xref: /openbmc/linux/mm/huge_memory.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	const char *output;
167 
168 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 		output = "[always] madvise never";
170 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 			  &transparent_hugepage_flags))
172 		output = "always [madvise] never";
173 	else
174 		output = "always madvise [never]";
175 
176 	return sysfs_emit(buf, "%s\n", output);
177 }
178 
179 static ssize_t enabled_store(struct kobject *kobj,
180 			     struct kobj_attribute *attr,
181 			     const char *buf, size_t count)
182 {
183 	ssize_t ret = count;
184 
185 	if (sysfs_streq(buf, "always")) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 	} else if (sysfs_streq(buf, "madvise")) {
189 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 	} else if (sysfs_streq(buf, "never")) {
192 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 	} else
195 		ret = -EINVAL;
196 
197 	if (ret > 0) {
198 		int err = start_stop_khugepaged();
199 		if (err)
200 			ret = err;
201 	}
202 	return ret;
203 }
204 static struct kobj_attribute enabled_attr =
205 	__ATTR(enabled, 0644, enabled_show, enabled_store);
206 
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 				  struct kobj_attribute *attr, char *buf,
209 				  enum transparent_hugepage_flag flag)
210 {
211 	return sysfs_emit(buf, "%d\n",
212 			  !!test_bit(flag, &transparent_hugepage_flags));
213 }
214 
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 				 struct kobj_attribute *attr,
217 				 const char *buf, size_t count,
218 				 enum transparent_hugepage_flag flag)
219 {
220 	unsigned long value;
221 	int ret;
222 
223 	ret = kstrtoul(buf, 10, &value);
224 	if (ret < 0)
225 		return ret;
226 	if (value > 1)
227 		return -EINVAL;
228 
229 	if (value)
230 		set_bit(flag, &transparent_hugepage_flags);
231 	else
232 		clear_bit(flag, &transparent_hugepage_flags);
233 
234 	return count;
235 }
236 
237 static ssize_t defrag_show(struct kobject *kobj,
238 			   struct kobj_attribute *attr, char *buf)
239 {
240 	const char *output;
241 
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 		     &transparent_hugepage_flags))
244 		output = "[always] defer defer+madvise madvise never";
245 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 			  &transparent_hugepage_flags))
247 		output = "always [defer] defer+madvise madvise never";
248 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 			  &transparent_hugepage_flags))
250 		output = "always defer [defer+madvise] madvise never";
251 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 			  &transparent_hugepage_flags))
253 		output = "always defer defer+madvise [madvise] never";
254 	else
255 		output = "always defer defer+madvise madvise [never]";
256 
257 	return sysfs_emit(buf, "%s\n", output);
258 }
259 
260 static ssize_t defrag_store(struct kobject *kobj,
261 			    struct kobj_attribute *attr,
262 			    const char *buf, size_t count)
263 {
264 	if (sysfs_streq(buf, "always")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 	} else if (sysfs_streq(buf, "defer+madvise")) {
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 	} else if (sysfs_streq(buf, "defer")) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 	} else if (sysfs_streq(buf, "madvise")) {
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 	} else if (sysfs_streq(buf, "never")) {
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 	} else
290 		return -EINVAL;
291 
292 	return count;
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298 				  struct kobj_attribute *attr, char *buf)
299 {
300 	return single_hugepage_flag_show(kobj, attr, buf,
301 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304 		struct kobj_attribute *attr, const char *buf, size_t count)
305 {
306 	return single_hugepage_flag_store(kobj, attr, buf, count,
307 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308 }
309 static struct kobj_attribute use_zero_page_attr =
310 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 				   struct kobj_attribute *attr, char *buf)
314 {
315 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 }
317 static struct kobj_attribute hpage_pmd_size_attr =
318 	__ATTR_RO(hpage_pmd_size);
319 
320 static struct attribute *hugepage_attr[] = {
321 	&enabled_attr.attr,
322 	&defrag_attr.attr,
323 	&use_zero_page_attr.attr,
324 	&hpage_pmd_size_attr.attr,
325 #ifdef CONFIG_SHMEM
326 	&shmem_enabled_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		/*
390 		 * Hardware doesn't support hugepages, hence disable
391 		 * DAX PMD support.
392 		 */
393 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
394 		return -EINVAL;
395 	}
396 
397 	/*
398 	 * hugepages can't be allocated by the buddy allocator
399 	 */
400 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
401 	/*
402 	 * we use page->mapping and page->index in second tail page
403 	 * as list_head: assuming THP order >= 2
404 	 */
405 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
406 
407 	err = hugepage_init_sysfs(&hugepage_kobj);
408 	if (err)
409 		goto err_sysfs;
410 
411 	err = khugepaged_init();
412 	if (err)
413 		goto err_slab;
414 
415 	err = register_shrinker(&huge_zero_page_shrinker);
416 	if (err)
417 		goto err_hzp_shrinker;
418 	err = register_shrinker(&deferred_split_shrinker);
419 	if (err)
420 		goto err_split_shrinker;
421 
422 	/*
423 	 * By default disable transparent hugepages on smaller systems,
424 	 * where the extra memory used could hurt more than TLB overhead
425 	 * is likely to save.  The admin can still enable it through /sys.
426 	 */
427 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428 		transparent_hugepage_flags = 0;
429 		return 0;
430 	}
431 
432 	err = start_stop_khugepaged();
433 	if (err)
434 		goto err_khugepaged;
435 
436 	return 0;
437 err_khugepaged:
438 	unregister_shrinker(&deferred_split_shrinker);
439 err_split_shrinker:
440 	unregister_shrinker(&huge_zero_page_shrinker);
441 err_hzp_shrinker:
442 	khugepaged_destroy();
443 err_slab:
444 	hugepage_exit_sysfs(hugepage_kobj);
445 err_sysfs:
446 	return err;
447 }
448 subsys_initcall(hugepage_init);
449 
450 static int __init setup_transparent_hugepage(char *str)
451 {
452 	int ret = 0;
453 	if (!str)
454 		goto out;
455 	if (!strcmp(str, "always")) {
456 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 			&transparent_hugepage_flags);
458 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 			  &transparent_hugepage_flags);
460 		ret = 1;
461 	} else if (!strcmp(str, "madvise")) {
462 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 			  &transparent_hugepage_flags);
464 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 			&transparent_hugepage_flags);
466 		ret = 1;
467 	} else if (!strcmp(str, "never")) {
468 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 			  &transparent_hugepage_flags);
470 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 			  &transparent_hugepage_flags);
472 		ret = 1;
473 	}
474 out:
475 	if (!ret)
476 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
477 	return ret;
478 }
479 __setup("transparent_hugepage=", setup_transparent_hugepage);
480 
481 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482 {
483 	if (likely(vma->vm_flags & VM_WRITE))
484 		pmd = pmd_mkwrite(pmd);
485 	return pmd;
486 }
487 
488 #ifdef CONFIG_MEMCG
489 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490 {
491 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
493 
494 	if (memcg)
495 		return &memcg->deferred_split_queue;
496 	else
497 		return &pgdat->deferred_split_queue;
498 }
499 #else
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 {
502 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
503 
504 	return &pgdat->deferred_split_queue;
505 }
506 #endif
507 
508 void prep_transhuge_page(struct page *page)
509 {
510 	/*
511 	 * we use page->mapping and page->indexlru in second tail page
512 	 * as list_head: assuming THP order >= 2
513 	 */
514 
515 	INIT_LIST_HEAD(page_deferred_list(page));
516 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
517 }
518 
519 bool is_transparent_hugepage(struct page *page)
520 {
521 	if (!PageCompound(page))
522 		return false;
523 
524 	page = compound_head(page);
525 	return is_huge_zero_page(page) ||
526 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
527 }
528 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
529 
530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531 		unsigned long addr, unsigned long len,
532 		loff_t off, unsigned long flags, unsigned long size)
533 {
534 	loff_t off_end = off + len;
535 	loff_t off_align = round_up(off, size);
536 	unsigned long len_pad, ret;
537 
538 	if (off_end <= off_align || (off_end - off_align) < size)
539 		return 0;
540 
541 	len_pad = len + size;
542 	if (len_pad < len || (off + len_pad) < off)
543 		return 0;
544 
545 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 					      off >> PAGE_SHIFT, flags);
547 
548 	/*
549 	 * The failure might be due to length padding. The caller will retry
550 	 * without the padding.
551 	 */
552 	if (IS_ERR_VALUE(ret))
553 		return 0;
554 
555 	/*
556 	 * Do not try to align to THP boundary if allocation at the address
557 	 * hint succeeds.
558 	 */
559 	if (ret == addr)
560 		return addr;
561 
562 	ret += (off - ret) & (size - 1);
563 	return ret;
564 }
565 
566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 		unsigned long len, unsigned long pgoff, unsigned long flags)
568 {
569 	unsigned long ret;
570 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571 
572 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573 		goto out;
574 
575 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576 	if (ret)
577 		return ret;
578 out:
579 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580 }
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582 
583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 			struct page *page, gfp_t gfp)
585 {
586 	struct vm_area_struct *vma = vmf->vma;
587 	pgtable_t pgtable;
588 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589 	vm_fault_t ret = 0;
590 
591 	VM_BUG_ON_PAGE(!PageCompound(page), page);
592 
593 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594 		put_page(page);
595 		count_vm_event(THP_FAULT_FALLBACK);
596 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 		return VM_FAULT_FALLBACK;
598 	}
599 	cgroup_throttle_swaprate(page, gfp);
600 
601 	pgtable = pte_alloc_one(vma->vm_mm);
602 	if (unlikely(!pgtable)) {
603 		ret = VM_FAULT_OOM;
604 		goto release;
605 	}
606 
607 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608 	/*
609 	 * The memory barrier inside __SetPageUptodate makes sure that
610 	 * clear_huge_page writes become visible before the set_pmd_at()
611 	 * write.
612 	 */
613 	__SetPageUptodate(page);
614 
615 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 	if (unlikely(!pmd_none(*vmf->pmd))) {
617 		goto unlock_release;
618 	} else {
619 		pmd_t entry;
620 
621 		ret = check_stable_address_space(vma->vm_mm);
622 		if (ret)
623 			goto unlock_release;
624 
625 		/* Deliver the page fault to userland */
626 		if (userfaultfd_missing(vma)) {
627 			vm_fault_t ret2;
628 
629 			spin_unlock(vmf->ptl);
630 			put_page(page);
631 			pte_free(vma->vm_mm, pgtable);
632 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
634 			return ret2;
635 		}
636 
637 		entry = mk_huge_pmd(page, vma->vm_page_prot);
638 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639 		page_add_new_anon_rmap(page, vma, haddr, true);
640 		lru_cache_add_inactive_or_unevictable(page, vma);
641 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
642 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
644 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 		mm_inc_nr_ptes(vma->vm_mm);
646 		spin_unlock(vmf->ptl);
647 		count_vm_event(THP_FAULT_ALLOC);
648 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
649 	}
650 
651 	return 0;
652 unlock_release:
653 	spin_unlock(vmf->ptl);
654 release:
655 	if (pgtable)
656 		pte_free(vma->vm_mm, pgtable);
657 	put_page(page);
658 	return ret;
659 
660 }
661 
662 /*
663  * always: directly stall for all thp allocations
664  * defer: wake kswapd and fail if not immediately available
665  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
666  *		  fail if not immediately available
667  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
668  *	    available
669  * never: never stall for any thp allocation
670  */
671 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
672 {
673 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
674 
675 	/* Always do synchronous compaction */
676 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
677 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 
679 	/* Kick kcompactd and fail quickly */
680 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 
683 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
684 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 		return GFP_TRANSHUGE_LIGHT |
686 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
687 					__GFP_KSWAPD_RECLAIM);
688 
689 	/* Only do synchronous compaction if madvised */
690 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 		return GFP_TRANSHUGE_LIGHT |
692 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693 
694 	return GFP_TRANSHUGE_LIGHT;
695 }
696 
697 /* Caller must hold page table lock. */
698 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700 		struct page *zero_page)
701 {
702 	pmd_t entry;
703 	if (!pmd_none(*pmd))
704 		return;
705 	entry = mk_pmd(zero_page, vma->vm_page_prot);
706 	entry = pmd_mkhuge(entry);
707 	if (pgtable)
708 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
709 	set_pmd_at(mm, haddr, pmd, entry);
710 	mm_inc_nr_ptes(mm);
711 }
712 
713 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714 {
715 	struct vm_area_struct *vma = vmf->vma;
716 	gfp_t gfp;
717 	struct page *page;
718 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719 
720 	if (!transhuge_vma_suitable(vma, haddr))
721 		return VM_FAULT_FALLBACK;
722 	if (unlikely(anon_vma_prepare(vma)))
723 		return VM_FAULT_OOM;
724 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725 		return VM_FAULT_OOM;
726 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
727 			!mm_forbids_zeropage(vma->vm_mm) &&
728 			transparent_hugepage_use_zero_page()) {
729 		pgtable_t pgtable;
730 		struct page *zero_page;
731 		vm_fault_t ret;
732 		pgtable = pte_alloc_one(vma->vm_mm);
733 		if (unlikely(!pgtable))
734 			return VM_FAULT_OOM;
735 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
736 		if (unlikely(!zero_page)) {
737 			pte_free(vma->vm_mm, pgtable);
738 			count_vm_event(THP_FAULT_FALLBACK);
739 			return VM_FAULT_FALLBACK;
740 		}
741 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742 		ret = 0;
743 		if (pmd_none(*vmf->pmd)) {
744 			ret = check_stable_address_space(vma->vm_mm);
745 			if (ret) {
746 				spin_unlock(vmf->ptl);
747 				pte_free(vma->vm_mm, pgtable);
748 			} else if (userfaultfd_missing(vma)) {
749 				spin_unlock(vmf->ptl);
750 				pte_free(vma->vm_mm, pgtable);
751 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
753 			} else {
754 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
755 						   haddr, vmf->pmd, zero_page);
756 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
757 				spin_unlock(vmf->ptl);
758 			}
759 		} else {
760 			spin_unlock(vmf->ptl);
761 			pte_free(vma->vm_mm, pgtable);
762 		}
763 		return ret;
764 	}
765 	gfp = vma_thp_gfp_mask(vma);
766 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 	if (unlikely(!page)) {
768 		count_vm_event(THP_FAULT_FALLBACK);
769 		return VM_FAULT_FALLBACK;
770 	}
771 	prep_transhuge_page(page);
772 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 }
774 
775 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
777 		pgtable_t pgtable)
778 {
779 	struct mm_struct *mm = vma->vm_mm;
780 	pmd_t entry;
781 	spinlock_t *ptl;
782 
783 	ptl = pmd_lock(mm, pmd);
784 	if (!pmd_none(*pmd)) {
785 		if (write) {
786 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
787 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
788 				goto out_unlock;
789 			}
790 			entry = pmd_mkyoung(*pmd);
791 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
792 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
793 				update_mmu_cache_pmd(vma, addr, pmd);
794 		}
795 
796 		goto out_unlock;
797 	}
798 
799 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
800 	if (pfn_t_devmap(pfn))
801 		entry = pmd_mkdevmap(entry);
802 	if (write) {
803 		entry = pmd_mkyoung(pmd_mkdirty(entry));
804 		entry = maybe_pmd_mkwrite(entry, vma);
805 	}
806 
807 	if (pgtable) {
808 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
809 		mm_inc_nr_ptes(mm);
810 		pgtable = NULL;
811 	}
812 
813 	set_pmd_at(mm, addr, pmd, entry);
814 	update_mmu_cache_pmd(vma, addr, pmd);
815 
816 out_unlock:
817 	spin_unlock(ptl);
818 	if (pgtable)
819 		pte_free(mm, pgtable);
820 }
821 
822 /**
823  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
824  * @vmf: Structure describing the fault
825  * @pfn: pfn to insert
826  * @pgprot: page protection to use
827  * @write: whether it's a write fault
828  *
829  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
830  * also consult the vmf_insert_mixed_prot() documentation when
831  * @pgprot != @vmf->vma->vm_page_prot.
832  *
833  * Return: vm_fault_t value.
834  */
835 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
836 				   pgprot_t pgprot, bool write)
837 {
838 	unsigned long addr = vmf->address & PMD_MASK;
839 	struct vm_area_struct *vma = vmf->vma;
840 	pgtable_t pgtable = NULL;
841 
842 	/*
843 	 * If we had pmd_special, we could avoid all these restrictions,
844 	 * but we need to be consistent with PTEs and architectures that
845 	 * can't support a 'special' bit.
846 	 */
847 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 			!pfn_t_devmap(pfn));
849 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 						(VM_PFNMAP|VM_MIXEDMAP));
851 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
852 
853 	if (addr < vma->vm_start || addr >= vma->vm_end)
854 		return VM_FAULT_SIGBUS;
855 
856 	if (arch_needs_pgtable_deposit()) {
857 		pgtable = pte_alloc_one(vma->vm_mm);
858 		if (!pgtable)
859 			return VM_FAULT_OOM;
860 	}
861 
862 	track_pfn_insert(vma, &pgprot, pfn);
863 
864 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865 	return VM_FAULT_NOPAGE;
866 }
867 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
868 
869 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871 {
872 	if (likely(vma->vm_flags & VM_WRITE))
873 		pud = pud_mkwrite(pud);
874 	return pud;
875 }
876 
877 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879 {
880 	struct mm_struct *mm = vma->vm_mm;
881 	pud_t entry;
882 	spinlock_t *ptl;
883 
884 	ptl = pud_lock(mm, pud);
885 	if (!pud_none(*pud)) {
886 		if (write) {
887 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 				goto out_unlock;
890 			}
891 			entry = pud_mkyoung(*pud);
892 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 				update_mmu_cache_pud(vma, addr, pud);
895 		}
896 		goto out_unlock;
897 	}
898 
899 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 	if (pfn_t_devmap(pfn))
901 		entry = pud_mkdevmap(entry);
902 	if (write) {
903 		entry = pud_mkyoung(pud_mkdirty(entry));
904 		entry = maybe_pud_mkwrite(entry, vma);
905 	}
906 	set_pud_at(mm, addr, pud, entry);
907 	update_mmu_cache_pud(vma, addr, pud);
908 
909 out_unlock:
910 	spin_unlock(ptl);
911 }
912 
913 /**
914  * vmf_insert_pfn_pud_prot - insert a pud size pfn
915  * @vmf: Structure describing the fault
916  * @pfn: pfn to insert
917  * @pgprot: page protection to use
918  * @write: whether it's a write fault
919  *
920  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
921  * also consult the vmf_insert_mixed_prot() documentation when
922  * @pgprot != @vmf->vma->vm_page_prot.
923  *
924  * Return: vm_fault_t value.
925  */
926 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
927 				   pgprot_t pgprot, bool write)
928 {
929 	unsigned long addr = vmf->address & PUD_MASK;
930 	struct vm_area_struct *vma = vmf->vma;
931 
932 	/*
933 	 * If we had pud_special, we could avoid all these restrictions,
934 	 * but we need to be consistent with PTEs and architectures that
935 	 * can't support a 'special' bit.
936 	 */
937 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 			!pfn_t_devmap(pfn));
939 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 						(VM_PFNMAP|VM_MIXEDMAP));
941 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942 
943 	if (addr < vma->vm_start || addr >= vma->vm_end)
944 		return VM_FAULT_SIGBUS;
945 
946 	track_pfn_insert(vma, &pgprot, pfn);
947 
948 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 	return VM_FAULT_NOPAGE;
950 }
951 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
953 
954 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955 		pmd_t *pmd, int flags)
956 {
957 	pmd_t _pmd;
958 
959 	_pmd = pmd_mkyoung(*pmd);
960 	if (flags & FOLL_WRITE)
961 		_pmd = pmd_mkdirty(_pmd);
962 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963 				pmd, _pmd, flags & FOLL_WRITE))
964 		update_mmu_cache_pmd(vma, addr, pmd);
965 }
966 
967 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 {
970 	unsigned long pfn = pmd_pfn(*pmd);
971 	struct mm_struct *mm = vma->vm_mm;
972 	struct page *page;
973 
974 	assert_spin_locked(pmd_lockptr(mm, pmd));
975 
976 	/*
977 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
978 	 * not be in this function with `flags & FOLL_COW` set.
979 	 */
980 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
981 
982 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
983 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
984 			 (FOLL_PIN | FOLL_GET)))
985 		return NULL;
986 
987 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 		return NULL;
989 
990 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
991 		/* pass */;
992 	else
993 		return NULL;
994 
995 	if (flags & FOLL_TOUCH)
996 		touch_pmd(vma, addr, pmd, flags);
997 
998 	/*
999 	 * device mapped pages can only be returned if the
1000 	 * caller will manage the page reference count.
1001 	 */
1002 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 		return ERR_PTR(-EEXIST);
1004 
1005 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1007 	if (!*pgmap)
1008 		return ERR_PTR(-EFAULT);
1009 	page = pfn_to_page(pfn);
1010 	if (!try_grab_page(page, flags))
1011 		page = ERR_PTR(-ENOMEM);
1012 
1013 	return page;
1014 }
1015 
1016 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1017 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 		  struct vm_area_struct *vma)
1019 {
1020 	spinlock_t *dst_ptl, *src_ptl;
1021 	struct page *src_page;
1022 	pmd_t pmd;
1023 	pgtable_t pgtable = NULL;
1024 	int ret = -ENOMEM;
1025 
1026 	/* Skip if can be re-fill on fault */
1027 	if (!vma_is_anonymous(vma))
1028 		return 0;
1029 
1030 	pgtable = pte_alloc_one(dst_mm);
1031 	if (unlikely(!pgtable))
1032 		goto out;
1033 
1034 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1035 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1036 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1037 
1038 	ret = -EAGAIN;
1039 	pmd = *src_pmd;
1040 
1041 	/*
1042 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1043 	 * does not have the VM_UFFD_WP, which means that the uffd
1044 	 * fork event is not enabled.
1045 	 */
1046 	if (!(vma->vm_flags & VM_UFFD_WP))
1047 		pmd = pmd_clear_uffd_wp(pmd);
1048 
1049 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1050 	if (unlikely(is_swap_pmd(pmd))) {
1051 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1052 
1053 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1054 		if (is_write_migration_entry(entry)) {
1055 			make_migration_entry_read(&entry);
1056 			pmd = swp_entry_to_pmd(entry);
1057 			if (pmd_swp_soft_dirty(*src_pmd))
1058 				pmd = pmd_swp_mksoft_dirty(pmd);
1059 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 		}
1061 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062 		mm_inc_nr_ptes(dst_mm);
1063 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1065 		ret = 0;
1066 		goto out_unlock;
1067 	}
1068 #endif
1069 
1070 	if (unlikely(!pmd_trans_huge(pmd))) {
1071 		pte_free(dst_mm, pgtable);
1072 		goto out_unlock;
1073 	}
1074 	/*
1075 	 * When page table lock is held, the huge zero pmd should not be
1076 	 * under splitting since we don't split the page itself, only pmd to
1077 	 * a page table.
1078 	 */
1079 	if (is_huge_zero_pmd(pmd)) {
1080 		struct page *zero_page;
1081 		/*
1082 		 * get_huge_zero_page() will never allocate a new page here,
1083 		 * since we already have a zero page to copy. It just takes a
1084 		 * reference.
1085 		 */
1086 		zero_page = mm_get_huge_zero_page(dst_mm);
1087 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1088 				zero_page);
1089 		ret = 0;
1090 		goto out_unlock;
1091 	}
1092 
1093 	src_page = pmd_page(pmd);
1094 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 
1096 	/*
1097 	 * If this page is a potentially pinned page, split and retry the fault
1098 	 * with smaller page size.  Normally this should not happen because the
1099 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1100 	 * best effort that the pinned pages won't be replaced by another
1101 	 * random page during the coming copy-on-write.
1102 	 */
1103 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1104 		     atomic_read(&src_mm->has_pinned) &&
1105 		     page_maybe_dma_pinned(src_page))) {
1106 		pte_free(dst_mm, pgtable);
1107 		spin_unlock(src_ptl);
1108 		spin_unlock(dst_ptl);
1109 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1110 		return -EAGAIN;
1111 	}
1112 
1113 	get_page(src_page);
1114 	page_dup_rmap(src_page, true);
1115 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 	mm_inc_nr_ptes(dst_mm);
1117 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 
1119 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1121 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1122 
1123 	ret = 0;
1124 out_unlock:
1125 	spin_unlock(src_ptl);
1126 	spin_unlock(dst_ptl);
1127 out:
1128 	return ret;
1129 }
1130 
1131 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1132 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1133 		pud_t *pud, int flags)
1134 {
1135 	pud_t _pud;
1136 
1137 	_pud = pud_mkyoung(*pud);
1138 	if (flags & FOLL_WRITE)
1139 		_pud = pud_mkdirty(_pud);
1140 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1141 				pud, _pud, flags & FOLL_WRITE))
1142 		update_mmu_cache_pud(vma, addr, pud);
1143 }
1144 
1145 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1146 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1147 {
1148 	unsigned long pfn = pud_pfn(*pud);
1149 	struct mm_struct *mm = vma->vm_mm;
1150 	struct page *page;
1151 
1152 	assert_spin_locked(pud_lockptr(mm, pud));
1153 
1154 	if (flags & FOLL_WRITE && !pud_write(*pud))
1155 		return NULL;
1156 
1157 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1158 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1159 			 (FOLL_PIN | FOLL_GET)))
1160 		return NULL;
1161 
1162 	if (pud_present(*pud) && pud_devmap(*pud))
1163 		/* pass */;
1164 	else
1165 		return NULL;
1166 
1167 	if (flags & FOLL_TOUCH)
1168 		touch_pud(vma, addr, pud, flags);
1169 
1170 	/*
1171 	 * device mapped pages can only be returned if the
1172 	 * caller will manage the page reference count.
1173 	 *
1174 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1175 	 */
1176 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1177 		return ERR_PTR(-EEXIST);
1178 
1179 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1180 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1181 	if (!*pgmap)
1182 		return ERR_PTR(-EFAULT);
1183 	page = pfn_to_page(pfn);
1184 	if (!try_grab_page(page, flags))
1185 		page = ERR_PTR(-ENOMEM);
1186 
1187 	return page;
1188 }
1189 
1190 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1192 		  struct vm_area_struct *vma)
1193 {
1194 	spinlock_t *dst_ptl, *src_ptl;
1195 	pud_t pud;
1196 	int ret;
1197 
1198 	dst_ptl = pud_lock(dst_mm, dst_pud);
1199 	src_ptl = pud_lockptr(src_mm, src_pud);
1200 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1201 
1202 	ret = -EAGAIN;
1203 	pud = *src_pud;
1204 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1205 		goto out_unlock;
1206 
1207 	/*
1208 	 * When page table lock is held, the huge zero pud should not be
1209 	 * under splitting since we don't split the page itself, only pud to
1210 	 * a page table.
1211 	 */
1212 	if (is_huge_zero_pud(pud)) {
1213 		/* No huge zero pud yet */
1214 	}
1215 
1216 	/* Please refer to comments in copy_huge_pmd() */
1217 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1218 		     atomic_read(&src_mm->has_pinned) &&
1219 		     page_maybe_dma_pinned(pud_page(pud)))) {
1220 		spin_unlock(src_ptl);
1221 		spin_unlock(dst_ptl);
1222 		__split_huge_pud(vma, src_pud, addr);
1223 		return -EAGAIN;
1224 	}
1225 
1226 	pudp_set_wrprotect(src_mm, addr, src_pud);
1227 	pud = pud_mkold(pud_wrprotect(pud));
1228 	set_pud_at(dst_mm, addr, dst_pud, pud);
1229 
1230 	ret = 0;
1231 out_unlock:
1232 	spin_unlock(src_ptl);
1233 	spin_unlock(dst_ptl);
1234 	return ret;
1235 }
1236 
1237 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1238 {
1239 	pud_t entry;
1240 	unsigned long haddr;
1241 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1242 
1243 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1244 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1245 		goto unlock;
1246 
1247 	entry = pud_mkyoung(orig_pud);
1248 	if (write)
1249 		entry = pud_mkdirty(entry);
1250 	haddr = vmf->address & HPAGE_PUD_MASK;
1251 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1252 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1253 
1254 unlock:
1255 	spin_unlock(vmf->ptl);
1256 }
1257 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1258 
1259 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1260 {
1261 	pmd_t entry;
1262 	unsigned long haddr;
1263 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1264 
1265 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1266 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1267 		goto unlock;
1268 
1269 	entry = pmd_mkyoung(orig_pmd);
1270 	if (write)
1271 		entry = pmd_mkdirty(entry);
1272 	haddr = vmf->address & HPAGE_PMD_MASK;
1273 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1274 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1275 
1276 unlock:
1277 	spin_unlock(vmf->ptl);
1278 }
1279 
1280 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1281 {
1282 	struct vm_area_struct *vma = vmf->vma;
1283 	struct page *page;
1284 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1285 
1286 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1287 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1288 
1289 	if (is_huge_zero_pmd(orig_pmd))
1290 		goto fallback;
1291 
1292 	spin_lock(vmf->ptl);
1293 
1294 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1295 		spin_unlock(vmf->ptl);
1296 		return 0;
1297 	}
1298 
1299 	page = pmd_page(orig_pmd);
1300 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1301 
1302 	/* Lock page for reuse_swap_page() */
1303 	if (!trylock_page(page)) {
1304 		get_page(page);
1305 		spin_unlock(vmf->ptl);
1306 		lock_page(page);
1307 		spin_lock(vmf->ptl);
1308 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1309 			spin_unlock(vmf->ptl);
1310 			unlock_page(page);
1311 			put_page(page);
1312 			return 0;
1313 		}
1314 		put_page(page);
1315 	}
1316 
1317 	/*
1318 	 * We can only reuse the page if nobody else maps the huge page or it's
1319 	 * part.
1320 	 */
1321 	if (reuse_swap_page(page, NULL)) {
1322 		pmd_t entry;
1323 		entry = pmd_mkyoung(orig_pmd);
1324 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1325 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1326 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1327 		unlock_page(page);
1328 		spin_unlock(vmf->ptl);
1329 		return VM_FAULT_WRITE;
1330 	}
1331 
1332 	unlock_page(page);
1333 	spin_unlock(vmf->ptl);
1334 fallback:
1335 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1336 	return VM_FAULT_FALLBACK;
1337 }
1338 
1339 /*
1340  * FOLL_FORCE can write to even unwritable pmd's, but only
1341  * after we've gone through a COW cycle and they are dirty.
1342  */
1343 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1344 {
1345 	return pmd_write(pmd) ||
1346 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1347 }
1348 
1349 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1350 				   unsigned long addr,
1351 				   pmd_t *pmd,
1352 				   unsigned int flags)
1353 {
1354 	struct mm_struct *mm = vma->vm_mm;
1355 	struct page *page = NULL;
1356 
1357 	assert_spin_locked(pmd_lockptr(mm, pmd));
1358 
1359 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1360 		goto out;
1361 
1362 	/* Avoid dumping huge zero page */
1363 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1364 		return ERR_PTR(-EFAULT);
1365 
1366 	/* Full NUMA hinting faults to serialise migration in fault paths */
1367 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1368 		goto out;
1369 
1370 	page = pmd_page(*pmd);
1371 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1372 
1373 	if (!try_grab_page(page, flags))
1374 		return ERR_PTR(-ENOMEM);
1375 
1376 	if (flags & FOLL_TOUCH)
1377 		touch_pmd(vma, addr, pmd, flags);
1378 
1379 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1380 		/*
1381 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1382 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1383 		 *
1384 		 * For anon THP:
1385 		 *
1386 		 * In most cases the pmd is the only mapping of the page as we
1387 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1388 		 * writable private mappings in populate_vma_page_range().
1389 		 *
1390 		 * The only scenario when we have the page shared here is if we
1391 		 * mlocking read-only mapping shared over fork(). We skip
1392 		 * mlocking such pages.
1393 		 *
1394 		 * For file THP:
1395 		 *
1396 		 * We can expect PageDoubleMap() to be stable under page lock:
1397 		 * for file pages we set it in page_add_file_rmap(), which
1398 		 * requires page to be locked.
1399 		 */
1400 
1401 		if (PageAnon(page) && compound_mapcount(page) != 1)
1402 			goto skip_mlock;
1403 		if (PageDoubleMap(page) || !page->mapping)
1404 			goto skip_mlock;
1405 		if (!trylock_page(page))
1406 			goto skip_mlock;
1407 		if (page->mapping && !PageDoubleMap(page))
1408 			mlock_vma_page(page);
1409 		unlock_page(page);
1410 	}
1411 skip_mlock:
1412 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1413 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1414 
1415 out:
1416 	return page;
1417 }
1418 
1419 /* NUMA hinting page fault entry point for trans huge pmds */
1420 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1421 {
1422 	struct vm_area_struct *vma = vmf->vma;
1423 	struct anon_vma *anon_vma = NULL;
1424 	struct page *page;
1425 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1426 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1427 	int target_nid, last_cpupid = -1;
1428 	bool page_locked;
1429 	bool migrated = false;
1430 	bool was_writable;
1431 	int flags = 0;
1432 
1433 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1434 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1435 		goto out_unlock;
1436 
1437 	/*
1438 	 * If there are potential migrations, wait for completion and retry
1439 	 * without disrupting NUMA hinting information. Do not relock and
1440 	 * check_same as the page may no longer be mapped.
1441 	 */
1442 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1443 		page = pmd_page(*vmf->pmd);
1444 		if (!get_page_unless_zero(page))
1445 			goto out_unlock;
1446 		spin_unlock(vmf->ptl);
1447 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1448 		goto out;
1449 	}
1450 
1451 	page = pmd_page(pmd);
1452 	BUG_ON(is_huge_zero_page(page));
1453 	page_nid = page_to_nid(page);
1454 	last_cpupid = page_cpupid_last(page);
1455 	count_vm_numa_event(NUMA_HINT_FAULTS);
1456 	if (page_nid == this_nid) {
1457 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1458 		flags |= TNF_FAULT_LOCAL;
1459 	}
1460 
1461 	/* See similar comment in do_numa_page for explanation */
1462 	if (!pmd_savedwrite(pmd))
1463 		flags |= TNF_NO_GROUP;
1464 
1465 	/*
1466 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1467 	 * page_table_lock if at all possible
1468 	 */
1469 	page_locked = trylock_page(page);
1470 	target_nid = mpol_misplaced(page, vma, haddr);
1471 	if (target_nid == NUMA_NO_NODE) {
1472 		/* If the page was locked, there are no parallel migrations */
1473 		if (page_locked)
1474 			goto clear_pmdnuma;
1475 	}
1476 
1477 	/* Migration could have started since the pmd_trans_migrating check */
1478 	if (!page_locked) {
1479 		page_nid = NUMA_NO_NODE;
1480 		if (!get_page_unless_zero(page))
1481 			goto out_unlock;
1482 		spin_unlock(vmf->ptl);
1483 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1484 		goto out;
1485 	}
1486 
1487 	/*
1488 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1489 	 * to serialises splits
1490 	 */
1491 	get_page(page);
1492 	spin_unlock(vmf->ptl);
1493 	anon_vma = page_lock_anon_vma_read(page);
1494 
1495 	/* Confirm the PMD did not change while page_table_lock was released */
1496 	spin_lock(vmf->ptl);
1497 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1498 		unlock_page(page);
1499 		put_page(page);
1500 		page_nid = NUMA_NO_NODE;
1501 		goto out_unlock;
1502 	}
1503 
1504 	/* Bail if we fail to protect against THP splits for any reason */
1505 	if (unlikely(!anon_vma)) {
1506 		put_page(page);
1507 		page_nid = NUMA_NO_NODE;
1508 		goto clear_pmdnuma;
1509 	}
1510 
1511 	/*
1512 	 * Since we took the NUMA fault, we must have observed the !accessible
1513 	 * bit. Make sure all other CPUs agree with that, to avoid them
1514 	 * modifying the page we're about to migrate.
1515 	 *
1516 	 * Must be done under PTL such that we'll observe the relevant
1517 	 * inc_tlb_flush_pending().
1518 	 *
1519 	 * We are not sure a pending tlb flush here is for a huge page
1520 	 * mapping or not. Hence use the tlb range variant
1521 	 */
1522 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1523 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1524 		/*
1525 		 * change_huge_pmd() released the pmd lock before
1526 		 * invalidating the secondary MMUs sharing the primary
1527 		 * MMU pagetables (with ->invalidate_range()). The
1528 		 * mmu_notifier_invalidate_range_end() (which
1529 		 * internally calls ->invalidate_range()) in
1530 		 * change_pmd_range() will run after us, so we can't
1531 		 * rely on it here and we need an explicit invalidate.
1532 		 */
1533 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1534 					      haddr + HPAGE_PMD_SIZE);
1535 	}
1536 
1537 	/*
1538 	 * Migrate the THP to the requested node, returns with page unlocked
1539 	 * and access rights restored.
1540 	 */
1541 	spin_unlock(vmf->ptl);
1542 
1543 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1544 				vmf->pmd, pmd, vmf->address, page, target_nid);
1545 	if (migrated) {
1546 		flags |= TNF_MIGRATED;
1547 		page_nid = target_nid;
1548 	} else
1549 		flags |= TNF_MIGRATE_FAIL;
1550 
1551 	goto out;
1552 clear_pmdnuma:
1553 	BUG_ON(!PageLocked(page));
1554 	was_writable = pmd_savedwrite(pmd);
1555 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1556 	pmd = pmd_mkyoung(pmd);
1557 	if (was_writable)
1558 		pmd = pmd_mkwrite(pmd);
1559 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1560 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1561 	unlock_page(page);
1562 out_unlock:
1563 	spin_unlock(vmf->ptl);
1564 
1565 out:
1566 	if (anon_vma)
1567 		page_unlock_anon_vma_read(anon_vma);
1568 
1569 	if (page_nid != NUMA_NO_NODE)
1570 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1571 				flags);
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Return true if we do MADV_FREE successfully on entire pmd page.
1578  * Otherwise, return false.
1579  */
1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 		pmd_t *pmd, unsigned long addr, unsigned long next)
1582 {
1583 	spinlock_t *ptl;
1584 	pmd_t orig_pmd;
1585 	struct page *page;
1586 	struct mm_struct *mm = tlb->mm;
1587 	bool ret = false;
1588 
1589 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1590 
1591 	ptl = pmd_trans_huge_lock(pmd, vma);
1592 	if (!ptl)
1593 		goto out_unlocked;
1594 
1595 	orig_pmd = *pmd;
1596 	if (is_huge_zero_pmd(orig_pmd))
1597 		goto out;
1598 
1599 	if (unlikely(!pmd_present(orig_pmd))) {
1600 		VM_BUG_ON(thp_migration_supported() &&
1601 				  !is_pmd_migration_entry(orig_pmd));
1602 		goto out;
1603 	}
1604 
1605 	page = pmd_page(orig_pmd);
1606 	/*
1607 	 * If other processes are mapping this page, we couldn't discard
1608 	 * the page unless they all do MADV_FREE so let's skip the page.
1609 	 */
1610 	if (page_mapcount(page) != 1)
1611 		goto out;
1612 
1613 	if (!trylock_page(page))
1614 		goto out;
1615 
1616 	/*
1617 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 	 * will deactivate only them.
1619 	 */
1620 	if (next - addr != HPAGE_PMD_SIZE) {
1621 		get_page(page);
1622 		spin_unlock(ptl);
1623 		split_huge_page(page);
1624 		unlock_page(page);
1625 		put_page(page);
1626 		goto out_unlocked;
1627 	}
1628 
1629 	if (PageDirty(page))
1630 		ClearPageDirty(page);
1631 	unlock_page(page);
1632 
1633 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634 		pmdp_invalidate(vma, addr, pmd);
1635 		orig_pmd = pmd_mkold(orig_pmd);
1636 		orig_pmd = pmd_mkclean(orig_pmd);
1637 
1638 		set_pmd_at(mm, addr, pmd, orig_pmd);
1639 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 	}
1641 
1642 	mark_page_lazyfree(page);
1643 	ret = true;
1644 out:
1645 	spin_unlock(ptl);
1646 out_unlocked:
1647 	return ret;
1648 }
1649 
1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651 {
1652 	pgtable_t pgtable;
1653 
1654 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 	pte_free(mm, pgtable);
1656 	mm_dec_nr_ptes(mm);
1657 }
1658 
1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 		 pmd_t *pmd, unsigned long addr)
1661 {
1662 	pmd_t orig_pmd;
1663 	spinlock_t *ptl;
1664 
1665 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1666 
1667 	ptl = __pmd_trans_huge_lock(pmd, vma);
1668 	if (!ptl)
1669 		return 0;
1670 	/*
1671 	 * For architectures like ppc64 we look at deposited pgtable
1672 	 * when calling pmdp_huge_get_and_clear. So do the
1673 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 	 * operations.
1675 	 */
1676 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 						tlb->fullmm);
1678 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 	if (vma_is_special_huge(vma)) {
1680 		if (arch_needs_pgtable_deposit())
1681 			zap_deposited_table(tlb->mm, pmd);
1682 		spin_unlock(ptl);
1683 		if (is_huge_zero_pmd(orig_pmd))
1684 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1685 	} else if (is_huge_zero_pmd(orig_pmd)) {
1686 		zap_deposited_table(tlb->mm, pmd);
1687 		spin_unlock(ptl);
1688 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1689 	} else {
1690 		struct page *page = NULL;
1691 		int flush_needed = 1;
1692 
1693 		if (pmd_present(orig_pmd)) {
1694 			page = pmd_page(orig_pmd);
1695 			page_remove_rmap(page, true);
1696 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 			VM_BUG_ON_PAGE(!PageHead(page), page);
1698 		} else if (thp_migration_supported()) {
1699 			swp_entry_t entry;
1700 
1701 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1702 			entry = pmd_to_swp_entry(orig_pmd);
1703 			page = pfn_to_page(swp_offset(entry));
1704 			flush_needed = 0;
1705 		} else
1706 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1707 
1708 		if (PageAnon(page)) {
1709 			zap_deposited_table(tlb->mm, pmd);
1710 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1711 		} else {
1712 			if (arch_needs_pgtable_deposit())
1713 				zap_deposited_table(tlb->mm, pmd);
1714 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1715 		}
1716 
1717 		spin_unlock(ptl);
1718 		if (flush_needed)
1719 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1720 	}
1721 	return 1;
1722 }
1723 
1724 #ifndef pmd_move_must_withdraw
1725 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1726 					 spinlock_t *old_pmd_ptl,
1727 					 struct vm_area_struct *vma)
1728 {
1729 	/*
1730 	 * With split pmd lock we also need to move preallocated
1731 	 * PTE page table if new_pmd is on different PMD page table.
1732 	 *
1733 	 * We also don't deposit and withdraw tables for file pages.
1734 	 */
1735 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1736 }
1737 #endif
1738 
1739 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1740 {
1741 #ifdef CONFIG_MEM_SOFT_DIRTY
1742 	if (unlikely(is_pmd_migration_entry(pmd)))
1743 		pmd = pmd_swp_mksoft_dirty(pmd);
1744 	else if (pmd_present(pmd))
1745 		pmd = pmd_mksoft_dirty(pmd);
1746 #endif
1747 	return pmd;
1748 }
1749 
1750 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1751 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1752 {
1753 	spinlock_t *old_ptl, *new_ptl;
1754 	pmd_t pmd;
1755 	struct mm_struct *mm = vma->vm_mm;
1756 	bool force_flush = false;
1757 
1758 	/*
1759 	 * The destination pmd shouldn't be established, free_pgtables()
1760 	 * should have release it.
1761 	 */
1762 	if (WARN_ON(!pmd_none(*new_pmd))) {
1763 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1764 		return false;
1765 	}
1766 
1767 	/*
1768 	 * We don't have to worry about the ordering of src and dst
1769 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1770 	 */
1771 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1772 	if (old_ptl) {
1773 		new_ptl = pmd_lockptr(mm, new_pmd);
1774 		if (new_ptl != old_ptl)
1775 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1776 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1777 		if (pmd_present(pmd))
1778 			force_flush = true;
1779 		VM_BUG_ON(!pmd_none(*new_pmd));
1780 
1781 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1782 			pgtable_t pgtable;
1783 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1784 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1785 		}
1786 		pmd = move_soft_dirty_pmd(pmd);
1787 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1788 		if (force_flush)
1789 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1790 		if (new_ptl != old_ptl)
1791 			spin_unlock(new_ptl);
1792 		spin_unlock(old_ptl);
1793 		return true;
1794 	}
1795 	return false;
1796 }
1797 
1798 /*
1799  * Returns
1800  *  - 0 if PMD could not be locked
1801  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1802  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1803  */
1804 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1805 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1806 {
1807 	struct mm_struct *mm = vma->vm_mm;
1808 	spinlock_t *ptl;
1809 	pmd_t entry;
1810 	bool preserve_write;
1811 	int ret;
1812 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1813 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1814 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1815 
1816 	ptl = __pmd_trans_huge_lock(pmd, vma);
1817 	if (!ptl)
1818 		return 0;
1819 
1820 	preserve_write = prot_numa && pmd_write(*pmd);
1821 	ret = 1;
1822 
1823 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1824 	if (is_swap_pmd(*pmd)) {
1825 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1826 
1827 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1828 		if (is_write_migration_entry(entry)) {
1829 			pmd_t newpmd;
1830 			/*
1831 			 * A protection check is difficult so
1832 			 * just be safe and disable write
1833 			 */
1834 			make_migration_entry_read(&entry);
1835 			newpmd = swp_entry_to_pmd(entry);
1836 			if (pmd_swp_soft_dirty(*pmd))
1837 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1838 			set_pmd_at(mm, addr, pmd, newpmd);
1839 		}
1840 		goto unlock;
1841 	}
1842 #endif
1843 
1844 	/*
1845 	 * Avoid trapping faults against the zero page. The read-only
1846 	 * data is likely to be read-cached on the local CPU and
1847 	 * local/remote hits to the zero page are not interesting.
1848 	 */
1849 	if (prot_numa && is_huge_zero_pmd(*pmd))
1850 		goto unlock;
1851 
1852 	if (prot_numa && pmd_protnone(*pmd))
1853 		goto unlock;
1854 
1855 	/*
1856 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1857 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1858 	 * which is also under mmap_read_lock(mm):
1859 	 *
1860 	 *	CPU0:				CPU1:
1861 	 *				change_huge_pmd(prot_numa=1)
1862 	 *				 pmdp_huge_get_and_clear_notify()
1863 	 * madvise_dontneed()
1864 	 *  zap_pmd_range()
1865 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1866 	 *   // skip the pmd
1867 	 *				 set_pmd_at();
1868 	 *				 // pmd is re-established
1869 	 *
1870 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1871 	 * which may break userspace.
1872 	 *
1873 	 * pmdp_invalidate() is required to make sure we don't miss
1874 	 * dirty/young flags set by hardware.
1875 	 */
1876 	entry = pmdp_invalidate(vma, addr, pmd);
1877 
1878 	entry = pmd_modify(entry, newprot);
1879 	if (preserve_write)
1880 		entry = pmd_mk_savedwrite(entry);
1881 	if (uffd_wp) {
1882 		entry = pmd_wrprotect(entry);
1883 		entry = pmd_mkuffd_wp(entry);
1884 	} else if (uffd_wp_resolve) {
1885 		/*
1886 		 * Leave the write bit to be handled by PF interrupt
1887 		 * handler, then things like COW could be properly
1888 		 * handled.
1889 		 */
1890 		entry = pmd_clear_uffd_wp(entry);
1891 	}
1892 	ret = HPAGE_PMD_NR;
1893 	set_pmd_at(mm, addr, pmd, entry);
1894 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1895 unlock:
1896 	spin_unlock(ptl);
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1902  *
1903  * Note that if it returns page table lock pointer, this routine returns without
1904  * unlocking page table lock. So callers must unlock it.
1905  */
1906 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1907 {
1908 	spinlock_t *ptl;
1909 	ptl = pmd_lock(vma->vm_mm, pmd);
1910 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1911 			pmd_devmap(*pmd)))
1912 		return ptl;
1913 	spin_unlock(ptl);
1914 	return NULL;
1915 }
1916 
1917 /*
1918  * Returns true if a given pud maps a thp, false otherwise.
1919  *
1920  * Note that if it returns true, this routine returns without unlocking page
1921  * table lock. So callers must unlock it.
1922  */
1923 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1924 {
1925 	spinlock_t *ptl;
1926 
1927 	ptl = pud_lock(vma->vm_mm, pud);
1928 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1929 		return ptl;
1930 	spin_unlock(ptl);
1931 	return NULL;
1932 }
1933 
1934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1935 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1936 		 pud_t *pud, unsigned long addr)
1937 {
1938 	spinlock_t *ptl;
1939 
1940 	ptl = __pud_trans_huge_lock(pud, vma);
1941 	if (!ptl)
1942 		return 0;
1943 	/*
1944 	 * For architectures like ppc64 we look at deposited pgtable
1945 	 * when calling pudp_huge_get_and_clear. So do the
1946 	 * pgtable_trans_huge_withdraw after finishing pudp related
1947 	 * operations.
1948 	 */
1949 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1950 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1951 	if (vma_is_special_huge(vma)) {
1952 		spin_unlock(ptl);
1953 		/* No zero page support yet */
1954 	} else {
1955 		/* No support for anonymous PUD pages yet */
1956 		BUG();
1957 	}
1958 	return 1;
1959 }
1960 
1961 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1962 		unsigned long haddr)
1963 {
1964 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1965 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1966 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1967 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1968 
1969 	count_vm_event(THP_SPLIT_PUD);
1970 
1971 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1972 }
1973 
1974 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1975 		unsigned long address)
1976 {
1977 	spinlock_t *ptl;
1978 	struct mmu_notifier_range range;
1979 
1980 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1981 				address & HPAGE_PUD_MASK,
1982 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1983 	mmu_notifier_invalidate_range_start(&range);
1984 	ptl = pud_lock(vma->vm_mm, pud);
1985 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1986 		goto out;
1987 	__split_huge_pud_locked(vma, pud, range.start);
1988 
1989 out:
1990 	spin_unlock(ptl);
1991 	/*
1992 	 * No need to double call mmu_notifier->invalidate_range() callback as
1993 	 * the above pudp_huge_clear_flush_notify() did already call it.
1994 	 */
1995 	mmu_notifier_invalidate_range_only_end(&range);
1996 }
1997 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1998 
1999 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2000 		unsigned long haddr, pmd_t *pmd)
2001 {
2002 	struct mm_struct *mm = vma->vm_mm;
2003 	pgtable_t pgtable;
2004 	pmd_t _pmd;
2005 	int i;
2006 
2007 	/*
2008 	 * Leave pmd empty until pte is filled note that it is fine to delay
2009 	 * notification until mmu_notifier_invalidate_range_end() as we are
2010 	 * replacing a zero pmd write protected page with a zero pte write
2011 	 * protected page.
2012 	 *
2013 	 * See Documentation/vm/mmu_notifier.rst
2014 	 */
2015 	pmdp_huge_clear_flush(vma, haddr, pmd);
2016 
2017 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2018 	pmd_populate(mm, &_pmd, pgtable);
2019 
2020 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2021 		pte_t *pte, entry;
2022 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2023 		entry = pte_mkspecial(entry);
2024 		pte = pte_offset_map(&_pmd, haddr);
2025 		VM_BUG_ON(!pte_none(*pte));
2026 		set_pte_at(mm, haddr, pte, entry);
2027 		pte_unmap(pte);
2028 	}
2029 	smp_wmb(); /* make pte visible before pmd */
2030 	pmd_populate(mm, pmd, pgtable);
2031 }
2032 
2033 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2034 		unsigned long haddr, bool freeze)
2035 {
2036 	struct mm_struct *mm = vma->vm_mm;
2037 	struct page *page;
2038 	pgtable_t pgtable;
2039 	pmd_t old_pmd, _pmd;
2040 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2041 	unsigned long addr;
2042 	int i;
2043 
2044 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2045 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2046 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2047 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2048 				&& !pmd_devmap(*pmd));
2049 
2050 	count_vm_event(THP_SPLIT_PMD);
2051 
2052 	if (!vma_is_anonymous(vma)) {
2053 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2054 		/*
2055 		 * We are going to unmap this huge page. So
2056 		 * just go ahead and zap it
2057 		 */
2058 		if (arch_needs_pgtable_deposit())
2059 			zap_deposited_table(mm, pmd);
2060 		if (vma_is_special_huge(vma))
2061 			return;
2062 		page = pmd_page(_pmd);
2063 		if (!PageDirty(page) && pmd_dirty(_pmd))
2064 			set_page_dirty(page);
2065 		if (!PageReferenced(page) && pmd_young(_pmd))
2066 			SetPageReferenced(page);
2067 		page_remove_rmap(page, true);
2068 		put_page(page);
2069 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2070 		return;
2071 	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2072 		/*
2073 		 * FIXME: Do we want to invalidate secondary mmu by calling
2074 		 * mmu_notifier_invalidate_range() see comments below inside
2075 		 * __split_huge_pmd() ?
2076 		 *
2077 		 * We are going from a zero huge page write protected to zero
2078 		 * small page also write protected so it does not seems useful
2079 		 * to invalidate secondary mmu at this time.
2080 		 */
2081 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2082 	}
2083 
2084 	/*
2085 	 * Up to this point the pmd is present and huge and userland has the
2086 	 * whole access to the hugepage during the split (which happens in
2087 	 * place). If we overwrite the pmd with the not-huge version pointing
2088 	 * to the pte here (which of course we could if all CPUs were bug
2089 	 * free), userland could trigger a small page size TLB miss on the
2090 	 * small sized TLB while the hugepage TLB entry is still established in
2091 	 * the huge TLB. Some CPU doesn't like that.
2092 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2093 	 * 383 on page 105. Intel should be safe but is also warns that it's
2094 	 * only safe if the permission and cache attributes of the two entries
2095 	 * loaded in the two TLB is identical (which should be the case here).
2096 	 * But it is generally safer to never allow small and huge TLB entries
2097 	 * for the same virtual address to be loaded simultaneously. So instead
2098 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2099 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2100 	 * must remain set at all times on the pmd until the split is complete
2101 	 * for this pmd), then we flush the SMP TLB and finally we write the
2102 	 * non-huge version of the pmd entry with pmd_populate.
2103 	 */
2104 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2105 
2106 	pmd_migration = is_pmd_migration_entry(old_pmd);
2107 	if (unlikely(pmd_migration)) {
2108 		swp_entry_t entry;
2109 
2110 		entry = pmd_to_swp_entry(old_pmd);
2111 		page = pfn_to_page(swp_offset(entry));
2112 		write = is_write_migration_entry(entry);
2113 		young = false;
2114 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2115 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2116 	} else {
2117 		page = pmd_page(old_pmd);
2118 		if (pmd_dirty(old_pmd))
2119 			SetPageDirty(page);
2120 		write = pmd_write(old_pmd);
2121 		young = pmd_young(old_pmd);
2122 		soft_dirty = pmd_soft_dirty(old_pmd);
2123 		uffd_wp = pmd_uffd_wp(old_pmd);
2124 	}
2125 	VM_BUG_ON_PAGE(!page_count(page), page);
2126 	page_ref_add(page, HPAGE_PMD_NR - 1);
2127 
2128 	/*
2129 	 * Withdraw the table only after we mark the pmd entry invalid.
2130 	 * This's critical for some architectures (Power).
2131 	 */
2132 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2133 	pmd_populate(mm, &_pmd, pgtable);
2134 
2135 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2136 		pte_t entry, *pte;
2137 		/*
2138 		 * Note that NUMA hinting access restrictions are not
2139 		 * transferred to avoid any possibility of altering
2140 		 * permissions across VMAs.
2141 		 */
2142 		if (freeze || pmd_migration) {
2143 			swp_entry_t swp_entry;
2144 			swp_entry = make_migration_entry(page + i, write);
2145 			entry = swp_entry_to_pte(swp_entry);
2146 			if (soft_dirty)
2147 				entry = pte_swp_mksoft_dirty(entry);
2148 			if (uffd_wp)
2149 				entry = pte_swp_mkuffd_wp(entry);
2150 		} else {
2151 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2152 			entry = maybe_mkwrite(entry, vma);
2153 			if (!write)
2154 				entry = pte_wrprotect(entry);
2155 			if (!young)
2156 				entry = pte_mkold(entry);
2157 			if (soft_dirty)
2158 				entry = pte_mksoft_dirty(entry);
2159 			if (uffd_wp)
2160 				entry = pte_mkuffd_wp(entry);
2161 		}
2162 		pte = pte_offset_map(&_pmd, addr);
2163 		BUG_ON(!pte_none(*pte));
2164 		set_pte_at(mm, addr, pte, entry);
2165 		if (!pmd_migration)
2166 			atomic_inc(&page[i]._mapcount);
2167 		pte_unmap(pte);
2168 	}
2169 
2170 	if (!pmd_migration) {
2171 		/*
2172 		 * Set PG_double_map before dropping compound_mapcount to avoid
2173 		 * false-negative page_mapped().
2174 		 */
2175 		if (compound_mapcount(page) > 1 &&
2176 		    !TestSetPageDoubleMap(page)) {
2177 			for (i = 0; i < HPAGE_PMD_NR; i++)
2178 				atomic_inc(&page[i]._mapcount);
2179 		}
2180 
2181 		lock_page_memcg(page);
2182 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2183 			/* Last compound_mapcount is gone. */
2184 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2185 						-HPAGE_PMD_NR);
2186 			if (TestClearPageDoubleMap(page)) {
2187 				/* No need in mapcount reference anymore */
2188 				for (i = 0; i < HPAGE_PMD_NR; i++)
2189 					atomic_dec(&page[i]._mapcount);
2190 			}
2191 		}
2192 		unlock_page_memcg(page);
2193 	}
2194 
2195 	smp_wmb(); /* make pte visible before pmd */
2196 	pmd_populate(mm, pmd, pgtable);
2197 
2198 	if (freeze) {
2199 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2200 			page_remove_rmap(page + i, false);
2201 			put_page(page + i);
2202 		}
2203 	}
2204 }
2205 
2206 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2207 		unsigned long address, bool freeze, struct page *page)
2208 {
2209 	spinlock_t *ptl;
2210 	struct mmu_notifier_range range;
2211 	bool do_unlock_page = false;
2212 	pmd_t _pmd;
2213 
2214 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2215 				address & HPAGE_PMD_MASK,
2216 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2217 	mmu_notifier_invalidate_range_start(&range);
2218 	ptl = pmd_lock(vma->vm_mm, pmd);
2219 
2220 	/*
2221 	 * If caller asks to setup a migration entries, we need a page to check
2222 	 * pmd against. Otherwise we can end up replacing wrong page.
2223 	 */
2224 	VM_BUG_ON(freeze && !page);
2225 	if (page) {
2226 		VM_WARN_ON_ONCE(!PageLocked(page));
2227 		if (page != pmd_page(*pmd))
2228 			goto out;
2229 	}
2230 
2231 repeat:
2232 	if (pmd_trans_huge(*pmd)) {
2233 		if (!page) {
2234 			page = pmd_page(*pmd);
2235 			/*
2236 			 * An anonymous page must be locked, to ensure that a
2237 			 * concurrent reuse_swap_page() sees stable mapcount;
2238 			 * but reuse_swap_page() is not used on shmem or file,
2239 			 * and page lock must not be taken when zap_pmd_range()
2240 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2241 			 */
2242 			if (PageAnon(page)) {
2243 				if (unlikely(!trylock_page(page))) {
2244 					get_page(page);
2245 					_pmd = *pmd;
2246 					spin_unlock(ptl);
2247 					lock_page(page);
2248 					spin_lock(ptl);
2249 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2250 						unlock_page(page);
2251 						put_page(page);
2252 						page = NULL;
2253 						goto repeat;
2254 					}
2255 					put_page(page);
2256 				}
2257 				do_unlock_page = true;
2258 			}
2259 		}
2260 		if (PageMlocked(page))
2261 			clear_page_mlock(page);
2262 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2263 		goto out;
2264 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2265 out:
2266 	spin_unlock(ptl);
2267 	if (do_unlock_page)
2268 		unlock_page(page);
2269 	/*
2270 	 * No need to double call mmu_notifier->invalidate_range() callback.
2271 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2272 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2273 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2274 	 *    fault will trigger a flush_notify before pointing to a new page
2275 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2276 	 *    page in the meantime)
2277 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2278 	 *     to invalidate secondary tlb entry they are all still valid.
2279 	 *     any further changes to individual pte will notify. So no need
2280 	 *     to call mmu_notifier->invalidate_range()
2281 	 */
2282 	mmu_notifier_invalidate_range_only_end(&range);
2283 }
2284 
2285 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2286 		bool freeze, struct page *page)
2287 {
2288 	pgd_t *pgd;
2289 	p4d_t *p4d;
2290 	pud_t *pud;
2291 	pmd_t *pmd;
2292 
2293 	pgd = pgd_offset(vma->vm_mm, address);
2294 	if (!pgd_present(*pgd))
2295 		return;
2296 
2297 	p4d = p4d_offset(pgd, address);
2298 	if (!p4d_present(*p4d))
2299 		return;
2300 
2301 	pud = pud_offset(p4d, address);
2302 	if (!pud_present(*pud))
2303 		return;
2304 
2305 	pmd = pmd_offset(pud, address);
2306 
2307 	__split_huge_pmd(vma, pmd, address, freeze, page);
2308 }
2309 
2310 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2311 			     unsigned long start,
2312 			     unsigned long end,
2313 			     long adjust_next)
2314 {
2315 	/*
2316 	 * If the new start address isn't hpage aligned and it could
2317 	 * previously contain an hugepage: check if we need to split
2318 	 * an huge pmd.
2319 	 */
2320 	if (start & ~HPAGE_PMD_MASK &&
2321 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2322 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2323 		split_huge_pmd_address(vma, start, false, NULL);
2324 
2325 	/*
2326 	 * If the new end address isn't hpage aligned and it could
2327 	 * previously contain an hugepage: check if we need to split
2328 	 * an huge pmd.
2329 	 */
2330 	if (end & ~HPAGE_PMD_MASK &&
2331 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2332 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2333 		split_huge_pmd_address(vma, end, false, NULL);
2334 
2335 	/*
2336 	 * If we're also updating the vma->vm_next->vm_start, if the new
2337 	 * vm_next->vm_start isn't hpage aligned and it could previously
2338 	 * contain an hugepage: check if we need to split an huge pmd.
2339 	 */
2340 	if (adjust_next > 0) {
2341 		struct vm_area_struct *next = vma->vm_next;
2342 		unsigned long nstart = next->vm_start;
2343 		nstart += adjust_next;
2344 		if (nstart & ~HPAGE_PMD_MASK &&
2345 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2346 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2347 			split_huge_pmd_address(next, nstart, false, NULL);
2348 	}
2349 }
2350 
2351 static void unmap_page(struct page *page)
2352 {
2353 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2354 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2355 	bool unmap_success;
2356 
2357 	VM_BUG_ON_PAGE(!PageHead(page), page);
2358 
2359 	if (PageAnon(page))
2360 		ttu_flags |= TTU_SPLIT_FREEZE;
2361 
2362 	unmap_success = try_to_unmap(page, ttu_flags);
2363 	VM_BUG_ON_PAGE(!unmap_success, page);
2364 }
2365 
2366 static void remap_page(struct page *page, unsigned int nr)
2367 {
2368 	int i;
2369 	if (PageTransHuge(page)) {
2370 		remove_migration_ptes(page, page, true);
2371 	} else {
2372 		for (i = 0; i < nr; i++)
2373 			remove_migration_ptes(page + i, page + i, true);
2374 	}
2375 }
2376 
2377 static void lru_add_page_tail(struct page *head, struct page *tail,
2378 		struct lruvec *lruvec, struct list_head *list)
2379 {
2380 	VM_BUG_ON_PAGE(!PageHead(head), head);
2381 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2382 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2383 	lockdep_assert_held(&lruvec->lru_lock);
2384 
2385 	if (list) {
2386 		/* page reclaim is reclaiming a huge page */
2387 		VM_WARN_ON(PageLRU(head));
2388 		get_page(tail);
2389 		list_add_tail(&tail->lru, list);
2390 	} else {
2391 		/* head is still on lru (and we have it frozen) */
2392 		VM_WARN_ON(!PageLRU(head));
2393 		SetPageLRU(tail);
2394 		list_add_tail(&tail->lru, &head->lru);
2395 	}
2396 }
2397 
2398 static void __split_huge_page_tail(struct page *head, int tail,
2399 		struct lruvec *lruvec, struct list_head *list)
2400 {
2401 	struct page *page_tail = head + tail;
2402 
2403 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2404 
2405 	/*
2406 	 * Clone page flags before unfreezing refcount.
2407 	 *
2408 	 * After successful get_page_unless_zero() might follow flags change,
2409 	 * for example lock_page() which set PG_waiters.
2410 	 */
2411 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2412 	page_tail->flags |= (head->flags &
2413 			((1L << PG_referenced) |
2414 			 (1L << PG_swapbacked) |
2415 			 (1L << PG_swapcache) |
2416 			 (1L << PG_mlocked) |
2417 			 (1L << PG_uptodate) |
2418 			 (1L << PG_active) |
2419 			 (1L << PG_workingset) |
2420 			 (1L << PG_locked) |
2421 			 (1L << PG_unevictable) |
2422 #ifdef CONFIG_64BIT
2423 			 (1L << PG_arch_2) |
2424 #endif
2425 			 (1L << PG_dirty)));
2426 
2427 	/* ->mapping in first tail page is compound_mapcount */
2428 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 			page_tail);
2430 	page_tail->mapping = head->mapping;
2431 	page_tail->index = head->index + tail;
2432 
2433 	/* Page flags must be visible before we make the page non-compound. */
2434 	smp_wmb();
2435 
2436 	/*
2437 	 * Clear PageTail before unfreezing page refcount.
2438 	 *
2439 	 * After successful get_page_unless_zero() might follow put_page()
2440 	 * which needs correct compound_head().
2441 	 */
2442 	clear_compound_head(page_tail);
2443 
2444 	/* Finally unfreeze refcount. Additional reference from page cache. */
2445 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 					  PageSwapCache(head)));
2447 
2448 	if (page_is_young(head))
2449 		set_page_young(page_tail);
2450 	if (page_is_idle(head))
2451 		set_page_idle(page_tail);
2452 
2453 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2454 
2455 	/*
2456 	 * always add to the tail because some iterators expect new
2457 	 * pages to show after the currently processed elements - e.g.
2458 	 * migrate_pages
2459 	 */
2460 	lru_add_page_tail(head, page_tail, lruvec, list);
2461 }
2462 
2463 static void __split_huge_page(struct page *page, struct list_head *list,
2464 		pgoff_t end)
2465 {
2466 	struct page *head = compound_head(page);
2467 	struct lruvec *lruvec;
2468 	struct address_space *swap_cache = NULL;
2469 	unsigned long offset = 0;
2470 	unsigned int nr = thp_nr_pages(head);
2471 	int i;
2472 
2473 	/* complete memcg works before add pages to LRU */
2474 	mem_cgroup_split_huge_fixup(head);
2475 
2476 	if (PageAnon(head) && PageSwapCache(head)) {
2477 		swp_entry_t entry = { .val = page_private(head) };
2478 
2479 		offset = swp_offset(entry);
2480 		swap_cache = swap_address_space(entry);
2481 		xa_lock(&swap_cache->i_pages);
2482 	}
2483 
2484 	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2485 	lruvec = lock_page_lruvec(head);
2486 
2487 	for (i = nr - 1; i >= 1; i--) {
2488 		__split_huge_page_tail(head, i, lruvec, list);
2489 		/* Some pages can be beyond i_size: drop them from page cache */
2490 		if (head[i].index >= end) {
2491 			ClearPageDirty(head + i);
2492 			__delete_from_page_cache(head + i, NULL);
2493 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2494 				shmem_uncharge(head->mapping->host, 1);
2495 			put_page(head + i);
2496 		} else if (!PageAnon(page)) {
2497 			__xa_store(&head->mapping->i_pages, head[i].index,
2498 					head + i, 0);
2499 		} else if (swap_cache) {
2500 			__xa_store(&swap_cache->i_pages, offset + i,
2501 					head + i, 0);
2502 		}
2503 	}
2504 
2505 	ClearPageCompound(head);
2506 	unlock_page_lruvec(lruvec);
2507 	/* Caller disabled irqs, so they are still disabled here */
2508 
2509 	split_page_owner(head, nr);
2510 
2511 	/* See comment in __split_huge_page_tail() */
2512 	if (PageAnon(head)) {
2513 		/* Additional pin to swap cache */
2514 		if (PageSwapCache(head)) {
2515 			page_ref_add(head, 2);
2516 			xa_unlock(&swap_cache->i_pages);
2517 		} else {
2518 			page_ref_inc(head);
2519 		}
2520 	} else {
2521 		/* Additional pin to page cache */
2522 		page_ref_add(head, 2);
2523 		xa_unlock(&head->mapping->i_pages);
2524 	}
2525 	local_irq_enable();
2526 
2527 	remap_page(head, nr);
2528 
2529 	if (PageSwapCache(head)) {
2530 		swp_entry_t entry = { .val = page_private(head) };
2531 
2532 		split_swap_cluster(entry);
2533 	}
2534 
2535 	for (i = 0; i < nr; i++) {
2536 		struct page *subpage = head + i;
2537 		if (subpage == page)
2538 			continue;
2539 		unlock_page(subpage);
2540 
2541 		/*
2542 		 * Subpages may be freed if there wasn't any mapping
2543 		 * like if add_to_swap() is running on a lru page that
2544 		 * had its mapping zapped. And freeing these pages
2545 		 * requires taking the lru_lock so we do the put_page
2546 		 * of the tail pages after the split is complete.
2547 		 */
2548 		put_page(subpage);
2549 	}
2550 }
2551 
2552 int total_mapcount(struct page *page)
2553 {
2554 	int i, compound, nr, ret;
2555 
2556 	VM_BUG_ON_PAGE(PageTail(page), page);
2557 
2558 	if (likely(!PageCompound(page)))
2559 		return atomic_read(&page->_mapcount) + 1;
2560 
2561 	compound = compound_mapcount(page);
2562 	nr = compound_nr(page);
2563 	if (PageHuge(page))
2564 		return compound;
2565 	ret = compound;
2566 	for (i = 0; i < nr; i++)
2567 		ret += atomic_read(&page[i]._mapcount) + 1;
2568 	/* File pages has compound_mapcount included in _mapcount */
2569 	if (!PageAnon(page))
2570 		return ret - compound * nr;
2571 	if (PageDoubleMap(page))
2572 		ret -= nr;
2573 	return ret;
2574 }
2575 
2576 /*
2577  * This calculates accurately how many mappings a transparent hugepage
2578  * has (unlike page_mapcount() which isn't fully accurate). This full
2579  * accuracy is primarily needed to know if copy-on-write faults can
2580  * reuse the page and change the mapping to read-write instead of
2581  * copying them. At the same time this returns the total_mapcount too.
2582  *
2583  * The function returns the highest mapcount any one of the subpages
2584  * has. If the return value is one, even if different processes are
2585  * mapping different subpages of the transparent hugepage, they can
2586  * all reuse it, because each process is reusing a different subpage.
2587  *
2588  * The total_mapcount is instead counting all virtual mappings of the
2589  * subpages. If the total_mapcount is equal to "one", it tells the
2590  * caller all mappings belong to the same "mm" and in turn the
2591  * anon_vma of the transparent hugepage can become the vma->anon_vma
2592  * local one as no other process may be mapping any of the subpages.
2593  *
2594  * It would be more accurate to replace page_mapcount() with
2595  * page_trans_huge_mapcount(), however we only use
2596  * page_trans_huge_mapcount() in the copy-on-write faults where we
2597  * need full accuracy to avoid breaking page pinning, because
2598  * page_trans_huge_mapcount() is slower than page_mapcount().
2599  */
2600 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601 {
2602 	int i, ret, _total_mapcount, mapcount;
2603 
2604 	/* hugetlbfs shouldn't call it */
2605 	VM_BUG_ON_PAGE(PageHuge(page), page);
2606 
2607 	if (likely(!PageTransCompound(page))) {
2608 		mapcount = atomic_read(&page->_mapcount) + 1;
2609 		if (total_mapcount)
2610 			*total_mapcount = mapcount;
2611 		return mapcount;
2612 	}
2613 
2614 	page = compound_head(page);
2615 
2616 	_total_mapcount = ret = 0;
2617 	for (i = 0; i < thp_nr_pages(page); i++) {
2618 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 		ret = max(ret, mapcount);
2620 		_total_mapcount += mapcount;
2621 	}
2622 	if (PageDoubleMap(page)) {
2623 		ret -= 1;
2624 		_total_mapcount -= thp_nr_pages(page);
2625 	}
2626 	mapcount = compound_mapcount(page);
2627 	ret += mapcount;
2628 	_total_mapcount += mapcount;
2629 	if (total_mapcount)
2630 		*total_mapcount = _total_mapcount;
2631 	return ret;
2632 }
2633 
2634 /* Racy check whether the huge page can be split */
2635 bool can_split_huge_page(struct page *page, int *pextra_pins)
2636 {
2637 	int extra_pins;
2638 
2639 	/* Additional pins from page cache */
2640 	if (PageAnon(page))
2641 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2642 	else
2643 		extra_pins = thp_nr_pages(page);
2644 	if (pextra_pins)
2645 		*pextra_pins = extra_pins;
2646 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647 }
2648 
2649 /*
2650  * This function splits huge page into normal pages. @page can point to any
2651  * subpage of huge page to split. Split doesn't change the position of @page.
2652  *
2653  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654  * The huge page must be locked.
2655  *
2656  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657  *
2658  * Both head page and tail pages will inherit mapping, flags, and so on from
2659  * the hugepage.
2660  *
2661  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662  * they are not mapped.
2663  *
2664  * Returns 0 if the hugepage is split successfully.
2665  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666  * us.
2667  */
2668 int split_huge_page_to_list(struct page *page, struct list_head *list)
2669 {
2670 	struct page *head = compound_head(page);
2671 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2672 	struct anon_vma *anon_vma = NULL;
2673 	struct address_space *mapping = NULL;
2674 	int count, mapcount, extra_pins, ret;
2675 	pgoff_t end;
2676 
2677 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2678 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2679 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2680 
2681 	if (PageWriteback(head))
2682 		return -EBUSY;
2683 
2684 	if (PageAnon(head)) {
2685 		/*
2686 		 * The caller does not necessarily hold an mmap_lock that would
2687 		 * prevent the anon_vma disappearing so we first we take a
2688 		 * reference to it and then lock the anon_vma for write. This
2689 		 * is similar to page_lock_anon_vma_read except the write lock
2690 		 * is taken to serialise against parallel split or collapse
2691 		 * operations.
2692 		 */
2693 		anon_vma = page_get_anon_vma(head);
2694 		if (!anon_vma) {
2695 			ret = -EBUSY;
2696 			goto out;
2697 		}
2698 		end = -1;
2699 		mapping = NULL;
2700 		anon_vma_lock_write(anon_vma);
2701 	} else {
2702 		mapping = head->mapping;
2703 
2704 		/* Truncated ? */
2705 		if (!mapping) {
2706 			ret = -EBUSY;
2707 			goto out;
2708 		}
2709 
2710 		anon_vma = NULL;
2711 		i_mmap_lock_read(mapping);
2712 
2713 		/*
2714 		 *__split_huge_page() may need to trim off pages beyond EOF:
2715 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 		 * which cannot be nested inside the page tree lock. So note
2717 		 * end now: i_size itself may be changed at any moment, but
2718 		 * head page lock is good enough to serialize the trimming.
2719 		 */
2720 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721 	}
2722 
2723 	/*
2724 	 * Racy check if we can split the page, before unmap_page() will
2725 	 * split PMDs
2726 	 */
2727 	if (!can_split_huge_page(head, &extra_pins)) {
2728 		ret = -EBUSY;
2729 		goto out_unlock;
2730 	}
2731 
2732 	unmap_page(head);
2733 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2734 
2735 	/* block interrupt reentry in xa_lock and spinlock */
2736 	local_irq_disable();
2737 	if (mapping) {
2738 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2739 
2740 		/*
2741 		 * Check if the head page is present in page cache.
2742 		 * We assume all tail are present too, if head is there.
2743 		 */
2744 		xa_lock(&mapping->i_pages);
2745 		if (xas_load(&xas) != head)
2746 			goto fail;
2747 	}
2748 
2749 	/* Prevent deferred_split_scan() touching ->_refcount */
2750 	spin_lock(&ds_queue->split_queue_lock);
2751 	count = page_count(head);
2752 	mapcount = total_mapcount(head);
2753 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2754 		if (!list_empty(page_deferred_list(head))) {
2755 			ds_queue->split_queue_len--;
2756 			list_del(page_deferred_list(head));
2757 		}
2758 		spin_unlock(&ds_queue->split_queue_lock);
2759 		if (mapping) {
2760 			int nr = thp_nr_pages(head);
2761 
2762 			if (PageSwapBacked(head))
2763 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2764 							-nr);
2765 			else
2766 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2767 							-nr);
2768 		}
2769 
2770 		__split_huge_page(page, list, end);
2771 		ret = 0;
2772 	} else {
2773 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2774 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2775 					mapcount, count);
2776 			if (PageTail(page))
2777 				dump_page(head, NULL);
2778 			dump_page(page, "total_mapcount(head) > 0");
2779 			BUG();
2780 		}
2781 		spin_unlock(&ds_queue->split_queue_lock);
2782 fail:		if (mapping)
2783 			xa_unlock(&mapping->i_pages);
2784 		local_irq_enable();
2785 		remap_page(head, thp_nr_pages(head));
2786 		ret = -EBUSY;
2787 	}
2788 
2789 out_unlock:
2790 	if (anon_vma) {
2791 		anon_vma_unlock_write(anon_vma);
2792 		put_anon_vma(anon_vma);
2793 	}
2794 	if (mapping)
2795 		i_mmap_unlock_read(mapping);
2796 out:
2797 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2798 	return ret;
2799 }
2800 
2801 void free_transhuge_page(struct page *page)
2802 {
2803 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2804 	unsigned long flags;
2805 
2806 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807 	if (!list_empty(page_deferred_list(page))) {
2808 		ds_queue->split_queue_len--;
2809 		list_del(page_deferred_list(page));
2810 	}
2811 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2812 	free_compound_page(page);
2813 }
2814 
2815 void deferred_split_huge_page(struct page *page)
2816 {
2817 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2818 #ifdef CONFIG_MEMCG
2819 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2820 #endif
2821 	unsigned long flags;
2822 
2823 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2824 
2825 	/*
2826 	 * The try_to_unmap() in page reclaim path might reach here too,
2827 	 * this may cause a race condition to corrupt deferred split queue.
2828 	 * And, if page reclaim is already handling the same page, it is
2829 	 * unnecessary to handle it again in shrinker.
2830 	 *
2831 	 * Check PageSwapCache to determine if the page is being
2832 	 * handled by page reclaim since THP swap would add the page into
2833 	 * swap cache before calling try_to_unmap().
2834 	 */
2835 	if (PageSwapCache(page))
2836 		return;
2837 
2838 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2839 	if (list_empty(page_deferred_list(page))) {
2840 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2841 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2842 		ds_queue->split_queue_len++;
2843 #ifdef CONFIG_MEMCG
2844 		if (memcg)
2845 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2846 					       deferred_split_shrinker.id);
2847 #endif
2848 	}
2849 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2850 }
2851 
2852 static unsigned long deferred_split_count(struct shrinker *shrink,
2853 		struct shrink_control *sc)
2854 {
2855 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2857 
2858 #ifdef CONFIG_MEMCG
2859 	if (sc->memcg)
2860 		ds_queue = &sc->memcg->deferred_split_queue;
2861 #endif
2862 	return READ_ONCE(ds_queue->split_queue_len);
2863 }
2864 
2865 static unsigned long deferred_split_scan(struct shrinker *shrink,
2866 		struct shrink_control *sc)
2867 {
2868 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2869 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2870 	unsigned long flags;
2871 	LIST_HEAD(list), *pos, *next;
2872 	struct page *page;
2873 	int split = 0;
2874 
2875 #ifdef CONFIG_MEMCG
2876 	if (sc->memcg)
2877 		ds_queue = &sc->memcg->deferred_split_queue;
2878 #endif
2879 
2880 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2881 	/* Take pin on all head pages to avoid freeing them under us */
2882 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2883 		page = list_entry((void *)pos, struct page, mapping);
2884 		page = compound_head(page);
2885 		if (get_page_unless_zero(page)) {
2886 			list_move(page_deferred_list(page), &list);
2887 		} else {
2888 			/* We lost race with put_compound_page() */
2889 			list_del_init(page_deferred_list(page));
2890 			ds_queue->split_queue_len--;
2891 		}
2892 		if (!--sc->nr_to_scan)
2893 			break;
2894 	}
2895 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2896 
2897 	list_for_each_safe(pos, next, &list) {
2898 		page = list_entry((void *)pos, struct page, mapping);
2899 		if (!trylock_page(page))
2900 			goto next;
2901 		/* split_huge_page() removes page from list on success */
2902 		if (!split_huge_page(page))
2903 			split++;
2904 		unlock_page(page);
2905 next:
2906 		put_page(page);
2907 	}
2908 
2909 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2910 	list_splice_tail(&list, &ds_queue->split_queue);
2911 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2912 
2913 	/*
2914 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2915 	 * This can happen if pages were freed under us.
2916 	 */
2917 	if (!split && list_empty(&ds_queue->split_queue))
2918 		return SHRINK_STOP;
2919 	return split;
2920 }
2921 
2922 static struct shrinker deferred_split_shrinker = {
2923 	.count_objects = deferred_split_count,
2924 	.scan_objects = deferred_split_scan,
2925 	.seeks = DEFAULT_SEEKS,
2926 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2927 		 SHRINKER_NONSLAB,
2928 };
2929 
2930 #ifdef CONFIG_DEBUG_FS
2931 static int split_huge_pages_set(void *data, u64 val)
2932 {
2933 	struct zone *zone;
2934 	struct page *page;
2935 	unsigned long pfn, max_zone_pfn;
2936 	unsigned long total = 0, split = 0;
2937 
2938 	if (val != 1)
2939 		return -EINVAL;
2940 
2941 	for_each_populated_zone(zone) {
2942 		max_zone_pfn = zone_end_pfn(zone);
2943 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2944 			if (!pfn_valid(pfn))
2945 				continue;
2946 
2947 			page = pfn_to_page(pfn);
2948 			if (!get_page_unless_zero(page))
2949 				continue;
2950 
2951 			if (zone != page_zone(page))
2952 				goto next;
2953 
2954 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2955 				goto next;
2956 
2957 			total++;
2958 			lock_page(page);
2959 			if (!split_huge_page(page))
2960 				split++;
2961 			unlock_page(page);
2962 next:
2963 			put_page(page);
2964 		}
2965 	}
2966 
2967 	pr_info("%lu of %lu THP split\n", split, total);
2968 
2969 	return 0;
2970 }
2971 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2972 		"%llu\n");
2973 
2974 static int __init split_huge_pages_debugfs(void)
2975 {
2976 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2977 			    &split_huge_pages_fops);
2978 	return 0;
2979 }
2980 late_initcall(split_huge_pages_debugfs);
2981 #endif
2982 
2983 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2984 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2985 		struct page *page)
2986 {
2987 	struct vm_area_struct *vma = pvmw->vma;
2988 	struct mm_struct *mm = vma->vm_mm;
2989 	unsigned long address = pvmw->address;
2990 	pmd_t pmdval;
2991 	swp_entry_t entry;
2992 	pmd_t pmdswp;
2993 
2994 	if (!(pvmw->pmd && !pvmw->pte))
2995 		return;
2996 
2997 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2998 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2999 	if (pmd_dirty(pmdval))
3000 		set_page_dirty(page);
3001 	entry = make_migration_entry(page, pmd_write(pmdval));
3002 	pmdswp = swp_entry_to_pmd(entry);
3003 	if (pmd_soft_dirty(pmdval))
3004 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3005 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3006 	page_remove_rmap(page, true);
3007 	put_page(page);
3008 }
3009 
3010 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3011 {
3012 	struct vm_area_struct *vma = pvmw->vma;
3013 	struct mm_struct *mm = vma->vm_mm;
3014 	unsigned long address = pvmw->address;
3015 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3016 	pmd_t pmde;
3017 	swp_entry_t entry;
3018 
3019 	if (!(pvmw->pmd && !pvmw->pte))
3020 		return;
3021 
3022 	entry = pmd_to_swp_entry(*pvmw->pmd);
3023 	get_page(new);
3024 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3025 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3026 		pmde = pmd_mksoft_dirty(pmde);
3027 	if (is_write_migration_entry(entry))
3028 		pmde = maybe_pmd_mkwrite(pmde, vma);
3029 
3030 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3031 	if (PageAnon(new))
3032 		page_add_anon_rmap(new, vma, mmun_start, true);
3033 	else
3034 		page_add_file_rmap(new, true);
3035 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3036 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3037 		mlock_vma_page(new);
3038 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3039 }
3040 #endif
3041