xref: /openbmc/linux/mm/huge_memory.c (revision bf070bb0)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/*
487 	 * ->lru in the tail pages is occupied by compound_head.
488 	 * Let's use ->mapping + ->index in the second tail page as list_head.
489 	 */
490 	return (struct list_head *)&page[2].mapping;
491 }
492 
493 void prep_transhuge_page(struct page *page)
494 {
495 	/*
496 	 * we use page->mapping and page->indexlru in second tail page
497 	 * as list_head: assuming THP order >= 2
498 	 */
499 
500 	INIT_LIST_HEAD(page_deferred_list(page));
501 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503 
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 		loff_t off, unsigned long flags, unsigned long size)
506 {
507 	unsigned long addr;
508 	loff_t off_end = off + len;
509 	loff_t off_align = round_up(off, size);
510 	unsigned long len_pad;
511 
512 	if (off_end <= off_align || (off_end - off_align) < size)
513 		return 0;
514 
515 	len_pad = len + size;
516 	if (len_pad < len || (off + len_pad) < off)
517 		return 0;
518 
519 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 					      off >> PAGE_SHIFT, flags);
521 	if (IS_ERR_VALUE(addr))
522 		return 0;
523 
524 	addr += (off - addr) & (size - 1);
525 	return addr;
526 }
527 
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 		unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532 
533 	if (addr)
534 		goto out;
535 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 		goto out;
537 
538 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 	if (addr)
540 		return addr;
541 
542  out:
543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546 
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 		gfp_t gfp)
549 {
550 	struct vm_area_struct *vma = vmf->vma;
551 	struct mem_cgroup *memcg;
552 	pgtable_t pgtable;
553 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 	int ret = 0;
555 
556 	VM_BUG_ON_PAGE(!PageCompound(page), page);
557 
558 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 		put_page(page);
560 		count_vm_event(THP_FAULT_FALLBACK);
561 		return VM_FAULT_FALLBACK;
562 	}
563 
564 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 	if (unlikely(!pgtable)) {
566 		ret = VM_FAULT_OOM;
567 		goto release;
568 	}
569 
570 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
571 	/*
572 	 * The memory barrier inside __SetPageUptodate makes sure that
573 	 * clear_huge_page writes become visible before the set_pmd_at()
574 	 * write.
575 	 */
576 	__SetPageUptodate(page);
577 
578 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 	if (unlikely(!pmd_none(*vmf->pmd))) {
580 		goto unlock_release;
581 	} else {
582 		pmd_t entry;
583 
584 		ret = check_stable_address_space(vma->vm_mm);
585 		if (ret)
586 			goto unlock_release;
587 
588 		/* Deliver the page fault to userland */
589 		if (userfaultfd_missing(vma)) {
590 			int ret;
591 
592 			spin_unlock(vmf->ptl);
593 			mem_cgroup_cancel_charge(page, memcg, true);
594 			put_page(page);
595 			pte_free(vma->vm_mm, pgtable);
596 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 			return ret;
599 		}
600 
601 		entry = mk_huge_pmd(page, vma->vm_page_prot);
602 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 		page_add_new_anon_rmap(page, vma, haddr, true);
604 		mem_cgroup_commit_charge(page, memcg, false, true);
605 		lru_cache_add_active_or_unevictable(page, vma);
606 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 		mm_inc_nr_ptes(vma->vm_mm);
610 		spin_unlock(vmf->ptl);
611 		count_vm_event(THP_FAULT_ALLOC);
612 	}
613 
614 	return 0;
615 unlock_release:
616 	spin_unlock(vmf->ptl);
617 release:
618 	if (pgtable)
619 		pte_free(vma->vm_mm, pgtable);
620 	mem_cgroup_cancel_charge(page, memcg, true);
621 	put_page(page);
622 	return ret;
623 
624 }
625 
626 /*
627  * always: directly stall for all thp allocations
628  * defer: wake kswapd and fail if not immediately available
629  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630  *		  fail if not immediately available
631  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632  *	    available
633  * never: never stall for any thp allocation
634  */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638 
639 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     __GFP_KSWAPD_RECLAIM);
646 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 							     0);
649 	return GFP_TRANSHUGE_LIGHT;
650 }
651 
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 		struct page *zero_page)
656 {
657 	pmd_t entry;
658 	if (!pmd_none(*pmd))
659 		return false;
660 	entry = mk_pmd(zero_page, vma->vm_page_prot);
661 	entry = pmd_mkhuge(entry);
662 	if (pgtable)
663 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 	set_pmd_at(mm, haddr, pmd, entry);
665 	mm_inc_nr_ptes(mm);
666 	return true;
667 }
668 
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671 	struct vm_area_struct *vma = vmf->vma;
672 	gfp_t gfp;
673 	struct page *page;
674 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675 
676 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 		return VM_FAULT_FALLBACK;
678 	if (unlikely(anon_vma_prepare(vma)))
679 		return VM_FAULT_OOM;
680 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 		return VM_FAULT_OOM;
682 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 			!mm_forbids_zeropage(vma->vm_mm) &&
684 			transparent_hugepage_use_zero_page()) {
685 		pgtable_t pgtable;
686 		struct page *zero_page;
687 		bool set;
688 		int ret;
689 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 		if (unlikely(!pgtable))
691 			return VM_FAULT_OOM;
692 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 		if (unlikely(!zero_page)) {
694 			pte_free(vma->vm_mm, pgtable);
695 			count_vm_event(THP_FAULT_FALLBACK);
696 			return VM_FAULT_FALLBACK;
697 		}
698 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 		ret = 0;
700 		set = false;
701 		if (pmd_none(*vmf->pmd)) {
702 			ret = check_stable_address_space(vma->vm_mm);
703 			if (ret) {
704 				spin_unlock(vmf->ptl);
705 			} else if (userfaultfd_missing(vma)) {
706 				spin_unlock(vmf->ptl);
707 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 			} else {
710 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 						   haddr, vmf->pmd, zero_page);
712 				spin_unlock(vmf->ptl);
713 				set = true;
714 			}
715 		} else
716 			spin_unlock(vmf->ptl);
717 		if (!set)
718 			pte_free(vma->vm_mm, pgtable);
719 		return ret;
720 	}
721 	gfp = alloc_hugepage_direct_gfpmask(vma);
722 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 	if (unlikely(!page)) {
724 		count_vm_event(THP_FAULT_FALLBACK);
725 		return VM_FAULT_FALLBACK;
726 	}
727 	prep_transhuge_page(page);
728 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730 
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 		pgtable_t pgtable)
734 {
735 	struct mm_struct *mm = vma->vm_mm;
736 	pmd_t entry;
737 	spinlock_t *ptl;
738 
739 	ptl = pmd_lock(mm, pmd);
740 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 	if (pfn_t_devmap(pfn))
742 		entry = pmd_mkdevmap(entry);
743 	if (write) {
744 		entry = pmd_mkyoung(pmd_mkdirty(entry));
745 		entry = maybe_pmd_mkwrite(entry, vma);
746 	}
747 
748 	if (pgtable) {
749 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 		mm_inc_nr_ptes(mm);
751 	}
752 
753 	set_pmd_at(mm, addr, pmd, entry);
754 	update_mmu_cache_pmd(vma, addr, pmd);
755 	spin_unlock(ptl);
756 }
757 
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 			pmd_t *pmd, pfn_t pfn, bool write)
760 {
761 	pgprot_t pgprot = vma->vm_page_prot;
762 	pgtable_t pgtable = NULL;
763 	/*
764 	 * If we had pmd_special, we could avoid all these restrictions,
765 	 * but we need to be consistent with PTEs and architectures that
766 	 * can't support a 'special' bit.
767 	 */
768 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 						(VM_PFNMAP|VM_MIXEDMAP));
771 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 	BUG_ON(!pfn_t_devmap(pfn));
773 
774 	if (addr < vma->vm_start || addr >= vma->vm_end)
775 		return VM_FAULT_SIGBUS;
776 
777 	if (arch_needs_pgtable_deposit()) {
778 		pgtable = pte_alloc_one(vma->vm_mm, addr);
779 		if (!pgtable)
780 			return VM_FAULT_OOM;
781 	}
782 
783 	track_pfn_insert(vma, &pgprot, pfn);
784 
785 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 	return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789 
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793 	if (likely(vma->vm_flags & VM_WRITE))
794 		pud = pud_mkwrite(pud);
795 	return pud;
796 }
797 
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801 	struct mm_struct *mm = vma->vm_mm;
802 	pud_t entry;
803 	spinlock_t *ptl;
804 
805 	ptl = pud_lock(mm, pud);
806 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 	if (pfn_t_devmap(pfn))
808 		entry = pud_mkdevmap(entry);
809 	if (write) {
810 		entry = pud_mkyoung(pud_mkdirty(entry));
811 		entry = maybe_pud_mkwrite(entry, vma);
812 	}
813 	set_pud_at(mm, addr, pud, entry);
814 	update_mmu_cache_pud(vma, addr, pud);
815 	spin_unlock(ptl);
816 }
817 
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 			pud_t *pud, pfn_t pfn, bool write)
820 {
821 	pgprot_t pgprot = vma->vm_page_prot;
822 	/*
823 	 * If we had pud_special, we could avoid all these restrictions,
824 	 * but we need to be consistent with PTEs and architectures that
825 	 * can't support a 'special' bit.
826 	 */
827 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 						(VM_PFNMAP|VM_MIXEDMAP));
830 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 	BUG_ON(!pfn_t_devmap(pfn));
832 
833 	if (addr < vma->vm_start || addr >= vma->vm_end)
834 		return VM_FAULT_SIGBUS;
835 
836 	track_pfn_insert(vma, &pgprot, pfn);
837 
838 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 	return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843 
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 		pmd_t *pmd)
846 {
847 	pmd_t _pmd;
848 
849 	/*
850 	 * We should set the dirty bit only for FOLL_WRITE but for now
851 	 * the dirty bit in the pmd is meaningless.  And if the dirty
852 	 * bit will become meaningful and we'll only set it with
853 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 	 * set the young bit, instead of the current set_pmd_at.
855 	 */
856 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 				pmd, _pmd,  1))
859 		update_mmu_cache_pmd(vma, addr, pmd);
860 }
861 
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 		pmd_t *pmd, int flags)
864 {
865 	unsigned long pfn = pmd_pfn(*pmd);
866 	struct mm_struct *mm = vma->vm_mm;
867 	struct dev_pagemap *pgmap;
868 	struct page *page;
869 
870 	assert_spin_locked(pmd_lockptr(mm, pmd));
871 
872 	/*
873 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 	 * not be in this function with `flags & FOLL_COW` set.
875 	 */
876 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877 
878 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 		return NULL;
880 
881 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 		/* pass */;
883 	else
884 		return NULL;
885 
886 	if (flags & FOLL_TOUCH)
887 		touch_pmd(vma, addr, pmd);
888 
889 	/*
890 	 * device mapped pages can only be returned if the
891 	 * caller will manage the page reference count.
892 	 */
893 	if (!(flags & FOLL_GET))
894 		return ERR_PTR(-EEXIST);
895 
896 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 	pgmap = get_dev_pagemap(pfn, NULL);
898 	if (!pgmap)
899 		return ERR_PTR(-EFAULT);
900 	page = pfn_to_page(pfn);
901 	get_page(page);
902 	put_dev_pagemap(pgmap);
903 
904 	return page;
905 }
906 
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 		  struct vm_area_struct *vma)
910 {
911 	spinlock_t *dst_ptl, *src_ptl;
912 	struct page *src_page;
913 	pmd_t pmd;
914 	pgtable_t pgtable = NULL;
915 	int ret = -ENOMEM;
916 
917 	/* Skip if can be re-fill on fault */
918 	if (!vma_is_anonymous(vma))
919 		return 0;
920 
921 	pgtable = pte_alloc_one(dst_mm, addr);
922 	if (unlikely(!pgtable))
923 		goto out;
924 
925 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 	src_ptl = pmd_lockptr(src_mm, src_pmd);
927 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
928 
929 	ret = -EAGAIN;
930 	pmd = *src_pmd;
931 
932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 	if (unlikely(is_swap_pmd(pmd))) {
934 		swp_entry_t entry = pmd_to_swp_entry(pmd);
935 
936 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 		if (is_write_migration_entry(entry)) {
938 			make_migration_entry_read(&entry);
939 			pmd = swp_entry_to_pmd(entry);
940 			if (pmd_swp_soft_dirty(*src_pmd))
941 				pmd = pmd_swp_mksoft_dirty(pmd);
942 			set_pmd_at(src_mm, addr, src_pmd, pmd);
943 		}
944 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
945 		mm_inc_nr_ptes(dst_mm);
946 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
947 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
948 		ret = 0;
949 		goto out_unlock;
950 	}
951 #endif
952 
953 	if (unlikely(!pmd_trans_huge(pmd))) {
954 		pte_free(dst_mm, pgtable);
955 		goto out_unlock;
956 	}
957 	/*
958 	 * When page table lock is held, the huge zero pmd should not be
959 	 * under splitting since we don't split the page itself, only pmd to
960 	 * a page table.
961 	 */
962 	if (is_huge_zero_pmd(pmd)) {
963 		struct page *zero_page;
964 		/*
965 		 * get_huge_zero_page() will never allocate a new page here,
966 		 * since we already have a zero page to copy. It just takes a
967 		 * reference.
968 		 */
969 		zero_page = mm_get_huge_zero_page(dst_mm);
970 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
971 				zero_page);
972 		ret = 0;
973 		goto out_unlock;
974 	}
975 
976 	src_page = pmd_page(pmd);
977 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
978 	get_page(src_page);
979 	page_dup_rmap(src_page, true);
980 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
981 	mm_inc_nr_ptes(dst_mm);
982 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
983 
984 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
985 	pmd = pmd_mkold(pmd_wrprotect(pmd));
986 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
987 
988 	ret = 0;
989 out_unlock:
990 	spin_unlock(src_ptl);
991 	spin_unlock(dst_ptl);
992 out:
993 	return ret;
994 }
995 
996 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
997 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
998 		pud_t *pud)
999 {
1000 	pud_t _pud;
1001 
1002 	/*
1003 	 * We should set the dirty bit only for FOLL_WRITE but for now
1004 	 * the dirty bit in the pud is meaningless.  And if the dirty
1005 	 * bit will become meaningful and we'll only set it with
1006 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1007 	 * set the young bit, instead of the current set_pud_at.
1008 	 */
1009 	_pud = pud_mkyoung(pud_mkdirty(*pud));
1010 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1011 				pud, _pud,  1))
1012 		update_mmu_cache_pud(vma, addr, pud);
1013 }
1014 
1015 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1016 		pud_t *pud, int flags)
1017 {
1018 	unsigned long pfn = pud_pfn(*pud);
1019 	struct mm_struct *mm = vma->vm_mm;
1020 	struct dev_pagemap *pgmap;
1021 	struct page *page;
1022 
1023 	assert_spin_locked(pud_lockptr(mm, pud));
1024 
1025 	if (flags & FOLL_WRITE && !pud_write(*pud))
1026 		return NULL;
1027 
1028 	if (pud_present(*pud) && pud_devmap(*pud))
1029 		/* pass */;
1030 	else
1031 		return NULL;
1032 
1033 	if (flags & FOLL_TOUCH)
1034 		touch_pud(vma, addr, pud);
1035 
1036 	/*
1037 	 * device mapped pages can only be returned if the
1038 	 * caller will manage the page reference count.
1039 	 */
1040 	if (!(flags & FOLL_GET))
1041 		return ERR_PTR(-EEXIST);
1042 
1043 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1044 	pgmap = get_dev_pagemap(pfn, NULL);
1045 	if (!pgmap)
1046 		return ERR_PTR(-EFAULT);
1047 	page = pfn_to_page(pfn);
1048 	get_page(page);
1049 	put_dev_pagemap(pgmap);
1050 
1051 	return page;
1052 }
1053 
1054 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1056 		  struct vm_area_struct *vma)
1057 {
1058 	spinlock_t *dst_ptl, *src_ptl;
1059 	pud_t pud;
1060 	int ret;
1061 
1062 	dst_ptl = pud_lock(dst_mm, dst_pud);
1063 	src_ptl = pud_lockptr(src_mm, src_pud);
1064 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1065 
1066 	ret = -EAGAIN;
1067 	pud = *src_pud;
1068 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1069 		goto out_unlock;
1070 
1071 	/*
1072 	 * When page table lock is held, the huge zero pud should not be
1073 	 * under splitting since we don't split the page itself, only pud to
1074 	 * a page table.
1075 	 */
1076 	if (is_huge_zero_pud(pud)) {
1077 		/* No huge zero pud yet */
1078 	}
1079 
1080 	pudp_set_wrprotect(src_mm, addr, src_pud);
1081 	pud = pud_mkold(pud_wrprotect(pud));
1082 	set_pud_at(dst_mm, addr, dst_pud, pud);
1083 
1084 	ret = 0;
1085 out_unlock:
1086 	spin_unlock(src_ptl);
1087 	spin_unlock(dst_ptl);
1088 	return ret;
1089 }
1090 
1091 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1092 {
1093 	pud_t entry;
1094 	unsigned long haddr;
1095 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1096 
1097 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1098 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1099 		goto unlock;
1100 
1101 	entry = pud_mkyoung(orig_pud);
1102 	if (write)
1103 		entry = pud_mkdirty(entry);
1104 	haddr = vmf->address & HPAGE_PUD_MASK;
1105 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1106 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1107 
1108 unlock:
1109 	spin_unlock(vmf->ptl);
1110 }
1111 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1112 
1113 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1114 {
1115 	pmd_t entry;
1116 	unsigned long haddr;
1117 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1118 
1119 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1120 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1121 		goto unlock;
1122 
1123 	entry = pmd_mkyoung(orig_pmd);
1124 	if (write)
1125 		entry = pmd_mkdirty(entry);
1126 	haddr = vmf->address & HPAGE_PMD_MASK;
1127 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1128 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1129 
1130 unlock:
1131 	spin_unlock(vmf->ptl);
1132 }
1133 
1134 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1135 		struct page *page)
1136 {
1137 	struct vm_area_struct *vma = vmf->vma;
1138 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1139 	struct mem_cgroup *memcg;
1140 	pgtable_t pgtable;
1141 	pmd_t _pmd;
1142 	int ret = 0, i;
1143 	struct page **pages;
1144 	unsigned long mmun_start;	/* For mmu_notifiers */
1145 	unsigned long mmun_end;		/* For mmu_notifiers */
1146 
1147 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1148 			GFP_KERNEL);
1149 	if (unlikely(!pages)) {
1150 		ret |= VM_FAULT_OOM;
1151 		goto out;
1152 	}
1153 
1154 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1155 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1156 					       vmf->address, page_to_nid(page));
1157 		if (unlikely(!pages[i] ||
1158 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1159 				     GFP_KERNEL, &memcg, false))) {
1160 			if (pages[i])
1161 				put_page(pages[i]);
1162 			while (--i >= 0) {
1163 				memcg = (void *)page_private(pages[i]);
1164 				set_page_private(pages[i], 0);
1165 				mem_cgroup_cancel_charge(pages[i], memcg,
1166 						false);
1167 				put_page(pages[i]);
1168 			}
1169 			kfree(pages);
1170 			ret |= VM_FAULT_OOM;
1171 			goto out;
1172 		}
1173 		set_page_private(pages[i], (unsigned long)memcg);
1174 	}
1175 
1176 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1177 		copy_user_highpage(pages[i], page + i,
1178 				   haddr + PAGE_SIZE * i, vma);
1179 		__SetPageUptodate(pages[i]);
1180 		cond_resched();
1181 	}
1182 
1183 	mmun_start = haddr;
1184 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1185 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1186 
1187 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1188 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1189 		goto out_free_pages;
1190 	VM_BUG_ON_PAGE(!PageHead(page), page);
1191 
1192 	/*
1193 	 * Leave pmd empty until pte is filled note we must notify here as
1194 	 * concurrent CPU thread might write to new page before the call to
1195 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1196 	 * device seeing memory write in different order than CPU.
1197 	 *
1198 	 * See Documentation/vm/mmu_notifier.txt
1199 	 */
1200 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1201 
1202 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1203 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1204 
1205 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1206 		pte_t entry;
1207 		entry = mk_pte(pages[i], vma->vm_page_prot);
1208 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1209 		memcg = (void *)page_private(pages[i]);
1210 		set_page_private(pages[i], 0);
1211 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1212 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1213 		lru_cache_add_active_or_unevictable(pages[i], vma);
1214 		vmf->pte = pte_offset_map(&_pmd, haddr);
1215 		VM_BUG_ON(!pte_none(*vmf->pte));
1216 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1217 		pte_unmap(vmf->pte);
1218 	}
1219 	kfree(pages);
1220 
1221 	smp_wmb(); /* make pte visible before pmd */
1222 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1223 	page_remove_rmap(page, true);
1224 	spin_unlock(vmf->ptl);
1225 
1226 	/*
1227 	 * No need to double call mmu_notifier->invalidate_range() callback as
1228 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1229 	 */
1230 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1231 						mmun_end);
1232 
1233 	ret |= VM_FAULT_WRITE;
1234 	put_page(page);
1235 
1236 out:
1237 	return ret;
1238 
1239 out_free_pages:
1240 	spin_unlock(vmf->ptl);
1241 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1242 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1243 		memcg = (void *)page_private(pages[i]);
1244 		set_page_private(pages[i], 0);
1245 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1246 		put_page(pages[i]);
1247 	}
1248 	kfree(pages);
1249 	goto out;
1250 }
1251 
1252 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1253 {
1254 	struct vm_area_struct *vma = vmf->vma;
1255 	struct page *page = NULL, *new_page;
1256 	struct mem_cgroup *memcg;
1257 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1258 	unsigned long mmun_start;	/* For mmu_notifiers */
1259 	unsigned long mmun_end;		/* For mmu_notifiers */
1260 	gfp_t huge_gfp;			/* for allocation and charge */
1261 	int ret = 0;
1262 
1263 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1264 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1265 	if (is_huge_zero_pmd(orig_pmd))
1266 		goto alloc;
1267 	spin_lock(vmf->ptl);
1268 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 		goto out_unlock;
1270 
1271 	page = pmd_page(orig_pmd);
1272 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1273 	/*
1274 	 * We can only reuse the page if nobody else maps the huge page or it's
1275 	 * part.
1276 	 */
1277 	if (!trylock_page(page)) {
1278 		get_page(page);
1279 		spin_unlock(vmf->ptl);
1280 		lock_page(page);
1281 		spin_lock(vmf->ptl);
1282 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1283 			unlock_page(page);
1284 			put_page(page);
1285 			goto out_unlock;
1286 		}
1287 		put_page(page);
1288 	}
1289 	if (reuse_swap_page(page, NULL)) {
1290 		pmd_t entry;
1291 		entry = pmd_mkyoung(orig_pmd);
1292 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1293 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1294 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1295 		ret |= VM_FAULT_WRITE;
1296 		unlock_page(page);
1297 		goto out_unlock;
1298 	}
1299 	unlock_page(page);
1300 	get_page(page);
1301 	spin_unlock(vmf->ptl);
1302 alloc:
1303 	if (transparent_hugepage_enabled(vma) &&
1304 	    !transparent_hugepage_debug_cow()) {
1305 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1306 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1307 	} else
1308 		new_page = NULL;
1309 
1310 	if (likely(new_page)) {
1311 		prep_transhuge_page(new_page);
1312 	} else {
1313 		if (!page) {
1314 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1315 			ret |= VM_FAULT_FALLBACK;
1316 		} else {
1317 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1318 			if (ret & VM_FAULT_OOM) {
1319 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1320 				ret |= VM_FAULT_FALLBACK;
1321 			}
1322 			put_page(page);
1323 		}
1324 		count_vm_event(THP_FAULT_FALLBACK);
1325 		goto out;
1326 	}
1327 
1328 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1329 					huge_gfp, &memcg, true))) {
1330 		put_page(new_page);
1331 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1332 		if (page)
1333 			put_page(page);
1334 		ret |= VM_FAULT_FALLBACK;
1335 		count_vm_event(THP_FAULT_FALLBACK);
1336 		goto out;
1337 	}
1338 
1339 	count_vm_event(THP_FAULT_ALLOC);
1340 
1341 	if (!page)
1342 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1343 	else
1344 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1345 	__SetPageUptodate(new_page);
1346 
1347 	mmun_start = haddr;
1348 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1349 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1350 
1351 	spin_lock(vmf->ptl);
1352 	if (page)
1353 		put_page(page);
1354 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1355 		spin_unlock(vmf->ptl);
1356 		mem_cgroup_cancel_charge(new_page, memcg, true);
1357 		put_page(new_page);
1358 		goto out_mn;
1359 	} else {
1360 		pmd_t entry;
1361 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1362 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1364 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1365 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1366 		lru_cache_add_active_or_unevictable(new_page, vma);
1367 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1368 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1369 		if (!page) {
1370 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1371 		} else {
1372 			VM_BUG_ON_PAGE(!PageHead(page), page);
1373 			page_remove_rmap(page, true);
1374 			put_page(page);
1375 		}
1376 		ret |= VM_FAULT_WRITE;
1377 	}
1378 	spin_unlock(vmf->ptl);
1379 out_mn:
1380 	/*
1381 	 * No need to double call mmu_notifier->invalidate_range() callback as
1382 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1383 	 */
1384 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1385 					       mmun_end);
1386 out:
1387 	return ret;
1388 out_unlock:
1389 	spin_unlock(vmf->ptl);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * FOLL_FORCE can write to even unwritable pmd's, but only
1395  * after we've gone through a COW cycle and they are dirty.
1396  */
1397 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1398 {
1399 	return pmd_write(pmd) ||
1400 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1401 }
1402 
1403 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1404 				   unsigned long addr,
1405 				   pmd_t *pmd,
1406 				   unsigned int flags)
1407 {
1408 	struct mm_struct *mm = vma->vm_mm;
1409 	struct page *page = NULL;
1410 
1411 	assert_spin_locked(pmd_lockptr(mm, pmd));
1412 
1413 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1414 		goto out;
1415 
1416 	/* Avoid dumping huge zero page */
1417 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1418 		return ERR_PTR(-EFAULT);
1419 
1420 	/* Full NUMA hinting faults to serialise migration in fault paths */
1421 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1422 		goto out;
1423 
1424 	page = pmd_page(*pmd);
1425 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1426 	if (flags & FOLL_TOUCH)
1427 		touch_pmd(vma, addr, pmd);
1428 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1429 		/*
1430 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1432 		 *
1433 		 * For anon THP:
1434 		 *
1435 		 * In most cases the pmd is the only mapping of the page as we
1436 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 		 * writable private mappings in populate_vma_page_range().
1438 		 *
1439 		 * The only scenario when we have the page shared here is if we
1440 		 * mlocking read-only mapping shared over fork(). We skip
1441 		 * mlocking such pages.
1442 		 *
1443 		 * For file THP:
1444 		 *
1445 		 * We can expect PageDoubleMap() to be stable under page lock:
1446 		 * for file pages we set it in page_add_file_rmap(), which
1447 		 * requires page to be locked.
1448 		 */
1449 
1450 		if (PageAnon(page) && compound_mapcount(page) != 1)
1451 			goto skip_mlock;
1452 		if (PageDoubleMap(page) || !page->mapping)
1453 			goto skip_mlock;
1454 		if (!trylock_page(page))
1455 			goto skip_mlock;
1456 		lru_add_drain();
1457 		if (page->mapping && !PageDoubleMap(page))
1458 			mlock_vma_page(page);
1459 		unlock_page(page);
1460 	}
1461 skip_mlock:
1462 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1464 	if (flags & FOLL_GET)
1465 		get_page(page);
1466 
1467 out:
1468 	return page;
1469 }
1470 
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1473 {
1474 	struct vm_area_struct *vma = vmf->vma;
1475 	struct anon_vma *anon_vma = NULL;
1476 	struct page *page;
1477 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1478 	int page_nid = -1, this_nid = numa_node_id();
1479 	int target_nid, last_cpupid = -1;
1480 	bool page_locked;
1481 	bool migrated = false;
1482 	bool was_writable;
1483 	int flags = 0;
1484 
1485 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1486 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1487 		goto out_unlock;
1488 
1489 	/*
1490 	 * If there are potential migrations, wait for completion and retry
1491 	 * without disrupting NUMA hinting information. Do not relock and
1492 	 * check_same as the page may no longer be mapped.
1493 	 */
1494 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1495 		page = pmd_page(*vmf->pmd);
1496 		if (!get_page_unless_zero(page))
1497 			goto out_unlock;
1498 		spin_unlock(vmf->ptl);
1499 		wait_on_page_locked(page);
1500 		put_page(page);
1501 		goto out;
1502 	}
1503 
1504 	page = pmd_page(pmd);
1505 	BUG_ON(is_huge_zero_page(page));
1506 	page_nid = page_to_nid(page);
1507 	last_cpupid = page_cpupid_last(page);
1508 	count_vm_numa_event(NUMA_HINT_FAULTS);
1509 	if (page_nid == this_nid) {
1510 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1511 		flags |= TNF_FAULT_LOCAL;
1512 	}
1513 
1514 	/* See similar comment in do_numa_page for explanation */
1515 	if (!pmd_savedwrite(pmd))
1516 		flags |= TNF_NO_GROUP;
1517 
1518 	/*
1519 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 	 * page_table_lock if at all possible
1521 	 */
1522 	page_locked = trylock_page(page);
1523 	target_nid = mpol_misplaced(page, vma, haddr);
1524 	if (target_nid == -1) {
1525 		/* If the page was locked, there are no parallel migrations */
1526 		if (page_locked)
1527 			goto clear_pmdnuma;
1528 	}
1529 
1530 	/* Migration could have started since the pmd_trans_migrating check */
1531 	if (!page_locked) {
1532 		page_nid = -1;
1533 		if (!get_page_unless_zero(page))
1534 			goto out_unlock;
1535 		spin_unlock(vmf->ptl);
1536 		wait_on_page_locked(page);
1537 		put_page(page);
1538 		goto out;
1539 	}
1540 
1541 	/*
1542 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1543 	 * to serialises splits
1544 	 */
1545 	get_page(page);
1546 	spin_unlock(vmf->ptl);
1547 	anon_vma = page_lock_anon_vma_read(page);
1548 
1549 	/* Confirm the PMD did not change while page_table_lock was released */
1550 	spin_lock(vmf->ptl);
1551 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1552 		unlock_page(page);
1553 		put_page(page);
1554 		page_nid = -1;
1555 		goto out_unlock;
1556 	}
1557 
1558 	/* Bail if we fail to protect against THP splits for any reason */
1559 	if (unlikely(!anon_vma)) {
1560 		put_page(page);
1561 		page_nid = -1;
1562 		goto clear_pmdnuma;
1563 	}
1564 
1565 	/*
1566 	 * Since we took the NUMA fault, we must have observed the !accessible
1567 	 * bit. Make sure all other CPUs agree with that, to avoid them
1568 	 * modifying the page we're about to migrate.
1569 	 *
1570 	 * Must be done under PTL such that we'll observe the relevant
1571 	 * inc_tlb_flush_pending().
1572 	 *
1573 	 * We are not sure a pending tlb flush here is for a huge page
1574 	 * mapping or not. Hence use the tlb range variant
1575 	 */
1576 	if (mm_tlb_flush_pending(vma->vm_mm))
1577 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1578 
1579 	/*
1580 	 * Migrate the THP to the requested node, returns with page unlocked
1581 	 * and access rights restored.
1582 	 */
1583 	spin_unlock(vmf->ptl);
1584 
1585 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1586 				vmf->pmd, pmd, vmf->address, page, target_nid);
1587 	if (migrated) {
1588 		flags |= TNF_MIGRATED;
1589 		page_nid = target_nid;
1590 	} else
1591 		flags |= TNF_MIGRATE_FAIL;
1592 
1593 	goto out;
1594 clear_pmdnuma:
1595 	BUG_ON(!PageLocked(page));
1596 	was_writable = pmd_savedwrite(pmd);
1597 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1598 	pmd = pmd_mkyoung(pmd);
1599 	if (was_writable)
1600 		pmd = pmd_mkwrite(pmd);
1601 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1602 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1603 	unlock_page(page);
1604 out_unlock:
1605 	spin_unlock(vmf->ptl);
1606 
1607 out:
1608 	if (anon_vma)
1609 		page_unlock_anon_vma_read(anon_vma);
1610 
1611 	if (page_nid != -1)
1612 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1613 				flags);
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Return true if we do MADV_FREE successfully on entire pmd page.
1620  * Otherwise, return false.
1621  */
1622 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1623 		pmd_t *pmd, unsigned long addr, unsigned long next)
1624 {
1625 	spinlock_t *ptl;
1626 	pmd_t orig_pmd;
1627 	struct page *page;
1628 	struct mm_struct *mm = tlb->mm;
1629 	bool ret = false;
1630 
1631 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1632 
1633 	ptl = pmd_trans_huge_lock(pmd, vma);
1634 	if (!ptl)
1635 		goto out_unlocked;
1636 
1637 	orig_pmd = *pmd;
1638 	if (is_huge_zero_pmd(orig_pmd))
1639 		goto out;
1640 
1641 	if (unlikely(!pmd_present(orig_pmd))) {
1642 		VM_BUG_ON(thp_migration_supported() &&
1643 				  !is_pmd_migration_entry(orig_pmd));
1644 		goto out;
1645 	}
1646 
1647 	page = pmd_page(orig_pmd);
1648 	/*
1649 	 * If other processes are mapping this page, we couldn't discard
1650 	 * the page unless they all do MADV_FREE so let's skip the page.
1651 	 */
1652 	if (page_mapcount(page) != 1)
1653 		goto out;
1654 
1655 	if (!trylock_page(page))
1656 		goto out;
1657 
1658 	/*
1659 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1660 	 * will deactivate only them.
1661 	 */
1662 	if (next - addr != HPAGE_PMD_SIZE) {
1663 		get_page(page);
1664 		spin_unlock(ptl);
1665 		split_huge_page(page);
1666 		unlock_page(page);
1667 		put_page(page);
1668 		goto out_unlocked;
1669 	}
1670 
1671 	if (PageDirty(page))
1672 		ClearPageDirty(page);
1673 	unlock_page(page);
1674 
1675 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1676 		pmdp_invalidate(vma, addr, pmd);
1677 		orig_pmd = pmd_mkold(orig_pmd);
1678 		orig_pmd = pmd_mkclean(orig_pmd);
1679 
1680 		set_pmd_at(mm, addr, pmd, orig_pmd);
1681 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1682 	}
1683 
1684 	mark_page_lazyfree(page);
1685 	ret = true;
1686 out:
1687 	spin_unlock(ptl);
1688 out_unlocked:
1689 	return ret;
1690 }
1691 
1692 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1693 {
1694 	pgtable_t pgtable;
1695 
1696 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1697 	pte_free(mm, pgtable);
1698 	mm_dec_nr_ptes(mm);
1699 }
1700 
1701 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1702 		 pmd_t *pmd, unsigned long addr)
1703 {
1704 	pmd_t orig_pmd;
1705 	spinlock_t *ptl;
1706 
1707 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1708 
1709 	ptl = __pmd_trans_huge_lock(pmd, vma);
1710 	if (!ptl)
1711 		return 0;
1712 	/*
1713 	 * For architectures like ppc64 we look at deposited pgtable
1714 	 * when calling pmdp_huge_get_and_clear. So do the
1715 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1716 	 * operations.
1717 	 */
1718 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1719 			tlb->fullmm);
1720 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1721 	if (vma_is_dax(vma)) {
1722 		if (arch_needs_pgtable_deposit())
1723 			zap_deposited_table(tlb->mm, pmd);
1724 		spin_unlock(ptl);
1725 		if (is_huge_zero_pmd(orig_pmd))
1726 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1727 	} else if (is_huge_zero_pmd(orig_pmd)) {
1728 		zap_deposited_table(tlb->mm, pmd);
1729 		spin_unlock(ptl);
1730 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1731 	} else {
1732 		struct page *page = NULL;
1733 		int flush_needed = 1;
1734 
1735 		if (pmd_present(orig_pmd)) {
1736 			page = pmd_page(orig_pmd);
1737 			page_remove_rmap(page, true);
1738 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1739 			VM_BUG_ON_PAGE(!PageHead(page), page);
1740 		} else if (thp_migration_supported()) {
1741 			swp_entry_t entry;
1742 
1743 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1744 			entry = pmd_to_swp_entry(orig_pmd);
1745 			page = pfn_to_page(swp_offset(entry));
1746 			flush_needed = 0;
1747 		} else
1748 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1749 
1750 		if (PageAnon(page)) {
1751 			zap_deposited_table(tlb->mm, pmd);
1752 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1753 		} else {
1754 			if (arch_needs_pgtable_deposit())
1755 				zap_deposited_table(tlb->mm, pmd);
1756 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1757 		}
1758 
1759 		spin_unlock(ptl);
1760 		if (flush_needed)
1761 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1762 	}
1763 	return 1;
1764 }
1765 
1766 #ifndef pmd_move_must_withdraw
1767 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1768 					 spinlock_t *old_pmd_ptl,
1769 					 struct vm_area_struct *vma)
1770 {
1771 	/*
1772 	 * With split pmd lock we also need to move preallocated
1773 	 * PTE page table if new_pmd is on different PMD page table.
1774 	 *
1775 	 * We also don't deposit and withdraw tables for file pages.
1776 	 */
1777 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1778 }
1779 #endif
1780 
1781 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1782 {
1783 #ifdef CONFIG_MEM_SOFT_DIRTY
1784 	if (unlikely(is_pmd_migration_entry(pmd)))
1785 		pmd = pmd_swp_mksoft_dirty(pmd);
1786 	else if (pmd_present(pmd))
1787 		pmd = pmd_mksoft_dirty(pmd);
1788 #endif
1789 	return pmd;
1790 }
1791 
1792 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1793 		  unsigned long new_addr, unsigned long old_end,
1794 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1795 {
1796 	spinlock_t *old_ptl, *new_ptl;
1797 	pmd_t pmd;
1798 	struct mm_struct *mm = vma->vm_mm;
1799 	bool force_flush = false;
1800 
1801 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1802 	    (new_addr & ~HPAGE_PMD_MASK) ||
1803 	    old_end - old_addr < HPAGE_PMD_SIZE)
1804 		return false;
1805 
1806 	/*
1807 	 * The destination pmd shouldn't be established, free_pgtables()
1808 	 * should have release it.
1809 	 */
1810 	if (WARN_ON(!pmd_none(*new_pmd))) {
1811 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1812 		return false;
1813 	}
1814 
1815 	/*
1816 	 * We don't have to worry about the ordering of src and dst
1817 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1818 	 */
1819 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1820 	if (old_ptl) {
1821 		new_ptl = pmd_lockptr(mm, new_pmd);
1822 		if (new_ptl != old_ptl)
1823 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1824 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1825 		if (pmd_present(pmd) && pmd_dirty(pmd))
1826 			force_flush = true;
1827 		VM_BUG_ON(!pmd_none(*new_pmd));
1828 
1829 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1830 			pgtable_t pgtable;
1831 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1832 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1833 		}
1834 		pmd = move_soft_dirty_pmd(pmd);
1835 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1836 		if (new_ptl != old_ptl)
1837 			spin_unlock(new_ptl);
1838 		if (force_flush)
1839 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1840 		else
1841 			*need_flush = true;
1842 		spin_unlock(old_ptl);
1843 		return true;
1844 	}
1845 	return false;
1846 }
1847 
1848 /*
1849  * Returns
1850  *  - 0 if PMD could not be locked
1851  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1852  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1853  */
1854 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1855 		unsigned long addr, pgprot_t newprot, int prot_numa)
1856 {
1857 	struct mm_struct *mm = vma->vm_mm;
1858 	spinlock_t *ptl;
1859 	pmd_t entry;
1860 	bool preserve_write;
1861 	int ret;
1862 
1863 	ptl = __pmd_trans_huge_lock(pmd, vma);
1864 	if (!ptl)
1865 		return 0;
1866 
1867 	preserve_write = prot_numa && pmd_write(*pmd);
1868 	ret = 1;
1869 
1870 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1871 	if (is_swap_pmd(*pmd)) {
1872 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1873 
1874 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1875 		if (is_write_migration_entry(entry)) {
1876 			pmd_t newpmd;
1877 			/*
1878 			 * A protection check is difficult so
1879 			 * just be safe and disable write
1880 			 */
1881 			make_migration_entry_read(&entry);
1882 			newpmd = swp_entry_to_pmd(entry);
1883 			if (pmd_swp_soft_dirty(*pmd))
1884 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1885 			set_pmd_at(mm, addr, pmd, newpmd);
1886 		}
1887 		goto unlock;
1888 	}
1889 #endif
1890 
1891 	/*
1892 	 * Avoid trapping faults against the zero page. The read-only
1893 	 * data is likely to be read-cached on the local CPU and
1894 	 * local/remote hits to the zero page are not interesting.
1895 	 */
1896 	if (prot_numa && is_huge_zero_pmd(*pmd))
1897 		goto unlock;
1898 
1899 	if (prot_numa && pmd_protnone(*pmd))
1900 		goto unlock;
1901 
1902 	/*
1903 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1904 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1905 	 * which is also under down_read(mmap_sem):
1906 	 *
1907 	 *	CPU0:				CPU1:
1908 	 *				change_huge_pmd(prot_numa=1)
1909 	 *				 pmdp_huge_get_and_clear_notify()
1910 	 * madvise_dontneed()
1911 	 *  zap_pmd_range()
1912 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1913 	 *   // skip the pmd
1914 	 *				 set_pmd_at();
1915 	 *				 // pmd is re-established
1916 	 *
1917 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1918 	 * which may break userspace.
1919 	 *
1920 	 * pmdp_invalidate() is required to make sure we don't miss
1921 	 * dirty/young flags set by hardware.
1922 	 */
1923 	entry = *pmd;
1924 	pmdp_invalidate(vma, addr, pmd);
1925 
1926 	/*
1927 	 * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1928 	 * corrupt them.
1929 	 */
1930 	if (pmd_dirty(*pmd))
1931 		entry = pmd_mkdirty(entry);
1932 	if (pmd_young(*pmd))
1933 		entry = pmd_mkyoung(entry);
1934 
1935 	entry = pmd_modify(entry, newprot);
1936 	if (preserve_write)
1937 		entry = pmd_mk_savedwrite(entry);
1938 	ret = HPAGE_PMD_NR;
1939 	set_pmd_at(mm, addr, pmd, entry);
1940 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1941 unlock:
1942 	spin_unlock(ptl);
1943 	return ret;
1944 }
1945 
1946 /*
1947  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1948  *
1949  * Note that if it returns page table lock pointer, this routine returns without
1950  * unlocking page table lock. So callers must unlock it.
1951  */
1952 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1953 {
1954 	spinlock_t *ptl;
1955 	ptl = pmd_lock(vma->vm_mm, pmd);
1956 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1957 			pmd_devmap(*pmd)))
1958 		return ptl;
1959 	spin_unlock(ptl);
1960 	return NULL;
1961 }
1962 
1963 /*
1964  * Returns true if a given pud maps a thp, false otherwise.
1965  *
1966  * Note that if it returns true, this routine returns without unlocking page
1967  * table lock. So callers must unlock it.
1968  */
1969 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1970 {
1971 	spinlock_t *ptl;
1972 
1973 	ptl = pud_lock(vma->vm_mm, pud);
1974 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1975 		return ptl;
1976 	spin_unlock(ptl);
1977 	return NULL;
1978 }
1979 
1980 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1981 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1982 		 pud_t *pud, unsigned long addr)
1983 {
1984 	pud_t orig_pud;
1985 	spinlock_t *ptl;
1986 
1987 	ptl = __pud_trans_huge_lock(pud, vma);
1988 	if (!ptl)
1989 		return 0;
1990 	/*
1991 	 * For architectures like ppc64 we look at deposited pgtable
1992 	 * when calling pudp_huge_get_and_clear. So do the
1993 	 * pgtable_trans_huge_withdraw after finishing pudp related
1994 	 * operations.
1995 	 */
1996 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1997 			tlb->fullmm);
1998 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1999 	if (vma_is_dax(vma)) {
2000 		spin_unlock(ptl);
2001 		/* No zero page support yet */
2002 	} else {
2003 		/* No support for anonymous PUD pages yet */
2004 		BUG();
2005 	}
2006 	return 1;
2007 }
2008 
2009 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2010 		unsigned long haddr)
2011 {
2012 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2013 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2014 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2015 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2016 
2017 	count_vm_event(THP_SPLIT_PUD);
2018 
2019 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2020 }
2021 
2022 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2023 		unsigned long address)
2024 {
2025 	spinlock_t *ptl;
2026 	struct mm_struct *mm = vma->vm_mm;
2027 	unsigned long haddr = address & HPAGE_PUD_MASK;
2028 
2029 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2030 	ptl = pud_lock(mm, pud);
2031 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2032 		goto out;
2033 	__split_huge_pud_locked(vma, pud, haddr);
2034 
2035 out:
2036 	spin_unlock(ptl);
2037 	/*
2038 	 * No need to double call mmu_notifier->invalidate_range() callback as
2039 	 * the above pudp_huge_clear_flush_notify() did already call it.
2040 	 */
2041 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2042 					       HPAGE_PUD_SIZE);
2043 }
2044 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2045 
2046 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2047 		unsigned long haddr, pmd_t *pmd)
2048 {
2049 	struct mm_struct *mm = vma->vm_mm;
2050 	pgtable_t pgtable;
2051 	pmd_t _pmd;
2052 	int i;
2053 
2054 	/*
2055 	 * Leave pmd empty until pte is filled note that it is fine to delay
2056 	 * notification until mmu_notifier_invalidate_range_end() as we are
2057 	 * replacing a zero pmd write protected page with a zero pte write
2058 	 * protected page.
2059 	 *
2060 	 * See Documentation/vm/mmu_notifier.txt
2061 	 */
2062 	pmdp_huge_clear_flush(vma, haddr, pmd);
2063 
2064 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2065 	pmd_populate(mm, &_pmd, pgtable);
2066 
2067 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2068 		pte_t *pte, entry;
2069 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2070 		entry = pte_mkspecial(entry);
2071 		pte = pte_offset_map(&_pmd, haddr);
2072 		VM_BUG_ON(!pte_none(*pte));
2073 		set_pte_at(mm, haddr, pte, entry);
2074 		pte_unmap(pte);
2075 	}
2076 	smp_wmb(); /* make pte visible before pmd */
2077 	pmd_populate(mm, pmd, pgtable);
2078 }
2079 
2080 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2081 		unsigned long haddr, bool freeze)
2082 {
2083 	struct mm_struct *mm = vma->vm_mm;
2084 	struct page *page;
2085 	pgtable_t pgtable;
2086 	pmd_t _pmd;
2087 	bool young, write, dirty, soft_dirty, pmd_migration = false;
2088 	unsigned long addr;
2089 	int i;
2090 
2091 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2092 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2093 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2094 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2095 				&& !pmd_devmap(*pmd));
2096 
2097 	count_vm_event(THP_SPLIT_PMD);
2098 
2099 	if (!vma_is_anonymous(vma)) {
2100 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2101 		/*
2102 		 * We are going to unmap this huge page. So
2103 		 * just go ahead and zap it
2104 		 */
2105 		if (arch_needs_pgtable_deposit())
2106 			zap_deposited_table(mm, pmd);
2107 		if (vma_is_dax(vma))
2108 			return;
2109 		page = pmd_page(_pmd);
2110 		if (!PageReferenced(page) && pmd_young(_pmd))
2111 			SetPageReferenced(page);
2112 		page_remove_rmap(page, true);
2113 		put_page(page);
2114 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2115 		return;
2116 	} else if (is_huge_zero_pmd(*pmd)) {
2117 		/*
2118 		 * FIXME: Do we want to invalidate secondary mmu by calling
2119 		 * mmu_notifier_invalidate_range() see comments below inside
2120 		 * __split_huge_pmd() ?
2121 		 *
2122 		 * We are going from a zero huge page write protected to zero
2123 		 * small page also write protected so it does not seems useful
2124 		 * to invalidate secondary mmu at this time.
2125 		 */
2126 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2127 	}
2128 
2129 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2130 	pmd_migration = is_pmd_migration_entry(*pmd);
2131 	if (pmd_migration) {
2132 		swp_entry_t entry;
2133 
2134 		entry = pmd_to_swp_entry(*pmd);
2135 		page = pfn_to_page(swp_offset(entry));
2136 	} else
2137 #endif
2138 		page = pmd_page(*pmd);
2139 	VM_BUG_ON_PAGE(!page_count(page), page);
2140 	page_ref_add(page, HPAGE_PMD_NR - 1);
2141 	write = pmd_write(*pmd);
2142 	young = pmd_young(*pmd);
2143 	dirty = pmd_dirty(*pmd);
2144 	soft_dirty = pmd_soft_dirty(*pmd);
2145 
2146 	pmdp_huge_split_prepare(vma, haddr, pmd);
2147 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2148 	pmd_populate(mm, &_pmd, pgtable);
2149 
2150 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2151 		pte_t entry, *pte;
2152 		/*
2153 		 * Note that NUMA hinting access restrictions are not
2154 		 * transferred to avoid any possibility of altering
2155 		 * permissions across VMAs.
2156 		 */
2157 		if (freeze || pmd_migration) {
2158 			swp_entry_t swp_entry;
2159 			swp_entry = make_migration_entry(page + i, write);
2160 			entry = swp_entry_to_pte(swp_entry);
2161 			if (soft_dirty)
2162 				entry = pte_swp_mksoft_dirty(entry);
2163 		} else {
2164 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2165 			entry = maybe_mkwrite(entry, vma);
2166 			if (!write)
2167 				entry = pte_wrprotect(entry);
2168 			if (!young)
2169 				entry = pte_mkold(entry);
2170 			if (soft_dirty)
2171 				entry = pte_mksoft_dirty(entry);
2172 		}
2173 		if (dirty)
2174 			SetPageDirty(page + i);
2175 		pte = pte_offset_map(&_pmd, addr);
2176 		BUG_ON(!pte_none(*pte));
2177 		set_pte_at(mm, addr, pte, entry);
2178 		atomic_inc(&page[i]._mapcount);
2179 		pte_unmap(pte);
2180 	}
2181 
2182 	/*
2183 	 * Set PG_double_map before dropping compound_mapcount to avoid
2184 	 * false-negative page_mapped().
2185 	 */
2186 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2187 		for (i = 0; i < HPAGE_PMD_NR; i++)
2188 			atomic_inc(&page[i]._mapcount);
2189 	}
2190 
2191 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2192 		/* Last compound_mapcount is gone. */
2193 		__dec_node_page_state(page, NR_ANON_THPS);
2194 		if (TestClearPageDoubleMap(page)) {
2195 			/* No need in mapcount reference anymore */
2196 			for (i = 0; i < HPAGE_PMD_NR; i++)
2197 				atomic_dec(&page[i]._mapcount);
2198 		}
2199 	}
2200 
2201 	smp_wmb(); /* make pte visible before pmd */
2202 	/*
2203 	 * Up to this point the pmd is present and huge and userland has the
2204 	 * whole access to the hugepage during the split (which happens in
2205 	 * place). If we overwrite the pmd with the not-huge version pointing
2206 	 * to the pte here (which of course we could if all CPUs were bug
2207 	 * free), userland could trigger a small page size TLB miss on the
2208 	 * small sized TLB while the hugepage TLB entry is still established in
2209 	 * the huge TLB. Some CPU doesn't like that.
2210 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 	 * 383 on page 93. Intel should be safe but is also warns that it's
2212 	 * only safe if the permission and cache attributes of the two entries
2213 	 * loaded in the two TLB is identical (which should be the case here).
2214 	 * But it is generally safer to never allow small and huge TLB entries
2215 	 * for the same virtual address to be loaded simultaneously. So instead
2216 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 	 * and pmd_trans_splitting must remain set at all times on the pmd
2219 	 * until the split is complete for this pmd), then we flush the SMP TLB
2220 	 * and finally we write the non-huge version of the pmd entry with
2221 	 * pmd_populate.
2222 	 */
2223 	pmdp_invalidate(vma, haddr, pmd);
2224 	pmd_populate(mm, pmd, pgtable);
2225 
2226 	if (freeze) {
2227 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2228 			page_remove_rmap(page + i, false);
2229 			put_page(page + i);
2230 		}
2231 	}
2232 }
2233 
2234 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2235 		unsigned long address, bool freeze, struct page *page)
2236 {
2237 	spinlock_t *ptl;
2238 	struct mm_struct *mm = vma->vm_mm;
2239 	unsigned long haddr = address & HPAGE_PMD_MASK;
2240 
2241 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2242 	ptl = pmd_lock(mm, pmd);
2243 
2244 	/*
2245 	 * If caller asks to setup a migration entries, we need a page to check
2246 	 * pmd against. Otherwise we can end up replacing wrong page.
2247 	 */
2248 	VM_BUG_ON(freeze && !page);
2249 	if (page && page != pmd_page(*pmd))
2250 	        goto out;
2251 
2252 	if (pmd_trans_huge(*pmd)) {
2253 		page = pmd_page(*pmd);
2254 		if (PageMlocked(page))
2255 			clear_page_mlock(page);
2256 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2257 		goto out;
2258 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2259 out:
2260 	spin_unlock(ptl);
2261 	/*
2262 	 * No need to double call mmu_notifier->invalidate_range() callback.
2263 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2264 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2265 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2266 	 *    fault will trigger a flush_notify before pointing to a new page
2267 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2268 	 *    page in the meantime)
2269 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2270 	 *     to invalidate secondary tlb entry they are all still valid.
2271 	 *     any further changes to individual pte will notify. So no need
2272 	 *     to call mmu_notifier->invalidate_range()
2273 	 */
2274 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2275 					       HPAGE_PMD_SIZE);
2276 }
2277 
2278 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2279 		bool freeze, struct page *page)
2280 {
2281 	pgd_t *pgd;
2282 	p4d_t *p4d;
2283 	pud_t *pud;
2284 	pmd_t *pmd;
2285 
2286 	pgd = pgd_offset(vma->vm_mm, address);
2287 	if (!pgd_present(*pgd))
2288 		return;
2289 
2290 	p4d = p4d_offset(pgd, address);
2291 	if (!p4d_present(*p4d))
2292 		return;
2293 
2294 	pud = pud_offset(p4d, address);
2295 	if (!pud_present(*pud))
2296 		return;
2297 
2298 	pmd = pmd_offset(pud, address);
2299 
2300 	__split_huge_pmd(vma, pmd, address, freeze, page);
2301 }
2302 
2303 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2304 			     unsigned long start,
2305 			     unsigned long end,
2306 			     long adjust_next)
2307 {
2308 	/*
2309 	 * If the new start address isn't hpage aligned and it could
2310 	 * previously contain an hugepage: check if we need to split
2311 	 * an huge pmd.
2312 	 */
2313 	if (start & ~HPAGE_PMD_MASK &&
2314 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2315 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2316 		split_huge_pmd_address(vma, start, false, NULL);
2317 
2318 	/*
2319 	 * If the new end address isn't hpage aligned and it could
2320 	 * previously contain an hugepage: check if we need to split
2321 	 * an huge pmd.
2322 	 */
2323 	if (end & ~HPAGE_PMD_MASK &&
2324 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2325 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2326 		split_huge_pmd_address(vma, end, false, NULL);
2327 
2328 	/*
2329 	 * If we're also updating the vma->vm_next->vm_start, if the new
2330 	 * vm_next->vm_start isn't page aligned and it could previously
2331 	 * contain an hugepage: check if we need to split an huge pmd.
2332 	 */
2333 	if (adjust_next > 0) {
2334 		struct vm_area_struct *next = vma->vm_next;
2335 		unsigned long nstart = next->vm_start;
2336 		nstart += adjust_next << PAGE_SHIFT;
2337 		if (nstart & ~HPAGE_PMD_MASK &&
2338 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2339 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2340 			split_huge_pmd_address(next, nstart, false, NULL);
2341 	}
2342 }
2343 
2344 static void freeze_page(struct page *page)
2345 {
2346 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2347 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2348 	bool unmap_success;
2349 
2350 	VM_BUG_ON_PAGE(!PageHead(page), page);
2351 
2352 	if (PageAnon(page))
2353 		ttu_flags |= TTU_SPLIT_FREEZE;
2354 
2355 	unmap_success = try_to_unmap(page, ttu_flags);
2356 	VM_BUG_ON_PAGE(!unmap_success, page);
2357 }
2358 
2359 static void unfreeze_page(struct page *page)
2360 {
2361 	int i;
2362 	if (PageTransHuge(page)) {
2363 		remove_migration_ptes(page, page, true);
2364 	} else {
2365 		for (i = 0; i < HPAGE_PMD_NR; i++)
2366 			remove_migration_ptes(page + i, page + i, true);
2367 	}
2368 }
2369 
2370 static void __split_huge_page_tail(struct page *head, int tail,
2371 		struct lruvec *lruvec, struct list_head *list)
2372 {
2373 	struct page *page_tail = head + tail;
2374 
2375 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2376 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2377 
2378 	/*
2379 	 * tail_page->_refcount is zero and not changing from under us. But
2380 	 * get_page_unless_zero() may be running from under us on the
2381 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2382 	 * atomic_add(), we would then run atomic_set() concurrently with
2383 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2384 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2385 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2386 	 * atomic_set() here would be safe on all archs (and not only on x86),
2387 	 * it's safer to use atomic_inc()/atomic_add().
2388 	 */
2389 	if (PageAnon(head) && !PageSwapCache(head)) {
2390 		page_ref_inc(page_tail);
2391 	} else {
2392 		/* Additional pin to radix tree */
2393 		page_ref_add(page_tail, 2);
2394 	}
2395 
2396 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2397 	page_tail->flags |= (head->flags &
2398 			((1L << PG_referenced) |
2399 			 (1L << PG_swapbacked) |
2400 			 (1L << PG_swapcache) |
2401 			 (1L << PG_mlocked) |
2402 			 (1L << PG_uptodate) |
2403 			 (1L << PG_active) |
2404 			 (1L << PG_locked) |
2405 			 (1L << PG_unevictable) |
2406 			 (1L << PG_dirty)));
2407 
2408 	/*
2409 	 * After clearing PageTail the gup refcount can be released.
2410 	 * Page flags also must be visible before we make the page non-compound.
2411 	 */
2412 	smp_wmb();
2413 
2414 	clear_compound_head(page_tail);
2415 
2416 	if (page_is_young(head))
2417 		set_page_young(page_tail);
2418 	if (page_is_idle(head))
2419 		set_page_idle(page_tail);
2420 
2421 	/* ->mapping in first tail page is compound_mapcount */
2422 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2423 			page_tail);
2424 	page_tail->mapping = head->mapping;
2425 
2426 	page_tail->index = head->index + tail;
2427 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2428 	lru_add_page_tail(head, page_tail, lruvec, list);
2429 }
2430 
2431 static void __split_huge_page(struct page *page, struct list_head *list,
2432 		unsigned long flags)
2433 {
2434 	struct page *head = compound_head(page);
2435 	struct zone *zone = page_zone(head);
2436 	struct lruvec *lruvec;
2437 	pgoff_t end = -1;
2438 	int i;
2439 
2440 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2441 
2442 	/* complete memcg works before add pages to LRU */
2443 	mem_cgroup_split_huge_fixup(head);
2444 
2445 	if (!PageAnon(page))
2446 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2447 
2448 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2449 		__split_huge_page_tail(head, i, lruvec, list);
2450 		/* Some pages can be beyond i_size: drop them from page cache */
2451 		if (head[i].index >= end) {
2452 			__ClearPageDirty(head + i);
2453 			__delete_from_page_cache(head + i, NULL);
2454 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2455 				shmem_uncharge(head->mapping->host, 1);
2456 			put_page(head + i);
2457 		}
2458 	}
2459 
2460 	ClearPageCompound(head);
2461 	/* See comment in __split_huge_page_tail() */
2462 	if (PageAnon(head)) {
2463 		/* Additional pin to radix tree of swap cache */
2464 		if (PageSwapCache(head))
2465 			page_ref_add(head, 2);
2466 		else
2467 			page_ref_inc(head);
2468 	} else {
2469 		/* Additional pin to radix tree */
2470 		page_ref_add(head, 2);
2471 		spin_unlock(&head->mapping->tree_lock);
2472 	}
2473 
2474 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2475 
2476 	unfreeze_page(head);
2477 
2478 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 		struct page *subpage = head + i;
2480 		if (subpage == page)
2481 			continue;
2482 		unlock_page(subpage);
2483 
2484 		/*
2485 		 * Subpages may be freed if there wasn't any mapping
2486 		 * like if add_to_swap() is running on a lru page that
2487 		 * had its mapping zapped. And freeing these pages
2488 		 * requires taking the lru_lock so we do the put_page
2489 		 * of the tail pages after the split is complete.
2490 		 */
2491 		put_page(subpage);
2492 	}
2493 }
2494 
2495 int total_mapcount(struct page *page)
2496 {
2497 	int i, compound, ret;
2498 
2499 	VM_BUG_ON_PAGE(PageTail(page), page);
2500 
2501 	if (likely(!PageCompound(page)))
2502 		return atomic_read(&page->_mapcount) + 1;
2503 
2504 	compound = compound_mapcount(page);
2505 	if (PageHuge(page))
2506 		return compound;
2507 	ret = compound;
2508 	for (i = 0; i < HPAGE_PMD_NR; i++)
2509 		ret += atomic_read(&page[i]._mapcount) + 1;
2510 	/* File pages has compound_mapcount included in _mapcount */
2511 	if (!PageAnon(page))
2512 		return ret - compound * HPAGE_PMD_NR;
2513 	if (PageDoubleMap(page))
2514 		ret -= HPAGE_PMD_NR;
2515 	return ret;
2516 }
2517 
2518 /*
2519  * This calculates accurately how many mappings a transparent hugepage
2520  * has (unlike page_mapcount() which isn't fully accurate). This full
2521  * accuracy is primarily needed to know if copy-on-write faults can
2522  * reuse the page and change the mapping to read-write instead of
2523  * copying them. At the same time this returns the total_mapcount too.
2524  *
2525  * The function returns the highest mapcount any one of the subpages
2526  * has. If the return value is one, even if different processes are
2527  * mapping different subpages of the transparent hugepage, they can
2528  * all reuse it, because each process is reusing a different subpage.
2529  *
2530  * The total_mapcount is instead counting all virtual mappings of the
2531  * subpages. If the total_mapcount is equal to "one", it tells the
2532  * caller all mappings belong to the same "mm" and in turn the
2533  * anon_vma of the transparent hugepage can become the vma->anon_vma
2534  * local one as no other process may be mapping any of the subpages.
2535  *
2536  * It would be more accurate to replace page_mapcount() with
2537  * page_trans_huge_mapcount(), however we only use
2538  * page_trans_huge_mapcount() in the copy-on-write faults where we
2539  * need full accuracy to avoid breaking page pinning, because
2540  * page_trans_huge_mapcount() is slower than page_mapcount().
2541  */
2542 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2543 {
2544 	int i, ret, _total_mapcount, mapcount;
2545 
2546 	/* hugetlbfs shouldn't call it */
2547 	VM_BUG_ON_PAGE(PageHuge(page), page);
2548 
2549 	if (likely(!PageTransCompound(page))) {
2550 		mapcount = atomic_read(&page->_mapcount) + 1;
2551 		if (total_mapcount)
2552 			*total_mapcount = mapcount;
2553 		return mapcount;
2554 	}
2555 
2556 	page = compound_head(page);
2557 
2558 	_total_mapcount = ret = 0;
2559 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2560 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2561 		ret = max(ret, mapcount);
2562 		_total_mapcount += mapcount;
2563 	}
2564 	if (PageDoubleMap(page)) {
2565 		ret -= 1;
2566 		_total_mapcount -= HPAGE_PMD_NR;
2567 	}
2568 	mapcount = compound_mapcount(page);
2569 	ret += mapcount;
2570 	_total_mapcount += mapcount;
2571 	if (total_mapcount)
2572 		*total_mapcount = _total_mapcount;
2573 	return ret;
2574 }
2575 
2576 /* Racy check whether the huge page can be split */
2577 bool can_split_huge_page(struct page *page, int *pextra_pins)
2578 {
2579 	int extra_pins;
2580 
2581 	/* Additional pins from radix tree */
2582 	if (PageAnon(page))
2583 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2584 	else
2585 		extra_pins = HPAGE_PMD_NR;
2586 	if (pextra_pins)
2587 		*pextra_pins = extra_pins;
2588 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2589 }
2590 
2591 /*
2592  * This function splits huge page into normal pages. @page can point to any
2593  * subpage of huge page to split. Split doesn't change the position of @page.
2594  *
2595  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2596  * The huge page must be locked.
2597  *
2598  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2599  *
2600  * Both head page and tail pages will inherit mapping, flags, and so on from
2601  * the hugepage.
2602  *
2603  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2604  * they are not mapped.
2605  *
2606  * Returns 0 if the hugepage is split successfully.
2607  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2608  * us.
2609  */
2610 int split_huge_page_to_list(struct page *page, struct list_head *list)
2611 {
2612 	struct page *head = compound_head(page);
2613 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2614 	struct anon_vma *anon_vma = NULL;
2615 	struct address_space *mapping = NULL;
2616 	int count, mapcount, extra_pins, ret;
2617 	bool mlocked;
2618 	unsigned long flags;
2619 
2620 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2621 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2622 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2623 
2624 	if (PageWriteback(page))
2625 		return -EBUSY;
2626 
2627 	if (PageAnon(head)) {
2628 		/*
2629 		 * The caller does not necessarily hold an mmap_sem that would
2630 		 * prevent the anon_vma disappearing so we first we take a
2631 		 * reference to it and then lock the anon_vma for write. This
2632 		 * is similar to page_lock_anon_vma_read except the write lock
2633 		 * is taken to serialise against parallel split or collapse
2634 		 * operations.
2635 		 */
2636 		anon_vma = page_get_anon_vma(head);
2637 		if (!anon_vma) {
2638 			ret = -EBUSY;
2639 			goto out;
2640 		}
2641 		mapping = NULL;
2642 		anon_vma_lock_write(anon_vma);
2643 	} else {
2644 		mapping = head->mapping;
2645 
2646 		/* Truncated ? */
2647 		if (!mapping) {
2648 			ret = -EBUSY;
2649 			goto out;
2650 		}
2651 
2652 		anon_vma = NULL;
2653 		i_mmap_lock_read(mapping);
2654 	}
2655 
2656 	/*
2657 	 * Racy check if we can split the page, before freeze_page() will
2658 	 * split PMDs
2659 	 */
2660 	if (!can_split_huge_page(head, &extra_pins)) {
2661 		ret = -EBUSY;
2662 		goto out_unlock;
2663 	}
2664 
2665 	mlocked = PageMlocked(page);
2666 	freeze_page(head);
2667 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2668 
2669 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2670 	if (mlocked)
2671 		lru_add_drain();
2672 
2673 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2674 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2675 
2676 	if (mapping) {
2677 		void **pslot;
2678 
2679 		spin_lock(&mapping->tree_lock);
2680 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2681 				page_index(head));
2682 		/*
2683 		 * Check if the head page is present in radix tree.
2684 		 * We assume all tail are present too, if head is there.
2685 		 */
2686 		if (radix_tree_deref_slot_protected(pslot,
2687 					&mapping->tree_lock) != head)
2688 			goto fail;
2689 	}
2690 
2691 	/* Prevent deferred_split_scan() touching ->_refcount */
2692 	spin_lock(&pgdata->split_queue_lock);
2693 	count = page_count(head);
2694 	mapcount = total_mapcount(head);
2695 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2696 		if (!list_empty(page_deferred_list(head))) {
2697 			pgdata->split_queue_len--;
2698 			list_del(page_deferred_list(head));
2699 		}
2700 		if (mapping)
2701 			__dec_node_page_state(page, NR_SHMEM_THPS);
2702 		spin_unlock(&pgdata->split_queue_lock);
2703 		__split_huge_page(page, list, flags);
2704 		if (PageSwapCache(head)) {
2705 			swp_entry_t entry = { .val = page_private(head) };
2706 
2707 			ret = split_swap_cluster(entry);
2708 		} else
2709 			ret = 0;
2710 	} else {
2711 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2712 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2713 					mapcount, count);
2714 			if (PageTail(page))
2715 				dump_page(head, NULL);
2716 			dump_page(page, "total_mapcount(head) > 0");
2717 			BUG();
2718 		}
2719 		spin_unlock(&pgdata->split_queue_lock);
2720 fail:		if (mapping)
2721 			spin_unlock(&mapping->tree_lock);
2722 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2723 		unfreeze_page(head);
2724 		ret = -EBUSY;
2725 	}
2726 
2727 out_unlock:
2728 	if (anon_vma) {
2729 		anon_vma_unlock_write(anon_vma);
2730 		put_anon_vma(anon_vma);
2731 	}
2732 	if (mapping)
2733 		i_mmap_unlock_read(mapping);
2734 out:
2735 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2736 	return ret;
2737 }
2738 
2739 void free_transhuge_page(struct page *page)
2740 {
2741 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2742 	unsigned long flags;
2743 
2744 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2745 	if (!list_empty(page_deferred_list(page))) {
2746 		pgdata->split_queue_len--;
2747 		list_del(page_deferred_list(page));
2748 	}
2749 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2750 	free_compound_page(page);
2751 }
2752 
2753 void deferred_split_huge_page(struct page *page)
2754 {
2755 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2756 	unsigned long flags;
2757 
2758 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2759 
2760 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2761 	if (list_empty(page_deferred_list(page))) {
2762 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2763 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2764 		pgdata->split_queue_len++;
2765 	}
2766 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2767 }
2768 
2769 static unsigned long deferred_split_count(struct shrinker *shrink,
2770 		struct shrink_control *sc)
2771 {
2772 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2773 	return READ_ONCE(pgdata->split_queue_len);
2774 }
2775 
2776 static unsigned long deferred_split_scan(struct shrinker *shrink,
2777 		struct shrink_control *sc)
2778 {
2779 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2780 	unsigned long flags;
2781 	LIST_HEAD(list), *pos, *next;
2782 	struct page *page;
2783 	int split = 0;
2784 
2785 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2786 	/* Take pin on all head pages to avoid freeing them under us */
2787 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2788 		page = list_entry((void *)pos, struct page, mapping);
2789 		page = compound_head(page);
2790 		if (get_page_unless_zero(page)) {
2791 			list_move(page_deferred_list(page), &list);
2792 		} else {
2793 			/* We lost race with put_compound_page() */
2794 			list_del_init(page_deferred_list(page));
2795 			pgdata->split_queue_len--;
2796 		}
2797 		if (!--sc->nr_to_scan)
2798 			break;
2799 	}
2800 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2801 
2802 	list_for_each_safe(pos, next, &list) {
2803 		page = list_entry((void *)pos, struct page, mapping);
2804 		lock_page(page);
2805 		/* split_huge_page() removes page from list on success */
2806 		if (!split_huge_page(page))
2807 			split++;
2808 		unlock_page(page);
2809 		put_page(page);
2810 	}
2811 
2812 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2813 	list_splice_tail(&list, &pgdata->split_queue);
2814 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2815 
2816 	/*
2817 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2818 	 * This can happen if pages were freed under us.
2819 	 */
2820 	if (!split && list_empty(&pgdata->split_queue))
2821 		return SHRINK_STOP;
2822 	return split;
2823 }
2824 
2825 static struct shrinker deferred_split_shrinker = {
2826 	.count_objects = deferred_split_count,
2827 	.scan_objects = deferred_split_scan,
2828 	.seeks = DEFAULT_SEEKS,
2829 	.flags = SHRINKER_NUMA_AWARE,
2830 };
2831 
2832 #ifdef CONFIG_DEBUG_FS
2833 static int split_huge_pages_set(void *data, u64 val)
2834 {
2835 	struct zone *zone;
2836 	struct page *page;
2837 	unsigned long pfn, max_zone_pfn;
2838 	unsigned long total = 0, split = 0;
2839 
2840 	if (val != 1)
2841 		return -EINVAL;
2842 
2843 	for_each_populated_zone(zone) {
2844 		max_zone_pfn = zone_end_pfn(zone);
2845 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2846 			if (!pfn_valid(pfn))
2847 				continue;
2848 
2849 			page = pfn_to_page(pfn);
2850 			if (!get_page_unless_zero(page))
2851 				continue;
2852 
2853 			if (zone != page_zone(page))
2854 				goto next;
2855 
2856 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2857 				goto next;
2858 
2859 			total++;
2860 			lock_page(page);
2861 			if (!split_huge_page(page))
2862 				split++;
2863 			unlock_page(page);
2864 next:
2865 			put_page(page);
2866 		}
2867 	}
2868 
2869 	pr_info("%lu of %lu THP split\n", split, total);
2870 
2871 	return 0;
2872 }
2873 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2874 		"%llu\n");
2875 
2876 static int __init split_huge_pages_debugfs(void)
2877 {
2878 	void *ret;
2879 
2880 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2881 			&split_huge_pages_fops);
2882 	if (!ret)
2883 		pr_warn("Failed to create split_huge_pages in debugfs");
2884 	return 0;
2885 }
2886 late_initcall(split_huge_pages_debugfs);
2887 #endif
2888 
2889 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2890 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2891 		struct page *page)
2892 {
2893 	struct vm_area_struct *vma = pvmw->vma;
2894 	struct mm_struct *mm = vma->vm_mm;
2895 	unsigned long address = pvmw->address;
2896 	pmd_t pmdval;
2897 	swp_entry_t entry;
2898 	pmd_t pmdswp;
2899 
2900 	if (!(pvmw->pmd && !pvmw->pte))
2901 		return;
2902 
2903 	mmu_notifier_invalidate_range_start(mm, address,
2904 			address + HPAGE_PMD_SIZE);
2905 
2906 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2907 	pmdval = *pvmw->pmd;
2908 	pmdp_invalidate(vma, address, pvmw->pmd);
2909 	if (pmd_dirty(pmdval))
2910 		set_page_dirty(page);
2911 	entry = make_migration_entry(page, pmd_write(pmdval));
2912 	pmdswp = swp_entry_to_pmd(entry);
2913 	if (pmd_soft_dirty(pmdval))
2914 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2915 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2916 	page_remove_rmap(page, true);
2917 	put_page(page);
2918 
2919 	mmu_notifier_invalidate_range_end(mm, address,
2920 			address + HPAGE_PMD_SIZE);
2921 }
2922 
2923 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2924 {
2925 	struct vm_area_struct *vma = pvmw->vma;
2926 	struct mm_struct *mm = vma->vm_mm;
2927 	unsigned long address = pvmw->address;
2928 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2929 	pmd_t pmde;
2930 	swp_entry_t entry;
2931 
2932 	if (!(pvmw->pmd && !pvmw->pte))
2933 		return;
2934 
2935 	entry = pmd_to_swp_entry(*pvmw->pmd);
2936 	get_page(new);
2937 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2938 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2939 		pmde = pmd_mksoft_dirty(pmde);
2940 	if (is_write_migration_entry(entry))
2941 		pmde = maybe_pmd_mkwrite(pmde, vma);
2942 
2943 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2944 	page_add_anon_rmap(new, vma, mmun_start, true);
2945 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2946 	if (vma->vm_flags & VM_LOCKED)
2947 		mlock_vma_page(new);
2948 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2949 }
2950 #endif
2951