xref: /openbmc/linux/mm/huge_memory.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/*
487 	 * ->lru in the tail pages is occupied by compound_head.
488 	 * Let's use ->mapping + ->index in the second tail page as list_head.
489 	 */
490 	return (struct list_head *)&page[2].mapping;
491 }
492 
493 void prep_transhuge_page(struct page *page)
494 {
495 	/*
496 	 * we use page->mapping and page->indexlru in second tail page
497 	 * as list_head: assuming THP order >= 2
498 	 */
499 
500 	INIT_LIST_HEAD(page_deferred_list(page));
501 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503 
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 		loff_t off, unsigned long flags, unsigned long size)
506 {
507 	unsigned long addr;
508 	loff_t off_end = off + len;
509 	loff_t off_align = round_up(off, size);
510 	unsigned long len_pad;
511 
512 	if (off_end <= off_align || (off_end - off_align) < size)
513 		return 0;
514 
515 	len_pad = len + size;
516 	if (len_pad < len || (off + len_pad) < off)
517 		return 0;
518 
519 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 					      off >> PAGE_SHIFT, flags);
521 	if (IS_ERR_VALUE(addr))
522 		return 0;
523 
524 	addr += (off - addr) & (size - 1);
525 	return addr;
526 }
527 
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 		unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532 
533 	if (addr)
534 		goto out;
535 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 		goto out;
537 
538 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 	if (addr)
540 		return addr;
541 
542  out:
543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546 
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 		gfp_t gfp)
549 {
550 	struct vm_area_struct *vma = vmf->vma;
551 	struct mem_cgroup *memcg;
552 	pgtable_t pgtable;
553 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 	int ret = 0;
555 
556 	VM_BUG_ON_PAGE(!PageCompound(page), page);
557 
558 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
559 				  true)) {
560 		put_page(page);
561 		count_vm_event(THP_FAULT_FALLBACK);
562 		return VM_FAULT_FALLBACK;
563 	}
564 
565 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
566 	if (unlikely(!pgtable)) {
567 		ret = VM_FAULT_OOM;
568 		goto release;
569 	}
570 
571 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572 	/*
573 	 * The memory barrier inside __SetPageUptodate makes sure that
574 	 * clear_huge_page writes become visible before the set_pmd_at()
575 	 * write.
576 	 */
577 	__SetPageUptodate(page);
578 
579 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
580 	if (unlikely(!pmd_none(*vmf->pmd))) {
581 		goto unlock_release;
582 	} else {
583 		pmd_t entry;
584 
585 		ret = check_stable_address_space(vma->vm_mm);
586 		if (ret)
587 			goto unlock_release;
588 
589 		/* Deliver the page fault to userland */
590 		if (userfaultfd_missing(vma)) {
591 			int ret;
592 
593 			spin_unlock(vmf->ptl);
594 			mem_cgroup_cancel_charge(page, memcg, true);
595 			put_page(page);
596 			pte_free(vma->vm_mm, pgtable);
597 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
598 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
599 			return ret;
600 		}
601 
602 		entry = mk_huge_pmd(page, vma->vm_page_prot);
603 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
604 		page_add_new_anon_rmap(page, vma, haddr, true);
605 		mem_cgroup_commit_charge(page, memcg, false, true);
606 		lru_cache_add_active_or_unevictable(page, vma);
607 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
608 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
609 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
610 		mm_inc_nr_ptes(vma->vm_mm);
611 		spin_unlock(vmf->ptl);
612 		count_vm_event(THP_FAULT_ALLOC);
613 	}
614 
615 	return 0;
616 unlock_release:
617 	spin_unlock(vmf->ptl);
618 release:
619 	if (pgtable)
620 		pte_free(vma->vm_mm, pgtable);
621 	mem_cgroup_cancel_charge(page, memcg, true);
622 	put_page(page);
623 	return ret;
624 
625 }
626 
627 /*
628  * always: directly stall for all thp allocations
629  * defer: wake kswapd and fail if not immediately available
630  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
631  *		  fail if not immediately available
632  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
633  *	    available
634  * never: never stall for any thp allocation
635  */
636 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 {
638 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639 
640 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
641 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
642 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
643 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
644 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
645 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646 							     __GFP_KSWAPD_RECLAIM);
647 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
648 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 							     0);
650 	return GFP_TRANSHUGE_LIGHT;
651 }
652 
653 /* Caller must hold page table lock. */
654 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
655 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
656 		struct page *zero_page)
657 {
658 	pmd_t entry;
659 	if (!pmd_none(*pmd))
660 		return false;
661 	entry = mk_pmd(zero_page, vma->vm_page_prot);
662 	entry = pmd_mkhuge(entry);
663 	if (pgtable)
664 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
665 	set_pmd_at(mm, haddr, pmd, entry);
666 	mm_inc_nr_ptes(mm);
667 	return true;
668 }
669 
670 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 {
672 	struct vm_area_struct *vma = vmf->vma;
673 	gfp_t gfp;
674 	struct page *page;
675 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676 
677 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
678 		return VM_FAULT_FALLBACK;
679 	if (unlikely(anon_vma_prepare(vma)))
680 		return VM_FAULT_OOM;
681 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
682 		return VM_FAULT_OOM;
683 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
684 			!mm_forbids_zeropage(vma->vm_mm) &&
685 			transparent_hugepage_use_zero_page()) {
686 		pgtable_t pgtable;
687 		struct page *zero_page;
688 		bool set;
689 		int ret;
690 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
691 		if (unlikely(!pgtable))
692 			return VM_FAULT_OOM;
693 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
694 		if (unlikely(!zero_page)) {
695 			pte_free(vma->vm_mm, pgtable);
696 			count_vm_event(THP_FAULT_FALLBACK);
697 			return VM_FAULT_FALLBACK;
698 		}
699 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
700 		ret = 0;
701 		set = false;
702 		if (pmd_none(*vmf->pmd)) {
703 			ret = check_stable_address_space(vma->vm_mm);
704 			if (ret) {
705 				spin_unlock(vmf->ptl);
706 			} else if (userfaultfd_missing(vma)) {
707 				spin_unlock(vmf->ptl);
708 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
709 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
710 			} else {
711 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
712 						   haddr, vmf->pmd, zero_page);
713 				spin_unlock(vmf->ptl);
714 				set = true;
715 			}
716 		} else
717 			spin_unlock(vmf->ptl);
718 		if (!set)
719 			pte_free(vma->vm_mm, pgtable);
720 		return ret;
721 	}
722 	gfp = alloc_hugepage_direct_gfpmask(vma);
723 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
724 	if (unlikely(!page)) {
725 		count_vm_event(THP_FAULT_FALLBACK);
726 		return VM_FAULT_FALLBACK;
727 	}
728 	prep_transhuge_page(page);
729 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
730 }
731 
732 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
733 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
734 		pgtable_t pgtable)
735 {
736 	struct mm_struct *mm = vma->vm_mm;
737 	pmd_t entry;
738 	spinlock_t *ptl;
739 
740 	ptl = pmd_lock(mm, pmd);
741 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
742 	if (pfn_t_devmap(pfn))
743 		entry = pmd_mkdevmap(entry);
744 	if (write) {
745 		entry = pmd_mkyoung(pmd_mkdirty(entry));
746 		entry = maybe_pmd_mkwrite(entry, vma);
747 	}
748 
749 	if (pgtable) {
750 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
751 		mm_inc_nr_ptes(mm);
752 	}
753 
754 	set_pmd_at(mm, addr, pmd, entry);
755 	update_mmu_cache_pmd(vma, addr, pmd);
756 	spin_unlock(ptl);
757 }
758 
759 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
760 			pmd_t *pmd, pfn_t pfn, bool write)
761 {
762 	pgprot_t pgprot = vma->vm_page_prot;
763 	pgtable_t pgtable = NULL;
764 	/*
765 	 * If we had pmd_special, we could avoid all these restrictions,
766 	 * but we need to be consistent with PTEs and architectures that
767 	 * can't support a 'special' bit.
768 	 */
769 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
770 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
771 						(VM_PFNMAP|VM_MIXEDMAP));
772 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
773 	BUG_ON(!pfn_t_devmap(pfn));
774 
775 	if (addr < vma->vm_start || addr >= vma->vm_end)
776 		return VM_FAULT_SIGBUS;
777 
778 	if (arch_needs_pgtable_deposit()) {
779 		pgtable = pte_alloc_one(vma->vm_mm, addr);
780 		if (!pgtable)
781 			return VM_FAULT_OOM;
782 	}
783 
784 	track_pfn_insert(vma, &pgprot, pfn);
785 
786 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
787 	return VM_FAULT_NOPAGE;
788 }
789 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790 
791 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
792 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 {
794 	if (likely(vma->vm_flags & VM_WRITE))
795 		pud = pud_mkwrite(pud);
796 	return pud;
797 }
798 
799 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
800 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 {
802 	struct mm_struct *mm = vma->vm_mm;
803 	pud_t entry;
804 	spinlock_t *ptl;
805 
806 	ptl = pud_lock(mm, pud);
807 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
808 	if (pfn_t_devmap(pfn))
809 		entry = pud_mkdevmap(entry);
810 	if (write) {
811 		entry = pud_mkyoung(pud_mkdirty(entry));
812 		entry = maybe_pud_mkwrite(entry, vma);
813 	}
814 	set_pud_at(mm, addr, pud, entry);
815 	update_mmu_cache_pud(vma, addr, pud);
816 	spin_unlock(ptl);
817 }
818 
819 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
820 			pud_t *pud, pfn_t pfn, bool write)
821 {
822 	pgprot_t pgprot = vma->vm_page_prot;
823 	/*
824 	 * If we had pud_special, we could avoid all these restrictions,
825 	 * but we need to be consistent with PTEs and architectures that
826 	 * can't support a 'special' bit.
827 	 */
828 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
829 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
830 						(VM_PFNMAP|VM_MIXEDMAP));
831 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
832 	BUG_ON(!pfn_t_devmap(pfn));
833 
834 	if (addr < vma->vm_start || addr >= vma->vm_end)
835 		return VM_FAULT_SIGBUS;
836 
837 	track_pfn_insert(vma, &pgprot, pfn);
838 
839 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
840 	return VM_FAULT_NOPAGE;
841 }
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
843 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844 
845 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
846 		pmd_t *pmd, int flags)
847 {
848 	pmd_t _pmd;
849 
850 	_pmd = pmd_mkyoung(*pmd);
851 	if (flags & FOLL_WRITE)
852 		_pmd = pmd_mkdirty(_pmd);
853 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
854 				pmd, _pmd, flags & FOLL_WRITE))
855 		update_mmu_cache_pmd(vma, addr, pmd);
856 }
857 
858 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
859 		pmd_t *pmd, int flags)
860 {
861 	unsigned long pfn = pmd_pfn(*pmd);
862 	struct mm_struct *mm = vma->vm_mm;
863 	struct dev_pagemap *pgmap;
864 	struct page *page;
865 
866 	assert_spin_locked(pmd_lockptr(mm, pmd));
867 
868 	/*
869 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
870 	 * not be in this function with `flags & FOLL_COW` set.
871 	 */
872 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
873 
874 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
875 		return NULL;
876 
877 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
878 		/* pass */;
879 	else
880 		return NULL;
881 
882 	if (flags & FOLL_TOUCH)
883 		touch_pmd(vma, addr, pmd, flags);
884 
885 	/*
886 	 * device mapped pages can only be returned if the
887 	 * caller will manage the page reference count.
888 	 */
889 	if (!(flags & FOLL_GET))
890 		return ERR_PTR(-EEXIST);
891 
892 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
893 	pgmap = get_dev_pagemap(pfn, NULL);
894 	if (!pgmap)
895 		return ERR_PTR(-EFAULT);
896 	page = pfn_to_page(pfn);
897 	get_page(page);
898 	put_dev_pagemap(pgmap);
899 
900 	return page;
901 }
902 
903 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
905 		  struct vm_area_struct *vma)
906 {
907 	spinlock_t *dst_ptl, *src_ptl;
908 	struct page *src_page;
909 	pmd_t pmd;
910 	pgtable_t pgtable = NULL;
911 	int ret = -ENOMEM;
912 
913 	/* Skip if can be re-fill on fault */
914 	if (!vma_is_anonymous(vma))
915 		return 0;
916 
917 	pgtable = pte_alloc_one(dst_mm, addr);
918 	if (unlikely(!pgtable))
919 		goto out;
920 
921 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
922 	src_ptl = pmd_lockptr(src_mm, src_pmd);
923 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924 
925 	ret = -EAGAIN;
926 	pmd = *src_pmd;
927 
928 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929 	if (unlikely(is_swap_pmd(pmd))) {
930 		swp_entry_t entry = pmd_to_swp_entry(pmd);
931 
932 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
933 		if (is_write_migration_entry(entry)) {
934 			make_migration_entry_read(&entry);
935 			pmd = swp_entry_to_pmd(entry);
936 			if (pmd_swp_soft_dirty(*src_pmd))
937 				pmd = pmd_swp_mksoft_dirty(pmd);
938 			set_pmd_at(src_mm, addr, src_pmd, pmd);
939 		}
940 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
941 		mm_inc_nr_ptes(dst_mm);
942 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
943 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
944 		ret = 0;
945 		goto out_unlock;
946 	}
947 #endif
948 
949 	if (unlikely(!pmd_trans_huge(pmd))) {
950 		pte_free(dst_mm, pgtable);
951 		goto out_unlock;
952 	}
953 	/*
954 	 * When page table lock is held, the huge zero pmd should not be
955 	 * under splitting since we don't split the page itself, only pmd to
956 	 * a page table.
957 	 */
958 	if (is_huge_zero_pmd(pmd)) {
959 		struct page *zero_page;
960 		/*
961 		 * get_huge_zero_page() will never allocate a new page here,
962 		 * since we already have a zero page to copy. It just takes a
963 		 * reference.
964 		 */
965 		zero_page = mm_get_huge_zero_page(dst_mm);
966 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
967 				zero_page);
968 		ret = 0;
969 		goto out_unlock;
970 	}
971 
972 	src_page = pmd_page(pmd);
973 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
974 	get_page(src_page);
975 	page_dup_rmap(src_page, true);
976 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
977 	mm_inc_nr_ptes(dst_mm);
978 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
979 
980 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
981 	pmd = pmd_mkold(pmd_wrprotect(pmd));
982 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
983 
984 	ret = 0;
985 out_unlock:
986 	spin_unlock(src_ptl);
987 	spin_unlock(dst_ptl);
988 out:
989 	return ret;
990 }
991 
992 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
993 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
994 		pud_t *pud, int flags)
995 {
996 	pud_t _pud;
997 
998 	_pud = pud_mkyoung(*pud);
999 	if (flags & FOLL_WRITE)
1000 		_pud = pud_mkdirty(_pud);
1001 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1002 				pud, _pud, flags & FOLL_WRITE))
1003 		update_mmu_cache_pud(vma, addr, pud);
1004 }
1005 
1006 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1007 		pud_t *pud, int flags)
1008 {
1009 	unsigned long pfn = pud_pfn(*pud);
1010 	struct mm_struct *mm = vma->vm_mm;
1011 	struct dev_pagemap *pgmap;
1012 	struct page *page;
1013 
1014 	assert_spin_locked(pud_lockptr(mm, pud));
1015 
1016 	if (flags & FOLL_WRITE && !pud_write(*pud))
1017 		return NULL;
1018 
1019 	if (pud_present(*pud) && pud_devmap(*pud))
1020 		/* pass */;
1021 	else
1022 		return NULL;
1023 
1024 	if (flags & FOLL_TOUCH)
1025 		touch_pud(vma, addr, pud, flags);
1026 
1027 	/*
1028 	 * device mapped pages can only be returned if the
1029 	 * caller will manage the page reference count.
1030 	 */
1031 	if (!(flags & FOLL_GET))
1032 		return ERR_PTR(-EEXIST);
1033 
1034 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1035 	pgmap = get_dev_pagemap(pfn, NULL);
1036 	if (!pgmap)
1037 		return ERR_PTR(-EFAULT);
1038 	page = pfn_to_page(pfn);
1039 	get_page(page);
1040 	put_dev_pagemap(pgmap);
1041 
1042 	return page;
1043 }
1044 
1045 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1047 		  struct vm_area_struct *vma)
1048 {
1049 	spinlock_t *dst_ptl, *src_ptl;
1050 	pud_t pud;
1051 	int ret;
1052 
1053 	dst_ptl = pud_lock(dst_mm, dst_pud);
1054 	src_ptl = pud_lockptr(src_mm, src_pud);
1055 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1056 
1057 	ret = -EAGAIN;
1058 	pud = *src_pud;
1059 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1060 		goto out_unlock;
1061 
1062 	/*
1063 	 * When page table lock is held, the huge zero pud should not be
1064 	 * under splitting since we don't split the page itself, only pud to
1065 	 * a page table.
1066 	 */
1067 	if (is_huge_zero_pud(pud)) {
1068 		/* No huge zero pud yet */
1069 	}
1070 
1071 	pudp_set_wrprotect(src_mm, addr, src_pud);
1072 	pud = pud_mkold(pud_wrprotect(pud));
1073 	set_pud_at(dst_mm, addr, dst_pud, pud);
1074 
1075 	ret = 0;
1076 out_unlock:
1077 	spin_unlock(src_ptl);
1078 	spin_unlock(dst_ptl);
1079 	return ret;
1080 }
1081 
1082 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1083 {
1084 	pud_t entry;
1085 	unsigned long haddr;
1086 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1087 
1088 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1089 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1090 		goto unlock;
1091 
1092 	entry = pud_mkyoung(orig_pud);
1093 	if (write)
1094 		entry = pud_mkdirty(entry);
1095 	haddr = vmf->address & HPAGE_PUD_MASK;
1096 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1097 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1098 
1099 unlock:
1100 	spin_unlock(vmf->ptl);
1101 }
1102 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1103 
1104 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1105 {
1106 	pmd_t entry;
1107 	unsigned long haddr;
1108 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1109 
1110 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1111 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1112 		goto unlock;
1113 
1114 	entry = pmd_mkyoung(orig_pmd);
1115 	if (write)
1116 		entry = pmd_mkdirty(entry);
1117 	haddr = vmf->address & HPAGE_PMD_MASK;
1118 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1119 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1120 
1121 unlock:
1122 	spin_unlock(vmf->ptl);
1123 }
1124 
1125 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1126 		struct page *page)
1127 {
1128 	struct vm_area_struct *vma = vmf->vma;
1129 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1130 	struct mem_cgroup *memcg;
1131 	pgtable_t pgtable;
1132 	pmd_t _pmd;
1133 	int ret = 0, i;
1134 	struct page **pages;
1135 	unsigned long mmun_start;	/* For mmu_notifiers */
1136 	unsigned long mmun_end;		/* For mmu_notifiers */
1137 
1138 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139 			GFP_KERNEL);
1140 	if (unlikely(!pages)) {
1141 		ret |= VM_FAULT_OOM;
1142 		goto out;
1143 	}
1144 
1145 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1146 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1147 					       vmf->address, page_to_nid(page));
1148 		if (unlikely(!pages[i] ||
1149 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1150 				     GFP_KERNEL, &memcg, false))) {
1151 			if (pages[i])
1152 				put_page(pages[i]);
1153 			while (--i >= 0) {
1154 				memcg = (void *)page_private(pages[i]);
1155 				set_page_private(pages[i], 0);
1156 				mem_cgroup_cancel_charge(pages[i], memcg,
1157 						false);
1158 				put_page(pages[i]);
1159 			}
1160 			kfree(pages);
1161 			ret |= VM_FAULT_OOM;
1162 			goto out;
1163 		}
1164 		set_page_private(pages[i], (unsigned long)memcg);
1165 	}
1166 
1167 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1168 		copy_user_highpage(pages[i], page + i,
1169 				   haddr + PAGE_SIZE * i, vma);
1170 		__SetPageUptodate(pages[i]);
1171 		cond_resched();
1172 	}
1173 
1174 	mmun_start = haddr;
1175 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1176 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1177 
1178 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1179 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1180 		goto out_free_pages;
1181 	VM_BUG_ON_PAGE(!PageHead(page), page);
1182 
1183 	/*
1184 	 * Leave pmd empty until pte is filled note we must notify here as
1185 	 * concurrent CPU thread might write to new page before the call to
1186 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1187 	 * device seeing memory write in different order than CPU.
1188 	 *
1189 	 * See Documentation/vm/mmu_notifier.txt
1190 	 */
1191 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1192 
1193 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1194 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1195 
1196 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1197 		pte_t entry;
1198 		entry = mk_pte(pages[i], vma->vm_page_prot);
1199 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1200 		memcg = (void *)page_private(pages[i]);
1201 		set_page_private(pages[i], 0);
1202 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1203 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1204 		lru_cache_add_active_or_unevictable(pages[i], vma);
1205 		vmf->pte = pte_offset_map(&_pmd, haddr);
1206 		VM_BUG_ON(!pte_none(*vmf->pte));
1207 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1208 		pte_unmap(vmf->pte);
1209 	}
1210 	kfree(pages);
1211 
1212 	smp_wmb(); /* make pte visible before pmd */
1213 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1214 	page_remove_rmap(page, true);
1215 	spin_unlock(vmf->ptl);
1216 
1217 	/*
1218 	 * No need to double call mmu_notifier->invalidate_range() callback as
1219 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1220 	 */
1221 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1222 						mmun_end);
1223 
1224 	ret |= VM_FAULT_WRITE;
1225 	put_page(page);
1226 
1227 out:
1228 	return ret;
1229 
1230 out_free_pages:
1231 	spin_unlock(vmf->ptl);
1232 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1233 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1234 		memcg = (void *)page_private(pages[i]);
1235 		set_page_private(pages[i], 0);
1236 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1237 		put_page(pages[i]);
1238 	}
1239 	kfree(pages);
1240 	goto out;
1241 }
1242 
1243 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1244 {
1245 	struct vm_area_struct *vma = vmf->vma;
1246 	struct page *page = NULL, *new_page;
1247 	struct mem_cgroup *memcg;
1248 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1249 	unsigned long mmun_start;	/* For mmu_notifiers */
1250 	unsigned long mmun_end;		/* For mmu_notifiers */
1251 	gfp_t huge_gfp;			/* for allocation and charge */
1252 	int ret = 0;
1253 
1254 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1255 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1256 	if (is_huge_zero_pmd(orig_pmd))
1257 		goto alloc;
1258 	spin_lock(vmf->ptl);
1259 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1260 		goto out_unlock;
1261 
1262 	page = pmd_page(orig_pmd);
1263 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1264 	/*
1265 	 * We can only reuse the page if nobody else maps the huge page or it's
1266 	 * part.
1267 	 */
1268 	if (!trylock_page(page)) {
1269 		get_page(page);
1270 		spin_unlock(vmf->ptl);
1271 		lock_page(page);
1272 		spin_lock(vmf->ptl);
1273 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1274 			unlock_page(page);
1275 			put_page(page);
1276 			goto out_unlock;
1277 		}
1278 		put_page(page);
1279 	}
1280 	if (reuse_swap_page(page, NULL)) {
1281 		pmd_t entry;
1282 		entry = pmd_mkyoung(orig_pmd);
1283 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1284 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1285 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1286 		ret |= VM_FAULT_WRITE;
1287 		unlock_page(page);
1288 		goto out_unlock;
1289 	}
1290 	unlock_page(page);
1291 	get_page(page);
1292 	spin_unlock(vmf->ptl);
1293 alloc:
1294 	if (transparent_hugepage_enabled(vma) &&
1295 	    !transparent_hugepage_debug_cow()) {
1296 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1297 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1298 	} else
1299 		new_page = NULL;
1300 
1301 	if (likely(new_page)) {
1302 		prep_transhuge_page(new_page);
1303 	} else {
1304 		if (!page) {
1305 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1306 			ret |= VM_FAULT_FALLBACK;
1307 		} else {
1308 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1309 			if (ret & VM_FAULT_OOM) {
1310 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1311 				ret |= VM_FAULT_FALLBACK;
1312 			}
1313 			put_page(page);
1314 		}
1315 		count_vm_event(THP_FAULT_FALLBACK);
1316 		goto out;
1317 	}
1318 
1319 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1320 				huge_gfp | __GFP_NORETRY, &memcg, true))) {
1321 		put_page(new_page);
1322 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1323 		if (page)
1324 			put_page(page);
1325 		ret |= VM_FAULT_FALLBACK;
1326 		count_vm_event(THP_FAULT_FALLBACK);
1327 		goto out;
1328 	}
1329 
1330 	count_vm_event(THP_FAULT_ALLOC);
1331 
1332 	if (!page)
1333 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1334 	else
1335 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1336 	__SetPageUptodate(new_page);
1337 
1338 	mmun_start = haddr;
1339 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1340 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1341 
1342 	spin_lock(vmf->ptl);
1343 	if (page)
1344 		put_page(page);
1345 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1346 		spin_unlock(vmf->ptl);
1347 		mem_cgroup_cancel_charge(new_page, memcg, true);
1348 		put_page(new_page);
1349 		goto out_mn;
1350 	} else {
1351 		pmd_t entry;
1352 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1353 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1355 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1356 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1357 		lru_cache_add_active_or_unevictable(new_page, vma);
1358 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1359 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360 		if (!page) {
1361 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1362 		} else {
1363 			VM_BUG_ON_PAGE(!PageHead(page), page);
1364 			page_remove_rmap(page, true);
1365 			put_page(page);
1366 		}
1367 		ret |= VM_FAULT_WRITE;
1368 	}
1369 	spin_unlock(vmf->ptl);
1370 out_mn:
1371 	/*
1372 	 * No need to double call mmu_notifier->invalidate_range() callback as
1373 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1374 	 */
1375 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1376 					       mmun_end);
1377 out:
1378 	return ret;
1379 out_unlock:
1380 	spin_unlock(vmf->ptl);
1381 	return ret;
1382 }
1383 
1384 /*
1385  * FOLL_FORCE can write to even unwritable pmd's, but only
1386  * after we've gone through a COW cycle and they are dirty.
1387  */
1388 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1389 {
1390 	return pmd_write(pmd) ||
1391 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1392 }
1393 
1394 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1395 				   unsigned long addr,
1396 				   pmd_t *pmd,
1397 				   unsigned int flags)
1398 {
1399 	struct mm_struct *mm = vma->vm_mm;
1400 	struct page *page = NULL;
1401 
1402 	assert_spin_locked(pmd_lockptr(mm, pmd));
1403 
1404 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1405 		goto out;
1406 
1407 	/* Avoid dumping huge zero page */
1408 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1409 		return ERR_PTR(-EFAULT);
1410 
1411 	/* Full NUMA hinting faults to serialise migration in fault paths */
1412 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1413 		goto out;
1414 
1415 	page = pmd_page(*pmd);
1416 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1417 	if (flags & FOLL_TOUCH)
1418 		touch_pmd(vma, addr, pmd, flags);
1419 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1420 		/*
1421 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1422 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1423 		 *
1424 		 * For anon THP:
1425 		 *
1426 		 * In most cases the pmd is the only mapping of the page as we
1427 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1428 		 * writable private mappings in populate_vma_page_range().
1429 		 *
1430 		 * The only scenario when we have the page shared here is if we
1431 		 * mlocking read-only mapping shared over fork(). We skip
1432 		 * mlocking such pages.
1433 		 *
1434 		 * For file THP:
1435 		 *
1436 		 * We can expect PageDoubleMap() to be stable under page lock:
1437 		 * for file pages we set it in page_add_file_rmap(), which
1438 		 * requires page to be locked.
1439 		 */
1440 
1441 		if (PageAnon(page) && compound_mapcount(page) != 1)
1442 			goto skip_mlock;
1443 		if (PageDoubleMap(page) || !page->mapping)
1444 			goto skip_mlock;
1445 		if (!trylock_page(page))
1446 			goto skip_mlock;
1447 		lru_add_drain();
1448 		if (page->mapping && !PageDoubleMap(page))
1449 			mlock_vma_page(page);
1450 		unlock_page(page);
1451 	}
1452 skip_mlock:
1453 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1454 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1455 	if (flags & FOLL_GET)
1456 		get_page(page);
1457 
1458 out:
1459 	return page;
1460 }
1461 
1462 /* NUMA hinting page fault entry point for trans huge pmds */
1463 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1464 {
1465 	struct vm_area_struct *vma = vmf->vma;
1466 	struct anon_vma *anon_vma = NULL;
1467 	struct page *page;
1468 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1469 	int page_nid = -1, this_nid = numa_node_id();
1470 	int target_nid, last_cpupid = -1;
1471 	bool page_locked;
1472 	bool migrated = false;
1473 	bool was_writable;
1474 	int flags = 0;
1475 
1476 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1477 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1478 		goto out_unlock;
1479 
1480 	/*
1481 	 * If there are potential migrations, wait for completion and retry
1482 	 * without disrupting NUMA hinting information. Do not relock and
1483 	 * check_same as the page may no longer be mapped.
1484 	 */
1485 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1486 		page = pmd_page(*vmf->pmd);
1487 		if (!get_page_unless_zero(page))
1488 			goto out_unlock;
1489 		spin_unlock(vmf->ptl);
1490 		wait_on_page_locked(page);
1491 		put_page(page);
1492 		goto out;
1493 	}
1494 
1495 	page = pmd_page(pmd);
1496 	BUG_ON(is_huge_zero_page(page));
1497 	page_nid = page_to_nid(page);
1498 	last_cpupid = page_cpupid_last(page);
1499 	count_vm_numa_event(NUMA_HINT_FAULTS);
1500 	if (page_nid == this_nid) {
1501 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1502 		flags |= TNF_FAULT_LOCAL;
1503 	}
1504 
1505 	/* See similar comment in do_numa_page for explanation */
1506 	if (!pmd_savedwrite(pmd))
1507 		flags |= TNF_NO_GROUP;
1508 
1509 	/*
1510 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1511 	 * page_table_lock if at all possible
1512 	 */
1513 	page_locked = trylock_page(page);
1514 	target_nid = mpol_misplaced(page, vma, haddr);
1515 	if (target_nid == -1) {
1516 		/* If the page was locked, there are no parallel migrations */
1517 		if (page_locked)
1518 			goto clear_pmdnuma;
1519 	}
1520 
1521 	/* Migration could have started since the pmd_trans_migrating check */
1522 	if (!page_locked) {
1523 		page_nid = -1;
1524 		if (!get_page_unless_zero(page))
1525 			goto out_unlock;
1526 		spin_unlock(vmf->ptl);
1527 		wait_on_page_locked(page);
1528 		put_page(page);
1529 		goto out;
1530 	}
1531 
1532 	/*
1533 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1534 	 * to serialises splits
1535 	 */
1536 	get_page(page);
1537 	spin_unlock(vmf->ptl);
1538 	anon_vma = page_lock_anon_vma_read(page);
1539 
1540 	/* Confirm the PMD did not change while page_table_lock was released */
1541 	spin_lock(vmf->ptl);
1542 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1543 		unlock_page(page);
1544 		put_page(page);
1545 		page_nid = -1;
1546 		goto out_unlock;
1547 	}
1548 
1549 	/* Bail if we fail to protect against THP splits for any reason */
1550 	if (unlikely(!anon_vma)) {
1551 		put_page(page);
1552 		page_nid = -1;
1553 		goto clear_pmdnuma;
1554 	}
1555 
1556 	/*
1557 	 * Since we took the NUMA fault, we must have observed the !accessible
1558 	 * bit. Make sure all other CPUs agree with that, to avoid them
1559 	 * modifying the page we're about to migrate.
1560 	 *
1561 	 * Must be done under PTL such that we'll observe the relevant
1562 	 * inc_tlb_flush_pending().
1563 	 *
1564 	 * We are not sure a pending tlb flush here is for a huge page
1565 	 * mapping or not. Hence use the tlb range variant
1566 	 */
1567 	if (mm_tlb_flush_pending(vma->vm_mm))
1568 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1569 
1570 	/*
1571 	 * Migrate the THP to the requested node, returns with page unlocked
1572 	 * and access rights restored.
1573 	 */
1574 	spin_unlock(vmf->ptl);
1575 
1576 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1577 				vmf->pmd, pmd, vmf->address, page, target_nid);
1578 	if (migrated) {
1579 		flags |= TNF_MIGRATED;
1580 		page_nid = target_nid;
1581 	} else
1582 		flags |= TNF_MIGRATE_FAIL;
1583 
1584 	goto out;
1585 clear_pmdnuma:
1586 	BUG_ON(!PageLocked(page));
1587 	was_writable = pmd_savedwrite(pmd);
1588 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1589 	pmd = pmd_mkyoung(pmd);
1590 	if (was_writable)
1591 		pmd = pmd_mkwrite(pmd);
1592 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1593 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1594 	unlock_page(page);
1595 out_unlock:
1596 	spin_unlock(vmf->ptl);
1597 
1598 out:
1599 	if (anon_vma)
1600 		page_unlock_anon_vma_read(anon_vma);
1601 
1602 	if (page_nid != -1)
1603 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1604 				flags);
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Return true if we do MADV_FREE successfully on entire pmd page.
1611  * Otherwise, return false.
1612  */
1613 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614 		pmd_t *pmd, unsigned long addr, unsigned long next)
1615 {
1616 	spinlock_t *ptl;
1617 	pmd_t orig_pmd;
1618 	struct page *page;
1619 	struct mm_struct *mm = tlb->mm;
1620 	bool ret = false;
1621 
1622 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1623 
1624 	ptl = pmd_trans_huge_lock(pmd, vma);
1625 	if (!ptl)
1626 		goto out_unlocked;
1627 
1628 	orig_pmd = *pmd;
1629 	if (is_huge_zero_pmd(orig_pmd))
1630 		goto out;
1631 
1632 	if (unlikely(!pmd_present(orig_pmd))) {
1633 		VM_BUG_ON(thp_migration_supported() &&
1634 				  !is_pmd_migration_entry(orig_pmd));
1635 		goto out;
1636 	}
1637 
1638 	page = pmd_page(orig_pmd);
1639 	/*
1640 	 * If other processes are mapping this page, we couldn't discard
1641 	 * the page unless they all do MADV_FREE so let's skip the page.
1642 	 */
1643 	if (page_mapcount(page) != 1)
1644 		goto out;
1645 
1646 	if (!trylock_page(page))
1647 		goto out;
1648 
1649 	/*
1650 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1651 	 * will deactivate only them.
1652 	 */
1653 	if (next - addr != HPAGE_PMD_SIZE) {
1654 		get_page(page);
1655 		spin_unlock(ptl);
1656 		split_huge_page(page);
1657 		unlock_page(page);
1658 		put_page(page);
1659 		goto out_unlocked;
1660 	}
1661 
1662 	if (PageDirty(page))
1663 		ClearPageDirty(page);
1664 	unlock_page(page);
1665 
1666 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1667 		pmdp_invalidate(vma, addr, pmd);
1668 		orig_pmd = pmd_mkold(orig_pmd);
1669 		orig_pmd = pmd_mkclean(orig_pmd);
1670 
1671 		set_pmd_at(mm, addr, pmd, orig_pmd);
1672 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673 	}
1674 
1675 	mark_page_lazyfree(page);
1676 	ret = true;
1677 out:
1678 	spin_unlock(ptl);
1679 out_unlocked:
1680 	return ret;
1681 }
1682 
1683 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1684 {
1685 	pgtable_t pgtable;
1686 
1687 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1688 	pte_free(mm, pgtable);
1689 	mm_dec_nr_ptes(mm);
1690 }
1691 
1692 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1693 		 pmd_t *pmd, unsigned long addr)
1694 {
1695 	pmd_t orig_pmd;
1696 	spinlock_t *ptl;
1697 
1698 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1699 
1700 	ptl = __pmd_trans_huge_lock(pmd, vma);
1701 	if (!ptl)
1702 		return 0;
1703 	/*
1704 	 * For architectures like ppc64 we look at deposited pgtable
1705 	 * when calling pmdp_huge_get_and_clear. So do the
1706 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1707 	 * operations.
1708 	 */
1709 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1710 			tlb->fullmm);
1711 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1712 	if (vma_is_dax(vma)) {
1713 		if (arch_needs_pgtable_deposit())
1714 			zap_deposited_table(tlb->mm, pmd);
1715 		spin_unlock(ptl);
1716 		if (is_huge_zero_pmd(orig_pmd))
1717 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718 	} else if (is_huge_zero_pmd(orig_pmd)) {
1719 		zap_deposited_table(tlb->mm, pmd);
1720 		spin_unlock(ptl);
1721 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1722 	} else {
1723 		struct page *page = NULL;
1724 		int flush_needed = 1;
1725 
1726 		if (pmd_present(orig_pmd)) {
1727 			page = pmd_page(orig_pmd);
1728 			page_remove_rmap(page, true);
1729 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1730 			VM_BUG_ON_PAGE(!PageHead(page), page);
1731 		} else if (thp_migration_supported()) {
1732 			swp_entry_t entry;
1733 
1734 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1735 			entry = pmd_to_swp_entry(orig_pmd);
1736 			page = pfn_to_page(swp_offset(entry));
1737 			flush_needed = 0;
1738 		} else
1739 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1740 
1741 		if (PageAnon(page)) {
1742 			zap_deposited_table(tlb->mm, pmd);
1743 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1744 		} else {
1745 			if (arch_needs_pgtable_deposit())
1746 				zap_deposited_table(tlb->mm, pmd);
1747 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1748 		}
1749 
1750 		spin_unlock(ptl);
1751 		if (flush_needed)
1752 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1753 	}
1754 	return 1;
1755 }
1756 
1757 #ifndef pmd_move_must_withdraw
1758 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1759 					 spinlock_t *old_pmd_ptl,
1760 					 struct vm_area_struct *vma)
1761 {
1762 	/*
1763 	 * With split pmd lock we also need to move preallocated
1764 	 * PTE page table if new_pmd is on different PMD page table.
1765 	 *
1766 	 * We also don't deposit and withdraw tables for file pages.
1767 	 */
1768 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1769 }
1770 #endif
1771 
1772 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1773 {
1774 #ifdef CONFIG_MEM_SOFT_DIRTY
1775 	if (unlikely(is_pmd_migration_entry(pmd)))
1776 		pmd = pmd_swp_mksoft_dirty(pmd);
1777 	else if (pmd_present(pmd))
1778 		pmd = pmd_mksoft_dirty(pmd);
1779 #endif
1780 	return pmd;
1781 }
1782 
1783 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1784 		  unsigned long new_addr, unsigned long old_end,
1785 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1786 {
1787 	spinlock_t *old_ptl, *new_ptl;
1788 	pmd_t pmd;
1789 	struct mm_struct *mm = vma->vm_mm;
1790 	bool force_flush = false;
1791 
1792 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1793 	    (new_addr & ~HPAGE_PMD_MASK) ||
1794 	    old_end - old_addr < HPAGE_PMD_SIZE)
1795 		return false;
1796 
1797 	/*
1798 	 * The destination pmd shouldn't be established, free_pgtables()
1799 	 * should have release it.
1800 	 */
1801 	if (WARN_ON(!pmd_none(*new_pmd))) {
1802 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1803 		return false;
1804 	}
1805 
1806 	/*
1807 	 * We don't have to worry about the ordering of src and dst
1808 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1809 	 */
1810 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1811 	if (old_ptl) {
1812 		new_ptl = pmd_lockptr(mm, new_pmd);
1813 		if (new_ptl != old_ptl)
1814 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1815 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1816 		if (pmd_present(pmd) && pmd_dirty(pmd))
1817 			force_flush = true;
1818 		VM_BUG_ON(!pmd_none(*new_pmd));
1819 
1820 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1821 			pgtable_t pgtable;
1822 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1823 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1824 		}
1825 		pmd = move_soft_dirty_pmd(pmd);
1826 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1827 		if (new_ptl != old_ptl)
1828 			spin_unlock(new_ptl);
1829 		if (force_flush)
1830 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1831 		else
1832 			*need_flush = true;
1833 		spin_unlock(old_ptl);
1834 		return true;
1835 	}
1836 	return false;
1837 }
1838 
1839 /*
1840  * Returns
1841  *  - 0 if PMD could not be locked
1842  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1843  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1844  */
1845 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1846 		unsigned long addr, pgprot_t newprot, int prot_numa)
1847 {
1848 	struct mm_struct *mm = vma->vm_mm;
1849 	spinlock_t *ptl;
1850 	pmd_t entry;
1851 	bool preserve_write;
1852 	int ret;
1853 
1854 	ptl = __pmd_trans_huge_lock(pmd, vma);
1855 	if (!ptl)
1856 		return 0;
1857 
1858 	preserve_write = prot_numa && pmd_write(*pmd);
1859 	ret = 1;
1860 
1861 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1862 	if (is_swap_pmd(*pmd)) {
1863 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1864 
1865 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1866 		if (is_write_migration_entry(entry)) {
1867 			pmd_t newpmd;
1868 			/*
1869 			 * A protection check is difficult so
1870 			 * just be safe and disable write
1871 			 */
1872 			make_migration_entry_read(&entry);
1873 			newpmd = swp_entry_to_pmd(entry);
1874 			if (pmd_swp_soft_dirty(*pmd))
1875 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1876 			set_pmd_at(mm, addr, pmd, newpmd);
1877 		}
1878 		goto unlock;
1879 	}
1880 #endif
1881 
1882 	/*
1883 	 * Avoid trapping faults against the zero page. The read-only
1884 	 * data is likely to be read-cached on the local CPU and
1885 	 * local/remote hits to the zero page are not interesting.
1886 	 */
1887 	if (prot_numa && is_huge_zero_pmd(*pmd))
1888 		goto unlock;
1889 
1890 	if (prot_numa && pmd_protnone(*pmd))
1891 		goto unlock;
1892 
1893 	/*
1894 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1895 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1896 	 * which is also under down_read(mmap_sem):
1897 	 *
1898 	 *	CPU0:				CPU1:
1899 	 *				change_huge_pmd(prot_numa=1)
1900 	 *				 pmdp_huge_get_and_clear_notify()
1901 	 * madvise_dontneed()
1902 	 *  zap_pmd_range()
1903 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1904 	 *   // skip the pmd
1905 	 *				 set_pmd_at();
1906 	 *				 // pmd is re-established
1907 	 *
1908 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1909 	 * which may break userspace.
1910 	 *
1911 	 * pmdp_invalidate() is required to make sure we don't miss
1912 	 * dirty/young flags set by hardware.
1913 	 */
1914 	entry = pmdp_invalidate(vma, addr, pmd);
1915 
1916 	entry = pmd_modify(entry, newprot);
1917 	if (preserve_write)
1918 		entry = pmd_mk_savedwrite(entry);
1919 	ret = HPAGE_PMD_NR;
1920 	set_pmd_at(mm, addr, pmd, entry);
1921 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1922 unlock:
1923 	spin_unlock(ptl);
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1929  *
1930  * Note that if it returns page table lock pointer, this routine returns without
1931  * unlocking page table lock. So callers must unlock it.
1932  */
1933 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1934 {
1935 	spinlock_t *ptl;
1936 	ptl = pmd_lock(vma->vm_mm, pmd);
1937 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1938 			pmd_devmap(*pmd)))
1939 		return ptl;
1940 	spin_unlock(ptl);
1941 	return NULL;
1942 }
1943 
1944 /*
1945  * Returns true if a given pud maps a thp, false otherwise.
1946  *
1947  * Note that if it returns true, this routine returns without unlocking page
1948  * table lock. So callers must unlock it.
1949  */
1950 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1951 {
1952 	spinlock_t *ptl;
1953 
1954 	ptl = pud_lock(vma->vm_mm, pud);
1955 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1956 		return ptl;
1957 	spin_unlock(ptl);
1958 	return NULL;
1959 }
1960 
1961 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1962 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1963 		 pud_t *pud, unsigned long addr)
1964 {
1965 	pud_t orig_pud;
1966 	spinlock_t *ptl;
1967 
1968 	ptl = __pud_trans_huge_lock(pud, vma);
1969 	if (!ptl)
1970 		return 0;
1971 	/*
1972 	 * For architectures like ppc64 we look at deposited pgtable
1973 	 * when calling pudp_huge_get_and_clear. So do the
1974 	 * pgtable_trans_huge_withdraw after finishing pudp related
1975 	 * operations.
1976 	 */
1977 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1978 			tlb->fullmm);
1979 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1980 	if (vma_is_dax(vma)) {
1981 		spin_unlock(ptl);
1982 		/* No zero page support yet */
1983 	} else {
1984 		/* No support for anonymous PUD pages yet */
1985 		BUG();
1986 	}
1987 	return 1;
1988 }
1989 
1990 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1991 		unsigned long haddr)
1992 {
1993 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1994 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1995 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1996 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1997 
1998 	count_vm_event(THP_SPLIT_PUD);
1999 
2000 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2001 }
2002 
2003 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2004 		unsigned long address)
2005 {
2006 	spinlock_t *ptl;
2007 	struct mm_struct *mm = vma->vm_mm;
2008 	unsigned long haddr = address & HPAGE_PUD_MASK;
2009 
2010 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2011 	ptl = pud_lock(mm, pud);
2012 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2013 		goto out;
2014 	__split_huge_pud_locked(vma, pud, haddr);
2015 
2016 out:
2017 	spin_unlock(ptl);
2018 	/*
2019 	 * No need to double call mmu_notifier->invalidate_range() callback as
2020 	 * the above pudp_huge_clear_flush_notify() did already call it.
2021 	 */
2022 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2023 					       HPAGE_PUD_SIZE);
2024 }
2025 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2026 
2027 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2028 		unsigned long haddr, pmd_t *pmd)
2029 {
2030 	struct mm_struct *mm = vma->vm_mm;
2031 	pgtable_t pgtable;
2032 	pmd_t _pmd;
2033 	int i;
2034 
2035 	/*
2036 	 * Leave pmd empty until pte is filled note that it is fine to delay
2037 	 * notification until mmu_notifier_invalidate_range_end() as we are
2038 	 * replacing a zero pmd write protected page with a zero pte write
2039 	 * protected page.
2040 	 *
2041 	 * See Documentation/vm/mmu_notifier.txt
2042 	 */
2043 	pmdp_huge_clear_flush(vma, haddr, pmd);
2044 
2045 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046 	pmd_populate(mm, &_pmd, pgtable);
2047 
2048 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2049 		pte_t *pte, entry;
2050 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2051 		entry = pte_mkspecial(entry);
2052 		pte = pte_offset_map(&_pmd, haddr);
2053 		VM_BUG_ON(!pte_none(*pte));
2054 		set_pte_at(mm, haddr, pte, entry);
2055 		pte_unmap(pte);
2056 	}
2057 	smp_wmb(); /* make pte visible before pmd */
2058 	pmd_populate(mm, pmd, pgtable);
2059 }
2060 
2061 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2062 		unsigned long haddr, bool freeze)
2063 {
2064 	struct mm_struct *mm = vma->vm_mm;
2065 	struct page *page;
2066 	pgtable_t pgtable;
2067 	pmd_t old_pmd, _pmd;
2068 	bool young, write, soft_dirty, pmd_migration = false;
2069 	unsigned long addr;
2070 	int i;
2071 
2072 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2073 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2074 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2075 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2076 				&& !pmd_devmap(*pmd));
2077 
2078 	count_vm_event(THP_SPLIT_PMD);
2079 
2080 	if (!vma_is_anonymous(vma)) {
2081 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2082 		/*
2083 		 * We are going to unmap this huge page. So
2084 		 * just go ahead and zap it
2085 		 */
2086 		if (arch_needs_pgtable_deposit())
2087 			zap_deposited_table(mm, pmd);
2088 		if (vma_is_dax(vma))
2089 			return;
2090 		page = pmd_page(_pmd);
2091 		if (!PageReferenced(page) && pmd_young(_pmd))
2092 			SetPageReferenced(page);
2093 		page_remove_rmap(page, true);
2094 		put_page(page);
2095 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2096 		return;
2097 	} else if (is_huge_zero_pmd(*pmd)) {
2098 		/*
2099 		 * FIXME: Do we want to invalidate secondary mmu by calling
2100 		 * mmu_notifier_invalidate_range() see comments below inside
2101 		 * __split_huge_pmd() ?
2102 		 *
2103 		 * We are going from a zero huge page write protected to zero
2104 		 * small page also write protected so it does not seems useful
2105 		 * to invalidate secondary mmu at this time.
2106 		 */
2107 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2108 	}
2109 
2110 	/*
2111 	 * Up to this point the pmd is present and huge and userland has the
2112 	 * whole access to the hugepage during the split (which happens in
2113 	 * place). If we overwrite the pmd with the not-huge version pointing
2114 	 * to the pte here (which of course we could if all CPUs were bug
2115 	 * free), userland could trigger a small page size TLB miss on the
2116 	 * small sized TLB while the hugepage TLB entry is still established in
2117 	 * the huge TLB. Some CPU doesn't like that.
2118 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2119 	 * 383 on page 93. Intel should be safe but is also warns that it's
2120 	 * only safe if the permission and cache attributes of the two entries
2121 	 * loaded in the two TLB is identical (which should be the case here).
2122 	 * But it is generally safer to never allow small and huge TLB entries
2123 	 * for the same virtual address to be loaded simultaneously. So instead
2124 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2125 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2126 	 * must remain set at all times on the pmd until the split is complete
2127 	 * for this pmd), then we flush the SMP TLB and finally we write the
2128 	 * non-huge version of the pmd entry with pmd_populate.
2129 	 */
2130 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2131 
2132 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2133 	pmd_migration = is_pmd_migration_entry(old_pmd);
2134 	if (pmd_migration) {
2135 		swp_entry_t entry;
2136 
2137 		entry = pmd_to_swp_entry(old_pmd);
2138 		page = pfn_to_page(swp_offset(entry));
2139 	} else
2140 #endif
2141 		page = pmd_page(old_pmd);
2142 	VM_BUG_ON_PAGE(!page_count(page), page);
2143 	page_ref_add(page, HPAGE_PMD_NR - 1);
2144 	if (pmd_dirty(old_pmd))
2145 		SetPageDirty(page);
2146 	write = pmd_write(old_pmd);
2147 	young = pmd_young(old_pmd);
2148 	soft_dirty = pmd_soft_dirty(old_pmd);
2149 
2150 	/*
2151 	 * Withdraw the table only after we mark the pmd entry invalid.
2152 	 * This's critical for some architectures (Power).
2153 	 */
2154 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2155 	pmd_populate(mm, &_pmd, pgtable);
2156 
2157 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2158 		pte_t entry, *pte;
2159 		/*
2160 		 * Note that NUMA hinting access restrictions are not
2161 		 * transferred to avoid any possibility of altering
2162 		 * permissions across VMAs.
2163 		 */
2164 		if (freeze || pmd_migration) {
2165 			swp_entry_t swp_entry;
2166 			swp_entry = make_migration_entry(page + i, write);
2167 			entry = swp_entry_to_pte(swp_entry);
2168 			if (soft_dirty)
2169 				entry = pte_swp_mksoft_dirty(entry);
2170 		} else {
2171 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2172 			entry = maybe_mkwrite(entry, vma);
2173 			if (!write)
2174 				entry = pte_wrprotect(entry);
2175 			if (!young)
2176 				entry = pte_mkold(entry);
2177 			if (soft_dirty)
2178 				entry = pte_mksoft_dirty(entry);
2179 		}
2180 		pte = pte_offset_map(&_pmd, addr);
2181 		BUG_ON(!pte_none(*pte));
2182 		set_pte_at(mm, addr, pte, entry);
2183 		atomic_inc(&page[i]._mapcount);
2184 		pte_unmap(pte);
2185 	}
2186 
2187 	/*
2188 	 * Set PG_double_map before dropping compound_mapcount to avoid
2189 	 * false-negative page_mapped().
2190 	 */
2191 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2192 		for (i = 0; i < HPAGE_PMD_NR; i++)
2193 			atomic_inc(&page[i]._mapcount);
2194 	}
2195 
2196 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2197 		/* Last compound_mapcount is gone. */
2198 		__dec_node_page_state(page, NR_ANON_THPS);
2199 		if (TestClearPageDoubleMap(page)) {
2200 			/* No need in mapcount reference anymore */
2201 			for (i = 0; i < HPAGE_PMD_NR; i++)
2202 				atomic_dec(&page[i]._mapcount);
2203 		}
2204 	}
2205 
2206 	smp_wmb(); /* make pte visible before pmd */
2207 	pmd_populate(mm, pmd, pgtable);
2208 
2209 	if (freeze) {
2210 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2211 			page_remove_rmap(page + i, false);
2212 			put_page(page + i);
2213 		}
2214 	}
2215 }
2216 
2217 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2218 		unsigned long address, bool freeze, struct page *page)
2219 {
2220 	spinlock_t *ptl;
2221 	struct mm_struct *mm = vma->vm_mm;
2222 	unsigned long haddr = address & HPAGE_PMD_MASK;
2223 
2224 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2225 	ptl = pmd_lock(mm, pmd);
2226 
2227 	/*
2228 	 * If caller asks to setup a migration entries, we need a page to check
2229 	 * pmd against. Otherwise we can end up replacing wrong page.
2230 	 */
2231 	VM_BUG_ON(freeze && !page);
2232 	if (page && page != pmd_page(*pmd))
2233 	        goto out;
2234 
2235 	if (pmd_trans_huge(*pmd)) {
2236 		page = pmd_page(*pmd);
2237 		if (PageMlocked(page))
2238 			clear_page_mlock(page);
2239 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2240 		goto out;
2241 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2242 out:
2243 	spin_unlock(ptl);
2244 	/*
2245 	 * No need to double call mmu_notifier->invalidate_range() callback.
2246 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2247 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2248 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2249 	 *    fault will trigger a flush_notify before pointing to a new page
2250 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2251 	 *    page in the meantime)
2252 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2253 	 *     to invalidate secondary tlb entry they are all still valid.
2254 	 *     any further changes to individual pte will notify. So no need
2255 	 *     to call mmu_notifier->invalidate_range()
2256 	 */
2257 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2258 					       HPAGE_PMD_SIZE);
2259 }
2260 
2261 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2262 		bool freeze, struct page *page)
2263 {
2264 	pgd_t *pgd;
2265 	p4d_t *p4d;
2266 	pud_t *pud;
2267 	pmd_t *pmd;
2268 
2269 	pgd = pgd_offset(vma->vm_mm, address);
2270 	if (!pgd_present(*pgd))
2271 		return;
2272 
2273 	p4d = p4d_offset(pgd, address);
2274 	if (!p4d_present(*p4d))
2275 		return;
2276 
2277 	pud = pud_offset(p4d, address);
2278 	if (!pud_present(*pud))
2279 		return;
2280 
2281 	pmd = pmd_offset(pud, address);
2282 
2283 	__split_huge_pmd(vma, pmd, address, freeze, page);
2284 }
2285 
2286 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2287 			     unsigned long start,
2288 			     unsigned long end,
2289 			     long adjust_next)
2290 {
2291 	/*
2292 	 * If the new start address isn't hpage aligned and it could
2293 	 * previously contain an hugepage: check if we need to split
2294 	 * an huge pmd.
2295 	 */
2296 	if (start & ~HPAGE_PMD_MASK &&
2297 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2298 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2299 		split_huge_pmd_address(vma, start, false, NULL);
2300 
2301 	/*
2302 	 * If the new end address isn't hpage aligned and it could
2303 	 * previously contain an hugepage: check if we need to split
2304 	 * an huge pmd.
2305 	 */
2306 	if (end & ~HPAGE_PMD_MASK &&
2307 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2308 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2309 		split_huge_pmd_address(vma, end, false, NULL);
2310 
2311 	/*
2312 	 * If we're also updating the vma->vm_next->vm_start, if the new
2313 	 * vm_next->vm_start isn't page aligned and it could previously
2314 	 * contain an hugepage: check if we need to split an huge pmd.
2315 	 */
2316 	if (adjust_next > 0) {
2317 		struct vm_area_struct *next = vma->vm_next;
2318 		unsigned long nstart = next->vm_start;
2319 		nstart += adjust_next << PAGE_SHIFT;
2320 		if (nstart & ~HPAGE_PMD_MASK &&
2321 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2322 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2323 			split_huge_pmd_address(next, nstart, false, NULL);
2324 	}
2325 }
2326 
2327 static void freeze_page(struct page *page)
2328 {
2329 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2330 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2331 	bool unmap_success;
2332 
2333 	VM_BUG_ON_PAGE(!PageHead(page), page);
2334 
2335 	if (PageAnon(page))
2336 		ttu_flags |= TTU_SPLIT_FREEZE;
2337 
2338 	unmap_success = try_to_unmap(page, ttu_flags);
2339 	VM_BUG_ON_PAGE(!unmap_success, page);
2340 }
2341 
2342 static void unfreeze_page(struct page *page)
2343 {
2344 	int i;
2345 	if (PageTransHuge(page)) {
2346 		remove_migration_ptes(page, page, true);
2347 	} else {
2348 		for (i = 0; i < HPAGE_PMD_NR; i++)
2349 			remove_migration_ptes(page + i, page + i, true);
2350 	}
2351 }
2352 
2353 static void __split_huge_page_tail(struct page *head, int tail,
2354 		struct lruvec *lruvec, struct list_head *list)
2355 {
2356 	struct page *page_tail = head + tail;
2357 
2358 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2359 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2360 
2361 	/*
2362 	 * tail_page->_refcount is zero and not changing from under us. But
2363 	 * get_page_unless_zero() may be running from under us on the
2364 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2365 	 * atomic_add(), we would then run atomic_set() concurrently with
2366 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2367 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2368 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2369 	 * atomic_set() here would be safe on all archs (and not only on x86),
2370 	 * it's safer to use atomic_inc()/atomic_add().
2371 	 */
2372 	if (PageAnon(head) && !PageSwapCache(head)) {
2373 		page_ref_inc(page_tail);
2374 	} else {
2375 		/* Additional pin to radix tree */
2376 		page_ref_add(page_tail, 2);
2377 	}
2378 
2379 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380 	page_tail->flags |= (head->flags &
2381 			((1L << PG_referenced) |
2382 			 (1L << PG_swapbacked) |
2383 			 (1L << PG_swapcache) |
2384 			 (1L << PG_mlocked) |
2385 			 (1L << PG_uptodate) |
2386 			 (1L << PG_active) |
2387 			 (1L << PG_locked) |
2388 			 (1L << PG_unevictable) |
2389 			 (1L << PG_dirty)));
2390 
2391 	/*
2392 	 * After clearing PageTail the gup refcount can be released.
2393 	 * Page flags also must be visible before we make the page non-compound.
2394 	 */
2395 	smp_wmb();
2396 
2397 	clear_compound_head(page_tail);
2398 
2399 	if (page_is_young(head))
2400 		set_page_young(page_tail);
2401 	if (page_is_idle(head))
2402 		set_page_idle(page_tail);
2403 
2404 	/* ->mapping in first tail page is compound_mapcount */
2405 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2406 			page_tail);
2407 	page_tail->mapping = head->mapping;
2408 
2409 	page_tail->index = head->index + tail;
2410 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2411 	lru_add_page_tail(head, page_tail, lruvec, list);
2412 }
2413 
2414 static void __split_huge_page(struct page *page, struct list_head *list,
2415 		unsigned long flags)
2416 {
2417 	struct page *head = compound_head(page);
2418 	struct zone *zone = page_zone(head);
2419 	struct lruvec *lruvec;
2420 	pgoff_t end = -1;
2421 	int i;
2422 
2423 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2424 
2425 	/* complete memcg works before add pages to LRU */
2426 	mem_cgroup_split_huge_fixup(head);
2427 
2428 	if (!PageAnon(page))
2429 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2430 
2431 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2432 		__split_huge_page_tail(head, i, lruvec, list);
2433 		/* Some pages can be beyond i_size: drop them from page cache */
2434 		if (head[i].index >= end) {
2435 			__ClearPageDirty(head + i);
2436 			__delete_from_page_cache(head + i, NULL);
2437 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2438 				shmem_uncharge(head->mapping->host, 1);
2439 			put_page(head + i);
2440 		}
2441 	}
2442 
2443 	ClearPageCompound(head);
2444 	/* See comment in __split_huge_page_tail() */
2445 	if (PageAnon(head)) {
2446 		/* Additional pin to radix tree of swap cache */
2447 		if (PageSwapCache(head))
2448 			page_ref_add(head, 2);
2449 		else
2450 			page_ref_inc(head);
2451 	} else {
2452 		/* Additional pin to radix tree */
2453 		page_ref_add(head, 2);
2454 		spin_unlock(&head->mapping->tree_lock);
2455 	}
2456 
2457 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2458 
2459 	unfreeze_page(head);
2460 
2461 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2462 		struct page *subpage = head + i;
2463 		if (subpage == page)
2464 			continue;
2465 		unlock_page(subpage);
2466 
2467 		/*
2468 		 * Subpages may be freed if there wasn't any mapping
2469 		 * like if add_to_swap() is running on a lru page that
2470 		 * had its mapping zapped. And freeing these pages
2471 		 * requires taking the lru_lock so we do the put_page
2472 		 * of the tail pages after the split is complete.
2473 		 */
2474 		put_page(subpage);
2475 	}
2476 }
2477 
2478 int total_mapcount(struct page *page)
2479 {
2480 	int i, compound, ret;
2481 
2482 	VM_BUG_ON_PAGE(PageTail(page), page);
2483 
2484 	if (likely(!PageCompound(page)))
2485 		return atomic_read(&page->_mapcount) + 1;
2486 
2487 	compound = compound_mapcount(page);
2488 	if (PageHuge(page))
2489 		return compound;
2490 	ret = compound;
2491 	for (i = 0; i < HPAGE_PMD_NR; i++)
2492 		ret += atomic_read(&page[i]._mapcount) + 1;
2493 	/* File pages has compound_mapcount included in _mapcount */
2494 	if (!PageAnon(page))
2495 		return ret - compound * HPAGE_PMD_NR;
2496 	if (PageDoubleMap(page))
2497 		ret -= HPAGE_PMD_NR;
2498 	return ret;
2499 }
2500 
2501 /*
2502  * This calculates accurately how many mappings a transparent hugepage
2503  * has (unlike page_mapcount() which isn't fully accurate). This full
2504  * accuracy is primarily needed to know if copy-on-write faults can
2505  * reuse the page and change the mapping to read-write instead of
2506  * copying them. At the same time this returns the total_mapcount too.
2507  *
2508  * The function returns the highest mapcount any one of the subpages
2509  * has. If the return value is one, even if different processes are
2510  * mapping different subpages of the transparent hugepage, they can
2511  * all reuse it, because each process is reusing a different subpage.
2512  *
2513  * The total_mapcount is instead counting all virtual mappings of the
2514  * subpages. If the total_mapcount is equal to "one", it tells the
2515  * caller all mappings belong to the same "mm" and in turn the
2516  * anon_vma of the transparent hugepage can become the vma->anon_vma
2517  * local one as no other process may be mapping any of the subpages.
2518  *
2519  * It would be more accurate to replace page_mapcount() with
2520  * page_trans_huge_mapcount(), however we only use
2521  * page_trans_huge_mapcount() in the copy-on-write faults where we
2522  * need full accuracy to avoid breaking page pinning, because
2523  * page_trans_huge_mapcount() is slower than page_mapcount().
2524  */
2525 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2526 {
2527 	int i, ret, _total_mapcount, mapcount;
2528 
2529 	/* hugetlbfs shouldn't call it */
2530 	VM_BUG_ON_PAGE(PageHuge(page), page);
2531 
2532 	if (likely(!PageTransCompound(page))) {
2533 		mapcount = atomic_read(&page->_mapcount) + 1;
2534 		if (total_mapcount)
2535 			*total_mapcount = mapcount;
2536 		return mapcount;
2537 	}
2538 
2539 	page = compound_head(page);
2540 
2541 	_total_mapcount = ret = 0;
2542 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2543 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2544 		ret = max(ret, mapcount);
2545 		_total_mapcount += mapcount;
2546 	}
2547 	if (PageDoubleMap(page)) {
2548 		ret -= 1;
2549 		_total_mapcount -= HPAGE_PMD_NR;
2550 	}
2551 	mapcount = compound_mapcount(page);
2552 	ret += mapcount;
2553 	_total_mapcount += mapcount;
2554 	if (total_mapcount)
2555 		*total_mapcount = _total_mapcount;
2556 	return ret;
2557 }
2558 
2559 /* Racy check whether the huge page can be split */
2560 bool can_split_huge_page(struct page *page, int *pextra_pins)
2561 {
2562 	int extra_pins;
2563 
2564 	/* Additional pins from radix tree */
2565 	if (PageAnon(page))
2566 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2567 	else
2568 		extra_pins = HPAGE_PMD_NR;
2569 	if (pextra_pins)
2570 		*pextra_pins = extra_pins;
2571 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2572 }
2573 
2574 /*
2575  * This function splits huge page into normal pages. @page can point to any
2576  * subpage of huge page to split. Split doesn't change the position of @page.
2577  *
2578  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2579  * The huge page must be locked.
2580  *
2581  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2582  *
2583  * Both head page and tail pages will inherit mapping, flags, and so on from
2584  * the hugepage.
2585  *
2586  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2587  * they are not mapped.
2588  *
2589  * Returns 0 if the hugepage is split successfully.
2590  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2591  * us.
2592  */
2593 int split_huge_page_to_list(struct page *page, struct list_head *list)
2594 {
2595 	struct page *head = compound_head(page);
2596 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2597 	struct anon_vma *anon_vma = NULL;
2598 	struct address_space *mapping = NULL;
2599 	int count, mapcount, extra_pins, ret;
2600 	bool mlocked;
2601 	unsigned long flags;
2602 
2603 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2604 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2605 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2606 
2607 	if (PageWriteback(page))
2608 		return -EBUSY;
2609 
2610 	if (PageAnon(head)) {
2611 		/*
2612 		 * The caller does not necessarily hold an mmap_sem that would
2613 		 * prevent the anon_vma disappearing so we first we take a
2614 		 * reference to it and then lock the anon_vma for write. This
2615 		 * is similar to page_lock_anon_vma_read except the write lock
2616 		 * is taken to serialise against parallel split or collapse
2617 		 * operations.
2618 		 */
2619 		anon_vma = page_get_anon_vma(head);
2620 		if (!anon_vma) {
2621 			ret = -EBUSY;
2622 			goto out;
2623 		}
2624 		mapping = NULL;
2625 		anon_vma_lock_write(anon_vma);
2626 	} else {
2627 		mapping = head->mapping;
2628 
2629 		/* Truncated ? */
2630 		if (!mapping) {
2631 			ret = -EBUSY;
2632 			goto out;
2633 		}
2634 
2635 		anon_vma = NULL;
2636 		i_mmap_lock_read(mapping);
2637 	}
2638 
2639 	/*
2640 	 * Racy check if we can split the page, before freeze_page() will
2641 	 * split PMDs
2642 	 */
2643 	if (!can_split_huge_page(head, &extra_pins)) {
2644 		ret = -EBUSY;
2645 		goto out_unlock;
2646 	}
2647 
2648 	mlocked = PageMlocked(page);
2649 	freeze_page(head);
2650 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2651 
2652 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2653 	if (mlocked)
2654 		lru_add_drain();
2655 
2656 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2657 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2658 
2659 	if (mapping) {
2660 		void **pslot;
2661 
2662 		spin_lock(&mapping->tree_lock);
2663 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2664 				page_index(head));
2665 		/*
2666 		 * Check if the head page is present in radix tree.
2667 		 * We assume all tail are present too, if head is there.
2668 		 */
2669 		if (radix_tree_deref_slot_protected(pslot,
2670 					&mapping->tree_lock) != head)
2671 			goto fail;
2672 	}
2673 
2674 	/* Prevent deferred_split_scan() touching ->_refcount */
2675 	spin_lock(&pgdata->split_queue_lock);
2676 	count = page_count(head);
2677 	mapcount = total_mapcount(head);
2678 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2679 		if (!list_empty(page_deferred_list(head))) {
2680 			pgdata->split_queue_len--;
2681 			list_del(page_deferred_list(head));
2682 		}
2683 		if (mapping)
2684 			__dec_node_page_state(page, NR_SHMEM_THPS);
2685 		spin_unlock(&pgdata->split_queue_lock);
2686 		__split_huge_page(page, list, flags);
2687 		if (PageSwapCache(head)) {
2688 			swp_entry_t entry = { .val = page_private(head) };
2689 
2690 			ret = split_swap_cluster(entry);
2691 		} else
2692 			ret = 0;
2693 	} else {
2694 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2695 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2696 					mapcount, count);
2697 			if (PageTail(page))
2698 				dump_page(head, NULL);
2699 			dump_page(page, "total_mapcount(head) > 0");
2700 			BUG();
2701 		}
2702 		spin_unlock(&pgdata->split_queue_lock);
2703 fail:		if (mapping)
2704 			spin_unlock(&mapping->tree_lock);
2705 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2706 		unfreeze_page(head);
2707 		ret = -EBUSY;
2708 	}
2709 
2710 out_unlock:
2711 	if (anon_vma) {
2712 		anon_vma_unlock_write(anon_vma);
2713 		put_anon_vma(anon_vma);
2714 	}
2715 	if (mapping)
2716 		i_mmap_unlock_read(mapping);
2717 out:
2718 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2719 	return ret;
2720 }
2721 
2722 void free_transhuge_page(struct page *page)
2723 {
2724 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2725 	unsigned long flags;
2726 
2727 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2728 	if (!list_empty(page_deferred_list(page))) {
2729 		pgdata->split_queue_len--;
2730 		list_del(page_deferred_list(page));
2731 	}
2732 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2733 	free_compound_page(page);
2734 }
2735 
2736 void deferred_split_huge_page(struct page *page)
2737 {
2738 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2739 	unsigned long flags;
2740 
2741 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2742 
2743 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2744 	if (list_empty(page_deferred_list(page))) {
2745 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2746 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2747 		pgdata->split_queue_len++;
2748 	}
2749 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2750 }
2751 
2752 static unsigned long deferred_split_count(struct shrinker *shrink,
2753 		struct shrink_control *sc)
2754 {
2755 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2756 	return READ_ONCE(pgdata->split_queue_len);
2757 }
2758 
2759 static unsigned long deferred_split_scan(struct shrinker *shrink,
2760 		struct shrink_control *sc)
2761 {
2762 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2763 	unsigned long flags;
2764 	LIST_HEAD(list), *pos, *next;
2765 	struct page *page;
2766 	int split = 0;
2767 
2768 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2769 	/* Take pin on all head pages to avoid freeing them under us */
2770 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2771 		page = list_entry((void *)pos, struct page, mapping);
2772 		page = compound_head(page);
2773 		if (get_page_unless_zero(page)) {
2774 			list_move(page_deferred_list(page), &list);
2775 		} else {
2776 			/* We lost race with put_compound_page() */
2777 			list_del_init(page_deferred_list(page));
2778 			pgdata->split_queue_len--;
2779 		}
2780 		if (!--sc->nr_to_scan)
2781 			break;
2782 	}
2783 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2784 
2785 	list_for_each_safe(pos, next, &list) {
2786 		page = list_entry((void *)pos, struct page, mapping);
2787 		if (!trylock_page(page))
2788 			goto next;
2789 		/* split_huge_page() removes page from list on success */
2790 		if (!split_huge_page(page))
2791 			split++;
2792 		unlock_page(page);
2793 next:
2794 		put_page(page);
2795 	}
2796 
2797 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2798 	list_splice_tail(&list, &pgdata->split_queue);
2799 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2800 
2801 	/*
2802 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2803 	 * This can happen if pages were freed under us.
2804 	 */
2805 	if (!split && list_empty(&pgdata->split_queue))
2806 		return SHRINK_STOP;
2807 	return split;
2808 }
2809 
2810 static struct shrinker deferred_split_shrinker = {
2811 	.count_objects = deferred_split_count,
2812 	.scan_objects = deferred_split_scan,
2813 	.seeks = DEFAULT_SEEKS,
2814 	.flags = SHRINKER_NUMA_AWARE,
2815 };
2816 
2817 #ifdef CONFIG_DEBUG_FS
2818 static int split_huge_pages_set(void *data, u64 val)
2819 {
2820 	struct zone *zone;
2821 	struct page *page;
2822 	unsigned long pfn, max_zone_pfn;
2823 	unsigned long total = 0, split = 0;
2824 
2825 	if (val != 1)
2826 		return -EINVAL;
2827 
2828 	for_each_populated_zone(zone) {
2829 		max_zone_pfn = zone_end_pfn(zone);
2830 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2831 			if (!pfn_valid(pfn))
2832 				continue;
2833 
2834 			page = pfn_to_page(pfn);
2835 			if (!get_page_unless_zero(page))
2836 				continue;
2837 
2838 			if (zone != page_zone(page))
2839 				goto next;
2840 
2841 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2842 				goto next;
2843 
2844 			total++;
2845 			lock_page(page);
2846 			if (!split_huge_page(page))
2847 				split++;
2848 			unlock_page(page);
2849 next:
2850 			put_page(page);
2851 		}
2852 	}
2853 
2854 	pr_info("%lu of %lu THP split\n", split, total);
2855 
2856 	return 0;
2857 }
2858 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2859 		"%llu\n");
2860 
2861 static int __init split_huge_pages_debugfs(void)
2862 {
2863 	void *ret;
2864 
2865 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2866 			&split_huge_pages_fops);
2867 	if (!ret)
2868 		pr_warn("Failed to create split_huge_pages in debugfs");
2869 	return 0;
2870 }
2871 late_initcall(split_huge_pages_debugfs);
2872 #endif
2873 
2874 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2875 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2876 		struct page *page)
2877 {
2878 	struct vm_area_struct *vma = pvmw->vma;
2879 	struct mm_struct *mm = vma->vm_mm;
2880 	unsigned long address = pvmw->address;
2881 	pmd_t pmdval;
2882 	swp_entry_t entry;
2883 	pmd_t pmdswp;
2884 
2885 	if (!(pvmw->pmd && !pvmw->pte))
2886 		return;
2887 
2888 	mmu_notifier_invalidate_range_start(mm, address,
2889 			address + HPAGE_PMD_SIZE);
2890 
2891 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2892 	pmdval = *pvmw->pmd;
2893 	pmdp_invalidate(vma, address, pvmw->pmd);
2894 	if (pmd_dirty(pmdval))
2895 		set_page_dirty(page);
2896 	entry = make_migration_entry(page, pmd_write(pmdval));
2897 	pmdswp = swp_entry_to_pmd(entry);
2898 	if (pmd_soft_dirty(pmdval))
2899 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2900 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2901 	page_remove_rmap(page, true);
2902 	put_page(page);
2903 
2904 	mmu_notifier_invalidate_range_end(mm, address,
2905 			address + HPAGE_PMD_SIZE);
2906 }
2907 
2908 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2909 {
2910 	struct vm_area_struct *vma = pvmw->vma;
2911 	struct mm_struct *mm = vma->vm_mm;
2912 	unsigned long address = pvmw->address;
2913 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2914 	pmd_t pmde;
2915 	swp_entry_t entry;
2916 
2917 	if (!(pvmw->pmd && !pvmw->pte))
2918 		return;
2919 
2920 	entry = pmd_to_swp_entry(*pvmw->pmd);
2921 	get_page(new);
2922 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2923 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2924 		pmde = pmd_mksoft_dirty(pmde);
2925 	if (is_write_migration_entry(entry))
2926 		pmde = maybe_pmd_mkwrite(pmde, vma);
2927 
2928 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2929 	page_add_anon_rmap(new, vma, mmun_start, true);
2930 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2931 	if (vma->vm_flags & VM_LOCKED)
2932 		mlock_vma_page(new);
2933 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2934 }
2935 #endif
2936