vma_is_shmem(vma))
85 		return shmem_huge_enabled(vma);
86 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
87 		return file_thp_enabled(vma);
88 
89 	return false;
90 }
91 
92 static bool get_huge_zero_page(void)
93 {
94 	struct page *zero_page;
95 retry:
96 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
97 		return true;
98 
99 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
100 			HPAGE_PMD_ORDER);
101 	if (!zero_page) {
102 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
103 		return false;
104 	}
105 	count_vm_event(THP_ZERO_PAGE_ALLOC);
106 	preempt_disable();
107 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
108 		preempt_enable();
109 		__free_pages(zero_page, compound_order(zero_page));
110 		goto retry;
111 	}
112 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
113 
114 	/* We take additional reference here. It will be put back by shrinker */
115 	atomic_set(&huge_zero_refcount, 2);
116 	preempt_enable();
117 	return true;
118 }
119 
120 static void put_huge_zero_page(void)
121 {
122 	/*
123 	 * Counter should never go to zero here. Only shrinker can put
124 	 * last reference.
125 	 */
126 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
127 }
128 
129 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
130 {
131 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 		return READ_ONCE(huge_zero_page);
133 
134 	if (!get_huge_zero_page())
135 		return NULL;
136 
137 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
138 		put_huge_zero_page();
139 
140 	return READ_ONCE(huge_zero_page);
141 }
142 
143 void mm_put_huge_zero_page(struct mm_struct *mm)
144 {
145 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
146 		put_huge_zero_page();
147 }
148 
149 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
150 					struct shrink_control *sc)
151 {
152 	/* we can free zero page only if last reference remains */
153 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
154 }
155 
156 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
157 				       struct shrink_control *sc)
158 {
159 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
160 		struct page *zero_page = xchg(&huge_zero_page, NULL);
161 		BUG_ON(zero_page == NULL);
162 		WRITE_ONCE(huge_zero_pfn, ~0UL);
163 		__free_pages(zero_page, compound_order(zero_page));
164 		return HPAGE_PMD_NR;
165 	}
166 
167 	return 0;
168 }
169 
170 static struct shrinker huge_zero_page_shrinker = {
171 	.count_objects = shrink_huge_zero_page_count,
172 	.scan_objects = shrink_huge_zero_page_scan,
173 	.seeks = DEFAULT_SEEKS,
174 };
175 
176 #ifdef CONFIG_SYSFS
177 static ssize_t enabled_show(struct kobject *kobj,
178 			    struct kobj_attribute *attr, char *buf)
179 {
180 	const char *output;
181 
182 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
183 		output = "[always] madvise never";
184 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
185 			  &transparent_hugepage_flags))
186 		output = "always [madvise] never";
187 	else
188 		output = "always madvise [never]";
189 
190 	return sysfs_emit(buf, "%s\n", output);
191 }
192 
193 static ssize_t enabled_store(struct kobject *kobj,
194 			     struct kobj_attribute *attr,
195 			     const char *buf, size_t count)
196 {
197 	ssize_t ret = count;
198 
199 	if (sysfs_streq(buf, "always")) {
200 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
201 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
202 	} else if (sysfs_streq(buf, "madvise")) {
203 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
204 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
205 	} else if (sysfs_streq(buf, "never")) {
206 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
207 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208 	} else
209 		ret = -EINVAL;
210 
211 	if (ret > 0) {
212 		int err = start_stop_khugepaged();
213 		if (err)
214 			ret = err;
215 	}
216 	return ret;
217 }
218 static struct kobj_attribute enabled_attr =
219 	__ATTR(enabled, 0644, enabled_show, enabled_store);
220 
221 ssize_t single_hugepage_flag_show(struct kobject *kobj,
222 				  struct kobj_attribute *attr, char *buf,
223 				  enum transparent_hugepage_flag flag)
224 {
225 	return sysfs_emit(buf, "%d\n",
226 			  !!test_bit(flag, &transparent_hugepage_flags));
227 }
228 
229 ssize_t single_hugepage_flag_store(struct kobject *kobj,
230 				 struct kobj_attribute *attr,
231 				 const char *buf, size_t count,
232 				 enum transparent_hugepage_flag flag)
233 {
234 	unsigned long value;
235 	int ret;
236 
237 	ret = kstrtoul(buf, 10, &value);
238 	if (ret < 0)
239 		return ret;
240 	if (value > 1)
241 		return -EINVAL;
242 
243 	if (value)
244 		set_bit(flag, &transparent_hugepage_flags);
245 	else
246 		clear_bit(flag, &transparent_hugepage_flags);
247 
248 	return count;
249 }
250 
251 static ssize_t defrag_show(struct kobject *kobj,
252 			   struct kobj_attribute *attr, char *buf)
253 {
254 	const char *output;
255 
256 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
257 		     &transparent_hugepage_flags))
258 		output = "[always] defer defer+madvise madvise never";
259 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
260 			  &transparent_hugepage_flags))
261 		output = "always [defer] defer+madvise madvise never";
262 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
263 			  &transparent_hugepage_flags))
264 		output = "always defer [defer+madvise] madvise never";
265 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
266 			  &transparent_hugepage_flags))
267 		output = "always defer defer+madvise [madvise] never";
268 	else
269 		output = "always defer defer+madvise madvise [never]";
270 
271 	return sysfs_emit(buf, "%s\n", output);
272 }
273 
274 static ssize_t defrag_store(struct kobject *kobj,
275 			    struct kobj_attribute *attr,
276 			    const char *buf, size_t count)
277 {
278 	if (sysfs_streq(buf, "always")) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
283 	} else if (sysfs_streq(buf, "defer+madvise")) {
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 	} else if (sysfs_streq(buf, "defer")) {
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
290 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
292 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
293 	} else if (sysfs_streq(buf, "madvise")) {
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
295 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
297 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
298 	} else if (sysfs_streq(buf, "never")) {
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
300 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
301 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
302 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
303 	} else
304 		return -EINVAL;
305 
306 	return count;
307 }
308 static struct kobj_attribute defrag_attr =
309 	__ATTR(defrag, 0644, defrag_show, defrag_store);
310 
311 static ssize_t use_zero_page_show(struct kobject *kobj,
312 				  struct kobj_attribute *attr, char *buf)
313 {
314 	return single_hugepage_flag_show(kobj, attr, buf,
315 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
316 }
317 static ssize_t use_zero_page_store(struct kobject *kobj,
318 		struct kobj_attribute *attr, const char *buf, size_t count)
319 {
320 	return single_hugepage_flag_store(kobj, attr, buf, count,
321 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
322 }
323 static struct kobj_attribute use_zero_page_attr =
324 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
325 
326 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
327 				   struct kobj_attribute *attr, char *buf)
328 {
329 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
330 }
331 static struct kobj_attribute hpage_pmd_size_attr =
332 	__ATTR_RO(hpage_pmd_size);
333 
334 static struct attribute *hugepage_attr[] = {
335 	&enabled_attr.attr,
336 	&defrag_attr.attr,
337 	&use_zero_page_attr.attr,
338 	&hpage_pmd_size_attr.attr,
339 #ifdef CONFIG_SHMEM
340 	&shmem_enabled_attr.attr,
341 #endif
342 	NULL,
343 };
344 
345 static const struct attribute_group hugepage_attr_group = {
346 	.attrs = hugepage_attr,
347 };
348 
349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 {
351 	int err;
352 
353 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 	if (unlikely(!*hugepage_kobj)) {
355 		pr_err("failed to create transparent hugepage kobject\n");
356 		return -ENOMEM;
357 	}
358 
359 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
360 	if (err) {
361 		pr_err("failed to register transparent hugepage group\n");
362 		goto delete_obj;
363 	}
364 
365 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
366 	if (err) {
367 		pr_err("failed to register transparent hugepage group\n");
368 		goto remove_hp_group;
369 	}
370 
371 	return 0;
372 
373 remove_hp_group:
374 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375 delete_obj:
376 	kobject_put(*hugepage_kobj);
377 	return err;
378 }
379 
380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 {
382 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 	kobject_put(hugepage_kobj);
385 }
386 #else
387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388 {
389 	return 0;
390 }
391 
392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393 {
394 }
395 #endif /* CONFIG_SYSFS */
396 
397 static int __init hugepage_init(void)
398 {
399 	int err;
400 	struct kobject *hugepage_kobj;
401 
402 	if (!has_transparent_hugepage()) {
403 		/*
404 		 * Hardware doesn't support hugepages, hence disable
405 		 * DAX PMD support.
406 		 */
407 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
408 		return -EINVAL;
409 	}
410 
411 	/*
412 	 * hugepages can't be allocated by the buddy allocator
413 	 */
414 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
415 	/*
416 	 * we use page->mapping and page->index in second tail page
417 	 * as list_head: assuming THP order >= 2
418 	 */
419 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
420 
421 	err = hugepage_init_sysfs(&hugepage_kobj);
422 	if (err)
423 		goto err_sysfs;
424 
425 	err = khugepaged_init();
426 	if (err)
427 		goto err_slab;
428 
429 	err = register_shrinker(&huge_zero_page_shrinker);
430 	if (err)
431 		goto err_hzp_shrinker;
432 	err = register_shrinker(&deferred_split_shrinker);
433 	if (err)
434 		goto err_split_shrinker;
435 
436 	/*
437 	 * By default disable transparent hugepages on smaller systems,
438 	 * where the extra memory used could hurt more than TLB overhead
439 	 * is likely to save.  The admin can still enable it through /sys.
440 	 */
441 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
442 		transparent_hugepage_flags = 0;
443 		return 0;
444 	}
445 
446 	err = start_stop_khugepaged();
447 	if (err)
448 		goto err_khugepaged;
449 
450 	return 0;
451 err_khugepaged:
452 	unregister_shrinker(&deferred_split_shrinker);
453 err_split_shrinker:
454 	unregister_shrinker(&huge_zero_page_shrinker);
455 err_hzp_shrinker:
456 	khugepaged_destroy();
457 err_slab:
458 	hugepage_exit_sysfs(hugepage_kobj);
459 err_sysfs:
460 	return err;
461 }
462 subsys_initcall(hugepage_init);
463 
464 static int __init setup_transparent_hugepage(char *str)
465 {
466 	int ret = 0;
467 	if (!str)
468 		goto out;
469 	if (!strcmp(str, "always")) {
470 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
471 			&transparent_hugepage_flags);
472 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
473 			  &transparent_hugepage_flags);
474 		ret = 1;
475 	} else if (!strcmp(str, "madvise")) {
476 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
477 			  &transparent_hugepage_flags);
478 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
479 			&transparent_hugepage_flags);
480 		ret = 1;
481 	} else if (!strcmp(str, "never")) {
482 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
483 			  &transparent_hugepage_flags);
484 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
485 			  &transparent_hugepage_flags);
486 		ret = 1;
487 	}
488 out:
489 	if (!ret)
490 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
491 	return ret;
492 }
493 __setup("transparent_hugepage=", setup_transparent_hugepage);
494 
495 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
496 {
497 	if (likely(vma->vm_flags & VM_WRITE))
498 		pmd = pmd_mkwrite(pmd);
499 	return pmd;
500 }
501 
502 #ifdef CONFIG_MEMCG
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
506 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507 
508 	if (memcg)
509 		return &memcg->deferred_split_queue;
510 	else
511 		return &pgdat->deferred_split_queue;
512 }
513 #else
514 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
515 {
516 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
517 
518 	return &pgdat->deferred_split_queue;
519 }
520 #endif
521 
522 void prep_transhuge_page(struct page *page)
523 {
524 	/*
525 	 * we use page->mapping and page->indexlru in second tail page
526 	 * as list_head: assuming THP order >= 2
527 	 */
528 
529 	INIT_LIST_HEAD(page_deferred_list(page));
530 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
531 }
532 
533 bool is_transparent_hugepage(struct page *page)
534 {
535 	if (!PageCompound(page))
536 		return false;
537 
538 	page = compound_head(page);
539 	return is_huge_zero_page(page) ||
540 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
541 }
542 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
543 
544 static unsigned long __thp_get_unmapped_area(struct file *filp,
545 		unsigned long addr, unsigned long len,
546 		loff_t off, unsigned long flags, unsigned long size)
547 {
548 	loff_t off_end = off + len;
549 	loff_t off_align = round_up(off, size);
550 	unsigned long len_pad, ret;
551 
552 	if (off_end <= off_align || (off_end - off_align) < size)
553 		return 0;
554 
555 	len_pad = len + size;
556 	if (len_pad < len || (off + len_pad) < off)
557 		return 0;
558 
559 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
560 					      off >> PAGE_SHIFT, flags);
561 
562 	/*
563 	 * The failure might be due to length padding. The caller will retry
564 	 * without the padding.
565 	 */
566 	if (IS_ERR_VALUE(ret))
567 		return 0;
568 
569 	/*
570 	 * Do not try to align to THP boundary if allocation at the address
571 	 * hint succeeds.
572 	 */
573 	if (ret == addr)
574 		return addr;
575 
576 	ret += (off - ret) & (size - 1);
577 	return ret;
578 }
579 
580 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
581 		unsigned long len, unsigned long pgoff, unsigned long flags)
582 {
583 	unsigned long ret;
584 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
585 
586 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
587 		goto out;
588 
589 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
590 	if (ret)
591 		return ret;
592 out:
593 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
594 }
595 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
596 
597 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
598 			struct page *page, gfp_t gfp)
599 {
600 	struct vm_area_struct *vma = vmf->vma;
601 	pgtable_t pgtable;
602 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
603 	vm_fault_t ret = 0;
604 
605 	VM_BUG_ON_PAGE(!PageCompound(page), page);
606 
607 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
608 		put_page(page);
609 		count_vm_event(THP_FAULT_FALLBACK);
610 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
611 		return VM_FAULT_FALLBACK;
612 	}
613 	cgroup_throttle_swaprate(page, gfp);
614 
615 	pgtable = pte_alloc_one(vma->vm_mm);
616 	if (unlikely(!pgtable)) {
617 		ret = VM_FAULT_OOM;
618 		goto release;
619 	}
620 
621 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
622 	/*
623 	 * The memory barrier inside __SetPageUptodate makes sure that
624 	 * clear_huge_page writes become visible before the set_pmd_at()
625 	 * write.
626 	 */
627 	__SetPageUptodate(page);
628 
629 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
630 	if (unlikely(!pmd_none(*vmf->pmd))) {
631 		goto unlock_release;
632 	} else {
633 		pmd_t entry;
634 
635 		ret = check_stable_address_space(vma->vm_mm);
636 		if (ret)
637 			goto unlock_release;
638 
639 		/* Deliver the page fault to userland */
640 		if (userfaultfd_missing(vma)) {
641 			spin_unlock(vmf->ptl);
642 			put_page(page);
643 			pte_free(vma->vm_mm, pgtable);
644 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
645 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
646 			return ret;
647 		}
648 
649 		entry = mk_huge_pmd(page, vma->vm_page_prot);
650 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
651 		page_add_new_anon_rmap(page, vma, haddr, true);
652 		lru_cache_add_inactive_or_unevictable(page, vma);
653 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
654 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
655 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
656 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
657 		mm_inc_nr_ptes(vma->vm_mm);
658 		spin_unlock(vmf->ptl);
659 		count_vm_event(THP_FAULT_ALLOC);
660 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
661 	}
662 
663 	return 0;
664 unlock_release:
665 	spin_unlock(vmf->ptl);
666 release:
667 	if (pgtable)
668 		pte_free(vma->vm_mm, pgtable);
669 	put_page(page);
670 	return ret;
671 
672 }
673 
674 /*
675  * always: directly stall for all thp allocations
676  * defer: wake kswapd and fail if not immediately available
677  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
678  *		  fail if not immediately available
679  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
680  *	    available
681  * never: never stall for any thp allocation
682  */
683 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
684 {
685 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
686 
687 	/* Always do synchronous compaction */
688 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
689 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
690 
691 	/* Kick kcompactd and fail quickly */
692 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
693 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
694 
695 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
696 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
697 		return GFP_TRANSHUGE_LIGHT |
698 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
699 					__GFP_KSWAPD_RECLAIM);
700 
701 	/* Only do synchronous compaction if madvised */
702 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
703 		return GFP_TRANSHUGE_LIGHT |
704 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
705 
706 	return GFP_TRANSHUGE_LIGHT;
707 }
708 
709 /* Caller must hold page table lock. */
710 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
711 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
712 		struct page *zero_page)
713 {
714 	pmd_t entry;
715 	if (!pmd_none(*pmd))
716 		return;
717 	entry = mk_pmd(zero_page, vma->vm_page_prot);
718 	entry = pmd_mkhuge(entry);
719 	if (pgtable)
720 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
721 	set_pmd_at(mm, haddr, pmd, entry);
722 	mm_inc_nr_ptes(mm);
723 }
724 
725 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
726 {
727 	struct vm_area_struct *vma = vmf->vma;
728 	gfp_t gfp;
729 	struct page *page;
730 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
731 
732 	if (!transhuge_vma_suitable(vma, haddr))
733 		return VM_FAULT_FALLBACK;
734 	if (unlikely(anon_vma_prepare(vma)))
735 		return VM_FAULT_OOM;
736 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
737 		return VM_FAULT_OOM;
738 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
739 			!mm_forbids_zeropage(vma->vm_mm) &&
740 			transparent_hugepage_use_zero_page()) {
741 		pgtable_t pgtable;
742 		struct page *zero_page;
743 		vm_fault_t ret;
744 		pgtable = pte_alloc_one(vma->vm_mm);
745 		if (unlikely(!pgtable))
746 			return VM_FAULT_OOM;
747 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
748 		if (unlikely(!zero_page)) {
749 			pte_free(vma->vm_mm, pgtable);
750 			count_vm_event(THP_FAULT_FALLBACK);
751 			return VM_FAULT_FALLBACK;
752 		}
753 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
754 		ret = 0;
755 		if (pmd_none(*vmf->pmd)) {
756 			ret = check_stable_address_space(vma->vm_mm);
757 			if (ret) {
758 				spin_unlock(vmf->ptl);
759 				pte_free(vma->vm_mm, pgtable);
760 			} else if (userfaultfd_missing(vma)) {
761 				spin_unlock(vmf->ptl);
762 				pte_free(vma->vm_mm, pgtable);
763 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
764 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
765 			} else {
766 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
767 						   haddr, vmf->pmd, zero_page);
768 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
769 				spin_unlock(vmf->ptl);
770 			}
771 		} else {
772 			spin_unlock(vmf->ptl);
773 			pte_free(vma->vm_mm, pgtable);
774 		}
775 		return ret;
776 	}
777 	gfp = vma_thp_gfp_mask(vma);
778 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
779 	if (unlikely(!page)) {
780 		count_vm_event(THP_FAULT_FALLBACK);
781 		return VM_FAULT_FALLBACK;
782 	}
783 	prep_transhuge_page(page);
784 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
785 }
786 
787 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
788 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
789 		pgtable_t pgtable)
790 {
791 	struct mm_struct *mm = vma->vm_mm;
792 	pmd_t entry;
793 	spinlock_t *ptl;
794 
795 	ptl = pmd_lock(mm, pmd);
796 	if (!pmd_none(*pmd)) {
797 		if (write) {
798 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
799 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
800 				goto out_unlock;
801 			}
802 			entry = pmd_mkyoung(*pmd);
803 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
804 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
805 				update_mmu_cache_pmd(vma, addr, pmd);
806 		}
807 
808 		goto out_unlock;
809 	}
810 
811 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
812 	if (pfn_t_devmap(pfn))
813 		entry = pmd_mkdevmap(entry);
814 	if (write) {
815 		entry = pmd_mkyoung(pmd_mkdirty(entry));
816 		entry = maybe_pmd_mkwrite(entry, vma);
817 	}
818 
819 	if (pgtable) {
820 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
821 		mm_inc_nr_ptes(mm);
822 		pgtable = NULL;
823 	}
824 
825 	set_pmd_at(mm, addr, pmd, entry);
826 	update_mmu_cache_pmd(vma, addr, pmd);
827 
828 out_unlock:
829 	spin_unlock(ptl);
830 	if (pgtable)
831 		pte_free(mm, pgtable);
832 }
833 
834 /**
835  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
836  * @vmf: Structure describing the fault
837  * @pfn: pfn to insert
838  * @pgprot: page protection to use
839  * @write: whether it's a write fault
840  *
841  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
842  * also consult the vmf_insert_mixed_prot() documentation when
843  * @pgprot != @vmf->vma->vm_page_prot.
844  *
845  * Return: vm_fault_t value.
846  */
847 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
848 				   pgprot_t pgprot, bool write)
849 {
850 	unsigned long addr = vmf->address & PMD_MASK;
851 	struct vm_area_struct *vma = vmf->vma;
852 	pgtable_t pgtable = NULL;
853 
854 	/*
855 	 * If we had pmd_special, we could avoid all these restrictions,
856 	 * but we need to be consistent with PTEs and architectures that
857 	 * can't support a 'special' bit.
858 	 */
859 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
860 			!pfn_t_devmap(pfn));
861 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
862 						(VM_PFNMAP|VM_MIXEDMAP));
863 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
864 
865 	if (addr < vma->vm_start || addr >= vma->vm_end)
866 		return VM_FAULT_SIGBUS;
867 
868 	if (arch_needs_pgtable_deposit()) {
869 		pgtable = pte_alloc_one(vma->vm_mm);
870 		if (!pgtable)
871 			return VM_FAULT_OOM;
872 	}
873 
874 	track_pfn_insert(vma, &pgprot, pfn);
875 
876 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
877 	return VM_FAULT_NOPAGE;
878 }
879 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
880 
881 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
882 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
883 {
884 	if (likely(vma->vm_flags & VM_WRITE))
885 		pud = pud_mkwrite(pud);
886 	return pud;
887 }
888 
889 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
890 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
891 {
892 	struct mm_struct *mm = vma->vm_mm;
893 	pud_t entry;
894 	spinlock_t *ptl;
895 
896 	ptl = pud_lock(mm, pud);
897 	if (!pud_none(*pud)) {
898 		if (write) {
899 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
900 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
901 				goto out_unlock;
902 			}
903 			entry = pud_mkyoung(*pud);
904 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
905 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
906 				update_mmu_cache_pud(vma, addr, pud);
907 		}
908 		goto out_unlock;
909 	}
910 
911 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
912 	if (pfn_t_devmap(pfn))
913 		entry = pud_mkdevmap(entry);
914 	if (write) {
915 		entry = pud_mkyoung(pud_mkdirty(entry));
916 		entry = maybe_pud_mkwrite(entry, vma);
917 	}
918 	set_pud_at(mm, addr, pud, entry);
919 	update_mmu_cache_pud(vma, addr, pud);
920 
921 out_unlock:
922 	spin_unlock(ptl);
923 }
924 
925 /**
926  * vmf_insert_pfn_pud_prot - insert a pud size pfn
927  * @vmf: Structure describing the fault
928  * @pfn: pfn to insert
929  * @pgprot: page protection to use
930  * @write: whether it's a write fault
931  *
932  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
933  * also consult the vmf_insert_mixed_prot() documentation when
934  * @pgprot != @vmf->vma->vm_page_prot.
935  *
936  * Return: vm_fault_t value.
937  */
938 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
939 				   pgprot_t pgprot, bool write)
940 {
941 	unsigned long addr = vmf->address & PUD_MASK;
942 	struct vm_area_struct *vma = vmf->vma;
943 
944 	/*
945 	 * If we had pud_special, we could avoid all these restrictions,
946 	 * but we need to be consistent with PTEs and architectures that
947 	 * can't support a 'special' bit.
948 	 */
949 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
950 			!pfn_t_devmap(pfn));
951 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
952 						(VM_PFNMAP|VM_MIXEDMAP));
953 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
954 
955 	if (addr < vma->vm_start || addr >= vma->vm_end)
956 		return VM_FAULT_SIGBUS;
957 
958 	track_pfn_insert(vma, &pgprot, pfn);
959 
960 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
961 	return VM_FAULT_NOPAGE;
962 }
963 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
964 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
965 
966 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
967 		pmd_t *pmd, int flags)
968 {
969 	pmd_t _pmd;
970 
971 	_pmd = pmd_mkyoung(*pmd);
972 	if (flags & FOLL_WRITE)
973 		_pmd = pmd_mkdirty(_pmd);
974 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
975 				pmd, _pmd, flags & FOLL_WRITE))
976 		update_mmu_cache_pmd(vma, addr, pmd);
977 }
978 
979 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
980 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
981 {
982 	unsigned long pfn = pmd_pfn(*pmd);
983 	struct mm_struct *mm = vma->vm_mm;
984 	struct page *page;
985 
986 	assert_spin_locked(pmd_lockptr(mm, pmd));
987 
988 	/*
989 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
990 	 * not be in this function with `flags & FOLL_COW` set.
991 	 */
992 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
993 
994 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
995 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
996 			 (FOLL_PIN | FOLL_GET)))
997 		return NULL;
998 
999 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1000 		return NULL;
1001 
1002 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1003 		/* pass */;
1004 	else
1005 		return NULL;
1006 
1007 	if (flags & FOLL_TOUCH)
1008 		touch_pmd(vma, addr, pmd, flags);
1009 
1010 	/*
1011 	 * device mapped pages can only be returned if the
1012 	 * caller will manage the page reference count.
1013 	 */
1014 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1015 		return ERR_PTR(-EEXIST);
1016 
1017 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1018 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1019 	if (!*pgmap)
1020 		return ERR_PTR(-EFAULT);
1021 	page = pfn_to_page(pfn);
1022 	if (!try_grab_page(page, flags))
1023 		page = ERR_PTR(-ENOMEM);
1024 
1025 	return page;
1026 }
1027 
1028 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1030 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1031 {
1032 	spinlock_t *dst_ptl, *src_ptl;
1033 	struct page *src_page;
1034 	pmd_t pmd;
1035 	pgtable_t pgtable = NULL;
1036 	int ret = -ENOMEM;
1037 
1038 	/* Skip if can be re-fill on fault */
1039 	if (!vma_is_anonymous(dst_vma))
1040 		return 0;
1041 
1042 	pgtable = pte_alloc_one(dst_mm);
1043 	if (unlikely(!pgtable))
1044 		goto out;
1045 
1046 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1047 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1048 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 
1050 	ret = -EAGAIN;
1051 	pmd = *src_pmd;
1052 
1053 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1054 	if (unlikely(is_swap_pmd(pmd))) {
1055 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1056 
1057 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1058 		if (is_writable_migration_entry(entry)) {
1059 			entry = make_readable_migration_entry(
1060 							swp_offset(entry));
1061 			pmd = swp_entry_to_pmd(entry);
1062 			if (pmd_swp_soft_dirty(*src_pmd))
1063 				pmd = pmd_swp_mksoft_dirty(pmd);
1064 			if (pmd_swp_uffd_wp(*src_pmd))
1065 				pmd = pmd_swp_mkuffd_wp(pmd);
1066 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1067 		}
1068 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1069 		mm_inc_nr_ptes(dst_mm);
1070 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1071 		if (!userfaultfd_wp(dst_vma))
1072 			pmd = pmd_swp_clear_uffd_wp(pmd);
1073 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1074 		ret = 0;
1075 		goto out_unlock;
1076 	}
1077 #endif
1078 
1079 	if (unlikely(!pmd_trans_huge(pmd))) {
1080 		pte_free(dst_mm, pgtable);
1081 		goto out_unlock;
1082 	}
1083 	/*
1084 	 * When page table lock is held, the huge zero pmd should not be
1085 	 * under splitting since we don't split the page itself, only pmd to
1086 	 * a page table.
1087 	 */
1088 	if (is_huge_zero_pmd(pmd)) {
1089 		/*
1090 		 * get_huge_zero_page() will never allocate a new page here,
1091 		 * since we already have a zero page to copy. It just takes a
1092 		 * reference.
1093 		 */
1094 		mm_get_huge_zero_page(dst_mm);
1095 		goto out_zero_page;
1096 	}
1097 
1098 	src_page = pmd_page(pmd);
1099 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1100 
1101 	/*
1102 	 * If this page is a potentially pinned page, split and retry the fault
1103 	 * with smaller page size.  Normally this should not happen because the
1104 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1105 	 * best effort that the pinned pages won't be replaced by another
1106 	 * random page during the coming copy-on-write.
1107 	 */
1108 	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1109 		pte_free(dst_mm, pgtable);
1110 		spin_unlock(src_ptl);
1111 		spin_unlock(dst_ptl);
1112 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1113 		return -EAGAIN;
1114 	}
1115 
1116 	get_page(src_page);
1117 	page_dup_rmap(src_page, true);
1118 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1119 out_zero_page:
1120 	mm_inc_nr_ptes(dst_mm);
1121 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1122 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1123 	if (!userfaultfd_wp(dst_vma))
1124 		pmd = pmd_clear_uffd_wp(pmd);
1125 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1126 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1127 
1128 	ret = 0;
1129 out_unlock:
1130 	spin_unlock(src_ptl);
1131 	spin_unlock(dst_ptl);
1132 out:
1133 	return ret;
1134 }
1135 
1136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1137 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1138 		pud_t *pud, int flags)
1139 {
1140 	pud_t _pud;
1141 
1142 	_pud = pud_mkyoung(*pud);
1143 	if (flags & FOLL_WRITE)
1144 		_pud = pud_mkdirty(_pud);
1145 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1146 				pud, _pud, flags & FOLL_WRITE))
1147 		update_mmu_cache_pud(vma, addr, pud);
1148 }
1149 
1150 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1151 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1152 {
1153 	unsigned long pfn = pud_pfn(*pud);
1154 	struct mm_struct *mm = vma->vm_mm;
1155 	struct page *page;
1156 
1157 	assert_spin_locked(pud_lockptr(mm, pud));
1158 
1159 	if (flags & FOLL_WRITE && !pud_write(*pud))
1160 		return NULL;
1161 
1162 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1163 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1164 			 (FOLL_PIN | FOLL_GET)))
1165 		return NULL;
1166 
1167 	if (pud_present(*pud) && pud_devmap(*pud))
1168 		/* pass */;
1169 	else
1170 		return NULL;
1171 
1172 	if (flags & FOLL_TOUCH)
1173 		touch_pud(vma, addr, pud, flags);
1174 
1175 	/*
1176 	 * device mapped pages can only be returned if the
1177 	 * caller will manage the page reference count.
1178 	 *
1179 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1180 	 */
1181 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1182 		return ERR_PTR(-EEXIST);
1183 
1184 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1185 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1186 	if (!*pgmap)
1187 		return ERR_PTR(-EFAULT);
1188 	page = pfn_to_page(pfn);
1189 	if (!try_grab_page(page, flags))
1190 		page = ERR_PTR(-ENOMEM);
1191 
1192 	return page;
1193 }
1194 
1195 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1196 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1197 		  struct vm_area_struct *vma)
1198 {
1199 	spinlock_t *dst_ptl, *src_ptl;
1200 	pud_t pud;
1201 	int ret;
1202 
1203 	dst_ptl = pud_lock(dst_mm, dst_pud);
1204 	src_ptl = pud_lockptr(src_mm, src_pud);
1205 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1206 
1207 	ret = -EAGAIN;
1208 	pud = *src_pud;
1209 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1210 		goto out_unlock;
1211 
1212 	/*
1213 	 * When page table lock is held, the huge zero pud should not be
1214 	 * under splitting since we don't split the page itself, only pud to
1215 	 * a page table.
1216 	 */
1217 	if (is_huge_zero_pud(pud)) {
1218 		/* No huge zero pud yet */
1219 	}
1220 
1221 	/* Please refer to comments in copy_huge_pmd() */
1222 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1223 		spin_unlock(src_ptl);
1224 		spin_unlock(dst_ptl);
1225 		__split_huge_pud(vma, src_pud, addr);
1226 		return -EAGAIN;
1227 	}
1228 
1229 	pudp_set_wrprotect(src_mm, addr, src_pud);
1230 	pud = pud_mkold(pud_wrprotect(pud));
1231 	set_pud_at(dst_mm, addr, dst_pud, pud);
1232 
1233 	ret = 0;
1234 out_unlock:
1235 	spin_unlock(src_ptl);
1236 	spin_unlock(dst_ptl);
1237 	return ret;
1238 }
1239 
1240 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1241 {
1242 	pud_t entry;
1243 	unsigned long haddr;
1244 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1245 
1246 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1247 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1248 		goto unlock;
1249 
1250 	entry = pud_mkyoung(orig_pud);
1251 	if (write)
1252 		entry = pud_mkdirty(entry);
1253 	haddr = vmf->address & HPAGE_PUD_MASK;
1254 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1255 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1256 
1257 unlock:
1258 	spin_unlock(vmf->ptl);
1259 }
1260 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1261 
1262 void huge_pmd_set_accessed(struct vm_fault *vmf)
1263 {
1264 	pmd_t entry;
1265 	unsigned long haddr;
1266 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1267 	pmd_t orig_pmd = vmf->orig_pmd;
1268 
1269 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1270 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1271 		goto unlock;
1272 
1273 	entry = pmd_mkyoung(orig_pmd);
1274 	if (write)
1275 		entry = pmd_mkdirty(entry);
1276 	haddr = vmf->address & HPAGE_PMD_MASK;
1277 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1278 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1279 
1280 unlock:
1281 	spin_unlock(vmf->ptl);
1282 }
1283 
1284 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1285 {
1286 	struct vm_area_struct *vma = vmf->vma;
1287 	struct page *page;
1288 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1289 	pmd_t orig_pmd = vmf->orig_pmd;
1290 
1291 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1292 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1293 
1294 	if (is_huge_zero_pmd(orig_pmd))
1295 		goto fallback;
1296 
1297 	spin_lock(vmf->ptl);
1298 
1299 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1300 		spin_unlock(vmf->ptl);
1301 		return 0;
1302 	}
1303 
1304 	page = pmd_page(orig_pmd);
1305 	VM_BUG_ON_PAGE(!PageHead(page), page);
1306 
1307 	/* Lock page for reuse_swap_page() */
1308 	if (!trylock_page(page)) {
1309 		get_page(page);
1310 		spin_unlock(vmf->ptl);
1311 		lock_page(page);
1312 		spin_lock(vmf->ptl);
1313 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1314 			spin_unlock(vmf->ptl);
1315 			unlock_page(page);
1316 			put_page(page);
1317 			return 0;
1318 		}
1319 		put_page(page);
1320 	}
1321 
1322 	/*
1323 	 * We can only reuse the page if nobody else maps the huge page or it's
1324 	 * part.
1325 	 */
1326 	if (reuse_swap_page(page)) {
1327 		pmd_t entry;
1328 		entry = pmd_mkyoung(orig_pmd);
1329 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1330 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1331 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1332 		unlock_page(page);
1333 		spin_unlock(vmf->ptl);
1334 		return VM_FAULT_WRITE;
1335 	}
1336 
1337 	unlock_page(page);
1338 	spin_unlock(vmf->ptl);
1339 fallback:
1340 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1341 	return VM_FAULT_FALLBACK;
1342 }
1343 
1344 /*
1345  * FOLL_FORCE can write to even unwritable pmd's, but only
1346  * after we've gone through a COW cycle and they are dirty.
1347  */
1348 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1349 {
1350 	return pmd_write(pmd) ||
1351 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1352 }
1353 
1354 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1355 				   unsigned long addr,
1356 				   pmd_t *pmd,
1357 				   unsigned int flags)
1358 {
1359 	struct mm_struct *mm = vma->vm_mm;
1360 	struct page *page = NULL;
1361 
1362 	assert_spin_locked(pmd_lockptr(mm, pmd));
1363 
1364 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1365 		goto out;
1366 
1367 	/* Avoid dumping huge zero page */
1368 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1369 		return ERR_PTR(-EFAULT);
1370 
1371 	/* Full NUMA hinting faults to serialise migration in fault paths */
1372 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1373 		goto out;
1374 
1375 	page = pmd_page(*pmd);
1376 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1377 
1378 	if (!try_grab_page(page, flags))
1379 		return ERR_PTR(-ENOMEM);
1380 
1381 	if (flags & FOLL_TOUCH)
1382 		touch_pmd(vma, addr, pmd, flags);
1383 
1384 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1385 		/*
1386 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1387 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1388 		 *
1389 		 * For anon THP:
1390 		 *
1391 		 * In most cases the pmd is the only mapping of the page as we
1392 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1393 		 * writable private mappings in populate_vma_page_range().
1394 		 *
1395 		 * The only scenario when we have the page shared here is if we
1396 		 * mlocking read-only mapping shared over fork(). We skip
1397 		 * mlocking such pages.
1398 		 *
1399 		 * For file THP:
1400 		 *
1401 		 * We can expect PageDoubleMap() to be stable under page lock:
1402 		 * for file pages we set it in page_add_file_rmap(), which
1403 		 * requires page to be locked.
1404 		 */
1405 
1406 		if (PageAnon(page) && compound_mapcount(page) != 1)
1407 			goto skip_mlock;
1408 		if (PageDoubleMap(page) || !page->mapping)
1409 			goto skip_mlock;
1410 		if (!trylock_page(page))
1411 			goto skip_mlock;
1412 		if (page->mapping && !PageDoubleMap(page))
1413 			mlock_vma_page(page);
1414 		unlock_page(page);
1415 	}
1416 skip_mlock:
1417 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1418 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1419 
1420 out:
1421 	return page;
1422 }
1423 
1424 /* NUMA hinting page fault entry point for trans huge pmds */
1425 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1426 {
1427 	struct vm_area_struct *vma = vmf->vma;
1428 	pmd_t oldpmd = vmf->orig_pmd;
1429 	pmd_t pmd;
1430 	struct page *page;
1431 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1432 	int page_nid = NUMA_NO_NODE;
1433 	int target_nid, last_cpupid = -1;
1434 	bool migrated = false;
1435 	bool was_writable = pmd_savedwrite(oldpmd);
1436 	int flags = 0;
1437 
1438 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1439 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1440 		spin_unlock(vmf->ptl);
1441 		goto out;
1442 	}
1443 
1444 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1445 	page = vm_normal_page_pmd(vma, haddr, pmd);
1446 	if (!page)
1447 		goto out_map;
1448 
1449 	/* See similar comment in do_numa_page for explanation */
1450 	if (!was_writable)
1451 		flags |= TNF_NO_GROUP;
1452 
1453 	page_nid = page_to_nid(page);
1454 	last_cpupid = page_cpupid_last(page);
1455 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1456 				       &flags);
1457 
1458 	if (target_nid == NUMA_NO_NODE) {
1459 		put_page(page);
1460 		goto out_map;
1461 	}
1462 
1463 	spin_unlock(vmf->ptl);
1464 
1465 	migrated = migrate_misplaced_page(page, vma, target_nid);
1466 	if (migrated) {
1467 		flags |= TNF_MIGRATED;
1468 		page_nid = target_nid;
1469 	} else {
1470 		flags |= TNF_MIGRATE_FAIL;
1471 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1472 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1473 			spin_unlock(vmf->ptl);
1474 			goto out;
1475 		}
1476 		goto out_map;
1477 	}
1478 
1479 out:
1480 	if (page_nid != NUMA_NO_NODE)
1481 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1482 				flags);
1483 
1484 	return 0;
1485 
1486 out_map:
1487 	/* Restore the PMD */
1488 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1489 	pmd = pmd_mkyoung(pmd);
1490 	if (was_writable)
1491 		pmd = pmd_mkwrite(pmd);
1492 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1493 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1494 	spin_unlock(vmf->ptl);
1495 	goto out;
1496 }
1497 
1498 /*
1499  * Return true if we do MADV_FREE successfully on entire pmd page.
1500  * Otherwise, return false.
1501  */
1502 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1503 		pmd_t *pmd, unsigned long addr, unsigned long next)
1504 {
1505 	spinlock_t *ptl;
1506 	pmd_t orig_pmd;
1507 	struct page *page;
1508 	struct mm_struct *mm = tlb->mm;
1509 	bool ret = false;
1510 
1511 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1512 
1513 	ptl = pmd_trans_huge_lock(pmd, vma);
1514 	if (!ptl)
1515 		goto out_unlocked;
1516 
1517 	orig_pmd = *pmd;
1518 	if (is_huge_zero_pmd(orig_pmd))
1519 		goto out;
1520 
1521 	if (unlikely(!pmd_present(orig_pmd))) {
1522 		VM_BUG_ON(thp_migration_supported() &&
1523 				  !is_pmd_migration_entry(orig_pmd));
1524 		goto out;
1525 	}
1526 
1527 	page = pmd_page(orig_pmd);
1528 	/*
1529 	 * If other processes are mapping this page, we couldn't discard
1530 	 * the page unless they all do MADV_FREE so let's skip the page.
1531 	 */
1532 	if (total_mapcount(page) != 1)
1533 		goto out;
1534 
1535 	if (!trylock_page(page))
1536 		goto out;
1537 
1538 	/*
1539 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1540 	 * will deactivate only them.
1541 	 */
1542 	if (next - addr != HPAGE_PMD_SIZE) {
1543 		get_page(page);
1544 		spin_unlock(ptl);
1545 		split_huge_page(page);
1546 		unlock_page(page);
1547 		put_page(page);
1548 		goto out_unlocked;
1549 	}
1550 
1551 	if (PageDirty(page))
1552 		ClearPageDirty(page);
1553 	unlock_page(page);
1554 
1555 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1556 		pmdp_invalidate(vma, addr, pmd);
1557 		orig_pmd = pmd_mkold(orig_pmd);
1558 		orig_pmd = pmd_mkclean(orig_pmd);
1559 
1560 		set_pmd_at(mm, addr, pmd, orig_pmd);
1561 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1562 	}
1563 
1564 	mark_page_lazyfree(page);
1565 	ret = true;
1566 out:
1567 	spin_unlock(ptl);
1568 out_unlocked:
1569 	return ret;
1570 }
1571 
1572 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1573 {
1574 	pgtable_t pgtable;
1575 
1576 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1577 	pte_free(mm, pgtable);
1578 	mm_dec_nr_ptes(mm);
1579 }
1580 
1581 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1582 		 pmd_t *pmd, unsigned long addr)
1583 {
1584 	pmd_t orig_pmd;
1585 	spinlock_t *ptl;
1586 
1587 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1588 
1589 	ptl = __pmd_trans_huge_lock(pmd, vma);
1590 	if (!ptl)
1591 		return 0;
1592 	/*
1593 	 * For architectures like ppc64 we look at deposited pgtable
1594 	 * when calling pmdp_huge_get_and_clear. So do the
1595 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1596 	 * operations.
1597 	 */
1598 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1599 						tlb->fullmm);
1600 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1601 	if (vma_is_special_huge(vma)) {
1602 		if (arch_needs_pgtable_deposit())
1603 			zap_deposited_table(tlb->mm, pmd);
1604 		spin_unlock(ptl);
1605 	} else if (is_huge_zero_pmd(orig_pmd)) {
1606 		zap_deposited_table(tlb->mm, pmd);
1607 		spin_unlock(ptl);
1608 	} else {
1609 		struct page *page = NULL;
1610 		int flush_needed = 1;
1611 
1612 		if (pmd_present(orig_pmd)) {
1613 			page = pmd_page(orig_pmd);
1614 			page_remove_rmap(page, true);
1615 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1616 			VM_BUG_ON_PAGE(!PageHead(page), page);
1617 		} else if (thp_migration_supported()) {
1618 			swp_entry_t entry;
1619 
1620 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1621 			entry = pmd_to_swp_entry(orig_pmd);
1622 			page = pfn_swap_entry_to_page(entry);
1623 			flush_needed = 0;
1624 		} else
1625 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1626 
1627 		if (PageAnon(page)) {
1628 			zap_deposited_table(tlb->mm, pmd);
1629 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1630 		} else {
1631 			if (arch_needs_pgtable_deposit())
1632 				zap_deposited_table(tlb->mm, pmd);
1633 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1634 		}
1635 
1636 		spin_unlock(ptl);
1637 		if (flush_needed)
1638 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1639 	}
1640 	return 1;
1641 }
1642 
1643 #ifndef pmd_move_must_withdraw
1644 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1645 					 spinlock_t *old_pmd_ptl,
1646 					 struct vm_area_struct *vma)
1647 {
1648 	/*
1649 	 * With split pmd lock we also need to move preallocated
1650 	 * PTE page table if new_pmd is on different PMD page table.
1651 	 *
1652 	 * We also don't deposit and withdraw tables for file pages.
1653 	 */
1654 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1655 }
1656 #endif
1657 
1658 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1659 {
1660 #ifdef CONFIG_MEM_SOFT_DIRTY
1661 	if (unlikely(is_pmd_migration_entry(pmd)))
1662 		pmd = pmd_swp_mksoft_dirty(pmd);
1663 	else if (pmd_present(pmd))
1664 		pmd = pmd_mksoft_dirty(pmd);
1665 #endif
1666 	return pmd;
1667 }
1668 
1669 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1670 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1671 {
1672 	spinlock_t *old_ptl, *new_ptl;
1673 	pmd_t pmd;
1674 	struct mm_struct *mm = vma->vm_mm;
1675 	bool force_flush = false;
1676 
1677 	/*
1678 	 * The destination pmd shouldn't be established, free_pgtables()
1679 	 * should have release it.
1680 	 */
1681 	if (WARN_ON(!pmd_none(*new_pmd))) {
1682 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1683 		return false;
1684 	}
1685 
1686 	/*
1687 	 * We don't have to worry about the ordering of src and dst
1688 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1689 	 */
1690 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1691 	if (old_ptl) {
1692 		new_ptl = pmd_lockptr(mm, new_pmd);
1693 		if (new_ptl != old_ptl)
1694 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1695 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1696 		if (pmd_present(pmd))
1697 			force_flush = true;
1698 		VM_BUG_ON(!pmd_none(*new_pmd));
1699 
1700 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1701 			pgtable_t pgtable;
1702 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1703 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1704 		}
1705 		pmd = move_soft_dirty_pmd(pmd);
1706 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1707 		if (force_flush)
1708 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1709 		if (new_ptl != old_ptl)
1710 			spin_unlock(new_ptl);
1711 		spin_unlock(old_ptl);
1712 		return true;
1713 	}
1714 	return false;
1715 }
1716 
1717 /*
1718  * Returns
1719  *  - 0 if PMD could not be locked
1720  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1721  *      or if prot_numa but THP migration is not supported
1722  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1723  */
1724 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1725 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1726 {
1727 	struct mm_struct *mm = vma->vm_mm;
1728 	spinlock_t *ptl;
1729 	pmd_t entry;
1730 	bool preserve_write;
1731 	int ret;
1732 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1733 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1734 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1735 
1736 	if (prot_numa && !thp_migration_supported())
1737 		return 1;
1738 
1739 	ptl = __pmd_trans_huge_lock(pmd, vma);
1740 	if (!ptl)
1741 		return 0;
1742 
1743 	preserve_write = prot_numa && pmd_write(*pmd);
1744 	ret = 1;
1745 
1746 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1747 	if (is_swap_pmd(*pmd)) {
1748 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1749 
1750 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1751 		if (is_writable_migration_entry(entry)) {
1752 			pmd_t newpmd;
1753 			/*
1754 			 * A protection check is difficult so
1755 			 * just be safe and disable write
1756 			 */
1757 			entry = make_readable_migration_entry(
1758 							swp_offset(entry));
1759 			newpmd = swp_entry_to_pmd(entry);
1760 			if (pmd_swp_soft_dirty(*pmd))
1761 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1762 			if (pmd_swp_uffd_wp(*pmd))
1763 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1764 			set_pmd_at(mm, addr, pmd, newpmd);
1765 		}
1766 		goto unlock;
1767 	}
1768 #endif
1769 
1770 	if (prot_numa) {
1771 		struct page *page;
1772 		/*
1773 		 * Avoid trapping faults against the zero page. The read-only
1774 		 * data is likely to be read-cached on the local CPU and
1775 		 * local/remote hits to the zero page are not interesting.
1776 		 */
1777 		if (is_huge_zero_pmd(*pmd))
1778 			goto unlock;
1779 
1780 		if (pmd_protnone(*pmd))
1781 			goto unlock;
1782 
1783 		page = pmd_page(*pmd);
1784 		/*
1785 		 * Skip scanning top tier node if normal numa
1786 		 * balancing is disabled
1787 		 */
1788 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1789 		    node_is_toptier(page_to_nid(page)))
1790 			goto unlock;
1791 	}
1792 	/*
1793 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1794 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1795 	 * which is also under mmap_read_lock(mm):
1796 	 *
1797 	 *	CPU0:				CPU1:
1798 	 *				change_huge_pmd(prot_numa=1)
1799 	 *				 pmdp_huge_get_and_clear_notify()
1800 	 * madvise_dontneed()
1801 	 *  zap_pmd_range()
1802 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1803 	 *   // skip the pmd
1804 	 *				 set_pmd_at();
1805 	 *				 // pmd is re-established
1806 	 *
1807 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1808 	 * which may break userspace.
1809 	 *
1810 	 * pmdp_invalidate() is required to make sure we don't miss
1811 	 * dirty/young flags set by hardware.
1812 	 */
1813 	entry = pmdp_invalidate(vma, addr, pmd);
1814 
1815 	entry = pmd_modify(entry, newprot);
1816 	if (preserve_write)
1817 		entry = pmd_mk_savedwrite(entry);
1818 	if (uffd_wp) {
1819 		entry = pmd_wrprotect(entry);
1820 		entry = pmd_mkuffd_wp(entry);
1821 	} else if (uffd_wp_resolve) {
1822 		/*
1823 		 * Leave the write bit to be handled by PF interrupt
1824 		 * handler, then things like COW could be properly
1825 		 * handled.
1826 		 */
1827 		entry = pmd_clear_uffd_wp(entry);
1828 	}
1829 	ret = HPAGE_PMD_NR;
1830 	set_pmd_at(mm, addr, pmd, entry);
1831 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1832 unlock:
1833 	spin_unlock(ptl);
1834 	return ret;
1835 }
1836 
1837 /*
1838  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1839  *
1840  * Note that if it returns page table lock pointer, this routine returns without
1841  * unlocking page table lock. So callers must unlock it.
1842  */
1843 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1844 {
1845 	spinlock_t *ptl;
1846 	ptl = pmd_lock(vma->vm_mm, pmd);
1847 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1848 			pmd_devmap(*pmd)))
1849 		return ptl;
1850 	spin_unlock(ptl);
1851 	return NULL;
1852 }
1853 
1854 /*
1855  * Returns true if a given pud maps a thp, false otherwise.
1856  *
1857  * Note that if it returns true, this routine returns without unlocking page
1858  * table lock. So callers must unlock it.
1859  */
1860 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1861 {
1862 	spinlock_t *ptl;
1863 
1864 	ptl = pud_lock(vma->vm_mm, pud);
1865 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1866 		return ptl;
1867 	spin_unlock(ptl);
1868 	return NULL;
1869 }
1870 
1871 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1872 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1873 		 pud_t *pud, unsigned long addr)
1874 {
1875 	spinlock_t *ptl;
1876 
1877 	ptl = __pud_trans_huge_lock(pud, vma);
1878 	if (!ptl)
1879 		return 0;
1880 	/*
1881 	 * For architectures like ppc64 we look at deposited pgtable
1882 	 * when calling pudp_huge_get_and_clear. So do the
1883 	 * pgtable_trans_huge_withdraw after finishing pudp related
1884 	 * operations.
1885 	 */
1886 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1887 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1888 	if (vma_is_special_huge(vma)) {
1889 		spin_unlock(ptl);
1890 		/* No zero page support yet */
1891 	} else {
1892 		/* No support for anonymous PUD pages yet */
1893 		BUG();
1894 	}
1895 	return 1;
1896 }
1897 
1898 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1899 		unsigned long haddr)
1900 {
1901 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1902 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1903 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1904 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1905 
1906 	count_vm_event(THP_SPLIT_PUD);
1907 
1908 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1909 }
1910 
1911 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1912 		unsigned long address)
1913 {
1914 	spinlock_t *ptl;
1915 	struct mmu_notifier_range range;
1916 
1917 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1918 				address & HPAGE_PUD_MASK,
1919 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1920 	mmu_notifier_invalidate_range_start(&range);
1921 	ptl = pud_lock(vma->vm_mm, pud);
1922 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1923 		goto out;
1924 	__split_huge_pud_locked(vma, pud, range.start);
1925 
1926 out:
1927 	spin_unlock(ptl);
1928 	/*
1929 	 * No need to double call mmu_notifier->invalidate_range() callback as
1930 	 * the above pudp_huge_clear_flush_notify() did already call it.
1931 	 */
1932 	mmu_notifier_invalidate_range_only_end(&range);
1933 }
1934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1935 
1936 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1937 		unsigned long haddr, pmd_t *pmd)
1938 {
1939 	struct mm_struct *mm = vma->vm_mm;
1940 	pgtable_t pgtable;
1941 	pmd_t _pmd;
1942 	int i;
1943 
1944 	/*
1945 	 * Leave pmd empty until pte is filled note that it is fine to delay
1946 	 * notification until mmu_notifier_invalidate_range_end() as we are
1947 	 * replacing a zero pmd write protected page with a zero pte write
1948 	 * protected page.
1949 	 *
1950 	 * See Documentation/vm/mmu_notifier.rst
1951 	 */
1952 	pmdp_huge_clear_flush(vma, haddr, pmd);
1953 
1954 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1955 	pmd_populate(mm, &_pmd, pgtable);
1956 
1957 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1958 		pte_t *pte, entry;
1959 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1960 		entry = pte_mkspecial(entry);
1961 		pte = pte_offset_map(&_pmd, haddr);
1962 		VM_BUG_ON(!pte_none(*pte));
1963 		set_pte_at(mm, haddr, pte, entry);
1964 		pte_unmap(pte);
1965 	}
1966 	smp_wmb(); /* make pte visible before pmd */
1967 	pmd_populate(mm, pmd, pgtable);
1968 }
1969 
1970 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1971 		unsigned long haddr, bool freeze)
1972 {
1973 	struct mm_struct *mm = vma->vm_mm;
1974 	struct page *page;
1975 	pgtable_t pgtable;
1976 	pmd_t old_pmd, _pmd;
1977 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1978 	unsigned long addr;
1979 	int i;
1980 
1981 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1982 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1983 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1984 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1985 				&& !pmd_devmap(*pmd));
1986 
1987 	count_vm_event(THP_SPLIT_PMD);
1988 
1989 	if (!vma_is_anonymous(vma)) {
1990 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1991 		/*
1992 		 * We are going to unmap this huge page. So
1993 		 * just go ahead and zap it
1994 		 */
1995 		if (arch_needs_pgtable_deposit())
1996 			zap_deposited_table(mm, pmd);
1997 		if (vma_is_special_huge(vma))
1998 			return;
1999 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2000 			swp_entry_t entry;
2001 
2002 			entry = pmd_to_swp_entry(old_pmd);
2003 			page = pfn_swap_entry_to_page(entry);
2004 		} else {
2005 			page = pmd_page(old_pmd);
2006 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2007 				set_page_dirty(page);
2008 			if (!PageReferenced(page) && pmd_young(old_pmd))
2009 				SetPageReferenced(page);
2010 			page_remove_rmap(page, true);
2011 			put_page(page);
2012 		}
2013 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2014 		return;
2015 	}
2016 
2017 	if (is_huge_zero_pmd(*pmd)) {
2018 		/*
2019 		 * FIXME: Do we want to invalidate secondary mmu by calling
2020 		 * mmu_notifier_invalidate_range() see comments below inside
2021 		 * __split_huge_pmd() ?
2022 		 *
2023 		 * We are going from a zero huge page write protected to zero
2024 		 * small page also write protected so it does not seems useful
2025 		 * to invalidate secondary mmu at this time.
2026 		 */
2027 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2028 	}
2029 
2030 	/*
2031 	 * Up to this point the pmd is present and huge and userland has the
2032 	 * whole access to the hugepage during the split (which happens in
2033 	 * place). If we overwrite the pmd with the not-huge version pointing
2034 	 * to the pte here (which of course we could if all CPUs were bug
2035 	 * free), userland could trigger a small page size TLB miss on the
2036 	 * small sized TLB while the hugepage TLB entry is still established in
2037 	 * the huge TLB. Some CPU doesn't like that.
2038 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2039 	 * 383 on page 105. Intel should be safe but is also warns that it's
2040 	 * only safe if the permission and cache attributes of the two entries
2041 	 * loaded in the two TLB is identical (which should be the case here).
2042 	 * But it is generally safer to never allow small and huge TLB entries
2043 	 * for the same virtual address to be loaded simultaneously. So instead
2044 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2045 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2046 	 * must remain set at all times on the pmd until the split is complete
2047 	 * for this pmd), then we flush the SMP TLB and finally we write the
2048 	 * non-huge version of the pmd entry with pmd_populate.
2049 	 */
2050 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2051 
2052 	pmd_migration = is_pmd_migration_entry(old_pmd);
2053 	if (unlikely(pmd_migration)) {
2054 		swp_entry_t entry;
2055 
2056 		entry = pmd_to_swp_entry(old_pmd);
2057 		page = pfn_swap_entry_to_page(entry);
2058 		write = is_writable_migration_entry(entry);
2059 		young = false;
2060 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2061 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2062 	} else {
2063 		page = pmd_page(old_pmd);
2064 		if (pmd_dirty(old_pmd))
2065 			SetPageDirty(page);
2066 		write = pmd_write(old_pmd);
2067 		young = pmd_young(old_pmd);
2068 		soft_dirty = pmd_soft_dirty(old_pmd);
2069 		uffd_wp = pmd_uffd_wp(old_pmd);
2070 		VM_BUG_ON_PAGE(!page_count(page), page);
2071 		page_ref_add(page, HPAGE_PMD_NR - 1);
2072 	}
2073 
2074 	/*
2075 	 * Withdraw the table only after we mark the pmd entry invalid.
2076 	 * This's critical for some architectures (Power).
2077 	 */
2078 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2079 	pmd_populate(mm, &_pmd, pgtable);
2080 
2081 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2082 		pte_t entry, *pte;
2083 		/*
2084 		 * Note that NUMA hinting access restrictions are not
2085 		 * transferred to avoid any possibility of altering
2086 		 * permissions across VMAs.
2087 		 */
2088 		if (freeze || pmd_migration) {
2089 			swp_entry_t swp_entry;
2090 			if (write)
2091 				swp_entry = make_writable_migration_entry(
2092 							page_to_pfn(page + i));
2093 			else
2094 				swp_entry = make_readable_migration_entry(
2095 							page_to_pfn(page + i));
2096 			entry = swp_entry_to_pte(swp_entry);
2097 			if (soft_dirty)
2098 				entry = pte_swp_mksoft_dirty(entry);
2099 			if (uffd_wp)
2100 				entry = pte_swp_mkuffd_wp(entry);
2101 		} else {
2102 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2103 			entry = maybe_mkwrite(entry, vma);
2104 			if (!write)
2105 				entry = pte_wrprotect(entry);
2106 			if (!young)
2107 				entry = pte_mkold(entry);
2108 			if (soft_dirty)
2109 				entry = pte_mksoft_dirty(entry);
2110 			if (uffd_wp)
2111 				entry = pte_mkuffd_wp(entry);
2112 		}
2113 		pte = pte_offset_map(&_pmd, addr);
2114 		BUG_ON(!pte_none(*pte));
2115 		set_pte_at(mm, addr, pte, entry);
2116 		if (!pmd_migration)
2117 			atomic_inc(&page[i]._mapcount);
2118 		pte_unmap(pte);
2119 	}
2120 
2121 	if (!pmd_migration) {
2122 		/*
2123 		 * Set PG_double_map before dropping compound_mapcount to avoid
2124 		 * false-negative page_mapped().
2125 		 */
2126 		if (compound_mapcount(page) > 1 &&
2127 		    !TestSetPageDoubleMap(page)) {
2128 			for (i = 0; i < HPAGE_PMD_NR; i++)
2129 				atomic_inc(&page[i]._mapcount);
2130 		}
2131 
2132 		lock_page_memcg(page);
2133 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2134 			/* Last compound_mapcount is gone. */
2135 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2136 						-HPAGE_PMD_NR);
2137 			if (TestClearPageDoubleMap(page)) {
2138 				/* No need in mapcount reference anymore */
2139 				for (i = 0; i < HPAGE_PMD_NR; i++)
2140 					atomic_dec(&page[i]._mapcount);
2141 			}
2142 		}
2143 		unlock_page_memcg(page);
2144 	}
2145 
2146 	smp_wmb(); /* make pte visible before pmd */
2147 	pmd_populate(mm, pmd, pgtable);
2148 
2149 	if (freeze) {
2150 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2151 			page_remove_rmap(page + i, false);
2152 			put_page(page + i);
2153 		}
2154 	}
2155 }
2156 
2157 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2158 		unsigned long address, bool freeze, struct page *page)
2159 {
2160 	spinlock_t *ptl;
2161 	struct mmu_notifier_range range;
2162 	bool do_unlock_page = false;
2163 	pmd_t _pmd;
2164 
2165 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2166 				address & HPAGE_PMD_MASK,
2167 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2168 	mmu_notifier_invalidate_range_start(&range);
2169 	ptl = pmd_lock(vma->vm_mm, pmd);
2170 
2171 	/*
2172 	 * If caller asks to setup a migration entries, we need a page to check
2173 	 * pmd against. Otherwise we can end up replacing wrong page.
2174 	 */
2175 	VM_BUG_ON(freeze && !page);
2176 	if (page) {
2177 		VM_WARN_ON_ONCE(!PageLocked(page));
2178 		if (page != pmd_page(*pmd))
2179 			goto out;
2180 	}
2181 
2182 repeat:
2183 	if (pmd_trans_huge(*pmd)) {
2184 		if (!page) {
2185 			page = pmd_page(*pmd);
2186 			/*
2187 			 * An anonymous page must be locked, to ensure that a
2188 			 * concurrent reuse_swap_page() sees stable mapcount;
2189 			 * but reuse_swap_page() is not used on shmem or file,
2190 			 * and page lock must not be taken when zap_pmd_range()
2191 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2192 			 */
2193 			if (PageAnon(page)) {
2194 				if (unlikely(!trylock_page(page))) {
2195 					get_page(page);
2196 					_pmd = *pmd;
2197 					spin_unlock(ptl);
2198 					lock_page(page);
2199 					spin_lock(ptl);
2200 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2201 						unlock_page(page);
2202 						put_page(page);
2203 						page = NULL;
2204 						goto repeat;
2205 					}
2206 					put_page(page);
2207 				}
2208 				do_unlock_page = true;
2209 			}
2210 		}
2211 		if (PageMlocked(page))
2212 			clear_page_mlock(page);
2213 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2214 		goto out;
2215 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2216 out:
2217 	spin_unlock(ptl);
2218 	if (do_unlock_page)
2219 		unlock_page(page);
2220 	/*
2221 	 * No need to double call mmu_notifier->invalidate_range() callback.
2222 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2223 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2224 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2225 	 *    fault will trigger a flush_notify before pointing to a new page
2226 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2227 	 *    page in the meantime)
2228 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2229 	 *     to invalidate secondary tlb entry they are all still valid.
2230 	 *     any further changes to individual pte will notify. So no need
2231 	 *     to call mmu_notifier->invalidate_range()
2232 	 */
2233 	mmu_notifier_invalidate_range_only_end(&range);
2234 }
2235 
2236 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2237 		bool freeze, struct page *page)
2238 {
2239 	pgd_t *pgd;
2240 	p4d_t *p4d;
2241 	pud_t *pud;
2242 	pmd_t *pmd;
2243 
2244 	pgd = pgd_offset(vma->vm_mm, address);
2245 	if (!pgd_present(*pgd))
2246 		return;
2247 
2248 	p4d = p4d_offset(pgd, address);
2249 	if (!p4d_present(*p4d))
2250 		return;
2251 
2252 	pud = pud_offset(p4d, address);
2253 	if (!pud_present(*pud))
2254 		return;
2255 
2256 	pmd = pmd_offset(pud, address);
2257 
2258 	__split_huge_pmd(vma, pmd, address, freeze, page);
2259 }
2260 
2261 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2262 {
2263 	/*
2264 	 * If the new address isn't hpage aligned and it could previously
2265 	 * contain an hugepage: check if we need to split an huge pmd.
2266 	 */
2267 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2268 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2269 			 ALIGN(address, HPAGE_PMD_SIZE)))
2270 		split_huge_pmd_address(vma, address, false, NULL);
2271 }
2272 
2273 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2274 			     unsigned long start,
2275 			     unsigned long end,
2276 			     long adjust_next)
2277 {
2278 	/* Check if we need to split start first. */
2279 	split_huge_pmd_if_needed(vma, start);
2280 
2281 	/* Check if we need to split end next. */
2282 	split_huge_pmd_if_needed(vma, end);
2283 
2284 	/*
2285 	 * If we're also updating the vma->vm_next->vm_start,
2286 	 * check if we need to split it.
2287 	 */
2288 	if (adjust_next > 0) {
2289 		struct vm_area_struct *next = vma->vm_next;
2290 		unsigned long nstart = next->vm_start;
2291 		nstart += adjust_next;
2292 		split_huge_pmd_if_needed(next, nstart);
2293 	}
2294 }
2295 
2296 static void unmap_page(struct page *page)
2297 {
2298 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2299 		TTU_SYNC;
2300 
2301 	VM_BUG_ON_PAGE(!PageHead(page), page);
2302 
2303 	/*
2304 	 * Anon pages need migration entries to preserve them, but file
2305 	 * pages can simply be left unmapped, then faulted back on demand.
2306 	 * If that is ever changed (perhaps for mlock), update remap_page().
2307 	 */
2308 	if (PageAnon(page))
2309 		try_to_migrate(page, ttu_flags);
2310 	else
2311 		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2312 
2313 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2314 }
2315 
2316 static void remap_page(struct page *page, unsigned int nr)
2317 {
2318 	int i;
2319 
2320 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2321 	if (!PageAnon(page))
2322 		return;
2323 	if (PageTransHuge(page)) {
2324 		remove_migration_ptes(page, page, true);
2325 	} else {
2326 		for (i = 0; i < nr; i++)
2327 			remove_migration_ptes(page + i, page + i, true);
2328 	}
2329 }
2330 
2331 static void lru_add_page_tail(struct page *head, struct page *tail,
2332 		struct lruvec *lruvec, struct list_head *list)
2333 {
2334 	VM_BUG_ON_PAGE(!PageHead(head), head);
2335 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2336 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2337 	lockdep_assert_held(&lruvec->lru_lock);
2338 
2339 	if (list) {
2340 		/* page reclaim is reclaiming a huge page */
2341 		VM_WARN_ON(PageLRU(head));
2342 		get_page(tail);
2343 		list_add_tail(&tail->lru, list);
2344 	} else {
2345 		/* head is still on lru (and we have it frozen) */
2346 		VM_WARN_ON(!PageLRU(head));
2347 		SetPageLRU(tail);
2348 		list_add_tail(&tail->lru, &head->lru);
2349 	}
2350 }
2351 
2352 static void __split_huge_page_tail(struct page *head, int tail,
2353 		struct lruvec *lruvec, struct list_head *list)
2354 {
2355 	struct page *page_tail = head + tail;
2356 
2357 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358 
2359 	/*
2360 	 * Clone page flags before unfreezing refcount.
2361 	 *
2362 	 * After successful get_page_unless_zero() might follow flags change,
2363 	 * for example lock_page() which set PG_waiters.
2364 	 */
2365 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366 	page_tail->flags |= (head->flags &
2367 			((1L << PG_referenced) |
2368 			 (1L << PG_swapbacked) |
2369 			 (1L << PG_swapcache) |
2370 			 (1L << PG_mlocked) |
2371 			 (1L << PG_uptodate) |
2372 			 (1L << PG_active) |
2373 			 (1L << PG_workingset) |
2374 			 (1L << PG_locked) |
2375 			 (1L << PG_unevictable) |
2376 #ifdef CONFIG_64BIT
2377 			 (1L << PG_arch_2) |
2378 #endif
2379 			 (1L << PG_dirty)));
2380 
2381 	/* ->mapping in first tail page is compound_mapcount */
2382 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2383 			page_tail);
2384 	page_tail->mapping = head->mapping;
2385 	page_tail->index = head->index + tail;
2386 
2387 	/* Page flags must be visible before we make the page non-compound. */
2388 	smp_wmb();
2389 
2390 	/*
2391 	 * Clear PageTail before unfreezing page refcount.
2392 	 *
2393 	 * After successful get_page_unless_zero() might follow put_page()
2394 	 * which needs correct compound_head().
2395 	 */
2396 	clear_compound_head(page_tail);
2397 
2398 	/* Finally unfreeze refcount. Additional reference from page cache. */
2399 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2400 					  PageSwapCache(head)));
2401 
2402 	if (page_is_young(head))
2403 		set_page_young(page_tail);
2404 	if (page_is_idle(head))
2405 		set_page_idle(page_tail);
2406 
2407 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2408 
2409 	/*
2410 	 * always add to the tail because some iterators expect new
2411 	 * pages to show after the currently processed elements - e.g.
2412 	 * migrate_pages
2413 	 */
2414 	lru_add_page_tail(head, page_tail, lruvec, list);
2415 }
2416 
2417 static void __split_huge_page(struct page *page, struct list_head *list,
2418 		pgoff_t end)
2419 {
2420 	struct folio *folio = page_folio(page);
2421 	struct page *head = &folio->page;
2422 	struct lruvec *lruvec;
2423 	struct address_space *swap_cache = NULL;
2424 	unsigned long offset = 0;
2425 	unsigned int nr = thp_nr_pages(head);
2426 	int i;
2427 
2428 	/* complete memcg works before add pages to LRU */
2429 	split_page_memcg(head, nr);
2430 
2431 	if (PageAnon(head) && PageSwapCache(head)) {
2432 		swp_entry_t entry = { .val = page_private(head) };
2433 
2434 		offset = swp_offset(entry);
2435 		swap_cache = swap_address_space(entry);
2436 		xa_lock(&swap_cache->i_pages);
2437 	}
2438 
2439 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2440 	lruvec = folio_lruvec_lock(folio);
2441 
2442 	ClearPageHasHWPoisoned(head);
2443 
2444 	for (i = nr - 1; i >= 1; i--) {
2445 		__split_huge_page_tail(head, i, lruvec, list);
2446 		/* Some pages can be beyond EOF: drop them from page cache */
2447 		if (head[i].index >= end) {
2448 			ClearPageDirty(head + i);
2449 			__delete_from_page_cache(head + i, NULL);
2450 			if (shmem_mapping(head->mapping))
2451 				shmem_uncharge(head->mapping->host, 1);
2452 			put_page(head + i);
2453 		} else if (!PageAnon(page)) {
2454 			__xa_store(&head->mapping->i_pages, head[i].index,
2455 					head + i, 0);
2456 		} else if (swap_cache) {
2457 			__xa_store(&swap_cache->i_pages, offset + i,
2458 					head + i, 0);
2459 		}
2460 	}
2461 
2462 	ClearPageCompound(head);
2463 	unlock_page_lruvec(lruvec);
2464 	/* Caller disabled irqs, so they are still disabled here */
2465 
2466 	split_page_owner(head, nr);
2467 
2468 	/* See comment in __split_huge_page_tail() */
2469 	if (PageAnon(head)) {
2470 		/* Additional pin to swap cache */
2471 		if (PageSwapCache(head)) {
2472 			page_ref_add(head, 2);
2473 			xa_unlock(&swap_cache->i_pages);
2474 		} else {
2475 			page_ref_inc(head);
2476 		}
2477 	} else {
2478 		/* Additional pin to page cache */
2479 		page_ref_add(head, 2);
2480 		xa_unlock(&head->mapping->i_pages);
2481 	}
2482 	local_irq_enable();
2483 
2484 	remap_page(head, nr);
2485 
2486 	if (PageSwapCache(head)) {
2487 		swp_entry_t entry = { .val = page_private(head) };
2488 
2489 		split_swap_cluster(entry);
2490 	}
2491 
2492 	for (i = 0; i < nr; i++) {
2493 		struct page *subpage = head + i;
2494 		if (subpage == page)
2495 			continue;
2496 		unlock_page(subpage);
2497 
2498 		/*
2499 		 * Subpages may be freed if there wasn't any mapping
2500 		 * like if add_to_swap() is running on a lru page that
2501 		 * had its mapping zapped. And freeing these pages
2502 		 * requires taking the lru_lock so we do the put_page
2503 		 * of the tail pages after the split is complete.
2504 		 */
2505 		put_page(subpage);
2506 	}
2507 }
2508 
2509 int total_mapcount(struct page *page)
2510 {
2511 	int i, compound, nr, ret;
2512 
2513 	VM_BUG_ON_PAGE(PageTail(page), page);
2514 
2515 	if (likely(!PageCompound(page)))
2516 		return atomic_read(&page->_mapcount) + 1;
2517 
2518 	compound = compound_mapcount(page);
2519 	nr = compound_nr(page);
2520 	if (PageHuge(page))
2521 		return compound;
2522 	ret = compound;
2523 	for (i = 0; i < nr; i++)
2524 		ret += atomic_read(&page[i]._mapcount) + 1;
2525 	/* File pages has compound_mapcount included in _mapcount */
2526 	if (!PageAnon(page))
2527 		return ret - compound * nr;
2528 	if (PageDoubleMap(page))
2529 		ret -= nr;
2530 	return ret;
2531 }
2532 
2533 /*
2534  * This calculates accurately how many mappings a transparent hugepage
2535  * has (unlike page_mapcount() which isn't fully accurate). This full
2536  * accuracy is primarily needed to know if copy-on-write faults can
2537  * reuse the page and change the mapping to read-write instead of
2538  * copying them. At the same time this returns the total_mapcount too.
2539  *
2540  * The function returns the highest mapcount any one of the subpages
2541  * has. If the return value is one, even if different processes are
2542  * mapping different subpages of the transparent hugepage, they can
2543  * all reuse it, because each process is reusing a different subpage.
2544  *
2545  * The total_mapcount is instead counting all virtual mappings of the
2546  * subpages. If the total_mapcount is equal to "one", it tells the
2547  * caller all mappings belong to the same "mm" and in turn the
2548  * anon_vma of the transparent hugepage can become the vma->anon_vma
2549  * local one as no other process may be mapping any of the subpages.
2550  *
2551  * It would be more accurate to replace page_mapcount() with
2552  * page_trans_huge_mapcount(), however we only use
2553  * page_trans_huge_mapcount() in the copy-on-write faults where we
2554  * need full accuracy to avoid breaking page pinning, because
2555  * page_trans_huge_mapcount() is slower than page_mapcount().
2556  */
2557 int page_trans_huge_mapcount(struct page *page)
2558 {
2559 	int i, ret;
2560 
2561 	/* hugetlbfs shouldn't call it */
2562 	VM_BUG_ON_PAGE(PageHuge(page), page);
2563 
2564 	if (likely(!PageTransCompound(page)))
2565 		return atomic_read(&page->_mapcount) + 1;
2566 
2567 	page = compound_head(page);
2568 
2569 	ret = 0;
2570 	for (i = 0; i < thp_nr_pages(page); i++) {
2571 		int mapcount = atomic_read(&page[i]._mapcount) + 1;
2572 		ret = max(ret, mapcount);
2573 	}
2574 
2575 	if (PageDoubleMap(page))
2576 		ret -= 1;
2577 
2578 	return ret + compound_mapcount(page);
2579 }
2580 
2581 /* Racy check whether the huge page can be split */
2582 bool can_split_huge_page(struct page *page, int *pextra_pins)
2583 {
2584 	int extra_pins;
2585 
2586 	/* Additional pins from page cache */
2587 	if (PageAnon(page))
2588 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2589 	else
2590 		extra_pins = thp_nr_pages(page);
2591 	if (pextra_pins)
2592 		*pextra_pins = extra_pins;
2593 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2594 }
2595 
2596 /*
2597  * This function splits huge page into normal pages. @page can point to any
2598  * subpage of huge page to split. Split doesn't change the position of @page.
2599  *
2600  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2601  * The huge page must be locked.
2602  *
2603  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2604  *
2605  * Both head page and tail pages will inherit mapping, flags, and so on from
2606  * the hugepage.
2607  *
2608  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2609  * they are not mapped.
2610  *
2611  * Returns 0 if the hugepage is split successfully.
2612  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2613  * us.
2614  */
2615 int split_huge_page_to_list(struct page *page, struct list_head *list)
2616 {
2617 	struct page *head = compound_head(page);
2618 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2619 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2620 	struct anon_vma *anon_vma = NULL;
2621 	struct address_space *mapping = NULL;
2622 	int extra_pins, ret;
2623 	pgoff_t end;
2624 
2625 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2626 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2627 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2628 
2629 	if (PageWriteback(head))
2630 		return -EBUSY;
2631 
2632 	if (PageAnon(head)) {
2633 		/*
2634 		 * The caller does not necessarily hold an mmap_lock that would
2635 		 * prevent the anon_vma disappearing so we first we take a
2636 		 * reference to it and then lock the anon_vma for write. This
2637 		 * is similar to page_lock_anon_vma_read except the write lock
2638 		 * is taken to serialise against parallel split or collapse
2639 		 * operations.
2640 		 */
2641 		anon_vma = page_get_anon_vma(head);
2642 		if (!anon_vma) {
2643 			ret = -EBUSY;
2644 			goto out;
2645 		}
2646 		end = -1;
2647 		mapping = NULL;
2648 		anon_vma_lock_write(anon_vma);
2649 	} else {
2650 		mapping = head->mapping;
2651 
2652 		/* Truncated ? */
2653 		if (!mapping) {
2654 			ret = -EBUSY;
2655 			goto out;
2656 		}
2657 
2658 		xas_split_alloc(&xas, head, compound_order(head),
2659 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2660 		if (xas_error(&xas)) {
2661 			ret = xas_error(&xas);
2662 			goto out;
2663 		}
2664 
2665 		anon_vma = NULL;
2666 		i_mmap_lock_read(mapping);
2667 
2668 		/*
2669 		 *__split_huge_page() may need to trim off pages beyond EOF:
2670 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2671 		 * which cannot be nested inside the page tree lock. So note
2672 		 * end now: i_size itself may be changed at any moment, but
2673 		 * head page lock is good enough to serialize the trimming.
2674 		 */
2675 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2676 		if (shmem_mapping(mapping))
2677 			end = shmem_fallocend(mapping->host, end);
2678 	}
2679 
2680 	/*
2681 	 * Racy check if we can split the page, before unmap_page() will
2682 	 * split PMDs
2683 	 */
2684 	if (!can_split_huge_page(head, &extra_pins)) {
2685 		ret = -EBUSY;
2686 		goto out_unlock;
2687 	}
2688 
2689 	unmap_page(head);
2690 
2691 	/* block interrupt reentry in xa_lock and spinlock */
2692 	local_irq_disable();
2693 	if (mapping) {
2694 		/*
2695 		 * Check if the head page is present in page cache.
2696 		 * We assume all tail are present too, if head is there.
2697 		 */
2698 		xas_lock(&xas);
2699 		xas_reset(&xas);
2700 		if (xas_load(&xas) != head)
2701 			goto fail;
2702 	}
2703 
2704 	/* Prevent deferred_split_scan() touching ->_refcount */
2705 	spin_lock(&ds_queue->split_queue_lock);
2706 	if (page_ref_freeze(head, 1 + extra_pins)) {
2707 		if (!list_empty(page_deferred_list(head))) {
2708 			ds_queue->split_queue_len--;
2709 			list_del(page_deferred_list(head));
2710 		}
2711 		spin_unlock(&ds_queue->split_queue_lock);
2712 		if (mapping) {
2713 			int nr = thp_nr_pages(head);
2714 
2715 			xas_split(&xas, head, thp_order(head));
2716 			if (PageSwapBacked(head)) {
2717 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2718 							-nr);
2719 			} else {
2720 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2721 							-nr);
2722 				filemap_nr_thps_dec(mapping);
2723 			}
2724 		}
2725 
2726 		__split_huge_page(page, list, end);
2727 		ret = 0;
2728 	} else {
2729 		spin_unlock(&ds_queue->split_queue_lock);
2730 fail:
2731 		if (mapping)
2732 			xas_unlock(&xas);
2733 		local_irq_enable();
2734 		remap_page(head, thp_nr_pages(head));
2735 		ret = -EBUSY;
2736 	}
2737 
2738 out_unlock:
2739 	if (anon_vma) {
2740 		anon_vma_unlock_write(anon_vma);
2741 		put_anon_vma(anon_vma);
2742 	}
2743 	if (mapping)
2744 		i_mmap_unlock_read(mapping);
2745 out:
2746 	/* Free any memory we didn't use */
2747 	xas_nomem(&xas, 0);
2748 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2749 	return ret;
2750 }
2751 
2752 void free_transhuge_page(struct page *page)
2753 {
2754 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2755 	unsigned long flags;
2756 
2757 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2758 	if (!list_empty(page_deferred_list(page))) {
2759 		ds_queue->split_queue_len--;
2760 		list_del(page_deferred_list(page));
2761 	}
2762 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2763 	free_compound_page(page);
2764 }
2765 
2766 void deferred_split_huge_page(struct page *page)
2767 {
2768 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2769 #ifdef CONFIG_MEMCG
2770 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2771 #endif
2772 	unsigned long flags;
2773 
2774 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2775 
2776 	/*
2777 	 * The try_to_unmap() in page reclaim path might reach here too,
2778 	 * this may cause a race condition to corrupt deferred split queue.
2779 	 * And, if page reclaim is already handling the same page, it is
2780 	 * unnecessary to handle it again in shrinker.
2781 	 *
2782 	 * Check PageSwapCache to determine if the page is being
2783 	 * handled by page reclaim since THP swap would add the page into
2784 	 * swap cache before calling try_to_unmap().
2785 	 */
2786 	if (PageSwapCache(page))
2787 		return;
2788 
2789 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2790 	if (list_empty(page_deferred_list(page))) {
2791 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2792 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2793 		ds_queue->split_queue_len++;
2794 #ifdef CONFIG_MEMCG
2795 		if (memcg)
2796 			set_shrinker_bit(memcg, page_to_nid(page),
2797 					 deferred_split_shrinker.id);
2798 #endif
2799 	}
2800 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2801 }
2802 
2803 static unsigned long deferred_split_count(struct shrinker *shrink,
2804 		struct shrink_control *sc)
2805 {
2806 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2807 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2808 
2809 #ifdef CONFIG_MEMCG
2810 	if (sc->memcg)
2811 		ds_queue = &sc->memcg->deferred_split_queue;
2812 #endif
2813 	return READ_ONCE(ds_queue->split_queue_len);
2814 }
2815 
2816 static unsigned long deferred_split_scan(struct shrinker *shrink,
2817 		struct shrink_control *sc)
2818 {
2819 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2820 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2821 	unsigned long flags;
2822 	LIST_HEAD(list), *pos, *next;
2823 	struct page *page;
2824 	int split = 0;
2825 
2826 #ifdef CONFIG_MEMCG
2827 	if (sc->memcg)
2828 		ds_queue = &sc->memcg->deferred_split_queue;
2829 #endif
2830 
2831 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2832 	/* Take pin on all head pages to avoid freeing them under us */
2833 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2834 		page = list_entry((void *)pos, struct page, deferred_list);
2835 		page = compound_head(page);
2836 		if (get_page_unless_zero(page)) {
2837 			list_move(page_deferred_list(page), &list);
2838 		} else {
2839 			/* We lost race with put_compound_page() */
2840 			list_del_init(page_deferred_list(page));
2841 			ds_queue->split_queue_len--;
2842 		}
2843 		if (!--sc->nr_to_scan)
2844 			break;
2845 	}
2846 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2847 
2848 	list_for_each_safe(pos, next, &list) {
2849 		page = list_entry((void *)pos, struct page, deferred_list);
2850 		if (!trylock_page(page))
2851 			goto next;
2852 		/* split_huge_page() removes page from list on success */
2853 		if (!split_huge_page(page))
2854 			split++;
2855 		unlock_page(page);
2856 next:
2857 		put_page(page);
2858 	}
2859 
2860 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2861 	list_splice_tail(&list, &ds_queue->split_queue);
2862 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2863 
2864 	/*
2865 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2866 	 * This can happen if pages were freed under us.
2867 	 */
2868 	if (!split && list_empty(&ds_queue->split_queue))
2869 		return SHRINK_STOP;
2870 	return split;
2871 }
2872 
2873 static struct shrinker deferred_split_shrinker = {
2874 	.count_objects = deferred_split_count,
2875 	.scan_objects = deferred_split_scan,
2876 	.seeks = DEFAULT_SEEKS,
2877 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2878 		 SHRINKER_NONSLAB,
2879 };
2880 
2881 #ifdef CONFIG_DEBUG_FS
2882 static void split_huge_pages_all(void)
2883 {
2884 	struct zone *zone;
2885 	struct page *page;
2886 	unsigned long pfn, max_zone_pfn;
2887 	unsigned long total = 0, split = 0;
2888 
2889 	pr_debug("Split all THPs\n");
2890 	for_each_populated_zone(zone) {
2891 		max_zone_pfn = zone_end_pfn(zone);
2892 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2893 			if (!pfn_valid(pfn))
2894 				continue;
2895 
2896 			page = pfn_to_page(pfn);
2897 			if (!get_page_unless_zero(page))
2898 				continue;
2899 
2900 			if (zone != page_zone(page))
2901 				goto next;
2902 
2903 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2904 				goto next;
2905 
2906 			total++;
2907 			lock_page(page);
2908 			if (!split_huge_page(page))
2909 				split++;
2910 			unlock_page(page);
2911 next:
2912 			put_page(page);
2913 			cond_resched();
2914 		}
2915 	}
2916 
2917 	pr_debug("%lu of %lu THP split\n", split, total);
2918 }
2919 
2920 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2921 {
2922 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2923 		    is_vm_hugetlb_page(vma);
2924 }
2925 
2926 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2927 				unsigned long vaddr_end)
2928 {
2929 	int ret = 0;
2930 	struct task_struct *task;
2931 	struct mm_struct *mm;
2932 	unsigned long total = 0, split = 0;
2933 	unsigned long addr;
2934 
2935 	vaddr_start &= PAGE_MASK;
2936 	vaddr_end &= PAGE_MASK;
2937 
2938 	/* Find the task_struct from pid */
2939 	rcu_read_lock();
2940 	task = find_task_by_vpid(pid);
2941 	if (!task) {
2942 		rcu_read_unlock();
2943 		ret = -ESRCH;
2944 		goto out;
2945 	}
2946 	get_task_struct(task);
2947 	rcu_read_unlock();
2948 
2949 	/* Find the mm_struct */
2950 	mm = get_task_mm(task);
2951 	put_task_struct(task);
2952 
2953 	if (!mm) {
2954 		ret = -EINVAL;
2955 		goto out;
2956 	}
2957 
2958 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2959 		 pid, vaddr_start, vaddr_end);
2960 
2961 	mmap_read_lock(mm);
2962 	/*
2963 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2964 	 * table filled with PTE-mapped THPs, each of which is distinct.
2965 	 */
2966 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2967 		struct vm_area_struct *vma = find_vma(mm, addr);
2968 		struct page *page;
2969 
2970 		if (!vma || addr < vma->vm_start)
2971 			break;
2972 
2973 		/* skip special VMA and hugetlb VMA */
2974 		if (vma_not_suitable_for_thp_split(vma)) {
2975 			addr = vma->vm_end;
2976 			continue;
2977 		}
2978 
2979 		/* FOLL_DUMP to ignore special (like zero) pages */
2980 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2981 
2982 		if (IS_ERR(page))
2983 			continue;
2984 		if (!page)
2985 			continue;
2986 
2987 		if (!is_transparent_hugepage(page))
2988 			goto next;
2989 
2990 		total++;
2991 		if (!can_split_huge_page(compound_head(page), NULL))
2992 			goto next;
2993 
2994 		if (!trylock_page(page))
2995 			goto next;
2996 
2997 		if (!split_huge_page(page))
2998 			split++;
2999 
3000 		unlock_page(page);
3001 next:
3002 		put_page(page);
3003 		cond_resched();
3004 	}
3005 	mmap_read_unlock(mm);
3006 	mmput(mm);
3007 
3008 	pr_debug("%lu of %lu THP split\n", split, total);
3009 
3010 out:
3011 	return ret;
3012 }
3013 
3014 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3015 				pgoff_t off_end)
3016 {
3017 	struct filename *file;
3018 	struct file *candidate;
3019 	struct address_space *mapping;
3020 	int ret = -EINVAL;
3021 	pgoff_t index;
3022 	int nr_pages = 1;
3023 	unsigned long total = 0, split = 0;
3024 
3025 	file = getname_kernel(file_path);
3026 	if (IS_ERR(file))
3027 		return ret;
3028 
3029 	candidate = file_open_name(file, O_RDONLY, 0);
3030 	if (IS_ERR(candidate))
3031 		goto out;
3032 
3033 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3034 		 file_path, off_start, off_end);
3035 
3036 	mapping = candidate->f_mapping;
3037 
3038 	for (index = off_start; index < off_end; index += nr_pages) {
3039 		struct page *fpage = pagecache_get_page(mapping, index,
3040 						FGP_ENTRY | FGP_HEAD, 0);
3041 
3042 		nr_pages = 1;
3043 		if (xa_is_value(fpage) || !fpage)
3044 			continue;
3045 
3046 		if (!is_transparent_hugepage(fpage))
3047 			goto next;
3048 
3049 		total++;
3050 		nr_pages = thp_nr_pages(fpage);
3051 
3052 		if (!trylock_page(fpage))
3053 			goto next;
3054 
3055 		if (!split_huge_page(fpage))
3056 			split++;
3057 
3058 		unlock_page(fpage);
3059 next:
3060 		put_page(fpage);
3061 		cond_resched();
3062 	}
3063 
3064 	filp_close(candidate, NULL);
3065 	ret = 0;
3066 
3067 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3068 out:
3069 	putname(file);
3070 	return ret;
3071 }
3072 
3073 #define MAX_INPUT_BUF_SZ 255
3074 
3075 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3076 				size_t count, loff_t *ppops)
3077 {
3078 	static DEFINE_MUTEX(split_debug_mutex);
3079 	ssize_t ret;
3080 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3081 	char input_buf[MAX_INPUT_BUF_SZ];
3082 	int pid;
3083 	unsigned long vaddr_start, vaddr_end;
3084 
3085 	ret = mutex_lock_interruptible(&split_debug_mutex);
3086 	if (ret)
3087 		return ret;
3088 
3089 	ret = -EFAULT;
3090 
3091 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3092 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3093 		goto out;
3094 
3095 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3096 
3097 	if (input_buf[0] == '/') {
3098 		char *tok;
3099 		char *buf = input_buf;
3100 		char file_path[MAX_INPUT_BUF_SZ];
3101 		pgoff_t off_start = 0, off_end = 0;
3102 		size_t input_len = strlen(input_buf);
3103 
3104 		tok = strsep(&buf, ",");
3105 		if (tok) {
3106 			strcpy(file_path, tok);
3107 		} else {
3108 			ret = -EINVAL;
3109 			goto out;
3110 		}
3111 
3112 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3113 		if (ret != 2) {
3114 			ret = -EINVAL;
3115 			goto out;
3116 		}
3117 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3118 		if (!ret)
3119 			ret = input_len;
3120 
3121 		goto out;
3122 	}
3123 
3124 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3125 	if (ret == 1 && pid == 1) {
3126 		split_huge_pages_all();
3127 		ret = strlen(input_buf);
3128 		goto out;
3129 	} else if (ret != 3) {
3130 		ret = -EINVAL;
3131 		goto out;
3132 	}
3133 
3134 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3135 	if (!ret)
3136 		ret = strlen(input_buf);
3137 out:
3138 	mutex_unlock(&split_debug_mutex);
3139 	return ret;
3140 
3141 }
3142 
3143 static const struct file_operations split_huge_pages_fops = {
3144 	.owner	 = THIS_MODULE,
3145 	.write	 = split_huge_pages_write,
3146 	.llseek  = no_llseek,
3147 };
3148 
3149 static int __init split_huge_pages_debugfs(void)
3150 {
3151 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3152 			    &split_huge_pages_fops);
3153 	return 0;
3154 }
3155 late_initcall(split_huge_pages_debugfs);
3156 #endif
3157 
3158 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3159 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3160 		struct page *page)
3161 {
3162 	struct vm_area_struct *vma = pvmw->vma;
3163 	struct mm_struct *mm = vma->vm_mm;
3164 	unsigned long address = pvmw->address;
3165 	pmd_t pmdval;
3166 	swp_entry_t entry;
3167 	pmd_t pmdswp;
3168 
3169 	if (!(pvmw->pmd && !pvmw->pte))
3170 		return;
3171 
3172 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3173 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3174 	if (pmd_dirty(pmdval))
3175 		set_page_dirty(page);
3176 	if (pmd_write(pmdval))
3177 		entry = make_writable_migration_entry(page_to_pfn(page));
3178 	else
3179 		entry = make_readable_migration_entry(page_to_pfn(page));
3180 	pmdswp = swp_entry_to_pmd(entry);
3181 	if (pmd_soft_dirty(pmdval))
3182 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3183 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3184 	page_remove_rmap(page, true);
3185 	put_page(page);
3186 }
3187 
3188 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3189 {
3190 	struct vm_area_struct *vma = pvmw->vma;
3191 	struct mm_struct *mm = vma->vm_mm;
3192 	unsigned long address = pvmw->address;
3193 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3194 	pmd_t pmde;
3195 	swp_entry_t entry;
3196 
3197 	if (!(pvmw->pmd && !pvmw->pte))
3198 		return;
3199 
3200 	entry = pmd_to_swp_entry(*pvmw->pmd);
3201 	get_page(new);
3202 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3203 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3204 		pmde = pmd_mksoft_dirty(pmde);
3205 	if (is_writable_migration_entry(entry))
3206 		pmde = maybe_pmd_mkwrite(pmde, vma);
3207 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3208 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3209 
3210 	if (PageAnon(new))
3211 		page_add_anon_rmap(new, vma, mmun_start, true);
3212 	else
3213 		page_add_file_rmap(new, true);
3214 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3215 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3216 		mlock_vma_page(new);
3217 
3218 	/* No need to invalidate - it was non-present before */
3219 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3220 }
3221 #endif
3222